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Abstract. Efficient VM communication in Cloud computing infrastruc-
tures is an important aspect of HPC application deployment in clusters
of VMs. In this paper we present Xen2MX, a high-performance messag-
ing protocol, binary compatible with Myrinet/MX and wire compatible
with MXoE. Its design is based on MX and its port over generic Eth-
ernet adapters, Open-MX. Xen2MX combines the zero-copy character-
istics of Open-MX with Xen’s memory sharing techniques, in order to
construct the most efficient data path for high-performance communica-
tion, achievable with software techniques. Using Xen2MX, we are able
to reduce the round-trip latency to 14us, compared to directly attached
devices (13us) and to a software bridge setup (44us).

1 Introduction

Cloud computing infrastructures offer dedicated execution, isolation and flexi-
bility to a vast number of services, providing huge processing power; this fea-
ture makes them ideal for mass deployment of compute-intensive applications.
However, I/O-intensive applications suffer from poor performance in the cloud
context. Numerous approaches have been proposed to alter the programming
paradigm of the Cloud [12] leading to a less communication oriented model,
though decentralized and distributed.

During the last decade, |I/O Virtualization (IOV )|techniques have been intro-
duced to provide near-native performance both in 10GbE and exotic interconnec-
tion frameworks [3/4]. Compared to the common case of [Virtual Machine (VM)
communication (software bridges or routing techniques), [OV] has managed to
overcome specific limitations in terms of performance. The community has pro-
posed several optimizations to [OV] but still, a major issue correlated with its
design remains unsolved: scalability. The number of that enjoy direct data-
paths to the network is limited by the hardware capabilities of the specific [OV}
enabled adapter. In the era of multi/many—cores, where [VM] containers would
be able to host a great number of VMg, will [OV] adapters be able to cope with
servicing requests from the system or the network at a sufficient rate ? this prob-
lem is multi-parametrical. We believe that close investigation to virtualization
system approaches is necessary, using software tools that can mark out efficient
data paths and sources of overhead that need to be eliminated.
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As we move towards the standardization of Ethernet in both worlds, Cloud
computing and [High-Performance Computing (HPC)| we need a way to to study
the effect of message-passing protocols in the Cloud, without having to suffer
from TCP /IP’s complexity. However, current approaches do not provide a soft-
ware solution to efficiently exploit hypervisor abstractions to access hardware. In
previous studies [Bl6I7] we have attempted to examine the trade-offs related to
device sharing using custom lower-level protocols and simple microbenchmarks.
We move forward to a more generic design, in order to understand and optimize
the way [VMd interact with the network in an [HPC] context.

In this work we describe the design of Xen2MX, a high-performance inter-
connection protocol for virtualized environments. Xen2MX is binary compatible
with MX and wire compatible to MXoE, the Ethernet mode of Myrinet’s MX
protocol. Although our prototype implementation is in early stages, results from
the original MX benchmarks over Xen2MX are promising, reducing the round-
trip latency to as low as 14us compared to 44us of a software bridge setup, and
13ps of the IOV case. We juxtapose our findings with [[OV] techniques and ex-
amine possible ways to optimize our prototype in order to achieve near-native
performance.

2 DMotivation and Background

Overview of the Xen Architecture. Xen [§] is a popular Virtual
Machine Monitor (VMM) that supports |[Paravirtualization (PV)l Data ac-
cess is handled by privileged guests called driver domains that help
[VMg interact with the hardware, based on the split driver model. With
[Single Root I/O Virtualization (SR-IOV)| [3], VM4 exchange data with the net-
work via a direct VMIo-NIC data path provided by a combination of hardware
and software techniques: smart adapters export multiple PCI functions to the
[Virtual Machine Monitor (VMM)} hypervisors assign these functions to [VMd so
guest kernels run native drivers and control part of the adapter’s capabilities.

In Xen, memory is virtualized in order to provide contiguous regions to OS’s
running on guest domains. This is achieved by adding a per-domain memory
abstraction called pseudo-physical memory. So, in Xen, machine memory refers
to the physical memory of the entire system whereas pseudo-physical memory
refers to the physical memory that the OS in any guest domain is aware of.

To efficiently share pages across guest domains, Xen exports a grant mecha-
nism. Xen’s grants are stored in grant tables and provide a generic mechanism
for memory sharing between domains. Two guests can initialize an event channel
and exchange events that trigger the execution of the corresponding handlers.
This mechanism is often used along with I/O rings, when one guest wants to
inform another about the placement of a new request or response in the common
ring.

