
Runtime Function Instrumentation

with EZTrace�

Charles Aulagnon1, Damien Martin-Guillerez2, François Rué2,
and François Trahay3

1 ENSEIRB / INRIA Bordeaux Sud-Ouest
charles.aulagnon@gmail.com
2 INRIA Bordeaux Sud-Ouest
firstname.lastname@inria.fr

3 Institut Mines-Télécom - Télécom SudParis
francois.trahay@it-sudparis.eu

Abstract. High-performance computing relies more and more on com-
plex hardware: multiple computers, multi-processor computer, multi-core
processing unit, multiple general purpose graphical processing units... To
efficiently exploit the power of current computing architectures, modern
applications rely on a high level of parallelism. To analyze and optimize
these applications, tracking the software behavior with minimum impact
on the software is necessary to extract time consumption of code sections
as well as resource usage (e.g., network messages).

In this paper, we present a method for instrumenting functions in a
binary application. This method permits to collect data at the entry and
the exit of a function, allowing to analyze the execution of an application.
We implemented this mechanism in EZTrace and the evaluation shows
a significant improvement compared to other tools for instrumentation.

1 Introduction

The complexity of modern supercomputer hardware, due to the use of NUMA
architecture, hierarchical caches or accelerators, as well as the use of hybrid pro-
gramming models that mix MPI with OpenMP or PThread make it difficult to
exploit efficiently a supercomputer. Optimizing a parallel application requires to
understand precisely its behavior, which can be tedious because of the hardware
and software stacks.

Generating and analyzing execution traces of an application is a great help for
developers who want to optimize their programs. The generation of such traces
requires to intercept the calls to a set of key functions – MPI communication
primitives, synchronization functions, etc. – and to record events in a file. The
instrumentation of a program must not modify its behavior and thus should have
an overhead as low as possible.

� We would like to thanks Julien Pedron for his work on the packaging of this
method in EZTrace – http://eztrace.gforge.inria.fr

I. Caragiannis et al. (Eds.): Euro-Par 2012 Workshops, LNCS 7640, pp. 395–403, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://eztrace.gforge.inria.fr

396 C. Aulagnon et al.

In this paper, we present a mechanism for intercepting the calls to a set
of functions in an application. This mechanism can be used in a performance
analysis tool for generating execution trace. We implemented this technique
in the EZTrace framework for performance analysis. The remainder of this
paper is organized as follows: Section 2 briefly presents the framework in which
our contribution takes place as well as the problems of the instrumentation
mechanism that was previously implemented. In Section 3, we present various
research related to function instrumentation. The mechanism that we propose
and its implementation in EZTrace are described in Sections 4 and 5. Finally,
the results of the evaluation of our implementation are reported in Section 6.

2 The EZTrace Software

EZTrace [12] is a general framework for generating traces of a program with-
out recompilation. It is able to instrument functions in dynamic libraries and
record events in trace files. Several modules are provided that contains function
instrumentations for standard libraries like MPI or pthread. For instance, it can
save each call (and the timespamp at which the call happened) to MPI Send into
a trace using the mpi module. Moreover, EZTrace provides a simple mean to
generate user-defined modules.

To generate a trace, events have to be recorded before and after each call
to specified functions. Recording these events permits to keep track of entry
and exit of each function of interest. To do so, EZTrace uses the LD PRELOAD

mechanism that preloads shared libraries before any other shared libraries. As
depicted in Figure 1, the symbols provided by a preloaded library take priority
over other symbols when the symbol resolution is done. Since EZTrace defines
a function f in a library called libeztrace-foo that is preloaded, when the
application calls f, the function defined by EZTrace is called. This function
records an event, then calls the original function f that is defined by the libfoo
library. When the original f ends, EZTrace records another event and returns
to the application.

The LD PRELOAD mechanism used in EZTrace is very simple and very effi-
cient. It has enabled the development of a fast and efficient framework for trace
generation. However, it can only instrument functions in shared libraries. Thus,
EZTrace cannot intercept calls to functions that are defined in a statically-
linked library or within the program.

