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Abstract This part describes the effects of the troposphere—strictly speaking the
neutral atmosphere—on the propagation delay of space geodetic signals. A theo-
retical description of this tropospheric propagation delay is given as well as strate-
gies for correcting for it in the data analysis of the space geodetic observations.
The differences between the tropospheric effects for microwave techniques, like the
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Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferometry
(VLBI), and those for optical techniques, like Satellite Laser Ranging (SLR), are dis-
cussed. Usually, residual tropospheric delays are estimated in the data analysis, and
the parameterization needed to do so is presented. Other possibilities of correcting
for the tropospheric delays are their calculation by ray-tracing through the fields of
numerical weather models and by utilizing water vapor radiometer measurements.
Finally, we shortly discuss how space geodetic techniques can be used in atmospheric
analysis in meteorology and climatology.

1 Introduction

After the signals of the space geodetic techniques have passed through the ionosphere
(see Part 2 (Alizadeh et al. 2013) for more information about the ionospheric effects)
they also need to pass through the neutral atmosphere (primarly the troposphere)
before they are observed at the surface of the Earth. In the troposphere the sig-
nals experience propagation delays, just as they do in the ionosphere. However,
the frequency dependence of the delays is small. For microwave techniques like
Global Navigation Satellite Systems (GNSS) and Very Long Baseline Interferom-
etry (VLBI) there is practically no frequency dependence; thus it is impossible to
remove the tropospheric delay with a multi-frequency combination like it is in the
ionospheric case. For optical techniques like Satellite Lase Ranging (SLR) there
exists a small frequency dependence and thus it is possible in principle to remove
the tropospheric delays using two frequencies (see Sect. 4.3.2); however due to the
amplification of the noise this is currently not practical. Thus the tropospheric delays
need to be corrected for by other means.

For this part of the book it is assumed that the reader is familiar with the basic
properties of the atmosphere, i.e. what is described in Part 1 (Böhm et al. 2013).
We begin here with the basic description of the refractivity of the air in the neutral
atmosphere (Sect. 2). Expressions for calculating the refractivity from basic meteo-
rological measurements are presented, as well as the commonly used division of the
refractivity into a hydrostatic and a wet part. In Sect. 3 these results are used for cal-
culating the tropospheric path delay, and the properties of the hydrostatic (Sect. 3.1)
and wet (Sect. 3.2) delays are discussed. The modeling of the tropospheric delays
in the space geodetic data analysis is described in Sect. 4. Either the tropospheric
delays are estimated in the data analysis or tropospheric delays obtained by external
measurements are used. Two possible sources of external tropospheric information
are considered: from ray-tracing through numerical weather models (Sect. 4.1) and
inferred from microwave radiometer measurements (Sect. 4.4). The models that are
commonly used when estimating the tropospheric delays in the data analysis are
given in Sects. 4.2 (microwaves) and 4.3 (optical). However, since the refractivity
of the atmosphere is varying randomly due to atmospheric turbulence these models
are not perfect. The effects of turbulence are described in Sect. 5. This part of the
book concludes with a discussion of the possible use of space geodetic techniques
for studies of the atmosphere (Sect. 6).
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2 Basics

The propagation of electromagnetic waves are described by Maxwell’s equations
(Jackson 1998). For a non-conducting, neutral medium like the troposphere these
equations are

∇ · (εE) = 0, (1)

∇ · B = 0, (2)

∇ × E = −∂B
∂t

, (3)

∇ × B = με
∂E
∂t

. (4)

where E and B are the electric field and magnetic field vectors, respectively, ε the
electric permittivity, μ the magnetic permeability. Assuming that the spatial and
temporal variations in μ and ε are small, the equations can be combined into forming
a wave equation for the electric field.

∇2E = με
∂2E
∂t2 = n2

c2

∂2E
∂t2 (5)

where c = 1/
√
ε0 μ0 is the speed of light in vacuum and n is called the refractive

index. A similar expression for the magnetic field can also be derived.
It is clear from Eq. (5) that in order to describe the propagation of a radio wave we

need to know the refractive index n. In the neutral atmosphere of the Earth n is very
close to one, thus it is more convenient to use the so called refractivity instead. The
refractivity N (in “N-units”, mm/km, or ppm) is related to the refractive index by

N = (n − 1) · 106 . (6)

In general the refractivity is a complex number. It can be divided into three parts

N = N0 + N ′(ν) − i N ′′(ν). (7)

