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Abstract. Multi-cluster environments are composed of multiple clusters
that act collaboratively, thus allowing computational problems that re-
quire more resources than those available in a single cluster to be treated.
However, the degree of complexity of the scheduling process is greatly
increased by the resources heterogeneity and the co-allocation process,
which distributes the tasks of parallel jobs across cluster boundaries.

In this paper, the authors propose a new MIP model which determines
the best scheduling for all the jobs in the queue, identifying their resource
allocation and its execution order to minimize the overall makespan. The
results show that the proposed technique produces a highly compact
scheduling of the jobs, producing better resources utilization and lower
overall makespan. This makes the proposed technique especially useful
for environments dealing with limited resources and large applications.
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1 Introduction

Computation problems that require the use of a large amount of processing
resources can be solved by the use of multiple clusters in a collaborative manner.
These environments, known as multi-clusters, are distinguished from grids by
their use of dedicated interconnection networks [1].

In those environments the scheduler has access to distributed resources across
different clusters to allocate those jobs that cannot be assigned to a single clus-
ter [2]. This allocation strategy, known as co-allocation, can maximize the job
throughput by reducing the queue waiting times, and thus, jobs that would oth-
erwise wait in the queue for local resources can begin its execution earlier, im-
proving system utilization and reducing average queue waiting time [2]. However,
mapping jobs across the cluster boundaries can result in rather poor overall per-
formance when co-allocated jobs contend for inter-cluster network bandwidth.
Additionally, the heterogeneity of processing and communication resources in-
creases the complexity of the scheduling problem [3].

It is possible to find in the literature multiple studies based on co-allocation. In
[2] different scheduling strategies using co-allocation were analyzed, concluding
that unrestricted co-allocation is not recommendable. Other studies have dealt
with co-allocation by developing load-balancing techniques [4], selecting the most
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powerful processors [5] or minimizing the inter-cluster link usage [3] without
finding a compromise between them. In [6] an analytical model was presented
in order to reduce the parallel jobs execution time by considering both resource
availability: processors and communication.

A common issue in previous works is that jobs are allocated individually.
Thus, allocating the best available resources to a job without considering the
requirements of the rest of jobs present in the waiting queue, can reduce the
performance of future allocations and the overall system performance [7]. To
solve this, in [8] the authors presented a scheduling strategy based on a linear
programming model, which brings together the parallel jobs in the waiting queue
that fit the available resources and allocates them simultaneously.

The main constraint on this strategy is the limitation to the set of jobs that
fit on the available resources. In the present work, the authors proposed a new
MIP model referenced as OAS for Ordering and Allocation Scheduling, capable
of determine the best resources allocation and the order in which they must be
executed. Although the scheduling problem is NP-hard, the results shown that
by considering sets of jobs it is possible to improve the resources utilization and
the overall performance.

2 Related Work

In the literature there are multiple strategies for the scheduling process that
can be grouped into two categories; on-line and off-line modes. In the on-line
mode, only arrived jobs to the system are known, and the allocation decisions are
restricted to those jobs. On the other hand, the off-line mode has knowledge of all
the jobs considering the whole set of job for allocation decisions [9]. Nevertheless,
in on-line systems with high job-interarrival rates, the scheduling problem can
be addressed with job-clustering techniques to improve the overall performance,
the system utilization, etc.

The on-line techniques allocate only one job without taking into account the
rest of the waiting jobs, loosing relevant information to improve the overall
system performance. By maintaining the job arrival order, resources that are
available may end up not being allocated. The backfilling technique aims to solve
this allowing to be moved up smaller jobs from the back of the queue [10]. Shmueli
et al. proposed a look-ahead optimizing scheduler to generate the local optimal
backfill selection by using dynamic programming [7]. Shah et al. proposed a
near optimal job packing algorithm to reduce the chances of job killing and
minimize external fragmentation [11]. These approaches tried to map only the
jobs that better fill the gaps without considering other packing opportunities.
Previous research has shown that slightly modifying the execution order of jobs
can improve utilization and offer new optimization opportunities [7][8].

The strategies previously presented are extensively used on Parallel machines
and Cluster computing environments. Nevertheless, they are based on specific
environment characteristics and in most cases assuming jobs with independent
tasks, i.e, without communication constraints. In the present paper, we consider
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jobs with a fixed number of processors requirement, known as rigid Bulk-
Synchronous Parallel jobs [7]. The meta-scheduling on multi-cluster resources
is more challenging than traditional single-domain systems, due to the heteroge-
nous dynamic resources availability in different administrative domains, and the
continuous arrival of jobs at the meta-scheduler [12]. Hence, to face the new
challenges on multi-cluster environments new heuristics should be proposed.