Fig. 1. Instrumentation of the function f with LD PRELOAD in EZTrace

Runtime Function Instrumentation with EZTrace 397

3 Related Work

During the optimization of an application, running the program, collecting an
execution trace and analyzing it is a great help for identifying the application
bottlenecks. Several tools are dedicated to a particular library or programming
model like MPI [13], pthread [3] or OpenMP [4]. In order to analyze applica-
tions that use several libraries or programming models as well as user-defined
functions, generic tools like Pablo [10], Tau [11] or VampirTrace [8] were de-
veloped. These tools provide a set of pre-defined modules for the main program-
ming models used in HPC (MPI, OpenMP, ...) These tools use instrumentation
in order to insert probes that record events when a specific function (MPI Send

for instance) is called.
The instrumentation can be based on the application source-code: the ap-

plication is recompiled and functions of interest are instrumented. The main
drawback of this technique is that it requires a recompilation of the program.

An alternative solution for instrumentation consists in modifying the binary
code for inserting probes. To do so, Valgrind [9] relies on partial emulation
of the machine to enable dynamic rewriting and inserting specific hooks in the
system. The list of hooks that Valgrind provides is limited and cannot be eas-
ily extended. Moreover, the emulation obviously makes this solution slow in
testing high performance programs. PIN [7], DynamoRIO [1], DynInst [2] or
MAQAO [6] rely on instruction decoding to instrument the code. These tools
reverse engineer programs and directly insert opcodes anywhere in the binary.
This fine-grain instrumentation allows to modify precisely a binary by, for in-
stance, inserting a set of instructions between two opcodes or removing some
of the opcodes. Figure 2 depicts how these tools can be used for instrumenting
functions such as f: the first opcodes of the function are replaced by a tram-
poline that calls a prolog function (which is in charge of recording an event
in the output trace) before executing the function opcodes. The same operation
is performed for inserting a call to the epilog function before the end of the
function.

These fine-grain instrumentation tools permit to modify precisely an appli-
cation, but using this kind of mechanism in EZTrace for coarse-grain tracing

Fig. 2. Instrumentation of the function f with DynInst

398 C. Aulagnon et al.

(recording an event at the entry and the exit of a function) may cause an over-
head. It requires to install several trampolines: one should be installed at the
entry of the function, and each exit point should be instrumented. Defining a
variable in the prolog function and using it in the epilog is also complex to
implement. Moreover, there is a major issue if the function exit is located at the
beginning of a branch: in that case, complex mechanisms have to be used.

4 Coarse-Grain Instrumentation in EZTrace

In order to generate an execution trace of an application, EZTrace needs to
record events at the entry and the exit of a set of functions (MPI primitives
for instance). Using LD PRELOAD for that is very convenient as it permits to
write a C function that describes how the function should be instrumented.
Moreover, it allows to declare local variables that can be used from the entry to
the exit of the function. Figure 3 shows an example of function instrumentation
in EZTrace. This code is compiled into a shared library that is preloaded before
the application. The f orig variable contains the address of the original function
f obtained at the initialization of the instrumentation library.

double (*f_orig)(int n, double* a);

double f(int n, double* a) {

record_event(F_ENTRY, n);

double ret = f_orig(n, a);

record_event(F_EXIT, ret);

return ret;

}

Fig. 3. Instrumenting the function f in EZTrace

Since this mechanism can only intercept calls to functions located in a shared
library, EZTrace needs an alternative method for statically-linked functions.
We propose to design a mechanism similar to LD PRELOAD that is able to instru-
ment these functions. In order to do this, EZTrace needs to replace the original
function f with its own version that would be similar to the function depicted
in Figure 3. EZTrace function can record events and use the f orig callback
to call the original function f. This requires EZTrace to retrieve the address
of the function f and assign it to the f orig callback. When using LD PRELOAD

with shared libraries, these steps are achieved thanks to the dynamic linker that
associates function names to addresses in the memory space. When the function
to instrument is not in a shared library, the address of the function is hardcoded
in the binary and EZTrace has to modify the binary program to perform the
function interception.