In case the spatial and temporal variations of N are small, i.e. the variations over
one wavelength or one period are negligible, the effect on the propagation of electro-
magnetic waves caused by the real and the imaginary parts of the refractivity can be
considered separately. For the signals of space geodetic techniques traveling through
the atmosphere, this separation is a reasonable assumption since the wavelengths
are shorter than a few decimeters. The real part of the refractivity (N0 + N ′(ν))
causes refraction and propagation delay of signals traveling through the atmosphere.
It consists of a frequency-independent (non-dispersive) part N0 and a frequency-
dependent (dispersive) part N ′(ν).
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The imaginary part of the refractivity, N ′′(ν), causes absorption and is related to
the absorption coefficient α

α(ν) = 10−6 4π ν N ′′(ν)
c

. (8)

The power W of a signal received after propagating along the path S through the
atmosphere will be lower than it would have been (W0) in vacuum (i.e. no absorption)

W = W0 e− ∫
S α(s′,ν) ds′ = W0 e−τ (∞,ν), (9)

where τ (∞, ν) is called the opacity.
Since the observables of space geodetic techniques (e.g. GNSS, VLBI, and SLR)

typically are measurements of the travel time of the signals, the absorption is typically
not important since it does not affect the propagation delay. Of course, absorption
will affect the delay measurements by increasing the noise; higher attenuation will
cause the signal-to-noise-ratio to be lower, and thus the accuracy of the measured
delay will be worse (in the worst case the signal cannot be detected). However, there
is typically no need for modeling this effect in the space geodetic data analysis.
Thus, in the following we will concentrate on the real part of the refractive index
and the effects caused by it. We will come back to the absorption in Sect. 4.4, where
measurements of the absorption by microwave radiometry are used to estimate the
atmospheric path delay.

The (real part of) refractivity can be expressed as a function of the densities of
the different atmospheric gases and the temperature T (Debye 1929)

N =
∑

i

(
Ai(ν)ρi + Bi(ν)

ρi

T

)
, (10)

where ρi is the density of the ith gas, and Ai and Bi are constants. The Bi
ρi
T term is

caused by the permanent dipole moment of the molecules. Since water vapor is the
only major atmospheric gas having a permanent dipole moment, we can ignore this
term for all other gases. The relative concentrations of the dry atmospheric gases are
approximately constant (except carbon dioxide, see Sect. 2.1). Thus we can assume
that ρi = xiρd , where xi is constant and ρd is the density of dry air. This makes
it possible to express the refractivity as a function of pressure, temperature, and
humidity (Essen and Froome 1951)

N =
∑

i

Ai(ν)xi ρd + Aw(ν)ρw + Bw(ν)
ρw

T
+ Alw(ν)ρlw

= k1(ν)
pd

T
Z−1

d + k2(ν)
pw

T
Z−1

w + k3(ν)
pw

T2 Z−1
w + k4(ν)ρlw, (11)

where ρlw is the density of liquid water. It is here assumed here that the liquid water
droplets are small compared to the wavelength (<1 mm for microwave techniques),
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for larger droplets the expression becomes more complicated (Solheim et al. 1999).
However, normally the liquid water contribution to the refractivity (k4(ν)ρlw) is
neglected since it is small, especially outside of clouds. The variables Zd and Zw

are compressibility factors for dry air and water vapor, respectively. These describe
the deviation of the atmospheric constituents from an ideal gas. The compressibility
factor for the ith constituent of air is given by

Zi = p Mi

ρiRT
, (12)

where Mi is the molar mass and R is the universal gas constant. For an ideal gas we
have Z = 1. Owens (1967) obtained expressions for Z−1

d and Z−1
w by a least squares

fitting to thermodynamic data. These expressions are (for pd and pw in hPa and T in
K)

Z−1
d = 1 + pd

[

57.97 · 10−8
(

1 + 0.52

T

)

− 9.4611 · 10−4 T − 273.15

T2

]

, (13)

Z−1
w = 1 + 1650

pw

T3 [1 − 0.01317 (T − 273.15)

+ 1.75 · 10−4(T − 273.15)2 + 1.44 · 10−6(T − 273.15)3
]
. (14)