The research on multi-cluster and grid environments has provided multiple
scheduling solutions based on different criteria: cost, makespan, etc. Feng et al.
[13] proposed a deadline cost optimization model for scheduling one job. Buyya
et al. [14] proposed a greedy approach with deadline and cost constraints for
efficient deployment of an individual job. In contrast, the current paper is focused
on the concurrent scheduling of many jobs. In [15][16] heuristics and Genetic
Algorithm solutions for scheduling concurrent jobs are proposed. However, those
studies assumed independent jobs with no communication restrictions.

3 Ordering and Allocation Scheduling Strategy

System performance have different meanings. Final users performance deal with
reducing the job execution time. However, system administrators would like to
maximize the resources usage. In an environment with large job inter-arrival
time, the allocation mechanism is responsible of improving both performances.

However, in situations with low inter-arrival time, jobs accumulate in the
waiting queue generating new scheduling opportunities. In these situations, both
execution order and allocation strategy are decisive for improving overall per-
formance. In the present work, a new MIP model (OAS ), which manages the
packing of jobs in the waiting queue to minimize their makespan, thus improving
the system utilization and user satisfaction is proposed. In order to do that, OAS
deals with two challenges: (i) resources heterogeneity and availability and (ii)
tasks from a job can be assigned to different clusters in a co-allocation process.
In these circumstances, the allocation not only has to consider the processing
time, but also the communication capabilities in order to avoid inter-cluster link
saturation, which could produce unpredictable effects on job performance.

3.1 Problem Statement

Multi-Cluster Model. A multicluster environment is made up of a set of α
arbitrary sized clusters with heterogeneous resources. Let M = {C1..Cα} is the
set of Cluster sites; R = {R1

1, R
1
2..R

α
n−1, R

α
n} the set of processing resources of

the multi-cluster, being n the total number of nodes. Each cluster is connected
to each other by a dedicated link through a central switch. Let L = {L1..Lα} the
inter-cluster links being Lk the link between the site Ck and the central switch.

The processing resources capabilities are represented by the Effective Power
metric (Γ r) defined in [6]. This normalized metric relates the processing power
of each resource with its availability. Thus, Γ r = 1 when processing resource
r ∈ R has capacity to run tasks at full speed, and otherwise Γ r < 1.
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Parallel Application Job Model. In this work, we consider parallel applica-
tion jobs with a fixed number of processing resources requirements known as rigid
parallel jobs [7]. A job j is composed of a fixed number of tasks that act in a collab-
orative manner. Each task τj is comprised of various processing, communication
and synchronization phases. In our case, each job task uses an all-to-all commu-
nication pattern with similar processing and communicating requirements, where
all tasks start and finish at the same time, following the Bulk-Synchronous Par-
allel model. Job assignment is static avoiding re-allocations while the job is being
executed. Additionally, jobs can be co-allocated on different clusters in order re-
duce its execution time.

Thus, the estimated execution time for the parallel job j can be modeled by

Tej = Tbj · ctj , ∀j ∈ J (1)

where Tbj is the base time of j in dedicated resources and ctj is the time cost
factor when job is allocated on resources S. The base-time Tbj is assumed to be
known based on user-supplied information, experimental data, job profiling, etc.

Time Cost Model. In the literature, the time cost ctj is obtained from the
allocated resources without considering communications [3], or considering a
fixed communications penalty when co-allocation is applied [17]. In contrast, we
modeled the time cost based on heterogeneity of the selected processing resources
and the availability of the inter-cluster links used, expressed by

ctj = σj · SPj + (1 − σj) · SCj , ∀j ∈ J (2)

where SPj denotes the processing slowdown from resources, SCj is the commu-
nication slowdown by inter-cluster links, and σj is the processing time relevance
with respect to the communication time. The σj is obtained by characterizing the
job as the base-time Tbj. The SPj factor is obtained from the slowest processing
resource, i.e. which provides the maximum processing slowdown,

SPj = max
∀r∈S

{SP r
j }, ∀j ∈ J (3)

where SP r
j is the processing slowdown from the effective power of resource r.

