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Abstract. In distributed object-oriented systems, objects belong to different
locations. For example, in Java Remote Method Invocation (RMI), objects can
be distributed over different Java virtual machines. Accessing a reference in
RMI has crucially different semantics depending on whether the referred ob-
ject is local or remote. Nevertheless, such references are not statically distin-
guished by the Java type system.

This chapter presents location types, which statically distinguish far from
near references. We present a formal type system for a minimal core language
and develop a type inference system that gives maximally precise solutions
satisfying further desirable properties. We prove soundness of the type system
as well as soundness and correctness of the inference system. We have imple-
mented location types as a pluggable type system for the ABS language, an
object-oriented language with a concurrency and distribution model based on
concurrent object groups. To facilitate programming with location types, we pro-
vide a tight integration of the type and inference system with an Eclipse-based
integrated development environment (IDE) that presents inference results as
overlays to the source code. The IDE drastically reduces the annotation over-
head while providing full static type information to the programmer.

1 Introduction

In the puristic view of object-oriented programming, objects live in an unstructured
space (or heap) and communicate via messages. This view is elegant and simple,
but fails to address important software engineering principles like decomposition
and encapsulation. That is why many researchers work on structuring techniques
for object-oriented programming. Structuring the object space provides clear bound-
aries between different parts of the system. The resulting partitioning can be used
to formulate and check important properties, e.g., that an object in one part does
not reference an object in another part. Many ownership techniques [1,2,3] real-
ize a hierarchical structuring of the objects into so-called ownership contexts and
control access to a context from the surrounding context. The goal of our work is
to support a partitioning of the object space as in distributed object-oriented pro-
gramming where each object belongs to exactly one location. Thus, we can analyze
whether two objects are at the same location or at different locations.
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A location as formalized in this chapter can take many different forms; it may re-
fer to a physical computation node, some process, or it can be a concept supported
by a programming language. This versatile notion of locality is not only useful for
distributed programming, but also for programs running on a single computer. For
example, in object-oriented languages with concurrency models based on communi-
cating groups of objects such as E [4], AmbientTalk/2 [5], JCoBox [6], or ABS [7],
the location of an object can be considered as the group it belongs to. In these sce-
narios it often makes a difference whether a reference points to an object at the
current location, i.e., the location of the current executing object (in the following
called a near reference), or to an object at a different location (a far reference).
For example, in the E programming language [4], a far reference can only be used
for asynchronous method calls (named eventual sends in E), but not for synchronous
method calls. In Java Remote Method Invocation (RMI) [8] accessing a remote ref-
erence may throw a RemoteException, where accessing a normal reference cannot
throw such an exception. It is thus desirable to be able to statically distinguish these
two kinds of references. In particular, this distinction is useful for documentation
purposes, to reason about the code, and to statically prevent runtime errors.

We present location types which statically distinguish far from near references.
Location types can be considered as a lightweight form of ownership types [2,3]
with the following characteristics. The first is that location types only describe a flat
set of locations instead of a hierarchy of ownership contexts. The second is that own-
ership types typically support different roles of objects. Location types only classify
objects as belonging to the current location or some other location. Furthermore, lo-
cation types are not used to enforce encapsulation, which is the main goal of many
ownership type systems.

As with any type system extension, writing down the extended types can become
tiresome for programmers. Furthermore, type annotations may clutter the code and
reduce its readability, especially when several of such pluggable type systems [9,10]
are used together. This reduces the acceptance of pluggable type systems in practice.
The first issue can be solved by automatically inferring the type annotations and in-
serting them into the code. But this results again in cluttered code with potentially
many annotations. Our solution is to leverage the power of an integrated develop-
ment environment (IDE) and present the inferred types to the programmer by using
visual overlays. The overlays give the programmer full static type information with-
out cluttering the code with annotations nor reducing readability. Furthermore, the
overlays can be turned on and off according to the programmer’s need. Type anno-
tations can still be used to make the type checking and inference modular, where
the degree of modularity just depends on the interfaces where type annotations ap-
pear. This way of integrating type inference into the IDE simplifies the usage of the
proposed type system and is applicable to similar type system extensions.

Notice. This chapter is a revised version of a paper that appeared at TOOLS 2011
[11]. Not having to worry about strict page limits, we present the material in more
detail. In particular, we provide more depth to the setting and the examples, present
additional related work, give a proof of the type soundness theorem as well as a
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proof of the soundness and completeness of the inference system, and provide an
updated version of the case studies.

Outline. The remainder of this chapter is structured as follows. In Section 2 we give
an informal introduction to location types and illustrate their usage by an example.
Section 3 presents the formalization of location types for a core object-oriented
language and the inference system. In Section 4 we explain how we implemented
and integrated location types into an IDE, and provide a short evaluation. Section 5
discusses location types in the context of related work. Section 6 concludes.

2 Location Types at Work

In this section, we illustrate the use of location types. After a short introduction to
the type system, we explain the language setting based on concurrent object groups
for which we developed our implementation and show the benefits of location types
using an example.

Location types. Location types statically distinguish far from near references. To do
so, standard types are extended with additional type annotations, namely location
types. There are three different location types: Near, Far, and Somewhere. Location
types are always interpreted relatively to the current object. A variable typed as Near
means that it may only refer to objects that belong to the same location as the cur-
rent object. Accordingly, a Far typed variable may only refer to objects that belong
to a different location than the current object. Somewhere is the super-type of Far
and Near and it means that the referred object may either be Near or Far. Note that
only Near precisely describes a certain location. A Far annotation only states that
the location of the referred object is not Near. This means that a Far typed variable
may over time refer to different locations which are not further defined, except that
they are not the location of the current object.1 What a location actually means
is irrelevant to the type system. So whether the location of an object represents a
specific Java Virtual Machine (JVM) on which the object is running or some other
form of object grouping does not matter. Note, however, that the type system relies
on the assumption that the location of an object does not change over time.

Concurrent object groups. We use location types to distinguish near and far refer-
ences in languages with a concurrency model based on groups of objects. Concur-
rent object groups (COGs) follow the actor paradigm [12] and were developed to
avoid data races and the complexity of multithreading and to simplify reasoning
about concurrent programs. The concurrency model of COGs is used in the abstract
behavioral specification language ABS [7] and in JCoBox [6], a Java-based realiza-
tion of COGs. Groups are created dynamically (cf. [13]) and form the units of con-
currency and distribution. Execution within a single group is sequential but groups
are running concurrently with other groups. Communication between groups is

1 In Section 3.2, we present a refined type system that allows to distinguish far locations.
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interface Server {
[Near] Session connect([Far] Client c, String name);

}
interface Session {

Unit receive(ClientMsg m);
Unit send(ServerMsg m);

}
interface Client {

Unit connectTo([Far] Server s);
Unit receive(ServerMsg m);

}

Fig.1. The annotated interfaces of the chat application

Client

Client
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Session

COG object far reference near reference

Fig.2. Runtime structure of the chat application

asynchronous. In a program using COGs, each object belongs to a group for its en-
tire lifetime. This is similar to the Java RMI setting where objects belong to certain
JVMs, which may run distributed on different machines. In the following presenta-
tion, we use ABS as the language to illustrate location types along with a detailed
example. Note, however, that location types are not restricted to ABS. We selected
ABS to demonstrate how location types can be used beyond traditional distributed
programming.

ABS is an object-oriented language with a Java-like syntax. In ABS, the creation
of COGs is related to object creation. The creation expression specifies whether the
object is created in the current COG (using the standard new expression) or is
created in a fresh COG (using the new cog expression). Communication in ABS
between different COGs happen via asynchronous method calls which are indicated
by an exclamation mark (!). A reference in ABS is far when it targets an object of
a different COG, otherwise it is a near reference. Similar to the E programming lan-
guage [4], ABS has the restriction that synchronous method calls (indicated by the
standard dot notation) are only allowed on near references. Using a synchronous
method call on a far reference results in a runtime exception. Our location type
system can be used to statically guarantee the absence of these runtime exceptions.
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1 class ClientImpl(String name) implements Client {
2 [Far] Session session;
3 Unit connectTo([Far] Server server) {
4 Fut<[Far] Session> f = server!connect(this, name);
5 session = f.get;
6 }
7 }

Fig. 3. Fully annotated implementation of the ClientImpl class

Using location types. As an example, we model an IRC-like chat application, which
consists of a single server and multiple clients. For simplicity, there is only a sin-
gle chat room, so all clients actually broadcast their messages to all other clients.
The basic interfaces of the chat application in the ABS language are given in Fig-
ure 1. Note that only Server, Client, and Session are reference types, the types
Unit, ClientMsg, and ServerMsg are data types and represent immutable data.

