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Preface

This year’s edition of STACOM 2012 was held in conjunction with the MICCAI
conference (Nice, France), and followed the last two editions: STACOM 2010
(held in 2010, Beijing, China) and STACOM 2011 (Toronto, Canada). The main
purpose was to provide a forum for the discussion of the latest developments
in the areas of statistical atlases and computational imaging and modeling of
the heart. This broad aim included: cardiac mapping, image processing, atlas
construction, statistical modeling of cardiac function across different patient
populations, cardiac computational physiology, model personalization, ontolog-
ical schemata for data and results, atlas-based functional analysis, integrated
functional and structural analyses, as well as the clinical applicability of these
methods. STACOM 2012 again drew in participants from around the world, with
42 papers accepted and published by Springer in this volume of Lecture Notes
in Computer Science.

The integration of cardiac models in preclinical and clinical platforms is im-
portant for understanding disease, evaluating the treatment, and planning an in-
tervention. However, significant clinical translation of these tools is constrained
by the lack of complete and rigorous technical and clinical validation as well as
benchmarking of the developed tools. To validate the models, available ground-
truth data capturing generic knowledge on healthy and pathological hearts are
required. Several efforts are now established to provide Web-accessible struc-
tural and functional experimental datasets for clinical, research, and educational
purposes. We believe that these approaches will only be effectively developed
through collaboration across the full research scope of the cardiac imaging and
modelling communities.

In addition to regular papers focused on the main themes, STACOM 2012
was also enhanced by four different challenges for participants to test their com-
putational tools on given data: a Computational Fluid Dynamics (CFD) Chal-
lenge (organized by Siemens Corporation, Corporate Technology, King’s Col-
lege London, and Open Source Medical Software Corporation US), a Delayed
Enhancement Magnetic Resonance Imaging (DE-MRI) Segmentation Challenge
(organized by King’s College London and KU Leuven), a Cardiac Motion Analy-
sis Challenge (organized by Philips Research Medisys, INRIA, CHU Caena and
Cyceron, KU Leuven) and a Cardiac Landmark Challenge (organized by the
University of Auckland). Each challenge is briefly described below.

CFD Challenge — Advances in medical imaging and computational fluid
dynamics (CFD) techniques make it possible to simulate blood flow and pres-
sure in cardiovascular models built from patient data. In particular, image-based
CFD techniques enable the calculation of pressure gradients through an aortic
coarctation noninvasively and for various physiological states. However, the wide
range of available software, modeling formulations and approaches to boundary
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condition specification make it difficult to assess the consistency and repeata-
bility of computational predictions. As a first step to ward gauging the ability
of CFD methods to make reliable predictions in the clinic, the STACOM 2012
CFD Challenge set out to assess the variability in the calculation of the pressure
gradient through a moderate thoracic aortic coarctation model under resting
conditions. A geometrical model of the ascending aorta, aortic arch, descending
aorta, and upper branch vessels of a young patient was provided to participants.
Additionally, inflow boundary condition and flow splits in the branches were
also provided, along with systolic and diastolic proximal pressures. The partici-
pants were asked to reproduce all the given data and to compute the average and
peak pressure gradient through the coarctation. The computed pressure gradient
will be compared with a clinically measured surrogate of the pressure gradient
through the coarctation: i.e., the difference between pressure cuff measurements
taken in the arm (representative of pressure proximal to the coarctation) and
in the leg (representative of pressure distal to the coarctation). The challenge
attracted six participant groups and these proceedings contain the details of the
methodologies and results obtained by each of these participating groups, as well
as reflections on the challenges derived from the lack of absolute ground truth
data in clinical measurements.

DE-MRI Segmentation Challenge — Delayed-enhancement magnetic reso-
nance imaging (DE-MRI) is a powerful tool for detecting fibrosis/scar in the
myocardium of the heart. Recently there has been much interest in quantify-
ing left ventricular fibrosis/scar with many useful applications including car-
diac resynchronization therapy guidance, ventricular tachycardia ablation ther-
apy guidance, and investigation of remodeling following myocardial infarction.
The STACOM 2012 DE-MRI Segmentation Challenge made available 30 DE-
MRI datasets to participants for segmentation of enhanced regions from post-
myocardial infarction patients (15) and pigs (15) that had been subjected to
myocardial ischemia. Of each of these 15 datasets, 5 were provided as train-
ing samples with manual annotation of enhanced regions made by experienced
observers. The provided data included the DE-MRI ventricle scan and a segmen-
tation of the myocardium. Ground truth was established by using manual seg-
mentations from experienced clinical observers. The aim of the challenge was to
create a standard dataset for benchmarking of DE-MRI segmentation algorithms
and to compare different state-of-the-art algorithms. The challenge attracted five
participants and these proceedings contain the details of the methodologies and
results from each of these participating groups. A collation study of this segmen-
tation challenge is also included in these proceedings.

LV Landmark Detection Challenge — Anatomical landmark annotation of the
heart plays a significant role in cardiac MR analysis. It enables more robust and
accurate functional and structural analysis of the heart. Yet, this prerequisite
step for an automated cardiac MRI segmentation method is usually determined
by tedious and subjective manual positioning. At the STACOM 2012 workshop,
the Cardiac Atlas Project provided 100 cardiac MR images for a fully automated
detection of anatomical landmarks of the heart, which include mitral valve, RV
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insert and LV center points. To help participants develop and evaluat their meth-
ods, another 100 patient images were made available for training, accompanied
with landmarks determined by expert observers. The training and validation
cases were randomly selected from the same cohort. The challenge attracted
nine participants of which two submitted their detection results. Details of their
methods are presented in these proceedings.

Motion Analysis Challenge — This year, the second cardiac Motion Analysis
Challenge (cMAC2) focused on 3D ultrasound. For any modality, validation of
myocardial motion and deformation quantification algorithms is a challenging
task that requires reference databases with controlled ground truth. In the case
of ultrasound, ground truth motion cannot be obtained through manual land-
marking of the data. For this reason, the focus was on phantom data, including
synthetic images and in vitro acquisitions. The synthetic images proposed in
this challenge combined an electromechanical model with an ultrasound imag-
ing model. We provided ten sequences spanning different values of the global
conductivity, global contractility, and electrical delay parameters of the 3D elec-
tromechanical model. In the current dataset, a single probe design was consid-
ered. Scatterers were randomly placed in the myocardial geometry and moved
along the cardiac cycle according to the result of the mechanical simulation. The
approach accelerated the convolution of a 3D point spread function (PSF) by
multiple 1D convolutions and allowed the generation of more realistic ultrasound
datasets. These data included ground truth on the motion field so that each chal-
lenger can report quantitative results. Ground truth motion was provided as a
series of volumetric meshes. For the physical phantom, a Polyvinyl alcohol was
produced by repeated freezing and thawing of PVA solution (with addition of
graphite) in a cylindrical shape. One extremity of the cylinder was fixed. The
other extremity was moved by a piston imposing both rotation and longitudinal
compression. Ground truth data for the phantom set-up were captured using
microsonometry (which gave the distance between crystals pairs embedded in
the gel and is therefore considered as ground truth for radial, circumferential,
and longitudinal strains). The cMAC2 challenge attracted 7 participant groups.

We hope that the results obtained by these four challenges, together with
all regular paper contributions, will act to accelerate progress in the important
areas of heart function and structure analysis.

October 2012 Oscar Camara
Tommaso Mansi

Mihaela Pop
Kawal Rhode

Maxime Sermesant
Alistair Young
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Study on Hemodynamics in Patient-Specific Thoracic 
Aortic Coarctation Model 

Wenyu Fu1,2 and Aike Qiao2,* 

1 Beijing Union University, Beijing 100020, China 
2 Beijing University of Technology, Beijing 100124, China 

Abstract. In order to assess the variability in the calculation of the pressure 
gradient through a moderate thoracic aortic coarctation (MTAC), a 3D finite 
element model of MTAC was constructed, which includes the ascending aorta, 
the aortic arch, the descending aorta, and the three large branches (the innominate 
artery, the left common carotid artery, and the left subclavian artery), as well as 
with a coarctation in the descending aorta. The surface model of MTAC in STL 
format was imported into ANSYS ICEM CFD12.1 to generate volume mesh．A 
finite element model suitable for hemodynamics analysis of patient-specific 
MTAC was established．Numerical simulation of hemodynamics in this model 
was performed by means of Computational fluid dynamics (CFD) using ANSYS 
CFX12.1. The temporal distributions of homodynamic variables such as 
streamlines, wall pressure, velocity vector and wall shear stress in the arteries 
were analyzed during a cardiac cycle. The maximum and the average of pressure 
gradient in a cardiac cycle through a MTAC are 13 mmHg and 2.84 mmHg re-
spectively. The pressure difference between the systolic and the diastolic in a 
cardiac cycle proximal to the coarctation is about 38 mmHg, which is smaller 
than the difference between the recorded systolic and diastolic pressures of 115 
and 65 mmHg (i.e. the difference is 115-65=50). Similarly, the pressure gradient 
through the coarctation under exercise conditions could be predicted via mod-
ifying the inflow and outflow boundary conditions under resting conditions. CFD 
techniques make it possible to obtain information (such as pressure when the 
patient is under exercise condition) which is difficult to get in clinic practice or in 
experiment based on patient-specific data.  

Keywords: Thoracic aortic coarctation, MRA image, Computational fluid dy-
namics, Pressure gradient, Hemodynamics. 
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1 Introduction 

Coarctation of the aorta (CoA), which usually occurs in the thoracic segments of the 
aorta, often leads to hypertension. It can be treated with percutaneous balloon angiop-
lasty or stent implantation. The CoA can be expanded to the normal value after treat-
ment and the pressure gradient through CoA will decrease. Studies have shown that 
hemodynamic parameters such as wall pressure, flow velocity and wall shear stress 
(WSS) are closely related to vascular geometry[1-3]. Therefore, hemodynamic analysis 
can be performed and then applied to predict the variability in the calculation of the 
pressure gradient through a thoracic aortic coarctation model. Numerical simulation of 
hemodynamics is an important investigation approach in biomechanical field where 
construction of accurate and effective patient-specific model is a key point. Many 
researchers have performed numerical simulations of blood flow in human thoracic 
aorta[4-7]. However, numerical simulation based on model with several large arteries 
and CoA is rare. In order to assess the variability in the calculation of the pressure 
gradient through a moderate thoracic aortic coarctation (MTAC), a 3D finite element 
model of MTAC was constructed, which includes the ascending aorta, the aortic arch, 
the descending aorta, and the three large branches (the innominate artery, the left 
common carotid artery, and the left subclavian artery), as well as with a coarctation in 
the descending aorta. Numerical simulation of hemodynamics in this model was per-
formed by means of Computational fluid dynamics (CFD) using ANSYS CFX12. 1.  

2 Construction of Finite Element Model 

Gadolinium-enhanced MR angiography (MRA) of an 8 years old female with a mod-
erate thoracic aortic coarctation (approximately 65% of area reduction) was obtained 
from a 1.5-T GE Signa scanner. Data of aortic vessel was extracted by image seg-
mentation. Then surface model of thoracic aorta was exported in STL format (shown in 
Fig.1). The number of faces and points in the .stl file is 114,514 and 57,259, respec-
tively. The STL file was imported into ANSYS ICEMCFD 12.1. Volume meshes were 
generated by using mesh types of unstructural tetrahedron and prism. To improve 
accuracy of calculation near the boundary layer, progressively finer meshes were 
generated in the normal direction of vessel wall. The total number of the meshes is 
4,170,327 and the total number of the nodes is 1,318,788. Meshes in a cross-section is 
shown in Fig.2. 
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Fig. 1. 3D model of aorta Fig. 2. Meshes in a cross-section 

3 Calculation Method 

Volume mesh file was imported into ANSYS CFX 12.1 to perform the numerical 
simulation. The following assumptions were employed in this numerical study: 
non-permeability, rigid wall; incompressible Newtonian fluid; pulsatile and laminar 
flow. Viscosity and density of blood are 0.004Pa•s and 1000kg/m3 respectively. Heart 
rate is 86 beats/min with the cardiac cycle T of 0.7s. Womersley number based on the 
thoracic aorta diameter is 5.78. The average value of Reynolds number is 1076 based 
on the entrance flow velocity and the thoracic aortic diameter. 

The flow rate in the ascending aorta is shown in Fig.3 and it is used as inlet boundary 
condition. This implies a flat velocity profile is assigned at the aortic inlet[8]. No-slip 
condition is applied to vascular wall. Blood pressure was set to 0Pa in all the outlet 
sections. 

The discrete form of differential equations governing the blood flow is upwind 
scheme. Residual convergence criteria of mass and momentum are set to 10-5. The time 
step in calculation is 0.005s. Because the number of volume mesh is more than four 
million, parallel calculation was used to reduce running time. Run mode in CFX is "PVM 
Local Parallel". Personal computer was used to perform simulation calculation. Its CPU 
is Intel Core i5-2400 (4 cores) and its main frequency is 3.10G. Memory is 8GB. Con-
vergence solutions were obtained after 3 cycles and about 13 hours calculation.  
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Fig. 3. Flow at entrance in a cardiac cycle 

4 Calculation Result 

As shown in Table 1, peak pressure gradient and time-averaged pressure gradient 
between Plane1 and Plane2 (as shown in Fig.1) are 13 mmHg and 2.84 mmHg re-
spectively. Systolic pressure and diastolic pressure in ascending aorta are 115 mmHg 
and 77 mmHg respectively. The difference between systolic pressure and diastolic 
pressure is 38 mmHg, which is bigger than the value given in the CFD challenge 
measurements (115-65 =50mmHg).  

Table 1. Results requested by the CFD challenge 

Peak pressure difference between  Plane 1 and Plane 2 13 mmHg 

Mean pressure difference between Plane 1 and Plane 2 2.84 mmHg 

Pressure in ascending aorta (Systolic/Diastolic) 115/77 mmHg 

 

Flow splits in supra-aortic and descending aorta are shown in Table 2. The number 
in the second row in Table 2 is the data given by the CFD challenge measurements. The 
number in the third row in Table 2 is the data obtained from the simulation calculation. 
It can be found that there is relatively big error of blood flow through descending aorta 
(58.8-41.73=17.07). 

Table 2. % of ascending aortic flow through various branches of the aortic model 

Location QIA QLCCA QLSA QDAO 

% Ascending Aortic Flow(Measurement) 25.6 11.3 4.26 58.8 

% Ascending Aortic Flow(Calculation) 37.21 17.18 3.88 41.73 

QIA: flow through the innominate artery; QLCCA: flow through the left common carotid artery; 
QLSA: flow through the left subclavian artery; QDAo: flow through descending aorta;  
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Several typical moments (0.08s and 0.14s, systolic acceleration phase; 0.25s, sys-
tolic deceleration phase; 0.49s and 0.6s, diastolic phase) were selected to show the 
calculation results of velocity, pressure and WSS. 

Streamlines (partial model was shown for clarity) at different moments in a cardiac 
cycle were shown in Fig.4 which shows a vortex in the end of the aortic arch and before 
the descending thoracic aortic coarctation. It is obvious that blood flow velocity is the 
biggest in the region of aortic coarctation. The maximum is about 2.981m/s at  
the moment of 0.14s in a cardiac cycle. Blood flow velocity near the inner parts  
of the aortic arch is bigger than that near the outer parts of the aortic arch in the  
phase of systole. The flow characteristics in the thoracic aorta with coarctation and 
without coarctation are significantly different (refer to [9] for the analysis of flow 
characteristics without coarctation) 

 

.             

    

Fig. 4. Streamlines of blood flow within a cardiac cycle 

To obtain the pressure gradient through the coarctation, two planes were defined 
before the coarctation and after the coarctation as shown in Fig.1 (Plane1 and Plane2). 
The maximum of the pressure gradient in a cardiac cycle is 13 mmHg and the average 
of the pressure gradient in a cardiac cycle is 2.84 mmHg. As shown in Fig.5, pressure 
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gradient between Plane 1 and Plane 2 changes over time. The range of pressure gradient 
in systole is bigger than that in diastole as shown. In the acceleration phase of  
systole, pressure gradient increases gradually (0s to 0.14s). In the decreasing phase of 
systole (0.14s to 0.32s), pressure gradient decreases gradually. In the phase of diastole, 
pressure gradient between Plane 1 and Plane 2 aorta becomes almost identical.  

 

Fig. 5. Pressure gradient between Plane 1 and Plane 2 at different moment in a cardiac cycle 

 

 

Fig. 6. Wall pressure at different moment in a cardiac cycle 
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The range of wall pressure fluctuation in systole is bigger than that in diastole as shown 
in Fig. 6. In the accelerated phase of systole, wall pressure decreases gradually from 
proximal end to distal end (0.08s, 0.14s). On the whole, wall pressure decreases from 
ascending aorta to the location of MATC in the decreasing phase of systole (0.25s). In the 
phase of diastole fluctuation of wall pressure is not big. In the latter half phase of diastole, 
change of wall pressures between ascending aorta and descending aorta is very small. 

As shown in Fig.7, the largest WSS in systole appears in the outer wall of the tho-
racic aortic coarctation. Maximum of WSS in systole is larger than that in diastole by 
about two orders of magnitude. WSSs on the inner wall of the aortic arch are signifi-
cantly larger than WSSs on the outer wall of the aortic arch in the acceleration phase of 
systole (0.08s, 0.14s, 0.25s, 0.49s) and their absolute values are also very high (the 
maximum is about 126 Pa at 0.14s). The maximum of WSS changes from dozens Pa to 
hundreds Pa at different moments.  

             

 

 
 

Fig. 7. Wall shear stress distribution within a cardiac cycle 

5 Conclusions 

With the construction and simulation of patient-specific model of thoracic aorta, dis-
tribution and changes of hemodynamics in blood flow field were obtained. Thoracic 
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aortic model with coarctation based on the MRA images has digital and personalized 
features. This kind of model can be used for calculation of hemodynamics in the tho-
racic aorta and predication of pressure gradient of section with coarctation. It is note-
worthy that boundary conditions for outlets were established with 0 Pa. The outlet 
boundary conditions not only represent the domain of interest (the main aorta),but also 
include smaller arteries, arterioles and capillaries. Now 0 pressures are used for all the 
outlets, so the flow split in supra-aortic and descending aorta is controlled solely by 
flow resistance in the branches of interest. The resistance of the downstream vascular 
beds is not considered. This is the main reason why there is a big error in the data of rate 
of flow between measurement and calculation in Table 2. So the setup of boundary 
conditions for outlets used now is not very appropriate. If the pressure at the outlets 
could be obtained at different moments in a cardiac cycle, boundary conditions of 
outlets could be set up with the pressure waves in a cardiac cycle. It may be closer to the 
real physiological state. 
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Abstract. Pressure gradient across coarctation of aorta (CoA) is conventionally 
computed from phase contrast magnetic resonance imaging (PC-MRI) by  
applying the Bernoulli equation to the peak blood flow velocity measurement 
obtained just distal to the aortic narrowing.  In order to test the validity and ac-
curacy of the Bernoulli flow assumptions of negligible viscous forces in as-
sessment of pressure gradients across the coarctation, we sought to determine 
pressure information from patient-specific computational fluid dynamics (CFD) 
simulation, modeling Newtonian, viscous, incompressible blood flow under 
steady and pulsatile inflow conditions.  The transient high velocity jet observed 
though a moderate thoracic aortic coarctation model (65% area reduction) re-
constructed from magnetic resonance angiography scans of an 8-year old fe-
male patient provided for the 2012 STACOM CFD challenge, was studied over 
a cardiac cycle under patient-specific flow conditions.  Descending aorta he-
modynamics was contrasted with a geometrically and dynamically comparable 
normal aorta simulation.  The peak velocity of the modeled CoA jet (6.99 m/s) 
was observed to occur ~2 cm distal to the site of coarctation.  The magnitude 
of this velocity was found to be similar to appropriately dynamically scaled 
clinical observations (6.00±0.6 m/s) of peak velocity obtained from PC-MRI 
data on three pre-surgical CoA patients, evaluated at Children’s Hospital of 
Pittsburgh. Bernoulli pressure gradient across the CoA computed using the 
CFD velocity field at the peak-systole instant of pulsatile flow grossly overes-
timated the true gradient predicted from CFD (30 mm Hg) when unsteady jet 
wake effects were more pronounced, but underestimated the CFD pressure  
gradient at steady time-averaged inflow conditions (5.8 mm Hg).  Based on 
this pilot study, CFD determined flow fields are a more reliable clinical indica-
tor of pressure gradient which considers viscous flow and complex jet wake  
interactions affecting hemodynamics downstream of CoA.   

Keywords: Coarctation of Aorta, Computational Fluid Dynamics, Phase Con-
trast Magnetic Resonance Imaging, Pressure Gradient. 
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1 Introduction 

Coarctation of aorta (CoA), one of the most commonly encountered congenital cardi-
ovascular diseases, is characterized by aortic narrowing, resulting in differential blood 
flow and systolic pressure gradient between the upper and lower extremities.  Signifi-
cant pressure-loss across the coarctation, turbulent jet flows [1], and hypertension in the 
proximal circulation characterize this condition, which could potentially result in major 
adverse cardiovascular events if left undetected.  Therefore, CoA requires comprehen-
sive qualitative and quantitative evaluation of pressure gradients, collateral flow, and 
velocity across the coarctation in order to assess its severity for timely disease manage-
ment.  Morphological evaluation of coarctation and functional assessment of collateral 
flow at various levels of the descending aorta (DAo) is routinely performed  [2] with 
phase contrast magnetic resonance imaging (PC-MRI).  Pressure gradient (in mm Hg) 
is computed from peak blood flow velocity measurements (in m/s) obtained just before 
and after the aortic narrowing, using the Bernoulli’s equation.  In order to test the valid-
ity and accuracy of the Bernoulli flow assumptions of negligible viscous forces in as-
sessment of pressure gradients across the coarctation, given that turbulent jet flows are 
observed, we sought to determine pressure information from patient-specific computa-
tional fluid dynamics (CFD) simulation, modeling Newtonian, viscous, incompressible 
flow.  We examine the transient jet flow observed over a cardiac cycle though a mod-
erate thoracic aortic coarctation model (65% area reduction) reconstructed from magnet-
ic resonance angiography scans of an 8-year old female patient (BSA = 0.94 m2), as 
provided for the 2012 STACOM CFD challenge. 

The paper is further organized as follows. In Section 2, the computational methods 
are briefly explained followed by the nature of the supporting clinical study that was 
conducted. In Section 3, pressure gradient results obtained with CFD are presented 
along with analyzed flow structures in the DAo, drawing attention to differences that 
exist between the flow structures seen past the CoA and those seen in a normal aorta. 
Section 5 concludes with a short note on the limitations of this study and the focus of 
present studies. 

2 Methods  

2.1 Computational Methods   

Direct numerical simulation (DNS) was performed to solve the Navier–Stokes equations 
using a second-order accurate, finite difference method; this solver has been used exten-
sively for image-based hemodynamic modeling and incorporates a validated multi-grid 
artificial compressibility numerical solver [3, 4] simulating incompressible and Newto-
nian blood flow with constant hemodynamic properties (ρ = 1000 kg/m3, μ = 4 × 10-3 
Pa.s). Flow is simulated on a high-resolution unstructured Cartesian immersed boundary 
grid.  In this study, the resulting 3D CFD grid had ~200,000 uniformly spaced nodes, 
with an average node spacing resolution of 0.03 mm, which was generated after immers-
ing the surface model in a Cartesian grid of 228 x 118 x 387 cubical elements. This solv-
er has been employed for DNS jet flow characterization studies in the past [5] for a range 
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of flow regimes (laminar to turbulent) which were validated against particle image velo-
cimetry (PIV) quantitative flow measurements and flow visualization techniques [6].  
The temporal resolution was considered as 0.01 simulation time units i.e. O(10-4) sec.   
Computations were performed using normalized spatial and temporal units.  The mean 
aortic annulus diameter of 1.61 cm was used to achieve spatial normalization, and the 
mean inflow Reynolds number (Re = 1070) was used in order to obtain temporal norma-
lization.  The cardiac cycle was discretized into 21 steps per cycle (0.7 seconds, ~86 
BPM) and a second order interpolation scheme was employed in order to obtain inlet 
conditions based on the input discrete cardiac cycle data.  Simulations were conducted 
using a Poiseuille inflow velocity profile having a mean-velocity varying as per the  
PC-MRI obtained cardiac output waveform (3.245 L/min, seen in Figure 1) , without 
extending the inlet.  A mass-flow split type outflow boundary condition is employed in 
the solver, with a 42.2% - 58.8% flow split between the head-and-neck vessels and the 
DAo.  Simulation data was gathered for the 5th cardiac cycle, in order to ensure damp-
ing of initial transients.   

As a case control, a similar steady inflow hemodynamics simulation was conducted 
for a normal aorta model (idealized model) which was dynamically scaled (by inlet 
Re) to match the steady time-averaged inflow of the simulated CoA case, considering 
the same outflow boundary splits and similar grid resolution.  The jet across the 
coarctation was analyzed for downstream velocity and helicity and compared with the 
normal model in order to visualize alteration of vortical flow structures in the DAo.  
Further, the pressure gradient in the normal model, across a length equivalent in size 
and location to the simulated CoA case, was computed in order to arrive at a qualita-
tive as well as quantitative comparison between normal and pathological cases.   

2.2 Clinical Study 

Following approval from the Institutional Review Board, we collected retrospective 
cardiac MRI data on children pre-repair for CoA, evaluated at Children’s Hospital of 
Pittsburgh. PC-MRI velocity field data in children between the ages 5 and 18 were 
collected over a period of 2 years.  For this study, three cases having focal CoA with 
narrowing of the isthmus and proximal DAo were examined.  Pressure drops across 
the coarctation were computed based on Bernoulli principle using peak velocity mea-
surement, V, obtained from PC-MRI data as 4 × V2 =ΔP [7].  The results of the pa-
tient study were dynamically scaled to match the flow regime and peak-systole car-
diac output of the CFD modeled CoA case.  Dynamically scaling of the collected 
patient-specific velocity data was achieved in a two step procedure: a) First the ve-
locity at the coarctation was scaled up or down appropriately by scaling the extent of 
narrowing (area as a percentage of area at the hiatus) to be equivalent to the 65% 
narrowing seen in the simulated CoA case, given the inverse relationship between 
velocity and the square of diameter at a cross-section; let us reference this computed 
velocity as v65%.  b) Next, since each patient had a different peak flow cardiac output, 
the velocity expected at the inlet to the ascending aorta (AAo) was computed for a 
diameter of 16.1 mm (i.e. diameter of inlet to the CoA CFD model) and the ratio of  
 



12 P.G. Menon, K. Pekkan, and S. Madan 

 

this computed velocity with the inlet profile-average velocity of the CoA CFD model 
(0.99 m/s at peak systole) was obtained, while accounting for the applied 58.8% 
mass-flow split boundary condition at the DAo.  This ratio was applied to v65% in 
order to finally obtain the velocity expected at the coarctation given that the patient 
had an identical cardiac output at peak-systole as modeled in the CFD simulation.   

3 Results and Discussion 

Based on analysis from the clinical investigation, patients with ~30% focal extent of 
coarctation were expected to have peak velocity distal to the CoA of 1.75±0.25 m/s i.e 
Bernoulli pressure drop of 12.25±0.25 mm Hg with collateral flows ranging between 5 
and 20 mL/beat, depending upon the extent of collateral vessel development during the 
time of diagnosis.  Extrapolating this clinical investigation using the principles of dy-
namical scaling, patients with a similar focal extent and location of CoA as the modeled 
patient (65%) are expected to have peak velocity distal to the CoA of 6.00±0.6 m/s (see 
Table 1) i.e. pressure drop of 144±1.5 mm Hg by the 4×V2 formulation.  The velocity 
range was close to the peak systole velocity observed distal to the CoA from CFD, whe-
reas the pressure gradient was far greater than the CFD result. 

Table 1. Summary of clinical study along with dynamical scaling procedure 

Patient no Age  Sex 
Collateral 

Flow 
(mL/beat)

Peak Veloci-
ty at CoA 

(m/s) 

Peak Velocity 
at Hiatus 

(m/s) 

Isthmus 
(cm)  

Hiatus 
(cm) 

% CoA  
narrowing 

CoA001 11 yr 7.6 mo F 5.00 1.30 0.40 0.40 1.50 73 

CoA002 12 yr 8 mo M 6.80 1.75 0.80 1.00 1.36 26 

CoA003 13 yr 0 mo M 20.00 1.50 0.90 1.30 1.45 31 

Dynamical Scaling 

Patient 
no 

Peak velocity expected at 
65% narrowing (v65% , m/s) 

AAo peak velocity at 16.1 mm inlet - 
given 58.8% DAo split (m/s) 

Peak velocity at 65% CoA 
matched to modeled patient 

CoA peak cardiac output (m/s) 
CoA001 0.75 0.14 5.47 
CoA002 7.72 1.15 6.66 
CoA003 5.82 0.98 5.86 

  Mean +- Standard Deviation = 6.00 +- 0.60 m/s 

 
The peak systole and the running average (equivalent to a time-averaged steady  

inlet flow simulation) flow fields for the simulated CoA case are presented for com-
parison in Figure 1. Using the instantaneous pulsatile CFD pressure field at the peak 
systole, pressure drop across the CoA computed at two reference planes (depicted in 
Table 2), was ~30 mm Hg.  At end diastole, 0.36 mm Hg pressure drop was ob-
served.  In comparison, peak systole pressure drop computed using Bernoulli prin-
ciple across the coarctation using the peak CFD velocities observed in the plane distal 
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The peak velocity observed from CFD data in the peak-systole jet was 6.99 m/s, 
which was ~10% higher than that observed at the neck of the coarctation.  The run-
ning average flow field obtained from pulsatile flow simulation and the corresponding 
steady inflow centerline velocity and pressure profiles were found to match with a 
corresponding maximum CoA jet velocity of 1.45 m/s, indicating that the quasi-
steady assumption is a reasonable approximation for mean flow of the cardiac cycle.   

 

Fig. 2. A) Stream traces computed by time integration of the velocity field colored by pressure 
at end-systole (left) and end-diastole (right), in mm Hg.  B) Helicity isocontours computed at 
peak systole flow instant of the CoA case (left) and the normal aorta case simulated at steady 
Re 1070 inflow conditions.  Helical flow patterns transform into a turbulent jet wake past the 
CoA whereas they remain helical at the DAo of the normal aorta, therefore indicating a striking 
disparity in downstream hemodynamics. 

In order to evaluate the influence that CFD inflow velocity profiles prescribed at 
the inlet of the aorta models have in hemodynamics observed, peak systole velocities 
were compared for a parabolic Poiseuille flow (peak velocity = 2x mean) and a plug 
flow boundary velocity profile.  Peak velocities past the CoA at multiple cross sec-
tions were found to match within +-0.4 m/s.   

The pressure drop obtained from the time-average steady inflow CFD model (~5.8 
mm Hg) were underestimated by the Bernoulli estimates computed from the same 
velocity field (~1 mm Hg).  This is expected on account of neglected viscous fric-
tional losses in the Bernoulli formulation.  The corresponding CFD pressure drop 
observed across the isthmus of the normal aorta model, considering similar reference 
planes for data extraction, was ~5 mm Hg, for the identical steady inflow Re.  

 

A B
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In order to compare the nature of vortical structures in the DAo flow field between 
the CoA case and the normal aorta case, helicity was computed as a flow derived 
parameter and rendered as isocontours (see Figure 2B) for time-averaged inflow con-
ditions (Re 1070).  Helicity was computed as the normalized magnitude of the dot 
product between vorticity and velocity vectors at each node in the computed flow 
field.  Positive helicity (highlighted red) indicates right handed vortical structures and 
negative helicity (highlighted blue) indicates left handed vortical structures. Helicity 
in the DAo is regarded as a contributor to optimizing naturally occurring transport 
processes in the cardiovascular system, avoiding excessive energy dissipation.  Fur-
ther, statistically significant differences are known to exist in the helical content of 
aortic flows at different phases of the cardiac cycle.  Helical flow patterns were ob-
served in the AAo and transverse arch of both CoA and normal cases, but these pat-
terns were more pronounced in the DAo of the normal aorta model.  In contrast, the 
DAo past the coarctation case did not demonstrate such coherent helical flow but 
rather complex shedding vortical flow characteristic of a turbulent jet wake.  

Flow induced wall shear stress (WSS) is believed to play an important role in the 
initiation and progression of vascular diseases.  Increased WSS was seen at the isth-
mus of the normal aorta and pathological CoA CFD models.  A comparison was 
made between the running time average pulsatile WSS field in the CoA case and the 
normal aorta simulation at steady inflow conditions (Figure 3).  The increased WSS 
in the CoA case was nearly twice as high at the coarctation (46-48 dynes / cm2) than 
that expected in the normal aorta. 

 

Fig. 3. Surface plots of the time averaged WSS field obtained from the pulsatile CoA simula-
tion (left) and the steady inflow normal aorta simulation, at the corresponding time-averaged 
Reynolds number (right) 



16 P.G. Menon, K. Pekkan, and S. Madan 

 

4 Conclusions 

CFD is a powerful tool for simulation of altered hemodynamics in pathological ana-
tomies and is adopted in this study as a diagnostic technique for evaluating blood 
velocity and pressure gradients across a patient-specific CoA.  The downstream he-
modynamics and helicity observed in the DAo of the normal aorta model were signif-
icantly different than that observed in the jet wake of the CoA case.  The peak veloci-
ty of the modeled CoA jet was observed to occur ~2 cm distal to the site of coarcta-
tion and the magnitude of this velocity was found to match clinical observations after 
appropriate dynamical scaling. The 65% stenosis in the simulated CoA led to a multi-
fold increase in expected pressure gradient and peak DAo velocity in comparison with 
a normal aorta.  The primary conclusion of this study is that Bernoulli estimated 
pressure drops overestimate the true pressure drop computed using CFD at the peak-
systole instant of the pulsatile flow model when complex jet wake effects are pro-
nounced, and underestimate it when compared using a time-averaged steady flow 
field.  Based on this pilot study, CFD determined flow fields are a more reliable clin-
ical indicator of pressure gradient that consider viscous flow and complex jet wake 
interactions affecting hemodynamics downstream of CoA. Patient-specific CFD mod-
eling for a larger sample size is required in order to confirm this hypothesis.  Since 
collateral flow is an important clinical indicator for determining severity and timing 
of surgical management, future CFD studies on anatomical models that include recon-
structions of major collateral vessels along with their respective PC-MRI determined 
mass-flow splits, is warranted for more realistic examination of DAo hemodynamics. 
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Abstract. In this paper, we propose a system to determine the pres-
sure gradient at rest in the aorta. We developed a technique to efficiently
initialize a regular simulation grid from a patient-specific aortic triangu-
lated model. On this grid we employ the lattice Boltzmann method to
resolve the characteristic fluid flow through the vessel. The inflow rates,
as measured physiologically, are imposed providing accurate pulsatile
flow. The simulation required a resolution of at least 20 microns to en-
sure a convergence of the pressure calculation. HARVEY, a large-scale
parallel code, was run on the IBM Blue Gene/Q supercomputer to model
the flow at this high resolution. We analyze and evaluate the strengths
and weaknesses of our system.

Keywords: computational fluid dynamics, coarctation of the aorta, lat-
tice boltzmann, parallel computing.

1 Introduction

Coarctation of the aorta (CoA) can pose a significant problem as this narrow-
ing of the aorta can inhibit blood flow through the artery. CoA accounts for
8%-11% of congenital heart defects, which makes it affect tens of thousands of
patients annually in the Western world [1]. Hence, there is a need to efficiently
diagnose the degree of arterial narrowing so that preventative action such as
balloon angioplasty or stent implantation can be taken [2]. These methods serve
to alleviate the pressure gradient through the coarctation in order to reduce the
burden on the heart.

An obstruction is characterized as significant when the peak to peak sys-
tolic pressure gradient across the coarcted vessel is measured at greater than 20
mmHg. This pressure gradient is not only determined by the size of the narrow-
ing but also factors such as the flowrate of the fluid and the size, number, and
placement of collateral vessels [2]. The physiological state of the patient can also
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contribute to an increase in the pressure gradient if, e.g., the patient is in an
exercised state due to the associated elevation in heart rate. When the patient is
at rest, clinicians can easily measure the pressure gradient; however, this mea-
surement is difficult to obtain under exercise conditions. This difficulty causes
simulation to play a key role in determining the pressure gradient non-invasively.

In this paper, we discuss a method for using data from medical imaging along-
side a lattice Boltzmann fluid model to simulate blood flow and pressure in a
model built from patient data. We will present the methods to impose a regular
grid and model the fluid flow using parameters provided from patient data. We
use the provided inflow waveform to produce realistic pulsatile flow that upholds
the measured flow distribution via velocity imposed boundary conditions at the
inlets and outlets.

2 Data

The data used in this paper was provided by the STACOM CFD Challenge for
the simulation of hemodynamics in a patient-specific aorta coarctation model.
The geometry of the vessels were obtained through gadolinium-enhances MR
angiography (MRA) with a 1.5-T GE Signa scanner. A segmented STL file was
provided defining the ascending aorta, arch, descending aorta, and upper branch
vessels. Flow rates were measured by PC-MRI sequence encoding and provided
for the course of a cardiac cycle as well as the percent of flow seen in each branch
of the model [1].

3 Computational Fluid Dynamics (CFD) Framework

In this work, we use the lattice Boltzmann method (LBM) as the basis of our
simulation [3]. The LBM has proven to be a strong alternative to simulations de-
rived from the Navier-Stokes equation of continuum mechanics. In recent years,
its ease of handling complex geometries and parallelization has made it increas-
ingly popular. Unlike conventional CFD methods based on the discretization
of macroscopic continuum equations, the LBM constructs a simplified kinetic
model incorporating the essential physics and preserving macroscopically aver-
aged quantities like mass and momentum [4].

In this model, the volume of a 3-dimensional mesh is filled with a regular
array of lattice points on which a minimal form of the classical Boltzmann is
simultaneously solved for a set of fictitious particles [3]. These particles represent
the collective motion of a group of physical particles and the dynamics are such
that they ensure hydrodynamic behavior in the continuum limit.

3.1 Algorithm

The fundamental quantity is the probability density function defining the likeli-
hood of finding particles at a specific location, at a specific time, traveling along
a specific velocity path. In this work, we use the 19-speed velocity model, D3Q19,
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in which the discrete velocities, ci, connect lattice points to the first and second
topological neighbors [4]. The distribution function is advanced through (1) [3].

In each time step, the particles advect along the straight trajectories defined
by the discretized velocities. Fluid-fluid collisions are then handled through a re-
laxation towards a local equilibrium, shown on the right side of (1). In this work,
we leverage the Bhatnager-Gross-Krook (BGK) operator, a collision operator
which relaxes to equilibrium on a single time scale [5]. The equilibrium distribu-
tion is defined through a second-order Hermite expansion of a local Maxwellian
with density ρ and speed u as shown in (2) [6]. The relaxation frequency ω is
related to the kinematic viscosity of the fluid through (3) [7].

f(x+ ciΔt, t+Δt) = f(x, t)− ωΔt(f(x, t)− feq(x, t)). (1)

feq
i = wiρ

{
1 +

ξi · u
c2s

+
uu : (ξξ − c2sI)

2c2s

}
. (2)

ν = c2sΔt(
1

ω
− 1

2
) (3)

In (2), w denotes the quadrature weight normalized to unity and the speed of
sound is a lattice constant: c2s = 1

3 . I is the unit tensor in Cartesian space.
A key advantage of the LBM is that macroscopic quantities such as density

are moments of the distribution function. This means that they can be calculated
based on its summation and therefore are available entirely locally. In the study
of CoA, the fluid pressure is particularly important.

Pressure can be easily recovered through the ideal gas relation: P = c2sρ. This
means that the value is available locally which is particularly advantageous as
this means they do not require solving an expensive Poisson problem as in other
CFD methods [8].

3.2 Boundary Conditions

As prescribed by the challenge definition, we employ rigid walls in this simula-
tion. At the wall, we impose a no-slip boundary condition through the use of a
full bounce-back method. To this end, the velocity of any particle which is set
to advect to a lattice point designated as a wall node is reversed. In this case,
the directions of post-collisional particles are reversed if the prescribed velocity
points to a lattice point designated as a wall node as shown in Fig. 1. The curved
vessels are shaped on the regular (axis-aligned) grid via a staircase representa-
tion as opposed to the body-fitted grids found in direct Navier-Stokes solvers.
This does come at the expense of numerical accuracy, which has been shown
to degrade to first order [3]. This representation is improved systematically by
increasing the resolution of the mesh via increased density of lattice points.

In this model, there is one inlet for the aorta and multiple outlets for each of
the collateral vessels. The imposition of the boundary conditions is based on the
knowledge of local flow profiles as provided by the measured patient-specific data
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Fig. 1. Bounceback boundary condition. The no-slip boundary is enforced by reversing
the direction of each particle just inside the wall boundary.

of this challenge. We employ a simple method of imposing a plug flow profile
based on the flow rates. The inlet condition comes from the aortic flow measured
by a phase-constract (PC) MRI sequence providing the inlet flow over the course
of one cardiac cycle [1]. Any node defined as an inlet node has it’s velocity set
based on the time point in the simulation ensuring proper pulsatile flow that
matches the measured data.

For the outlet condition, flow rate is determined based on the percent of flow
through the various branches in the model as measured with the PC MRI as
well. This allows us to calculate the flow rate at each branch and subsequent
outlet. For most of the vessels, we are thus able to use clinically measured values
for the outflows. In order to determine flow going through the right subclavian
and right common carotid outlet faces, we use the empirical procedure based on
the following assertion from previous studies: ”in the coronary system we assume
the physiological condition that the pressure drop in each vessel is driven by the
oxygen request from the tissues nourished by the vessel” [8]. That means that
we use flow splitting conditions of φ1/φ2 = S1/S2 in which φ1 and φ2 denote the
outgoing flow rates and S1 and S2 the corresponding sectional areas. Coupling
the incoming flow rate with the known flow splitting at each bifurcation allows
us to impose consistent outflow conditions.

4 Simulation

The simulation of blood flow in the patient specific data involves the following
five steps:

1. Acquisition of medical imaging data
2. Image segmentation to identify vessel geometry
3. Grid initialization
4. Flow simulation
5. Data analysis and simulation

In this work, the first two steps were provided by the competition framework. In
this section, we illustrate how we handle (3) as a pre-processing routing, step (4)
with our HARVEY code, and (5) with a separate visualization routine coupled
with the use of Paraview [9].



Lattice Boltzmann 21

4.1 Initializing the Regular Simulation Grid

To guarantee a proper initialization of our simulation grid, we require the pa-
tient’s triangulated vessel geometry to be a closed, 2-manifold with no overlaps of
interior volume. We start by computing the axis-aligned bounding box (AABB)
of the input geometry offset by ε (we use ε = 1.8ciΔt) on each side, then dis-
cretize the box’s volume into a regular grid of targeted resolution. Note that
we choose ε to be slightly bigger than the length of the diagonal of a regular
grid cube (ε >

√
3ciΔt). With this choice, we guarantee that every interior grid

point has a neighbor not only in any 6-neighborhood but in any diagonal grid
direction also.

Next, we classify each grid point to either be inside or outside of the given
vessel geometry. Note that it would be prohibitively slow to run an inside-outside
test for each individual grid point. We therefore correctly initialize the grid points
falling inside the union of all sphere-swept triangles (the volume of a sphere-
swept triangle is given by the union of all spheres of radius ε with centers on the
triangle) and then “fill in” the inside-outside classification for all remaining grid
points. More specifically, we iterate over all vessel triangles: for each triangle, we
compute the grid points that overlap with its AABB offset by ε and then check
them against its sphere-swept bounding volume. For the remaining grid points,
we then compute the closest point on the triangle and – if the point hasn’t been
initialized yet or the current point is closer to the vessel geometry than the
previously initialized one – classify it as either inside or outside using the angle
weighted pseudonormal approach by Bærentzen and Aanæs [10]. Note that [10]
guarantees a correct inside-outside classification for points with respect to non-
convex geometries provided that we know their closest points on the mesh. After
a run through all triangles, we can guarantee to find the correct closest points
for all grid points falling in the union of the sphere-swept triangles, hence, to
correctly classify them using [10]. By using a radius of ε to sweep the triangles,
we can further guarantee to correctly initialize at least two inside grid points
in any 6-neighborhood and diagonal grid direction within a distance ε of the
vessel’s boundary. Finally, we “fill in” the remaining grid points by looping over
the three grid indices (that are monotonously decreasing or increasing in their
respective dimension) and classifying all grid points as inside if the loop index
of the most inner loop has crossed the grid boundary an odd number of times.

This classification is then refined into wall, inlet, and outlet points by using
the grid point’s 6-neighborhood (if at least one of its six neighbors are classified
as outside, we have a wall point) together with proximity information to inlet or
outlet triangles. The remaining grid points are either “fluid” nodes (inside the
wall), or “dead” (outside and not considered).

4.2 Flow Simulation

The HARVEY simulation package is designed to handle complex geometries and
to run large-scale simulations on high performance hardware resources. It has
been developed from the ground up with parallel efficiency in mind to enable
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high resolution runs. The mesh is Cartesian which enables straightforward data
handling. It is written in C and uses MPI as the communication library. This
code takes advantage of optimizations such as a) hand loop unrolling b) Single
Instruction, Multiple Data (SIMD) intrinsics c) removal of redundant operations
d) non-blocking communication [11]. The domain is split such that each proces-
sor handles a set division of the Cartesian mesh. In HARVEY a double buffer
approach is used in which a starting distribution of fluid particles is initialized
for each lattice point. The advection step propagates the particles to adjacent
lattice points and stores these values in a temporary distribution function. This
is the data exchanged with the neighboring processors, and subsequently used
for the collision step. The result of the collision step is then used to update the
local portion of the original array containing the distribution function for each
lattice point. In this manner, HARVEY acts as a typical stencil code that draws
information from its neighbors, updates its local value, and pushes this data to
the neighbors, however, the data accessed in the temporary data structure is
from another phase space as well as from another lattice location.

This double buffer approach further increases the already large memory de-
mand of the simulation. In the case of this data set when simulated at a 200micron
resolution, there are 64,435 fluid voxels in a bounding box of 11,254,320voxels. For
each lattice point, there are two buffers that make up the bulk of the memory re-
quirements. These buffers store the density data for each discrete velocity at each
lattice point as a floating point number. For a 200 micron resolution simulation,
this requires at least three gigabytes of memory. While some commodity desktops
may now be able to meet the memory needs for 200 microns, this becomes increas-
ingly difficult at finer resolutions. For a 20 micron simulation, 3 terabytes of data
are necessary. This is feel beyond the capabilities of traditional computers and re-
quires the use of large-scale platforms such as the IBM Blue Gene/Q described in
a following section, especially when simulating full heartbeats.

The second issue is the runtime for the simulation to complete. At high reso-
lutions, the LBM requires rather small time steps on the order of 10−6 seconds
resulting in the need for 700,000 time steps to complete one heartbeat. The com-
putation of the solution of the LBM equations for each lattice point in a serial
manner can take from hours to days at these resolutions. In order to drastically
decrease our time to solution, we leverage a parallel implementation that allows
us to simulate the full cardiac cycle in minutes.

For the work in this challenge, we relied on the IBM Blue Gene/Q architecture.
Similar to previous Blue Gene systems, it is built on a system-on-a-chip backbone
and has expanded options for threading and memory access. The Blue Gene/Q
system has a 64-bit PowerPC processor operating at 1.6 GHz frequency. Each
node consists of 16 cores with 4 potential threads per core. There are capabilities
for a 4-wide double precision FPU SIMD resulting in a 204.8 GFlop/s peak
performance per node [12]. Memory per node is expanded to 16 gigabytes. In this
work, we used 256 processors on 16 nodes of Blue Gene/Q for our simulations.
The resulting velocity distribution is shown in Fig. 2. This is at 0.14 seconds in
a 100 micron resolution simulation.



Lattice Boltzmann 23

Fig. 2. Mapping showing the velocity distribution at .14 seconds in a 100 micron
resolution simulation

4.3 Data Analysis and Visualization

The distribution function, f , at each lattice point is saved at a set time interval
during the simulation allowing for post processing of the data to determine
relevant macroscopic properties. It is during the post processing stage that the
data is shifted from lattice units to SI units to allow for analysis of factor like
fluid velocity, density, and pressure gradients. Only a subsample of time points
are recorded and used for visualization and analysis. In this case, checkpoints
were invoked every 20000 time steps. Paraview from Kitware is used to view the
results [9].

5 Results

We assume rigid walls as well as the Newtonian behavior of the blood. The
physical density is set at .001 g/mm3 and the dynamic viscosity is .004 gr/mm/s.

We measure the mean pressure gradient between the upper and lower body by
taking the difference of the average pressure of the fluid in the plane at the prox-
imal and distal locations. The results of simulations at three different resolutions
are provided in Table 1. The pressure proximal to the coarctation is measured
at 113.1 mmHg (systolic) and 62.3 mmHg (diastolic) which corresponds well to
the measured values of 115 mmHg and 65 mmHg respectively.
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Table 1. Mean pressure gradient at different mesh resolutions

Resolution Pressure Gradient at Diastole Pressure Gradient at Systole

200μm 10.1 mmHg 12.2 mmHg
100μm 8.7 mmHg 10.9 mmHg
50μm 8.1 mmHg 10.4mmHg
20μm 8.2 mmHg 10.3 mmHg

Table 2. Required simulation results

Peak pressure difference between Plane 1 and Plane 2 10.6 mmHg
Mean pressure difference between Plane 1 and Plane 2 9.2 mmHg
Flow splits in supra-aortic and DAo 40% and 60%
Pressure in AAo(Systolic/Diastolic) 10.3mmHg/8.2mmHg

6 Conclusion

We have presented a system to simulate blood flow in a patient specific geometry
in order to measure the pressure gradient in the aorta. The system imposes a
regular grid on the vessel geometry derived from the segmentation of MRA data
and uses HARVEY, a lattice Boltzmann application, to model the blood flow
through the arteries and to derive the fluid pressure gradients.

We have tested our system on the provided datasets from the STACOM’12
CFD Challenge and analyzed the results. This has been a useful exercise to assist
in validating our application. Our preliminary results demonstrate a 8.2 mmHg
pressure differential at diastole and 10.3 mmHg at systole.
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Abstract. Aortic Coarctation is a congenital constriction of the aorta that in-
creases blood pressure above the constriction and hinders the flow below it. 
Based on a 3D surface mesh of a moderate thoracic coarctation, a high quality 
volume mesh is created using an optimal tetrahedral aspect ratio for whole do-
main. In order to quantify the severity of this constriction, a coupled 1D 
lumped-parameter/3D CFD approach is used to calculate the pressure drop 
through the coarctation. The CFD computation is performed assuming that the 
arterial wall is rigid and the blood is considered a homogeneous Newtonian flu-
id with density r = 0.001 gr/mm3 and a dynamic viscosity m = 0.004 gr/mm/sec 
in laminar flow. The boundary conditions of the 3D model (inlet and outlet 
conditions) have been calculated using a 1D model. Parallelization procedures 
will be used in order to increase the performance of the CFD calculations. 

Keywords: Aortic coarctation, pressure drop, lumped model, 1D/3D coupled 
method. 

1 Introduction 

Coarctation of the Aorta (CoA) is one of the most common congenital heart defects, 
and in the western world every year tens thousands of new cases are registered. In  
this pathology, the aorta narrows in the area where the ductus arteriosus inserts and 
de-pends where is this narrow the CoA is classified as: 

1. Preductal coarctation if the narrowing is proximal to the ductus arteriosus. This 
condition could be life-threatening is the constriction is severe. This type of defor-
mation is due to an intracardiac anomaly during fetal life. The blood flow is not 
regular on the left side of the heart producing a hypoplastic development of the 
aorta. 

2. Ductal coarctation if the narrowing occurs at the insertion of the ductus arteriosus. 
3. Postductal coarctation if the narrowing is distal to the insertion of the ductus arteri-

osus. This deformation could lead to an impaired blood flow in the lower part of 
the body. This condition is most common in adult beings. It can produce hyperten-
sion in the upper side of the body and insufficient peaks in the lower part. The de-
formation is generated during the fetal life as an extension of a muscular artery 
(ductus arteriosus) into an elastic artery (aorta). 
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This technique increases
simulations preserving the 
this method we have obtain
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2.2 1D Model Geometr
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2.3 Boundary Conditio

Realistic boundary condition
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ratory compensated phase-c
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inlet velocity profile is presc
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mall set of precomputed stencils, and the boundary mesh
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lt of the iso-stuffing procedure is a volume mesh 
ents and 356,835 triangular elements with 1,167,825 nod
has 114,514 triangle elements and 57,259 nodes. Figur
model and 3D volume mesh. 

ry 

8-year old female patient has been created according to 
or the following arteries: ascending aorta, aortic arch, in
n carotid artery, left subclavia artery and descending ao
directly from the 3D geometry. A 1D segment (thora
ated to define the aorta coarctation with a 65% of area
arteries, the radius was scaled using the fR factor and 

scaled using fL factor. Arterial wall thickness and You
directly from [5].          f  
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During the acquisition p
approximately 3 min. The f
phases over the cardiac cy
(T=0.7 sec) and the cardiac 

2.4 Boundary Conditio

Through a measurement vi
systolic and diastolic press
nate a realistic pressure pro
arterial model was used [4, 
modeled using the relation: 

 

 

where Q1D and P1D are the
branch, and Pout and Rp are 
determined by [5]. The 1D
year old female patient base

2.5 CFD Specifications

The CFD computation is p
blood is considered an hom
and a dynamic viscosity μ =
parameter/3D CFD approa
fluid dynamics and multi-
Finite Element Method that

that we assume to hold in t
forces and p is the pressur
the same equations by ma
displacements, and constan
of axial velocity. Also, in t
be considered a cylindrica
(Eq.3) for the 1D, we prov
area (Eq.4) relation previo
wall and it takes the form: 

CFD Approach for Pressure Drop in the Aortic Coarctation 

procedure the patient breathed freely and each scan las
flow data is the results of a PC-MRI sequence encoding
ycle. Heartbeat has a frequency of 86 beats per min
 output was 3,245 L/min.  

ons: Pressure Profile 

ia sphygmometer was possible to register the upper-bo
sure and values were of 115 and 65 mmHg.  To deter
ofile in the outlet (Γ1, Γ2) of the 3D model, a 1D lum
5].  The 1D outflow boundary conditions on (Γ1, Γ2) w

   

e flow rate and pressure at the outlet of the 1-D termi
the outlet pressure and the peripheral resistance to the fl

D model was fitted according the pressure values of the
ed on original model and calibration tests [6]. 

s 

performed assuming that the arterial wall is rigid and 
mogeneous Newtonian fluid with density ρ = 1000 k g
= 0.004 kg/(sec·m) in laminar flow. A coupled 1D lump
ach was performed using KRATOS [7].  KRATOS i
-physics simulation environment based on the stabili
t solved the 3D Navier–Stokes equations. 
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where Ao and ho are the se
Uo), with Po and Uo assume
son’s ratio, typically taken
pressible. The parameter β 
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2.6 1D-3D Coupling 
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solution to account the effe
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appropriate for this kind o
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3D approach, time integrati
jugate Gradient Non-symm
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advection stabilization. Tur
formulation. Parallelization
formance of the CFD calc
imposed at the interface sur
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3 Results 

3.1 Branches Flow Dist

To obtain the flow distribut
the flow values along the c
to the inlet flow. Table 1 s
outlet sections of the aortic
and the error between the C

Table 1. % of ascending aortic
via PC-MRI and calculated v
QLCCA: flow through left co
QDAo: flow through descendi

Section 
% CFD (Aortic Flo
% PC-MRI (Aortic 
% Error CFD-PC-M

 
 
 

CFD Approach for Pressure Drop in the Aortic Coarctation 

f problem because of it can propagate waves of differ
ng from excessive dispersion and diffusion errors. For 
ion method chosen was a Backward Euler, using a Bi C

metric solver in order to accelerate the calculation time p
pressure stabilization of 4º order and automatic veloc
rbulence model was not included, but we used a lami

n procedures have been used in order to increase the p
culations [9].  Figure 4 shows the final pressure prof
rfaces (*).  

rofile imposed at Γ  and on the right pressure profile impose

tribution Analysis 

tions in all the branches of the domain, we have calcula
cycle time for the four outlets(Γ1, Γ2) of the system rela
shows the percentage of ascending aortic flow through 
c model as measured via PC-MRI and calculated via CF
CFD and the PC-MRI measurement.  

c flow through the outlet sections of the aortic model as measu
via CFD and the error. QIA: flow through innominate art

ommon carotid artery, QLSA: flow through left subclavia art
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Figure 5 shows the resul
calculated via CFD. 

Fig. 5. Out flow: comparison
QLCCA: flow through left co
QDAo: flow through descendi

3.2 Pressure Analysis 

To evaluate the pressure gr
between at the proximal (P1

 Plane 1 (P

 Plane 2 (P

Figure 6 shows the pressure
the pressure gradient (15,45

lts of the volumetric flow at the four outlets of the syst

 

n calculated with CFD. QIA: flow through innominate art
ommon carotid artery, QLSA: flow through left subclavia art
ng aorta 

radient, the average value of the pressure for all time st
1) and distal section (P2) is calculated: 

P1) with a normal of (0.00, 0.27, 0.96) 

P2) with a normal of (0.00, 0.14, 0.99) 

e gradient obtained for P1 and P2. The maximum value
59 mmHg) is reached in the systolic phase.  
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4 Discussion 

The preliminary results show a good agreement with the pathological values; however 
an improvement of the methodology should be required to obtain a better approxima-
tion to the values measured using PC MRI at the outlets. The maximum error reached 
is 6% in the flow of the descending aorta; meanwhile the error in the supra-aortic 
arteries is less than 4%.  Future work will be focused on the enhancement of the 1D 
lumped-3D coupling procedure, using physiological flow inlet profiles. These im-
provements, in conjunction with a fine adjustment of the lumped 1D model parame-
ters, seem necessary to obtain a more accurate flow solution in the aortic arch and in 
the narrowing of the aorta. This will lead to a better computation of the pressure drop 
and the volumetric flow through artery outlets.  
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Abstract. We investigate a patient specific blood flow simulation
through a transverse aortic arch with a moderate thoracic aortic coarc-
tation, where particular attention is paid to the blood pressure gradient
through the coarctation. The challenge in this context is the complex
geometry containing a stenosis, which results in complex flow patterns.
The fluid is assumed to be incompressible and Newtonian. Its dynamic is
usually described by an Navier-Stokes equation with appropriate bound-
ary conditions. Instead, we modeled the problem mesoscopically by a
family of BGK-Boltzmann equations those solutions reaches that of a
corresponding Navier-Stokes system in a certain limit. For discretiza-
tion we take advantage of lattice Boltzmann methods, which are realized
within the open-source library OpenLB. A realistic transient flow profile
of the cardiac output for a human at rest was used to specify the inflow
boundary condition at the aortic root, whereas the outflow at the de-
scending aorta was modeled by a pressure boundary condition. A short
introduction to lattice Boltzmann methods is provided and especially the
used boundary conditions are introduced in detail. The exact simulation
setup is stated and the obtained results are discussed.

1 Introduction

Patient-specific numerical simulations of human organs open new opportunities
for medical diagnosis and therapy. They are even more advantageous, if they do
not require additional radiating screenings, but are based on computer tomog-
raphy imaging from standard procedures. In the case of the human respiratory
system, numerical simulations of air flow have already proven to be accurate in
the United Airways project [1]. Therefore, an adaption of the concept to human
blood flow is highly appreciated.

An anomaly in the human cardiovascular system, such as a coarctation of
the aorta, obstructs the body’s supply of nutrients and stresses the heart. In

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 34–43, 2013.
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particular, the narrowing can lead to an intense drop in pressure, which directly
affects the health of the patient. This pathological case accounts approximately
one out of ten of all congenital heart defects, and is usually corrected surgically
or by use of a catheter.

A conventional measurement of the pressure drop under resting conditions
is an easy task for a clinician, but measuring the pressure gradient under ex-
ercise conditions is more challenging. Usually artificial stress is created by ad-
ministering a drug to increase heart rate and contractibility. As this may have
unwanted side-effects, it opens up a range of applications for CFD techniques.
By simulation of a section of the blood system mimicking the real situation, the
health-endangering measurements can be shifted into a virtual model. In this
paper we investigate to what extent the lattice Boltzmann method (LBM) is of
significance for the present medical case of an eight year old female patient. It
is worth mentioning that the used model is likely to be expanded by an elastic
model of the aorta geometry to achieve more realistic results.

2 Modelling

Let Ω ⊂ IR3 be a bounded domain representing the aorta, [t0, t1] a considered
time interval and p : Ω × [t0, t1] → IR denotes the physical pressure. We denote
by ρ ∈ IR the mass density of the blood which is constant due to the incompress-
ibility of the fluid. And let μ ∈ IR3 be the viscosity of the blood. The aorta inlet
area is denoted by Σin ⊂ ∂Ω and the aorta outlet area is Σout ⊂ ∂Ω which con-
tains the outlet areas of the brachiocephalic artery, left common carotid artery,
left subclavian artery and aorta. The outer normal vector on ∂Ω is denoted by n.
Shear rates in large arteries are typically sufficiently large to assume that blood
behaves as a Newtonian fluid, [2]. Therefore, blood flow in the thoracic aorta
and the three major branches is governed by the time dependent Navier-Stokes
equations, see below.

Problem 1. Find the fluid velocity u ∈ [L2(Ω × [t0, t1])]
3 and the pressure p ∈

L2(Ω × [t0, t1]) that fulfill the incompressible Navier-Stokes equations

∂u

∂t
+ (u · ∇)u− μ�u = −1

ρ
∇p in Ω × [t0, t1], (1)

∇u = 0 in Ω × [t0, t1], (2)

with the appropriate boundary conditions, where I denotes the unity matrix.

Dirichlet condition

u = g on Σin × [t0, t1], (3)
”do nothing” condition

(−Ip+ μ∇u) · n = 0 on Σout × [t0, t1], (4)
no− slip condition

u = 0 on ∂Ω\Σin ∪Σout × [t0, t1]. (5)
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The non-linearity of the problem w.r.t. u comes from the term (u · ∇)u in
the PDE (1). According to [3], [4] in case of stationarity and a sufficiently
smooth right hand side there exists at most one strong solution for the ve-
locity u, whereas the solution for the pressure is only defined up to an additive
constant [5].

3 Lattice Boltzmann Method

The subclass of lattice Boltzmann methods considered here enables the simu-
lation of the dynamics of incompressible Newtonian fluids which is usually de-
scribed macroscopically by an initial value problem governed by a Navier-Stokes
equation. Instead of directly computing the quantities of interests, which are
the fluid velocity u = u(t, r) and fluid pressure p = p(t, r) where r ∈ Ω and
t ∈ [t0, t1] ⊆ IR, a lattice Boltzmann numerical model simulates the dynamics
of particle distribution functions f : [t0, t1] × Ω × IR3 → IR≥0 in a phase space
Ω × IR3 with position r ∈ Ω and particle velocity v ∈ IR3. The continuous
transient phase space is replaced by a discrete space with a spacing of Δr = h
for the positions, a set of q ∈ IN vectors vi ∈ O(h−1) for the velocities and a
spacing of Δt = h2 for time. The resulting discrete phase space is called the
lattice and is labeled with the term DdQq. To reflect the discretization of the
velocity space, the continuous distribution function f is replaced by a set of q
distribution functions fi : [t0, t1] × Ω → IR≥0 (i = 0, 1, ..., q − 1), representing
an average value of f in the vicinity of the velocity vi. Detailed derivations of
various LBM can be found in the literature, e.g. in [6]. The iterative process in
an LB algorithm can be written in two steps as follows, the collision step (6)
and the streaming step (7):

f̃i(t, r) = fi(t, r)−
1

3ν + 1/2

(
fi(t, r)−M eq

fi
(t, r)

)
, (6)

fi(t+ h2, r + h2vi) = f̃i(t, r) (7)

for i = 0, 1, ..., q − 1, where

M eq
fi
(t, r) :=

wi

w
ρfi

(
1 + 3h2 vi · ufi −

3

2
h2u2

fi +
9

2
h4 (vi · ufi)

2

)
,

is a discretized Maxwell distribution with moments ρ and u which are given
according to

ρ :=

q−1∑
i=0

fi and ρu :=

q−1∑
i=0

vifi.

Here the variable u is the discrete fluid velocity and ρ the discrete mass den-
sity. The kinematic fluid viscosity ν = μ/ρ is assumed to be given, and the
terms wi/w, vih (i = 0, 1, ..., q − 1) are constants depending on the used lattice
Boltzmann method. For more detailed information concerning lattice Boltzmann
methods we refer to [7]. The discrete fluid velocity u and the discrete mass
density ρ can be related to the solution of a macroscopic initial value problem
governed by an incompressible Navier-Stokes equation as shown in [8].
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4 Numerical Study

4.1 Simulation Setup

A given surface ∂Ω of an aorta with a moderate thoracic aortic coarctation is
voxelized by 5 different resolutions, reaching from 235×118×402 to 1168×582×
2002 voxels (cf. Figure 1). Recorded data of 20 measurements of the ascending
aortic flow is interpolated by cubic splines with periodic boundary conditions. A
smooth start-up phase is added to suppress undesired pressure fluctuation. The
resulting function is illustrated in Figure 2. A velocity boundary condition, as
introduced by Skordos in [9], with a Poiseuille flow profile reflecting the measured
flow volume is set at the ascending aortic opening. The blood flow through
the upper branch vessels was experimentally measured as a percentage of the
ascending aortic flow. Therefore the flow through the left carotid artery is set to
be 11.3% of the aortic flow, whereas the flow through the left subclavian artery is
set to be 4.26%. For the right carotid and the right subclavian only a combined
value of 25.6% was available. Hence the flow through these two arteries was
calculated depending on the areas of the openings and chosen to be 10.9% and
14.7%, respectively. The boundary conditions at the descending aorta is set as
pressure condition, i.e. the pressure is fixed to 0mmHg for all times. A full-way
bounce back condition is assigned to the remaining surface. The blood is assumed
to be Newtonian with a density of ρ = 0.001 gr/mm3 and a dynamic viscosity
of μ = 0.004 gr/mm/s. A D3Q19 BGK-Lattice Boltzmann Method, supported
by a Smagorinsky turbulence model with constant CS = 0.12, was used. The
simulations were executed using the open-source library OpenLB1. Computation
times vary between approx. 1.5 hours on 64 Intel Xeon X5650@2.67GHz cores
for the smallest resolution and 6 days occupying 512 AMD Opteron@2.6GHz
cores for the highest resolution.

4.2 Results

Two cardiac cycles have been simulated and the pressure drop at the aortic
coarctation was determined by calculation of the spatial pressure average in two
planes π1 and π2 (cf. Figure 1). The absolute pressure over time at the ascending
aorta and the pressure drop around the coarctation are shown in Figures 3 and
4 for different spatial resolutions. It is found that with increasing resolution the
resulting curves become less smooth. This effect is more pronounced in the graphs
of the pressure drop and may be due to the fact that with increasing resolution
small turbulence become more significant, which otherwise are smoothed.

Figure 1 shows streamlines representing the flow and velocity u at the time
of highest inflow. As expected the velocity increases in the coarctation. The flow
is predominantly laminar except for turbulence in the areas before and after the
coarctation.

1 http://www.openlb.org
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Fig. 1. Voxelized geometry Ωh of the aortic arc with spacial resolution of 235×118×402
voxels and flow visualizations at the point of time of highest flow rate. Color indicates
the flow velocity ‖u‖.

Fig. 2. Cubic spline interpolation of the provided flow information at the ascending
aorta [ml s−1/s]. The marked points represent the measured data.
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Fig. 3. The absolute pressure over time at the ascending aorta is shown for different
spacial resolutions. The upper graph shows the resulting curve for the higher time
resolution. The according time-step sizes can be found in Table 1.
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Fig. 4. The pressure drop between the planes π1 and π2 around the coarctation are
shown for different spatial resolutions. The upper graph shows the resulting curve for
the higher time resolution. The according time-step sizes can be found in Table 1.
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In Table 1 the peak and mean pressure difference around the coarctation, the
flow splits through the upper arteries and the descending aorta as a percentage
of the flow through the ascending aorta and systolic and diastolic pressure in the
ascending aorta are listed for all simulations. As the pressure is only determined
up to an additive constant when solving the Navier-Stokes equations in our con-
text, the values of the absolute pressure at the ascending aorta have been shifted
to fit the measured systolic and diastolic pressure of 115mmHg and 65mmHg. It
is found that the pressure is decreasing with increasing spatial and time discretiza-
tion.

Assuming the measured systolic pressure of 115mmHg as solution, we obtain
the experimental order of convergence (EOC) for 0 < h1 < h2, which is defined
by

EOC (h1, h2) :=
ln (errh1/errh2)

ln (h1/h2)
,

where errh = psysh − 115 is the error of the computed systolic pressure with
respect to the measured value for a given spacing h.

h2 h1 EOC

1/402 1/802 1.413

1/802 1/1202 1.436

1/1202 1/1602 1.261

1/1602 1/2002 1.008

From this table we see that this lattice Boltzmann method yields a systolic
pressure psysh of linear order. For the highest spatial and time resolution we
obtain psysh = 116.97mmHg.

5 Conclusion

In this paper, we presented how lattice Boltzmann methods can be used for
hemodynamic simulations in an aortic model. Here, a discrete Boltzmann equa-
tion is solved to simulate a Newtonian fluid on a mesoscopic scale. Since the
numerical solution depends on the spatial discretization (note that the temporal
resolution is coupled to the spatial resolution cf. Section 3), we have experimen-
tally found a linear convergence of the solution p in h. The numerical inves-
tigations have shown that this approach may well be used for patient-specific
simulations, because for high temporal and spatial resolution of the solution
space, we obtain realistic values for the pressure (see right column of Table 1).
These results could be further improved by extension of the underlying model,
e.g. by a Windkessel approach.
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Abstract. This work presents our approach for modelling the CFD chal-
lenge example of the aortic coarctation of an 8 year old child. The three-
dimensional fluid domain was modeled as described in the challenge as an
incompressible Newtonian fluid. A residual-based variational multiscale
finite element method is used to solve the 3D fluid field. The boundaries
were treated with 3-element windkessel models. The windkessel elements
were tuned using an adjoint based method to fit the pressure and flowrate
values reported by the challenge. A mesh refinement was performend to
ensure the spatial convergence of the presented results. Finally, pressure
values at π1 and π2 slices are reported.

1 Introduction

In this work we present our approach for modelling the CFD challenge of the
aortic coarctation of an eight year old child. The 3D domain is modeled using
a version of the residual-based variational multiscale finite element method de-
veloped in [1]. The boundaries are treated using 3-element windkessel models
and flowrate conditions. All flowrates and windkessel elements were tuned to fit
the pressure and flowrate values reported in the challenge. The tuning of the
windkessel elements is done using an adjoint based method previously devel-
oped in [2]. Furthermore, a mesh refinement analysis was performed to ensure
the spatial convergence of our results. Detailed pressure values at the points of
interest (slice π1 and slice π2) and the average flowrate percentages within each
artery are reported at the end of this report.

2 Governing Equations and Boundary Conditions

2.1 3D Flow Domain

Fluid motion in a domain Ω is defined in the form of incompressible flow, via
incompressible Navier-Stokes equations. The boundary Γ to Ω is defined as

Γ = ΓD ∪ ΓN,

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 44–52, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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where ΓD and ΓN are the Dirichlet and Neumann parts of the boundary, respec-
tively. Dirichlet boundary conditions are prescribed on ΓD as u = uD, where u
is the velocity of the fluid. The Neumann boundary is defined as

−uin
n u− pn+ 2νε (u) · n = h, (1)

where uin
n = un−|un|

2 , un is the normal velocity defined as un = u·n, p the pressure,
and ε (u) is the rate-of-deformation tensor given by ε (u) = 1

2

(
∇u+ (∇u)

T
)
.

The 3D domain is discretized using a residual-based variational multiscale
finite element method developed in [1], where the density is simply set to be
constant.

2.2 Flowrate Boundary Conditions

The flowrate boundary conditions in this work are modeled using Womersley
velocity shape profiles which yield

un (r) = 2
Q0

A

[
1 +

(
ri
r0

)2
]
+

N∑
k=1

Real

⎧⎨⎩Qk

A

⎡⎣J0 (z)− J0

(
ri
r0
z
)

zJ0 (z)− 2J1 (z)

⎤⎦ zei(kωt−φk)

⎫⎬⎭
(2)

where A is the cross-sectional area, ri the radial coordinate, r0 the radius of the
boundary surface, α = r0

√
ω
ν the Womersley number, ω the angular frequency,

ν the kinematic viscosity, and z = αi3/2. J0 and J1 are Bessel functions of the
first kind. A Fourier analysis of the flowrate (Q) yields Qk and φk:

Q = Q0 +

N∑
k=1

Qkcos (kωt− φk).

Since the aforementioned profiles are defined for circular geometries, the profiles
are mapped to the arbitrary closed boundary as was originally proposed in [4].

2.3 3-Element Windkessel Model

The 3-element windkessel model (see Figure 1) yields the following differential
equation

N := pin +CRp
dpin
dt

+CRp
dp−C
dt

− pout − (Rp +Rs) qin −CRsRp
dqin
dt

= 0, (3)

where pin is the pressure at the windkessel inlet, C the systemic capacitance, Rp

the peripheral resistance, Rs the systemic resistance, and qin the flow entering
the windkessel model. The pressures p−C and pout are set to zero. Throughout
this work pin and qin are renamed to p and q, respectively.

The windkessel models are coupled to the 3D domain using a Dirichlet to
Neumann coupling approach as in [3].
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p−C

pin
p+

C pout

Rs Rp

C

qin qout

qC

Fig. 1. Circuit representation of a three-element windkessel model

3 Modeling Approach

For all simulation blood was assumed to incompressible Newtonian fluid with a
density ρ = 0.001 g/mm3 and dynamic viscosity μ = 0.004 g/s/m, as is requested
by the CFD challenge.

3.1 Physiological Analysis

Looking deeper into the coarctation of the given geometry, it is observed that
the coarctation is not only positioned between slices π1 and π2 but also a clear
constriction of the aorta is observed in the section between the left common
carotid artery and just after the left subclavian artery, as illustrated in Fig-
ure 2(a). Thus a rise in the blood pressure must be observed with in the section
combining the aortic root, right subclavian, right common carotid, and left com-
mon carotid (see Region 1 in Figure 2(b)). Since the first aortic constriction
ends just after the bifurcation of the left subclavian, a drop in the pressure of
the left subclavian must be observed (see Region 2 in Figure 2(b)). Due to the
severe constriction just after the left subclavian bifurcation, another drop in the
blood pressue must be observed within region 3 (see Figure 2(b)). A drop in the
blood pressure must also be observed in the descending aorta due to the con-
striction between π1 and π2 slices (see Region 4 in Figure 2(b)). This analysis is
supported by the average volumetric flowrates reported by the challenge, where
a low flowrate is reported within the left subclavian, where as the other upper
branching arteries have elevated flowrate values. In addition to the geometrical
observations, The systolic blood pressure in a healthy 8 year old female child
is expected to be around 125mmHg where as the diastolic blood pressure is
expected to be around 87mmHg [7]. The reported blood pressure in the chal-
lenge is 65mmHg and 115mmHg for both diastolic and systolic blood pressure,
respectively. Thus, we suspect that the 115/65mmHg blood pressure, measured
using the sphygmometer, is measured at the left arm of the patient, i.e. the
pressure recorded is within the left brachial artery. Thus we can conclude that
the pressure at the outlet boundary of the left subclavian artery should be close
to the 115/65mmHg.
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Fig. 2. (a) Different stenoses regions within the aortic coarctation, (b) different pres-
sure regions within the coarctation, (c) Complete aortic Coarctation showing π1 and π2

plane, (d) aortic coarctation trimmed at π1 where the systolic and diastolic pressures
are measured and (e) the measured flowrate at the aortic root

3.2 Tuning the Windkessel Boundary Conditions

To simulate the aortic coarctation in Figure 2(a), the challenge measured cardiac
output (shown in Figure 2(e)) was prescribed at the aortic root. Velocity profiles
at the aortic root are more complex than the parabolic and Womersley ones [5].
Nevertheless, a Womersley velocity profile was prescribed at the inlet of the
aortic root because it has a profile that we concider to be more reasonable close
approximation to the complex flow conditions at the aortic root. The outlet
boundaries are modeled using 3-element windkessel models.
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Fig. 3. Velocity profiles at the inlet of the aortic root represented in a parabolic profile
shape (a) and Womersley profile shape (b)

For calibration of the windkessel models, only the aortic section between the
aortic root and π1 was considered (as shown in Figure 2(d)). We assume that
the pressure has small variations within sections perpendicular to the center line.
This means that the trimmed aortic geometry has similar pressure values at the
π1 section as the complete aortic geometry, and thus both problems have similar
upper body windkessel elements. The windkessel elements were calibrated at the
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outlets of the trimmed geometry using the adjoint method described in [2]. The
following objective functions and design variables were chosen for tuning the
windkessel elements:

L (u, φ) =

∣∣∣∣∣∣∣∣∣∣∣∣

P sys
LS − 115mmHg
P dia
LS − 65mmHg

Qavg
π1

− 0.588Qavg
AA

Qavg
LC − 0.113Qavg

AA

Qavg
RC − 0.113Qavg

AA

Qavg
RS − 0.143Qavg

AA

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 ;φ =

∣∣∣∣∣∣∣∣∣∣∣∣

RLS

CLS

Rπ1

RLC

RRC

RRS

∣∣∣∣∣∣∣∣∣∣∣∣
, (4)

where L (u, φ) are the design functions, φ the design variables, and u the state
variables. In Equation (4), AA stands for ascending aorta (aortic root), LS for left
subclavian artery, LC for left carotid artery, RC for right carotid artery, RS for
right subclavian artery. The total windkessel resistance is defined asR = Rs+Rp.
The wanted average flowrate percentages and pressure values in Equation 4 are
reported in the challenge. The initial windkessel parameters are evaluated by
assuming the flowrate at each boundary is equal to the percentage reported
in the challenge multiplied by the flowrate at the aortic root. In addition to
that we assumed that the all outlets have a systolic pressure of 115mmHg and a
diastolic pressure of 65mmHg. The windkessel elements are then applied onto the
geometry in Figure 2(d). The flowrate curves produced from the simulated model
in Figure 2(d) where corrected by a factor to meet the reported average flowrates
and then used to further calibrate the initial windkessel elements. Finally the
evaluated capacitances at RS, RC, LC, and π1 are fixed and the tuning shown
in equation 4 is performed.

