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Preface

EvoMUSART 2013—the second International Conference and the 11th Euro-
pean event on Biologically Inspired Music, Sound, Art and Design—took place
April 3–5, 2013, in Vienna, Austria. It brought together researchers who use
biologically inspired computer techniques for artistic, aesthetic, and design pur-
poses. Researchers presented their latest work in the intersection of the fields of
computer science, evolutionary systems, art, and aesthetics.

Since its first edition in 2003 in Essex, UK, when it was one of the Applications
of Evolutionary Computing workshops, evoMUSART has grown steadily. This
growth is reflected in the number and quality of submissions, the size of the
Program Committee, and the prestige of the event. In 2012 evoMUSART became
a full evo* conference. It is now established as the main forum and the most
important annual event in its field. It has always also been known for its friendly
and constructive atmosphere.

EvoMUSART 2013 received 36 submissions from 20 countries in four conti-
nents. The peer-review process was rigorous and double-blind. The international
Program Committee, listed here, was composed of 55 members from 18 coun-
tries in four continents. Papers received on average 3.4 reviews each; 11 papers
were accepted for oral presentation (30.5% acceptance rate), and five for poster
presentation (44.4% acceptance rate for talks and posters combined).

This volume of proceedings collects the accepted papers. As always, the evo-
MUSART proceedings covers a wide range of topics and application areas, in-
cluding: generative approaches to music, graphics, game content, and narrative;
robot gait creation; music information retrieval; computational aesthetics; the
mechanics of interactive evolutionary computation; and the art theory of evolu-
tionary computation.

We thank all authors for submitting their work, including those whose work
was not accepted for presentation. As always, the standard of submissions was
high, and good papers had to be rejected.

The work of reviewing is done voluntarily and generally without official recog-
nition from the institutions where reviewers are employed. Nevertheless, good
reviewing is essential to a healthy conference. Therefore we particularly thank
the members of the Program Committee for their hard work and professionalism
in providing constructive and fair reviews.

EvoMUSART 2013 was part of the evo* 2013 event, which included four
additional conferences: evoGP 2013, evoCOP 2013, evoBIO 2013, and evoAppli-
cations 2013. Many people helped to make this event a success. Many thanks
to the local organizers: Bin Hu, Doris Dicklberger, and Günther Raidl of the
Algorithms and Data Structures Group, Institute of Computer Graphics and
Algorithms, Vienna University of Technology.
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For the website and publicity, our thanks go to Kevin Sim of the Institute
for Informatics and Digital Information, Edinburgh Napier University, and to
A. Şima Uyar of the Computer Engineering Department, Istanbul Technical
University. Thanks to Marc Schoenauer of INRIA Saclay—Île-de-France, Paris,
for his assistance with the MyReview conference management system. Thanks
to the Institute for Informatics and Digital Innovation at Edinburgh Napier
University, UK, for their work on coordination.

Finally, special thanks go to Jennifer Willies and the Centre for Emergent
Computing at Edinburgh Napier University for their dedicated work in the an-
nual organization of evo*.

April 2013 Penousal Machado
James McDermott

Adrian Carballal
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Colin Johnson University of Kent, UK
Dan Ashlock University of Guelph, Canada



VIII Organization

Dan Costelloe Independent Researcher (Solace One Ltd),
Ireland

Daniel Jones Goldsmiths College, University of London, UK
Douglas Repetto Columbia University, USA
Eelco den Heijer Vrije Universiteit Amsterdam, The Netherlands
Eleonora Bilotta University of Calabria, Italy
Erik Hemberg University College Dublin, Ireland
Gary Greenfield University of Richmond, USA
Hans Dehlinger Independent Artist, Germany
Hernán Kerlleñevich National University of Quilmes, Argentina
J. E. Rowe University of Birmingham, UK
James McDermott University College Dublin, Ireland
Jon McCormack Monash University, Australia
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Aesthetics, Art, Evolution

Jon McCormack

Centre for Electronic Media Art
Monash University, Caulfield East, Australia

Jon.McCormack@monash.edu

http://jonmccormack.info

Abstract. This paper discusses issues in evolutionary art related to Art
Theory and Aesthetics with a view to better understanding how they
might contribute to both research and practice. Aesthetics is a term often
used in evolutionary art, but is regularly used with conflicting or näıve
understandings. A selective history of evolutionary art as art is provided,
with an examination of some art theories from within the field. A brief
review of aesthetics as studied in philosophy and art theory follows. It
is proposed that evolutionary art needs to resolve some important con-
flicts and be clearer about what what it means by terms like “art” and
“aesthetics”. Finally some possibilities for how to resolve these conflicts
are described.

Keywords: Evolutionary Art, Art Theory, Aesthetics.

1 Introduction

The moment an artist accepts the effort of describing how he works,
he reduces his way of working to that description. He strips it of its
embedding into a living body and being.

—Frieder Nake [31, p.92]

Research in evolutionary art (from here referred to as EA) traditionally focuses
on technical approaches to developing systems that generate or analyse artefacts
which are considered on an “aesthetic” basis. While the evolutionary computing
and technical aspects of EA come from an established scientific field, very little
art theory has been used to inform research in EA. The “art” in EA seems to be
largely taken for granted and is passed with little commentary or analysis from
within the field. This appears to be a serious deficiency. How can a field of enquiry
that claims to involve itself in art do so without an intellectual engagement in
art itself?

This paper provides some basic explanation about art and aesthetics from
philosophy and art theory. I will argue that an understanding of art and aes-
thetic theory would benefit EA, even if it is only to acknowledge that EA is not
really concerned with Art (in a contemporary sense) at all. Almost every EA
research paper mentions “aesthetics” as something that is fundamentally driving
the research. Yet, what kind of aesthetics is implied, or objectified, is unusually

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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2 J. McCormack

inferred only by association with the mandatory visual examples that research
papers provide. So, what does EA mean when it speaks about aesthetics? And
how does it relate to contemporary understandings in art and philosophy?

I am expressly addressing evolutionary visual art in this paper. Music and
sound arts form an important and significant component of EvoMUSART and
certainly have much in common from technical perspectives. However, I have
deliberately not included a discussion on music and sound art as I think the
issues are often very different and would force unhelpful generalisations.

2 Evolutionary Art

This paper is addresses issues relating to evolutionary art, art theory and aes-
thetic theory originating in philosophy and art. Implied by its title, EA is also
apparently concerned with art, but examination of the literature shows that
what is meant by “art” has received little critical attention or explanation from
within the field itself. It does at first seem unusual that an area of investigation
which aims to create or understand art has provided scant examination of the
subject of its investigation. What kind of “art” is EA really concerned with?

2.1 EA and Art

The field of EA is generally agreed to have begun with the work of British artist
William Latham, who in 1988 first evolved sculptural forms by hand and then
later, with the assistance of programmer Steven Todd, transferred the process
to a computer at IBM research laboratories in Winchester, UK [40]. Shortly
following, Karl Sims (a researcher at Thinking Machines Corporation) produced
a series of seminal papers and short animations of evolved images and procedural
3D forms. Latham was trained as an artist, having developed his practice at
the Royal College of Art in the 1980s. Sims came from a technical background
in computer science and biology, and like Latham was assisted by a number
of programmers while he developed his work at Thinking Machines. Richard
Dawkins’ 1986 book The Blind Watchmaker [9] included a software program to
evolve biomorphs (two-dimensional stick drawings) using what is now known as
the Interactive Genetic Algorithm or Aesthetic Selection. Dawkins’ application
demonstrated how designs could emerge without the teleological direction of a
designer, with Dawkins himself claiming “Nothing in my biologist’s intuition,
nothing in my 20 years’ experience of programming computers, and nothing
in my wildest dreams, prepared me for what actually emerged on the screen”
(p. 59). Blind Watchmaker was not intended as a work of art, even though it
understandably inspired many evolutionary artists that followed.

In the early days of EA, the “Art World” peripherally showed some interest in
this new kind of art. Exhibitions at established museums and art galleries, such
as the Centre Georges Pompidou in Paris [2], alongside venues established for ex-
hibiting electronic and computer art, such as Ars Electronica [18] in Austria and
SIGGRAPH in the USA briefly made evolutionary and Artificial Life (A-life)



Aesthetics, Art, Evolution 3

art1 their artistic and intellectual focus. Latham and Sims were joined by artists
such as Christa Sommerer and Laurent Mignonneau, the author, Steven Rooke,
Nik Gaffney and Jane Prophet, to name just a (selective) few. These artists de-
veloped their works in the early to mid 1990s. Texts such as Mitchell Whitelaw’s
Metacreation, [41] published in 2004, but largely based on his PhD thesis com-
pleted in 2001, provided important critical theory that connected the technical
advances of EA to broader concerns in culture, society, and art. However, the
impact of this theory on the broader art community is debatable.

It is fair to say that the art world quickly grew tired of evolutionary and
A-life art only a few years after it began and has had little or no interest since.
There are a number of possible explanations for this, including the diffusion
of evolutionary issues into other areas, such as robotic art, bio-art, and media
installation along with emerging tensions between technology-based art and the
art mainstream. Art of the late twentieth and early twenty-first century tends to
be always distracted, never favouring any topic for very long anyway, with the
notable exception of an introspective obsession with art itself.

In broader terms, there was a reaction to the virtual and computer art of
the 1990s with its dependency on virtual representations and glittering screen-
based computer graphics. Generative art based on computer software also kept
its internal mechanisms (i.e. the code itself) hidden,2 choosing only to display
the products of the code graphically or sonically. In contrast, software art made
code itself the performative medium, inviting its audience to consider code itself
as artistic material that was open to critique and questioning [1].

Hal Foster’s The Return of the Real [15], again addressing the concept of
mimeses in art, heralded a return to materiality along with embodied and social
concerns in art. Over the ensuing decade, computer graphics quickly embed-
ded itself into mainstream culture, making it and the culture that surrounds it
(games, for example) the subject of critical and social analysis for art itself, as
opposed to the inert and benign approach reflected in early EA.

A compelling explanation for the lack of interest in EA as art is summed up
by Jussi Parikka [34]:

. . . if one looks at several of the art pieces made with genetic algorithms,
one gets quickly a feeling of not “nature at work” but a Designer that
after a while starts to repeat himself. There seems to be a teleology
anyhow incorporated into the supposed forces of nature expressed in
genetic algorithms.

Parikka is also troubled by a “vague characterisation of art” in a number of
EA papers and is critical of the references to Art exclusively as a “subjective
element”, where art-making is understood in pre-modernist terms as a craft,
but with digital tools. Parikka is also critical of the narrow understanding of

1 A-life art commonly used evolutionary techniques which involved agent-based sim-
ulation or generative techniques, and so is considered here as a form of EA.

2 This isn’t the case with live coding, for example, however live coding is most com-
monly associated with music performance, not visual art.
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aesthetics, where the emphasis is on surface appearances that are “interesting”
or “beautiful”. This issue is further explored in Section 3.

While EA made little impact in the art world, it developed and maintained a
stronger link with design and computer science. Takagi’s survey paper demon-
strated a wide variety of applications for the IGA [39]. But it also highlighted the
two major problems: user fatigue and the limited benefit of the IGA for experi-
enced or advanced users. Nevertheless, IGAs made their way into a number of
commercial music and visual design software systems (such as the “Brainstorm”
feature found in Adobe After Effects [7]). Lewis also undertook an extensive
survey of EA, highlighting the significant and varied contribution it has made
in art and design since its inception [25]. However he notes ominously in conclu-
sion “Methods for identifying and measuring progress in aesthetic research, as
always, remain uncertain”.

Like Parikka, a recent paper by Philip Galanter suggests that after 20 years of
active practice “a vague feeling of disappointment surrounds evolutionary art”
[16]. He suggests a problem with innovation in EA lies in representation and
the ability of a system to exhibit—as nature does—multiple levels of emergence
(a dynamic hierarchy), a view similar to that proposed in [30,27,28], and also
similarly does not advance any practical means to achieve it in software.

Galanter also offers two main contributions to EA art theory. The first is the
concept of effective complexity, appropriated from physicist Murray Gell-Mann
[17] and vaguely reminiscent of Birkhoff’s famous proposal of aesthetic measure
[6]. Galanter sees effective complexity as a valuable means to classify art and even
provides formal graphs locating a number of algorithmic techniques on an ide-
alised complexity curve, with “Genetic Systems andA-Life” at the pinnacle. There
are, however, a number of problems with this approach. Firstly, unlike Birkhoff
and despite being able to place specific algorithms on a graph, Galanter provides
no method for measuring this complexity, either for a generative system or what
it generates. As effective complexity isn’t defined for the systems and artefacts
it seeks to describe, it has no way of being evaluated, or worse, measured. Cer-
tainly, images people find interesting lie somewhere between nothing and noise,3

but the relative positioning of one technique in relation to anothermisunderstands
the fact that a number of generative techniques are Turing complete, i.e. they are
able to simulate a universal Turing machine and hence, run any computable pro-
gram, including the systems at other points on Galanter’s graph. For example, a
Turing machine can be built from a cellular automata running the Game of Life
[5], or from an L-system grammar or semi-Thue system [35].

The second difficulty with effective complexity “theory” is that, even if ef-
fective complexity could be evaluated for EA systems, it simply provides a
1-dimensional classification that says little about the works themselves. The
rational for using effective complexity is that it provides an indication of the
non-random information in the system that is generating the artwork, but as
with all simple measures, it says nothing about the value or semantics of that

3 Although the extremes have been popular at times in art too.
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information, nor the semiology. Moreover, randomness is often an evocative and
meaningful element in art [24].

Galanter’s second contribution is one of “truth to process”: evolution is not
teleological, so fitness-driven EA presents a “contradiction” because it evolves
for a specific purpose (presumably the purpose of personal aesthetics). Galanter
requires the evolutionary process to be true to natural evolution if it is to be
beautiful. The connection between truth and beauty goes back a long way in art
(see Section 3.3) and relates fundamentally to mimeses, discussed in Section 3.

A computer program that seeks to model or mimic evolution must necessarily
abstract and simplify, which requires value-judgments as to what the important
aspects of the model are: what we choose to incorporate into the model and
what we choose to ignore. How we model a specific feature is in turn subject
to representational and semantic interpretation. Such issues are well explored in
simulation science, where models require validation with the system or phenom-
ena they are modelling [33]. A simulation, S, can be tested for validation against
a system P , if the mapping, h, is homomorphic, i.e. h : P → S. Art in general
requires no such verification or validation – a fundamental difference to the sci-
ences and perhaps illustrative of the difficulties faced in scientific approaches to
making art.

The problem of requiring a system to be “true” to what it seeks to emulate
requires us to know what kind of truth we are after, if it is a homomorphic truth,
then what differentiates EA from scientific simulation?

Johnson, addressing the call for more art theory in EA proposed in [27],
considers a series of possibilities for future EA research [21]. These include tech-
niques such as generational memory, scaffolding, connotation and web search in
the context of fitness evaluation for EA. Johnson’s approach is practically ori-
ented, bringing in ideas from human creative process for example, rather than
being tied to a faithful reproduction of biological evolution. He also suggests
EA systems should engage with the “outside world”, rather than being closed
simulations. Web searches could be used to obtain a list of connotations to make
make the work “about something without this ‘something’ being directly rep-
resented” (such an approach has been successfully undertaken in The Painting
Fool, developed by Colton and his group [8]). But this approach plays to the
criticisms of O’Hear ([32], discussed in the next section) that any such com-
puter generated art can only be parasitically meaningful, because it is derived
from existing material with no communicable understanding of that material.
Of course, one may readily ignore this distinction and still interpret an implied
communication where none really exists, just as natural patterns or events may
readily invoke meaning in a conscious observer.

2.2 EA and Philosophy

An important goal in EA is to generate, using evolution, things that might
be in some sense considered creative or artistic. The basis of this evaluation
is generally only considered in folk terms (I don’t know much about art but I
know what I like. . . ). However, ignoring issues of evaluation for a moment, let
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us consider this proposition in analytic terms. Taken to an extreme, EA raises
the possibility of a computer creating art, that is, in a certain sense being an
autonomous artist.4 Some philosophers have argued that computers can never
create art as a matter of principle, because art “in the full sense is based in human
experience” and requires a communication between artist and audience drawn
from that shared experience [32].5 However, while a machine cannot originate
anything from direct human experience, this does not render it impossible in
principle to understand enough about human perception and experience so as
to allow meaningful communication. So, in principle (if not in deed), EA may
have a role in practical philosophy.

Indeed, evolutionary simulation in software has proven a useful philosophical
tool (see, e.g. [10,11]) allowing philosophers to conduct thought experiments in
silico. This actually seems a promising area for EA to explore: areas such as
cultural evolution or consideration of the art world as a generative system being
two topical examples ([36] and [19] are good examples).

3 Aesthetics

3.1 A Selective History of Aesthetics

Aesthetics is an extensively studied field in philosophy and art, its modern mean-
ing originates from Alexander Baumgarten’s 1735 master’s thesis [4] and his
unfinished book Aesthetica. Baumgarten’s hope was to bring a rationalist un-
derstanding of the science of perception to the critical judgement of perfection
(i.e. beauty) in poetry. Hence, aesthetics is concerned with human perception
and sensory experience. However currently the term is used not only in this sense
of philosophical enquiry, but with a variety of other meanings. For example, we
may talk about a “minimalist aesthetic” in relation to a design or the “aesthetic
experience” of hang gliding over a snowy, windswept mountain range (explored
further in Section 3.2).

There is also a tradition in philosophical aesthetics originating before Baum-
garten that is concerned with issues relating to beauty, truth and morality as
being “ultimate values” that are pursued for their own sake. Plato, for example,
saw art and poetry as mimetic, judging them as only poor imitations of ideal
truths. Thomas Aquinas sought to shift the transcendental beauty from the
senses to the intellect, bringing it inline with theistic doctrines that associate
perfection and truth with the divine. Such views persisted for centuries (and
to some extent still today permeate certain artistic discourses) until the arrival
of philosophers such as Nietzsche who sought to understand human experience
without recourse to the divine. His writings are also interesting to EA, as he
discusses the way tools influence cognition – writing on a typewriter is different
than writing with a word processor, for example. Ideally, EA as art changes our

4 This issue is further discussed in [29].
5 I assume O’Hear would not be a fan of animal art or young children’s art as Art,
despite numerous exhibitions, critiques and regular publicity in the popular press.
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understanding of what art is or can be, but as a tool the computer influences how
we think about “making art”. One also suspects that a background in computer
science has an even greater influence.

While the relationships between beauty, representation and truth have changed
significantly over the centuries in art, they remain important issues in any dis-
cussion of art, including EA.

Mimesis is another reoccurring theme in art, and of particular interest to EA,
as evolutionary art is mimetic at a variety of levels (e.g. as a process that imi-
tates nature, in what is produced, and through representation of mathematical
functions, for example). The idea of replicating naturalistic effects in painting
came to the fore in renaissance aesthetics, where painters were concerned with
a truthful representation of what they saw. Roughly corresponding with the
mathematical formalisation of perspective projections and with progressive ad-
vances in paint technologies [3], artists’ skills developed in portraying the “real”
in art. However, any art acting as a “mirror of nature”—as famously advocated
by Leonardo—still requires interpretation and ordering from the artist. As dis-
cussed in Section 2.1, one cannot have a mirror of nature in simulation either,
because by definition, a simulation of something is not the thing itself.

Kant’s Critique of Judgement [22], first published in 1790, firmly located
aesthetics with the study of sensory and emotional experience, replacing associ-
ations with metaphysical ideals and truths with a more subjective appreciation
routed in experience. Kant was still aware of the interplay between phenomeno-
logical experience and cognition. How much is the appreciation of beauty deter-
mined through sensory experience and how much from cognition and intellect?
The latter raises more pertinent issues in art as it involves conscious experience
(and hence unconscious experience) bringing the entire nature of experience into
play and the role of culture and society informing individual identity, and hence,
their judgments on beauty.

Kant also developed the idea of “disinterested pleasure”, that is being inter-
ested in something as a means in itself, rather than for material gain, benefit to
one’s self or one’s kin. From an evolutionary perspective, the concept of disinter-
est may at first seem problematic. Why attend to something if it offers no benefit
other than in the act of interest itself? What is the evolutionary advantage of such
behaviour? Here evolutionary psychology and the role of evolutionary forces such
as sexual selection come into play, a mechanism that has been useful for EA.

3.2 Modern Aesthetics

Koren differentiates ten different meanings of the term “aesthetics” in modern
culture6 [23]. They are:

1. The superficial appearance of things – the way they look, feel or sound on
the surface (suggesting pure sensory experience);

6 Koren defines these as “natural meanings”, that exist beyond dictionary definitions,
in the sense in which people in modern societies actually use the term.
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2. A particular style or sensibility – perceptual cohesive organisation or traits
used to form groupings, e.g. “modernist”, “baroque”, “minimalist”, “dub-
step”, “EvoArt”, etc.;

3. A synonym for taste – the ability to recognise and identify artistic and
stylistic features in things;

4. In the philosophy of art – the concept of disinterested experience, objective
vs. subjective, experience vs. cognition, etc.;

5. A coherent statement of opinion or belief relating to the underlying principles
of art or beauty;

6. A synonym for “artistic”;
7. A synonym for beauty or the beautiful;
8. The services of a profession devoted to the beautification of the human body;
9. A cognitive mode that considers the sensory and emotive qualities of phe-

nomena and things (as opposed to the direct sensory experience of those
phenomena or things). The inner, subjective experience of thoughts, such
as the “poetic resonance of a name given to a newly discovered type of
subatomic particle.” According to Koren, this implies that all of reality is
essentially aesthetic phenomenon;

10. A language used by a community involved in art, design, or similar endeavours.

EA regularly uses the term “aesthetics” and this seems to be in the sense of
a number of Koren’s meanings (most commonly 1, 2, 3, 6 and 7). As a basic
principle, it would be helpful for researchers to clarify what they mean by aes-
thetics in their own EA research. Considering the other interpretations would
be additionally helpful. Moreover, aesthetics and art are not the same thing. EA
often sees art only in terms of artefact and object, defined by surface appearance
with the aim of making this appearance interesting or beautiful to researchers
and their peers (or at least implicitly justifying its interest value without explicit
reference to any formal aesthetic theory).

3.3 Beauty

. . . scientists are clear about a function for art. It is there, is it not,
to show us the intrinsic beauty of the world?. . . [but] they are surprised
to learn that ‘beauty’ is a word used sparingly by artists who want to
do more than simply record or illustrate objects and ideas.

—Siân Ede [14, p.47]

What then is beauty specifically? Scruton lists six properties of the beautiful:
beauty is pleasurable; it is relative; it is a reason in itself for attention; it is the
subject of judgements of taste and these judgements are about properties held
outside the self; judgements of taste require sensory experience (i.e. they can-
not be conferred from another linguistically, for example) [38]. This last feature
is interesting because it implies there is critical information in sensation which
cannot be proxied through other media. This might ultimately be determined
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by the physicality of both the thing being perceived and the physicality of per-
ception itself, in addition to the physics of the intervening medium. To judge
something beautiful is to bring that thing to one’s attention, and the “truly”
beautiful evokes an emotional response in the viewer or listener.

Of course, we might consider other means of understanding beauty, from the
perspective of evolutionary psychology or neuroscience for example. Humphrey
sees humans drawn to beauty as a dog is drawn to saccharine—there is an innate
desire to find beauty in certain constructs of likeness tempered with difference
[20]. Humphrey sees aesthetics as a biological predisposition of humans and an-
imals to seek classification of structure in the world around them. Beautiful
structures facilitate classification since they provide evidence of possible tax-
onomies in ways that are easy to understand. Such an approach sees analogies
with more recent information theoretic understandings [37].

4 Does Art Matter to EA?

Does understanding aesthetic theory and art really help EA? After all, dealing
with the intangible and unmeasurable, with recourse to metaphysics and seem-
ingly impenetrable continental philosophy doesn’t necessarily sit comfortably
with a scientific, or even scientistic approach to understanding. I would argue
that if EA seeks to be accepted as relevant art, it must first understand the dia-
logues in art regarding representation, menesis, beauty and truth (to name just
a few). These discourses are centuries old and they do have something useful to
offer, even if your goal is not explicitly artistic. Further, if EA is interested in
participating in contemporary art, this can only be achieved by considering art
as a process and on-going social exchange, rather than an exclusively scientific
study of objects and their appearance. This is problematic for a conference such
as EvoMUSART, which largely (but to its credit, not exclusively) focuses on
peer-reviewed research papers in the context of evolutionary computing, not the
exhibition and critique of art in an artistic context.

EA also needs to recognise that aesthetics encompassesmuchmore than the sur-
face appearance of objects and that many other factors and possibilities exist for
considering aesthetics in art. Much contemporary art is no longer explicitly con-
cerned with aesthetics (particularly definitions 1, 3, 5 and 6 from Koren’s list of
Section 3.2). Embracing other understandings opensmany new and exciting possi-
bilities for EAbeyond the endless generation of self-justified “interesting pictures”.

On the other hand—to state the obvious—simply studying current art theory
does not necessarily make one a good artist. But good science should necessarily
undertake a deep literature review, which would include writing and discourse of
art and aesthetics from artists and art theorists. As students, artists always first
learn from the history of art, likewise anyone seriously undertaking evolutionary
art should know about the history and dialogues of art, and not only from
Western culture. Such an approach is the lifetime work of Ellen Dissanayake
[12,13], for example. Her work, based on extensive anthropological studies, has
been influential on evolutionary theories of human art and the basis for scientific
investigation of art and aesthetics [26].
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Perhaps a more difficult proposition is that EA considers only a narrow and
historical concept of art and aesthetics as craft, one that essentially vaguely ref-
erences Western neo-classical and modernist concepts, but considers art from
the limited perspective of objects made by people or machines that can be ob-
jectively evaluated. But to concede this, I would argue, is an untenable position
for EA research in the long term. Firstly because it privileges one historical
and specific understanding of art above all others, which even from a scientific
perspective is flawed (why introduce bias into your data without examining the
evidence?). Secondly, because even if EA was successful in this limited view of
“art”, what contribution is it making? It would make little or no contribution
to art and the utility of the scientific contribution is also questionable (what
hypothesis is it testing and what is it relevant to?).

Another approach would be to concede that, despite its name, EA research is
not actually concernedwith Art per se, rather it is interested in a scientific study of
certain psychological and technical understandings of what human perception is
attended to by evolution, and to a lesser extent, by culture and social factors. But
a review of papers published over the last five years in EvoMUSART shows this is
not the case – the majority of papers focus on the generation of digital “objects”
that are considered for their aesthetic (in the EA sense) value and as “art”.

Is EA actually more useful in design rather than art? In terms of practical
applications, EA has naturally been more successful in design than art, but this
is still a relative proposition (it has had very little impact on either). Design
also has its own history, critical theory and dialogues and these are rare, if non-
existent, in EvoMUSART proceedings.

A promising, yet to date rarely explored area for EA is for philosophical
thought experiments, undertaken by simulation experiments. In this role, EA’s
goal is not to make art or evolve images for their surface aesthetics. The potential
is to illuminate understanding about culture, fads, fashion – even art and the
art world itself. These experiments could provide a valuable contribution that is
recognised outside of EA, making its agenda and benefit clearer, strengthening
the field and improving its impact. Whatever role EA takes, it needs to generate
understanding that impacts outside the field itself.
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Abstract. Genetic algorithms have been introduced to the field of me-
dia segmentation including image, video, and also music segmentation
since segmentation problems usually have complex search spaces. Music
segmentation can give insight into the structure of a music composition
so it is an important task in music information retrieval (MIR). Past ap-
proaches have applied genetic algorithms to achieve the segmentation of
a single music track. However, music compositions usually contain mul-
tiple tracks so single track segmentations might miss important global
structure information. This paper focuses on the introduction of an is-
land model genetic algorithm to achieve single track segmentations with
respect to the global structure of the composition.

Introduction

Segmentation of media data provides structural information which is often nec-
essary to perform various tasks in music information retrieval (MIR). Music
segmentation targets at the identification of boundaries between structurally
relevant parts of a composition. Providing an insight into the internal structure
of a composition it enables or improves several MIR-related tasks and, therefore,
is an important issue in the field of MIR.

Evolutionary techniques have already been introduced for music segmentation
[4, 5, 8–10]. All approaches, however, focus on the segmentation of one music
sequence a time. Such a music sequence can either be a single track containing
one instrument only or a whole composition having all tracks merged together
into one mutual sequence. Given a composition containing multiple tracks it
might neither be enough to find segmentations for isolated single tracks nor to
get just one segmentation for the whole composition. A combination of both
aspects seems meaningful. The MTSSM-framework developed by Rafael and
Oertl [7] implements such an approach which combines both local and global
structure information. However, this framework first computes several single
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track segmentations for each track and then chooses the ones that fit best into
the global context of the composition. Global information is not considered while
local segmentations are built. Local and global analyses are performed in two
distinct steps, so if the globally optimal segmentations have not been created
in the first step, they cannot be found in the second one. It seems like a more
promising idea to already include global information in the development of local
segmentations. To implement this idea the authors introduce an adapted version
of the island model genetic algorithm.

The island model genetic algorithm [13] is a parallel extension of the concept
of genetic algorithms to find better and more robust solutions. Evolving vari-
ous subpopulations on separated islands it preserves diversity and, furthermore,
enables parallel computation of the island populations. As a result, it decreases
runtime if multiple processors are available. The common island model genetic
algorithm periodically exchanges individuals between the islands (migration).
Individuals of all populations spread across the islands represent solutions for
the same problem. The authors’ approach adapts this model for a parallel anal-
ysis of multiple tracks. Each island corresponds to one track of the composition.
As a consequence, individuals can no longer be exchanged between islands. The
authors’ island model exchanges structural information instead of individuals.
This information is valuable to optimize local track segmentations in respect to
the structures of other tracks of the composition.

The paper presents the approach to evolve segmentations of multiple tracks
of a composition with the help of an adapted version of the island model ge-
netic algorithm. The first section summarizes the idea of genetic algorithms in
the field of MIR. The second section introduces the reader to the island model
genetic algorithm and its adaption for the music segmentation problem. Various
operators are also compared in this section. To conclude the paper, the authors
discuss the results and give an outlook on future work.

1 Application of Genetic Algorithms to the Music
Segmentation Problem

For each music track there is a high number of potential segment combinations.
Since segments can start at any arbitrary position of the composition, the run-
time for the evaluation increases exponentially for longer compositions. There-
fore, it is not possible to evaluate all potential segmentations but a solution of
sufficient quality has to be found in reasonable time. Given these circumstances,
the problem domain of music segmentation turns out to be highly suited for the
application of heuristic search paradigms like genetic algorithms.

Music data in the context of this paper is represented in the MIDI (Musical
Instrument Digital Interface) format. Fig. 1 shows a graphical example for a
short music sequence. The representation is similar to the pianoroll view (see [6]
for details). It contains five staff lines and an additional line for Middle C. Notes
are displayed as boxes and the box widths indicate note durations. Vertical lines
represent bar changes.
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Fig. 1. Encoding of a segment as a bit vector

Fig. 1 also gives a sample segmentation for the music sequence. The seg-
mentation contains two segment groups A and B with two and one segments,
respectively. Furthermore the figure shows the encoding of the segmentation as
a bit vector. Rafael et al. [8] represented individuals by simple bit vectors. The
same data structure has been chosen for the test runs presented in this paper
since it allows the application of existing operators.

A bit vector representing a segmentation defines the boundaries of the seg-
ments within the segmentation but it does not contain any information about
relations between segments. Some sort of clustering algorithm has to be included
in the evaluation function to define similarities between segments and to combine
them into segment groups.

To create a suitable segmentation from the given bit vector the algorithm
compares each segment to all other segments. It aligns the segments of each pair
with the help of dynamic programming and calculates a similarity score consid-
ering pitches, pitch contour, and durations of notes. A clustering algorithm then
uses the similarity values to form segment groups and assigns similar segments
to the same groups.

Based on the information provided by the resulting segmentation and the
similarity scores of segment pairs the evaluation function computes a fitness value
for each bit vector. The fitness function applied by the authors is quite complex
and considers various features (e.g., pitches, intervals, contour, rhythm). Details
about the fitness function used by the authors are given in the next section.

The initial population is created by weighted solution creators which assign a
dynamic average segment length to each individual. For the evolution of genera-
tions the algorithm applies general selection operators and traditional crossover
operators for bit vectors. After mating new individuals are mutated with the
help of bit flip and bit shift mutation. Various mutation rates are applied for the
test runs.

2 Island Model Genetic Algorithm

The traditional island model divides the population of a genetic algorithm into
several subpopulations. Each subpopulation evolves on an island following the
structure of the common genetic algorithm. In intervals of a certain number
of generations the subpopulations exchange individuals to keep diversity within
the subpopulations. The process of exchanging individuals is called migration.
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The number of generations between migrations is given by themigration interval.
The migration rate defines the number of individuals that are exchanged. There
are several strategies which individuals are chosen for migration (e.g., best, worst,
random) and which ones are replaced by the migrating individuals. Traditionally,
the island model is used to increase solution qualities by introducing genetic
diversity (see [1–3, 11] for examples).

2.1 Adaption for the Music Segmentation Problem

Amusic composition usually consists of multiple tracks. Past approaches in music
segmentation either focused on one track a time or performed an analysis of the
whole compositions with all tracks merged into one problem file. The concept
of the island model can be introduced to the music segmentation problem for a
parallel simultaneous computation of all tracks of the composition. Since each
island contains individuals corresponding to another track than individuals on
other islands, the common migration operators cannot be applied. Tracks can
differ in length and structure so individuals representing a solution for one track
might not produce a valid segmentation for another track. Furthermore, even
if the corresponding solution was valid, it might not be good for the second
track in spite of being the best solution for the first one. As a consequence, the
migration operator must be adapted. A similar example can be found at Zhu
and Leung [14] who use a communication operator instead of the traditional
migration operator. This new operator exchanges a high-level abstraction of the
current searching structure instead of individuals.

Fig. 2. Traditional and adapted island model

The authors keep the part of the traditional migration operator which chooses
the best individual from a given island. It does not, however, select an individual
on another island to be replaced by the chosen one. Instead, it saves the chosen
individual in the scope of the destination island to make it available for fitness
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calculation. Consequently, the fitness function does not only compute the score
of the segmentation an individual produces for a track but also compares this
segmentation to the segmentation represented by the migrated individual for the
other track. This global score is weighted and added to the local score, resulting
in the total fitness of the individual. Fig. 2 shows the structure of the traditional
and the adapted island model with a unidirectional migration operator. Two
individuals are migrated in the traditional model. The evaluation function of
the adapted model is displayed for one island only to not overload the figure.

2.2 Fitness Function

The fitness of an individual i representing segmentation s for track t is computed
as fitnessi = scorelocal(s) + factorglobal ∗ scoreglobal(s, sm) where scorelocal(s)
is the traditional fitness function of the genetic algorithm for a single track
which computes the fitness of s for t, scoreglobal(s, sm) is the global fitness func-
tion that computes the correlation between s and the segmentation sm which
is represented by the migrated individual im for its corresponding track tm.
Segmentations with similar structure yield a higher correlation and, therefore,
result in a better global score. factorglobal is a weighting factor which defines
the importance of the global score compared to the local one.

The following equations give the calculation of local and global score:

scorelocal(s) =
∑

seg∈segident

coverage(seg) ∗ wident

+
∑

seg∈segsim

coverage(seg) ∗ simavg(seg) ∗ wsim

+
|segns|
|segall| ∗ wns +

|segfb|
|segall| ∗ wfb +

|segreg|
|segall| ∗ wreg

−

∑
seg∈segall

dev(seg)

durationtrack
∗ wdev

−

∑
seg∈segall

devgroup(seg)

durationtrack
∗ wdevgroup

−

∑
group∈groupall

div(group)/|group|

|groupall| ∗ wdiv

− |segcut|
|segall| ∗ wcut − |segshort|

|segall| ∗ wshort

scoreglobal(s, sm) =
∑
seg∈s

coverage(seg, sm) ∗ wcover

+ start(seg, sm) ∗ wstart + end(seg, sm) ∗wend
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Variables used in both functions are explained in table 1.
wident, wsim, wns, wfb, wreg, wdev, wdevgroup , wdiv, wcut, wshort, wcover, wstart,

and wend are user-defined parameters for weighing the factors of the evaluation
function. They have been optimized with the help of multiple series of experi-
ments using music sequences that were manually annotated by experts.

Table 1. Variables of the local evaluation function

Variable name Variable description

groupall set of all segment groups (each group is a set itself,
containing all segments within the group)

segall set of all segments
segident set of all segments that have at least one identical segment

in their segment group
segsim segall − segident

segns set of segments where start points coincide with note starts
segfb set of segments that start at the first beat of a bar
segreg set of segments with regular distances to other segments
segcut set of segments where segment boundaries cut notes
segshort set of segments whith |seg| < thresholdvalid
coverage(seg) time covered by a segment in relation to the duration of the track
simavg(seg) average similarity score of a segment

compared to all other segments of its segment group
dev(seg) deviation of a segment

in relation to the global average segment duration
devgroup(seg) deviation of a segment

in relation to the average segment duration of its segment group
durationtrack total duration of the track
div(group) number of different segments within the group
coverage(seg, sm) time covered by a segment in sm at the position of seg
start(seg, sm) 1 if seg and sm start at the same beat, 0 otherwise
end(seg, sm) 1 if seg and sm end at the same beat, 0 otherwise

2.3 Migration Operators

The authors use two migration operators: a standard unidirectional ring mi-
grator and a new introduced circulating ring migrator. For both operators, all
islands communicate in a ring structure. The unidirectional migrator chooses
the best individual from island islandi and migrates it to its neighbour island
islandi+1. Corresponding to the ring structure the individual of the last island
is migrated to the first one. The circulating ring migrator changes the commu-
nicating island pairs with each migration phase. In the first migration phase
it chooses an individual from island islandi and migrates it to its neighbour
island islandi+1. In the next phase an individual from islandi is migrated to
island islandi+2. The distance between communicating islands is increased until
islandi+n with n as the number of islands is reached. The operator then starts
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again with the neighbouring islands islandi and islandi+1. Both operators have
their strengths and weaknesses. The unidirectional ring migrator always com-
pares fixed pairs of tracks and, therefore, allows for a continuous convergence of
the two tracks’ structures. It will, however, produce problems if one track has an
irregular structure since its neighbouring track will then never get valid global
structure information. Irregular tracks can block the global information flow for
the unidirectional ring migrator. It should work fine for compositions where all
tracks conform more or less to one global structure. The circulating ring migrator
is more robust against irregular tracks. Since a track is compared to a different
track in each migration phase, there are just single evolution phases where it
might not get valid global structure information (i.e., when an irregular track is
chosen as its neighbour) but will then proceed to a more compliant track in the
next migration phase. As a drawback, the global score will not increase smoothly
but will have aprupt changes whenever a new migration phase is started. The
choice of the better migration operator will depend on the respective composi-
tion. Fig. 3 shows the first two migration phases of the circulating ring migrator.
The server process has been omitted to make the picture less complex. The
unidirectional ring migrator is displayed in Fig. 2.

Fig. 3. Circulating ring migration operator

2.4 Migration Intervals

The traditional island model applies a fixed migration interval. After having
developed m generations on each island it performs migration and resets the
generational counters of all islands. Then it evolves another m generations on
each island until the next migration phase takes place. This is repeated until the
desired number of total generations is reached. The choice of the right migration
interval is often a difficult task. For the music segmentation problem it is even
more difficult since this interval determines the influences of local and global
scores. In the beginning of the evolution the migration interval should rather be
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high. There must be enough time for individuals on all islands to develop stable
local segmentations. If migration starts too early, local search processes can
be lead into not successful regions of the search space and get stuck there. On the
other hand, a high migration interval towards the end of the evolution process
constrains the flow of global information between islands and does not allow
quick adaptions to new global information. As a result, a dynamic migration
interval must be introduced for the music segmentation problem. Out of various
possibilities (linear, geometric, exponential, ...) the authors have decided to use
a geometric progression function with a variable ratio r for the new migration
interval. Given a maximum number of generations gmax the migration interval
is first set to m = gmax/r. After m generations have been evolved on each island
and migration has taken place, the new migration interval is set to m = m/r.
With the help of the progression function the migration interval decreases after
each migration phase until it reaches m = 1. When the interval has reached
1 it is not decreased any further. Migration then takes place after each local
generation step.

First experiments are done with the geometric progression model. Other possi-
bilities to change the migration interval dynamically will be tested in future work.

3 Results

The adapted island model genetic algorithm and the operators described above
have been developed with the help of the HeuristicLab framework . All tests are
also carried out with this framework (http://dev.heuristiclab.com [12]).

12 music compositions representing various genres from the Bodhidharma mu-
sic collection (http://jmir.sourceforge.net/Bodhidharma.html) are selected for
the test runs: Tango (composition 1), Traditional Country (compositions 2 and
11), Adult Contemporary (composition 3), Metal (composition 4), Smooth Jazz
(composition 5), Dance Pop (composition 6), Soul (compositions 7 and 10), Reg-
gae (composition 8), Rock and Roll (composition 9), and Techno (composition
12). Each composition consists of approximately 10 tracks; there are 105 tracks
in total. Durations of the compositions range from 100 to 800 beats with an av-
erage duration of 300-400 beats. The number of islands of each test run depends
on the number of tracks in the respective composition. The population size of
each island is set to 200 individuals. A maximum of 1000 generations are evolved
in each test run.