Runtime Function Instrumentation with EZTrace 399

Fig. 4. Instrumentation of the statically-linked function f in EZTrace

The replacement of the function f is depicted in Figure 4: a trampoline to
EZTrace’s f is inserted at the entry of the original function f. The overwritten
opcodes are relocated in a replay section. At the end of the relocated opcodes,
a jump to the remainder of the function is added. The address of the replay
code is assigned to the f orig callback. Thus, when the application calls f, the
execution flow is redirected to the EZTrace version of the function. EZTrace

can collect information and record events before using the f orig callback to
call the original function. Once the original function f returns, the remaining
instructions of EZTrace’s f are processed.

This mechanism allows to instrument functions located in a statically-linked
program. In case the function to intercept is defined in a shared library, the
LD PRELOAD mechanism can be used since the instrumentation code remains
similar to the one described in Figure 3. Unlike the methods presented in Sec-
tion 3, this coarse-grain instrumentation only requires to install a trampoline at
the entry of the function to instrument. Thus, it is not necessary to solve the
complex problems of multiple exit points in the function or exit points located in
a branch. Moreover, the interception function can declare local variables before
the entry of the original function to instrument and use them after its exit.

5 Implementation

We have designed and implemented this mechanism in EZTrace. For instru-
menting an application, the following steps are processed:

1. Get the symbols of the function to instrument (f), the replacement function
(eztrace f), and the callback to the original function (f orig) by reading
the binaries.

2. Run the target program tracing with the ptrace() system call.
3. Fetch the base address of the library containing eztrace f and f orig.
4. Instrument the function f: construct the base trampoline (the jump to

eztrace f), the replay code and write the base trampoline and the f orig

value in the target process memory.
5. Detach the process and let the target process run.

400 C. Aulagnon et al.

These steps happen at the application startup, when the process is being launched.
In case of an MPI application, these actions are performed by each MPI pro-
cess. Thus, an overhead due to the instrumentation during the startup phase is
to be expected. However, we measured that instrumenting 100 functions with
EZTrace only delays the startup by 280 ms.

5.1 Collecting the Necessary Information

In order to get the relative address of a symbol – such as the function to instru-
ment – EZTrace uses the Binary File Descriptor library (BFD). The collected
address is relative to the beginning of the ELF section that contains the function.
If the symbol is defined in the program or in a statically-linked library, the base
address of the ELF section is known and the absolute address of the symbol can
thus be found.

If the symbol is defined in a shared library, the base address of the section is
known only once the library is loaded. EZTrace thus uses the tracing mech-
anism and wait for the dlopen() corresponding to the library (an open() on
the library followed by a mmap()) in order to determine the base address of the
library – and thus the address of the symbol – in the address space.

5.2 Function Instrumentation

Once EZTrace knows the addresses of the required symbols (f, eztrace f and
f orig), it constructs a base trampoline that jumps from the original function to
the instrumentation function when the former is called as depicted in Figure 4.
Since installation of the base trampoline overwrites the first instructions of f,
it is required to relocate them before the installation as shown in Figure 4. In
order to determine the size of the overwritten instructions, EZTrace can rely
on the libopcodes. If it is not available, EZTrace implements an alternative
method that consists in single-stepping the instructions and observing how the
instruction pointer is modified. A memory space is allocated in the target process
to install the relocated code (using mmap()). Once the base trampoline and the
replay code are installed, the address of the replay code is assigned to f orig in
the target process (using ptrace()).

5.3 Discussion

The model we propose has been implemented inEZTrace and will be integrated
in the 0.8 release as open-source. This model is not specific to EZTrace and
it could be integrated in other performance analysis tools. Our implementation
currently only supports Linux, but it is applicable to other systems like Mac OS
X or FreeBSD. Porting this method to these systems is part of our future work.
Also, in order to construct the trampoline, machine-dependent code is needed.
Since we restrict the architecture-specific code to the minimum, this part of the
code is very limited (less than 300 lines of code) compared to the architecture-
specific code in other tools like DynInst or PIN. Therefore, porting our code
to other architectures requires little effort.