2.1 Microwaves

Figure 1 shows the total refractivity for frequencies between 0 and 100 GHz for the
case when the total pressure is 1013 hPa, the temperature is 300 K, and the relative
humidity is 100 % (and for three different values for the concentration of liquid
water). The refractivity was calculated using the Millimeter-wave Propagation Model
(MPM) (Liebe 1985, 1989; Liebe et al. 1993). As can be seen, the variations in the
refractivity as function of frequency are relatively small. The biggest variations are
in the range 50–70 GHz, a region where several strong absorption lines exist for
oxygen. Below 40 GHz the refractivity is more or less constant. There are small
variations around the 22.235 GHz water vapor absorption line, however these can
typically be neglected. Since all space geodetic techniques that use microwaves
operate at frequencies well below 40 GHz, we can consider the refractivity to be
frequency independent for microwaves. Thus the phase (cp = c0/n) and group
velocities (cg = c0/(n + f ∂n/∂f )) in the troposphere will be equal.

In Fig. 1 three different cases are shown corresponding to different concentrations
of liquid water: 0 g/m3, 0.05 g/m3 (e.g. fog), and 1 g/m3 (e.g. inside a cloud). The
impact of liquid water on the refractivity is typically neglected since it is relatively
small, although in order to achieve highest accuracy in the presence of dense clouds
the effect should be considered. The difference between the case with 1 g/m3 liquid
water and the case with no liquid water is about 1.44 mm/km for the frequencies
below 10 GHz, and then it decreases slightly with frequency to about 1.35 mm/km
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Fig. 1 The total refractivity as function of frequency. The total pressure is 1013 hPa, the temperature
300 K, and the relative humidity is 100 %. Three different cases are shown corresponding to different
concentrations of liquid water: 0, 0.05, and 1 g/m3

at 100 GHz. This agrees with the published values for k4 in the microwave range,
which is generally about 1.45 (Liebe et al. 1993; Solheim et al. 1999).

By ignoring the liquid water term and assuming that the refractivity is frequency
independent, Eq. (11) becomes

N = k1
pd

T
Z−1

d + k2
pw

T
Z−1

w + k3
pw

T2 Z−1
w . (15)

Several different laboratory measurements have been performed in order to deter-
mine the constants k1, k2, and k3 (e.g. Boudouris 1963, Bevis et al. 1994). Thayer
(1974) estimated these constants by extrapolating measurements made at optical
frequencies to the microwave region. The claimed accuracy was better than what is
obtained from other investigations due to more accurate refractivity measurements
being available for optical frequencies. However, as pointed out by e.g. Hill et al.
(1982) extrapolation of optical measurements is problematic due to several resonance
frequencies in the infrared region, thus the values published by Thayer (1974) should
not be used. Rüeger (2002a,b) summarized and discussed many of these investiga-
tions, and calculated the “best average” values for the constants. These values are
given in Table 1. The accuracy of k1 is 0.015 % and the accuracy of the water vapor
part of the refractivity is 0.15 %.

Strictly speaking the constant k1 is dependent on the relative concentrations
of the different dry atmospheric gases, thus if these change k1 will also change.
Most dry atmospheric gases have stable concentrations. Of the major gases only the
concentration of carbon dioxide show a significant variation (it is increasing with
1.5–2 ppm/year). Rüeger (2002a) gives a formula for calculating k1 for different
carbon dioxide concentrations. In total the carbon dioxide makes k1 about 0.03 %
larger compared to a carbon dioxide free atmosphere. The k1 value given by Rüeger
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Table 1 The “best average” values of the k1, k2, and k3 coefficients in Eq. (15), as presented by
Rüeger (2002a,b)

k1 (K/hPa) k2 (K/hPa) k3 (K2/hPa)

375 ppm CO2 77.6890 71.2952 375463
392 ppm CO2 77.6900 71.2952 375463

For k1 two values are given corresponding to two different carbon dioxide concentrations: 375 ppm
(2004 level, used by Rüeger (2002a,b) and 392 ppm (2012 level)

(2002a,b) assumed a carbon dioxide concentration of 375 ppm (2004 level). Table 1
also shows k1 for a carbon dioxide concentration of 392 ppm (2012 level). The con-
centration of carbon dioxide also shows an annual variation of about 5 ppm, meaning
that k1 will have an annual variation of about 2.8 ·10−4 K/hPa. This variation is neg-
ligible for all practical purposes.