Standard operators are chosen for selection: linear rank, proportional, and
tournament selection with group size 2. A combined crossover containing single-
point, 2-point, and uniform crossover is applied for recombination. Offspring is
mutated with a mutation rate of 0.2 and a combined mutation operator using bit
flip as well as bit shift mutation. These settings achieved good results in the test
runs conducted in [10] and, therefore, facilitate a better comparison to existing
results. For the island model specific parameters the authors choose a ratio of
4 for the migration interval progression. The best individual of an island is
selected for migration. Both migration operators described above, unidirectional
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and circulating ring migration, are applied for migration. Table 2 summarizes
the settings used for all test runs. Due to long computation times the number
of runs for each combination of parameter settings is limited to five. Average
results of those runs form the basis for further analysis. More test runs will be
conducted in future research to get more stable results. In this paper the authors
discuss experimental results to give the reader an impression of the potential of
the island model genetic algorithm for music segmentation. A more sophisticated
analysis will follow in future research.

Table 2. General parameter settings for all test runs

Population Size 200
Maximum Generations 1000
Elitism Rate 1
Mutation Rate 0.2
Selection Operator Linear Rank, Proportional, Tournament size 2
Crossover Operator Multi Binary Vector Crossover
Mutation Operator Combined Mutator
Migration Operators Unidirectional Ring Migrator, Circulating Ring Migrator

Fig. 4. Development of the local and global score of one track

First test runs already give promising results which are displayed in Fig. 4.
While the local score (on the left side) has soon reached its local maximum
and does not increase any more, the global score (on the right side) is still
improving. This behaviour confirms the expectation that there are several local
segmentation possibilities with the same or similar local scores. Compared to the
other tracks in the composition they can reach different global scores, so some
of them fit better into the global structure of the composition than others. The
goal of the island model genetic algorithm is to choose the local segmentation for
a track which has a good local score but also fits into the global structure of the
composition. A more detailed analysis of the stagnation behaviour of local and
global scores shows that while local scores usually stagnate early, there is often
still potential to find better global scores. This, again, confirms that the island
model genetic algorithm can determine the globally best fitting segmentation
from a pool of similar value local segmentations.
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Fig. 5. Best global scores for the unidirectional migration operator

Fig. 6. Best global scores for the circular migration operator

An analysis of more detailed test runs shows that best local scores reached by
the island model genetic algorithm are comparable to the results of the standard
genetic algorithm. There are also no significant differences depending on selec-
tion and migration operators. Therefore, the authors focus on the global score
and the migration operators. Figures 5 and 6 show the best global scores for
all test runs with the unidirectional and circulating ring migrator, respectively.
Each boxplot contains the results for all tracks of the respective composition in-
cluding different parameter settings. Tracks with a global score of 0 do not have
any segments corresponding to segments of the tracks they are compared to. A
global score of 1 means that all segments of a track have matching segments
in the segmentation of the other track. The figures demonstrate that there is
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a strong difference between results of the unidirectional and circulating migra-
tion operator. For all compositions a better average global score is reached by
the circulating operator. If a low global score for a composition is found by the
circulating operator (eventually caused by a weak geometric structure of the re-
spective composition), the global score reached by the unidirectional operator is
even lower. This confirms the expectation that the circulating operator is more
robust than the unidirectional one.

4 Conclusion

This paper introduced the reader to the island model genetic algorithm and its
adaption for the music segmentation problem. Suitable migration operators were
described and their results discussed. The circulating ring migrator turned out
to be more robust and, therefore, achieved better results than the unidirectional
ring migrator. To sum up, the results of this approach are promising since they
show that the island model genetic algorithm can use global structure informa-
tion to determine the best local segmentation for each track that also fits best
into the global structure of a composition. However, the island model genetic
algorithm for music segmentation can only be successful if at least some of the
tracks of a composition share the same global structure. If this precondition is
not met, the simple genetic algorithm should be preferred since it needs less
computational effort.

Test runs in this paper have dynamically adapted the migration interval based
on geometric progression. Other models can also be applied, including linear
and exponential progression, which will be tested in future work. Instead of
dynamically adapting the migration interval it also seems promising to vary the
weights for local and global score during the evolution process. As a consequence,
the weight of the global score can be low in the beginning of the evolution process
and increase towards the end of the evolution. Future work will focus on this
approach as well as on other possibilities to control the influence of local and
global score.

Experimental results have been presented in this paper. Future work will ana-
lyze a broader range of test runs to achieve a more detailed discussion of results.
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Abstract. Drum rhythm automatic construction is an important step
towards the design of systems which automatically compose music. This
work describes a novel mechanism that allows a system, namely the evo-
Drummer, to create novel rhythms with reference to a base rhythm.
The user interactively defines the amount of divergence between the
base rhythm and the generated ones. The methodology followed to-
wards this aim incorporates the utilization of Genetic Algorithms and
allows the evoDrummer to provide several alternative rhythms with spe-
cific, controlled divergence from the selected base rhythm. To this end,
the notion of rhythm divergence is also introduced, based on a set of
40 drum–specific features. Four population initialization schemes are
discussed and an extensive experimental evaluation is provided. The
obtained results demonstrate that, with proper population initializa-
tion, the evoDrummer is able to produce a great variety of rhythmic
patterns which accurately encompass the desired divergence from the
base rhythm.

1 Introduction

Rhythm is an important aspect of music, an argument amplified by the fact that
a great amount of research is performed towards the identification of rhythmic
characteristics in music excerpts and the automatic generation of rhythms for
the generation of novel music. In the field of automatic generation of rhythms,
the utilization of evolutionary algorithms is among the most popular techniques.
Several methodologies (among the ones cited below) incorporate the creation of
rhythmic sequences without further determining whether these sequences are for
tonal or percussion music instruments. The Genetic Algorithm (GA) approach
specifically, has proven to be an efficient approach, either in an evolutionary
scheme which utilizes Interactive Evolution (IE) [6], or in a feature based evo-
lution [7]. IE discusses the assignment of fitness by human listeners with an
objective rating or selecting process, while feature–based evolution leads succes-
sive generation towards populations that satisfy certain subjective criteria.

Several works have focussed on the generation of rhythms targeted for per-
cussive instruments or drums. These approaches utilize either real–value rhythm
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encoding [1], or evolution of automatic agents–percussionists [3] among other
techniques. Several other approaches further specify the instrumentation of the
drums by incorporating different onset attributes, like left and right hand on-
sets that form paradiddles [10]. Additionally, some works pivot around acknowl-
edging and generating rhythms from standard drums setups (kick drum, snare
drum and hi–hat). These approaches either incorporate the identification of drum
rhythms from audio and the recombination of the audio parts to generate novel
rhythms [8], [2] (see Chapter 6), or the identification and generation of symbolic
drum sequences. Specifically, the latter two approaches may provide proper drum
sequences for a given melodic excerpt [5], create fill–in patterns according to the
provided drums rhythm [12], or recombine drum loops to generate novel ones
that share similar complexity characteristics [9]. In [11] a system is presented
which receives a reference drum rhythm defined by the user and outputs a similar
rhythm from a database, based on a set of drum similarity features.

The motivation of the paper at hand is the automatic generation of various
drum sequences with reference on a template rhythm called the base rhythm. The
drum rhythms discussed in this work, incorporate a typical drum set that com-
prises a hi-hat H, a snare S and a kick K. These percussive elements are among the
most commonly used and they compound the minimal set of percussions eligible
to roughly reproduce the majority of popular rhythms made by a drum set. This
set of percussions was also used in several other works in the literature [11,5,8,2].
The similarity level between the base rhythm and the generated ones is defined
by the user and novel rhythms are constructed using a GA–based scheme. The
described mechanism is incorporated in an interactive real–time rhythm compo-
sition system called evoDrummer, which it is available for download at [4]. In turn,
the notion of rhythm divergence is introduced and a methodology is described for
the divergence computation between two rhythms. The defined divergence mea-
sure is performed using a set of 40 drum–specific features, several of which rep-
resent a novelty of this work. Next, the underlying evolutionary mechanism that
produces rhythms with a certain desired divergence from a base rhythm is intro-
duced, with emphasis on the fitness evaluation. The foremost aim of this work is
to provide an extensive experimental evaluation on the population initialization
process. To this end, four initialization schemes are examined and results are re-
ported in terms of their ability to produce fit and diverse rhythms. The paper
concludes with some pointers for further research directions.

2 Rhythm Divergence

This section proposes a set of drum features that consider the H, S and K percus-
sive elements. Next, it introduces the notion of rhythm divergence and proposes
a divergence measure that encapsulates the similarity (or difference) between
two rhythms. The divergence computation is based on an array of each rhythm’s
features and a conditional utilization of the mean relative distance between these
two arrays.



evoDrummer 27

2.1 Proposed Drums Features

Table 1 presents a compilation of 40 drum features, which comprise a feature ar-
ray that characterizes each drum rhythm. In the next paragraph, the divergence
(or dissimilarity) of two rhythms is measured with the utilization of their feature
arrays. Some of these features have been in the literature, like the syncopation,
symmetry and density of isolated percussive elements (see [9,7] and references
therein). To compute the rest of the features, different attributes are considered
for each drum element, in accordance to its contribution to the overall rhythm
perception. For example, the main rhythm impression is provided by the K and
S onsets, while the H is mostly acting like an auxiliary element providing the
main pulse. Hence, several statistics can be considered solely for the K and S

drums. Furthermore, a segregation of snare and kick onsets is realized, in ac-
cordance to their role in the rhythm. Loud onsets are considered to contribute
to the main rhythm impression, while weaker onsets are considered as aesthetic
embellishments, like “ghost notes”. Therefore, in the description of the features
that follows, an additional binary rhythm array in {0, 1}1×16 is considered, which
models the main rhythm impression. Therein, the main beats are indicated with
1, while weaker onsets with 0. The threshold for defining an onset as loud, is the
75% of the loudest onset in the rhythm under discussion.

Table 1. The proposed drum features

feature indexes feature description

1–4 density, syncopation, symmetry and weak-to-strong ratio of the
strong beat

5–16 density, syncopation, symmetry and weak-to-strong ratio of each
drum element (4 features times 3 elements, 12 total features)

17–19 number of simultaneous pairs of drums onsets (H–K, H–S and
S–K), divided with the number of total onsets1.

20–23 number of transitions between all combinations of K and S, di-
vided with the number of total transitions between all combina-
tions of K and S.

24–26 number of isolated H, S or K onsets, divided with the number of
total onsets.

27–32 intensity mean value and standard deviation for each drum ele-
ment.

33–40 mean value and standard deviation of intensity difference be-
tween all combinations of S and K elements. Mean values are
increased by the 5, in order to have zero minimum value.

1 The total number of onsets is the number of beat subdivisions where at least
one drum element is played (in the current measure analysis, it is an integer in
{0, 1, . . . , 16}.)
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2.2 Measuring Rhythm Divergence

The divergence between two rhythms is measured here by comparing the “mean
relative distance” (MRD) of their feature arrays, as described in the previous
paragraph. The MRD between two vectors, v1 and v2 ∈ R

1×k, is measured as

dMRD =
1

k

k∑
i=1

|v1(i)− v2(i)|
max({v1(i),v2(i)}) ,

where the index i denotes the i–th element of the array. The MRD between
two rhythms’ feature vectors is a real value in [0, 1], with 0 meaning the same
rhythm (no divergence), while higher values characterize pairs of rhythms with
greater dissimilarities. It has to be noted that this divergence measure has the
described functionality if all the vector elements have zero minimum value. This
fact explains the addition of the constant (integer 5) to the group of features
33–40 in Table 1. The quantity of this divergence measure is not affected by each
feature’s “scale” of measurement, as long as all features are between zero and an
arbitrarily high value. Therefore, the MRD may be considered as a “percentage”
of rhythm difference. The proposed rhythmic divergence, as has hitherto been
described, disregards information about which features are actually responsible
for the magnitude of the divergence. This fact allows many alternative rhythms
to be considered as well fitted by the selection process, as discussed later in
the analysis about fitness evaluation in Section 3.2. As a result, evoDrummer is
capable of composing numerous different but equally fit rhythms, under certain
user demands.

3 The Proposed GA-Based Schemes

The evolutionary strategy is a typical GA-based approach, i.e. it encompasses
the standard crossover and mutation operators. However, four population ini-
tialization approaches are discussed, which have different population variability
potentialities. Furthermore, the chromosome representation introduces the in-
corporation of intensity variations of percussive onsets, which allows the expres-
sional characteristics of drum excerpts to be highlighted.

3.1 Phenotype and Genotype and Evolution of Drum Rhythms

The GA nomenclature incorporates the terms “phenotype” and “genotype” to
refer to the representation of data in a given problem and the respective genetic
modeling of these data. In the problem at hand, the phenotype is the represen-
tation of drum rhythms, while the genotype is the representation of rhythms in
a form that the standard genetic operators are applicable. The phenotype is a
matrix representation, called the rhythm matrix, with each row corresponding to
the activity of a drum element, and each column representing a certain subdivi-
sion of a music measure. The number of drum elements determines the number
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of rows, while the number of measure subdivisions the number of columns in
the rhythm matrix. A zero matrix entry denotes that the drum in the specified
row, at the beat specified by the column, remains silent (i.e. does not produce
an onset). A non–zero entry denotes an onset with “intensity” defined by the
magnitude of this entry. Any abstract refinement of intensities is plausible, but
for the presented results we utilized 6 intensity scales, represented by integers
in the set I = {1, 2, . . . , 6}. Using more than 6 scales was not considered to
produced a significantly richer variety in perceived intensities, as studied after
careful listening by the authors. Further investigation on this subject, however,
is necessary. Using these terms, a rhythm matrix can be defined as a matrix
M ∈ (I ∪{0})n×m, where n is the number of instruments, and m is the number
of measure subdivisions.

The genotype of a rhythm matrix, also referred to as chromosome represen-
tation, is constructed with the serial concatenation of all its rows. The first row
occupies the first part of the chromosome array and subsequent rows follow, as
depicted if Fig. 1. Therefore, the chromosome CM of a rhythm matrix M is an
array with the property CM ∈ (I ∪ {0})1×n·m. A set of initial rhythms, which
comprise the initial generation, is fed into the GA evolutionary process. New
rhythms (or a new generation of rhythms) are produced, which provide better
solutions to the problem at hand. Four possible population initialization schemes
are discussed later. The evolution of the initial and the subsequent generations
is realized through the utilization of standard genetic operators, which can be
applied to a set of the aforementioned chromosome representation of rhythms,
namely the following two:

1. The crossover operator: this operator incorporates the exchange of equally
sized random parts between two chromosomes. The result is the creation of
two new chromosomes, named children, which encompass characteristics of
both initial chromosomes, named parents.

2. The mutation operator: mutation acts on the chromosome by assigning a
random value to a random element. In the case of CM, this random value
should be an integer value in {0, 1, . . . , 6}.

The selection of the parent rhythms at each step of evolution is performed by
a selection process that is biased towards individuals which constitute a better
solution to the problem. A measurement of how good a rhythm is, in accordance
to the specific problem, is realized with a fitness evaluation process which is
described in the following paragraph. This work utilizes the roulette selection,
according to which an individual is selected for breeding the new generation,
with a probability that is proportional to its fitness.

3.2 Fitness Evaluation

A proper fitness evaluation methodology is crucial for the GA to produce effective
results. The motivation of this work, as stated in Section 1, is the generation of
rhythms which diverge by a certain amount from a base rhythm. This divergence



30 M.A. Kaliakatsos–Papakostas, A. Floros, and M.N. Vrahatis

first row
second row
third row

first row second row third row

3x16
1x48

Rhythm matrix
Chromosome representation

Fig. 1. Depiction of the rhythm matrix to chromosome transformation

is measured by the MRD, as described earlier in Section 2.2. Suppose that we
have a base rhythm with a feature array denoted by rb, and a novel rhythm with
a feature array denoted by rn. Suppose also that the desired divergence between
the base and the novel rhythm is dd. Then, the fitness of rhythm rn according
to the desired divergence is frn = |dMRD(rb, rn) − dd|, which is the distance
between the desired and the observed rhythm divergence. Through evolution, the
rhythms that have a fitness value closer to 0 are promoted to the next generation;
thus, these rhythms have a divergence from the base rhythm which is close to
the desired one. As mentioned in Section 2.2, this divergence measure does not
incorporate any information about which rhythm features are responsible for
its magnitude. When the user provides a base rhythm and a desired magnitude
of divergence, the responses that the evoDrummer provides may encompass a
large set of different rhythms. Further discussion on this issue is provided in the
experimental results presented in Section 4.2.

3.3 Four Initialization Schemes

The evolutionary scheme that has hitherto been described, begins with the for-
mulation of an initial generation of rhythms that breeds the next generations,
creating populations of rhythms that are better fit. The paper at hand discusses
four such different population initialization schemes, with different strategies on
selecting a blend of random and non–random initial rhythms. Specifically, the
non–random initial rhythms are copies of the base rhythm itself. The rationale
behind these schemes is to allow evolution to combine random rhythmic parts
with segments of the base rhythm, creating new ones which diverge from the
base rhythm by a certain amount. The random and non–random blending can
be described by a blending ratio, b ∈ [0, 1], which describes a rough percentage
of random rhythms in the initial population. Therefore, if the initial population
is composed of N rhythms, then the random members are [N · b], where [x] is
the integer part of a real number x.

The examined initialization schemes are the following:

1. Random: This initialization scheme is an extreme blending case where b = 1,
meaning that only random rhythms constitute the initial population.

2. Self: This initialization is the opposite of the previous case with blend-
ing ratio b = 0, where only copies of the base rhythm compose the initial
population.

3. Half: The initial population comprises a fixed blend of half random rhythms
and base rhythm replicates, thus b = 1/2.
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4. Analog: In this initialization scheme, the blending of rhythms is proportional
to the desired divergence. Specifically, the blending ratio is equal to the
desired divergence measure, b = dd.

The extreme Random and Self initializations are examined as test cases, in order
to observe how close (or far) from the base rhythm can an initial breed of rhythms
be evolved. The actual comparison that is expected to take place is presumably
between the Half and Analog initialization strategies.

4 Experimental Results

The experimental results aim to examine two aspects of the proposed methodol-
ogy. Firstly, the efficiency of the proposed evoDrummer methodology under all
the proposed initialization schemes considered, by measuring the fitness of the
best individuals in several simulations. Secondly, the diversity among the best
generated rhythms is analyzed, in order to measure the ability of the system to
produce alternative rhythms with the desired divergence from a base rhythm.
To this end, a set of six base rhythms constructed by the authors was utilized,
ranging from simple to more complex rhythms. The rationale behind not us-
ing random base rhythms, is the necessity to assess the system’s performance
in accordance with the features produced by human–created rhythms. All the
simulations described in the next paragraphs incorporated a fixed population
size of 100 rhythms, a number of 100 generations, the crossover and mutation
genetic operators and the roulette selection process, as described in Section 3.
Furthermore, the desired divergence was considered as successfully achieved if
the fitness of the best individual in a generation was below 0.0001 (error toler-
ance). For each of the six base rhythms, 50 simulations were conducted in order
to assess performance statistics, as well as to examine the similarity between all
the generated rhythms and their characteristics. Finally, results are reported for
desired divergences in the set {0 : 0.025 : 1}, which are the real numbers from
0 to 1 with an increment step of 0.025. Experimental results do not incorporate
rhythm examples, since the interested reader may create as many examples as
she/he wishes by using the downloadable application [4].

4.1 Adaptivity per Initialization Scheme

The fitness mean and standard deviations of the best fitted individuals for all
desired divergences, among all 50 simulations for every rhythm are illustrated in
Fig. 3. One may first notice that the fitness of the best rhythms becomes worse as
the desired divergence moves from 0.625 and above for all initialization schemes.
This fact highlights the lack of descriptiveness of the MRD distance, as defined in
Section 2.2, when incorporating vastly different arrays. For instance, the highest
value of MRD, dMRD = 1, is achieved only if one of the two measured arrays is
the zero array. Another notable fact is the inability of the Random initialization
process to produce rhythms which are evolved towards the base rhythm, for
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all base rhythms, as depicted in Fig. 2. This fact also pinpoints that there is
a vast difference between human–created rhythms and random ones, since the
evolution of the latter may hardly follow the structure of the former.

0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Random

divergence

e
r
r
o
r

0 0.5 1

Self

divergence
0 0.5 1

Half

divergence
0 0.5 1

Analog

divergence

 

 

rock1

rock2

funk1

funk2

latin1

latin2

Fig. 2. Fitness per initialization scheme for each rhythm separately

For desired divergence with magnitude larger than 0.625, the performance
of the Self initialization scheme is the worst. This denotes that the exclusive
utilization of the base rhythm itself, under several evolutionary steps (with the
crossover and mutation operators as described here) is not enough to entirely
alter its characteristics. This fact, along with the poor performance of the other
extreme initialization methodology – the Random initialization – allows the re-
jection of these two methodologies within the presented framework. Table 2
presents the mean values and standard deviations of the fitness results, catego-
rized in different desired divergence groups according to the findings in Fig. 3.
Therein, one may clearly observe in numeric terms the two aforementioned con-
siderations about the Random and Self initializations. Additionally, it is also
clear that there is a relative decrease in the low similarity divergence region (0–
0.125), compared to the middle divergence range (0.15–0.625). This may be an
evidence that it is difficult to automatically devise human–like rhythms (accord-
ing to the proposed features at least), even if the automatic generation process
originates from the human–created rhythm itself. It also has to be noted that
all the initialization techniques which used any proportion of base rhythm repli-
cates, produced a perfectly fitted individual from the initial generation at the 0
divergence level, which was the base rhythm itself.

4.2 Diversity of Produced Rhythms

An important aspect of evoDrummer is its ability to compose a diverse set of
novel rhythms which diverge by a certain amount from the base rhythm. Two
experimental measurements are utilized to evaluate this diversity, over all the
desired divergences available (dd = 0 : 0.025 : 1). Firstly, the rhythm diversity is
measured explicitly: for a given divergence and base rhythm, we assess a percent-
age of how many unique rhythms are returned throughout the 50 simulations.
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Fig. 3. Fitness per initialization scheme for all rhythms

Table 2. Mean and standard deviation of fitnesses in several divergence regions. Best
fitness in each region is demonstrated in boldface.

divergence range: 0–0.125 0.15–0.375 0.35–6.25 0.65–1.0

Random 0.1939 (0.0772) 0.0399 (0.0446) 0.0001 (0.0004) 0.1694 (0.0455)

Self 0.0022 (0.0048) 0.0003 (0.0006) 0.0006 (0.0015) 0.1844 (0.0507)

Half 0.0017 (0.0027) 0.0002 (0.0004) 0.0001 (0.0002) 0.1705 (0.0459)

Analog 0.0021 (0.0045) 0.0002 (0.0005) 0.0000 (0.0001) 0.1690 (0.0452)

This percentage is measured as the unique rhythm ratio, divided with the number
of total rhythms returned by each simulation (50 in number). Therefore, the
unique rhythm ratio can take a value in [ 1

50 , 1], where the extreme values denote
that all rhythms are the same (value 1

50 ), or every pair of rhythms is different
(value 1). Secondly, the diversity is measured through the feature difference of
all the produced rhythms. The diversity of features among the 50 best rhythms
returned by each simulation is measured with the mean value of the standard
deviation of these features, as it is discussed more thoroughly later.

The unique rhythm ratios are illustrated in Fig. 4, for divergence values below
0.275, since above this value, almost all ratios for every base rhythm are nearly
equal to 1. Additionally, the mean and standard deviation of the unique rhythm
ratios for several groups of divergences are demonstrated in Table 3. These results
indicate that for small desired divergences, the produced results may incorpo-
rate non–unique rhythms, at some extent, except from the Random initialization,
which has the highest unique rhythm ratio value for every measured divergence.
A more detailed look in Fig. 4 reveals that the simplest base rhythms consid-
ered (rock1 and rock2) maintain a lower–than–unit unique rhythm ratio for
divergences that approach 0.25, for all initializations except Random.

The second part of the diversity analysis incorporates the assessment of the
standard deviation for each feature, over all 50 simulations with a target rhythm–
divergence pair. Thereafter, the standard deviation of each feature is divided
with the feature’s maximum value over all 50 simulations, in order to obtain
a “normalized” version of the standard deviation measurements. As a result,
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Table 3. Mean unique rhythm ratios for all test rhythms in certain desired diver-
gence groups. Standard deviations are demonstrated in parentheses. The initialization
schemes (except random initialization) with the highest identical rhythm ratio are
demonstrated in boldface typesetting.

divergence range: 0–0.125 0.15–0.275 0.3–0.425 0.45–1.0

Rand 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Self 0.7161 (0.3523) 0.9694 (0.0223) 1.0000 (0.0000) 1.0000 (0.0000)

Half 0.6811 (0.3328) 0.9717 (0.0255) 0.9994 (0.0014) 1.0000 (0.0000)

Analog 0.7033 (0.3421) 0.9733 (0.0173) 0.9994 (0.0014) 1.0000 (0.0000)

the feature diversity among all simulations of a certain base rhythm–desired
divergence setup, are represented by a “normalized” vector, which encompasses
a description of the “relative” diversity of each feature. Consequently, the mean
relative diversity, along with their standard deviation allow an overview of all the
features’ diversities per desired divergence, for each base rhythm scenario. These
results are depicted in Fig. 5, where the aforementioned mean value and standard
deviation are demonstrated as error–bars. It has to be noted that the scale of
the results (the y-axes values) does not provide any quantitative information; the
informative part of this graph is the diversity changes according to divergence
and base rhythm.

Feature diversity does not seem to follow any pattern with the Random initial-
ization processes. The utilization of the rest initialization schemes on the other
hand, seems to follow a trend of increasing diversity, as divergence increases, up
to one certain point. The point that the increasing trend terminates, seems to
differ for different rhythm and initialization procedures. Afterwards, a descend-
ing trend is observed, followed by random feature diversity fluctuations, which
are compared to the ones produced by the Random initialization scheme. Further
analysis based on the findings of these graphs could reveal additional charac-
teristics of the rhythms that are produced by each initialization process. This
analysis can be the subject of a future work.
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Fig. 5. Feature diversity for different divergence values

5 Conclusions

The paper at hand introduces the methodological context that led to the con-
struction of evoDrummer, a system that utilizes interactive genetic algorithms
to automatically compose novel drum rhythms. This context allows the gener-
ation of novel rhythms that diverge by a certain amount from a base rhythm.
According to the overall architecture employed, the user selects a base rhythm
from a list of template drum rhythms and sets a desired divergence rate. There-
after, the system is able to create several different novel rhythms that diverge
from the base rhythm by the specified amount. To this end, the notion of rhythm
divergence is introduced, which is based on a set of drum features. The proposed
features consider not only the onsets of the basic drum elements (kick, snare
and hi-hat), but also their intensities which are a crucial part for the perception
of drum rhythms. An evolutionary scheme based on Genetic Algorithms (GA)
leads an initial population of rhythms to ones that are better fitted to the dis-
cussed problem, i.e. diverge from the base rhythm by the desired amount. Four
different initialization schemes are discussed and extensive experimental results
are reported, which outline the strengths and weaknesses of each methodology
and the diversity of the rhythms they produce.

Future work may primarily incorporate a modification of the divergence mea-
sure, the mean relative distance (MRD) of features, so that it may more ac-
curately describe extremely high divergences (a problem which is discussed in
Section 4.1). Afterwards, novel drum features along with an analysis on the pro-
posed ones should be conducted, in order to obtain a more solid basis for rhythm
similarity assessment. In parallel, the evolutionary process may be substantially
assisted by the utilization of several variants of the standard crossover and mu-
tation operators that were applied. Finally, a more thorough investigation on the
findings of Fig. 5 should be realized, in order to examine the relations that may
emerge between rhythm characteristics, as expressed by the rhythm features,
and population initialization processes.



36 M.A. Kaliakatsos–Papakostas, A. Floros, and M.N. Vrahatis

References

1. Ariza, C.: Prokaryotic groove: Rhythmic cycles as real-value encoded genetic al-
gorithms. In: Proceedings of the International Computer Music Conference, San
Francisco, USA, pp. 561–567 (January 2002)

2. Collins, N.M.: Towards Autonomous Agents for Live Computer Music: Realtime
Machine Listening and Interactive Music Systems. Ph.D. thesis, Centre for Music
and Science, Faculty of Music, University of Cambridge (2006)

3. Eigenfeldt, A.: Emergent rhythms through multi-agency in max/msp. In:
Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) Computer Music Modeling
and Retrieval. Sense of Sounds, pp. 368–379. Springer, Heidelberg (2008)

4. evoDrummerTestApp1 (2013),
http://cilab.math.upatras.gr/maximos/evoDrummerTestApp1.zip

5. Hoover, A.K., Rosario, M.P., Stanley, K.O.: Scaffolding for Interactively Evolving
Novel Drum Tracks for Existing Songs. In: Giacobini, M., Brabazon, A., Cagnoni,
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Abstract. In this project a composition is achieved by two separate evo-
lutionary algorithms (virtual pianists) executing and modifying a repet-
itive phrase in a cooperative manner - conversely this collaboration is
directly counteracted by deliberate placement of a tone within the repet-
itive phrasing by one or other of the pianists. This action creates conflict
and consequently it becomes a challenging task for the opposing pianist
to introduce a similar change - thus the effect becomes combative and
may be witnessed by an audience. The genetic representation for pitches
is based on prime-number ratios and assigns lower Hamilton distances
to more harmonically related frequency pairs. This and a special way to
evaluate musical structure based on it seems to be correlated with good
results in generated music pieces. Finally possibilities are discussed to
bring “Darwinian Pianos” into musical practice.

Keywords: Evolutionary music, minimal music, algorithmic composition,
genetic algorithms, realtime systems.

1 Overview

This project can be understood as an algorithmic description of a new musical
style derived from minimal music but leading to something else. The conse-
quences of this aspect are discussed at the end of this paper. Here now a brief
description of the entire program and its relation to previous works is given:

To write composition programs is like composing on a meta level. The here
described example behaves like there where two composers taking turns in writ-
ing tones inside the same musical phrase. Each of them is responsible for three
of six voices. Both know the counterpoint rules well and only include a new tone
into the phrase if the inclusion will not cause counterpoint errors or will at least
diminish it. They try to improve the aesthetic quality of the musical phrase in a
special manner. Their memory is limited - so one of them is not able to include
a tone each time when it is his turn. As a special rule the duration of a tone
lasts only until the next tone in the same voice appears. So it is shortened au-
tomatically when a following tone is placed in the same voice. It is possible to
replace tones. What is more there are two pianists repeating countinously the
musical phrase synchronously, each responsible for playing three of the six voices.

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 37–46, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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That is why the counterpoint rules are applied to the looped phrase. Playing and
composing are independent running processes. Accelerating the compositional
process in relation to the playing process will lead to a more complex composi-
tion. A relatively slow composition tempo in compositions seems to have a close
affinity to minimal music.

"Playing" can also be understood as transcribing continously the actual state
of the phrase in a final score. Finally there is a supervisor who replaces all
tones of a composer who was able to fill up one of his voices compleetly and
gives him points for each tone. Seen the composers as two evolutionary processes
each of its turns is followed by producing a new generation using recombination
and mutation. There is a similarity of this program design to approaches using
cellular automata [6], but the here described approach deals with the composition
process itself in a more direct way. Furthermore there is a similarity to an early
approach of Horner [5]who also deals with the metamorphosis of a continously
looped phrase, but focuses more an assisting a compositional process instead of
generating entire pieces as it is persued here.

2 Composing Algorithm

According to early minimal music of Steve Reich and Philip Glass there is used
one basic technique for realtime generation of a musical strucuture; a musical
phrase is looped and musical events are placed within it without changing the
duration of the phrase. In fact at the beginning the phrase is empty. Within
druming IV of Steve Reich [7] the looping phrase begins with one instrument
pulsing, after which more instruments are added incrementally at varying time
marks inside the loop (Fig. 1 shows this in principle).

A A'metamorphosis

new event added

A A'metamorphosis

new event added

Fig. 1. Changing a looped phrase by adding new events

An extension of this technique is to replace a complete voice in the looped
phrase. This is one of the main principles within the compositions of Philip
Glass, such as Koyaanisqatsi or Conclusion from Satyagraha Act 3 [4] (Fig. 2
shows this in principle).

In the first approach the Darwinian Pianos were implemented as a java pro-
gram; two methods are started as threads where each is responsible for setting
new tones (tone setter) or replacing old ones in three out of six voices in the loop
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Fig. 2. Changing a looped phrase by replacing a voice

phrase. The loop phrase is divided into discrete time steps - e.g. eight. A third
threaded method (tone player) repeatedly steps through the phrase and plays the
tones of all six voices upon locating them. A tone lasts until the next tone in the
same voice appears. By taking this into account counterpoint rules derived from
Fux [3] are observed for the whole phrase by the tone setters whilst either attempt-
ing to place new tones in its voices or replace old ones. Each tone setter includes
a genetic algorithm which holds a generation of genes representing tones which
could be candidates for a new placement. To obtain the next generation from an
actual one its best entities are recombined after every tone setting. The fitness of
genes are calculated from the resulting minimum error resolved from trials where
the tone is placed at every time step in every of three voices. To come to a deci-
sion when more than one tone/gene of a generation has the same minimum error
the resulting musical structure is taken into account in addition. Placing tones
is a competitive act of both tone setters wherein every tone placed in the phrase
changes the abilities to place another one therefore the phrase plays the role of a
changing environment for the tones. Should one tone setter complete a voice with
tones it has won the match and all tones in its three voices are replaced to give
the opponent a new chance of success (Fig. 7 a). In addition its genetic algorithm
is reinitialized.

3 Relationship between Harmonics and Genes

For evolutionary optimization something is needed to play the role of the genes.
For good propagating optimization as well as achieving convincing aesthetic
results it is imperative that genes - within a mathematically short distance to
each other - have a qualitative similarity at the same time. A counter-example
to this would be the use of midi tone numbers for representation of tone height
as genes. Here the tones with the numbers 60 and 61 (c’ and c#’) are very close
to each other but harmonically have little in common, for 60 and 72 (c’ and
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c”) it is inverted. A suggested solution would be to interpret a tone height as
an integer frequency which is measured in hertz and factorized by some prime
factors and to define a gene as a representation of which amount of each prime
factor is taken. In practice the prime numbers 2, 3, 5 and 7 are each taken zero
to three times.

To obtain a tone in the tempered scale from this rather than the correct
height, the closest one in the tempered scale is alternatively selected - should
one choose to omit this step this would lead to a more innovative musical style
using microtones. A gene now contains 8 bits where each pair of two bits is
interpreted as power of one of the four prime numbers (Fig. 3 ).

7d·5c·3b·2a 

1 0 0 0 1 0 0 0

2027

d c b a

(example)gene

...
a' : 440.00Hz
a#': 466.16Hz
...

441Hz 

a'

tempered scale
(closest)

result

7d·5c·3b·2a 

1 0 0 0 1 0 0 0

2027

d c b a

(example)gene

...
a' : 440.00Hz
a#': 466.16Hz
...

441Hz 

a'

tempered scale
(closest)

result

Fig. 3. Receiving a pitch from genetic representation

Now there exists a close relationship between the Hamilton distance between
two genes and their harmonical affinity. Two genes can be seen as more or less
distant overtones of their greatest common divisor (Fig. 4 ).

4 Relationship between Musical Structure, Dynamics
and Genes

By determining a fixed loop size for the repeated and modified musical phrase
a well perceived musical structure is already established. But in order to ob-
tain something which gives the audience the impression of a deliberate decision
the musical structure is evaluated by an algorithm, decisions for tone place-
ments are accomplished in such manner that an increasingly remarkable pattern
(subsequently called degree of figuration) appears in the phrase. Rather than
maximizing a degree of figuration it became much more convenient to minimize
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Fig. 4. Harmonical relationship between pitches according to Hamilton distance be-
tween their genetic representations

a degree of uniformity; as basis for this evaluation - not the phrase and its tones
is used - but instead the previously described similar structure where a tone
is represented as bit pattern coming from the genes is used -The bit pattern
representation of the whole phrase may be seen in Fig. 7 b).

Every voice is represented by e.g. eight bit lines (time steps), one column of a
voice represents one tone or silence if no one of the eight bits is set (black colour).
The grey-scale of the set bits represent the velocity of the corresponding tone.
The bit pattern representation holds more information than the corresponding
score. Excepting its height, the bit pattern holds in addition a harmonic tendency
for every tone.

By using this representation (structure) as base the harmonic relationship
between the tones is taken into account for evaluating the musical structure.
Similar to Fourier transformation, every line is compared to a periodical test
pattern and it’s possible variants with a phase displacement. For every period
only the phase resulting in a maximum of compliance with the compared pattern
contributes to the partial degree of uniformity for the actual test pattern. The
result for every period is added to the whole amount of degree of uniformity. As
periods of the test pattern all divisors of the phrases step number are taken so
therefore the period of each test pattern fits into the phrase, both this and their
periodicity guarantee that the test pattern - compared to the phrase lines - have
a maximum amount of uniformity. For more details see Fig. 5 and Fig. 6.

The incremental process, from an empty score, ultimatly to a final victorious
voice would normally require only a few number of measures. It is therefore
not sufficient to obtain a composition of a minimum duration of two or three
minutes from it. This is the reasoning behind the algorithm being completed
by a mechanism, taking away the whole three voices of a tone setter if it has
reached this aim. Achieving this the other tone setter is given the chance to
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...
int degreeOfUniformity = 0; //dOU
for(int i=0;i<number_of_testpattern;i++) //all periods
{

int period = testperiod[i];            

int best_dOU_actual_period = 0;

for(int phase = 0;phase<period;phase++)//all phases
{

int dOU_actual_phase = 0;
for(int p=0;p<testpattern.length;p++)//generate testpattern

if((p+phase)%period==0)
testpattern[p]=1;

else
testpattern[p]=0;

for(int q=0;q<phrase_bit_pattern.length;q++)//bit/factor (row)
{

int sum = 0;
for(int p=0;p<testpattern.length;p++)//time step (column)
{

if(phrase_bit_pattern[q][p]==1 && testpattern[p]==1)
sum+=2*period+1;

else if(phrase_bit_pattern[q][p]==0 && testpattern[p]==0)
sum++;

else if(phrase_bit_pattern[q][p]==0 && testpattern[p]==1)
sum--;

else if(phrase_bit_pattern[q][p]==1 && testpattern[p]==0)
sum--;

}
if(sum<0)

sum=0;
dOU_actual_phase +=sum*sum;

}
if(dOU_actual_phase>best_dOU_actual_period) 

best_dOU_actual_period = dOU_actual_phase;
}
degreeOfUniformity+=best_dOU_actual_period;

}
...

Fig. 5. Degree of uniformity - excerpt from source code
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come into play again and a potentially endless process is established and when
such a point is reached the basic frequency is changed where a selection of the
factors 2, 4, 3, 9, 7 and 49 are multiplied with depend on the bit pattern for the
tone height to reach new chords in the tempered tone representation.

Another supplement concerns dynamics, the velocity of one tone is coupled
with the degree of uniformity, achieved for the whole phrase in the moment
the tone was added to the phrase. From this a very differentiated dynamical
structure is obtained which corresponds to musical structure which although
not fully visible in the score but perceptible in the audio files.

time

phrase
voice 1

voice 6

voice 2
...

tone setter 1

tone setter 2

...

gene generation 1

...

gene generation 2

fitness

fitn
es

s

1 2 3 4 5 6 7 8

time

voice 1

voice 6

voice 2
...

a) b)

time

phrase
voice 1

voice 6

voice 2
...

tone setter 1

tone setter 2

...

gene generation 1

...

gene generation 2

fitness

fitn
es

s

1 2 3 4 5 6 7 8

time

voice 1

voice 6

voice 2
...

a) b)

Fig. 7. a) Realtime process for tone placement, b) Bit pattern representation of the
looped phrase

5 Results

The first realization of the described algorithmic real-time composition process
was completed in java and the internal soft synthesizer was used for musical per-
formance. Here the sound quality was not convincing. To achieve better demon-
stration of the abilities of the algorithm, extracts of the performance were taken
and converted to a score with two pianos. From these pieces audio files were
produced using sound samples from pianos. (Two pieces and the Java implemen-
tation as applet can be obtained from http://www.kramann.info/darwinian.

In Fig. 8 the first page of “Darwinian Pianos 3” can be seen.

http://www.kramann.info/darwinian
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Fig. 8. Score of “Darwinian Pianos 3” for two pianos, 3’39”, first page

These realizations give a more intuitive proofing for the aesthetic adequacy
of the pursued approach. As discussed previously, it neither makes a claim to
be a universally valid way to produce algorithmic compositions nor to be a
general method to evaluate the quality of a musical phrase. By applying an
evolutionary process to music it refers to similar works where e.g. game of life,
chaotic processes or predator-prey model are adapted to music to obtain a new
music style, see e.g. [8].

But the way genes represent tones in this work there is the possibility for a
wider applicability. The most important factor to be observed within the afore-
mentioned implementation is the correlation between Hamilton distance of two
genes and their harmonical relationship.

In future work some experiments could be done where pieces are played to
audiences to get them rated according to different criteria. A first approach
to this was done by presenting pieces which where generated with uniformity
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maximized, neglected or minimized. As first result pieces seemed to be more
interesting to the audience if uniformity was not neglected.

6 From Algorithm to Music Style

From these origins many possible adaptions are possible. Applying an evolution-
ary optimization on a meta level [2] observing the complete musical structure
of a piece could perhaps lead to optimized scores e.g. to obtain piano concerts,
however, the focus of this work mainly lies in realtime processes and live per-
formances. Consequentially there is an opportunity to develop this tool as an
automated accompaniment. An even more ambitious possibility it would be to let
humans attempt to learn and apply what is achieved by an algorithm. By doing
this the inherent estrangement of algorithmic composition could be outgrowed.