The final tuned windkessel parameters are shown in Table 1. It is important to
point to the fact that the results in Table 1 reproduce the pressure and flowrate
values, at the boundaries of the trimmed aorta, as were reported by the challenge
within a 2.6% tolerance.

The windkessel parameters are then prescribed to the left subclavian, left
carotid, right carotid, and right subclavian boundaries of the full oartic geom-
etry (see Figure 2(a)). The windkessel parameters at the abdominal aorta were
evaluated after estimating the resistance of the section between π1 and the outlet
of the abdominal aorta through a CFD simulation using the simulated flowrate
at π1 of the geometry in Figure 2(d).

Table 1. Tuned windkessel parameters that reproduced the reported pressure and
flowrate values. (all units are in mm, g, s)

Boundary Rs Rp C

Left subclavian 0.010313 5.275347 0.139334
Left carotid 0.017608 1.936892 0.456585
Right carotid 0.019892 1.934809 0.453177

Right subclavian 0.007989 1.509068 0.603330
π1 0.034707 0.347407 1.831837

Abdominal Aorta 0.027240 0.347407 1.831837
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The resistance within the descending aorta was estimated to be 0.0075 and was
then subtracted fromRπ1

s to produceRDA
s .RDA

p andCDA are set equal toRπ1
p and

Cπ1 , respectively. Final results of the full aortic coarctation are shown in Section 5.

4 Mesh Analysis

After performing a nondimensional analysis of turbulent effects within the re-
ported geometry using the reported flowrate in the challenge two meshes were
generated. Both of the meshes were meshed using hybrid meshes with dominating
hexahedral elements, using the commercial mesher Harpoon (Sharc Ltd, Manch-
ester, UK). Tetrahedral, prism, and pyramid elements are also part of the meshes
but the hexahedral elements dominate. All of the elements use linear interpola-
tions for both velocity and pressure degrees of freedom (DOFs). Mesh 1 (see Fig-
ure 4(b)) features element edge length of 0.28mm. Taking a time step size of 0.5ms
the CFL number of mesh 1 is thus 3.5. Mesh 1 resulted in a total of 921,671 el-
ements, 653,629 nodes, and 2,614,516 DOFs. Mesh 2 (see Figure 4(c)) features
element edge length of 0.09mm. Taking a time step size of 0.1ms the CFL num-
ber of mesh 2 yields 1. Mesh 2 resulted in a total of 5,246,414 elements, 4,205,977
nodes, and 16,823,908 DOFs. In both meshes a three element boundary layer was
linearly expanded into the fluid domain, starting from the aortic wall.

All of the computations were performed using our parallel multiphysics in-
house code BACI [6]. The results presented in Figure 5 show minor differences
between the pressure values of the two meshes. This indicates that mesh 1 yields
sufficiently good results and is thus consequently used for all of the compu-
tations. Figure 6 shows a significant pressure differences at π2 section during
peak flowrate (time=0.14 s). However the plane averaged pressure in plane π2

at t=0.14 s is 5779.74 Pa and 5910.5 Pa for the coarse and the fine mesh, respec-
tively. This means that the plane averaged pressure at π2 matches between the
two meshes with in 2.21% difference. Furthermore the pressure drop between π1

and π2 matches between the fine and coarse mesh with an error of 12.89% (see
Table 2)

(a) (b) (c)

Fig. 4. Meshed aortic geometry (a) and corresponding coarse (b) and the fine (c)
meshes at the inlet of the aortic root
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(a) (d)

Fig. 5. Aortic pressure distribution for the coarse mesh (a) and its corresponding
pressure values at π1 (upper) and π2 (lower). Aortic pressure distribution for the fine
mesh (b) and its corresponding pressure values at π1 (upper) and π2 (lower). All values
are presented at t = 0.08 s.

(g) (j)

Fig. 6. Aortic pressure distribution for the coarse mesh (a) and its corresponding
pressure values at π1 (upper) and π2 (lower). Aortic pressure distribution for the fine
mesh (b) and its corresponding pressure values at π1 (upper) and π2 (lower). All values
are presented at t = 0.14 s.

Table 2. Plane averaged pressure at different slices at time t=0.14 s

Coarse mesh Fine mesh

Pπ1 (Pa) Pπ2 (Pa) Pπ1 − Pπ2 (Pa) Pπ1 (Pa) Pπ2 (Pa) Pπ1 − Pπ2 (Pa)

6702.24 5779.74 922.5 6727.64 5910.5 817.15

5 Results

The plane averaged pressure values at sections π1 and π2 are presented in Fig-
ure 7. The detailed systolic and diastolic pressure values at the π1 and π2 slices,
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Fig. 7. (a) Plane averaged pressure values over a cardiac cycle at the aortic root (AAo),
left subclavian (LS), plane π1 and plane π2. (b) Plane averaged pressure difference
between π1 and π2.

Table 3. Simulated results as required by the challenge. All values shown in brackets
are measured and reported by the challenge. Values outside the brackets are resulted
from the CFD simulation.

Peak pressure difference between
Plane 1 and Plane 2 12.94mmHg

Mean pressure difference between
Plane 1 and Plane 2 2.29mmHg

Flow splits in
Brachiocephalic Left carotid Left subclavian Descending Aorta

26.25 (25.6) 11.62 (11.3) 4.21 (4.26) 57.92 (58.8)

Pressure in ascending aorta
(Systolic/Diastolic) 120.5/67.39 mmHg

Pressure in left subclavian
(Systolic/Diastolic) 116.3/64.5 mmHg (115/65mmHg)

the simulated flowrate percentages, the aortic root pressure, and the left subcla-
vian pressure are shown in Table 3.

6 Discussion

We started our modeling approach with a detailed geometrical and physiological
analysis of the aortic coarctation, where we predicted four pressure regions (as
shown in Figure 2(b)). We then calibrated the windkessel boundary conditions
using our newly developed adjoint method. The final computed CFD results
showed that our modeling and physiological analysis are reasonable. This ob-
served from the results presented in Figure 7(a), where large pressure drops can
be observed between the different regions shown in Figure 2(b). The calibrated
windkessel boundaries were successful in reproducing the flowrates measured by
the challenge with an error smaller than 2.6% (see Table 3). The systolic and
diastolic measurements of the sphygmometer, which are reported in the chal-
lenge, were also well reproduced at the left subclavian artery with an error of
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1.63mmHg and 0.5mmHg for the systolic and diastolic pressure, respectively.
(see Table 3 and Figure 7(a)). The pressure drop between plain π1 and π2 are
reported in Table 3. Furthermore we showed, via performing a mesh analysis,
that the mesh chosen in our study yields good results. This is clearly observed
in the results presented in Figure 5, Figure 6, and Table 2. Here the difference
in the pressure drop between the fine and coarse mesh was found to be 12.8%.
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Abstract. Delayed Enhancement Magnetic Resonance Imaging can be used to
non-invasively differentiate viable from non-viable myocardium within the Left
Ventricle in patients suffering from myocardial diseases. Automated segmenta-
tion of scarified tissue can be used to accurately quantify the percentage of my-
ocardium affected. This paper presents a method for cardiac scar detection and
segmentation based on supervised learning and level set segmentation. First, a
model of the appearance of scar tissue is trained using a Support Vector Ma-
chines classifier on image-derived descriptors. Based on the areas detected by the
classifier, an accurate segmentation is performed using a segmentation method
based on level sets.

Keywords: Myocardial Scar, Support Vector Machine, Level Set, Segmentation.

1 Introduction

Cardiovascular diseases remain the biggest cause of death worldwide. Myocardial scar
appears when myocardium cells become nonfunctional after being affected by cardio-
vascular diseases, such as infarct. Delayed Enhancement Magnetic Resonance Imag-
ing (DE-MRI) images allow a good visualization of the scar tissue, due to the higher
concentrations of gadolinium contrast present on the scar compared to healthy my-
ocardium, which appear some minutes after the administration of the contrast agent.
DE-MRI protocol requires the patient to hold breathing during scans to minimize errors
due to motion. Elderly people cannot hold breathing for too long and hence, DE-MRI
studies have often limited depth resolution (Fig. 1), making the segmentation of the
cardiac scar a challenging task.

Scar segmentation in DE-MRI images has been approached as a threshold selec-
tion problem. Indeed, most methods for scar segmentation rely on some thresholding
scheme based on the intensity of the healthy myocardium or the blood pool [7]. A com-
prehensive review of scar segmentation methods can be found in [5]. Those methods
assume that the voxel intensity of the scar/myocardium/blood pool follows a certain
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(a) (b) (c)

Fig. 1. Three-dimensional volume rendering of a myocardium section (a), the myocardium and
the scar (b), the original MRI, myocardium and scar (c)

probability density function (usually Gaussian) that can be used to identify scar from
non scar voxels.

Let G be a Gaussian distribution with mean μ and standard deviation σ, any values
greater than μ + ασ will be selected as scar segmentation. Here, α acts as a parameter
that regulates how much of the Gaussian distribution is considered healthy (or scarred)
myocardium. Most methods only differ from the selected multiplier and the area where
the Gaussian distribution is being assumed.

However, those approaches, have several flaws. First, it is supposed that the area of
the scar will be small relative to the area of the healthy myocardium. While this can be
assumed to be true, certain areas of the myocardium in some patients may not comply to
this condition. Even more, this implies that the presence of a scar in the myocardium is
implicitly assumed. Secondly, this kind of thresholding mechanisms does not consider
spatial coherence in the segmented area. Voxels may be selected as scar regardless of
the value assigned to neighboring pixels. This in turn generates artifacts due to noise
or bright voxels in the myocardium mask, that can produce unconnected scar/noise
segments. This forces some authors to post-process the segmentation in order to provide
spatial coherence and/or remove noisy false positives [10].

Our approach uses a Support Vector Machine classifier to detect the presence of
scar in the image. The output of the classifier is used as a initial seed for an intensity-
based level set algorithm that can segment the scar considering spatial properties, thus
generating more continuous segmentations. This is even more important in images such
as typical DE-MRI volumes where the z-spatial coordinate has big spacing.

2 Methods

Starting from a gadolinium enhanced MRI image, the first step in order to segment
the cardiac scar is to obtain a segmentation of the myocardium. Our method performs
the segmentation of the myocardium walls with a semi-automatic step. With the binary
segmentation of the myocardium, the final segmentation of the scar tissue is obtained
via a supervised classifier and a level set refinement step.

2.1 Detection of the Scars

A semi-automatic procedure for the detection of the scars in DE-MRI images is pro-
posed, where the user must provide an initial seed within the blood pool (one seed per
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study). The software is based on a Support Vector Machine (SVM) classifier, which is
able to detect scars on the basis of features of the objects segmented in the image. The
training of the system is achieved by using images manually annotated by doctors. Our
software can be divided in two major stages:

First, the region of interest in the image is identified in order to reduce the search area
[4]. Here, the purpose is to select from the image the regions where scars are usually
located. In order to achieve this, the seed provided by the user is used. The choice of
this seed is not very critical, as any point within the blood pool can be used as starting
point. From the seed, a region growing algorithm is used to segment the left ventricle.
Morphological operations [2,6] are then performed for removing spurious signals. The
minimal bounding circle of the segmented object is then computed for each slice. In
this way an estimate of the external surface of the ventricle can be computed. In order
to choose a region where scars are located and reduce at the same time the area of the
image to be analyzed, an inner and an outer radius, starting from the minimal bounding
circle are computed. The annulus between these two circles is the region where the scars
should be located.

In a second step, a set of objects within this region are selected based on Otsu thresh-
old [7]. Features are extracted from those objects, and they are used as inputs to the
classifier to assign a label as scar or no scar. We consider features based on grey-level:

Average grey level: mean intensity value of the area.
Entropy: statistical measure of randomness that can be used in order to obtain infor-

mation about the texture of an image defined by E = −
∑n

i=1 pi log2 pi. where pi
are the probabilities of pixel intensities.

and features connected to the morphology (shape of the object):

Area: number of pixels in each object.
Bounding Box: width and height of the minimum rectangle containing the object.
Majox Axis: length of the major axis of the ellipse that has the same normalized sec-

ond central moment of the object.
Minor Axis: length of the minor axis of the ellipse with the same second central mo-

ment of the region considered.
Eccentricity: eccentricity of the ellipse that has the same second moment of the con-

sidered object. It provides a measure of how the object shape is similar to a circle.
ConvexArea: area of the object’s convex hull.
Euler number: As this is calculated for each object segmented, this equals to 1 −

#holes in the object.

Figure 2 shows two examples of the distribution of some of the considered features, for
scar and no scar objects. It is worth noting that the overlapping of the two classes is
significant in both cases, as expected. The same behavior can be observed also for the
other features. As a consequence, we cannot use only a few features for discriminating
scars from false positives, an extensive set of features is needed instead.

Some tests were performed using different classifiers, in order to assess their perfor-
mance on our validation set. In particular, we tested the following classifiers:
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(a) (b)

Fig. 2. Scatter plots of some features for scar objects (red) and no scar (blue). Entropy versus
average grey level (a). Eccentricity versus area (b).

1. Support Vector Machine with polynomial kernel (2nd degree).
2. K-Nearest Neighbors (KNN) classifier with 5 nearest neighbors.
3. Linear Bayesian discriminant classifier.
4. Linear perceptron classifier.

Table 1 shows the performance of the various classifiers with the set of features selected.

Table 1. Performance of the classifiers, as estimated on our validation set, in terms of average
error, sensitivity and false-positive rate

SVM KNN Bayesian Perceptron

Average error 0.147 ± 0.008 0.152 ± 0.005 0.137 ± 0.005 0.19 ± 0.05
Average sensitivity 20% ± 3% 14% ± 2% 15% ± 3% 24% ± 14%

Average false positive 0.04± 0.01 0.038 ± 0.006 0.034 ± 0.007 0.10 ± 0.07

Results indicate similar performance between all classifiers. However, SVM provides
the best trade-off between average error and sensitivity.

2.2 Segmentation of the Scars

Level sets segmentation methods [3,8] are implicit methods for tracking the evolution
of contours and surfaces. The main advantage of level sets is that arbitrarily complex
shapes, as in the scar, can be modeled and topological changes in the evolution front
such as merging and splitting are handled implicitly. Level set contours get attracted to
specific image features while their evolution is also controlled by other forces such as
propagation and smoothness forces. This generates smoother, more continuous segmen-
tations when compared to pure intensity methods such as simple thresholding or region
growing schemes which also provide spatial coherence, but are prone to leakage.
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The previously detected scar contour from the SVM is used as initialization for the
level set. The feature image that drives the level set is targeted to be attracted to intensity
values learned in the training phase of the method. The selection of this type of level
set is not casual. The scar has no well-defined boundaries with the blood pool and other
(bright) areas of the heart, so edges of the scar are hard to use in the segmentation
step. Fortunately, we can use the myocardium segmentation to constrain the level set
evolution inside the mask.

From the myocardium image area, a speed image (propagation term) is generated
that allows the level set to grow in areas where the image intensity is within the window
defined by the input from the SVM, and to shrink outside of that window. Let I(x) be
a input image, U the upper intensity and L the lower intensity bounds, the speed image
P (x) is defined as:

P (x) =

{
I(x) − L if I(x) < U+L

2
U − I(x) otherwise .

(1)

The values ofU andL are computed from the gray level intensity statistics of the objects
selected by the SVM classifier with the training data. From all the regions that exit the
classifier we compute the mean and standard deviation of the intensity values. With this
values U and L are computed as μ± 5σ to mimic the behaviour of a 5-SD method [1].
The evolution of the level set is controlled by the equation:

φt + βP (x)|∇φ| = γZ(x)κ|∇φ| . (2)

Where φt, ∇φ, are the level set boundary at iteration t and its gradient; P (x), Z(x),
are the propagation (speed) and curvature terms, and β, γ and κ are scalar weights that
control the influence of each term. The curvature term provides a smoothness condition
while at the same time allows to remove spurious or isolated noise voxels with high
curvature term, that might be detected by the SVM as scar.

3 Results

To evaluate our method we participated in the STACOM 2012 DE-MRI segmentation
challenge [9]. Data available for the challenge consists of 30 different DE-MRI images,
divided in two datasets. Fifteen images belong to human patients and the other 15 im-
ages are from pigs. Each group is divided into 5 training images with MRI, myocardium
mask and scar ground truth (GT) and the remaining 10 studies only include MRI and
myocardium mask. Given that a segmentation of the myocardium is provided by the
challenge organization, we use the provided myocardium segmentations instead of our
own cumputed segmentations. Human data was captured with a 1.5T MRI while pig
data was captured with a 3.0T scanner. Ground truth was generated slice by slice as
the consensus of two radiologists for pig data while for human data the STAPLE [11]
of three operator segmentations was used. In order to evaluate the quality of the seg-
mentation, the standard Dice coefficient has been calculated with respect to the ground
truth. The Dice coefficient measures the degree of overlap between two sets (or two
segmentations) A and B, and is defined as:
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Dice(A,B) =
2|A ∩B|
|A|+ |B| . (3)

Dice values are in the range of 0 (no overlap) to 1 (representing full overlap). For each
volume we also compute the percentage of myocardium affected by the scar and com-
pare this value with the percentage of the myocardium computed using the ground truth.
Notice that this second metric is not necessarily related to the Dice score. Instead this
metric is related with the size of the scar and the difference between GT and segmented
scar. At the time of writing this article only the results of the training set are known.
Results are shown in Table 1.

Table 2. Results for each training dataset. overlap scores and difference between percentage of
myocardium affected area. Volumes labeled with a are from pig data while the ones labeled p are
from human data.

Volume Dice Score %GT %Seg Difference

a1 0.59 7.6 6.3 1.2
a2 0.57 11.0 8.0 3.0
a3 0.60 8.1 16.3 -8.2
a4 0.61 8.6 5.3 3.3
a5 0.81 12.4 15.1 -2.7
p4 0.45 10.0 5.2 4.8
p5 0.38 1.9 3.4 -1.4
p7 0.57 8.2 12.3 -4.1

p11 0.76 12.4 14.3 -1.9
p13 0.70 14.1 11.0 3.1

Mean: 0.60 ± 0.12 RMSE: 3.89

Results show a more stability in percentage of myocardium affected than in DICE
score. Differences in image quality and ground truth selection criteria might explain
reduction in the overlap measurements. While some scans show a clearly distinguish-
able scar, others show little contrast in the damaged tissue as exemplified in Fig. 3. The
method defined in this article will perform better in the presence of good contrasted scar
tissue.

Figure 4 shows the segmentation results in green, compared with the scar ground
truth (orange). It can be seen that segmented scar results improve when the myocardium
is clearly darker than the scar. It is worth noting also that the level set has a tendency to
under-segment the scar, compared with the provided ground truth scar.

The criterion to differentiate scar from non scar tissue also affects the overlap results,
and is a source of discrepancies due to the high inter-observer variability. The method
presented herein selects brighter areas of the myocardium as scar. However, the ground
truth seems to be more selective at times, with some brighter areas of the myocardium
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(a) (b)

Fig. 3. Examples of scars (orange outlines) from the datasets. Left image shows a scar with little
contrast with the myocardium, while in the right image the scar is clearly noticeable.

(a) (b)

Fig. 4. Isosurface representation of ground truth (orange) and segmentation results (green). (a):
low contrast volume, (b): high contrast volume.

not being marked as scar GT (Fig. 5). Our clinical collaborators disagreed with the
provided GT in several datasets. This is, however, expected given the nature of the
ground truths provided for the challenge.

The worst performing case with an overlap score of 0.38 presents similar intensity
values for myocardium and scar. Also, the upper segment of the myocardium mask
includes fibrotic tissue that is not scar tissue. This circumstances confuses the SVM
stage creating false scar seeds and reducing drastically the overlap index (Fig. 6(a)).
In some cases the classifiers detects wrong scar segments due to the presence of bright
voxels in the myocardium mask, like when the mask includes non myocardium areas
(blood pool). A proposed improvement to this issue is the inclusion in the classifier of
additional shape-related features.
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(a) (b)

Fig. 5. Scar discrepancies. Myocardium (red) bright areas not selected as scar ground truth in
orange (b). Our method will include this area (green) as scar (b).

(a) (b)

Fig. 6. Wrongly detected seed generates a false positive scar segment. 3D view upper green iso-
surface (a). The same area in a 2D slice (b).

4 Conclusions

We have presented a method for the detection and segmentation of myocardial scar in
DE-MRI data. While overlap values for the rest of the test data remain yet unknown,
overlap values for the training data seem promising, and the percentage of myocardium
affected by scar results, a relevant clinical measurement, are good, in spite of having a
small training set. It seems evidenced that inter-observer variability may be an issue to
address in order to create a gold standard in the definition of the scar contour. Finally,
the presence of fat and other non scarified fibrotic tissue in the myocardium area, might
hinder the performance of the method.
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Abstract. We propose an automatic technique to segment scar and clas-
sify the myocardial tissue of the left ventricle from Delay Enhancement
(DE) MRI. The method uses multiple region growing with two types
of regions and automatic seed initialization. The region growing criteria
is based on intensity distance and the seed initialization is based on a
thresholding technique. We refine the obtained segmentation with some
morphological operators and geometrical constraints to further define the
infarcted area. Thanks to the use of two types of regions when perform-
ing the region growing, we are able to segment and classify the healthy
and pathological tissues. We have also a third type of tissue in our clas-
sification, which includes tissue areas that deserve special attention from
medical experts: border-zone tissue or myocardial segmentation errors.

1 Introduction

Magnetic Resonance Imaging (MRI) plays an important role for the assessment
of cardiac viability [1]. To this end, Delay Enhancement MRI (DE-MRI) has
established itself as a standard imaging protocol in clinical practice to localize
and quantify myocardial scar tissue [2]. Due to the large amount of information
and in order to remove operator bias, user interaction needs to be reduced or
eliminated where possible.

The purpose of our work is to automatically locate the infarcted tissue inside
the left ventricle in short axis DE-MRI. First, the left ventricle borders need to
be segmented. Following this, tissues inside the myocardium have to be classified.

The first step, segmentation of the myocardium, can be solved in different
ways: registering CINE segmentations to DE images [3, 4] or trying to directly
segment DE-MRI. The first approach benefits from higher contrast in CINE,
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but introduces segmentation errors due to slice misalignment and inconsistency
in the number of slices. The second one if performed with the right priors can
solve these inconsistencies and correct slice misalignments [5].

Once the myocardium contours have been obtained, the scar has to be located.
The theory behind the delay enhancement analysis is that the image intensity of
the scar is significantly higher than that of healthy myocardial tissue. However,
the detection and quantification of the pathological tissues is a difficult task
and several issues have to be solved. The contrast between the different tissues
is related to the acquisition system and time, which are not always optimal.
Moreover, depending on the pathology, the shape and extension of pathological
areas, their location with respect to myocardium contours and the keenness of
their borders diverge a lot. All this factors make the segmentation difficult and
prone to intra and inter-observer variability. Considering this, the development
of an automated segmentation of the infarct extent is needed.

Based on the theory behind the DE-MRI, an intuitive method for the detec-
tion of the scar is the application of a threshold two or three standard deviations
above the average intensity value of a healthy myocardial region [2, 6], or using
other metrics [7, 8]. Another approach is to apply clusters [9], or classify my-
ocardial tissue using a support vector machine [3, 10]. The main disadvantage
of these methods is the absence of spatial information. Hsu et al. [11] perform
a feature analysis after the initial thresholding studying the 3-D connectivity
to remove false positive segmentations. In [12], the authors combine both inten-
sity thresholding and spatial information. To avoid the choice of a threshold,
the fuzzy c-means algorithm, which provide a membership degree to the class
of enhanced pixels, can be applied to the pixels only inside the myocardium [9]
or both myocardium and blood pool [13]. Moreover, [14] proposed an algorithm
that combines a histogram analysis with a constrained watershed segmentation
as part of a combined analysis of coronary arteries, myocardial perfusion, and
delay enhancement based on MRI. Elagouni et al. [15] use fuzzy thresholding
followed by region analysis. In [16], the pathological tissue in the myocardium
wall is identified using a MAP-based classifier based on the visual appearance
and spatial interaction of the LV pathological tissue as well as healthy tissue.

We propose an automatic technique to classify the myocardial tissues of the
left ventricle from DE-MRI. Our method uses a region growing algorithm based
on intensity distance with automatic seed selection to segment the healthy tissue,
the scar and a third type of tissue (which for most patients is ischemic viable
tissue or border-zone tissue). To define the final infarcted area, a post-processing
is applied based on morphological operators and location constraints.

The data used in the paper is provided by the STACOM-DEMRI Challenge.
The challenge dataset consists of 30 DE-MRI datasets for segmentation of en-
hanced regions from post-myocardial infarction patients (15) and pigs (15) that
have suffered from myocardial ischaemia. The dataset includes the myocardial
segmentations and, of each of these 15 datasets, 5 are provided as training sam-
ples with manual annotations of the scar.
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2 Methodology

Assuming that the myocardium contours have already been obtained, our scar
segmentation method consists of five steps, as illustrated in Fig. 1. The auto-
mated algorithm selects seeds based on the intensity, and defines a region grow-
ing algorithm to, finally, segment the healthy tissue, the scar and a third type of
tissue, which would include border-zone tissue and/or myocardial segmentation
errors. We have also used some geometrical rules based on morphological opera-
tors to define the final infarcted area. This section provides detailed description
of the method, describing it step by step.

Fig. 1. Block scheme of the scar segmentation method

2.1 Pre-processing

The preprocessing step is divided in two parts. On the one hand, some of the
myocardial segmentations provided by the STACOM-DEMRI challenge have
small segmentation errors. Typically, these consist of: single pixels that are not
inside the myocardium but that are marked as such (islands), or pixels inside
the myocardium not included in the mask (holes). This is a necessary step for
the seed selection and posterior region growing. On the other hand, we have also
performed a pre-processing to the DE-MRI slices consisting on an enhancement
method to improve the contrast: we have applied a sigmoid function to the gray
levels of the image (see Fig. 2).

2.2 Automatic Seed Selection

After the pre-processing step, we proceed to automatically select the seeds that
will be used for the region growing algorithm: two seeds at most for scar tissue

Fig. 2. Application of sigmoid function: original (left) and processed image (right)
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and two at most for healthy tissue. To do so, we consider as scar candidates any
pixel vi in slice i with coordinates (x, y) if:

vi(x, y) is “scar candidate” if vi(x, y) > μi + 2σi, (1)

where μ is the mean gray level value of the myocardium and σ is the standard
deviation of the gray levels inside the myocardium in the slice that is being ana-
lyzed. This gives us a first approximation of possible locations of scar (Fig. 3a).
We discard as scar candidates very thin and elongated regions which are near
the epicardium, as they often come from errors in the segmentation of the my-
ocardium. We choose the brightest pixels in the one or two bigger regions (single
pixels or small islands are discarded) as seeds for scar region growing, and the
darkest pixels in the myocardium which are outside the preliminary scar zone
and which are inside connected big regions as seeds for the healthy region grow-
ing, as depicted in Fig. 3b. With the selected seeds, our method has then from
one to four seeds to grow, depending on whether it found no scar, one scar and
one healthy region, two scar regions and one healthy or two scar regions and
two healthy regions. The possible use of two seeds for scar, instead of just one,
solves the problem of having two disconnected regions.

2.3 Region Growing

Region growing is a pixel-based image segmentation method. A region is itera-
tively grown by comparing all unallocated neighboring pixels to the region [17].
Starting with the seeds chosen as explained in Sec. 2.2, we apply the region
growing algorithm, which takes pixels and compares them with its neighbors
using an intensity distance related to the standard deviation.

The region growing is performed independently for every seed (the scar ones
and healthy). During this step, we do not control if regions overlap or not, the
region iteratively grows by comparing all unallocated neighboring pixels to the
region. The difference between a pixel intensity value and the region mean is used
as a measure of similarity. The pixel with the smallest difference is allocated to
the respective region. The process grows the region until the stopping criteria

(a) (b) (c)

Fig. 3. Evolution of the algorithm: (a) shows the candidate pixels for scar seeds, (b)
shows the seeds for scar tissue (red dot) and healthy tissue (green dot) and (c) shows
the three labels: red for ”scar”, green for ”healthy” and yellow for ”other”
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is met. The regions will, in most of the cases, overlap in some parts of the
myocardium. Also, in some cases, some parts of the myocardium are not included
neither in the healthy regions nor in the scar ones.

2.4 Region Labeling

Once the region growing algorithm has defined the (possibly overlapping) healthy
and scar regions, we proceed to label each pixel as “scar”, “healthy” or “other”,
where “other” could include border-zone and segmentation errors. The labeling
uses the following rules:⎧⎨⎩

vi(x, y) is “scar” if vi(x, y) ∈ Rs & /∈ Rh,
vi(x, y) is “healthy” if vi(x, y) /∈ Rs & ∈ Rh,
vi(x, y) is “other” if otherwise,

(2)

where Rs are the scar regions and Rh are the healthy regions. As can be seen
from above expressions, we label as ”scar” any pixel which is included only in the
scar regions. Similarly, “healthy” label is assigned to every pixel which is only
included in the “healthy” regions. Any other pixel (included both in healthy and
scar regions or not included in any region) is labeled as “other”.

A second labeling step is performed for the tissue labeled in the previous step
as “other”:{

vi(x, y) ∈ “other” is “scar” if vi(x, y) neighbor with “scar”,
vi(x, y) ∈ “other” is “other” if otherwise,

(3)

where we consider as part of the scar tissue labeled as “other” which is in contact
with “scar”.

This gives us a myocardium with three labels, “scar” for pixels considered
as scar, “healthy” for pixels considered as healthy tissue, and “other” for pixels
that are either viable ischemic tissue or miss-segmentations, as shown in Fig. 3c.

2.5 Post-processing

Once we have the labeling, we want to fill the small holes so that there are no iso-
lated pixels in any region. We perform the hole filling both for the regions labeled
as “scar” and for the regions labeled as “healthy”. Also, we exclude from scar
all regions that are too small proportional to the area of the myocardium, which
often come from noise in the acquisition, and the connected regions, which were
not considered very small but that are attached to the epicardial or endocardial
contours and that are very thin and elongated, considering them segmentation
errors. Finally, we relabel as scar some patchy, dark regions without contrast
which are fully surrounded by enhanced regions, which are consistent with mi-
crovascular obstruction and thus should belong to the infarct (see Fig. 5).
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Table 1. DSC between automatic and manual segmentations

1 2 3 4 5 Average

PIGS 0.6739 0.6072 0.8164 0.8615 0.8070 0.7532

HUMANS 0.4400 0.5600 0.6395 0.4048 0.6703 0.5429

3 Results

The STACOM-DEMRI Challenge dataset consists of 30 DE-MRI volumes for
segmentation of enhanced regions from post-myocardial infarction patients (15)
and pigs (15) that have been subjected to myocardial ischaemia. However, only
5 pigs and 5 humans are provided as training samples with manual annotations
for the scar and these 10 volumes have been used to validate our method.

Validation of the method is done by comparing the automatic segmentation
results with the manual ones from one observer by calculating the Dice similarity
coefficient (DSC) (measuring the degree of area overlap). DSC is always between
0 and 1, with higher DSC indicating better match between automatic and manual
segmentations. DSC is 0 for situations in which one of the segmentations shows
scar and the other does not, and it is 1 when there is perfect agreement in
the segmentations, including the cases where both segmentations show no scar.
Table 1 shows the average DSC of each subject.

Figs. 4 and 5 show some visual results for scar segmentation, both for pigs
and humans. In the figures, we can compare manual segmentation (top row)
with our segmentation (bottom row). The DSC value between the automatically
identified and manually defined regions are also shown below each slice. The
first two columns of Fig. 4 show cases that have properly worked, the borders

0.7216 0.8725 0.7773 0

Fig. 4. Examples of our proposed scar location approach (bottom) compared with the
manual ground truth (top) for the pig dataset and its DSC value
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0.6345 0.6148 0.6074 0.3839

Fig. 5. Examples of our proposed scar location approach (bottom) compared with the
manual ground truth (top) for the human dataset and its DSC value

of the scar have been accurately defined. The third column shows a case where
the segmentation could have errors due to lack of penetration, but it performs
quite well thanks to the double seed initialization and the hole filling. It can be
noticed that the DSC is sensitive to the scar size observing the first three values
of the measure. Finally, the fourth column of Fig. 4 depicts an error that comes
from a bad segmentation of the myocardium, which makes our algorithm fail
and detect as scar tissue next to the myocardium.

Fig. 5 shows some segmentations performed on the human dataset. The first
column shows a case with correct scar detection, filling the holes without contrast
inside the scar that come probably from microvascular obstruction, even though
the ground truth provided does not consider these holes as scar. The second
column shows an example of double scar detection thanks to the use of two scar
and two healthy tissue seeds. The third column shows a typical example of the
segmentations being affected by a low contrast and acquisition artifacts. Finally,
the fourth column gives a clear example of false positive scar detection due to
incorrect myocardial segmentation: a large amount of what seems to be blood
pool has been included in the myocardium, and our algorithm has annotated
this region, which is exactly next to the real scar, as scar.

Our algorithm is fast enough to be used in real time: the average computa-
tional time for one slice is between 0.1 and 4 seconds (depending on the reso-
lution and if any scar seed is detected) when executed in Matlab in a Intel(R)
Core(TM)2 Quad CPI Q6600 @ 2.40GHz with windows 7. This makes it us-
able in clinical scenarios, especially if we consider the fact that the code can be
further optimized and refined.

4 Conclusions

We have presented a fully automatic method to segment scar in DE-MRI images.
This method has three characteristics that make it very interesting for clinical
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practice: it does not require training, it can be used in real time and includes
three types of tissue in the labeling: “scar”, “healthy” and “other”, which in-
cludes both possible areas of ischemic viable tissue and voxels that are not really
myocardium but were included probably due to segmentation errors.

Our segmentation method is fast enough to be used in real time in a clinical
scenario. The most time consuming step of the processing would be the manual
segmentation of the myocardium. Using a fast automatic myocardial segmenta-
tion, such as the one presented in [5], would help to improve this.

Segmentation results using this method look promising. False positives often
come from myocardial segmentation errors. Also, we would like to point out that
often, when performing an undersegmentation of a scar, the undersegmented
voxels are labeled as “other” and not as healthy. This is important because it
indicates to the clinicians that in this area we do not consider the tissue as
fully healthy, and that it should be analyzed with caution. Further analysis and
evaluation of the performance of this method with a larger dataset has to be
performed in order to test its full potential.
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Abstract. Delayed-enhancement magnetic resonance imaging (DE-MRI)
is an effective technique for imaging left ventricular (LV) infarct. Exist-
ing techniques for LV infarct segmentation are primarily threshold-based
making them prone to high user variability. In this work, we propose a
segmentation algorithm that can learn from training images and segment
based on this training model. This is implemented as a Markov random
field (MRF) based energy formulation solved using graph-cuts. A good
agreement was found with the Full-Width-at-Half-Maximum (FWHM)
technique.

Keywords: Segmentation, Delayed-enhancement MRI, Left ventricle,
Graph-cuts.

1 Introduction

Acute and chronic infarction in the myocardium has important prognostic im-
plications in patients suffering from heart diseases. There is growing evidence
suggesting that the use of Cardiovascular Magnetic Resonance CMR using DE-
MRI sequences can be considered the gold-standard modality for assessment of
infarct. However, the optimal technique for quantifying DE in DE-MRI is still
debatable. An excellent survey and evaluation of these techniques can be found in
[1]. The two highly used techniques, owing to their ease of implementation and
simplicity, is the FWHM and standard-deviation (SD) techniques. The latter
fixes infarct to be a certain number of standard deviations from healthy my-
ocardium, and the former defines infarct to be above half of the maximal signal
within infarct. Although there is now strong evidence that the FWHM technique
is highly reproducible [1] and at least one body of work establishing correlation
with histology studies [2], it still remains unclear why the chosen half of the
maximal signal in FWHM would universally conjure the right quantification for
infarct in DE-MRI.

In this work, we present a segmentation method for the data provided as part
of the MICCAI challenge on ventricle DE-MRI data from humans and animals.

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 71–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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It is based on a probabilistic tissue intensity model of DE-MRI data, which is
derived both from training and the unseen data. The algorithm uses a Markov
random field (MRF)-based energy formulation that is solved using graph-cuts
[3]. The method of graph-cuts has shown high accuracy, simultaneous ROI detec-
tion, and scalability to three dimensions in segmenting structures [4]. It has been
applied in a wide variety of segmentation problems arising in computer vision
and medical image processing [5,6,7]. It is used in this work to efficiently solve
the MRF model. The main advantages of employing the graph-cut technique in
ventricle DE-MRI quantification are the following: 1) Uses a training model and
thus the algorithm can be trained prior to suit to the quality of enhancement
in the test cohort, and 2) Regions of infarct segmented are generally continu-
ous and free from salt-and-pepper holes commonly encountered in thresholding
techniques such as FWHM and SD.

2 Methods

The segmentation of infarct from DE-MRI can be described as assigning a label
fp ∈ {0, 1} to every voxel p in the search space of the image. The search space
for infarct is myocardium and a binary segmentation is assumed to be readily
available. Voxels representing infarct tissue are assigned the foreground class
label fp = 1 and non-infarct or healthy tissues are assigned background class
label fp = 0. Given the observed intensities in the search space of the image and
prior knowledge about infarcts, the segmentation problem can be solved using
a probabilistic framework where the maximum a posteriori (MAP) estimate is
computed using Bayes’ theorem:

argmax
f

P (f|I) = P (I|f)P (f)

P (I)
(1)

where f is the total label configuration and I are all observed intensities within
the search space. The image likelihood P (I|f) describes how likely is the observed
image given a label configuration f. The prior P (f) encodes any prior knowledge
of the tissue class labels (i.e. healthy and infarct tissue classes).

The MAP estimate allows to determine the most likely label configuration f,
given the observed intensities I. To make numerical computation more conve-
nient, the MAP formulation is transformed to one involving only summations.
This is possible by taking the negative logarithm of Eq. 1:

f̂ = argmin
f
{− lnP (I|f)− lnP (f)} (2)

where f̂ is the optimal labelling. The prior probability P (I) can be ignored as it
is independent from the labelling f. Note that the segmentation problem is now
an energy minimization problem, following from (2):

f̂ = argmin
f
{λEdata(f) + Eprior(f)} (3)
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The weighting term λ weighs the relative contribution of the energy terms: Edata

is the data term which measures the disagreement between a prior probabilistic
(i.e. training) model and the observed data, and Eprior is a smoothness term
penalizing any discontinuities within a tissue class. It achieves this by penalizing
discontinuities between adjacent voxel pairs in a neighbourhood system. Eq. 3
is commonly represented in existing literature as an energy function over the
entire image as:

E(f) = λ
∑
p∈P

Dp(fp) +
∑

{p,q}∈N

Vp,q(fp, fq) (4)

Here D and V are terms corresponding to Edata and Eprior respectively of Eq.
3.

For MRF-based energy functions such as the one in Eq. 4, global optimization
methods are computationally inefficient to be applied to medical image segmen-
tation, especially with 3D free-breathing images. Other optimization schemes
such as the Iterated Conditional Modes (ICM), widely applied in medical image
segmentation, is well known to suffer from local minima trapping. The graph-cut
method employed in this work, is now a widely used technique for minimizing
context-dependent MRF problems as the one suggested here.

In the graph-cut implementation of [3], a close approximation of the global
minimum is guaranteed and this is most desirable in DE-MRI we seek a global
optimal solution (i.e. segmentation of infarct) based on the observed and training
data. Indeed, a locally optimal solution would yield regions with inconsistent
segmentations. In the graph formulation, the MRF-based energy function in Eq.
4 is coded into the edge-weights. The cost of the graph cut, partitioning the
graph into two sets of nodes each belonging to a separate class: scar or healthy,
is equal to the total energy of the corresponding segmentations. The problem is
thus to find the cut with the least cost thus yielding the optimal segmentation.

2.1 Integration of Information in Edge-Weights

In the graph-cut method, the graph constructed from the infarct search space
(i.e. region of myocardium) contains t-links and n-links. The t-links connect
each voxel in the image to the tissue label classes namely healthy and infarct.
The n-links are links between adjacent voxels that enforce smoothness in a local
neighbourhood. The t and n-links correspond to the data termEdata and smooth-
ness terms Eprior of Eq. 3 respectively. The t-links are the major contributing
term and is what drives most of the segmentation process. It is sensible that
the weights assigned to these links are derived from a tissue prior such as a
probabilistic model of healthy and infarct tissues.

Tissue Intensity Prior: For integrating prior knowledge about healthy and
infarct tissues, tissue intensities are modelled in each class. In the healthy tis-
sue (i.e. non-infarct) class, tissue intensities are modelled from from the unseen
image. As the segmentation of myocardium is assumed to be available, tissues
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lying outside myocardium are modelled using a multi-modal Gaussian mixture
model. The number of modes is left variable as it is often unclear what would
be the ideal and optimal number of tissue modes within the healthy class.

For infarct tissue class, the enhancement ratio of the mean intensity of infarct
to blood-pool is modelled from the training data. These can be readily obtained
from manually segmented infarct images. The ratio is modelled with a uni-modal
Gaussian distribution. The data term of Eq. 3 and thus the t-link in the graph-
cut is obtained from the aforementioned intensity distributions: P (Ip|fp = 1) for
infarct and P (Ip|fp = 0) for healthy, and thus before we insert this information
as edge-weights we must have:

Dp(fp) = −lnP (Ip|fp) (5)

Tissue Continuity Prior: The smoothness term V in Eq. 3 ensure that seg-
mented regions remain smooth and continuous. Neighbouring adjacent voxels
with similar intensities incur an exponentially high cut cost if they are classified
into separate tissue classes. The Lorentzian error norm [6] is employed, which is
a robust metric for measuring intensity differences within a neighbourhood:

ϕ(p, q) = 1 +
1

2

(
|Ip − Iq|

σ

)2

(6)

The implementation of the graph-cut algorithm used is the one found in [8].

3 Results

3.1 Challenge Data

The data provided as part of this challenge was acquired using a standard 1.5T
scanner and a 32 -channel coil (Philips Healthcare, Best, Netherlands). These
were both from human (n = 10) and pig (n = 10). In the human set, the pixel
resolution was reconstructed to 1.3 × 1.3 × 2 mm3. For the animal data, the
resolution of the images provided were 1.7× 1.7 × 6 mm3. Segmentation of the
myocardium was also provided for each scan. These were manually annotated
by a clinical expert. Also a set of training data (n = 5) were provided for both
the patient and animal cohorts. This included expert segmentations of infarct
within the myocardial contour. A sample of the datasets provided can be seen
in Fig. 1.

3.2 Comparison with Gold-Standard

The FWHM is now established as a gold-standard for quantifying infarct in DE-
MRI scans of the ventricle with good correlation shown against histology studies
[2,1]. Results from the proposed algorithm were evaluated quantitatively against
segmentations from the FWHM technique. Details on the implementation of
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Fig. 1. Sample of the human (top row) and animal pig (bottom row) DE-MRI data
provided to participants as part of the challenge. Red arrows indicate areas of enhance-
ment.

FWHM can be found in [2]. Infarct was defined as signal intensities T where:
T > 0.5×Tmax, here Tmax is the (mean) peak signal intensity within myocardium.

Infarct was quantified using both FWHM and the proposed algorithm. For
comparison, the amount of infarct detected represented as percentage of my-
ocardium was determined in both the methods. These comparisons are shown
in the Bland-Altman plots of Fig. 2 for the human data set and 3 for the ani-
mal data set. In these plots, the percentage difference (vertical axis) is plotted
against the average (horizontal axis) of the two techniques. Furthermore, the two
techniques are also compared using the Dice overlap measure [9] in Table 1. We
see good agreement in both human (Mean difference in measurements = -0.9%)
and animal (Mean difference = -1.4 %) datasets. Note that a negative percent-
age indicates under-estimation of infarct by the proposed algorithm. There was
also good pixel-by-pixel correlation in both human (Mean dice = 93/100) and
animal (Mean dice = 87/100) datasets.

3.3 Performance

The human DE-MRI images were segmented in all but 1 case successfully using
the proposed graph-cut algorithm. Segmentations were evaluated both qualita-
tively and quantitatively. A successful segmentation was defined as one where
the algorithm was able to produce a result and had good correlation (Dice > 0.7)
with FWHM. See Fig. 4 for a sample of the segmentations generated by the al-
gorithm. The segmentations were computed in less than 5 seconds on a 2.5 Ghz
PC. There was no operator input during the entire segmentation process. How-
ever, it is essential that a correct segmentation of the myocardium is provided
as this defines its search space.
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Fig. 2. Patient data-set: Bland-Altman plot showing difference in measurements (in-
farct detected as percentage of myocardium) in FWHM and proposed algorithm. A
negative percentage indicates under-estimation of infarct by the proposed algorithm.

Fig. 3. Animal data-set: Bland-Altman plot showing difference in measurements (in-
farct detected as percentage of myocardium) in FWHM and proposed algorithm. A
negative percentage indicates under-estimation of infarct by the proposed algorithm.

In the animal DE-MRI images, segmentations were obtained in all but 2 cases
successfully. Similar to the human data, segmentations were computed in less
than 5 seconds with no operator input. Fig. 5 shows a sample of the output
generated by the algorithm.
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Table 1. Dice overlap comparison with FWHM technique

No. Human Animal

1 80 90
2 90 95
3 91 98
4 95 92
5 93 95
6 98 75
7 92 89
8 95 77
9 94 72
10 97 50

Mean 93 (5) 87 (10)

The Dice overlap between FWHM and the algorithm for human and animal data sets.
The Dice ranges between 0 and 100 where 100 represents perfect overlap.

Fig. 4. Patient data: Original DE-MRI scans (top row) and their corresponding graph-
cut segmentations (bottom row)



78 R. Karim et al.

Fig. 5. Animal data: Original DE-MRI scans (top row) and their corresponding graph-
cut segmentations (bottom row)

3.4 Conclusions

The proposed work employs a graph-cut implementation to maximize the MAP
estimate and obtain the most likely (i.e. optimal) segmentation for infarct, given
the observed and training data. The algorithm was tested on both patient and
animal DE-MRI by utilizing the training data from each separately. Results from
the algorithm were verified by a clinician qualitatively and were deemed suit-
able for clinical applications. Furthermore, quantitative validation with FWHM,
currently the gold-standard in infarct quantification, shows good agreement.

Quantification of acute and chronic infarction in the myocardium is a chal-
lenging problem and has important prognostic implications in patients suffering
from heart-related illnesses. Existing techniques rely on setting a standard cut-
off intensity value for infarct and it is yet not clear why fixing a global intensity
value would generate accurate segmentations. Given the quality of images ob-
tained in clinical practice and as seen in the mix provided within this challenge,
it is becoming clear that techniques which exploit local information are more
likely to generate accurate segmentations. Furthermore, any quantification algo-
rithm intended to be used in clinical practice must be tested against multi-center
studies. Future work will further include a more detailed quantitative evaluation
with ground-truth information.
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Abstract. Accurate detection and delineation of myocardium infarc-
tion is important for treatment planning in patients with heart disease.
Delayed contrast enhanced magnetic resonance imaging (DE-MRI) is a
well established technique for the assessment of myocardial infarction.
However, manual delineation of myocardium infarction in DE-MRI is
both time consuming and prone to intra and inter rater variability. In
this paper, we present an automatic, probabilistic framework for segmen-
tation of myocardium infarction using Hierarchical Conditional Random
Fields (HCRFs). In each level, a CRF classifier with up to triplet clique
potentials is learnt. Furthermore, incorporation of spin image features in
the second level allows for better learning the neighbourhood character-
istics. The performance of the HCRF classifier on 5 animal scans and 5
human scans shows promising results.

1 Introduction

In patients with chronic ischemic heart disease, the myocardium infarction size
is used to evaluate the performance of treatment strategies. Hence, detection
and segmentation of myocardium infarction is of great importance in scientific
studies and clinical trials. Contrast enhanced magnetic resonance imaging has
been widely used for this purpose. However, in addition to being laborious and
time consuming, manual detection is prone to intra - and - inter expert variabil-
ity making the analysis of the results very complicated. Therefore, it is desir-
able to have a fully automatic segmentation scheme for infarction detection in
studies with large ensemble of patient data. The previous work mainly suggest
using threshold based methods other non-probabilistic approaches to address
this problem [1,2]. In contrary, we propose a fully automatic and probabilis-
tic approach based on Hierarchical Conditional Random Fileds (HCRF) [3,4].
Our HCRF framework includes a first level CRF classifier with unary, pairwise
and triplet potentials to obtain infarction candidates, and a second level CRF
classifier with the incorporation of spin image features.

2 Method

The goal of image classification or segmentation is to assign each voxel in the
image a label, from a finite set of possible labels. Let us denote xi ∈ �d as the
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observation vector (e.g. intensity values) at the voxel i and yi ∈ {1, 0} as the
label of the ith instance (e.g. infarct vs. non-infarct). Given a test image, X ,
the goal of a probabilistic classifier is to infer the posterior distribution of its
labels given the observations, i.e p(Y |X) where X = {xi}n1 , Y = {yi}n1 and n is
the total number of voxels. Since the labels of neighbouring voxels are typically
correlated, neighbourhood information is incorporated by building a graphical
model, G(V;E), where voxels are represented by a set of nodes (V) and the
relationships among them are represented by edges (E).

2.1 First Level CRF

At the first level of inference, we develop a Conditional Random Field (CRF) [5]
classifier at the voxel level. A CRF is a discriminant graphical model that di-
rectly estimates the parameters of the conditional posterior, p(Y |X), by learning
a mapping from observations to class labels. Conventional CRF is generally for-
mulated as energy functions defined on unary and pairwise cliques. In this work
we go beyond the pairwise interactions by also considering triplet interactions
in the energy function:

p(Y |X) =
1

Z
exp(

n∑
i=1

φ(yi|X) +
∑
j∈Ni

ϕ(yi, yj |X) +
∑

j,k∈Ni

ψ(yi, yj, yk|X))) (1)

where Z is the normalization term. φ, ϕ and ψ are the unary , pairwise and
triplet potentials at the voxel level respectively. The unary potential is modeled
as:

φ(yi|X) = log p(yi|xi) = log(σ(g(xi))) (2)

where xi is the observation vector at voxel i and σ denotes the sigmoid function.
Similar to [6], we use a Relevance Vector Machine (RVM) classifier to model
p(yi|xi). RVM [7] is a discriminant classifier that models the probability distri-
bution of the labels by learning the decision boundary g(xi) within a Bayesian
framework. The RVM classifier has a several advantages: 1- It can provide a good
generalization performance comparable to SVM. 2- It can obtain a sparser model
and use a wider kernel function than SVM. 3- It does not need the estimation
of the error/margin tradeoff parameters. 4- It is much easier to be implemented.
Hence, RVM has been applied more and more in various fields [8].

The pairwise and triplet potentials in a CRF model permits learning the
relationships between the labels of neighbouring nodes given the observed data
and/or incorporating prior knowledge on their labels. The final inference in the
first level is obtained with finding the best labeling that maximizes Eq. 1. This
is achieved through a graph cut optimization framework [9].

2.2 Second Level CRF

After the fist level of CRF, a novel intensity-domain descriptor called spin im-
age [10,11] is computed for all of the remaining voxels. The spin image is a
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two-dimensional histogram encoding the distribution of image brightness values
in the neighbourhood of a particular reference (center) point. The two dimen-
sions of the histogram are d, distance from the center point, and i, the intensity
value. The slice of the spin image corresponding to a fixed d is simply the his-
togram of the intensity values of pixels located at a distance d from the center.
Fig. 1 shows the principle behind the construction of spin images.

Normalized patch Spin image

0

d i= 0.0, = 1.0

d i= 0.4, = 0.3

d i= 1.0, = 0.1

1

0

1

d

i

Fig. 1. The original image and its spin image descriptor are shown in the left and right
images respectively. Each white circle in the left image correspond to a constant d (i.e.
a vertical line in the right image). The mapping between three sample pairs is shown
as well (Figure from [10] ).

Given a query image, after applying the first level CRF, the spin image de-
scriptors of the remaining voxels are computed. Similar to the first level (Eq. 1),
a CRF classifier is trained where besides the intensity at each voxel, the spin
image features are used as well. Likewise, the final inference is performed via a
graph cut optimization framework [9].

3 Experiments and Results

3.1 Data Pre-processing

The contrast enhanced MRI data was acquired from 15 human patients and
15 pigs with varying amounts of infarction. The MRI image intensity can vary
significantly due to variations in acquisition protocols, scanner differences, etc.
As a result, intensity normalization plays an important role in standardizing the
tissue intensities across different MRI volumes. In our study, the intensity range
of all volumes is normalized using a method suggested by Nyul et al. [12] (The
intensity profile of the human data and that of the animal data are normalized
separately). 5 MRI volumes from each group are used as the training data.

In principal any discriminant classifier can be used for modeling the unary
potential. In our analysis, the unary potential in the first level is modeled using
an RVM classifier for both human and animal data. Similarly, the unary potential
in the second level is also modeled using an RVM classifier for the human data.
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(a) Pig1 (b) Myocardium (c) Intensity Nor-
malized

(d) Manual label-
ing

(e) First Level
CRF with only
φ(yi|X)

(f) Complete
First Level CRF

(g) Second Level
CRF with only
φ(yi|X)

(h) Complete
HCRF

Fig. 2. The performance of the different components of the proposed HCRF classifier
shown for two example slices from pig data. The shown images are: the delayed MRI
(a), the delayed MRI only showing the myocardium tissue (b), Nyul intensity normal-
ization of the myocardium (c), the manual labels of myocardium infarction (d), the
classification results using only the unary potential (e), the classification result using
the complete CRF model (Unary, pairwise and triplet potentials) at the first level (f),
the classification result of the second level with using only the unary potential (g), the
classification result of the complete HCRF model (h).

However, it was observed that for the animal data modelling the unary potential
with a KNN classifier yields better results. Furthermore, in human cases there is
a large number of pixels to be analyzed due to the large size of the myocardium
(compared to the animal cases) which cannot be processed at once because
of computational limitations and training complexity. Therefore, we adapted a
boosting technique to select an efficient subset of training samples for learning
the unary classifier [13]. This strategy both decreases the training time and
increases the learning efficiency by incorporating the harder samples in to the
training set.

3.2 Qualitative Results

Fig. 2 and Fig. 3 show examples of the performance of the various components of
the HCRF framework for the animal and human cases, respectively. Comparing
Fig.2 (b) and Fig.2 (c) (similarly Fig.3 (b) and Fig.3 (c)), we observe the effect
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(a) Patient11 (b) Myocardium (c) Intensity Nor-
malized

(d) Manual label-
ing

(e) First Level
CRF with only
φ(yi|X)

(f) Complete
First Level CRF

(g) Second Level
CRF with only
φ(yi|X)

(h) Complete
HCRF

Fig. 3. The performance of the different components of the proposed HCRF classifier
shown for one example slice from human data. The shown images are: the delayed
MRI (a), the delayed MRI only showing the myocardium tissue (b), Nyul intensity
normalization of the myocardium (c), the manual labels of myocardium infarction (d),
the classification results using only the unary potential (e), the classification result using
the complete CRF model (Unary, pairwise and triplet potentials) at the first level (f),
the classification result of the second level with using only the unary potential (g), the
classification result of the complete HCRF model (h).

of the intensity normalization on enhancing the contrast between the infarction
and the healthy tissues. Furthermore, it is observed that the result of the unary
potential (Fig.2 (e) and Fig.3 (e)) in the first level yields too many false positives
which are removed by adding the neighbourhood information through the incor-
poration of the pair-wise and triplet potentials (Fig.2 (f) and Fig.3 (f)). In the
second level, by effectively learning the neighbourhood characteristics through
the incorporation of the spin image feature, more false positives are removed
(Fig.2 (g) and Fig.3 (g)). Finally, the complete HCRF model yields very similar
results to the manual labelling (Fig.2 (h) and Fig.3 (h)).

3.3 Quantitative Results

The performance of different components of our HCRF model is also quan-
titatively evaluated in Table 1 and Table 2. Let us denote True Positive, False
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Table 1. Leave one out cross validation results for different components of the model
for animal data. The first and second columns show the first level CRF using only the
unary (CRF1(φ)) and the combination of the unary, pairwise and triplet potentials
(CRF1(φ, ϕ, ψ)), respectively. The third column shows the classification result of the
second level CRF using only the unary term (CRF2(φ) ). Finally, the last column
(HCRF) is the proposed hierarchical model.

CRF1(φ) CRF1(φ,ϕ, ψ) CRF2(φ) HCRF

Sensitivity 0.91 0.89 0.76 0.74

FPR 0.22 0.10 0.08 0.06

PPV 0.27 0.43 0.49 0.53

Table 2. Leave one out cross validation results for different components of the model
for human data. The first and second columns show the first level CRF using only the
unary (CRF1(φ)) and the combination of the unary, pairwise and triplet potentials
(CRF1(φ, ϕ, ψ)) respectively. The third column shows the classification result of the
second level CRF using only the unary term (CRF2(φ) ). Finally, the last column
(HCRF) is the proposed hierarchical model.

CRF1(φ) CRF1(φ,ϕ, ψ) CRF2(φ) HCRF

Sensitivity 0.86 0.84 0.68 0.65

FPR 0.21 0.13 0.09 0.07

PPV 0.31 0.42 0.48 0.51

Positive, True Negative and False negative pixels with TP, FP, TN and FN. The
following metrics are calculated for comparison:

Sensitivity rate = TP
TP+FN ,

False Positive Rate (FPR)= FP
FP+TN ,

Positive Predictive Value (PPV)= TP
TP+FP .

As expected, the complete HCRF model has lowest FPR and highest PPV while
maintaining the sensitivity in an acceptable range.

4 Discussion

In this paper a Hierarchical Conditional Random Field (HCRF) classifier is
proposed to address the myocardium infarction segmentation. The proposed
model has yielded promising results on the training cases of both human and
pig data. The learnt model can be improved by including more training data
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as 5 cases might not be enough to well represent a population. Specifically, for
patients 4 and 5 (and possibly patient 6) we observed poor segmentation results
as their intensity profiles are very different from that of the rest of available
training patients.
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Abstract. Myocardial viability assessment is an important task in the
diagnosis of coronary heart disease. The measurement of the delayed
enhancement effect, the accumulation of contrast agent in defective tis-
sue, has become the gold standard for detecting necrotic tissue with
MRI. The purpose of the presented work was to provide a segmenta-
tion and quantification method for delayed enhancement MRI. To this
end, a suitable mixture model for the myocardial intensity distribution
is determined based on expectation maximization and the comparison
of the fit accuracy. The subsequent watershed-based segmentation uses
the intensity threshold information derived from this model. Preliminary
results are derived from an analysis of datasets provided by the STA-
COM challenge organizers. The segmentation provided reasonable results
in all datasets, but the method strongly depends on the underlying
myocardium segmentation.

1 Introduction

Viability assessment with MR imaging has become a gold standard for the detec-
tion of necrotic and fibrotic myocardial tissue. Its prognostic value in patients
with coronary artery disease has been proven [1]. For the segmentation and
quantification of myocardial regions, which exhibit delayed enhancement, com-
mercially available tools offer basic methods such as thresholding two or three
standard deviations above the average intensity value of a healthy myocardial
region [2]. There exist different approaches to compute a threshold automati-
cally [3], apply clustering methods [4], or classify myocardial voxels based on
support vector machines [5].

The arterial vessels supplying the myocardium run from the epicardial sur-
face inward. A shortening of blood supply is strongest at the vessel endings
close to the endocardial surface. Therefore, in coronary artery disease infarc-
tions start subendocardially and grow from the inner to the outer part of the
myocardium. This fact has been considered in the approach of [6], who perform a
feature analysis after the initial thresholding. In addition to checking the suben-
docardial distance, a 3D connectivity analysis is applied to remove false positive
segmentations.

For therapy decisions, it is important to know the transmurality, the degree
of penetration of myocardium with infarction from endocardium to the outer
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surface [7]. Newer approaches combine simple thresholding with the proposed
assumptions about the typical scar shape and location to determine the actual
extent of the diseased tissue region [8]. Elagouni et al. combine the proposed
mixture model approach with a so-called Fast Region Competition [9]. This cor-
responds closely to an automatic seed detection with a subsequent region growing
applying the threshold model derived from the mixture model.

The segmentation of microvascular obstructions, which occur in scans ac-
quired in the early delayed enhancement phase, are only covered by few ap-
proaches. Hsu et al. include microvascular obstructions into the delayed enhance-
ment segmentation via the assumption that they must be included in the outmost
contour of the segmentation [6]. Saering et al. add the assumption of an intensity
below two standard deviations of healthy myocardium [10].

The proposed approach integrates approaches from own previous work. It is
based on assumptions on intensity distributions in myocardial delayed enhance-
ment images, spatial properties of myocardial infarctions, and contrast agent
distribution in diseased tissue.

1.1 Method

The presented dection and quantification method for myocardial infarctions is
based on a segmentation of the heart muscle. Because the provided myocardial
segmentations are coarse estimates, an interactive contour editing step is per-
formed before the actual detection of delayed enhancement areas. The approach
then combines a mixture model analysis of the myocardial intensities with a
constrained watershed segmentation.

According to Dietrich et al. [11], the intensity distribution in MR image data
depends on the actual acquisition parameters as well as the reconstruction al-
gorithm. It can be either a Gaussian, a Rayleigh distribution, or a non-central
χ-distribution. These distributions are closely related to the Rician distribution
shown in equation 1.

p(x|μ, σ) = x

2πσ2

∫ 2π

0

e−
μ2+x2−2μx cos φ

2σ2 dφ (1)

p(x|μ, σ) = x

σ2
e−

μ2+x2

2σ2 I0

(μx
σ2

)
with (2)

I0(x) =
1

2π

∫ 2π

0

ex cosαdα (3)

I0 is the modified zeroth order Bessel function of the first kind. For μ = 0,
corresponding with low intensities in the magnitude image, the Rician function
takes the simpler form of the Rayleigh function (Eq. 4).

p(x|σ) = x

σ2
e−

x2

2σ2 (4)

For large x the asymptotic form of the Bessel function is [12]:

I0(x) ≈
ex√
2πx

[
1 +

1

8x
+

1 · 9
2!(8x)2

+
1 · 9 · 25
3!(8x)3

+ · · ·
]

(5)
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Thus, for large values of μ, P (x|μ, σ) approximates a Gaussian (Eq. 6).

p(x|μ, σ) ≈ x

σ2
e−

μ2+x2

2σ2
e

μx

σ2√
2π μx

σ2

⎡⎢⎢⎢⎢⎢⎢⎣1 +
1

8μx
σ2

+
1 · 9

2!
(
8μx
σ2

)2 +
1 · 9 · 25

3!
(
8μA

σ2

)3 + · · ·

︸ ︷︷ ︸
−→0

⎤⎥⎥⎥⎥⎥⎥⎦
≈ 1√

2πσ
e−

(x−μ)2

2σ2

√
x

μ
, withx ≈ μ

≈ 1√
2πσ

e−
(A−μ)2

2σ2 (6)

If σ = 1 the Rician is equivalent to a non-central χ-distribution with two degrees
of freedom.

InDE-MRIdatamyocardiumnormally appears dark tomedium intensewhereas
the diseased myocardial tissue is supposed to show enhanced intensity values. For
the intensity distribution of the myocardium in DE-MRI data, we therefore con-
sider the following three models:

Rician distribution. Myocardial intensitydistributionwithoutdelayed enhance-
ment.

Rician-Gaussian mixture. Intensity distribution for diseased myocardium in
conventional acquisitions and special cases of χ-distributions if there are
necrotic tissue regions.

Gaussian mixture. Intensity distribution for diseased myocardium in image
data with Gaussian-distributed intensities.

It is normally desirable to choose either the Rician-Gaussian or the Gaussian
mixture model depending on prior knowledge about the image sequence that
was applied for data acquisition. If the Gaussian mixture is suitable for the given
data, it is preferable because of the lower calculation expense for the parameter
determination.

Generally, the mixture model fit can be formulated as the task of maximizing
the likelihood of a given set of observations X = {x1, ..., xN} with frequencies
h(x) by optimizing the parameters of the applied mixture model. Assuming that
we have a set of two classes C = {cmyo, cDE} with a corresponding parameter set
Ω = {θmyo, θDE} that defines the fitted distributions, the likelihood to optimize
is:

L(Ω|X,C) = ln

(∏
x∈X

p(x,C|Ω)h(x)

)
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and the expected log-likelihood can be formulated as follows:

Ec [ln (L)] = Ec

[
ln

(∏
x∈X

p(x,C|Ω)h(x)

)∣∣∣∣∣x
]

= Ec

[ ∑
x∈X

h(x) ln (p(x,C|Ω))

∣∣∣∣∣ x
]

=
∑
x∈X

h(x)Ec [ln (p(x,C|Ω)))]

=
∑
x∈X

h(x)
∑
c∈C

p(c|x,Ω) ln(p(x|c,Ω)p(c|Ω))

The optimal parameter set is then calculated with Expectation Maximiza-
tion [13–15].

The STACOM data was delivered without additional information regarding
the MRI sequence used for the image acquisition. Thus all three suggested distri-
butions are fitted to the myocardial histogram in order to determine the optimal
model. The best model is then chosen according to the average fit error.

The actual segmentation of the tissue regions that exhibit delayed enhance-
ment uses a partial volume model derived from the fitted mixture model as shown
in Figure 1. It is combined with a watershed-based segmentation approach that
is derived from the assumptions about location and shape of myocardial infarc-
tions. Necrotic tissue regions, which are visible in delayed enhancement images,
are usually attached to the subendocardial border and form compact crescent

Fig. 1. Calculation of the partial volume model and the segmentation thresholds from
the mixture model analysis. The leftmost image shows the original image with the
myocardium segmentation. The resulting mixture model and derived thresholds are
depicted in the diagram. The images on the right side of the diagram present the
application of the partial volume function p(x) and the threshold tD, which is used for
the detection of the seed points. Seed points are depicted as red dots. The rightmost
image shows that they only appear in those regions located in the inner part of the
myocardium.
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shaped regions [16]. Taking this into account, in a first step seed voxels v with
an intensity value x higher than the determined threshold tD are determined
in the subendocardial layer of the myocardium. For these voxels the distance d
from the endocardial wall (endo) is shorter than that from the epicardial wall
(epi): (

d(v, endo)

d(epi, endo)
≤ 0.5

)
∧ (p(x) = 1) (7)

In the special case where the intersection tS of the two fitted distributions is not
located between the maxima tM and tD we apply tS := tD. The seed voxels v
are used to define the basins included into the initial segmentation mask.
In an ensuing connected-component analysis, small noisy structures are identified
and removed from the segmentation result.

Microvascular obstructions are not included in the initial segmentation. To
add these so-called no-reflow areas, the image I is divided into the sets IS , IB ,
and IH . IS = SWT ∪ SBP is the combination of the initial segmentation mask
SWT delivered by the watershed transform and the bloodpool mask SBP . IB
contains the voxels not included in IS with a path to the image border that does
not contain voxels of IS , whereas IH = (I \ IS) \ IB contains those voxels of
I \ IS without such a path. The final segmentation IR(v) can then be described
as follows:

IR(v) =

⎧⎨⎩
1, (v ∈ SWT ∪ IH) ∧ (d(v, IB) > 3)
p(x), (v ∈ SWT ∪ IH) ∧ (d(v, IB) ≤ 3)
0, v /∈ SWT ∪ IH

, d(v, IB) = min
vi∈IB

d(v, vi)

(8)
d(v, IB) calculates the minimal voxel distance of the v to the outer voxel set
IB . This method results in the filling of holes in the segmentation. Furthermore,
the function p(x) calculates wrong values for the delayed enhancement portion
of the voxel at the transition from delayed enhancement to no-reflow areas. IR
corrects these values as well.

2 Results

The presented methods have been evaluated with 30 DE-MRI data sets from
post-myocardial infarction patients (15) and pigs (15), which have been provided
by the organizers of the STACOM workshop.

Ground truth data is provided through manual segmentations from clinical
experts. For the training phase, manual reference delineations of five patient
datasets and five animal datasets are available.
The animal datasets have an in-plane resolution of 1.791 × 1.791mm2 and a
spacing between slices of 6mm. In the patient datasets of the training set the
in-plane resolution varies between 0.625 × 0.625mm2 and 1.293 × 1.293mm2.
The spacing between slices is 2 to 8mm.

The computation time was between 5 and 15 seconds per dataset, and the
major part of this time was needed for the calculation of the Rice function
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parameters. Infarct regions were detected in all training datasets. Either the
mixture of two Gaussians or the Rician-Gaussian mixture model were chosen as
the best description of the given myocardial intensity distribution (cf. Fig. ??).

Table 1. Dice coefficients for the assessment of the overlap between the manual seg-
mentations by experts and the automatic segmentations from the presented algorithm

Animals Humans
Case Dice Case Dice

1 0.56 11 0.67
2 0.65 13 0.47
3 0.78 4 0.52
4 0.84 5 0.47
5 0.75 7 0.38

Table 1 shows the results of the comparison of the manually determined
groundtruth data using the Dice coefficient D. The overlap between the seg-

mentation results is calculated as D = 2|Vman∩Vauto|
|Vman|+|Vauto| .

Fig. 2. Mixture model fit and surface distance comparison for animal 4. The grey area
in the diagram represents the myocardial histograms. The red curve is the sum of the
black curve and the white curve. These curves represent the intensity distributions of
healthy and diseased myocardium according to the fitted mixture model. The 3D visu-
alization of the segmentation right of the diagram is colored according to the distance
from the ground truth. In the 2D views the reference segmentation is shown as a blue
contour whereas the mixture model segmentation contour as well as the initial seed
points are colored red. For this case the Rician-Gaussian mixture was chosen as the
best model, and the segmentation result matches the reference segmentation very well.
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Fig. 3. Mixture model fit and surface distance comparison for patient 5. The diagram
shows the histogram (grey area) and the fitted mixture model (black curve: healthy
myocardium, white curve: DE, red curve: sum ). In the 3D visualization the color of the
segmentation surface indicates the distance from the ground truth. In the 2D views,
the segmentation results are shown as contours (blue: reference, red: mixture model
segmentation). The red dots show the automatically detected segmentation seed points.
For this case, the Gaussian mixture was as good as the Rician-Gaussian. However, the
comparison with the reference segmentation clearly shows the overestimation of the
infarct area by the mixture model segmentation.
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To this end, a threshold of 0.75 was applied to derive a binary mask from
the partial volume map that is originally provided by the algorithm. This mask
was also used to calculate and visualize the surface distance between the ground
truth and the result of the presented approach.

Figure 2 and 3 show the results for animal 4 and human 5. In the animal case,
the Rician-Gaussian mixture model provided the best fit, and the segmentation
overlap with the ground truth segmentation is very good. For the human case
however, the Gaussian mixture suitable model for the myocardial intensity dis-
tribution. Although, the location of the detected infarction matches the ground
truth very well, the extent of the segmented region clearly exceeds the reference
result.

3 Discussion

Although there was an agreement between the automatic segmentation and the
ground truth in all training cases, the overlap according to the Dice coefficient
was moderate. The visual inspection as presented in Figure 3 showed that this
was generally caused by an overestimation of infarct regions through the algo-
rithm. For patient 5, delayed enhancement was even detected at locations, which
were not identified by the expert.

A major weakness of the method is the strong dependence on the underlying
myocardium segmentation. If the endocardial border is inaccurate, the algorithm
tends to add blood pool voxels to the segmentation. Furthermore, partial volume
effects close to the outflow tract can lead to false results as shown in Figure 4.

Fig. 4. Segmentation problems based on inappropriate assumptions. On the image
slices above, the given myocardium segmentation is shown as a yellow contour. The
reference segmentation is shown as a blue contour. The seed points as well as the
resulting contour of the mixture model segmentation are colored red. The image on the
left shows a strong overestimation of the infarct segmentation caused by the assumption
that relevant infarct regions are located subendocardial. In this case, the provided
myocardium segmentation is so coarse that this supposition is not suitable. The image
on the right shows an inclusion of the outflow tract into the delayed enhancement
segmentation. The original method does not consider the inclusion of such regions in
the myocardium segmentation and has to be extended in order to recognize this.
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One method to make the method more robust against the inclusion of blood-
pool voxels is to extend the mixture model with a Gaussian that represents the
blood pool intensities. Figure ?? shows an example for the improvement achieved
with the integration of an additional compartment in the intensity distribution
model. To make the method more robust against errors in the outflow tract
region, it could be helpful to apply location assumptions not only about the
relative position within the myocardial wall but also about the position relative
to the heart anatomy.

Fig. 5. Comparison of the results achieved with the intensity distribution models con-
sisting of two (left) and three (right) Gaussians respectively. In the right image the red
region, which represents the result of the automatic segmentation, matches the blue
reference segmentation much better than in the left image.

4 Conclusions

We presented an approach for the segmentation of delayed myocardial enhance-
ment in patients with coronary artery disease. The approach is based on the se-
lection of a model for the myocardial intensity distribution. If a mixture model
is the best description of the given intensity distribution, it is used to derive
the thresholds and the partial volume function for the segmentation and quan-
tification of the delayed enhancement regions. The segmentation is performed
with automatically determined seed points and a watershed transform. The ap-
plication to the training data of the STACOM DE-MRI challenge resulted in
a moderate overlap with the provided ground truth data. Future work should
therefore focus on enhancing the robustness against input segmentation through
advanced segmentation constraints.
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Abstract. This paper presents collated results from the Delayed En-
hancement MRI (DE-MRI) segmentation challenge at MICCAI 2012.
DE-MRI Images from fifteen patients and fifteen pigs were randomly
selected from two different imaging centres. Three independent sets of
manual segmentations were obtained for each image and included in
this study. A ground truth consensus segmentation based on all human
rater segmentations was obtained using an Expectation-Maximization
(EM) method (the STAPLE method). Automated segmentations from
five groups contributed to this challenge.

Keywords: Segmentation, Delayed-Enhancement MRI, Left ventricle,
Segmentation Challenge.

1 Introduction

In this era of timely access to the cardiac catheterization lab, treatment of my-
ocardial infarction shifts from survival to reducing infarct size, post-reperfusion
myocardial vascular obstruction (MVO) and hemorrhage. In this setting, Contrast-
Enhanced Magnetic Resonance Imaging (CE-MRI) has become an indispensable
imaging modality to assess MVO, usually imaged a few minutes after contrast ad-
ministration and also infarct size, assessed after 15 minutes and hence referred to
as Delayed Enhancement MRI (DE-MRI) [1]. In the last decade infarct size as-
sessed with DE-MRI has been increasingly used as a primary end-point in clinical
studies. Moreover, interventions target the infarct border zone, and the use of flu-
oroscopy augmented with MRI-based anatomical models of the heart and infarct
areas are entering the clinical work-flow (e.g. for VT ablation or localized deliv-
ery in cell-based therapies). These developments require both a relatively fast and
accurate segmentation of the infarct region.

Manual delineation of the enhanced myocardial regions is relatively time con-
suming and requires training. Though expert consensus on delineation of my-
ocardial infarction on DE-MRI can be reached, manual delineations still suffer
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from inter- and intra-observer variability. Automated thresholding based on the
full-width half maximum signal intensity or a number of standard deviations
above normal myocardial signal intensity, remain acquisition dependent.

In this challenge, DE-MRI images of left ventricles containing infarct regions,
from both human and porcine studies, were provided to the participating groups
along with a given myocardial segmentation. To minimize inter-observer vari-
ability in the ground-truth infarct segmentations, a probabilistic estimate was
computed for each dataset from three different expert delineations.

2 Methods

2.1 MRI Data

Cardiac DE-MRI images were collected at two centers (King’s College London
(KCL) and Katholieke Universiteit Leuven (KUL)), providing fifteen human and
fifteen porcine datasets. For all datasets a short axis stack of DE-MRI images cov-
ering the left ventricle were provided together with a mask of the left-ventricular
myocardium. A sample of the datasets can be seen in Fig. 1.

The human datasets were randomly selected patients with a known history
of ischaemic cardiomyopathy and under assessment for implantable cardioverter
defibrillator (ICD) for primary or secondary preventions after infarction. In ad-
dition to this, the patients chosen had a history of myocardial infarction at least
3 months prior to their MRI scan along with evidence of significant coronary
artery disease on angiography and evidence of left ventricular impaired systolic
function on echocardiography. The images were acquired on a clinical 1.5T MRI
unit (Achieva, Philips, The Netherlands)

The fifteen porcine studies were randomly selected from an experimental
database of a pre-clinical model of chronic myocardial ischemia [2], with either
left-anterior descending or left-circumflex artery induced lesions. Datasets were
acquired six weeks after the induction of the coronary lesion on a clinical 3T
MRI unit (Trio, Siemens, Erlangen, Germany). Details of the acquisition can be
found in Table 1.