Using Eq. (12) it is possible to rewrite Eq. (15) as

N = k1
R

Md
ρ+ k′

2
pw

T
Z−1

w + k3
pw

T2 Z−1
w = Nh + Nw, (16)

where k′
2 = k2 − k1

Mw
Md

and:

Nh = k1
R

Md
ρ, (17)

Nw = k′
2

pw

T
Z−1

w + k3
pw

T2 Z−1
w . (18)

Nh is called the hydrostatic refractivity and Nw the wet (or non-hydrostatic) refrac-
tivity. The hydrostatic refractivity depends only on the total density of air, while the
wet part depends only on the partial pressure of water vapor and the temperature.
Figure 2 shows examples of vertical profiles of Nh and Nw. While the hydrostatic part

Fig. 2 Examples of vertical profiles of the hydrostatic and wet refractivity. The profiles are calulated
using radiosonde data from Vienna, Austria
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is larger than the wet part, the wet refractivity is much more variable and difficult
to model. We will see in Sect. 3.1 that the effect of the hydrostatic refractivity on
the propagation of microwaves can be accurately estimated from just the surface
pressure, while the modeling of the wet part is more complicated.

It should be noted that in the literature sometimes a division of the refractivity
into a dry and a wet part is used (e.g. Perler et al. 2011). The dry refractivity will
be the part caused only by the first term of the righthand side of Eq. (15), while the
other two terms are designated as the wet part. It is important to remember that the
wet refractivity obtained in this case is not the same as the wet (i.e. non-hydrostatic)
refractivity obtained when dividing the refractivity into a hydrostatic and wet part
(Eq. 18). The division into dry and wet parts makes sense in that it clearly separates the
contributions from the dry gases and water vapor (part of the hydrostatic refractivity
is caused by water vapor). However, there are practical advantages of using the
division into hydrostatic and wet parts, making it more commonly used. As shown
in Sect. 3.1 the propagation delay caused by the hydrostatic refractivity can easily be
inferred from surface pressure measurements.

2.2 Optical Refractivity of Moist Air

For optical frequencies, the coefficient k3 in Eq. (11) is very small and can be ignored.
However, the frequency dependence of the k1 and k2 coefficients needs to be con-
sidered. Normally the refractivity is expressed as a function of the density of dry air
and water vapor (see Born and Wolf 1999, pp. 95–103)

N = k1(ν)
pd

T
Z−1

d + k2(ν)
pw

T
Z−1

w = k1(ν)
R

Md
ρd + k2(ν)

R

Mw
ρw

= k̃d(ν)ρd + k̃w(ν)ρw. (19)

k̃d(ν) and k̃w(ν) are the dispersions of dry air and water vapor components, respec-
tively. ρd and ρw are the density of dry air and water vapor, respectively.

Similarly for microwaves, N can also be divided into a hydrostatic and a non-
hydrostatic (wet) part

N = Nh + Nw, (20)

where

Nh = k̃d(ν)ρt, (21)

Nw = k̃�
w(ν)ρw, (22)

k̃�
w(ν) = k̃w(ν) − k̃d(ν). (23)

In the literature, the dispersion formulae for k̃d(ν) and k̃w(ν) proposed by vari-
ous investigators such as Edlén (1966), Barrell and Sears (Jeske 1988, p. 217),
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Fig. 3 The total optical refractivity as function of frequency. The total pressure is 1013 hPa, the
Temperature 300 K, and the relative humidity is 100 %

Owens (1967), Ciddor (1996), and Ciddor and Hill (1999) can be used. For the
accurate calculation of the optical refractivity, IAG has recommended (Rüeger 2002b,
Chap. 3) the formulae proposed by Ciddor (1996) and Ciddor and Hill (1999) that are
expressed as

k̃d(ν) = 1

ρds

(
5792105

238.0185 − Υ 2 + 167917

57.362 − Υ 2

)

(1 + 0.534×10−6(xc−450))×10−2,

(24)

k̃w(ν) = 1.022

ρws

(
295.235 + 2.6422Υ 2 − 0.032380Υ 4 + 0.004028Υ 6

)
× 10−2,

(25)
where ρds is the density of dry air at 15 ◦C, 101325 Pa, xw = 0 (where xw = pw/p is
the molar fraction of water vapor in moist air). ρws is the density of pure water vapor at
20 ◦C, 1333 Pa, xw = 1. Υ is the wave number (reciprocal of the wavelength, 1

λ = ν
c0

)
and xc is the fractional carbon dioxide content. A plot of the optical refractivity as
function of frequency is shown in Fig. 3.