Figure 2 shows a possible runtime structure of the chat application. As the clients
and the server run independently of each other, they live in their own COGs. This
means that all references between clients and the server are far references. The
Session objects that handle the different connections with the clients live in the
same COG as the Server object. This means that references between Session and
Server are near references. In a typical scenario, the client calls the connect method
of the server and passes a reference to itself and a user name as arguments. The
server then returns a reference to a Session object, which is used by the client to
send messages to the server. The interfaces of Figure 1 are annotated accordingly,
e.g., the connect method of the server returns a reference to a Session object that
is Near to the server.

Figure 3 shows the ClientImpl class, an implementation of the Client interface. It
has a field session which stores a reference to the Session object which is obtained
by the client when it connects to the server. Lines 3-5 show the connectTo method.
As specified in the interface, the Server parameter has type Far. On line 4, the client
asynchronously (using the ! operator) calls the connect method of the server. The
declared result type of the connect method is [Near] Session (see Figure 1). The
crucial fact is that the type system now has to apply a viewpoint adaptation [14]; As
the target of the call (server) has location type Far from the viewpoint of the caller
ClientImpl, the return type of connect (which is Near from the viewpoint of Server)
is adapted to the viewpoint of ClientImpl, namely to Far. Furthermore, as the call
is an asynchronous one, a future is returned, i.e., a placeholder for the value to be
computed. The ABS type system uses the built-in polymorphic data type Fut to type
futures. The type parameter of Fut is instantiated with the type of the value that
it is a placeholder for. The variable f on line 4 is thus of type Fut<[Far] Session>.
On line 5, the client waits for the future to be resolved and stores the value in the
session field. The built-in get operator is used to retrieve the value of the future,
blocking if necessary until the value is ready.

Figure 4 shows the ServerImpl class, an implementation of the Server inter-
face. It has an internal field sessions to hold the sessions of the connected clients.
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1 class ServerImpl implements Server {
2 List<[Near] Session> sessions = Nil;
3 [Near] Session connect([Far] Client c, String name) {
4 [Near] Session s = new SessionImpl(this, c, name);
5 sessions = Cons(s,sessions);
6 this.publish(Connected(name));
7 return s;
8 }
9 Unit publish(ServerMsg m) {

10 List<[Near] Session> sess = sessions;
11 while (~isEmpty(sess)) {
12 [Near] Session s = head(sess);
13 sess = tail(sess);
14 s.send(m);
15 }
16 }
17 }

Fig. 4. Fully annotated implementation of the ServerImpl class

List is a polymorphic data type in ABS whose type parameter is instantiated with
[Near] Session, which means that it holds a list of near references to Session ob-
jects. When a client connects to the server using the connect method, the server
creates a new SessionImpl object in its current COG (using the standard new ex-
pression), which means that it is statically clear that this object is Near. It then
stores the reference in its internal list, publishes that a new client has connected
(Connected(name) yields the corresponding message), and returns a reference
to the session object. In the publish method at line 14, the send method is syn-
chronously called. Here, the location type system guarantees that s always refers to
a near object so that the synchronous call does not cause a runtime exception.

3 Formalization

This section presents the formalization of the location type system in a core calculus
called LOCJ. We first present the abstract syntax of the language and its dynamic
semantics. In Section 3.1 we introduce the basic type system for location types as-
well-as its soundness properties. In Section 3.2 we improve the precision of the
basic type system by introducing named Far types. In Section 3.3 we present the
location type inference system.

Notation. We use the overbar notation x to denote a list. The empty list is denoted
by • and the concatenation of the list x and the list y is denoted by x · y. Single
elements are implicitly treated as lists when needed. The notation M[x �→ y] yields
the map M where the entry with key x is updated with the value y , or, if no such
key exists, the entry is added. The empty map is denoted by [] and dom(M) and
rng(M) denote the domain and range of the map M.
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P ::= C
C ::= class c { V M }
V ::= T x
M ::= T m(V ) { V S }
S ::= x ← E | x . f ← y

E ::= new c in fresh
| new c in x | x
| x .m(y) | x . f

T ::= c

Fig.5. Abstract syntax of LOCJ. c ranges over
class names, m over method names and
x , y, z, f over field and variable names (includ-
ing this and result).

ζ ::= F ,H runtime config.
H ::= ι �→ (l , c,D) heap
F ::= (S,D)c,m stack frame
D ::= x �→ v variable-value map
v ::= ι | null value

Fig.6. Runtime entities of LOCJ. ι
ranges over object identifiers and l over
locations.

Abstract syntax. LOCJ models a core sequential object-oriented Java-like language,
formalized in a similar fashion to Welterweight Java [15]. The abstract syntax is
shown in Figure 5. The new aspect about LOCJ is that objects in LOCJ can be created
at different locations. We do not introduce locations as first-class citizens as they can
be encoded using objects. For this, the object creation expression new is augmented
with an additional argument, given by the in part, that specifies the target location.
The target can either be fresh to create the object in a new (fresh) location, or a
variable x to create the object in the same location as the object that is referenced
by x . Note that in ABS, new cog C() creates a new location (i.e., corresponds to
"new c in fresh" in LOCJ) whereas new C() creates a new object in the same location
as the current object (i.e., corresponds to "new c in this" in LOCJ). To keep the
presentation short, LOCJ does not include inheritance and subtyping. However, the
formalization can be extended in the usual way to support these features (requiring
parameter types of overriding methods to be contravariant and return types to be
covariant).

Class-table. Throughout the formalization, we use a class table CT to look up defini-
tions of classes, fields and methods. We assume that class names are globally unique
and that field and method names are unique for each class. We then write CT (c) to
denote the definition C of the class named c. We also write CT (c, f ) to denote the
definition V of the field named f in class c and we write CT (c, m) to denote the
definition M of the method named m in class c.

Dynamic semantics. The dynamic semantics of our language is defined as a small-
step operational semantics. The main difference with standard object-oriented lan-
guages is that we explicitly model locations to partition the heap. The runtime enti-
ties are shown in Figure 6. Runtime configurations ζ consist of a stack F , which is a
list of stack frames, and a heap H. A stack frame F consists of a list of statements S
and a mapping D from local variable names to values. Furthermore the stack frame
records with which class c and method m it is associated, which we sometimes omit
for brevity. The heap maps object identifiers to object states (l, c,D), consisting of a
location l, a class name c, and a mapping D from field names to values.

The reduction rules are shown in Figure 7. They are of the form ζ � ζ′ and
reduce runtime configurations. The rules use the helper functions initO and initF
defined in Figure 8 to initialize objects and stack frames.
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ι /∈ dom(H) l is fresh
H′ =H[ι �→ initO(l , c)] D′ =D[x �→ ι]

(x ← new c in fresh · S,D) ·F ,H� (S,D′) ·F ,H′

ι /∈ dom(H) (l , _, _) =H(D(y))
H′ =H[ι �→ initO(l , c)] D′ =D[x �→ ι]
(x ← new c in y · S,D) ·F ,H� (S,D′) ·F ,H′

ι =D(x) (l , c,D′) =H(ι)
D′′ = D′[ f �→ D(y)] H′ =H[ι �→ (l , c,D′′)]

(x . f ← y · S,D) ·F ,H� (S,D) ·F ,H′

(_, _,D′′) =H(D(y)) D′ =D[x �→D′′( f )]
(x ← y. f · S,D) ·F ,H� (S,D′) ·F ,H

D′ = D[x �→D(y)]
(x ← y · S,D) ·F ,H� (S,D′) ·F ,H

F = (x ← y.m(z) · S,D)
(_, c, _) =H(D(y))

F ′ = initF(c, m,D(y),D(z))
F ·F ,H� F ′ ·F ·F ,H

F = (x ← y.m(z) · S,D′)
D′′ = D′[x �→D(result)]

(•,D) ·F ·F ,H� (S,D′′) ·F ,H

Fig.7. Operational semantics of LOCJ

3.1 Basic Location Types

In this subsection, we present the basic location type system and its soundness prop-
erties. To incorporate location types into LOCJ programs, we extend types T with
location types L (see Figure 9), where a location type can either be Near,Far, or
Somewhere. We assume that a given program is already well-typed using a stan-
dard Java-like type system and we only provide the typing rules for typing the
location type extension. The typing rules are shown in Figure 10. Judgments with
indices i are implicitly all-quantified. For example, c � Mi means that for all Mi ∈ M
the previous judgment holds. Statements and expressions are typed under a type
environment V , which defines the types of local variables. The typing judgment
for expressions is of the form V � e : L to denote that expression e has location
type L. The helper functions anno(c, f ) and anno(c, m, x), defined in Figure 8, re-
turn the declared location type of field f or variable x of method m in class c and
params(c, m) returns the formal parameter variables of method m in class c.

