
High Performance Reliable File Transfers
Using Automatic Many-to-Many Parallelization�

Paul Z. Kolano

NASA Advanced Supercomputing Division, NASA Ames Research Center
M/S 258-6, Moffett Field, CA 94035 U.S.A.

paul.kolano@nasa.gov

Abstract. Shift is a lightweight framework for high performance local and re-
mote file transfers that provides resiliency across a wide variety of failure sce-
narios. Shift supports multiple file transport protocols with automatic selection
of the most appropriate mechanism between each pair of participating hosts al-
lowing it to adapt to heterogeneous clients with differing software and network
access restrictions. File system information is gathered from clients and servers
to detect file system equivalence and enable path rewriting so that multiple clients
can be automatically spawned in parallel to carry out both single and multi-file
transfers to multiple servers selected according to load and availability. This im-
proves both reliability and performance by eliminating single points of failure
and overcoming single system bottlenecks. End-to-end integrity is provided us-
ing cryptographic hashes at the source and destination with support for partial
file retransmission of only corrupted portions. This paper presents the design and
implementation of Shift and details the mechanisms utilized to enhance the reli-
ability and performance of file transfers.

1 Introduction

In high-end computing environments, remote file transfers of very large data sets to
and from computational resources are commonplace as users are typically widely dis-
tributed across different organizations and must transfer in data to be processed and
transfer out results for further analysis. Local transfers of this same data across file sys-
tems are also frequently performed by administrators to optimize resource utilization
when new file systems come on-line or storage becomes imbalanced between exist-
ing file systems. In both cases, files must traverse many components on their journey
from source to destination where there are numerous opportunities for performance op-
timization as well as failure. The focus of this work is to support both scenarios with an
automated, high performance, high reliability tool that is simple to use and deploy.

A number of tools exist for providing reliable and/or high performance file trans-
fer capabilities, but most either do not support local transfers, require specific security
models and/or transport applications, are difficult for individual users to deploy, and/or
are not fully optimized for highest performance. This paper presents Shift, which is a
new framework for Self-Healing Independent File Transfers. Shift provides high per-
formance and resilience for local and remote transfers through a variety of techniques.

� Supported by Task ARC-013 (Contract NNA07CA29C) with Computer Sciences Corporation

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 463–473, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

464 P.Z. Kolano

These include end-to-end integrity via cryptographic hashes, throttling of transfers to
prevent resource exhaustion, balancing transfers across resources based on load and
availability, and parallelization of transfers across multiple source and destination hosts
for increased redundancy and performance. In addition, Shift was specifically designed
to accommodate the diverse heterogeneous environments of a widespread user base
with minimal assumptions about operating environments. In particular, Shift is unique
in its ability to provide advanced reliability and automatic single and multi-file paral-
lelization to any stock command-line transfer application while being easily deployed
by both individual users as well as entire organizations.

Shift consists of a client and a manager component. Figure 1 shows the position of
these components within a basic sequential file transfer. A single transfer may consist
of many different file operations such as creating directories, copying files, changing
attributes, computing checksums, etc. The original client computes the operations that
comprise the given transfer and initializes them on the manager. This client, together
with any others spawned dynamically, then requests a set of operations from the man-
ager, attempts those operations, and finally reports the results back to the manager.
Clients may utilize different applications to carry out file operations depending on avail-
ability, performance, and underlying system characteristics. The remainder of the paper
will discuss these transfer processing steps in detail.

Client Host

Shift Client Remote Host

App C1

InterconnectApp C2

App Cj

OS
Client

File System

App R1

App R2

App Rk
Shift Manager(s)

OS
Remote

File System

Fig. 1. Shift components within a transfer

Shift’s core dependencies are Perl and direct or proxied SSH access to remote hosts
using a non-interactive authentication type such as SSH public key authentication.
Client hosts are not required to provide SSH access, but Shift’s client parallelization
features are not possible without it. Shift supports both manually-configured SSH key
pairs as well as single sign-on SSH frameworks. The client has initially been tested with
a lightweight authentication and authorization framework called Mesh [7], which pro-
vides single sign-on using standard SSH key pairs. With minor changes to temporary
credential handling, the client can support other authentication frameworks such as the
Grid Security Infrastructure (GSI) through GSI-OpenSSH [6].