3 Definition of Path Delay in the Neutral Atmosphere

In space geodesy normally the travel time (or difference in travel time) between a
source in space (a satellite or a quasar) to a receiver on the surface of the Earth is
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measured. This travel time is then converted to a distance measurement by multi-
plying with the speed of light in vacuum. The atmosphere will introduce an error
in this distance since it will affect the propagation path of the signal and since the
propagation speed of the signal in the atmosphere is lower than the speed of light in
vacuum.

If the variations in the refractivity over the distance of one wavelength is negligible
we can use the geometric optics approximation. This means that the propagation of
an electromagnetic wave can be described as a ray. When calculating the propagation
time of the electromagnetic wave we thus only have to consider the refractivity along
the ray path. For the propagation of the signals used in space geodesy the wavelengths
are a few decimeters at most, thus in the Earth’s atmosphere this approximation will
normally be valid. The electric path length L (propagation time divided by the speed
of light in vacuum) of a ray propagating along the path S through the atmosphere
will be

L =
∫

S
n(s) ds. (26)

The electric path will be longer than the geometric length G of a straight line
between the endpoints of the path for two reasons (see Fig. 4). Firstly, the propagation
velocity is lower in the atmosphere than in vacuum. Secondly, the path S taken by the
ray is, according to Fermat’s principle, the path which minimizes L. The atmospheric
delay, ΔL, is defined as the excess electric path length caused by the atmosphere

ΔL = L − G =
∫

S
n(s)ds − G =

∫

S
[n(s) − 1] ds +

∫

S
ds − G = 10−6

∫

S
N(s) ds + S − G,

(27)
where S is the geometric length of the actual propagation path of the ray. By dividing
the refractivity into hydrostatic and wet parts using Eq. (16) we get

ΔL = 10−6
∫

S
Nh(s) ds + 10−6

∫

S
Nw(s) ds + S − G = ΔLh +ΔLw + S − G, (28)

Earth

A e

G

S

e

e0

Fig. 4 Path taken by a signal through the atmosphere. The signal will take the path with the
shortest propagation time (S). Since the signal propagates slower in the atmosphere than in vacuum,
the geometrical length of S will be larger than the straight path G
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where ΔLh and ΔLw are called the hydrostatic and wet delay, respectively. Com-
monly, the effect of bending, S − G, is by convention considered to be part of the
hydrostatic delay, i.e. the hydrostatic mapping function (see Sect. 4.2) includes the
bending effect.

In space geodesy it is common to refer the slant delays to the delays in the zenith
direction (using mapping functions, see Sect. 4.2). The zenith hydrostatic delay ΔLz

h
and the zenith wet delay ΔLz

w are given by

ΔLz
h = 10−6

∫ ∞

h0

Nh(z) dz, (29)

ΔLz
w = 10−6

∫ ∞

h0

Nw(z) dz, (30)

where h0 is the altitude of the site.

3.1 Hydrostatic Delay

From Eqs. (17) and (29) we see that the hydrostatic delay only depends on
the total density and not on the mixing ratio of wet and dry parts. Following
Davis et al. (1985), the hydrostatic delay can be determined by using the hydrostatic
equation

dp

dz
= −ρ (z) g (z), (31)

where g(z) is the gravity along the vertical coordinate z, and integration of Eq. (31)
yields the pressure p0 at the height h0

p0 =
∫ ∞

h0

ρ (z) g (z) dz = geff

∫ ∞

h0

ρ (z) dz. (32)

Instead of the height-dependent gravity g(z), we introduce the mean effective gravity
geff

geff =
∫ ∞

h0
ρ (z) g (z) dz

∫ ∞
h0
ρ (z) dz

, (33)

and the inversion yields the height heff which is the height of the center of mass of
the atmosphere above the site and can be determined with

heff =
∫ ∞

h0
ρ (z) zdz

∫ ∞
h0
ρ (z) dz

. (34)

Saastamoinen (1972b) used the approximation for the effective height
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heff = (0.9h0 + 7300 m) ± 400 m, (35)

which holds for all latitudes and all seasons.