The crucial parts of the type system are the location subtyping (L <: L′) and the
viewpoint adaptation (L �K L′) relations which are shown in Figure 11. The location
types Near and Far are both subtypes of Somewhere but are unrelated otherwise.
Viewpoint adaption is always applied when a type is used in a different context.
There are two different directions (K ∈ {From,To}) to consider. (1) Adapting a
type L from another viewpoint L′ to the current viewpoint, written as L �From L′.
(2) Adapting a type L from the current viewpoint to another viewpoint L′, written
as L �To L′.2 In typing rule WF-FIELDGET we adapt the type of the field from the
viewpoint of y to the current viewpoint, whereas in rule WF-FIELDSET we adapt the
type of y from the current viewpoint to the viewpoint of x .

2 Whereas in the Universe type system [14] only one direction is considered, we chose to
explicitly state the direction in order to achieve a simple and intuitive encoding.



Location Types for Safe Programming with Near and Far References 479

initO(l , c) = (l , c,D) if D = [][ f �→ null] and CT (c) = class c { T f M }
initF(m, c, ι, v) = (S,D)c,m if CT (c, m) = T m(T x) { T ′ y S } and

D = [][this �→ ι][result �→ null][x �→ v][y �→ null]

anno(c, f ) = L if CT (c, f ) = L c f

anno(c, m, x) = L if CT (c, m) = T m(V ) { V ′ S } and L c x ∈ V · V ′
params(c, m) = V if CT (c, m) = T m(V ) { V ′ S }
loc((l , c,D)) = l

dtype(l , l ′) =

�
Near if l = l ′

Far otherwise

abs(L) =

�
Far if L = Far(n) for some n

L otherwise

Fig. 8. Helper definitions

T ::= · · · | L c annotated type
L ::= Near | Far | Somewhere location type

Fig. 9. Basic location types

As an example for the viewpoint adaptation, assume a method is called on a Far
target and the argument is of type Near. Then the adapted type is Far, because the
parameter is Near in relation to the caller, but from the perspective of the callee, it
is actually Far in that case. Important is also the case where we pass a Far typed
variable x to a Far target. In that case we have to take Somewhere as the adapted
type, because it is not statically clear whether the object referred to by x is in a
location that is different from the location of the target object.

Type soundness. The location type system guarantees that variables of type Near
only reference objects that are in the same location as the current object and that
variables of type Far only reference objects that are in a different location to the
current object. We formalize this under the notion of well-formed runtime configu-
rations. We give a few helper functions in Figure 8. We define a function loc() to ex-
tract the location of a heap entry and the dynamic location type function dtype(l, l ′)
that compares whether two locations l and l ′ are near or far to each other. A config-
uration is well-formed if heap and stack are well-formed; more precisely:

Definition 1 (Well-formed runtime configuration). Let ζ = F ,H be a runtime
configuration. ζ is well-formed iff all heap entries (l, c,D) ∈ rng(H) and all stack
frames F ∈ F are well-formed under H and the configuration satisfies all the standard
conditions of a class-based language (e.g., no dangling references, well-typed heap and
stack, . . . )

A heap-entry is well-formed if its fields annotated by Near or Far only reference
objects at the same or at a different location, respectively:
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(WF-P)
P = C � Ci

� P

(WF-C)
c � Mi

� class c { V M }

(WF-M)
Near c this · T result · V · V ′ � Si

c � T m(V ) { V ′ S }
(WF-ASSIGN)
V � E : L L′ _ x ∈ V L <: L′

V � x ← E

(WF-FIELDGET)
L c y ∈ V L′ = anno(c, f )

V � y. f : L′ �From L

(WF-FIELDSET)
L c x ∈ V L′ = anno(c, f ) L′′ _ y ∈ V (L′′ �To L)<: L′

V � x . f ← y

(WF-NEWFRESH)

V � new c in fresh : Far

(WF-NEWSAME)
L _ x ∈ V

V � new c in x : L

(WF-VAR)
L _ x ∈ V

V � x : L

(WF-CALL)
L c y ∈ V Li _ zi ∈ V x = params(c, m) (Li �To L)<: anno(c, m, xi)

V � y.m(z) : anno(c, m, result) �From L

Fig.10. Typing rules of LOCJ. Judgments containing indices i are implicitly all-quantified.

Definition 2 (Well-formed heap entry). (l,_,D) is well-formed under H iff for all
f with D( f ) = ι, we have dtype(l, loc(H(ι))) <: anno(c, f ).

A stack-entry is well-formed if its local variables annotated by Near or Far only
reference objects at the same location or at a different location, respectively:

Definition 3 (Well-formed stack frame). (S,D)c,m is well-formed under H iff for all
x with D(x) = ι, we have dtype(loc(H(D(this))), loc(H(ι)))<: anno(c, m, x).

The soundness of a type system is proven by showing preservation and progress
(cf. [16]).

Theorem 1 (Preservation for location types). Let ζ be a well-formed runtime con-
figuration. If ζ� ζ′, then ζ′ is well-formed as well.

As shown at the end of Appendix A, the theorem directly follows from the preser-
vation theorem for refined location types (Theorem 2) that is presented in the next
subsection.

As location annotations do not put any additional restrictions on the dynamic
semantics of LOCJ, the proof of progress remains the same as for Welterweight
Java [15]. In ABS however, where the semantics of the synchronous call depends
on location information, progress needs to be shown. For the synchronous method
call y.m(. . . ), ABS requires that the object ι that y refers to is in the same COG
as the current object (referred to by this). In our formalization, this means that
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Somewhere

Near Far

Original �K Viewpoint = Adapted
L �K Near = L
Near �K Far = Far
Far �K Far = Somewhere
Somewhere �K Far = Somewhere
L �K Somewhere = Somewhere

Fig.11. Subtyping and viewpoint adaptation (where K ∈ {From,To}). Note that the direc-
tion K does not influence basic location types, but is important for our extension in Sec-
tion 3.2.

1 [Far] Server server = new cog ServerImpl();
2 [Far] Client client1 = new cog ClientImpl("Alice");
3 [Far] Client client2 = new cog ClientImpl("Bob");
4 client1 ! connectTo(server); // type error
5 client2 ! connectTo(server); // type error

Fig.12. The code of the main block of the chat application, annotated with basic location
types

loc(H(ι)) = loc(H(D(this))). For the proof, we assume that the ABS program is
well-typed; this means in particular that the location type of y is Near. The proof
then follows directly from the preservation theorem. We assume that the stack frame
that contains the synchronous call y.m(z) is well-typed. By Definition 3, we get
dtype(loc(H(D(this))), loc(H(ι)))<: Near . The claim loc(H(ι)) = loc(H(D(this)))
then directly follows from the definitions of <: and dtype(, ) in Figures 11 and 8.

3.2 Refined Location Types

The location type system presented in the last section can only distinguish near
and far: Near references point to a location that is different from locations pointed
to by Far references. But whether two far references point to the same location
or different ones is statically not known. This makes the type system often too
weak in practice. As an example, let us consider the main block of the ABS chat
application in Figure 12, annotated with location types. Note that a main block
in ABS corresponds to a main method in Java. The server and both client objects
are created in their own, fresh COG, and thus they can be typed as Far, because
these locations are different from the current COG (the Main COG). However, the
method call client1!connectTo(server) does not type-check in the basic location
type system. According to rule WF-CALL in Figure 10, the adaptation of the actual
parameter type of the connectTo method to the caller has to be a subtype of the
formal parameter type, but the adaptation Far �To Far yields Somewhere, which is
not a subtype of the formal parameter type Far. This problem arises because the
type system cannot distinguish that client1 and server point to different locations.
The example shows that in its basic form, the location type system often has to
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1 [Far(s)] Server server = new cog ServerImpl();
2 [Far(c1)] Client client1 = new cog ClientImpl("Alice");
3 [Far(c2)] Client client2 = new cog ClientImpl("Bob");
4 client1 ! connectTo(server);
5 client2 ! connectTo(server);

Fig.13. The code of the main block of the chat application, annotated with refined location
types

Somewhere

Near Far

Far(n1) . . . Far(nk)

Original �K Viewpoint = Adapted
. . . (extension of Figure 11)
Near �To Far(n) = Far
Near �From Far(n) = Far(n)
Far �K Far(n) = Somewhere
Somewhere �K Far(n) = Somewhere
Far(n1) �To Far(n2) = Far(n1) if n1 	= n2

Far(n1) �From Far(n2) = Somewhere if n1 	= n2

Far(n) �K Far(n) = Somewhere
Far(n) �K Far = Somewhere

Fig.14. Subtyping and viewpoint adaptation for extended location types

conservatively use the Somewhere type to remain sound, which is often too weak
to type practical programs.