This paper is organized as follows. Section 2 presents related work. Sections 3 and 4
describe the Shift manager and client. Section 5 details transfer parallelization and load
balancing. Finally, section 6 presents conclusions and future work.

High Performance Reliable File Transfers 465

2 Related Work

The cp and scp utilities are the de facto standards for local and remote file transfer,
respectively. A number of other file transports exist, however, that provide greater per-
formance and/or reliability. BbFTP [3] is a remote transfer utility that supports multiple
TCP streams and configurable buffer/window sizes for improved performance as well
as a simple retry mechanism for improved reliability. Rsync [18] supports both local
and remote transfers and can synchronize files that exist at both the source and destina-
tion using partial transfers. This increases performance by minimizing data transfer and
improves reliability by correcting corruption. GridFTP [1] offers many of the features
of BbFTP and Rsync with a more configurable retry mechanism and additional perfor-
mance enhancements including UDP-based data streams, partial transfers, and striped
transfers across multiple servers. Mcp [8] is a high performance local copy utility that
supports multi-threaded single and multi-file copies, processing across multiple nodes,
double buffering, and integrated parallel hashing. Shift can utilize any of these tools to
take advantage of their enhancements when available.

Several projects modify existing transports to provide enhanced performance and/or
reliability. Lim et al. [13] use NaradaBrokering as a more reliable communication
medium between client and server within GridFTP. Sultana et al. [20] provide a tech-
nique for detecting the location of corruption in files transferred via FTP using a set
of signatures appended to each file. If corruption is detected, only a small subset of
the file need be transferred again (a feature Shift also provides). The need to modify
both client and server software within these projects, however, makes them more diffi-
cult to deploy. HPN-SSH [16] is a performance enhancement to OpenSSH that achieves
dramatic performance improvements using dynamically adjusted SSH receive windows
and a multi-threaded implementation of the AES-CTR cipher. While HPN-SSH requires
client and server modification to realize peak performance, either side may be modified
without affecting compatibility with stock SSH installations.

Other projects (including Shift) utilize existing transports as building blocks with
which to build enhanced capabilities. The Reliable File Transfer (RFT) service of the
Globus Toolkit [15] adds reliability using third-party GridFTP transfers initiated from a
centralized server. Since the RFT service itself becomes a single point of failure in the
initial design, Basney and Duda [2] provide fault tolerance for the RFT service using
multiple RFT instances with failover and a synchronized RFT transfer database. The
gLite File Transfer Service (FTS) [10] is a reliable transfer service that can be layered
on top of GridFTP, RFT, and other services. FTS tracks and monitors all file operations,
which are carried out using third-party transfers based on lower-level services. While
both RFT and FTS improve the resiliency of transfers, the use of third-party transfers
will not fit into the security models of many organizations. Stork [9] is a reliable data
placement framework that provides features similar to Shift including support for lo-
cal transfers, automatic selection between multiple transports, and end-to-end integrity.
Stork requires a long-running server accessible with GSI authentication, however, so
deployment by individuals is not practical and may be difficult even for organizations.

The source file system will always be a single point of failure when only a single
copy of a file exists. Replica management services such as Reptor [11] facilitate the
tracking and transfer of multiple copies of the same file to provide data redundancy and

466 P.Z. Kolano

to optimize the source of a particular file. Replica Aware RFT [12] is an extension to
the RFT service that allows it to utilize multiple replica servers in the transfer of a sin-
gle file, thereby increasing fault-tolerance. Peer-to-peer file sharing protocols such as
BitTorrent [4] offer similar functionality where clients can utilize multiple data streams
for a single file to maximize network utilization from low bandwidth sources and sup-
port parallel hashing to verify the integrity of each piece. GridTorrent [21] combines
the peer-to-peer functionality of BitTorrent with the speed of GridFTP to achieve high
performance file sharing. Since data from individual users and/or already on local file
systems is not generally replicated to other locations, Shift focuses on finding multiple
access points to the same data source rather than finding multiple sources.