SCj evaluates the communication slowdown by inter-cluster link contention.
The co-allocation of a parallel job application consumes a certain amount of
bandwidth in each inter-cluster link Lk, denoted by BW k

j , and calculated by

BW k
j =

(
tkj · PTBWj

) ·
(
τj − tkj
τj − 1

)

, ∀k ∈ 1 . . . α, j ∈ J (4)

where PTBWj is the required per-task bandwidth, τj is the total number of
tasks of j and tkj is the number of those allocated on cluster Ck. The first term
in the equation is the total bandwidth consumed by tasks on cluster Ck, while
the second is the percentage of communication with other clusters.

When co-allocated jobs use more bandwidth than the available, saturation
occurs, and jobs sharing this link are penalized increasing their communication
time. The inter-cluster links saturation degree relates the maximum bandwidth
of each link with the bandwidth requirements of the allocated parallel jobs



200 H. Blanco et al.

SAT k =
MBW

∑
∀j(BW k

j )
, k ∈ 1 . . . α, j ∈ J (5)

when SAT k ≥ 1 the link Lk is not saturated, otherwise is saturated delaying
the jobs that use it, with a slowdown expressed by

SCk
j =

{
(SAT k)−1 when SAT k < 1

1 otherwise
(6)

Communication slowdown SCj comes from the most saturated link used

SCj = max
∀k

{SCk
j , ∀j ∈ J}, (7)

Allocation and Scheduling Mechanism. The most common scheduling tech-
niques allocate the jobs separately, without taking into account the requirements
of further jobs. This is represented in Figure 1(a) where a First Come First
Served scheduling has been applied. Better performance results can be achieved
by the set of jobs together, as can be seen in Figure 1(b).

Fig. 1. Job scheduling: (a) FCFS allocation, (b) allocation grouping tasks

3.2 The Mixed-Integer Programming Model

Mixed-Integer Programming (MIP) allows to obtain the solutions that maxi-
mize or minimize an objective function under some constraints. In this paper,
the objective function is the makespan, thus the obtained solution provides the
allocation and execution order for each treated job that reduce their execution
time, also minimizing the resources idle time. In [17] was determined that in
some situations a certain threshold on the saturation degree may be allowed.
For simplicity, in the present study, we restrict the model to those solutions that
avoid the saturation, by evaluating the inter-cluster links usage. Next we present
the MIP model shown in Figure 2.

Parameters and Variables. First, the multi-cluster environment is described;
the set of resources R and their effective power (Γ r), inter-cluster links (L) and
the maximum available bandwidth for each inter-cluster link k ∈ L (MBWk).
Next, for each job j: the number of tasks (τj), its base-time (Tbj), the required
per-task bandwidth (PTBWj) and the weighting factor (σj), which measures
the relevance of the processing and communication time (lines 1-9).

The decision variables define the job order and allocation (lines 13-20). The
allocation is expressed by a binary variable, Z(j,r) = 1 (line 13) when the job j is
assigned to r and 0 otherwise. To obtain the job execution order, the allocation
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domain of each resource is splitted into time-slots (lines 14-17), being X(j,r,t) = 1

when job j is assigned to resource r in the time-slot t. Let T = {T 1..T θ} be the
set of time-slots and θ the total number of time-slots used by the set of jobs.
Variable Y(j,t) is set if job j starts its execution in the time-slot t (line 15).

Input Parameters

1. R: Set of processing resources.
2. L: Set of inter-cluster links.
3. Γ r: Effective power for resource r, ∀r ∈ R
4. MBWk: Maximum Available bandwidth for each inter-cluster link k, ∀k ∈ L.
5. J : set of jobs to be allocated.
6. τj : number of tasks making up job j, ∀j ∈ J .
7. Tbj : execution base-time for the job j, ∀j ∈ J .
8. PTBWj: required bandwidth for each jobs task, ∀j ∈ J
9. σj : time-processing and -communication weighting factor, ∀j ∈ J .

10. T : Set of time-slots in which job can be assigned.
11. θ: total number of time-slots. Deadline for the set of jobs.
12. η: time-slot size.