3.1.1 Microwaves

With the pressure p0 at the site, it is now possible to determine the zenith hydrostatic
delay

ΔLz
h = 10−6k1

R p0

Md geff
. (36)

We follow Saastamoinen (1972b) and Davis et al. (1985) to find the appropriate coef-
ficients in Eq. (36). At first, the gravity geff at the effective height heff is determined
with

geff = 9.8062
(

1 − 0.00265 cos (2θ) − 0.31 · 10−6heff

)
, (37)

which combined with Eq. (35) can be written as

geff = gm · f (θ, h0), (38)

with gm = 9.7840 and

f =
(

1 − 0.00266 cos (2θ) − 0.28 · 10−6h0

)
, (39)

where θ and h0 are latitude and orthometric (or ellipsoidal) height of the station.
Thus, the zenith hydrostatic delay is

ΔLz
h = 10−6k1

R p0

Md gm f (θ, h0)
, (40)

and after substitution of all values we get for the zenith hydrostatic delay in meters

ΔLz
h = 0.0022768

p0

f (θ, h0)
, (41)

where p0 is in hPa. The molar masses Md and Mw stay constant up to heights of about
100 km (Davis 1986), which is essential for all troposphere delay models. The errors
in the zenith hydrostatic delays are mainly caused by errors in k1 and in the surface
pressure measurements. At typical meteorological conditions the zenith hydrostatic
delays are about 2.3 m at sea level. An error in the surface pressure of 1 hPa causes
an error of about 2.3 mm. In order to reach an accuracy of 0.1 mm, the pressure
has to be measured with an accuracy of 0.05 hPa. The error due to the assumption
of hydrostatic equilibrium depends on the wind and is about 0.01 % (0.2 mm path
delay). Under severe weather conditions vertical accelerations can reach 1% of the
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gravity acceleration, which can cause errors in the zenith hydrostatic delays of about
20 mm (Davis et al. 1985).

3.1.2 Optical Zenith Hydrostatic Delays

The optical zenith hydrostatic delay can, just as for microwaves, be expressed as a
function of the surface pressure. The derivation is in principle the same and will not
be repeated here. The final expression is

ΔLz
h = 0.1022 k̃d(ν) × 10−6 p0

f (θ, h0)
. (42)

The above equation is slightly different from the one developed by Mendes and Pavlis
(2004), which is expressed as

ΔLz
h = 24.16579fh(ν) × 10−6 p0

f (θ, h0)
. (43)

Mendes and Pavlis (2004) derived their own dispersion factor fh(ν) based on
the modified dispersion formula in Eq. (24) for the wavelength of 0.532 µm.
Equations (42) and (43) produce similar accuracy results if they are applied to real
SLR observations.

3.1.3 Pressure Values

For the analysis of space geodetic techniques, there are three possibilities to obtain
pressure values at the stations: local pressure recordings at the sites, pressure values
from numerical weather models, or empirical models for the pressure (Böhm et al.
2009a). For instance, simple empirical models are the ones by Berg (1948)

p = 1013.25 · (1 − 0.0000226h)5.225 , (44)

with the pressure p in hPa and orthometric station height h in m, or the model by
Hopfield (1969)

p = 1013.25 ·
(

Tk − αh

Tk

) g
Rdα

, (45)

with the atmospheric temperature at sea level Tk = 293.16 K, the normal lapse rate
of temperature with elevation α = 4.5 K/km, gravity g at the surface of the Earth
(9.7867 m/s2) and the gas constant Rd = 0.287 kJ/K/kg for dry air. More sophisticated
empirical models are UNB3m (Leandro et al. 2006) or Global Pressure and Tem-
perature (GPT; Böhm et al. (2007)). UNB3m is based on meteorological parameters
(pressure, temperature, humidity, temperature lapse rate, and water vapor pressure
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Table 2 Availability of pressure values from local recordings at the sites, from numerical weather
models (e.g. the hydrostatic zenith delays from ECMWF data as provided by the Vienna University
of Technology), and from the empirical model GPT

Pressure Local recordings Grid values GPT

Availability At sites All (by interpolation) All
Time span Per observation Since 1994 Unlimited
Spatial resolution Per site 2.0 x 2.5◦ Spherical harmonics (9/9)
Time resolution Per observation 6 h Annual

height factor) at five latitude bands which are symmetric w.r.t. the equator (similar
to the Niell Mapping Functions (Niell 1996)). Input parameters for GPT are station
latitude, longitude, height and the day of the year, which is similar to the Global
Mapping Functions (GMF; Böhm et al. 2006a) as both, GPT and GMF, are based on
spherical harmonics up to degree and order 9.