3 Shift Manager

Shift provides a lightweight command-line manager application that facilitates central-
ized tracking of file operations via two basic functions discussed throughout the remain-
der. Put() adds operations for processing or sets the state of existing operations while
get() retrieves operations for processing. The location of the manager is shown dotted in
Figure 1 as it can be deployed on any of the client host, the remote host, or a dedicated
host in a redundant or standalone configuration depending on the needs of the organiza-
tion or individual user. In addition to tracking, the manager also provides transfer status
and performance through manual user inquiries and automated email notifications.

Shift uses a log-structured [17] flat file model for storing tracking data, which keeps
dependencies on other components, such as databases, to a minimum, thereby curbing
complexity and reducing points of failure. Each file operation is stored as a single line
of text containing operation type (e.g. cp, mkdir, etc.), arguments, originating host, run
time, size, state, and a message field. The state of a file operation is recorded in put()
by appending the operation to the end of one of five log files corresponding to the states
do/doing/redo/done/error. The same operation can appear in multiple logs or multiple
times in the same log but the storage cost is bounded by the number of operations and
configured retries possible. This model achieves the put() of one operation in O(1) time
and minimizes corruption due to outages/glitches by eliminating data overwrites.

A small metadata file for each transfer records items such as the last used position
in each log, counts of operations in each state, etc., which supports the get() of one
operation in O(1) time by seeking do/redo to their last recorded position and returning
the next file operation. Table 1 shows the cost of put() and get() for a single update of
varying size. The cost of a million operations in a batch is high, but would not be used in
practice since large updates reduce the effectiveness of checkpointing. Get() is more ex-
pensive than put() because it performs a number of advanced computations as described
in Section 5. In a redundant manager configuration without a shared file system, track-
ing data must be kept synchronized. This can be achieved through standard mechanisms
such as Rsync called from the manager’s configurable synchronization hook. Table 2
shows the synchronization cost using Rsync for recording varying numbers of file oper-
ations via put() with different numbers of existing operations, which is minimal at even
a million existing operations.

High Performance Reliable File Transfers 467

Table 1. Tracking cost (secs)

Op \\ Files 1-100 1k 10k 100k 1M

put 0.094 0.10 0.20 1.3 14

get 0.15 0.19 0.56 4.8 48

Table 2. Sync. cost (secs)

Exists \\ Puts 1 10k 100k 1M

10k 0.27 0.27 0.35 1.1

100k 0.32 0.33 0.41 1.2

1M 0.89 0.91 0.94 1.8

Table 3. Init. cost (secs)

Source Path /usr/bin /usr/lib /usr

Location Files 1841 15,858 163,799

local 0.13 0.43 2.9

LAN 0.44 3.5 24

WAN 2.7 210 -

LAN w/ helper 0.39 0.61 3.4

WAN w/ helper 5.4 11 66

4 Shift Client

The user interface to Shift’s functionality is provided by a lightweight command-line
client that can function as a drop-in replacement for both cp and scp with identical usage
conventions and support for the most commonly used options. This provides a known
standard interface that makes usage trivial for users of Linux/Unix systems.

4.1 Initialization

A transfer begins when the client is invoked to copy files from a source to a destination.
File operations are computed in a separate initialization phase that operates concurrently
with file processing and allows directory traversal to complete rapidly instead of binding
traversal and transfer together. Local file operations are computed using direct recursive
traversal while remote operations are computed using the file manipulation features of
the SFTP protocol [5]. Table 3 shows the cost of initializing a recursive transfer under
various scenarios. The cost is low for local sources, but can be much higher for remote
sources with the high latency of a WAN link. This cost can be greatly reduced using an
optional helper script invoked over SSH to compute remote operations locally.

Operations are submitted to the manager via put(), which creates a unique identifier
for the transfer, synchronizes the operations to any backup managers, if applicable, and
returns the identifier back to the client for use in later operations. After initialization,
the client inserts an entry into the user’s crontab that periodically invokes itself to check
on the status of the transfer. If a processing thread is not detected for the transfer, the
cron-invoked client begins processing the transfer itself. Hence, if a client or its asso-
ciated system crashes, it will eventually be restarted to continue the transfer. The client
removes the crontab when directed to do so by the manager. On systems without cron,
the client parallelization discussed in Section 5 can provide similar resilience.