To improve the precision of the location type system we introduce named far
types:

L ::= · · · | Far(n)
A named far type is a far type parametrized with an arbitrary name. We let n range
over far names, a fresh syntactic category. Far types with different names represent
disjoint sets of far locations and are incompatible with each other. Figure 13 illus-
trates the application of named far location types. The locations of server, client1,
and client2 are distinguished by using different names for typing different variables.
Using this technique, the programmer can distinguish finitely many Far types in a
program. This is similar to static analysis techniques that use source code positions
to distinguish abstract program entities [17].

The following typing rule WF-NEWFRESHP is added to the basic type system. It
allows to type object creations at fresh locations by an arbitrarily named Far type:

(WF-NEWFRESHP)

V � new c in fresh : Far(n)

The subtyping and viewpoint adaptation relations are extended accordingly in Fig-
ure 14. Adapting a Far(n1) to a Far(n2) for n1 	= n2 yields a Far(n1), as they de-
note different sets of locations. Adapting a Far(n) to a Far(n) does not yield Near,
however, as two variables with the same Far(n) type can refer to objects of differ-
ent locations. Thus, in the refined type system, the chat example in Figure 13 is
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type correct: The adaptation of the actual parameter type Far(s) of the connectTo
method in Line 4 to the caller type Far(c1) yields Far(s), which is a subtype of the
formal parameter type Far.

In practice, the programmer does not need to provide the names. Instead the
inference system (see Sect. 3.3) automatically infers the named far types. Thus, the
programmer is not confronted with more complex typing. Using the refined loca-
tion type system, we were able to fully type the case studies presented in Section 4.
However, other refinements or extensions to improve the expressiveness and preci-
sion of the location type system are imaginable, e.g., location type polymorphism
similar to owner polymorphism in ownership type systems [2,18,19].

Type soundness. We adapt the well-formedness definitions from Section 3.1 to the
refined location type system. The definitions for well-formed heap entries and stack
frames are similar to the ones in the previous subsection except that we abstract
away the named far types using the helper function abs(L) defined in Figure 8:

Definition 4 (Well-formed heap entry). (l,_,D) is well-formed under H iff for all
f with D( f ) = ι and (l ′, c,_) =H(ι), we have dtype(l, l ′)<: abs(anno(c, f )).

Definition 5 (Well-formed stack frame). (S,D)c,m is well-formed under H iff for all
x with D(x) = ι, we have dtype(loc(H(D(this))), loc(H(ι)))<: abs(anno(c, m, x)).

To formalize that far types with different names represent disjoint sets of far loca-
tions, we introduce a relation reach(ζ) that denotes for a runtime configuration ζ
what the types of the variables are that point to a certain location:

Definition 6 (Reachability of l under ζ). Let ζ = F ,H; We write reach(ζ) to denote
the smallest relation that satisfies the following conditions:

– If (S,D)c,m ∈ F and D(x) = ι and lx = loc(H(ι)), then (anno(c, m, x), lx ) ∈
reach(ζ).

– If (l, c,D) ∈ rng(H) and D( f ) = ι and l f = loc(H(ι)), then (anno(c, f ), l f ) ∈
reach(ζ).

Using reach(ζ), we can state that in well-formed configurations variables with dif-
ferent named far types refer to objects in different locations:

Definition 7 (Well-formed named Far locations). ζ is well-formed wrt. named Far
locations iff ∀(Far(n1), l1), (Far(n2), l2) ∈ reach(ζ) with n1 	= n2, we have l1 	= l2.

In summary, we get the following revised definition of well-formed runtime config-
urations:

Definition 8 (Well-formed runtime configuration). Let ζ = F ,H be a runtime
configuration. ζ is well-formed iff all heap entries (l, c,D) ∈ rng(H) and all stack
frames F ∈ F are well-formed under H and ζ is well-formed wrt. named Far locations
and the configuration satisfies all the standard conditions of a class-based language.

As explained in the last section, it suffices to show the preservation property for
type soundness of the refined location type system:
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Theorem 2 (Preservation for refined location types). Let ζ be a well-formed run-
time configuration. If ζ� ζ′, then ζ′ is well-formed as well.

The proof proceeds by a case analysis on the reduction rules. It is presented in
Appendix A.

3.3 Location Type Inference

Without further support, the type system presented in the previous section requires
the programmer to annotate all type occurrences with location types. To avoid this
tedious work and make the approach practical, we developed an inference system
for location types. We first present a sound and complete inference system, which
makes it possible to use the location type system without writing any type anno-
tations and only use type annotations to achieve modular type checking. A type
inference system is sound if it yields only correct typings. It is complete, if every
correct typing can be inferred. In the second part of this section, we improve the
inference system such that it can deal with type-incorrect programs with the pur-
pose of generating meaningful error messages. We also make the inference system
configurable such that it finds not only any possible solution, but good solutions
satisfying further desirable properties.

Sound and Complete Inference. The formal model for inferring location types fol-
lows the formalization of other type system extensions [20]. For a broader overview
of type inference, we refer to the excellent book by Pierce [21] from which we
borrow the notation. The idea is to introduce location type variables at places in
the program where location types occur in our typing rules. Type inference then
consists of two steps. First, generating constraints for the location type variables.
Second, checking whether a substitution for the location type variables exists such
that all constraints are satisfied.

To introduce location type variables into programs we extend the syntax of loca-
tion types accordingly:

L ::= · · · | α location type variables (also β , γ, and δ)

In the following, P denotes programs that are fully annotated with pairwise distinct
location type variables. This means that all type occurrences in P are of the form
α c. The constraints which are generated by the inference system are shown in Fig-
ure 15. We use the judgment � P : Q to denote the generation of the constraints Q
from program P and similar judgments for classes and statements. The judgment
for expressions E has the form V � E : α,Q with the following meaning: Assum-
ing the bindings V , the location type of E is (the solution for) α, and Q are the
inferred constraints. The judgments are defined in Figure 16. Note that additional
fresh location type variables are introduced during the constraint generation and
that the constraints generated for a program are unique modulo the renaming of
the fresh location type variables. Using an appropriate naming convention, we can
assume without loss of generality that there is a unique constraint set for a program
P, denoted by QP .
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Q ::= α �K β = γ adaptation constraint
| α <: β subtype constraint
| α = L constant constraint

Fig.15. Location type constraints

P = C � Ci : Qi

� P : Q1 · . . . ·Qk

c � Mi : Qi

� class c { V M } : Q1 · . . . ·Qk

V � E : β ,Q α _ x ∈ V

V � x ← E : β <: α ·Q
δ is fresh γ is fresh

V � new c in fresh : δ,δ <: γ · γ= Far

α _ y ∈ V

V � new c in y : α,•
α _ x ∈ V

V � x : α,•

δ c this · T result · V · V ′ � Si : Qi δ is fresh

c � T m(V ) { V ′ S } : δ =Near ·Q1 · . . . ·Qk

α c x ∈ V
β = anno(c, f ) γ _ y ∈ V δ is fresh

V � x . f ← y : δ <: β · γ �To α = δ
α c y ∈ V β = anno(c, f ) γ is fresh

V � y. f : γ,β �From α= γ

α c y ∈ V αi _ zi ∈ V
x = params(c, m) βi = anno(c, m, xi)

β = anno(c, m, result) Qi = αi �To α = γi · γi <: βi

γi is fresh γ is fresh

V � y.m(z) : γ,β �From α = γ ·Q1 · . . . ·Qk

Fig.16. Constraint generation rules. Judgments with indices i are implicitly all-quantified.

Let us denote the location variables of P by locv(P) and those occurring in QP
by locv(QP); obviously, locv(P) ⊆ locv(QP). Let σ be a variable substitution from
locv(P) (or locv(QP)) to location types {Near,Far,Somewhere,Far(n1), ...,Far(nk)}.
We write σP to denote the program that is obtained from P by replacing all location
type variables according to σ. We call σ a solution of QP , written as σ � QP , if the
constraints QP are satisfied under σ. Type inference is sound, if every solution leads
to a correct typing of P. It is complete, if each typing of P can be inferred.