2.2 Raters

There were five automated raters or algorithms (UPF, MCG, MVS, KCL, ALM)
and three expert human raters (HA, HB, HC) taking part in this study. Brief
descriptions of the algorithms are given in Table 2.

2.3 Evaluation

The accuracy and performance of each algorithm was evaluated by comparing its
segmentations against the human raters. For rater segmentations, the Simulta-
neous Truth And Performance Level Estimation (STAPLE) method [3] was used
to obtain a single ground truth. STAPLE estimates the ground truth by forming



Infarct Segmentation Challenge on Delayed Enhancement MRI 99

Fig. 1. Sample of the human (top row) and animal (bottom row) DE-MRI data provided
to participants as part of the challenge. Red arrows indicate areas of enhancement.

Table 1. Image acquisition

KCL KUL

Scanner type Philips Achieva 1.5T Siemens Trio 3.0T

Sequence Segmented 2D, Inversion re-
covery Gradient Echo ECG
triggered, breathold

Segmented 3D Inversion re-
covery Gradient Echo ECG
triggered, breathold

TI, TR, TE, FA 280 ms, 3.4 ms, 2.0 ms, 25◦ 340-370 ms, 2.19 ms, 0.78
ms, 15◦

Voxel size 1.8 × 1.8 × 8 mm 1.8× 1.8× 6 mm

Interleaving Every RR Every other RR

Image acquisition parameters for the challenge DE-MRI data. Abbreviations: TI -
Inversion time, TR - Repetition time, TE - Echo time, FA - Flip angle.

an optimal combination of the segmentations, by weighting each segmentation
depending upon the estimated performance level, together with a prior model
that can account for the spatial distribution of structures and spatial homogene-
ity constraint. In this work, the threshold set on the probabilities obtained from
STAPLE was 0.7 and above for a pixel to be labeled as scar.

In addition to computing STAPLE of human rater segmentations, the STA-
PLE of all submissions was also computed with a leave-one-out approach. For
example, UPF was tested against the STAPLE of KCL, MVS, MCG, ALM com-
bined. This assessed how the submissions fared between themselves. To assess
similarity between segmentations the Dice co-efficient was used [4]:

D =
2|X ∩ T |
|X | ∪ |T | (1)

where X and T are sets of pixels belonging to the algorithm’s output and ground
truth respectively. The Dice is normalized to 100 for convenience. Furthermore,
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Table 2. Algorithms presented at the challenge

Algo. Description Auto or
Semi-auto

UPF Region growing and morphology Auto

MCG Conditional Random Fields (CRF) Auto

MV Gaussian mixture, EM-algorithm, Watershed
transformation

Auto

KCL Markov Random Fields, Graph-cuts Auto

ALM Support Vector Machines followed with Level-set
evolution

Semi-auto

Institution abbreviations: UPF - Universitat Pompeu Fabra, MCG - McGill University,
MV - Mevis Fraunhofer, KCL - King’s College London, ALM - Alma IT Systems.

the amount of infarct detected (VIF) represented as percentage of myocardium
VMYO was determined in all methods as:

IF% =
VIF

VMYO
× 100% (2)

3 Results

Following the submission of results from each group of the challenge, segmen-
tations were evaluated against the human rater segmentations using Dice and
infarct volumes. The human and porcine images were analyzed separately.

3.1 Human Patient Datasets

Segmentations were compared to ground truth and between themselves with a
leave-one-out approach (see example dataset in Fig. 2). Dice results can be seen
in Fig. 3. To measure how much the infarct volumes (expressed as a percentage of
total myocardium) differ from the human raters’ segmentations, Bland-Altman
plots are presented in Fig. 4.

3.2 Porcine Datasets

Similar to the patient datasets, segmentations were compared between ground
truth and with the leave-one-out approach. An example on a dataset can be
found in Fig. 5. The Dice comparison is given in Fig. 6. Difference in percentage
of infarct volumes is shown in the Bland-Altman plots of Fig. 7.
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Fig. 2. Human Dataset: comparing STAPLE with submissions in a single slice of an
example dataset

Fig. 3. Human Datasets: comparing segmentations from each submission using Dice -
(Left) against STAPLE ground-truth, and (Right) against STAPLE of leave-one-out
for each submission. For example, UPF here is tested against the STAPLE of KCL,
MVS, MCG, ALM. Each box in the plot represents lower, middle and upper quartiles.

3.3 Discussion

A collation study for the DE-MRI segmentation of enhanced tissue representing
fibrosis and scar has been presented in this work. A ground-truth segmenta-
tion was generated using the STAPLE algorithm combining three human rater
segmentations. The performance of each algorithm taking part in the study was
compared to the STAPLE estimate of the ground truth. Each algorithm’s output
was also compared to segmentations from other algorithms using a leave-one-out
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Fig. 4. Human Datasets: Bland-Altman plots showing differences in infarct volumes
(%) in segmentations of each submission against STAPLE of human raters. The solid
line shows the mean and the dashed lines show ±2 standard deviations.

Fig. 5. Porcine Dataset: comparing STAPLE with submissions in a single slice of an
example dataset

STAPLE result. The STAPLE method is able to resolve disagreement between
human raters especially in regions where it is difficult to assert on infarction. In
the ventricle, this is especially within the left ventricular outflow tract (LVOT)
where fibrotic tissue making up the valve is not infarcted. Furthermore, using
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Fig. 6. Porcine Datasets: comparing segmentations from each submission using Dice -
(Left) against STAPLE ground-truth, and (Right) against STAPLE of leave-one-out
for each submission. Each box in the plot represents lower, middle and upper quartiles.

Fig. 7. Porcine Datasets: Bland-Altman plots showing differences in infarct volumes
(%) in segmentations of each submission against STAPLE of human raters. The solid
line shows the mean and the dashed lines show ±2 standard deviations.

the STAPLE result of the algorithms’ outputs (i.e. leave-one-out approach), each
algorithm’s performance can be measured against the others and this reveals in-
teresting insights into whether certain algorithms are computing scar in a similar
fashion.

It was observed that in general, porcine scans produced better segmenta-
tions compared to human scans. One major contributing factor is the quality
of porcine scans, providing excellent contrast for infarcted regions. In human
datasets, it is often challenging to obtain good contrast due to the nature of
the scan. For example, incorrect selection of inversion time causes myocardium
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not to be nulled properly and if the patient cannot hold their breath during the
scan it produces breathing artefacts. For patient scans, obtaining a Dice of 80
or above was challenging for all submissions. When considering infarct volumes,
submissions differed by a maximum of approximately ±15% and ±10% for pa-
tient and porcine scans respectively. This further shows that segmenting patient
scans was far more challenging.

The Dice used in this study has several limitations. It can be over-sensitive to
a small mis-match. An alternative approach for comparison is thus considered.
Comparing infarct using percentage volumes has become a simple and standard
approach. Infarct volumes are computed on selected slices and represented in
the difference plots of Figs. 4 and 7. Some patterns are notable, for example
the data points which appear on a straight line in Fig. 4 (MCG and UPF) and
Fig. 7 (UPF). This is due to the submission recording a zero volume for each
of those data points and thus selected slice, resulting in a straight-line on the
difference-vs-average plot.

A second limitation is the inter-observer variation of human rater segmenta-
tions. There was less variation in the porcine datasets than the human datasets.
All datasets were segmented by individuals with experience working on these
scans. They were segmented using ITK-SNAP (www.itk-snap.org) [5] which is a
commonly used tool for performing manual segmentations.

3.4 Conclusions

The presented work reports on the preliminary results of the ventricle DE-MRI
segmentation challenge at the MICCAI 2012 meeting. Future work will look to
provide a more extensive analysis of the submitted results.
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Abstract. Cardiac magnetic resonance imaging (MRI) is a key diag-
nostic tool for non-invasive assessment of the function and structure of
the cardiovascular system in clinical practice. Cardiac landmarks pro-
vide strong cues to navigate the complex heart anatomy, extract and
evaluate morphological and functional features for diagnosis and disease
monitoring. A fully automatic method is presented to detect cardiac
landmarks from individual images using a learning-based approach to
model discriminative context. In addition to the target landmarks, aux-
iliary markers are taken into consideration to construct context with
more discriminative power. The presented approach is evaluated on the
STACOM2012 database, containing 100 independent test cases. Auto-
matic landmark detection targets include two mitral valve landmarks in
a long axis image, two RV insert landmarks in a short-axis image, and
one central axis point in an LV base image.

1 Introduction

Cardiac Magnetic Resonance (MR) imaging plays a vital role as a powerful
non-invasive tool in clinical applications for diagnosis, prognosis, and therapy
of cardiovascular diseases [1]. However, due to large data variations and com-
plexity of the heart, automated analysis of cardiac images for quantification and
modeling is essential but challenging [2].

Typical cardiac MR studies contain both long-axis and short-axis slices to
provide complementary and comprehensive views. Cardiac landmarks are help-
ful in accurate and efficient 3D modeling and functional analysis of the heart
[3–5], comprehensive heart navigation, common clinical cardiovascular MR imag-
ing plane prescription, etc. However, it poses a great challenge to fully automati-
cally detect landmarks from MR images due to the wide dynamic image intensity
range, various heart shapes across patients and populations, etc.

We present a unified approach to detecting cardiac landmarks by exploring
contextual geometry and image information. Cardiac landmarks are converted
into parameterized bounding box representations, which fit into an object de-
tection framework. Such representations embed not only individual landmarks
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but also their context, which contains rich information to distinguish the car-
diac landmark from its background and other anatomical structures. We apply
a learning-based method to train detectors on context built from expert annota-
tions in order to handle complex appearance and heterogeneous characteristics
of anatomical features in medical images, as the complex prior knowledge is im-
plicitly encoded into context. Learning based object detection approaches have
been demonstrated to be successful in many applications [6, 7]. The presented
approach provides a large flexibility to be applied to a wide range of anatomical
structures and is fully automated.

To help reduce the ambiguity and complexity presented in the landmark de-
tection task, we introduce auxiliary markers present in the same image as the
target landmarks. These auxiliary markers along with the target landmarks take
into account more contextual information present in the image and jointly lead
to more discriminative power from the background. The auxiliary markers bear
anatomical correlations with the target landmarks, providing clinically justifi-
able evidence to help landmark detection. With such better constrained contex-
tual representations, parameter search ranges during online detection are greatly
reduced, model learning complexity decreases for training, and the resulting con-
textual models are more powerful to lead to more accurate landmark detection
results.

As part of the Statistical Atlases and Computational Models (STACOM) of
the Heart 2012 workshop, the Cardiac Atlas Project [8] is running an LV Land-
mark Detection Challenge. The proposed method is evaluated on this landmark
challenge dataset to automatically detect anatomical landmark points from car-
diac MRI images. The target landmark points include two mitral valve points
on a long-axis view image, two RV insert points on a short-axis image and the
base central axis point on a short-axis base image. Our algorithm is focused on
landmark detection in a single image.

Fig. 1. Target Landmarks (red dots): two mitral valve points (a-c), two RV insert
points (d,e), and one base central axis point (f,g)

2 Context-Based Landmark Detection

2.1 Learning-Based Detection Framework

A unified framework is developed to detect cardiac landmarks from MR images.
Both target landmarks and auxiliary markers are integrated to construct context
to feed into the same object detection framework. Such context is represented
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by a bounding box as an object with 5 parameters (2 translations, 1 orientation,
and 2 scales), as shown in Fig. 2. Each combination of such 5 parameters is one
hypothesis, corresponding to one bounding box, and therefore one (oriented)
image patch. A probabilistic learning approach [9] is applied to solve a two-
class (object vs. background) classification task on such hypotheses. As each
contextual bounding box has a bijective mapping with the target landmarks
and auxiliary markers due to construction design, the target landmark positions
can be inferred from the bounding box.

A 2D object (bounding box) parameter set consists of five degrees of freedom.
Exhaustively searching in this 5-dimensional space is prohibitive for online appli-
cations. Therefore, we adopt the marginal space search strategy, where we design
a series of detectors that estimate object parameters at a number of sequential
stages in the order of complexity, i.e., translation, orientation, and scale, as
the parameter degrees of freedom increase [10]. Different stages utilize different
image features. Multiple hypotheses are maintained between algorithm stages,
which quickly removes false hypotheses at the earlier stages while propagating
the right hypotheses to the final stage. Only one hypothesis is consolidated as
the final detection result.

Probabilistic boosting trees [9] are used for each detector to differentiate be-
tween the object and background. The classifier is a tree-based structure with
which the posterior probabilities of the presence of the object of interest are cal-
culated from image data. The nodes in the tree are constructed by a combination
of simple classifiers using boosting techniques [9].

Each detector selects a set of discriminative features that are used to dis-
tinguish the object from the background from a large pool of features. For the
classifiers at the translation stage, we choose Haar wavelet-like features [6], which
are efficiently calculated using integral image-based techniques. For the classifiers
at the orientation and scale stages, steerable features [10] are applied, because
their computation does not require image rotation and re-scaling, which are
computationally expensive, especially when the hypothesis search space is large.

2.2 Context Modeling with Auxiliary Markers

Auxiliary markers are bonded with the target landmarks at the anatomical level,
thereby jointly providing more representational power for the target landmarks
and discriminative power from the background. Selection of auxiliary markers
depends on the target landmarks.

Context Modeling for Mitral Valve Landmarks. For each long-axis image,
the two mitral valve points are combined to build one object. We associate
a two-dimensional bounding box with this contextual object. The LV apex is
introduced as the auxiliary marker to determine the orientation of the contextual
bounding box, as shown in Fig. 2(a). Each bounding box is specified by a five-
parameter set Θ, containing two positions < x, y >, one orientation < φ >, and
two scales < sx, sy >. Although the positions are the targets, orientation and
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Fig. 2. Context construction with auxiliary markers for (a) Mitral valve, (b) RV insert,
and (c) Base central axis. Markers 1-5 are the target landmarks. A-E are the auxiliary
markers. Both target landmarks and auxiliary markers are used to construct context
for each target, which is represented as an oriented bounding box. The red edge of
the bounding box indicates the box orientation. And mapping between the marker
positions and the context (bounding box) parameters is bijective by design.

scales are useful in encoding proper and consistent context learned during offline
training process, where a set of contextual models/classifiers are obtained.

For mitral valve landmark detection, due to its complexity across different
cardiac phases and views, we adopted a joint modeling scheme proposed by Lu
et al. [7]. In addition to building context for mitral valve, context of apex and
joint context for the pair of <mitral valve, apex> are also constructed as shown
in Fig. 3, which are used for inter-marker validation. Let< xa, ya >,< xb1, yb1 >,
and < xb2, yb2 > denote the positions of the apex, and two mitral valve points,
respectively.

The contextual parameters for the mitral valve are: position {(xb1 + xb2)/2,
(yb1 + yb2)/2}; orientation {orthogonal to the line segment connecting the two
mitral valve points, and pointing toward the apex}; and scales {sb, sb}, where
sb =

√
(yb2 − yb1)2 + (xb2 − xb1)2 ∗ α, where α is a factor that can be used to

adjust the contextual range and set to 2.4 in our experiments. Selection of α is
a tradeoff between rich context and noise.

For the apex, the context parameters are constructed as: position {xa, ya};
orientation {arctan((ya−(yb1+yb2)/2)/(xa−(xb1+xb2)/2))}; and scales {sa, sa},
where sa =

√
((yb2 − yb1)2 + (xb2 − xb1)2)∗β (β is set to 2.4 in our experiments).

Let< xmv, ymv > be the mitral valve center position (i.e., {(xb1+xb2)/2, (yb1+
yb2)/2}). For joint context: positions {(xa + xmv)/2, (ya + ymv)/2}; orienta-
tion {center of mitral valve (< xmv, ymv >) pointing to the apex}; and scales
{sJx , sJy}, where

sJx =
√
((ymv − ya)2 + (xmv − xa)2) ∗ γ, sJy =

√
(yb2 − yb1)2 + (xb2 − xb1)2 ∗ η,

with γ=1.5 and η=4.8 in our experiments.
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Fig. 3. Auxiliary context (represented by bounding boxes, where the red edge indi-
cates the orientation) for mitral valve landmark detection. In addition to the mitral
valve context (yellow), apex context (green) and joint context (purple) are taken into
consideration for mitral valve landmark detection.

Context Modeling for RV Insert Landmarks. For each short-axis image,
two RV insert points are combined to build one object. The LV center is in-
troduced as the auxiliary marker to determine the orientation of the contextual
bounding box. For RV inserts, the anterior and inferior landmarks are identi-
fied with the following context modeling. Let < xan, yan >, < xin, yin >, and
< xLV , yLV > denote the positions of the RV insert anterior, RV insert inferior,
and LV center, respectively. See Fig. 2(b) for an example.

The contextual parameter set for RV inserts is: position {(xan+xin)/2, (yan+
yin)/2}; orientation {orthogonal to the line segment connecting RV insert ante-
rior and RV insert inferior, and pointing toward the LV}; and scales {sins, sins},
where sins =

√
(xan − xin)2 + (yan − yin)2∗ζ. ζ is set to 1.5 in our experiments.

Context Modeling for Base Central Axis Point. For the base central axis
point (< xBC , yBC >) in each short-axis image, three auxiliary markers are in-
troduced as illustrated in Fig. 2(c): one marker (< xAV , yAV >) for LVOT, one
marker (< xPA, yPA >) at the pulmonary artery side in RV, and one marker
(< xRA, yRA >) at the right atrium side in RV. These three additional markers
help determine the orientation and scale for the contextual bounding box of the
base central point. The contextual parameter set for the base central point is: po-
sition {xBC , yBC}; orientation {(< xBC , yBC >) pointing to (< xAV , yAV >)};
and scales {sBC , sBC}, where sBC = ρ ∗ (

√
(xPA − xBC)2 + (yPA − yBC)2 +√

(xRA − xBC)2 + (yRA − yBC)2)/2. ρ is set to 2.4 in our experiments.

3 Experiments

We evaluate our algorithm on the STACOM LV landmark detection challenge
data sets, which are attributed to the Cardiac Atlas Project [8]. In this database,
a full set of 4D cine-MRI in long-axis and short-axis views from 200 patients are
provided. The entire database is partitioned into 2 sets at random: training set
(100 patients) and validation set (100 patients). Our landmark detection algo-
rithm are tested on the 100 patients from the validation set without landmark
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annotations. In total, the validation set contains 6835 long-axis images for mitral
valves, 645 short axis images for RV insert points, and 100 short-axis images for
base central axis points. Long axis images consist of different chamber views,
namely, 4-chamber, 3-chamber, and 2-chamber views. Short axis images for RV
inserts cover a wide range across the left ventricle, leading to significant varia-
tions on RV appearance presented in the images. Short axis images for base cen-
tral axis point detection show significantly different anatomic structures around
the LV base according to different acquisition positions such as with/without
LVOT and splitting of RV.

On the training set with 100 patients, the target landmarks are annotated by
experts. We extracted 6920 long axis images with mitral valve points, 670 short
axis images with RV insert points, and 100 short axis images with base central
points from the training set; and annotated auxiliary markers (A-E in Fig. 2) to
build and learn landmark context. In addition, we have collected and annotated
8304 long axis images for mitral valves, 891 short axis images for RV inserts,
and 479 short axis images for base central axis point in our own database. By
combining STACOM and self-collected data, our training database is composed
of 15224 long axis images (mitral valve), 1561 short axis images for RV inserts,
and 579 short axis images for base central axis points.

Our algorithm is applied to each individual image in the validation set in
a fully automated fashion. The algorithm detects the objects of ‘Mitral valve’,
‘RV insert’, and ‘LV base center’ on respective long axis and short axis images.
With each object detected, the corresponding landmarks that are used to built
object context are inferred based on reverse object/context modeling process,
i.e., calculating landmark positions from the detected parameterized bounding
box. Our algorithm also calculated a confidence score (ranging from 0 to 1)
as an outcome from the probabilistic boosting trees for each detection result.
The detection results whose scores are below 0.3 are rejected. For mitral valve
landmarks, 2.6% of total detections were rejected. No rejections were obtained
on RV inserts and base central axis points. We computed the Euclidean distance
between the detected landmark position and its corresponding ground truth as
the detection error for each landmark. Performance is summarized in Table 1
and Fig. 4 (rejected cases, if any, are not included). Fig. 5 shows examples of the
detection results. In addition to the large parameter search space, cardiac MR
images in a large population present a large variation of appearance intensities
along with the anatomy shape changes across the heart beat cycle, which poses
a great challenge to landmark detection from a single image. On the average, it
took about 0.39, 0.14, and 0.11 seconds to detect the two mitral valve points,
two RV insert points and the base central axis point in a single long/short axis
image on a quad-core 2.53GHz CPU, respectively.

4 Discussion

In the entire MR acquisition, in addition to image context that has been explored
in our method, there are a great deal of other cues that can be integrated (when
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Table 1. Average distance of the detected landmarks from the ground truth positions
on the validation set. Distances are in mm.

Mean Std Median

Mitral valves 3.5 5.6 2.6

RV inserts 7.9 11.5 4.7

Base central axis point 6.2 4.0 5.4

Fig. 4. Accuracy percentage evaluation results. A point on the curve shows the per-
centage (vertical coordinate) of cases where distance of the automatic detection results
from ground truth is less than a distance value (horizontal coordinate).

available) after applying our landmark detection algorithm on each individual
image to further improve landmark detection results. For example, temporal co-
herence presented in a long axis slice sequence can be exploited to help with
mitral valve point detection consistency; deformable registration can also be uti-
lized to guide mitral valve detection across the sequence; for landmark detection
in a short axis stack, e.g., RV inserts, spatial coherence across the stack can
help remove outliers and better constrain the search range, see Fig. 6 for an ex-
ample. However, in order to demonstrate the capacity of our context modeling
approach, these cues are not taken into account in our experimental results and
we are focused on landmark detection in a single image in this manuscript.

In our experiments, a confidence threshold (0.3) was set in advance to re-
ject cases with low scores. We empirically set this value the same for all three
landmark detection applications. This threshold can vary for different applica-
tions and be refined through cross validations to balance the accuracy and false
alarms. Due to task/classification complexities and different decision boundaries
learned from probabilistic boosting trees, the detection results showed that 2.6%
of total detections were rejected for Mitral Valve markers, and no rejections were
observed for RV inserts and base central axis points. Fig. 7 presents representa-
tive examples of those cases that got rejected for mitral valve point detection.
The low confidence scores on these cases are due to unfamiliar image appearance
compared to the training data such as intensity distributions and/or anatomy
geometric parameters (location/orientation/scale) that are not covered by the
training set, as our online detection search range is derived from the training set
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Fig. 5. Examples of automatic landmark detection results (red dots) on various cases.
Mitral valve points (top); RV insert points (middle); base central axis point (bottom).

Fig. 6. Spatial coherence. RV insert point detection results (red dots) on five slices
from the same short axis stack. The detection algorithm is applied on each individual
image independently. The detected landmarks are off on the left-most image, where
RV insert starts to lose context as getting close to the apex. However, if taking into
account the detection results from all the other slices in the same short axis stack by
enforcing the spatial coherence, such detection errors can be automatically identified
and corrected or better constrained.

(even though certain small relaxations were introduced to make the parameter
search range more robust.)

Determining a sufficient number of training samples depends on the marker
detection complexities in different applications due to anatomy and image varia-
tions. On the RV insert point detection, we partitioned our self-collected training
data sets into four parts at random, and trained the landmark detector by combin-
ing 2, 3, and 4 parts (i.e., 50%, 75%, and 100%) of all self-collected training data
and tested on the 100 annotated STACOM cases.We observed that although after
3 parts (75%), a great deal of mis-detections were removed, the landmark detec-
tion accuracy continued to increase even with all training data included, no accu-
racy saturation was reached. This could also partially be attributed to the data
distribution across multiple vendors in the STACOM database.
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Fig. 7. Examples of images with low confidence scores (less than 0.3 in our experiment)
due to large variations of intensities and/or geometric parameters of the anatomy from
the training set

The proposed context modeling approach is data driven, therefore perfor-
mance is heavily dependent on the training set, not only on the number of
training samples, but more importantly on the training data distribution cover-
age to accommodate the data variations in real practice. Our training database
contains both self-collected data that was mainly collected from Siemens scan-
ners and STACOM database acquired from multiple vendors. Data distribution
across vendors is highly unbalanced. On one hand, experimental results showed
robustness and generalization capabilities of the proposed approach to handle
such unbalanced distribution. On the other hand, due to the variety of MR ac-
quisition sequences, protocols and reconstruction methods adopted by different
vendors, image intensity distributions were significantly different. Therefore, im-
ages acquired by different vendor scanners with significant appearance variations
from the training data pose challenges to the detectors. However, if such data is
included into training, our modeling approach is able to detect correctly. Much
more data from multiple vendors beyond this STACOM challenge database col-
lection is needed to further analyze with respect to this vendor factor and gen-
erate statistically significant quantitative measurement.

This STACOM LV landmark detection challenge contains a set for apex axis
point detection. Image examples are provided in Fig. 8. Although the pro-
posed approach is not restricted to the landmarks presented in our experiments,
large amount of contextual variations present in the apex axis marker detection
task and limited number of annotated images (100 provided in the STACOM
database) pose challenges to directly application of the proposed method (espe-
cially on single image only). However, cues from other available images during
the same acquisition are of great help to constrain the search range with spatial
coherence for marker position inference.

Fig. 8. Image examples for apex axis point detection in this STACOM challenge
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5 Conclusions

We have proposed a unified approach to exploring contextual information and
integrated it with a learning-based object detection framework. Auxiliary mark-
ers are introduced for context construction and modeling. We have developed a
fully automatic system to detect multiple cardiac landmarks in both MR long-
axis and short-axis images. The principle of the proposed approach is generic
and able to be adapted to a wide range of landmark detection tasks through
concrete context design for different applications.
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Abstract. We propose a supervised learning approach for detecting
landmarks in cardiac images from different views. A set of candidate
landmark points are obtained using morphological operations and graph
cut segmentation. The final landmarks are determined using random
forests (RF) classifiers which were trained on low level features derived
from the neighborhood of annotated landmarks on training images. We
use features like intensity, texture, shape asymmetry and context infor-
mation for landmark detection. Experimental results on the STACOM
LV landmark detection challenge dataset show that our approaching is
promising with room for further improvement.

1 Introduction

Cardiac magnetic resonance imaging (MRI) has acquired great significance
because MRI enables complete analysis of cardiac function. To overcome high
inter-observer variability in interpretation of images there is a need for automatic
detection of cardiac landmarks (like apex, mitral valve). Further, such automatic
detection can act as a good initialization for LV segmentation.

Stralen et al. [12] proposed a method for detecting left ventricle (LV) long axis
and mitral valve plane in 3D ultrasound images using circular Hough transform
and dynamic programming. Fourier Mellin Transform (FMT) was used in [11]
for LV localization. The template and search image are transformed into a rota-
tion and scale invariant representation using FMT. This enables fast landmark
detection using a cascade of linear detectors. In [5] a classification method to
detect structures in ultrasound images is proposed. Haar features are extracted
and fed to a boosted cascade of weak classifiers for detection. Karavides et al [6]
detect landmarks in 3D echocardiograms using Haar features and two cascades
of Adaboost classifiers. Lu et al.[10] adopt a similar approach, but with the addi-
tion of steerable features. Apart from the heart, other anatomies also appear in
the same slice which can lead to ambiguities in landmark detection. To resolve
such ambiguities context information was used in [9]. Context appearance is de-
rived from its local image features like shape and appearance. The method aims
to exploit the correlation of appearance and shape between different landmarks.
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We propose a learning based classification approach for LV landmark detec-
tion that makes use of local appearance and context features. Local appearance
information was derived from intensity, texture and shape features. Context
information was included in the form of difference in curvature values over a
neighborhood. These features are learned from a set of annotated training im-
ages identifying the landmark locations. The rest of the paper is organized as
follows. In Section 2 we describe our feature extraction and landmark detection
approach, followed by results and discussion in Section 3, and conclude with
Section 4

2 Method

Our approach to detect landmarks consists of two stages. First we automatically
segment the LV or RV as the case may be. All the edge points on the segmented
LV/RV are examined for landmark points using random forests (RF) classifiers.
This gives a set of candidate landmark points, and the two points (for mitral
valve and right ventricular points) or one point (for apex and base central axis
points) with the maximum votes is selected as the landmark points.

2.1 Segmenting the LV and RV

Although there are many methods in literature for LV segmentation, we desire a
method that requires minimal user involvement and is fast. We use a combination
of morphological operations and graph cuts to obtain the LV boundary from a
test image. All the image intensities in the training and test set are normalized
to lie between 0 and 1 using the 95−th percentile intensity value such that all
intensities above this value are 1. The test image (I) is first thresholded such
that pixels with intensities above th are set to 1 and all other pixels are set to
0. The threshold is given by

th = μ+ γ × σ2, (1)

where μ is the mean image intensity, σ2 is the standard deviation and γ = 2 is
a constant set empirically by testing over a large number of training images.

The morphological image opening operation (erosion followed by dilation) is
applied to the thresholded image Ith using the imopen function in MATLAB
to get Iopen. For imopen a disk structuring element of size 3 is generated us-
ing the strel command in MATLAB. All the connected components in Iopen are
extracted. For each cluster of pixels we determine their intensity distributions.
Previously, in the set of normalized training images we manually identify re-
gions of the LV/RV and determine the intensity distribution over its pixels. The
intensity distributions of the connected regions in Iopen are matched with this
reference distribution using the Bhattacharya metric. The region with the closest
match to the reference distribution is the region of interest (ROI).

One limitation of thresholding is that neighboring regions of the LV are also
clustered with the LV, and imopen is unable to remove the connections between
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(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 1. Results of different stages of LV segmentation: (a) Original Image; (b) thresh-
olded image; (c) morphological opening; (d) connected components; extracted edge for
(e) LV and (f) RV; search areas for (g) ACA and (h) BCA

these regions. The pixels in the extracted region (from Iopen) are again assigned
labels as ROI or non-ROI using graphcuts [3]. The ROI intensity distribution
previously calculated is used to determine penalties for ROI label. Similarly a
reference distribution for non-ROI regions are also determined to calculate the
penalty for non-ROI label. Note that only those pixels in the extracted region
are labeled and not all pixels in the image. This gives a segmented ROI in which
we identify the edge points. These edge points are then further classified as
landmark or non-landmark using a trained RF classifier.

Figure 1 shows the results of different steps for extracting LV in a long axis
(LA) image. Figure 1 (a) shows the original image followed by the thresholded
image Ith in Fig. 1 (b). Figure 1 (c) shows the image after morphological image
opening (Iopen) and Fig. 1 (d) shows the extracted LV region using connected
component analysis. As pointed out previously neighboring anatomical struc-
tures are also extracted. The result after graphcut segmentation is shown in
Fig. 1 (e) with the edge points identified by the red line. This approach also
works well for the RV insert points (Fig. 1 (f)). However for the apex and base
central points, we do not apply graph cuts. After extracting the desired region
using connected components, the center of this region is determined and a search
area is defined as a bounding box of size 25× 25 around this center. Figures 1
(g) and (h) show the search areas (red rectangle) for base and apex central
points. The candidate search points are then classified in the next stage using
RF classifiers.
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2.2 Landmark Detection Using RF Classifiers

The training set provides us with annotated images that identify landmarks on
the mitral valves (MV), right ventricular inserts (RVI), centers of apex central
axis (ACA) and base central axis (BCA). For each of the annotated points we
extract features from a 35 × 35 neighborhood and use them to train the RF
classifier. The following features are used for training.

Intensity and Texture Features: The mean, variance, skewness and kurtosis
of intensity values are calculated for the patch around the landmarks to get the
first set of features. Texture maps of the patch are obtained along four directions
(0◦, 45◦, 90◦, 135◦) using Gabor filters. Gabor filters conform to the receptive
field properties of cortical cells, capture rich visual properties like spatial fre-
quency characteristics and orientation, and are robust to noise by incorporating
Gaussian smoothing. The Gabor filter bank is represented as

gγ,ω(x, y) = aγg (aγ (x cos (ωψ) + y sin (ωψ)) aγ (−x sin (ωψ) + y cos (ωψ)))
(2)

where γ = 0, · · · , Γ − 1, ω = 0, · · · , Ω − 1. The mother function g is a Gaussian
defined as:

g(x, y) =
(

1
2πσxσy

)
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)
+ 2πjWx

]
(3)

Γ = 4 is the total orientations, Ω = 2 is the number of scales, the rotation factor
is ψ = π/Ω and the scaling factor is a = (Uh/Ul)

1/Γ−1. Uh and Ul determine the
frequency range of the filter bank and W is a shifting parameter in the frequency
domain.

In [7] texture anisotropy was used as a feature to identify tumorous regions
in brain images. While they calculate anisotropy using local gradient differences
and gray level dependence histograms, we use entropy to measure anisotropy.
The texture maps are divided into 8 equal parts corresponding to 8 sectors of a
circle, and entropy determined for each sector. Figure 2 (a) shows an illustration
of the sectors in a circle that are used to compute the entropy. A higher entropy
value indicates wider distribution of texture values (hence high anisotropy), while
low entropy indicates lower anisotropy. The texture anisotropy for sector r is

Texr
Anisotropy = −

∑
tex

prtex log p
r
tex. (4)

prtex denotes the distribution of texture values in sector r. Values of tex lie
between 0 and 1. Thus the number of texture features are 32 (8 entropy values
from each of 4 oriented filters).

Shape Asymmetry: We extend the concept of asymmetry (or anisotropy) to
shape features. Here instead of texture we operate on image curvature values.
The entropy of curvature values is determined from 8 sectors of each slice to give
us 8 values for shape asymmetry. If the curvature values have a wide distribution
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it indicates greater asymmetry in shape, leading to a higher entropy value. On
the other hand low entropy values indicates less shape asymmetry. The shape
asymmetry measure for a sector r is given by

ShaperAsymmetry = −
∑
θ

prθ log p
r
θ. (5)

prθ denotes the probability distribution of curvature values in sector r. Values of
θ lie in the range {−180◦, 180◦}.

Context Information. Belongie et al. [2] proposed a shape context method
using distribution of relative distances for matching shapes. In [13] Tu propose
“auto-context” which integrates image and contextual information from a set
of trained classifiers and use it to segment brain structures from MRI. Auto
context was used by Li et al. in [8] to segment the human prostate gland from
computed tomography (CT) images. Object interaction priors were used in [1]
for inter-vertebral disc segmentation using graph cuts. Context comes from a
variety of sources. Since the human anatomy is standard, and image acquisition
procedures are the same presence of one organ leads to a strong cue about the
presence of another organ in medical images. We aim to capture the contextual
relationship between the landmarks and its neighborhood through curvature val-
ues. Basically context information provides information of one set of objects from
another set of objects. Previous works have incorporated statistical models from
large training data to include context information. However, these approaches
require complex modeling and inference methods. For every labeled landmark
we examine a neighborhood of 35×35 and sample a few points from it. The sam-
pling location are shown in Fig. 2 (b) (red ’X’s). From the image center rays at
intervals of 45◦ are drawn, and points are sampled on these rays. The maximum
distance along rays at 0◦, 90◦, 180◦, 270◦ is 17 pixels (since the neighborhood is
of size 35 × 35) and points are sampled at distances of 2, 7, 12, 17 pixels. The
maximum distance along rays at 45◦, 135◦, 225◦, 315◦ is 17

√
2 = 24 pixels and

points are sampled at distances of 3, 8, 13, 18, 23 pixels. This gives 36 sampled
points on each slice.

At each sampled point we calculate the difference in feature values with re-
spect to the central point (i.e., the landmark pixel) and include it in a feature
vector. This gives 36 values for a single slice.

Cont = f(i)− f(ni), ∀n ∈ Ni (6)

where f is the feature value, ni is the sampled neighboring points, andNi denotes
the whole in the neighborhood of the labeled voxel i.

For context information we can use any or all of the previously mentioned
features (intensity, texture or shape). However in practice we find that shape
context features provides the maximum discrimination ability in comparison to
other features. Inclusion of intensity and texture context features increases the
length of the feature vector (also the computation time), but does not lead to
a significant increase in accuracy of landmark detection over shape features.
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(a) (b)

Fig. 2. (a) Illustration of sectors for entropy calculation in texture anisotropy and
shape asymmetry; (b) sampling locations to derive context information

Therefore we include only the shape context features in the final feature vector.
Here we clarify that to derive context information we use only shape features,
while for incorporating low level information we use shape, texture and intensity
features. The final landmark(s) among the candidate points are those which have
the maximum number of votes by the RF classifier.

3 Experimental Results and Discussion

We use the database of STACOM LV landmark detection challenge workshop
2012 [4]. The training data consists of 100 patients with the images acquired
in the LA and SA. Our classifiers were trained on features derived from all the
100 datasets. We test our method on 4 validation datasets of the STACOM
landmark detection challenge - validations sets 1, 2, 3, 4- a total of 80 patients.
The extracted feature vectors for each point are 80 dimensional (4+32+8+36).
While the manual annotations gave us positive samples, we automatically extract
background points in the landmarks’ vicinity to get sufficient negative samples
to train the RF classifier. For each landmark type (MV,RVI,ACA and BCA) we
have different sets of classifiers. All the classifiers had 50 trees.

For every dataset there is only one ACA and BCA point, while there are many
RVI and MV points depending upon the number of acquired images. In order to
calculate the error measures the Euclidean distance between the detected land-
mark and the actual landmark is determined. The performance is summarized in
Table 1. Figure 3 gives the error distributions for each type of landmark point.
A major percentage of the errors is within 10 mm for all cases. However there
are cases of high error, particularly for MV points.

Figure 4 shows the detected landmarks by our method (green ’x’) and the
actual landmarks as red ’x’ for patient number 95. Visual results and error
measures show that our method is promising and detects landmarks quite close
to the actual position. We implemented the whole method in MATLAB on a
Pentium Core 2 Duo, 2.66 GHz processor. The average time to detect landmarks
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Table 1. Average error measures for landmark detection on 4 validation datasets
comprising 80 patients. Values are given for mean±standard, minimum, maximum and
median error. Values are in units of mm.

Mean±std min max median

ACA 5.66±5.39 0.60 33.48 4.16

BCA 7.01±7.99 0.25 52.28 4.51

MV 5.67±5.83 0.02 64.66 4.19

RVI 6.79±5.49 0.14 45.56 5.44
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Fig. 3. Distribution of landmark errors for: (a) ACA; (b) BCA; (c) MV; (d) RVI

in a 192× 152 pixel image was 23 seconds, thus indicating scope for a faster and
efficient approach. The generation of candidate landmark points took less than
2 seconds on an average.

Importance of Different Features. Figure 5 shows error measures for differ-
ent feature combinations on the training dataset. For single features Int performs
worst and Cont gives the best results. For two feature combination the lowest
error is given by Cont + Shape. In the case of three features, all combinations
having Cont give similar results highlighting the discriminative power of context
information.

Our method also has limitations. It is particularly sensitive to the accuracy of
segmentation as it provides candidate points for landmark detection. Segmenta-
tion accuracy depends upon threshold value, efficacy of the image opening step
and of connected component analysis. We select γ = 2 (Eqn. 1) after visual ex-
amination of the results over more than 50 images from SA and LA views. The
disk size in the imopen operation was fixed through similar examination.

Initially we tried to localize the ROI using a machine learning approach.We di-
vided the training images into 64 square blocks and extracted the previously men-
tioned features for blocks containing the annotated landmark (landmark block) as
well as blocks not containing the landmark (background blocks). Context infor-
mation was derived with respect to the central pixel in the block. If a test block
is denoted landmark by the RF classifier, we subdivide it into 4 sub-blocks and
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(a) (b) (c) (d)

Fig. 4. Results of landmark detection: (a) MV (average error= 2.6 pixels); (b) RVI
(average error= 1.9 pixels); (c) ACA (average error= 1.2 pixels); (d) BCA (average
error= 2.1 pixels)

Fig. 5. Error measures(mean and standard deviation) for MV detection using different
feature combinations.C-Context;S-Shape;T -Texture;I-Intensity

check for the presence of landmark from these 4 sub-blocks. Finally each pixel of
the identified sub-block is analyzed for the presence of a landmark.We extract fea-
tures from a 35×35 neighborhood of each pixel and train different set of classifiers
for each stage. But such an approach required many computations in MATLAB.
Since our features use entropy based measures sufficient samples are needed for an
accurate feature value. Thus smaller blocks give erroneous values. Alternatively,
larger blocks result in more computations when we analyzed each pixel’s neighbor-
hood. This approach gave fairly good results for LV and RV landmarks, but poor
results for ACA and BCA points as there were not sufficient samples to train a ac-
curate classifier that can distinguish between landmark and background blocks.
In order to overcome this limitation we used morphological operations and graph
cuts to find a set of candidate points for each landmark.
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4 Conclusion

We have proposed a method to detect landmarks in cardiac MRI using a com-
bination of graphcut segmentation, low level feature information and machine
learning techniques. An initial set of candidate landmark points is obtained by
thresholding, connected component analysis and graphcut segmentation. The
final landmarks are identified with the help of RF classifiers trained on man-
ual annotations of landmark points. For accurate landmark detection low level
image features like intensity, texture anisotropy, shape asymmetry and context
information was derived from neighborhoods of annotated landmarks. Training
was performed on data from 66 patients. Results on 5 test patient databases
show our approach is promising for the purpose of detecting the appropriate
landmarks. But there is also scope for speeding up the detection of candidate
points as well as identifying the final landmark.
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Abstract. This paper describes the data setup of the second cardiac
Motion Analysis Challenge (cMac2). The purpose of this challenge is to
initiate a public data repository for the benchmark of motion and strain
quantification algorithms on 3D ultrasound images. The data currently
includes synthetic images that combine ultrasound and biomechanical
simulators. We also collected sonomicrometry curves and ultrasound im-
ages acquired on a Polyvinyl alcohol phantom.

1 Introduction

Being a wide-spread modality, echocardiography plays a key role in the assess-
ment of cardiac function. When it comes to quantifying local motion and strain,
the validation of Doppler-based or speckle-tracking measurements becomes crit-
ical. Accuracy, sensitivity and reproducibility of any quantification algorithm
should be known as a function of the signal to noise ratio before applying it
for diagnostic purposes. However, the construction of a ground truth for motion
and strain is a challenging task. Indeed, obtaining ground truth from manual
measurements requires to track anatomical landmarks over time. Taking the
spatial derivative of these trajectories to compute strain amplifies intra- and
inter-observer errors.

1.1 Existing Validation Strategies

Several alternatives have been proposed to construct ground truth for motion
and strain quantification from ultrasound (US) images.

Another modality can be taken as reference (e.g. tagged Magnetic Resonance
(MR) [1]). While this approach can enhance consistency between the two modal-
ities, differences could raise from some bias introduced by the reference modality.

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 125–133, 2013.
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Fig. 1. Global picture of ultrasound-based motion and deformation validation. Cov-
ering the whole spectrum between data realism and controlled ground truth requires
covering, on the long term, phantom and patient data. This year cMAC2 challenge will
be restricted to synthetic images and in vitro phantom to focus on a reliable ground
truth motion field.

Sonomicrometry is an alternative for strain validation [2] and measures at a
high frame rate the time taken by an acoustic wave to travel between pairs of
crystals. Time measurements can be converted to distances if the propagation
velocity of the medium is known. However, this data is only available at few
locations in the entire volume.

Computational Phantoms. To provide highly controlled ground truth datasets,
several authors proposed to simulate the US imaging pipeline. While of limited
realism, the advantage is to provide data where the exact underlying motion
field is known and controlled. The Field [3] package provides a library for the
calculation of pressure fields from arbitrarily shaped, apodized, and excited US
transducers. It can generate the spatial impulse response specific to an US system
with known characteristics. Recently, Gao et al. [4] proposed a fast approach for
generating 3D US sequences in less than an hour. It accelerates the convolution of
a 3D point spread function (PSF) by multiple 1D convolutions while preserving
the resulting image quality. Elen et al. [5] applied this simulation technology to
an ellipsoid model of the left ventricle (LV) with torsion, longitudinal and radial
deformation mapped to the characteristics of a healthy subject. For inclusion
of more realistic geometries and motion, Duan et al. [6] integrated a realistic
electro-mechanical model in the simulation process.

Physical Phantoms. Alternatively to simulated data, ground truth can be ob-
tained on physical phantoms, which motion and deformations can be mechan-
ically controlled [7]. Although the geometry of phantoms are often simplified,



Computational and Physical Phantom Setups for cMAC2 127

the obtained image quality reflects the challenges of a real US imaging system.
Polyvinyl alcohol (PVA) gels [8] were proposed as a tissue-mimicking material
for MR and US. As the number of freeze-thaw cycles affects the properties of
the material, locally stiffer inclusions can be embedded for quantifying the lo-
calizability of lesions for several spatial and stiffness extents [9].

1.2 Standardization Context in Echocardiography

Public dissemination of validation data is a key issue. Without systematic data
access, reproducibility of the findings of the different motion and strain quantifi-
cation techniques can be hardly verified by independent experts. Recently, the
European Association of Echocardiography (EAE) launched a joint initiative
with the American Society of Echocardiography ASE to involve manufacturers
and software developers in a programme aimed to standardize quantitation of
myocardial deformation (strain) among vendors1. In this context, different ven-
dors and academic partners regularly meet at cardiac imaging conferences to
agree on standard data and formats. The investigations of the task force are
currently limited to 2D US imaging.

1.3 Contribution of cMAC Challenges

At last year STACOM workshop, a motion challenge was proposed [10], including
data collected from healthy volunteers and in vitro phantoms. Magnetic reso-
nance (MR) images were acquired using 3D cine and tagging protocols [10]. 3D
US images were also collected for the phantom and the volunteers. Although of
high quality and realism, the main difficulty for this dataset was the construc-
tion of ground truth data for comparing the different motion algorithms. The
retained solution was to manually track tag crossings by two observers. The ob-
tained ground truth trajectories on 8 landmarks were then reported on the US
space of coordinates. Because of variations in heart rate between MR and US
acquisitions, only the end-systolic and end-diastolic results were compared.

Since the focus of this year cMAC challenge is 3D US, our objective was to
propose a 3DUS database with highly reliable ground truth on motion and defor-
mation, without requiring another imaging modality or manual measurements to
build the ground truth. Physical and computational phantoms are two elements
of a complete validation strategy illustrated in Fig. 1. When adding patient im-
ages, the resulting database covers the full spectrum from accurate ground truth
to fully realistic data. As a first step towards this goal, we propose in this paper
a computational phantom obtained from combining an US imaging modeling
package [4] with a bio-mechanical model [11,12]. We also designed a physical
phantom able of dissociating compression and torsion for separately quantifying
the accuracy on these two deformation modes. The phantom is made of PVA gel
for further allowing local inclusions with different mechanical properties.

1 http://bit.ly/esc-news

http://bit.ly/esc-news
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(a) (b)

Fig. 2. Synthetic 3DUS image generation process: (a) Mapping from the simulation
volumetric meshes into the 3D US imaging space and (b) obtained image

2 Computational Phantom

The synthetic images proposed in this challenge combine an electro-mechanical
model described in [11,12] with an US imaging model from [4]. We provide
10 sequences spanning different values of electrical activation, conductivity and
contractility parameters. Global conductivity is the conduction velocity of the
electrophysiology model and global contractility is the maximum value of the
fibre active stress. For electrical delay, both LBBB and RBBB cases were con-
sidered with or without pacing in different AHA regions. A summary of the
simulation parameters for each case is given in Table 1. In the current dataset,
a single probe design was considered. Scatterers were randomly placed in the
myocardial geometry and moved along the cardiac cycle according to the result
of the mechanical simulation. A single rigid transformation was used to map the
sequence of volumetric meshes to the synthetic US field of view, as illustrated
in Fig. 2(a). The US modeling pipeline is fully described in [4].

The 3D Point Spread Function (PSF) considered in the current dataset was
obtained by rotating a 2D beam profile to get 3D images on the assumption that
PSF in azimuth and elevation are the same. Scatterers in the background were
placed randomly at each frame to ensure there is no frame to frame correlation
in the blood pool. As an additional challenge, scatterers with a high reflectivity
were placed around the epicardium to mimic pericardium. This layer moves at a
slower rate than the myocardium to render the difficulty brought by an intense
pericardium tissue moving at a different speed than the myocardium next to it.
An example of 3D US image generated for this challenge is shown in Fig. 2(b).
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Table 1. Simulation parameters for the synthetic database

Case Initial Electrical Activation Posi-
tion

Global Con-
ductivity
(cm/s)

Global Con-
tractility
(dimension-
less)

1 Normal 50 0.09
8 RBBB 30 0.05
12 LBBB 30 0.05
20 LBBB+Pacing(AHA 5) 30 0.05
22 LBBB+Pacing(AHA 6) 30 0.09
28 LBBB+Pacing(AHA 7) 30 0.05
36 LBBB+Pacing(AHA 12) 30 0.05
44 RBBB+Pacing(AHA 9) 30 0.05
60 BV Pacing(AHA 3+6) 30 0.05
88 BV Pacing(AHA 14+7) 30 0.05

3 Physical Phantom

The phantom was made of a single cylindrical cavity. This shape was produced
by repeated freezing and thawing of a PVA solution (with addition of graphite).

Fig. 3. Physical phantom setup. Top: The PVA phantom is placed in a water-filled
aquarium. The pneumatic mechanical part is MR compatible and can dissociate or
combine compression and rotation. Bottom left: images were acquired from a lateral
position of the probe. Bottom right: obtained 3D US image.
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Crystal 1 
Crystal 2 
Crystal 3 
Crystal 4 

(a) (b)

Fig. 4. Location of the sonomicrometry crystals. (a) Four crystals were placed to cap-
ture radial, circumferential and longitudinal length changes. (b) The crystals can be
manually landmarked in the image space to compute the same length changes from
the intensity-based tracking result. Blue arrows indicate that the crystals are placed
at half the height of the cylinder.
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Fig. 5. Pairwise distances between crystals as provided by sonomicrometry

A pneumatic part is mounted at the top and allows varying compression and
torsion modes jointly or separately. The mechanical controller is linked to an
EEG simulator. The phantom is fully MR compatible. For this challenge, 3D
US data was acquired with a Philips 3D X5 probe. In the current setup, data
was acquired from a lateral position, as indicated in Fig. 3. Ground truth data
for deformation was captured using sonomicrometry. It gives the distance be-
tween crystals pairs embedded in the gel and will therefore approximate radial,
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circumferential and longitudinal strain values. Crystals were placed at a position
and using a pattern plotted in Fig. 4. Since the correspondence between image
and sonomicrometry coordinate systems is unknown, the four crystals were man-
ually landmarked by an expert and their location in the image was provided to
all challengers. The distances between pairs of crystals give an approximation of
radial, circumferential and longitudinal strains. Fig. 5 plots the relative length
changes over time (ΔL(t)/L(t0)) for the first provided dataset.

4 Discussion and Conclusions

This paper presented a small database containing both synthetic and phantom
datasets. Synthetic images were obtained by combining a biventricular geome-
try with biomechanical and US imaging models. Although these images do not
reproduce faithfully all artifacts inherent to real US images, the true motion
field is known densely in the whole myocardial volume. In future work, various
settings will be generated for realistic probe designs. The relative intensity of
the myocardial wall and the blood pool will be modulated to produce several
scenarios of signal to noise ratios.

Regarding mechanical simulations, the current challenge modeled different
activation patterns producing normal and impaired motion and deformation.
This will help to determine if currently available image processing algorithms
can detect and quantify dyssynchrony in the LV. Besides assysnchrony, another
pathology we intend to include in the database is the presence of ischemic or
stunned segments with reduced or null contractility. These segments should fol-
low the vascularization territories corresponding to the main branches of the
coronary tree (left, right and circumflex coronary arteries).

On the physical phantom, ground truth is currently available as pairwise dis-
tance curves returned by the sonomicrometry system. This has three main lim-
itations.

First, this information is extremely sparse (4 spatial locations only). To cir-
cumvent this, we intend to complement the database by tagged MR acquisitions
giving dense markers, the tags crossings, in the myocardium. To this end, we
will use the same acquisition protocol as in the first cMAC challenge [10].

Second, sonomicrometry provides ground truth on deformation and not on
trajectories. This would be a desirable feature as verifying the accuracy on the
motion field is an intermediate step before quantifying strain accuracy. On the
physical phantom, there are two ways to construct ground truth trajectories:
one is to manually track tags crossings [10]. An alternative could be to use
the sonomicrometry system to reconstruct trajectories by means of triangula-
tion techniques using fixed crystals. This approach was followed by Gorman et
al. [13], who applied a multidimensional scaling algorithm for tracking the three-
dimensional geometry of the mitral valve using sonomicrometry.

Third, sonomicrometry crystals do not give access to the infinitesimal La-
grangian strain tensor, but measure relative length changes approximating strain
values. For the “circumferential” direction, microsonometrymeasures the straight
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distance between crystals rather than the arc length, as desired for circumferen-
tial strain. Despite these limitations, the accuracy of image tracking algorithms
can still be quantified if the distances are measured consistently in image and
sonomicrometry spaces.

This dataset is only meant as a first step to help the medical imaging process-
ing community to construct reference databases for the validation of motion and
strain quantification algorithms from 3D US images. Although embryonic, we
hope it will be an opportunity to strengthen a community including physicians
and engineers around this challenging topic. All the data generated in this con-
text is hosted on the cardiac atlas project page2 and publicly available through
email request to help constructing an open validation framework for US-based
3D strain measurements.
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Abstract. This paper presents motion and deformation quantification
results obtained from synthetic and in vitro phantom data provided by
the second cardiac Motion Analysis Challenge at STACOM-MICCAI. We
applied the Temporal Diffeomorphic Free Form Deformation (TDFFD)
algorithm to the datasets. This algorithm builds upon a diffeomorphic
version of the FFD, to provide a 3D + t continuous and differentiable
transform. The similarity metric includes a comparison between consec-
utive images, and between a reference and each of the following images.

Motion and strain accuracy were evaluated on synthetic 3D ultra-
sound sequences with known ground truth motion. Experiments were
also conducted on in vitro acquisitions.

1 Introduction

Estimation of motion and strain gives insight into cardiac function by quantifying
how a given pathology affects global and local deformation of the myocardium.
This provides useful information for diagnosis, treatment, and follow-up of car-
diac diseases. In clinical routine, motion and strain are often obtained from
ultrasound (US) images because it is safe, non-invasive and cost-effective. Al-
though 3D acquisition systems are increasingly used, 3D US images have lower
quality and temporal resolution than the 2D ones, thus making their processing
more challenging. Nonetheless, processing 3D has the advantage of providing the
whole motion and deformation of heart, unlike 2D for which only the projection
of these parameters on the observation plane is available. This is particularly
important for an accurate quantification, due to the cardiac architecture (e.g.,
fiber orientation) which imposes by itself motion and deformation to be 3D.

In this paper, we use the Temporal Diffeomorphic Free Form Deformation
(TDFFD) algorithm [1,2] and apply it to the synthetic and in vitro data provided
by the second cardiac Motion Analysis Challenge (cMAC2) with the underlying
purpose of estimating its accuracy and comparing it to the other motion estima-
tion algorithms submitted to the challenge. The TDFFD models the velocities
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c© Springer-Verlag Berlin Heidelberg 2013



Temporal Diffeomorphic Free Form Deformation 135

continuously in time and space as a sum of B-spline kernels. In contrast to [1], we
use a similarity metric which takes into account the physics of US images. The
rationale behind this new metric is that speckle remains temporally consistent
for small deformations and can be used as a feature for motion tracking, while
tissue and blood pool intensities are globally preserved over the cardiac cycle.
Therefore, the proposed metric includes a comparison both between consecu-
tive images (based on the correlated speckle noise as in [3]) and a comparison
to the first frame (using mean square error as in [1]). We present and discuss
displacement and strain quantification results on the cMAC2 dataset.

In previous work, the accuracy of the TDFFD algorithm was validated (in
addition to be tested on patient data) on ground truth data with normal motion
from synthetic US images [1] and tagged magnetic resonance imaging provided
by the 1st cMAC challenge [6]. Here, the data consists of synthetic images repre-
senting different configurations observable in the clinical practice, in the context
of cardiac resynchronization therapy (CRT): normal heart, dyssynchronous ones
with left bundle branch block (LBBB) and right bundle branch block (RBBB),
and with different pacing configurations, for which dyssynchrony is expected to
be reduced or corrected. The objective is to check the ability of our algorithm
to estimate accurate and physiologically meaningful motion (displacement) and
deformation (strain), in both healthy and pathological cases.

2 Methods

2.1 cMAC2 Database

The synthetic images combine the US imaging model described in [4] with the
electro-mechanical model presented in [5]. There are in total 10 sequences sim-
ulating one normal heart as well as RBBB abd LBBB cases with and without
pacing in different regions of the heart. This data includes ground truth on the
motion field. For the synthetic data, volumetric meshes were provided for each
frame. More details about the database and its contruction are given in the
webpage of the challenge1.

In vitro images were acquired using a polyvinyl alcohol cryogel phantom and
a Philips 3D X5 probe. Ground truth data was generated using microsonometry.
Microsonometry measures distances and hence can be used as ground truth for
radial, circumferential and longitudinal strains. Further details about the in vitro
image generation can be found in the challenge webpage.

2.2 Motion Quantification

We use the TDFFD algorithm described in [1] to reconstruct trajectories in the
cardiac cycle. The velocity field is represented as a continuous and differentiable
4D vector field using B-splines. The temporal smoothness of the velocity field
guarantees to recover temporally smooth transformation. Another advantage is

1 http://www.physense.org/stacom2012/
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time

v(x,t)
0

Fig. 1. The optimization of velocity at one time point depends on all previous times

that trajectories are not restricted to the discrete set of imaging time points,
thus can be evaluated for any continuous time.

The diffeomorphic mapping ϕ : Ω × T → Ω, Ω ⊂ IR3, T ⊂ IR+ is related to
the time-varying velocity field v : Ω × T → IR3 by

ϕm
n (x;p) = x+

∫ m

n

v(ϕt
n(x;p), t;p)dt , (1)

with ϕ0
0 = id, where ϕn

m(x) stands for the transport of a coordinate x at time n
to time m, and p is the vector of parameters (i.e., B-spline velocity coefficients
assigned to all control points). At each time step, the optimization of the velocity
field evaluates image intensities through all previous times, thus providing a more
robust estimation. This is illustrated in Fig. 1.

The similarity metric used in [1] was the squared intensity differences be-
tween each image and the first image in the sequence. This choice was shown to
avoid the accumulation of motion errors leading to drift effects. In [6], the metric
was extended to include also the squared intensity differences between consecu-
tive image pairs with the aim of improving the sensitivity to small incremental
displacements. Here, we propose another approach using a combination of two
similarity terms: the first one compares images over the entire cardiac cycle as
in [1,6], while the second one compares images at adjacent time points using
an US-specific metric which considers speckle tracking information as proposed
by Cohen et al. in [3]. This second metric has inherent robustness to speckle
decorrelation, which makes it a suitable metric for fully-developed speckle noise.

For the metric computation, we consider two randomly drawn set of samples.
The first one is {xj ∈ Ω0, j = 1, . . . , J}, where Ω0 is the subdomain of Ω at
time t = 0, enclosing the region of interest (e.g., the left ventricle domain). The
second one is {(yk, nk),yk ∈ Ωnk

, k = 1, . . . ,K, nk ∈ [0, N − 2]}, where Ωnk

is the subdomain of Ω at time t = nk and N is the number of frames in the
sequence. The proposed metric is then defined as

M(p) =

N−1∑

n=1

J∑

j=1

(
Δn

0 (xj ;p)
)2

+ λ
K∑

k=1

(
ln

(
exp 2Δnk+1

nk
(yk;p) + 1

)−Δnk+1
nk

(yk;p)
)
,

(2)
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where λ is a constant factor balancing the metric terms, Δm
l (·;p) is the intensity

difference between homologous points at t = m and t = l, i.e.,

Δm
l (·;p) = Im

(
ϕm

l (·;p)
)
− Il(·) . (3)

The second term of Eq. 2 is able to make use of speckle tracking information,
whereas the first term of Eq. 2, can ensure that small errors in registration results
do not add up causing significant errors over the entire cardiac cycle.

2.3 Strain Quantification

The strain is estimated from the spatial derivative of the reconstructed displace-
ment field. Let∇u(x, t) be the spatial gradient of displacement u(x, t), the strain
tensor can then be obtained by

ε(x, t) =
1

2

(
∇u(x, t)T +∇u(x, t)−∇u(x, t)T∇u(x, t)

)
, (4)

where superindex T denotes transposition. The strain tensor is then projected
on a set of local directions: radial, circumferential and longitudinal. The strain
data is averaged over 17 regions in accordance with the standard division of
the left ventricle proposed by the American Heart Association (AHA) [7]. The
local directions are defined on the mesh of the first frame (corresponding to end-
systole). Since strain is computed in a Lagrangian space of coordinates, local
directions and AHA segments only need to be defined at the first frame.

We use centered differences on the mesh to approximate the spatial derivatives
of the displacement. The radial direction is obtained from the normal to the mesh
at each node of the surface. The longitudinal direction is defined as perpendicular
to the radial direction while maximizing the scalar product with the apex-base
vector. The circumferential direction is then obtained by the cross product of
radial and longitudinal directions.

3 Results

Experiments were performed first on a set of synthetic 3D US sequences to
evaluate the accuracy of the TDFFD algorithm with respect to known ground
truth displacement. For the B-spline grid resolution, we used one control point
per frame in the temporal direction and 5 control points in the short-axis and
long-axis directions. The factor λ in Eq. 2 is computed (for each sequence) as
the ratio of the values of the first term of Eq. 2 to the second term, at the first
iteration of the optimization process.

3.1 Synthetic Data

For all cases, we computed the error between true and recovered displacements.
The median of the peak magnitude of the difference between the ground truth
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Table 1. Median (with first and third quartiles) of the peak errors (in mm) of the
proposed image registration for each case in the dataset

Case Median Peak Error (1st-3rd quartiles)

1 Normal 1.49(1.19 − 1.60)
8 RBBB 0.71(0.62 − 0.83)
12 LBBB 0.66(0.57 − 0.78)
20 LBBB+Pacing 5 0.76(0.65 − 0.85)
22 LBBB+Pacing 6 1.38(1.12 − 1.48)
28 LBBB+Pacing 7 0.80(0.66 − 0.87)
36 LBBB+Pacing 12 0.78(0.60 − 0.92)
44 RBBB+Pacing 9 0.74(0.67 − 0.78)
60 LBBB+Pacing 3+6 0.71(0.63 − 0.82)
88 LBBB+Pacing 7+14 0.71(0.66 − 0.79)

displacement field and the one obtained by our algorithm are summarized in
Table 1 for each case. The median peak error was obtained by computing the
median of the maximum error at each AHA segment.

Fig. 2 plots the mean registration error (over all cases) for each segment and di-
rection. Fig. 3 shows displacement magnitude and circumferential strain for cases
1 (normal), 12 (LBBB) and 22 (LBBB with pacing at AHA segment 6) for the
AHA segments at the septum and lateral wall. Displacement magnitudes for case
12 are reduced with respect to the other cases. Moreover, dyssynchrony can be ob-
served for this case between septal segments (2, 3, 8 and 9) and lateral segments
(5, 6, 11 and 12), which contract about 20% of the cycle later. When looking at
displacements for case 22, this temporal difference in reduced for almost 10% of
the cycle and displacement results are similar to the ones obtained for case 1. As
for circumferential strain, while rather uniform strain patterns are observed for
the normal case, an overall reduction of its magnitude is found for case 12, and its
value is almost zero for septal segments during the whole cycle (probably due to
the LBBB). In case 22, circumferential strain magnitude is increased with respect
to case 12 and more similar to case 1, presenting contraction at septal segments.

3.2 Phantom Data

On phantom data, ground truth was provided as distance between pairs of so-
nomicrometry crystals. These distances give an approximation of radial, circum-
ferential and longitudinal strains. Crystals positions were provided in the image
space of coordinates. We computed the trajectories and the pairwise distances
corresponding to those given by the ground truth.

Fig. 4 plots on the top row the three strains as provided by sonomicrometry
for each acquisition, and on the bottom row the ones obtained by our TDFFD
algorithm. As expected, the magnitude of global deformation is reduced with
compression. Radial strain is almost zero and, unlike in myocardial tissue, the
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Thick black curve corresponds to the median error for all segments. The horizontal
axis is the normalized cardiac time (from 0 to 1).
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longitudinal strain takes positive values. One can see that circumferential and
longitudinal strain curves from ground truth and from our algorithn are similar
in amplitude and shape.

4 Conclusions

In this paper, the TDFFD algorithm was extended to include an US-specific
metric that considers the correlated speckle noise between consecutive images
and has inherent robustness to speckle decorrelation. The use of both this se-
quential metric and the non-sequential one results in a good compromise between
low error values over the contraction period and low temporal drifts in the last
phases. Preliminar motion and deformation results were reported for the phan-
tom data provided by the cMAC2. Overall, mean displacement error was below
1 mm. Uniform strain patterns were observed over all myocardial segments for
the normal case, as physiologically expected. Comparing the normal with the
LBBB case (with and without pacing), the capability to recover dyssynchrony
as assessed by the ground truth it is shown.
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Abstract. We present a novel method for tracking myocardial motion
from volumetric ultrasound data based on non-rigid image registration
using an anatomical free-form deformation model. Traditionally, the B-
spline control points of such a model are defined on a rectangular grid in
Cartesian space. This arrangement may be suboptimal as it treats the
blood pool and myocardium similarly and as it enforces spatial smooth-
ness in non-physiological directions. In this work, the basis functions are
locally oriented along the radial, longitudinal and circumferential direc-
tion of the endocardium. This formulation allows us to model the left
ventricular motion more naturally. We obtained encouraging accuracy
results for the simulated models, with average errors of 0.8±0.6mm (10%
relatively) and 0.5±0.4mm (15% relatively) compared to the ground
truth in high and low contractility models respectively.

Keywords: Non-rigid registration, anatomical deformation model,
motion, echocardiography.

1 Introduction

Various automated methods have been developed to objectively assess regional
cardiac deformation using echocardiography. Image registration methods using
free-form deformation (FFD) models have been an attractive approach. Tradi-
tionally, this FFD model is formulated in Cartesian space (Fig. 1a), and has
already been shown to be successful for cardiac motion estimation of ultrasound
data [1,2,3]. However, this topology may be suboptimal as it treats the blood pool
and the myocardium similarly, and as it intrinsically imposes spatial smoothness
in non-physiologic directions.

For the analysis of MR images, other transformation models more closely
matching the left ventricle (LV) shape and motion have previously been proposed

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 142–150, 2013.
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(a) (b)

Fig. 1. Free form deformations with the B-spline support (a) defined on a cubic lattice
in Cartesian space or (b) shaped according to the endocardium in anatomical space

(cylindrical e.g. [4], prolate spheroidal e.g. [5], or extended cylindrical e.g. [6]).
However, these geometrical transformation models do not necessarily follow the
true anatomy of the heart and are often applied to stacks of 2D short-axis MR
data, where motion is not estimated in the apical regions. Furthermore, their
application on 4D echocardiography is currently underexplored.

In this paper we propose a novel anatomical FFD (AFFD) model where the
local basis functions are locally oriented along the radial (r), longitudinal (l)
and circumferential (c) direction of the endocardium. Furthermore, our model
can also track tissue in the apical regions. Please note that our description in
[r, l, c] coordinates is different compared to the description in prolate spheroidal
coordinates [λ, μ, θ] by Li et al. [5] since the local r-direction does not neccesarily
coincide with the μ-direction as the LV shape is only approximately prolate
spheroidal. Moreover, in this work subsequent frames are registered with each
other in a pairwise fashion as opposed to the methodology described by Li et al.
in which the model is always deformed towards the initial (undeformed) state.
While this may be reliable for MR, a frame-to-frame registration may be better
for echocardiography due to speckle decorrelation over the cardiac cycle.

2 Methods

2.1 Traditional Cartesian FFD Formulation

Myocardial displacement of a point r = [x, y, z] between two frames f and f +1,
can be modelled with a three-dimensional third order B-spline tensor-product
[7], defined on a cubic lattice (Fig. 1a):

uf→f+1(r) =
∑
i∈Ni

∑
j∈Nj

∑
k∈Nk

μijkβ
3
x(
x − si
σx

)β3
y(

y − sj
σy

)β3
z (

z − sk
σz

) (1)

with sξ and σξ the control point location and spacing respectively, and Nξ the set
of control points within the compact support of the B-spline βξ (ξ ∈ {x, y, z}).

The sum-of-squared differences was used as an image similarity metric for
intra-modality registration. The optimal inter-frame transformation field T(r) =
r + uf→f+1(r) was estimated iteratively with a LBFGSB optimizer [8] as this
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optimizer was found to give a good performance for optimization of a large
amount of parameters while also eliminating the need for storing the inverse of
the Hessian matrix during the optimization routine. In order to capture small
deformations, the model complexity was gradually increased using a coarse-to-
fine refinement strategy, halving the B-spline grid with a factor of two in every
stage. Regularization was performed during the optimization process by the
addition of a smoothness penalty based on the 3D equivalent of the bending
energy of a 2D thin sheet of metal [9] in the cost function E:

E =
1

d

∑
r∈If

[If (r)− If+1(T(r))]
2
+

α

d

∑
r∈If

∥∥∥∥∂2T(r)

∂r2

∥∥∥∥2

(2)

with d the number of points r, and α a factor to modulate the influence of the
smoothness penalty.

The choice of these registration components have all been proven useful for
myocardial motion estimation [1,2,3]. In practice, subsequent images If were
registered to each other in a pair-wise fashion. The total displacement of a point
r was found by concatenating the resulting T(r) over the cardiac cycle.

2.2 Anatomical FFD Formulation

The AFFD B-spline grid is organized locally according to the shape of the endo-
cardium (Fig. 1b). Due to the locally varying grid topology, it becomes evident
that the mathematical formulation of the B-spline grid locations, their local
neighborhood and grid refinement schemes are complex. In effect, the evaluation
of (1) in this local coordinate system is not straightforward.

An alternative implementation for an anatomical organized grid is to trans-
form the images to anatomical coordinates first, such that the overlying grid
becomes a cubic lattice similar to the Cartesian formulation. The next sections
describe the details of the anatomical unfolding process.

Endocardial Surface Parametrization. In order to map the curved endo-
cardial surface to a plane, an elegant parametrization is required which allows
a uniform sampling along the l- and c-direction. Given the ellipsoidal shape of
the LV, a natural choice to describe its geometry would be in prolate spheroidal
coordinates [λ, μ, θ] (Fig. 2a). In order to account for local shape differences, λ
is parametrized as a spherical harmonics (SH) expansion series:

λ(μ, θ) =

∞∑
q=0

q∑
m=−q

cqm Yqm(μ, θ); Yqm =

√
2q + 1

4π

(q −m)!

(q +m)!
Pqm(cos μ)eimθ

(3)
with Yqm and Pqm the SH basis functions and the Legendre functions respec-
tively. This SH parametrization has several advantages. It is efficient as it can
generate a wide variety of shapes even for low SH orders q and surface derivatives
can be calculated analytically. Given a sparse sampling of the LV surface with d
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Fig. 2. Overview of the different steps to unfold the left ventricle into anatomical space.
(a) Endocardial surface parametrization in Cartesian space (left) with the associated
segmental color-coded sampled surface (middle); and the sampling strategy in anatom-
ical space (right), (b) Propagation of the radial direction from the endocardial surface,
(c) Radial expansion strategy in Cartesian space (left) and the resulting mapping in
anatomical space (right), and (d) Illustration of the transformed volumetric image in
anatomical space.
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points, the expansion coefficients cqm completely define the endocardial surface
and can be found by minimizing the following objective function:

F (λ) =
∑
d

(λ(μd, θd)− λd(μd, θd))
2 (4)

where λd is the λ coordinate of the dth point. These points can come from
manual contouring (in clinical practice) or from a given mesh. Please note that
the considered endocardial surface is not necessarily a prolate spheroid.

Endocardial Surface Sampling Strategy. After surface parametrization,
the endocardium is sampled in a select number of angles along the l and c
direction, by linear sampling of μl ∈

[
0, π

2

]
and θc ∈ [0, 2π] respectively. In order

to keep a comparable resolution after unwrapping the surface, the number of
circumferential θc samples is equal to the mid-ventricular circumference length
in voxels, and the number of longitudinal μl samples is equal to the average
base-to-apex length along the surface in voxels (Fig. 2a, white zone).

In order to account for longitudinal motion near the base, the endocardium
is oversampled in the μl direction by extending the mesh along the longitudinal
direction of the base. For the images considered in this challenge, a fixed value
of 20% was used (Fig. 2a, red zone).

It is important that the mapping preserves the topology of the endocardium.
In order to enforce circumferential continuity at the θc=0, θc=2π borders, a small
part of the image was copied on either side (Fig. 2a, green zone). The size of this
copy was equal to the B-spline support extend at the coarsest transformation
model scale, i.e.

[−n−1
2 s, n+1

2 s
]
voxels with a B-spline degree n. Longitudinal

continuity near the apex was ensured by mirroring a shifted (Δθ=π) copy of the
current image at the apex (Fig. 2a, blue zone).

Radial Expansion Strategy. The image is further resampled by propagating
the endocardial surface S along the surface normal, i.e. in the radial direction nr.
As such, the endocardial surface is propagated both inwards towards the blood
pool as outwards towards the epicardium to ensure that the full myocardium
remains inside the transformed image during the whole cardiac cycle.

The normals of the surface nr,nl,nc can be calculated analytically by using
(3) and

nl =
∂r

∂μ
=

∂r

∂λ

∂λ

∂μ
+

∂r

∂θ

∂θ

∂μ
+

∂r

∂μ

∂μ

∂μ
; nc =

∂r

∂θ
= sim; nr = nl ⊗ nc (5)

where nc is calculated in a similar fashion as nl. However, simply expanding the
surface towards the blood pool along a fixed direction may lead to tissue folding
in cartesian space. This situation often occurs near the apex or at locations
with a high curvature (Fig. 2b, middle). The radial direction should therefore
not be kept constant, but rather evolve dynamically towards the inner cavity.
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In practice, this can be solved by posing the propagation process as a diffusion
problem for each component of nr:

∂nr

∂t
= β∇2nr; n

S
r,0

(5)
= nr, n

Ω\S
r,0 = 0, nS

r,t

(5)
= nr (6)

where nS
r,t corresponds to the radial direction at time t on the endocardial sur-

face S, and Ω\S corresponds to entire image domain excluding the endocardial
surface. In practice, 200 iterations proved to be a good trade-off between calcula-
tion time and desired accuracy. Following the calculated streamlines, the surface
is propagated in both directions (Fig. 2b right for endocardial propagation in
2D), and a 3D stack in anatomical space is generated (Fig. 2c).

This expansion strategy can also be thought of in terms of electrostatics in
which the endocardial surface would have a constant charge. Accordingly, iso-
potential surfaces can be computed by solving the Laplace equation. Expanding
the endocardial surface then becomes equivalent to moving this surface along
the electrical field lines, i.e. along the normals of these isosurfaces.

Motion and Strain Estimation. In practice, motion is estimated by trans-
forming the image sequence I to an anatomical equivalent image sequence Î in
[r, l, c] coordinates (Fig. 2d) as described above. A linear interpolation procedure
is used to resample the original image. Subsequent images are then registered
in a pairwise fashion by using the method described in section 2.1 since the
overlaying lattice is now cubic. Similarly, a series of points pf representing a
region-of-interest for motion estimation, can be mapped to p̂f , and propagated
over time using the obtained registration results. Finally, the deformed points
p̂f+1 are then mapped back to cartesian coordinates pf+1 for motion estimation
and visualisation.

Since the provided ground-truth mesh was not organised in the r/l/c direction,
the same anatomical mapping strategy described above was used to populate the
myocardium with points in the cardiac directions for strain calculation (nr=5,
nl=30, nc=60). Strain along a cardiac direction could then be estimated by using
the unit length extension ε = (L−L0)/L0, with L0 and L, the initial and current
length between neighboring points in the considered direction.

3 Experiments and Results

All the simulated datasets provided for this challenge (image size: 355x355x267
for x,y,z resp.) were transformed to anatomical space with θc=191 and μl=327.
In order to evaluate the performance of the motion estimation, the ground truth
displacement TGT (pf ) provided for the reference mesh and the estimated dis-
placement T(pf ) were compared in every frame f according to

δp,f =
∥∥∥TGT (pf )−T(pf )

∥∥∥ (7)

Only points of the ground truth mesh belonging to the left ventricle (segments
1-17) were considered.
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Fig. 3. (a) Influence of the bending energy weight α on the error δp,f for (top) case 1 and
(bottom) case 12. The black and red line correspond to the average and the maximum
error over the cardiac cycle respectively, (b) The dispersion of the errors (μ± σ) and
(c) the resulting strain curves in the lateral and septal segment (for α=5e5).
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Fig. 4. Visualisation of the registration results for case 1 (lateral view). The color over-
lay on the deformed LV represents the magnitude of the registration error δp,f (mm).

First, the weight of the bending energy α was optimized using two training
datasets with a normal motion pattern (case 1) and motion in the presence of a
left bundle branch block (LBBB; case 12) by varying its contribution between 1e5
and 1e7. Third order B-splines and three refinement stages with a final B-spline
grid spacing of 10x10x10 voxels were used in all cases (on average corresponding
to 3.4 x 3.4 x 3.4mm in the original image sequence I). An optimal weight of
α=5e5 was found (Fig. 3a).