4.2 Multiple Transports

During initialization, a client process is forked to process batches of file operations re-
trieved from the manager via get() using one or more transport protocols. Shift was
designed to support a variety of transports. With its basic Perl and SSH dependencies
met, Shift is self-contained and can perform local copies using an integrated Perl equiv-
alent of the cp command and remote copies using equivalents of the SFTP and FISH
[14] protocols. Shift will automatically take advantage of higher performance options

468 P.Z. Kolano

when available. These currently include Mcp for local copies, BbFTP and GridFTP for
remote transfers, and Rsync for both.

For each supported transport, Shift understands how to efficiently transfer a batch of
files, how to detect errors, and whether errors are likely recoverable or not. Shift can
support other command-line transfer applications in the same manner. The transport is
selected dynamically for each batch of files in order of highest estimated performance,
which will vary depending on the sizes of the files in the batch. Before any transport is
used, a small test transfer is performed to ensure its availability and correct operation
with the built-in options available as a last resort. Transfer performance with the various
transports will be shown in Section 5.

4.3 End-to-End Integrity

To detect corruption that may occur in the many components a file may traverse, Shift
supports optional end-to-end integrity by computing file hashes at the source and desti-
nation after successful transmission. A matching hash value provides significant assur-
ance that the file has arrived without corruption. If supported by the transport (e.g. Mcp
and the built-in transports), Shift allows the source hash to alternatively be computed
as part of the transfer itself, which can result in significant performance gains [8] as the
source buffer read from disk for the transfer can be reused for the hash computation.
Unlike other transfer applications that only verify bits received over the network, Shift
verifies the actual bits stored on the target disk for true end-to-end verification.

Traditionally, differing hash values indicate some unknown portion of a file is cor-
rupt. Shift instead provides a hash tree capability that indicates where the corruption is
located at a configurable granularity. The embedded implementation of this capability
is roughly equivalent in performance to the standard md5sum utility and is compati-
ble with Msum [8], which is used by Shift when available as it provides significantly
enhanced hashing performance. Only the portions of the file deemed corrupted are re-
transmitted. Partial file transfer is supported natively by Mcp and GridFTP and is also
implemented in the built-in transports to augment other transports with this capabil-
ity. Partially transferred files are supported in a similar manner. Namely, on an aborted
transfer, Shift will determine where the source and destination differ and continue the
transfer accordingly. Integrity-verified transfer performance will be shown in Section
5. Figure 2 shows a local transfer in which partial corruption and various other failures
were induced to illustrate Shift’s recovery mechanisms. As can be seen, Shift is able
recover from a number of different scenarios automatically.

5 Multi-host Parallelization

The systems originally chosen by the user to carry out a transfer may be non-optimal for
both reliability and performance. Predetermined hosts introduce single points of failure
that may not need to exist. By parallelizing a transfer across multiple equivalent hosts,
the transfer may still be able to complete even if a failure has occurred along its original
path. Parallelization also increases the aggregate CPUs, memory, I/O bandwidth, and
network bandwidth available for the transfer, which provides increased performance
when all components are functioning properly.

High Performance Reliable File Transfers 469

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 0 200 400 600 800 1000 1200 1400

D
es

tin
at

io
n

D
at

a
R

at
e

(M
B

/s
)

Time (s)

cli
en

t k
ille

d

cli
en

t r
es

ta
rte

d

file
 sy

ste
m

 o
ut

ag
e file system

 returns

copy stage com
plete

batched checksums

co
rr

up
tio

n
co

rr
ec

te
d

fin
al

 c
he

ck
su

m

write
read

Fig. 2. Automated failure recovery

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

bbftp fish* gridftp rsync sftp* bbftp fish* gridftp rsync sftp*

T
ra

ns
fe

r
P

er
fo

rm
an

ce
 (

M
B

/s
)

Small Files Large Files

1 host w/o Shift
1 host
2 hosts
4 hosts
8 hosts

Fig. 3. Remote transfer performance

5.1 Multi-file Parallelization

Any alternate client/remote hosts used must share access to the file system utilized by
the original client/remote host. Remote file system equivalence is derived from infor-
mation supplied by the deploying user/organization via the periodic invocation of an
included tool. The client collects similar information incrementally via the mount com-
mand during every initialization and sends it to the manager to make client paralleliza-
tion decisions. In a typical cluster environment where parallelization is most effective,
user logins will be distributed across a set of equivalent front-ends. Hence, over time, a
complete view of the client environment will be built by simply using the Shift client.