Theorem 3 (Soundness and Completeness of the Inference). The described infer-
ence system is sound and complete:

– Sound: If σ �QP , then � σP.
– Complete: If � σP with dom(σ) = locv(P), then there is a solution σ′ of QP

such that σ′ |dom(σ)= σ.

The proof of this theorem is presented in Appendix B.

Partial and Tunable Inference. Soundness and completeness guarantee that all
inferred solutions lead to correct typings and all typings can be inferred. From a
practical point of view, an inference system should meet further requirements, in
particular:
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1. If no typable solution can be inferred, at least a partially typable solution should
be provided (a message “No solution” is not really helpful to correct the pro-
gram). In addition, this partially typable solution should lead to the least
amount of type errors.

2. If multiple solutions exist, a “good” solution should be selected. Users do not
want any solution, but a solution that satisfies further properties. For exam-
ple, a “good” solution could provide more precise types than other solutions.
An inference system that allows to specify such additional properties is called
tunable [20].

To infer partial solutions that satisfy the first requirement, we extend our formal
model in the following way. We introduce two constraint categories: must-have and
should-have. The must-have constraints must always be satisfied. These are for ex-
ample in Figure 16 the adaptation constraints (α �K β = γ) and the constant con-
straints (α = L), characterizing the types of subexpressions. They also encompass
the constant constraints which result from user annotations (not considered in the
formalization of Figure 16, but present in the implementation). Note that there is
always a solution to these constraints in our inference system as they are based on
freshly allocated location type variables. The should-have constraints, e.g., the sub-
type constraints (α <: β) in Figure 16, should always be satisfied in order to get a
valid typing, but can be unsatisfied for partially correct solutions.

As an example for partial inference, consider the ServerImpl class in Figure 4.
Assume that there are no annotations on the signature and the body of the connect
method except for the return type which has been wrongly annotated by the
programmer as Far. The inference system then still gives a solution where all
constraints are satisfied except one should-have constraint, namely typeOf(s) <:
typeOf(result) which is generated at the last line of the connect method (typeOf
yields the corresponding type variable). The inference system assigns the type Near
to variable s because if it were to assign Far to s, more should-have constraints
would be unsatisfied (i.e., those resulting from lines 5 to 7).

The second requirement, namely inferring “good” solutions, can be realized by
adding the additional category of nice-to-have constraints. The nice-to-have con-
straints are those that are used to specify further desirable properties, e.g., least
amount of Somewhere annotations or Far types at the places where the precision
of Far(n) types is not needed.

Inferring a partial and “good” solution consists of solving the following problem.
First, all must-have constraints, then the most amount of should-have constraints,
and finally the most amount of nice-to-have constraints should be satisfied. Prior-
itizing must-have and should-have constraints ensures that the inference system
remains sound for the cases where a typable solution exists. The problem can be
encoded as a partially weighted MaxSAT problem by assigning appropriate weights
to the constraints. This means that must-have constraints are hard clauses (maxi-
mum weight) and should-have constraints correspond to soft clauses whose weight
is greater than the sum of all weighted nice-to-have clauses. Solving such a problem
can be efficiently done using specialized SAT solvers (see Section 4).
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4 Implementation and IDE Integration

We have implemented the type system and the inference system for location types,
including named far location types and partial inference satisfying further heuris-
tics, as an extension of the ABS compiler suite. The type and inference system is
integrated into an Eclipse-based IDE, but can also be used from the command line.

Inference System. The inference system internally uses the Max-SAT solver SAT4J
[22] to solve the generated inference constraints. As the inference system may re-
turn a solution that is not fully typable, we use the type checker for location types
to give user-friendly error messages.

The alias analysis based on named Far locations (cf. Section 3.2) can be config-
ured to use scopes of different granularity: basic (no alias analysis), method-local,
class-local, and global analysis. This allows the user to choose the best tradeoff
between precision and modularity. For the inference, an upper bound on the num-
ber of possible named Far(n) locations is needed. This is calculated based on the
number of new c in fresh expressions in the current scope.

IDE integration. ABS features an Eclipse-based IDE3 for developing ABS projects.
The interesting part of the IDE for this paper is that we have incorporated visual
overlays which display the location type inference results. For each location type
there is a small overlay symbol, e.g., for Near and for Far, which are shown as
superscripts of the type name. For example, a Far Client appears as Client . When-
ever the user saves a changed program, the inference is triggered and the overlays
are updated. They give the user complete location type information of all reference
types, without cluttering the code. In addition, the overlays can easily be toggled
on or off. It is also possible to write the inference results back as annotations into
the source code, with user-specified levels of granularity, e.g., method signatures in
interfaces.

Evaluation. We evaluated the location type system by applying it to four case
studies:

CS (251 non-commented non-empty lines of code (LOC), 59 types to annotate) is
an extended version of the chat application presented in Section 2.

TS (1123 LOC, 152 types to annotate) is an academic case study of a trading sys-
tem for handling sales in supermarkets.

RS (3698 LOC, 104 types to annotate) models parts of an industrial case study on
server-based software systems.

LS (2771 LOC, 301 types to annotate) is an academic case study of a lecture man-
agement system.

The evaluation results are presented in Figure 17. They show how precise the sub-
ject systems can be typed and how quickly the inference runs. We also restricted the
alias analysis by various scopes to see its impact on performance and precision. First

3 Download link for the tool:
http://tools.hats-project.eu/eclipseplugin/installation.html
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Fig.17. Precision and solving time of the location type inference for the three case studies,
using four different scopes for the alias analysis. The measurements where done on a Mac-
Book Pro laptop (Intel Core 2 Duo 2.8GHz CPU, 4GB RAM, Mac OS X 10.6). We used the
-Xms1024 parameter to avoid garbage collection. As working in an IDE usually consists of
an edit-compile-run cycle, we provide the performance results (the mean of 20 complete
runs) after warming up the JVM with 5 dry runs. We measured the time that the SAT-solver
required for finding a solution using the System.nanoTime() method.

of all, all subject systems can be fully typed using our type system. The chart on the
left shows the precision (percentage of near and far annotations) of the type infer-
ence. As can be seen, the basic type system already has a good precision (> 60%) in
all three cases. As expected, the precision increased with a broader analysis scope.
Using a global alias analysis, the inference achieved a precision of 100% for CS and
TS. It is also interesting to note that, depending on the case study, extending the
scope of the alias analysis can have an effect or not. RS could not be correctly typed
with basic precision (but returned a partial solution in 14 ms). For CS and RS, the
best precision was already achieved with a method-local scope. For LS, basic scope
was sufficient.

The chart on the right shows the performance results of the inference. It shows
that the performance of the inference is fast enough for the inference system to
be used interactively. It also shows that the performance depends on the chosen
scope for the alias analysis. In the evaluation, we used completely unannotated ex-
amples, so that all types had to be inferred. In practice, programs are often partially
annotated, which additionally improves the performance of the type inference. We
believe the analysis to be scalable, as it is based on a modular type system. The
analysis can be applied to parts of a system, and the analysis results can then be
reused to infer the types in different parts of the system.

It remains to be investigated whether other constraint encodings and backends
will yield better performance. At the moment, the presented solving times strongly
rely on the performance of the underlying SAT solver.

5 Discussion and Related Work

Location types are a lightweight variant of ownership types that focus on flat owner-
ship contexts. This means that no nesting of locations is permitted. The object space
is structured such that we can distinguish between local and non-local objects. We
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exploited this information in the context of distributed object-oriented program-
ming to check whether an access or method call is local or remote. Locations can
also be used for other purposes, in particular

– as scheduling units in multi-core scenarios [23],
– to raise the level of granularity of memory management and garbage collection

from single objects to group of objects [24],
– for encapsulation of objects [25] or other values [13], and
– to support specification and verification techniques [26].