Next, all datasets were processed using these parameter settings and the error
δp,f over the cardiac cycle was assessed using (7). The dispersion of the errors and
the resulting strain curves for two cases are shown in Fig. 3b and c respectively.
Fig. 4 shows the registration results for case 1. Table 1 summarizes the obtained
accuracy results, and analyses which segments contain the largest errors. The
amount and range of the outliers are also indicated.
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Table 1. Mean(μ)±std(σ) errors δd,f in mm for the different datasets. The number
of outliers (in %), their range (min − max) and the two segments (AHA 17 segment
model) containing the most outliers are also indicated. * = higher contractility.

Case Description μ± σ[mm] Outliers

min[mm] max[mm] count(%) segments(%)

1* Normal 0.78±0.57 2.04 5.35 3.67 17(24) 13(21)
8 RBBB 0.51±0.35 1.35 2.99 2.47 17(18) 6(13)
12 LBBB 0.50±0.35 1.36 3.16 2.29 17(18) 1(15)
20 LBBB (Pacing 5) 0.51±0.35 1.37 2.98 2.23 17(18) 1(13)
22* LBBB (Pacing 6) 0.75±0.57 2.08 4.76 3.11 17(17) 13(16)
28 LBBB (Pacing 7) 0.51±0.35 1.39 3.24 2.01 17(21) 1(16)
36 LBBB (Pacing 12) 0.51±0.35 1.40 3.14 2.15 17(22) 1(15)
44 RBBB (Pacing 9) 0.50±0.34 1.29 3.17 2.83 17(18) 1(12)
60 BV (Pacing 3+6) 0.50±0.34 1.36 2.88 2.08 17(21) 1(14)
88 BV (Pacing 14+7) 0.48±0.35 1.34 3.54 2.35 1(17) 17(15)

4 Discussion and Conclusions

Table 1 shows that the obtained average errors for all the processed data were
in the sub-mm range. For the datasets with a high contractility (case 1 and
22), errors were 0.8±0.6mm (this corresponds to an error relative to the present
motion of approximately 10%), while the error was 0.5±0.4mm for the other
datasets with a lower global contractility (relative error approximately 15%).

Our method was also able to detect differences in model contractility. An
example of the obtained strain curves is given in Fig. 3c (case 1 vs case 12).
However, for the LBBB dataset (case 12) we didn’t observe any peak strain tim-
ing differences between the lateral and segmental wall. The underlying reasons
remain unclear since no specific details of the applied electromechanical model
were given (e.g. the affected segments, the contractility delay or the degree of
impairment). Furthermore, the apparent small motion amplitude from the model
makes it intrinsically harder to assess strain differences between segments.

Two other observations can be inferred from table 1. First, the average errors
within the two data groups, i.e. low and high contractility, are very similar.
This may be due to the low intra-model variability. For example, looking at
the ground truth data of case 12 (no pacing) and case 36 (with pacing), both
models only differ at most 1mm in segment 12 (where the pacing occurs). Given
the fact that the average thickness of this segment is 15mm and that the motion
difference is very localized, this subtle difference may be too difficult to pick
up, most likely because of the particularly low SNR of these datasets. Secondly,
the largest errors mostly occured in the apical region (segments 17 and 13),
where the method underestimated motion during systole. Segment 1 (base) was
another site with major errors. This may be due to an unsmooth motion of the
ground truth mesh at the base. This particular electromechanical model behavior
remains unclear to the authors.
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Moreover, Fig. 3a showed that the obtained average errors are robust to
changes in the bending energy penalty weight within the currently assessed
range, which was preselected based on experience. In this in-silico setup, the
contribution of this term thus appears low. This may be due to the low ground
truth deformations, intrinsically leading to a low inter-frame bending energy.
Indeed, in the high contractility model (case 1, Fig. 3a top), the influence be-
comes higher. The maximum error increased substantially up to 10.9mm (left)
and 5.62mm (right). It is expected that this trend continues beyond the assessed
range. Obviously, increasing the influence of the smoothness constraint too much
restricts the motion while decreasing it leads to too much degrees of freedom.

In conclusion, this paper presented a novel registration approach using a trans-
formation model adapted to the heart shape. We obtained encouraging accu-
racy results with average errors of 0.8±0.6mm and 0.5±0.4mm compared to the
ground truth in high and low contractility models respectively.
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Abstract. This paper describes an algorithm for motion and deforma-
tion quantification of 3D cardiac ultrasound sequences. The algorithm is
based on the assumption that the deformation field is smooth inside the
myocardium. Thus, we assume that the displacement field can be repre-
sented as the convolution of an unknown field with a Gaussian kernel.
We apply our algorithm to datasets with reliable ground truth: a set of
synthetic sequences with known trajectories and a set of sequences of a
mechanical phantom implanted with microsonometry crystals.

Keywords: Motion Estimation, Myocardial Motion, 3D Cardiac
Ultrasound, Demons, Phantom, Microsonometry.

1 Introduction

Quantifying heart function at a local scale is an important challenge for the diag-
nosis of heart diseases. For example, locally ischemic segments will have impaired
contractility in a region whose size and location depend on vascularization terri-
tories from the coronary tree. Another example is local assynchrony induced by
conduction defects in the Purkinje tree. Besides the importance of quantifying
heart function at a local level, deformation (strain) is preferred to motion since
it is less influenced by surrounding tissue.

Several imaging modalities offer the possibility to quantify strain noninvasi-
vely. Tissue Doppler Imaging (TDI) [1] measures tissue velocities (hence strain
rate) in a 2D plane. However, they give a projection of the strain tensor in the
direction of the ultrasound beam. Speckle tracking [2] was proposed as an alter-
native to quantify displacement independently from the acquisition angle. Be-
cause of the orientation of the fibers architecture within the ventricular wall [3],
motion and deformation of myocardial tissue are intrinsically three dimensional.
2D speckle tracking are therefore limited by out of plane motion, disturbing
the tracking of speckle over time and calling for multiple acquisitions with the
limitations and challenges of combining information from different heart cycles.

3D speckle tracking therefore has the potential to overcome limitations of
both TDI and 2D speckle tracking. However, thorough validation needs to be
conducted for quantifying the impact of different imaging settings on accuracy

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 151–158, 2013.
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and localizability of this technique. Byram et al. [4] studied the effects of frame
rate, kernel size, and data type on 3D tracking performances. They reported
increasing accuracy in motion accuracy with frame rate, up to 200 Hz, at which
the accuracy stabilizes. Heyde et al. [5] quantified strain accuracy for a non-
rigid registration method on a thick-walled cardiac phantom. Local inclusions
were placed for various stiffness ratios between materials mimicking normal and
pathological tissues. They reported to recover full transmural inclusions down
to 17 mm in diameter, for a stiffness ration of at least 5:2.

In this paper, we quantify the accuracy on motion and strain of a demons-
based image registration algorithm. Motion accuracy was quantified on simu-
lated ultrasound data for different contractility and pacing settings. Strain accu-
racy was quantified from in vitro phantom images by comparing relative length
changes to distances measured by sonomicrometry. All data was acquired in the
context of the cardiac motion analysis challenge at STACOM 2012.

2 Motion Estimation with Smooth Registration

In this section, we give a brief description of the Smooth Registration approach
that we use to perform motion estimation, and the subsequent demons-like algo-
rithm. Demons have been previously used by Mansi et al to estimate myocardial
strain from 3D cine and tagged MRI sequences [6].

2.1 Variational Formulation

Considering the problem of registering two images R and T , referred to as the
reference and the template respectively, we adopt a fluid-like regularization,
which can be approximated by Gaussian linear filtering, as in the well-known
demons algorithm [7]. The displacement field u that transforms T towards R
is assumed to be the result of the component-wise convolution of an unknown
non-rigid field v with a spatial Gaussian kernel ωσ:

u(x) = ωσ ∗ v(x) =
∫
Ω

ωσ(x− y)v(y) dy (1)

where Ω ⊂ R
3 is the domain of definition of u and σ is the scale of the kernel; the

larger σ, the smoother u. This field representation was introduced in [8] in the
context of template-to-image registration. It is then injected within a classical
Sum of Squared Differences formulation, consisting in the minimization of the
following cost functional with respect to v:

E(v) =

∫
Ω

[
R(x)− T (x+ u(x))

]2
dx (2)

Note that although the optimal displacement u warps the later frame towards
the earlier one, it represents the motion field at the instant of R.
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2.2 A Simple Algorithm

The optimization is done by gradient descent; basic calculus of variations results
in the following evolution equation:

∂v

∂t
= −∇vE = −ωσ ∗ ∇uE (3)

where ∇uE is the gradient of E w.r.t. u:

∇uE(x) = −
[
R(x)− T (x+ u(x))

]
∇T (x+ u(x)) (4)

It appears that the gradient w.r.t. v is simply obtained by filtering the gradient
w.r.t. u with a Gaussian kernel. This leads to the demons-like iterative scheme
detailed in Algorithm 1 below.

Algorithm 1. Smooth Registration - Gradient Descent Scheme

Set i = 0 and v0 = 0
repeat

Compute ui = ωσ ∗ vi

for all x ∈ Ω do
Compute T (x+ ui(x)) and ∇T (x+ ui(x)) by interpolation
Compute ∇uiE(x) according to (4)

Smooth the result to obtain the incremental update δvi = −ωσ ∗ ∇uiE
Update vi+1 = vi + δt.δvi

i = i+ 1
until steady state;

This gradient descent scheme is embedded into a multiresolution strategy.

2.3 Myocardium Mask

Regularizing the displacement field as in (1) may corrupt the estimation in-
side the myocardium with the influence of features located outside of the my-
ocardium. This is particularly critical at the interface between the pericardium
– which is fixed – and the epicardium, where motion may be underestimated.
To deal with this issue, we introduce a mask, provided by a prior segmentation
of the myocardium, by substituting the Gaussian filtering with a normalized
convolution. The displacement field becomes:

u = ωσ ∗ (v, χ) =̂
ωσ ∗ (χv)
ωσ ∗ χ (5)

where χ is the characteristic function of the myocardium (1 inside and 0 outside).
Replacing (1) by (5) in the previous calculus leads to the following gradient:

∇vE = χ

(
ωσ ∗ ∇uE

ωσ ∗ χ

)
(6)

The subsequent modified scheme is presented in Algorithm 2 below.
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Algorithm 2. Masked Smooth Registration - Gradient Descent Scheme

Set i = 0 and v0 = 0;
repeat

Compute ui = ωσ ∗ (vi, χ)
for all x ∈ Ω do

Compute T (x+ ui(x)) and ∇T (x+ ui(x)) by interpolation
Compute ∇uiE(x) according to (4)
Divide ∇uiE(x) by ωσ ∗ χ(x)

Smooth and mask the result to obtain the incremental update

δvi = −χ
(
ωσ ∗ ∇

uiE

ωσ∗χ

)

Update vi+1 = vi + δt.δvi

i = i+ 1
until steady state;

2.4 Tracking Trajectories

Tracking trajectories along a sequence can be done by applying the above algo-
rithm using two strategies (see Fig. 1):

(i) registering every frame I(t) towards the initial frame I(0);
(ii) registering every frame I(t) towards the previous frame I(t−1) and compose

frame-to-frame displacements.

Fig. 1. Tracking trajectories along a sequence. Registering frames I(t) as template and
I(0) as reference results in the displacement field U(t−1). Registering frames I(t) as
template and I(t−1) as reference results in the displacement field u(t−1).

Strategy (i) may seem more suitable since it avoids the frame-to-frame error
accumulation inherent to strategy (ii). However, it leaves out the temporal co-

herence of the sequence, since the estimation of each U(t) is dependent of I(0)

only and does not take the previous frames into account. This latter drawback
being critical, we chose strategy (ii).
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Fig. 2. Synthetic cases. Average error on displacement as a function of time for the 17
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Fig. 3. Synthetic cases. Box plots showing the dispersion of displacement error (in mm)
measured at the end of systole for each case.

3 Experiments

We applied the method described in Sect. 2 on the synthetic and the phantom
data provided for the cMAC2 challenge. Details on the data setup can be found
on the cMAC2 challenge web page1. We processed all provided data i.e. the 10
simultations with provided ground truth on the motion fields and the 3 phantom
datasets with ground truth provided at 4 spatial locations as distances measured
by sonomicrometry. The computation time was in the order of 8 minutes for each
processed sequence.

3.1 Results on Synthetic Data

On synthetic data, we evaluated the accuracy of our algorithm to estimate the
trajectories of material points given on the volumetric mesh. Error magnitude
was plotted over time for each of the 17 American Heart Association (AHA)
segments in the Left Ventricle (LV). The curves (one per segment) are plotted in

1 http://bit.ly/motionchallenge

http://bit.ly/motionchallenge
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Fig. 4. Synthetic cases. Displacement error plotted at 6 frames of the cardiac cycle
(times goes from top left, early systole, to bottom right, late diastole.

Fig. 2 for the 3 first cases of the database. Since the first case models a healthy
subject, it showed the largest displacements. The error was higher on this case
than for the other subjects (see Fig. 2), indicating that the error increases with
the magnitude of the displacement to be estimated. The same tendency appears
in the temporal evolution of the error curves within each subject. Indeed, the
error increases over systole, up to frame #10, for all cases before decreasing over
diastole. The latter indicates the absence of drift in the trajectories estimated
by our algorithm.

To observe the error dispersion over all subjects, we plotted the range of error
magnitudes at the end of systole for each subject. The resulting plot is shown
in Fig. 3. For most cases, the median error at the end of systole was below 1.5
mm. Three cases exhibited higher errors: the first one, as previously commented,
and two outliers: the second and the fifth cases. Finally, to examine the spatial
distribution of errors over time, we plotted the error on the trajectories as a
color map for each frame of the cardiac cycle (see Fig. 4). Only the LV was
tracked, which explains the high error values appearing in the right ventricle.
The highest error values appeared close to the apex and can be explained by
high reverberation artifacts observable on the simulated images.

3.2 Results on Phantom Data

On phantom data, ground truth was provided as pairwise distances measured
between sonomicrometry crystals. Crystals positions were also provided by the
challenge organizers in the image space of coordinates. We computed the tra-
jectories and the pairwise distances matching those given by the ground truth.
These distances are not strictly equivalent to strain but are a good surrogate
of radial, circumferential and longitudinal deformations. Fig. 5 plots on the top
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Fig. 5. Top: relative length changes over time between sonomicrometry crystals in
radial, circumferential and longitudinal directions. Bottom: The same relative length
changes measured by tracking on the 3D US image.

line the three distances as provided by sonomicrometry for each provided acquisi-
tion. It can be observed that, unlike in real myocardial tissue, the circumferencial
strain takes positive values over the cardiac cycle. Radial strain showed positive
values, but of one order of magnitude smaller than the two other distances.
The magnitude of the global deformation was mechanically reduced over each
acquisition, as confirmed by the decreasing amplitude of the sonomicrometry
curves.

In comparison to the ground truth, we observe that image-based tracking
(bottom line of Fig. 5) correctly estimated both the amplitude and the pat-
tern of longitudinal strain. Only in the last acquisition, imaging noise disturbed
the temporal pattern of the estimated curve with respect to ground truth. Cir-
cumferential strain was underestimated in all three acquisitions but the relative
magnitude of peak-systolic circumferential strain matched the decreasing ten-
dency of the ground truth. Finally, estimates of radial strain values are not in
agreement with the values reported by the ground truth.

When averaging radial strain values on the axial slice containing the two
crystals, we obtained values of respectively 10, 7 and 3.5 % for each acquisition.
These values are significantly higher than the ones reported by sonomicrometry.
Further experiments and validation on the estimated trajectories are required to
understand this disagreement.

4 Conclusion

We proposed a demons-like algorithm that performs a normalized convolution
of the estimated motion field in the region of interest (myocardial mask). The
method is fast and processes an entire 3D sequence is about 7 minutes. Our
experiments on the cMAC2 synthetic data gave a median accuracy around 1.5
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mm at the end of systole for 7 cases over 10. On the phantom dataset, lon-
gitudinal strain values were comparable in amplitude and pattern to distances
measured by sonomicrometry. The relative amplitude and the temporal pattern
of circumferential strain values were in accordance with sonomicrometry. Im-
portant differences were observed in radial strain values that require further
investigation.

References

1. Sutherland, G., Di Salvo, G., Claus, P., D’hooge, J., Bijnens, B.: Strain and strain
rate imaging: a new clinical approach to quantifying regional myocardial function.
Journal of the American Society of Echocardiography 17(7), 788–802 (2004)

2. Mondillo, S., Galderisi, M., Mele, D., Cameli, M., Lomoriello, V., Zacà, V., Ballo,
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Abstract. We present a method for the analysis of heart motion from
3D cardiac ultrasound sequences. The algorithm exploits the monogenic
signal theory, recently introduced as a N-dimensional generalization of
the analytic signal. The displacement is computed locally by tracking
variations in the monogenic phase. A 3D local affine displacement model
accounts for typical motions as contraction/expansion and shearing. A
coarse-to-fine B-spline scheme allows a robust and effective computation
of the model parameters and a pyramidal refinement scheme helps in
dealing with large motions. The independence of the monogenic phase
on the local energy makes the algorithm insensitive to the time variant
changes of image intensity that are often observed on echocardiographic
sequences. The performance of our method is evaluated on 10 realistic
simulated 3D echocardiographic sequences, showing good tracking accu-
racy (average error: 0.68± 0.5 to 1.27± 0.9 mm).

1 Introduction

Three dimensional cardiac ultrasound provides a real time low cost and non
invasive technique for the assessment of myocardial elasticity and contractility.
Nowadays, this analysis mainly relies on the visual inspection of the ultrasound
sequences by the physician. In this context, the availability of automated motion
analysis techniques would be an highly desirable alternative to such a practice
that, besides being intrinsically subjective, is extremely time demanding [1].
Some of the methods developed to this end exploit the standard brightness con-
stancy assumption [2]. Nevertheless, this can be an arguable choice as far as
medical ultrasound is concerned. Indeed, temporal variations in the local echo
strength are likely to occur due to the changes in the angle between the my-
ocardial fibers and direction of propagation of the ultrasonic beam [3]. Methods
looking for the maximum correlation between speckle patches [4] may also be
inadequate due to the relative low frame rate of 3D ultrasound scanners [5].

To overcome this issues, most recent techniques base their motion estimates
on features that are maximally insensitive to brightness fluctuations and more
strictly correlated with the image structure. They include the mutual informa-
tion [5] and the monogenic phase [6]. The monogenic signal has been recently

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 159–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Fig. 1. (a) Traditional representation of the monogenic orientation for 2D images. (b)
Monogenic orientation for 3D data.

introduced by Felsberg as an nD generalization of the analytic signal (see [7]
and references therein). Similarly to the latter, it provides both local energy
and phase features. Additionally, it provides the feature of monogenic orienta-
tion, representing the direction of maximum energy variation. Orientation and
phase can be shown to be uncorrelated with the energy content and this prop-
erty makes them valuable features for developing robust applications targeted
to medical ultrasound.

In this paper, we propose a motion estimation algorithm replacing the tradi-
tional brightness constancy with the more suitable conservation of the monogenic
phase. The motion is the estimated by solving the optical flow equation locally
on a sliding spatial window. A local affine model accounts for typical cardiac mo-
tions as contraction/expansion and shearing. A coarse-to-fine B-spline scheme
allows a robust and effective computation of the model parameters. In order to
estimate large motions, a multi-scale pyramidal refinement approach is adopted.

The paper is organized as follows. In Section 2 some details on the 3D mono-
genic signal are given and an original noise robust computation of the monogenic
orientation is described. In Section 3 the proposed monogenic phase optical flow
algorithm is described. In Section 4 some implementation details are given. The
obtained results are presented in Section 5. Finally, some conclusions are drawn
in Section 6.

2 Monogenic Signal Computation

In this section we define the monogenic signal and illustrate the most practical
aspects of its implementation. For a more rigorous derivation we address the
reader to [7] and the references therein. Note that the presented formulation is
slightly different from the original one as 3D volumes are here considered instead
of 2D images.

Themonogenic signal of a 3D grey valued image I : Ω → R,Ω ⊂ R
3, is obtained

from the responses to four 3D spherical quadrature filters (SQFs). The SQFs con-
sist of one even rotation invariant bandpass be(x;λ0) filter and three odd bandpass
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filters bo1(x;λ0), bo2(x;λ0) and bo3(x;λ0), where x = [x1, x2, x3]
T is the pixel po-

sition and λ0 is the filter wavelength, defined as the reciprocal of the normalized
center frequency f0.

The odd filters are computed from the Riesz transform of the even one. In the
frequency domain it is:

Bok(ω) = Rk(ω) ·Be(ω), Rk(ω) = − jωk

|ω| (1)

where ω = [ω1, ω2, ω3]
T is the normalized angular frequency and Rk(ω) is the

Riesz transform along the direction k = {1, 2, 3}. In this paper, as recommended
in [7], the difference of Poisson (DoP) kernel is adopted:

Be(ω) = exp (−2π|ω|sf )− exp (−2π|ω|sc), sf < sc. (2)

From the four filter responses the image features of amplitude A(x), monogenic
phase φ(x), and the two orientations θ1(x), θ2(x) can be obtained:

A(x) =
√
p2(x) + |q(x)|2, φ(x) = arctan

(
|q(x)|
p(x)

)
(3)

θ1(x) = arctan

(
q2(x)

q1(x)

)
, θ2(x) = arctan

(
s(x)

q3(x)

)

where p(x) = (I ∗ be)(x), q1(x) = (I ∗ bo1)(x), q2(x) = (I ∗ bo2)(x), q3(x) =
(I ∗ bo3)(x), q(x) = [q1(x), q2(x), q3(x)]

T and s(x) =
√
q1(x)2 + q2(x)2. Note

that passing from two to three dimensions implies replacing the single monogenic
orientation with the two angles θ1 and θ2, needed to define the direction of q in
the 3D space (cf. Fig. 1).

Despite a theoretically justified derivation of the above quantities requires the
employment of complex mathematical concepts, otherwise they can be given a
simple and intuitive interpretation. Namely, monogenic amplitude A and phase
φ correspond to the analogous quantities of the analytic signal once the standard
Hilbert transform has been replaced with the directional Hilbert transform along
n = q/|q| (see next section for its definition). In turn, the two angles θ1 and θ2
define the direction of maximum image energy variation.

The unit vector n and the two monogenic orientations are related by (cf. Fig.
1):

n = [cos(θ1) sin(θ2), sin(θ1) sin(θ2), cos(θ2)]
T . (4)

The dependency on x is omitted in the sequel for brevity sake. The phase vector
r = φ · n is commonly used to represent monogenic phase and orientation in a
concise form [7].

2.1 Robust Orientation Computation

In order to improve the robustness against image noise, in this study we replace
the classical orientation estimate in (3) with a robust least squares one [8].
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(a) (b) (c)

(d) (e)

Fig. 2. (a) Test image: a 3D chirp image containing full [0, 2π] rotations in θ1 and θ2
and a linearly increasing frequency in the outwards direction. A 10dB additive Gaussian
noise has been added to evaluate the robustness of the adopted orientation estimates.
(b) point-wise estimate of θ1. (c) least-squares estimate of θ1. (d) point-wise estimate
of θ2. (e) least-squares estimate of θ2. The increased robustness with respect to noise
is evident.

This is obtained as the value maximizing the directional Hilbert transform
HuI(x) averaged over a local neighborhood vσ:

n(x) = arg max
||u||=1

∫
Ω

vσ(x
′ − x) · |HuI(x

′)|2dx′ (5)

where vσ corresponds here to a Gaussian kernel with variance σ2 and the di-
rectional Hilbert transform is defined in the frequency domain as Hu(ω) =
ωTu/|ω|. It can be shown that (5) corresponds to the pointwise solution (3) if
vσ(x) = δ(x).

The optimization problem (5) is solved by the eigenvector associated to the
largest eigenvalue of the 3× 3 matrix T(x), with entries:

[T(x)]nm =

∫
Ω

vσ(x
′ − x)qn(x

′)qm(x′)dx′ (6)

with n,m = {1, 2, 3}. Matrix T can be assimilated to a Riesz-transform coun-
terpart of the standard structure tensor.

Rigorously, the eigenvalue problem should be solved iteratively on all the vox-
els of the image, which would increase tremendously the computational burden.
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Here, to avoid this shortcoming we derive an analytical solution based on the
hypothesis that the image structure is locally 1D1. By doing so, the only eigen-
value of (6) is λ = [T]11 + [T]22 + [T]33, and the two monogenic orientations are
defined by:

θ1 = arctan

{
([T]22 + [T]33) · [T]23 + [T]13 · [T]12
([T]11 + [T]33) · [T]13 + [T]23 · [T]12

}
; (7)

θ2 = arctan

{
([T]11 + [T]22)

([T]13 · sin(θ1) + [T]23 · cos(θ1))

}
.

The derivation of (7) is omitted here for reasons of space.
Due to the averaging operation in (5), this alternative estimate is expected to

be less sensitive to image noise as compared to the traditional one. An example
of this property is given in Fig. 2.

3 Multiscale Optical Flow Computation from the
Monogenic Phase

As in [7], the displacement field d(x) = [d1(x), d2(x), d3(x)]
T along x1 x2 and

x3 between two frames is estimated by replacing the traditional brightness con-
stancy assumption with the more robust monogenic phase constancy assump-
tion. This can be conveniently expressed in terms of the monogenic phase vector
r = [r1, r2, r3] as r(t+1,x) = r(t,x−d). Assuming small displacements the first
order Taylor expansion can be used r(t,x − d) = r(t,x) − J · d, where J is the
Jacobian matrix of r. Then, assuming all pixels translate of the same quantity
d0 within a local window w centered in x0 = [x10, x20, x30], the following linear
system of equations is obtained:

〈J〉w d0 = −〈rt〉w , J =

⎡⎣ r1x1 r1x2 r1x3

r2x1 r2x2 r2x3

r3x1 r3x2 r3x3

⎤⎦ (8)

where (·)t denotes the time derivative, 〈v〉w =
∫
Ω
w(x − x0)v(x)dx and rixk

=
∂xk

ri. Assuming 1D structures [7], the matrix J is rewritten a function of its only
eigenvalue f and eigenvector n, i.e. J = fnnT . In particular, it can be shown
that n is the same as in (4), while the f =< ∇φ,n >, with ∇ = [∂x1 , ∂x2 , ∂x3 ]

T .
Resulting from the derivative of the monogenic phase, f is called monogenic
frequency.

The required terms to solve (8) are then rt, f and n. The first two are com-
puted as in [7]:

f =
p∇Tq− qT∇p

p2 + |q|2 , rt =
ptqt+1 − qtpt+1

|ptqt+1 − qtpt+1|
arctan

(
|ptqt+1 − qtpt+1|
ptpt+1 + qT

t qt+1

)
(9)

1 This assumption holds as long as the image does not contain sharp features at the
observation scale σ. This is a reasonable approximation on cardiac images due to
the natural regularity of the heart contours. We also note that the 1D assumption
is itself primal in the formulation of the monogenic signal theory [9].
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where subscripts “t” and “t + 1” denote the time instant, while n is computed
from the monogenic orientations (7) by means of (4).

3.1 Affine Model

The simple translation model in (8) is too restrictive in a general context. Also,
its validity is heavily dependent on the choice of the size of w. To encompass this
limitation, we employ an affine model for the local displacement, accounting for
rotation, expansion, compression and shear. Considering for simplicity a window
centered at (x10, x20, x30) = (0, 0, 0), the affine model is:

d(x) = A(x)u, (10)

A =

⎡⎣1 0 0 x1 x2 x3 0 0 0 0 0 0
0 1 0 0 0 0 x1 x2 x3 0 0 0
0 0 1 0 0 0 0 0 0 x1 x2 x3

⎤⎦ (11)

u = [d10, d20, d30, d1x1 , d1x2 , d1x3 , d2x1 , d2x2 , d2x3 , d3x1 , d3x2 , d3x3 ]
T (12)

where I is the 3× 3 identity matrix and u is the new unknown vector: d10, d20
and d30 correspond to the translation of the window center and the other entries
are the first order spatial derivatives (dixk

= ∂xk
di). Plugging (10) into (8)

leads to an underdetermined system of equations. whose least-squares solution
is b = Mu, with b = −

〈
ATJT rt

〉
w

and M =
〈
ATJTJA

〉
w
. It can be shown

that the entries of M and b are the local moments of orders zero to two of the
spatial and temporal derivatives of the phase vector components [10].

Let’s note also that, as the first order spatial derivatives of the displacement
are also computed, the Lagrangian strain tensor can be directly obtained from
the latter, with no need of further numerical differencing.

3.2 Multiscale Choice of the Window Size

The choice of the window size is a tedious issue connected with local techniques:
the assumed motion model (translational or affine) may not hold when the win-
dow is too big, otherwise, the adoption of an excessively small window may
result in the well known aperture problem. To circumvent this issue we apply a
3D extension of the multiscale choice of the window size proposed in [10]. This
is based on the possibility to compute the image moments, i.e. the entries of the
system matrix M and the vector b, at multiple scales by using an efficient B-
spline coarse to fine strategy [10]. In particular, they are obtained from window
functions w which are progressively scaled and subsampled by a factor 2 in each
dimension. Namely, at scale j, the window wj(x−x0) = w((x−2jx0)/2

j) is em-
ployed, where w is written as the separable product of three B-spline functions.

By doing so, at each scale Jf ≤ j ≤ Jc (Jf ≥ 0) a solution uj can be
computed. Among the considered scales, the uj producing the smallest residual
error ||Muj−b||�2/|w|�1 is retained as the final displacement estimate. Whenever
necessary, bi-cubic interpolation is employed to have a dense motion field. With
this strategy, the scale providing the most consistent motion estimate is selected.
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3.3 Iterative Displacement Refinement

The hypothesis of small displacements employed in differential techniques may
be inadequate whenever the displacement is big or the image intensity profile
is non-linear. This problem becomes crucial when 3D ultrasound imaging is
concerned, due to the low acquisition frame rate.

To overcome this limitation, we implement here a coarse to fine refinement of
the displacement estimate. We exploit a coarse sub-sampled representation of the
image to obtain a rough estimate of the displacement. The current estimate is
then employed to undo the motion and the incremental displacement is computed
on the image at the finer scale. The required multi-resolution representation of
the images is obtained via B-spline decomposition. Fifth order B-spline functions
are employed. This strategy is observed to improve considerably the precision of
the estimate.

4 Implementation Details

The pseudo-code of the proposed algorithm is presented in Algorithm 1. Function
ComputeBsplineImagePyramid generates a pyramid of images at scales s =
1, · · · , Np using B-spline decomposition. Is denotes the image at scale s. The
wavelength for the SQF was fixed at λ0 = 0.1 Hz−1. The multiscale window
choice of Section 3.2 was implemented by considering 5-th order B-splines and

Algorithm 1: Multiscale Monogenic Optical Flow

Input: two subsequent frames: I1, I2
parameters: λ0, Jf , Jc, Np, k, σ.

Output: displacement d between I1 and I2

d = 0; /* set initial displacement */

ComputeBsplineImagePyramid(I1 ,I2)
for n = 1 : Np do

s = Np − n+ 1; /* scale in the B-spline pyramid of Section 3.3 */

[Be,Bo1,Bo2,Bo3] = ComputeSQF(λ0); /* see (1) and (2) */

[p1,q1] = MonogenSignal(Is1 ,Be,Bo1,Bo2,Bo3);

[p2,q2] = MonogenSignal(Is2 ,Be,Bo1,Bo2,Bo3)

f = MonogenFreq(p1,q1); /* see (9) */

[θ1, θ2] = MonogenOrient(q1,σ); /* see (7) */

rt = TimeDer(p1,p2,q1,q2); /* see (9) */

J = JacobianMatrix(f ,θ1 ,θ2); /* see (8) */

Δd = MultiscaleOF(J,rt ,Jc,Jf); /* increment, see Section 3.2 */

d = d+Δd; /* estimate refinement */

Is−1
2 = Interp(Is−1

2 ,x+ d); /* subtract motion before refinement */
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Fig. 3. (a) Tracking error on the 2nd simulated sequence (named case08). Lower and
upper limits of the box represent 25th and 75th percentile while the whiskers the 5th
and 95th. (b) Error map corresponding to the end-systole and close to the end diastole
in (c). The scatterers positions correspond the true one while the color indicates the
estimation error.

scales j = {3, 4}. A Gaussian kernel of standard deviation σ = 1 was employed
for the robust orientation computation of Section 2.1.

5 Results

The performance was evaluated on a set of 10 simulated 3D echocardiographic
sequences. The heart motion was simulated by displacing a set of point scatter-
ers according to the electromechanical model of the myocardium proposed by
Sermesant et al. [11]. From the time varying scatter map the ultrasound im-
age formation was then simulated with the COLE software developed by Gao
et al. [12]. Each sequence represents an entire cardiac cycle (from the initial
end-diastolic state (ED1) to the subsequent end-diastole (ED2)) and was ob-
tained from a different configuration of the parameters of the electromechanical
model (namely electrical activation position, global conductivity and contractil-
ity). The precise parameters configuration for each sequence is reported in the
STACOM2012 challenge site [13].

We evaluate the performance of our algorithm by measuring the error in
tracking the scatterers employed in the simulation. Namely, let’s denote by x̄i

k
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Table 1. Tracking errors overview for all the sequences, in millimeters

sequence ID 01 08 12 20 22 28 36 44 60 88

Full cardiac cycle

mean value 1.27 0.70 0.69 0.68 1.23 0.72 0.68 0.71 0.68 0.68
standard deviation 0.87 0.47 0.48 0.46 0.87 0.49 0.46 0.47 0.48 0.47

5th percentile 0.08 0.06 0.04 0.05 0.06 0.04 0.04 0.06 0.04 0.04
95th percentile 2.92 1.59 1.60 1.55 2.87 1.65 1.57 1.60 1.60 1.57

End-systole (ES)

mean value 1.87 0.93 0.94 0.94 1.87 0.98 0.95 0.94 0.95 0.97
standard deviation 1.05 0.53 0.51 0.50 1.01 0.54 0.51 0.52 0.50 0.52

5th percentile 0.57 0.27 0.28 0.29 0.58 0.28 0.27 0.27 0.29 0.31
95th percentile 3.92 1.97 1.91 1.88 3.80 2.04 1.92 1.91 1.88 1.93

End-diastole 2 (ED2)

mean value 1.19 0.72 0.74 0.72 1.20 0.78 0.70 0.74 0.72 0.73
standard deviation 0.69 0.40 0.43 0.41 0.65 0.42 0.39 0.43 0.42 0.40

5th percentile 0.38 0.23 0.24 0.23 0.40 0.25 0.23 0.22 0.22 0.24
95th percentile 2.45 1.49 1.59 1.50 2.46 1.58 1.47 1.57 1.56 1.51

the true position of the i-th scatterer at time k and by xi
k the estimated one.

The latter is obtained from the computed motion field dk
k−1 between frame

k − 1 and k as: xi
k = xi

k−1 + dk
k−1(x

i
k−1), with xi

0 = x̄i
0. The measured error is

εik = |xi
k − x̄i

k|. Only scatterers belonging to the left ventricle were considered
in the error computation. These were selected according to the American Heart
Association (AHA) subdivision. The error behavior over time on the second
simulated sequence, is represented in the boxplot of Fig. 3(a). As expected,
the largest estimation error corresponds to the end-systolic instant, where the
maximum displacement from the rest condition happens. Nevertheless, let’s note
that the average error remains much smaller with respect to the true maximum
displacement, that in the end-systolic instant reaches the value of 3.93mm. The
spatial error distribution corresponding to the worst (end-systole) and one of the
best (close to the end of the cycle) cases is reported in Fig. 3(b)–(c). A summary
of the average errors obtained on all the sequences is given in Table 1.

The computation time for each volume (size 267×355×355 pixels3) is of 40
seconds on a MATLAB implementation executed on a desktop pc with a 3.47GHz
Intel Xeon X5690 processor, 12 Gb of RAM and running Windows 7.

6 Conclusion

A novel algorithm for myocardial motion analysis on 3D echocardiographic im-
ages has been presented. Results on simulated sequences show a good precision
and a competitive execution time.
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Quadrature Filter Based Motion Analysis

for 3D Ultrasound Sequences
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Abstract. Analysis of echocardiograms is a valuable tool for assess-
ing myocardial function and diseases. Processing of ultrasound data is
challenging due to noise levels and depth-dependent quality of structure
edges. We propose to adapt a method based on quadrature filters that
is invariant to changes in intensity and has been successfully applied to
MRI data earlier. Quadrature-filter-based registration derives the spa-
tial deformation between two images from the local phase shift. Because
the local phase is intensity-invariant and requires inhomogeneity, e.g.,
noise and intensity variations, to properly pick up phase shifts, it is well
suited for ultrasound data. A multi-resolution and multi-scale scheme is
used to cover different scales of deformations. The type and strength of
regularization of the dense deformation field can be specified for each
level, allowing for weighting of global and local motion. To speed up the
registration, deformation fields are determined slice-wise for three orien-
tations of the original data and subsequently combined into a true 3D
deformation field. The method is evaluated with the data and ground
truth provided by the Cardiac Motion Analysis Challenge at STACOM
2012.

Keywords: Ultrasound, Morphon, Registration, Quadrature filter.

1 Introduction

Much effort is still dedicated to ultrasound motion tracking algorithms. Many dif-
ferent approaches have been proposed that can be coarsely divided into intensity-
based algorithms that are purely driven by the data, and model-based algorithms
that add knowledge about the underlying anatomy and heart mechanics. Wang
et al. [6] used a multi-model approach to incorporate information from both
data and prior model knowledge, which requires a learning phase with manual
expert segmentations. Zhang et al. [7] propose an intensity-based method with
temporal smoothness constraints.

With the progress of ultrasound imaging technology, the resolution and amount
of acquired data is constantly increasing. While this allows to derive dense mo-
tion fields from the data to assess local deformations, the analysis of this spatially
and temporally extensive data is expensive, as the motion tracking challenge at
STACOM 2011 showed [5]. State-of-the-art motion analysis techniques require
computational resources that are not available in most clinical environments.

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 169–177, 2013.
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We propose a fully-automatic and purely data-driven approach that uses
quadrature-filter-based registration [1] to derive motion fields from adjacent time
frames. Instead of processing the whole 3D volume at once, displacements are
computed for 2D slices. These displacements are combined to a true 3D displace-
ment field, which makes the algorithm highly suitable for parallel processing. It is
robust to noise and to variations in intensity, and avoids obscuring pathologies
by over-regularization because it does not make physiological assumptions on
spatial or temporal smoothness. This approach is based on the implementation
from [2] and has been previously applied to different types of cardiac images,
including MRI perfusion [3], MRI tagging and 3D+t cardiac ultrasound [4].

For reliable and beneficial analysis of myocardial motion in cardiac ultra-
sound, tracking and deformation quantification algorithms have to be validated
against appropriate ground truth. Because manual landmarking in ultrasound
images is unfeasible, efforts have been focused on phantom data where motion
patterns and deformations are known. The Cardiac Motion Analysis Challenge
at STACOM 2012 provides a framework to validate motion tracking algorithms
against synthetic and in-vitro phantom data.

2 Materials and Methods

2.1 Image Data

Twelve data sets were provided by the organizers of the STACOM 2012 challenge
and included synthetic phantom images as well as images of a hardware phantom.

Synthetic Data. The synthetic images were created from the combination
of an electro-mechanical model with an ultrasound imaging model and simulate
different electrical and contraction parameters. Each of the nine data sets had an
extent of 267x355x355 over 23 time frames, with a voxel size of 0.33x0.33x0.33
and unknown temporal resolution. A segmentation of the heart was provided
as ground-truth for evaluation. Figure 1 shows one of the data sets and the
associated heart model mesh.

Phantom Data. The hardware phantom consists of a cylinder that has been
subjected to motion. Microcrystals were embedded in the phantom to provide
ground truth landmarks in tagged MR and microsonometry imaging. Each of
the three data sets had an extent of 224x112x209 over 30 time frames, with a
voxel size of 0.89x1.23x0.77 and unknown temporal resolution. Figure 2 shows a
time frame of one phantom data set.

2.2 Method

Our proposed method calculates a dense deformation field to non-rigidly align
adjacent time frames. It is purely data-driven and thus applicable without prior
training or modeling steps. However, the registration scheme has to be adapted
to the data to reflect noise characteristics, image dimensions and scale of defor-
mations.
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Fig. 1. Orthogonal views of synthetic data set case22, and segmentation mesh that
was provided for the synthetic data sets. The mesh is also overlaid on the ultrasound
data. Note that the heart model is not fully covered by the cone-shaped acquisition
range of the simulated ultrasound unit.

Background. Phase-based image registration makes use of the Fourier Shift
Theorem, which states that the Fourier transforms of a signal f(x) and a shifted
signal f(x− d) are related via a phase factor by F{f(x− d)} = e−jdωF{f(x)}.
For two signals f1(x) = f(x) and f2(x) = f(x − d), d is proportional to

arg
(
F{f1(x)}F{f2(x)}

)
, with denoting the complex conjugate. By using the

local phase φ(x), derived from the complex analytical signal fa(x) = A(x)ejφ(x)

of f(x), the above approach can be used to estimate non-stationary shifts in 1D.
The analytic signal is in practice estimated by applying a quadrature filter q(x).
This has a band-pass character that determines the scale of the structures or
shifts of interest. To generalize this 1D construct to higher dimensions, we use
a set of quadrature filters with different orientations n̂i. The displacement d̂i(x)
of a deformed image J(x) = I(x + d(x)) along the orientation n̂i can then be
estimated using
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Fig. 2. Time frame 15 of phantom data set images6b

p
(i)
IJ (x) = (I ∗ q(i))(x) (J ∗ q(i))(x). (1)

d̂i(x) ∝ arg
(
p
(i)
IJ(x)

)
(2)

A confidence measure ci(x) based on the similarity of the filter responses is
associated with the estimate in each filter direction,

ci(x) =

√∣∣∣p(i)IJ(x)
∣∣∣ [1 + cos

(
arg

(
p
(i)
IJ(x)

))]
(3)

and the summation of the individual measures leads to a combined confidence
measure c(x). A first estimate of the complete deformation field can be formu-
lated by weighting the displacement estimates with the associated confidence
measures,

d(x) =

∑
i ci(x)di(x)n̂i∑

i ci(x)
. (4)

This deformation field should be subjected to a spatial regularization to reflect
the elasticity of biological tissue, and to incorporate the confidence measure to
converge to the most certain field,

dreg(x) =
[d(x)c(x)] ∗ g(x;σ2)

c(x) ∗ g(x;σ2)
. (5)

To estimate large deformations, the displacement estimation outlined above must
be implemented in a scale space, and it is also necessary to iterate the estimation
several times on each scale to refine the estimation. The deformation estimates
are accumulated in dtot(x) as

dtot(x) ← dtot(x) +
c(x)

ctot(x) + c(x)
dreg(x), (6)



Quadrature Filter Based Motion Analysis for 3D Ultrasound Sequences 173

where ctot(x) is an accumulated confidence measure that is updated for each
iteration as

ctot(x) ←
c2tot(x) + c2(x)

ctot(x) + c(x)
. (7)

After convergence, dtot(x) is the final estimate of the true deformation field d(x).

Implementation. To derive the motion fields from the ultrasound data, the
image data is analyzed slice-wise with a set of four 2D filters in orthogonal
directions. We do not employ a true 3D registration for performance reasons.
The convolution with the quadrature filter kernels is the computationally most
expensive step of our approach, so it is highly desirable to avoid convolutions with
3D kernels and use a strategy of distributed 2D convolutions instead. Thus, the
total motion field is obtained by combining three 2D motion vector fields from
orthogonal directions, which can be computed independently. Because each 3D
vector component is present in two fields, out-of-plane motion and other artifacts
can be compensated for by combining the corresponding components.

We apply log-normal quadrature filters in a 14-scale scale space created by
two different center frequencies and seven resolution scale steps with a resample
factor of 0.63. It should be noted that the frequencies are not related to the noise
properties of the images, but were selected to give the scale-space scheme good
coverage of motions with different magnitudes. On scales with downsampled
resolution three iterations are performed, while only two are carried out on
scales with the original resolution to reduce computation time. An overview of
the parameters is given in Table 1.

The regularization of the deformation field is performed using a Gaussian ker-
nel, whose parameters were empirically optimized to produce reasonably smooth
deformation fields without removing local distortions that can represent patholo-
gies.

For each of the three orthogonal slice orientations, a stack of slice-wise 2-
component vector fields is calculated. Each slice in this vector field stack repre-
sents the motion between two adjacent time frames. These partial motion fields
are reformatted to the transversal orientation. Every orientation contributes to
two components of the final 3D vector that is determined by averaging the respec-
tive components. The data sets are downsampled by a factor of 2.5 for processing
to compensate for their size and the increased noise level and upsampled with
linear interpolation afterwards.

3 Results

The synthetic data sets were processed and compared with the provided com-
parison framework. This framework consists of ground-truth meshes for all time
frames and source code that calculates the error between the ground-truth dis-
placement and the displacement of our method for all mesh points. Table 2
shows the error statistics for these data sets over all time frames. The deforma-
tion field for data set case01 had an erroneous region just below the apex, which
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Table 1. Morphon parameters

Resolution Level Resolution Iterations Sigma [voxels]

0 142 2 3

1 89 3 3
2 56 3 3
3 35 3 3

4 22 3 3
5 13 3 3
6 8 3 3

Table 2. Error values for synthetic data sets

Data Set Minimum q25 q50 q75 q95 Maximum Average Standard Deviation

case01 0.02 1.9 3.88 6.91 11.36 21082.1 11.19 209.44
case08 0.004 1.15 2.01 3.13 5.13 11.17 1.79 1.56
case12 0.002 1.19 2.06 3.2 5.17 10.57 1.83 1.57

case20 0.005 1.17 2.04 3.2 5.23 9.98 1.83 1.59
case22 0.009 1.71 3.62 6.55 10.56 16.86 3.88 3.24
case28 0.006 1.18 2.02 3.18 5.13 9.88 1.81 1.56

case36 0.006 1.18 2.05 3.2 5.25 10.23 1.84 1.59
case44 0.004 1.21 2.05 3.18 5.19 10.69 1.84 1.57
case60 0.006 1.09 1.99 3.16 5.22 10.05 1.78 1.61

caused the high maximum error. Figures 3 and 4 show motion estimation errors
at selected time frames from two data sets.

The phantom data sets were processed as well, but lack evaluation because
no segmentation was provided for them.

Computation time is about four hours for one synthetic data set, and about
two hours for one phantom data set. The processing was done on a 3 GHz PC
with 8 GB of memory.

4 Discussion

We have identified two major contributing factors for motion estimation errors in
the synthetic data: (a) motion at thin structures, and (b) motion near the conus
boundaries. Factor (a) influences the estimation of apical and right-ventrical
motion in particular. Because the synthetic data sets do not cover the whole heart
(Fig. 1), factor (b) affects all regions except for the septum. The cut-off heart
regions disturb our approach, because in contrast to model-based approaches,
no anatomical information is available to compensate the influence of the image
background. The filter field of view and the regularization could be extended by
a background mask that prevents excessive propagation from the background
regions into the central motion field.
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Fig. 3. Displacement error overlaid as color on the mesh of data set case08 at time
frame 1. From left to right and top to bottom time frames 4, 8, 12 and 16. Blue to
green represents 0 to 5mm error, green to orange 5 to 6.5mm error, and orange to red
marks above 6.5mm error. The largest errors occur at the posterior right ventricle wall.

Although the scale space we used provides good coverage of all motion, it is
still computationally expensive. To save computation time, a reduced scale space
should be designed that delivers a comparable performance. Parallel processing
of the individual orientations and slices could be implemented on the GPU or in
a cluster architecture.

To compute strain curves, the deformation fields are used with respect to
a reference frame, typically the first frame. Because the frame-to-frame motion
field inherently contains errors, concatenation of the relative fields will propagate
the errors towards the sequence end. A temporal regularization, e.g., simple
temporal smoothing or an additional constraint that material point trajectories
should by cyclic, could be added to reduce these errors.

5 Conclusions

We introduced an algorithmic approach for the analysis of myocardial motion
based on cardiac ultrasound data. The method is a phase-based approach, which
applies quadrature filters to derive dense motion fields between subsequent im-
age time frames. The algorithm was applied to the data sets provided by the
STACOM 2012 challenge, and provided satisfactory results. Motion estimation
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Fig. 4. Displacement error overlaid as color on the mesh of data set case44 at time
frame 1. From left to right and top to bottom time frames 4, 8, 12 and 16. Blue to
green represents 0 to 5mm error, green to orange 5 to 6.5mm error, and orange to red
marks above 6.5mm error. The largest errors occur at the posterior right ventricle wall.

performance outside the image center is limited by the data set field of view. The
algorithm has to be improved with respect to this and the error causes discussed
above to provide a clinically applicable method.

References

1. Knutsson, H., Andersson, M.: Morphons: Segmentation using elastic canvas and
paint on priors. In: Symposium on Image Analysis, SSBA 2005, pp. 73–76 (2005)

2. Petterson, J.: Automatic Generation of Patient Specific Models for Hip Surgery
Simulation. Ph.D. thesis, Linköping University (2006)
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Abstract. In this paper, we evaluate the iLogDemons algorithm for
the STACOM 2012 cardiac motion tracking challenge. This algorithm
was previously applied to the STACOM 2011 cardiac motion challenge
to track the left-ventricle heart tissue in a data-set of volunteers. Even
though the previous application showed reasonable results with respect
to quality of the registration and computed strain curves; quantitative
evaluation of the algorithm in an objective manner is still not trivial.
Applying the algorithm to the STACOM 2012 synthetic ultrasound se-
quence helps to objectively evaluate the algorithm since the ground truth
motion is provided. Different configurations of the iLogDemons param-
eters are used and the estimated left ventricle motion is compared to
the ground truth motion. Using this application, quantitative measure-
ments of the motion error are calculated and optimal parameters of the
algorithm can be found.

1 Introduction

Understanding cardiac motion dynamics through the heart beat is fundamental
for providing useful insights into cardiac diseases. Analyzing medical images is
one way to better understand the complex dynamics of the heart and in recent
years, cardiac motion tracking algorithms have been developed to attempt to
estimate the observed motion. We refer the reader to [2] for the state of the
art on cardiac motion tracking. A cardiac motion tracking challenge was intro-
duced in the STACOM 2011 MICCAI workshop which allowed participants to
apply algorithms to a given data-set of healthy volunteers with cine-magnetic
resonance, ultrasound, and tagged-magnetic resonance image sequences. In this
work we describe the application of the incompressible log-domain demons algo-
rithm (iLogDemons for short) to a set of synthetic ultrasound image sequences
for which the ground truth deformation is known and provided for training within
the STACOM 2012 MICCAI cardiac motion tracking challenge. From this we
are able to compute the error between the ground truth and the estimated de-
formation for the training data.

2 Methodology

The iLogDemons algorithm is a consistent and efficient framework for tracking left-
ventricle heart tissue through the cardiac cycle using an elastic, incompressible

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 178–187, 2013.
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non-linear registration algorithmbased on the LogDemons algorithm [3,2]. Apply-
ing a non-linear registration to pairs of medical images is a common method to
estimate the motion and the deformation of the tissue in the image.

2.1 LogDemons

The LogDemons [6] non-linear registration aligns a template image T (x) to a ref-
erence image R(x) by estimating a dense non-linear transformation φ(x), where
x ∈ R

3 is the space coordinate. This transformation φ(x) is associated with the
displacement vector field u(x) and is parameterized by the stationary velocity
vector field v(x), φ(x) = x+u(x) = exp(v(x)). This ensures the invertibility of
the deformation. The LogDemons algorithm contains two steps, which are the
optimization and the regularization step. The optimization step finds the inter-
mediate correspondence transformation φc(x) = exp(vc(x)) = φ(x)◦exp(δv(x)))
by minimizing the LogDemons energy

ε(v,vc) =
‖ R− T ◦ exp(vc) ‖2L2

λ2
i

+
‖ log(exp(−v) ◦ exp(vc)) ‖2L2

λ2
x

+
‖ ∇v ‖2

λ2
d

with respect to vc(x), where λ2
i is the parameter that estimates the noise in

the image λ2
i (x) = |R(x) − T ◦ φ(x)|2, λ2

x is the parameter that controls the
uncertainty of the correspondences and λ2

d is the parameter that controls the
regularization strength. vc parameterizes the intermediate transformation φc(x)
which models the voxel correspondences of the two images without considering
the regularity of the transformation. The optimal update velocity writes

δv(x) = − R(x)− T ◦ φ(x)
‖ J(x) ‖2 +λ2

i /λ
2
x

J(x),

where J(x) is the symmetric gradient J(x) = (∇R(x) + ∇(T ◦ φ(x)))/2. The
correspondence velocity vc is updated using the the Baker-Campbell-Hausdorff
(BCH) formula vc = Z(vc, δv) [6]. Finally, the optimal regularized transforma-
tion φ(x) is estimated in the regularization step by minimizing the LogDemons
energy with respect to v, which is approximated by smoothing the correspon-
dence velocity vc with a Gaussian kernel Gσ.

2.2 iLogDemons

iLogDemons adds physiological constraints; elasticity and incompressibility, to
the LogDemons algorithm. It proposes an elastic regularizer to filter the corre-

spondence velocities by the elastic-like kernel: v =
(
GσId+

σ2κ
1+κHGσ

)
� vc =

Gσ,κ � vc, where HGσ is the Hessian of the Gaussian kernel Gσ and Gσ,κ is the
elastic-like vector filter. Incompressibility is achieved by constraining the sta-
tionary velocity field v(x) to be divergence-free. The complete algorithm of the
iLogDemons is described in Algorithm 1.
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Fig. 1. The concatenation of the velocity field vTi→Ti−1 and vTi−1→R using the BCH
formula is used to initiate the registration of the template image Ti(x) to the reference
image R(x)

Algorithm 1. iLogDemons: Incompressible Elastic LogDemons Registration

Require: Stationary velocity field v0. Usually v0 = 0 i.e. φ0 = Id.
1: loop {over n until convergence}
2: Compute the update velocity: δvn (see [2]).
3: Fluid-like regularization: δvn ← Gσf � δvn , Gσf is a Gaussian kernel.
4: Update the correspondence velocity using the Baker-Campbell-Hausdorff (BCH)

formula: vn ← Z(vn−1, δvn) (see [6]).
5: Elastic-like regularization: vn ← Gσ,κ � vn (see [2]).
6: Solve: Δp = ∇ · vn with 0-Dirichlet boundary conditions. This is done in order

to achieve the incompressibility.
7: Project the velocity field: vn ← vn −∇p.
8: Update the warped image T ◦ φn = T ◦ exp(vn).
9: return v, φ = exp(v) and φ−1 = exp(−v).

2.3 Cardiac Motion Tracking Strategy

We initialize the registration of the template image Ti(x) at frame i to the
reference image R(x) with the concatenation of the previous frame (i − 1) to
reference velocity field vTi−1→R and the current-to-previous frame velocity field
vTi→Ti−1 by Z(vTi−1→R,vTi→Ti−1) with Z is the BCH operation, as a strategy to
track the myocardium (cf. Fig. 1) [2]. The final registration is always calculated
to the same end diastolic reference image R(x).

3 Application to Challenge Data

3.1 Algorithm Parameter Setting

We used the standard parameters that were used previously in [3]. However,
since the ground truth motion is available for the synthetic ultrasound sequence
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Table 1. iLogDemons parameters used in the application

Input parameters: Value

Multi-resolution levels (frame-by-frame registration) 3
Multi-resolution levels (refinement step) 2
Number of iterations / level 100
σf update field in mm 0.5
κf update field in mm 0
σ stationary velocity field in mm 1 or 1.5 or 2
κ stationary velocity field in mm 1
Incompressibility update field (0-Disable,1-Enable) 0
Incompressibility velocity field (0-Disable,1-Enable) 1 or 0

provided, we also tested different parameters of the iLogDemons as described in
Table 3.1.

iLogDemons non-rigid registration was previously applied to the STACOM
2011 challenge data-set [5,3]. It showed reasonable results in term of the align-
ment of the registered frames in the cardiac sequence with the reference end
diastolic image. Using the estimated transformations, it could also track the
myocardium along the cardiac cycle. The calculated strain curve was also com-
parable to literature for healthy strain values [4].

3.2 Simulated Ultrasound Cardiac Sequence Data

The simulated data-set consisted of 10 synthetic ultrasound sequences with 23
frames per case, with image spatial resolution of 267×355×355, and isotropic
voxel size of 0.33 mm. For each sequence, the left ventricle (LV) is almost fully
visible while the right ventricle is only partially visible in the ultrasound ac-
quisition cone. To compensate for the part of the LV which is out-of-window
region, we artificially expanded the acquisition pyramid. The boundary voxels
were copied to fill this region and additional noise was also added. The data-
set contains different motion and deformation patterns (normal, LBBB, RBBB,
pacing) with the ground truth deformation provided as the deformation of vol-
umetric meshes in a cardiac cycle (See [1] for further details on the synthetic
data-set).

3.3 Application to the Synthetic Data

In order to find the optimal parameters of the algorithm that are able to handle
large deformations, we processed the first case of the ultrasound synthetic data-
set since it simulates normal heart motion with large contraction. We launched
the parameters that were used previously in [3] to the full resolution data-set. We
also applied our algorithm on down-sampled images to reduce the computational
time. We down-sampled the data to a resolution of 88×117×117 with isotropic
voxel size of 1.02 mm The computation time of the whole sequence processing
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Fig. 2. The registration error (calculated using the method described in Section. 3.4 )
of the full resolution and down-sampled dataset of the first case are compared. They
show relatively small difference. .

was reduced from the order of days to hours. The current implementation can
be optimized to handle large volumes by improving the memory access scheme
since the addition of computation time of current implementation is not caused
by the addition of computational complexity. One configuration of parameters
was tested for both the full and down-sampled data to verify the accuracy of
the down-sampled registration compared to the full-resolution registration and
found very small differences in the results (cf. Fig. 2). Other configurations of
the key parameters were tested on the down-sampled data.

3.4 Quantitative Evaluation

Displacement Error. To evaluate quantitatively the performance of each set
of the parameters used for the iLogDemons with incompressibility on the veloc-
ity field set to 0 or 1, we calculated the ground truth displacement vector field
from the deformation of the provided simulated meshes. We rasterized the dis-
placement vectors to the image uGT (x) in order to be able to compare them to the
iLogDemons estimated displacement field ue(x). The norm of the difference of the
two vector fields ||uGT (x)− ue(x)|| is calculated. The global mean of this values
over the whole left ventricle are calculated for each time frame in the cardiac cycle
(cf. Fig. 3). Based on Fig. 3, the parameter σ = 1.5 without the incompressibility
constraint gives the lowest maximum error for the first case.We calculated the LV
volume of the ground truth deformed meshes in a cardiac cycle and we observed
that the current electromechanical model is not incompressible. Fig. 4 shows the
mean and standard deviation of the LV myocardium volume change in a cardiac
cycle for the whole data-set. There is a 10% change of volume during the maxi-
mum contraction. In Fig. 5, we compare the ground truth displacement vector for
each American Heart Association (AHA) region of the left ventricle. We compare
it to the iLogDemons estimated displacement vector and calculated the difference
for each AHA segment. Fig. 5 also shows the error for the basal (regions 1-6), mid
(regions 7-12) and apical (regions 13-17) regions. More error is observed in the
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Fig. 3. The mean and standard deviation of the displacement error calculated on the
whole left ventricle for varying values of σ for the first case

apical region since the longitudinal motion of the apex toward the base changes
the intensity of the apical region.

The result for the whole data-set processing is shown in Fig. 6. As also shown
in Fig. 5 for the first case, the registration of each frame to its previous frame
gives small error which is less than one voxel size. For the frame to reference
result, we observe that there is an error accumulation during the maximum
contraction.

Strain Estimation. From the iLogDemons estimated displacement field u(x),
we computed the strain tensor and projected it to the local radial, circumferen-
tial and longitudinal directions. The strain tensor was calculated using the 3D

Lagrangian finite strain tensor E(x) =
1

2
[∇u(x) + ∇uT (x) + ∇uT (x)∇u(x)].

The mean and standard deviation of the strain estimation of the whole data-set
is shown in Fig. 7. The result using incompressibility has more realistic range of
value (from -15% to 25%) of the estimated strain compared to the one without
incompressibility (from 150% to 300%).



184 A. Prakosa et al.

Fig. 4. The mean and standard deviation of the LV volume change of the ground
truth deformed meshes during a cardiac cycle. Current electromechanical model is not
incompressible since there is a 10% of volume change during the maximum contraction.

3.5 Myocardium Tracking

Qualitative evaluation of the algorithm is done by comparing the contour of the
simulated mesh at the frame with maximum contraction with the deformation
of the end diastolic mesh using the iLogDemons estimated displacement field at
the same frame for the first case. Reasonable agreement of the contours can be
observed in Fig. 8, which indicated that the algorithm is able to capture realistic
deformations, even in the case of a synthetically simulated sequence.

4 Discussion

This evaluation shows that the iLogDemons with and without the incompress-
ibility constraint were able to recover the simulated motion in the ultrasound
synthetic sequence with reasonable accuracy. It is worth noting that the current
electromechanical model is not incompressible, therefore enforcing incompress-
ibility in the registration algorithm naturally does not improve the results, in
comparison to the iLogDemons method without the incompressibility constraint.
Furthermore, we also found that increasing or decreasing the sigma value does
not always improve the result since the best value that we found here is σu =
1.5 while σu = 1 and σu = 2 do not yield significantly better results.
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Fig. 5. The comparison of the ground truth, incompressible and non-incompressible
iLogDemons estimated LV displacement norm for the first case on each American Heart
Association (AHA) region. In both cases, σ = 1.5 was used. The mean displacement
error is also calculated on each AHA region.

Fig. 6. The displacement error of the whole training data-set



186 A. Prakosa et al.

Fig. 7. The mean and standard deviation of the estimated strain for the whole train-
ing data-set with and without incompressibility constrain. Incompressibility constraint
gives more realistic range of value of the estimated strain (from -15% to 25%). This
range is shown as black horizontal lines on the result without incompressibility.

Fig. 8. Myocardium tracking result for the first case is shown (red for iLogDemons
and purple for iLogDemons without incompressibility) and compared to the simulated
ground truth (blue) at the time frame 8 which is at the maximum contraction. The
tracking result follow the contour of the ground truth, indicating that the algorithm is
able to capture reasonably well the dynamics of the motion.
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5 Conclusion

The iLogDemons algorithm was applied to a data-set of synthetic ultrasound
sequence with different motion and deformation pattern. The algorithm was
able to reasonably estimate the ground truth deformation of the model. Since
the provided data-set were created using an electromechanical model which is
not incompressible, the incompressibility constraint does not improve the result.
However, the incompressibility constraint gives more realistic range of estimated
strain value. Future work is needed to deal with the error accumulation during
the maximum of contraction.
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Abstract. Regional wall motion and infarct scoring of MR images are
routine clinical tools to grade performance and scarring in the heart.
The aim of this paper is to provide a framework for automatic scoring
to alert the diagnostician to potential regions of abnormality. We in-
vestigated different shape and motion configurations of a finite-element
cardiac atlas of the left ventricle. Two patient populations were used:
300 asymptomatic volunteers and 105 patients with myocardial infarc-
tion, both randomly selected from the Cardiac Atlas Project database.
Support vector machines were employed to estimate the boundaries be-
tween the asymptomatic control and patient groups for each of 16 stan-
dard anatomical regions in the heart. Ground truth visual wall motion
scores from standard cines and infarct scoring from late enhancement
were provided by experienced observers. From all configurations, end-
systolic shape best predicted wall motion abnormalities (global accuracy
78%, positive predictive value 85%, specificity 91%, sensitivity 60%) and
infarct scoring (74%, 72%, 91%, 44%). In conclusion, computer assisted
wall motion and infarct scoring has the potential to provide robust iden-
tification of those segments requiring further clinical attention; in partic-
ular, the high specificity and relatively low sensitivity could help avoid
unnecessary late gadolinium rescanning of patients.

1 Introduction

Visual wall motion and infarct scoring by magnetic resonance imaging (MRI) is
routine in clinical practice to assess ventricular function and regions of scar for
patients with ischemic heart disease [12]. The left ventricular (LV) myocardium
is typically partitioned into 17 segments according to guidelines set by the Amer-
ican Heart Association (AHA) [4]. Typically cine MRI (a sequence of MR images
of the heart in different stages of contraction and relaxation) is qualitatively as-
sessed using a five point scale from normal to dyskinetic, which is then used for
patient management. However, visual assessment has significant inter- and intra-
observer variability due to its subjective nature (for example, a kappa mean of

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 188–197, 2013.
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0.43 for inter-observer agreement is reported in [7]). To reduce this variability,
several authors have proposed various approaches to detect regional wall motion
abnormalities (RWMA) automatically, e.g. by using parametric images [13], mea-
suring the distance between abnormal and normal segment distributions [11, 5]
or by integrating contraction patterns into point distribution models [9, 15].
Only [15] used clinical wall motion scores for validation of a proposed auto-
matic detection framework and they reported relatively low accuracy results
(64%, 67%, and 67% for basal, middle and apical levels when visual wall motion
scoring was used as reference) for 45 patients.

In this study, we made use of large collections of Finite Element Models
(FEMs) of the LV from the Cardiac Atlas Project1, to create both shape and
motion atlases. We investigated which combination of shape and motion best
represented the wall motion features required to automatically detect and clas-
sify abnormal wall motion according to the standard clinical scale. Additionally,
we sought to determine whether the atlas could predict segments with infarction
by late gadolinium enhancement (LGE). If so, a clinical protocol could perform
standard cine MRI and test whether infarcted or scarred segments were likely
based on wall motion and shape, and if so, a LGE scan could then be performed.
If no regions of infarction were likely, the patient could be saved an additional
scan and intravenous contrast administration, thereby reducing risk, cost and
discomfort. The aim of this paper is therefore not to replace LGE scanning but
rather to detect when it is likely to be necessary on the basis of the common
cine imaging.

The contribution of this paper is three-fold: (1) we quantitatively correlate
gold standard clinical motion and infarct score data from a large-population
study to the predictions of a learning system derived from a semi-automatic
atlas; (2) we investigate the minimum size of the dataset (in particular the
number of positive samples), required to obtain high classification power and,
(3) we demonstrate that the end-systolic shape (minimum blood volume) is more
useful than end-diastolic shape (maximum blood volume) alone or a combination
of both end-systolic and end-diastolic shape in scoring RWMA and LGE.

2 Methodology

2.1 The Left-Ventricular Atlas

In order to build the atlas, guide-point modelling [18] was used to adaptively
optimise a time-varying 3D finite element model of the left ventricle to fit
each subject’s images using custom software (CIM version 6.0). The model was
interactively fitted to “guide points” provided by the analyst, as well as computer-
generated data points calculated from the image using an edge detection algo-
rithm, by linear least-squares. The model comprised 16 bicubic elements with
C1 continuity, defined in a prolate spheroidal coordinate system. Fiducial land-
marks were manually defined at the hinge points of the mitral valve on the long

1 http://www.cardiacatlas.org
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(a) MR acquisition (b) Model (c) Scoring

Fig. 1. Clinical work-flow for RWMA and LGE scoring, (a) acquisition, (b) LV finite
element model (AHA regions appear highlighted by differently coloured points in the
endocardium) and (c) the scoring on a bull’s eye plot where each AHA region is scored
visually by a specialist. Three examples of cine MRI (upper) and LGE MRI (lower)
are shown in (a), for the base, mid and apical slices.

axis images, and at the insertions of the right ventricular free wall into the inter-
ventricular septum. These were used to define the atlas coordinate system and
position of the model control points consistently aligned to the anatomy of the
heart. Therefore, point correspondences between subjects were inherently for-
mulated through the mathematical description of the model. This method has
been previously validated against autopsy LV mass, in patients against manually
drawn contours and in healthy volunteers against flow-derived measurements of
cardiac output [18].

Shape parameters of the 3D finite element model were provided by Bézier
bicubic control points for each of the epicardial (outer surface of the muscle)
and endocardial surfaces. Each surface was represented by 16 bicubic elements
each with 16 Bézier control points (four per node). The control points intuitively
represent the position and slope of the model at the element boundaries. The
surfaces were represented in a prolate spheroidal coordinate system enabling an
efficient representation of the shape of the left ventricle with only 215 parameters.

2.2 Data

The control group was constructed from 300 asymptomatic patients from the
MESA (Multi-Ethnic Study of Atherosclerosis) cohort [2]. We assumed that the
cardiac motion of this group was normal in order to define a normal wall motion
model. To test the RWMA and LGE classification methods, 105 patients with
coronary artery disease and prior myocardial infarction were randomly selected
from the DETERMINE (Defibrillators To Reduce Risk by Magnetic Resonance
Imaging Evaluation) cohort [8]. Clinical characteristics and demographics of the
study population are given in Table 1.

Regional Wall Motion Abnormalities (RWMA). A consensus was reached
by two expert observers who quantitatively scored wall motion visually [10],
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Table 1. Patient and control group characteristics (mean ± standard deviation)

Controls (n=300) Patients (n=105)

Sex (M/F/Unknown) 136/158/6 85/19/1
Age 60.5±10.5 62.0±11.9
EDV (ml) 115.7±24.1 194.6±52.3
ESV (ml) 45.5±14.1 113.3±49.6
LV mass (g) 136.0±36.3 162.9±39.4
EF (%) 61.1±6.0 43.8±11.5

on each of the 16 AHA regions (AHA region 17, the myocardial apical tip,
was ignored in this work), and these were used as ground truth. RWMA was
scored using a short-axis cine loop (i.e. by inspecting an animated image of all
cardiac phases) into 5 grades of increasing abnormality: (0) normokinetic, (1)
mildly hypokinetic, (2) severely hypokinetic, (3) akinetic (i.e. no motion) and
(4) dyskinetic (i.e. paradoxical outward motion).

Late Gadolinium Enhancement (LGE). Areas of LGE were analogously
examined and categorised into 5 grades according to the transmural thickness of
enhancement on the LGE scan: (0) 0%, (1) 1-25%, (2) 26-50%, (3) 51-75% and
(4) 76-100% of the wall thickness.

2.3 Motion Model Configurations

For each of the 16 regions, the atlas was sampled with a lattice of 10× 10 evenly
distributed points per region for both the endocardial and epicardial surfaces,
yielding 200 points per region (100 per surface), thus facilitating the dimensional
consistency needed for prediction. These points, expressed in rectangular Carte-
sian atlas coordinates, were used as features for classification (see Section 2.4).

The motion model was constructed from two cardiac frames: end diastole (ED)
when the heart is full of blood and at its largest dimension and end systole (ES)
when the heart is fully contracted and at its smallest dimension. In an attempt
to find a suitable model to represent shape or motion, five configurations were
investigated:

ED Features from the raw ED surface sample points without any
transformation.

ES Features from the raw ES surface sample points without any
transformation.

EDES Features calculated by subtracting ES points from ED points.
ESW Features from the ES surface sample points after application

of a thin-plate spline warp which mapped epicardial ES points
to a mean shape of epicardial ED points [14].

EDESW Similar to EDES, but making use of the thin-plate spline
ED-warped ESW points.
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2.4 Predictors

The sampled points, from the ED and ES regions were used as features for the
classifiers in the different model configurations as described in 2.3. Two references
were used for labelling: RWMA and LGE scores, as described in 2.2.

Support vector machines (SVM) [16] are popular learning systems that have
formed their own field in machine learning. They have been widely used in the
field of bioengineering and other fields because of their superior performance in
terms of classification power. In this work, we applied SVM with a linear kernel
to predict the RWMA or LGE scores from the atlas coordinates and compared
these with the expert-derived gold standard. We used the library developed
by [6] for both the training and classification. For each of the five configurations
described in 2.3, the input was a raw matrix of 200 points × 105 cases and their
corresponding labels for each region.

3 Experimental Results

The leave-one-out experiments were set up as follows. The classifiers were trained
with the full dataset, leaving out one abnormal case from the patient group.
Subsequently, the case was then predicted as an unseen example. This process
was then repeated for all patients.

All subjects from the control group were considered as class “0” (normokinetic
and no LGE scar) for all regions. Since we focused on the prediction of positive,
or clinically abnormal segments, controls were not included in the leave-one-out
experiments.

To gauge the overall performance of the classifier, the statistics presented
in this section were computed globally across all leave-one-out experiments, as
though it were a single global cross-validation experiment. Positive samples
were identified by score values 1-4 (both for wall motion and infarct trans-
murality scores), and negative samples by 0. The accuracy was computed as
(TP + TN)/N where TP stands for number of true positives, TN for true neg-
atives and N = 1680 (105 cases × 16 regions). Positive predictive value (PPV),
specificity and sensitivity follow the standard definitions [1]. Also, for each type
of label (RWMA and LGE), we provide regional scores for these experiments
(Figures 2 and 4). For RWMA results, we use the term prediction whereas we
use inference for LGE results, since enhancement thickness cannot be directly
predicted by the surrounding surfaces (endocardium and epicardium) and must
therefore be inferred.

Table 2 summarises the results of the different configurations for estimating
RWMA/LGE scores in terms of overall accuracy, PPV, specificity and sensitivity,
as defined before.

3.1 RWMA Prediction

RWMA results from Table 2 show how the ES configuration achieves the
best result. In Fig. 2, the regional accuracy and PPV achieved by the SVM
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Table 2. Global summary statistics for RWMA prediction and LGE inference (across
all regions and cross-validation experiments) for the five atlas configurations

Atlas Accuracy PPV Specificity Sensitivity

RWMA LGE RWMA LGE RWMA LGE RWMA LGE

ED 61.1 65.1 70.0 55.3 92.4 94.5 22.2 12.1
ES 77.5 73.9 84.9 72.0 91.4 90.5 60.2 44.1
EDES 76.6 73.6 84.6 72.1 91.5 90.8 58.1 42.6
ESW 71.0 71.5 74.2 63.6 85.1 84.8 53.4 47.6
EDESW 71.3 70.8 79.0 63.7 89.7 86.4 48.3 42.9

ED ES ESW EDES EDESW
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(a) RWMA detection accuracy
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(b) RWMA positive predicted value
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Fig. 2. RWMA regional leave-one-out results in terms of accuracy and PPV. For each
AHA region, we present the colour-coded (a) accuracy and (b) PPV according to the
scale on the right. ES and ESW appear to be the best configurations.

classifiers using the RWMA labels is presented in bull’s eye plots as it is com-
monly presented in cardiac MR analysis.

We also investigated the minimum number of positive samples needed to ob-
tain a robust classifier for each score. We took the ES model, which was the best
configuration tested from the previous experiment, and plotted the PPV for the
RWMA scores against the number of samples. Figure 3a shows this result for
each score. A line through the origin has been fitted to each label of severity to
assist in the interpretation.

As the number of positives grows (or as the sample grows in size for each
case), so does the PPV. This is perhaps most clear in the mildly hypokinetic
case, where a sufficient amount of positives is available. The same behaviour is
observed in the rest of the cases, and they all report positive slopes. However
the slopes tend to be steeper as the pathology worsens or becomes more distant
from normal. This indicates that abnormal regions are easier to classify than
normokinetic (to achieve the same level of PPV, fewer cases are needed) and is
further discussed in Section 4.
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Fig. 3. PPV values grouped by wall motion class with the ES configuration, irrespective
of the region. For each point, the x-coordinate represents the number of positives found
in a region with a specific (a) wall motion label or (b) LGE score and the y-coordinate
represents the corresponding PPV.

3.2 LGE Inference

Table 2 also shows the results of the different configurations for the estimation
of LGE scores. In Fig. 4, the regional accuracy and PPV achieved by the SVM
classifiers using the LGE labels is presented in bull’s eye plots.

As it can be observed by comparing the RWMA and LGE results in Table 2,
LGE’s are generally lower. This is further discussed in Section 4 and is consistent
with the fact that LGE scores (infarct regions) would be better inferred from
the pixel intensity variation rather than from the surface point positions.
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(a) LGE detection accuracy
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(b) LGE positive predicted value
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Fig. 4. LGE regional leave-one-out results in terms of accuracy and PPV. For each
AHA region, we present the colour-coded (a) accuracy and (b) PPV according to the
scale on the right. Again ES and ESW appear to be the best configurations.
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Also in this case we examined the PPV per scar severity in Figure 3b which
shows similar results to those of RWMA, albeit slightly lower.

4 Discussion and Future Work

From Table 2, virtually all atlas configurations show better classification of
RWMA than LGE scores. The sampling of surface points at one or two time-
points in the cardiac cycle represents a direct measurement of wall motion and
therefore would be expected to robustly detect regions of motion abnormality
(RWMA). Delayed enhancement (LGE) on the other hand is a measure of scar in
the myocardium, and as no image contrast features were included in the model,
the presence of hyperenhanced intensity areas must be inferred by its effect on
wall motion; that is, regions of scar do not move well. As the scar becomes more
transmural, the wall motion decreases and this is reflected in the use of higher
or more abnormal wall motion scores. However the reverse may not be true since
stunned or hibernating myocardium can show wall motion abnormalities with-
out the presence of scar [3]. In such cases an LGE scan would also typically be
performed.

Our tool shows high specificity but relatively low sensitivity. This is largely
due to the limited number of regions of positive wall motion or scar score (≥ 1)
in the sample (see for example Figure 3a). However, a high specificity is desired
in this application since it means that if the predicted score is 0 it is likely that
the true score is also 0, and an LGE scan is not warranted in this case.