Can this algorithm be learned by human interpreters in order to open possi-
bilities toward the cultural practice of giving concerts using it? The prospect of
having a combative session involving two pianists calculating tones in combina-
tion with the existing ones has a certain allure, however, the form would be more
approriate in the manner of a free jazz session rather as a classical concert with
a given score. It is not feasable for a human to check all the rules and evaluate
the error-functions in realtime whilst playing an instrument; a more suitable so-
lution for a human would be to adapt the style represented in pieces produced
by the algorithm by learning to play many of them much as the pianist Gabriela
Montero is able to do improvisations in the style of many composers because she
is familiar with them in a special way.

On the computational side of the world David Cope [1] extracted the signature
of several composers by an automated analysis of many of their works and was
able to realise composition programs composing like Mozart, Bach, Beethoven
and so on.

It would be refreshing and innovative to experience the character of competi-
tion by a transfer from algorithm to human. In order to realise this and also as
a reinforced learning method - a computer program could analyse in real time
what the pianists are doing and give feedback about if they are making mis-
takes and calculate their scores. At the end there would be established a new
combative music style derived from an algorithm.
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Abstract. A major goal of evolutionary art is to get images of high aes-
thetic value. We assume that some features of images are associated with
high aesthetic value and want to find them. We have taken two image
databases that have been rated by humans, a photographic database and
one of abstract images generated by evolutionary art software. We have
computed 55 features for each database. We have extracted two cate-
gories of rankings, the lowest and the highest. Using feature extraction
methods from machine learning we have identified the features most as-
sociated with differences. For the photographic images the key features
are wavelet and texture features. For the abstract images the features
are colour based features.

Keywords: Evolutionary Art, Genetic Art, Feature Extraction, Feature
Selection.

1 Introduction

A major goal of evolutionary art is to generate aesthetically pleasing images
or images of high aesthetic value. In most evolutionary art systems aesthetic
judgments are made by humans, either directly or indirectly. An open problem
in evolutionary art is how to have the computer make the aesthetic judgments
automatically and only generate images of high aesthetic value. For many reasons
solving this problem has proved to be extraordinarily difficult. Among other
things, peoples tastes in art vary widely and it is difficult to get consensus among
humans on what constitutes a pleasing image.

Constructing computational models of aesthetics is very challenging. There
have been a number of proposals, but the models are not very useful. One ap-
proach has been to find and study images that people like and to try to determine
their underlying characteristics and this is the approach that we have adopted.

In this paper we use two image databases that have been rated by humans and
use machine learning techniques to explore the differences between high and low
rated images. The first database consists of digital photographs, the second con-
sists of abstract images generated from an evolutionary art system. The photo
database has been used in an earlier study [2]. We use the same low level features
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Rating 2.33 Rating 3.17

Rating 6.00 Rating 6.90

Fig. 1. Low ranked (top line) and high ranked (bottom line) photos

as [2]. These features were selected because they were relatively easy to compute
and had the potential to be discriminating for good and bad photos.

1.1 Goals

Our overall goal is to determine whether we can get some insight into the image
features associated with aesthetically pleasing images by analyzing good and bad
images as rated by humans. In particular:

1. What are the features that distinguish bad and good photographs?
2. What are the features that distinguish bad and good abstract images?
3. Are there any significant similarities and differences between the above two

groups?
4. Can the selected features be related to an analysis of good and bad images

as performed by a photographer/artist?
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2 Related Work

A key requirement of evolutionary art systems is the selection of images based
on aesthetic preference. This is a task performed naturally by humans, yet diffi-
cult for computational systems According to McCormack, [5], because aesthetic
measures can only focus on syntactic, measurable features and not on any human
valued semantics of the image. Currently most evolutionary art systems require
human judgment, however, there has been some progress on computational ap-
proaches. These can be grouped into two broad categories, (1) The search for
a general, or universal, sense of aesthetics, and (2) Learning from examples of
human judgments.

Universal Aesthetics. The search for a general sense of aesthetics has received
much attention in philosophy and the arts, but only recently have attempts been
made at investigating this in the sciences. Welsch claims that there is a universal
appreciation of beauty that transcends cultural and geophysical boundaries[12].
Tooby discusses the neurological aspect of management of complexity in visual
data and the ways in which that confers advantage[11]. However, a computational
implementation of these ideas is not currently feasible. Neufeld et. al. consider
an approach in which images are classified according to similarity (or lack of
similarity) to art works painted by master painters[7]. They employ an algorithm
that computes features on colour gradients. They find that masterful art works,
having had a set of functions applied to them, exhibit values that fall into a bell
curve, or normal, distribution. They then use this knowledge to categorise other
types of images, e.g. photographs, according the “deviation from normal” that
those images reveal once the same set of functions have been applied. Another
promising approach to computing universal aesthetic appeal is in the analysis
of the fractional dimension of information in images[9]. The authors’ findings
are promising. The techniques involved, however, work best on binary images in
which the boundary between information and non-information is clearly defined.

Learning from Human Judgments. As stated by several sources, human
judgment of artwork is highly subjective[1,3,5,6]. To build learning models one
can focus on the judgments of a single person or attempt to get aggregated
judgments for a number of people.

Machado et. al. propose a an iterative system to learn syntactical features by
example[4]. They employ a systemwhereby a set of preselected images is compared
with evolved images. They use an artificial neural network (ANN) to learn the fea-
tures that comprise the preselected images and then use that ANN to evaluate the
generated images and to classify them. The intention is to apply high fitness to
evolved images that are classified as preselected. The evaluation is performed by
a program they call “Artificial Art Critic” (AAC), a tool that they have used pre-
viously to perform author identification of art works. The AAC performs feature
extraction and input into the ANN. To determine the inputs into the ANN, the
AAC measures image complexity (based upon the JPEG compression algorithm)
and fractal dimension, a measure of the rate of change of information.
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Taylor adopts the measure of fractional dimension to the study of Jackson
Pollock drip paintings[10]. Taylor finds that at the start of Pollock’s career, the
fractional dimension of his art works resembled that of coast lines, and that
during his career, his images became more complex, eventually resembling the
complexity of retinal blood vessels.

Datta et. al. take a data mining approach to image evaluation[2]. Taking
a set of photographs that have been numerically rated according to aesthetic
value by a population of amateur and professional photographers, data is mined
from the images based on machine-representable heuristics that can be applied
to photography, e.g. textural smoothness and low depth-of-field. An attempt is
made to correlate mined features with aesthetic ratings in highly rated images
and low rated images.

3 Methodology

As stated in section 1, our goal is to find features that are associated with images
of high aesthetic value. Our methodology will be, for each database:

1. Extract the lowest ranked and the highest ranked images
2. Compute the image features used in [2]
3. Construct a binary classification problem using the features
4. Use a variety of classification algorithms and get the accuracy
5. If the classification accuracy is high enough, proceed to the next step
6. Get the significant attributes using a variety of attribute selection methods
7. Find the most frequently selected attributes
8. Propose these attributes as the ones highly associated with aesthetic value

3.1 The Image Databases

Photos. The images were taken from http://www.photo.net. Photonet is a site
that allows users to submit their photographs for review by other users. Users
of Photonet are both amateurs and professionals. Included in a review is the
facility for a user to rate a photograph on a scale of 1 (low) to 7 (high). We used
the same 18,113 images as Datta et al.[2]. Their main criterion for the selection
of photographs was that each photograph must have been rated by at least 10
users. The lowest rated image was 2.33 while the highest was 6.90. Figure 1
shows examples of low and high ranked images.

Abstract Images. The abstract images were generated using an evolutionary
art system [14]. The system uses genetic programming to evolve formulas that
are rendered as images. Selection is achieved by a user who selects two images
from a current population of eight to be the parents of the next generation. The
next generation is produced by crossover and mutation of the two parents. In
the initial generations the images are not very interesting. However, as evolution
proceeds the images become more interesting and more intricate. They become
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Class 1 Class 1

Class 6 Class 7

Fig. 2. Examples of Evolved Images

novel, surprising and sometimes stunning. Six subjects were asked to use the
system to generate around 400 images each. The images were then consolidated
into one folder which contained a total of 2,260 images. To be consistent with the
rating scale of the photos, the subjects were asked to rate the all of these images
on a 7 point scale. Since it is very difficult to give a consistent rating on a seven
point scale, the subjects were asked to adopt a two stage procedure. In the first
stage they were asked to move the images into one of three sub folders: A-BLAH,
B-MEH, C-COOL. They were then asked to further divide these categories as
shown in figure 3, thus giving each image a rating on a seven point scale1. The
top row of figure 2 shows some examples of the lowest rated images (class 1)
while the second row shows examples of the highest rated images (class 7).

The six subjects (A,E,J,P,R,V) were asked to rate the images by howmuch they
liked them; there were no other criteria. The subjects were all final year students
in a multimedia design program. Table 1 gives a summary of the data collected.

1 Thanks to Jeremy Parker for suggesting this approach.
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|---A-Blah--|---1 Really Bad

| |---2 Dull Bad

|

| |---3 Slightly Dull/Bad

All images---|---B-Meh---|---4 Okay

| |---5 Slightly More Interesting

|

|---C-Good--|---6 Interesting/Good

|---7 Very Good/Interesting

Fig. 3. Rating evolved images on a 7 point scale

Table 1. Summary of rating data for the abstract images

A E J P R V

1 Ratings 359 1271 960 693 345 363
2 Ratings 443 103 310 380 331 261
3 Ratings 357 644 455 395 456 154
4 Ratings 535 47 316 563 573 388
5 Ratings 220 75 81 80 268 112
6 Ratings 226 76 78 119 155 570
7 Ratings 120 44 60 30 132 412

Average 3.43 2.09 2.43 2.74 3.47 4.31
SD 1.73 1.49 1.59 1.55 1.67 2.13

Inspection of table 1 shows a large variation in the number of images that each
subject has allocated to each category. This suggests that they have used quite
different criteria in rating the images and that getting an average rating for each
image and analyzing this data, as has been done for the photos, is not likely to
be fruitful. However, the numbers allocated by A, R and V to each class are rela-
tively similar and there might be some value in averaging these image ratings and
performing an analysis. We have done this. In the subsequent analysis this data
is tagged ARV. All of our other analysis is on unaggregated data.

3.2 The Image Features

Table 2 shows a summary of the features. Full details of each feature can be
found in [2]. The “colour blobs” mentioned in the table are computed by image
segmentation based on the heuristic that the most interesting segments are the
largest areas of perceptually similar colours in the image. Such areas of relatively
uniform colour are likely to be part of some object.

3.3 The Data Mining Procedure

Photographs. We began with 18,113 images, each with a numeric rating in the
range [2.33 - 6.90]. To get the low rated images, the negative class, we extracted
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Table 2. Image Features

Feature Description

F02 Earth Mover Distance from unsaturated grey (Colourfulness)
F01, F03 - F07 Average hue, saturation, brightness on all pixels and the pixels in

the centre of the image
F08 - F09 Not implemented
F10 - F21 Various wavelet functions used to compute levels of smoothness on

different scales
F22 - F23 Image dimensions (width+height, width/height)
F24 The number of contiguous regions based on colour similarity larger

than 1/100th of the total number of pixels in the image
F25 Not implemented
F26 - F40 Average hue, saturation and brightness for each of the 5 largest con-

tiguous regions of similar colours
F41 - F45 Size in pixels of each of the 5 largest regions of similar contiguous

colours divided by the total number of pixels in the image
F46 - F47 Two variations on the measure of complimentary colours
F48 - F52 The location in the image of the centre of each of the 5 largest con-

tiguous regions of similar colours
F53 - F55 Depth of field effect (emulating telephoto lens zoom) on each of the

hue, saturation and brightness channels

all images with a rating less than 4.00 and to get the high rated images, the
positive class, we extracted all images in with ranking of 6.30 or higher. There
were 445 in the negative class and 448 in the positive class. These two thresh-
olds were specifically chosen to give a well balanced problem. We have obtained
classification accuracies with four classifiers (OneR, J48, Random Forest, and
SMO)from the Weka [13] machine learning system. The OneR classifier finds a
rule involving a single attribute that gives the highest classification accuracy.
We have used it because the difference in accuracy between OneR and a more
complex classifier can give insight into the difficulty of the classification prob-
lem. J48 is a classic decision tree algorithm. We have used it because decision
trees are the most widely used classifiers. Random Forest is a meta classifier
that builds a number of trees and uses majority voting to get the classification.
We have used this classifier to see whether accuracy is improved by an ensemble
approach. SMO is a support vector machine classifier. We have this classifier
because such classifiers are often a bit more accurate than other approaches.

The classification accuracies for the full 52 features are shown in the second
column of table 3. The classification accuracies are around 70%, which is some-
what low, but consistent with the results of [2]. This tends to suggest that the
features are only partially capturing the aesthetic judgments. However, along
with [2], we deem the accuracy sufficient for proceeding to the next step. The
other columns in table 3 give the results of applying the seven attribute selection
procedures from the Weka system and getting the classification accuracy on the
selected attributes. For the methods where a ranking is given, we have used the
top 10 attributes. Since the classification accuracies on the selected subsets are
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not significantly lower we proceed to the next step, which is finding the most
frequently selected features.

The most frequently selected features are shown in the first column of table
5. Features F12, F16 and F23 were selected 9 times, while features F13 and F22
were selected 8 times. Features selected less than 5 times are not shown.

The results suggest that features F12,F16,F23,F13,F22,F02,F17,F19,F03,F11,
F55 are the most important for the photos, although this cannot be viewed as a
particularly strong result due to the low classification accuracies. Datta et al [2]
reported F31,F01,F06,F15,F09,F08,F32,F10,F03,F36,F16,F54,F48,F22 as their
top 15 features. There are only three in common with ours, shown in italics. We
consider the significance of this in section 5.

Abstract Images. We first computed an average rating for each image, ex-
tracted images with low and high ratings and obtained classification accuracies
as for the photographs. However, as expected by the analysis of section 3.1 the
classification accuracies were very low and we did not proceed with feature selec-
tion. Instead we noted that the raters A,R and V had roughly similar numbers
in each of the seven categories. We calculated the average rating (ARV) of these
three raters for each image. Images with a rating of less than 2 were extracted
as the negative class and images that were rated 6 or more were extracted as
the positive class. The examples were sampled to give a balanced classification
problem. The classification accuracies for this problem are shown in the sec-
ond column of table 4. The contrast to the photographs is immediately evident.
Accuracies of around 90% have been achieved. The other columns of this fig-
ure show the classification accuracies after applying the seven feature selection
methods. As before, there is no significant drop in accuracy.

The second column of table 5 shows the most frequently selected features for
the ARV grouping. The other columns in this table show the most frequently
selected features for each subject. The relevant binary classification problems
were constructed by creating the negative class from rating 1 examples, the
positive class from rating 6 and 7 examples, and sampling to get a balanced
problem. The accuracies in the second row of the table are best accuracy of any
classifier on the full set of attributes.

4 Analysis of Results

Inspection of the first two columns of table 5 reveals that there is virtually
no overlap between the features. Only F3 is common. Also, the features in the
photos column are mostly wavelet and texture features. The features in the
ARV column are mostly colour properties. We can infer that texture is being
used to distinguish good and bad photos, while colour properties are being used
to distinguish good and bad abstract images.

Inspection of table 2 suggests that the 55 features can be broadly grouped
into four categories: Colour features computed from the whole image (CW, F01-
F07,F46,F47), wavelet/texture features based on the whole image (WT, F10-21),
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Table 3. Classification Accuracy(%) for Photographs

Classifier Full CFS GainRatio InfoGain OneR Relief Sym Wrapper

OneR 64 66 64 67 66 57 66 67
J48 68 69 71 69 71 68 73 75
Random Forest 73 74 77 75 73 72 77 75
SMO 71 68 68 69 67 68 68 71

Table 4. Classification Accuracy(%) for Abstract Images (ARV)

Classifier Full CFS GainRatio InfoGain OneR Relief Sym Wrapper

OneR 72 71 71 72 72 72 73 71
J48 87 88 75 88 87 86 78 90
Random Forest 91 92 77 88 88 90 81 91
SMO 89 83 55 79 79 84 55 90

colour features based on sub regions (CS, F26-F40) and other. The numbers of
features in the first three categories is shown as the last three rows of table5. It
seems a that abstract images are being distinguished mostly by colour features
based on the whole image rather than colour features based on sub regions. We
now consider an analysis of the good and bad images by a human photographer
and the extent to which the human criteria can be captured by the features.

Artist/Photographer Perspective. A picture can be described as ‘a kind of
representation [that] arouses in the viewer the thought of some other, typically
absent, item’ [8, p1]. Images rated as successful generally tend to conform to this
idea, whether painted, photographic or created by an algorithm.

The evolved images that are rated poorly in figure 2 ‘frustrate the mechanisms
of volumetric form perception’ [8, p7]; in other words, we struggle to relate the
pictures to something with which we are familiar. The highly rated images not
only exhibit the same qualities of sufficient colour contrast or harmony and a vi-
sually pleasing symmetry that could work well in a photograph, but also suggest
shapes and forms of landscapes (figure 2, image 4) or spiral forms commonly
found in nature (figure 2, image 3 ). There is also a visually interesting play
of the figure/background relationships in the two highly rated abstract images:
we can switch back and forth between imagining whether figure 2, image 3 is
convex or concave. Or that figure 2, image 4 depicts a sunset reflected in wa-
ter, a geometric stylization of an open flower, or a composition of pyramid or
diamond shapes. This ambiguity stimulates our appetite for pattern recognition
and visual problem solving. In the low rated evolved images there is a lack of
clearly defined shape and form (although the first could subtly suggest ripples
on water). In the second, there is also no contrast of colour or tone and no clear
lines that could lead our eyes into the image.

Photographic images are generally more complex to interpret than abstract
images due to a greater variability of subject matter and styles and genres.
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Table 5. Most Relevant Features

Photos ARV A R V E J P
73% 91% 88% 81% 88% 72% 78% 78%

9 F12 9 F04 9 F41 8 F40 10 F01 11 F07 10 F04 9 F30
9 F16 7 F07 7 F04 7 F04 9 F04 9 F04 8 F07 7 F10
9 F23 7 F25 7 F06 7 F06 9 F07 7 F24 7 F30 7 F11
8 F13 6 F01 7 F30 6 F01 8 F25 7 F30 6 F03 7 F45
8 F22 6 F39 7 F42 6 F07 7 F18 6 F29 6 F25 6 F01
7 F02 6 F43 7 F44 6 F12 6 F02 6 F35 6 F35 6 F04
6 F17 5 F03 6 F01 6 F37 6 F41 6 F44 6 F44 6 F40
6 F19 5 F06 6 F03 6 F38 5 F03 5 F01 5 F01 6 F43
5 F03 5 F34 6 F07 6 F44 5 F06 5 F02 5 F06 6 F44
5 F11 5 F40 6 F12 6 F45 5 F11 5 F10 5 F10 6 F48
5 F55 5 F45 6 F17 5 F02 5 F21 5 F20 5 F11 6 F52

6 F25 5 F03 5 F43 5 F40 5 F12 5 F03
5 F37 5 F05 5 F44 5 F45 5 F18 5 F12
5 F39 5 F11 5 F45 5 F54 5 F24 5 F16

5 F39 5 F29 5 F41
5 F43 5 F34 5 F42

5 F45 5 F51

2 CW 4 CW 4 CW 7 CW 6 CW 4 CW 5 CW 3 CW
6 WT 0 WT 2 WT 2 WT 3 WT 2 WT 4 WT 4 WT
1 CS 2 CS 3 CS 4 CS 0 CS 2 CS 3 CS 2 CW

However, it can be clearly seen here that the images in figure 1 that rate poorly
don’t have sufficient separation of figure and ground. In other words, a confusing
background, as in the second image and a lack of colour contrast in the first,
where the bird’s body gets lost in the background. The out of focus and light-
coloured foreground twigs distract from the main subject and it also appears to
be unsharp, which would in itself lead to a poor rating. This image can be directly
contrasted with the similarly simple subject matter of the most highly rated
photograph, where it works because both the pleasing colour contrast between
orange and green and the very shallow depth of field succeed in focusing our
attention on what is important. The portrait image is rated highly,apart from
the appeal of an attractive subject, because of its simplicity, its symmetrical
mirroring and the strong pyramid shape in the negative space between the heads
that leads us to the eyes.

In making her aesthetic judgments the artist mentions colour contrast, colour
harmony, colour tone, figure and background. The 55 computed features do
capture aspects of these properties. However, the artist is also attempting to
find objects and meaning in the pictures and makes judgments on this basis.
The computed features make no real attempt to identify objects, just some
heuristic guesses based on colour segments and it is hard to see how they could
be capturing this aspect of aesthetic judgment.
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5 Conclusions

Our overall goal in this work was to get some insight into image features and
their association with aesthetic value. We took two image databases that had
been rated by humans, one of photographs and one of evolved abstract images.
For both image data bases we computed a set of features that had previously
been used for photographs [2] and used machine learning techniques to find the
significant attributes.

With respect to our question “What are the features that distinguish bad and
good photographs?” We found that the human raters were using wavelet/texture
features. The classification accuracy was around 70% so this conclusion is not
particularly strong. For our question “What are the features that distinguish bad
and good abstract images?” We found that the human raters were mostly using
colour features of the entire image. The classification accuracy was around 90%
so we are considerably more confident with this conclusion. For our question
“Are there any significant similarities and differences between the above two
groups?” We found that there were significant differences, as detailed above. For
our question “Can the selected features be related to an analysis of good and
bad images as performed by a photographer/artist?” we found that the features
could well be capturing some of the criteria being used by the artist, but there
was a level of judgment based on interpretations of objects in the images that
was probably not being captured.

We noted earlier that there was quite a disparity between the features found
to be significant by Datta [2] and our features. There are a number of possi-
ble reasons for this: We haven’t used the same positive and negative images; we
haven’t used the same method for determining the relevance of attributes, Datta
used a single method, we have used a majority vote of several; the best classifi-
cation accuracies achieved are around 70%. This means that the 55 features are
not capturing many of the criteria used in making the judgments.

Overall, we believe that the methodology of collecting images that have been
rated by humans, computing features, and using machine learning techniques to
find distinguishing features, is a promising one. In the history of image processing
many different kinds of features have been devised for many purposes. There is
good reason to hope that some of these features will be very significant in finding
aesthetic value.
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Aesthetic Measures

for Evolutionary Vase Design

Kate Reed
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Abstract. In order to avoid the expense of interactive evolution, some
researchers have begun using aesthetic measures as fitness functions. This
paper explores the potential of one of the earliest aesthetic measures
by George Birkhoff as a fitness function in vase design after suitable
modifications. Initial testing of vases of this form also revealed several
other properties with a positive correlation with human–awarded scores.
A suitable balance of these new measures along with Birkhoff’s mea-
sure was found using feedback from volunteers, and vases evolved using
the measure were also assessed for their aesthetic potential. Although
the initial designs suffered from lack of diversity, some modifications led
to a measure that enabled the evolution of a range of vases which were
liked by many of the volunteers. The final range of vases included many
shapes similar to those developed by human designers. Coupled with 3D
printing techniques this measure allows automation of the whole process
from conception to production. We hope that this demonstration of the
theory will enable further work on other aesthetic products.

1 Introduction

In recent years, there has been a growing interest in using aesthetic measures
to describe the aesthetic potential of creative works. Much of this work has
concerned 2D applications such as screen layouts [11] and graphic design [1] and
some have already combined these with evolutionary methods [8] to produce new
designs. There have also been recent attempts to extend these theories to three
dimensions [4]. This work will continue to look at the application of aesthetic
measures as a fitness function in the design of 3D objects, namely vases. Vases
were chosen as a subject as they have clear design constraints (they have to
stand up, hold water etc.) but they are essentially a decorative object.

The aim of this work was to develop an aesthetic measure of vases that is
capable of being used a fitness function in an evolutionary algorithm. The basis
for this measure was the work of George Birkhoff, who developed an aesthetic
measure for vases in his bookAesthetic Measure [5]. However, the measure needed
to be adapted to make it viable as a fitness function, as it was never designed for
the purpose and makes many assumptions, such as the correct orientation of the
vase. Evolutionary algorithms can take advantage of bad fitness functions such
as this to create unsuitable but high scoring designs. Also, the original measure
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was poorly tested; a good measure should be more rigorously tested to ensure it
reflects the opinion of a large sample of people.

Fitness functions based on aesthetic measures have been used before but this
project differs as it focuses on a 3D object, which is also functional. The work
will help to expand on this line of research by applying new measures, as well as
providing further testing for some previous measures.

A rotated Bezier curve was found to be an excellent representation which
produced a wide range of interesting designs but also behaved predictably when
using genetic functions such as mutation and recombination. The experiment
itself used interactive assessment in parallel with evolution using the current
fitness function to allow the volunteers to provide real time assessment of the
fitness function’s effectiveness.

The final experiment demonstrated a good correlation for Birkhoff’s measure
with human–awarded scores. But the most critical factor in ensuring a good de-
sign was correct orientation. Two new measures, one based on Birkhoff’s further
requirements (as stated in his book), provide this orientation. These measures
allow a computer to evolve original, attractive vases unaided by a human. Al-
though the design of vases is not in itself a major achievement, we hope that
by demonstrating that it is possible to analyse the aesthetics of this one object,
it will enable similar work on other items [15]. This will allow an element of
automation in the evolution of aesthetic objects, reducing the reliance on expen-
sive interactive evolution. This could be combined with emerging 3D printing
technologies to automatically design and make attractive consumer products.

The rest of the paper continues as follows: Section 2 discusses previous uses of
aesthetic measures, including Birkhoff’s measure which is used extensively in this
work. Section 3 describes the setup of two separate rounds of experimentation
that led to the final measure and section 4 describes the results of the experiments
and provides examples of final designs evolved by the measure.

2 Background

2.1 Birkhoff’s Aesthetic Measure: Description and Testing

In his book Aesthetic Measure [5], first published in 1933, the American mathe-
matician George Birkhoff described his formal definition of a measure of beauty:
Measure = Order

Complexity . He then applied this to a number of areas, including art,
polygonal forms, music, poetry and vase designs. Although his overall measure
was applied to all of the areas, the methods of measuring ‘Order’ and ‘Complex-
ity’ varied between the tasks. For example his polygonal form measure used the
number of lines in the shape as its complexity and the number of occurrences
of properties such as symmetry and perpendicular lines as order. He applied
his polygonal form measure to 90 polygons and verified his results by seeking
the opinion of his students. He does not go into detail as to the extent of this
verification, but states “The results so obtained were found to be in substantial
agreement with the arrangement obtained by the formula”.
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The measure that is obviously most applicable to our work is Birkhoff’s mea-
sure of vases. Birkhoff had some misgivings about applying his measure to vases.
He admitted that “I should expect that any vase form ... would appeal to some in-
telligent person, if only by virtue of its novelty”. All the vases studied by Birkhoff
were rotationally symmetric and therefore he only looked at the silhouette of the
vase. As they do not have well defined edges and angles (such as those used for
the polygonal shapes), the measure is based on a set of ‘characteristic points’.
These are the end points, points of zero curvature, points of local maximum and
minimum radius and points where the curve is not smooth (‘break points’). The
order is defined by the number of ratios of 1:1 and 1:2 in the distances between
the points as well as tangent properties at these points (such as parallel tangents,
perpendicular tangents or tangents crossing the central axis level with another
point). The ratios are only counted if they are independent and the number is
capped to prevent awarding high scores to very complex designs. The complexity
is the number of points. An example of one of Birkhoff’s test vases is shown in
figure 1.

C = 12
(6 per side)
- 2 end points
- 1 max
- 1 min
- 2 break points

O = 7
- 1:2 between min and base widths
- 1:1 between foot to max and max to min
- 2:1 between max to neck base and neck base to min
- 1:2 between neck base to min and min to lip
- 1:2 between base width and base to min
- 1:1 between neck base width and neck base to max
- 1:2 between lip width and full height (not counted due to cap)
- Tangent at the foot crosses axis level with max.

Fig. 1. One of Birkhoff’s test vases

However, this formal measure was not the only consideration that Birkhoff
discussed; he also noted further requirements that were necessary for the vase to
function as such. The first of these concerns the properties of the curvature of
the curve. Given the points and tangents of a vase he states that the curvature
between these points should vary continuously and should oscillate as little as
possible and it should not oscillate more than once between points of inflection.
He also requires the rate of change of curvature to be as small as possible. These
properties have subsequently been described as a ‘fair’ curve [10]. He notes that
the application of these requirements would be difficult and this perhaps explains
why he does not formally include them in his aesthetic measure. The other
further requirements include recommended sizes and locations for maximum
and minimum dimensions and rules regarding angles.

Staudek [17] developed Birkhoff’s method further. He studied the change of
one design into another, suggesting that the aesthetic measure should vary con-
tinuously over this process. However, the aesthetic measure was not continuous,
as the equations rely on perfect ratios. To amend this, he added a tolerance
margin so that any ratio falling within the margin would be counted as a ratio
(and similar for the tangent properties) but the value of this would be reduced
proportionally with the difference between the actual ratio and the desired ratio.
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This resulted in measures that were much more continuous than the original, so
that two very similar vases now had very similar scores. In some ways this is
faithful to the original measures which were done by eye on real vases which had
some degree of inaccuracy which the eye could not perceive. With the accuracy
of a computer it is highly unlikely that any two points on a random form could
be found to be exactly 1:1 or 1:2. Adding a tolerance margin allows the computer
to recognise the ratios that the eyes can see.

Birkhoff both developed and tested the vases using examples from China. He
used these because Chinese ceramics were highly regarded during that period.
They also did not routinely embellish the vase using handles or other features,
allowing the form to be studied on its own. He applied the measure to eight vases
and although he does not attempt to compare their measured aesthetics to any
human comparison he observes that the ratios he describes seem to appear too
frequently to be accidental. He further tested his theory by designing 3 vases of
his own that all scored very highly using his measure. He did not attempt to
validate these designs. In his conclusion, he admits that this measure is ’more
uncertain’ than his other measures but does still have some value. He adds that
it only has value if the further requirements are satisfied.

Since the publication of his work, there have been several attempts to test
Birkhoff’s claims. Most of these have focussed on his work with geometric shapes.
The results have been varied. Some, such as Davis in 1936 [6] suggested little or
no correlation with human preferences while others such as Beebe–Center and
Pratt in 1937 [3] and Harsh, Beebe–Center and Beebe–Center [7] in 1939, had
much better correlations. One of the problems they encountered with geometric
forms was associations that people made with the shapes. For example, in a study
by Barnhardt [2], one woman expressed a preference for a shape as it looked
like a diamond ring and she had recently got engaged. There have been some
attempts to remove biases like these, the second Beebe–Center study [7] removed
all obvious associations such as stars and swastikas but diamond rings are more
personal and harder to identify. However, it is unlikely that such associations
will be obvious in a selection of vases.

2.2 Other Measures

In 2D evolutionary art, aesthetic measures have already been used by many
researchers with varying degrees of success. Den Heijer and Eiben [8] compared
four different measures including the ratio of image complexity and processing
complexity by Machado and Cardoso [9], the normal distribution of colours by
Ross and Ralph [13], the fractal dimension by Spehar et al [16] and a weighted
sum of the other measures.

Den Heijer and Eiben conclude that a particular measure will evolve a certain
style of image. They also observe that the images evolved using any of the
other measures rate poorly using the fractal measure. They observe that; “many
people like fractal images, but in reality, not many images actually have fractal
properties”. This highlights one of the dangers of using aesthetic measures – they
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may describe something that is perceived as beautiful but it is unlikely to be the
only property and designs may exist that are attractive in a cultural context.

Another area that has been well documented is the layout of computer screens.
This is an area of great interest as improving the aesthetics of a layout can
improve its usability [11]. Ngo and Byrne[11] define five different measures to
describe the aesthetics of a computer screen. These are: balance, equilibrium,
symmetry, sequence and complexity. The first 4 measures are then summed
and divided by the complexity (the number of features). This is once again
based on Birkhoff’s M = O

C . Their measure was tested by applying it to seven
mock layouts of two rectangles places on a screen. These were then scored by
six experienced designers and the average results compared. The designers often
disagreed, with one design receiving a particularly wide range of scores. However,
the average scores had a good correlation with the aesthetic measure and the
authors determined that this correlation was significant despite the low number
of layouts and volunteers. A further test was carried out by redesigning some
existing screens and receiving positive feedback on the changes.

In the evolution of 3D forms aesthetic measures have been used in a range of
tasks including computer generated terrains [18]. Here Kolmogorov complexity
was used to analyse images of the evolved terrains. The Kolmogorov measure
also uses the ratio between the amount of space saved by compressing the image
and the full image size similar to the Machado and Cardoso measure [9].

True 3D aesthetic measures have been less widely used. One recent example
is by Bergen [4]; this measure uses several properties of 3D graphics objects
to calculate a fitness measure. These include the angles between adjacent face
normals as well as the differences in these face areas. However, Bergen concludes
that the area is in its early stages and requires further research.

Many of the new measures developed since Birkhoff have used his fundamental
idea of order/complexity but all have developed new definitions of order and
complexity for their specific tasks. Some of these have then been combined with
evolutionary algorithms to allow automatic evolution. On the whole, the tested
measures have shown positive results within their specific areas.

The use of 3D aesthetic measures in evolution is small and limited to a few
abstract designs evolved by a limited number of measures. These and other 3D
measures should be extended to a wider range of familiar objects to further test
their validity.

3 Experimental Setup

3.1 Representation

The representation that we chose for the experiments was a rotational form.
It consisted of a Bezier curve rotated around an axis 0.5 units away from the
minimum radius point. The Bezier curve was created from a set of 5 coordinates
where the z coordinates (height) were pre–set and the x values (radius) were
randomised. This representation ensured all the vases would be viable in that
they would all be capable of standing up and holding water. The genotype was



64 K. Reed

the list of 5 x coordinates. The representation was further extended to enable the
existence of angles within the curve. This was determined by a list of 3 integers,
either 0 or non–zero. A non–zero value indicated a split at one of the Bezier
coordinates, thus creating the curve from two or more Bezier curves dictated by
the coordinates either side of the break (figure 2).

Effect of varying the break point value: Blue (dot

and dash) line has no break point (value 0), red

(solid) and green (dashed) have non–zero entries

for value 3, red has 35 and green has 47

Fig. 2. Break point example

In preliminary investigations, the representation was seen to perform pre-
dictably when mutation and recombination were undertaken. Mutation was per-
formed by adding a random number to one of the coordinate points. This would
make subtle but noticeable changes to the form. Gaussian distributed numbers
were used to reduce the probability of very large distortions to the curve. Re-
combination could be performed either by averaging two sets of coordinates or
by splicing two sets together at a random point. The resulting vases would be
visually similar to both parents.

3.2 Measures

A preliminary experiment was used to help set up the main investigation. This
involved 30 randomly generated vases and 8 volunteers. The volunteers were
asked to award each vase a score out of 10. They were asked to do this for both
possible orientations (by this we mean that the original vase is inverted so the
top becomes the bottom) as it was important to consider both orientations as
Birkhoff’s measure did not have any formal method for determining orientation.

The initial results suggested several possible measures for both style and ori-
entation that gave strong positive correlations with the human scores. Many of
these were formalisations of the further requirements. Other requirements (such
as the minimum width being in the top half to create a neck) had no correlation
in initial studies and were not used. The measures used in the main investigation
are as follows:

Birkhoff’s Aesthetic Measure. As above

Sum of the Signed Curvature. The curvature was found using a discrete cur-
vature method [14]. A high value would indicate low oscillations as per Birkhoff’s
further requirements

Number and Separation of Points of Inflection and Sharp Points. Low
numbers of points of inflection was given by Moreton[10] as an alternative defi-
nition for a fair curve as per Birkhoff’s further requirements
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Table 1. Pseudocode of the main investigation

Find initial test set of 30 vases
loop

Chose 4 vases and Display
repeat

if Standard Deviation of scores = set value then
if Number of vases in test set = 50 then

Finish
else

Add new vase to test set from evolved set
Find new weights

end if
else

Evolve
end if

until Vase is chosen by volunteer
Update scores

end loop

Maximum width not at Ends. One of Birkhoff’s further requirements. Score
of 1 for true, 0 for false.

Existence of Break Points. Score of 0 for true, 1 for false.

Product of the Distances between Significant Points. Based on an obser-
vation from the initial data that a few evenly spaced points were more attractive
than many clustered together. The product reflected this observation.

Difference in Angles between Base and Rim. Based on further requirement
that sharp angles should not exist at the base.

Location of Visual Centre of Mass (Using Significant Points). Based
on the page layout measure. In that measure, the weight of items on a page
wanted to be symmetrical about the centre. Here the vase was observed to be
rarely symmetrical about the horizontal axis. Further observation showed that
the visual centre in the top half was usually considered the correct orientation.

Location of Physical Centre of Mass. Found by calculating mass using
trapezium rule. Also based on observations from initial work.

Most of these are based on Birkhoff’s significant points and the ratios use the
tolerances suggested by Staudek [17]. The first 5 measure the style and the final
3 measure the orientation.

3.3 Structure of the Investigation

The main experiment was set up to allow comparative data to be collected on
examples of several different types of vases. The first 10 vases in each set were
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randomly generated forms. These varied for each volunteer. The next 10 were
pre–set forms hand selected from a large group of random designs to exhibit
extremes of all the measures. These were the same for all the volunteers. The
final 10 in the initial 30 were randomly selected from a large set (200) of vases
evolved only using Birkhoff’s original measure to find a comparison with the
overall measure developed here. We observed that this would strongly encourage
the existence of angles in the curve, half of the examples were deliberately evolved
without angles to prevent this affecting the scores either way. All the designs were
tested in both orientations.

The program of the main experiment is shown in table 1. It shows how the
interactive assessment was combined with the evolution of new designs. The
evolved designs were evolved from the latest version of the measure and shown
to the volunteer for feedback along with the original selection of designs. The
purpose of this was to enable the volunteer to give real time feedback so if
the evolved designs were exploiting a loophole in one of measures then a low score
to the new evolved design could decrease its correlation and reduce the potential
for exploitation. For example if the volunteers liked designs with one break point
then the break point measure could be exploited by producing designs with 3
break points which would score just as highly but may no longer be attractive.
The program was written in Matlab1, the vases were displayed as Matlab figures
and the GUI was written using Matlab’s built–in interface.

Each volunteer was shown a screen displaying 4 designs and asked to select
their favourite, this was then awarded 3 points and 1 point was subtracted from
the other designs. The 4 designs were selected by choosing a design that had the
least tests and then selecting 3 others with similar scores. This ensured that all
designs were considered a similar number of times and the comparison of similar
scores helped increase the distribution of the scores. The process was repeated
until the scores were suitably distributed. The standard deviation was used as
it showed that the scores were indicating a clear preference, which allowed the
correlations to be found. These scores were divided by the number of tests to
prevent artificial inflation if a design was tested more than the others.

While the selection process was running the program also evolved new designs
using a weighted sum of the measures as the fitness function. The weights were
automatically generated using the correlations of each measure with the scores
of every previous volunteer, so that every person was testing the universal mea-
sure. When the scores of the current volunteer reached a suitable distribution,
the top design from this process was added to the set of test designs. The weights
were then updated to include the scores of the current volunteer and the evo-
lution continued, using a population consisting of 15 of the previous population
and 5 new random designs. In all, 20 evolved design were added during every
volunteer’s test period.

The selection was carried out after the genetic operators and looked at a
population made from the previous generation as well as a group made of spliced
children, as there were 5 splice points 20% of the children would only inherit code

1 http://www.mathworks.co.uk/products/matlab/

http://www.mathworks.co.uk/products/matlab/
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from one parent. These were then mutated by adding a Gaussian random number
to one point (probability of 20%). Other operators that could add (5%), move
(20%) or remove (5%) break points were also used and finally there was a chance
the orientation of a design would be changed (20%). A penalty was used if a vase
got too wide to discourage the evolution of plate or bowl forms.

We hoped that the correlations (and therefore the weights) between the mea-
sures and human scores would converge to non–zero values that indicated their
relevance to the design of attractive vases. We also hoped that these would en-
able the evolution of a range of attractive vases. The test was carried out by 22
volunteers. They were a mix of designers and non–designers.

4 Evolution of Final Designs

During the later stages of the main test, it became apparent that there was
a flaw in the set of measures; there was a single design that all the measures
with non–zero weights could score highly on (shown in figure 3). As a result,
this design was always evolved. The real time feedback was unable to prevent
this as the design was liked by most of the volunteers and therefore their scores
reinforced this design. However, despite this problem, the overall results were
encouraging with most weights having non–zero values.

Fig. 3.
Repeat Vase

Further investigation revealed that the evolved designs had
much higher average scores than the random and Birkhoff evolved
designs (0.3162 as opposed to -0.0693 and 0.1894). This was mainly
to do with the ability to find the correct orientation, as when
all the types were manually adjusted to find the correct orienta-
tion, the evolved designs had a reduced lead (0.4415 as opposed
to 0.1829 for the random designs and 0.3999 for the Birkhoff designs). This
indicates there was some benefit from the style measure.

The strong correlation against having break points was thought to be po-
tentially reducing the scores for the Birkhoff designs as they were common in
this group. The set was split further to study its effect. Once the vases without
break points were correctly oriented, the Birkhoff designs had an average score
of 0.7922 as opposed to the evolved score of 0.4549 and random score of 0.3745.