Ownership types [2,18,19] and similar type systems [27,28] typically describe a
hierarchical heap structure. On one hand this makes these systems more general
than location types, because ownership types could be used for the same purpose
as location types; on the other hand this makes these systems more complex. An
ownership type system which is close to location types in nature is that by Clarke et
al. [29], which applies ownership types to active objects. In their system ownership
contexts are also flat, but ownership is used to ensure encapsulation of objects with
support for a safe object transfer using unique references and cloning. Haller and
Odersky [30] use a capability-based type system to restrict aliasing in concurrent
programs and achieve full encapsulation. As these systems are based on encapsula-
tion they do not have the concept of far references. Places [31] also partition the
heap. However, the set of places is fixed at the time the program is started. Similar
in nature, but less expressive than our type system, is Loci [32], which only dis-
tinguishes references to be either thread-local or shared. Loci only uses defaults to
reduce the annotation overhead. Loci is also realized as an Eclipse plug-in. Regions
are also considered in region-based memory management [33], but for another pur-
pose. They give the guarantee that objects inside a region do not refer to objects
inside another region to ensure safe deallocation.

Using a Max-SAT solver with weighted constraints was also used by Flanagan
and Freund [34] to infer types that prevent data-races and by Dietl, Ernst and
Müller [20] to find good inference solutions for universe types. A crucial aspect of
our work is the integration of type inference results into the IDE by using overlays.
To the best of our knowledge there is no comparable approach. A widely used type
system extension is the non-null type system [35]. For variations of this type sys-
tem, there exist built-in inference mechanisms in Eclipse4 and IntelliJ IDEA5 as well
as additional plug-ins [36]. However, none of these IDE integrations provide the
option to visualize the inferred type information in all relevant places directly using
overlays, but only provide specific overlays on request.

6 Conclusion and Future Work

We have presented a type system for distributed object-oriented programming lan-
guages to distinguish near from far references. We applied the type system to the

4 http://wiki.eclipse.org/JDT_Core/Null_Analysis
5 http://www.jetbrains.com/idea/webhelp/inferring-nullity.html
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context of the ABS language to guarantee that far references are not used as targets
for synchronous method calls. A complete type inference implementation allows
the programmer to make use of the type system without making any annotations.
The type inference results are visualized as overlay annotations directly in the de-
velopment environment. Our evaluation of the type system to several case studies
shows that the type system is expressive enough to type realistic code. The type in-
ference implementation is fast enough to provide inference results within fractions
of a second, so that interactive use of the system is possible.

We see three directions for future work. First, the type system could be applied
to other settings where the location of an object is important, e.g., Java RMI [8].
Second, it would be interesting to investigate the visual overlay technique for other
(pluggable) type systems, e.g., the nullness type system [36]. Third, it seems worth-
while to weaken the premise that objects stay at a location for their entire lifetime
(for a motivation of object migration see Mycroft [23] and for the treatment of
object transfer in relation to ownership see Müller and Rudich [37]).
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A Proof of the Preservation Theorems

In the following, we present the proofs of Theorem 2 and Theorem 1. As a fist step,
we state a few lemmata that relate the definitions given in Sections 3.1 and 3.2.

Lemma 1. For all l1, l2, l3 : dtype(l1, l3)<: dtype(l1, l2) �K dtype(l2, l3).

Proof. By case analyis (l1 = l2 = l3, l1 = l2 	= l3, l1 	= l2 = l3, l1 = l3 	= l2, l1 	= l2 	=
l3 	= l1 ).

Lemma 2. For all l1, l2 : dtype(l1, l2) = dtype(l2, l1).

Proof. Directly from definition of dtype(_, _).

Lemma 3. If L1, L2, L3, L4 ∈ {Near,Far,Somewhere} and L1 <: L2 and L3 <: L4,
then L1 �K L3 <: L2 �K L4.

Proof. By case analysis.

Lemma 4. If L1 <: L2, then abs(L1) <: abs(L2).

Proof. By case analysis.
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Lemma 5. If L1 �From L2 <: L3, then abs(L1) �From abs(L2) <: abs(L3).

Proof. By case analysis.

We introduce the predicate diffFar(L1, L2) that determines whether L1 and L2 are
both named far types, but with different names. Put formally, diffFar(L1, L2) = True
if L1 = Far(n1) and L2 = Far(n2) and n1 	= n2, and False otherwise.

Lemma 6. If L1 �To L2 <: L3 and ¬diffFar(L1, L2), then abs(L1) �To abs(L2) <:
abs(L3).

Proof. By case analysis.

Proof of Theorem 2:

Assume a well-formed configuration ζ for a program P such that � P and ζ � ζ′.
This means that the heap entries (Definition 4) are well-formed, the stack frames
(Definition 5) for ζ are well-formed and ζ is well-formed with respect to named
far locations. Then prove that ζ′ is well-formed as well. In the presentation of the
proof we focus on the location type aspects. We assume that conditions of a standard
class-based type system hold, of which we name a few:

Condition 1: We do not allow this on the left hand side of an assignment, and thus
the object (and its location) referenced by this remains the same (for a certain
stack frame) after reduction steps.

Condition 2: If a variable points to an object with dynamic class type c, the variable
is also statically typed as c.

The proof then proceeds by a standard case analysis on the reduction rules used.
We show the first rule in detail; in the presentation of the other rules, we omit
uninteresting cases (e.g. transfer of null values). Throughout the proof, lthis is used
as abbreviation of loc(H(D(this))).

Case R-ASSIGN:
D′ = D[x �→ D(y)]

(x ← y · S,D)c,m ·F ,H� (S,D′)c,m ·F ,H

We distinguish two cases:
Case x = y: The configuration then remains unchanged and the claim follows

trivially.
Case x 	= y:

Case D(y) = null: Thus D′(x) = null and the claim follows trivially.
Case D(y) 	= null: Let l y := loc(H(D(y))). We have

1. lthis = loc(H(D′(this))) by condition 1,
2. l y = loc(H(D′(x))) as D′(x) = D(y),
3. anno(c, m, y) <: anno(c, m, x) by typing rules WF-ASSIGN and WF-

VAR,
4. abs(anno(c, m, y))<: abs(anno(c, m, x)) by Lemma 4 from step 3,
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5. dtype(lthis, l y ) <: abs(anno(c, m, y)) by well-formedness assump-
tion of stack frame (x ← y · S,D)c,m, and

6. dtype(lthis, l y ) <: abs(anno(c, m, x)) by the previous two steps us-
ing transitivity of the subtype relation.

We have two proof goals as the heap remains unchanged. We first want
to prove that (S,D′)c,m is well-formed. By Definition 5 this amounts to
proving that for all z with D′(z) = ι, we have dtype(lthis, loc(H(ι))) <:
anno(c, m, z). As only x is modified, it is enough to prove this for x
(i.e. dtype(lthis, loc(H(D′(x)))) <: abs(anno(c, m, x))), which follows
directly from steps 2 and 6.
The second proof goal is to show that the new configuration ζ′ is well-
formed wrt. named Far locations. As only x is modified, we need to only
consider the case (anno(c, m, x), lx ) ∈ reach(ζ′) where anno(c, m, x) =
Far(n). By step 3, we then know that anno(c, m, y) = Far(n) and conse-
quently (anno(c, m, y), l y ) ∈ reach(ζ). As anno(c, m, x) = anno(c, m, y)
= Far(n) and lx = l y (from step 1) and by well-formedness assumption
of ζ, the claim follows.

Case R-NEWSAME:

ι /∈ dom(H)
(l y , _, _) =H(D(y)) H′ =H[ι �→ initO(l y , c′)] D′ = D[x �→ ι]

(x ← new c′ in y · S,D)c,m ·F ,H� (S,D′)c,m ·F ,H′

We have
1. anno(c, m, y) <: anno(c, m, x) by typing rules WF-ASSIGN and WF-NEWSAME,
2. dtype(lthis, l y ) <: abs(anno(c, m, y)) by well-formedness assumption of

stack frame (x ← new c′ in y · S,D)c,m,
3. abs(anno(c, m, y))<: abs(anno(c, m, x)) by Lemma 4 applied to step 1,
4. dtype(lthis, l y ) <: abs(anno(c, m, x)) from steps 2 and 3 by transitivity of

subtype relation, and
5. l y = loc(H′(D′(x))) directly from the rule R-NEWSAME.

The first proof goal is to show that (S,D′)c,m is well-formed. As only x
is modified, this amounts to proving that dtype(lthis, loc(H′(D′(x)))) <:
abs(anno(c, m, x)) which follows from steps 4 and 5. The second proof goal
is to show that H′ is well-formed, which is trivially the case as all the fields
of the new object contain null. The third proof goal is to show that ζ′ is well-
formed wrt. named Far locations, which is similar to the rule R-ASSIGN, as the
newly created object is only reachable from x .