The highest performance was achieved when the motion was modelled by
the ES time-point only. Contrary to the expectation of enhancing the model by
having more information in the data, adding ED surface points actually degraded
the classification performance in most cases. The primary reason is that at the
ED phase (when the heart is in its most relaxed state or not yet contracting) most
hearts present no abnormalities. Therefore by adding this non-discriminative
information, the classifier loses prediction power. This is supported clinically by
the fact that ES volume is a better predictor of adverse outcome or prognosis
than ejection fraction [17].

Considering epicardium-registered models (comparing ES with ESW and
EDES with EDESW in Figures 2 and 4), it is clear that there was no signif-
icant improvement when registering the epicardial surfaces to a common fixed
position. It is therefore sufficient to use surface sample points directly without
non-rigid registration. Further work is required to determine whether a full
motion atlas would improve the classifier.

In the experiment to estimate the minimum number of positive samples re-
quired in the training dataset to obtain a reliable classification result, we found
that this number increases as the abnormality becomes less dramatic and there-
fore more difficult to distinguish from normal. This is shown for example in
Figure 3a where to achieve > 80% classification accuracy for a specific label, 28
mildly hypokinetic cases, 14 severely hypokinetic cases and only 8 akinetic cases
are required.
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From Fig. 3a, the classifier was powerful enough to detect almost 100% pos-
itives in dyskinetic segments, even with a low number of positive samples. A
dyskinetic segment shows very impaired wall motion during contraction, thus
providing wide separation from other abnormal wall motion types. Clearly more
cases are required to reliably classify mildly hypokinetic segments, especially
where they are bordering on normal segments. The same sort of behaviour is
observed in Fig. 3b even though the classifier can only infer from the available
data.

In this study, we used a baseline kernel (linear) for the SVM classifier. This
does not mean that SVM is the most optimal classification method for detecting
RWMA and LGE scores, but it shows that SVM is capable of detecting RWMA
and LGE scores with at least 78% accuracy using an ES atlas. We performed the
same experiment with another classifier (Naive Bayes), but it produced worse
classification results (maximum global PPV of 56% was achieved with the ES
configuration for RWMA scores). Further work is required to determine optimal
classifiers.

In conclusion, a motion atlas of the LV has great potential to predict RWMA
and LGE scores, thus assisting clinicians during visual assessment. The most
important application is to alert a clinician to the need for contrast adminis-
tration and a LGE scan based on the initial standard cine images. An SVM
classifier trained by features from ES surface points produces promising results.
However, improvements are still necessary to make the automated RWMA/LGE
classification system acceptable in clinical practice. These include optimising the
kernel, adding more useful features such as more temporal resolution, regional
LV functions (such as regional volume or statistical modes of variation) and
intensity variations from LGE. These are all topics of future research.
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Abstract. X-ray fluoroscopic images are widely used for image guidance  
in cardiac electrophysiology (EP) procedures to diagnose or treat cardiac  
arrhythmias based on catheter ablation. However, the main disadvantage of flu-
oroscopic imaging is the lack of soft tissue information and harmful radiation. 
In contrast, ultrasound (US) has the advantages of low-cost, non-radiation, and 
high contrast in soft tissue. In this paper we propose a framework to extract the 
catheter from both X-ray and US images in real time for cardiac interventions. 
The catheter extraction from X-ray images is based on SURF features, local 
patch analysis and Kalman filtering to acquire a set of sorted key points 
representing the catheter. At the same time, the transformation between the X-
ray and US images can be obtained via 2D/3D rigid registration between a 3D 
model of the US probe and its projection on X-ray images. By backprojecting 
the information about the catheter location in the X-ray images to the US im-
ages the search space can be drastically reduced. The extraction of the catheter 
from US is based on 3D SURF feature clusters, graph model building, A* algo-
rithm and B-spline smoothing. Experiments show the overall process can be 
achieved in 2.72 seconds for one frame and the reprojected error is 1.99 mm on 
average.  

Keywords: Catheter Extraction, Cardiac Intervention, X-ray Fluoroscopy, 
Transesophageal Echocardiography.  

1 Introduction 

In image-guided interventions, X-ray and ultrasound (US) are two dominant modali-
ties, in particular for real-time cardiac interventional procedures.  X-ray images have 
already been widely used to guide standard cardiac electrophysiology (EP) procedures 
which try to diagnose or treat cardiac arrhythmias such as atrial fibrillation (AF). 
However, the drawbacks are its lack of soft tissue information and harmful radiation. 
In contrast, US has the advantages of low cost, high soft tissue contrast and non-
ionizing radiation. It is used in many interventional procedures such as structural heart 
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disease repair. However, the main drawbacks of US imaging are the difficulties in 
catheter visualization where identification of the tip can be especially challenging due 
to acoustic artifacts. This means that US imaging is less explored in standard EP  
procedures to actually guide ablation therapy. 

 

Fig. 1. An example of the system. From top left to bottom right are SURF detection in X-ray, 
catheter extraction by patch analysis and Kalman Filter, 2D/3D registration, 3D SURF detec-
tion and clustering in US, graph construction, shortest path finding and B-spline smoothing. 

Recent research on catheter tracking has mainly focused on X-ray fluoroscopic im-
aging. An earlier approach trying to track a mapping catheter has been proposed in 
[1]. In this work, catheter tracking was accomplished by 3D catheter model genera-
tion, filter-based segmentation and 2D/3D registration using biplane X-ray imaging. 
Another approach for tracking the coronary sinus (CS) catheter to correct respiratory 
motion has been proposed in [2]. Electrodes are detected and a CS catheter is selected 
based on a cost function. In order to distinguish catheters of different size and remove 
catheter-like structures effectively, a learning-based approach has been proposed in 
[3], which segments the circumferential mapping catheter by training a cascade of 
boosted classifiers. Another recent technique also based on learning has been pro-
posed in [4]. The tip and electrodes of the CS catheter are detected by trained binary 
classifiers and catheter hypotheses are generated based on aligning detections with a 
template. The topic of catheter detection and tracking in US imaging has not received 
as much attention as in X-ray imaging. Some research has already discussed the pos-
sibility of tracking devices in US [5, 6]. Recent work has proposed a real-time 3D tool 
tracking system based on US images in [7]. The coordinates of the US sensors 
mounted on a tool have been computed by analyzing US signals impinging on the 
sensors.  

In this paper, we present a framework to extract catheters both in 2D X-ray images 
and 3D US images. The motivation of this research is to introduce soft tissue information 
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from US as well as minimize the X-ray exposure. The extraction from X-ray images is 
performed by SURF feature detection [8], local patch analysis and Kalman Filtering [9]. 
After that, the transformation between X-ray and US images is acquired through 2D/3D 
registration proposed in [10]. This allows the use of a ray casting approach to extract a 
curved surface in the US volume, which corresponds to the likely location of the catheter 
in the US volume. Finally, the catheter along this surface is extracted based on 3D SURF 
detection, feature clustering, graph model construction, shortest path finding and B-spline 
smoothing. An example of the whole process is shown in Fig. 1. The whole framework 
has been tested on both a pair of phantom images and a real patient sequence.  The re-
sults show a total calculation time of 2.72s and around 1.99 mm re-projected error. 

2 Catheter Extraction from X-Ray Images 

2.1 SURF Feature Detection 

The features we use are Speed Up Robust Features [8], also known as SURF, which is 
based on the integral image.  The integral image provides a fast way to calculate the 
sum of intensity values inside a rectangular region on an image. The response of the 
SURF detector is an approximation of the determinant of the Hessian matrix.  

2.2 Patch Analysis 

Given a small square patch on an X-ray image, it is essential to determine whether a 
catheter passes through and get measurements pointing to the next patch. 

First of all, the border of the catheter in the patch should be detected using a Haar 
detector along x- and y-directions. For each Haar feature , , the gradient 
magnitude  and direction  are also calculated. Then, in order to extract the bor-
der of each side of the catheter, a classification is performed.  A histogram of the 
value of    from 0 to  is built and the two values of  corresponding to 

the maximum quantity with an acceptable range (normally within  ) are set as 

the threshold to classify those Haar features. There are two values because we use     instead of only . These values, which we denote as  and , satis-
fy . The edge points can then be classified into three basic categories:  

 

,      ,    2,      ,   2,     (1) 

The classes of Haar features can be fitted using two line equations corresponding to the 
borders of the catheter. Random Sample Consensus (RanSaC) [11] is used to remove 
outliers from  to . The ratio of the size of  to  is used to determine whether 
the catheter passes through the patch. A final central line equation is then determined 
using these two data sets and  using Singular Value Decomposition (SVD). After  
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the parameters of the central line are decided, the direction  of the line and the inter-

section , of the central line with the perpendicular line via the center of the 
patch can be determined through their geometric relationship.  

2.3 Catheter Extraction through Kalman Filter 

By integrating patch analysis into a Kalman Filter framework [9], the whole catheter 
can be extracted from an initial SURF feature. Considering the whole catheter on the 
X-ray image as a path, and each SURF as a start point, a motion model is defined.  

The state vector is denoted by , , , , where  and 
 denote the spatial coordinates while  and  denote angular displace-

ment and velocity at th time respectively. System equations are defined as follows: 

 

1 ω k cos1 ω k sin1 ω k1 σ k  (2) 

where  is the sampling period and σ k ~N 0, σ . The relationship between abso-
lute velocity  and angular velocity  can be denoted by:  

  (3) 

Where the velocity should be constrained in ,  and  denotes how sensitive 
the velocity is in response to the change of  . In addition,  and ,  obtained from patch analysis can be considered as the direct measurements 
of the state variables  and , , i.e. 

 , ,  (4) 

After defining the system model and the measurement model, a sequence of positions ,  can be easily acquired by applying Extended Kalman Filter equations. 
By checking the size of the sequence of positions, it can be decided whether or not 
these are the proper representation of the real catheter on the X-ray image.   

3 Catheter Extraction from Echocardiography 

Because of the low contrast of US images, it is very challenging to extract the catheter 
from US directly. However, the extraction of the catheter from X-ray images and the 
registration between US and X-ray provide strong priors on the location of the cathe-
ter in the US, enabling the search space to be narrowed dramatically.  
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3.1 Registration of TEE and X-Ray Fluoroscopy 

The transformation between TEE and X-ray images can be acquired through register-
ing a 3D TEE probe model to its projection on the 2D X-ray fluoroscopy, as proposed 
in [10]. The transformation matrix  mapping each TEE volume from the 
TEE coordinate system to the X-ray coordinate system consists of three terms: 

  (5) 

where  transforms the 3D US volume to the probe space,   denotes 
the 3D position of the US probe in X-ray space, and  denotes the projection of 
the 3D position in X-ray space to the 2D X-ray image.  and  can be 
acquired from the corresponding imaging devices directly or through calibration, 
while   is calculated by a GPU accelerated 2D/3D registration between the 3D 
model of the TEE probe and its projection in the X-ray image.  

3.2 Feature Detection in Reduced TEE Search Space 

The extracted catheter in the X-ray image is represented by a set of sorted 2D key 
points with their homogeneous coordinates: , , 1 ,1, ,  where  is the size of the set. Suppose the US voxels corresponding to each 
key point on the X-ray image are denoted as , , , 1 , 1, , , 
then the transformation can be denoted by: 

  (6) 

Equation (6) defines a set of rays through the US volume, each of which corresponds to 
a key point on the X-ray image. Thus, the search strategy for the features is to search 
along each ray instead of the whole space, which reduces the searching cost dramatical-
ly. Because of registration and extraction errors, the search space cannot be limited only 
to each ray. Instead, the small space surrounding each ray, within an acceptable thre-
shold, is also searched. The features we used are also SURF, however we use 3D rather 
than 2D SURF. For each ray, the detected features are also clustered with each other if 
they are within a certain distance along the direction of the ray. Thus after searching for 
the   ray, a set of clusters , 1, ,  is also generated automatically, where 

 is the number of clusters corresponding to the   ray. For each cluster   

containing a number of features , a key feature set is defined as:  

 , , , , , , , , , , , , ,  (7) 

each of which corresponds to the maximal or minimal x, y, or z coordinates, and a 
mean center respectively. The standard deviation  of all features is also calculated.  

3.3 Catheter Extraction Based on Graph Model and A* Algorithm 

After a group of clusters has been generated, the next is to find which clusters are 
located on the catheter. The approach is to build a graph and find the shortest path.  
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Considering each cluster as a node on the graph model, all nodes are divided into 
two groups: active and passive. For active nodes, each is linked to only one node on 
the next adjacent ray with zero weight. Each passive node is linked to several nodes 
on adjacent rays. The purpose of doing this is to guarantee the shortest path can pass 
through as many active nodes as possible and can go back to an active node even if it 
reaches a passive one. Nodes near the border and having no active nodes on the last 
ray linking them are considered as starting nodes while those near the opposite border 
with no active node in the next ray linking it can be considered as end nodes.  

The initial weight , ,  of edge from node  to is designed as a linear 

weighted combination of the 3D space distance , ,  between the corresponding 

clusters and two standard deviations of both the nodes  and :  

 , , , , 1   (8) 

where  can be set manually for different situations. In most of our experiments, we 
empirically set it to 0.5. , ,  can be determined using the smallest distance be-

tween any pair coming respectively from feature sets  and .   
After allocating the initial weights, active nodes are selected by thresholding the 

initial weight. Then the final weight will be updated based on the following equation:  

 , , 0   , ,     (9) 

In order to obtain a standard one-start-one-end graph, all start nodes are linked to a 
virtual start and all end nodes to a virtual end with zero weights. Thus the problem to 
extract the catheter is equivalent to finding the shortest path, which can be solved by 
the A* algorithm [12]. Finally, smoothing is performed through B-spline.  

4 Experimental Results 

The algorithm was first evaluated on a pair of phantom images, comprising a 2D X-
ray fluoroscopic image and a 3D TEE image. It was then tested on real patient data, 
comprising a 321 frame X-ray sequence at 30 fps and a 216 frame TEE sequence at 
approximately 6 fps. All of the X-ray images, acquired with a Philips Allura Xper 
FD10 C-arm, have the same size of 512 512 pixels while the TEE images, ac-
quired using a Philips X7-2t TEE probe, are 144 x 160 x 208 voxels. The patient 
was undergoing an aortic valve implant via the minimally-invasive trans-aortic ap-
proach. 2D/3D registrations were carried out under Window 7, on a 2.66GHz, 4GB 
computer with a NVIDIA GeForce GTX 280 graphics card, and all other experiments 
were carried out under the Ubuntu Linux system on a 3.40GHz, 8GB desktop. 

Our experiments are concerned with calculation time and accuracy. The calculation 
time of extractions in X-ray and US data are denoted by  and  respective-
ly. The registration time  is less than 1s. The overall time can be calculated as:  

 max ,  (10) 
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Because the features are detected not only on the surface but within a margin, it is 
feasible to evaluate accuracy through re-projecting the coordinates of the 3D points 
representing the catheter to the X-ray image and comparing them with the original 2D 
points extracted from the X-ray image directly. The error can be formulated as:  

 error ∑  (11) 

where  denotes the projection of the th point in TEE space to the X-ray plane and  
 denotes the nearest point to  on the catheter detected in the X-ray image. 
The phantom experiment was undertaken in a tank of water. The extraction is rela-

tively fast: 0.15s and 1.4s for the X-ray and TEE image respectively. The overall time 
was around 2.4s and the re-projected error was 1.60mm. Fig. 2 (Left) shows the phan-
tom results. The real patient data are used to estimate the average performance. The 
last ten frames in the TEE sequence (the registrations are more accurate) were paired 
with up to 3 X-ray frames which are most likely to be their correspondences. 20 pairs 
were formed and the results are shown in Fig. 3.  The last frames of both X-ray and 
TEE were also paired and the results are shown in Fig. 2(Right). For the patient  
sequence, the average re-projected error and overall time are 1.99mm and 2.72s.  

 

Fig. 2. Catheter Extraction. Left: phantom results. Right: real patient results. The red dots de-
note the catheter extraction in US. The green dots denote the original extraction from X-ray 
while the blue ones denote the back-projections from US to X-ray planes. 

 

Fig. 3. Performance on 20 pairs from real patient data. Left: re-projected errors with an average 
error of 1.99mm. Right: the calculation times with an average overall time of 2.72s.  
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5 Conclusion and Future Work 

We presented a new framework to extract catheters from both X-ray and TEE  
images in real-time. Our experiments show the process for one frame can consume 
less than 3s and the re-projected error is around 2 mm. Catheter extraction from X-ray 
is based on SURF, which are used as seed points. A Kalman Filter is used to extract 
the whole catheter based on patch analysis. This process takes around 1s. Meanwhile, 
the transformation between X-ray and TEE space can be obtained through 2D/3D 
registration between a probe model and its projection on the X-ray image. The regis-
tration takes less than 1s. Based on this registration, a curved surface can be extracted 
in the TEE images and the catheter can be extracted more easily. The 3D SURF are 
detected and clustered along rays corresponding to the catheter points on the  
X-ray image. The clusters are formulated as a graph and the problem to extract the 
catheter is transformed to the shortest path problem, which can be solved by A* Algo-
rithm. Future work includes tracking catheters in both X-ray and TEE sequences in 
real-time.  
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Abstract. The ventricular myocardium has a structure of branching laminae 
through which course regularly orientated fibers, an architecture important in 
excitation and contraction.  DT-MRI is used to measure the fiber and laminar 
orientations. We quantify the performance of DT-MRI and structure tensor (ST) 
analysis of 3D high resolution MRI in five rat hearts and validate these against 
manual measurements. The ST and DT data are more similar for measures of 
the fiber orientation than laminar orientation. The average angle differences of 
elevation angles are 2.3±27.2˚, R = 0.57 for the fiber, 3.62±36.2˚, R = 0.24 for 
the laminae and 10.7±37.9˚, R = 0.32 for the laminae normal. The difference 
between DT and manually measured laminar orientation is 17±15˚ for DT and 
5±10˚ for ST. DT and ST are comparable measures of the fiber orientation but 
ST is a better measure of myolaminar orientation. 

Keywords: myocardium, structure tensor, diffusion tensor, ventricles, small an-
imal imaging, diffusion tensor, structure tensor. 

1 Introduction 

The mammalian ventricles have a unique and specialized architecture consisting of a 
regular fiber-orientation which courses through a conserved and complex myolaminar 
arrangement. Due to the role of these structural features in electrophysiological and 
biomechanical function in both health and disease, their accurate measure is impor-
tant. Changes in fiber orientation and myolaminar sliding are thought to be the prin-
ciple mechanisms of myocardial thickening in systole [1]. Fiber orientation has long 
been known to influence the spread of myocardial activation [2], and furthermore, 
laminar organization has recently been shown to substantially influence activation [3]. 
Myofiber and myolaminar structure are present throughout the myocardium (except in 
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the immediate sub-epicardium) and three principal orthogonal structural directions 
can be defined: (i) along the fiber axis; (ii) perpendicular to the fiber axis in the sheet 
plane; and (iii) normal to the sheet plane. This structural arrangement is known as 
orthotropy [3] (Fig. 1). 

 

Fig. 1. Cardiac laminar and fiber architecture. (A) coronal long-axis section stained with Picro-
sirius Red. Cleavage planes – white, myolaminae – rust-red, collagen and fibroblasts – scarlet. 
(B) magnified region of A. (C) magnified region of B, with a representation of the 3D continua-
tion of myofibers and laminae. The size of a 200 µm voxel is shown and the orientation of the 
myofibers and myolaminae are labeled, with the corresponding eigenvectors from ST and DT. 

Whole-heart computational modeling requires detailed structural atlases [4]. Ideal-
ly these would be from accurate high-throughput 3D imaging but current methods 
have important limitations. 3D histology provides unparalleled spatial-resolution and 
can be used with molecular labeling but it is only applicable post mortem and destroys 
tissue [5,6]. DT has been widely applied and has been validated for fiber and laminar 
measurement against 2D methods but it: (i) has limited spatial resolution [7]; (ii) has 
limited accuracy for laminae [8]; (iii) has not been validated against 3D methods; (iv) 
is SNR sensitive [7]; (v) the microstructural feature imaged is controversial [9]; and, 
(vi) the influence of b-value has not been fully explored [9]. MicroCT has high spa-
tial-resolution and is fast but has not yet been validated in the myocardium. HR-MRI 
has high spatial-resolution, is applicable to the beating heart and it has been validated 
against 2D-histology [10,11]. Structure tensor (ST) analysis is an image analysis me-
thod which derives a tensor from the distribution of gradient directions within the 
neighbourhood of an image voxel [12]. We hypothesized that ST analysis could be 
applied to HR-MRI images to quantify fiber and laminar orientation, and furthermore 
that myolaminar orientations from ST would be more accurate and reliable than those 
from DT as the largest eigenvalue in ST corresponds to the sheet normal direction, 
whereas in DT the largest eigenvalue corresponds to the fiber direction. 
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2 Methods 

2.1 Heart Preparation and Perfusion Fixation 

Male Wistar rats (N = 5) weighing 200 –220 g were euthanized in accordance with 
the UK Home Office Animals (Scientific Procedures) Act 1986, the hearts were re-
moved and retrograde perfused (as in [11]) with: (i) HEPES-Tyrodes to clear blood; 
(ii) BDM to prevent contraction; then (iii) MRI contrast agent (0.1% Gd-DTPA)  and  
fixative (4% formaldehyde). Hearts were imaged within 12 hours of fixation. 

2.2 HR-MRI and DT-MRI Acquisition and Reconstruction 

All hearts were imaged at 20°C using a FLASH (Fast Low Angle SHot) MRI se-
quence in a Bruker (Ettlingen, Germany) 9.4T spectroscope with 20 averages, echo 
time (TE) = 7.9 ms, and repetition time (TR) = 50 ms, taking 18h to acquire at a reso-
lution of 50 x 50 x 50 µm. DT was carried out using the same spectroscope on the 
same hearts with a set of 6 optimized directions using a 3D diffusion-weighted spin-
echo sequence with TE = 15 ms, TR = 500 ms, taking 2h to acquire at a resolution of 
200 x 200 x 200 µm. 

2.3 Structure Tensor Analysis of High Resolution MR Images 

A binary mask was created slice-wise from the segmented images by thresholding in-
tensity values and fractional anisotropy and performing a sequence of morphological 
operations in the following order: clean (removing isolated foreground pixels), bridge 
(connect pixels separated by one background pixel), fill (fill isolated background pix-
els), open (binary opening) and a thicken (add pixels around the exterior of an object but 
do not connect previously unconnected pixels.) Myostructural orientations were com-
puted from the cleaned images by computing intensity gradients with an optimal 5×5×5 
point derivative template [13]. The template was applied to the full 3D image using 1D 
FFT convolution. The structure tensor (the outer product of the intensity gradient vec-
tors) was computed for each voxel in the 3D image. A sequence of structure tensors at 
progressive resolution doubling (i.e. 100 µm, 200 µm, 400 µm, etc.) was determined 
using a level 4 binomial filter. These calculations are completed in around 1 minute. 
The 200 µm smoothed structure tensor data set (64×64×128 tensors) was used to best 
match the expected DT resolution. Eigenanalysis was used to extract the principal direc-
tions from the structure tensor at each discrete point (the calculation requires < 10 s). 
The eigenvector corresponding to the largest magnitude eigenvalue was taken as  
the sheet/laminae normal direction and the eigenvector corresponding to the smallest 
magnitude eigenvalue was taken as the fiber direction (Fig. 1).  

2.4 Comparison of Structure Tensor and Diffusion Tensor Orientations 

A model cardiac geometry, with a manually fitted LV long-axis, was registered to each 
heart MRI by affine registration (using the Insight Tool Kit fast affine registration  
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implemented in Slicer3) with 20 histogram bins, 40000 spatial samples and 4000 itera-
tions. The registered model hence defines: (i) the long-axis (LA) centroid of a cylindrical 
coordinate system for which the elevation and azimuth angles of the eigenvectors were 
calculated. and, (ii) selected regions of interest (ROI) for quantification.  The orientation 
angles reported are defined in detail in [14]. Elevation angles are measured from the 
cardiac short-axis (SA) plane. The fiber helix angle (αH) is the angle between the trans-
verse plane and the projection of the fiber vector onto the circumferential-longitudinal 
plane. The fiber transverse angle (αT) is the angle between the circumferential-
longitudinal plane and the projection of the fiber vector onto the transverse plane. The 
angle between the transverse plane and the projection of the laminar vector onto the radi-
al-longitudinal plane is Β’S. The angle between the longitudinal—radial plane and the 
projection of the laminar vector onto the transverse plane Β’’S .  The angles Β’N  and 
Β’’N correspond to Β’S  and Β’’S but are the orientations of the normal of the laminar 
plane. A mid-heart coronal long-axis plane was selected for visualization and quantifica-
tion, and within this a ROI measuring 5.1 x 5.1 mm was selected and ST and DT Β’S was 
visualised. ST and DT Β’S was compared to manually measured laminar orientation in a 
1.1 x 1.1 mm sub-region, by using ImageJ to measure orientation in 200 µm grid squares 
in the HR-MRI data. 

3 Results 

Fig. 2 shows unprocessed HR-MRI SA and LA images and alongside these are LA β’ 
and αH maps and SA αH and αT maps. As previously demonstrated [10,11] the laminar 
organization can be clearly observed in the HR-MRI images. The αH and αT maps 
show that the values and spatial distribution of the fiber orientation measured by ST 
and DT is strikingly close. The β’ maps reveal related values with some differences 
between the ST and DT determined sheet elevation angle. These differences are in 
regions where the myocardium is compact and cleavage planes difficult to discern. 
The angle distributions (Fig. 2E&F) reflect these observations. 

The ST and DT determined orientations were compared in the selected equatorial 
SA slice (Table 1). The mean angle differences are low for the fiber orientation angles 
(2.3˚ for αH, 1.7˚ for αT) and there is good correlation between the ST and DT αH (cir-
cular correlation coefficient R = 0.57). The correlation of ST and DT αT is weaker (R 
= 0.29). The average angle difference and correlation coefficients for the sheet orien-
tation measures are likewise weaker but all correlations are significant. 
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Fig. 2. Visualization of DT and ST αH, αT and β’ maps and associated angle distributions. (A) 
SA HR-MRI image of ROI. (B) LA HR-MRI image, with the LA ROI highlighted in the blue 
box and the SA ROI highlighted by the red line. (C) LA βS’ and αH for ST (top panel) and DT 
(lower panel).  (D) SA αH and αT for ST (top panel) and DT (lower panel).  (E) Angle distribu-
tions corresponding to images in LA maps, β’S  upper panel,  αH  bottom panel.  (F) Angle 
distributions corresponding to images in SA maps, αH – upper panel,  αT  bottom panel.  

Table 1. The average difference (mean Δ) angles pooled the selected equatorial slice in the five 
hearts. * - correlation statistically significant at p < 0.05. 

  αH αT β’S β’’S β’N β’’N 

mean Δ x 2.3 1.7 3.6 4.8 10.7 6.4 
 σ 27.2 29.1 36.2 36.0 37.9 35.2 

corr. R 0.57* 0.29* 0.24* 0.24* 0.32* 0.34* 

Fig. 3 compares the performance of DT and ST against manual measurement from 
HR-MRI. The magnified regions in Fig. 3E&F allow the visual assessment of the 
performance of ST and DT. In regions where the laminae are clearly defined by clea-
vage planes ST performs better than DT. It is not possible to assess the performance 
of the methods in the regions where laminar structure is not clearly defined (such as 
Fig 3E, top left of image). 
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Fig. 3. Quantitative validation of DT and ST against manual measurements of sheet elevation 
angle (β’) in HR-MRI images. A region was selected from the LA ROI in Fig. 2. (A) ST β’ 
map. (B) The HR-MRI of the ROI. (C) The 3D orientation of the sheet vector within individual 
voxels in the ROI is shown by line glyphs, black for ST, red for DT. (D) DT β’ map. (E) mag-
nified orange box from panel B. (F) magnified green box from panel B. 

Laminar elevation in the ROI in Fig. 3F was manually measured and the angle dif-
ference between the manual measurements (mean ± standard deviation) is 17±15˚ for 
DT and 5±10˚ for ST. 

4 Discussion 

DT and ST produce similar maps of fiber orientation. The maps of laminar orientation 
from DT and ST are related but ST is a consistently more acceptable measure, as 
shown by both visual comparison and by manual measurements. We demonstrate that 
the distinct approaches of DT and of ST produce globally and locally similar maps of 
fiber orientation. Although fiber orientation measurement by ST of myocardial im-
ages has been proposed [15] this is the first whole heart demonstration of the method. 
The quality of the ST αH  and αT maps and the similarity to the DT maps is striking, 
particularly as the HR-MRI spatial resolution is not high enough to allow the manual 
identification of myocytes. Indeed, due to this resolution limitation it is not possible to 
directly validate DT or ST against manual measurements of fiber orientation from the 
HR-MRI data. DT and ST produce maps of laminar orientation which share some 
similarities, but there are also regions of marked difference. We show that the average 
difference between manual and DT β’ measurement is 17±15˚, while it is only 5±10˚ 
for ST β’ measurement in a selected ROI. On this basis we propose that ST of  
HR-MRI is a useful method for measurement of whole heart laminar orientation and 
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performs superiorly to DT. Based on our data, DT provides limited accuracy when 
assessed in myocardium with easily discernible laminae and cleavage plane direc-
tions. An important question for the choice of method used to measure laminar orien-
tation is the degree of accuracy required. Until recently the histological validation of 
DT in the measurement of laminar orientation has been small scale and 2D [16] or 
using an unconventional 2D ink-blot approach [17]. In a recent study the difference 
between histologically and DT determined sheet angles was reported as 8° ± 27° and 
the authors concluded that the measurement of myolaminae by the DT corresponds to 
histology [8]. Therefore, [8] reported a better performance of DT (albeit with high 
standard deviation) than we found. This is particularly of note as in [8] DT was as-
sessed against histology and we assessed DT against HR-MRI. The accuracy of DT 
claimed by [8] is strikingly positive, particularly considering the substantial distortion 
of tissue, which accompanies sectional histological laminar orientation. It is our view 
that DT can be much more reliably assessed against the volumetric HR-MRI method 
as the same tissue preparation is sequentially imaged in the MRI scanner with no 
myocardial distortion or damage. There are some limitations in this preliminary study. 
It is possible that greater numbers of diffusion directions, greater numbers of repeti-
tions, alternative b-values or alternative voxel sizes may increase the accuracy of DT 
applied to the myocardium, and a detailed sensitivity analysis has not yet been  
reported. In this study we assess the performance of 6 directions DT, but recent evi-
dence suggests that this has comparable robustness to 30- or 60-direction data [18]. 
Future studies will incorporate sensitivity analysis of both ST and DT. 
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Abstract. Noninvasive blood flow measurements by 4D flow-sensitive
MRI can be used to compute the intravascular distribution of blood
pressure. In this work, we present an efficient algorithm for this task,
based on the Navier-Stokes equations including zero-divergence condition
for the velocity field. Its accuracy and robustness is investigated on two
different CFD-based software phantoms. The method has been integrated
into research software for analysis of clinical 4D flow measurements, and
is tested on six patients with aortic coarctation. The pressure drop across
the stenosis is quantified and coincides well with published results from
a previously validated solution algorithm.

1 Introduction

The pressure drop across a stenosed blood vessel is an important marker for
assessment of the severity of a cardiovascular disease such as arteriosclerosis or
aortic coarctation. Invasive catheter measurement, which is the current clinical
gold standard, burdens the patient with radiation and a non-vanishing risk of
severe side effects. Noninvasive methods to quantify intravascular pressure gra-
dients would be a highly valuable tool for therapy decision or follow-up studies.
For vessels close to the body surface, Doppler ultrasound provides an estimate
via the simplified Bernoulli formula, but this method is subject to errors by
operator dependence and strong model simplifications.

4D flow-sensitive phase-contrast MRI (4D PC-MRI) provides the opportunity
to measure time- and spatially resolved velocity vectors without the need of
catheterization, radiation or contrast agents [1,2]. Recently, it has been suggested
to use a three-dimensional mathematical flow model (Navier-Stokes equations)
to compute blood pressure maps from the MRI data, relative to a fixed position
within the vessel [3]. The method is based on an iterative solution of the Pressure
Poisson Equation (PPE) using spatial and temporal derivatives of the measured
flow velocities as input. Its principal feasibility has been validated using flow
phantoms [3] and animal studies [4], and the methods shows consistent results
also for human volunteers and patients [5,6]. Despite of this success, in [7] it is
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indicated that the choice of the mathematical model and algorithm details may
have a large influence on the results. In general, a systematic underestimation
of pressure differences is to be expected. This is also consistent with recently
reported reported good correlation, but systematic underestimation compared
to Doppler ultrasound [5].

In the present work, the problem of determining the pressure field from noisy
velocity measurements is put into the framework of mathematical optimization
methods. The resulting optimization problem is approximately solved by a two-
step procedure, in which first the divergent part is removed from the measured
velocity field. Afterwards, the PPE with physically correct boundary conditions
is solved. Both steps are solved by the finite element (FE) method [8]. A similar
two-step procedure was also suggested in [9], but suffered from high computa-
tion times already for two-dimensional data sets. The fast pressure computation
method presented in the present paper is built into a software demonstrator and
is thus readily available for clinical evaluation.

In order to test the accuracy of the method, we present a comparison with two
different software phantoms generated by computational fluid dynamics (CFD).
Additional noise is added to provide realistic input to the pressure solvers and to
test noise robustness. Moreover, the method is tested on six patients with aortic
coarctation.

2 Navier-Stokes Model

2.1 Constrained Optimization Problem

The problem of recovering physiological information from noisy velocity mea-
surement can be cast into a mathematical optimization framework: Given a
noisy space- and time-varying vector field vε(x, t) inside an image bounding
box ΩB ⊂ R3, we are searching a pressure field p(x, t) and a velocity field
v(x, t), which is close to the measurements and fulfills as an additional con-
straint the incompressible Navier-Stokes equations within the time-varying flow
domain ΩF(t),

ρ

(
∂v

∂t
+ v ·∇v

)
− μ∇2v +∇p = 0, ∇ · v = 0. (1)

The density ρ and dynamic viscosity μ of blood are considered as constants
known from literature; gravity has been neglected. This so-called partial dif-
ferential equation (pde) constrained optimization problem can be tackled using
state-of the art optimization methods. However, this approach would have two
important shortcomings:

– The precise location of the pulsating vessel boundaries is not known a-priori.
Typically, only a time-averaged segmentation of the vessel lumen is available
for post-processing of 4D PC-MRI data (so-called phase-contrast angiogra-
phy, PC-MRA).
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Fig. 1. Illustration of original lumen ΩF(t), time-averaged PCMRA segmentation
ΩPCMRA (white+grey) and the reduced computational domain Ω2 (white)

– The computational complexity of a four-dimensional optimization problem
constrained by the Navier-Stokes equations is even on parallel computer
architectures prohibitively large to be applied for a single image analysis.

2.2 Two-Step Algorithm

In this work, we suggest a more efficient two-step procedure to approximately
solve the above optimization problem. In a first step, we eliminate the divergent
part of vε. This step is expected to significantly enhance the measurements,
since the true velocity field must be divergence-free and hence, its divergent
part can be completely attributed to noise and artifacts [10]. In a second step,
the divergence-free velocity field v is used to solve for the PPE for the unknown
pressure field p. It turns out that both problems have very similar structure
and can be efficiently solved using the same algorithm with minor modifications.
For both steps, the precise time-resolved definition of the flow domain is not
necessary, and is replaced by fixed domains Ω2 ⊂ Ω1 ⊂ ΩB. Note that this
does not imply a rigid-wall assumption for the vessel wall, since the pressure
computation including the evaluation of all boundary conditions is performed
fully inside the lumen.

Step 1: Divergence-Filter. For a fixed time point t in the cardiac cycle, find a
vector field v(x, t) minimizing the functional

J1(v) =
1

2

∫
Ω1

|v − vε|2 dx −→ min!

subject only to the constraint ∇ · v = 0 inside a fixed domain Ω1 ⊂ ΩB. If no
boundary conditions are specified, the corresponding Euler-Lagrange system is
a Poisson equation with homogeneous Dirichlet conditions [10], which is to be
solved for each time sample t:

∇2λ = ∇ · vε in Ω1, λ|∂Ω1 = 0, (2)

v(x, t) = vε −∇λ (3)
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Step 2: Pressure-Poisson Equation. For each time point t at which the velocity
field v(x, t) was computed, find a pressure field p(x, t) minimizing the functional

r(x, t) := −ρ

(
∂v

∂t
+ v ·∇v

)
+ μ∇2v, (4)

J2(p) =
1

2

∫
Ω2

|∇p− r|2 dx −→ min! (5)

In general, a given vector field does not possess a potential field, hence problem
(5) is truly an (unconstrained) minimization problem. Its unique solution (up to
an additive constant) is obtained by solving a Poisson problem with Neumann
boundary condition [8]:

∇2p = ∇ · r in Ω2,
∂p

∂n
= r · n at ∂Ω2 (6)

Choice of domains Ω1 and Ω2. For simplicity and in order to avoid interpolation
errors, all computations are performed directly on the voxel grid. All domains
can therefore by defined and processed as image masks.

The filter formulated in step 1 eliminates the divergence of the velocity field
only in the interior of the domain Ω1 and not on ∂Ω1. To avoid artifacts, Ω1

must therefore be larger than Ω2. Candidates for Ω1 are either the PC-MRA
segmentation ΩPCMRA or the image bounding box ΩB; in this work we use
Ω1 = ΩB.

The PPE computation is sensitive with respect to numerical errors from inac-
curate first and second-order gradients close to the vessel boundaries. Therefore,
these voxels should be excluded from the computation. In this work, the Ω2 is
therefore created from the segmentation ΩPCMRA by morphological erosion of
1-2 voxels.

Implementation. The scalar quantities vε,i, vi (i = x, y, z) and λ, r, p are ex-
panded into FE shape functions. The FE mesh coincides with the voxel grid by
choosing trilinear eight-node hexahedral element functions.

The implementation of problem (2) for λ(x, t) is straight-forward and leads
to a linear equation system with symmetric positive definite system matrix,
which is solved efficiently by the preconditioned conjugate gradient method.
Then v(x, t) and r(x, t) are computed using central difference quotients for the

time derivatives and FE matrices of the form L
(l)
i,j :=

∫
Ω1

ϕi∂xl
ϕj dx for the

spatial derivatives within the flow domain. Finally, problem (6) is solved using an
analogous solver as for problem (2). Typical computation times for in-vivo image
data is about 5-10 seconds per time sample on a standard desktop computer.
For a typical time resolution of 20 points, this amounts to a total computation
time of 2-3 minutes for the whole cardiac cycle.

3 Software Flow Phantoms

The computed pressure field is effected by three different contributions from the
Navier-Stokes equations: acceleration, convection, and viscous terms. For pulsatile
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flow in the aorta, the acceleration and convection terms are dominant, while flow
in straight narrow vessels is dominated by the viscous terms. In the creation of
meaningful test data sets, it is therefore important to account for all three terms.
For this study, we suggest two different flow scenarios: (1) steady flow in a straight
stenosed vessel, and (2) steady and pulsatile flow in a pipe bend. Bothmodels were
simulated using the commercial software package COMSOLMultiphysics. The so-
lutions were extracted at a realistic temporal resolution of 0.05 s and were linearly
interpolated to an isotropic voxel grid of size 1mm. Gaussian white noise with re-
alistic signal-to-noise ratio (SNR) values of 3-20 was added to the data in order
to test the robustness of the suggested algorithms. In the results presented in this
work, SNR was equal to 3.

1) Steady Flow in a Stenosis. A stenotic vessel software phantom was created
(Fig. 2). The vessel length was 750mm and the minimal and maximal diameter
was 10.3 and 33.5mm, respectively, which results in a stenosis degree of 90%.
The dynamic blood viscosity was estimated as 0.00424 Pa s, and the density by
1060kg/m3. The mean flow velocity at the inlet was 3.89 cm/s, which gives a
moderate inlet Reynolds number of 163. Inside the stenosis, a velocity of 25 cm/s
was achieved, which corresponds to a Reynolds number of 625. At the outlet,
zero reference pressure was adopted.

2) Steady and Pulsatile Flow in a Pipe Bend. As a non-axisymmetric test data
set, a 180◦ pipe bend model is chosen (Fig. 2), which has fluid mechanical prop-
erties comparable to the human aorta [11]. The geometry is designed for exper-
iments with water, so the simulations are done with fluid properties of water
(ρ = 1000 kg/m3 and μ = 0.001Pa s). The lumen diameter was 8mm and the
bend radius was 72mm. In the inlet, a fully developed laminar velocity pro-
file was specified. For the steady simulation, mean velocity was 20 cm/s and
Reynolds number was 1600. For the non-steady, pulsatile simulation, the mean
velocity was periodically varying in time with time mean 21.5 cm/s, time peak
30.6 cm/s and frequency 1.79 1/s [11]. At the outlet, zero reference pressure was
assumed, which results in an inlet pressure oscillating with the same frequency.
The corresponding time-mean Reynolds number was 1713 and the Womersley
number was 13.4. Both values are comparable to blood flow in a normal human
aorta.

4 PC-MRI Image Data

The described algorithm was tested on PC-MRI measurements from six patients
after aortic coarctation repair [5]. Flow sensitive 4D PC-MRI measurements
covering the entire thoracic aorta were acquired on a 3T system (Magnetom
Trio, Siemens AG) using a navigator respiration controlled and ECG-gated rf-
spoiled gradient echo sequence [1]. Spatial resolution was 1.9−2.4 × 1.7−1.8 ×
2.0 − 2.5mm3, temporal resolution was 39.2 − 40.8ms, velocity encoding was
150− 230 cm/s. No contrast agent was used for this MRI sequence.
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Fig. 2. CFD solutions of the two software phantoms. Left:; velocity magnitude and
pressure fields for the stenosis flow model. Right: Velocity magnitude for the pulsatile
pipe bend flow model.

Data processing was done using research software for analysis of 4D PC-
MRI image data [12]. After correction for eddy-currents and phase-wraps, time-
averaged segmentation of the aorta was done on the PC-MRA image using an
interactive watershed algorithm. After application of the described finite-element
solvers, the resulting pressure field was smoothed and calibrated to zero for all
time steps at a reference point chosen in the abdominal aorta.

5 Results

5.1 Software Flow Phantoms

In order to quantify the accuracy and robustness of the method, computed and
CFD phantom pressure maps were extracted on the vessel centerline and at
single locations inside the vessel. In addition, the time averaged relative RMS
errors over the whole (reduced) vessel mask were evaluated.

For the steady flow stenosis phantoms, the pressure field on the centerline
coincides very well with the CFD solution (Fig. 3), with a relative RMS error

Fig. 3. Computed pressure curves for the steady phantoms. Left: Pressure profile along
the vessel centerline for the straight stenosis model. Right: Pressure profiles along the
centerline for the steady pipe bend model.
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Fig. 4. Computed pressure curves for the pulsatile pipe bend phantom. Left: Pressure
profiles along the centerline at time points t = 0.1 and t = 0.2. Right: Temporal
evolution of the inlet pressure.

Fig. 5. Flow pathlines and pressure difference in a patient with aortic coarctation.
The arrow indicates the location of the stenosis; the colored markers specify the two
positions where the pressure time curves were extracted (Fig. 6).

of 12% for the stenosis case and 7% for the pipe bend. For the pulsatile pipe
bend flow phantom, the error in the centerline pressure varies strongly with the
temporal position within the periodic cycle (Fig. 4, left). This phenomenon is
also seen in the evaluation of the inlet pressure (Fig. 4, right) and results in a
time-averaged relative RMS error of 38%.

5.2 Patient Image Data

For the patient data sets, relative pressure maps were computed with and with-
out divergence filter as the first step in the algorithm. The filter caused a correc-
tion of the velocity field by 11.4% ± 2.7%, as measured by the RMS difference
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Fig. 6. Pressure differences along the centerline of the aortic arch (left image) and
pressure over cardiac cycle at two positions distal and proximal to the stenosis. The
black arrow visualizes the pressure drop evaluation.

Table 1. Pressure drop (in mmHg) across the stenosis in six patient data sets compared
to previously published data

method Pat. 1 Pat. 2 Pat. 3 Pat. 4 Pat. 5 Pat. 6

our method 36 19 3 16 6 8
our method, no divergence filter 33 20 3 20 8 8

iterative PPE solver [5] 34 16 12 28 11 18

Doppler US (simplif. Bernoulli) 37 19 16 29 8 17

between the original and the filtered velocity field. The pressure drop over the
stenosis was quantified in a similar fashion as done in [5]. In Fig. 5, velocity
pathlines and pressure maps during systole are shown for a single patient. Two
points inside the aorta proximal and distal to the coarctation were chosen and
the time-resolved pressure relative to the reference point was extracted (Fig. 6,
right). The peak mean pressure gradient across the coarctation as described in
[5] was determined as the maximum of the difference of the two curves. The
spatially resolved pressure behavior is shown in the centerline pressure curves
(Fig. 6, left).

The pressure drop values for all six patients are summarized in Table 1 and
compared to previously published values computed from the same data by an
iterative PPE solver, and from echocardiography using the simplified Bernoulli
formula.

6 Discussion

We presented a new method for fast computation of pressure difference maps
from 4D PC-MRI data. The key new aspect is the enhancement of the velocity
field by elimination of the divergent part and the use of the finite-element method
for accurate and fast solution of the differential equations. The tests on complex



A Fast and Noise-Robust Method for Computation 223

CFD-based software phantoms suggest that the method is highly accurate for
steady data sets. The results are robust against noise of realistic SNR. The main
source of inaccuracy is the typically coarse time resolution of PC-MRI data sets.

The application for the patient data sets was feasible in all cases and gives
consistent results in very short computation times with only minimal user inter-
action. The comparison with previously reported values obtained with a different
PPE solver shows good correlation, but also significant varying results for single
patients. Since no ground truth is available, the accuracy of the pressure drop
estimation cannot be assessed on the basis of this data. The employment of the
divergence filter slightly influences the resulting pressure drops across the coarc-
tation region. One source of the difference may be the different locations inside
the vessel, where the pressure values are evaluated. Since the pressure drop is
highly sensitive to these positions, we suggest to employ an analysis of the cen-
terline pressure curves extracted from the 3D pressure map instead, for a more
robust estimation of the pressure drop. A systematic comparison of solvers and
evaluation methods on a larger patient group remains for future research.
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Abstract. X-ray angiography is the most common imaging modality employed
in the diagnosis of coronary diseases prior to or during a catheter-based interven-
tion. The analysis of the patient X-Ray sequence can provide useful information
about the degree of arterial stenosis, the myocardial perfusion and other clinical
parameters. If the sequence has been acquired to evaluate the perfusion grade, the
opacity due to the diaphragm could potentially hinder any kind of visual inspec-
tion and make more difficult a computer aided measurements. In this paper we
propose an accurate and robust method to automatically identify the diaphragm
border in each frame. Quantitative evaluation on a set of 11 sequences shows that
the proposed algorithm outperforms previous methods.

Keywords: X-Ray angiography, diaphragm.

1 Introduction and Related Works

Cardiac X-Ray angiography is an imaging modality widely used in the analysis of car-
diac diseases prior or during catheterization interventions. Besides the estimation of
stenosis degree, other qualitative and quantitative analysis can be performed: in the
last five years, some semi-automatic tools for the quantitative computer assisted mea-
surement of the myocardial perfusion level (known as MBG or TIMI-MPG) have been
proposed [3,6,8,5]. All of these methods are negatively affected by the diaphragm mo-
tion. In [3], authors make explicit use of a method for diaphragm border detection [2]
to improve the quality of the region-of-interest tracking that is used to measure the my-
ocardial perfusion. In [6], authors claim that the breathing movements can hide staining
patterns, showing that the diaphragm movement, and the consequent gray-level varia-
tion in an area, can reduce the method ability to measure the myocardial staining. In [8],
authors impose the angiography sequence acquisition to be done while the patient holds
breath and show that the diaphragm movement introduces artifacts in the resulting anal-
ysis. It has to be noted that not all the patients can hold breath for the time required to
a complete myocardial perfusion analysis sequence. In the preliminary work in [5], au-
thors claim that one limitation of their method is that the manually delineated perfusion
area must be isolated from the diaphragm, so that the method applicability is reduced
for certain angiographies projections. All these methods can benefit of a pre-processing
step able to accurately detect and digitally remove the diaphragm border. Moreover,
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in the future, the digital removal of the diaphragm can be used as a tool to enhance
visualization during catheter-based interventions.

To the best of our knowledge, only one method for automatic detection of the di-
aphragm border has been proposed so far [2]. Authors model the diaphragm border as
an arc of a circle. Their method is based on the following pipeline: (1) pre-processing
the frame with a morphological closing operator to remove arteries; (2) apply the Canny
edge detector; (3) use the Hough transform to detect the circle that best fits with the
highlighted edges; (4) apply an active contour model (snake) to refine the result.

Up to now several methods are proposed for delineating the lungs in X-Ray images
[11,1]. However, they are not applicable to the projections used for heart angiographies,
because the lungs boundaries are not visible there.

The main contributions of our paper are: (1) a method which outperforms the state of
the art, exploiting the diaphragm appearance, motion and morphological properties in
a better way and (2) the proposal of a public validation dataset together with a protocol
for a quantitative performance evaluation.1

2 Method

The proposed method has been developed exploiting the characteristics of the diaphragm
in both spatial and temporal dimensions. We define a set of assumptions that will be
used to obtain a robust and accurate diaphragm detection: (1) the diaphragm border ap-
pears as a vertical transition (edge) from brighter (above) to darker (below) gray-scale
levels; (2) the diaphragm movement is continuous; (3) the diaphragm has a moving pat-
tern which differs from the cardiac motion pattern and that pattern could significantly
change from patient to patient; (4) the diaphragm border is a continuous smooth curve
in the image domain. These assumptions have been exploited in an algorithm whose
steps can be summarized as follows: (1) Roughly remove the arteries by means of a
morphological closing operator; (2) Compute an Edgeness measure based on vertical
multi-scale gradients; (3) Extract a set of paths traversing high (and at the same time
similar) Edgeness values through the temporal axis; (4) Perform an unsupervised clus-
tering to determine the set of paths that composes the diaphragm; (5) For each frame,
interpolate the optimal diaphragm shape while removing outlier paths.

2.1 Artery Removal

As claimed in [2], the arterial staining can disturb the identification of the diaphragm
border leading to vertical edges that locally resemble the diaphragm border appearance.
Moreover, edges caused by arteries are normally stronger than the ones due to the di-
aphragm border. To deal with this problem, we apply a morphological closing operator
as in [2], using as structuring element a disk of radius R pixels on each sequence frame
separately. Having an average resolution of 0.34 mm/pixel, to roughly remove arter-
ies up to a diameter of 6 mm, the optimal radius is R = 6 [mm]/0.34 [mm/pixel] =
20[pixel]; this is sufficient to remove even thick left main arteries [4]. Fig. 1 (b) shows

1 The validation dataset is available here: https://sites.google.com/site/
diaphragmdetection/engineering-docs

https://sites.google.com/site/diaphragmdetection/engineering-docs
https://sites.google.com/site/diaphragmdetection/engineering-docs
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an example of the closing filtering. It can be noticed that the removal is not very accu-
rate; however this is not critical since the diaphragm border is maintained and successive
steps of our algorithm allow to delineate it robustly.

(a) (b)

(c) (d)

Fig. 1. Effect of closing operator on the Edgeness result: (a) input frame; (b) after applying the
morphological closing; (c) the Edgeness measure applied on frame in (a); (d) the Edgeness mea-
sure applied on filtered frame in (b)

2.2 Edgeness

Let us define a gray-level sequence as a volume where two coordinates correspond to
the image plane and the third coordinate is time, so that we can write it as a func-
tion I(x, y, t) ∈ R. With the aim of exploiting the first assumption, we compute the
normalized vertical derivative of all sequence frames at different scales as follows:
Vσ(x, y, t) = σI(x, y, t) ∗ ∂G(0;σ)

∂y , where the symbol ∗ denotes the convolution op-
erator and G is a Gaussian kernel with zero mean and standard deviation σ. We use the
Lindeberg normalization [9] so that derivatives at different scales are comparable. Since
we are searching for edges where the upper part is brighter than the lower part, we can
modify Vσ(x, y, t) to cancel its values for edges with the opposite pattern as follows:

Ṽσ(x, y, t) =

{
Vσ(x, y, t) if Vσ(x, y, t) > 0

0 if Vσ(x, y, t) ≤ 0.

To discriminate between noisy edges and consistent edges over scales, we compute the
average vertical modified Edgeness as follows:

Ẽ(x, y, t) =
1

|Φ|
∑
σ∈Φ

Ṽσ(x, y, t)
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where the set of scales is Φ = {1, 2, 4, 8, 16} pixels. The scales have been defined in
octaves to cover all possible sizes of edges caused by the diaphragm border; values
larger than 16 do not provide relevant information and would merely increase the com-
putational cost of the algorithm. Moreover, thanks to the averaging process, only clear
edges will have large positive values of E. We apply the non-linear transformation to
the Edgeness map E(x, y, t) = 1 − exp(−Ẽ(x, y, t)). E(x, y, t) ∈ [0 1] has higher
values at edges resembling a diaphragm border. Fig. 1(c-d) shows two examples of Ed-
geness map respectively for the frames (a-b) - it can be seen that the closing operator
performs a sufficient artery removal.

2.3 From Edgeness to Paths

Let us denote a path p as a curve with a fixed x coordinate and a y coordinate varying
as a function of time: p = {xp, yp(t)}. From the first frame, we select all pixels having
a value E(x, y, 1) > μ(E), i.e. above the average Edgeness for the sequence and use
them as starting points. For each starting point from the first frame (t = 1), we draw a
path by vertically tracking that point from frame to frame (sequentially from t = 2 to
the end of the sequence t = T ). The tracking maximizes the path quality defined with
the following formula:

Qpath(p) =
1

T

T∑
t=1

E(xp, yp(t), t) · S(yp(t), yp(t− 1)) ·M(yp(t), ỹp(t− 1)) (1)

This formula can be split in three parts, which account for different aspects. The ratio-
nal behind the first term E(·, ·, ·) is to encourage the path to transverse points with high
Edgeness values. However, this alone can lead to scattered paths jumping from one max-
ima to another in the next frame. The second (similarity) term S(yp(t), yp(t − 1)) =
1 − |E(xp, yp(t), t) − E(xp, yp(t − 1), t − 1)| ∈ [0 1], imposes minimal Edgeness
value variation between consecutive path points. The third term M(yp(t), ỹp(t)) =

e
− (ỹp(t)−yp(t))2

2σ2
M has been designed to add a smoothness criterion to the path construc-

tion. Here ỹp(t) is the expected value for the time location t, based on the linear
approximation of previous values as Basically, the use of a Gaussian (with its σM pa-
rameter) centered around the expected location ỹp(t) adds a constraint, so that paths are
restricted from changing their trajectories in a way that does not resemble a continuous
movement. All of the three terms are bounded in [0 1], so that their product ensures that
only points fulfilling the three criteria at once are selected. The smoothness parameter
σM has been defined by cross-validation. Fig. 2 shows the plotted error for different
σM values using a training set of 9 images. As it can be seen σM = 5 [pixels] is the op-
timal choice. Changing the linear model for predicting ỹp(t) with a second order degree
polynomial resulted in lower performance. Since the proposed path building is based
on local decisions maximizing equation (1), we allow the construction of multiple paths
given an x. However, to avoid path proliferation, if two paths collide, only the one with
higher path quality is retained, so that at the end of the process we have a set of non-
intersecting continuous paths P . Fig. 3(c) depicts an example of resulting paths. Fig.
3(a) shows an example of paths construction over-imposed on the values of E(x, y, t)
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Fig. 3. Paths construction: (a) an example of paths construction for a given x; (b) Detail of the
bottom left plot in (a); (c) A 3D plot of all the paths, where darker paths correspond to higher
quality paths

for a specific x. As it can be noticed, the paths are smooth while accurately following
the local shape of E(x, y, t); moreover, the paths quickly collapse to a limited number
of paths (see Fig. 3(b)).

2.4 Diaphragm Border Surface as a Collection of Paths

The previous step generates a set of paths P . Each path p has its own trajectory yp(t)
and a quality measure Qpath(p). We want to select a subset D ⊆ P which contains paths
that move in a similar way, so that we make use of the assumption that the diaphragm
has a specific motion pattern. Moreover, we want to retain high quality paths and discard
low quality paths, which normally correspond to false positive detections. To accom-
plish these two steps in a unified way, we perform an unsupervised clustering of both
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(a) (b)

Fig. 4. (a) The paths of Fig. 3(c) colored in accordance to their clusters; the green cluster is the
selected one. (b) The resulting surface after fitting the polynomial function to all the sequence
frames.

motion characteristics and quality measure: (1) Each path is modified so that we remove
its bias, ŷp(t) = yp(t) − μ(yp(t)), where μ is the mean operator. This step removes
the average vertical position of the paths so that the clustering will not be influenced
by (vertical) proximity of paths. (2) A feature vector vp = [ŷp(1) . . . ŷp(T )Qpath(p)]
made of T + 1 elements is built. This vector contains information on path motion (first
T elements) and information on the path quality (last element). (3) We build a matrix V
where each row contains a feature vector vp for each path in P . Since vertical positions
and quality measure are incommensurable we need to normalize V such that every
column has zero mean and unitary standard deviation. (4) We apply an unsupervised
k-means2 clustering; the cluster with the highest mean quality is the one which most
probably defines the diaphragm border as a collection of paths. The use of unsuper-
vised clustering is the most suited way to group paths into a consistent result since the
actual diaphragm motion is unpredictable: a sequence can be acquired while the patient
is holding the breath, or the patient can have irregular breathing pattern. On the other
way, k-means requires the definition of the number of clusters, which we set to three.
The rational behind this setting is to allow the clustering to find one cluster for the di-
aphragm, one cluster for noisy low quality paths and a third cluster which has a motion
pattern that is a mixture of the diaphragm and cardiac patterns. This latter case has been
considered since the morphological operator is not able to eliminate non-tubular struc-
tures that move according to the cardiac cycle. Fig. 4(a) shows the result of clustering
for the case in Fig. 3(c); different clusters are depicted in different colors.

2.5 Imposing Diaphragm Border Smoothness on Image Plane

The previous step defines the diaphragm border evolving curve as a surface composed
by a collection of paths having similar motion and high quality. Nonetheless, the

2 Since the k-means is based on random centroids initialization, and it is not computational
costly, we perform 100 trials keeping the solution with the lowest objective function.
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Initial points 1th iteration 50th iteration 155th iteration (last)

Fig. 5. An example of iterative fitting of a polynomial function to the clustered points

clustering could be suboptimal and paths actually not belonging to the diaphragm bor-
der can fall into the set D. Moreover, up to this point, no smoothness in the image
plane has been imposed. The algorithm’s last step is devoted to these two goals: im-
posing smoothness in the image plane while removing outlier paths. The diaphragm
border is modelled as a polynomial function f(x) = ax2 + bx + c. To estimate the
optimal triplet {â, b̂, ĉ} for a given frame at time t, we employ the following itera-
tive algorithm. We define a set of points C � {(xi, yi)} taken from the paths of the
diaphragm cluster at time t. At each iteration the optimal parameters are estimated min-
imizing the fitting squared error E =

∑
(xi,yi)∈C(f(xi) − yi)

2; If the Thompson Tau
outliers detector [10] on the signed error distribution finds at least one outlier, the point
(xj , yj) = argmaxi |f(xi)− yi| is removed from the set C and the iterative algorithm
continues. If no outliers are found, the algorithm stops. Fig. 5 shows an example of this
algorithm while Fig. 4(b) shows the final surface result.

3 Validation

3.1 Material

We defined a validation set of 16 frames taken from 11 sequences (11 patients, from
which only one is completely holding breath throughout the whole video). The di-
aphragm border in each frame has been marked blindly by two experts. All sequences
have been acquired using a Philips Allura Xper FD20, at 12.5 fps and with an image res-
olution of 0.34×0.34 mm. The C-arm position varies from -41◦ to 97◦ for the primary
angle and from -17◦ to 33◦ for the secondary angle.

3.2 Methods

We compare our proposed method with the diaphragm detection algorithm described in
[2]. We also compute the inter-observer variability between the two ground truth anno-
tations. Moreover, we also provide intermediate evaluations of algorithms.
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(a) (b) (c) (d)

Fig. 6. Four visual results. Blue is the ground truth, red is the method in [2] with snakes and
green is our final detection.

3.3 Validation Protocol

Let GT be the set of points forming the ground truth curve and P be the set of points
predicted by a given method. Considering all the points from each set we use two dif-
ferent measures to validate the prediction against the ground truth:

(1) The Hausdorff distance [7] is the distance between the two most faraway points
from the two sets of points. This measure is very sensitive to predicted points laying far
from the ground truth points but gives little information about the overall precision of
the prediction, thus making it useful in measuring robustness.

(2) The Mean Minimal Distance:

MMD(P,GT ) = 1
|P |

∑
i∈P minj∈GT ||(xP

i , y
P
i )− (xGT

j , yGT
j )||

on the other hand, provides information about the overall precision of the predicted
result. It has to be noted that the MMD is not symmetric.

3.4 Results

Table 1 shows the error results using the Hausdorff and the MMD distances for the fol-
lowing cases (one for each row): inter-observer variability; the method in [2] before and
after the application of the snake; our method prior to the clustering (Our-PC), prior to
the curve fitting (Our-PF) and the final result (Our). For each distance, tables report its
mean, standard deviation, minimum and maximum values. An interesting fact is that
the use of snakes, as expected, can help the method in [2] to improve the results but in
a very limited extent. Regarding our method, it can be noticed that each step improves
the results. Once the paths are built, before the clustering, the method is limited in the
fact that the sequence is analyzed mainly in its temporal dimension, so that a large num-
ber of incorrect paths can be generated. The clustering step selects a set of paths that
potentially represent the diaphragm border; this decreases consistently the MMD error
(three times), but is not able to reduce the Hausdorff distance since few erroneous paths
far from the solution could be maintained. The polynomial fitting ensures a consistent
solution imposing smoothness in the image domain and, at the same time, rejects erro-
neous paths thanks to the outlier detection; this results in a huge improvement in both
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Table 1. Quantitative results. All measures are in pixels.

Hausdorff distance MMD
Avg±Std min max Avg±Std min max

O1 vs O2 25.82±22.75 4 86.33 2.03±2.07 0.78 7.84
O2 vs O1 25.82±22.75 4 86.33 1.41±0.66 0.75 3.35

[2] (no snakes) 83.36±124.37 22.14 429.17 32.09±50.65 14.24 233.49
[2] 84.71±120.73 17.03 407.12 28.04±54.42 10.71 234.17

Our-PC 364±48.5 287 440 132±19.7 108 185
Our-PF 302±58.1 188 385 43.7±25.5 16.7 85.0

Our 29.1±23.5 5.4 97.2 3.00±1.81 1.34 9.55

the Hausdorff and MMD distances (more than one order of magnitude). Results confirm
that taking advantage of temporal and spatial properties of the diaphragm in an unified
way produces far better results than relying only on frame based appearance. The aver-
age errors with their corresponding standard deviations are close to the inter-observer
variability, which is a common way to evaluate a method’s performance related to a
medical expert behavior.

Fig. 6 shows four results; in case (a), both methods detect the diaphragm robustly,
while our (in green) shows a higher accuracy. Case (b) is more difficult and the method
in [2] fails to detect a segment of the diaphragm border. Cases (c) and (d) show that
sometimes the diaphragm parabolic model might be too simple.

4 Conclusions

In this paper we proposed an algorithm for the robust and accurate detection of the
diaphragm border in X-ray angiographies plus a validation methodology for quantita-
tive performance evaluation. Results show that the proposed method is both robust and
accurate. However, further investigation on how to deal with highly challenging cases
is required. As future works, we want to increase the validation dataset and propose a
digital diaphragm removal algorithm based on the detection proposed herein.
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Abstract. Many cardiovascular diseases are linked to anomalies in my-
ocardial fibers. The purpose of this paper is to model the birefringence
of myocardial fibers in polarized light imaging (PLI) with future appli-
cation to measurements on real myocardial tissues. The method consists
in modeling the behavior of a uni-axial birefringent crystal by means of
the Muller matrix, and measuring the final intensity of polarized light
and consequently the orientation of myocardial fibers, by using crossed
polarizers. The method was illustrated with a tissue modeled as a volume
of 100×100×500μm3 . This volume was divided into cubes of size 20μm
close to cell diameter. The fiber orientation within the cube was defined
by azimuth and elevation angles. The results showed that the proposed
modeling enables us to find the optimal conditions for the PLI of 3D fiber
orientations and design a model for the myocardial tissue measurement
from PLI.

Keywords: myocardial fibers, fiber architecture, human heart, fiber ori-
entation, polarizers, polarized light.

1 Introduction

Cardiovascular disease is the first cause of mortality in the world. According to
the OMS in 2030 the number of death will reach more than 17.3 million. Disor-
ders in the heart being linked to myocardial fibers, many studies have tried to un-
derstand the architecture of myocardial fibers in the ventricular mass. Some old
techniques used fiber peeling of the heart from pericardium to endocardium. Mac
Callum (1900) peeled the heart of the pig and human in order to study the fibers
structure. Other techniques were dissection methods, such as those of Mall [1],
Robb [2], and Torrent-Guasp [3], while Hort [4] and Streeter [5] developed histo-
logicalmethods. More recent imaging techniques include diffusion tensormagnetic
resonance imaging (DT-MRI or DTI) [6], [7], [8], [9] and microscopic techniques
using the polarized light imaging (PLI) have been developed. The use of polar-
ized light has been introduced in biology since the end of the 19th century as a
method for studying the structure of the human tissue. The authors of [10] used
the polarized light to study the light scattering in Bacillus subtilis. PLI was also

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 235–244, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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used to visualize superficial layers of tissue where cancer arises in the skin [11],
to analyze the healing after myocardial infarction [12], to establish the cartogra-
phy of the pattern of myofibres in the second trimester fetal human heart [13], to
study the architecture of the ventricle during fetal and neonatal life [14], to make
an analysis of the collagen network [15], to investigate the topography of myocar-
dial cells during embryonic and fetal life development [16], and to characterize the
myocardium, including healthy, infarcted, and stem-cell-regeneration tissues us-
ing polarized light [17]. We used polarized light for many years in order to extract
information in heart in neonatal life. In prior works on cot death, we analyzed
the structure of autopsied hearts in the selected region such as the apex, the right
ventricle and the left ventricle using polarized light, and have been able to observe
the presence of heterogeneity of myocardial cells with a confocal microscopy [18].
However with the confocal microscopy, only a small and two-dimensional region
was observed. More generally speaking, only PLI provides a very robust angular
accuracy and 3D orientationmap of myocardial cells with a high spatial resolution
0.1mm×0.1mm×0.5mm. Also PLI does not involve any human operation during
the measurement process. However PLI cannot be used on the living human heart.
Meanwhile, Some other techniques like DT-MRI or DTI can be used on the living
human heart, but are limited in spatial resolution. On the other hand, although
many researches were reported that are focused on the orientation of the myocar-
dial fibers in polarized light, there is not yet work that addresses the degree of
homogeneity of myocardial fibers.

In this paper, we propose to model the behavior of myocardial fibers in polar-
ized light under controlled condition, and investigate the degree of homogeneity
of the myocardial cells.

2 Materials and Methods

2.1 Sample Preparation

After removing the heart from the thorax, the hearts were perfused and fixed in
a solution of 4% neutral buffered formaldehyde, and then immersed for 1 week in
the same condition. The ventricles were then removed by severing the atria 1 mm
proximal to the auriculo-ventricular groove and the great vessels of 3 mm from
the ventricle. The ventricles were embedded in a resin of methyl methacrylate
(MMA) using a protocol [16]. The specimens were infiltrated under vacuum
(10 mbar) at room temperature in a series of mixtures of glycol methacrylate
(GMA) and MMA in which the concentration of MMA was gradually increased
to obtain pur MMA. The heart was then embedded by polymerization of MMA at
25° C. After polymerization, the heart was clearly seen through the transparent
resin. It can be oriented according to the prerequisite referential system : coronal
transversal, or sagittal. This was done by polishing the base of the block, which
was mounted on the saw stage and determines the plane of serial sectioning,
and a series of thick sections (500 μm) were cut with a diamond wire saw. The
rate of penetration of the rotatory saw was set to a low speed (one hour per
section) in order to avoid mechanical stress and distortions. By canceling the
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optical properties of the collagen network, MMA embedding guarantee that PLI
information was only due to the orientation of the myocardial cells [18].

To study fiber orientation with polarized light, an experimental PLI system
was designed and constructed using the following elements:

a) A light source (unpolarized light i.e. the electric field E vibrating in all direc-
tions).
b) A linear polarizer whose vibration axis vibrates parallel to the West-East
position, with reference to the stage of the virtual optic bench.
c) The birefringent sample to be tested.
d) A second linear polarizer whose vibration axis is perpendicular to the vibrat-
ing axis of the first polarizer.
e) A CCD camera that records the amount of transmitted light.

The optical bench was controlled and monitored by software we developed in
C/C++. Light is an electromagnetic wave; the electric field vector E vibrates
perpendicular to the direction along which it propagates. The light beam is
composed of waves whose vibration axes are randomly distributed. The polarizer
is an optical part which selects a specific vibration direction of the light. When
the vibration axes of two polarizers are perpendicular to each other, without
any birefringent sample between them, the light is blocked and the amplitude
of light is down to zero. When a birefringent sample is rotated between crossed
polarizers, it interferes with the light vibrating axis, and some light is transmitted
across the second polarizer.

2.2 Optical Element Modeling

Thus, the amount of transmitted light is a function of the birefringence of the
sample, and this birefringence is a function of the physico-chemical characteris-
tics of the sample and its orientation with respect to the light. The myocardial
birefringence is due to different molecules : the myosin that behaves like uni-axial
positive birefringent crystal, and collagen that creates a structural birefringence.
In order to collect the myosin birefringence signal alone, we cancel out the colla-
gen structure birefringence, the biological sample was embedded in MMA whose
refractive index is the same as that of collagen. When a polarizer beam crosses a
uni-axial birefringent sample, the ray is divided in two beams (ordinary and ex-
traordinary) that vibrate perpendicular to each other with a difference of phase
that depends on the structural properties of the sample [19]. The birefringence
(no-ne) of the uni-axial sample was measured as the difference of refraction in-
dices of the ordinary ray no and the extraordinary ray ne.

In order to model the optic parts of the above-mentioned PLI system, we
used the Muller matrix, which was initially proposed by Hans Muller in 1940
for representing any optic element by a 4×4 matrix [20]. The Muller matrix is
based on Stokes’ parameters. The light can be described by four parameters,
the first one is the total intensity of the light and the three others describe
the polarization state. If we know the Stokes’ parameters in S(in) and Stokes’
parameters out S(out) of an optic part, the Muller matrix is expressed as
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S(out) = MS(in). (1)

So, each element can be represented by a specific Muller matrix as follows.⎛⎜⎜⎝
S′
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The Muller matrix Md for the depolarizer which insures that the light is not
polarized, can be written as

Md =

⎛⎜⎜⎝
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎞⎟⎟⎠ (3)

where Md(1,1) represents the amplitude of unpolarized light.
The Muller matrix Mp for the polarizers is characterized by α the rotation

angle about the z-axis. It can be expressed as

Mp =
1

2

⎛⎜⎜⎝
1 cos2α sin2α 0

cos2α cos22α cos2αsin2α 0
sin2α cos2αsin2α sin22α 0

0 0 0 0

⎞⎟⎟⎠ (4)

The uni-axial birefringent sample is represented as a stack rotator and phase
shifter

Ms = M(2θ)M(ϕ(Φ)). (5)

The phase ϕ(Φ) of the birefringent sample depends on the birefringence (no-
ne), the wavelength λ, the thickness e of the sample, and the elevation angle Φ.
Therefore, the ellipticity state ε of the sample represents the polarization degree
of the light; it varies from 0<ε<1. Empirically, the uni-axial birefringent of the
sample can be represented by

Ms =

⎛⎜⎜⎝
1 0 0 0
0 d2 − e2 − f2 + g2 2(de+ fg) 2(df + eg)
0 2(de− fg) −d2 + e2 − f2 + g2 −2(dg − ef)
0 2(df − eg) 2(dg + ef) −d2 − e2 + f2 + g2

⎞⎟⎟⎠ (6)

d = cos(2ε)cos(2θ)sin(ϕ/2)
e = cos(2ε)sin(2θ)sin(ϕ/2)
f = sin(2ε)cos(2θ)sin(ϕ/2)
g = cos(ϕ/2)

with

ϕ(Φ) =
2π

λ
(no − ne)e. (7)
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and

(no − ne) = 1.5

⎛⎝ 1√
1− 2(no−ne)max cos2 Φ

1.5

− 1

⎞⎠ (8)

where
ϕ = phase shift
λ = wavelength of light
e = thickness of the sample
no-ne = birefringence of the sample
α = rotation angle of the polarizers
θ = azimuth angle
Φ = elevation angle
ε = Ellipticity (flattening measure of the ellipse).

After calculating the Muller matrix of each optic part, equation 9 was used
to simulate the behavior of the uni-axial birefringent sample in optical bench,
so all our simulation were run with GNU/Octave.

3 Results and Discussion

Based on the above modeling based on optical laws, we are now able to infer the
mean spatial orientation of the myosin filaments for each pixel of the section.
This orientation in space can be described by means of two angles : the azimuth
and elevation angles. The azimuth angle is the angle between the west-east axis
of the stage (x-axis) and the projection of the uni-axial sample direction on the
stage plane, and the elevation angle corresponds to the obliquity of the uni-axial
sample with respect to the plane of the section.

3.1 Light Amplitude Variation with Elevation or Azimuth Angle

The two polarizers were rotated at the same time. The first polarizer angle α1 is
rotated from 0° to 90° and the second polarizer angle α2 is rotated from α1+90°
(so forming two crossed polarizers) with the uni-axial birefringent sample (ε=
0.02) between them. Figure 1a shows how the amplitude of the light varies with
elevation angle for a given azimuth angle (45°). Note that The amplitude of
1.0 corresponds to the initial amplitude of the depolarized light source. Each
curve corresponds to an elevation angle Φ (from 0° to 90°) of the birefringent
sample. All the curves pass through the same corresponding point, that is the
45° point. At 45°, the amplitude of the light is dropped to zero, no light coming
out of the second polarizer. That means, at this point, the azimuth angle θ is not
depending on the rest of the system. The mathematical expression of amplitude
of the polarized light in the setup is

M(1, 1) = Mp1(α1)Ms(θ, ϕ(Φ))Mp1(α2). (9)

M(1,1) : represents the amplitude of the light in the system.
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From the simulation based on the physical equation 9, we deduced a phe-
nomenological model, that can be expressed as

y(α) = Bcos
(
2
(
α+

π

4
− θ

))2

(10)

Least squares method allowed to fit the phenomenological model, that means the
equation 10 with the curves of figure 1a, 1b (fitting at 99%) which come from the
physical equation 9. In turn, equation 10 was used to extract the real parameter
of the system under polarized light, such as the amplitude of the light, and the
orientation of the myocardial cell.

where
B : represents the amplitude of the light (which depends on the elevation and
the homogeneity)
θ : the azimuth angle of the birefringent sample
α :the rotation angle of the linear polarizer couple.

In Figure 1b, we represent the variation of the azimuth angle θ of the uni-
axial birefringent sample (ε = 0.02) from 0° to 180° (with a 20° step) with an
elevation angle Φ set to a fixed value (0°). In this figure, all the curves have the
same behavior except a phase shift that depends on the corresponding azimuth
angle θ.

Note that all the curves are modulo 90° about azimuth angle. Moreover, all
the curves dropped to zeros at their corresponding azimuth angle θ. For example,
for an azimuth of 0°, the corresponding curve passes through its maximum at
45°.

Fig. 1. a) Variation of the light amplitude as a function of rotation angles of the two
polarizers when varying elevation angles and fixing azimuth angle; b) Variation of the
light amplitude as a function of rotation angles of the two polarizers when varying
azimuth angles and fixing elevation angle
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Fig. 2. Simulated volume with fibers having a dispersion angle of 15°, each vector is
shown with a color of its own

3.2 Tissue Element of 100×100×500μm3

After simulating the behavior of a uni-axial birefringent sample, we now apply
the same modeling method to a simulated tissue which was modeled as a mixture
of small uni-axial birefringent elements. The tissue was modeled as a volume of
100×100×500μm3, which is divided into 25 cubic elements, each of which is
formed of 25 cells (of 20 μm). For each cubic element, we set the local 3D
orientation (azimuth and elevation) such that various conditions are experienced:
homogeneous volume (all fibers are parallels) and heterogeneous volume (with
solid angular dispersion, as shown in figure 2). The solid angle defines the angle
dispersion of fibers.

3.3 Homogeneity with Parallels Fibers

In this configuration, the volume is composed of perfectly parallel fibers, without
any variability. We used equation 9 with the same condition, and the uni-axial
birefringent sample was replaced by the volume. The azimuth angle θ of the
volume was set to a fixed value (45°), with a variation of the elevation angle
Φ from 0° to 90°. As expected, since the fibers run perfectly parallel and are
homogeneous, the corresponding curves pass through a minimum value at 45°,
and at this point the amplitude of the light is dropped to zero, which is consistent
with the result shown in figure 1a.

We obtain here exactly the same results as those physically measured with
the real optical bench [21].