Variables
13. Z(j,r) = 1 if j is assigned to resource r, ∀j ∈ J, r ∈ R
14. X(j,r,t) = 1 if j is assigned to resource r in slot t, ∀j ∈ J, r ∈ R, t ∈ T
15. Y(j,t) = 1 if j starts running in slot t, ∀j ∈ J, t ∈ T
16. sj : time-slot in which job j starts running, ∀j ∈ J
17. fj : time-slot in which job j is completed, ∀j ∈ J
18. SPj is the processing slowdown of job j, ∀j ∈ J
19. BWj,k,t: Bandwidth consumed by job j on link k in slot t. ∀j ∈ J, k ∈ L, t ∈ T
20. ABWk,t: Available bandwidth on link k, in slot t, ∀k ∈ L, t ∈ T

Objective function
21. Minimize the makespan of the set of jobs

Fig. 2. MIP model representation

Based on the time-slot, the job j execution time is determined by its starting
time-slot, sj, and the last used time-slot, fj . The time-slots occupied by j are
calculated considering the job base-time (Tbj), the processing slowdown (SPj)
that the allocated resources provide and the time-slot size (η), expressed by

fj = sj + (Tbj ∗ (SPj ∗ σj + (1 − σj)))/η (8)

Processing slowdown SPj (line 18) is calculated by equ. 3. The communication
slowdown is not considered because the solutions are those that avoid the sat-
uration of inter-cluster links (lines 19-20). Variable BWj,k,t is the bandwidth
consumed on the inter-cluster link k for the time-slot t, and ABWk,t is the
available bandwidth on link k on time-slot t once all jobs have been allocated.

Objective Function. When there are many possible solutions, the objective
function defines the quality of each feasible solution. The aim of the model is to
minimize the global makespan that is determined by the latest completed job

minimize{ max
∀j∈J

(fj) } (9)
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Constraints. The constraints contribute to define the correct solutions to the
problem. Thus, the model must ensure that all tasks from a parallel job are
allocated and start at the same time. We define the following set of constraints:

∑

∀j∈J

X(j,r,t) ≤ 1, ∀r, t (10)

Z(j,r) = max
t∈T

(Xj,r,t), ∀j, r (11)

∑

∀r∈R

Z(j,r) = τj , ∀j (12)

∑

∀r′∈R

(Xj,r′,t) ≥ (τj ·Xj,r,t), ∀j, r, t (13)

X(j,r,t′) ≤ 1− Y(j,t) ∀j, r ∧ t′ ∈ 1..(t− 1) (14)

∑

∀t∈T

Y(j,t) = 1 ∀j (15)

sj =
∑

∀t∈T

(Yj,t · t)− 1 ∀j (16)

fj = max
∀r∈R,t∈T

(X(j,r,t) · t) ∀j (17)

ctj = σj · SPj + (1− σj) ∀j (18)

(fj − sj) · η ≤ (Tbj · ctj) ∀j (19)

(
∑

∀r∈R,t∈T

Xj,r,t · η) ≥ (Tbj · ctj · τj) ∀j (20)

ABWk,t = MBWk −
∑

∀j∈J

BWj,k,t ∀j, k, t (21)

ABWk,t ≥ 0 ∀k, t (22)

Z(j,r) ∈ {0, 1}, Xj,r,t ∈ {0, 1}, Y(j,t) ∈ {0, 1},
sj ≥ 0, fj ≥ 0, ctj ≥ 0 (23)

Constraint set (10) ensures that a resource can only be allocated to a task
simultaneously. Constraint set (11) defines the variable Z(j,r), equals to 1 when
job j is allocated to the resource r and 0 otherwise. Constraint set (12) ensures
that all tasks τj are allocated. Constraint set (13) guarantees that all the tasks
of a job are executed at the same time but in different resources. Constraint sets
(14) and (15) define the variable Y(j,t), equals to 1 when the jth job initiates
its execution in the tth time-slot, otherwise is 0. In constraint (16) and (17) the
variables sj and fj are defined as the starting and finishing time-slot for the
jth job. Variable sj is obtained from variable Y(j,t) and variable fj is calculated
considering the slowest allocated resource. In constraint set (18), the execution
cost ctj the processing slowdown is obtained from the slowest allocated resource.
Constraint sets (19) and (20) ensure that the time-slots are contiguous and in
accordance with the time spent on the slowest allocated resource. Constraint set
(21) calculates the available bandwidth of the kth inter-cluster link in the tth
time-slot, ABWk,t. Finally, constraint set (22) guarantees non-saturation of the
inter-cluster links in every time-slot.
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4 Experimentation

The experimental study was carried out in order to: (1) evaluate the influence
of the time-slot duration size on the scheduling solutions and (2) determine the
effectiveness of the scheduling solutions provided by OAS. The first study used
a synthetic workload varying the size of the time-slot. On the second, OAS was
compared with heuristics from the literature.