Xen’s PV network architecture is based on the split driver model. Guest [V M
host the netfront driver, which exports a generic Ethernet API to the guest’s
kernel-space. The driver domain hosts the hardware specific driver and the
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netback driver, which interacts with the frontend using the event channel mech-
anism and injects frames to the NIC via a software bridge.

Design Choices for a Message-Passing Protocol. In setting out to inte-
grate high-performance communication semantics in a virtual environment, we
have to respect certain principles: the result of our effort must be portable, sim-
ple, scalable, and robust. It must also achieve high-performance in terms of both
low-latency communication and line-rate bandwidth. Below, we briefly elaborate
on each of these design goals:

Simple and Portable: 1t is rare for system developers to possess the required
resources to port their code on various interconnection protocols. It seems that
abiding by feature-specific APIs slows down the adoption of new and improved
technology. So the obvious choice for them is a widely adopted protocol with
a well specified programming interface. The resulting design and code must be
simple, understandable and tailored to virtualization demands.

Scalable: Tt is common case in the[HPClworld to associate send /receive buffers
to any form of communication endpoints (connection oriented or not). This has
been widely considered as a bad move [9], especially due to the lack of scalability
this implies. As the number of nodes/hosts climb the scale of 1000, then buffers
associated with each node are non-negligible in terms of space requirements and
management — let alone the mapping of every single host of the network. This
seems like a waste of resources compared to just spending a few CPU cycles to
poll; it is a fairly significant trade-off we are obliged to take in terms of scalability.

Robust: One of MPI’s initial goals was to be kept simple. This is the main
reason that MPI’s fault tolerance is not elaborate. As a result, the lower-layer
interconnection protocol must ensure that error conditions can be handled prop-
erly. Connection oriented semantics can solve this issue, keeping the protocol
semantics as closely coupled to MPI as possible.

Interconnection Protocol. Many custom programming interfaces have been
proposed for existing message passing stacks. However, MPI is the current stan-
dard for communication on the scientific applications front. For instance, a mes-
sage passing layer does not need to implement collective communication from
scratch — it is only necessary to build the interconnect abstraction of MPI, the
[Byte Transfer Layer (BTL)| that translates MPI semantics into actual calls for
the interconnect to handle. One popular lower-level protocol that acts as a[BTL]
for all popular MPI implementations and supports all necessary communication
capabilities used by MPI is Myrinet eXpress (MX [10]).
Communication-sensitive applications may obtain significant performance im-
provement due to dedicated high-speed network technologies. However, as most
applications do not yet exhibit communication bottlenecks, many clusters still
use commodity networking technologies such as gigabit Ethernet. Indeed, this
category of parallel applications is often bound to an implementation of MPI
over TCP/IP; nevertheless, TCP/IP has often been criticized as being slow in
the context of high-performance computing. As a result, there is a new trend
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in the [HPCl market: porting/building high-performance protocols over generic
Ethernet.

Open-MX [IT] is the software implementation of the MX protocol over generic
Ethernet adapters. MX employs user-level networking techniques to achieve
high-performance communication. It exploits the capabilities of Myrinet and
Myri-10G hardware at the application level while providing low-latency and
high bandwidth (less than 2us and 1250MB/s data rate). All the actual com-
munication management is implemented in the user-space library and in the
firmware. Open-MX follows the same implementation model and semantics as
MX; their main difference is that OS-bypass is not possible with generic adapters.
Open-MX handles messages the same way as MX, depending on the size of the
requested transfer. Its vital building blocks are: Endpoints: An endpoint can be
considered as a virtualized instance of a device, a logical source or destination
of all communications in high-performance interconnects. Fvents: Applications
interact with Open-MX through events, a scalable method of communication
between kernel-space and user-space. Events may represent receive notifications
or send completions. Regions: Memory regions are sets of memory segments that
contain virtually contiguous memory areas allocated by the application. Regions
can be the source or the destination of a message and are mainly used in the
rendez-vous communication scenario.

When it comes to cloud computing, and specifically virtualization, things
get a bit more complicated: virtualized environments are hostile territory for
communication-intensive scientific applications. The extra layers of abstraction
that comprise the intermediate virtualization layers reduce the overall perfor-
mance significantly. [OV] enabled devices install a direct application-to-hardware
data path giving the specific the necessary network capacity. Nevertheless,
this approach complicates the setup in a way that hardware limitations arise
early on the scaling factor and important virtualization features (migration,
checkpointing, flexibility in general) are not fully exploited.