3.4 Heterogeneity with Solid Angle Dispersion

In this configuration, cell direction variability has been added to the volume.
The cell orientation of the myocardial fibers is normally distributed and cen-
tered, with a standard deviation σ (solid angle) of dispersion of 15° (figure 2 ).
The azimuth angle θ is still set to a fixed value (45°) and the elevation angle Φ
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is set to 0°. As the volume is not homogeneous, all the curves begin to detach
(offset) from abscissas at 45° as far as the solid angle increases. Moreover the
amplitude of the light is decreased, and different from zero at 45°. This light
leakage in the second polarizer depends on the summation of the disorders of
the myocardial fibers. So, this offset depends on the standard deviation of the
myocardial fibers; this is a consequence of the usual dispersion of fibers orienta-
tion around the mean orientation. Since we introduced variability in a stochastic
manner, the subsequent results are the statistical measurements obtained after
the simulation of 10 data sets. In figure 3a, only one data set is shown. Figures
3b to 3c show, respectively, the variation of the amplitude of the light (param-
eter B), the variation of the azimuth angle (parameter θ), and the offset angle
(parameter A) with an angular dispersion that varied from 0° to 40°. So, all these
curves can be summarized by the following model

y(α) = A+Bcos
(
2
(
α+

π

4
− θ

))2

(11)

A = offset which characterized the heterogeneity; B = estimates amplitude of
the light that depends on both the elevation; θ = azimuth angle; α = rotation
angle of the couple linear polarizer.

Fig. 3. Behavior of the volume in the presence of fiber angle dispersion (solid angle)
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With the modeling results presented above, we can see that it is possible to
predict the degree of homogeneity of the myocardial fibers with three parameters
such as the amplitude of the light, weak variation of the azimuth angle, and the
emergence of an offset.

4 Conclusion

The proposed PLI system modeling allowed us to understand the optical be-
havior of myocardial fibers in polarized light, and will help us to develop an
adequate strategy to extract unambiguously the local 3D orientation (azimuth
and elevation angles) on real myocardial tissues. We are working on applying the
modeling to true human hearts in order to better physically measure the actual
orientation of myocardial fibers.
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Abstract. We propose an angle independent method for quantification
of flow through composite surfaces covering the cross section of car-
diac inflow and outflow tracts. We interleave trigger-delayed 3D colour
Doppler sequences to increase frame rate and use multiple views to in-
crease coverage.

Our method is applied to four patients with Hypoplastic Left Heart
Syndrome (HLHS). Flow and velocity measurement are compared to
Phase Contrast Magnetic Resonance Imaging (PC-MRI). Results are
highly time-resolved and agree well with PC-MRI and show superior
performance compared to standard measurements. Mean dissimilarity
with respect to PC-MRI was found to be 7.35% ± 3.72% (neoaortic
outflow) and 10.15% ± 2.72% (tricuspid inflow).

1 Introduction

Pathological changes to intracardiac blood flow are a frequent occurrence in
many forms of congenital heart disease, like Hypoplastic Left Heart Syndrome
(HLHS). This may be due to valvular stenosis or regurgitation and the presence
of septal defects. Echocardiography is the most frequently used imaging modality
in clinical practice to assess cardiac morphology and function. Quantification
of intracardiac blood flow would assist in the calculation of important clinical
parameters such as cardiac output and intracardiac shunts.

Patient specific cardiac models are currently an intensive active area of re-
search. These models provide new cardiac metrics and complement measure-
ments [1], e.g. calculation of systemic to pulmonary shunt [2], estimation of
valvular regurgitation [3] or calculations of cardiac efficiency [4]. These models
are built on data measured using a wide range of techniques, mainly non-invasive
imaging modalities such as MRI and Spectral Pulsed-Wave Doppler (sPWD).
In particular, accurate time-resolved flow rate can be used as validation or input
to patient-specific cardiac models.
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Accurate flow quantification is often carried out with Phase Contrast Magnetic
Resonance Imaging (PC-MRI) [5]. Apart from being very expensive, PC-MRI
is incompatible with some cardiac implants, can require a general anaesthetic
for infants, and has a comparably long scan time for 3D imaging so is prone to
motion artefacts.

sPWD is one of the most widely used cardiac flow quantifying techniques and
the standard method for velocity measurements in echocardiography. It is widely
available, inexpensive compared to PC-MRI, and images can be acquired in a
few cardiac cycles. However, the method can have low accuracy and repeatability
because flow is computed at a single point and assumed constant over the luminal
cross section and because the echo beam direction must be aligned with the flow
direction. Consequently the measurement is not adequate for cases in which the
cross section is wide because the errors are deemed to be too large. Furthermore,
even small errors in measurement of vessel diameters make a large difference to
the calculated flow volume.

We propose a novel technique which provides angle independent and highly
time-resolved flow quantification. Our proposed method uses multiple 3D colour
Doppler images to estimate flow through a composite surface. Although the idea
of integrating colour Doppler images over Gaussian surfaces was first proposed
two decades ago[6], the potential of this technique has been scarcely investigated.
A few papers have proposed surface velocity integration of 2D colour Doppler
images[7, 8]. More recent work reports flow estimation from integrating 3D colour
Doppler images, showing increase of interest in the potential of these techniques
[9–11]. These approaches were limited by low temporal resolution and small Field
of View (FoV) which reduces the applicability of the method to small regions
with relatively simple flow patterns. In particular, flow measurements in large
valves such as tricuspid or mitral, especially in adults or pathological subjects,
are impracticable with a single view.

The novelty of our approach lies in combining a method to obtain accurate
angle independent flow from 3D colour Doppler with a) increasing the FoV by
using multiple views, which allows coverage of regions impossible with a single
view and b) increasing the temporal resolution by interleaving trigger-delayed
echo Doppler sequences.

2 Description of the Method

Our method can be split into three steps:

1. Temporally interleave data to increase frame rate (Sec. 2.1).
2. Combine two views to increase FoV (Sec. 2.2).
3. Compute flow for every frame (Sec. 2.3).

2.1 Sequence Interleaving

A 3D echo Doppler sequence can be acquired in a few heart beats. However,
the frame-rate is limited by depth and FoV and is generally not fast enough to
analyse dynamic flow behaviour.
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We propose to acquire several sequences i, from the same view, delaying the
acquisition trigger by a short time Δti, and then interleave these sequences.
Instantaneous flow rate is computed frame by frame and then placed at its time
location t within the output interleaved cardiac cycle as follows. Let fi be the
frame rate and hi the heart rate for sequence i. Let hr be the heart rate of the
output interleaved sequence. The time t′i(k) at which the frame k of the sequence
i is located within the output interleaved sequence is:

t′i(k) =
(
k
1

fi
+Δti

)
hi

hr

We impose that the output heart rate hr is the same as the heart rate of one
of the input sequences, denoted reference (i.e. the other input sequences are
temporally registered to the time frame of the reference sequence). The choice
of the reference does not have a significant impact in the result.

2.2 Combining Two Views

Colour Doppler images have a limited FoV, especially in 3D. Therefore, it is
sometimes impossible to achieve full coverage of the region of interest in a single
acquisition. In particular, in congenital diseases like HLHS in which right heart
is abnormally dilated, tricuspid valve is often difficult to cover with a single view.

We propose a method to extend the FoV by combining two views and pro-
ducing composite spherical surfaces (CSS). The two views were registered using
the B-Mode images with a phase-based registration algorithm [12].

Figure 1 shows the process of combining two views. First a standard B-Mode
image (which has a wider FoV) is used to segment the region of interest (e.g. the
tricuspid valve shown in Fig. 1 (a)). The centre of mass P of the segmentation,
which is in the overlap of both views, and the vector between the two beam
sourcesdirection from the Beam Source (BS) of one view to the BS of the other
define the plane from which each segment of the composite surface will be built
(Fig. 1 (b)). Then, a spherical surface (coincident with the frontwave of the
asociated BS passing by P ) is extended at each side of P (Fig. 1 (c)). Finally,
The segmentation is used to clip the composite surface (Fig. 1 (d)).

2.3 Angle Independent Flow Rate from Velocity Integration

Flow rate, Φ(S) is defined as the amount of blood that passes through a surface
S per time unit. Using Gauss’ theorem, flow rate can be computed as

Φ(S) =

¨
S

v · dn̂ =

¨
S

‖v · n‖dS

where v is the instantaneous velocity vector of blood at each point s ∈ S and n
is the vector normal to S at s. In other words, only the component of the velocity
along the vector normal to the surface contributes to flow computation. Since
intensity in colour Doppler images measures the component of the blood velocity



248 A. Gómez et al.

(a) Segmentation. (b) Separation plane.(c) Sphere extension. (d) CSS

Fig. 1. Combination of two views. (a) Segmentation of TV using a BMode image.
Green and red dots represent the BS of each view. (b) Separation plane between views,
defined by the centroid of the segmentation and the vector between the two beam
sources. (c) Spherical surfaces are extended at each side of the separation plane. (d)
The extended surfaces are clipped with the segmentation producing the final CSS.

along the echo beam direction, i.e. orthogonal to the family of spherical front
surfaces, one concludes that flow rate can be computed from integrating colour
Doppler intensities over spherical surfaces centred at the BS. These surfaces are
obviously restricted to the frustum-shaped FoV of the images.

As a result, integrating colour Doppler images over the Composite Spherical
Surface (CSS) defined in Sec. 2.2 yields flow rate with independence of the
insonation angle.

3 Experimental Protocol

Echo Doppler and 2D PC-MRI data were acquired on four patients with HLHS.
For both PC-MRI and echo image acquisition was triggered by the R wave of the
electrocardiogram. Colour Doppler was acquired using a Philips iE33 with a X3-1
3D probe, which produced colour Doppler sequences with a spatial resolution of
0.7mm (scan converted) isotropic and a temporal resolution of 14 to 16fps. PC-
MRI data was acquired on a Philips Achieva 1.5T, during free breathing using
3 averages to suppress breathing motion artefacts. Scan time was in the order
of 1.5 minutes. 2D PC-MRI data had in-plane spatial resolution of 1.05mm
isotropic and a temporal resolution of 40 phases per cardiac cycle. Data was
automatically corrected for phase offsets due to eddy currents [13].

Clinical parameters of interest for HLHS are typically triscuspid valve (TV)
inflow and neoaortic (NaV) outflow. For the inflow, two apical views were ac-
quired covering the full cross-section of the TV. For the outflow, full coverage
was achieved with a single view. In all three views, 3 separate sequences were
acquired with Δt = 0, 20, 40 ms. Each Doppler image was acquired in 7 car-
diac cycles. As routinely done in the clinics, a sPWD was only aquired for the
neoaortic outflow. The full echocardiographic exam lasted less than 10 min.

Flow ratewas calculated in post-processingusing 2DPC-MRI and ourmethod.
Flowwas computed fromPC-MRI data bymanually segmenting the TV andNaV
for each phase. Four experiments were carried out with colour Doppler data: 1)
flow computed using temporal interleaving only, 2) flow computed using combined
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views but no temporal interleaving, 3) flow computed by using combined views and
temporal interleaving, and 4) flow computed from a single sequence, with no inter-
leaving and a single view. Cardiac input and output volumes were calculated by
integrating flow rate with respect to time.

4 Results

Figure 2 shows the estimated flow rate calculated using our method andPC-MRI,
through the NaV and the TV, for patients #1 to #4. Temporal resolution is simi-
lar in both cases, due to temporal interleaving. In general, the echo and PC-MRI
outflow curves can be seen to agree more closely than the inflow curves.
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Fig. 2. TV and NaV flow rate curves on four HLHS patients. PC-MRI is shown in a
solid lines, and our proposed view-combined, temporally interleaved flow from colour
Doppler is shown in dashed lines.

Volume through the both valves (i.e. stroke volume) was calculated by inte-
grating the flow rate throughout the whole cardiac cycle. Figure 3 shows mean
dissimilarity with respect to PC-MRI in total volume, for each patient and for
all averaged, calculated with four cases: 1) our proposed method (view combina-
tion + sequence interleaving), 2) temporal interleaving only, 3) view combination
only, and 4) no temporal interleaving or view combination. For NaV outflow, av-
eraging through all patients, mean dissimilarity increases from 7.35% ± 3.75%
to 8.50%± 6.74% if no temporal interleaving is used.

If we consider TV inflow, using our proposed method yields an average dis-
similarity of 10.15% ± 2.72%. When using view combination only, mean dis-
similarity increases to 13.98%± 8.98%. If temporal interleaving is used but no
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Fig. 3. Dissimilarity in NaV and TV volumes on four HLHS patient, compared to PC-
MRI. Volumes estimated from integrating flow rate curves from Fig. 2. Four cases are
covered: using our proposed method with temporal interleaving and view combination
(TV); using view combination but no temporal interleaving (TV no interleaving); using
1 view with temporal interleaving (TV 1 view and NaV); and using 1 view and no
temporal interleaving (TV no interleaving, 1 view and NaV no interleaving).

view combination, dissimilarity increases to 19.53% ± 7.46%. Dissimilarity is
17.25%± 11.03% when just a single sequence is used, without any interleaving
or view combination.

5 Discussion

We have shown a method to provide accurate quantitative flow measurements us-
ing 3D colour Doppler sequences. We use multiple views to increase the coverage
when needed, and interleave delayed sequences to increase temporal resolution.
In our experiments, NaV was completely covered with one view, therefore view
combination was only used for the TV.

Standard approaches need to assume simple flow patterns, because they lack
temporal resolution, and are restricted to relatively small structures, like aortic
or pulmonary outflow. Our approach increases temporal resolution, and increases
the FoV. This allows us to compute both cardiac inflow and outflow.

In general, our results agreed well with values obtained from PC-MRI, with a
mean dissimilarity close to 10% in patient data. To analyse the significance of this
number, we take into account that although 2D PC-MRI is the gold standard
for non-invasive flow measurement, several parameters such as breathing, inter-
cardiac cycle variability, remaining eddy currents or vessel wall segmentation
introduce errors of up to 10% in flow rate computation [13].
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The error is in general larger for TV inflow than for NaV outflow. This can be
due to several reasons. Inflow present more complex flow patterns than outflow
(which is very close to laminar) and therefore difficult to measure with both PC-
MRI and echo due to the fine scale flow features. Also, the plane through which
flow is computed is not as well anatomically defined as for the outflow, which
makes it difficult to select the same plane in both modalities. Additionally, this
plane is kept in the same place during all the acquisition, while the TV moves
vertically, which incorporates motion artefacts into flow rate. Finally, in HLHS
patients, tricuspid regurgitation is a common issue. Regurgitation produces very
fast jets which will produce aliasing and affect accuracy of flow computation.

Indeed, we believe that the main limitation of our method is the velocity range
that can be measured. In pathological hearts, where high velocity jets can occur,
aliasing cannot always be avoided because the maximum measurable velocity
changes with depth and width of the 3D echo frustum, and in general cannot go
above 150cm/s. This limitation requires the use of dealiasing techniques. Further
investigation is also needed in order to asses reproducibility, repeatability and
robustness against errors in segmentation and registration.

In this work we have limited ourselves to computing flow through a single
surface. However, we can compute flow through an arbitrary number of parallel
surfaces within the extended FoV. This has the potential to increase SNR, e.g.
by weighting the contribution of contiguous surfaces. In addition, if we assume
that maximum velocity occurs at the valve plane, because it is the narrowest
section, using several planes can help correcting for in-plane motion by tracking
the plane of maximum velocity.

Our method for combining two views can be extended to 3+ views, which allow
increased coverage and would provide higher flexibility in surface selection.

6 Conclusions

We have presented a new method for cardiac flow quantification from multi-
view, trigger-delayed and time interleaved 3D colour Doppler images, which is
independent of the view angle.

Although four patient datasets have been processed so far, and results are still
preliminary, we have shown that the method provides flow quantification close to
10% error compared to the current gold standard, 2D PC-MRI. In addition, the
proposed method overcomes the limitation of quantifying flow in large regions,
such as the T.V., by combining several views using CSS.

The method shows potential to rapidly acquire quantitative, high temporal
resolution flow measurements using a standard echo machine. Therefore this
method has the potential to help quantify several cardiac parameters related,
for example, to regurgitation or cardiac insufficiency, and be used for mod-
elling as input boundary conditions or for validation of patient specific cardiac
models.
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Abstract. Computational simulations of the heart are a powerful tool
for a comprehensive understanding of cardiac function and its intrinsic
relationship with its muscular architecture. Cardiac biomechanical mod-
els require a vector field representing the orientation of cardiac fibers. A
wrong orientation of the fibers can lead to a non-realistic simulation of
the heart functionality.

In this paper we explore the impact of the fiber information on the
simulated biomechanics of cardiac muscular anatomy. We have used the
John Hopkins database to perform a biomechanical simulation using both
a synthetic benchmark fiber distribution and the data obtained experi-
mentally from DTI. Results illustrate how differences in fiber orientation
affect heart deformation along cardiac cycle.

1 Introduction

Simulation of cardiac biomechanics requires the definition of a vector field rep-
resenting the orientation of cardiac fibers inside a mesh of the geometry of the
heart anatomy. Fiber information plays a key role, since an alteration of its
distribution or orientation may lead to non-realistic incomplete models. There
are two options for obtaining complete vector fields over the whole myocar-
dial volume. Either using experimental measurements or relying on a rule-based
mathematical model.

Experimental fiber orientation can be extracted from either histological stud-
ies or processing of DTI volumes. Histological cuts provide high resolution mea-
surements of the local orientation of myocites [21,7,17]. Given that they provide
sparse set of measurements, their use in cardiac mechanics simulations requires
interpolation in order to obtain dense fields [7]. Such interpolation introduces ar-
tifacts in fiber orientation that are prone to hinder the simulation of biomechanics
[4]. During the last decade, DT-MRI [16] has been established as the reference
imaging modality for the rapid measurement of the whole cardiac architecture
[5,14,3]. These models are dense and, thus, enable efficient solution of numerical
problems. However, they provide a coarse representation that omits finer details
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at some areas (such as papillary muscles) which might play a significant role
in cardiac electrophysiology and mechanics. Whole-heart models with such fine
details might be achieved by co-registering structural MR and DTMR data with
histological data [11]. Still, a common limitation of fiber models obtained from
experimental data is that they only provide ex-vivo measurements. Therefore
they require volume registration for a general use in geometries different from
the ones used for their computation.

Mathematical models of fiber orientation are defined in terms of the coordi-
nates of myocardial material points in local systems. Among existing methods
[18,9,12], the one described in [18] is the preferred for biomechanical simulations
[1,19,4] because it allows defining fiber orientations in both ventricles. A main
advantage of mathematical models of fibers is that they can be consistently com-
puted in-vivo on any myocardial geometry. A main shortcoming is the validity
of the mathematical assumptions for fully describing the complexity of cardiac
fiber orientations everywhere. For instance, accurate definition of fibers at the
septum or where both ventricles meet remains unknown [1].

In order to select the most appropriate model for simulations, it is manda-
tory to assess the impact that different fiber orientations have on final simula-
tions. Recent studies have validated the mathematical model described in [18]
for the simulation of the electrical propagation [1,19]. The model has been suc-
cessfully applied to the detection of arrythmia [19] and in [1] the authors report
a qualitative comparison to DTI-based fibers. The comparison visually assesses
discrepancies in, both, fiber orientation and simulated electrical propagations.

Even if it is presumed that discrepancies in fiber structure may significantly
influence the simulation of the cardiac mechanics [1], as far as we know, there is a
lack of quantitative studies. This paper explores the impact of the fiber informa-
tion on the simulated biomechanics of cardiac muscular anatomy. We compare
the canine DTI fiber model of the John Hopkins University, JHU, public data
base 1 with the Streeter synthetic model [18]. The two fiber models are used
in an electro-mechanical simulation of the heart [20]. Discrepancies between de-
formations are measured and related to differences in fiber orientations. Results
show that the synthetic model presents a large discrepancy in the z-component
of fibers that underestimates the longitudinal shortening of the left ventricle.

2 Computational Biomechanics

2.1 Cardiac Mesh Generation

Heart anatomy is given by the right and left ventricles and should exclude the
atria. Atria and ventricles are separated by the basal loop, which complex geom-
etry makes it difficult a fully automatic segmentation. Like existing approaches
[13,19,4] we have developed a semi-automated solution using the open source
software platform Seg3D 2. A medical expert placed a set of key-points to locate

1 http://gforge.icm.jhu.edu
2 Seg3D: Volumetric Image Segmentation and Visualization, SCI.
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the heart valves on the MR image stack that conform the atrioventricular bor-
der. Key-point location was done on a set of image slices in coronal and sagittal
views. Finally, a spline interpolation was used to segment the remaining slices
of the volume. A list of voxels uniformly sampled over the volume mask was
meshed as described in Section 2.3.

2.2 Fiber Distribution

We have chosen the following two approaches representative of mathematical
and experimental fiber models:

Mathematical Fiber Model. The local fiber orientation for each node has
been calculated using the simulation package Chaste [10] as described in [12].
First, a map of the minimal distance from each node of the mesh to endocardium
(dendo) and epicardium (depi) is constructed, and the normalized thickness pa-
rameter e is defined:

e =
dendo

dendo + depi

From that, the gradient of distance in each element is used to calculate the
transmural direction. Finally, the so-called helix angle α is calculated to define
the rotation of the fibre along transmural direction:

α = R(1− 2e)n

where R = π/3 for the left ventricle and R = π/4 for the right ventricle. The
parameters of this function are chosen to fit the observations reported in [18].
Following [1] we have considered a cubic (n = 3) and a linear (n = 1) model.

DTI-Derived Fibers. DT-MRI data is provided as a volume of three dimen-
sional tensors. The primary eigenvector denotes the orientation of myocites on
the given voxel. In this work we have used the public database of the JHU. This
database provides MR data and such corresponding DTI information captured
on a set of canine anatomies.

2.3 Efficient Biomechanical Model

The computational framework used is Alya System for Large Scale Computa-
tional Mechanics [6] which allows solving problems for nonhomogeneous
anisotropic excitable media in thousands of processors running in parallel.

Electrophysiology and mechanical deformation are governed by sets of partial
differential equations which are coupled via the free intracellular concentration
and the stretch of the muscle fibers. The electrophysiology is modelled using
the propagation equation of FitzHugh-Nagumo by a diffusion equation with
nonlinear source terms [2] using the computational scheme described in [20].
The mechanical model implemented is based on a large strain total Lagrangian
formulation. The total stress is the sum of a passive and an active contributions.
The passive behavior is considered hyperelastic, orthotropic and compressible.
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A local fiber-sheet-normal coordinate system is defined for every node of the
mesh. The active part is transversely isotropic, with the active stress generated
along the fiber direction [8].

A tetrahedra mesh of the list of voxels sampled on the segmented volume was
generated using Tetgen 3. Fiber field coming from DTI is defined at each node.
In this way both problems, electrophysiology and mechanical deformation, are
simulated on the same mesh, which in turn carries the original information of
the DTI fibers. This procedure avoids interpolation errors that appears when
each problem is solved in a different discrete mesh. Simulation models are im-
plemented using explicit schemes with non-structured FEM meshes. In order to
efficiently solve both problems the parallel coupled multi-physics solver of the
Alya System was used. The parallelization of the code is based on automatic
domain decomposition for distributed memory facilities.

Fig. 1. Discrepancy between synthetic fibers and DTI

3 Experiments

The goal of our experiments is to compare the cubic and linear fiber models
with the fibers extracted from the DTI studies of the JHU public database in
the context of cardiac mechanics simulations. In order to quantify the impact
of discrepancies on simulated cardiac deformation, our experiments focus on
two issues: discrepancies in fiber orientation and impact on simulated cardiac
deformation.

3 http://tetgen.berlios.de/
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3.1 Discrepancies in Fiber Orientation

Fibers computed using cubic and linear models have been compared to the fibers
extracted from the DTI studies. For all models, fibers are given over the car-
diac mesh segmented in Section 2.1. For each point in the mesh, synthetic fiber
orientations are compared to DTI by means of the magnitude of the vector prod-
uct, which, in the case of unitary vectors, corresponds to the sinus of the angle
between them. Therefore it indicates the perpendicularity between fibers, 0 cor-
responding to parallel orientations and 1 to perpendicular ones. We will note
this measure by VPc, VP l for cubic and linear models, respectively.

Fig. 2. Distribution of the discrepancy between synthetic fibers and DTI

Figure 1, shows a Short Axis, SA, cut at basal level and a Long Axis, LA,
cut of VPc (top images) and VP l (bottom images). We also show histograms
of VPc and VP l for the whole myocardial volume in fig.2. We observe that, in
both cases, there is a large discrepancy with DTI fibers. Synthetic orientations
are in general perpendicular to DTI fibers (as shown in the histograms of fig.2).
The difference in orientations is within 40.7± 27.6 degrees for the cubic model
and within 44.6 ± 27.0 degrees for the linear one. Images in fig.1 indicate that
discrepancies mainly occur at myocardial walls, septal unions, papillary muscles
and trabeculae. Meanwhile, the similarity at mid-wall is high everywhere.

Figure 3 (a) visually compares the fiber directions for the 3 models for a
sub-sampling of the myocardial mesh in SA (top) and LA (bottom) views. It
is worth noticing that the main source of discrepancy is in the z-component of
fibers, while x-y components follow similar orientations. The histograms in fig.3
(b) show the distribution of the z-component inside the myocardial volume. The
cubic model is the one that differs most from DTI with a low z-component in
general. Although the linear distribution is closer to DTI it fails to cover the
most vertical vectors, mostly at trabeculae (see fig.1).

3.2 Impact on Simulated Cardiac Deformation

The 3 fiber models have been used to run the electro mechanical simulation
described in Section 2.3. The deformation vector was computed every 4.2 ms for a
period of 0.8 s. This time gap includes the whole systolic cycle and the beginning
of the diastole. For each time t of the cardiac cycle, the simulation provided a
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Fig. 3. Comparison of fibers for the three models

Fig. 4. Rank of displacements difference

vector field over each point of the segmented cardiac mesh that describes the
deformation from time 0 to time t.

For each point in the mesh and time, we have computed the magnitude of
the difference (in mm) between synthetic displacement vectors and DTI-based.
Figure 4 shows the ranks (given by the mean ± standard deviation) of this differ-
ences as a function of time. The largest difference is achieved, for both models,
around 0.3 seconds, which corresponds to the maximal myocardial contraction
at end systole.
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Fig. 5. Snap shot in LA view of the simulated deformations

Figure 5 shows a snap shot of the deformed mesh at t = 0.3 seconds in LA
view. The mesh at time 0 is also shown as a gray grid. Colors in the deformed
mesh correspond to the potential of the electrical propagation. As reported in the
literature [1], we do not observe significant differences in the electrical part, but
a small delay the synthetic models. As suspected, fiber structure are decisive in
the modelling of cardiac mechanics. The cubic model fails short in longitudinal
contraction compared to the linear and DTI models. This is a direct consequence
of its lack of z-component (see histogram in fig. 3). The longitudinal shortening
of the linear model is closer to DTI shortening at basal level, although it un-
derestimates the overall shortening. The basal septal level and papillary muscles
undergo a significant motion in the DTI model that it is absent in the linear one.
We attribute this discrepancy to a lack of the most vertical fibers in the linear
model (see histogram in fig. 3).

4 Conclusions

Accurate fiber orientation is crucial for getting realistic simulations of heart
mechanics. Cubic and linear models underestimate the z component of fibers
and, thus, motion at basal level (cubic) and papillary muscles (linear). It follows
that such synthetic models produce simulations that do not correctly match the
true motion. Our future research includes exploring the impact of discrepancies
in clinical scores of the cardiac function (such as torsion) and analyzing recent
mathematical models [15] based on the helical structure of the heart.

Acknowledgements. This work was supported by the Spanish projects
TIN2012-33116, TIN2009-13618. The 1st author has been supported by The
Ramon y Cajal Program.

References

1. Bishop, M.J., Hales, P., Plank, G., Gavaghan, D.J., Scheider, J., Grau, V.: Com-
parison of Rule-Based and DTMRI-Derived Fibre Architecture in a Whole Rat
Ventricular Computational Model. In: Ayache, N., Delingette, H., Sermesant, M.
(eds.) FIMH 2009. LNCS, vol. 5528, pp. 87–96. Springer, Heidelberg (2009)



260 D. Gil et al.

2. Fitzhugh, R.: Impulses and physiological states in theoretical models of nerve mem-
brane. Biophysical Journal 1(6), 445–466 (1961)

3. Frindel, C., Schaerer, J., Gueth, P., Clarysse, P., Zhu, Y.-M., Robini, M.: A global
approach to cardiac tractography. In: ISBI, pp. 883–886 (2008)

4. Gurev, V., Lee, T., Constantino, J., et al.: Models of cardiac electromechanics
based on individual hearts imaging data. Biomech. Mod. Mechanobiology 10(3),
295–306 (2011)

5. Helm, P., Faisal, M., Miller, M.I., Winslow, R.L.: Measuring and mapping cardiac
fiber and laminar architecture using diffusion tensor MR imaging. Ann. N. Y. Acad.
Sci. 1047, 296–307 (2005)

6. Houzeaux, G., Aubry, R., Vázquez, M.: Extension of fractional step techniques
for incompressible flows: The preconditioned orthomin(1) for the pressure schur
complement. Computers and Fluids 44(1), 297–313 (2011)

7. Nielsen, P., Le Grice, I., Smail, B., Hunter, P.: Mathematical model of geometry
and fibrous structure of the heart. Am. J. Physiol. 260(29), H1365–H1378 (1991)

8. Vázquez, M., Lafortune, P., Aris, R., Houzeaux, G.: Coupled parallel electrome-
chanical model of the heart. Int. J. Num. Meth. Biomed. Eng. 28(1), 72–86 (2012)

9. Peskin, C.S.: Fiber architecture of the left ventricular wall: An asymptotic analysis.
Comm. on Pure and App. Math. 42(1), 79–113 (1989)

10. Pitt-Francis, J.M., Pathmanathan, P., Bernabeu, M.O., et al.: Chaste: a test-
driven approach to software development for biological modelling. Comp. Phys.
Comm. 180(12), 2452–2471 (2009)

11. Plank, G., Burton, R., Hales, P., et al.: Generation of histo-anatomically repre-
sentative models of the individual heart: tools and application. Phil. Trans. Royal
Soc. 367, 2257–2292 (1896)

12. Potse, M., Dube, B., Richer, J., et al.: A comparison of monodomain and bidomain
reaction-diffusion models for action potential propagation in the human heart.
Trans. Biomed. Eng. 53(12), 2425–2435 (2006)

13. Quinn, T.A., Casero, R., Burton, R.A.B., et al.: Cardiac valve annulus manual
segmentation using computer assisted visual feedback in three-dimensional image
data. In: EMBC, WeBPo10.7 (2010)

14. Rohmer, D., Sitek, A., Gullberg, G.: Reconstruction and visualization of fiber and
laminar structure in the normal human heart from ex vivo diffusion tensor magnetic
resonance imaging DTMRI data. Invest. Radiol. 42(11), 777–789 (2007)

15. Savadjiev, P., Strijkers, G.J., Bakermans, A.J., et al.: Heart wall myofibers are
arranged in minimal surfaces to optimize organ function. Proc. Natl. Acad.
Sci. 109(24), 9248–9253 (2012)

16. Scollan, D.F., Holmes, A., Winslow, R., Forder, J.: Histological validation of my-
ocardial microstructure obtained from diffusion tensor magnetic resonance imaging.
Am. J. Physiol. 275(6 Pt 2), H2308–H2318 (1998)

17. Stevens, C., Remme, E., LeGrice, I., Hunter, P.: Ventricular mechanics in diastole:
material parameter sensitivity. J. Biomech. 36, 737–748 (2003)

18. Streeter, D.D., Spotnitz, H.M., Patel, D.P., et al.: Fiber orientation in the canine
left ventricle during diastole and systole. Circ. Res. 24(2), 339–347 (1969)

19. Vadakkumpadan, F., Arevalo, H., Prassl, A.J., et al.: Image-based models of cardiac
structure in health and disease. Wiley Interdiscip. Rev. Syst. Biol. Med. 2(4), 489–
506 (2010)

20. Vazquez, M., Aris, R., Hozeaux, G., et al.: A massively parallel computational
electrophysiology model of the heart. Int. J. Num. Meth. Biomed. Eng. 27,
1911–1929 (2011)

21. Vetter, F.J., McCulloch, A.D.: Three-dimensional analysis of regional cardiac func-
tion: a model of rabbit ventricular anatomy. Prog. Biophys. Mol. Biol. 69, 157–183
(1998)



Generalized Step Criterion Edge Detectors
for Kalman Filter Based Left Ventricle Tracking

in 3D+T Echocardiography

Engin Dikici1 and Fredrik Orderud2

1 Norwegian University of Science and Technology, Trondheim, Norway
engin.dikici@ntnu.no

2 GE Vingmed Ultrasound, Oslo, Norway
fredrik.orderud@ge.com

Abstract. Step criterion edge detector (STEP) has been employed for the detec-
tion of endocardial edges in a Kalman filter based left ventricle tracking frame-
work in previous studies. STEP determines the endocardial edge positions by
fitting piecewise constant functions to intensity profiles, which are extracted on
a tracked surface’s normal directions. In this study, we generalize STEP using
higher order piecewise polynomial functions. The generalized STEP detectors
make different assumptions about the endocardial edge representations, and their
accuracies vary over the endocardial surface and cardiac cycle positions. Accord-
ingly, we combine the responses of the generalized detectors using a maximum
likelihood (ML) approach. Unlike previously proposed ML approaches, our com-
bined edge detector provides a real-time tracking solution as the majority of re-
gressive functions for the polynomial fitting can be computed offline. Compar-
ative analyses showed that the combined detector (1) outperforms each of the
generalized STEP detectors, and (2) provides a comparable accuracy with the
previously defined slower ML approach.

1 Introduction

3D+T echocardiography is a valuable tool for assessing cardiac function, as it enables
real-time, non-invasive and low cost acquisition of volumetric images of the heart. The
automated analysis methods for the echocardiography recordings have received consid-
erable attention over the recent years [1,2]. However, the automated segmentation and
tracking of heart chambers remain challenging tasks due to imaging artifacts; including
speckle noise, shadows and signal dropouts [3]. Furthermore, the real-time detection of
endocardial borders might be desirable for the invasive procedures and intensive care
applications.

State-space analysis using Kalman filtering can be utilized for the tracking of heart
chambers in time dependent recordings. The approach uses a sequential prediction
and update strategy, where surface deformations are first predicted by a kinematic
model, followed by an update step based on information provided by image measure-
ments. Maximum gradient (MG) [4], step criterion (STEP) [5], local-phase [6] and max
flow/min cut (MFMC) [7] edge detectors were previously employed for the detection
of the left ventricle’s (LV) endocardial edges in a Kalman tracking framework. In [8], a
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maximum likelihood (ML) edge detector combining the responses of multiple base de-
tectors via learned statistical inferences was introduced. The ML detector was shown to
be more accurate than the base detectors, however it offered a slower tracking solution
due to the high computational complexity of a utilized base detector, MFMC.

The motivation for our study is to define an accurate and real-time ML endocardial
edge detector. Accordingly, we first define a new set of base detectors that general-
ize STEP to higher order piecewise polynomials. The kth order STEP detector (1) fits
multiple piecewise kth order polynomial functions to a given intensity profile, which is
extracted on a tracked surface’s normal direction, then (2) selects the optimal piecewise
function in the least-squares (LS) sense. Each generalized STEP detector makes differ-
ent assumptions about the intensity distribution characteristics of the myocardium and
blood-pool; the accuracies of these detectors vary depending on the endocardial surface
and cardiac cycle positions. Accordingly, we combine the responses of the general-
ized STEP detectors utilizing a space-time position dependent ML method described
in [8]. The combined detector provides a real-time tracking solution as the majority
of regressive functions for the polynomial fitting can be computed offline. The effec-
tiveness of the introduced method is represented via comparative analyses among the
0th, 1st , 2nd order generalized STEP detectors, proposed ML and previously defined ML
approaches.

2 Tracking Framework

The tracking framework is built around a deformable subdivision model parametrized
by a set of control vertices with associated displacement direction vectors. Model de-
formations are handled by a composite transform, where local shape deformations are
obtained by moving control vertices in the subdivision model together with a global
transformation that translates, rotates and scales the model as a whole. A manually
constructed Doo-Sabin surface is used as a template for representing the endocardial
borders, where the model control vertices are allowed to move in the surface normal
direction to alter the shape.

The tracking framework consists of five separate stages, namely (1) state prediction,
(2) evaluation of tracking model, (3) edge measurements, (4) measurement assimilation,
and (5) measurement update [9].

Endocardial edge detection methods are employed during the edge measurements
stage of the framework. First, N 1D intensity profiles (I1, I2, . . . IN) are extracted, where
each profile is centered by an endocardial surface point and oriented in a surface normal
direction. Ii,k is used for referring to the intensity value of the ith profile’s kth sample,
and M gives the total number of samples in each profile. Next, an edge detection method
is employed for estimating the endocardial edge positions by processing the intensity
profiles. Generalized STEP detectors, and a ML detector combining the responses of
multiple generalized detectors are described in the following subsections.

2.1 Generalized Step Criterion Edge Detectors

The classical step criterion edge detector assumes that the intensity profile Ii forms a
transition from one intensity plateau to another. It calculates the heights of the two
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plateaus for each index value, and selects the index with the lowest sum of squared
differences between the criteria and the image data. For each profile, the edge index is
estimated as:

θ̂ST EP
i = argminα

α

∑
t=1

((
1
α

α

∑
j=1

Ii, j

)
− Ii,t

)2

+
M
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If the plateau heights for the determined edge index are similar (θ̂ST EP
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The minimization task in Equation 1 can alternatively be represented as,
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The STEP detector optimizes three unknown variables: (1) βω
0 giving the estimated

intensity value for the blood pool, (2) βϖ
0 giving the estimated intensity value for the

myocardium, and (3) α giving the expected endocardial position. More explicitly, the
STEP detector (1) fits an optimal single knot piecewise constant function to an intensity
profile for each knot position (Equation 3), (2) then selects the optimal knot position
(Equation 2). Both the function fitting and knot selection procedures are optimal in the
LS sense.

The idea can be generalized to kth order, such that STEPk fits an optimal single
knot piecewise kth order polynomial function for each knot position instead. Using the
notations from Equations 2 and 3, the generalized kth order detector computes,
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Fig. 1. The endocardial edge detection with generalized STEP detectors. (A) The target image and
the intensity profile (red) are represented. (B-1) 0th , (B-2) 1st and (B-3) 2nd order STEP edge
detections are shown; x axis gives the spatial position, y axis gives the intensity, red dots show
the image intensity values on the intensity profile, black lines (curves) are the fitted piecewise
polynomial functions, green regions show the minimized energy functions from Equation 4, and
α shows the detected edge position.

The regression task of finding the optimal parameters can be performed solving βω =(
DT

αDα
)−1

DT
αy, where

βω = [βω
0 , βω

1 , . . . , βω
k ]

T
, Dα =
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. . .
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Dα is a α× (k+ 1) constant design matrix that can be computed offline for all possible

α values (≤ M). Please note that the computation of βϖ =
[
βϖ

0 , βϖ
1 , . . . , βϖ

k

]T
follows a

similar method as the βω’s (see Figure 1).

2.2 Maximum Likelihood Edge Detector

STEPk makes an assumption that the myocardium and blood pool sections of a given
intensity profile can be represented using kth order polynomial functions. However,
this assumption might only be valid for parts of the endocardial surface and cardiac
cycle. As an example, STEP0 might be a proper detector for the apical region, while
performing poor for the basal anterior region at the end systole (ES). On the other hand,
STEP2 might outperform other generalized detectors for the apical region at ES, and
produce highly biased detection results at the end diastole (ED). The responses of the
generalized STEP detectors with orders≤ p can be combined using a statistical learning
approach, where the learned confidences of the base detectors for a given spatial and
temporal position determine their weights.

The system can be described for the ith intensity profile at cardiac cycle position
ζ ∈ [0 : ES, 1 : ED] using a general linear model as:

si,ζ = 1θi,ζ +bi,ζ +wi,ζ, (7)

where
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1. θi,ζ is the unknown endocardial edge position (scalar valued),

2. si,ζ =
[
θ̂ST EP0

i,ζ , θ̂ST EP1
i,ζ , . . . θ̂ST EPp

i,ζ

]T
is the measurement vector for the base edge

detectors,

3. bi,ζ =
[
BiasST EP0

i,ζ , BiasST EP1
i,ζ , . . .Bias

ST EPp

i,ζ

]T
is the learned bias vector,

4. wi,ζ is the noise vector with a learned Gaussian probability distribution function
N
(
0,Ci,ζ

)
for the ith intensity profile at time ζ.

Note that Ci,ζ is a p× p symmetric matrix holding the error covariances between the
base detectors (e.g. Ci,ζ (q, q) holds the error variance of STEPq edge estimations, and
Ci,ζ (q, r) holds the error covariance between STEPq and STEPr edge estimations for
the ith intensity profile at ζ). The bias vector can be merged with the measurement
vector giving,

yi,ζ = 1θi,ζ +wi,ζ. (8)

Maximum likelihood estimator of θi,ζ can be derived as [8]:

θ̂ML
i,ζ =

1TC−1
i,ζ

1TC−1
i,ζ 1

yi,ζ. (9)

θ̂ML
i,ζ is an unbiased estimator with the variance of σ2

i,ζ =
(

1TC−1
i,ζ 1

)−1
. The estimator

variance can be utilized as the measurement noise in the Kalman filter. ML endocardial
edge estimations for the model at ζ are given as,

θ̂ML
i,ζ ∼ N

(
θi,ζ, σ2

i,ζ

)
, i = 1, . . . ,N. (10)

Please see Figure 2 for an overview of the ML training and testing processes.

3 Results

3D echocardiography was performed on 10 healthy subjects and 19 subjects with re-
cent first time myocardial infarction, using a Vivid 7 (26 recordings) or a Vivid E9 (3
recordings) ultrasound scanner (GE Vingmed Ultrasound, Norway) with a matrix array
(3V) transducer. The endocardial border segmentation of the recordings was performed
by a trained medical doctor using a semi-automatic segmentation tool (4D AutoLVQ,
GE Vingmed Ultrasound, Norway).

An N-fold cross validation (CV) was applied for the evaluation of the ML method
(STEP-ML) using the STEP0, STEP1 and STEP2 as the base detectors. For each testing
fold, the other folds were used for learning a ML model at the ED and ES frames. The
ML model included bias, covariance and corresponding ML weights for the base detec-
tors at 528 evenly distributed endocardial surface positions (see Figure 3). The learned
model was later interpolated between ED and ES through the cardiac cycle using a
linear interpolation. For the testing, (1) STEP-ML detector was used in connection to
the Kalman tracking framework with the learned ML model. The error measurements
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Fig. 2. Overview of the ML estimator. Training stage produces a ML model. For a given test
image, (1) the base detectors produces their estimates (green, blue and orange meshes), (2) the
bias of the estimates are eliminated using the ML model, and (3) the base estimators are weighted
and fused using the ML model (yellow mesh).

including the (a) absolute surface point error (ASPE) giving the average absolute dis-
tance of predicted surface points to a ground truth surface, (b) squared surface point er-
ror (SSPE) giving the average squared distance of predicted surface points to a ground
truth surface, and (c) absolute volume error (AVE) giving the average absolute vol-
ume error of predicted surfaces were computed. Similar error measurements were also
computed for the STEP0, STEP1 and STEP2 detectors using all 29 recordings directly
without a CV (as these base detectors do not require a training). For a comparison, a
previously defined ML method (CLS-ML) [8], which uses MG, STEP and MFMC as
the base detectors, was also evaluated via N-fold CV (see Table 1).

Table 1. Absolute surface point (in mm) , squared surface point (in mm2), and absolute volume
(in percentages) errors at ED and ES frames, [ED error - ES error], for the Kalman tracking
framework using STEP0, STEP1 and STEP2, STEP-ML and CLS-ML edge detectors

ASPE [mm] SSPE [mm2] AVE [%]

STEP0 2.211− 2.153 8.862− 8.274 15.718− 13.674
STEP1 2.019− 2.326 7.467− 9.949 10.166− 19.421
STEP2 2.268− 2.941 10.831− 15.428 13.137− 30.547

STEP-ML 1.982− 2.057 8.164− 8.129 12.346− 13.562
CLS-ML 1.999− 2.043 7.542− 7.545 12.592− 14.298
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Fig. 3. 17-segment model representations for the learned ML weights for the base detectors: +2
weight is red, -2 weight is blue, 0 weight is green. Please note that the base detector weights vary
spatially and temporarily. For a given endocardial surface and cardiac cycle position, the sum of
the weights is always 1, where the negative weights are allowed.

Fig. 4. 17-segment model representations for the signed surface error: 4mm overestimation is red,
4mm under-estimation is blue, 0mm no-error is green

Signed surface error polar plots, showing the average signed distances between the
predicted and ground-truth surfaces using 17-segment model of the American Heart As-
sociation [10], for the STEP0, STEP1, STEP2 and STEP-ML detectors are represented
in Figure 4.

In the Kalman tracking framework, a handcrafted Doo-Sabin endocardial model con-
sisting of 20 control points was used as LV model [9]. Edge measurements were per-
formed in 528 intensity profiles distributed evenly across the endocardial surface. Each
profile consisted of 30 samples, spaced 1 mm apart. During the edge detection, normal
displacement measurements that were significantly different from their neighbors were
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discarded as outliers. The tracking framework is implemented in C++, and processed
each frame in 15.5ms with STEP0, 16.3ms with STEP1, 17.7ms with STEP2, 46.6ms
with STEP-ML, and 81ms with CLS-ML when executed on a 2.80 GHz Intel Core 2
Duo CPU.

4 Discussion and Conclusion

In this paper, we first introduced the generalized step criterion edge detectors, then
combined the responses of these generalized detectors using a space-time dependent
ML approach. To our knowledge, step criterion edge detector has not been generalized
to higher order polynomial functions prior to this study.

Our analyses showed that STEP1 and STEP0 outperform the other generalized STEP
detectors at ED and ES frames respectively (see Table 1, rows 1,2 and 3). These results
suggest that the intensity distribution of myocardium and blood pool can be modeled
better by constant functions at ES, and linear functions at ED. The sole application of
STEP2 leads to worse segmentation results (see Table 1, row 3). However, the relatively
high ML weight of STEP2 at mid inferolateral segment during ED shows the positive
contribution of this base detector (see Figure 3, row 1). Accordingly, the combined
usage of generalized STEP detectors, STEP-ML, produces better tracking results com-
pared with the individual applications of the generalized detectors (see Table 1, row 4).
Furthermore, STEP-ML introduces a significantly lower regional estimation bias (see
Figure 4). This is due to the learned bias information stored in the ML model, which is
factored in during the ML estimation.

STEP-ML produced comparable results with the previously defined ML detector,
CLS-ML, [8] (see Table 1, rows 4 and 5). This shows that the linear combination of
generalized STEP detectors can generate close results to MG and MFMC detectors,
which are utilized in CLS-ML. Furthermore, STEP-ML reduces the processing time for
each frame over 42% with respect to CLS-ML.

The current and previously proposed ML based approaches seek for an optimal lin-
ear combination of multiple base detectors. The non-linear detector fusion approaches
might be investigated in a future study. Utilizing base detectors with well defined energy
functions, such as the generalized STEP and MFMC, allows the definition of unified en-
ergy functions for the endocardial edge detection process. The unified energy functions
might help us understand the visual perception process for this specific task; the deriva-
tion and usage of these functions might also be investigated in a future study.
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Abstract. Even using objective measures from DT-MRI no consensus
about myocardial architecture has been achieved so far. Streamlining
provides good reconstructions at low level of detail, but falls short to
give global abstract interpretations. In this paper, we present a multi-
resolution methodology that is able to produce simplified representations
of cardiac architecture. Our approach produces a reduced set of tracts
that are representative of the main geometric features of myocardial
anatomical structure. Experiments show that fiber geometry is preserved
along reductions, which validates the simplified model for interpretation
of cardiac architecture.

1 Introduction

The myocardium presents a distinctly complex architecture compared to the rest
of voluntary muscles. There is an ongoing controversy on how this architecture
translates into a generic geometric model and its correlation between this form
and the function of the cardiac muscle. However, it is widely accepted that my-
ocardial muscular architecture plays a critical role in key functional aspects as
electrical propagation and force production. Researchers have proposed several
interpretations of different conceptual models of cardiac architecture [1, 2] from
either dissection or histology procedures. Still, many researchers reject these
conceptual models due to the inherent complexity and subjectivity of the pro-
cedures used [3, 4]. Indeed, some recent works disagree in their architectural
interpretation of the heart [2, 5]; the argument is nowhere near to a settlement.

Computer analysis of Diffusion Weighted Magnetic Resonance Imaging (DW-
MRI) is the preferred approach for an objective representation of cardiac ar-
chitecture. Among DW-MRI techniques, Diffusion Tensor MRI (DT-MRI) has
been established as the reference imaging modality for the rapid measurement of
the whole cardiac architecture. This technique provides objective discrete mea-
surement of the spatial arrangement of myocytes by observing local anisotropic
water diffusion of water molecules [6]. Due to the high level of detail of these
modalities, extraction of the global architecture of the heart is not feasible by
visual analysis. Currently, most research focuses on the reconstruction and rep-
resentation of this data through tractography [7–11]. This technique represents
spatial coherence of the tensors information through mathematical integration
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of the curves defined by DT-MRI primary eigenvector. These fully detailed trac-
tographic reconstructions have proved their validity for low-level descriptions,
but might fail on a higher level of analysis because of their inherent complexity.
As a consequence, interpretation may still be biased.

In this paper we introduce a multi-resolution tractography-based methodol-
ogy for a comprehensive description of the myocardial fiber architecture. We use
pyramidal decomposition to represent fiber spatial disposition at several levels
of detail. Each reduction level takes into account fiber orientation in order to
better preserve anatomical features across decreasing resolutions. Our experi-
ments show that fiber geometry is preserved along reductions, which validates
the simplified model for interpretation of cardiac architecture.

2 Multi-resolution Tractography

Heart tractography [8] reconstructs cardiac muscular fibers composed by several
streamlines (or fiber tracks) associated to DTI primary eigenvector. A streamline
is a curve tangential to the vector field at any point of such curve. These curves
cannot be solved analytically. For this reason, we reconstruct fibers using a
fifth order Runge-Kutta-Fehlbert integration method with adaptive integration
steps based on an estimation of the integration error. Unlike other methods, our
tractographies ensure data completeness in the sense that the basal loop and the
apex are reconstructed [12].

In any context, it is difficult, or even impossible, to understand the gross geo-
metric features just by examining object details at a small scale. If we step away
from the object we can get a more contextual view, providing us the opportunity
to understand higher-level architectures. Computationally, this can translate in a
multi-resolution approach. Multi-resolution strategies have been widely applied
to process gross detail of data [13, 14], but their potential for getting abstract
representations has been never used. We propose to build a multi-resolution
tractography based on the reconstruction of multi-scale data.

The standard multi-scale generation approach is the linear Gaussian pyrami-
dal representation. This technique applies a Gaussian filtering and later linear
reduction via regular subsampling of the full-scale input. Reduced representa-
tions summarize the original information and represent it at different levels of
detail. The reductions are statistically complete in such a way that the Gaussian
smoothing keeps local information before applying subsampling.

A main concern of Gaussian approaches is that information is equally pro-
cessed for any dimensions. Nevertheless, in a DT-MRI application we have struc-
tural information that can be taken as a reference for anisotropic filtering. For
this reason, we argue that more robust filtering approaches should consider the
anatomical directions of the muscle.

We propose using a Structure Preserving Diffusion (SPD) operator [15] ori-
ented along DT-MRI primary eigenvector, ξ1. Given the original volume to be
filtered, V ol(x, y, z), the diffusion process is given by the following heat diffusion
equation in divergence form:
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SPDt = div(J∇SPD) with SPD(x, y, z, 0) = V ol(x, y, z) (1)

for ∇ denoting the gradient direction of the divergence operator, and J a sym-
metric tensor driving the diffusion process. In order to restrict diffusion to ξ1, J
is defined as:

J = QΛQt =

⎛⎝ ξ11 ξ21 ξ31
ξ12 ξ22 ξ32
ξ13 ξ23 ξ33

⎞⎠⎛⎝1 0 0
0 0 0
0 0 0

⎞⎠⎛⎝ ξ11 ξ12 ξ13
ξ21 ξ22 ξ23
ξ31 ξ32 ξ33

⎞⎠ (2)

for ξi DT-MRI eigenvectors. In our case, (1) is applied to each of ξ1 components.
In [15] it is shown that (1) has a unique solution that corresponds to solving the
heat equation along the integral curves of ξ1.

Decimation is obtained as in the Gaussian aproach, by the posterior linear
reduction via regular subsampling of the full-scale input.

2.1 Implementation Details

The volume diffusion defined by equation (1) is implemented using 1-dimensional
Gaussian kernels for weighting the values of the volume V ol along the direction
given by ξ1. We observe that this would imply integrating the field ξ1 for large
times (scales). In order to avoid such integration, we will iterate the basic dif-
fusion operator given by the volume diffused a minimal time unit t0 (scale) as
seen in Fig. 1. By uniqueness of solutions to parabolic PDE [16], the k-th itera-
tion corresponds to the solution to (1) at time kt0. For each voxel, (x, y, z), the
volume diffused at the minimal scale, SPD(x, y, z, t0), is given by:

SPD(x, y, z, t0) = g−1SPD(x− ξx1 , y − ξy1 , z − ξz1 , 0) + g0SPD(x, y, z, 0)

+ g1SPD(x+ ξx1 , y + ξy1 , z + ξz1 , 0) (3)

for (gj)
1
j=−1 the coefficients of a 1-dimensional gaussian kernel of size 3. By

iterating (3) k times:

SPD(x, y, z, kt0) = g−1SPD(x− ξx1 , y − ξy1 , z − ξz1 , (k − 1)t0)

+ g0SPD(x, y, z, (k − 1)t0)

+ g1SPD(x+ ξx1 , y + ξy1 , z + ξz1 , (k − 1)t0) (4)

we compute the solution to (1) at time kt0. In the case of DTI primary eigen-
vector, the iteration (4) is applied to each of its components.

As in any diffusion process, boundary values deserve special treatment. In
our case, due to DTI acquisition, the most undesired artifacts could appear
at myocardial boundaries as a consequence of blending anatomical information
with arbitrary adjacent data. A common way of coping with boundary artifacts
is by propagating the values of the diffused function outside their domain of
definition, that is, the myocardium. This propagation has to be performed across
the domain boundaries in order to produce consistent extensions. We propose a
boundary propagation based on the gradient of the distance map to a mask of
the myocardial volume. Each non-anatomic voxel value is replaced by the closest
boundary voxel value in the direction of the gradient.
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Fig. 1. Schematic example of anatomical filtering procedure

3 Results

There are two potential sources of error in a multi-resolution tractography. Los-
ing anatomical information in the filtering step, and errors in the tractography
integration introduced by the decimation of the resolution.

The loss of information in the filtering step strongly depends on the capabil-
ity of the diffusion for preserving anatomical structures. In this context, SPD is
more suitable than Gaussian reductions, at least for intensity volumes. Concern-
ing errors in the tractography integration, they are a consequence from working
in the discrete domain. The tractographic integration operates on a continuous
vector field extrapolated from the original discrete domain, by linear interpola-
tion. Therefore, the impact of such interpolation on reduced scale level should
be determined.

In order to asses the above sources of error, we have applied our methodology
to seven ex-vivo healthy canine studies from the JHU public database [17]. The
data set was arranged in about 256 x 256 x 108 array (depending on the scanned
heart) where each voxel in the array consisted of 3 eigenvalues and 3 eigenvectors.
Two experiments have been performed:

– Impact of volume filtering: The original primary eigenvector has been
compared to its filtered version using Gaussian kernels and SPD. This exper-
iment validates which filtering is better suited for the full-scale tractography.

– Impact of interpolation in reduced tractography: The reduced vol-
umes (previously filtered) have been up scaled using linear interpolation and
compared to the filtered full scale volumes. This experiment allows us to
compare our simplified tractographic reconstruction performance in front of
the reconstruction on original data.

In order to compare vectors we have computed voxel-wise angular differences as
reported in the literature [18, 19]. Results are statistically summarized using his-
tograms for each canine study, as well as, the central quartile of the distribution.
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Fig. 2. Voxel-wise statistics between original and filtered volumes

3.1 Impact of Volume Filtering

Figure 2 shows the histograms for Gaussian and SPD (Anatomic) filtering ap-
plied to all the canine samples, and the ranks given by the central, second and
third quartiles of the distribution. First, we observe in Fig. 2(a) that the SPD
histograms are the most stable ones. This is probably due to a better contex-
tualization of myocardial anatomy. Gaussian filtering histograms significantly
vary across canine anatomies. Additionally, ranges in Fig. 2(b) show that our
anatomical filter performs better, having its central quartile ranging from 2 to
6 degrees. In contrast, Gaussian has considerably higher values, second quartile
ranges from 5 to 11 degrees. This selects SPD as the best filtering for full-scale
representations.

3.2 Impact of Interpolation in Reduced Tractography

Figure 3 show the same description as Fig. 2 but applied to the comparison of
filtered with sub-sampled volumes. Gaussian pyramidal representation its still
offering an inferior performance than the SPD approach. However, in the his-
togram traces shown in Fig. 3(a) it is difficult to appreciate any significant differ-
ence between the two methodologies. Figure 3(b) reveals more precise differences
between the two methodologies. In this experiment, SPD have medians in the
range of 6 to 7 degrees of angular error. Gaussian presents a similar behavior
ranging from 6 to 8 degrees. It is clear that the linear interpolation applied on
the tractography have an stronger impact in the non-isotropic methodology. The
effect of sub-sampling on the Gaussian approach is clearly smaller. At this point,
we attribute the loss of power of the SPD method to the isotropic nature of the
re-interpolation that is used by the integration method to obtain a continuous
vector field.
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Fig. 3. Voxel-wise statistics between sub-sampled (filtered and sub-sampled) and fil-
tered volumes

Fig. 4. Reduced (left) and full-scale (right) tractographic reconstructions of the same
heart sample and a detail of the reconstruction of the complex structure of the Basal
Ring

3.3 Cardiac Architecture Interpretation

The application of this work in terms of easing the interpretation of tractogra-
phy can be visually assessed. Figure 4 shows our multi-resolution tractographic
reconstruction of a sample canine heart, full-scale, and simplified. The simplified
model keeps the main geometric features of fibers allowing an easier identification
of global tendencies. It is important to notice that differences between Gaussian
and SPD reductions are not easily identifiable with naked eye. However, SPD
reductions are guaranteeing us more precision for future analysis.
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4 Conclusions

Tractography of Diffusion Tensor MRI has enabled a new approach for an au-
tomatic and objective representation of the heart anatomy with high detail.
However, the medical research to understand cardiac form and function depends
on the interpretation of the essential structures of myocardial muscular architec-
ture. These gross structures are not easily extrapolated from micro-architectural
detail.

For that reason, we have considered a multi-resolution methodology that takes
into account anatomical properties from DT-MRI to represent simplified trac-
tographies of the cardiac anatomy.

The experiments show that this physiologically informed multi-scale repre-
sentation gives remarkably higher performance than the application of classical
Gaussian pyramidal decompositions for the full-scale tractographic reconstruc-
tion. The volumes sub-sampled using the anatomical filtering provide slightly
better results than the Gaussian approach. However, we consider that the linear
isotropic nature of the bilinear interpolation used by the integration method can
not take advantage of the inherent anisotropy of the anatomical filetring. Given
the observed results, we are currently focusing our work on the study of the
impact of multi-resolution schemes to the reconstruction. Our aim is to obtain
more complete results from a geometrical study of reconstructions.
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Abstract. Whole organ scale patient specific biophysical simulations
contribute to the understanding, diagnosis and treatment of complex
diseases such as cardiac arrhythmia. However, many individual steps
are required to bridge the gap from an anatomical scan to a personal-
ized biophysical model. In biophysical modeling, differential equations
are solved on spatial domains represented by volumetric meshes of high
resolution and in model-based segmentation, surface or volume meshes
represent the patient’s geometry. We simplify the personalization pro-
cess by representing the simulation mesh and additional relevant struc-
tures relative to the segmentation mesh. Using a surface correspondence
preserving model-based segmentation algorithm, we facilitate the inte-
gration of anatomical information into biophysical models avoiding a
complex processing pipeline. In a simulation study, we observe surface
correspondence of up to 1.6mm accuracy for the four heart chambers.
We compare isotropic and anisotropic atrial excitation propagation in a
personalized simulation.

Keywords: model-based segmentation, electrophysiological structures,
biophysical modeling and simulation.

1 Introduction

Personalized simulations of the heart [18] require – in addition to patient anatomy
– structures such as the fast conduction tracts or muscle fibre directions hardly
visible in clinical images but key for excitation propagation. Given the pa-
tient’s heart anatomy, this information may be reconstructed by rule-based ap-
proaches [19,9] or by mapping a specific atlas to the patient [12]. Model-based
segmentation (MBS) [5,21] allows to directly link this information to the generic
model subsequently personalized by adaptation to an image. Good surface cor-
respondence after the adaptation process (as suggested by [8]) is a prerequisite.

We propose a generic interface for MBS, in which meshes carry additional
information such as fast conduction tracts or muscle fibre directions. Anatom-
ical personalization is achieved by representing relevant structures relative to
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Fig. 1. Interface for structure encoding. Left: Functional structures (green) are en-
coded by linear combinations (thin dotted lines) of vertices of the segmentation mesh
(blue) elements such as triangles or tetrahedra. Right: The mesh can be adapted to
patient anatomies and the encoded structures transform accordingly.

the (partly volumetric) segmentation mesh prior to adaptation, see Fig. 1 (bot-
tom left). During the adaptation of the segmentation mesh to image data, the
structures are deformed in the same way as the mesh, see Fig. 1 (bottom right).
The positions of the structures in an average anatomy can be obtained from his-
tological studies or specialized measurements beforehand. For fast conduction
tracts, this information is qualitative rather than quantitative [13] and cannot
be obtained from CT scans. Relative encoding or atlas-based approaches do not
capture variations across patients per se; these have to be modeled on top.

We investigate for the MBS approach presented in [5], to what extent vertex
positions of the generic model are mapped to corresponding positions. Because
a dense set of thousands of manual landmarks as ground truth can hardly be
defined with sufficient accuracy, we perform MBS of a patient’s dataset using
the heart shape derived from other individuals as starting point. As metric,
we compare the distance of corresponding vertices along the mesh surface. We
map muscle fibre directions and fast conduction tracts to the right atrium and
simulate atrial excitation propagation on a patient-specific mesh.

Previous approaches use a pipeline of segmentation, marching cubes meshing,
mesh decimation and atlas registration [16] or surface correspondence matching,
subsampling and thin plate spline warping [7,11]. We avoid these steps.

2 Encoding of Simulation Structures

Since the resolution of segmentation meshes is optimized for segmentation and
not for biophysical simulations, we cannot simply attach structures to mesh ver-
tices. In order to decouple mesh resolution from simulation structure positions,
we use local coordinates (relative to the segmentation mesh) α ∈ R

d
+ instead of

global coordinates. A segmentation mesh M is composed of a set of vertices VM
and a set of elements EM. Every element e ∈ EM is a convex combination of a
small set of vertices {v1, ..,vd} ⊂ VM. Triangles and tetrahedra are very common
mesh elements. As the elements e are convex sets of points, we can represent any
of their interior points x ∈ e ⊂ R

3 in terms of local coordinates x =
∑d

i=1 αivi
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Fig. 2. Four views on one out of the 37 segmented CT data sets

where αi ≥ 0 and 1 =
∑d

i=1 αi. For a point x outside the mesh M we have two
options: On the one hand, its projection z = PM(x) = argminz∈e∈EM ‖x − z‖
can be used (discarding small numerical deviations). On the other hand, we can
explicitly encode finite wall thickness in (or height above) a triangulated surface
by the scaled normal ñ = n/

√
‖n‖, n = (v2 −v1)× (v3 −v1) using the relation

x =
∑3

i=1 αivi+α4 · ñ. The factor
√
‖n‖ (unlike ‖n‖) rescales the wall thickness

linearly and not quadratically as the normal n would.
We represent directions (and not positions) of muscle fibers f ∈ R

3 as vectors

starting at e’s center by f =
∑d

i=1(αi − 1
d )vi.

3 Analysis of Surface Correspondence

In the following, we empirically assess the surface correspondence achieved by the
segmentation algorithm [5] after different shape initialisations. First, we describe
our evaluation approach (3.1), next, we discuss the distance measures used (3.2)
and then, we present results on a dataset of 37 CT scans (example shown in
Fig. 2) acquired by a Philips iCT scanner (3.3 and 3.4). Finally, we describe a
simulation of excitation propagation in the human atria (3.5).

3.1 Approach

An assessment of the surface correspondence by a densely sampled set of ground
truth landmark points is practically impossible. Therefore, we follow an indirect
approach where we look at the positional error of the segmentation algorithm
itself instead of the anatomical variation in a group of patients.

The segmentation algorithm [5] applies a sequence of parametric, multi-affine
and deformable adaptation steps to an average initial shape balancing attraction
by the initial shape and the image features. The final nonrigid adaptation of the
mesh (as done in [5]) is driven by two energies: an internal energy provides the
mesh with stiffness along the surface and keeps the vertex distribution similar to
the mean mesh (surface curvature is not penalised) and an external energy pulls
the mesh along its normals towards edges with features similar to the ones in the
training set. There is no explicit mechanism to enforce surface correspondence
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Fig. 3. Surface correspondence is validated by adapting a mean mesh M to different
anatomies and using the resulting meshes Mj as mean meshes for a second adaptation
step whose outputs are compared to each other

Fig. 4. Distance measures between corresponding vertices v and w of topologically
identical meshes M and N : Euclidean distance dE, mesh-to-mesh distance dM (after
projection) and surface distance dS

but correspondence is implicitly preserved because the external energy acts along
the surface only.

We vary the intial shape model and analyze the surface correspondence of
the resulting segmentations. The initial shapes cover the possible anatomical
variations in a group of patients, hence, we obtain a faithful measure of surface
correspondence that can be evaluated for every vertex of the segmentation mesh.
The shape variations in a group of patients tend to be overestimated by this
approach because the difference between initial shape and adapted mesh is bigger
than the difference between mean shape and adapted mesh on average.

We have a set of anatomical images I1, .., IN (see Fig. 3), a mean mesh M
and a segmentation algorithm S : (M, Ii) �→ Mi using the mean mesh as a soft
geometrical constraint [5] and returning an adapted mesh Mi. Then we use the
adapted mesh Mj as new mean mesh, compute Mj

k ← S(Mj , Ik) and compare

the vertex distances between the meshesMk andMj
k adapted to the same image

Ik. Small distances along the surface and simultaneously a high segmentation
quality indicate good surface correspondence across different images I.
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Fig. 5. Surface error histograms dS for N = 37 patients at the same heart phase
(diastasis). We show results for the four heart chambers: left/right ventricle/atrium.
We computed histograms for all N = 37 scans individually and visualize the mean
(green bar) and two times its standard error (red) capturing 95% of the variance.

3.2 Distance Measures

There are several distance measures between topologically identical meshes M
and N with corresponding vertices v ∈ M, w ∈ N , see Fig. 4. Segmentation
quality is assessed by the mesh-to-mesh distance dM focusing on the differences
between the surfaces. Absolute deviations between corresponding vertices are
quantified by the Euclidean distance dE . Our validation experiments use dS to
measure the shift along the surface defined by the mesh.

3.3 Analysis of the Results

We composed a dataset of N = 37 CT scans acquired at the same heart phase
(diastasis/reduced filling) yielding very good segmentation quality, see Fig. 2.
“Very good” means that we require a mesh-to-mesh distance dM between seg-
mentations with different initial shapes below 5mm for 99% of the vertices. We
obtained an average mesh-to-mesh distance of 0.6mm. All j = 1..37 scans were
segmented and we used the results Mj as initial shapes for the final segmenta-

tion of other datasets as explained in section 3.1 yielding Mj
k. As a next step,
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Fig. 6. Spatial distribution of the surface errors dS averaged over a subgroup of N = 24
patients (segmented with the same mesh) at the same heart phase (diastasis)

we computed surface distances dS between Mj
k and the segmentation Mk from

the initial shape to assess the degree of surface correspondence.
Error histograms for the vertices of the four heart chambers are shown in

Fig. 5. The average surface error over the four heart chambers amounts to
1.6mm. Note that since dE , dM and dS form a triangle, a small mesh distance
dM implies dE ≈ dS . It can be seen that the surface error dS is smallest for
the left ventricle. Further, most of the vertices have an error of 1mm since the
histograms have a peak around that value and there are some outliers (in the
order of a few percent) that show larger errors. Also, the histograms are very
consistent across different scans as indicated by the small error bars.

Looking at the spatial distribution of the errors (Fig. 6), we see outliers in
right atrial high curvature regions and in the lower part of the right ventricle.
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Fig. 7. Encoded structures. Left Rule-based atrial fast conduction pathways [9], where
the colors of the fibers correspond to 1) Sinus Node, 2) Crista Terminalis, 3) Pectinate
Muscles, 4) Bachman Bundle, and 5) Inferior Isthmus. Right Rule-based muscle fiber
directions [19] encoded in volumetric left ventricular mesh.

3.4 Examples of Encoded Structures

We used our approach to encode muscle fiber directions in a volumetric left
ventricle mesh using a rule-based approach [19] needed for electrophysiological
and mechanical simulations, see Fig. 7 left. As shown by Figs. 5 (upper left) and
6, the surface correspondence error in the left ventricle is 1.5mm on average.

Secondly, we encoded the sinus node (SN), Crista Terminalis (CT), pectinate
muscles (PM), Bachmann bundle (BB), and right atrial inferior isthmus (II) as
placed by the rule-based approach of [9] in the right atrium, see Fig. 7 left.

Average distance SN CT PM BB II

Euclidean distance dE [mm] 1.95 1.83 1.82 1.79 1.86
Mesh-to-mesh distance dM [mm] 0.50 0.51 0.48 0.56 0.48
Surface distance dS [mm] 1.95 1.84 1.83 1.79 1.87

Summarizing the table, we find the average surface correspondence error dS (see
Fig. 4) for all five structures to be below 2mm.

3.5 Simulating Atrial Excitation Propagation

To demonstrate our pipeline from image to simulation, we encode three things
into the segmentation mesh: the location and fiber directions fx along the Crista
Terminalis (see Fig. 7) and the simulation mesh itself, which has a four times
higher resolution than the segmentation mesh. Excitation propagation is mod-
eled by the anisotropic eikonal equation 1/v2x = ∇τ
x Dx∇τx, which we solve by
a fast marching algorithm [17]. Here vx ∈ R+ is the local propagation velocity,
τx ∈ R+ is the resulting local activation time and the local tensor Dx ∈ R

3×3

models the anisotropy caused by different conduction velocities along fiber di-
rections fx and orthogonal to them. In Fig. 8, we compare an isotropic and an
anisotropic simulation as done in [9]. We use a velocity of vx = 0.9m

s , andDx = I
in the isotropic case (upper row) as well as Dx = 3

2 fxf


x + 1

2I in the anisotropic
case (lower row). This corresponds to a velocity of 2vx along the fibers and
vx/2 orthogonal to the fibers in the anisotropic case. One can clearly see that
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Fig. 8. Excitation propagation in the human atria. Upper row isotropic and lower
row anisotropic propagation using the Crista Terminalis. Left column local activation
times τx, right columns membrane potential after 30, 60, and 90 ms.

the shape of the wavefront distinctively differs (as in [9]) and the personalized
anisotropy is important.

4 Discussion and Conclusion

In this paper we have presented a generic interface allowing to encode informa-
tion in mesh models used for model-based segmentation. Once the mesh models
are adapted to data, we obtain a personalised model for subsequent biophysical
simulations. Experiments performed for the segmentation approach of [5] show
that vertex positions of the generic model are mapped to corresponding positions
after adapting the model to N = 37 CT scans with an average overall accuracy
of 1.6mm for the heart chambers. These errors exclude anatomical variations in
position across patients and they are larger than the segmentation error assessed
by point-to-surface distances with an average of 0.55mm. However, these errors
are much smaller than the typical size of, for example, fast conducting pathways
in the atria. We have demonstrated our pipeline from image data to biophysical
model in a atrial excitation propagation simulation. The resulting models can
be further used, for example to quantify the influence of myocardial structures
on the excitation propagation in the atria [1].

The segmentation approach may be further optimized to better reconstruct
corresponding positions after model adaptation, e.g., by locally adjusting the
mesh resolution or locally modifying the internal energy. In contrast, it does
not handle variations of these structures between different individuals. However,
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if the structures are visible in the image, their position may be refined on an
individual basis. This has been done similarly for detecting the coronary ostia on
the aortic bulbus [20] or modeling the Purkinje system [4,15] or for personalising
Purkinje terminals [2].

Beyond structure encoding, we also attached a mesh optimized for biophysical
simulations directly to the model (host mesh fitting e.g.[14,6]) and simulated
atrial excitation propagation. This is an alternative to registering a mesh for
biophysical simulations to a binary segmentation result [10]. We could also use
FieldML [3] to formalize the coupling of a simulation to a personalized anatomy.
Thus, the direct encoding of simulation structures provides a simple processing
pipeline paving the way for the integration into clinical workflows.

Acknowledgment. The research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/2007-
2013) under grant agreement number 224495 (euHeart project).

References

1. Burdumy, M., Luik, A., Neher, P., Hanna, R., Krueger, M.W., Schilling, C.,
Barschdorf, H., Lorenz, C., Seemann, G., Schmitt, C., Dössel, O., Weber, F.M.:
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A.F.: Sensitivity Analysis of Mesh Warping and Subsampling Strategies for Gener-
ating Large Scale Electrophysiological Simulation Data. In: Metaxas, D.N., Axel,
L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 418–426. Springer, Heidelberg (2011)

8. Kaus, M.R., Pekar, V., Lorenz, C., Truyen, R., Lobregt, S., Weese, J.: Automated
3-d PDM construction from segmented images using deformable models. IEEE
Transactions on Medical Imaging 22(8), 1005–1013 (2003)



From Image to Personalized Cardiac Simulation 287

9. Krueger, M.W., Schmidt, V., Tobón, C., Weber, F.M., Lorenz, C., Keller, D.U.J.,
Barschdorf, H., Burdumy, M., Neher, P., Plank, G., Rhode, K., Seemann, G.,
Sanchez-Quintana, D., Saiz, J., Razavi, R., Dössel, O.: Modeling Atrial Fiber Ori-
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Abstract. Understanding the motion of the heart through the cardiac
cycle can give useful insight for a range of different pathologies. In par-
ticular, quantifying regional cardiac motion can help clinicians to better
determine cardiac function by identifying regions of thickened, ischemic
or infarcted tissue. In this work we propose a method for cardiac motion
analysis to track the deformation of the left ventricle at a regional level.
This method estimates the affine motion of distinct regions of the my-
ocardium using a near incompressible non-rigid registration algorithm
based on the Demon’s optical flow approach. The global motion over the
ventricle is computed by a smooth fusion of the deformation in each seg-
ment using an anatomically aware poly-affine model for the heart. We
apply the proposed method to a data-set of 10 volunteers. The results in-
dicate that we are able to extract reasonably realistic deformation fields
parametrised by a significantly reduced number of parameters compared
to voxel-wise methods, which better enables for statistical analyses of
the motion.

1 Introduction

Better understanding the motion of the heart through the cardiac cycle is crucial
in aiding diagnosis and therapy planning for patients with heart defects and in
particular for those that are known to have deformed ventricular shape. However,
tracking cardiac motion from 3D images is a difficult task due to the complex
movement of the myocardium through the cardiac cycle.

The clinical challenge is to capture the apparent cardiac motion from the
available data (i.e 3D cine MRI sequences), and for this we can apply non-rigid
registration algorithms. In this case we require methods that are not only fast but
also reproducible and robust (able to handle noisy and low resolution images).
In order to compare the heart beat motion of a number of patients, we also
require the tracked motion deformation to be characterised by a small number
of parameters. Rigid-body or affine motion would do this but is not sufficient
in capturing the observed dynamics. Therefore we are interested in finding a
compromise between rigid (or affine) and non-rigid deformations.

A recently proposed method for tracking cardiac motion using cine MRI is
the incompressible log-domain Demons algorithm (iLogDemons for short) [1].
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This method has the nice advantage of ensuring near incompressibility in the
myocardial region; a realistic constraint for the heart given that the myocardial
muscle volume changes by around 5-10% during the cycle. However, the motion
is highly localised since the deformation is considered on a voxel-by-voxel basis
making the method sensitive to image noise and constrained by a high number
of degrees of freedom. Therefore we are interested in tracking the motion in a
more regional manner to capture a more realistic global deformation as well as
including some anatomical priors in the regional regularisation process.

For that purpose, an interesting regional regularisation method was proposed
in [2] to register mandibles by using the log-domain Demons algorithm [3] and in
each region estimating the affine transformation from the resulting deformation
field and fusing to a global deformation using the poly-affine model proposed
by Arsigny et. al [4]. A poly-affine model was applied in cardiac imaging in
[5] for 2D+t multi-modal images. In this last work the poly-affine model is
based on an adaptive grid to determine the poly-affine regions. When going
to 3D, interpretation of the results could be made easier with a lower number
of regions that are anatomically grounded. In [5] the regions are determined on
the fly by the images, and are thus without inter-subject reproducibility. A 3D
combination of locally affine transformations was used in [6] as an initialisation
step to a free-form deformation for cardiac image segmentation. This approach
could be improved by coupling the poly-affine deformation with the non-rigid
deformation rather than using only as an initialisation.