The scores may be distorted by the previously discussed recurring design.
The volunteer would often be faced with several visually identical designs and
as a result would have to randomly select a design. This would mean that it is
unlikely that any of the repeat designs could achieve the highest scores. On the
other hand, a unique and attractive design such as those potentially evolved by
the Birkhoff measure could be selected every time, giving a much higher score.
Despite this problem, the difference in the random and Birkhoff scores indicate
the value of the original Birkhoff measure when the vases are correctly orientated
and no angles in the curve are allowed. To prevent the recurring design problem,
two steps were taken; the first was to separate the orientation measures from the
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Fig. 4. 6 Evolved Vases (Left) and 6 Random Vases (Right) with negative scores, 1
indicates that the measure considers it to be upside–down

evolutionary process. This was done as it was believed that the very strong angle
orientation measure was partially responsible as it encourages the base to bulge
out and the rim to flare as in the recurring design. As the orientation measure was
one of the most important contributions of the overall measure it could not be
removed but instead the orientation was calculated separately and if the vase was
judged to be upside–down, it would be flipped with a probability of 50% during
the evolutionary process. The second step was to introduce a competing measure
that could not be satisfied by the repeat design. As the design had 5 significant
points a measure that rewarded designs with less points was introduced with a
random weight. Follow up tests indicated that designs evolved using this method
were popular amongst the volunteers, with many choosing one of them as their
overall favourite. Vases evolved by the measure are shown in figure 4 along with
low scoring randomly generated designs for comparison.

The final selection of weights generated by the test are given in table 2. These
weights also show the values of the correlations between the human scores and
the measures (with the exception of the new measure). Although many are quite
low, the number of vases used (2200) mean that the correlations are still signif-
icant. The tested measures that are not included here had very low correlations
with confidences lower than 80%, therefore they were not used to evolve the final
designs. When the weights were found for each volunteer they showed a large
range of correlations for each measure. This is likely to be from their different
opinions and selection techniques. For example, some people said that they were
put off from choosing anything that looked unstable. Others confessed to chang-
ing their minds part way through and one observed that she may have chosen
differently if the vases had been a different colour.

The plot also in table 2 shows the changing weights as the test program was
used by the volunteers. It shows that although some measures were variable and
their confidences too low for much of the test, most of the others had stabilised
around their final value by midway through the test and changed very little for
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Table 2. Final Weights

Measure Weights Legend Change in Weights for all Volunteers
Birkhoff’s Measure 0.2082
Curvature 0.0916
Points of Inflection 0.1628
Number of Significant Points Variable
Product of Distances 0.0594
Existence of Sharp Points 0.3035
Angles at Ends 0.3970
Balance of Features 0.1891

the remaining volunteers. It shows that despite the variation in opinions, some
of our measures still converge to non–zero values over a large group.

None of the evolved vases are particularly unusual in design; on the contrary
many are unintentionally similar to designs available for sale (examples from
John Lewis and Marks and Spencer2 shown in figure 6). It is also interesting that
although the volunteers had a wide range of tastes, the overall measure evolves
very classic vases. Rotational vases with no patterns do not offer great potential
for original and attractive new forms as other evolutionary art such as fractal
patterns [12] have done. The achievement here is the ability for the computer
to consistently produce designs, equivalent to those designed by humans, which
are attractive and potentially marketable. It is hoped that this case study will
allow the extension of this theory to other, more complex products, which would
take a person much longer to design. Combined with 3D printing, it could allow
the automatic production of large selections of products, allowing consumers to
chose a unique item without a designer having to design each and every one.
Companies such as Sculpteo3 can now offer ceramic printing and this enabled a
set of final designs to be printed from the results (figure 5).

Fig. 5. Printed Ceramic Vases Fig. 6. Examples of vases for sale

2 http://www.johnlewis.com and http://www.marksandspencer.com
3 http://www.sculpteo.com/en

http://www.johnlewis.com
http://www.marksandspencer.com
http://www.sculpteo.com/en
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5 Conclusion and Further Work

Previous research has begun to demonstrate the potential of using aesthetic
measures as fitness functions in evolutionary design. We continue that here with
the testing of an old measure and the introduction of some new measures. To
develop these measures, we needed to understand what aspects of a design influ-
ence human preferences. The previous research, supported by the results of this
project, suggest that there is unlikely to be a single measure of aesthetics, yet by
studying human responses to different designs it is possible to determine some
guidelines for different objects. These can then be used as a fitness function to
evolve the objects.

The results show that despite studies that have contradicted Birkhoff’s mea-
sures, they do have some correlation with human preferences in the field of vase
design and can form the base of an overall fitness function. However, as pre-
dicted, it requires additional measures to ensure the correct orientation. Other
measures, judging the curvature as well as the number and location of significant
points, also have value. Many of these additions were mentioned by Birkhoff as
further requirements, but here they have been formalised and confirmed.

The final evolutionary fitness function also required a random element to
ensure a suitable range of designs. This was because all the measures agreed
on one particular form that therefore dominated the evolutionary population. A
final test demonstrated that the new function was capable of designing a range
of vases that included designs liked by the majority of volunteers. Many named
one of these their favourite of the entire test. Finally it was shown that these
designs could be created in ceramic using a 3D printer, thus creating a final
product from the process.

There are several ways this work could be extended. It was observed that
although the introduction of a variable measure did increase the range of designs
there is still some repetition. Further work could therefore be done to find other
ways of expanding this range, perhaps through the method of evolution or the
introduction of other measures. Another area of interest would be to extend the
representation to include non–rotational forms or surface pattern. These would
require extensive further testing to find their aesthetic potential and if necessary
their own measures.

We hope that this demonstration of the potential of 3D aesthetic measures
to design functional products will lead to work on other items, allowing the
automatic design and manufacture of attractive items.
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Abstract. Evolutionary algorithms have shown themselves to be useful
interactive design tools. However, current algorithms only receive feed-
back about candidate fitness at the whole-candidate level. In this pa-
per we describe a model-free method, using sensitivity analysis, which
allows designers to provide fitness feedback to the system at the com-
ponent level. Any part of a candidate can be marked by the designer as
interesting (i.e. having high fitness). This has the potential to improve
the design experience in two ways: (1) The finer-grain guidance provided
by partial selections facilitates more precise iteration on design ideas so
the designer can maximize her energy and attention. (2) When steering
the evolutionary system with more detailed feedback, the designer may
discover greater feelings of satisfaction with and ownership over the final
designs.

Keywords: interactive evolution, sensitivity analysis, inverse mapping.

1 Introduction

Interactive evolutionary algorithms can be a powerful ideation and design tool
for design tasks whose objectives cannot be explicitly defined. The objectives
are formed implicitly on the basis of subjective human preference and often
discovered or re-formed during the design process. The human-in-the-loop com-
ponent of interactive evolutionary systems is a major strength, but can also be
a major bottleneck. While the computer happily crunches through iteration af-
ter iteration, the human designer can tire easily, limiting creative exploration.
This fatigue can stem from lack of interest, attention, or focus, but whatever the
source, the available search time is always limited and must be well spent.

A good interactive evolutionary system should facilitate collaboration be-
tween the computer and the human by making the most of both design partners’
strengths while minimizing their weaknesses. The computer’s strength is com-
putational power, but it is lacking in the power of subjective intuition that
human beings find easy. There has been some promising work in the area of
teaching computers to recognize what is considered “good” by humans. Fitness
learning in these systems is either accumulated over the course of one or more
design sessions, or derived from a global fitness measure or training data[12,16].
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c© Springer-Verlag Berlin Heidelberg 2013



Inverse Mapping with Sensitivity Analysis 73

In the case of a system that seeks to accommodate a designer’s specific needs
and interests in the moment, the subjective human judgment provided at each
design iteration must be fully utilized.

If the designer were able to say not only which candidate solutions are fit,
but also what parts of those candidate phenotypes are fit, then the reproduc-
tion operators at the heart of the evolutionary algorithm could guide the search
toward areas of the parametric space that favor the selected regions. By recom-
bining and modifying the genes in a manner that accounts for the dominance of
parameters linked to the selected components, the algorithm can both explore
and exploit areas of the parametric space that are likely to yield high fitness
candidates.

An additional advantage of a system with partial selection is that the user
may feel like she has more control over the design process. Previous methods of
giving feedback to the system range from coarse-grained evaluation (e.g. “good”,
“don’t care”, or “bad”) to fine-grained evaluation (e.g. from 1 to 10). The first
type of evaluation suffers from quantization noise[18] and we hypothesise that it
may also leave the user feeling detached and passive. The second type of eval-
uation quickly leads to fatigue from having to compare and rank many candi-
dates, especially when quantifying slight differences between similar candidates.
Neither of these approaches addresses the need for evaluation in the common
case where the human prefers a certain part of the candidate and would like to
explore possibilities of recombination of that part with interesting traits of
other candidates.

The most difficult problem in building an evolutionary system that uses selec-
tion of phenotype parts is finding an inverse mapping from the selected compo-
nent of the phenotype to the genes in the genotype responsible for the qualities
of that component. Even more difficult is finding a general approach that works
for any function with numerical input and visual output (a.k.a. any visual para-
metric model). In systems where the mapping from each input to a region of
the output is one-to-one, the inverse mapping is trivial, but for many models,
the relationship between parameters and output is complex. Parameters are of-
ten related to each other (i.e. epistasis), and nonlinearities are common. These
characteristics make the inverse mapping problem difficult.

Fortunately, a statistical method called sensitivity analysis can be applied in
a model-free way to attribute variation in regions of the output (the phenotype)
to specific parameters in the input (the genotype). In this paper, we show how
sensitivity analysis can be applied to interactive evolutionary algorithms in such
a way that allows designers to indicate fitness by highlighting regions of interest
within a phenotype.

2 Background and Related Work

2.1 Interactive Evolutionary Design

Soon after Dawkins’s pioneering work with biomorphs[3], the work of Sims[19]
and Todd & Latham[22] laid the foundation for the coming growth of interactive
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evolution as a research area. For an exhaustive overview we refer the reader to
surveys by Lewis[11], Semet[18], and Takagi[21].

2.2 Partial Selection in Design Environments

Recent work in the area of partial selection for exploratory interfaces includes an
interface that utilizes fuzzy correspondence based on selected regions-of-interest
to aid users in browsing collections of 3D models[8]. An evolutionary design ex-
ample of partial selection (and modification) consists of a fashion design interface
where users have access to directly manipulate components of candidate solu-
tions through a right-click user interface. The modifications made to phenotype
parts in the interface correspond directly to genotype changes[9]. Takagi and
Kishi have experimented with trait selection (called “online knowledge embed-
ding”) for a face photo montage application. Users of this system can lock down
any piece of the montage, essentially reducing the dimensionality of the available
search space and quickening convergence. Their preliminary study shows promis-
ing results[20]. The mapping from gene to trait in this system is one-to-one, so
finding the inverse mapping from trait to gene in this case is not difficult.

Building on this previous work, our system allows for interactions between
genes, selection of arbitrary regions of interest within the phenotype, and
complex relationships between genes and traits.

2.3 Sensitivity Analysis

To bias the search toward relevant regions of parametric space, we must iden-
tify the genes responsible for the trait in question. For models with complex
relationships between genes and traits, an optimization is required to find the
mapping. Sensitivity analysis is a statistical tool for analyzing models. It is often
used for model simplification and verification. When researchers develop a com-
puter model to make predictions about real-world complex systems, they need
to be able to back up their predictions with some measure of confidence in their
model. Sensitivity analysis is applied in these scenarios to provide a standard
measure of the model’s reliability[17]. Sensitivity analysis can also be used to
identify which parameters have the greatest effect on the output of the model
either globally (across the whole range of the input) or locally (within the local
context of a certain region of the input).

In the area of visual parametric modeling, Erhan, et al. proposed a method
that seeks to improve the process of visually analyzing the sensitivity of a model
to changes in its parameters[5]. In recent computer graphics literature, a furni-
ture design framework used sensitivity analysis to identify parameters that cause
physical instability so it could highlight weaknesses in the current designs[23]. In
the area of multi-objective evolutionary computation Avila, et al. suggested us-
ing sensitivity analysis to find a final solution from a set of candidate solutions
that result from a multi-objective stochastic optimization process[1]. Parmee,
et al. utilized sensitivity analysis in a non-interactive way to adjust constraint
maps whose function it is to unite separate GA optimizations in a multi-objective
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framework near the end of the exploration phase. The objectives analyzed for
sensitivity in his framework have explicit fitness functions[15].

3 Method

3.1 Selection Interaction

In order for sensitivity analysis to work in an interactive evolutionary system,
there are two functions that must be provided along with the visual parametric
model: (1) a function to facilitate component selection and (2) a function to
measure similarity between two selected regions in the output of the model. The
selection interface needs to be flexible enough to allow the designer to select any
arbitrary region she finds interesting.

Fig. 1. Types of selection: (a) No selection, (b) Whole candidate selection, (c) Com-
ponent selection, (d) Lasso-selection (with highlighted vertices)

For segmented models, selections can be made in three ways:

1. whole candidate selection (as in traditional interactive evolution)
2. selecting one or more components of a selected phenotype
3. selecting only a portion of a selected component

When the designer selects a candidate, the genotype that corresponds to the
selected phenotype is added to the gene pool for reproduction of the subsequent
generation. When a region is selected, two types of sensitivity analysis need
to be run in order to determine which genes in the corresponding genotype
create significant variance in the selected region of the phenotype. The resulting
information, which we call “gene dominance”, is used by the genetic operators
to bias reproduction toward parts of the parametric space that do not result in
significant variance for the selected traits. (The term “dominance” is simply a
convenient metaphor for describing which genes manifest themselves. We are not
simulating the mechanisms that cause recessive and dominant traits in genetics.)

Since our parametric face model is based on splines composed of control points,
we use point cloud distance as a similarity metric. This is a general approach
that could be utilized for many geometric models. When the user selects a part
of a component, our selection function determines which control points lie within
the selection lasso and uses those points to form a point cloud.
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Sensitivity analysis requires a way to measure similarity in the output space
of a model. It measures the change in output caused by a change in the input.
Our similarity function finds the distance between each point in two ordered
point clouds (pc1 and pc2) of size n and returns the sum of these distances.

dist(pc1, pc2) =
n∑

i=0

‖pc1i − pc2i‖ (1)

3.2 Sensitivity Analysis

We use an approach to sensitivity analysis called elementary effects to determine
which inputs are responsible for output variance[17]. The process involves making
small changes in the genotype and finding the derivative of the variance in the
selected region of the phenotype. The inputs to the sensitivity analysis process
include the genotype of the selected candidate G, the parametric model function
paramModel(), the similarity function dist(), and the selected control points cp.
The basic steps of sensitivity analysis are:

foreach index i in the vector G do
foreach interval j within the range of input parameter G[i] do

Generate two input vectors G1 and G2 that differ slightly at i;
cp1 = paramModel(G1);
cp2 = paramModel(G2);
variancesi,j = dist(cp1, cp2);

end

absoluteMeani = 1/numIntervals ∗ ∑numIntervals
j=0 |variancesi,j |;

standardDevi = standardDeviation(variancesi);
end

Algorithm 1. Generic Sensitivity Analysis Algorithm

After taking the above variance measurements, plot the absoluteMean of the
variance against the squared standardDeviation of the variance for each param-
eter i and determine which parameters are dominant by examining the resulting
scatter plot. It would be computationally prohibitive to sample the entire space,
so typically researchers use a random sampling method to estimate the variance
caused by each parameter (a.k.a. the elementary effect). We use the Morris sam-
pling method to create a matrix that efficiently samples the input space of the
parametric model and provides a series of neighboring sample pairs that sensi-
tivity analysis can use to measure variance in the output[14]. r is the number of
random walks taken through the input space. g represents the number of parame-
ters in the model. p represents the number of intervals we choose tomeasure within
the input range of each parameter. The naive approach to sampling would require
2rg samples in order to generate g elementary effects. Morris proposed a more
efficient way to sample that requires r(g + 1) samples to generate g elementary
effects by exploiting adjacency between neighboring samples. The following steps
will generate one random walk through input space, and will generate a matrix
B∗ with dimensions (g + 1) × g. Each row is a sample input vector based on a p
level grid in input space. x∗ is a randomly selected input vector that marks the
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place in input space where the random walk starts and Δ = 1/(p − 1). Jg+1,1 is
a (g + 1) × g matrix of ones and B is a strictly lower triangular matrix of ones.
D∗ is a g-dimensional diagonal matrix where each element is either +1 or -1 with
equal probability, and P ∗ is a g-by-g random permutation matrix in which each
row contains one 1 and the rest are zeros, and no two columns have ones in the
same position.

B∗ = (Jg+1,1x
∗ + (Δ/2)[(2B − Jg+1,1)D

∗ + Jg+1,1])P
∗ (2)

The above sampling method should be run r times to sample multiple trajectories
through input space. The samples generated are then fed to the parametric model
so that variance can be measured between adjacent samples. Note that if your
parametric model has non-uniform distributions on the input variables, then
the sampling process should be modified to reflect the likelihood of values in
input space. In this work, we used Saltelli and Campolongo’s suggested settings
of p = 4 and r = 10. For further details and alternate methods of conducting
sensitivity analysis we refer the reader to the work of Saltelli, et al[17].

Fig. 2. Sensitivity analysis scatter plot

The result of sensitivity analysis is
a ranking of genes by the output vari-
ance each is responsible for, according
to two measures μ∗ (absolute mean) and
σ2 (square of standard deviation). Rank-
ings are typically visualized on a scat-
ter plot of μ∗ vs. σ2. (Figure 3.2.) The
group of genes that form nearest the
origin are generally considered unimpor-
tant. We use the DBSCAN clustering
algorithm to group the points on the
scatter plot[6]. We treat ε separately for
each axis and set εμ∗ equal to 3% of
max(μ∗) and εσ2 equal to 3% ofmax(σ2).
We ignore genes that are members of the
cluster closest to the origin and mark the
other genes as dominant.

We must minimize the running time (M) of the parametric model to keep the
computational demands of sensitivity analysis low. If the parametric model has
(g) genes, then the complexity of sensitivity analysis is O(g ·M). The subsequent
DBSCAN clustering process has a running time of O(g · log(g)).

3.3 Genetic Algorithm

Our baseline system was developed to help middle school science teachers teach
genetics to their students in an open-ended way. The original system can be
found at (http://accad.osu.edu/ReadingTheCode/). In this system, the list of
attributes belonging to the parametric model corresponds to a genotype which is



78 J. Eisenmann, M. Lewis, and R. Parent

represented by a fixed-length array of floating point numbers (gene values) in the
range from 0.0 to 1.0. The phenotype in our system is the image produced when
these gene values are mapped to the model’s parameters. The designer chooses a
set of parents that will participate in the reproduction process for the next gener-
ation. Our genetic algorithm chooses two distinct, random parents from this set
each time it produces a new offspring. It copies genes from one parent and then
switches to copying the other parent with a user-adjustable crossover probability.
Then genes are mutated given a user-adjustable probability by adding a random
value between -1.0 and 1.0, scaled by a user-adjustable mutation amount (which
typically is initialized at 0.25 and interactively reduced as the search reaches
satisfactory convergence). Mutated genes are clamped to the range from 0.0 to
1.0. Phenotypes can be saved to a library of favorites for later re-introduction
into the population. We also encourage designers to explore different areas of the
space by using a function in our interface that allows them to step back to pre-
vious generations and explore characteristics in previously ignored candidates.
Other methods of beginning new exploration include replacing the population
with randomly generated genotypes, or by sliding the live exploration control
that gradually increases the mutation amount and incidence. When this slider
is moved, the phenotypes gradually change to reflect the new mutation value,
effectively transitioning to a new random population incrementally. In this way,
the designer can decide just how large an exploration radius to use by observing
the real-time changes in the population.

The crossover and mutation operators need to incorporate the results of our
sensitivity analysis if component selections are to influence the trajectory of the
search. We use the gene dominance values generated by sensitivity analysis to
lock down specific genes, reducing the dimensionality of the search space. It is
important to treat the sensitivity analysis separately for crossover and mutation
because they have different scopes. We run two types of sensitivity analysis on

begin
Input: Two genotypes: parent0 and parent1
Output: One genotype: child
copyFrom = randomInteger(0, 1);
for i ← 0 to numGenes do

if random(1) < xoverChance then
copyFrom = 1 − copyFrom;

end
if parent1.globalDominance[i] and !parent0.globalDominance[i] then

copyFrom = 1;
end
if parent0.globalDominance[i] and !parent1.globalDominance[i] then

copyFrom = 0;
end
child.inheritance[i] = copyFrom;
if child.inheritance[i] == 1 then

child.genes[i] = parent1.genes[i];
end
else

child.genes[i] = parent0.genes[i];
end

end

end

Algorithm 2. Crossover Algorithm



Inverse Mapping with Sensitivity Analysis 79

the selected region: global and local. Crossover is an operator that can take a
relatively large step in input space, so we use global analysis to generate the
values that bias crossover (called globalDominance). If we were to use local
analysis to inform crossover, it would take into account the full variance provided
by a gene and would result in a less aggressive reduction of search space, leaving
too much variance in the selected trait and increasing total design time.

Mutation is an operator that takes a relatively small random step in the input
space, so we use local sensitivity analysis to generate the values that bias the
mutation operator (called localDominance). If we were to use global analysis to
inform mutation, it would result in culling parts of the parametric space that
are still valid (i.e. do not create variance in the selected trait for a small random
step). Mutation needs to have access to relevant local sensitivity analysis infor-
mation no matter what size the current mutation radius is. Sensitivity analysis is
not fast enough to provide smooth interaction for our interactive mutation slider
(which determines mutation step size), so we compute local sensitivity analysis
at six levels at the time of population reproduction and then linearly interpolate
between the resulting values when the slider value is changed.

begin
Input: Three genotypes: child, parent0, parent1
Output: One genotype: mutatedChild
for i ← 0 to numGenes do

if random(1) < mutationChance then
if child.inheritancei == 0 then

currentParent = parent0;
end
else

currentParent = parent1;
end
if currentParent.localDominancei == 0 then

mutatedChild.genesi = child.genesi ;
mutation = mutationAmount ∗ random(−1, 1);
mutatedChild.genesi+ = mutation;

end

end

end

end

Algorithm 3. Mutation Algorithm

If the sensitivity analysis generated floating point values that represent accu-
rate expectations of variance for each gene, we could use these values to deter-
mine gene dominance on a sliding scale. However, the elementary effects is only
a screening method that determines which inputs may be important. Variance
based methods might be able to provide more information, and we intend to
investigate those in the near future. Also, our point cloud distance similarity
metric (Eqn. 1) may not correspond to the perceived quality that formed the
designer’s reason for selecting the trait. Perhaps if the similarity function were
to use computer vision techniques to measure perceptually-based metrics, the
ranking values could be used to provide more precise responses to trait selection,
but this might lead to further loss of generality for the similarity function and
may not lead to significant gains in precise steering of the genetic algorithm.
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4 Results

There has been a significant amount of work in the field centered around the
evolution of faces [2,7,10,13], and our contribution in this paper is not specifi-
cally about designing faces. Rather we suggest an algorithmic enhancement that
should apply to most applications that can be designed using an interactive
genetic algorithm and fixed-length encoding. The face model used in this re-
search had 56 floating point numeric genes. Over half of these genes have interac-
tions between them and many of the genes have nonlinear relationships with the
output geometry.

Fig. 3. The parametric space for our face model exhibits a wide range of diversity

Fig. 4. Our interactive evolutionary interface
1) New population - allows the user to start over by creating a new random population
2) View genotypes - shows bar graphs of gene values at the bottom the phenotypes
3) Amount - designers can adjust the size of the population at any time
4) Exploration - controls mutation amount and probability, also controls crossover rate
5) History - browse the generation history, parents of current population shown here
6) Exam room - drag one or two candidates here to examine and compare gene values
7) Favorites - drag a candidate here to save for later reintroduction into the population
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Fig. 5. Inheritance with whole candidate selection (on the left) and with component
selection (on the right). In this example the designer was interested in pointy heads
and frowning mouths that sometimes look like mustaches.

Figure 5 demonstrates the difference in inheritance provided by trait se-
lection. If you would like to try out the design interface, you may do so at:
(http://accad.osu.edu/Projects/Evo/SensitivityAnalysis/). We have conducted
an informal user study with a several design students from our lab, and although
we did not have a large enough sample or rigorous enough test procedure to es-
tablish statistical significance, there were positive reactions from the designers,
such as “The [new] method was more helpful when designing my own face...I like
the ability to select individual pieces [and] create randomness on the features I
liked.”

5 Conclusion

We believe our method is a significant step forward in answering Semet’s call for
more work in this area, from his survey of interactive evolution:

... the mapping between phenotype and genotype is not trivial and what
is identified as being good or bad is not necessarily trivially encoded
by a single gene that can be frozen or unfrozen whenever convenient.
This clearly restricts the applicability of online knowledge embedding
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methods to problems with trivial mapping as is [Takagi’s] face montage
search. This certainly is a call for development of non trivial mapping
description methods[18].

The method described here is model-free in the sense that detailed information
about the model and the way that parameters interact with each other is not a
requirement for functionality. The only requirements regarding the model are:

(a) It has a fixed-length encoding. (We are not yet sure what bounds could
be reasonably placed on the sampling process that would allow sensitivity
analysis to work with a variable-length encoding.)

(b) A region-selection function is provided for the model.

(c) A similarity function is provided for measuring the difference in a region of
interest between two phenotypes.

(d) The function that transforms a genotype into a phenotype must be com-
putable in interactive times.

No sophisticated interaction is required on the part of the user. The simple user
behavior of “select what you like” is still valid. The interactive evolutionary
search process makes good use of the real-time feedback from the designer and
steers the system toward high fitness regions more precisely than our previous
system.

6 Future Work

This incorporation of sensitivity analysis into evolutionary algorithms might
be worth integrating into hybrid evolutionary systems, such as our previous
work with designing animation cycles[4], where genetic algorithm results are
produced and then filtered after the fact by an automatic fitness metric. Instead
of throwing phenotypes away if they do not meet the filter’s criteria, sensitivity
analysis could be pre-computed and gene values that correspond to low fitness
(according to that particular metric) could be avoided and only phenotypes that
are high fitness (according to the agent) could be produced.

It would be worthwhile to pursue the development or adoption of several
computer vision techniques that measure certain style qualities for making the
similarity metric aware of specific perceptual qualities such as smoothness or
orientation. Additionally, we think component selection could be advantageous
for time-varying models where the limitations on design time are even more
limited due to long evaluation times.

Although we have shown that our new algorithm uses more fine-grained feed-
back from the user to intelligently cull the search space, we need to test the
effects of this interaction change with human subjects in the loop. We plan to
conduct a robust user study to compare the new system with our baseline sys-
tem and analyze both their interaction behavior and their impressions of the
user experience.
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Abstract. This paper introduces a novel approach deploying the mecha-
nism of ‘attention’ by adapting a swarm intelligence algorithm – Stochas-
tic Diffusion Search – to selectively attend to detailed areas of a digital
canvas. Once the attention of the swarm is drawn to a certain line within
the canvas, the capability of another swarm intelligence algorithm – Par-
ticle Swarm Intelligence – is used to produce a ‘swarmic sketch’ of the
attended line. The swarms move throughout the digital canvas in an
attempt to satisfy their dynamic roles – attention to areas with more
details – associated to them via their fitness function. Having associated
the rendering process with the concepts of attention, the performance
of the participating swarms creates a unique, non-identical sketch each
time the ‘artist’ swarms embark on interpreting the input line draw-
ings. The detailed investigation of the ‘creativity’ of such systems have
been explored in our previous work; nonetheless, this papers provides a
brief account of the ‘computational creativity’ of the work through two
prerequisites of creativity within the swarm intelligence’s two infamous
phases of exploration and exploitation; these phases are described herein
through the attention and tracing mechanisms respectively.

Keywords: Stochastic Diffusion Search, Particle swarm optimisation,
sketching, drawing, attention.

1 Introduction

Studies of the behaviour of social insects (e.g. ants and bees) and social animals
(e.g. birds and fish) have proposed several new metaheuristics for use in collective
intelligence. Natural examples of swarm intelligence that exhibit a form of social
interaction are fish schooling, birds flocking, ant colonies in nesting and foraging,
bacterial growth, animal herding, brood sorting etc.

Following other works in the field of swarms painting ([6,16,20,21]) and ant
colony paintings ([10,15]), the outputs presented in this paper – created by a
swarm intelligence algorithm – are also used as a platform to argue whether or
not swarm intelligence algorithms have the potential to exhibit computationally
creativity.

Although producing artistic works through the use of swarm intelligence
techniques have been previously explored, this work explores the concepts of at-
tention and creativity through this type of collective intelligence, which emerges
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c© Springer-Verlag Berlin Heidelberg 2013
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through the interaction of simple agents (representing the social insects and an-
imals) in nature-inspired algorithms – Stochastic Diffusion Search (SDS) [7] and
Particle Swarm Optimisation (PSO) [13].

In this work, SDS is deployed to enforce the idea of attention to area of the
search space (digital canvas with line drawings) where there are more details (i.e.
more lines); once the area of attention is identified, PSO through its particles,
traces the points of the lines selected and its particles’ movement are visualised
on the canvas. As attention moves from one area of the original line drawing
to another, a sketch is produced which is the collective result of the SDS-led
attention and PSO-led tracing mechanism.

In the last couple of years, there has been several research work utilising the
two aforementioned swarm intelligence algorithms; while scientific merits of in-
tegrating these algorithms are investigated in detailed (e.g. [4]), their artistic
capabilities have been detailed in several publications along with some philo-
sophical arguments on computational creativity (e.g. [1,5,2]).

In the next section (Section 2), the swarm intelligence algorithms used are ex-
plained. Subsequently, a historical perspective of attention is presented (Section
3) followed by explanation on the attention and tracing mechanisms associated
with SDS and PSO algorithms respectively, providing details on the performance
of the computer-generated nature-inspired attentive swarms in re-interpreting
the original line drawings (Section 4). Finally a conclusion and summary of the
work are given.

2 Swarm Intelligence

This section describes two nature-inspired swarm intelligence algorithms:
Stochastic Diffusion Search – inspired by a species of ants and uses communication
as its main mean to converge to an optimum food location by recruiting individ-
ual ants – and Particle Swarm Optimisation – simulating the choreography of fish
schooling or birds flying.

2.1 Stochastic Diffusion Search

This section introduces Stochastic Diffusion Search (SDS) [7] – a swarm intelli-
gence algorithm – whose performance is based on simple interaction of agents.
This algorithm is inspired by one species of ants, Leptothorax acervorum, where
a ‘tandem calling’ mechanism (one-to-one communication) is used, the forager
ant that finds the food location recruits a single ant upon its return to the nest;
therefore the location of the food is physically publicised [14].

The SDS algorithm commences a search or optimisation by initialising its
population and then iterating through two phases (see Algorithm 1)

In the test phase, SDS checks whether the agent hypothesis is successful or
not by performing a hypothesis evaluation which returns a boolean value. Later
in the iteration, contingent on the precise recruitment strategy employed (in
the diffusion phase), successful hypotheses diffuse across the population and
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Algorithm 1. SDS Algorithm

01: Initialise agents
02: While (stopping condition is not met)
04: For each agent
03: Test hypothesis and determine activity
05: For each agent
06: Diffuse hypothesis
07: End While

in this way information on potentially good solutions spreads throughout the
entire population of agents. In other words, each agent recruits another agent
for interaction and potential communication of hypothesis.

In standard SDS (which is used in this paper), passive recruitment mode is
employed. In this mode, if the agent is inactive, a second agent is randomly
selected for diffusion; if the second agent is active, its hypothesis is communi-
cated (diffused) to the inactive one. Otherwise there is no flow of information
between agents; instead a completely new hypothesis is generated for the first in-
active agent at random. Therefore, recruitment is not the responsibility of the
active agents.

2.2 Particle Swarm Optimisation

A swarm in Particle Swarm Optimisation (PSO) algorithm comprises of a num-
ber of particles and each particle represents a point in a multi-dimensional prob-
lem space. Particles in the swarm explore the problem space searching for the
optimal position, which is defined by a fitness function.

Each particle has a position x, a velocity v, and a memory, p, containing the
best position found so far during the course of the optimisation, and this is called
the personal best (pbest). p can also be thought of as a particle ‘informer’. Parti-
cles participate in a social information sharing network. Each particle is informed
by its neighbours within this network, and in particular, the best position so far
found in the neighbourhood, is termed the neighbourhood best. The position
of each particle is dependent on the particle’s own experience and those of its
neighbours.

The standard PSO algorithm defines the position of each particle by adding
a velocity to the current position. Here is the equation for updating the velocity
of each particle:

vtid = wvt−1
id + c1r1

(
pid − xt−1

id

)
+ c2r2

(
gid − xt−1

id

)
(1)

xt
id = vtid + xt−1

id (2)

where w is the inertia weight whose optimal value is problem dependent [17];
vt−1
id is the velocity component of particle i in dimension d at time step t−1; c1,2
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are the learning factors (also referred to as acceleration constants) for personal
best and neighbourhood best respectively (they are constant); r1,2 are random
numbers adding stochasticity to the algorithm and they are drawn from a uni-
form distribution on the unit interval U (0, 1); pid is the personal best position
of particle xi in dimension d; and gid is the neighbourhood best. Therefore, PSO
optimisation is based on particles’ individual experience and their social inter-
action with other particles. After position and velocity updates, the positions of
the particles are evaluated and the memories p are updated, if a better position
has been found.

In this paper, Clerc and Kennedy’s PSO (PSO-CK [9]) or constriction PSO
is used:

vtid = χ
(
vt−1
id + c′1r1

(
pid − xt−1

id

)
+ c′2r2

(
gid − xt−1

id

))
(3)

where χ = 0.72984 [8], which is reported to be working well in general, is used
in this work.

3 Attention

For centuries, attention has been preoccupying the minds of philosophers and
psychologists and scientists. The concept of attention has been studied mostly in
psychology and neuroscience (see Table 1.1 in Phuong Vu: Historical Overview of
Research on Attention, in [22] for more details) and there has been considerably
less notable interest on attention within the field of computational creativity.

In the early 18th century attention was mostly seen as a way of abstraction
(see Berkeley’s 1710 theory of abstract ideas in [18]):

“[It] must be acknowledged that a man may consider a figure merely
as triangular, without attending to the particular qualities of the angles
or relations of the sides. So far he may abstract, but this will never prove
that he can frame an abstract general, inconsistent idea of a triangle. ”

By 1769, when Henry Home Kames added the appendix of ‘Terms Defined or
Explained’ to his Elements of Criticism [12], attention’s role as a regulator of
cognitive input was regarded as definitive of it:

“Attention is that state of mind which prepares one to receive im-
pressions. According to the degree of attention objects make a strong or
weak impression. Attention is requisite even to the simple act of seeing.”

Thus, regulating cognitive and sensory inputs was associated to attention. Later,
William James in The Principles of Psychology in 1890 [11] offered a more com-
prehensive description of attention (i.e. focalisation, etc.):

“Every one knows what attention is. It is the taking possession by the
mind, in clear and vivid form, of one out of what seem several simultane-
ously possible objects or trains of thought. Focalization, concentration,
of consciousness are of its essence [...]” (p. 403-404)
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and few pages further, he continues:

“Each of us literally chooses, by his ways of attention to things, what
sort of a universe he shall appear to himself to inhabit.” (p. 424)

Two decades later, in 1908, as emphasised by E.B. Titchener [19], attention was
given a greater significance :

“What I mean by the ‘discovery’ of attention is the explicit formu-
lation of the problem: the recognition of its separate status and funda-
mental importance; the realization that the doctrine of attention is the
nerve of the whole psychological system, and that as men judge of it, so
they shall be judged before the general tribunal of psychology.”

and its importance grew over the years in psychology and neuroscience. Although
the concept of attention might have been present in the work of some researchers
in the field of computational creativity, the focus on attention has not been
equally considerable among researchers in this field; perhaps, partly because
there has not been a clear definition on attention.

The next section adopts a particular type of attention (i.e. attention to de-
tailed regions of the canvas) and expands on its application in the context of
sketching swarms (or swarmic sketches).

4 Attention and Creativity in the Swarms

In this section, the attention mechanism, which is controlled by SDS algorithm
is detailed; this is followed by the process through which PSO algorithm utilises
the output of the SDS-led attention to visualise the particles movements on the
digital canvas which produces the final sketch rendered by the swarms.

4.1 Attention Mechanism

The input digital image consists of lines (see Fig. 1) each formed up of a series
of points (the image on the left is after one of Matisses sketches).

The swarms’ attention in this work is controlled by the level of the intensity in
the drawings within a specific radius, ra of an agent. In other words, the intensity
or fitness of an agent, fi,(x,y), where i is the agent number and (x, y) is the coor-
dinate of the agent in the search space (input image), is calculated by the number
of points constituting the drawing within the radius ra. (see Fig. 2a)

As mentioned earlier in Section 2.1, each agent has two components: status,
which is a boolean value and hypothesis. The hypothesis of each agent in this
work is the (x, y) coordinate which is used to calculate the fitness, fi,(x,y), of the
agents located at any particular pixel within the input image.

After the agents are randomly initialised throughout the search space (Fig.
3a), in order to determine the status of an agent, i, within the swarm (test
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Fig. 1. Input images: series of points forming line drawings

phase), its fitness, fi, is calculated as explained above and another agent, r, is
randomly selected; if fi > fr (i.e. the agent i is located in a more line intense
area), agent i is set active, otherwise inactive (Fig. 3b illustrates active agents
in red and inactive ones in black).

In the diffusion phase, as in standard SDS, each inactive agent randomly pick
another one. If the randomly selected agent is active, the inactive agent adopts
the hypothesis of the active one. However, if the selected agent is inactive, the
selecting agent generates a random hypothesis (x, y) from the search space. See
Fig. 3c for the behaviour of the agents after the diffusion phase; the area with
the best fitness (most line intense area) is highlighted with a circle.

After n number of test-diffusion phases cycles, the biggest cluster of the agents
is identified and the closest point (pc) to the cluster is calculated. Once the (x, y)
coordinate of the point is retrieved, the starting and end points of the line is
extracted and a string of (x, y) coordinates from starting to end points of the
line is passed on to the PSO particles to trace one by one. Fig. 2b shows the
identified ends of a selected line.

(a) (b)

Fig. 2. (a) Agent’s fitness: in this figure, the (x, y) coordinates of three exemplar agents
are illustrated with black dots in the centre of the circles; the highlighted points of
the line drawing within each circle contribute towards the fitness of the agent, fi,(x,y).
(b) Selected line: The hollow circle represents the selected point, pc and the two ends of
the line – start and end – where pc resides, are highlighted in black and red, respectively.
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(a) (b) (c)

Fig. 3. SDS stages: (a) Initialisation; (b) Test Phase; (c) Diffusion

4.2 Tracing Mechanism

The points creating the lines of the line drawing are treated as targets by the PSO
algorithm. Thus, particles aim to trace these points one at a time until reaching
the end of the line (the algorithm tries to minimise the distance between each
particle’s position and the point it aim to track).

Particle’s movement is visualised on the canvas (i.e. trajectory of the particles
moving from position (x0, y0) to (x1, y1) and so forth). The adopted PSO algo-
rithm is briefly presented in Section 2.2 (more technical details on the behaviour
of particles are reported in a previous publication [1]).

As stated earlier, input to PSO algorithm is a series of points forming up a
line, which among other points, consists of the starting and end points, as well
as pc. The algorithm is then instructed to trace the line commencing from pc to
the beginning of the line, and them back towards the end of the line drawing.
Once the line is traced, it is removed from the search space and the other lines
are considered one by one according to the attention mechanism deployed.

This process ensures that in addition to the potential aesthetic of the swarms’
final sketches, the process of sketching is enriched with attention to details. See
Fig. 4 for the final output of the swarms1. Fig. 5 shows another output of the
introduced mechanism.

In this work ra is set to 50, w = 550, h = 450, the population size of SDS and
PSO are set to 100 and 10 respectively and n = 20.

4.3 Discussion

Using the analogy of ‘first come, first serve’, this work biases the attention to-
wards ‘more details, first sketch’. The value of n, which is the number of test-
diffusion cycles before picking a line to trace, controls the precision of attention.
The larger the value is, the more precise the attention is (i.e. focusing on the
detailed parts of the input image); and the smaller the value, the less accurate
the attention would be. Fig. 6 illustrates the process for n = 10 which allows

1 The HD video recordings of few instances of the performance of the swarms are
accessible at http://youtu.be/-VYBi-awPUo or http://youtu.be/BFIJrvcNEFA.

http://youtu.be/-VYBi-awPUo
http://youtu.be/BFIJrvcNEFA
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Fig. 4. Output sketch of the swarms using both SDS-led attention mechanism and
PSO-led tracing mechanism

the SDS agents enough time to converge on the detailed area as the sketching
process progresses; on the other hand, Fig. 7 where n = 1, shows the lack of
attention to detailed area of the input image.

While the finaloutput of the swarms is an important part of the process
– mainly executed through PSO algorithm – the primary contribution of the
attention mechanism – facilitated by SDS algorithm – lies in the dynamic lead-
ership of the sketching process, as it progresses versus the final graphic output
solely.

Although this work uses Stochastic Diffusion Search to intelligently (vs. greed-
ily or randomly) control the attention of the swarms (by identifying the detailed
regions of the canvas to start the sketching), the concept of attention is ex-
tendible to other measures such as colour, shapes, etc., which are currently being
explored. See [3] for an example of using SDS-led colour attention for rendering
input images into paintings called ‘Swarmic Paintings’.