3 Xen2MX: Design and Implementation

Our approach proposes the integration of the split driver model described above,
to Open-MX. Using endpoints, the asynchronous event mechanism and smart
page mappings, [VMI's user-space is able to communicate with the network using
the MX protocol without suffering the overhead of the software Ethernet bridge,
while at the same time, the driver domain keeps full control of the network
flow. This is actually the core idea of Xen2MX|!: applications running on [VM]
user-space interact with the MX library, using the MX binary compatibility
Open-MX offers; the library makes calls to the frontend module, keeping the
protocol semantics intact; the frontend forwards requests to the backend module
and vice-versa, depending on the direction of data flow; finally, frames are split
and distributed to the frontend’s pages or built based on the message size and
are transmitted to the network via Linux kernel’s Ethernet layers (see Figure[I]).

! https://github.com/ananos/xen2mx
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Fig. 1. Xen2MX

The main communication mechanism between the frontend and the back-
end is Xen’s event channels and the grant mechanism. Memory registration is
synchronous, providing the backend with guest user—allocated memory pages.
These pages can be attached to socket buffers as fragments, forming a packet to
be transmitted to the network. Otherwise, these pages are the destination of a
receive request and get populated with data originating from the network.

Endpoints feature send and receive queues, a statically allocated buffer that
acts as the source or destination of MEDIUM sends and receives (<64KB). These
queues, along with their buffers, are mapped in the backend, granted using Xen’s
mechanisms and addressed by lower-level Open-MX layers.

Frontend—Backend communication: The basic block of our design is how the guest
interacts with the driver domain. Xen offers basic communication methods for
consumer—producer schemes, on top of which we implement a notification mech-
anism using both soft interrupts and polling, depending on system demands.

Control data exchange is realized using two cyclic rings, shared between both
the backend and the frontend. The first ring handles management commands
(requests) and most of the send path. The second ring does completely the
opposite: it handles receive notifications. For simplicity, SMALL message data is
copied across these rings. This feature, combined with polling on both ends,
gives the lowest achievable latency in this setup.

Data exchange for MEDIUM and LARGE messages is realized using a more com-
plicated scenario. As in the Open-MX case, MEDIUM messages use the send and
receive queues; their buffers are static, allocated upon endpoint initialization and
are addressed using internal indexing. LARGE messages use the registered space
(memory regions, see Section [2]).

Regions in Open-MX are allocated in user-space and registered using a specific
IOCTL. In Xen2MX, the frontend grants the region space to the backend, segment
by segment. In the frontend, each segment contains extra fields that keep track of
granted pages, which are released only when the backend has finished with them.
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The same stands for the send and receive queue buffers. The pages that com-
prise these queues are granted by the frontend to the backend, resulting in con-
sistent, identical queues addressable by the backend.

The tricky part on this approach is that there is a lot of communication in
order to keep regions and queues consistent between the frontend and the back-
end. The overhead imposed by this communication is non-negligible; therefore,
in order to achieve the desirable bandwidth, we need to finetune the way data
flow from/to the network. Specifically:

SMALL messages are being copied across, so there’s not much we can do about
it. We keep the number of copies as low as the normal Open-MX, suffering only
from the constant overhead of the message being transmitted to the backend.

MEDIUM messages are being sent/received via the relevant queues. The situa-
tion here is the same as in SMALL messages. The added overhead of pinning and
granting the send/receive queues is only relevant to the opening/allocation of
the endpoint structures which does not occur on the critical path.

LARGE messages are send /received via memory regions. However, memory reg-
istration is a time-consuming part of the whole process, that needs to be closely
analyzed in order to understand the sources of added overhead and overcome
them.

On the guest’s front, on top of the original allocation and pinning process,
we loop around each region segment and grant all pages to the driver domain,
keeping track of the relevant grant references (which are actually 32-bit un-
signed positive integers). We store these integers to a number of reference pages,
which we grant to the backend. At first, the backend accepts these pages and
dereferences their content to obtain the grant references of the original pages.
This approach is different that the one used both in Xen’s blkback and netback
drivers, due to the large numbers of references we export.

Peer/Neighbor discovery: Contemporary message passing protocols, prior to com-
munication, discover the set of network nodes in order to establish the map of
the network. When a node comes up in Open-MX, it advertises its existence
using raw endpoints, a stripped down version of the original endpoint instance.
This information is saved in each node’s peer table, from which any application
that wants to communicate with the network gets its peer index. This infor-
mation is essential for upper-layer protocols (such as MPI) which use hostnames
to establish initial communication over TCP/IP with their peers.