Table 2 summarizes some properties of the pressure values (or zenith hydrosta-
tic delays) from different sources. Unfortunately, local pressure measurements are
usually not available, in particular at GNSS stations. Thus, to get consistent values
of a priori zenith hydrostatic delays for global GNSS networks it is preferable to
take these values from numerical weather models. For example, the Department of
Geodesy and Geoinformation (GEO) at the Vienna University of Technology pro-
vides zenith hydrostatic delays calculated from ECMWF data. These are provided
on global grids (2.5◦ times 2.0◦) and with a temporal resolution of 6 h starting in
1994 (Böhm et al. 2009a). For scientific purposes also forecast values are made avail-
able so that they can be used for real-time applications without significant loss of
accuracy (Böhm et al. 2009b). Empirical models like GPT are always available for
all time epochs, but the spatial resolution is limited as it is represented by spherical
harmonics up to degree and order 9 (≈20◦ in latitude/longitude), respectively. The
model only includes an annual variation with the zero phase set to 28 January, so
it cannot capture short-term and sub-annual weather phenomena. As an example,
Fig. 5 shows pressure values at station O’Higgins in Antarctica. It is evident that
empirical models like the model by Berg (1948) or GPT cannot describe the short
term pressure variations and that the model by Berg (1948) is offset by about 20 hPa.

We have also compared and validated the empirical models Berg and GPT with
pressure values from the ECMWF on global grids (10◦ in latitude times 12.5◦ in
longitude) (Böhm et al. 2009a). The comparison was performed for the year 2005
and the temporal resolution was 10 days (i.e. one global grid was taken every 10 days
and consequently 36 grids were used for the statistics). An error in the pressure of
1 hPa corresponds (at sea level) to approximately a 2.3 mm error in the Lz

h. This error
will result in an error in the position—especially the vertical component – estimated
with a space geodetic technique. In Sect. 4.2 a rule of thumb relating the error in the
delay to the error in the vertical coordinate is presented, from this we find that 3 hPa
(7 mm zenith delay error) correspond to 1 mm station height difference. It was found
that the Berg model has large deficiencies especially around Antarctica, resulting in
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Fig. 5 Pressure values for station O’Higgins in Antarctica from the ECMWF (grey line), local
pressure recordings at the radio telescope (red squares), GPT (blue line), and pressure determined
with the model by Berg (1948) (black bold line)
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Fig. 6 Simulated station height standard deviations in mm for GPT with respect to the pressure
values provided by the ECMWF (based on 36 epochs in 2005 for a 2◦ latitude times 2.5◦ longitude
grid) (modified from Böhm et al. (2009b))

station height errors of more than 10 mm. The errors for GPT for this region are
smaller, and these might completely disappear with an increased degree and order
of the spherical harmonic expansion. There are almost no biases for the rest of the
Earth (see Böhm et al. (2009b)).

GPT only accounts for an annual variation of the pressure with rather small ampli-
tudes compared to the other (e.g. weekly) variations of the pressure. Thus, the stan-
dard deviations of the differences to the grid values from the ECMWF are almost the
same for the Berg model (constant pressure per site) and GPT. In Fig. 6 the simulated
station height standard deviations are plotted for the case of using GPT compared
pressure values from the ECMWF. There is an increase of the standard deviations
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towards higher latitudes (with maximum values at around ±60◦ latitude), which is
due to the larger pressure variations in these regions compared to equatorial regions
(Böhm et al. 2009a).

3.2 Wet Delay

3.2.1 Microwave Zenith Wet Delays

From Eq. (30) the zenith wet delay is

ΔLz
w = 10−6

[∫ ∞

h0

(
k′

2
pw

T
Z−1

w

)
dz +

∫ ∞

h0

(
k3

pw

T2 Z−1
w

)
dz

]

. (46)

The first term in Eq. (46) is about 1.6 % of the second term.
The derivation of a model to account for the zenith wet delay (ΔLz

w) is by far
more challenging than the one for the hydrostatic delay. This is due to high spatial
and temporal variability and unpredictability of the amount of water vapor. Thus, the
temperature and the water vapor content at the Earth surface are not representative for
the air masses above. This is the reason why numerous models have been developed
over the past few decades for the wet delay, while preserving Saastamoinen’s model
(with slight modifications) for determining the hydrostatic delay. The zenith wet delay
varies between a few mm at the poles and about 40 cm above the equatorial regions. In
order to keep millimeter accuracy in space geodetic techniques, the ΔLz

w is nowadays
estimated as an additional parameter within the data analysis. Nevertheless, some
models are listed below and can be used as an initial value in the data analysis or for
applications not requiring high accuracy.