Client parallelization occurs during get() processing. If enough work remains, the
manager searches for hosts with equivalent access to the client file system based on the
information transmitted during each initialization. The client is then directed to spawn
itself on as many such hosts as there is work available by invoking itself on the given
host(s) via SSH. All spawns are typically performed during the first get() when an SSH
agent from the user’s interactive session is often available for authentication if host-
based authentication is not supported. Spawned clients immediately add themselves
to cron and detach from the SSH session before processing operations normally via
get() and put(). Since mount points may differ on each host, paths returned to clients
are rewritten based on the manager’s file system information. Remote hosts are also
parallelized at this point by returning alternate remote paths.

Figures 3 and 4 show the performance of the various remote and local transports
(built-ins denoted with ’*’) for a small file case of 1024 4MB files and a large file case

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 cp* mcp rsync cp* mcp rsync

T
ra

ns
fe

r
P

er
fo

rm
an

ce
 (

M
B

/s
)

 Small Files Large Files

1 host w/o Shift
1 host
2 hosts
4 hosts
8 hosts

Fig. 4. Local transfer performance

 0

 50

 100

 150

 200

 250

 300

 350

 400

 bbftp fish* gridftp rsync sftp* bbftp fish* gridftp rsync sftp*

T
ra

ns
fe

r
P

er
fo

rm
an

ce
 (

M
B

/s
)

 Small Files Large Files

1 host
2 hosts
4 hosts
8 hosts

Fig. 5. Remote verified transfer performance

470 P.Z. Kolano

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 cp* mcp rsync cp* mcp rsync

T
ra

ns
fe

r
P

er
fo

rm
an

ce
 (

M
B

/s
)

 Small Files Large Files

1 host
2 hosts
4 hosts
8 hosts

Fig. 6. Local verified transfer performance

 0

 200

 400

 600

 800

 1000

 1200

 1400

fish* gridftp sftp* cp* mcp fish* gridftp sftp* cp* mcp

T
ra

ns
fe

r
P

er
fo

rm
an

ce
 (

M
B

/s
)

 Remote Local Ver. Remote Ver. Local

1 host
2 hosts
4 hosts
8 hosts

Fig. 7. Single file parallelization performance

of 64 1GB files without Shift on one host and with Shift on varying numbers of parallel
hosts. Figures 5 and 6 show the same cases for integrity-verified transfers using Msum
for hash calculations. Remote transfers were between GPFS and Lustre file systems of
two cluster front-ends with 8-core 2.8/3.0 GHz Xeon Westmere/Harpertown CPUs and
1 Gb/s NICs over a 10 Gb/s WAN link with HPN-SSH installed at both sites. Local
transfers were between Lustre file systems on 3.0 GHz Xeon Harpertowns.

Shift adds minimal overhead except in the local Mcp small file case where the
transfer is over before the other hosts even have time to join it. Transfer paralleliza-
tion achieves significantly better performance than is possible with the underlying ap-
plications on their own or the single hosts on which they normally run. This benefit
was achieved automatically over the sequential case as additional host information was
made available to the manager during each client initialization. Verification is CPU-
intensive so can add significant overhead, but has less of an impact on slow transports
where the cost of transmitting the data dwarfs the cost of hashing.

5.2 Single File Parallelization

The techniques of the previous section work best for transfers with multiple files that
can be broken up into batches of roughly the equivalent size to maximize the utilization
of parallel client resources. Transfers of a small number of very large files can create
imbalances where some clients are stuck with the bulk of the work while the others
remain idle. For this reason, Shift also supports single file parallelization where a single
file can be broken up into smaller chunks that can be transferred in parallel.