In our design, peer discovery appears to be more complicated: all [V M4 that
co-exist in the same container, share the Ethernet interface(s) of the host
machine. Therefore, the network mapping would be incomplete, since multiple
peers could not be added to the table using the same interface identification
number. To overcome this, we extended the peer table to support multiple peers
attached to the same interface.

VM to VM Communication: A common approach adopted by IaaS providers is
that the user is not directly aware of the physical placement of the ordered [VMdl
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As aresult, the user may end up (by chance) getting his communication-intensive
[PC application executed in [VMg that co-exist in the same physical machine. If
this is the case, then [[OV] techniques fail dramatically: for a[VMlto communicate
with its peer, data have to flow from the [VMI's memory to the hardware and
then back to the peer [V MF's memory. This unfortunate situation is not going to
happen if we use the split driver model. In Xen2MX, the backend can check the
peer_index of the destination endpoint, and if it finds it in the local peer table,
shared memory communication gets triggered and data get propagated to the
peer [VM] automagically.

4 Preliminary Evaluation

In Xen2MX, the user-space library as well
as the API are intact. As a result, we
use a native MX microbenchmark,
mx_pingpong, to measure round-trip la-

od —<—

tency and ping-pong bandwidth between ; :: 4 /
one guest using our implementation and . i

a native linux box, running the latest ver- e R

sion of Open—MXﬁ. Both machines are ,

identical, featuring one Quad core Intel L st
Xeon 2.4GHz with an Intel 5500 chipset

and 4GB of main memory. The network Fig. 2. Latency (lower is better)

adapters used are two Myricom 10G-PCIE-
8A 10GbE NICs in Ethernet mode, connected back-to-back. We deployed our
prototype using Xen version 4.2-unstabldd and Linux kernel version 3.4.0.

We use three different cases to setup our experiment. Bridged is the default
Xen approach, using a software bridge, PCI-attached is the case where the phys-
ical device is attached directly to the [VM] using Xen’s pass-through mechanism.
Xen2MX is our approach.

Figure[2 plots the round-trip latency achieved under the three aforementioned
setups. Our approach is almost identical to PCI-attached for SMALL messages
whereas the Bridged case achieves 44us. Using Xen2MX, transferring 1 byte
across takes 14us, less than half of the Bridged case and approximately 1us
more than the best measured (PCI-attached case). Figure Bl shows the ping-
pong bandwidth measured on the three setups. Our approach outperforms the
Bridged case which exhibits unstable behavior. After 512KB, performance drops
to as low as 10 MB/s, for reasons that we could not explain. We attribute
this issue, to the fact that the netback / netfront drivers are not optimized
towards high-performance communication; hence this misbehavior when being
overwhelmed with buffer handling at this rate.

2 Open-MX 1.5.2
3 Changeset 25099:4bd752a4cdf3
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Our approach seems to follow the scal-
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ing of the PCI-attached case up un-
til a specific point (32KB). This point pd

is where memory registration becomes 2w a
noticeable; memory registration is not f 7 ——
always on the critical path, depending e N //\
on the implementation of the protocol. yd \
Rendez-vous semantics, present in MX e \

and Open-MX message exchange, oblige
mx_pingpong to register all the memory
needed for communication on demand.
As aresult, the part where the two peers
agree on the communication parameters and register memory regions is included
in the measurement. We would like to keep the protocol intact, as this is consid-
ered the common case in MPI execution, so we are in the process of optimizing
the way our initial implementation handles registration and granting.
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Fig. 3. Ping-pong bandwidth

5 Conclusion and Future Work

We have presented the design and a prototype implementation of Xen2MX, a
software port of the MX protocol to the Xen split driver model, based on Open-
MX. Xen2MX benefits from all Open-MX’s features to provide binary compati-
bility with MX as well as wire compatibility with MXoE. Our initial prototype is
able to achieve low-latency compared to Ethernet software bridges, the generic
case of networking in virtualized environments, as well as comparable results to
IOV techniques. Our design is applicable to all paravirtualized approaches and
provides an easy, scalable way to deploy communication-intensive applications
in the Cloud.

We aspire to perform a detailed analysis of all overheads imposed by virtual-
ization layers in order to optimize our initial implementation. Our future agenda
consists of exploiting Xen2MX’s binary compatibility with MX (and thus MPT),
to deploy [HPC] applications over this framework and benefit from the flexibil-
ity of the split driver design and the scalability of using more than one driver
domains. We also plan to closely follow the trends of Ethernet-based message
passing protocols such as the Common Communication Interface (CCI [9]) and
provide an easy way to adapt our framework to these protocols.
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