Inspired by the method of Seiler et. al [2], we propose in this paper to track
cardiac motion by estimating an affine transformation in given regions of the left
ventricle (LV) myocardium from a computed Log-Demons velocity field [3], with
added penalisation to control the compressibility of the tissue. We apply the pro-
posed method to estimate the left-ventricular motion of a 3D data-set of 10 vol-
unteers from the STACOM 2011 MICCAI workshop motion tracking database
[7]. We compare the results to the iLogDemons algorithm to deduce that we
are able to obtain similar results at a significantly lower degree of parametri-
sation, which enables statistical analyses to be applied directly to the reduced
parametrisation rather than the full iLogDemons velocity field.

2 Cardiac Motion Tracking with a Near-Incompressible
Log-Domain Poly-affine Model

We propose an algorithm for regional cardiac motion tracking that utilises the
log-domain Demons algorithm (LogDemons) to estimate the motion of the left
ventricle at a local level, in a given set of physiologically meaningful regions.
This way, we can define a diffeomorphic transformation from one image to an-
other. From this deformation, we estimate the affine parameters in each region
to determine a global affine transformation to give a more regional based motion
for each segment. The regional deformation fields are fused in a smooth man-
ner using the poly-affine model. The key contribution of this work is an added
penalisation term to the affine parameter estimation to control the amount of
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compressibility we allow in each region, as well as an added regularisation term
to control the similarity between regions, both formulated as efficient quadratic
criteria.

AHA Left Ventricle Segmentation. Using the American Heart Associa-
tion (AHA) standardised myocardial segmentation, we can define anatomically
meaningful regions of the ventricle [8]. The recommendation given by the AHA
is to divide the left ventricle of the heart into 17 regions with six regions for the
basal area (1-6), six regions for the mid area (7-12) and five for the apical areas
(13-17).

Log-Domain Demons Registration. We are interested in tracking the mo-
tion of the heart from a reference time point (in this case we use end diastole
as the reference) to the remaining time points along the cardiac sequence. To
do this we want to estimate the transformation φ that minimises the distance
between the reference image R and the target image T . For this we employ the
Log-Demons algorithm which has the key property that the transformations are
constrained to be diffeomorphic (therefore don’t allow folding and are invert-
ible), as well as enabling efficient computation in the log-domain by integrating
stationary velocity fields using the exponential scaling and squaring method [3].

Poly-affine Registration. The poly-affine registration algorithm proposed in
[4] and extended further in [9] allows to fuse locally affine transformations into a
global diffeomorphism using weight functions. The method is suitable for cardiac
motion tracking due to the fact that the deformations are computed in the log-
Euclidean framework and therefore has the advantage that the transformations
are invertible (and the inverse is also a poly-affine transformation).

Poly-affine LogDemons. In Seiler et.al [2], the authors propose a method to
estimate a poly-affine model from a log demons deformation field. Using homo-
geneous co-ordinates, the parameters of the poly-affine model can be defined for
points x in Cartesian co-ordinates as

log (T )
def
= log

(
A t
0 1

)
=

(
M
0

)
(1)

where log is a principal matrix logarithm, A is the linear part of the transfor-
mation, t its translation, and M a 3 × 4 matrix. For each segment the affine
deformation fields parameterised by the Mi matrices are fused to a global defor-
mation field using the poly-affine model:

vpoly(x) =
∑
i

ωi(x)Mix, (2)

where ωi is a parameter controlling the weight of the ith region for each voxel x.
Eqn. 2 can be estimated by a linear least squares problem with the least squares
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error with respect to the observed velocity field v(x) (in this case computed
using the LogDemons algorithm) given by:

C(M1,M2, · · · ,MN) =

∫
Ω

‖
∑
i

vpoly(x) − vobs(x) ‖2 dx. (3)

Ω defines the mask to restrict the estimation within the myocardium (1 inside
the binary mask of the myocardium, 0 outside). As shown in [2] the log affine
parametersMi can be estimated by the least-squares minimisation problem given
in Eq. 3 to give

M = BΣ−1, (4)

whereM = [M1M2 · · ·M3], Bi =
∫
ωi(x)·v(x)·xT dx and Σij =

∫
ωi(x)·ωj(x)·x·

xT dx. Equivalently, the least-squares solution can be written in terms of vectors:

M̄ = (Σ ⊗ I3)
−1 · B̄, (5)

where M̄ (resp. B̄) is the standard matrix vectorisation of M (resp. B), ⊗ is the
Kronecker Product.

2.1 Left-Ventricle Poly-affine Model

The weights ωi(x) can be defined by a simple Gaussian function as

ωi(x) = − exp

(
1

2
(x− x̄i)

Tφ
(−1)
i (x− x̄i)

)
, (6)

with x̄i the barycentre (centre point) of zone i and φi the corresponding covari-
ance matrix as in [2].

Incompressibility Penalisation. In order to control the compressibility of
the myocardium to be within physiological ranges, an added penalisation term is
needed. Given that a transformation is incompressible if its Jacobian determinant
is equal to one, for an infinitesimal transformation T = I + vpoly with ∇T =
I +∇vpoly we have

det(∇T ) = det(I +∇vpoly) = Tr(∇vpoly) + O(‖ ∇vpoly) ‖2). (7)

Here O(·) represents higher order terms. Therefore the velocity field vpoly is
locally incompressible if the trace of ∇vpoly is zero. A penalisation term can
then be derived as:

α

∫
Ω

Tr(∇vpoly)
2dx. (8)

The parameter α is used to control the strength of the penalisation. Incorporating
this term into the least squares minimisation (3) gives the penalised least squares
formula:

C(M1,M2, · · · ,MN ) =

∫
Ω

‖
∑
i

ωi(x)·Mi·x−vobs(x) ‖2 dx+α

∫
Ω

Tr(∇vpoly)
2dx

(9)
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To incorporate the new term into the least squares computation, (8) needs to be
re-formulated to obtain a quadratic form of M̄ . Taking the partial derivative of
the poly-affine velocity field with respect to x gives

∂vpoly(x)

∂x
=

∑
i

(
ωi(x)Mi

[
I3
0

]
+Mi · x · ∂ωi(x)

∂x

)
. (10)

Using T = vect[I3; 0]) to extract the diagonal elements from the matrix, we have

Tr(∇vpoly(x)) =
∑
i

(
ωi(x) · T T · vect(Mi) + gi(x)

T · vect(Mi)
)
, (11)

with gi(x) = vect(∇ωi(x) · xT ). A penalisation term can then be derived as:

α

∫
Ω

Tr(∇vpoly)
2dx = α

∑
i,j

vect(Mi)
T · Vij · vect(Mj) (12)

with Vij =
∫
Ω
(ωi(x) · T + gi(x))(ωj(x) · T + gj(x))

T dx. Seemingly, this could be
simplified to consider only the first order terms: Vij =

∫
Ω(ωi(x)·T )(ωj(x)·T )Tdx.

This is sufficient to penalise the trace per region, but does not take into account
the directional information meaning that neighbouring regions can have high
deformations in opposing directions, causing problems in the overlap.

Regularisation Term. We can also define a regularise term to control how
neighbouring regions influence one another. The weights ωi(x) control how
smooth the transition is between two regions, however we would also like to
control how similar the affine matrices are, as an addition regularisation. To do
this we can add an additional term:∑

ij

πijdist(Mi,Mj). (13)

Defining a matrix Q such that Q =

[
I3 0
0 μ

]
allows to account for the different

scaling between the rotation/sheering part of the affine matrix and the transla-
tion part. The distance term can be written as:

dist2(Mi,Mj) = Tr[(Mi −Mj)
T ·Q · (Mi −Mj)]

= Tr(MT
i QMi) + Tr(MT

j QMj)− 2Tr(MT
i ·Q ·Mj),

(14)

with

Tr(MT
i QMj) = vect(MT

i Q)T · vect(Mj) = vect(Mi)
T · (Q ⊗ I3) · vect(Mj).

(15)
Setting

lij =

{
−πij = −

∫
Ω
ωi(x)ωj(x)dx for i �= j∑

k �=i πij =
∑

k �=i

∫
Ω ωi(x)ωk(x)dx for i = j
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we can account for the correlation between regions. Thus we obtain∑
i,j lijTr(M

T
i ·Q ·Mj) = M̄T · L⊗ (Q ⊗ I3) · M̄. (16)

For R = L⊗ (Q ⊗ I3) the penalised least squares error is given by:

C(M) = M̄T (Σ ⊗ I3)M̄ − M̄T · B̄ + α · M̄T · V · M̄ + β · M̄T ·R · M̄, (17)

where β controls the strength of the regularisation. We want to find the optimum
by solving ∇CM = 0.

∇CM = (Σ ⊗ I3 + αV + βR)M̄ − B̄. (18)

Therefore the solution for M is given by:

M̄ = (Σ ⊗ I3 + αV + βR)−1 · B̄ (19)

Algorithm 1.Heart Poly-Affine Near-Incompressible Log-Domain Demons (Re-
gional iLogDemons)

- Segment LV into 17 AHA zones
- Let vpoly(x) = I (identity transformation)

Require: Let v0 = vpoly(x)
loop {over n until convergence}

- Compute the update velocity: δvn given vn−1.
- Update the correspondence velocity field: vn ← Z(vn−1, δvn).
- Estimate affine transformation of each segment from vn by solving (2) under the
incompressibility penalisation (19).
- Let vpoly(x) ←

∑
i ωi(x)Mix

return v, φ = exp(v) and φ−1 = exp(−v).

3 Left-Ventricular Motion Tracking in Healthy
Volunteers

Patient Data and Preparation. We illustrate these tools on 10 volunteers (3 fe-
males, mean age ± SD = 28±5) obtained from the STACOM 2011 MICCAI car-
diac motion tracking challenge database [7]. Steady-state free precision cine MRI
were acquired using a 3T scanner (Philips Achieva System, Philips Healthcare)
in the short axis view covering entirely both ventricles (12-15 slices; isotropic in-
plane resolution:1.21x1.21mm to 1.36x1.36mm; slice thickness: 8mm; 30 frames).

Myocardium Mask and AHA Segment Delineation. We extract a binary mask
image to define the left ventricle myocardium where the least squares minimisa-
tion is computed. To do this we to define a surface mesh of the myocardium by
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annotating the boundary of the ventricle directly on the given patient images,
and create a surface mesh (and related binary mask) from these annotations.
This was done with a 3D interactive segmentation tool based on implicit varia-
tional surfaces and provided within the CardioViz3D package1. Each LV mesh
was then divided into 17 regions according to the AHA recommendations us-
ing a semi-automatic C++ segmentation tool that required just the input of
four landmarks to define the base, apex, LV-RV junction on anterior and LV-RV
junction on posterior.

3.1 Results

In order to determine a suitable range of parameters for α and β a set of simu-
lations were run for one patient fixing α (resp. β) and ranging β (resp. α) (see
Fig. 1). From this analysis, the values for α and β were set for all patients as
α = 1 and β = 10. Higher values of β give better values for the Jacobian deter-
minant, but result in over regularisation of the field, converging towards a single
affine transformation and thus restricting the global motion. Values of α greater
than 10 (towards an incompressibility constraint rather than projection) result
in numerical instabilities in the matrix inversion of Eq. 19.

From each of the computed frame-to-reference deformation fields, the corre-
sponding Jacobian determinant images were computed. The average value within
each of the AHA regions was calculated and the average per region for all pa-
tients is shown in Fig 2 (left), to show the amount of regional compression (or
expansion) in the myocardium. The strain was computed over the cycle in each
of the circumferential, radial and longitudinal directions, and averaged over each
of the AHA regions. In Fig. 2 we show the average strain in each direction of all
patients per region.

Fig. 1. Mean and standard deviation of the Jacobian determinant for one patient
computed as an average over each AHA zone with varied values of α (left) and β
(right). A reasonable trade-off between the range and smoothness of the Jacobian
determinant is given for α = 1, β = 10.

1 http://www-sop.inria.fr/asclepios/software/CardioViz3D/
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Fig. 2. Left: Plot of the average Jacobian determinant per AHA region averaged for
all patients, shown at each frame of the cycle. The plot shows that the volume change
of the left ventricle is maintained with 15% over the cycle (each region shown in a
different colour). Regional strain curves computed in the circumferential (centre-left),
radial (centre-right), and longitudinal (right) directions for each of the 17 AHA regions
then averaged over the patients.

The values of the strain, Jacobian determinant and the apparent registration
accuracy based on the figures shown in Fig. 4, can be compared directly to the
results obtained from the STACOM 2011 MICCAI workshop cardiac motion
tracking challenge algorithms applied to the same data-set [7]. The left ventricu-
lar volume was compared between the iLogDemons algorithm and the proposed
algorithm (see Fig. 3) showing an ejection fraction of 50% and 58% resp. (note
the normal range is 55−70% and typical value is 58% [10]). These results suggest
that the method is able to obtain comparable registration, strain curves, and left
ventricular volume to those for the iLogDemons algorithm [11].

Fig. 3. Left ventricular volume along the cardiac cycle for the iLogDemons algorithm
(blue dashed line), and proposed algorithm (red solid line) shown in relative measures
to the end-diastolic volume (left), computed from deforming the 3D segmented end-
diastolic volume mesh (right).
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To exemplify the results of the registration for one individual, the mesh seg-
mented at the reference frame (end diastole) is overlaid on the reference image
(see Fig. 4 top row). The same mesh is deformed by the poly-affine deforma-
tion field computed from peak contraction to reference, and the resulting mesh
is overlaid on the peak contraction image (see Fig. 4 bottom row). The results
show good alignment between the deformed peak systole mesh and the image.

Fig. 4. Top row: Three views of the reference frame (end diastole) with segmented
mask over-laid in green. Bottom row: Same views of peak systole with the segmented
reference mask deformed by the computed poly-affine deformation field. The results in
the bottom row indicate that the registration provides reasonable deformation fields
that capture the motion of the heart.

4 Discussion and Future Work

The results suggest that the method is able to track the cardiac motion rea-
sonably well and with less than 20% volume change in the myocardium for all
patients and all regions. Moreover, we are able to parameterise the deformation
by 204 parameters, as opposed to over 5 million parameters for the iLogDemons
algorithm (or similarly for other registration algorithms parameterised at the
voxel level). Full incompressibility can only be achieved in this model with a
global affine incompressible deformation, thus with so few degrees of freedom,
the volume change is penalised within reasonable ranges. Using more regions
may possibly improve the results with respect to the incompressibility.

This paper describes a proof of concept of the method. More work is needed to
better understand the weight functions, the choice of suitable regions, as well as
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the optimal number of regions. Given that the definition of the regions is consis-
tent in this work from subject to subject, we expect to obtain reproducible and
powerful clinical scores to characterise different heart conditions. A long term ob-
jective is to use the computed parameters as clinical scores to aid in quantifying
healthy heart motion and then to analyse the motion in the pathological case.
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Abstract. This work aims at developing a training simulator for in-
terventional radiology and thermo-ablation of cardiac arrhythmias. To
achieve this, a real-time model of the cardiac electrophysiology is needed,
which is very challenging due to the stiff equations involved. In this
paper, we detail our contributions in order to obtain efficient cardiac
electrophysiology simulations. First, an adaptive parametrisation of the
Mitchell-Schaeffer model as well as numerical optimizations are proposed.
An accurate computation of both conduction velocity and action poten-
tial is ensured, even with relatively coarse meshes. Second, a GPU im-
plementation of the electrophysiology was realised in order to decrease
the computation time. We evaluate our results by comparison with an
accurate reference simulation using model parameters, personalized on
patient data. We demonstrate that a fast simulation (close to real-time)
can be obtained while keeping a precise description of the phenomena.

1 Introduction

Cardiac arrhythmias are characterised by a pathological electrical activity in
the myocardium (heart muscle) which can be lethal. Catheter thermo-ablation
is a minimally invasive technique that can prevent fibrillation by removing the
substrate or the trigger of such a phenomenon through the ablation of the respon-
sible cardiac cells. This procedure is performed by highly skilled and experienced
interventional cardiologists, yet the success rate remains limited due to the com-
plexity of such pathologies. Moreover, due to population ageing, an important
increase is predicted in such arrhythmias, without an associated increase in in-
terventional cardiologists. Therefore, there will be an important need for novel
tools in learning, training and planning, such as simulators.

One important missing step towards the development of such a simulator is
the ability to simulate the electrophysiology of the heart in real-time. The elec-
trical wave propagating inside the cardiac walls corresponds to ion exchanges
between the cells and through the cell membrane. The myocardial cells are po-
larised, i.e. there is a potential difference between the inside and the outside of
the cells. This potential difference is called action potential (AP) or transmem-
brane potential. Before a thermo-ablation, cardiologists first carry out a diag-
nostic electrophysiological study (programmed electrical stimulation) allowing a
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definitive diagnosis. From the acquired data, the ablation intervention can be
planned. We focus here on the training of cardiologists for these catheter-based
ablation of cardiac tissues in the context of cardiac arrhythmias.

Research on cardiac electrophysiology models is very active. The proposed
models can be divided into three different classes: (i) biophysical models, which
are complex models including the different ionic concentrations and channels,
involving many parameters and simulating the electrophysiology close to the
cellular scale [14]; (ii) phenomenological models, which are simplified models
[13], [1], [7], [10] derived from the biophysical models, involving less parameters
and capturing the AP shape and its propagation at the organ scale; (iii) Eikonal
models [8], which correspond to static non-linear partial differential equations
for the depolarization time derived from the previous models. These models
enable to simulate wave propagation but cannot accurately account for complex
physiological states and the parameters have no direct physiological meaning.

This paper addresses the problem of real-time simulation of electrophysiology
thanks to a new modelling approach adapted to efficient computational strate-
gies. The approach relies on one of the phenomenological models from Mitchell-
Schaeffer (MS) [10]. The following sections presents the MS model, the model
parameters and the numerical settings. Then we detail how we adapt the model
parameters and numerical settings in order to recover patient-specific features,
namely the conduction velocity (CV) and the action potential duration (APD,
denoting APD90). To further improve our computation times, we propose an
efficient GPU implementation with CUDA. Finally, we present our first results
on patient-specific data and we conclude with some ideas for future work.

2 Real-Time Cardiac Electrophysiology Simulation

2.1 Discretisation of the Cardiac Electrophysiology Model

Mitchell-Schaeffer Model. For the last fifty years, numerous models were
proposed for the cardiac cell AP. Regarding the features of the model categories
presented previously, the phenomenological models meet best our requirements
in terms of computational efficiency at the organ scale. The model that we chose
is the MS model [10] because of the following reasons:(i) it has only 5 parameters
that we detail below, (ii) each parameter has a physiological meaning and (iii)
it provides a better estimation of the AP compared to other phenomenological
models (as the Aliev-Panfilov model [1]).

The MS model is a two-variable model derived from the Fenton Karma model
[7]. The equations describing the model are written in 1:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∂tu = div(D∇u) +
zu2(1− u)

τin
− u

τout
+ Jstim(t)

∂tz =

⎧⎪⎪⎨⎪⎪⎩
(1− z)

τopen
if u < ugate

−z

τclose
if u > ugate

(1)
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where u is a normalized transmembrane potential1 and z is the gating variable
associated to the sodium ion influx, thus depicting the repolarization phase. The
extra-cellular potential can be recovered using the method described in [4]. The
diffusion term is defined by an 3x3 anisotropic diffusion tensorD = d·diag(1, r, r)
so that the planar conduction velocity in the fiber direction is 2.5 times greater
than in the transverse plane (r = 1

(2.5)2 ). d is the diffusion coefficient. The

parameters τin and τout define the repolarization phase whereas the constants
τopen and τclose manage the gate opening or closing depending on the change-
over voltage ugate. The term Jstim(t) is the stimulation current applied in the
pacing area. The default values (describing the common action potential) of these
parameters are given in [10]. The initial conditions of our simulation were set as
Dirichlet conditions. The pacing area (u0 = 1 and z0 = 1) has been extracted
from the depolarization time map.

Patient-Specific Spatial Discretisation. The cardiac geometry that we used
in this study is an anatomy segmented from a patient MRI. This patient suffers
from chronic ischemia and a left bundle branch block (noted LBBB).

The method used for the spatial discretization of the model is the finite el-
ement method which requires a volumetric mesh of the myocardium. The vol-
umetric bi-ventricular geometry has been meshed with linear tetrahedra using
CGAL (www.cgal.org) algorithms. The edge size used is about dx = 4 mm and
implies 65547 tetrahedra which is already substantial for real-time simulation.
Usually the usual edge size required for cardiac electrophysiology is dx < 0.1mm.
However the element size has to be fine enough to correctly model the wave prop-
agation, especially in the grey zones around scars. Scar regions are known to be
very unstable electrical zones and can be responsible for cardiac reentries. These
areas therefore need to be discretized with accuracy.

A LBBB abnormal conduction implies a late activation of the left ventricle.
Regarding this pathology, the edge size of 4 mm should be sufficient for our
simulation since only the times of depolarization and repolarization have to
be computed accurately. However to model a possible ventricular tachycardia
induced by an isthmus the edge size should be finer. As demonstrated in [9], a
0.8 mm edge size must be used for accurate simulation.

Time Integration Scheme. For all our simulations, we use the second-order
semi-implicit solver called Modified Crank Nicholson/Adams Bashforth (MC-
NAB), detailed in [6]. This solver defines an implicit integration of the diffusion
term and an explicit integration of the ionic current. The construction of the ma-
trix system leads to a symmetric definite positive case that we can solve using
many existing algorithms.

In our GPU simulations, we work with a conjugate gradient (CG) to solve the
resulting linear system (written Ax = b). To improve the convergence rate, we

1 The MS is a monodomain model since it is expressed according to the transmem-
brane potential whereas bidomain models depends on both intra- and extra-cellular
potential.
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use a preconditioner Jacobi. The Jacobi method computes the inverse matrix of
the diagonal of the system matrix A. Since our matrix A is diagonal dominant,
the use of this preconditioner is straightforward. The factorization provided by
the Jacobi method can be updated when needed, thus allowing to interact with
the model (e.g. thermo-ablation).

2.2 Numerical Study

To achieve our performance goal, the numerical settings of our simulation need
to be optimized. In the literature about cardiac electrophysiology simulation,
it is shown that both element size and time step have to be small enough to
capture the cardiac phenomenon. Usual values for the edge size are defined such
that dx ≤ 0.1 mm and the time step is lower than dt ≤ 0.01 ms (see [11]).
However meshing a heart geometry with such small elements would imply mil-
lions of tetrahedra. Such small elements as well as very small time steps prevent
real-time simulations. To achieve real-time performances, we have to use larger
time steps and larger finite-element. In this part, we study the impact of using
large elements, the limitation in terms of time step as well as solutions to reach
real-time performances.

Locally-Adapted Model Parameters. To ensure the reliability of the train-
ing simulation, we need a relatively accurate computation of the CV. Neverthe-
less using large elements will affect the diffusion effect, i.e. the wave propagation
and its CV. We studied the influence of the element size on the CV with the
lumping using the MS model on a 3D bar (15cm × 2.5cm × 2.5cm, regularly
meshed) on which the wave is propagating along the bar axis with a planar
front. A similar study was conducted in [11] where they also considered other
integration method for the ionic term than the lumping method. The results are
compared to a very accurate computation of the MS model in 1D using Matlab
with a time step dt = 10−5 s and a spatial step dx = 5 · 10−6 m that provides
a CV reference value: CVref = 0.5124 m/s. In the Fig. 1, the results show that
the CV decreases when the mesh becomes coarse.

A way to compensate this integration error is to artificially increase the diffu-
sion coefficient d. Based on this idea, a personalization of the diffusion coefficient
d and the opening and closing time constants τopen and τclose has been computed
to fit measured patient data, using the personalization method of [12]. This per-
sonalization step gave us values of the diffusion coefficient for each tetrahedron,
as well as values of opening and closing time constants on each vertex.

Time-Step Limitations. Even if the time step does not affect the electro-
physiology features, the explicit formulation of the ionic term implies a stability
condition on the time step. This limitation of the time step has already been
pointed out in [6] and [5]. Since the diffusion is computed implicitly the limiting
term is the ionic term. Following [5], we should define dt ≤ 1

|inf(∂f)| =
τinτout

τin+τout
=

0.286ms, if we would use a semi-implicit Euler solver (f denoting the ionic term).
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Using the MCNAB, we measured dt ≤ 0.59 ms. For more stability, we will use
dt = 0.4 ms.

Optimization on CG Tolerance. As detailed in 2.1, we use a CG to solve
our system. Our solver stops when the difference between the results given
by two successive iterations is below the tolerance, noted tol. The tolerance
tolref = 10−10 ensures us to reach the ”exact” solution. However to improve
the computation performances, we computed the optimal tolerance value. We
found the tolerance tolopt = 10−6 giving a L2-error about err = 3.79 · 10−5 on
the action potential field, which is fully acceptable. In the results part, we will
show performances using both tolerances tolref = 10−10 and tolopt = 10−6 in
section 3.

2.3 GPU Implementation

The GPU architecture consists in several multi-processors able to carry out
highly parallel tasks independently. The complexity of GPU programming results
in defining an optimal distribution of the threads and minimizing the memory
access latency. In our approach, we relied on the CUDA toolkit (dedicated to
NVidia’s GPUs) to develop the GPU version of the method. Similar results could
be obtained using OpenCL and other GPU models.

The implementation of the ionic term of MS is based on classical paralleliza-
tion methods. Using the lumping integration method, the ionic term is computed
on each vertex. Therefore each thread is dedicated to one vertex and computes
the contribution of the MS term for this vertex. However our computation strat-
egy ensures a tiled access in memory in our GPU code.

The diffusion term div(D · grad(u)) is more complicated to implement in
parallel. The contribution of the diffusion term is computed from the edges and
summed on each vertex. In a parallel computation, this algorithm can lead to
writing conflicts: two threads solving two adjacent edges could write on the
same point simultaneously. New GPUs supporting CUDA 2.0 handle now these
atomic operations. Nevertheless a solution to this problem is detailed in [2] which
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is twice faster than atomic functions from CUDA. We decided to adapt this
algorithm, originally designed for deformable finite element equations, to our
diffusion model. This technique consists in first computing the neighborhood of
each node. Then the contribution of the diffusion is computed and saved on all
the edges. Finally, the contribution on each vertex is obtained by accumulating
the values computed on the edges with the neighborhood information. In this
last accumulation step, a parallel reduction is carried out using several threads
by vertex as explained in [2].

Our GPU implementation also includes a conjugate gradient and a Jacobi
preconditioner that are used to solve very quickly the electrophysiology model
on the whole mesh. Only single float precision has been considered since it is
sufficient regarding the electrophysiology accuracy. Moreover simulations using
single float precision are about two times faster than simulations using double
precision as detailed in [3].

Finally, it must be stressed that this GPU implementation is a novel applica-
tion of an efficient method originally proposed by [2] for deformable finite element
computations. This parallel implementation will be crucial in our performance
results.

3 Results and Discussion

The local adaptations on the MS model that we detailed in 2.2 will still gen-
erate some errors. We now want to evaluate this error in comparison with our
ground-truth data. Moreover a GPU implementation has been done to improve
the computation time of our simulation. The performances using the optimized
model parameters will also be assessed with this implementation.

3.1 Depolarization Times and APD Error Maps

We compared our results with the reference simulation using very small time
step (dt = 10−5 s) and model parameters fitting patient data. We computed an
average error on depolarization time of 4.05 ms (∼ 5.48%) and an average error
on APD of 19.1 ms (∼ 5.62%). These results shows that the errors are bounded.
As future work, the restitution analysis of this patient-specific case seems to be
compulsory to fully validate our simulation.

3.2 GPU Performances

Using the optimization presented previously would not be sufficient for fast com-
putations. However, when combined to a GPU implementation, we obtain a sig-
nificant speedup. Table 3.2 sums up computation times and other metrics of
performance on the CPU and on the GPU (GeForce GTX580 with 512 cores).
The processor used for CPU computations is a Intel Xeon W3550.

From this table, we clearly notice the performance gain offered by the parallel
implementation. The GPU simulation is more than 10 times faster than the
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Table 1. Performance comparison between CPU and GPU

CPU GPU
GPU

(using tolopt)

Mean computation time for
25.4 3.89 2.17

one time step (ms)

real-time ratio
75.8 7.04 2.95

(slower than real-time)

CPU one. The computation time spent in the computation of diffusion and MS
becomes negligible. Now the limitation of our simulation is now the solver, since it
is the most time-consuming part of our computation. We notice that reasonably
decreasing the tolerance of the CG significantly improves the performances.

To discuss these results, it can be stressed that 65547 tetrahedra represent a
large amount of computation in a real-time context. A first solution would be to
use on a coarser mesh. It must be stressed that the electrical wave of this patient
was especially fast implying a small time step. Next generation GPU cards could
also be most helpful.

3.3 User Interaction

A simulation dedicated to a training system assumes that cardiologists will in-
teract with it. Our simulations already allow to stimulate any area of the heart
in real-time (constraint with u = z = 1). This allows to simulate the stimulation
done by the surgeon before the ablation in order to set the definitive diagnosis.

The procedure of thermo-ablation is also handled by our computations. The
cardiac cells treated by thermo-ablation can not conduct the current anymore.
These cells can be seen as zero conductivity area. To take this change into
account, we update the factorization computed by the Jacobi method. This
thermo-ablation step can therefore be done without affecting the computation
times.

Fig. 2. Two different views of an electrical stimulation (with a catheter) applied by
the user on a two-chamber geometry (ventricles)
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4 Conclusion

In the coming years, the growing number of cardiology students implies to im-
prove the training methods. Medical training simulators are an efficient solution
to answer this need. Their main advantage is that simulators enable to train
on virtual patient, thus avoiding to early operate on patients. Moreover such
simulators could be a way of improving the course of medical studies.

In this paper, we presented some contributions to speed up simulations of
cardiac electrophysiology. First, we locally modified time constant parameters
from the Mitchell-Schaeffer model in order to use larger time steps and a coarser
mesh. Then, we calculated the optimal time step and tolerance value for our
iterative solver. Finally, we implemented a GPU version of the code modeling
the diffusion and the Mitchell-Schaeffer model. With these optimizations, we
reached an interactive simulation close to real-time based on 3D patient-specific
data. This work is a very encouraging step toward the development of a training
simulator.

In this work, only monocycle simulations have been considered, i.e. simulating
only one cardiac cycle. A multicycle study needs to be carried out to analyze
the restitution curves of our model and to validate our simulations. This pa-
per presents a personalized simulation using data from a patient suffering from
LBBB.

In the future, we want to address the challenging issue of simulating the
electrophysiology of patients suffering from a ventricular tachycardia with an
isthmus. This would lead to compute models with finer elements around the
regions of interest (scars and isthmus) in order to accurately capture the elec-
trical activity around these regions. To do so, we plan to implement innovative
numerical method to use finer meshes without altering our performances.
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Abstract. We have developed finite element modelling techniques to semi-
automatically generate personalised biomechanical models of the human left 
ventricle (LV) based on cardiac magnetic resonance images. Geometric 
information of the LV throughout the cardiac cycle was derived via semi-
automatic segmentation using non-rigid image registration with a pre-
segmented image. A reference finite element mechanics model was 
automatically fitted to the segmented LV endocardial and epicardial surface 
data at diastasis. Passive and contractile myocardial mechanical properties were 
then tuned to best match the segmented surface data at end-diastole and end-
systole, respectively. Global and regional indices of myocardial mechanics, 
including muscle fibre stress and extension ratio were then quantified and 
analysed. This mechanics modelling framework was applied to a healthy human 
subject and a patient with non-ischaemic heart failure. Comparison of the 
estimated passive stiffness and maximum activation level between the normal 
and diseased cases provided some preliminary insight into the changes in 
myocardial mechanical properties during heart failure. This automated approach 
enables minimally invasive personalised characterisation of cardiac mechanical 
function in health and disease. It also has the potential to elucidate the 
mechanisms of heart failure, and provide new quantitative diagnostic markers 
and therapeutic strategies for heart failure.  

Keywords: Personalised FE modelling, left ventricle, in vivo myocardial 
mechanics, myocardial stiffness, maximum activation level, heart failure. 

1 Introduction 

Heart failure (HF) is a leading cause of morbidity and mortality with increasing 
prevalence. Whilst HF symptoms have been conventionally linked with compromised 
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pump function (known as systolic HF), it has recently been recognised that equal 
numbers of patients with HF symptoms appear to have normal systolic function, but 
impaired diastolic filling, which has been termed diastolic HF. The inter-relationship 
between diastolic and systolic HF is poorly understood. To investigate changes in 
ventricular mechanics, personalised heart mechanics models have been used to 
characterise ventricular mechanical behaviour with the development of advanced 
cardiac imaging techniques. Such methods typically utilise geometric information of 
the heart derived from 3D cardiac magnetic resonance images (MRI) to build 3D 
mechanics models, then use them to estimate myocardial mechanical properties using 
dynamic MRI. Previous studies have compared healthy and diseased hearts by 
estimating either the passive tissue stiffness [1] or the myocardial contractility [2][3] 
in isolation. The primary aim of this study was to develop automated methods for 
creating personalised biomechanical finite element (FE) models of the heart from 3D 
cardiac image data and to use these models to estimate tissue stiffness and systolic 
contractile properties in the same hearts to investigate mechanisms of cardiac 
dysfunction. 

This paper describes the automated fitting of a 3D cardiac mechanics model to 
human left ventricular (LV) surface data extracted from the Sunnybrook Cardiac 
database [5]. A semi-automated segmentation method was used to generate 
ventricular surface data for individual human hearts. The reference LV FE mechanics 
model was customised to surface data defined at the unloaded state (diastasis) using a 
nonlinear least squares fitting technique. After incorporating fibre orientations from 
the Auckland canine heart model  [11]  and cavity pressure boundary constraints, the 
LV FE model was used to solve the governing equations for finite deformation 
continuum mechanics to simulate ventricular deformation throughout the cardiac 
cycle. Estimations of the diastolic tissue stiffness and systolic contractile properties of 
the heart were derived by fitting to the geometric data extracted at the end-diastolic 
(ED) and end-systolic (ES) LV states, respectively. Personalised estimates of the 
distributions of myocardial fibre extension and stress were also obtained using this 
modelling framework. We demonstrate this approach using cine magnetic resonance 
(MR) images from hearts of a healthy human and patient diagnosed with non-
ischaemic HF to investigate the underlying mechanisms of dysfunction.  

2 Methodology 

2.1 Cardiac Images and Segmentation 

The LV geometries were extracted using an active shape model (ASM) based 
approach [6] developed specifically for segmentation of sparse image data. The 
training set for the statistical shape model was obtained from Computed Tomography 
studies and comprised shapes of 100 subjects, with 15 shapes per subject sampled 
throughout the cardiac cycle [7]. The MR image intensity model was obtained from 
30 cardiac MR data sets, independent from the Sunnybrook database, after fitting the 
shape model to their manual segmentations. 
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longitudinal and 1 radial element) interpolated using C1 continuous tricubic Hermite 
basis functions. The human LV surface data were separately projected onto the 
epicardial and endocardial surfaces of the scaled canine FE model. Nonlinear least-
squares optimisation was used to adjust the geometric parameters of each FE model 
surface to best match the corresponding LV surface data (Fig. 1). 

Ventricular Fibre Structure. In order to account for the LV myocardial architecture, 
we incorporated histologically derived fibre-sheet orientation data from the Auckland 
canine LV model [9,11]. This choice was primarily due to the lack of detailed in vivo 
or ex vivo measurements on human muscle fibre orientation.  

Boundary Constraints. LV cavity pressures and displacement boundary constraints 
were applied during the simulations. The epicardial basal nodes of the model were 
constrained to match the motion of the segmented surface data, whereas the apex was 
unconstrained. Due to the lack of in vivo cavity pressure data in this study, pressure 
loading constraints were taken from the literature. During diastolic filling, a LV 
cavity pressure of 1.48 kPa [12] was applied to the endocardial surface of the 
reference FE model, whilst the afterload was set to 15.1 kPa [13]. 

LV Mechanics. LV mechanics was simulated in two phases: 1) passive diastolic 
filling (slow filling) to ED; and 2) active systolic contraction to ES, which included 
the isovolumic contraction (IVC) and ejection phases of the cycle. The governing 
equations of finite deformation elasticity were solved using the FE method. 

LV Passive Mechanics and Passive Property Estimation. The passive inflation 
phase was simulated by incrementally applying pressure to the LV endocardial 
surface of the model until the preload was reached. The passive mechanical behaviour 
was modelled using a transversely-isotropic constitutive equation (Eq. 1) [14].  
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where Eαβ are the components of Green’s (Lagrange) strain tensor referred to fibre (f), 
cross-fibre (c) and radial (r) material coordinates, and C1 - C4 are the passive 
myocardial constitutive parameters. An estimate of the tissue stiffness (C1) was 
obtained after matching the inflated FE mechanics model to the segmented ED 
surface data. During this optimisation, the segmented data were projected onto their 
corresponding FE model surfaces, and the overall root-mean-squared error of the 
projections was then minimised by varying C1. Other parameters describing the 
anisotropy (C2 - C4) were not included in the estimation due to the lack of regional 
strain information in the segmented data. Instead, their values were taken from our 
previous study based on MR tagging in canine hearts [9]. 

 

LV Systolic Mechanics and Active Property Estimation. After tuning the passive 
properties, the simulation was continued through IVC, to the end of ejection.  
Contraction of the LV model was driven by a calcium-dependent activation transient 
(TCa) throughout systole as part of a steady-state model for contractile stress (Ta) [15]:  



 Automated Personalised Human Left Ventricular FE Models 311 

 

( )( )11 −+= λβCaa TT  (2)

where λ is the fibre extension ratio and β is a material parameter that describes the 
length-dependence of the activation level. Note that this model is independent of the 
velocity of muscle shortening. Following the end of inflation, the activation level, TCa, 
was gradually increased to represent the release of calcium from the sarcoplasmic 
reticulum. During IVC, the LV cavity pressure was raised to counteract the contractile 
force in order to hold the cavity volume constant at its ED value. Simulations ran until 
the LV cavity pressure reached an afterload of 15.1 kPa [13]. The maximum 
activation level at ES (TCa_max) was estimated by matching the model predicted ES 
state to the segmented human ES data.    

3 Results 

Fig. 2 illustrates the segmented ED (top) and ES (bottom) epicardial (green) and 
endocardial (gold) surface points derived from the automatic segmentation procedure 
described in section 2.1. Global geometric and functional measurements, such as wall 
volume, EDV, ESV and ejection fraction (EF) were calculated from geometric models 
fitted to the surface contours at ED and ES. These indices are summarised in Table 1.  

 

Fig. 2. Epicardial (green) and endocardial (gold) surface points at end-diastole (top) and end-
systole (bottom) for LVs from a normal human (left) and non-ischaemic HF patient (right) 

 
For the two cases studied in this paper, both the wall volume and the EDV for the 

non-ischaemic HF case were approximately double the values for the normal, 
indicating severe remodelling of the LV geometry with both wall thickening and 
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ventricular dilatation.  The non-ischaemic HF case also exhibited a larger ESV 
compared to the normal, but the stroke volumes between the two cases were only 
moderately different (81ml versus 62 ml). The significant reduction in EF seen in the 
non-ischaemic HF case was primarily due to its increased EDV.  Fig. 3 shows the 
error projections of the segmented data at ED and ES onto the corresponding surfaces 
of the associated predicted models. 

The estimated passive tissue stiffness parameter (C1) was substantially larger for 
the non-ischaemic case (Table 2). In contrast, estimated values of the maximum 
activation level (TCa_max) were relatively similar. As indicated in Fig. 4, fibre extent of 
shortening was lower for the non-ischaemic HF case compared to the normal case. 
This resulted in an increased active fibre stress (Ta) at ES, due to its dependence upon 
length (the Frank-Starling mechanism), even though the estimated activation levels 
(TCa) were similar for the two cases. 

Table 1. Geometric and functional data for normal and non-ischaemic heart failure LVs 

 Normal Non-ischaemic Heart Failure 
Wall Volume (ml) 105 194 

EDV (ml) 119 247 
ESV (ml) 38 185 
EF (%) 68 25 

 

Fig. 3. Predicted ED FE models following passive parameter estimation (upper), and ES 
models following active contractile parameter estimation (lower). Epicardial (green) and 
endocardial (gold) surface data error projections (blue) are shown for a normal human LV 
(left), and a LV of a non-ischaemic heart failure patient (right).  
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Table 2. Estimated passive and active mechanical properties for normal and non-ischaemic 
heart failure LVs 

 Normal Non-ischaemic HF 
Passive Stiffness (C1 (kPa)) 2.3 7.6 

ED Fibre Extension Ratio (λ) 1.1 ± 0.03 1.04 ± 0.02* 
ED Passive Fibre Stress (kPa) 4 ± 1.9 4 ± 2.6 

Maximum Activation Level (TCa_max (kPa)) 93 94 
ES Fibre Extension Ratio (λ) 0.89 ± 0.07 0.95 ± 0.07* 
ES Active Fibre Stress (kPa) 70 ± 14 81 ± 13* 

* indicates significant difference (P<0.05) compared to the normal case.  

 

 

Fig. 4. FE model predictions of end-systolic fibre extension ratio and active fibre stress for two 
case studies 

4 Discussion 

This paper presents a workflow to construct LV surface segmentations from cardiac 
MR images, and to create personalised FE biomechanical models to characterise 
global mechanical properties of the LV. Although a manual step was required to start 
the segmentation process by identifying a small number of landmarks, the automatic 
detection of landmarks is currently feasible and could be applied to produce a fully 
automated method. These models were used to generate personalised estimates of 
passive and active mechanical properties by matching model predictions to the 
kinematic information derived from the cardiac MR images. These methods not only 
provided estimates of global mechanical function, but also estimates of regional fibre 
stretch and stress.  

A key limitation of this study was the lack of subject-specific cavity pressure 
measurements, which were not recorded. Therefore, we assumed the same diastolic 
(preload) and systolic (afterload) blood pressures for both the normal and HF cases. 
Estimated mechanical properties were shown to be correlated with preload and 
afterload (data not shown). Lack of pressure transient measurements also limited our 
mechanical analysis to consider only two time-points for both phases of the cardiac 
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cycle. If personalised pressure recordings were available, these data could be readily 
incorporated into this workflow to provide estimates of the activation level transients 
throughout the cardiac cycle.  

A second limitation was the lack of subject-specific microstructural information for 
the human hearts studied. This may have been particularly limiting for the analysis of 
the failing hearts. In vivo imaging of the myofibre architecture may be made possible 
using in vivo diffusion tensor MR imaging (DTMRI) techniques. Recent attempts to 
acquire in vivo DTMRI of beating heart include [16][17], however the data collected 
are still rather sparse and the techniques require extensive validation before in vivo 
DTMRI becomes a clinical routine. This framework is capable of incorporating in 
vivo fibre orientation data should they be available in future studies. In [18], statistical 
atlases of human myocardial fibre orientations for both healthy and abnormal hearts 
were proposed based on ex vivo DTMR imaging of 10 healthy and 6 abnormal hearts. 
Incorporating the data from this atlas into this modelling framework was beyond the 
scope of the present study, partly because the physical conditions of these hearts 
remain unclear. However, in a separate study we are presently underway to 
investigate the sensitivity of strain predictions on the underlying fibre structure [19] 
by embedding the fibre data extracted from normal human hearts [18] into the LV 
mechanics model.  

For this paper, we focused on only the LV. The next stage of this study is to extend 
the analysis to consider both ventricles, and this inclusion can potentially improve the 
RMSE during parameter estimation.  

We tuned the mechanical properties to match the shapes of the LV at ED and ES, 
and assumed that the distributions of these properties were homogeneous. This 
assumption may be violated for diseased cases where tissue remodelling (e.g. due to 
myocardial infarction) may induce regional variation of mechanical properties.  
However, this choice was made solely due to the lack of regional motion data because 
the 3D MR images used in this study only allowed derivation of surface information 
of the LV. To incorporate heterogeneity, regional kinematic data are required. This 
framework could be readily extended to estimate material parameters on a regional 
basis.  

By applying this automated method to LV images from a normal heart, and the LV 
of a non-ischaemic HF patient, we were able to compare the estimated mechanical 
properties. For this study, we focused on the effects of geometric remodelling during 
HF on mechanical properties estimates. Using this modelling workflow, the estimated 
passive tissue stiffness for the LV with non-ischaemic HF was greater than that for 
the normal LV. This is consistent with the fibrosis that is known to occur during HF 
[12]. The estimated maximum activation levels (TCa_max) were similar for the two 
cases, suggesting that non-ischaemic HF is not associated with a change in the 
systolic mechanical properties of the myocardium. In this study, the geometric 
remodelling as a result of non-ischaemic HF was fully accounted for by an increase in 
passive stiffness. We speculate that the increased active fibre stress (Ta) for the non-
ischaemic HF case may be responsible for triggering myocardial tissue and chamber 
remodelling.  
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5 Conclusions 

We have developed an automated segmentation and FE modelling workflow to 
generate personalised human LV mechanics models using geometric and kinematic 
information derived from semi-automatic segmentation of cardiac images. The 
methods presented will be used in a larger-scale study to generate personalised FE 
mechanics models, and extract patient-specific mechanical properties of hearts from 
patients with HF. Determining more specific variations in mechanical properties 
between diseased and normal human hearts will help in the understanding of the 
underlying mechanisms of HF.  
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Abstract. For X-ray guided cardiac catheterisations it is desirable to overlay pre-
operative 3D-CT information for additional guidance. A common technique to 
obtain an overlay is to loop a catheter inside a target chamber and then manually 
align CT-derived surface models using multiple X-ray views. We propose and test 
a fully automatic algorithm for this purpose. The algorithm aligns the images by 
first estimating the pose of the CT relative to the X-ray table using the supine and 
isocentre constraints. Subsequently the pose is refined using an iterative optimisa-
tion strategy that maximises the intersection between the loop and projected target 
chamber, while minimising the separation between the X-ray cardiac border and 
the projected ventricles, in two X-ray views. Validation was carried out using a 
geometrically-realistic plastic heart phantom with two looped-catheter configura-
tions formed inside the left atrium. The algorithm executes in under five minutes 
and yields average 3D-TREs between 2.4 and 5.4 mm over various regions of the 
heart, and 4.0 mm over the four chambers. Preliminary evaluation of this novel 
approach indicates feasibility for clinical interventional guidance and merits tho-
rough validation using further phantom and clinical images. 

Keywords: 2D-3D image registration, cardiac imaging, image-guided cathete-
risation, CT, X-ray, data fusion. 

1 Introduction 

Cardiac catheterisations are minimally invasive procedures to treat pathologies of the 
heart and are routinely guided using X-ray fluoroscopy. This modality is suitable for 
this due to its real-time imaging capabilities and excellent device visibility. However, 
the images suffer from a complete loss of depth information and provide poor visuali-
sation of the heart itself. Therefore it is highly desirable to overlay the X-rays with 
improved soft-tissue 3D-CT information acquired pre-operatively during the diagnos-
tic and treatment planning phase of the procedure [1-10]. This lends itself to a 2D-3D 
image registration solution for cardiac images. 

Currently, registration can be performed automatically and in real-time using a hy-
brid X-ray/MR guidance system proposed in [1] to within 5-mm accuracy. However, 
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this requires a specially designed hardware that is not available in many hospitals. 
The use of fiducial skin markers or other surrogate structures is another approach to 
registration [4, 5], but accuracy may be lost if there is motion between the heart and 
the markers. This source of error can be avoided by using anatomical landmarks from 
the heart itself for registration, such as vessel bifurcation points and ostia [6], or the 
cardiac shadow [7]. However, repeat contrast agent injections may be needed for their 
reliable segmentation. In cardiac catheterisations, the use of the catheters for registra-
tion is attractive since these devices are the main instruments of the procedure and are 
placed directly into the heart with excellent visibility in X-ray [8, 9, 10, 11]. In current 
clinical settings, a common registration technique is to insert a catheter and loop it 
inside a target chamber, such as the left atrium (LA), and then manually aligning the 
pre-operative CT data from several X-ray views (EPNavigator, Philips Healthcare, 
Best, Netherlands) [11]. 

In this manuscript, a fully automatic algorithm is proposed for this purpose; i.e., to 
use catheter loops created inside a target chamber as a constraint in order to register 
pre-operative CT data onto intra-operatively acquired X-ray. To improve accuracy 
and robustness necessary for automation, the cardiac shadow adds an additional con-
straint as in [7], but in order to avoid the need for a contrast agent injection, only the 
upper border of the shadow is used since it is readily visible in X-ray images of the 
heart without contrast agents. 

2 Methods 

The proposed algorithm relies on the formation of a catheter loop inside the target 
chamber of the heart and iteratively searches for the rigid-body transformation (RBT) 
Treg that aligns the CT data to X-ray images. This is achieved by maximising the area, 
 

                     (1) 
 

A1 is the intersecting area enclosed by points manually picked along the loop L2D from 
the two X-ray views, one posterior-anterior (PA) and the other in either left or right 
anterior-oblique (AO), and projections of the target chamber surface C3D segmented 
semi-automatically from CT. A2 is the area between points manually picked along the 
upper cardiac X-ray border S2D and the projections of the combined surfaces of the 
segmented left and right ventricles (LRV) V3D segmented semi-automatically from CT 
(fig 1a, b, c).  To ensure points picked on the catheter loop and the cardiac shadow 
correspond to one another in both X-ray views, points are first picked in PA and then 
in AO using epipolar constraints [10]: 

           (2) 
where P are the camera calibration matrices encoding the pose and projection parame-
ters of the X-ray views [10], and P+ is the Moore-Penrose pseudoinverse of P. Anoth-
er view can be chosen instead of PA if the catheter loop appears more circular. 
 

. 

 , 
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Fig. 1. a) Photograph of the plastic heart phantom. b) Surface rendering of its CT scan after seg-
mentation. c) X-ray of phantom in PA view of 1st catheter loop configuration. d) Same PA view 
highlighting the upper cardiac border from X-ray (red solid line, labelled s) and the projected 
convex hulls of the LA (blue) and combined LRV (red). The algorithm attempts to maximise the 
intersection of the catheter loop in X-ray and the projected LA (green, A1) while minimising the gap 
between the upper cardiac border from X-ray and the projected LRV (purple, A2). 
Loop Area A1. To quantify how much the catheter loop is contained within the target 
chamber, the algorithm first projects this chamber onto the X-ray images (fig 1d) and 
extracts their convex hulls C using a fast radial sweep hull routine [12]. 
 

       (3) 
The intersecting area between the loop and the hull is computed by taking the points l 
along the catheter loop that lie inside the hull, and points c along the convex hull that 
lie inside the catheter loop, using a point-in-polygon routine [13] (fig 2a), 

           
(4)

 
and treating the union of these as a closed polygon in each view to obtain the areas: 

                
(5)

 
Border Area A2. The gap between the upper cardiac border in X-ray and ventricle 
projections is the measure to be minimised in eq 1 and calculated by first finding the 
convex hull of the projection of the combined surfaces of the LRV, 

     (6) 
Cubic splines are fitted through the convex hulls using periodic boundary conditions, 
and through the upper cardiac border using natural boundary conditions. The splines 
are resampled at an interval of ∆ = 0.5 px separation distance. 

             (7) 

For each X-ray view, a point vm belonging to v is selected that is closest to the middle 
point of s, sm, rounding the point index down if there is an even number of 
points. The contiguous set of points w from v is taken such that #(w) = #(s), where #(x) represents the number of points in x, and vm is the midpoint of w and (fig 2b). 
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Fig. 2. a) Intersecting area A1 (shaded grey) of catheter loop L (white circles on dashed line) 
and convex hull of target chamber C (black circles on dotted line). Points l ⊂ L inside C shaded 
light grey and points c ⊂ C inside L shaded dark grey. b) Separation area A2 (shaded light grey) 
between X-ray cardiac border s (white circles) and points w on ventricle hull (dark grey circles) 
closest to s. Rest of the hull v (black circles) lie on the dotted line. c) Flowchart of algorithm 
used to find Treg that minimises A in eq 1. T + ∆x shorthand for T(x + ∆x, y, z, α, β, γ). 

              
(8)

 
Since s and w are evenly spaced, the area the two curves enclose is computed with: 

                            
(9)

 
Iterative Search Strategy. The algorithm begins with an initial guess of Treg, which is 
composed of six parameters: three translational (x, y, z) and three rotational (α, β, γ), 

                   
(10)

 
The initial guess assumes that the X-rays were taken with the heart lying in the iso-
centre of the C-arm, and that the patient is lying in a supine position, Treg = Tsup. The 
area A in eq 1 is then computed using 13 variants of Treg: six variants include a  
small positive change in each one of its six parameters, ∆x, ∆y, ∆z, ∆α, ∆β and ∆γ, for 
example, T+∆x = T(x + ∆x, y, z, α, β, γ); six negative changes in each parameter, -∆x, -∆y, -∆z, -∆α, -∆β and -∆γ; and in the last variant there is no change (fig 2c). The  
variant Treg that maximises the computed area is then used as the new guess and this  
is repeated until the largest area is due to the no-change variant. In this case, the  

, . 

 ,  

 . 

 . 
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incremental amounts are halved and iteration resumes until the increments have been 
halved 15 times, at which point the algorithm ends and is said to converge. 

2.1 Phantom Experiment 

In order to validate the proposed algorithm, a phantom experiment was carried out 
with a geometrically-realistic plastic model of the heart (LFA 5000, Lake Forest Ana-
tomicals, Lake Forest, IL, US) (fig 1a, b).  Eight radio-opaque 0.25-mm diameter 
lead balls were adhered around the heart to provide a gold standard registration fol-
lowed by a 0.488×0.488x0.625-mm3-voxel-resolution 512×512×416 CT scan (Dis-
covery STE, GE Healthcare, Little Chalfont, UK). The heart was subsequently cathe-
terised in two configurations via the inferior vena cava (IVC) and into the LA where it 
forms a loop around the chamber’s interior wall. In the 1st configuration, the catheter 
exited the LA via the right lower pulmonary vein (RLPV) and in the 2nd configuration 
exiting the left upper pulmonary vein (LUPV). Once the catheter loop was in place, a 
sequential biplane X-ray pair of the heart is taken from PA and RAO 45° views (Allu-
ra Xper FD10, Philips Healthcare, The Netherlands) (fig 1c, 3a, c). 

The surfaces of the LA and LRV chambers of the CT image were segmented semi-
automatically using an active contour method [14] for use as C3D and V3D in eqs 3, 6 
(fig 1b) with #(C3D) = 39960 and #(V3D) = 132384: 61014 from LV, 71370 from RV. 
From X-ray, the looped portion of the catheter and the upper-left border of the cardiac 
shadow were selected in PA and subsequently in RAO using epipolar constraints for 
use as Lpa, Lao, Spa and Sao in eq 4 and summarised in table 1. 

The accuracy of the algorithm is quantified in terms of mean 3D target registration 
errors (3D-TRE) found by comparing the Treg to a gold standard RBT Tgs between the 
CT scan and the X-ray table space. Tgs is found by applying the method in [15] with-
out scaling between the eight fiducial markers picked from CT and corresponding 
markers in the two X-ray views reconstructed using epipolar geometry and back pro-
jection [10]. The TREs can be computed by applying the two RBTs to points in the 
regions of interest of the heart obtained using [14]: 

     (11) 

The iterative registration algorithm was applied to both catheter loop configurations 
using isocentre and supine constraints and with ∆x = ∆y = ∆z = ±3 mm and ∆α = ∆β  = ∆γ = ±5° as the initial increments. 

Table 1. Number of points that make up each curve in X-ray and their 2D arclengths ℓ 

configuration curve # ℓ in PA (px) ℓ in RAO (px) 

1: IVC-LA-RLPV 
L 15 489.79 354.49 
S 5 90.52 58.36 

2: IVC-LA-LUPV 
L 17 394.58 244.29 
S 7 107.44 86.82 

 . 
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3 Results 

Eight lead fiducials provided a Tgs with fiducial registration error of 0.87 mm which 
indicates a suitable gold standard. Using the supine and isocentre constraints as an 
initial guess and ±3 mm, ±5° for the initial increments, the algorithm was able to 
align the CT and X-ray data to within a mean 3D-TRE of 3.0 mm over the four cham-
bers of the heart for the 1st catheter loop configuration, and 4.9 mm with the 2nd. The 
average TREs of the two configurations were between 2.4 and 5.4 mm over various 
regions of the heart and 4.0 mm over the four chambers (table 2). The algorithm took 
35 and 43 steps to converge respectively, and required on average 269.30 s (C#; Intel 
Core 2 Extreme, 2×3.06 GHz, 4 GB ram, 64-bit Win 7). 

 

Fig. 3. a) PA and c) RAO 45° X-ray views of the plastic heart with 2nd looped catheter configu-
ration. b, d) Segmented surface rendering of CT data overlaid onto the views. Colour map 
showing spatial distribution of 3D-TRE over heart phantom between 0.15 and 7.08 mm. 

Table 2. Number of points (#) from segmentations of the heart, and the mean 3D-TRE obtained 
for the various regions listed for each loop configuration, and the average between the two 

region of interest # 
mean 3D-TRE (mm) 

1: RLPV 2: LUPV average 

chambers 

left atrium 39960 4.1 2.5 3.3 

left ventricle 61014 4.5 2.2 3.3 

right atrium 44608 5.2 3.8 4.5 

right ventricle 71370 5.9 3.6 4.8 

4-chamber average 216952 4.9 3.0 4.0 

small vessels 
coronary sinus ostium 4024 5.0 3.9 4.5 
left coronary artery 13560 5.4 2.7 4.0 
right coronary artery 20502 6.2 3.8 5.0 

large vessels 

ascending aorta 35304 4.6 2.2 3.4 
inferior vena cava 15958 5.8 5.0 5.4 
superior vena cava 15096 4.2 3.3 3.8 

pulmonary trunk 11002 5.4 1.2 3.3 

pulmonary veins 
(PV) 

left lower PV 3676 4.0 0.9 2.4 
left upper PV 4704 4.1 1.8 3.0 
right lower PV 3328 4.9 4.2 4.6 
right upper PV 3800 4.4 4.0 4.2 

 

 

a) b) c) d) 7.08

0.15
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4 Discussion and Conclusion 

A 2D-3D image registration algorithm was developed that can align 3D-CT data onto 
biplane X-ray images of the heart by using a catheter looped inside a target chamber 
and the upper cardiac border to constrain the registration. The algorithm requires the 
segmentation of the target chamber and the left and right ventricles from CT, and 
segmentation of the loop part of the catheter and upper border of the cardiac shadow 
from X-ray. The algorithm registers the data by projecting the segmented chambers 
onto both X-ray views, and maximises the area of intersection between the projected 
target chamber and catheter loop, while minimizing the gap formed between the upper 
border of the cardiac shadow and the project ventricles. Using isocentre and supine 
constraints, an initial guess RBT is established to align the CT-data to the X-rays, and 
subsequently uses an iterative search strategy that perturbs the transformation, one 
parameter at a time, by a small increment until a local maximum area is found. 

To test this algorithm, a phantom experiment was carried out with two catheter 
loop configurations formed inside the LA via the IVC, with one exiting the RLPV and 
the other exiting the LUPV (fig 1c, fig 3a, c). The accuracy was measured in terms of 
mean 3D-TREs against a fiducial-based gold standard with a 0.87-mm FRE. The 
average TRE between the two configurations was between 2.4 and 5.4 mm over vari-
ous regions of the heart, and 4.0 mm over the four chambers (table 2). 

Results show that the LUPV configuration yielded lower TREs than the RLPV 
configuration for all regions of interest. A possibility is that the while the target 
chamber was the same size in both configurations, the catheter loop formed in PA in 
the RLPV configuration was only 19070 px2 while the in the LUPV configuration the 
loop was 25334 px2, suggesting that the larger the catheter loop, the better constraint 
that the loop and chamber can provide, and hence a more accurate registration. 

While the experiment shows that registration with a plastic phantom can yield 
TREs within the 5-mm clinical tolerance, the phantom is rigid and stationary and 
therefore no errors are introduced to the reported TREs due to cardiac and respiratory 
motions.  Although the main cause of error in rigid registration methods are not si-
mulated, the experiment carried out in this manuscript is still valid and applicable to a 
cardiac catheterisation procedure by adding the requirement that the intra-operative 
X-ray images are phase-matched to the pre-operative CT image with respect to the 
cardiac and respiratory cycle, typically in end-diastole and end-systole. 

Another limitation to using a plastic phantom model is the absence of the pericar-
dial sac that would contribute to the upper cardiac shadow when imaging a live heart.  
To account for this when working with patient data the pericardial sac should be in-
cluded in the ventricle segmentation. 

The automatic registration algorithm can be performed in less than five minutes.  
While this is a reasonable execution time under clinical settings, the speed of the algo-
rithm can potentially be improved by using optimized iterative search strategies found 
in [16], and by using a multi-resolution approach to reduce the number of points used 
in the CT segmentation during the initial alignment when the increments are relatively 
large, and then restore the number of points when the increments are small and finer 
resolution is needed.  
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Preliminary evaluation of the algorithm yields mean-3D-TREs below the 5-mm 
clinical tolerance, demonstrating feasibility for clinical interventional guidance and 
meriting thorough validation using further phantom and clinical images. 
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Abstract. The purpose of this work was to use in vivo MR imaging and electro-
anatomical maps to characterize dense scars and border zone, BZ (a mixture of 
collagen and viable fibers). To better understand how these measures might 
probe potentially arrhythmogenic substrates, we developed a preclinical swine 
model of chronic infarction and integrated in vivo MRI and electrophysiology 
(EP) data in five swine at 5-6 weeks post-infarction. Specifically, we first 
aligned and registered  T1-maps (from MR studies) and bipolar voltage maps 
(from CARTO-EP studies) using Vurtigo, an open source software. We then 
performed a quantitative analysis based on circumferential segments defined in 
the short-axis of MR images. Our results demonstrated a negative linear relation 
between bipolar voltage maps and T1 maps within the first two mm of the 
endocardial surface. The results of our novel approach suggest that T1-maps 
combined with limited EP measurements can be used to evaluate the 
biophysical properties of healing myocardium post-infarction, and to 
distinguish between the infarct categories (i.e., dense scar vs. BZ) with 
remodelled electrical characteristics.  

Keywords: cardiac MRI, T1 maps, CARTO bipolar voltages, border zone. 

1 Introduction 

The arrhythmogenic substrate for potentially lethal heart rhythms in patients with 
prior myocardial infarction is typically located at the so-called border zone (BZ),  
which is found between the normal and scarred tissue [1]. Currently, in the clinics, the 
chronic infarct areas are identified using contact (e.g. CARTO-XP electro-anatomical 
system, Biosense, Diamond, USA) and non-contact systems (e.g. Ensite system, St 
Paul, MN, USA). These systems record unipolar voltage values (between the catheter 
tip and a reference electrode) which reflect the global electrical activity and are 
influenced by far fields, as well as bipolar voltage values (i.e., difference between two 
unipolar electrograms recorded by adjacent rings of 1-2 mm separation) which 
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represent more accurately the local activity. In the CARTO bipolar voltage 
recordings, the voltage cut-off used to delineate the normal myocardium from infarct 
areas is arbitrarily set to values greater than 1mV or 1.5mV [2, 3]. A further 
categorization of the infarcted area is done by setting the cut-off thresholds to dense 
scar ≤ 0.5 mV (which comprises electrically inactive, fibrotic areas) and 0.5 mV < BZ 
< 1-1.5 mV. Although the electrical signals help identify some of the arrhythmogenic 
foci, these electro-anatomic voltage maps (EAVM) are only surfacic and do not 
provide transmural information. Thus, an important task for the clinicians is to 
determine the location, extent and transmurality of the infarct scar, and this is done 
non-invasively by employing MR imaging methods [4]. The conventional delayed-
enhanced DE-MRI method is based on the elevation of signal intensity (SI) values 
within infarct regions, measured approximately 10-15 min after the contrast agent 
administration. The observed signal enhancement is due to different concentrations 
and kinetics of the Gadolinium-based molecules in the extracellular space within the 
healthy tissue and the infarcted areas; thus the infarct appears brighter than the 
surrounding structures as the Gd-based contrast agents alter MR relaxation properties 
and shorten the T1 relaxation time [5]. Moreover, by using certain pulse sequences 
(e.g. the inversion-recovery gradient echo IR-GRE) and manipulating some MR 
parameters (e.g. inversion time, TI), one can obtain images with almost null MR 
signal from the healthy tissue and a clearly distinguishable infarct area.  

Several studies aimed to characterize the scar and BZ using DE-MRI and CARTO 
maps and demonstrated that critical sites of post-infarction arrhythmias are usually 
confined to areas of elevated signal intensity (SI) in DE-MR images [6,7]. However, 
they also suggested that discrepancies between peri-infarct sites detected by DE-MRI 
and CARTO could be due to: far-field influences from normal myocardium, manual 
delineation of scar, poor wall/catheter contact. Notably, in most of these studies, SI 
threshold was set at 2 SD or 3 SD (standard deviation) higher than the mean SI 
selected from remote/normal myocardium. However, all these algorithms proposed to 
categorize infarct heterogeneities into dense scar and BZ are affected by noise, which 
is inherent in the MR signal and can significantly affect the reproducibility of results. 
An alternative method involves T1-mapping and is based on a multi-contrast late 
enhancement (MCLE), in which a simultaneous nulling of MR signal from healthy 
myocardium and blood is employed. In particular, this method might be superior to 
the conventional delayed-enhanced MR method in delineating the subendocardial 
infarcted tissue from the blood pool [8].  

However, to date, combined in vivo EP-MRI studies aiming to correlate infarct 
regions identified in T1-maps from MCLE with bipolar voltage maps from CARTO 
studies have not been performed. Such investigation could provide a better 
characterization of electrical and structural properties infarcted myocardium. 
Therefore, the specific purpose of this paper was to characterize the heterogeneous 
infarct areas (i.e., dense scar and BZ) using in vivo CARTO bipolar voltage maps  
and in vivo MCLE-MRI methods, in a pre-clinical swine model of chronic  
infarction.  
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2 Materials and Methods 

A diagram of the proposed framework is shown in Figure 1. We first acquired the in 
vivo MRI and EP data. Secondly, we performed data post-processing to segment the 
LV, to categorize tissue heterogeneities, and to fuse (align and register) MR images 
with EAV maps. Thirdly, we analyzed the correlation between T1-maps and bipolar 
voltage maps. We described below these three steps in more detail. 

 

 

Fig. 1. Flow-chart of the three major steps performed: a) in vivo MRI and EP data acquisition; 
b) data processing (tissue classification, CARTO-to-MRI fusion); and c) quantitative analysis 
(correlation between bipolar voltage values and T1-maps) 

2.1 In vivo MRI Study and in vivo CARTO-EP Study  

All experiments included in this pre-clinical framework were approved by 
Sunnybrook Research Institute, Toronto, CA. For the correlation between T1 maps 
and CARTO maps we used five swine with chronic infarction. The infarction was 
generated using an occlusion-reperfusion method and the scar was allowed to heal for 
5-6 weeks, as previously described [9, 10]. In the current work, for the purpose of 
calibrating the threshold for the bipolar voltage values in healthy myocardial tissue, 
we also included CARTO-EP data collected in five control/healthy swine. 

The MR imaging studies were performed on a dedicated 1.5T research scanner (GE 
SignaExcite) using a 5-inch surface coil. The MR scans had the following parameters: 
TE=1.9 ms, TR=5.5 ms, NEX=1, FOV=26 cm, 256x256 acquisition matrix, and 5-
mm slice thickness. Delayed enhancement imaging was started 10-15 minutes after 
the injection of a Gd-DTPA bolus. Several short-axis MCLE images were acquired 
through the infarct volume, with the inversion pulse placed such that the infarct-
enhanced images were acquired with minimal motion during diastole, for which TI 
(inversion time) ranged from 175 to 250 ms. A clinical expert verified in select 
images (based on manual contours) that there was indeed minimal motion within this 
range, especially in the infarct area where the collagenous scar losses contractility. 
The MCLE used steady-state free precession (SSFP) readouts during the inversion 
recovery IR process, producing 20 images over the cardiac cycle each at a different 
TI*. The MCLE images at early inversion times have varying contrast where the 
infarct can be visualized as an area of fast T1

* recovery (where T1
* < T1 due to the 
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continuous SSFP readout). Figures 2a-d show four (out of 20) MCLE images 
corresponding to one 2D short-axis MR slice.  

Further, approximately six images (per heart cycle) were selected and used to 
extract the signal intensity (SI) recovery curve for each pixel within the LV (including 
the blood pool pixels), given that signal intensity obeys the equation (1): 

     SI (time) = SS * [1-2exp(-time/T1
*)]                                        (1)   

 

Fig. 2. Four consecutive short-axis MCLE images (a-d) acquired in a swine with the infarct 
visualized as a hyper-enhanced region (indicated by arrow) 

Next, each in vivo EP study was performed after the MRI scan using the CARTO-
XP electro-anatomical system. The bipolar voltage maps were acquired using either 
QwikStar or Navistar contact catheters inserted into the cavity of the LV under X-ray 
fluoroscopy, and the recordings were performed in the normal sinus rhythm or in 
paced conditions.  

2.2 Data Processing: Tissue Segmentation and Fusion of in vivo MRI and 
EAVM 

For the LV segmentation, the LV endocardial and epicardial surfaces were traced in 
short-axis image series of conventional cine SSFP during all phases of the heart, using 
an algorithm previously developed by our group [11]. For the 2D MCLE images, a 
corresponding spatial map of the various tissue types was generated using automated 
fuzzy clustering analysis [12]. The fuzzy clustering algorithm determines the 
probability of each pixel belonging to each of the three clusters based on a distance 
metric derived from the scatter plot (T1

* versus steady-state (SS)) as described in [12]. 
A scatter plot of T1

* versus steady-state value for each pixel was then used as the 
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input to a fuzzy C-means algorithm to automatically classify each pixel as: either 
infarct, or healthy myocardium, or blood. 

Next, the (X,Y) coordinates of endocardial and epicardial contours were extracted 
and imported into VURTIGO software [13]. The LV endocardial and epicardial 
contours were used to generate 3D meshes by converting the myocardial contours into 
3D coordinates, based on the 3D spatial location and pixel (voxel) size in MR images. 
All CARTO points were imported into VURTIGO, where each EAVM was aligned to 
its corresponding MR endocardial surface using anatomical markers; we then 
registered these maps by matching these reference points from both imaging 
modalities. Note that all landmark points (i.e., apex, mitral valve, etc) were manually 
selected by a clinical expert, similarly to the registration described in [6] and [7] 
where the CARTO-MERGE software was used. For the interpolation step, a 
triangulation approach was employed to obtain a surface description of myocardial 
walls from the recorded EAV points. The registration error (i.e., fiducial registration 
error, FDE) was calculated using: 

  
landmarksN

N

i
iTiSdist

FRE

landmarks


== 1

),(

                                                        (2) 

where: Nlandmarks is the number of landmark pairs, Si is the i’th source landmark and Ti 
is the i’th target landmark.  

2.3 Quantitative Analysis 

We correlated the T1 values from selected 2D MCLE data (i.e., 3-5 images per 
animal) with the bipolar voltage amplitude values from the corresponding CARTO 
points by using a sector analysis. All select short-axis MCLE slices were segmented 
circumferentially into 12 equal sectors (instead of 6 basal and 4 apical proposed in the 
AHA guidelines); this was done to decrease the potential mismatch between the 
values of CARTO points projected onto either BZ or scar segments defined from T1 
maps. Further, each sector was divided in sub-sectors (i.e., sub-segments) defined 
from the endocardium to the epicardium by drawing concentric circles at 2 mm of 
endocardium surface, as well as on epicardium (at whole thickness). Next, we 
calculated the percentage of each tissue type (in pixels) in each sub-segment within 
the first two mm of endocardium and within the full thickness, respectively, and 
further categorized each sub-segment into: healthy or BZ or dense scar, depending on 
the majority of pixels calculated within that sub-segment. Each endocardial segment 
was also assigned a bipolar voltage value from the CARTO points projection. Finally, 
a comparison between EP and MRI was performed as per the 'points by segment' 
method proposed in [7]. Note that, if more than 1 CARTO point was projected onto a 
segment, we calculated an average bipolar voltage value for that segment. 

Figure 3 shows a hypothetical example of correlating the EP signal and MR tissue 
characteristics using sectors categorized from T1-maps, where a CARTO 'scar' point 
of 0.4 mV bipolar voltage value is projected onto an endocardial segment from the 
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Fig. 3. Schematic example of the sector analysis in the LV of a heart with anterior infarct: (a) 
LV segmentation into 12 sectors and further sub-sectors at different depths; and (b) 
hypothetical tissue categorization from MCLE images based on T1 relaxation values, with 
different transmural categorization (based on number of pixels in that sub-sector) at 2 mm 
depth of endocardium and at full thickness, respectively, and further correspondence between 
these categories and the bipolar voltage value of a segment (following projection of a CARTO 
point onto it). 

left ventricle. At 2 mm depth of endocardium, this voltage value would correspond 
correctly to a sector categorized as 'scar' in a T1-map, whereas at full thickness, it 
would incorrectly correspond to a 'healthy' sector.  

3 Results 

Figure 4 shows example results from the step 2 (data processing) obtained in one of 
the animals. Fig 4a shows a scatter plot of T1* versus SS values for all pixels within 
the LV (for the MCLE images presented in Fig 2). The resulted 2D spatial map of 
various tissue types classified using the automated fuzzy clustering algorithm is 
shown in Fig 4b.  
 

 

Fig. 4. Example of realistic categorization from MCLE images: (a) scatter plot of T1
* versus 

steady-state (SS) values for all pixels within the LV; and (b) corresponding spatial map of 
various tissue categories classified using the fuzzy clustering algorithm: infarct (green), BZ 
(yellow), healthy tissue (blue), and blood (red) 
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Figure 5 shows an example result from the integration of EAVM and MR images 
performed using VURTIGO. A snapshot of the endocardial contours (white dots) 
generated from the cine MR images is shown in Fig 5a. The bipolar voltage map 
projected onto this endo-surface (after landmark registration) is shown in Fig 5b, and 
corresponding tissue heterogeneities as defined by T1-maps in Fig 5c. The mean FRE 
was calculated to be 5 mm (averaged over all infarcted animals). 

  

Fig. 5. Integration and visualization of bipolar voltage maps with MR images using VURTIGO: 
(a) segmented endocardial surface from cine-MR images; (b) a bipolar voltage map projected 
onto the LV-endocardium after registration; and (c) a 3D volume rendering from a 2D stack of 
MCLE images after categorization. 

Figure 6 shows the results of the quantitative analysis performed in all five 
animals, demonstrating a strong correlation between T1-maps and bipolar voltage 
values. Figure 6 suggests that, based on the correspondence between bipolar voltages 
cut-off in BZ and dense scar categorized in healthy, BZ and dense scar, the catheter 
sensitivity decreases with the depth of endocardium. Furthermore, we derived 
negative linear relationships with the following correlation coefficients: r = -0.86 at 
2mm-1mm depth, and r = - 0.73 at whole myocardium, respectively (note: we 
excluded the first 1 mm from the radial circle corresponding to 2 mm of endocardium, 
as some slices had blood pixels due to the automatic segmentation algorithm of 
endocardium from cine images). In addition, we calculated the median values for the 
bipolar voltages measured in the five control/healthy swine (not included in the 
figure), and thus confirmed that 1.5 mV is a valid threshold to differentiate between 
healthy and infarcted myocardium. 

Statistical analysis performed using two-tailed t-test between the different 
categories plotted in Fig 6a, reveals statistical significant differences between the 
bipolar values corresponding to the following categories identified by MCLE: a) 
healthy areas and either BZ or scar areas (both had p < 0.001). b) BZ at 2mm-1mm 
and BZ at whole thickness (p< 0.024); and c) BZ and scar at 2mm-1mm (p < 0.0001), 
as well as BZ and whole thickness (p < 0.0025), respectively. The calculated p value 
between the scar at 2mm-1mm and whole thickness was found to be not significant 
(p<0.2), which was expected due to the transmural extent of scar.  
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Fig. 6. Correlation between bipolar voltage values and T1-maps: median bipolar voltage values 
of the segments corresponding to different tissue categories (based on T1 map) within 2mm–
1mm of endocardium, and whole-thickness of myocardium (note: box plots have the 25th and 
75th percentiles in the distribution score) 

4 Discussion 

Accurate myocardial characterization in post-infarction remodelling is an important 
task in order to identify potential arrhythmogenic foci. This clearly motivates the 
development of pre-clinical experimental frameworks and novel non-invasive 
imaging methods and image analysis algorithms to assess tissue viability and 
biophysical properties of ischemic areas, in order to supplement the limited EP 
measures. A superior non-invasive imaging method is the MCLE method used in this 
work, which allowed us to generate accurate T1 maps that were used to detect 
infarcted tissue without the need to estimate the TI for nulling myocardium as in the 
conventional DE-MRI. In general, we demonstrated that our method provided an 
accurate classification of the infarct heterogeneities and identification of subtle 
endocardial lesions in a swine model of chronic infarction. The T1 maps reflected the 
structural changes in healing myocardium, that is an increase in extracellular space 
and in collagen deposition in the infarcted areas, as well as the presence of 
heterogeneous areas in the peri-infarct (a hallmark of patchy fibrosis in the chronic 
infarction). These structural changes were also accompanied by alteration in electrical 
properties and signal morphologies (e.g. the amplitude of bipolar voltage values) as 
observed in the EP experiments. 