The general behaviour of the swarms in the context of computational cre-
ativity has been extensively discussed in previous works ([1,2,5]), touching upon
the concepts of freedom and constraint and their impact on mapping these two
prerequisites of creativity onto the two well-known phases of exploration and
exploitation in swarm intelligence algorithms. Although most swarm intelligence
algorithm have their internal exploration and exploitation phases, in this work,
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Fig. 5. A swarmic sketch made from an input image after one of Picasso’s sketches –
Reverdy (Pierre), Cravates de Chanvre

the global exploration of the search space is carried out through the atten-
tion mechanism and the exploitation phase is facilitated through the tracing
mechanism.
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Fig. 6. Output sketch with n = 10, where the swarms attention is drawn towards
sketching the detailed area first

Fig. 7. Output sketch with n = 1, which results in less accurate attention of the swarms
in first picking the detailed area of the line drawing
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5 Conclusion

The so described computational artist is the outcome of a novel marriage be-
tween two classical swarm intelligence algorithms (Stochastic Diffusion Search
and Particle Swarm Optimisation), which deploy ‘attention’ in the production
of ‘traced’ line drawings. The adapted SDS algorithm utilises the agents with
dynamically changing ‘attention’ through adopting the lines falling in the de-
tailed areas of the input image. The agents thus communicate the details to
PSO algorithm, which in turn traces the points of the line with its particles; the
movements of the dynamic particles are visualised on the canvas as part of the
sketching process of the swarms. This process is repeated for all the lines of the
input image, and the outcome – emerging through millions of simple interac-
tions – produces (although loyal, yet) non-identical sketches of the same input
line drawings whenever the process is repeated.

This work also highlights the mechanisms responsible for the exploration and
exploitation phases within the swarm intelligence algorithms and their relation-
ship with freedom and constraints as two prerequisites of creativity. In brief,
expanding on the previous research on computational creativity, in addition to
the practical aspect of the work presented, this work introduces the SDS-led
attention mechanism utilised for producing sketches from input line drawings.
Finally, the concept of SDS-led attention is extendible to other measures (e.g.
colour, shapes, etc.) which are currently being investigated.
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Abstract. Swarm-based multi-agent systems have been deployed in
non-photorealistic rendering for many years. This paper introduces a
novel approach in adapting a swarm intelligence algorithm – Stochastic
Diffusion Search – for producing non-photorealistic images. The swarm-
based system is presented with a digital image and the agents move
throughout the digital canvas in an attempt to satisfy the dynamic roles
– attention to different colours – associated to them via their fitness func-
tion. Having associated the rendering process with the concepts of ‘at-
tention’ in general and colour attention in particular, this papers briefly
discusses the ‘computational creativity’ of the work through two pre-
requisites of creativity (i.e. freedom and constraints) within the swarm
intelligence’s two infamous phases of exploration and exploitation.

1 Introduction

In recent years, studies of the behaviour of social insects (e.g. ants and bees) and
social animals (e.g. birds and fish) have proposed several new metaheuristics
for use in collective intelligence. Natural examples of swarm intelligence that
exhibit a form of social interaction are fish schooling, birds flocking, ant colonies
in nesting and foraging, bacterial growth, animal herding, brood sorting etc.

Although producing artistic works through the use of swarm intelligence tech-
niques have been previously explored, this work explores the concepts of atten-
tion and creativity through this type of collective intelligence, which emerges
through the interaction of simple agents, representing the social insects and an-
imals, in a nature-inspired algorithm – Stochastic Diffusion Search (SDS) [8].

The swarm intelligence algorithm adapted for the present work, utilises swarms
with dynamically changing ‘attention’, exhibited via iteratively attending-to (cf.
(re)painting) different colours in the source image. The agents thus converge their
attention on areas with similar colours in the source imagine (search space). This
process is repeated and the outcome – emerging through millions of simple
interactions – constantly changes based on how the swarm controls its attention.

Following other works in the field of swarms painting ([7,15,19,20]) and ant
colony paintings ([9,14]), the outputs presented in this paper – created by a swarm
intelligence algorithm – are used as a platform to argue whether or not swarm
intelligence algorithms have the potential to exhibit computational creativity.

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 97–108, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In this paper, first the swarm intelligence algorithm used is explained, and
subsequently a historical perspective of attention is presented followed by expla-
nation on how colour attention can possibly be used in creating artistic works.
Some technical information are detailed afterwards on the performance of the
computer-generated nature-inspired colour-attentive swarms in rendering im-
ages. Then a short discussion follows on whether swarms can be computationally
creative, with reference to freedom and constraint, which are associated to the
two well-known phases of exploration and exploitation. The conclusion appears
at the end along with some suggestions for possible future research.

2 Stochastic Diffusion Search

This section describes a swarm intelligence algorithm (Stochastic Diffusion
Search), which is inspired by a species of ants and uses communication as its
main mean to converge to an optimum food location by recruiting individual
ants. This algorithm is adapted for rendering images in this work.

The performance of Stochastic Diffusion Search (SDS) [8] is based on simple
interaction of agents. This algorithm is inspired by one species of ants, Leptothorax
acervorum, where a ‘tandem calling’ mechanism (one-to-one communication) is
used, the forager ant that finds the food location recruits a single ant upon its
return to the nest; therefore the location of the food is physically publicised [13].

The SDS algorithm commences a search or optimisation by initialising its
population and then iterating through two phases (see Algorithm 1).

Algorithm 1. SDS Algorithm

01: Initialise agents
02: While (stopping condition is not met)
04: For each agent
03: Test hypothesis and determine activity
05: For each agent
06: Diffuse hypothesis
07: End While

In the test phase, SDS checks whether the agent hypothesis is successful or
not by performing a hypothesis evaluation which returns a boolean value. Later
in the iteration, contingent on the precise recruitment strategy employed (in
the diffusion phase), successful hypotheses diffuse across the population and
in this way information on potentially good solutions spreads throughout the
entire population of agents. In other words, each agent recruits another agent
for interaction and potential communication of hypothesis.

In standard SDS (which is used in this paper), passive recruitment mode is
employed. In this mode, if the agent is inactive, a second agent is randomly
selected for diffusion; if the second agent is active, its hypothesis is communi-
cated (diffused) to the inactive one. Otherwise there is no flow of information
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between agents; instead a completely new hypothesis is generated for the first
inactive agent at random (see Algorithm 2). Therefore, recruitment is not the
responsibility of the active agents.

Algorithm 2. Passive Recruitment Mode

01: For each agent
02: If ( !ag.isActive )
03: r_ag = pick a random agent
04: If ( r_ag.isActive )
05: ag.hypothesis = r_ag.hypothesis
06: Else
07: ag.hypothesis = generate a random hypothesis
08: End If
09: End For

3 Attention

The concept of attention has been studied mostly in psychology and neuroscience
(see Table 1.1 in Phuong Vu: Historical Overview of Research on Attention, in
[21] for more details) and there has been considerably less notable interest on
attention within the field of computational creativity.

In the early 18th century attention was mostly seen as a way of abstraction
(see Berkeley’s 1710 theory of abstract ideas in [16]):

“[It] must be acknowledged that a man may consider a figure merely as
triangular, without attending to the particular qualities of the angles or
relations of the sides. So far he may abstract, but this will never prove
that he can frame an abstract general, inconsistent idea of a triangle. ”

By 1769, when Henry Home Kames added the appendix of ‘Terms Defined or
Explained’ to his Elements of Criticism [12], attention’s role as a regulator of
cognitive input was regarded as definitive of it:

“Attention is that state of mind which prepares one to receive impres-
sions. According to the degree of attention objects make a strong or weak
impression. Attention is requisite even to the simple act of seeing.”

Thus, regulating cognitive and sensory inputs was associated to attention. Later,
William James in The Principles of Psychology in 1890 [10] offered a more com-
prehensive description of attention (i.e. focalisation, etc.):

“Every one knows what attention is. It is the taking possession by the
mind, in clear and vivid form, of one out of what seem several simulta-
neously possible objects or trains of thought. Focalization, concentration,
of consciousness are of its essence [...]” (p. 403-404)

and few pages further, he continues:
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“Each of us literally chooses, by his ways of attention to things, what
sort of a universe he shall appear to himself to inhabit.” (p. 424)

Two decades later, in 1908, as emphasised by E.B. Titchener [17], attention was
given a greater significance:

“What I mean by the ‘discovery’ of attention is the explicit formulation
of the problem: the recognition of its separate status and fundamental
importance; the realization that the doctrine of attention is the nerve of
the whole psychological system, and that as men judge of it, so they shall
be judged before the general tribunal of psychology.”

and its importance grew over the years in psychology and neuroscience. Although
the concept of attention might have been present in the work of some researchers
in the field of computational creativity, the focus on attention has not been
equally considerable among researchers in this field; perhaps, partly because
there has not been a clear definition on attention.

The next section adopts a particular type of attention (i.e. colour attention)
and expands on its application in the context of painting swarms (or swarmic
paintings).

4 Colour Attention and Creativity in the Swarms

In this section, after describing an artistic technique (painting by numbers), the
technical details of the adapted Stochastic Diffusion Search algorithm is given
and the results are presented in form of the images rendered by the swarms.

4.1 Painting by Numbers

In this initial research, the authors aim at addressing ‘colour attention’ by utilising
a swarm intelligence algorithm whose agents dynamically render an input image,
solely by communicating the colour qualities of various pixels of the input image.

The final product of the above mentioned approach could be assimilated to a
well-known technique – Painting by Numbers – invented by Max S. Klein in 1950
(kits having a board on which light blue or gray lines indicate areas to paint;
each area is labelled with a number which in turn is associated to a colour). One
of the most famous artist known for using this technique is Andy Warhol [18].

In this work, and following the concept of the aforementioned technique, colour
guides the ‘attention’ of the swarm (i.e. colour is the input of the fitness function).
If there is a large region within a painting, it is more likely that it would be
noticed by the viewer before the smaller regions. As it will be presented next,
the behaviour of the swarm is also influenced by this factor.



Swarmic Paintings and Colour Attention 101

Fig. 1. Input Image

4.2 Colour-Attentive Swarms

As mentioned earlier in Section 2, each agent has two components: status, which
is a boolean value, and hypothesis. The hypothesis of each agent in this work
is the (x, y) coordinate pointing to the colour attributes (i.e. RGB values) of a
particular pixel within the input image (search space).

In the beginning of each iteration, a pixel is chosen and its corresponding
colour attributes (focal colour or fc) are kept as the focal attention of the swarm.

In order to determine the status of the agents within the swarm (test phase),
the colour distance (dic) of each agent’s colour from fc is calculated according
to the Eq. 1; if dic < α, the agent is set to be active, otherwise inactive.

dic = d(fc, Aic) =
√
(Rfc −RAic)

2 + (Gfc −GAic)
2 + (Bfc −BAic)

2 (1)

where Aic is the colour associated to the ith agent; Rfc , Gfc , Bfc and and RAic ,
GAic , BAic are the RGB values of fc and the ith agent respectively.

In the diffusion phase, as in standard SDS, each inactive agent randomly pick
another one. If the randomly selected agent is active, the inactive agent adopts
(a Gaussian random distance, σ = 5, and direction from) the (x, y) coordinates
of the active agent, allowing to explore a small area around the active agent; the
colour associated with the active agent is painted on the canvas with varying
diameters (see Section 4.3 for details). However, if the selected agent is inactive,
the selecting agent generates a random (x, y) coordinates (from the search space),
whose status would be defined in the test phase of the next iteration. New fc is
generated when either 10 iterations (test-diffusion cycles) are run or the entire
agents population become active.
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α = 5 α = 15 α = 25

Fig. 2. Stages through which the attention of the swarm is shifted from one colour
to the next (top to bottom); note that the images of each column are rendered inde-
pendently using the focal colour (fc, on the leftmost of the figure) and the α values
provided (5, 15 and 25)

The value of α determines how focus the attention of the swarms should be
on a particular colour (fc); the greater the value of α, the bigger the colour-
similarity ‘tolerance’; and thus more agents residing within the colour range of
fc would be potentially active. Smaller values of α ensure higher attention on
the focal colour (fc) and therefore less colour similarity tolerance.
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4.3 Experiments and Results

Fig. 1 shows the original image used as input to the proposed system. The
swarms population size is determined by (w× h)/5, where w is the image width
and h is the image height. In this work α is set to 5, 15 and 25 in three separate
trials; The width and height of the input image is w = 640, h = 428 respectively
and thus, the population size is 54, 784.

Once the input image is introduced to the system, fc is (randomly) generated
(one at a time) from the search space (see the colour labels in Fig. 2 – on the
left) and then SDS uses the generated fc to go through the test and diffusion
phases, then the next fc is used and so forth. Fig. 2 (top to bottom) illustrate
the visual effect of this process on the digital canvas. Although in this example,
fc values are predefined to allow the three trials (α = 5, 15 and 25) use the same
fc values, in practice, the probability of a colour been picked is proportional to
its presence in the digital canvas.

As shown, the attention of the swarms is controlled through the generated fc
and value of α. The visual feedback of the swarms on the canvas allows the viewer
to observe the change of attention from one colour to the next. The smaller the
value of α the more precise (colour-wise) the attention of the swarm. This can
be observed in Fig. 2 where three values of α are examined and as the images
show, the attention of the swarms is more focused on fc when α is smaller (e.g.
α = 5) than when α is larger (e.g. α = 25).

In the beginning, the swarms are randomly initialised throughout the search
space. The size of the brush is set to be inversely proportional to the activity
level of the swarms (i.e. if a high number of the agents become active during the
test phase, the brush size is made smaller, and vice versa).

The next part addresses exploration and exploitation as the two main phases
in any swarm intelligence algorithms, and expanding on that, a link is made
between these phases and the two prerequisites of creativity (i.e. freedom and
constraint).

4.4 Freedom vs. Constraint

Both freedom and constraint have always been at the core of several definitions
for creativity. Philip Johnson-Laird in his work on freedom and constraint in
creativity [11] states:

“... for to be creative is to be free to choose among alternatives .. []
.. for which is not constrained is not creative.”

In swarm intelligence systems, the two phases of exploration and exploitation
introduce the freedom and control the level of constraint. Pushing the swarms
towards exploration, freedom is boosted; and by encouraging exploitation, con-
straint is more emphasised. Finding a balance between exploration and exploita-
tion has been an important theoretical challenge in swarm intelligence research
and over the years many hundreds of different approaches have been deployed
by researchers in this field.
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Fig. 3. Landscapes. Images on the leftmost column are the input, and the middle and
right columns show the output images rendered by the swarms.

In the presented work, one such swarm intelligence algorithm is deployed.
This algorithm (i.e. Stochastic Diffusion Search) is responsible for “intelligently”
controlling the attention of the agents. This algorithm mimics the behaviour of
one species of ants foraging and has an internal mechanism of balancing off the
exploitation and exploration phases. Within the diffusion phase of the algorithm,
if an inactive agent randomly chooses an active one, the hypothesis of the active
agent is diffused to the inactive one (i.e. effectively, the inactive agent is drawn
towards the active one). This process boosts exploitation.

Fig. 4. Flame close-ups. Images on the leftmost column are the input, and the middle
and right columns show the output images rendered by the swarms.
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Fig. 5. Wall texture and flower close-ups. Images on the leftmost column are the input,
and the middle and right columns show the output images rendered by the swarms.

On the other hand, if the inactive agent randomly chooses another inactive
agent, the selecting agent is randomly restarted within the search space (digital
canvas) and thus prompting exploration.

Stochastic Diffusion Search has been used on numerous occasions alongside
other swarm intelligence algorithms (e.g. Particle Swarm Optimisation, Differen-
tial Evolution Algorithm, etc. in [4,5]). And this paper present the novel approach
of deploying solely SDS algorithm for the purpose of producing artistic works.
As known, there have been several relevant attempts to create creative computer
generated artwork using Artificial Intelligence, Artificial Life and Swarm Intel-
ligence. Irrespective of whether the swarms are considered genuinely creative or
not, their similar individualistic approach is not totally dissimilar to those of the
“elephant artists” [22]:

“After I have handed the loaded paintbrush to [the elephants], they
proceed to paint in their own distinctive style, with delicate strokes or
broad ones, gently dabbing the bristles on the paper or with a sweeping
flourish, vertical lines or arcs and loops, ponderously or rapidly and so
on. No two artists have the same style.”

Similarly if the same input image is repeatedly given to the swarms, the images
rendered by the swarms at each time, are never the same. In order to evaluate this
claim empirically, the performance of the swarms are observed when presented
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with several input images. In this experiment, α is set to 15; the value of fc is
randomly generated from the input image and thus the choice of fc depends on
the level of presence of each particular colour in the search space.

Once the process is started, the digital canvas dynamically changes its state
and each time produces a different ‘interpretation’ of the input image; this is
shown in Figures 3, 4 and 5 where the leftmost images represent the input; on
their right, two randomly chosen snapshots of the dynamic work of the swarms
rendering their corresponding input images are displayed. While the output im-
ages (produced by the freedom and constraints of the swarms) stay loyal to the
input image, each is unique and different from the next.

Finally, although this work uses Stochastic Diffusion Search to intelligently
(vs. greedily or randomly) control the colour attention of the swarms, the concept
of attention is extendible to other measures (e.g. shapes); see [3] for an example
of using SDS-led attention in producing sketches called ‘Swarmic Sketches’.

5 Conclusion

This paper introduces a novel approach of using Stochastic Diffusion Search
(SDS) to generate non-photorealistic images with emphasis on the concept of
attention in general, and more specifically colour attention.

The adapted SDS algorithm for the present work, utilises the swarms with
dynamically changing colour attention. The swarms thus converge their atten-
tion on areas with similar colours in the search space and the attention of the
swarms is visualised through their paintings on the digital canvas. This process
is repeated and the outcome – emerging through millions of simple interactions
– constantly produces (although loyal, yet) non-identical rendering of the same
input image.

This work also highlights the mechanisms responsible for the exploration and
exploitation phases within the swarm intelligence algorithm and their relation-
ship with freedom and constraints as two prerequisites of creativity. Expanding
on the previous research on computational creativity (e.g. [1,2,6]), in addition
to the practical aspect of the work presented, the possibility of exhibiting ‘com-
putational creativity by a novel use of the Stochastic Diffusion Search algorithm
is briefly discussed.
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Photos no. 1, 2, 3 and 4 are used under a Creative Commons Attribution
2.0 Generic license: http://creativecommons.org/licenses/by/2.0/; photo no. 5
is used under a Creative Commons Attribution-NonCommercial-ShareAlike 2.0
Generic license: http://creativecommons.org/licenses/by-nc-sa/2.0/; photo no.
6 is used under a Creative Commons Attribution-NonCommercial 2.0 Generic
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used under a Creative Commons Attribution-ShareAlike 2.0 Generic license:
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Abstract. In this paper we introduce Glitch art as a new representation
in Evolutionary Art. Glitch art is a recent form of digital art, and can be
considered an umbrella term for a variety of techniques that manipulate
digital images by altering their digital encoding in unconventional ways.
We gathered a number of basic glitch operations and created a ‘glitch
recipe’ which takes a source image (in a certain image format, like jpeg
or gif) and applies one or more glitch operations. This glitch recipe is the
genotype representation in our evolutionary GP art system. We present
our glitch operations, the genotype, and the genetic operators initialisa-
tion, crossover and mutation. A glitch operation may ‘break’ an image by
destroying certain data in the image encoding, and therefore we have cal-
culated the ‘fatality rate’ of each glitch operation. A glitch operation may
also result in an image that is visually the same as its original, and there-
fore we also calculated the visual impact of each glitch operation. Further-
more we performed an experiment with our Glitch art genotype in our
unsupervised evolutionary art system, and show that the use of our new
genotype results in a new class of images in the evolutionary art world.

1 Introduction

Glitch Art originates from an electronic music niche called ‘Glitch’ [4]. Originally,
a ‘glitch’ refers to a false electronic signal that has been caused by a short, unex-
pected surge of electric power (in this context, a glitch is a ‘spike’). Glitch music
is created using electronic instruments that have been altered in a process called
‘circuit bending’, whereby electronic parts are removed or short-circuited. Other
forms of glitch music originate from a variety of techniques that are labelled
‘data bending’, taken from the hardware equivalent ‘circuit bending’. In data
bending, digital data is manipulated in unexpected ways to create surprising,
novel output. The idea of altering a digital component to influence the analogue
output soon travelled from the music domain to the visual domain. Visual glitch
art also uses ‘data bending’ whereby artists and programmers use hex editors to
open digital images, alter the binary content (often at random), save the result
and view the visual effect. A popular use of glitch art is the ‘Wordpad effect’,
whereby one opens a digital image in Microsoft Wordpad (a simple word proces-
sor). Wordpad assumes the content is a text document and will try to re-arrange
the “text”, insert line endings, and replace a number of characters with other

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 109–120, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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characters. All these changes may, or may not, act like ‘glitches’ in the result-
ing image. There are few scientific publications on the topic of Glitch art, but
there are some very useful online tutorials1. Several authors have suggested that
the name ‘Glitch’ is a misnomer, since many glitch artists deliberately manipu-
late digital content, and do not rely on accidental errors, or glitches [6,7]. In our
paper we present a number of basic glitch operations that alter the binary encod-
ing of digital images. We use these operations to construct a genotype, and with
this genotype we perform an experiment with our unsupervised evolutionary
art system.

Our research questions are

1. Is it possible to develop a genotype for Glitch art (including the operators
for initialisation, crossover and mutation)? And if so, what are the main
obstacles?

2. A glitch operation can ‘break’ the image, and make it unreadable. Is it pos-
sible to control the ‘fatality rate’ of glitch operations at various conditions,
using various image formats?

3. A glitch operation may change a source image, but may also leave the source
image unchanged from a visual point of view; is it possible to control the
visual impact of glitch operations?

4. Does the evolution of glitch art contribute to the visual range of evolutionary
art? In other words, can we evolve aesthetically pleasing images that are
different from images that we know from existing evolutionary art systems?

The rest of the paper is structured as follows; first we discuss related work in
Section 2. Next, we discuss glitch art in Section 3. In Section 4 we describe our
experiments and their results. We end this paper with conclusions and directions
for future work in Section 5.

2 Related Work

Our paper describes Glitch as a genotype representation in Evolutionary Art. In
this section we will shortly describe other genotype representations in EvoArt,
and we will shortly describe related work in generating glitch art.

Evolutionary art is a field where methods from Evolutionary Computation are
used to create works of art. Good overviews of the field are [18] and [2]. Matthew
Lewis presents a nice overview of many forms of visual evolutionary art in the
first chapter of ‘The Art of Artificial Evolution’ [10,18]. There are several meth-
ods in EvoArt that create images from ‘scratch’, like the well-known symbolic
expressions [11,19,8] and (shape) grammars [10]. In recent years there have been
papers on using vector graphics [9,3]. In addition, there have been investigations
in the manipulation of existing images. [5] describes an approach that using

1 An overview of online Glitch tutorials can be found at
http://danieltemkin.com/Tutorials/

http://danieltemkin.com/Tutorials/
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non-photorealistic rendering or NPR to produce synthetic oil paintings from
images; the author uses a genetic algorithm to find suitable values for his NPR
system. In [17] the authors describe the evolution of a NPR system using genetic
programming, whereby the authors use a number of image filter primitives. Our
glitch approach is somewhat similar to [5] and [17] in the use of a source image
as a starting point. However, our glitch approach does not model any form of fil-
tering or NPR approach, so the visual output of our approach is rather different;
our approach often results in images with more displacement and distortion.

Glitch art is a very new field within the digital art world, and although there
have been numerous small projects and many DIY enthusiasts that have created
and uploaded glitch images (for example, search Flickr or Google images for
‘Glitch’), there have been very little scientific publications on the subject. Ben
Baker-Smith has created a software program called GlitchBot2 that daily selects
images (with a Creative Commons license), applies a glitch operation on them
and posts the result to Flickr Glitch Art pool3. GlitchBot searches a random
character in the image data and replaces it with another character. If the image
‘breaks’, the system repeats the process, until a valid image is created [1]. Manon
and Temkin have published a collection of notes on Glitch art [12]. A good art
theoretical reference on visual glitch art is [15]. A good starting point with many
visual examples is [16]. Next to music and visual arts, the ‘Glitch’ phenomenon
has moved to animation [20] and even literature [13].

3 Glitch Art

Glitch art and evolutionary art share a number of similarities. Both employ a
sort of ‘generate and test’ paradigm, whereby a software program generates a
number of possibilities, and a selection is performed by an artist or by a soft-
ware component. Manon et al state that one can not create an glitch image,
one can merely trigger a glitch, and this volatile nature of glitch art makes it a
pseudo-aleatoric art form [12]. Applying a glitch operation to an image is very
simple, but creating interesting visual content is far from trivial. As Manon et
al state “Glitch art is like photography; it’s easy to do, but it’s hard to do
well” [12]. Although finding interesting visual content using Glitch is difficult,
it is by no means a random process. Applying the same glitch operations on
the same image will result in the same end image. In our EvoArt system we
support six image file types for Glitch art; Windows Bitmap (bmp), gif, jpeg,
raw (uncompressed raw image data), png and (compressed) tiff. The image for-
mats each have their own binary format, and each format has its characteris-
tics with respect to glitch operations. First, uncompressed data formats (raw,
bmp) are ‘more stable’ than compressed formats under glitch operations. Glitch
operations on these types of images will affect image data, whereas glitch op-
erations on compressed image data formats might affect meta-data that contains

2 http://bitsynthesis.com/glitchbot/
3 http://www.flickr.com/groups/glitches/pool/

http://bitsynthesis.com/glitchbot/
http://www.flickr.com/groups/glitches/pool/
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instructions on the compressed format. The probability of making an image
unreadable for image viewing software is higher when using compressed image
formats such as png, jpeg and gif.

3.1 A Genotype for Glitch Art

Glitch art is process art; one does not create a glitch, one triggers a glitch [12].
In our EvoArt system (using GP) we want to follow up on this idea, and evolve
‘glitch recipes’. A glitch recipe starts with a randomly selected source image, and
applies one or more glitch operations. The phenotype is the resulting ‘glitched’
image. We implemented operations for the insertion of a random byte string,
the removal of a part of the binary image, and the replacement of a byte with
another byte. These operations ‘insert’, ‘delete’ and ‘replace’ are typical examples
of manual glitch art; you could easily perform these with a hex editor. Since
we are performing these operations automatically in software, we also added a
number of operations that are easily done by software, but would be difficult to
perform manually. These are the binary operations ‘and’, ‘or’, ‘xor’ (exclusive
or) and ‘not’. Furthermore, we added a ‘reverse’ operator that randomly reverses
a number bytes from a certain position. The context of all binary operations is
the binary image format, and plays a very important role in visual glitch art. As
described in the previous section, image formats vary in their layout and content.
If you take a JPEG image and convert it to BMP format, the binary encoding
is different. Therefore, if you perform a random operation f and perform it on
either a JPEG or a BMP image, the results will be different; it might be that
the operation has no effect on either image, but if it does have an effect, it will
probably be different from a visual point of view. It is entirely possible that the
operation f is destructive on the JPEG image and not on the BMP image, or vice
versa. Since the image format is important, we have added a ’setImageFormat’
operation that changes the binary encoding within the genotype. The genotype
starts with reading its source image, and the binary encoding will be the one of
the source image. Executing the ’setImageFormat’ operation will save the source
image, plus all applied glitch operation so far (if any) and converts the ‘current’
image format to the new specified image format.

Table 1 gives an overview of the glitch operations in our EvoArt system.
Several glitch operations from Table 1 use ‘position’ and/ or ‘size’ as an argu-
ment. Both are relative numbers in [0 . . . 1] where the actual position is calculated
at runtime. The ‘relative’ argument position or size is multiplied with the image
size to obtain the absolute position or size. This abstraction makes the operation
independent of image size, and makes it easier to transfer an operation from one
genotype to another by crossover. The position arguments are initialised between
0.02 and 1.0; we chose 0.02 in order to avoid touching the first 2% of the binary
encoding, where several image formats store ‘delicate’ metadata; touching this
metadata often results in immediate destruction of the image. The threshold of
2% was chosen after a number of trials; further experiments should determine
more elaborate thresholds, we suspect that different image file formats will have
different thresholds. The ‘size’ arguments, used in the ‘delete’ and ‘not’ opera-
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Table 1. The glitch operations used in our experiments. arguments of type position
are in [0.02 . . . 1]; the actual position is calculated by multiplying the position argument
with the size of the uncompressed image (see Section 3.1 for a further explanation)

Operation Argument 1 Argument 2 Description

insert position random bytes Inserts random bytes at a
of length N certain position
(N ∈ [2, . . . , 64])

delete position size deletes N bytes from a certain
position, where
N = size · imagesize

replace byte1 byte2 replaces every occurrence of
byte1 with byte2

and , or, xor position bit mask Performs a binary operation
of length N at a certain position using the
(N ∈ [2, . . . , 64]) bitmask

not position size inverts N bytes starting at a
certain position, where
N = size · imagesize

reverse position size reverses N bytes from a certain
position, where
N = size · imagesize

setImageFormat [png|gif|jpg| - Saves the current image in the
tiff|raw|bmp] specified format, and reads the

binary data from the new format

tion specifies a relative size between 0 and 1. The size arguments are initialised
between 10−4 and 10−2, and for an 50kb image the absolute size will lie between
10−4 · 50 · 1024 ≈ 5 and 10−2 · 50 · 1024 ≈ 512 (so a ‘reverse’ operation on a 50kb
image will randomly reverse a buffer between 5 and 512 bytes). In Figure 1 we
give a number of examples of the glitch operations and their results; we show
the portrait of computer graphics celebrity Lenna4, and 7 glitch operations in
several image formats. In addition, Figure 1 shows two examples of two glitch
programs each containing 4 glitch operations.

3.2 Initialisation

Our initialisation procedure randomly samples a source image from a specified
image directory and in our experiments we created a image test set of 500 images.
Next, the initialisation creates between 1 and 5 glitch operations.

4 The image of Lenna has been used as an example image in many sci-
entific papers, especially in the computer graphics community. Also see
http://en.wikipedia.org/wiki/Lenna

http://en.wikipedia.org/wiki/Lenna
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(a) orginal (b) delete/raw (c) insert/bmp (d) reverse/jpeg

(e) replace/jpeg (f) replace/gif (g) replace/tiff (h) xor/jpeg

(i) example 1 (j) example 1 (k) example 2 (l) example 2

Fig. 1. Several examples of glitch operations. Every image is the result of one glitch
operation on the Lenna image in a certain image format; the captions show the opera-
tion and image source format. The bottom row (1i-1l) shows two examples of genotypes
with 4 glitch operations each, with the resulting image/ phenotype.

3.3 Crossover

The implementation of the two-parent crossover for our glitch genotype is fairly
straightforward. First, the crossover randomly selects the source image from one
of the parents. Next, the list of of glitch operations of both parents are cut in two,
and a new list is created by concatenating the first half of one randomly selected
parent with the second half of the other parent. Figure 2 shows an example of a
crossover operation on two Glitch programs.

3.4 Mutation

The mutation operator acts on all parts of the genotype. It may alter the source
image by choosing a random new image (with a probability of 0.1). It iterates
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(a) parent 1 (b) parent 2 (c) child 1 (d) child 2

Fig. 2. Examples of a crossover operation; the first image two images are the two par-
ents, each consisting of the Lenna image as the source, and 5 random glitch operations.
The right two images are the results of crossover.

over the glitch operations, and replaces an existing glitch operation with a ran-
dom new one (with a probability of 0.1), or alters an existing one by changing
the arguments of the operator. For numeric arguments, it adds or subtracts a
value within 1% of the original value. For byte arrays, it iterates over all the
bytes and replaces a byte with a random new byte (with a probability of 0.01).

For single byte arguments (of the ‘replace’ operator) it increases or decreases
the byte value with a value between 0 and 4 (thereby clamping the resulting
byte value between 0 and 255). Figure 3 gives a few examples of three mutations
of one individual glitch program.

(a) initial (b) mutation 1 (c) mutation 2 (d) mutation 3

Fig. 3. Examples of mutations; the first image is the initial glitch program; a program
consisting of a singe ‘replace’ operation on a gif image. The other three images are
three mutations of the initial glitch program.

4 Experiments

In this section we describe our experiments with Glitch art. In our first exper-
iment we determine the fatality rate of our glitch operations. The fatality rate
is calculated as the number of broken images divided by the total number of
glitch operations. In the second experiment we calculate the visual impact of
our glitch operations, whereby we measure the average amount of visual change
each glitch operation causes. In the third experiment we evolve glitches images
using our glitch genotype without a human in the loop.
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4.1 Experiment 1: Determining Fatality Rate

In our first experiment we calculate the fatality rate of the glitch operations and
the different image formats. If we apply a random glitch operation on a random
image of a certain image format, there is a probability that the resulting image
will be broken (i.e. invalid). From present literature, little is known about the
probabilities per image format or per glitch operation. Therefore, we decided to
measure the fatality rate per glitch operation. To this end, we created an image
set of colour 100 images from various sources (mainly paintings, news photos,
pictures of cats, etc.). We converted all 100 images to all our six supported
image formats (bmp, gif, jpeg, png, raw, tiff) using ImageMagick. Next, for
each image we created a random glitch program consisting of one random glitch
operation. We applied this glitch operation on the source image, and determined
whether the resulting image was ‘valid’ (i.e. not broken). We repeated this 10
times for each image format, resulting in 1000 calculations per operation-format
combination. We measured the number of broken images, and divided this by
the total number of glitch operations. The results are shown in Table 2. From

Table 2. The results of the calculation of the fatality rate of each glitch operation per
image file format. Each number is the average of 1000 calculations. The bottom row
shows the averages per image file format, and the rightmost column shows the averages
per glitch operation.

bmp gif jpeg png raw tiff

insert 0.000 0.168 0.007 0.997 0.009 0.998 0.363
delete 1.000 0.166 0.006 1.000 0.007 1.000 0.530
replace 0.018 0.180 0.120 0.996 0.101 0.198 0.269
and 0.000 0.016 0.002 0.997 0.000 0.010 0.171
xor 0.000 0.024 0.007 0.998 0.007 0.014 0.175
or 0.000 0.013 0.145 0.999 0.145 0.149 0.242
not 0.005 0.610 0.310 1.000 0.277 0.650 0.475
reverse 0.006 0.124 0.094 1.000 0.115 0.436 0.296

0.129 0.163 0.086 0.998 0.083 0.432

the results in Table 2 we can conclude that png is by far the most ‘sensitive’
image format, since it has the highest fatality rate. Its fatality rate is almost
1.0 (100%) for any glitch operation, from which we may conclude that png is
rather unusable as an image format for glitch operations. The uncompressed
format ‘raw’ has a very low fatality rate. The Windows Bitmap format also has
a relatively low fatality rate, but it does have a 100% fatality rate with ‘delete’
operations. Gif, bmp, jpeg and raw have low fatality rates, and we will restrict
future glitch experiments to these image formats. In our experiment tiff scored
high on fatality rate, and we suspect that this is caused by our use of compressed
tiff images. We think that when we use uncompressed tiff images (tiff is a very
versatile image format, and support both compressed and uncompressed data),
tiff will score similar to the raw format on fatality rate. When we focus on
the glitch operations in Table 2 we see that the ‘delete’ operation is the most
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‘destructive’ glitch operation, with a fatality rate of 0.530 (53%). The score
is especially high since three image formats do not ‘work well’ with random
deletions of bytes; bmp, png and compressed tiff all score 1.0 (100%) on ‘delete’
operations. The ‘not’ and ‘insert’ operation also have a high fatality rate with
average scores of 0.475 and 0.363 respectively.

4.2 Experiment 2: Measuring Visual Impact

Although it is interesting to know the fatality rate for each glitch operation
and each image format, it is also interesting to know the average visual impact
of each glitch operation per image format. We loosely define visual impact as
the difference between the resulting ‘glitched’ image and its source image. From
our first experiment we know that uncompressed image formats (most notably
‘raw’) are more ‘resistant’ to glitch operations than several compressed image
formats (most notably ‘png’), but does that also mean that glitch operations
have less visual effect on uncompressed image formats? To verify this, we did an
experiment similar to our first experiment, but instead of measuring the fatality
rate, we measured the visual impact. We calculate the visual impact as follows;
we start with the source image Ia, apply one of the glitch operations from Table
1 and obtain the ‘glitched’ image Ib. We convert Ia and Ib to grayscale images,
and calculate the distance between the two images by calculating the average
difference in grayscale value.

dgrayscale(Ia, Ib) =

∑x<w
x=0

∑y<h
y=0 |Ia(x, y)− Ib(x, y)|

w · h (1)

where Ix(x, y) represents the grayscale value of the pixel at (x, y), and w and h
are the width and height of the images (images a and b have the same width and
height). We calculated the visual impact for each combination of glitch operation
and image format on a test set of 100 images (the same image set as used in
the first experiment), and performed 10 runs (resulting in 1000 calculations per
operation/ format combination). If a glitch operation results in a broken image,
we can not calculate the grayscale distance, and we return the value 0. The
results are presented in Table 3.

From our second experiment we can conclude that glitch ‘gif’ and ‘raw’ result
in the largest visual changes. From the first experiment we concluded that ‘png’
is a very difficult image format for glitch operations (since most glitch operations
result in a broken image), and this results in an average of 0.0 for the grayscale
distance (since we assume dgrayscale = 0 in case of a broken image). The ‘replace’
operator has the highest visual impact, which confirms our presumptions after
several manual experimentations with a hex editor. Note that the aforementioned
GlitchBot uses the ‘replace’ operator exclusively.

4.3 Experiment 3: Unsupervised Evolutionary Art

With our genotype, our initialisation, crossover and mutation we performed 20
runs of unsupervised evolution with a population of 100, a tournament size of 2
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Table 3. The results of the calculation of the visual impact (or image distance) of each
glitch operation per image file format. Each number is the average of 1000 calculations.
The bottom row shows the averages per image file format, and the rightmost column
shows the averages per glitch operation.

bmp gif jpeg png raw tiff

insert 0.0000096 0.0014833 0.0002334 0.0000001 0.0010734 0.0000000 0.0004666
delete 0.0000000 0.0014758 0.0002661 0.0000000 0.0012873 0.0000000 0.0005049
replace 0.0000155 0.0204895 0.0020033 0.0000000 0.0023181 0.0007292 0.0042593
and 0.0000000 0.0006621 0.0001791 0.0000000 0.0009455 0.0000057 0.0002987
xor 0.0000000 0.0005464 0.0002195 0.0000000 0.0010731 0.0000012 0.0003067
or 0.0000000 0.0004249 0.0001382 0.0000000 0.0009570 0.0000094 0.0002549
not 0.0000042 0.0005932 0.0001423 0.0000000 0.0007850 0.0000061 0.0002551
reverse 0.0000003 0.0014581 0.0001809 0.0000000 0.0010178 0.0000098 0.0004445

0.0000037 0.0033917 0.0004203 0.0000000 0.0011821 0.0000951

and 10 generations per run.We used 500 gif images of famous paintings as the pool
for the source images (the individuals in the population sample a random image
from this pool). We used a simple ad hoc aesthetic measure that resembles the
Global Contrast Factor (or GCF) aesthetic measure. The GCF aesthetic measure
calculates contrast at various resolutions in the image; images with low contrast
are considered ‘uninteresting’ and receive a low score. For more details we refer to
the original paper [14]. Our aesthetic measure does not calculate the difference in
intensity (contrast) but the difference in colour/ hue. We realise that this measure
would favour phenotypes in our system that have source images that already score
high on this measure, which means that this measure is not specifically tailored for
glitch operations. A measure that would be tailored for glitch operations would at
least calculate the difference between the glitched images and the source images.
We intend to develop a custom aesthetic measure for Glitch art, and combine this
new aesthetic measure with existing aesthetic measures in a Multi-objective EA
setup in future work. Figure 4 shows the results of 10 images from our unsuper-
vised runs. Note that the first two images result from the same source image, and
the same goes for image 3,4 and 5. We think that the visual output over 20 runs is
varied, although a number of individual runs contained images that were relatively
similar. Since our primary goal in our experiment was to test the new genotype
and its genetic operators, we kept our EA as standard as possible, and did not use
any population diversity strategy.

During our runs we measured the glitch operation frequency in the individuals
in the populations. After 20 runs of 10 generations, the ‘replace’ operation was
most frequent, with a score of 27% (which means the 27% of all glitch opera-
tions in all individuals in the population is the ‘replace’ operation. Note that a
‘replace’ operation can occur multiple times in the same individual glitch pro-
gram). The ‘delete’ and ‘insert’ operation occur least frequent, with a frequency
of 7.8% (delete) and 7.1% (insert). We suspect that the fatality rate of a glitch
operation act as a negative selection pressure, since a broken image results in a
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Fig. 4. Portfolio of images gathered from twenty runs with our Glitch genotype and
genetic operators, using our Colour Contrast (hue) aesthetic measure

fitness of -1. We also measured the fatality rate of the individuals in the popu-
lation, and this fatality rate varied between 0.13 and 0.2 (13% - 20%).

5 Conclusions and Discussion

In Section 1 we presented a number of research questions and we will answer
them here. First, we asked whether it was possible to evolve Glitch Art using a
new genotype for Glitch. Our experiments with Glitch art confirm this. We have
developed a genotype for Glitch art and have implemented an initialisation,
crossover and mutation operator, and have performed unsupervised evolution
with these new genetic operators. Our main obstacles were the high fatality rates
of some glitch operation/ image format combinations, and the lack of robustness
of some image decoding libraries; we encountered a number of crashes when
trying to read invalid image content.

Our second research question involves the control of the fatality rate of glitched
images; from our first experiment we can conclude that the choice of image for-
mat and glitch operation has a large effect on the fatality rate. Using glitch
operations on png images will result in broken images in almost 100% of the
cases, which makes it an unusable image format for glitch operations. From our
fatality rate calculation in Section 4.1 we concluded that we should restrict glitch
operations to the image formats gif, jpeg and raw.