Case R-NEWFRESH:

ι /∈ dom(H) l is fresh H′ =H[ι �→ initO(l, c′)] D′ = D[x �→ ι]
(x ← new c′ in fresh · S,D)c,m ·F ,H� (S,D′)c,m ·F ,H′

We have
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1. Far(n) <: anno(c, m, x) for some i by typing rules WF-ASSIGN and WF-
NEWFRESHP,

2. Far<: abs(anno(c, m, x)) by Lemma 4 from previous step,
3. dtype(lthis, l) = Far as l is fresh,
4. dtype(lthis, l)<: abs(anno(c, m, x)) by steps 2 and 3, and
5. l = loc(H′(D′(x))) directly from the rule R-NEWFRESH.

The proof goals are the same as for the previous rule R-NEWSAME. The claim
dtype(lthis, loc(H′(D′(x)))) <: abs(anno(c, m, x)) follows from steps 4 and 5.
The new heap entry is trivially well-formed as all the fields contain null. The
new configuration is well-formed wrt. named Far locations as l is fresh and
thus l is different to all other locations.

Case R-FIELDGET:

(l y , c′,D′′) =H(D(y)) D′ = D[x �→ D′′( f )]
(x ← y. f · S,D)c,m ·F ,H� (S,D′)c,m ·F ,H

We only consider the case D′′( f ) 	= null. Let l f := loc(H(D′′( f ))). We have
1. anno(c′, f ) �From anno(c, m, y) <: anno(c, m, x) by typing rules WF-ASSIGN

and WF-FIELDGET,
2. dtype(l y , l f ) <: abs(anno(c′, f )) by well-formedness assumption of heap

entry (l y , c′,D′′),
3. dtype(lthis, l y ) <: abs(anno(c, m, y)) by well-formedness assumption of

stack frame (x ← y. f · S,D)c,m,
4. dtype(l y , l f ) �From dtype(lthis, l y ) <: abs(anno(c′, f )) �From

abs(anno(c, m, y)) from steps 2 and 3 by Lemma 3,
5. dtype(lthis, l f ) <: dtype(l y , l f ) �From dtype(lthis, l y ) by Lemma 1 and

Lemma 2,
6. abs(anno(c′, f )) �From abs(anno(c, m, y)) <: abs(anno(c, m, x)) by

Lemma 5 from step 1,
7. dtype(lthis, l f ) <: abs(anno(c, m, x)) by steps 5, 4 and 6 using transitivity

of the subtype relation, and
8. l f = loc(H(D′(x))) as D′′( f ) = D′(x).

We have two proof goals as the heap remains unchanged. The first proof goal
is to show that (S,D′)c,m is well-formed. As only x is modified, it is sufficient
to show that dtype(lthis, loc(H(D′(x)))) <: abs(anno(c, m, x)) which follows
directly from steps 7 and 8.
The second proof goal is to show that the new configuration ζ′ is well-formed
wrt. named Far locations. As only x is modified, we need to only consider the
case (anno(c, m, x), l f ) ∈ reach(ζ′) where anno(c, m, x) = Far(n).
By step 1, we then know that either

– anno(c, m, y) = Near and anno(c′, f ) = Far(n) or
– anno(c, m, y) = Far(n) and anno(c′, f ) = Near.

In the first case, as (anno(c′, f ), l f ) ∈ reach(ζ) and ζ well-formed, the claim
follows directly from step 8. In the second case, l y = l f and the claim then
follows similarly to the first case.
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Case R-FIELDSET:

ι = D(x)
(lx , c′,D′) =H(ι) D′′ = D′[ f �→ D(y)] H′ =H[ι �→ (lx , c′,D′′)]

(x . f ← y · S,D)c,m ·F ,H� (S,D)c,m ·F ,H′

We only consider the case D(y) 	= null. Let lx := loc(H(D(x))) and l y :=
loc(H(D(y))). We have
1. anno(c, m, y)�Toanno(c, m, x) <: anno(c′, f ) by typing rules WF-ASSIGN and

WF-FIELDSET,
2. dtype(lthis, l y ) <: abs(anno(c, m, y)) by well-formedness assumption of

stack frame (x . f ← y · S,D)c,m,
3. dtype(lthis, lx) <: abs(anno(c, m, x)) by well-formedness assumption of

stack frame (x . f ← y · S,D)c,m, and
4. l y = loc(H′(D′′( f ))) as D′′( f ) = D(y).

We distinguish two cases:
Case ¬diffFar(anno(c, m, x),anno(c, m, y)): Similarly to the case R-FIELDGET

we have dtype(lx , l y) <: abs(anno(c′, f )) from steps 1, 2, and 3 by
Lemma 1, Lemma 2, Lemma 3, Lemma 6 and transitivity of subtyping.
One proof goal is this time to show that the heap entry (lx , c′,D′′)
is well-formed. As only f is modified, we have to prove that
dtype(lx , loc(H′(D′′( f )))) <: abs(anno(c′, f )). This results directly from
step 4.
The other proof goal is to show that the new configuration ζ′ is well-formed
wrt. named Far locations. As only f is modified, we need to only con-
sider the case (anno(c′, f ), l y) ∈ reach(ζ′) where anno(c′, f ) = Far(n). By
step 1 and case assumption, we then know that anno(c, m, x) = Near and
anno(c, m, y) = Far(n). The claim then follows directly.

Case diffFar(anno(c, m, x),anno(c, m, y)): Assume wlog that anno(c, m, x) =
Far(n1) and anno(c, m, y) = Far(n2) with n1 	= n2. We then get Far(n2) <:
anno(c′, f ) from step 1. We also have lx 	= l y by well-formedness assump-
tion of the old configuration. Thus dtype(lx , l y ) = Far.
One proof goal is this time to show that the heap entry (lx , c′,D′′)
is well-formed. As only f is modified, we have to prove that
dtype(lx , loc(H′(D′′( f )))) <: abs(anno(c′, f )). This follows directly from
step 4 and the results in the previous paragraph.
The other proof goal is to show that the new configuration ζ′ is well-formed
wrt. named Far locations. As only f is modified, we need to only consider
the case (anno(c′, f ), l y) ∈ reach(ζ′) where anno(c′, f ) = Far(n2). By case
assumption, we know that anno(c, m, y) = Far(n2) from which the claim
follows directly.

Case R-CALL:

F = (x ← y.m′(z) · S,D)c,m

(l y , c′, _) =H(D(y)) F ′ = initF(c′, m′,D(y),D(z))
F ·F ,H� F ′ ·F ·F ,H
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We consider only the case D(zi) 	= null. Let l y := loc(H(D(y))) and lzi
:=

loc(H(D(zi))). Let x := params(c′, m′) and F ′ := (S′,D′)c′,m′ . We have
1. anno(c, m, zi)�Toanno(c, m, y)<: anno(c′, m′, xi) by typing rules WF-ASSIGN

and WF-CALL,
2. dtype(lthis, lzi

) <: abs(anno(c, m, zi)) by well-formedness assumption of
stack frame F ,

3. dtype(lthis, l y ) <: abs(anno(c, m, y)) by well-formedness assumption of
stack frame F ,

4. F ′ is of the form (S
′
,D′)c′,m′ where D′(this) = D(y) and D′(xi) = D(zi) by

definition of initF(, , , ), and
5. lxi

= lzi
as D(zi) = D′(xi).

We distinguish two cases:
Case ¬diffFar(anno(c, m, y),anno(c, m, zi)): Similarly to the case R-FIELDGET

we have dtype(l y , lzi
) <: abs(anno(c′, m′, xi)) from steps 1, 2 and 3 by

Lemma 1, Lemma 2, Lemma 3, Lemma 6 and transitivity of subtyping.
The first proof goal is to show that F ′ is well-formed. We only need to
consider the parameters x , as the local variables are initialized with null. We
thus need to show that dtype(l y , lxi

)<: abs(anno(c′, m′, xi)) which follows
directly from step 5.
The other proof goal is to show that the new configuration ζ′ is well-
formed wrt. named Far locations. We need to only consider the case
(anno(c′, m′, xi), l y) ∈ reach(ζ′) where anno(c′, m′, xi) = Far(n). By step
1 and case assumption, we then know that anno(c, m, y) = Near and
anno(c, m, zi) = Far(n). The claim then follows directly.