Runtime Function Instrumentation with EZTrace 401

6 Evaluation

Since instrumenting an application and collecting information during its exe-
cution increases the number of instructions to execute, it is expected that our
implementation implies an overhead compared to running the application with-
out instrumentation. In this Section, we evaluate this overhead and we compare
EZTrace to other tools that can be used for instrumentation : DynInst 7.1
and PIN 2.11. The results presented here were obtained on an Intel Xeon X5550
at 2.67 GHz.

6.1 Raw Overhead

In order to evaluate the raw overhead of our implementation, we use a program
that calls repeatedly an empty function (compute) located in a library. The
program is linked either statically or dynamically against the library depending
on the interception method to analyze. We instrument this program by counting
the number of times the program enters the function and the number of times it
leaves the function. The instrumentation with PIN and DynInst thus consists
in inserting a call to the counting function (count calls) at the entry and the
exit of the function. With EZTrace, the entry of compute is replaced with a call
to ezt count calls that increments a variable, calls compute and increments
another variable.

Table 1 shows the average duration of an iteration in this program. In the case
of the shared library, DynInst failed to instrument the program. The results
show that the instrumentation with PIN, DynInst and EZTrace cause a light
overhead comprise between 5 and 25 ns.

Since the goal of our instrumentation tool is to generate execution traces, we
run the same experiment, but instead of modifying a variable at the entry and
exit of compute, we record two events in a trace file using the FxT library [5]. The
results of this experiment are reported in Table 2. Recording an event being more
time consuming than modifying a variable, the measured overheads are higher.
The results show that the overhead of EZTrace is lower than for DynInst and

Table 1. Function duration when counting the number of calls to a function

Interception method no instrumentation PIN DynInst EZTrace

Statically linked library 4.7 ns 20.2 ns 28.8 ns 12.3 ns

Shared library 5.2 ns 24.0 ns - 11.3 ns

Table 2. Function duration when recording events during a function call

Interception method no instrumentation PIN DynInst EZTrace

Statically linked library 4.7 ns 1287 ns 1294 ns 245.2 ns

Shared library 5.3 ns 1293 ns - 227.4 ns

402 C. Aulagnon et al.

PIN. However, because of FxT internals, we observed large variations in this
overhead gain depending on the computer used.

6.2 Overhead on an Application

In order to evaluate the overhead of the instrumentation on a real life application,
we instrumented an OpenMP application that computes a MD simulation. By
recording events at the entry and exit of each function of this application, the
resulting trace consists in 7,941,671 events.

Table 3. Execution time of a molecular dynamics simulation using 4 OpenMP threads

Interception method no instrumentation PIN DynInst EZTrace

Execution time (s) 0.45 3.16 3.28 2.26

Overhead (ns / iteration) +0 +341 +413 +227

The execution times of the application are reported in Table 3. While PIN and
DynInst cause an overhead of approximately 350 ns per event, instrumenting
this application with EZTrace only degrades the performance by 227 ns per
event. This is due to the way EZTrace instruments the functions: instead of
inserting several trampolines, EZTrace only disrupts the processing flow once.

7 Conclusion

Nowadays, high performance computing (HPC) relies on a high level of hy-
brid parallelism. To analyze HPC programs, tracing tools with low overhead are
needed. Performance analysis tools such as EZTrace can install function hi-
jacks and trace calls to shared library functions using a LD PRELOAD mechanism.
However, this method cannot apply for statically-linked functions.

In this paper, we described a method that permits to instrument a statically-
linked function using a mechanism similar to LD PRELOAD. Our mechanism im-
provements to other techniques are: 1/ all the instrumentation is done in the
process initialization and have minor impact on the process performance, 2/ a
clever design of the instrumentation makes our system easy to use by leveraging
C calling mechanism and 3/ the use of ptrace() to detect library loading and
to allocate memory in the target process makes the amount of machine-depend
code really low.