Our third research question was whether we could control the the visual impact
of the glitch operations. We have measured the visual impact of the different com-
binations of glitch operation and image format, and found that gif and raw pro-
duced the most visual changes upon glitch operations.With the results of the first
and second experiment, we concluded to use gif as the image format for our third
experiment. We intend to use the numbers from experiment 1 and 2 to decrease
the fatality rate and increase the visual impact of our glitch system. Nevertheless,
creating glitch art is, and will be, a trial-and-error process.
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Our last research question was whether our experiments with Glitch art re-
sulted in a style of images that is ‘new’ within evolutionary art. Although it
difficult to answer this question in quantitively, we think that glitch images
differ significantly from most evolutionary art images; the images have a more
‘radical’ flavour than images evolved with image filters, since there is a higher
level of displacement and distortion in the ‘glitched’ images.
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Abstract. Currently, a large number of computing systems and user applications
are focused on distributed and collaborative models for heterogeneous devices,
exploiting cloud-based approaches and social networking. However, such sys-
tems have not been fully exploited by the evolutionary computation community.
This work is an attempt to bridge this gap, and integrate interactive evolutionary
computation with a distributed cloud-based approach that integrates with social
networking for collaborative design of artistic artifacts. Such an approach to evo-
lutionary art could fully leverage the concept of memes as an idea that spreads
from person to person, within a computational system. In particular, this work
presents EvoSpace-Interactive, an open source framework for the development
of collaborative-interactive evolutionary algorithms, a computational tool that fa-
cilitates the development of interactive algorithms for artistic design. A proof of
concept application is developed on EvoSpace-Interactive called Shapes that in-
corporates the popular social network Facebook for the collaborative evolution
of artistic images generated using the Processing programming language. Initial
results are encouraging, Shapes illustrates that it is possible to use EvoSpace-
Interactive to effectively develop and deploy a collaborative system.

Keywords: Interactive Evolution, Collaborative Design, Evolutionary Art, Cloud
Computing.

1 Introduction

Evolutionary Algorithms (EAs) where conceived as general techniques capable of ad-
dressing a large set of hard optimization problems [6]. Yet, their possibilities as a source
of creativity were soon devised and applied to art, design and music, to name but a
few [15]. Different researchers noticed both, their inherent randomized search process
conducting to different solutions for a single problem when repeatedly running the al-
gorithm, but also their feasibility when configured to generate novel designs from an
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aesthetic point of view. Thus, EAs were soon employed for generating design and art
concepts [1].

Nonetheless, a number of problems has been noticed when dealing with creativity
and Evolutionary Algorithms [9]. Among them, we can find the difficulties when de-
ciding how to encode design or art concepts within a data structure -which give rise to
individuals and populations- as well as the definition of useful genetic (search) opera-
tors over the chromosome. A particular hard problem is how to evaluate the quality of
individuals within the population when aesthetic concepts are considered. The problem
is that creativity and aesthetic principles are not clearly understood, which keeps from
accurately defining a function that can properly measure it. Therefore, researchers soon
resort to human brains to perform that specific task, thus defining Interactive Evolu-
tionary Algorithms (IEAs): standard EAs whose fitness evaluations are performed by
human beings in an interactive fashion. Thus, the main loop of the EA includes the hu-
man intervention for quality assessment of evolved solutions. Nevertheless, an inherent
drawback arises from the very nature of the model, namely, human fatigue caused by
repeated interaction -and some authors have already tried to address this [5]. In any
case, IEAs have demonstrated their capability for effectively producing art and design
[1,14,16]. We should also mention that typically artists with a strong background in
computer science, or computer scientists with art/design interest, are the researchers
involved in this area, since it can be difficult for an artist without programming capabil-
ities to enter this research domain. Therefore, a disadvantage remains when addressing
art and design by means of EAs, when compared with standard optimization problems.
Researchers have developed over the years not only improved versions of the basic op-
erators, models or meta-models for EAs, they have also embedded these improvements
and their algorithms within toolboxes that allow other researchers to easily launch an
EA when solving an optimization problem. This is exactly the opposite for art and de-
sign: no EA tool specifically aimed to this field has been design yet. Researchers have
typically implemented specific versions fitted to the problem they try to address, but
no effort is aimed at developing a standard EA-based tool for Art and Design. Some
desirable properties for a specific IEA toolbox useful for artists are:

1. An easy process for deploying individuals capable of generative art/design. Given
that standard users of this toolboxes will be artists with no background in computer
science, an easy means for encoding art concepts should be provided,without the
need to understand how to encode an EA;

2. The direct influences among different artists should not only be allowed, but en-
couraged, in a collaborative process.

The art world grows on a network of influences that allows ideas to travel between
minds. Authentic memetic evolution of artistic ideas arises from an artist’s mind and
hands, and this should be automatically promoted by a specific toolbox: memetic evolu-
tion without any explicit need of algorithm encoding. Thus, the term memetic evolution,
as originally defined by Richard Dawkins [3], relying on both minds and computers
would be finally a main component of the evolutionary process.

This work provides the first tool-set that explicitly addresses these issues, a collab-
orative and interactive EA framework that will easily allow artists to evolve their cre-
ations while interacting with a network of artists and friends working together around
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the world. The remainder of this paper proceeds as follows. Section 2 presents related
work on the topic of Interactive Evolution. Then, Section 3 presents the computational
platform on which the main proposal of this work is developed. The proposed collabo-
rative interactive EA is presented in Section 4. The experimental work and results are
presented in Section 5. Finally, a concluding remarks are provided in Section 6.

2 Related Work

Interactive evolution (IE) incorporates human preferences into the selective pressure
that guides the search [15,13]. Specifically, IE poses an open-ended evolutionary search,
where the objective function of traditional EAs is replaced by a subjective evaluation
carried out by a human user of the system. In one sense, this open-ended nature of
IE broadens the range of feasible solutions that can be reached by the search, promot-
ing diversity and exploration of design space. In fact, some of the earliest EAs were
open-ended interactive systems, such as the well-known Biomorphs program [4]. For
instance, IE has been combined with the recently proposed Novelty Search algorithm
[17], to promote and exploit these properties. IE is an active area of research, and the ap-
proach has been used in a wide variety of applications and problem domains. However,
in this work, emphasis is given to IEAs that were designed to evolve artistic artifacts.
In particular, collaborative systems where many users interact and evaluate an evolving
population, thus guiding the search based on an aggregate of subjective preferences and
considerations. Such systems can be referred to as Collaborative IEAs or C-IEAs. What
follows is not intended as a comprehensive survey, only a review of the most relevant
contributions to the present work.

An early example of a web based interactive system is the work by Langdon [8],
which evolves fractal representations of virtual creatures. It proposed a distributed EA
using a global population that resides on a central web server and distributes por-
tions of the population to remote clients using Javascript. Users evaluate individu-
als locally and those a user prefers are returned to the server and can be distributed
over the web. Similarly, Secretan et al. [12] and Clune and Lipson [2] use web-based
IEAs to evolve artistic artifacts using a generative encoding, compositional pattern
producing networks. Images are evolved in [12] and 3-D sculptures in [2] . In both
cases, user (connected clients) collaboration is encouraged. Both works offer web-
pages (see Picbreeder.org and EndlessForms.com), where users can select or create
random individuals and evolve lineages of artifacts based on their preferences. In these
systems a user can take a previously evolved artifact and continue the search pro-
cess himself, building upon a previous evolutionary design in a sequential manner.
Therefore, evolved artifacts can be the product of a collaborative search process. An-
other feature is that evolved artifacts can be rated by users, and since users can cre-
ate individual accounts, the ratings provide a way to rank users, or to select previ-
ously evolved artifacts based on the particular style of each user. Furthermore, the
collaborative process is captured by the system, since it is possible to visualize how,
and when, different users influenced a genetic lineage. Kowaliw et al. [7] present an-
other recent example, evolving ecosystemic models, a generative encoding based on
multi-agent systems, that generate high quality artistic drawings. Users visit a website
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(http://www.csse.monash.edu.au/~cema/evoeco/) and interact with a
Java applet, after which they can choose to add evolved images to a central collection,
such that other users can see the resulting images, or use the images as seeds for their
own IE design.

The present work builds on previous proposals and extends the C-IEA approach.
First, it promotes collaborative evaluations of artistic artifacts in a dynamic and parallel
manner, instead of the sequential approach followed in [12,2]. Second, it incorporates
explicit user interactions by encouraging the use of social networking. Third, it facili-
tates the ability to save and share promising artifacts. Finally, it emphasizes the use of
a cloud-based model, with support for multiple computing devices.

3 EvoSpace

EvoSpace is a population store for the development of evolutionary algorithms that are
intended to run on a cloud computing model. It is designed to be versatile, since the
population is decoupled from any particular evolutionary algorithm. Evospace is asyn-
chronous, client processes, called EvoWorkers, dynamically and asynchronously inter-
act with the EvoSpace store and perform the basic routines of an evolutionary search.
EvoWorkers can reside on remote clients or on the platform server itself.

EvoSpace consists of two main components. First, the EvoSpace container that stores
the evolving population. The second component consists of the remote clients called
EvoWorkers, which execute the actual evolutionary process, while EvoSpace is only
a population repository. Figure 1 illustrates the main components and dataflow within
EvoSpace.

EvoSpace is based on the tuplespace model, an associatively addressed memory
space shared by several processes. A tuplespace can be described as a distributed shared
memory (DSM) abstraction, organized as a bag of tuples. A tuple t is the basic tu-
plespace element, composed by one or more fields and corresponding values. In this
model, the basic operations that a process can perform is to insert or withdraw tuples

http://www.csse.monash.edu.au/~cema/evoeco/
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from the tuplespace. EvoSpace is composed by a set of objects ES and a set of inter-
face methods provided by a central server. Objects can be withdrawn, processed and
replaced into ES using a specified set of methods. However, EvoSpace is different from
other tuplespace implementations in the sense that retrieving and reading objects from
ES are random operations. Individual objects are not of high interest when accessing
ES, neither is retrieving objects based on search criteria. Therefore, EvoSpace offers
the following interface methods.

Read(n): This method returns a random set A of objects from ES, with |A| = n and
A ⊂ ES, if n < |ES|, the method returns ES otherwise.

Take(n): Returns a random set A, following the similar logic used for Read(). How-
ever, in this case the sequence of Take() operations provide a temporal dimension to the
dynamics of set ES. We can define ESi as the set at the moment of the i−th Take() oper-
ation and Ai as the output. The contents of EvoSapce are then given by ESi+1 = ESi\Ai;
i.e., the objets taken are effectively removed from ES. The objects taken are also copied
to a new set Si of sampled objects and stored within a temporary collection S on the
server, implemented as a priority queue. Sets Si ∈ S can then be reinserted to ES if
necessary.

ReInsert(i): This method is used to reinsert the subset of elements removed by the
i− th Take() operation, such that the contents of EvoSpace are now ES∪Si if Si ∈ S
and ES is left unchanged otherwise.

Insert(A): This method represents the union operation ES∪A.
Replace(A,i): Similar to Add(), however set A should be understood as a replace-

ment for some Si ∈ S , hence |A|= |Si|, but the objects in A can be different (evolved)
objects from those in Si. Moreover, if Si exists it is removed from S . However, if Si

does not exist this means that a ReInsert(i) operation preceded it, this increases the size
of ES.

Remove(A): This method removes all of the objects in A that are also in ES, in such
a way that the contents of EvoSpace are now set to ES∪ (A∩ES).

Until now, we have assumed that the objects in ES represent individuals in an EA.
Explicitly, the objects in ES are stored as dictionaries, an abstract data type that repre-
sents a collection of unique keys and values, with a one to one association.

The EvoSpace Server Processes. On the server side, a process calledEvoSpaceServer
is executed, which creates and activates a new EvoSpace container object and waits for re-
quests to execute interface methods. Additionally, on the server three more processes are
executed, these are: InitPopulation, ReInsertionMgr and EvolutionMgr.
InitPopulation is executed once, its goal is initialize the population by adding
popsize random objects. The function that creates new individuals depends on the prob-
lem and the representation used. ReInsertionMgr is used as a failsafe process that
periodically checks (every wt seconds) if the size of the population in ES falls below a
certain threshold min or if the time after the last reinsetion is greater than nextr. If any
of these conditions are satisfied, then rn subsets Si ∈ S are reinserted into ES using the
ReInsertOld() method. Finally, EvolutionMgr periodically checks if a termination
condition is satisfied, which is checked by the isOver() method. This method can be
implemented according to the needs of the evolutionary search.
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EvoSpace Clients: EvoWorkers. The EvoWorker process is straightforward, it re-
quests a set of objects Ai from the ES container. Afterwards, the Evolve() function is
called where the actual evolutionary cycle is performed. In this scenario, Ai can be seen
as a local population on which evolution is carried out for g generations. The result of
this evolution is then returned and reinserted into ES, afterwards the EvoWorker can
request a new set from ES and repeat the process. Otherwise, each EvoWorker could
specialize on a particular part of the evolutionary process, such as selection, evaluation
or genetic variation; an approach not taken in the present paper.

Implementation. Individuals are stored in-memory, using the Redis key-value database.
Redis was chosen over a SQL-based management system, or other non-SQL alterna-
tives, because it provides a hash based implementation of sets and queues which are
natural data structures for the EvoSpace model. For example, selecting a random key
from a set has a complexity of O(1). The logic of EvoSpace is implemented as a Python
module exposed as a Web Service using cherrypy and Django HTTP frameworks. The
EvoSpace web service can interact with any language supporting json-rpc or ajax re-
quests. The EvoSpace modules and workers in JavaScript, JQuery and python are avail-
able with a Simplified BSD License from http://evospace.org.

4 A Framework for Collaborative Interactive Evolution

The goal of this work is to develop an open source framework for Web and Cloud-
based C-IEA systems, using current web standards and libraries for mobile devices.
The framework is called EvoSpace-Interactive, its main components are depicted in
Figure 2. Developers of C-IEA applications are liberated from the need of designing
and programming a platform for distributed user collaboration. Only three components
of the framework must to be defined for each application, marked with double lines
in Figure 2; these are: an individual representation; a processing script that renders
each individual; and a worker script that encodes the evolutionary operators will need
to be defined according to the representation and problem domain. However, in future
versions of the framework much of this work could be predefined, but also left open
for advanced users to change as they require. What the framework offers for free is: a
central repository for the population implemented as an EvoSpace service; a Web Ap-
plication script implemented using Django, a mature full stack Web Framework with a
BSD license developed in Python. This application is responsible for user authentica-
tion and session handling through the popular Facebook social network using the OAuth
2.0 protocol. Also, the storage of collections, where users can store individuals they like
to share with friends, is persisted using the PostgreSQL DBMS. Most of the interactive
functionality is programmed in the client side using Javascript libraries. The communi-
cation between components is implemented using json-rpc, a lightweight remote pro-
cedure call protocol and common ajax and http transactions. Overall functionality is
decomposed in specialized services, adding flexibility to the framework since services
can be interchanged. The framework is build using only open source components from
libraries to servers. Users interact with the system through a GUI implemented on a
Responsive Web Design (RWD) front end framework, an approach to web design in

http://evospace.org
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Fig. 3. User interface of the EvoApp C-IEA

which a graphical user interface is crafted to provide a satisfactory viewing experience
in a range of mobile devices. This approach will enable designers to tailor the look and
feel of the application with minimum intrusion, only changing CSS definitions. Current
functionality from the user perspective is described next.
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User Interface. The users interact with the web interface depicted in Figure 3, which
is composed of five elements. First, at the top left corner user login and authentication.
Users can login with their Facebook account or participate as anonymous users. Sec-
ond, if a user chooses to login a list of Facebook friends that have also linked their
account with the C-IEA application is presented on the left, to encourage users to in-
teract with the system. The third element is a central Wall area, where a population
sample of n individuals is shown to the user. These are n random individuals taken from
the EvoSpace server. Here, the user can interact with the system in two ways. He can
click on the individuals he prefers, a clicked image is highlighted and this counts as a
”like" for the individual (this is further explained in the following section). Addition-
ally, a user can choose to add an image to one of their Collections. A collection is a
special directory to store individuals a user prefers and wishes to save. After the user
finishes interacting with the current crop of individuals on the Wall, he can choose to
retrieve a new sample from EvoSpace. This is done with the fourth element of the inter-
face, located at the top of the screen, the GetMore button. The button returns the current
group of individuals to EvoSpace, and brings back a new one. Moreover, each time a
user performs a GetMore click, it triggers a server-side Breeding event, this event can
be used to trigger an application dependent Breeding process. The fifth element of the
interface is shown at the bottom left corner, the Collections section. The user can create
several collections, to group and organize his favorite artifacts. Moreover, a user can
browse the content of each collection and from there share images through the social
network. When a user browses over an individual a detail pane shows how many users
have liked the individual. The pane also includes a link to the individual’s details, the
parents, genetic operators that created it, and genealogy information.

Individual Representation. Individuals are represented internally as a dictionary, as
mentioned in Section 3. The basic properties stored for EvoSapce-Interactive applica-
tions are: a unique id; a user defined chromosome; the number of times the indi-
vidual has been selected in a sample and returned to the population, stored in property
called views; the genetic operators that generated the individual; ids of the parents;
current Fitness that stores the most resent fitness value; and a fitness dictio-
nary where each key is a concatenation of a userid, a timestamp and a numerical
value that represents the rating given by the corresponding individual. A UML repre-
sentation of an individual is given in Figure 4.

Processing Language and HTML Canvas Element. Processing is a programming lan-
guage and development environment initially created to serve as a software sketchbook
and as a tool to teach fundamentals of computer programming within a visual context.
Currently is used by artists, designers, architects, and researchers for visualization ap-
plications, games and interactive animations projects [11]. Processing is a subset of
Java directed to novice programmers and generative artists [10], which are the intended
users of the EvoSpace-Interactive framework. As a complement there is a javascript li-
brary processingjs that allows Processing scripts to be run by any HTML5 compatible
browser. Processing scripts are responsible of rendering individuals which can involve
animations, sound or even interactive artifacts. Before calling the draw() method of
the processing script initial place holding or fallback parameters are replaced with an
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individual’s chromosome. Each individual’s script has its own Canvas entity, defined by
the HTML5 standard as an element that provides scripts with a resolution-dependent
bitmap canvas which can be used for rendering graphics on the fly. Although the com-
bination of an HTML5 Canvas element and a Processing script is supported by default,
other combinations could be used. For instance, images, embedded audio, or other li-
braries capable of drawing in the Canvas. Also, a fallback implementation must be con-
sidered for applications intended for non-HTML5 capable browsers.

5 Experiment: Shapes Application

As a proof of concept a C-EIA application was implemented with the EvoSpace-Interactive
framework. The application is called Shapes, and implements each EvoSpace-Interactive
component as follows.

Individual Representation and Breeding Process. In Shapes, individuals represent a
two dimensional 11 by 6 array of equilateral triangles, these arrays are sometimes
used in Op-Art style paintings. Each triangle has a color drawn from a twelve color
palette. The array is represented by a 66 element chromosome vector v = (v1, ..v66),
with vi ∈ {1,2, ..11}. The background of the painting is Light Gray, this can give the
effect of a missing triangle when it has the same color. A processing script is used to
render a static version of the image. The breeding process uses tournament selection of
size 6 to select two individuals from EvoSpace, and generates two offspring. The off-
spring replace the worst individuals from both tournament groups. Crossover operators
are used with crossover rate of 1, these are vertical and horizontal one-point crossovers.
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Several mutations are used with a mutation rate of 0.3, these are: (1) single point muta-
tion; (2) vertical and horizontal mirrors at a random point; (3) shuffle that gives a new
permutation of the chromosome.

Fitness Evaluation. The fitness of each individual takes into account the evaluation
given by several users. In Shapes, users can only give positive evaluations explicitly
when they select an individual, a Like. When a user evaluates a sample of individuals,
some (or all) of them will not receive a vote, in each case the views property will be
incremented by 1. For instance, if an individual has a high number of views with with
only two likes, he is worse than an individual with two views and two likes. The ratio
Likes/Views is more informative, but it does not distinguish between an individual with
many views and another with only one view if they both have zero likes; also views must
be >=1 to avoid dividing by zero. Fitness, therefore, is given by (Likes+1)/(Views+1).

System Setup. The population was initialized with 500 randomly generated individu-
als. Every second sample returned from users triggers a Breeding process is executed.
ES.ReInsert() method was called when the sample queue reaches a threshold of
20 samples. A maximum number of concurrent 40 users was expected. The system was
installed in a virtual private server with 500 MB of RAM. The http Server used was
Gunicorn behind a Nginx http proxy. A simple call for participation was issued by two
authors in their personal Facebook and Twitter accounts.

Results. In nearly two weeks of operation, there is a total of 70 active users, users who
gave permissions to the Shapes application and haven’t removed it from their Facebook
account. Facebook dashboard reports that 74 percent of users accepted the permission
request to use their credentials to login onto Shapes. Participation of anonymous users
was permitted, but their number was not recorded. Basic instructions we’re shown in
the landing page, but part of the functionality was left to be explored by users. An auto-
increment id was assigned to each individual, after two weeks the highest id number
is 8379. A total of 17449 samples were taken from the EvoSpace server after the two
week trial. A sample of artistic artifacts in a collection is depicted in Figure 5.
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6 Conclusions

Initial results are encouraging, the EvoSpace-Interactive framework was successfully
used to deploy a C-IEA that users accepted and used to design artistic artifacts. Since
the system integrates with a popular social network, the framework promotes the col-
laborative evolution of artistic memes, leveraging the insights of multiple users in a
parallel and asynchronous manner. The platform enables the collaborative assignment
of fitness and provides researchers with relevant contextual information about the pro-
cess, that can be considered not only in the evaluation step, but also by the system as
a whole, allowing a better understanding of user behavior and preferences. Moreover,
through the use of the Processing language, and easy to develop representation of artis-
tic artifacts is possible, the possibilities of which were not yet pushed to the limit by
the simple Shapes application, the main topic of future work and research. Nonetheless,
the paper presents the first attempt to build a tool that facilitates the development and
deployment of C-IEA for evolutionary art.

Acknowledgments. Research supported by DEGEST-ProIFOPEP (Mexico) Research
Project 4616.12-P; CONACYT (Mexico) Basic Science Research Project No. 178323;
Regional Government Junta de Extremadura, Consejería de Economía-Comercio e In-
novación and FEDER, project GRU09105; projects TIN2011-28627-C04-02 and -03
(ANYSELF), awarded by the Spanish Ministry of Science and Innovation; and project
P08-TIC-03903 awarded by the Andalusian Regional Government.

References

1. Bentley, P.: An introduction to evolutionary design by computers. In: Bentley, P.J. (ed.) Evo-
lutionary Design by Computers, ch.1, pp. 1–73. Morgan Kaufman, San Francisco (1999)

2. Clune, J., Lipson, H.: Evolving three-dimensional objects with a generative encoding in-
spired by developmental biology. In: Proceedings of the European Conference on Artificial
Life, pp. 144–148 (2011)

3. Dawkins, R.: The Selfish Gene. Oxford University Press, Oxford (1976)
4. Dawkins, R.: Climbing Mount Improbable. W.W. Norton & Company (1996)
5. Frade, M., de Vega, F.F., Cotta, C.: Evolution of Artificial Terrains for Video Games Based

on Accessibility. In: Di Chio, C., Cagnoni, S., Cotta, C., Ebner, M., Ekárt, A., Esparcia-
Alcazar, A.I., Goh, C.-K., Merelo, J.J., Neri, F., Preuß, M., Togelius, J., Yannakakis, G.N.
(eds.) EvoApplicatons 2010, Part I. LNCS, vol. 6024, pp. 90–99. Springer, Heidelberg (2010)

6. Jong, K.A.D.: Evolutionary computation - a unified approach. MIT Press (2006)
7. Kowaliw, T., Dorin, A., McCormack, J.: Promoting creative design in interactive evolutionary

computation. IEEE Transactions on Evolutionary Computation 16(4), 523–536 (2012)
8. Langdon, W.B.: Global Distributed Evolution of L-Systems Fractals. In: Keijzer, M.,

O’Reilly, U.-M., Lucas, S., Costa, E., Soule, T. (eds.) EuroGP 2004. LNCS, vol. 3003,
pp. 349–358. Springer, Heidelberg (2004)

9. McCormack, J.: Open Problems in Evolutionary Music and Art. In: Rothlauf, F., Branke,
J., Cagnoni, S., Corne, D.W., Drechsler, R., Jin, Y., Machado, P., Marchiori, E., Romero,
J., Smith, G.D., Squillero, G. (eds.) EvoWorkshops 2005. LNCS, vol. 3449, pp. 428–436.
Springer, Heidelberg (2005)

10. Pearson, M.: Generative Art. Manning Publications, pap/psc edn. (Jul 2011)



132 M. García-Valdez et al.

11. Reas, C., Fry, B.: A programming handbook for visual designers and artists. The MIT Press
(2007)

12. Secretan, J., Beato, N., D’Ambrosio, D.B., Rodriguez, A., Campbell, A., Folsom-Kovarik,
J.T., Stanley, K.O.: Picbreeder: A case study in collaborative evolutionary exploration of
design space. Evol. Comput. 19(3), 373–403 (2011)

13. Semet, Y.: Evolutionary computation: a survey of existing theory. Tech. rep., University of
Illinois (2002)

14. Sims, K.: Artificial evolution for computer graphics. In: Proceedings of the 18th Annual Con-
ference on Computer Graphics and Interactive Techniques, SIGGRAPH 1991, pp. 319–328.
ACM, New York (1991)

15. Takagi, H.: Interactive evolutionary computation: fusion of the capabilities of ec optimization
and human evaluation. Proceedings of IEEE 89(9), 1275–1296 (2001)

16. Todd, S., Latham, W.: Evolutionary art and computers. Academic Press (1992),
http://books.google.com.mx/books?id=KfYlAQAAIAAJ

17. Woolley, B.G., Stanley, K.O.: Exploring promising stepping stones by combining novelty
search with interactive evolution. CoRR abs/1207.6682 (2012)

http://books.google.com.mx/books?id=KfYlAQAAIAAJ


Feature Selection and Novelty

in Computational Aesthetics

João Correia1, Penousal Machado1, Juan Romero2, and Adrian Carballal2

1 CISUC, Department of Informatics Engineering, University of Coimbra,
3030 Coimbra, Portugal

{jncor,machado}@dei.uc.pt
2 Faculty of Computer Science, University of A Coruña, Coruña, Spain

{jj@udc.es,adrian.carballal}@udc.es

Abstract. An approach for exploring novelty in expression-based evo-
lutionary art systems is presented. The framework is composed of a fea-
ture extractor, a classifier, an evolutionary engine and a supervisor. The
evolutionary engine exploits shortcomings of the classifier, generating
misclassified instances. These instances update the training set and the
classifier is re-trained. This iterative process forces the evolutionary al-
gorithm to explore new paths leading to the creation of novel imagery.
The experiments presented and analyzed herein explore different feature
selection methods and indicate the validity of the approach.

1 Introduction

The development of aesthetic judgement systems (AJSs) is one of the major chal-
lenges in the field of Evolutionary Art [15] and a necessary step for the creation
of an autonomous Artificial Artist (AA) [13]. Over the course of the years, some
researchers developed hardwired aesthetic measures while others focused on the
application of Machine Learning (ML) techniques to learn aesthetic preferences.

The work presented herein follows this second line of research. We employ a
Feature Extractor (FE) to analyze and synthesize the characteristics of images.
These are used to train an Artificial Neural Network (ANN), whose output is
used to assign fitness to the images produced by an expression-based evolutionary
art system. The overall approach is inspired on the work of Machado et al. [13],
but there are significant differences at the architecture and implementation level.

The most notable difference pertains to feature selection. Machado et al. per-
form several offline experiments to determine a subset of the features of the FE.
This fixed subset is then used as input to the ANNs throughout all iterations
and evolutionary runs. We adopt a different approach: the subset of features is
determined dynamically, by automatic means, at the beginning of each iteration.
At the implementation level the most significant differences are: (i) the FE was
augmented; (ii) new, and significantly larger, initial datasets were constructed;
(iii) the strategy used to update the image datasets is different.

Similarly to Machado et al. [13], more than learning aesthetic principles, we
are interested in promoting stylistic change from one evolutionary run to another

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 133–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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by forcing evolution to explore new paths, with the ultimate goal of promoting
novelty and increasing the potential for creativity.

2 Related Work

There are several notable examples of AJSs relying on hardwired aesthetic mea-
sures (e.g. [21,12,6]) and also recent works comparing the merits of such aesthetic
measures [5,8,1,18]. Usually the AJSs that employ ML, extract information from
the images and employ ML to perform aesthetic-based classification or evalua-
tion, which is a common approach in the field of content based image retrieval
(e.g., [4,9,17]).

The combination of this type of AJS with an Evolutionary Art tool has also
been explored. In their seminal work Baluja et al. [2] used an ANN trained
with a set of images generated by user-guided evolution to assign fitness. [19]
used Self Organizing Maps to evolve novel images. Machado et al. [13,14] study
the development of AAs able to perform style changes over the course of several
runs. To attain this goal they employ a FE, ANNs trained to distinguish between
internal and external imagery, and an expression-based EC engine, promoting an
arms-race between the EC engine and the ANNs. In a related work, Li et al. [11]
investigate aesthetic features to model human preferences. The aesthetic model
is built by learning both phenotype and genotype features, which are extracted
from internal evolutionary images and external real world paintings.

Kowaliw et al. [10] compared biomorphs generated randomly, through interac-
tive evolution, and through automatic evolution using a classifier system inspired
by content based image retrieval metrics. The experimental results indicate that
the results of the automatic system were comparable to those obtained by inter-
active evolution.

3 The Framework

The framework comprises three main modules: Evolutionary Computation (EC)
engine, Classifier and Supervisor. Figures 1 and 2 present an overview of the
framework and the interaction between the EC engine and Classifier, respec-
tively. The application of this framework involves the following steps:

1. Selection of an Internal and an External image dataset;
2. A Classifier System (CS) is trained to distinguish between the Internal and

the External instances;
3. N independent EC runs are started; The output of the CS is used to assign

fitness to the generated individuals;
4. The EC runs stop when a termination criterion is met (e.g., a defined number

of generations, attaining a fitness value);
5. A Supervisor selects and filters instances gathered from the EC runs;
6. The process is repeated from step 2 until a termination criterion is met.
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Fig. 1. Overview of the system
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Fig. 2. Evolutionary model and its interaction with the classifier

For the purpose of this paper the framework was instantiated as described next.
The EC engine is an expression-based evolutionary art tool (see section 4.2).
The Internal set is composed, exclusively, of images generated by the EC engine
in runs where fitness was assigned randomly. As such, it represents the type of
imagery that the system tends to create when no aesthetic preference is imposed.
The External set is composed of famous paintings and artworks. It serves as an
aesthetic reference for the system. The CS comprises feature extraction, feature
selection and an ANN, which performs the classification. The output of the ANN
is used to assign fitness. Images that are classified as External, i.e. misclassified,
have higher fitness than those classified as Internal. The Supervisor manages
the evolved instances. In this instantiation, it picks individuals from the EC run
that are not present in the internal set and sequentially substitutes the existing
ones. Thus, the Supervisor modifies the internal set, by iteratively replacing the
old examples with unique individuals generated during the EC runs. Although
this replacement strategy may eliminate relevant instances, it ensures balance
between the cardinality of the classes.

The entire approach relies on promoting a competition between the EC engine
and the CS. In each iteration the EC engine must evolve individuals that are
misclassified by the CS. To do so, it must evolve images that are atypical to the
EC engine. Since the images evolved in each iteration are added to the internal
dataset, the engine is forced to reinvent itself, exploring new regions of the search
space, in a permanent quest for novelty.

4 Experimental Setup

In this section we describe the settings employed in the experiments presented in
this paper, explaining the details of the image classifier (4.1); of the EC engine
(4.2); initialization and updating methodology (4.3).
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4.1 Image Classification

The CS is composed of an image classification module that uses, a FE, an ANN,
and a Feature Selection methodology.

The FE is responsible for extracting characteristics from the images. This
process implies: (i) Pre-processing, which includes all the transformation and
normalization operations applied to a given input image; (ii) Application of
metrics, the application of certain methods based on statistical measurements
and image complexity estimates; (iii) Feature building, the extraction of results
from the metrics in order to build the image feature set.

The FE converts all images to a 128×128 pixels and 8 bits per channel format,
to ensure that all input images are evaluated under the same conditions. The
images resulting from these operations are subject to transformation operations.
These transformations include: no filter, which means no transformation ap-
plied; Sobel and Canny based edge detection; an image transform operation, the
distance transform; a quantization algorithm; a salience algorithm, the subject
salience.

Afterwards the FE calculates the following metrics: average (i) and stan-
dard deviation; (ii) of the image pixel values; complexity estimates based on
JPEG; (iii) and fractal compression [18]; (iv) Zipf Rank-Frequency (v) and Size-
Frequency (vi), which result from the application of the Zipf’s law [23]; (vii)
Fractal dimension estimates using the box-counting method [22].

Splitting the image in color channels, applying the previously mentioned trans-
formations to each channels, and applying the metrics to each of the resulting
images, yields a total of 804 features per image. More information on the feature
extractor can be found in [3].

The choice of an ANN based classifier is justified by its success in [13]. The
ANN receives as input the feature vector. It has one hidden layer of 15 neurons,
and two output neurons, one per each class, and is trained by backpropagation.
This architecture was established in preliminary experiments.

To avoid a “binary” output, i.e. both neurons returning either 0 or 1, which
would result in an unsuitable fitness landscape, we employ a tolerance threshold
during the training stage. This means that during the backpropagation of the
error, if the difference between the output of the network and the desired output
is below the maximum tolerated threshold, then the error is propagated back as
zero (no error). The classifier was built using WEKA’s1 FastNeuralNetwork.

Feature selection methods are typically composed by an evaluation criteria
and a search method. The necessity of adopting a cost effective approach made
us to adopt a filter evaluation based on the feature statistics and sub-optimal
search. The choice of deterministic search approach makes the analysis of the
results less complex. Considering these constraints, we employed CfsSubsetEval
[7] for evaluation combined with a best first search algorithm. The CfsSubsetE-
val evaluates the worth of a subset of features, by statistically processing each
feature, in terms of information redundancy and correlation with the class. Re-
sulting subsets of features tend to be highly correlated with the class and with

1 WEKA 3: Data Mining Software in Java - http://www.cs.waikato.ac.nz/ml/weka/

http://www.cs.waikato.ac.nz/ml/weka/ 
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low intercorrelation. The best-first algorithm, defines the CsfSubsetEval as its
heuristic function and scores the set of features near its starting point, then it
expands to the available node of features with highest score. The search stops
when a pre-determined number of non-improving sets of features is encountered.
Both algorithms are provided by WEKA and were integrated in the system.

To assess the validity of the proposed approach we conducted two independent
experiments with different feature selection methods:

1. FW – which uses forward feature selection;
2. BW – which uses backward feature selection;

When forward selection is used, the selection algorithm starts with an empty
set of features and it incrementally adds features until a termination criterion is
met. Backward selection starts with the full set and removes features until the
criterion is reached. From here on, we will use the terms FW and BW to refer
to the each of the experiments.

4.2 Genetic Programming Engine

The EC engine is inspired by the works of Sims [20]. It is a general purpose,
expression-based, GP image generation engine that allows the evolution of pop-
ulations of images. The genotypes are trees composed from a lexicon of functions
and terminals. The function set is composed of simple functions such as arith-
metic, trigonometric and logic operations. The terminal set is composed of two
variables, x and y, and random constant values. The phenotypes are images that
are rendered by evaluating the expression-trees for different values of x and y,
which serve both as terminal values and image coordinates. In other words, to
determine the value of the pixel in the (0, 0) coordinates, one assigns zero to
x and y and evaluates the expression-tree. A thorough description of the GP
engine can be found in [16]. The following settings where used: pop. size = 100;
generations = 50; crossover probability = 0.8; initialization method = ramped
half-and-half; initial maximum depth = 5; mutation max tree depth = 3; Func-
tion set = { +, -, *, /, min, max, abs, sin, cos, if, pow, mdist, warp, sqrt, sign,
neg}; Terminal set = {X, Y, scalar and vector random constants}.

To assign fitness: the individuals are rendered; the FE is applied to extract
features; the feature vector composed of the features determined by the feature
selection method is the input of the ANN; the output of the ANN, i.e. the
classification, determines fitness. In this case, and since we intend to promote
the evolution of novel imagery, fitness of an individual is equal to the activation
value of the output neuron indicating external class membership. In other words,
images that cause classification errors are preferred.

4.3 Initialization and Updating

The External dataset holds 25000 paintings from different authors, styles and
periods (Fig. 3). Among others, it includes paintings of: Michelangelo, Picasso,
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Fig. 3. Examples of images of the external dataset

Fig. 4. Examples of images of the internal dataset

Monet, Gaugin, Daĺı, Cézanne, Da Vinci, Matisse, and Chagall. The Internal
dataset is a randomly generated population of 25000 individuals (Fig. 4).

The ANN training parameters imply that 45000 images will be used for train-
ing and 5000 for testing purposes, 22500 internal and 22500 external images for
training and 2250 of each for testing.

The supervisor updates the internal dataset by iteratively replacing the initial
images with evolved images. Repeated instances are not added to the set. The
boosting process stops when the Supervisor replaces 22500 of the internal images
by novel evolved images.

5 Experimental Results

As previously mentioned, the most important difference between our work and
the work of Machado et al. [13] is the adoption of dynamic feature selection mech-
anisms. We test two feature selection mechanisms, FW and BW, by conducting
independent experiments with each of them.

Each iteration starts with the selection of the features that will be used by the
ANN. Once the feature set is determined a classifier is trained. Table 1 shows
the performance of the classifiers across iterations in both training and test sets.

In the first iteration, the performance in training is almost perfect for both
feature selection methodologies: FW misclassifies one and BW zero out of 45000
training instances. In the test instances both classifiers performed flawlessly.
In the first iteration the BW classifier uses 45 features while the FW classifier
uses 30 (table 2). This indicates that a small number of features is sufficient to
correctly identify all training and test instances in the initial conditions.

These classifiers are used to guide the evolutionary runs of each configuration
during the first iteration of the boosting algorithm. As it can be observed in
table 3, the EC engine was able to generate a significant number of individuals
that were classified as external in both cases.

The individuals evolved during the first iteration are added to the internal set
images, replacing the randomly generated ones, and a new iteration is started.
This implies a new feature selection step and the training of new classifiers.
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Table 1. Performance of FW and BW during training and test, in terms of percentage
of correctly classified examples (%C), False Externals (Ext), i.e. an internal image that
is classified as external, and False Internals (Int)

Train Test

FW BW FW BW

Iteration %C Int Ext %C Int Ext %C Int Ext %C Int Ext

1 99.99 1 0 100.00 0 0 100.00 0 0 100.00 0 0
2 99.89 31 18 100.00 0 0 99.90 2 3 100.00 0 0
3 99.70 58 75 99.98 11 0 99.70 4 11 100.00 0 0
4 99.95 3 20 99.90 39 5 99.94 0 3 99.94 1 2
5 99.00 254 196 99.62 53 117 99.04 24 24 99.60 5 15
6 98.69 412 179 99.97 3 12 98.38 52 29 99.96 0 2
7 99.57 131 64 99.96 14 6 99.62 13 6 99.96 1 1
8 98.90 349 147 99.95 13 10 99.02 35 14 99.90 1 4
9 99.56 183 14 99.96 6 11 99.58 19 2 99.96 0 2
10 99.85 48 19 99.98 6 3 99.82 7 2 99.98 0 1
11 99.96 19 0 99.99 3 0 100.00 0 0 99.98 1 0

Table 2. Number of features selected per iteration

Iteration 1 2 3 4 5 6 7 8 9 10 11 Average

FW 30 22 19 37 11 11 11 7 15 8 25 19.25
BW 45 138 98 97 105 48 55 53 53 58 43 72.09

As it can be observed in table1 the BW feature selection approach obtains
better overall performance in classification than FW. The results attained in
training are similar to those attained in the test sets, both in terms of overall
trend and in terms of percentage of errors, indicating that the classifiers gen-
eralize well. Several fluctuations in performance exist, which may be explained
by the following factors: (i) The adopted feature selection methodologies do not
ensure optimality; (ii) The replacement of individuals of the internal set may
have eliminated instances that are hard to classify.

Table 3 displays, for each experiment and across iterations, the number of
images generated by the EC that are classified as external. As it can be observed,
in both experiments, the evolutionary engine was able to find images classified
as externals in all iterations. The number of populations necessary to find a false
external tends to increase as the number of iterations increases. This indicates
that the classifiers are becoming more selective. Further testing is necessary to
draw conclusive statements regarding this issue.

Table 2 shows the number of features used by the classifiers in each iteration.
As expected, updating the internal set causes changes in the feature selection
process both in terms of number and type of the selected features. Although
variations occur, the number of features used is significantly lower than the total
number of features available (804) indicating that good performance is attainable
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Table 3. Number of false externals generated in each iteration

Iteration 1 2 3 4 5 6 7 8 9 10 11 Total

FW 1165 1081 1575 840 832 1755 1110 651 271 70 1184 10534
BW 1451 1091 1074 1261 409 441 613 499 292 484 1458 9073

with a relatively low number of features. FW tends to use a smaller number of
features than BW selection, which is a direct consequence of the algorithm.

It is interesting to notice that the number of features used by BW increases
abruptly from the 1st to the 2nd iteration (45 to 138 features), remains relatively
high during several iterations (3rd to 5th), but then drops to values comparable
to the initial ones. Relating these results with the high number of false exter-
nals found in the 11th iteration, where the EC run found such images in few
generations, leads us to to believe that the replacement of the initial randomly
generated images from the internal set may be eliminating relevant instances.
That is, the correlation among the evolved images may be higher than the cor-
relation among randomly generated ones and when the number of randomly
generated images drops significantly the classification task becomes easier.

Figures 5 and 6 present the fittest individuals from populations 1, 10, 20, 30
and 50, for all iterations. Looking at the images produced in the first iteration,
the only where all both classifiers share the same internal and external set,
one can observe that different feature selection methods converged to different
types of imagery. The FW experiment converged to highly complex, “noisy”
colored images. Since the initial internal set is composed, due to the function
set, of simplistic images, the evolution of complex images is an obvious way to
misguide the CS. The BW experiment appears to have converged to images that
are characterized simultaneously by (i) a complex and noisy “background” and
by (ii) low contrast and high luminosity. The convergence to this type of imagery
can also be explained by the unlikelihood of randomly creating images with these
properties, and hence their absence from the initial internal set.