Our study is the first to evaluate the relation between MR tissue properties based 
on T1 relaxation maps and local voltage values using EAVM and MCLE to 
characterize infarct heterogeneities (i.e., dense scars and ischemic BZ areas). 
Specifically, we demonstrated that the infarct categorization (healthy, dense scar and 
border zone) determined in T1 maps correlated very well with bipolar voltage values. 
On the basis of our experimental results, this study also supports the validity of 
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conventional voltage criteria: 0.5-1.5 mV for delineation of scar and BZ region, as 
well as > 1.5 mV for the healthy areas. Note that our results are in agreement with 
those reported in a recent study [7] which integrated MRI-derived scar maps with 
EAVM in fifteen patients undergoing ablation VT ablation, and similarly found that 
bipolar voltage values significantly decrease with the increase in scar transmurality 
for core infarct and BZ. Notably, for the segments categorized as BZ in our T1 maps, 
our bipolar voltage values showed a better correlation at the first 2 mm depth of 
endocardium compared to the whole thickness, as well as a significant decrease in 
bipolar values with the increase in depth of endocardium, reflecting the sensitivity of 
the recording catheter at these locations. However, the same significant difference 
was not observed for the segments containing mainly dense scar, and was attributed to 
the (almost) full transmurality of the infarct in these segments.   

The registration between the CARTO and MRI was performed in Vurtigo using 
anatomical landmarks selected by clinical experts, in a similar way the fusion of MRI and 
contact-EP data is performed in the clinical settings with the CARTO-MERGE software, 
yielding a 5 mm fiducial registration error which is clinically acceptable. In our method, 
each slice was divided into 12 segments and this likely provided a more accurate 
correlation between T1 and CARTO maps compared to a segmentation into 4-6 AHA 
segments (per apical/base slices). We believe that the registration step did not introduce 
large errors in the analysis since each segment (getting assigned 1 CARTO value or an 
average of few values) was relatively large; however, future work will address this in 
more detail. Moreover, future work will also focus on extending this type of EP-T1 
analysis using electrical signal amplitude in bipolar voltage maps recorded in real-time 
under MR guidance, in an infarcted swine model. A recent study from our group has 
reported the feasibility of recording electrophysiology data (i.e., depolarization maps) in a 
swine study [14]; such approach minimizes the registration error since the EP data is 
collected in the same coordinate system as of the MR images.  

Finally, a limitation of this study is the relatively small sample size (i.e., n=5 
animals); however, there were between 3-5 MR images (slices) containing infarcted 
tissue selected per each heart, that is 36 to 60 sectors analyzed per animal (at each 
depth), which was enough for accurate statistical analysis.  

To conclude, T1 maps can be used to evaluate the biophysical properties of healing 
myocardium post-infarction, and to distinguish between infarct categories (i.e., dense 
scar vs. BZ) with remodelled electrical characteristics. Moreover, T1 maps contain 
transmural information and thus supplement the information currently given by the 
limited/surfacic EP measurements. 
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Abstract. In recent years, the response of, especially, the right ventricle
to intense exercise has gained increased interest. In this study, we use
the CircAdapt model to evaluate the influence of inter-individual varia-
tion of pulmonary vascular resistance during exercise on cardiovascular
hemodynamics. We modeled pulmonary vascular resistance as a nonlin-
ear resistive module in which the resistance increases proportionally to
stroke volume. We modeled inter-individual variation following normal
random distributions. To evaluate the hemodynamic response to exer-
cise, we computed pulmonary artery systolic pressure and end-systolic
wall stress. With our modeling strategy, we were able to reproduce the
phenomena observed clinically.

1 Introduction

In recent years, the response of, especially, the right ventricle (RV) to intense
exercise has gained increased interest [2]. In professional athletes the incidence
of arrhythmias originating from the RV has been shown to be significantly
higher [3]. Several hypotheses have been suggested as a possible cause, among
which is the inter-individual hemodynamic response of the RV to high-intensity
exercise [1].

Modeling has long been used by researchers to study physiological phenom-
ena. Using a model, a complex system can be interrogated for a variable of
interest under controlled circumstances. In particular, the cardiovascular system
has been studied for decades using in-vitro and animal models. More recently,
computational models have also been adopted as a technique able to accurately
reproduce cardiovascular dynamics. Due to their computational nature, a great
number of scenarios can be simulated.
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RV

PA
PV

Fig. 1. Schematic of pulmonary circulation. A
larger amount of blood circulating through the
cardiovascular system is bottle-necked at pul-
monary circulation. This bottle-neck effect is re-
lated to pulmonary vascular resistance (PVR).
An increase of PVR leads to an increase of
pressure at the inlet of pulmonary circulation:
the pulmonary artery. Since the right ventricle
pumps the blood into the pulmonary artery, the
increase of pressure directly affects RV pressures.
According to recent findings [1], during exercise
some individuals are able to recruit and dilate
more pulmonary vessels than other individuals
(i.e. increased pulmonary reserve). In these indi-
viduals, blood flows easier through pulmonary
circulation, thus overall PVR is reduced (see
Sec. 2.1 and Sec. 2.2). PA= pulmonary artery;
PV= pulmonary veins; RV= right ventricle.

A well validated computational model of circulation dynamics is CircAdapt [4,
5]. It represents the whole circulatory system as a combination of four types of
modules: chambers, tubes, resistances and valves. The model simulates beat-to-
beat dynamics of the four-chambers of the heart with systemic and pulmonary
circulation.

Pulmonary circulation is an important modulator of cardiac output, both in
pathological [6,7] and healthy subjects [8]. During exercise, pulmonary vascular
resistance (PVR) increases [8]. In this study, we use the CircAdapt model to
evaluate the influence of inter-individual variation of PVR during exercise on
cardiovascular hemodynamics.

2 Methods

2.1 Clinical Motivation

It was recently suggested that during exercise some individuals show transpul-
monary crossing of ultrasound-contrast agent in larger quantities with respect to
other individuals. This is known as low and high pulmonary transit of agitated
contrast (low-PTAC and high-PTAC, respectively) [1]. This differentiation was
shown to be independent of their hours of training per week (elite athletes or
volunteers). This suggests that some individuals are able to recruit larger vessels
in the pulmonary circulation while stroke volume (SV) increases, thus altering
the overall PVR (see Fig. 1). We will refer to this ability to adapt to high de-
mands of SV as increased pulmonary reserve. Therefore, our study focuses on the
inter-individual differences in the RV pressure-volume relation during exercise,
resulting from differences in pulmonary reserve.
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Table 1. Modified input parameters at baseline and peak exercise

Parameters Units Baseline Peak Exercise
EA NA EA NA

Hemodynamics

Cardiac output L/min 8.2 7.8 18.7 23.3

Stoke volume† mL 139.0 110.0 156.0 130.0

Heart rate† beats/min 59.0 71.0 149.0 144.0
Mean blood pressure† mmHg 101.0 97.0 120.0 123.0

Geometrical

LV end-diastolic volume‡ mL 232.0 179.0 n.a. n.a.

RV end-diastolic volume‡ mL 264.0 198.0 n.a. n.a.
LV myocardial wall volume‡ mL 159.0 112.2 n.a. n.a.

RV myocardial wall volume‡ mL 45.8 28.1 n.a. n.a.

Inter-individual variation

ΔP mmHg 3.1 ± 1.4 25.7 ± 7.4

EA= elite athlete; NA= non athlete; ‡= Mean values in [2]; †= Mean values in [1];

ΔP = pulmonary arteriovenous pressure drop; n.a.= not applicable.

2.2 Modeling Strategy

Circulation Hemodynamics. To model circulation hemodynamics, we use
the CircAdapt model [4, 5]. This model adapts to changes in mechanical load
using a set of physical and physiological rules. Acute adaptation is obtained by
vasodilation. Chronic adaptation is obtained by chamber dilation and/or wall
hypertrophy.

CircAdapt has been previously used to simulate changes in PVR due to
chronic pulmonary hypertension [9], where different PVR values are obtained
by varying the instantaneous pulmonary arteriovenous pressure drop (ΔP =
pulmonary artery pressure - pulmonary venous pressure). In this previous work,
Lumens et al. simulate ΔP as a nonlinear resistive module, in agreement with
pressure-flow relationships measured in human and dogs [10–12]. For our study,
we use this same nonlinear resistive module, but we increase ΔP proportionally
to SV (see Fig. 1 and next section for further details).

Pulmonary Vascular Resistance (PVR) during Exercise. We obtained
a normal hemodynamic simulation at rest using the baseline values reported by
La Gerche et. al. [1]. To simulate a state of exercise, we increased cardiac out-
put from baseline to peak exercise values. Cardiac output (CO) changes were
obtained by increasing three parameters in equally spaced increments: SV, heart
rate (HR) and mean blood pressure (MBP). The chronic adaptation to exer-
cise was simulated by modifying initial conditions of ventricular geometry. That
is, larger cavity volumes and thicknesses (see next section for further details).
Then, we studied the hemodynamic response to exercise only with acute adapta-
tion. That is, allowing vasodilation without cavity enlargement or hypertrophy.
Baseline and peak exercise values used in this study are summarized in Table 1.
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Fig. 2. Pulmonary artery systolic pressure (PASP) measurements computed from the
clinical surrogate. (left) Each line represents one individual either with an elite athlete
heart (brown) or a non athlete heart (green). (right) Each individual was classified as
above (red) or below (blue) the mean slope reported in literature [1]. This classification
corresponds to individuals with low-PTAC (red) and high-PTAC (blue). (left-right)
Dark lines represent mean slope values reported in literature [1]. For further analysis
see Sec. 3.

Inter-individual Variation. We generated 20 virtual individuals as follows.
To generate each virtual individual, baseline ΔP 0 was assigned a random value
X ∼ N (μ, σ2) with μ and σ as summarized in Table 1.

For each individual, ΔP 0 was increased with exercise as a function of SV,
such that:

ΔP i = ΔP 0 +ΔP 0 × fact ∗ SV i − SV 0

SV peak − SV 0
(1)

where i represents each CO increment, and fact was assigned a random value
fact ∼ N (15, 152). Resulting ΔP values at peak exercise are also summarized
in Table 1.

To each virtual individual, we assigned two types of heart geometries, corre-
sponding to a non athlete (NA) heart and an elite athlete (EA) heart [1,2]. The
geometry was imposed by modifying end-diastolic volumes and myocardial wall
volumes (mL) for both LV and RV (see Table 1).

3 Results

3.1 Pulmonary Artery Systolic Pressure

To evaluate the effect of exercise on pulmonary hemodynamics, we computed pul-
monary artery systolic pressure (PASP). CircAdapt provides this value as direct
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Table 2. Measures of hemodynamic response at baseline and peak exercise in compar-
ison to literature

Units Baseline Peak Exercise

low-PTAC high-PTAC Δ low-PTAC high-PTAC Δ

P
A
S
P La Gerche et al. [1] mmHg 22.0 ± 4.2 21.0 ± 3.4 1.0 62.6 ± 13.7 52.3 ± 9.8 10.3

Our study mmHg 26.2 ± 5.8 25.4 ± 5.5 0.6 69.1 ± 11.8 61.6 ± 13.7 7.5

LV RV LV RV

E
S
W

S La Gerche et al. [2] Kdynes/cm2 243.4 ± 17.3 139.5 ± 10.9 263.8 ± 25.6 282.9 ± 22.1

Our study Kdynes/cm2 220.8 ± 33.6 98.3 ± 9.7 338.6 ± 90.6 524.5 ± 245.7

PASP= pulmonary artery systolic pressure;

ESWS= end systolic wall stress; LV= left ventricle; RV= right ventricle;

output of the simulation. However, to be able to compare with reported literature
values [1], we computed the clinical surrogate measurement of PASP [13]:

PASP = mean(PV C) +max(PRV )−max(PRA) (2)

where P = pressure, V C = vena cava, RV = right ventricle, RA = right atrium.
Fig. 2 shows the results of PASP measurements, where each line represents

one individual. The differences in slope represent the inter-individual variation
of pulmonary reserve. Fig. 2-left shows PASP measurements for both types of
hearts: EA and NA. It can be observed that there is no clear differentiation
between the two groups. Fig. 2-right shows the results of PASP measurements
where each individual was classified as above (red) or below (blue) the mean
slope reported in literature [1]. This classification corresponds to individuals
with low-PTAC (red) and high-PTAC (blue) [1]. We observe that the modeling
approach is able to reproduce scopes of clinically reported PASP vs. CO values.
Average values at baseline and peak exercise for these two groups are summa-
rized in Table 2. Although the overall effect of inter-individual differences in
pulmonary reserve was reproduced with our modeling strategy, both baseline
and peak values were overestimated w.r.t. literature values. Note that we used
only mean values reported in the literature. Most likely, computed PASP ranges
will be improved by simulating inter-individual PVR differences with patient-
specific parameters. That is, cavity volumes, wall thicknesses, cardiac output
and pressure measurements. This will be our immediate future work.

3.2 End-Systolic Wall Stress

Another important hemodynamic measure is wall stress. Particulary, it has been
shown that end-systolic wall stress (ESWS) at peak exercise is considerably
higher on the RV with respect to the LV [2]. Based on Laplace’s law, we computed
ESWS as:
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Fig. 3. End-systolic wall stress (ESWS) for the left ventricle (LV) and right ventricle
(RV). Note the disproportionate higher load on the RV at peak exercise when compared
with the LV. For further analysis see Sec. 3.

ESWS =
Pr

2h
(3)

where r = ventricular radius, and, h = ventricular wall thickness. For LV, cav-
ity pressure P = systolic blood pressure LV pressure,while for RV P = PASP
calculated from the clinical surrogate, as described above. Results are displayed
in Fig. 3. We can observe the disproportionate higher load on the RV at peak
exercise when compared with the LV. Note also the larger dispersion of ESWS
for the RV at peak exercise, due to a larger inter-individual variability of PVR.
Average values at baseline and peak exercise are summarized in Table 2. Simi-
larly to PASP values, we obtained a mismatch between computed and previously
reported ESWS values [2]. However, the overall clinical phenomenon was suc-
cessfully reproduced.

end diastole end systole flattening buldging

Fig. 4. 2D echocardiography of an elite athlete. We can clearly observe the effect of
septal fattening and buldging (septum is displaced towards the LV cavity). Studying
the simulations we can conclude that this happens due larger RV pressures immediately
after LV end systole. For further analysis see Sec. 3.
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Fig. 5. Each figure displays (top) a schematic short-axis view of chamber anatomy and
(bottom) a Wiggers diagram. In the schematic we can observe the proportion of cavity
size, wall thickness and septal curvature. In the Wiggers diagram we can observe the
relation of pressure and volume curves along the cardiac cycle. For further analysis see
Sec. 3.
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3.3 Schematic and Wiggers Diagram

To provide a better visualization of the hemodynamic effect of intense exercise,
Fig. 5 shows a schematic short-axis view of chamber anatomy and a Wiggers
diagram. The schematic was generated using the graphical user interface devel-
oped by Palau-Caballero et al. [14]. This figure was computed for the individual
with the largest PASP vs. CO slope (Fig. 2-right). We can clearly observe the
geometrical changes induced by exercise: RV enlargement and septal flattening.
Also, due to the large increase of RV pressures the septum is displaced towards
the LV cavity. Fig. 4 shows this effect in a 2D echocardiography dataset of an
elite athlete. We can observe septal fattening and buldging.

4 Conclusions

This work studied the inter-individual differences in the RV pressure-volume rela-
tion during exercise, resulting from differences in pulmonary reserve.We modeled
pulmonary vascular resistance as a linear resistive module in which the resistance
increases proportionally to stroke volume. We modeled inter-individual variation
following normal random distributions.

To evaluate the hemodynamic response to exercise, we computed pulmonary
artery systolic pressure and end-systolic wall stress. With our modeling strategy,
we obtained simulation results which reproduce reported clinical phenomena. Fu-
ture work includes, an extensive sensitivity analysis of the simulation approach,
and, an extension of the approach to fit patient-specific values from our in-house
clinical population.
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Heidbüchel, H., Prior, D.L.: Pulmonary transit of agitated contrast is associated
with enhanced pulmonary vascular reserve and right ventricular function during
exercise. J. Appl. Physiol. 109(5), 1307–1317 (2010)

2. La Gerche, A., Heidbuchel, H., Burns, A.T., Mooney, D.J., Taylor, A.J., Pfluger,
H.B., Inder, W.J., Macisaac, A.I., Prior, D.L.: Disproportionate exercise load and
remodeling of the athlete’s right ventricle. Med. Sci. Sports Exerc. 43(6), 974–981
(2011)

3. La Gerche, A., Burns, A.T., Mooney, D.J., Inder, W.J., Taylor, A.J., Bogaert,
J., Macisaac, A.I., Heidbuchel, H., Prior, D.L.: Exercise-induced right ventricular
dysfunction and structural remodelling in endurance athletes. Eur. Heart J. 33(8),
998–1006 (2012)

4. Arts, T., Delhaas, T., Bovendeerd, P., Verbeek, X., Prinzen, F.W.: Adaptation
to mechanical load determines shape and properties of heart and circulation: the
CircAdapt model. Am. J. Physiol. Heart Circ. Physiol. 288(4), H1943–H1954 (2005)

5. Lumens, J., Delhaas, T., Kirn, B., Arts, T.: Three-wall segment (TriSeg) model
describing mechanics and hemodynamics of ventricular interaction. Ann. Biomed.
Eng. 37(11), 2234–2255 (2009)



344 C. Tobon-Gomez et al.

6. Barr, R.G., Bluemke, D.A., Ahmed, F.S., Carr, J.J., Enright, P.L., Hoffman, E.A.,
Jiang, R., Kawut, S.M., Kronmal, R.A., Lima, J.A.C., Shahar, E., Smith, L.J.,
Watson, K.E.: Percent emphysema, airflow obstruction, and impaired left ventric-
ular filling. N. Engl. J. Med. 362(3), 217–227 (2010)

7. Holverda, S., Rietema, H., Westerhof, N., Marcus, J.T., Gan, C.T.J., Postmus, P.E.,
Vonk-Noordegraaf, A.: Stroke volume increase to exercise in chronic obstructive
pulmonary disease is limited by increased pulmonary artery pressure. Heart 95(2),
137–141 (2009)
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Abstract. Despite the great potential of computational models, their
clinical use is limited due to lack of clinical translation. It is, therefore,
desirable to present and visualise simulation results as regular imaging
data commonly used in clinical practice. The purpose of this paper is
to present an implementation of a graphical user interface (GUI) for
the lumped model CircAdapt. The GUI displays simulation results as:
1) an animated schematic short-axis view of ventricular geometry, 2)
a Wiggers diagram relating pressure and volume curves with clear in-
dication of the timing events within the cardiac cycle, 3) a simulated
Pulsed Wave Doppler echocardiographic image of mitral/aortic and tri-
cuspid/pulmonary flow, and, 4) a B-Mode echocardiographic image of
short-axis ventricular geometry. We have modeled different physiological
and pathological conditions to illustrate the applicability of the GUI:
normal state, aortic stenosis and acute response to exercise with high
pulmonary vascular resistance.

1 Introduction

Current modeling techniques have two primary objectives: 1) fitting experimen-
tal data to better analyse it, or, 2) capturing physiologic phenomena in order
to predict results from further experiments. Unfortunately, physiological mod-
els are often developed in one laboratory and tailored for in-house needs. The
models are sometimes shared among technical groups but hardly ever translated
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into clinically understandable parameters, so that clinicians would get easily
interested in using or applying them.

This hampers the widespread use of such models in a clinical environment.
As a consequence, comparison of simulation results with data that is regularly
available in clinical practice is difficult. In order to improve the clinical transla-
tion of such models, it is desirable to present and visualise simulation results as
regular imaging data commonly used in clinical practice.

To achieve this, the first step is to make the model understandable for clini-
cians and non basic-experimental users. This requires to find a correspondence
between the physical properties of the model and typical clinical parameters.
Once this is accomplished, the model can be applied to interesting clinical hy-
potheses. This also helps the technical users to get clinical feedback on their
models in order to judge relevance and realism.

The purpose of this work is to present an implementation of a graphical user
interface (GUI) for the lumped model CircAdapt [1,2] to improve clinical trans-
lation of the model. The GUI displays simulation results as: 1) schematic short-
axis view, 2) a Wiggers diagram, 3) a Pulsed Wave Doppler echocardiographic
image, and, 4) a B Mode echocardiographic image.

2 Methods

2.1 The Model

The CircAdaptmodel [1,2] simulates the dynamics of heart and circulation, where
heart and vessels geometry and properties are determined by adaptation rules
to mechanical load. Acute adaptation is obtained, e.g., by vasodilation. Chronic
adaptation is obtained by, e.g., chamber dilation and/or wall hypertrophy. The
model is based on four types of modules, which are: cavities which make refer-
ence to left ventricle (LV), right ventricle (RV), left atrial (LA) and right atrial
(RA); tubes which correspond to aortic and pulmonary arteries and, pulmonary
and systemic veins; valves which basically are mitral, aortic, tricuspid and pul-
monary valves; and resistances, which mean both pulmonary and blood systems.

2.2 Graphical User Interface

The implementation developed in this work is described below. In short, we made
a clinical translation of technical parameters of CircAdapt. Also, we provide
results as pressure, volume and flow curves. Finally, given that echocardiography
is the most common imaging modality in cardiologic evaluations, we provide
visualisation of the results as simulated echocardiographic images.

Description. In Fig. 1 the CircAdapt GUI is shown. The GUI has a panel
(top-left) for input parameters. Currently, it is possible to change mean arte-
rial pressure, cardiac output, cycle time and pulmonary arteriovenous pressure
drop. The user can choose: to load the Reference simulation (normal physiolog-
ical condition); to Load a previously computed simulation; to compute a New
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←−Schematic short-axis view

←−Stress-strain loops

←−Pressure-volume loops

←−
Wiggers diagram

←−Schematic CircAdapt
picture with tools

Fig. 1. Visualisation of the CircAdapt GUI for aortic stenosis simulation. The figure
is displayed once the user clicks the Compute button. The figure shows the schematic
short-axis view, the Wiggers diagram and pressure-volume and stress-strain loops. The
Wiggers diagram will include the values enabled in the radio buttons on the left.

simulation with default physiological conditions; or to Continue the current sim-
ulation (more iterations to converge).

Besides the parameter values, the user can choose which curves to display
on the visualisation panel. Thus, there are radio buttons for each component of
the cardiovascular system. A schematic picture of CircAdapt is displayed on the
GUI in order to make this selection easier. In the current version, the modules
to be selected are: volume, pressure and flow of the LV and RV; pressure of the
LA and RA; pressure of the Pulmonary and Aortic Arteries; closing and opening
times of the mitral/tricuspid/aortic/pulmonary valves. The GUI is meant to be
in continuous development to be flexible to user needs.

Once the user has chosen the desired parameters, the simulation is executed
by clicking on the Compute button. After the simulation is finished, a realistic
visualisation (animation) of the Wiggers diagram is displayed on the right panel,
which can be played multiple times with the Play Movie button, to analyse
cardiac dynamics. The movie can also be saved for later display.

Clinical Translation. For clinical translation, two steps are necessary: 1) iden-
tification of the technical parameters critical for a correct simulation, and, 2)
conversion of these parameters into clinically measurable parameters.

For instance, the pressure [kPa] corresponds tomean arterial pressure [mmHg],
the flow [mL/s] corresponds to cardiac output [L/min], and the cycle time [ms]
is computed from heart rate [beats/min]. The type of adaption allowed by the
model needs to be translated as well. Rest adaption is modeled as dilation of
cardiac vessels. Therefore, it corresponds to an acute physiological response. Ex-
ercise adaption adds to vasodilation chamber size and wall thickness increase.
Therefore, it corresponds to a chronic physiological response.
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Schematic Short-Axis View. The schematic short-axis view displayed in the
GUI aims to better visualise cardiac dynamics. The schematic includes three
thick-walled spherical segments representing LV free wall (LW), RV free wall
(RW) and septal wall (SW). They form a ventricular composite consisting of an
LV cavity and an RV cavity. These walls meet in a junction margin to encapsulate
the LV and the RV cavities.

The schematic short-axis displays the three walls from the midwall parameters
values obtained from CircAdapt. The wall thicknesses were fitted proportionally
to the line width of each wall. For each time point from the last two cycles, all
parameter values are used in order to obtain one time frame of the animation.
Finally all frames are put together to display the complete animation.

Wiggers Diagram. The Wiggers diagram is a standard diagram used by clini-
cians. The x-axis of the diagram corresponds to time [ms]. The diagram is divided
in three axes. The top one displays pressure [mmHg], the middle one displays
volume [mL] and the bottom one shows the electrocardiogram (ECG). In the
pressure axis, LV pressure and RV pressure are both displayed, as well as aortic
pressure and atrial pressure. In the volume axis, LV and RV volumes are dis-
played. In both axes aortic/mitral (or tricuspid/pulmonary) valve openings and
closing times are displayed.

Pulsed Wave Doppler Echocardiography. Since Doppler techniques mea-
sure velocity of the flowing blood, the flow calculated by CircAdapt can be used
to derive velocity profiles. Given that the mean velocity of the blood through
the vessel vmean can be computed by vmean = q/A, this inverse problem can be
solved in two different ways depending on the Reynolds number (Re) of the blood
flow through the vessel. In fluid dynamics it is known that when Re < 2100, the
flow will be laminar, and when Re > 4000, the flow will be turbulent (the interval
in between is a transitional flow). Velocity ratios of maximal value of the velocity
in the center of the circular cross-section area and the mean value (vmax/vmean)
are experimentally obtained for fluids with different Re values [3].

1. Laminar flow is the normal condition for blood flow throughout most of
the circulatory system. In that case, the ratio vmax/vmean equals 2 [3]. The
hydraulic gradient I, i.e.,the energy loss per unit length (of a vessel) equals:

I =
8η

gR2
vmean (1)

and the velocity distribution is computed as:

vr =
Ig

4η
(R2 − r2) (2)

The expression in Eq.2 is known as Hagen-Poiseuille equation, where g is
the gravitational acceleration, η is the blood viscosity, R is the valve radius
and r is a range of values belonging to [−R,R].
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2. Turbulent flow is more likely to occur in a point where vessels divide or
there is a sharp bend or narrowing of a vessel. This option is used in the
model if explicitly requested by the user, because it depends on the type
of the observed vessel. In that case, the ratio vmean/vmax equals 0.817 [3].
Now, the velocity distribution in turbulent flow is given approximately by
Prandtl’s one-seventh-power law equation:

vr =
( r

R

)1/7

(3)

In both cases, the width of the profile is the chosen Doppler width, and the pixel
intensity in the profile is proportional to the corresponding velocity.

B-Mode Echocardiography. The synthetic echocardiographic images were
generated using the convolutional approach [4] [5]. This approach assumes that
the imaging system has a linear, space-invariant Point Spread Function (PSF)
and the transducer is linear. Let t (x, y) be an echogenicity model of the object
being imaged (i.e.,a mask where different tissues are represented by different
pixel intensities). The x and y variables are lateral and axial coordinates. The
subresolution variations in object impedance are introduced by adding Gaussian
white noise G (σn;x, y) with zero mean and variance σn.

T (x, y) = t (x, y) ·G (σn;x, y) (4)

The 2D ultrasonic echo dataset V (x, y) can then be obtained by a convolution

V (x, y) = h (x, y) ∗ T (x, y) (5)

where h (x, y) = hl (x, σx) · ha (y, σz) (6)

hl (u, σu) = exp
[
−u2/

(
2σ2

u

)]
(7)

ha (v, σv) = sin (2πf0v/c) exp
[
−v2/

(
2σ2

v

)]
(8)

and c is the speed of sound in the tissue (usually 1540 m/s) and f0 is the center
frequency of the transducer.

The image of the envelope-detected amplitude, A (x, y, z), is given by

A (x, y) =
∣∣∣V (x, y) + iV̂ (x, y)

∣∣∣ (9)

where V̂ (x, y, z) is the Hilbert transform of V (x, y, z).
The simulation parameters are as follows: σz = 0.7mm, σx = 3mm, σn = 1.5.

The pixels intensity used for myocardium, in the echogenicity image, is 0.98 and
for the background 0.2 to ensure a good contrast between the tissues (assuming
the image intensities vary from 0 to 1).

2.3 Experiments

The user can interact with a schematic drawing of the model to enable different
curves in the Wiggers diagram. We have modeled different physiological and
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pathological conditions to illustrate the applicability of the GUI. The tested
conditions were: normal state, aortic stenosis and acute response to exercise
with high pulmonary vascular resistance, which was modeled by an increase in
cardiac output, reduction of heart rate and a significant increase of pulmonary
vascular resistance.

3 Results

Results for the normal state, aortic stenosis simulation and acute response to
exercise are displayed in Fig. 2, Fig. 3 and Fig. 4, respectively. Fig. 2(a), Fig.
3(a) and Fig. 4(a) display the resulting PW Doppler Echocardiography of mi-
tral/aortic and tricuspid/pulmonary flow velocities on each state. Additionally,
Fig. 2(b) and Fig. 2(c), Fig. 3(b) and Fig. 3(c), and Fig. 4(b) and Fig. 4(c) show
the resulting B-Mode Echocardiographic simulated image for each state at end
diastole (ED) and at end systole (ES), respectively. In Fig. 2(d) and Fig. 2(e)
healthy proportions of LV and RV are displayed. In Fig. 3(f) we can observe the
difference in aortic pressure curve with respect to the normal state (Fig. 2(f)).
In Fig. 4(d) and Fig. 4(e), we observe how a large increase of RV pressure is
generated, which flattens and pushes the septum immediately after ES. Finally,
Fig. 2(h), Fig. 3(h) and Fig. 4(h) display pressure-volume loops for normal state,
aortic stenosis and acute exercise, respectively, while Fig. 2(g), Fig. 3(g) and Fig.
4(g) show myofiber stress-strain loops.

4 Conclusions

In this work we developed a graphical user interface to enable clinicians to inter-
act with the CircAdapt model in a natural manner. The GUI displays simulation
results as: 1) an animated schematic short-axis view, 2) a Wiggers diagram, 3)
a simulated Pulsed Wave Doppler echocardiographic image, and, 4) a B Mode
echocardiographic image. The GUI is meant to be in continuous development to
be flexible to user needs. This tool shows great potential to improve the inter-
action of the modeling community with their clinical counterpart.

Additional Material

Videos of all simulated conditions can be found in the following links:
1) Normal condition:
https://dl.dropbox.com/u/15336366/NormalState_movie.avi

2) Aortic stenosis:
https://dl.dropbox.com/u/15336366/AortaStenosis_movie.avi

3) Acute response to exercise:
https://dl.dropbox.com/u/15336366/AcuteEx.avi

https://dl.dropbox.com/u/15336366/NormalState_movie.avi
https://dl.dropbox.com/u/15336366/AortaStenosis_movie.avi
https://dl.dropbox.com/u/15336366/AcuteEx.avi
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Fig. 2. Normal state. In 2(a) the resulting PW Doppler Echocardiography of mitral/aortic
and tricuspid/pulmonary flow velocities [m/s] is displayed. In 2(d) and 2(e) we can observe the
proportion of cavity size, wall thickness and septal curvature. Healthy proportions of LV and RV, as
well as a smooth curvature of the septum are displayed. Thicker cavity walls on ES than on ED are
shown. In 2(f) we observe pressure (for aorta, LV, RV and LA) and volume (for LV and RV) curves
along the cardiac cycle. In 2(g) stress-strain loops for LV, LA, RV, RA and septum are displayed,
while in 2(h) pressure-volume loops for LV, LA, RV and RA are displayed. [Color map: LV, LA, RV,
RA, septum, aorta]



352 G. Palau-Caballero et al.

m
it
ra

l

0

0.5

1

1.5 tric
u

s
p

id

0

0.5

1

1.5

a
o

rt
ic 2

4

6
p

u
lm

o
n

a
ry

2

4

6

(a) PW Doppler Echo

(b) B Mode Echo at ED (c) B Mode Echo at ES

(d) Schematic axis view at

ED

(e) Schematic axis view at ES

0

50

100

150

p
re

s
s
u
re

 [
m

m
H

g
]

60
80

100
120
140
160

v
o
lu

m
e
 [
m

L
]

(f) Wiggers diagram

−0.2 −0.1 0 0.1

0

50

100

myofiber strain [−]

m
y
o

fi
b

e
r 

s
tr

e
s
s
 [
k
P

a
]

(g) Stress-strain loops

60 80 100 120 140 160

0

50

100

150

volume [mL]

p
re

s
s
u

re
 [
m

m
H

g
]

(h) Pressure-volume loops

Fig. 3. Aortic stenosis. In 3(a) we observe higher flow velocities [m/s] for aortic/mitral valves
in comparison with the corresponding ones on normal state (Fig. 2(a)). In 3(d) and 3(e) we can
observe the proportion of cavity size and wall thickness are similar to the normal state (Fig. 2).
Thicker cavity walls on ES than on ED are shown. In 3(f) we observe pressure (for aorta, LV, RV
and LA) and volume (for LV and RV) curves along the cardiac cycle. Note the difference in pressure
between the LV and the aorta. In 3(g) stress-strain loops for LV, LA, RV, RA and septum are
displayed, while in 3(h) pressure-volume loops for LV, LA, RV and RA are displayed. We observe
that the pressure-volume loop for RV is displaced towards lower volume values in comparison with
values from normal state (Fig. 2(h)). [Color map: LV, LA, RV, RA, septum, aorta]
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Fig. 4. Acute response to exercise. In 4(a) we observe higher flow velocities [m/s] for all
valves. In 4(d) and 4(e) we can observe how a large increase of RV pressure is generated, which
flattens and pushes the septum immediately after ES. In 4(f) we observe pressure (for aorta, LV, RV
and LA) and volume (for LV and RV) curves along the cardiac cycle. Aortic pressure is slightly lower
than LV pressure while aorta valve is opened. It exists a constant difference of volume between LV
volume and RV volume along all cardiac cycle. In 4(g) stress-strain loops for LV, LA, RV, RA and
septum are displayed, while in 4(h) pressure-volume loops for LV, LA, RV and RA are displayed.
The pressure-volume loops for LV and RV are below the ones for LA and RA. We observe that
the pressure-volume loop for LV is completely displaced towards lower volume values in comparison
with the one for RV. The same situation is observed for LA and RA. [Color map: LV, LA, RV, RA,
septum, aorta]
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Abstract. The dynamic deformable elastic template (DET) model has
been previously introduced for the retrieval of personalized anatomi-
cal and functional models of the heart from dynamic cardiac image se-
quences. The dynamic DET model is a finite element deformable model,
for which the minimum of the energy must satisfy a simplified equation
of Dynamics. In this paper, we extend the model by integrating fiber con-
straints in order to improve the retrieval of cardiac deformations from
cinetic magnetic resonance imaging (cineMRI). Evaluation conducted
until now on cine MRI sequences shows an improvement of the recovery
of the motion in images that present a low level of obvious rotation.

1 Introduction

The detailed analysis of cardiac images and retrieval of personalized anatomi-
cal and functional models from clinical cardiac images is still a challenging task.
Magnetic resonance imaging (MRI) is a versatile imaging modality, able to pro-
vide the required data to reconstruct patient specific models. A few papers have
targeted the spatio-temporal analysis of the heart function from dynamic image
sequences. Montagnat proposed a dynamic framework based on simplex meshes
to analyze 4D SPECT data [1], treating the temporal dimension geometrically.
Sermesant proposed a bio-inspired electromechanical model of the heart designed
both for the simulation of its electrical and mechanical activity, as well as for the
segmentation of time series of medical images [2]. Billet extended this approach to
cardiac motion recovery using the adjustment of the previous electromechanical
model of the heart to cine MR images [3]. Recently, Lynch proposed a parametric
motion model, using a priori knowledge about the temporal deformation of the
myocardium that is embedded in a level-set scheme [4].

In a previous paper [5], we introduced the dynamic deformable elastic template
model (Dynamic DET) for the automatic segmentation and motion tracking of
the heart in dynamic cine MRI sequences. This spatio-temporal approach imposes
temporal smoothness and periodicity constraints to improve the regularity and
continuity of the extracted contours and motion throughout the cardiac cycle.

O. Camara et al. (Eds.): STACOM 2012, LNCS 7746, pp. 355–363, 2013.
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In the present study, we propose to improve the accuracy of the obtained pa-
tient specific models by introducing orientation constraints to certain nodes of
the mesh of the finite element (FE) DET model used in segmentation. We there-
fore adapt the DET taking into account the orientation of the myocardial fibers
in order to enforce heart deformation in the direction of the fibers. The exact re-
lation between the deformation and the fiber orientations will be not considered.
Instead a simplified relation will be introduced in order to validate the proposed
methodology. This paper presents a 2D approach for integrating the fiber ori-
entation constraints. It is just a first step in the development of a complete 3D
method and it allows to analyze the difficulties that can be encountered while
implementing fiber orientation constraints in a simpler environment.

First, the principle of the Dynamic DET model is recalled. Then, the proposed
methodology to implement the orientation constraints into Dynamic DET is
introduced. In the last section, preliminary results on real human MRI sequences
are presented.

2 Dynamic DET Model

The dynamic DET is a combination of a topological and geometrical model
of the object to be segmented, a constitutive elasticity equation defining its
behavior under applied external forces and a dynamic constrained scheme to
track the deformable object throughout the sequence. A complete description of
the dynamic DET model can be found in [5].

2.1 Model Main Equations

We assume the data is available as sequences of N -2D or -3D images, sampling
the cardiac cycle. To simplify the mathematical treatment of the problem, we
assume that the cardiac cycle is parameterized by t ∈ [0, 1].

The DET model is a deformable volumetric model submitted to external con-
straints imposed by the image. The equilibrium of the model is obtained through
the minimization of an energy E which is the sum of an elastic deformation en-
ergy term Eelastic and data energy term Edata due to the action of external
image forces f :

E(u) = Eelastic(u) + Edata(u) =
1

2

∫
Ω

tr(σεT ) dΩ −
∫
∂Ω

f(u) dγ (1)

where σ and ε are the 3D strain and deformation tensors, u is the displacement
belonging to the Sobolev space (H1(Ω))2 quotiented with the rigid motions
H/V , ϕεϕ̇ ⇔ ϕ = ϕ̇ + q, qεV and Ω is the a priori model domain at rest.
The a priori left ventricular (LV) model is an annulus in 2D (a half-ellipsoid
in 3D)(Figure 1). The material is considered to be isotropic, homogenous and
completely defined by its Young modulus and its Poisson coefficient. ∂Ω is the
border of the object domain Ω.
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Fig. 1. Sample ring mesh used as initial template for 2D short-axis cardiac MR seg-
mentation and motion tracking

These energy terms can be approximated by discretizing the displacement u
and the force f , using the finite element method (FEM). The displacement is
approximated by linear functions on these elements, while the forces are sampled
at nodal points. Under this approximation, the minimum of the energy must
satisfy the following equation:

KU = F(U) (2)

where K is the stiffness matrix corresponding to the response of the elastic
material, and U and F are respectively the displacement and force vectors on
mesh nodes.

The model resulting from equation 2 is purely static. Extending this method to
the spatio-temporal domain [5], the heart dynamics is controlled by the simplified
Dynamics equation (where acceleration is neglected):

DU̇+KU = F(U, t) (3)

, where t is the time parameter, the span in which we assume a full heart cycle
has occurred. The damping matrix D is represented by a unique scalar α.

αU̇+KU = F(U, t) (4)

2.2 Algorithm Implementation

Solution to equation (3) is achieved through a pseudo-instationary process [6].
Roughly speaking, it consists in introducing a parameter τ , and considering a
pseudo-instationary problem with respect to τ derived from the original problem.
Let’s define the operator A = α d

dτ +K and consider,{
dU
dτ = F(U)−AU
U(0) = 0.

(5)

IfU converges when τ → +∞, then it tends towards a limit which is a solution of
the nonlinear time dependent problem. Discretizing the previous equation with
finite differences to solve the temporal equation leads to (see [5] for details):
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(
1

Δτ
+

α

Δn
+K)Uτ

n = F(Uτ−1
n ) +

1

Δτ
Uτ−1

n +
α

Δn
Uτ

n−1 (6)

which is a linear system and thus straightforward to solve.

3 Integration of Fiber Orientation in DET Model

Cardiac fiber architecture is more and more studied as shown by the recent de-
velopment of a human cardiac fiber atlas [7]. Fiber orientation from such an
atlas can be attributed to a specific patient anatomy by deformable registration
(fig 2, [8]). With the desire to enhance the cardiac architectural and dynamic
information retrieval from standard cine MR Images, we seek to improve the
DET model by integrating a priori information of the fiber orientation in such
a way that we improve its abilities to track the motion during the segmentation.
Studies show that there exists a rotation of the fibers through the ventricular
wall, with an electrical propagation and mechanical contraction mainly along the
fiber axis. In figure 2 we can observe fiber vectors that are superimposed onto a
MR Short Axis (SA) at end diastole and they are displayed using CMGUI soft-
ware (Auckland Bioengineering Institiute). The image and tensor are extracted
from a database of ex-vivo DTI human hearts [8]. It is true that significant wall
strain occurs in the cross-fiber direction i.e. in the radial direction in a short axis
view. This results more from a re-arrangement of fiber bundles [9]. But at the
fiber level, fibers extend along their main direction just as shown in figure 2.

Fig. 2. Fiber orientation superimposed on a MR cardiac short axis image of the LV
wall.(Image from CMGUI software, Auckland Bioengineering Institute)

3.1 Theoretical Aspects

In this section we present the modifications brought to the dynamic DET model
in order to take into account the fiber orientation of the heart muscle. In order to
keep the presentation simple, we first explain the constraint by considering the
static problem 1. The ring mesh used as initial template for 2D short-axis cardiac
MR segmentation tracking is composed of a certain number of triangles. In our
approach we try to impose the deformation to selected triangles by using a vector
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w of the form w =

(
w1

w2

)
. These vectors express the fiber orientation and we

want to impose those directions as the principal directions for the deformation,
that is to say that w is the eigenvalue associated to the largest eigenvalue of
the deformation in modulus: ε(u)w = λw. As a first step, a simpler problem is
introduced. For:

w̃ =

(
−w2

w1

)
. (7)

a perpendicular vector to w, it is required that

ε(u)w̃ = 0. (8)

This relation imposes that the deformations are proportional to vector w. The
relation (8 ) is an equality constraint, thus the Lagrange’s theory of multipliers

applies. Let us write in a variational form the constraint (8 ). ∀ q ∈
(
L2(Ω)

)2
we have: ∫

Ω

ε(u)w̃q dx = 0. (9)

From Problem (1), we derive the Lagrangian L(v, q) defined by:

L(v, q) =
1

2

∫
Ω

tr(σ(v)εT (v)) dΩ −
∫
∂Ω

f(v) dγ +

∫
Ω

ε(v)w̃q dΩ. (10)

The displacement associated with its Lagrange’s multiplier Λ verify:

(u, Λ) = Argmin
vεH

max
qε(L2(Ω))2

L(v, q). (11)

By using a Galerkin first order Lagrange finite element approximation of opti-
mality conditions for (11) (i.e. the derivative of the Lagrangian function has to
be zero), and by keeping the same notations for the unknowns in the matrix
formulation, optimality conditions for (11) becomes:{

KU+BTΛ = F(U);
BU = 0.

(12)

Here B denotes the matrix associated to the bilinear form (9), where the basis
functions for the Lagrangian multipliers, Λ, take a specific value for each triangle
Tk in the ring mesh. The form of the basis functions is

ψ̂i = x̂ŷ(1− x̂− ŷ) (13)

where x̂, ŷ are the coordinates of each of the node that constitutes the triangle
of the mesh.

As stated in the description of the DET model, the equation of the form (12)
describes the static behavior. The simplified Dynamics equations that control the
heart dynamics can be rewritten to also take into account the above presented
modifications: {

DU̇+KU+BTΛ = F(U, t)
BU = 0

(14)
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3.2 Implementation Updates

We have to note also the differences that occur regarding the algorithm imple-
mentation, equation (5) has to take into account the contribution of the La-
grangian multipliers: ⎧⎨⎩

dU
dτ = F(U)−AU−BTΛ
BU = 0
U(0) = 0.

(15)

In order to solve the temporal equations, the finite difference formulation of (15)
becomes:{

( 1
Δτ + α

Δn +K)Uτ
n+1 +BTΛτ

n+1 = F(Uτ−1
n ) + 1

ΔτU
τ−1
n + α

ΔnU
τ
n−1

BU = 0
(16)

4 Results

4.1 Simple Example

The first simulations were conducted on simple meshes composed of a few num-
ber of triangles in order to reduce the degree of computational complexity while
still in the phase of elaborating the numerical implementation. In figure 3 we
present the way a simple structure reacts when under the effect of a diagonal
force that is applied on every node, with the same intensity, except for the nodes
marked with red circles. The marked nodes are fixed, so that the structure is
able to react to the force otherwise it will simply float above the background
image. As it can be observed from the triangle deformation, the evolution of
the structures takes very well into account the deformation directions allowed
through the implemented fiber orientations.

4.2 Preliminary Results on Cardiac Cine MRI

The experiments were conducted on 2D Cine MRI sequences of the human heart
to study the impact on the segmentation and motion tracking results after in-
tegrating the fiber orientation information in the dynamic DET model. In the
presented example, the Young modulus was set to 2.4 and the Poisson coefficient
to 0.2 (this is to cope with the adaptation of the initial template to the data and
the myocardial area variation during the cardiac cycle, in 2D). The center of the
annulus and its radius were set using a manual initialization, and a contraction
parameter was automatically set depending on the initialization on both ED
and ES phases. The initial wall thickness was set to 6 pixels. The image was
generated with 4 rings and divided into 40 sectors. The image resolution level
was set to 3, the highest resolution, and the stopping criterion to 10−5.

A very important aspect is represented by the fact that not all and not any
triangle of the mesh used in the dynamic DET model can be constrained to
deform in prescribed directions. Border triangles are not constrained with a
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Fig. 3. Simple mesh composed of 5 triangles illustrating deformation evolution without
and with implemented fiber orientation. Nodes marked with red circles are kept fixed.

(a) (b) (c)

(d) (e) (f)

Fig. 4. DET model superimposed onto 3 cine MR images: end-diastole, mid-systole,
end-systole, after the processing of a full sequence of 20 images. The pink mesh is
the DET model. It is translucent so that correspondence between model and image
contours can be evaluated. Figures (a), (b) and (c) correspond to a segmentation with
no orientation constraint. Figures (d), (e) and (f) correspond to a segmentation with
fiber orientation implementation.

deformation orientation because they already are constrained by the action of
the external forces used by the model. The orientation constraints are mainly
applied to the inner ring of triangles of the mesh, they assure a good spread of
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the orientation constraints because of their connection to the neighbor triangles
and they are not too constrained as would be the case if we were to apply the
orientation constraints on the border triangles. Also, the model should take into
account the fact that during the evolution of the heart motion the orientation
of the fibers changes by a small degree from the first frame of the sequence until
the last one.

Figure 4 shows the results of a LV segmentation on a sequence of cine MR
images using the fiber orientation information in the dynamic DET model. In
this static example, the difference can be noticed by comparing the border line of
the images on the 1st row with the images on the 2nd row. One can notice the less
regulate border line, a sign that the orientation constraints affect the orientation
of the neighbor area of the constrained triangles. Through this we can achieve
a higher degree of rotational information retrieval inside the mesh. Due to the
fiber orientation, the mesh is able to better interpret the forces recovered from
the cine MRI sequence and translate them into rotational motion rather than
just an increase in the thickness of the mesh

5 Discussion

The results shown in figure 4 are first demonstrations of the improvements
achieved with the help of fiber orientation information. It will have to be bet-
ter studied on other cases and also quantitatively evaluated. The approach is
potentially interesting because it may produce patient specific models which
may reproduce more realistic heart dynamics. Indeed, the rotational component
of the motion is usually not observable in conventional cardiac MRI. This work
was conducted in the framework of the LabEx PRIMES (”Physics, Radiobiology,
Medical Imaging and Simulation”).
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Abstract. Sudden cardiac death is a major cause of death in industrialized 
world; in particular, patients with prior infarction can develop lethal arrhythmia. 
Our aim is to understand the transmural propagation of electrical wave and to 
accurately predict activation times under different stimulation conditions (sinus 
rhythm and paced) using MRI-based computer models of normal or structurally 
diseased hearts. Parameterization of such models is a prerequisite step prior 
integration into clinical platforms. In this work, we first evaluated the errors 
associated with the registration process between contact EP data and MRI-
based models, using in vivo CARTO maps recorded in three swine hearts (two 
healthy and one infarcted) and the corresponding heart meshes obtained from 
high-resolution ex vivo diffusion weighted DW-MRI (voxel size < 1mm3). We 
used the open-source software Vurtigo to align, register and project the CARTO 
depolarization maps (from LV-endocardium and epicardium) onto the MR-
derived meshes, with an acceptable registration error of < 5mm in all maps. We 
then compared simulation results obtained with the macroscopic monodomain 
formalism (i.e., the two-variable Aliev-Panfilov model), the simple Eikonal 
model, and the complex bidomain model (TNNP model) under different 
stimulation conditions. We found small errors between the measured and the 
predicted activation times, as well as between the depolarization times using 
these three models (e.g., with a mean error of 3.4 ms between the A-P and 
TNNP model), suggesting that simple mathematical formalisms might be a 
good choice for integration of fast, predictive models into clinical platforms. 

Keywords: electrophysiology, 3D computer modelling, cardiac DW-MRI. 
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1 Introduction 

Integration of electrophysiology (EP) measurements with image-based computer 
models can help us understand the 3D transmural propagation of cardiac excitation 
wave and the vulnerability of individual hearts to lethal arrhythmias under different 
stimulation scenarios [1]. Cases associated with abnormal propagation of electrical 
wave in hearts with structural disease (e.g. myocardial infarct) are a major cause 
(>85%) of sudden cardiac death [2]. An important task is the identification of infarct 
location and extent. Currently, the infarct areas are identified during the EP study 
using contact or non-contact mapping systems, which are limited to surfacic 
endocardial and/or epicardial maps obtained invasively via catheters, often under 
fluoroscopy. Thus, there is a strong motivation to supplement the EP measures with 
non-invasive 3D information, such as: scar transmurality and location (from imaging) 
[3], and wave propagation through the heart (from modelling). Several image-based 
predictive computer models are already available and recent studies demonstrated the 
usefulness and predictive power of such models [4]; however, parameter estimation 
and model customization remain an important prerequisite prior to integration into 
clinical treatment planning platforms.  

Our broad aim is to predict the propagation of electrical wave in pathologic hearts 
using 3D MRI-based computer models, enriched with electrophysiology measures. 
Recently, we demonstrated the feasibility of using ex vivo measures of action 
potential (recorded via optical fluorescence imaging) to calibrate the parameters of 
normal and pathologic hearts [5]. The next logical step is to perform similar 
calibrations using in vivo EP data; however, for accurate comparisons between 
experiment and predictions, we need:1) to register the measured EP maps with the 
MR images; and 2) to replicate in the model the experimental conditions. In this 
paper, we first investigated the feasibility of using Vurtigo1 software to integrate 
CARTO depolarization maps into DW-MRI-based models. We then performed 
simulations: a) to predict the isochrones of depolarization times using a parameterized 
fast, macroscopic formalism (i.e., Aliev-Panfilov model); and b) to compare the 
isochrones predicted by the A-P model with those predicted by a simple Eikonal 
model and a complex bidomain model (e.g. Tusscher-Noble-Noble-Panfilov), 
respectively. Note that wee only performed a global adjustment of the conductivity 
parameter d (which tunes the speed of wave) for the A-P model, and then focused on 
testing the predictive power of these three models. 

2 Material and Methods  

2.1 The Experimental Data: in vivo EP Studies and ex vivo DW-MRI Studies 

In this paper, we included three in vivo EP studies, which were performed in two 
healthy swine and a swine with a ~5 week old infarct (note: the methodology of 
generating chronic infarction was previously described [5]). A total of five maps of 
depolarization times (i.e., three LV-endocardial and two epicardial maps) were 
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recorded either in normal sinus rhythm or under pacing conditions by using a 
CARTO-XP electro-anatomical mapping system (Biosense Webster, Diamond, USA); 
the experimental procedures were approved by our institution, Sunnybrook Research 
Institute, Toronto). At the completion of the EP studies, the hearts were explanted, 
gently preserved in formalin, and imaged using a 1.5T (voxel size < 1mm3) with most 
of the MR parameters being similar to those used in [5]. For the construction of the 
3D heart models, the anatomy of each heart was extracted from the un-weighted 
images and used to generate volumetric meshes; the myocardial fiber directions was 
extracted from DT-MRI and integrated into associated meshes. In the case of the 
infarcted heart, the 3D apparent diffusion coefficient (ADC) maps was further used to 
categorize tissue into two zones: healthy and infarct scar.  

Then, for each heart, the experimental datasets (EP and MRI-derived meshes) were 
imported into the open-source software Vurtigo for further analysis. Each EP cloud of 
points (LV-endo and/or epicardium recordings) was registered with the 3D MRI-
based model using a similarity transformation (rotation, translation and isotropic 
scaling). The registration alignment was done using markers (i.e., in our case, three or 
four anatomical landmarks such as the apex, mitral valve, etc) manually selected by a 
clinical expert in both EP maps and MR-meshes. This was done as per similar 
methods established and reported by clinical groups that used either the CARTO-
MERGE or their own software [6, 7]. Note that the apex was also visible in the X-ray 
images, and that the CARTO signals around the valve (electrically inert) have distinct 
electrical signal morphology); these features helped with the alignment. In our 
experiment, we determined the registration error FRE by calculating the average 
distance between the corres-ponding pairs of these 'fiducial' points on the CARTO 
data and LV-endo/epi surfaces from MRI, after registration had been performed, by 
using the formula (1): 

  
landmarksN

N

i
iTiSdist

FRE

landmarks


== 1

),(

                                                    (1) 

where: Nlandmarks is the number of landmark pairs, Si is the i’th source landmark and Ti 
is the i’th target landmark.  

Each CARTO point was subsequently projected onto the closest point of the MR-
derived surface mesh (LV-endo or epi) as in [8], and the resulting CARTO maps of 
depolarization times were interpolated over the surfacic meshes. The target 
registration error, TRE was calculated for each map using the following formula: 

               
EPN

N

i
eMeshSurfaciEPdist

TRE

EP


== 1

),(

                                            (2) 

where NEP is the number of CARTO-EP points. 
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2.2 Mathematical Models to Predict Depolarization Times in the Heart 

The Aliev-Panfilov (A-P) model is based on reaction-diffusion type of equations and 
solves for the action potential (V) and recovery term (r) as described in [9]: 

  rVVaVkVVD
t

V −−−−∇⋅∇=
∂
∂

)1)(()(                                                     (3) 

  ))1()(
2

1( raVkV
V
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t

r +−−
+

+−=
∂
∂

μ
με                                              (4)    

This simple model accounts for the heart muscle anisotropy via the diffusion tensor D 
(which depends on tissue bulk conductivity, d). The anisotropy ratio ρ is set to 0.11 for a 
wave propagating three times faster along the fibers compared to the transverse direction. 

The following relation is obeyed in 1D:   

       ( )adkc −⋅⋅= 5.02                                                            (5) 

and thus a theoretical calibration curve can be used to adjust the global ('bulk') 
conductivity d in the model, which  can also be extended to the calculation of 
conduction velocity c from associated surfacic measures [10]. Firstly, we performed 
here a set of simulations on a thin rectangular slab (element size 1mm), in which we 
varied d and measured the resulted c. Secondly, we performed a fit of two parameters 
(α and β) to pairs of simulated data (c,d) based on the following one dimensional 
formula ( ) βα +⋅= ddc . This step was done by minimizing the mean error in least 
square sense, using simple Matlab routines. Thirdly, we used this resulting calibration 
curve to further estimate d from the mean c value that was determined from  
the measured depolarization time maps (i.e., we computed c at each mesh node from 
the projected CARTO map, and then calculated a mean speed value from the 
corresponding histogram) as per the method previously proposed in [11]. The 
parameter estimation of d was done only for the LV-endo paced map (Heart #1). Note 
that we did not perform a 'personalization' step for each map, but specifically aimed 
to: 1)  derive a 'generic' value for d from the paced case for the A-P model; and 2) use 
this value as input into simulations performed for the other two hearts, in order to 
assess the predictive power of the A-P model.  

The other input parameters in eq (3-4) were assigned in the model as in [12]. To 
solve for V, a Finite Element Method with explicit Euler time integration scheme, was 
implemented as in [13].  

The Eikonal (EK) model is the simplest and fastest model; it computes only the 
wave front propagation (i.e., the depolarization phase Td of the electrical wave) based 
on the anisotropic Eikonal equation [14]: 

   12 =




 ∇∇ dTDt

dTc                              (6) 

where the c is the local speed of the wave, D is the diffusion tensor, and ρ is the 
anisotropy ratio (as in the A-P model described above). 

The bidomain model offers the most complete description of the electrical 
behavior of myocardium, and explicitly accounts for the current flow in the two extra-
/intercellular spaces through the non-linear PDEs (7) and (8): 
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Am(Cm(∂tVm + Iion(Vm,y,c)-Istim(x,t)) = div(Gi∇(Vm+φe))           (7) 

div((Gi+Ge)∇φe) + div(Gi∇Vm)) =0     (8) 

where Vm is the transmembrane potential, c is the ion concentration (per specie), Am is 
the cellular surface to volume ratio, Cm is membrane capacitance, G is the 
conductance of the extra- or intracellular space. For the computation of the current 
flowing between the two cellular spaces, we used the model proposed by Tusscher-
Noble-Noble-Panfilov described in [15]. The evolution of Vm is solved implicitly 
using the optimal pre-conditioner defined in [16].  For the boundary conditions of this 
system we used the following constraints: Gi∇(Vm+φe)·n = 0 and Ge∇φe ·n = 0. 

3 Results  

3.1 Integration of in vivo EP Data and ex vivo MRI Using Vurtigo Platform 

All results obtained for the registration between CARTO maps and MRI meshes, and 
the projection of CARTO points onto these meshes are included in Table 1. For all 
maps, FRE was < 5mm. For the TRE, we observed a larger average distance between 
CARTO epi-points and MR epi-surface (likely due to the heart motion during the 
open-chest procedure for the epicardial mapping). 

Table 1. Registration errors between CARTO poits and MR-derived meshes using Vurtigo 

Heart # Isochronal map from 

CARTO system 

FRE (mm) TRE (mm) 

1. Healthy (paced) LV-endocardium 2.7 5.8 ± 3.6 

2. Healthy  

(sinus rhythm) 

LV-endocardium 2.1 4.0  ± 2.5 

Epicardium 2.8 4.2  ± 3.1 

3. Infarcted  

(sinus rhythm) 

LV-endocardium 4.9 4.4  ± 3.3 

Epicardium 4.8 9.2  ± 4.9 

 

 

Fig. 1. Fusion of EP and MRI for heart #3: CARTO points projected onto the MR mesh (left);  
LV-endo map interpolated and seen through the heart model (right) 
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An example highlighting the EP-MR data registration and maps' projection is given 
in Figure 1 (for heart # 3), with the epicardial CARTO points in blue and LV-endo 
points in red (left), as well as the LV-endo isochronal map seen through the semi-
transparent 3D MRI-derived model (right). 

3.2 Comparison between Experimental vs. Simulated Depolarization Times 

3.2.1 Global Adjustment of Conductivity Using Precise Pacing Location 
Figure 2 shows results from the healthy heart #1, which was paced at 500 ms using a 
pacing electrode, at the apex of RV. A recording catheter was inserted in the LV 
cavity and mapped the LV-endocardium (note: the pacing site was easily visualized 
under fluoroscopy, see Fig 2a). Fig 2b shows the replication of pacing location in the 
3D model, and Fig 2c shows the reconstructed fiber directions from DT-MRI.  

 

Fig. 2. MRI-based model construction and replication of EP experiment (see text for details) 

Figure 3a shows the simulation results of depolarization times. The corresponding 
error map (absolute values, ms) between the A-P model output and the CARTO 
measurements is shown in Fig 3b, after the adjustment of d value. This adjustment 
used equation (5) to obtain the estimated function presented in Fig 3c.  

 

Fig. 3. Example of simple estimation of global conductivity from experimental EP data: (a) 
simulated depolarization times for LV-endo; (b) corresponding error between measured and 
simulated depolarization times after the estimation of d (using the calibration curve in (c) that 
relates conduction velocity to conductivity d. 
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3.2.2 Inter-models Errors in Predicting Activation Times 
Figure 4 presents a comparison between A-P and bidomain models for heart #3, both 
models having the same mesh input and stimulation protocol (see Fig 4a). This 
protocol replicated the experimental observations that suggested a left branch block 
(QRS > 120 ms). For stimulation, a pulse V=1 was applied at the RV-apex for 5 ms 
and was followed by another similar short pulse applied on the anterior RV free-wall 
(see the small red areas in the RV in the top view through the 3D MRI-mesh). The 
resulting propagation as well as the early breakthrough epicardium mimicked the 
observations recoded in a human heart [17]. The qualitative difference between 
TNNP and A-P is shown in Fig 4b, whereas the quantitative error is shown in Fig. 4c 
(note that d value in A-P model was set to 3.5 as determined in the paced case). A 
small error was obtained between the TNNP and A-P models, correlation coefficient 
0.98, mean error = 3.4 ms (compared to 0.94 and mean error of 10.2 ms between 
TNNP and EK, not included in Fig. 4).  

 

Fig. 4. 3D MRI-based models for the heart # 3: (a) the model input used limited prior EP info 
to apply two stimuli on the RV-endo (at apex and on the free wall); (b) qualitative comparison 
between the depolarization isochrones predicted by the A-P and bidomain (TNNP) models, 
respectively (note that red indicates early activation times, EAT, and blue indicates late 
activation times, LAT); and (c) the absolute errors between TNNP and A-P models (gray scale). 
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Figure 5 shows results obtained with the A-P and EK models, with the d value 
determined from the measured speed values using the experimental CARTO 
isochrones obtained on this heart, and the calibration curve presented in Fig 2c. We 
observed closer correspondence between simulated and measured isochronal maps 
(again for Heart #3). Fig 5a (top) shows the stimulus configuration for which we 
obtained the best match between experimental pattern of epicardial CARTO 
isochrones presented in Fig 5a (bottom) and the corresponding simulated 
depolarization times using the A-P and EK models (Fig 5b). A small difference (mean 
error of 12.33 ms and correlation coefficient 0.91) was found between the epicardial 
CARTO map and the isochrones predicted by A-P model. 

 

Fig. 5. Example result from the global adjustment using the forward approach: (a) input to the 
computer model (top) and measured CARTO isochrones (bottom), (b) simulated isochronal 
maps obtained with the conductivity adjusted globally in the A-P and Eikonal models; and c) 
error maps of depolarization times (absolute values, ms) between CARTO and simulated 
isochrones using the A-P and EK models. 
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4 Discussion  and Future Work 

The evaluation of 3D image-based computer models performance and utility, as well 
as the customization using in vivo EP measurements will help us use such models 
correctly, and to properly target them for different clinical applications.  

In this work, we first demonstrated the feasibility of using the versatile software 
Vurtigo to integrate surfacic in vivo CARTO isochronal maps into 3D MRI-based 
heart models built from high resolution ex vivo diffusion weighted MR images, with a 
clinically acceptable registration error (< 5mm). Vurtigo allowed the projection of 
LV-endocardial and epicardial CARTO points onto the MR-derived meshes, as well 
as the interpolation and the visualization of these maps. 

Secondly, a global adjustment of d value was successfully performed by 
minimizing the error between the A-P model output and the in vivo EP-CARTO 
measurements of depolarization times in the healthy paced heart. Further, this d value 
was used as input into the model to assess its predictive power. After the global 
adjustment of the parameter d, we demonstrated the predictive power of several 
mathematical models by simulating the transmural activation times (i.e., 
depolarization isochrones) and by comparing the surfacic endocardial and epicardial 
isochrones with the CARTO isochrones. Our results suggested that for such forward 
computational approaches, a minimal EP information from measurements is also 
needed as input in order to obtain correct theoretical predictions, with isochronal 
maps having EAT/LAT ranges similar to those measured, as well as similar pattern of 
propagation wave. This information (i.e., either the pacing location for the Heart #1, 
or the electrical abnormality detected in the sinus rhythm for the Heart #3) was 
needed for the preparation of stimulation protocol in the models. The simulation 
results also suggested that a simple approximation with excitation stimuli on the 
surface only (i.e., RV-endo and LV-endo for Hearts #2, and RV-endo surface for 
Heart #3) seems feasible in the absence of a sophisticated cardiac conduction system 
with Purkinje-junctions integrated into the model. Nonetheless, the paced scenario in 
the healthy Heart #1 was the easiest to reproduce in simulations, and generated the 
most accurate results. Overall, we demonstrated that, although simple, the A-P model 
can provide good estimation of the conduction velocity and propagation of the 
excitation wave under different stimulation configurations.  

Lastly, since the computational time is important in such applications, we should 
mention that for the A-P model the simulation time of 0.2s of the heart cycle on a 
mesh of approx. 190,000 elements (element size of ~1.2 mm), was about 10 min on 
an Intel ® Core™ 2 duo CPU, T5550 @1.83GHz, with 4 GB of RAM, compared to 
Eikonal model which takes < 1min, and > 7h for the TNNP model.  

Future work will focus on simulating the repolarization phase as well as on 
estimating the critical parameters corresponding to this phase of action potential, 
including the restitution curve. This step will be performed by measuring the 
activation-recovery interval (a clinically accepted surrogate of action potential 
duration) from the extracellular/unipolar CARTO waves recorded in sinus rhythm and 
at different pacing frequencies. Also, future work will focus on refining the 
adjustment process using local AHA zones, to decrease locally the error between 
experiment and simulations, as per the method proposed in [18]. 
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Abstract. Despite successful initial treatment during the acute phase of aortic 
dissections, long-term morbidity and mortality of type B aortic dissections is 
still a clinical challenge. Therefore, the importance of the assessment and un-
derstanding of potential variables involved in their long-term outcome, such as 
flow patterns and pressure profiles in false and true lumen and across tears. 

Hence, we developed an equivalent electric 0D model mimicking a type B 
aortic dissection. The model was calibrated and validated using in-vitro experi-
mental data from a pulsatile flow circuit. We assessed the variation of pressure 
profiles in the lumina and flow patterns across the tears as a function of changes 
in tear size and wall compliance. 

We found a good concordance between the in-vitro experiments and the pre-
dictions from the lumped model. 

Therefore, a 0D model of aortic dissection is feasible and offers potential to 
study pressures and flow pattern alterations in clinical conditions. 

Keywords: lumped model, type B aortic dissection, lumen haemodynamic. 

1 Introduction 

Despite success of acute treatment of aortic dissections, long-term results have re-
vealed diminished life expectancy [1] and substantial morbidity because of false lu-
men (FL) expansion, re-dissection and eventually rupture [2]. 

To date, some in-vitro and in-silico studies [3-6] have been performed to address 
the effects of potential anatomic and physiologic factors involved in the progression 
of chronic type B aortic dissections. However, all of these studies are based on com-
plex and costly models with limited potential to perform fast and easy studies on the 
influence of individual parameters. 

An alternative method is based on the use of Windkessel models. The first quantit-
ative formulation of a Windkessel model was given by Frank in 1899 [7]. Windkessel 
or lumped models help to recreate and understand several aspects of a system mini-
mizing the need for complex in-silico, in-vivo or in-vitro experiments. Compared to 
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these approaches, lumped models are able to describe pressure and flow phenomena 
without providing accurate solution on, mainly, local phenomena, but they do provide 
a reasonable mean to assess the overall system behavior. 

A wide range of 0D models has been proposed to study the dynamics of the cardi-
ovascular system. Although 0D models were at the beginning oriented to model the 
whole circulatory system through a mono-compartment description [7-9], they have 
been extended to describe characteristics of specific circulatory subsystems using 
multi-compartment descriptions [10].  

The aim of this study is to contribute to the modeling of cardiovascular system pa-
thologies by developing a multi-compartment electric analog 0D model of a chronic 
type B aortic dissection, which has not been done before. Experimental data from 
previously published work [5] was used to calibrate and validate the proposed lumped 
model. The developed analog 0D model is in turn used to: 1) study the variation of 
pressure gradients across the tears with changes in tear size; 2) study the variation of 
flow patterns across the tears with changes in wall compliance. 

2 Materials and Methods 

2.1 Anatomic Configurations to Be Modeled 

Type B aortic dissections are modeled as 2 channels communicated by 
holes/resistances to represent the proximal and distal tears (Fig.1). We investigate 
anatomic or morphologic configurations with different combination of tear size, num-
ber and location within the dissection. In this study we assessed two morphologic 
configurations of type B dissections varying the tear size: a first one with small prox-
imal and distal tears; a second one with large proximal and distal tears. 

 

Fig. 1. Proposed model of a type B aortic dissection  

2.2 In-vitro Experimental Model 

Measurements from our previous in-vitro study [5] were used to provide suitable 
inputs to the lumped model, to calibrate it and test its validity. Type B aortic dissec-
tions were modeled by phantoms made of a compliant material and (clinically as-
sumed) small and large tears were modeled as holes of 4 mm diameter and 10 mm 
diameter, respectively. A dynamic fluid circuit was created to reproduce the human 
cardiovascular system.  
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Pressures within the lumina were acquired via retrograde catheterization performed 
from an access distal to the model. FL and true lumen (TL) pressures were monitored 
at the proximal and distal sites of each dissected segment with a pressure transducer 
(SPC-350 5F, Millar Instruments, TX, USA). Velocities within the lumina were ac-
quired using pulsed wave Doppler. Flow at the inlet of the model (15 cm before the 
beginning of the dissected segment) was measured using a flow probe connected to a 
flow meter system (Transonic Systems Inc, NY, USA). Pressures and flow wave-
forms were recorded using a PowerLab 16/30 together with LabChart Pro software 
(ADInstruments, Colorado Springs, CO, USA). 

A more detailed description of the creation of the phantom and the circuit setting 
has previously been published [5]. 

2.3 Equivalent Electric Lumped Model 

A diagram of the developed model is shown in Figure 2. An equivalent electric 0D 
model has been developed to recreate the haemodynamics aspects of a type B aortic 
dissection. For the modeling we limited the setup to the dissected segment. TL and FL 
were modeled as parallel subsystems connected by resistances to mimic (rigid) tears. 

 

Fig. 2. Diagram of the equivalent electric 0D model for a type B aortic dissection. Lumina are 
modeled as parallel compartments connected by resistances mimicking the tears. (Q: input 
flow; tl: true lumen; fl: false lumen; prox: proximal tear; dist: distal tear). 

Each lumen is modeled as an individual compartment by including the local resis-
tance to blood flow (Rlumen), elasticity of the lumen (Clumen) and inertia of blood (Llu-

men). The peripheral connection of the dissection is represented by using a simple 3-
element network of a resistance in series with a parallel arrangement of resistance and 
capacitance to describe the systemic vascular bed, where R represents the peripheral 
resistance and C is the total compliance of the distal vascular tree. Proximal and distal 
tears connecting the lumina in the aortic dissection are modeled through resistances: 
Rprox and Rdist, respectively. 

Parameters of the 0D model (Table 1) were manually estimated to reach an inlet 
pressure in the range of 80-120mmHg and with a visually similar profile to the inlet 
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pressure obtained in the in-vitro simulation. The estimated compliance of the distal 
vascular tree is much lower than values reported in literature, since the model was 
calibrated to the experimental circuit, which consisted of PVC tube connections with 
different compliance and length compared to the human peripheral circulation. We 
used the inlet flow waveform obtained from the in-vitro experiments as the input sig-
nal of the 0D model. For each anatomic configuration, we averaged 10 cardiac cycles 
during steady state. 

The equivalent electric lumped model was implemented using Qucs [11] which is 
an integrated circuit simulator released under the GPL license. This program offers a 
friendly graphical user interface that allows connecting electrical components in the 
circuit to one another and running the simulation.  

Table 1.  Parameters’ values of the 0D model  
 
 

Parameter 
 

Value 

Rprox,Rdist (mmHg/(ml/s)) 
Small tear 

 
40 

Large tear 10 
  

Rtl,Rfl (mmHg/(ml/s)) 
 

0,0016 

Ltl,Lfl (mmHg/(ml/s2)) 
 

0,0005 

Ctl (ml/mmHg) 0,18 
  

Cfl (ml/mmHg)  
Low compliance 0,0001
High compliance 0,005 
  

Z0 (mmHg/(ml/s)) 0,5 
  

C (ml/mmHg) 0,001 
  

R (mmHg/(ml/s)) 0,475 
 

prox: proximal tear; dist: distal tear; tl: true lumen; fl: 
false lumen. 

3 Results 

3.1 Comparison between the Analog Electric 0D Model and the In-vitro 
Model 

The results obtained with the lumped model are similar to the results obtained from 
the in-vitro experiments (Fig. 3). It was possible to recreate an inlet pressure profile in 
the range of 80-120 mmHg whose waveform approaches the experimental one. The 
obtained simulated flow profiles within the tears are also comparable to the pulsed 
wave Doppler measurements. 
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Fig. 3. A) Comparison between the inlet pressure profile obtained from the in-vitro model and 
the one predicted by the lumped model. B) Flow pattern comparison between the in-vitro model 
and the lumped model at the proximal tear for the anatomic configuration with 2 small tears.  

3.2 Relation between Wall Compliance and Flow Patterns across the Tears 

Figure 4 shows the influence of the FL wall compliance on flow profiles across the 
tears. When FL wall compliance is very low (i.e. when the FL is almost rigid), FL and 
TL behave as parallel chambers with the proximal tear only acting as an entry site and 
the distal tear only acting as an exit site. However, with increasing FL compliance, 
flow simultaneously goes into the FL at both proximal and distal tears during systole 
and vice-versa during diastole, so that both tears act as entry and distal sites during 
the cardiac cycle.  
 

 

Fig. 4. Variation of flow profiles across proximal and distal tears with changes in FL wall com-
pliance. Positive flow corresponds to flow from TL towards FL. 

3.3 Relation between Tear Size and Pressure Gradient across the Tears 

Figure 5 illustrates how pressure profiles vary with changes in tear size. As tear size is 
increased, TL and FL pressures equalize, decreasing the TL/FL pressure gradient 
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across the tears and increasing FL pressures. In the presence of small tears, the pres-
sure gradient between TL and FL increases, resulting in more dampened FL wave-
forms and lower FL pressures. FL waves are displaced in the cardiac cycle compared 
to TL waves. 

 

Fig. 5. Simulated TL and FL pressures profiles at the proximal and distal tears for the anatomic 
configuration with 2 small tears and the one with 2 large tears 

4 Discussion 

Knowledge of the haemodynamics in aortic dissections is of importance in diagnosis 
and better understanding of their chronic progression and outcome. We have devel-
oped a realistic lumped model of a type B dissection. This has the advantage that it 
allows the assessment of the factors affecting pressures and flows, in an easier and 
more exhaustive way that can be performed by complex in-silico, in-vitro and in-vivo 
approaches. The model was validated with previous experimental in-vitro data. We 
assessed the pressure variations across the tears with the changes in tear size and FL 
wall compliance effects on flow patterns through the tears. 

A good correlation was found between the 0D model predictions and the experi-
mental in-vitro data. The waveform and range of values of inlet pressure, pressure 
behavior across the tears with tear size changes, and flow patterns across the tears, 
were consistent with the experimental results of the in-vitro approach. 
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Additionally, when assessing the relationship between tear size and pressure gra-
dient across the tears, in-silico results are in agreement with the experimental observa-
tions previously published [3-5]. The presence of large tears causes the equalization 
of TL/FL pressures across the tears with a consequent increment of FL pressures. This 
is also in line with a recent clinical study [1] where the presence of a large entry tear 
in chronic patients is related to long-term complications during the follow-up. 

Moreover, the model allowed investigating the influence of properties that have not 
been studied before. Arterial compliance is a biomechanical property with an impor-
tant influence on arterial hemodynamics and thus clinical evolution since it has clear 
effects on pressures and WSS [12,13]. Additionally, while the assessment of flows 
through the tears is rarely studied, it could play an important role in aortic remodeling 
and dissection progression and outcome [14,15]. Our model shows that FL com-
pliance has major effects on the flow patterns across the tears. When the compliance 
of the FL wall is low, TL and FL behave as parallel chambers, so that the proximal 
tear only behaves as an entry and distal tear only behaves as an exit. However, when 
the compliance of the FL wall is increased, the tear flow dynamics totally change and 
both proximal and distal tears simultaneously behave as entry and exit sites during the 
cardiac cycle. This is additionally accompanied with significant flow reversals in the 
different compartments of the dissections, thus introducing more WSS variability. 
The scenario when both tears act as entry and exit sites simultaneously during a car-
diac cycle could be a potential cause of simultaneous jets getting into the FL from 
several locations and the consequent presence of flow collisions and turbulence for-
mations. Therefore, wall compliance should be taken into account at the moment of 
the assessment and study of the progression of aortic dissections. 

These initial results seem promising to improve our understanding of hemodynam-
ics in aortic dissections and can be further extended to study the effects of changes in 
morphologic configurations on lumen pressures and flows. 
 

Limitations. At the moment, we only have implemented the lumped model using a 
graphics based simulator of the equivalent electric circuit which hampers its automat-
ic calibration and restricts its extension, so that the parameter estimation was per-
formed by trial-and-error. A more flexible and generalized implementation of the 
model and its calibration are parts of further studies. 

5 Conclusion 

In conclusion, the proposed electric analog 0D model seems to be a good approxima-
tion to examine and assess flow and pressure patterns in type B aortic dissections, 
with the advantage of being a more simplified option compared to complex in-silico, 
in-vitro or in-vivo models. 
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