This capability works by using partial file transfers. Mcp and GridFTP both have
the ability to transfer a specific subset of a file beginning at a given offset with a given
length. This functionality was also added to the built-in local and remote transports us-
ing standard system seek, read, and write calls and corresponding capabilities within
SFTP/FISH. Files above a given split size are broken up by the manager into smaller
sized chunks that can be independently transferred using the appropriate partial trans-
fer. Figure 7 shows the benefits of using single file parallelization on a single 64GB file.
As can be seen, the single file case achieves roughly 80% of the performance of the
original 64 1GB file case with the exception of Mcp. Mcp performance is significantly
reduced due to the disablement of direct I/O during partials transfers, which was found
to exercise an undesirable Lustre bug, but still scales well in relation to single host

High Performance Reliable File Transfers 471

performance. In general, Shift’s single file parallelization capability allows client work-
load to always be kept in balance and fully utilized regardless of the sizes of the original
files. This capability also allows efficient checkpointing of large files on a single host.

5.3 Load Balancing

While parallelism greatly increases the performance that can be obtained by a single
user, the use of too much parallelism by all users can quickly lead to resource contention.
Shift provides several different forms of load balancing to distribute and/or reduce the
load across a site. All balancing is performed during get() processing based on global
transfer activity and load information sent by clients during each manager invocation.
The manager first decides if the client should sleep based on user/administrator-defined
thresholds for CPU, I/O, network and/or disk utilization applied to the received load
information. During parallel transfers, highly loaded clients will be throttled, thereby
shifting the balance of work to clients with a lighter load.

Next, the manager decides if the client should sleep based on global load and fairness
criteria. Shift’s basic strategy is to allow clients to initially spawn in parallel on as
many resources as requested since the credentials for doing so (e.g. an SSH agent only
available during a user login) may not be available a short time after invocation. The
amount of work that a client actually receives, however, is governed by the manager,
which, in a centralized deployment, has information on all transfers and the load they
are generating on each host based on client information. If the total load is more than the
site can handle, enough clients will be directed to sleep until the load is at an acceptable
level. To ensure fairness at high loads, clients are throttled in round-robin fashion with
each user guaranteed at least one active client before another user gets two.

Once it is determined that a client should proceed, the manager determines which
remote hosts have equivalent access to the paths in the next batch of operations. The host
from this set with the lowest load is then chosen and the original remote path is switched
to the mount point of the selected host before being returned to the client. Using this
approach, Shift allows maximum performance when resources are underutilized, but
prevents degradation of performance due to overutilization.

6 Conclusions and Future Work

This paper has described Shift, a framework for Self-Healing Independent File
Transfers. Shift uses a transfer manager to centrally track the status of all file opera-
tions throughout the life of a transfer. The manager utilizes remote file system infor-
mation as well as information forwarded by clients to find hosts with equivalent access
to the client and/or remote file system. If found, multiple clients may be spawned to
multiple remote hosts in a many-to-many configuration. Shift adapts to many client
configurations by supporting multiple file transports with automated transport selection
and validation.

Shift replaces traditional sequential transfers, which are highly vulnerable to failures
at every point along the path between the client and remote file systems, with a highly
parallel model that is resistant to failures throughout via multiple forms of redundancy

472 P.Z. Kolano

and recovery. Outages to the client/remote file systems and the network interconnect
between client/remote hosts, which are the remaining single points of failure, are tol-
erated through an intelligent retry mechanism that classifies failures by recoverability.
Via multiple techniques, Shift provides high reliability together with high performance
through aggregate resource utilization using client and manager components that are
easily deployed by both organizations and individuals. Shift will be released as open
source software in the near future [19].

There are a variety of directions for future work. The hash calculations for verified
transfers are currently carried out sequentially where each batch of files is hashed first
at the source and then verified at the destination. Ideally, all hashes would be computed
in parallel and compared afterward to halve the verification cost. Support for other
transports should also be investigated.