Case diffFar(anno(c, m, y),anno(c, m, zi)): Assume wlog that anno(c, m, y) =
Far(n1) and anno(c, m, zi) = Far(n2) with n1 	= n2. By step 1, we get
Far(n2) <: anno(c′, m′, xi). We also have l y 	= lzi

by well-formedness as-
sumption of the old configuration. Thus dtype(l y , lzi

) = Far.
The first proof goal is to show that F ′ is well-formed. We only need to
consider the parameters x , as the local variables are initialized with null. We
thus need to show that dtype(l y , lxi

)<: abs(anno(c′, m′, xi)) which follows
directly from step 5 and the results in the previous paragraph.
The other proof goal is to show that the new configuration ζ′ is
well-formed wrt. named Far locations. We need to consider the case
(anno(c′, m′, xi), lxi

) ∈ reach(ζ′) where anno(c′, m′, xi) = Far(n2). By case
assumption, we know that anno(c, m, zi) = Far(n2) from which the claim
follows directly.

Case R-RETURN:

F = (x ← y.m′(z) · S,D′)c,m D′′ = D′[x �→ D(result)]

(•,D)c′ ,m′ ·F ·F ,H� (S,D′′)c,m ·F ,H

We only consider the case where D(result) 	= null. Let l y := loc(H(D′(y))) and
lresult := loc(H(D(result))). We have
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1. anno(c′, m′, result) �From anno(c, m, y) <: anno(c, m, x) by typing rules WF-
ASSIGN and WF-CALL,

2. dtype(lthis, l y ) <: anno(c, m, y) by well-formedness assumption of stack
frame F ,

3. dtype(l y , lresult) <: anno(c′, m′, result) by well-formedness assumption of
stack frame (•,D)c′,m′ and condition 1,

4. dtype(lthis, lresult) <: anno(c, m, x) from steps 1, 2 and 3 similarly to the
case R-FIELDGET by Lemma 1, Lemma 2, Lemma 3 and transitivity of sub-
typing, and

5. lresult = loc(H(D′′(x))) as D(result) = D′′(x).
The first proof goal is to show that the stack frame (S,D′′)c,m is well-formed.
As only x is modified, we need to show that dtype(lthis, loc(H(D′′(x)))) <:
anno(c, m, x) which follows directly from steps 4 and 5.
The second proof goal is to show that the new configuration ζ′ is well-formed
wrt. named Far locations. As only x is modified, we need to only consider the
case (anno(c, m, x), lresult) ∈ reach(ζ′) where anno(c, m, x) = Far(n).
By step 1, we then know that either

– anno(c, m, y) = Near and anno(c′, m′, result) = Far(n) or
– anno(c, m, y) = Far(n) and anno(c′, m′, result) = Near.

In the first case, as (anno(c′, m′, result), lresult) ∈ reach(ζ) and ζ well-formed,
the claim follows directly from step 5. In the second case, l y = lresult and the
claim then follows similarly to the first case.

Proof of Theorem 1:

Let P be a program such that � P and all location annotations in P are from
{Near,Far, Somewhere}. Thus, for all c, m, x , f ,

abs(anno(c, m, x)) = anno(c, m, x)
abs(anno(c, f )) = anno(c, f )

Let ζ be a configuration for P that is well-formed according to Definition 1 and
let ζ′ be a successor configuration. According to Definition 6, there is no n, l with
(Far(n), l) ∈ reach(ζ). Thus, ζ is also well-formed according to Definition 8. Theo-
rem 2 guarantees that ζ′ is well-formed according to Definition 8. Because of the
two equations above, ζ′ is also well-formed according to Definition 1. Thus, Theo-
rem 1 holds.

B Soundness and Completeness of Type Inference

In the following, we present the proof of Theorem 3, i.e., we show that the con-
straint generation rules in Fig. 15 precisely collect the typing constraints defined by
the typing rules in Fig. 10. P denotes programs that are fully annotated with pair-
wise distinct location type variables, i.e., all type occurrences in P are of the form
α c.



Location Types for Safe Programming with Near and Far References 499

Soundness. We have to show: If σ �QP , then � σP.
Let T c

P be the derivation tree for P according to the constraint generation rules
in Fig. 15. Each node of T c

P corresponds to a rule application. Without loss of gener-
ality, we assume that each node is annotated with the conditions mentioned in the
corresponding rule. Since σ � QP , σ satisfies all constraints appearing in T c

P and
locv(P) ⊆ dom(σ). To show � σP, we have to construct a derivation tree TP for
σP according to the typing rules in Fig. 10. Note that P uniquely determines the
number of nodes and structure of T c

P and of TP , if it exists. Consequently, there is a
bijection between the nodes of the two derivation trees.

We inductively construct TP starting with the leaf nodes using rules WF-NEWFRESH,
WF-NEWFRESHP, WF-NEWSAME, WF-VAR, WF-FIELDGET, WF-FIELDSET, WF-CALL. The rule
instances in TP are constructed from the corresponding nodes in T c

P . We describe
the construction here for the most interesting rules WF-NEWFRESH, WF-NEWFRESHP,
and WF-CALL; for the other rules, the construction works analogously.

Case WF-NEWFRESH, WF-NEWFRESHP: Let N be a leaf node of T c
P annotated by V �

new c in fresh : δ,δ <: γ,γ= Far. As σ is a solution, σ(δ)<: Far.
For the construction of TP , we use σ(V ) � new c in fresh : σ(δ) as a leaf
node corresponding to N where σ(V ) denotes the substitution of the location
type variables in V by σ. If σ(δ) = Far, this is an instance of WF-NEWFRESH;
otherwise, it is an instance of WF-NEWFRESHP.

Case WF-CALL Let N be a leaf node of T c
P annotated by

V � y.m(z) : γ,β �From α = γ ·Q1 · . . . ·Qn

For the construction of TP , we use σ(V ) � y.m(z) : anno(c, m, result)�Fromσ(α)
as a leaf node corresponding to N . This is a correct instance of WF-CALL, because
the assumptions of the constraint generation rule yield:

– α c y ∈ V and αi _ zi ∈ V ; thus σ(α) c y ∈ σ(V ) and σ(αi) _ zi ∈ σ(V ).
– x = params(c, m)
– αi �· α <: anno(c, m, xi) and, as σ is a solution, σ(αi) �· σ(α) <:
anno(c, m, xi)

Note that for the result type L of the expression in TP in a leave node we have
L = σ(γ) where γ is the corresponding location type variable in T c

P .

Induction Step. Similar to the leaf nodes, we construct the inner nodes of TP by in-
stantiating the appropriate typing rule. The only interesting case is the assignment:

Case WF-ASSIGN: Let N be an inner node of T c
P annotated by

V � x ← E : β <: α ·Q
having a subtree annotated by V � E : β ,Q. For the construction of TP , we use
σ(V ) � x ← E as an inner node corresponding to N . This is a correct instance
of WF-ASSIGN, because:

– there is a subtree in TP annotated by σ(V ) � E : σ(β)
– α _ x ∈ V ; thus σ(α) _ x ∈ σ(V ).
– σ(β)<: σ(α)



500 Y. Welsch, J. Schäfer, and A. Poetzsch-Heffter

Completeness. We have to show: If � σP with dom(σ) = locv(P), then there is a
solution σ′ of QP such that σ′ |dom(σ)= σ.

Let TP be the derivation tree for σP according to the typing rules in Fig. 10 and
T c

P the derivation tree for P according to the constraint generation rules in Fig. 15.
As P uniquely determines the number of nodes and structure of T c

P and of T c
P there

is a bijection between the nodes of the two derivation trees.
σ defines location types for all location type variables occurring in P at vari-

able, parameter, field, and result type declarations. Solutions of QP have to be also
defined for the fresh variables introduced by the application of the constraint gener-
ation rules CG-M, CG-NEWFRESH, CG-FIELDSET, CG-FIELDGET, CG-CALL. Fresh variables
are different in different rule applications, i.e., at different tree nodes of T c

P . We de-
fine a solution σ′ with σ′ |dom(σ)= σ as follows on the fresh variables introduced
by the rule applications in T c

P :

CG-M: σ′(δ) = Near
CG-NEWFRESH: σ′(γ) = Far and σ′(δ) = L where L is the type used in the corre-

sponding rule application of WF-NEWFRESH or WF-NEWFRESHP in TP .
CG-FIELDSET: σ′(δ) = σ(γ) �To σ(α)
CG-FIELDGET: σ′(γ) = σ(anno(c, f )) �From σ(α)
CG-CALL: σ′(γ) = σ(anno(c, m, result)) �From σ(α) and σ′(γi) = σ(αi) �To σ(α)

Just as demonstrated in the soundness proof above, one can check rule by rule that
the assumptions satisfied in the application of the typing rules imply that

– the assumptions in the application of the constraint generation rules are satis-
fied and

– σ′ satisfies the constraints.

That is, we have found a solution for QP .
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