OAS was implemented by using the CPLEX linear mixed integer program-
ming solver and the solutions were applied on the GridSim simulation framework,
characterized as a heterogeneous multi-cluster system. The scheduling of appli-
cations with independent tasks is NP-Complete, and MIP models are known to
be very computational demanding. Due to this, the environment was limited
to 3 clusters, each one with 4 nodes interconnected by a Gigabit network. The
heterogeneity was defined by different effective power to each cluster with values
of Γk = {1.0, 0.75, 0.5} respectively.

4.1 Time-Slot Size Analysis

To determine the job execution order, OAS uses the time-slot concept. The
time-slot size could limit the quality of the scheduling solution, so a study was
performed to evaluate the impact of the time-slot size on the results. We defined a
workload composed by 8 jobs, with high computational requirements (σj = 0.7),
with an average job base time of 67×104 seconds, with different number of tasks,
from 1 to 12 and with different computation and communication requirements,
representative of parallel jobs in the fields of weather prediction, fluid simulation,
etc. identified by their very large computational requirements.

The time-slot values were in the range {15%..250%} times the average of the
jobs base-time from the workload. Figure 3 shows the makespan and the solver
execution time for each case of study. As can be seen, when the slot size increases,
the makespan increases. This is because bigger slots reduces the resources avail-
ability during long periods of time even allocated jobs have finished. Thus, the
start time of upcoming jobs is delayed until the time-slot finishes.

Fig. 3. Comparison for the time-slot size
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The shortest the time-slot is, the better makespan is obtained. However, the
model becomes more complex increasing the solving time. From sizes lower than
50%, makespan values become similar to the minimum makespan. In the other
way the solving time grows up exponentially. Figure 3, also show the compaction
degree, which measures the percentage of time in which the resources are been
used respect the overall execution time. Thus, the higher the compaction degree
is, the more exploited and less idle the resources are.

4.2 OAS Performance Evaluation

To determine the effectiveness of the solutions provided by OAS, we compare the
results with some of the most common scheduling techniques in the literature:
First Come First Served (FCFS), Short Jobs First (SJF), Big Jobs First (BJF),
Fit Processors First Served (FPFS), Short Processing Time (SPT) and Long
Processing Time (LPT).

In this experimental study we defined a set of six synthetic workloads com-
posed by 8 jobs with similar characteristics of computational requirements as in
the previous experimental study. We defined two of them in order to fit well a
specific scheduling technique and thus limiting any solver advantage. Then, the
first workload WL-1 was designed to perform well with the techniques that try
to match the available resources with the processing requirements. WL-2 work-
load was designed to perform well with the techniques that prioritize smaller
jobs. Finally, workloads WL-3 to WL-6, designed without taking any particular
criteria into account. The metrics used were the makespan (Figure 4(a)) and the
compaction degree (Figure 4(b)). The time-slot size was defined to the 50% of
the average job base time.

It can be observed that each technique has a different behavior. The technique
that in some workload performs well in another obtains worst makespan and lower
compaction degree. But in all casesOAS obtained goodmakespan and compaction
results, irrespectively on the workload nature. This is due to its ability to have
a global vision on the resources requirements for the whole set of jobs and their
availability. Thus, by defining the correct job execution order and task to resource

(a) Makespan Comparison (b) Compaction Degree Comparison

Fig. 4. Comparison of six kinds of workloads
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allocation, it is possible to obtain the better scheduling decisions that reduces the
makespan, increasing the compaction degree and improving the resources usage.

5 Conclusions

In the present work, we focused on the scheduling process of BSP parallel appli-
cations on heterogeneous multi-cluster environments, by applying multiple job
allocation and co-allocation when it is necessary. The goal is to determine the
effectiveness of the job execution order and the multiple-job allocation with pro-
cessing and communication resource considerations, and thus, a Mixed-Integer
Programming model had been developed. The results were compared with other
scheduling techniques from the literature, obtaining better makespan results and
resources usage. However, the presented MIP model has a great computational
complexity. By this, we are developing a low complexity scheduling heuristic
with similar goals.
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Técnica Federico Santa Maŕıa.
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