References

1. Allcock, W., Bresnahan, J., Kettimuthu, R., Link, M., Dumitrescu, C., Raicu, I., Foster, I.:
The Globus Striped GridFTP Framework and Server. In: ACM/IEEE Supercomputing 2005
Conf. (November 2005)

2. Basney, J., Duda, P.: Clustering the Reliable File Transfer Service. In: 2nd TeraGrid Conf.
(June 2007)

3. BbFTP, http://doc.in2p3.fr/bbftp
4. Cohen, B.: Incentives Build Robustness in BitTorrent. In: 1st Wkshp. on Economics of Peer-

to-Peer Systems (June 2003)
5. Galbraith, J., Saarenmaa, O.: SSH File Transfer Protocol. IETF Internet Draft (July 2006)
6. GSI-Enabled OpenSSH, http://grid.ncsa.illinois.edu/ssh
7. Kolano, P.Z.: Mesh: Secure, Lightweight Grid Middleware Using Existing SSH Infrastruc-

ture. In: 12th ACM Symp. on Access Control Models and Technologies (June 2007)
8. Kolano, P.Z., Ciotti, R.B.: High Performance Multi-Node File Copies and Checksums for

Clustered File Systems. In: 24th USENIX Large Installation System Administration Conf.
(November 2010)

9. Kosar, T., Livny, M.: A Framework for Reliable and Efficient Data Placement in Distributed
Computing Systems. Jour. of Parallel and Distributed Computing 65(10) (2005)

10. Kunszt, P., Badino, P., Brito da Rocha, R., Casey, J., Frohner, A., McCance, G.: The gLite
File Transfer Service. In: 1st EGEE User Forum (March 2006)

11. Kunszt, P., Laure, E., Stockinger, H., Stockinger, K.: File-Based Replica Management. Fu-
ture Generation Computer Systems 21(1) (January 2005)

12. Lee, Y., Kim, E., Yeom, H.Y.: Replica Aware Reliable File Transfer Service for the Data
Grid. In: 4th IEEE Intl. Conf. on eScience (2008)

13. Lim, S., Fox, G., Pallickara, S., Pierce, M.: Web Service Robust GridFTP. In: 10th Intl. Conf.
on Parallel and Distributed Processing Techniques and Applications (June 2004)

14. Machek, P.: FIles transferred over SHell protocol (V 0.0.2),
http://cvs.savannah.gnu.org/viewvc/*checkout*/
mc/mc/vfs/README.fish

15. Madduri, R.K., Hood, C.S., Allcock, W.E.: Reliable File Transfer in Grid Environments. In:
27th IEEE Conf. on Local Computer Networks (November 2002)

http://doc.in2p3.fr/bbftp
http://grid.ncsa.illinois.edu/ssh
http://cvs.savannah.gnu.org/viewvc/*checkout*/mc/mc/vfs/README.fish
http://cvs.savannah.gnu.org/viewvc/*checkout*/mc/mc/vfs/README.fish

High Performance Reliable File Transfers 473

16. Rapier, C., Bennett, B.: High Speed Bulk Data Transfer Using the SSH Protocol. In: 15th
ACM Mardi Gras Conf. (February 2008)

17. Rosenblum, M., Ousterhout, J.K.: The Design and Implementation of a Log-Structured File
System. ACM Trans. on Computer Systems 10(1) (February 1992)

18. Rsync, http://samba.org/rsync
19. Shift, http://shiftc.sourceforge.net
20. Sultana, A., Bashir, M.F., Qadir, M.A.: CFiTT - Corrupt Free File Transfer Technique Over

FTP. In: 1st IEEE Intl. Conf. on Information and Emerging Technologies (July 2007)
21. Zissimos, A., Doka, K., Chazapis, A., Koziris, N.: GridTorrent: Optimizing Data Transfers in

the Grid with Collaborative Sharing. In: 11th Panhellenic Conf. on Informatics (May 2007)

http://samba.org/rsync
http://shiftc.sourceforge.net

	High Performance Reliable File Transfers Using Automatic Many-to-Many Parallelization
	Introduction
	 Related Work
	 Shift Manager
	 Shift Client
	Initialization
	Multiple Transports
	End-to-End Integrity

	 Multi-host Parallelization
	Multi-file Parallelization
	Single File Parallelization
	Load Balancing

	 Conclusions and Future Work
	References