From the first iteration onwards the classifiers no longer share a similar set
of external and internal images. As expected, the images evolved in a given
iteration of a particular experiment tend to be stylistically different from the ones
evolved in the corresponding iteration of a different experiment. Nevertheless,
and although it is subjective to say it, comparing the results of the FW and BW
experiments appears to indicate that they may be exploring similar styles in
different iterations (for instance, the false externals evolved in the 7th iteration
of the FW experiment are somewhat similar to the false externals evolved in the
4th iteration of BW).

It seems that the images evolved within each iteration of the FW experiment
tend to be less diverse than the ones evolved using BW. In the 2nd, 3rd, 6th, 9th
and 10th iterations of FW the algorithm quickly converged and there is little
variety. In contrast, with the exception of the 7th and 8th iterations, the BW
experiments produced diverse imagery within each iteration.
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Fig. 5. Fittest images from populations 1, 10, 20, 30, 40, 50 evolved using FW



142 J. Correia et al.

It. pop 1 pop 10 pop 20 pop 30 pop 40 pop 50

1

2

3

4

5

6

7

8

9

10

11

Fig. 6. Fittest images from populations 1, 10, 20, 30, 40, 50 evolved using BW
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When we compare the imagery produced in each iteration, one can observe
(for BW and FW) “stylistic” changes across iterations which was the desired
result. It is also obvious that these images do not match the ones belonging
to the external set composed of paintings. Like in Machado et al. [13] more
than evolving images that resemble paintings the system is, apparently, evolving
images that are atypical of the EC engine and hence cause classification errors.

6 Conclusions and Future Work

We have presented an approach to explore novelty and stylistic change in expres-
sion based evolutionary art systems. The system relies in a framework composed
of a classifier system, evolutionary engine and a supervisor. The most prominent
feature of our approach is the adoption of dynamic feature selection methods.

We focused our experiments in the comparison of the results obtained when us-
ing different feature selection approaches. The results show that the evolutionary
runs explore different paths throughout the iterations. The changes produced by
the replacement of images of the internal set lead to the selection of new sub-sets
of features, which, in turn, contribute for the development of novel imagery. The
experimental results also indicate that, in the considered settings, it is possible
to achieve good performance using a relatively small subset of features.

Although the results are not entirely conclusive, they can be considering
promising and demonstrate the potential of the proposed framework. Further
experimentation is already taking place. We are particularly interested in: (i)
Confirming the experimental findings via further testing and analysis (ii) testing
alternative image replacement schemes (e.g. only adding images that were mis-
classified and avoiding replacement) (iii) Producing experiments with an higher
number of iterations (iv) Testing alternative feature selection schemes.
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Abstract. In this paper, we propose a novel strategy to synthesize
motion patterns for multi–legged creatures inspired by the biological
knowledge. To prove the concept, our framework deploys an approach
of coupling the dynamics model, the Inverted Pendulum Model, and the
biological controller, the Central Pattern Generator, to synthesize the
motion of multiple legged creatures. The dynamics model ensures the
physical plausibility and allows the virtual character to react to the exter-
nal perturbations, where the biological controller coordinates the motion
of several legs with designed numerical operators, providing user-friendly
high–level control. This novel framework is computationally efficient by
taking advantages of the self-similarity in motion and able to animate
characters with different skeletons.

Keywords: Computer Animation, Character Motion, Multi–legged Crea-
tures.

1 Introduction

Presenting the natural motion of a virtual character has been a challenging
task due to the inherent complexity in its dynamics. Numerous research has
been carried out in the simulation of human-like characters [6]. Motion capture
has also been a common practice to drive a virtual agent to move naturally
by mapping the captured data to it [18]. However, it becomes difficult when
tracking the motion of multiple–legged creatures, such as ants, crabs, spiders,
lizards, centipedes and millipedes. Their small size and high speed movement
make it challenging to set up the experiment and the captured data may not
achieve satisfied resolution and could be prone to noise [7]. On the other hand,
the skeletal structure is complex in nature for multiple legged character (e.g.
a centipede has over one hundred joints), which is difficult to mathematically
construct a full scale physically-accurate model to synthesize the motion. In
modern industry, artists still animate multiple–legged characters using the old
key-framing techniques, which is tedious and hence expensive in cost.

During the process of evolution, organism is assumed to have formulated a
specialized neural structure, Central Pattern Generator (CPG) [9] to coordinate
the motor behaviour. One of the most common observations is the double–tripod
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gait strategy employed by insects including ants and cockroaches [5]. Multi–
legged insects have a neural system, which is far simpler when compared with
humans but still effective to control their complex bodies. Numerous experiments
were carried out to prove the existence of CPG and the representative work
by [16] discovered strong functional inter-segmental coupling in the swimming
motion of lamprey. Given the existence and effectiveness of CPG, we envisage
the incorporation of it into the dynamic description of the motion for virtual
multiple–legged characters could lead to an effective animation tools for artists.

Inspired by the biological insight, we have experimentally combined the CPG
into the dynamics model of motion to mimic the functional mechanism of neuro-
controller of multiple legged creatures, where neuro-oscillator was employed to
control the characters joint rotation. This has naturally provided a high-level
control interface to define the key characteristics of the desired movement (e.g.
frequency, stepsize, start/stop walking, and target position) by well-defined op-
erators of Phase Shifting, Energy Scaling and Offsetting. Our proof-of-concept
design,to organically embed the CPG into a dynamic system, has overcome the
challenges aforementioned, such as synchronising movement of various legs and
tuning the parameters. We envisage a number of advantages of our methods as
follows:

– Providing a unified representation of periodic and discrete motion using the
Hopf Bifurcation, which facilitates the design of motion transition,

– Allowing user–interaction during the motion synthesis, including the step-
size, stop/start, frequency etc,

– Adapting the motion controller to virtual characters with different skeletal
structure,

– Ensuring stability against external perturbations, which is an important fac-
tor to keep the animation looks natural without too much inputs from the
artist in editing,

– Reducing the computational burden, this makes our approach particularly
useful for certain applications like video games, where the limitation of com-
putational resources is a critical issue.

The remainder of this paper is presented as following. In Section 2 , related
work on motion synthesis for virtual animals is reviewed, together with nec-
essary biology concepts applied in our approach. Background knowledge of our
methodology on Inverted Pendulum and Central Pattern Generator is introduced
in Section 3. The implementation of our approach is explained in Section 4 and
the result is demonstrated in Section 5. We conclude our work by summarizing
and pointing out its limitations and future directions in Section 6.

2 Background

Current approaches in character animation can be divided into example–based
and physics–based approaches. The advantages of example–based approaches
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[11, 13] lie in the naturalness and speed, which explains their wide implementa-
tion in interactive applications, such as video games. However, the motion gener-
ated by the example–based approaches are limited to the original database and
cannot react to external perturbations. With the expanding motion database, a
graphical structure – Motion Graph – was introduced to synthesize new motions
by concatenating these correlated motion clips [11]. Physics-based approaches are
able to generate the responsive motion. However, it is challenging to design the
motion controller, especially with strict requirement on naturalness. Researchers
have proposed optimization [10,12,25] and simplified physics model [14,24,26] to
facilitate the design of motion controller for virtual character. Readers can refer
to recent state-of-the-art report on example-based approaches [6] and physics-
based approaches [18].

As to the simplified physics model, the Inverted Pendulum Model (IPM) is
one of the most popular models to simulate the dynamics of locomotion for
bipeds [24] and quadrupeds [3]. It has also been used to model the locomotion
of hexapod in robotics [1]. The IPM attracts the attention from the researchers
mainly because of its simplicity in control mechanism and advantage in preserv-
ing the stability. Here, we also utilize the IPM to model the dynamics inside the
locomotion of multi–legged creatures.

Central PatternGenerator (CPG) is a biological neural network that coordinate
the movements of the animals’ bodies, and has been explored by researchers from
computer animation andbio–robotics to design a natural and stable controller. [22,
23] first introduced this concept in designing amodel of the neuro-musculo-skeletal
system to execute the task of stepping in unpredictable environment. [19] presented
a CPG composed of coupled adaptive nonlinear oscillators that can learn arbitrary
rhythmic signals in a supervised learning framework. [2] explored the applications
of CPGbased on phase synchronizationof non-linear oscillators to control flapping
flight dynamics. Readers can also refer to [9] for a review on applications of CPG
for locomotion control in animals and robots.

The locomotion of animal, especially quadruped, has been an interesting
topic to researchers in computer animation. A state-of-the-art research devel-
oped an integrated set of gaits and skills for a physics-based simulation of a
quadrupeds [3]. Although the motion repertoire covers an extensive range, the
motion controller uses a trivial representation and involves computational op-
timizations. Reader can refer to [20] for a collection of research on Quadruped
Animation in recent years.

Excluding the category of quadruped, we found few literature covering the
research in motion synthesis for virtual animal with more than four legs. [7,
8] present an integrated system that enables the capture and synthesis of 3D
motions of small scale dynamic creatures. To accomplish this task, a specialized
capturing system is needed and manual labelling is involved in post-processing
of original footage. Together with a path planning algorithm, extracted motions
are then extended to generate potentially infinitely long, characteristic motion
sequences for multiple similar subjects. [17] proposed kinematic simulation of a



148 S. Guo et al.

spider motion based on image processing. [4] also managed to extract animal
motion from video image.

Based on previous work, our improvements mainly lie in the following aspects:
first, we can generate motion for characters with different skeletal structure, or
even topology; second, it is flexible to edit the motions, including synthesizing
transitions between moving and stopping, stepsize, frequency etc; third, by us-
ing the physics model, the character can react to external perturbations. These
three advantages have been proved to be challenging for popular data–driven
approaches [7, 8].

3 Design Modules

3.1 Inverted Pendulum Model

Inverted Pendulum is a simplified physics model, which is widely adopted to
simulate the dynamics of locomotion for either biped [24] or quadruped [3] mo-
tion. Researchers are attracted by its simple control mechanism in preserving
the stability.

The dynamics of the inverted pendulum can be derived as following:

I
dω

dt
= τtotal (1)

τtotal = τgravity + τfoot + τexternal

where ω is the angular velocity of the Inverted Pendulum, I = mr2 is its moment
of inertial (m is the mass of the point mass and r is the length of the massless
segment). τgravity = mgrsin(θ) is the torque produced by the gravity force.
We assume that all external perturbations are included in our simulation by
τexternal, which is imposed at COM. τfoot is the torque produced at the COP
to enhance the stability of the Inverted Pendulum Model. By integrating the
angular accelerations and velocity, we can obtain the trajectory of the COM.

In the event of perturbations and motion transition, Proportional–Derivative
(PD) servos is implemented to calculate the τfoot:

τfoot = kg(θt − θ)− kdθ̇ (2)

θ, θ̇ is the angle and angular velocity for the IPM, while kg, kd is the gain and
damping coefficient for this servo. τfoot is the calculated torque, which pushes θ
towards its target θt.

3.2 Central-Pattern Generator

The Central-Patter Generator (CPG) is formulated by two components: oscilla-
tor and operators. A non–linear dynamics system, Hopf Bifurcation, is selected
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as the unit oscillator. In mathematical theory, Hopf Bifurcation refers to the lo-
cal birth of a periodic solution from a equilibrium point when a parameter passes
the threshold [15]. Each Degree of Freedom (DOF) is controlled by an oscillator
while the operators transform the oscillator to achieve the coordination between
them. The structure of the CPG is presented in Fig. 1.

Oscillator. Here we select the dynamics system in Eq. 3 rather than other sys-
tems, for example Van Der Pol and Matsuoka oscillators, because of its following
merits:

1. Symmetric phase plot to introduce the rotational operator
2. Controllable switch between periodic and discrete motion
3. Fast Convergence to avoid the undesired oscillation

(
ẋ
ẏ

)
=

[
−λ(x

2+y2

ρ2
− σ) −ω(t)

ω(t) −λ(x
2+y2

ρ2
− σ)

](
x
y

)
(3)

Equivalently, ẋ = f(x; ρ;ω;σ), with x = (x, y)T

In this equation, the bifurcation parameter σ can switch from 1 to -1 so that the
stable limit cycle dynamics would be converted into a globally stable equilibrium
point [21] (Fig. 1). The parameter ρ, ω, λ denotes the radius, oscillation frequency
and convergence rate of the limit cycle.

Fig. 1. Fig. (a) The structure of the Central Pattern Generator. The unit oscillator is
transformed by the combination of different operators into individual channel(DOF).
Phase Plot of Equation 3 in cases: Fig. (b) Attraction Point (σ = −1); Fig. (c) Limit
Cycle (σ = 1).

Operators

Phase Shifting. Because of its symmetry, this dynamics system can introduce

a rotational matrix R(Δ) =
( cos(Δ) −sin(Δ)
sin(Δ) cos(Δ)

)
to project the motion of different
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joints onto the different positions on a same phase plot, removing the redundant
DOFs.

f(R(Δ)x; ρ;ω;σ) = R(Δ)f(x; ρ;ω;σ) (4)

Energy Scaling. This operator can adjust the amplitude of individual channel
separately.

f(gx;ρ;ω;σ) = gf(x; ρ/g;ω;σ) (5)

Offsetting. This operator can shift the average of the oscillator signal from zero
to a target value set by user.

f(x− a; ρ;ω;σ) = f(x; ρ;ω;σ)− a (6)

(a) (b) (c)

Fig. 2. Illustration of Operators: (a)Phase Shifting (b) Energy Scaling (c)Offsetting.
The original phase space (color in blue) is transformed into the new phase space (color
in red) by applying the respective operators.

4 Implementation

In this section, we present our controller, which integrates the Inverted Pen-
dulum Model(IPM) and Central Pattern Generator(CPG). The previous com-
ponent ensures the balance and generates responsive motion against external
perturbations, while the latter one produces the overall pattern for the body
movements.

4.1 Overview of the Pipeline

At the first step for each iteration, the position of COM is calculated with the
simulation of IPM, and then it is fed into the CPG as the global position of the
root for the virtual character. The external perturbations and reaction torques
are integrated in this step as well. In the second step, the CPG will predict the
value of each channel for next frame given their current values. User can interact
with the process by adjusting the parameters, such as the bifurcation parameter
σ to complete the transition between walking and stopping. In the final stage,
an inverse kinematics (IK) solver will correct the foot–skating to improve the
visual performance. An illustration of our approach is depicted in Fig. 3.
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Fig. 3. The overview of the our approach

4.2 Coupling between IPM and CPG

The coupling between the Inverted Pendulum Model (IPM) and the Central
Pattern Generator (CPG) exists in three aspects.

First, the characteristics of the IPM are used to tune the parameters of the
CPG (frequency ω and amplitude ρ of the unit oscillator). The details are ex-
plained in Sec. 4.4.

Second, the events in the simulation of the IPM also triggers the switch of
different patterns in the CPG. The cycle of the locomotion for our virtual charac-
ters is composed of two phases, one is the stance cycle, and the other is the swing
cycle. The switch between the states is triggered by the event that the deviation
angle θ of Inverted Pendulum reaches the limit θmax. For each individual limb,
collision detection is also tested at runtime to make sure that there is no foot
penetration. However, when one limb strikes the ground before the pre-defined
switch happens, this limb will switch from swing to stance in advance.

Third, the Inverted Pendulum is imposed with additional torque to make it
stop or restart rotating when the bifurcation parameter σ in the unit oscillator
is toggled. To make the Inverted Pendulum stop, we deploy a PD controller
(Eq. 2) with a target value θt = 0. To make it start rotating, a small torque is
introduced to deviate the point mass from the equilibrium position.

4.3 Gait Graphs

We adopt the similar concept of gait graphs in [3] to characterize the timing and
relative phasing of the swing and stance phases of limbs. Due to the complexity
of the skeletal structure of the creatures we focus on, we found it very useful to
design individualized motion for the virtual character. Instead of obtaining the
gait graphs from experimental videos [3], we provide this user-friendly interface
to artist by manually tweaking the gait graph. An example of the gait graph is
given in Fig. 4.
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Fig. 4. Illustration of Gait Graph for a crab. The dotted line represents the standard
time interval for swing and stance phases. The black slots represent the stance phase
while the blank slots represents the swing phase.

4.4 Tuning the CPG

Tuning the parameters of the CPG is a critical issue in our approach. However,
there is no standard approach to design CPG at this moment [9]. Parameters
include the amplitude ρ, the frequency ω, the convergence rate λ in Eq. 3 and
also the operators including phase–shift Δ, energy scaling g and offset a.

The frequency ω is determined by the period of the Inverted Pendulum while
the amplitude also depends on the maximum deviation angle θmax of the Inverted
Pendulum in order to ensure the existence of the solution to the IK solver.

Although the tuning of the operators seem complicated, we deploy the sym-
metry of locomotion to simplify this task. An apparent insight is that all the
energy scaling and offset operators are the same across all channels at symmet-
ric position ( for example the rotating angle at the knee joint on different limbs
can be regarded as the same). There are two different categories of phase–shift
operators, intra–limb operators coordinating the motion along the same limb,
and inter–limb operators coordinating the motion between different limbs. After
this simplification, we are left with 22 parameters (3 for unit oscillators and 19
for operators) to tune for normal locomotion of a crab, which is an acceptable
amount of workload.

5 Result and Discussion

Implementation. The program runs in MATLAB on 64bit Ubuntu (dual core,
2.7GHz) and generates the motion at a speed about 5 frames/second. The time
step for the integration is 0.0083s. It is expected that our method can run inter-
actively after being rewritten in optimized C++ code. The length of each bone
along the limb is set to 0.1m. The point mass in Inverted Pendulum Model is
m = 1.5kg. The length of the IPM is 0.1m(the height of Center–of–Mass of the
crab in static position). The gravitational acceleration is set to g = 9.8m/s2.
The gain coefficient kg and damping coefficient kd in the PD controller are set
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to kg = 10 Nm/rad and kd = 1 Nm/rad. The frequency ω and amplitude ρ of
the unit oscillator for the normal gait are ω = 5rad/s. Amplitude ρ = 15◦.
Convergence rate:

λ =

{
3, normal locomotion

10, during motion transition

Motion Transition. Motion transition in previous research is mostly imple-
mented by blending two different motion clips. In our method, the transition is
achieved by switching the bifurcation parameter σ in our oscillator. This simple
and unified control strategy facilitates the interactive control over the character
and also demonstrates its potential to integrate into the current key–frame an-
imation pipeline. Fig. 5(a) exemplifies a channel in time domain when motion
transition happens.

Robustness Against Perturbations. With the Inverted Pendulum, the proposed
controller can react to external perturbations, which is of vital importance for
interactive applications. Fig. 5(b) depicts the comparison of the trajectory for the
rotational angle of the Inverted Pendulum Model in three different situations: the
normal trajectory without perturbations, the trajectory perturbed with external
torque and the trajectory both perturbed with external torque and adjusted by
PD controller. Fig. 6 visually illustrats crabs’ reaction against this perturbation.

Character Retargetting and Crowd Simulation. To validate whether this formu-
lation can adapt to different characters, we retarget this controller to characters
with varying skeletal structure (see Fig. 7).

Crowd Simulation. Our controller has great flexibility in adding individualized
variations to characters’ motion, including:

(a) (b)

Fig. 5. (a) Illustration of Channel 22 (Z rotation on the knee of the crab). When the
bifurcation parameter σ switches is set to -1, the oscillator will converge to an attraction
point and the character will stop. When σ is switched back to 1, the oscillator will
converge the the limit cycle as response and the character will restart locomotion. (b)
Illustration of the trajectory for the rotational angle of Inverted Pendulum Model. An
external torque τ = 2N ·m is exerted on the character at Frame 100.
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Fig. 6. Crab’s reaction against the external perturbations

Fig. 7. Side–by–side comparison of locomotion of crabs’ with varying skeletal propor-
tions

– Adapting to characters with different skeletal structure;
– Adding random noise to the control parameters, including ρ, ω etc;
– Key–framing motion transition with the bifurcation parameter σ.

By synthesizing stylized motion for individual character, our method is capable
of fast–building a crowd simulation.

6 Conclusion

Inspired by the biological observation and knowledge, the paper has conducted a
numerical experiment to validate the novel concept of coupling neuro–biological
control into physics–based simulation to animate the motion of multi-legged crea-
tures. Under the framework, the IPM has been adopted to model the dynamics
of single leg, while the CPG has provided an effective control mechanism to allow
coordination and synchronisation of legs to form a certain motion pattern. The
shared similarity in both time and space domain among different legs implied
that the synchronisation can be realised using operators of Phase Shifting, En-
ergy Scaling and Offsetting. By doing this, the computational loads have been
dramatically reduced when comparing to a full scale simulator and this makes
interactive or even real-time performance achievable using a standard PC. This
framework also utilizes a Hopf Oscillator, which is useful in constructing both
the motion transition and discrete motion. Our controller can adapt to charac-
ters with different morphologies, and the synthesized motion patterns can also
adapt to perturbations.

As our main concern is to test the effectiveness of incorporating the CPG into
dynamic simulation, we chose a rather simplified dynamic model, the Inverted
PendulumModel (IPM), to avoid unnecessary complexity in the implementation.
However, the simplification of the model opts out the subtle details in motion
and leads to some rigid movement in our results, which can be rectified if a more
complex physical model is employed. Our experience with the current framework
has shown that parameter tuning is critical for the success of motion synthesis.
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Although the simplification strategy in Sec 4.4 can greatly reduce the workload
to an acceptable amount, it still demands some manual adjusting when it adapts
to a character with topologically–different structure. In the future work, we also
aim at automatically setting the parameters of the oscillators and the operators.
Optimization strategies including energy–minimum and genetic programming
are potential solutions for this problem.
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Abstract. A novel encoding technique is presented that allows constraints to be 
easily handled in an intuitive way. The proposed encoding technique structures 
the genotype-phenotype mapping process as a sequential chain of decision 
points, where each decision point consists of a choice between alternative op-
tions. In order to demonstrate the feasibility of the decision chain encoding 
technique, a case-study is presented for the evolutionary optimization of the 
architectural design for a large residential building. 

Keywords: evolutionary, multi-criteria optimization, constraints, encoding, de-
coding. 

1 Introduction 

Evolutionary design is an approach that evolves populations of design variants in 
order to optimise certain performance measures. Designs are manipulated by a set of 
computational procedures, including a development procedure for generating design 
variants, one or more evaluation procedures that use simulation and analysis for rank-
ing design variants, and a feedback procedure for closing the loop by linking results 
from evaluation to the input of development. 

If the designs being evolved have limited variability, then the developmental pro-
cedure can use direct parametric modelling for generating designs. With this ap-
proach, genes are directly linked to parameters within the model. However, in cases 
where complex designs have to be evolved, the development procedure may consist 
of an indirect rule-based procedure for generating designs Genes are then linked to 
parameters in the rules rather than in the model, and as a result only affect the final 
form indirectly via the rules (Frazer 1995, Janssen 2004). In the context of evolutio-
nary design, such rule-based developmental procedures have been referred to as com-
putational embryogenies (Kumar and Bentley 2003). 

This paper presents a novel rule-based modelling technique that is particularly well 
suited for generating complex designs as it allows constraints to be easily handled in 
an intuitive way. In order to demonstrate the feasibility of the decision chain encoding 
technique, this paper presents a case-study for the multi-objective evolutionary opti-
misation of the design of the Interlace, a large residential project designed by OMA 
and currently under construction in Singapore (OMA 2013). The design uses a ‘stag-
gered brick’ pattern, where 31 building blocks are stacked up on top of one another in 
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a brick pattern. Previous research by Janssen and Kaushik (2012) described a simula-
tion driven method for optimizing the design through a series of manual iterations. 
This paper now takes this research further by proposing an automated procedure for 
design optimisation. 

Section 2 describes decision chain encoding in more detail. Section 3 presents the 
case study, where decision chain encoding is used in a multi-objective evolutionary 
optimisation problem. Section 4 briefly draws conclusions and indicates avenues of 
further research.  

2 Decision Chain Encoding 

The proposed encoding technique structures the genotype-phenotype mapping process 
as a sequential chain of decision points. Each decision point involves choosing one 
option from the set of all valid options. The set of valid options is created by a set of 
rules that generate and filter options. The genotype consists of a list of real-valued 
genes in the range {0,1}. For each decision point, a gene will be used to select an 
option by mapping it to an integer value in the range {1,n}, where n is equal to the 
total number of valid options for that decision point. Note that for each decision, the 
total number of valid options may not be known and may depend on the previous 
decisions. 

2.1 Travelling Salesman Problem 

As an example, the Travelling Salesman Problem (TSP) may be used. If we have 8 
cities (labeled as A to H), then assuming we start at city A, the decision chain would 
consist of 6 decisions (since the last city does not require a decision as there will only 
be one city left). For this case, each decision will select one city. For the first deci-
sion, there would be a total of 7 cities to choose from, so the gene would be mapped 
to an integer value between 1 and 7 and the chosen city would then be removed from 
the list of remaining cities. For the second decision, there would be a total of 6 cities 
to choose from, so the gene would be mapped to an integer value between 1 and 6. 
Table 1 shows a set of gene values and the sequence of cities that would be chosen, 
with the final sequence being A,G,F,H,D,E,B,C.  

Table 1. The process of selecting cities using the decision chain encoding method 

Decision point 1 2 3 4 5 6 
Gene value 0.77 0.69 0.94 0.63 0.84 0.48 
Remaining cities 7 6 5 4 3 2 
Integer mapping 6 5 5 3 3 1 
Chosen city G F H D E B 

For the typical TSP problem, there is little advantage to this approach over other 
approaches. However, the decision chain encoding method can easily handle addi-
tional constraints. For example, if direct travel between cities F and H is disallowed, 
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then the rules for generating and filtering options could easily be modified. The se-
quence of cities for the genes in Table 1 would become A,G,F,E,D,H,B,C.  

In general, the proposed decision chain encoding technique is seen to be useful for 
highly constrained problems. Researchers have identifed four main approaches to 
handling constraints in evolutionary algorithms: 1) penalty functions that reduce the 
fitness of invalid solutions, 2) repair functions that modify invalid solutions, 3) 
specialised reproduction opeators that avoid invalid solutions, and 4) specilaised 
genotype to phenotype decoder functions that avoid invalid solutions (Eiben and 
Smith 2003, pp 210-211). The the fourth approach has the advantage of permitting the 
use of standard variation operators. Handling constraints through decision chain 
encoding falls into the fourth category. 

2.2 Evolutionary Design Method 

Within the current research, the decision chain encoding technique is used as a way of 
handling constraints in evolutionary design optimisation. Design optimisation typi-
cally requires design solutions that are highly constrained, and therefore decision 
chain encoding is seen as being an appropriate technique.  

The research aims to develop optimisation tools that can be used by designers. It is 
assumed that the designers using such tools will have limited programming skills, and 
will therefore need to be able to define the key problem-specific procedures without 
having to write computer code. The development procedure and one or more evalua-
tion procedures are therefore defined using Visual Dataflow Modelling (VDM) tools 
(Janssen and Chen 2011). 

Visual Dataflow Modelling has becoming increasingly popular within the design 
community, as it can accelerate the iterative design process, thereby allowing larger 
numbers of design possibilities to be explored. Modelling in a VDM system consists 
of creating dataflow networks using nodes and links, where nodes can be thought of 
as functions that perform actions, and links connect the output of one function to the 
input of another function. VDM is now also becoming an important tool in perform-
ance-based design approaches (Shea et. al. 2005, Coenders 2007, Lagios et. al 2010, 
Toth et. al. 2011, Janssen et. al. 2011). 

In this research, an advanced procedural modelling system called SideFX Houdini 
is used for both development and evaluation procedures. For the development proce-
dure, VDM networks are created in Houdini to generate the three-dimensional models 
of design variants. These networks use the decision chain encoding technique for 
constructing models. At each decision point in the modelling process, a set of rules is 
used to generate, filter, and select valid options for the next stage of the modelling 
process, as shown in figure 1. The generate step uses the rules to create a set of op-
tions. The filter step discards invalid options that contravene constraints. The select 
step chooses one of the valid options. In order to minimise the complexity of the 
modelling process, options are generated in skeletal form with a minimum amount of 
detail. The full detailed model is then generated only at the end, once the decision 
chain has finished completing. 
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Fig. 1. Key steps executed at each decision point in the developmental procedure 

3 Case-Study 

The case study experiment is based on the design of the Interlace by OMA. The de-
sign consists of thirty-one apartment blocks, each six stories tall. The blocks are 
stacked in an interlocking brick pattern, with voids between the blocks. Each stack of 
blocks is rotated around a set of vertical axes, thereby creating a complex interlocking 
configuration. An example is shown in figure 2, where 6 blocks are stacked and ro-
tated to form a hexagonal configuration.  
 

 

Fig. 2. The staggered brick pattern. The diagram on the left shows 6 blocks arranged in a 
straight line, while the diagram on the right shows the same six blocks folded into a hexagonal 
pattern. 

Each block is approximately 70 meters long by 16.5 meters wide, with two vertical 
axes of rotation spaces 45 meters apart. The axes of rotation coincide with the loca-
tion of the vertical cores of the building, thereby allowing for a single vertical core to 
connect blocks at different levels. The blocks are almost totally glazed, with large 
windows on all four facades. In addition, blocks also have a series of balconies, both 
projecting out from the facade and inset into the facade.  

The initial configuration, shown in figure 3, is based on the original design by 
OMA. The blocks are arranged into 22 stacks of varying height, and the stacks are 
then rotated into a hexagonal pattern constrained within the site boundaries. At the 
highest point, the blocks are stacked four high.  

For the case study, new configurations of these 31 blocks were sought that optimise 
certain performance measures. For the new configurations, the size and number of 
blocks will remain the same, but the way that they are stacked and rotated can differ.  
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Fig. 3. The initial configuration based on the original design, consisting of 31 blocks in 22 
stacks of varying heights 

3.1 Development 

The developmental procedure is defined using decision chain encoding. In this proce-
dure, the placement of each of the 31 blocks is defined as a decision point. The proc-
ess places one block at the time, starting with the first block on the empty site. At 
each decision point, a set of rules is used to generate, filter, and select possible posi-
tions for the next block. Each genotype has 32 genes, and all are real values in the 
range {0,1}. 

In the generation step, possible positions for the next block will be created using a 
few simple rules. First, locations are identified, and second orientations for each loca-
tion are identified. The locations are always defined relative to the existing blocks 
already placed, and could be either on top of or underneath those blocks. The orienta-
tions are then generated in 15° increments in a 180° sweep perpendicular to either end 
of the existing block. In the filtering step, constraints relating to proximity between 
blocks and proximity to the site boundary are applied, thereby ensuring that only the 
valid positions remain. In the selection step, the decision gene in the genotype 
chooses one of the valid block positions. 

When generating a new design variant, the first decision point involves selecting a 
starting point on the site from a set of possible starting points. These starting points 
are generated by overlaying a grid over the site and then filtering out all points that lie 
outside the boundary of the site. The next four decisions points are show in figure 4. 
In the diagrams, the numbered lines are used to indicate possible valid block posi-
tions, so that the next block could be placed on any of those lines. The selected option 
for that decision point is shown as a thicker line. 

• For decision point 2, the first block needs to be placed on the starting point. The 
generative rules create 12 possible positions for the block, orientated around the 
starting point, labelled 0 to 11. The gene selects position number 2.  

• For decision point 3, the second block has to be placed on either end of the first 
block. The generative rules find two locations where blocks can be placed, and 
they create 7 positions at each location, resulting in total of 14 possible positions. 
The gene selects position number 1. Note that this block now has one end unsup-
ported. 
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Fig. 4. Four decision points in the process of mapping the genotype to the phenotype 
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• For decision point 4, the third block has to be placed. In this case, the generative 
rules give preference to the location that will result in a support for the previous 
block. This results in 7 positions, all underneath the previous block. The gene se-
lects position number 4.  

• For decision point 5, the fourth block has to be placed. The generative rules find 
four locations, all on top of the three already placed blocks. The rules create 28 
possible positions. However, a number of these positions violate constraints, and 
are therefore discarded by the filtering rules. Figure 5 shows the filtering stages for 
decision point 5. Overall, 7 positions are discarded as they would result in blocks 
that would be too close to the three existing blocks, and 6 positions are discarded 
as they would result in blocks that extend outside the site boundary. This results in 
15 remaining positions, from which the gene selects position number 7.  

The process shown in figure 4 is continued until all 31 blocks are placed. The deve-
lopmental procedure using the decision chain encoding technique ensures a match 
between the space of all possible genotypes and the space of all valid phenotypes. 
This results in two critical features: first, it guarantees that any genotype will map to a 
valid phenotype; second, it guarantees that the all valid phenotypes can be generated 
from a genotype. It is typically very difficult to create genotype-phenotype decoding 
procedures that appropriately control the variability of three-dimensional design ob-
jects with complex relationships and constraints. Decision chain encoding has enabled 
the variability problem (Janssen 2004) to be overcome.  

As a final stage of the developmental procedure, cores and facades are added to the 
blocks. The cores (which would contain the lifts, service shafts, and escape stairs) are 
added to the interior of all blocks, and in some cases also inserted below blocks in 
those instances where a void remains below the block (in order to provide support for 
the block, and to ensure that the flats are accessible from the ground floor). For the 
façades, the windows on each of the blocks are analyzed, and both sunshades and glaz-
ing systems are created. The size of the shades and the glazing system types both de-
pend on the amount of solar radiation incident on the windows throughout the year. 
This is calculated in a two-step process, using the Radiance simulation program (Jans-
sen and Kaushik 2012). In step 1, the solar radiation incident on the windows without 

 

(a) (b) (c)  

Fig. 5. Filtering of positions that violate constraints for decision point 5. (a) All 28 possible 
positions; (b) 21 positions after block-based filtering; (c) 15 positions after site-based filtering 



164 P. Janssen and V. Kaushik 

shading is simulated, and shades are then generated so that windows with more sun 
will get larger shades. In step 2, the solar radiation incident on the windows with shad-
ing is simulated, and windows which are still receiving too much solar radiation are 
then assigned more expensive glazing systems which are able to limit the amount of 
solar radiation. 

3.2 Evaluation 

For the multi-objective evaluation, three procedures are defined for evaluating per-
formance of the building. The building is located in the tropics in Singapore, and two 
key requirements are to maximize the amount of daylight and to minimize the amount 
of solar radiation entering the windows (which is seen as the worst case scenario - see 
Janssen and Kaushik (2012) for more details). Both these factors are affected by the 
orientation of the blocks relative to the north direction, and relative to one another 
(due to inter-block shading).  

For daylight, an evaluation procedure is defined that executes Radiance in order to 
calculate the amount of light reaching the window on a cloudy overcast sky. The 
amount of light entering each window is then adjusted according to the visual trans-
mittance of the glazing system for that window. The performance criterion is defined 
as the maximization of the total number of windows where the light entering the win-
dow is above a certain threshold level for reasonable visual comfort, referred to as 
‘good daylight windows’.  

As described in the previous section, the minimization of solar radiation entering 
the building is already tackled by the developmental procedure by adding the sun 
shades and high performance glazing systems. However, these additional systems 
have a significant effect on the cost of the façade, and therefore the performance crite-
ria in this case actually focuses on the cost of the façade. For façade cost, an evalua-
tion procedure is defined that calculates the total cost of all the glazing systems and 
shading systems for all 31 blocks. The performance criterion is defined as the mini-
mization of this cost, referred to as ‘façade cost’.  

Lastly, one more performance criterion is added, relating to the cores. As discussed 
in the previous section, the developmental procedure will generate design variants 
where additional cores need to be inserted. These cores will add significant additional 
cost, and therefore need to be minimized. The final evaluation procedure therefore 
calculates the total length of core for all the blocks. The performance criterion is de-
fined as the minimization of the total vertical core length. 

3.3 Results 

The evolutionary process was executed using Dexen, a distributed execution envi-
ronment for population based optimisation algorithms (Janssen et. al. 2011). A set of 
10 networked PCs was set up consisting of one server and 9 compute nodes (each 
with 4 slaves). The execution time to develop and evaluate a single design variant on 
one machine was close to two minutes, but when it was run using Dexen with the 9 
compute nodes, it was reduced to approximately 18 seconds.  
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The population size was set to 200 and a simple asynchronous steady-state evolu-
tionary algorithm was used. Each generation, 50 individuals were randomly selected 
from the population and ranked using multi-objective Pareto ranking. The 4 individu-
als with the lowest rank were killed, and the 4 individuals with the highest rank (rank 
1) were used as parents for reproduction. Standard crossover and mutation operators 
for real-valued genotypes were used, with the mutation probability being set to 0.01. 
Reproduction between pairs of parents resulted in 4 new children, thereby ensuring 
that the population size remained constant. 

The evolutionary algorithm was run for a total of 16,000 births, taking approxi-
mately 80 hours to execute. In order to calculate the progress of the evolutionary algo-
rithm, the Hypervolume metric was used (Zitzler and Thiele 1998). At each 100 
births, the non-dominated Pareto set was found. For each Pareto set, the performance 
scores were normalized, and the good daylight window score was inverted so that all 
scores are being minimized. The Hypervolume was then calculated using the tool 
developed by Fonseca et. al. (2006). The graph in figure 6 shows the increase in 
Hypervolume as evolution progresses.  

 

Fig. 6. The Hypervolume graph for a run of 16,000 individuals 

The final non-dominated Pareto set for the whole population contains a range of 
design variants with differing tradeoffs between performance and cost. One of the 
design variants from this non-dominated set is shown in figure 7. The performance 
scores for the initial design shown in figure 2 are: good daylight windows: 70 %; 
façade cost: SGD 44.5 million; and core length 1481 meters. For the design shown in 
figure 7, the performance scores are as follows: good daylight windows: 83 %; façade 
cost: SGD 42.3 million; and core length 1504 meters. The optimized design is there-
fore cheaper than the original design, but also performs better in terms of daylight 
performance. 
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Fig. 7. A selected design on the non-dominated Pareto set 

4 Conclusions 

Decision chain encoding is an effective way of handling complex sets of constraints. 
The case-study demonstration has shown how the decision chain encoding technique 
can be applied to the evolution of a complex design. Furthermore, due to the simplici-
ty of the way that constraints are handled, developmental procedures using decision 
chain encoding can be implemented using VDM systems. This allows designers with 
limited programming skills to engage with evolutionary design methods. 

Future research will compare the performance of decision chain encoding tech-
niques to other techniques such random key encoding (Bean 1998). In particular, it is 
noted that the decision chain encoding technique results in genotypes that have high 
epistasis, in that genes early in the genotype sequence have a significant impact on the 
expression of the genes later on in the sequence. Benchmarking experiments will be 
performed in which evolutionary algorithms using decision chain encoding are com-
pared to evolutionary algorithms using alternative encoding techniques.  

References 

1. Bean, J.: Genetic Algorithms and random keys for sequencing and optimization. ORSA 
Journal of Computing 2(2), 154–160 (1992) 

2. Coenders, J.L.: Interfacing between parametric associative and structural software. In: Pro-
ceedings of the 4th International Conference on Structural and Construction Engineering, 
Melbourne, Australia (2007) 

3. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing, 1st edn. Natural Com-
puting Series. Springer (2003) 

4. Fonseca, C.M., Paquete, L., Ibáñez, M.L.: An Improved Dimension - Sweep Algorithm for 
the Hypervolume Indicator. In: Proceedings of the 2006 Congress on Evolutionary Com-
putation (CEC 2006), pp. 1157–1163. IEEE Press, Piscataway (2006) 

5. Frazer, J.H.: An Evolutionary Architecture. AA Publications, London, UK (1995) 
6. Janssen, P.H.T.: A Design Method and a Computational Architecture for Generating and 

Evolving Building Designs. School of Design, Hong Kong Polytechnic University. Degree 
of Doctor of Philosophy (2004) 



 Decision Chain Encoding 167 

7. Janssen, P.H.T., Basol, C., Chen, K.W.: Evolutionary Developmental Design for Non-
Programmers. In: Proceedings of 29th eCAADe Conference, Ljubljana, Slovenia, Septem-
ber 21-24, pp. 245-252 (2011) 

8. Janssen, P.H.T., Chen, K.W.: Visual Dataflow Modelling: A Comparison of Three Sys-
tems. In: Proceedings of the CAAD Futures 2011, Liege, Belgium, July 4-8, pp. 801–816 
(2011) 

9. Janssen, P.H.T., Chen, K.W., Basol, C.: Iterative Virtual Prototyping: Performance Based 
Design Exploration. In: Proceedings of 29th eCAADe Conference, Ljubljana, Slovenia, 
September 21-24, pp. 253–260 (2011) 

10. Janssen, P.H.T., Kaushik, V.: Iterative Refinement through Simulation: Exploring trade-
offs between speed and accuracy. In: Proceedings of the 30th eCAADe Conference, Pra-
gue, Czech Republic, September 12-14, pp. 555–563 (2012) 

11. Kumar, S., Bentley, P.J.: Computational embryology: Past, Present and Future. In: Ghosh, 
A., Tsutsui, S. (eds.) Advances in Evolutionary Computing: Theory and Applications,  
pp. 461–477. Springer, New York (2003) 

12. Lagios, K., Niemasz, J., Reinhart, C.F.: Animated Building Performance Simulation 
(ABPS) – Linking Rhinoceros/Grasshopper with Radiance/Daysim. In: Proceedings of 
SimBuild, New York City (2010) 

13. OMA (2013), http://oma.eu/projects/2009/the-interlace 
14. Toth, B., Salim, F., Frazer, J., Drogemuller, R., Burry, J., Burry, M.: Energy-oriented De-

sign Tools for Collaboration in the Cloud. International Journal of Architectural Compu-
ting 4(9), 339–359 (2011) 

15. Shea, K., Aish, R., Gourtovaia, M.: Towards Integrated Performance-Driven Generative 
Design Tools. Automation in Construction 14(2), 253–264 (2005) 

16. Zitzler, E., Thiele, L.: Multiobjective Optimization Using Evolutionary Algorithms - A 
Comparative Case Study. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) 
PPSN 1998. LNCS, vol. 1498, pp. 292–301. Springer, Heidelberg (1998) 



Story Characterization Using Interactive

Evolution in a Multi-Agent System

Malik Nairat, Palle Dahlstedt, and Mats G. Nordahl

Department of Applied Information Technology,
University of Gothenburg, Gothenburg, Sweden

alsadeq@ituniv.se

Abstract. We propose a character generative approach that integrates
human creativity based on an agent-based system where characters are
developed using interactive evolution. By observing their behaviour, the
author can choose the characters that he likes during an interaction pro-
cess. The evolved characters can then be used to build a story outline as
a foundation for generating stories. This can provide storytelling authors
with tools for the creation process of characters and stories.