Therefore, our method is much less complex than other methods such as the
ones implemented in DynInst and PIN and has better performance. It is also
to be noted that DynInst is particularly difficult to install and relies on non-
standard libraries that may be missing in many systems. Also, PIN is for Intel-
based CPU only. Our method is fully integrated into the EZTrace software
and we plan to port this mechanism to other systems (Mac OS X and BSD) as
well as other CPUs (ARM).

Runtime Function Instrumentation with EZTrace 403

References

1. Bruening, D., Garnett, T., Amarasinghe, S.: An Infrastructure for Adpative Dy-
namic Optimization. In: International Symposium on Code Generation and Opti-
mization, CGO 2003 (2003)

2. Buck, B., Hollingsworth, J.: An API for runtime code patching. International Jour-
nal of High Performance Computing Applications 14(4), 317–329 (2000)

3. Bull, S.: NPTL Stabilization Project. In: Linux Symposium, p. 111 (2011)
4. Caubet, J., Gimenez, J., Labarta, J., De Rose, L., Vetter, J.: A Dynamic Tracing

Mechanism for Performance Analysis of OpenMP Applications. In: Eigenmann, R.,
Voss, M.J. (eds.) WOMPAT 2001. LNCS, vol. 2104, pp. 53–67. Springer, Heidelberg
(2001)

5. Danjean, V., Namyst, R., Wacrenier, P.-A.: An Efficient Multi-level Trace Toolkit
for Multi-threaded Applications. In: Cunha, J.C., Medeiros, P.D. (eds.) Euro-Par
2005. LNCS, vol. 3648, pp. 166–175. Springer, Heidelberg (2005)

6. Djoudi, L., Barthou, D., Carribault, P., Lemuet, C., Acquaviva, J., Jalby, W., et al.:
Maqao: Modular assembler quality analyzer and optimizer for itanium 2. In: The
4th Workshop on EPIC Architectures and Compiler Technology, San Jose (2005)

7. Luk, C.K., Cohn, R., Muth, R., Patil, H., Klauser, A., Lowney, G., Wallace, S.,
Reddi, V.J., Hazelwood, K.: Pin: Building Customized Program Analysis Tools
with Dynamic Instrumentation. In: PLDI 2005 (2005)

8. Muller, M., Knupfer, A., Jurenz, M., Lieber, M., Brunst, H., Mix, H., Nagel, W.:
Developing scalable applications with Vampir, VampirServer and VampirTrace. In:
Proceedings of the Minisymposium on Scalability and Usability of HPC Program-
ming Tools at PARCO (2007)

9. Nethercote, N., Seward, J.: Valgrind: A Framework for Heavyweight Dynamic Bi-
nary Instrumentation. In: ACM SIGPLAN 2007 Conference on Programming Lan-
guage Design and Implementation, PLDI 2007 (2007)

10. Reed, D., Roth, P., Aydt, R., Shields, K., Tavera, L., Noe, R., Schwartz, B.: Scalable
performance analysis: The Pablo performance analysis environment. In: Proceed-
ings of the Scalable Parallel Libraries Conference, pp. 104–113. IEEE (2002)

11. Shende, S., Malony, A.: The TAU parallel performance system. International Jour-
nal of High Performance Computing Applications 20(2), 287 (2006)

12. Trahay, F., Rue, F., Namyst, R., Faverge, M.: EZTrace: a generic framework for
performance analysis. In: CCGrid 2011 (2011)

13. Vetter, J., de Supinski, B.: Dynamic software testing of MPI applications with
Umpire. In: ACM/IEEE 2000 Conference on Supercomputing, p. 51. IEEE (2006)

	Runtime Function Instrumentation with EZTrace
	Introduction
	The EZTrace Software
	Related Work
	Coarse-Grain Instrumentation in EZTrace
	Implementation
	Collecting the Necessary Information
	Function Instrumentation
	Discussion

	Evaluation
	Raw Overhead
	Overhead on an Application

	Conclusion
	References