Keywords: agent design; actor, character creation, storytelling, char-
acterization, agent-based systems, genetic algorithms.

1 Introduction

Most fiction writers agree that character is one of the most important elements
in any literary work. Its development is the key element in story creation, and
in most pieces of fiction a close identification with the characters is crucial to
understanding the story. This is supported by the fact that it is the characters
who remain in our minds long after the setting, theme, tone, style, techniques
or intricacies of the plot have been forgotten [13].

The concept of character in artistic works refers to a textual representation of
a human being or other creature. If we wish to create successful stories, we have
to learn how to develop interesting characters [14]. To understand a character in
a story one should focus on its personality, what he/she cares about, what makes
him/her happy or sad, how he/she behaves with others and responds to actions
around them, and what is the most valuable thing to him/her. In literature, as
in real life, we can evaluate character in three ways: through what he/she says,
what he/she does, and what others say about him or her [15].

The success of any fictional work depends on the writer’s ability to create
memorable characters (especially protagonists). As a memorable character de-
velops, the reader can become more and more attached to it. This ability has
always relied on the human author as the source of creativity. The traditional
process of creating stories, characters or any artwork normally consists of grad-
ual development and enhancement which tends to limit the ability to explore
new ideas.

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 168–179, 2013.
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Algorithms inspired by the natural world, such as genetic algorithms or agent
systems, have been applied to creative processes for a number of art forms, from
music composition and poetry to the visual arts (e.g., [7,5,12]), often with roots
in older artistic methods based on algorithmic or chance procedures. In this
paper, we propose an interactive approach for building story characters using
an agent-based system, where the agents evolve through a process of interaction
with the creator. The personality traits of the characters are encoded in their
genomes which determine the dynamics of their internal states or emotions, as
well as their actions. The agents are allowed to interact in a group while the
creator observes (and sometimes intervenes to provoke new behaviour). Agents
that show relevant behaviour are selected for reproduction, and the process is
repeated.

The main result of this contribution is the construction of novel genetic rep-
resentations for the personality of a character. The simulations are intended
as initial investigations of the possibilities of a framework for designing simple
characters through an interactive evolutionary process.

The system has been built primarily with applications to comic strips and
animations in mind. In this type of storytelling, characters are often stylized,
and their actions simple and exaggerated. We believe that compared to other
forms of narrative, this domain is particularly suited to applications of interactive
evolution. Even simple agents with a small number of internal states can be useful
in this context, and particularly suited to creating comic effects. Therefore we
believe that the system could form the basis of a creative tool for artists to create
characters that can be refined and used later in narrative skeletons.

2 Background

The last decades have witnessed a growing interest in the principles of au-
tonomous agent design. One area of application of multi-agent systems has been
to story creation, where stories result from the interaction between the agents,
and with the virtual environment they inhabit (see, e.g., [27]).

The agent approach has been developed, e.g., by giving agents mindreading
capabilities [3], and by integrating emotions into the agents [2], as well as by
using emotional models for authoring of adaptive agents [11]. Planning has also
been included in the agent framework, e.g., Charles et al [4] where a hierarchical
task network plan generates interactive scenarios where the user can influence a
character’s goal. Causal reasoning and a simulated intention recognition process
was used to generate agent-based stories by Riedl and Young [25]. Genetic algo-
rithms have been explored to a limited extent to create agents for storytelling,
see e.g. [22,19,16,21]. Other systems such as ENIGMA [18] and The Restau-
rant Game [23] used information from external sources such as online users for
authoring the behavior of story characters.

Most of these studies have dealt with story generation rather than story char-
acterization, where the interest is the plot rather than the characters. In the
literature on narrative, these approaches are complementary. A tradition go-
ing back to Aristotle’s Poetics [1] focuses mainly on plot structure, while others
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(e.g., [9]) have argued that character is the basis of dramatic structure. Our work
takes the creation of character as primary, and the story structure is derived from
interactions between characters.

3 Agent Structure

The agents in our work will be used as raw material for story-telling in the form
of comic strips or animations. Some important features of cartoon characters are
[10] [26]:

– Cartoon characters are much simpler in their structure than real-life ones,
and express clear and direct personalities.

– They do not entail as many and complex emotions and internal states as
real-life characters.

– Their actions are more limited, clear and focused than those of real-life
characters.

– They lead to a simpler form of storytelling that does not to the same extent
require a homogeneous plot or story structure.

– Cartoon characters portray an exaggerated form of personality, actions, emo-
tions and visual appearance.

We believe that a framework which models characters in terms of interacting
agents, where interactive evolution is used to determine the dynamics of their
internal states, can be quite successful in creating useful cartoon characters.
Characters in a complex realistic drama, or robots or interface agents designed
to emulate a broad spectrum of human emotions, would require a state space of
much higher dimension, which would introduce a larger degree of complexity and
difficulty in evaluating the result. In the following subsections we first describe
the aspects of agent structure that relate to the dynamics in time when a group
of agents is interacting, and then the genetic representation.

3.1 Internal States

Each agent has a number of continuous internal states, which change dynamically
during the interactions with other agents. The changes in the internal states
depend both on the actions of the agents toward each other, and on the genome
of the agent. Different genomes result in different internal state changes as well
as different actions for two agents subjected to identical situations. This forms
the basic principle of the genetic representation of agent personality in our work.
The internal states can be grouped into three categories:

– Resources: These are R different states r1, ..., rR, which typically are al-
lowed to change as a direct result of the interactions with other agents (in
analogy with health points in a computer game).
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– Emotions: These are E different states e1, ..., eE , that are affected indirectly
by the actions of other agents. The change of state in this case depends
both on the action, the current state of the agent, and the genome. In this
way, characters may behave according to different genetically determined
personalities.Their reactions may also depend on their current emotional
state.

– Feelings: These are F x N states f
(k)
f , f = 1...F , that represent the feelings

that agent i has toward every other agent k = 1...N . This could include
feelings the agent has toward itself (which for example could give results such
as a character punishing itself or committing suicide out of self-contempt).
Here too the reaction can depend on the current state of the agent (the
reaction of an agent receiving a gift from its current love interest is different
from getting it from its ex).

This means that the complete internal state Si of an agent i in a population
consisting of N agents is given by the following vector of dimension R+E+NF :

Si = (r1, .., rR, e1, .., eE, f
(1)
1 , ..., f

(1)
F , ..., f

(N)
1 , ..., f

(N)
F ) (1)

where we assume that all internal states are real numbers restricted to the in-
terval [-1,1]. Below we also make use of a projected internal state in a subspace
where only the feelings toward a certain agent k are included. This projected
state of dimension R+ E + F is denoted

S
(k)
i = (r1, .., rR, e1, .., eE , f

(k)
1 , ..., f

(k)
F ) (2)

In the experiments, the number of internal states has been kept quite small.
Even two emotional dimensions may result in interesting personalities. The
choice of comics as a domain of study makes this approach reasonable, since
the characters have greater freedom to be highly stylized and simplistic in their
personality.

The interpretation of the internal states, as well as the actions discussed below,
can be predetermined as part of the setup. In the simulations below, we have
used a selection of original comic stories as inspiration for the choice of labeling
of states and actions. Another choice is to decide on the interpretation later as
part of the artistic process, e.g., through a stage of interactive evolution.

3.2 Actions and Action Selection

Part of designing the story world of an experiment consists of choosing the
actions that the characters can carry out. The model contains a finite set of
allowed actions A = {a1, ..., aA} that an agent i can choose to perform directed
at agent k. These can be detailed and agent specific (e.g., throw a brick at the
head of Krazy Kat [17]), or quite general and allowing the artist to fill in details
by hand in the end. Actions may have a pre-determined effect on the resources
of other agents. Individual agents may be restricted to a subset of A.
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Actions are performed sequentially, and we assume that all interactions be-
tween agents are pairwise. The order of interactions is determined by a separate
algorithm. Some choices are to select random pairs at each point in time, or to let
an agent k that has received an action from agent i respond with probability p,
and to pick a new pair randomly with probability 1−p (to encourage interesting
sequences of reciprocal action).

In the simplest version of the model, the choice of action for agent i depends
only on the internal states Si of i and the identity of the agent k with which it
is interacting. There is no explicit dependence on previous actions between the

two agents, but a memory may still exist in the values of the internal states f
(k)
f .

These could provide a record of previous action in terms of positive or negative
feelings toward the other agent. The choice of action of agent i can then be
summarized as follows:

a. The state S
(k)
i (restricted to include only feelings towards agent k) is mapped

through a perceptron [20] with M binary outputs. The weights of the perceptron
are represented as real numbers in the genome of agent i.
b. The binary string of output from the perceptron is used as input in a lookup
table, which represents a fixed many-to-1 mapping from length M binary strings
to a finite set of actions A.

In more detail, this means the following: The part of the genome of i responsible
for action selection has the following form:

GA = ((v1, c1), (v2, c2), ..., (vM , cM )) (3)

where each vector vi is of dimension R+E + F , and M is an integer such that
2M > A. The genome and the state is used to calculate a length M binary

string B = b1b2...bM , where bi = 1 if vi · S(k)
i > ci, and bi = 0 otherwise. In

other words, each (vi, ci) defines a hyperplane in the internal state space, and bi
indicates on which side of this hyperplane the current state is located. When all
(vi, ci) are considered together, they generically divide the internal state space
into 2M regions.

Each region is then mapped to an action a through a fixed mapping C from
binary strings of length M to the finite set A. This mapping may be many-to-
one if 2M > A. This is analogous to how the genetic code in biology maps 64
codons to 20 amino acids (and start/stop signals). The genetic code mapping C is
determined at the outset of the simulation and kept fixed, while the hyperplanes
can move around freely in state space through evolution.

3.3 Dynamics of Internal States

The internal state of agent i is updated in two situations:

a. agent i performs an action a toward agent k
b. agent i is the target of an action a by agent k.
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The state changes are different in these cases, and are described by different
parts of the genome. In the first situation, we have

S
(k)(new)
i = g(S

(k)(old)
i + d

(a)
i +

R+E+F∑
j=1

w
(a)
i,j S

(k)(old)
j ). (4)

Here, g(x) = tanh(βx) is introduced to restrict the state to the interval [−1, 1].

The matrices d
(a)
i and w

(a)
i,j are contained in the genome of i. The (R+E+F ) x

A matrix d
(a)
i represent changes in the state that depend only on the action, not

the current state of i. The components corresponding to resources may be fixed

during the simulation, while the others evolve. The (R+E+F )2 x A array w
(a)
i,j

adds a dependence on the current state of the agent. Simplifying assumptions
(e.g. allowing only some elements to be non-zero) that reduce the size of this

array can sometimes be useful. Even the case where w
(a)
i,j = 0 is interesting, since

the d
(a)
i can still evolve.

The second situation is treated similarly, with a different set of matrices D
(a)
i

and W
(a)
i,j from the genome of i. The update equation is then given by:

S
(k)(new)
i = g(S

(k)(old)
i +D

(a)
i +

R+E+F∑
j=1

W
(a)
i,j S

(k)(old)
j ). (5)

In this way, the states of both agents are updated in each pairwise interaction.

3.4 Genetic Representation

The complete genome of an agent i is then given by

G = (((v1, c1), .., (vM , cM )), d
(a)
i , w

(a)
i,j , D

(a)
i ,W

(a)
i,j ) (6)

Initially the genomes are generated at random with components in some finite
interval. The genetic operators are chosen appropriately for real-valued genomes;
mutations either replace a component of a vector in a genome by a randomly
chosen value, or add a small randomly chosen number (with a distribution sym-
metric around zero), and in crossover the real values are treated as fundamental
units rather than bit strings.

4 System Structure and Results

This section gives a summary of the overall system structure and illustrates
the graphical representation used as an interface for the artist to the agent
population. A well-designed graphical interface is essential to the interactive
evolution algorithm, in particular in this case where complex processes in a
population of agents need to be monitored.
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This is illustrated for some different simulations of the system. A more exten-
sive analysis of the results of a large number of simulations, as well as examples
of artistic results, will be given in future publications.

In the simulations used as illustrations, agents had internal states with 3
resources (labeled as as health, wealth and strength from the outset), and 3
emotions (labeled happiness, fear and excitement). They also had a single feeling
(love/hate) toward every other agent in the population. 16 different actions were
defined (see figures below). The predefined labeling is arbitrary but may aid the
artist in creating an interpretation of the interactions, and in that way make the
selection process easier. Population sizes were small enough that agents could
be monitored individually (N = 5 to N = 10). Initial genomes were generated
randomly; initial internal states were generated randomly or initiated to 0 as a
neutral initial state (a natural choice for the feelings about others). The overall

Population

agent i

agent kThe part of the genome of i responsible 
for action selection has the following 
form:

GA =((v1,c1),(v2,c2),...,(vM,cM))

Update internal state of agent i when it 
performs an action a toward agent k:

Si
(k )(new) = g(Si

(k )(old ) + di
(a) + wi, j

(a)Sj
(k )(old ) ).

j=1

R+E+F

∑

Update internal state of agent i when it 
is the target of an action a by agent k:

Si
(k )(new) = g(Si

(k )(old ) + Di
(a) + Wi, j

(a)Sj
(k )(old ) ).

j=1

R+E+F

∑

Crossover & 
mutation

Selecting 
characters by 

the user

random selection of 
2 parents

For reproduction

For observation only

Representation Output

Fig. 1. Overall algorithm structure

algorithm structure is illustrated in Fig. 1. In a population of agents, pairs of
agents are selected for interaction. In the simulations, the agents are either picked
at random, or with an increased probability for agents with lower (i.e., negative)
values for the emotions. The idea behind this was to encourage actions relevant
to dramatic situations involving conflict between characters. After picking a pair
of agents, the system selects an action to be performed by the first agent in the
manner described above, and then updates the internal states of both agents.

This process is repeated as long as the user wishes to observe the current
population, with new pairs picked at random, or with an increased probability
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for reciprocal action. At any point in time, the user can decide to select certain
agents for reproduction, or to store them to a long-term storage space for inter-
esting genetic variants [6]. The interface of the system, which is described further
below, has been designed to allow adequate monitoring abilities for complex in-
teractions in a population of agents, where both the actions and the internal
states of agents need to be observed.

The system provides two different interface functionalities. One of these fo-
cuses on the internal states and represents them as expression icons (emoticons),
so that the internal states can easily be monitored. The emoticons are algorith-
mically generated, and allow a representation of both resources and emotions,
together with a larger number of feelings toward other agents. Additionally, the
internal states of any selected character can be viewed as a real time graph in
order to represent its changes over time, see Fig. 2. This information was used
for studying the dynamics of the internal states.

Fig. 2. The first user interface function shows the state of the selected agent as icons
and graphs. The expression and color reflects the agent’s happiness and health, while
the attached small icon reflects its wealth, fear or strength. Arrow colors represent its
feelings toward other characters. Both illustrations are updated in real time.

The second interface functionality represents the behaviour of the characters
and their internal states as real time graphs, which provide detailed information
on their dynamics over extended periods of time, see Fig. 3. These can track
both the complete state of a single agent, or properties of the entire population,
such as the individual values of a certain state component for each agent in the
population.

The agent whose internal states are shown in Fig. 3 shows a very stable
character whose emotions and resources have essentially converged to a fixed
point. However, looking at the values of the individual state components, one
could still regard the character as rather adventurous, since it has constant high
values for happiness, fear and excitement, and lower values for wealth and health.

Fig. 4 shows the time evolution of one of the internal emotion states (happi-
ness) for each agent in the population in one simulation.
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Fig. 3. Dynamics of the internal states of a selected agent

Fig. 4. Dynamics of a selected internal state (happiness) for all agents in a population

The interface also allows a global view of the population, where information
about the behavior of all agents is collected. This is illustrated in Fig. 5. The
actions of the characters are shown as colored dots labeled by the name of the
character that received the actions. One axis shows actions and the other time.
Internal states are represented as functions of time at the bottom of the interface;
every set represents a single character. In the actual interface, color coding makes
the graphs easier to interpret.

One can see that the emotions of some agents change rapidly while others
converge to fixed points, compare for example the bottom state graph in Fig. 5
to that above, or to the top agent. This is one property that could be interesting
when selecting characters for reproduction or for eventual use in story creation.
Cartoon style characters need to have simple yet extreme and exaggerated per-
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sonalities, which might provide more interesting stories, and need not behave
in a realistic and believable manner. Rapid and unpredictable mood changes
may well be desirable. In many simulations, it was observed that agents evolved
from performing very few actions in a single-minded way to behaving in a more
complex and interesting manner. This is likely to result from a random initializa-
tion of the coefficients in the action selection genomes where many hyperplanes
happen to divide the state space unequally, making certain actions very unlikely.

John  Steve  Beter  Tara  Jessica

Selected for reproduction: 2
Observation Mode in ON
Reproduction Mode is ON

Happy  Fear  Excitement  Wealth  Health  Strength

John

Steve

Beter

Tara

Jessica

harm
slap
deceive
cheat
lie
annoy
ignore
avoid
talk
thank
smile
apologize
confess
visit
invite
help

Fig. 5. This interface view shows the characters behavior in a real time graph. Char-
acters are shown as colored dots labeled by the characters that received their actions.
One axis shows actions and the other time. Internal states are represented as functions
of time at the bottom of the interface; every set represents a single character.

In the repeated interactive evolution process, the artist chooses the characters
he prefers to be reproduced and evolved into a new generation, or to bring the
selected characters along to the second stage of the process where only the se-
lected ones can interact. The interface representation described above can provide
the artist with design inspiration and an understanding of the created characters’
personalities. The artist can use the characters for story generation by exporting
them and using their genomes in a separate story generating system. This can be
done by adding an additional layer to the current system in order to build a story
skeleton based on the interaction process of a group of selected agents. We are ex-
ploring approaches that can provide more concentration on the story structure by
generate entertaining automatic visual representations of the interactions.
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5 Conclusion

We have shown how to build a framework that supports human creativity for
character design through a system that allows interactive design and evolution
of characters in the form of agents in a multi-agent system. In particular, a novel
genetic representation was introduced that allows the encoding of the personality
of agents in terms of functions for action choice and internal state changes. The
framework is in particular intended for applications to characters in comic strips
and animation, where a low dimensional state space is appropriate.

This system can be extended to create story outlines from the interactions of
the evolved characters. This can also integrate external events that can influence
the system. This may also include spatial extension and movement between dif-
ferent story locations. Other features that can be added in future development
include new methods for assisting the creation of visual representation of char-
acters, including an interactive algorithm for evolving translations from abstract
design representations to a semantically meaningful visual appearance.
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Abstract. This paper presents a first step towards a computer-aided design tool
for the creation of game maps. The tool, named Sentient World, allows the de-
signer to draw a rough terrain sketch, adding extra levels of detail through stochas-
tic and gradient search. Novelty search generates a number of dissimilar artificial
neural networks that are trained to approximate a designer’s sketch and provide
maps of higher resolution back to the designer. As the procedurally generated
maps are presented to the designer (to accept, reject, or edit) the terrain sketches
are iteratively refined into complete high resolution maps which may diverge
from initial designer concepts. Results obtained on a number of test maps show
that novelty search is beneficial for introducing divergent content to the designer
without reducing the speed of iterative map refinement.

1 Introduction

In order to address the increasing time and resource requirements of content creation,
more and more game companies use algorithmic means to either mass-generate trivial
game content such as trees1 and rocks [3] or to reduce designer effort by automating
the mechanizable aspects of content creation, such as feasibility checking. The proce-
dural generation of terrain is applied — to different extents — in many game titles to
create the vast landmass of the game’s virtual environment. Given the different con-
straints stemming from the gameworld’s theme, mechanics and quests, designers prefer
to maintain a level of control over the generated terrain. In most contemporary tools,
this equates to manually editing the terrain after it has been (randomly) generated.

To address the requirement for designer control over generated content with minimal
investment in human effort, this paper presents a first step towards a computer-aided
design tool for the creation of game maps. This tool, named Sentient World, allows
a designer to progressively add details to a rough sketch through the process of iter-
ative refining. Iterative refining is accomplished by artificial neural networks (ANNs)
trained via gradient search to conform to low-resolution sketches submitted by the de-
signer; trained ANNs can create higher-resolution maps which are submitted back to
the designer to accept, reject, or edit. The process of iterative refining is enhanced by
neuroevolutionary novelty search which increases diversity in the pool of networks. Re-
sults obtained on a number of test maps show that the coupling of gradient and novelty
search introduces divergent content without a significant computational overhead.

1 www.speedtree.com

P. Machado, J. McDermott, A. Carballal (Eds.): EvoMUSART 2013, LNCS 7834, pp. 180–191, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This is the first attempt, to the authors’ knowledge, to combine novelty with gradient
search via backpropagation in order to increase the representational power of ANNs
without the uncontrollability often attributed to stochastic search algorithms. Addition-
ally, the paper introduces the concept of iterative refining, where a human and a com-
puter collaboratively add details to a rough concept sketch. While Sentient World is
not tested with human designers in this paper, iterative refining is shown to secure the
authorial control of human users as it largely conforms to initial designer sketches.

2 Related Work

Most techniques used for generating game terrain, both in the game industry and within
academia, use fractals and noise to generate heightmaps [5]; however, there have been
several attempts at controlling the generated artifacts. A popular technique allows a
designer to specify real-world examples of desired terrain: Ong et al. [16] evaluate
heightmaps generated via evolved terrain transformations based on their conformity to
example terrains in a database, Li et al. [9] generate landscapes by combining differ-
ent regions (hills, plains, etc.) selected from a database by a support vector machine
trained to differentiate between terrain types and Zhou et al. [22] allow the user to
sketch terrain features which are algorithmically refined based on real-world digital el-
evation models. Such example-based approaches, however, are limited by their corpus
of examples, and fail to generate landscapes that do not conform to earth-like geologies
and physics. Moving away from the real world, Ashlock et al. [1] rely on designer-
specified desirable elevation models, and evaluate heightmaps generated via evolved
L-systems based on the RMS error between generated and desired heights. Sentient
World is similar to this method in that it relies on designer-specified desirable eleva-
tion models and uses an error function for evaluating map fidelity; however, the ANN
representation used in this paper lends itself better to infinite resolutions and does not
suffer from L-systems’ poor locality. Other projects try to increase designer control by
limiting — but not eliminating — the randomness of the tool. SketchaWorld [18] coins
the term “interactive procedural sketching” and allows designers to paint ecotopes on
a tile-based grid; the tiles are transformed into detailed 3D representations of moun-
tains and hills using fractal noise and grid interpolation. SketchaWorld provides some
authorial control and limits randomness to tile-size chunks with specific properties. For
even more control, Gain et al. [6] allow users to sketch a freeform terrain feature via its
silhouette and boundary, generating a 3D terrain feature via interpolation, deformation
and noise; the generated artifacts are faithful to the designer sketch, but require very
precise specifications from the designer. Sentient World instead allows for very coarse
sketches which are iteratively refined. Finally, control can be asserted via the behavior
of terraforming agents, which interact with each other and the world to generate virtual
landscapes [4]; the sheer number of parameters controlling agent behavior makes such
a tool cumbersome, as it requires trial and error to discern the impact of each parameter.

Evolutionary art has often focused on the automatic generation of artifacts, but de-
signer intention is usually accommodated via interactive evolution [21]. Interactive evo-
lution does not inherently have a mechanism for designers to specify aesthetic criteria
which must be satisfied and is thus likely to create unwanted content. To provide some di-
rection to evolution and develop the ability to appreciate art, some researchers have used
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START

Neuroevolution via novelty search

Fittest ANNs selected from population

ANNs trained via back-propagation 
to user-defined dataset

Higher-LOD maps created from 
trained ANNs, duplicates ignored

Any map
selected?

NO

YES

Population initialized with 
permutations of selected ANN

Selected high-LOD map stored
as the user-defined dataset

Complete map generated
from selected ANN

FINISH

Finish Continue

Refine

User manually edits selected high-LOD map

User draws low-LOD map, used as dataset

User action 
choice

Fig. 1. An outline of the design process via the Sentient World tool, showing the different options
for interaction (Finish, Continue and Refine) available to the user. Gray boxes represent user
actions.

ANNs to evaluate generated content. Pre-training the network to simulate user ratings
in a collection of generated content [2], to differentiate between different artists [14] or
between human-authored and generated images [12], researchers attempt to create arti-
ficial art critics [13] capable of automatically evaluating generated content. The Sentient
World tool has dissimilar aims in that it does not attempt to appreciate the designer’s work
but to conform to it. For that purpose, it uses ANNs to enforce the designer’s constraints
to its generated artifacts, ensuring that authorial control is maintained. As a computer-
aided design tool, Sentient World aims to accommodate its human designer more than
it intends to completely automate the design process.

3 Methodology

The Sentient World tool is geared towards the iterative refining of maps, illustrated in
Fig. 1. A user manually draws a low-resolution map; the height data from this map are
used to train a number of neural networks previously optimized towards novelty via
neuroevolution. Once the networks’ training (via gradient-search) is completed on the
user-provided data, each ANN generates a map of higher detail which is presented to
the user. The user can accept or manually edit the detailed maps, and resubmit them for
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Fig. 2. The Levels of Detail (LOD) used for the map sketches (from left to right: LOD of 1, 2 and
3), in terms of grid resolution and height zones. Numbers in Fig. 2a refer to the number of tiles
available in each row and column for that LOD, while numbers in Fig. 2b refer to the lower and
upper bounds (li, ui) of each corresponding height zone.

further refining; the process terminates once the designer is content with their final map.
The number of maps presented to the user is limited to eight in this study — despite the
fact that evolution runs on a larger population — in order to reduce both the training
time of ANNs and the cognitive load on the designer when inspecting the detailed maps.

3.1 Representation

The maps generated by the Sentient World tool consist of a number of tiles, with each
tile designating a specific height zone. The number of tiles (also termed resolution) and
the number of height zones are interconnected and determine the level of detail (LOD)
of the sketch (see Fig. 2). A map sketch of any LOD can be encoded by a multi-layer
ANN using a sigmoid activation function for all its nodes. The map is represented by an
ANN in the following fashion: the normalized x, y coordinates of each tile’s midpoint
(red points in Fig. 3b) are used as input of the ANN, with the output being the tile’s
height value h. The output h belongs to a height zone i if h∈[li, ui), where li the zone’s
lower bound and ui its upper bound (see Fig. 2b).

3.2 Iterative Refining

The key contribution of the Sentient World tool to existing paradigms of computer-aided
design is the process of iterative refining which allows the user, through interaction
with the tool, to add an increasing number of details to a rough sketch. The process of
iterative refining is currently accomplished through the training of multiple ANNs to
conform with the rough sketch provided by the user. In order to increase diversity in the
refined sketches and increase the ANNs’ predicting abilities, a short evolutionary run
optimizes these networks towards novelty and larger topologies.

ANN Training: Iterative refining is accomplished through the training of multiple
ANNs to approximate the patterns of the user-provided low-resolution sketch. In or-
der to train these ANNs, the user sketch is converted to a dataset of input-output pairs.
Inputs are the normalized x, y coordinates of the tile’s midpoint (red points in Fig. 3b)
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Fig. 3. An example of the iterative refining process. The user draws a sketch at LOD=1 (a) which
creates a dataset (b) using the height zone average (0.25 for water, 0.75 for land) at each tile’s
midpoint (red points). An ANN (c) is trained to conform to this dataset; after training, the ANN
outputs the height values for a more detailed map (d) which are encoded into height zones of
LOD=2, generating the refined map (e).

and the desired output d is the tile’s height zone average (d = li+ui

2 ; where i is the
tile’s height zone and li, ui are the zone’s lower and upper bounds, respectively).
The error e of the network, for actual output a and desired output d, is calculated as
e = 1

2 (d − a)2. Each network is trained via backpropagation [17] to minimize errors
of the entire dataset, and training terminates either once all output values are within the
desirable height zones or after 105 epochs. Back-propagation is carried out with non-
batch weight updates and a learning rate of 0.1. Once training is complete, the ANN
is used to generate a more detailed map, increasing both the resolution LOD and the
height zone LOD by one step; thus the network has a larger number of coordinates for
inputs, while its h outputs correspond to more precise height zones (see Fig. 3e).

Neuroevolution: As the maps’ resolution increases, the dataset of input-output pairs
becomes more complex and requires a larger network to approximate. Additionally, as
the user is presented with various detailed map suggestions during the iterative refining
step, varying the topology and initial weights of the networks prior to training is likely to
create more variation in the final results. For these two reasons, a short evolutionary run
optimizes the ANNs towards novelty [8]. Evolution is carried out via neuroevolution of
augmenting topologies (NEAT), which has a chance of increasing the number of layers,
nodes, and links of the neural networks in the population [20]. Following the novelty
search paradigm [8], evolution optimizes networks towards maximizing the objective
function ρ, which corresponds to the average distance of the k most similar networks in
the population and in an archive of novel individuals. The archive stores the population’s
highest scoring individuals in terms of ρ, and is reset in every run of the evolutionary
algorithm. The fitness score ρ(i) for individual i is calculated as:

ρ(i) =
1

k

k∑
j=1

dist(i, μj) (1)

where μj is the j-th-nearest neighbor of i (within the population and in the archive of
novel individuals). Distance dist(i, j) between networks i and j, is calculated as:

dist(i, j) =
1

T

T∑
t=1

|hi(t)− hj(t)| (2)
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novelty search

backpropagation

(b)

(c)

(d)

(e)

initial sketch

(a)

Fig. 4. A visualization of the impact of novelty search: an initial population (b) of similar, simple
networks are evolved towards larger topologies (c) and dissimilar phenotypes (d), expanding the
expressivity of generated artifacts. Once evolution sufficiently explores the search space, gradient
search constricts expressivity towards artifacts that conform to the user-defined dataset of the
initial sketch (a). The final, trained ANNs generate more diverse refined maps (e).

where T is the number of tiles of the encoded map on the same resolution, i.e. (c) in
Fig. 4 and hi(t) is the h value at tile t’s midpoint of the map encoded by network i.

Evolution is carried out for 20 generations on a population of 20 individuals, with the
5 fittest networks per generation stored in an archive of novel individuals and the closest
5 individuals considered when evaluating ρ. If no prior refining has occurred during the
current session, the initial population in the evolutionary run consists of fully connected
networks with randomly initialized weights and one hidden layer with four nodes. If a
map and its encoding network has already been selected during previous refining steps,
the initial population in the evolutionary run consists of mutations of the selected net-
work, thus preserving its more elaborate topology. In order to bypass the problem of
recombining networks of different topologies, evolution takes place only via mutation
by adding a new node (10% chance) or a new link (15% chance) to the network, or oth-
erwise modifying the weight of one randomly selected link. The selection of individuals
for mutation is made via a fitness-proportionate roulette-wheel scheme. Once evolution
is terminated, the eight fittest networks are selected and trained using backpropagation,
as described above (see Fig. 4).
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(a) Sketching interface while the user draws
a new map sketch (with LOD of 2).

(b) Selection interface while the user selects
a higher resolution map sketch (with LOD
of 3) to refine the sketch from Fig. 5a.

(c) Sketching interface while the user man-
ually refines the selected map from Fig. 5b.

(d) The full resolution of selected map from
Fig. 5b, displayed as a heightmap.

Fig. 5. The User Interface for the Sentient World tool

3.3 User Interface

The Sentient World generative tool aims to assist the user both in the generation and
in the refinement of terrain models; the former is accomplished through a simple map
editor and the latter through the presentation of maps of higher detail. The map editor
screen (see Fig. 5a) allows the user to paint the map’s tiles using brushes for different
height zones. In addition to the height zones in Fig. 2b, the user can designate black
tiles in the map, which act as wildcards and can be of any height. Black tiles are not
included in the dataset for training the ANNs in the iterative refining process.

The map selection screen (see Fig. 5b) allows the user to inspect the refined maps
generated according to Section 3.2. The interface allows up to eight maps to be shown,
although identical maps are omitted. The user may select a single map among presented
ones, in which case the following actions become available:

Continue which re-runs the generative algorithms on the current level of detail, with
an initial population seeded by the ANN of the selected map.
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Refine which runs the generative algorithms on the next level of detail, using the height
data of the selected map as the training dataset.

Edit & Refine which allows the user to load the selected map in the map editor and
make manual adjustments; the modified map is used as the training dataset to gen-
erate the maps of the next level of detail.

Finish which uses the ANN of the selected map to generate the full resolution height-
map (see Fig. 5d), allowing for further calculations and for exporting to a file.

If the user selects no map among those presented, they have the option to re-attempt the
map generation process (on the current level of detail) with a new initial population. The
available user actions are also shown in Fig. 1; manual editing is an optional component
to the process of refining, and appears in a dotted outline.

4 Experiments

To evaluate the potential of the iterative refinement approach and the efficacy of the
proposed method, a number of sample maps are refined through the algorithm described
in Section 3.2. These sample maps (shown in Fig. 6) have three distinct patterns — i.e.
Land (L), Island (I) and Shore (S) — on two LODs. The maps were selected for their
diversity — e.g. the patterns in map L1 are much simpler and easier to learn than those
of map I2. In a simulated run of Sentient World, the above maps are refined by eight
ANNs, since that is the number of presented maps in the Sentient World interface.
The impact of gradient and novelty search is tested via two experiments: in the first,
backpropagation (BP) is used to train eight randomly initialized fully-connected ANNs
with a hidden layer of four nodes. In the second, backpropagation is used to train the
eight fittest ANNs evolved via novelty search from a population of 20 ANNs for 20
generations; the initial population’s ANNs have the same topology as the randomly
initialized ANNs of the first experiment.

The performance measures considered in this study include the runtime, derived from
an Intel i7 at 2.10GHz with 8 GB of RAM, and the average distance between the refined
maps; significance is tested through standard t-tests (significance is 5% in this paper).
Average distance d̄ is calculated as:

d̄ =
1

P (P − 1)

P∑
i=1

P∑
j=1
j �=i

dist(i, j) (3)

where P is the number of presented maps (P = 8 in this paper) and dist(i, j) is the
distance metric of (2) but calculated on the refined maps (see Fig. 4e).

The results of the different maps’ refinement for the two approaches are shown in
Table 1; displayed values are averaged from 20 individual runs, with standard deviation
among runs shown in parentheses. Fig. 7 displays the refined maps encoded by trained
ANNs of the most successful run in terms of average distance. Most trained ANNs fully
conform to the user-provided dataset in the sample map; excluding I2 and S2, the output
values of all trained networks for all runs match the height zones of the sample map. The
complicated patterns of I2 and S2 can’t be learned fully within 105 epochs: the average
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(a) L1 (b) L2 (c) I1 (d) I2 (e) S1 (f) S2

Fig. 6. The six initial maps which will be refined by the Sentient World tool. Maps L1, I1, S1
have LOD=1 while maps L2, I2, S2 have a similar form to their respective coarse counterparts,
but with LOD=2.

Table 1. Comparison of the refinement processes for different template maps, using backprop-
agation (BP) trained on random ANNs vs. BP trained on ANNs evolved via novelty search.
Performance measures are the running times of ANN training (ANN time) and novelty search
(Evolution time) and the average distance between maps.

Template BP BP with novelty search
Map ANN time (s) Avg. Distance Evolution time (s) ANN time (s) Avg. Distance

L1 0.14 0.103 (0.023) 0.15 0.16 0.122 (0.031)
L2 0.23 0.013 (0.002) 0.33 0.58 0.028 (0.005)
I1 7.89 0.036 (0.008) 0.08 4.18 0.036 (0.009)
I2 1183.15 0.046 (0.004) 0.27 684.08 0.046 (0.005)
S1 6.81 0.012 (0.006) 0.15 2.67 0.029 (0.019)
S2 569.25 0.016 (0.004) 0.20 680.86 0.031 (0.004)

distance between a desirable height zone’s closest bound and a trained ANN’s output
is 0.0048 (on I2) and 0.0012 (on S2) for BP alone, and 0.0045 and 0.0014 respectively
for BP with novelty search. Overall the refined maps of Fig. 7 follow the patterns of the
template maps of Fig. 6, although some refined maps for I1 are not islands.

Table 1 demonstrates that novelty search significantly increases the diversity of gen-
erated maps for L and S patterns. Inspecting the most successful artifacts in Fig. 7,
backpropagation combined with novelty search creates far more visually interesting
and complex maps for S1 and L2, compared to the repetitive patterns when applied on
simpler networks. For the Island patterns (I1, I2), backpropagation with and without
novelty search generates maps which conform equally well to the user-defined dataset;
however, novelty search does not enhance the diversity of these particular map patterns.
With respect to computational time, the larger topology of networks evolved via NEAT
increases the training time for backpropagation in the L and S patterns. Small networks
appear able to easily encode the simple patterns in the L and S datasets; backpropaga-
tion on random small networks can therefore quickly learn such patterns, but creates
visually uninteresting results. On the other hand, there is a surprising decrease in the
computational time required to train the larger evolved networks for the Island patterns,
compared to the training time for random small networks. While not necessarily creat-
ing more diverse results, novelty search enhances backpropagation for such maps since
the larger networks are able to learn these complex patterns faster than the small ran-
dom networks. The presented sample maps showcase that novelty search can contribute
— with minimal computational overhead compared to backpropagation — to faster
training and more diverse results, although one often at the expense of the other.
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BP BP with novelty search

L1

L2

I1

I2

S1

S2

Fig. 7. Comparison of the refined maps trained via backpropagation (BP) with and without nov-
elty search, for each template map. The maps are collected from the run with the highest average
distance.

5 Discussion

The combination of stochastic and gradient search for the generation of novel maps
conforming to designer intentions has shown promising results on the sample maps
used to evaluate the proposed iterative refinement algorithm. The most important future
research step is to test the tool with human designers, by collecting usability metrics,
questionnaires, or verbal feedback and by measuring the impact of backpropagation and
novelty search. A concern for the presented approach is the required runtime between
iterations of sketching and refining. In larger resolutions and complex patterns, the size
of the dataset makes training slow (e.g. 20 minutes for sample map I2). It is not realistic
for a computer-aided design tool promoting human-machine dialog to require such long
periods of inaction from the human user. Future work will address the issue by reducing
the maximum number of epochs for training, by training each network in its own thread
running on parallel and by showing the refined maps while training is under way, al-
lowing users to terminate training prematurely if they find the maps interesting. Taking
advantage of problem decomposition can also reduce the training time of high-detail
maps: for instance, an ANN can be pre-trained to conform to a lower-detail version of
the user-defined map before learning map patterns in higher resolutions.

Although gradient search helps preserve designer intentions during the generative
process, it requires “close” supervision which may not be appropriate in cases where the
designer does not wish to specify every map detail. While designers often have specific
ideas for the heightmap of their terrain, other properties such as temperature or humid-
ity are much more difficult to manually specify and would increase the cognitive load
on the side of the designer. Future work will explore the unsupervised search of patterns
via neuroevolutionary algorithms such as NEAT [20], in circumstances where the de-
signer provides high-level specifications such as vegetation on areas of the map and the
algorithm optimizes the underlying conditions (temperature, humidity, and soil consis-
tency maps) for the satisfaction of those specifications. Combining neuroevolution with
constrained optimization has been quite successful for the generation of content which
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satisfies strict design requirements [10,11]. Additionally, the elevation patterns stored
in the trained ANNs can be used as scaffolds [7] for generating complementary maps
(such as vegetation or temperature maps) through the use of CPPNs [19].

The visual appearance of the final maps is limited to both the representation em-
ployed and the training process followed. The sigmoid functions used in the ANNs of-
ten generate very “smooth” landscapes, with rounded shorelines and smooth elevations.
More interesting features could be added via noise, but the randomness would remove
the controllable aspect of this tool. The use of other activation functions might create
more interesting shapes, but such networks can only be trained through evolution, such
as CPPN-NEAT [19]. Otherwise, fast and deterministic erosion algorithms [15] could
be applied to the heightmaps for a more realistic appearance.

6 Conclusion

The framework presented in this paper is a first step towards a tool supporting and en-
hancing human creativity, which provides more designer control than most computer-
aided design tools available in the literature. Preliminary results show that gradient
search (via backpropagation) is able to satisfy most designer-imposed constraints, while
evolution via novelty search can increase the networks’ representational power and the
diversity of the generated results. Future steps should address the computational de-
mand in large datasets, and aim to increase the amount of world features generated
(vegetation, cities) and reduce the requirements for designer control to more abstract
goal specifications. While the Sentient World tool currently generates heightmaps for
use as gamewords, minimal changes — such as increasing the number of network out-
puts to three for RGB formats — could allow it to become a tool for visual artists,
where the human artist begins by creating a rough sketch with basic colors and through
the iterative refining process generates a final image which can have endless resolution.
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