Saastamoinen (1972b) proposes the calculation of the zenith wet delay ΔLz
w based

on ideal gas laws using a simple relation

ΔLz
w = 0.0022768(1255 + 0.05T0)

pw0

T0
, (47)

where pw0 is the water vapor pressure and T0 is the temperature at the surface. Similar
to the hydrostatic delay, Hopfield (1969) proposes an expression for ΔLz

w as follows

ΔLz
w = 10−6

5
Nw(h0)hw, (48)

with Nw(h0) the refractivity of wet air at the surface (located at height h0) and a
mean value hw = 11000 m for the height of the troposphere up to which water vapor
exists. Ifadis (1986) proposes to model the zenith wet delay as a function of surface
pressure, partial water vapor pressure and temperature. Mendes and Langley (1998)
derived a linear relation between ΔLz

w and partial water vapor pressure. Some other
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models are being described by Mendes (1999). An approximate relation between
water vapor pressure and delay reads

ΔLz
w ≈ 0.217pw

T
. (49)

Assuming an isothermal atmosphere with exponential decrease of water vapor pres-
sure pw, and assuming that water vapor exists until a height of 2 km, we get an
approximation for the wet delay as a function of water vapor pressure at the Earth’s
surface pw0

ΔLz
w ≈ 748

pw0

T2
0

. (50)

An even simpler way is a rule of thumb that suggests that the wet zenith delay in cm
equals the water vapor pressure in hPa at the Earth’s surface

ΔLz
w [cm] ≈ pw0 [hPa]. (51)

In any case, information of water vapor pressure and/or temperature at the surface
has to be known. If no surface meteorological observation is available, we can use the
simple model of the standard atmosphere where pw can be calculated as a function
of the relative humidity f , i.e.

pw = f

100
exp(−37.2465 + 0.213166T − 0.000256908T2). (52)

3.2.2 Conversion of Zenith Wet Delays to Precipitable Water

The zenith wet delay can be related to the amount of integrated water vapor above the
station. Following Eq. (46) and using the expression for integrated mean temperature
Tm (Bevis et al. 1992)

Tm =
∫

s(
e
T Z−1

w )ds
∫

s(
e

T2 Z−1
w )ds

≈
∫ ∞

h0
( e

T Z−1
w )dz

∫ ∞
h0

( e
T2 Z−1

w )dz
, (53)

we can write

ΔLw = 10−6
[

k′
2 + k3

Tm

] ∫

s

( e

T
Z−1

w

)
ds. (54)

Applying the ideal gas laws, Eq. (54) can be reformulated as

ΔLw = 10−6
[

k′
2 + k3

Tm

]
R

Mw

∫

s
ρwds. (55)
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To be able to calculate the mean temperature Tm the vertical profiles of the water
vapor and temperature have to be known. Such data can be obtained from radiosonde
measurements or calculated (and predicted) from operational meteorological models
(Wang et al. 2005). In absence of this data, the empirically derived model by e.g.
Bevis et al. (1992) and Emardson and Derks (2000) can be used. The determination
of the mean temperature Tm from Eq. (53) is based on the weighting with water
vapor pressure in the atmosphere. Since water vapor is mainly located near the Earth
surface the mean temperature Tm will be highly correlated with the temperature at
the Earth surface T0. Using 8718 profiles of radiosonde launches at 13 stations in the
United States between 27 and 65◦ northern latitude, between 0 and 1600 m height,
and over a time span of 2 years Bevis et al. (1992) found

Tm ≈ 70.2 + 0.72T0, (56)

with a standard deviation of ±4.74 K. If ΔLz
w and surface temperature are known

without error, the integrated water vapor can be computed with an average error of
less than 4 %.

It is clear from Eq. (55) that the wet delay is proportional to the integrated water
vapor content IWV (IWV = ∫ ∞

0 ρw dz). Since IWV is a variable that can be easily
obtained from numerical weather prediction models or measured by other techniques,
it is of great interest to have a simple expression for calculating the wet delay from
IWV, and vice versa. Thus we define the proportionality constant Π such that

IWV = Π ΔLz
w, (57)

where ΔLz
w is the wet tropospheric delay in the zenith direction. By comparing Eqs.

(55) and (57), we find that Π can be related to Tm by

Π = 106Mw[
k′

2 + k3
Tm

]
R

, (58)

The integrated water vapor in zenith direction can also be provided as precipitable
water (PW) which corresponds to the height of the equivalent water column above
the station

PW = IWV

ρw,fl
, (59)

where ρw,fl is the density of liquid water in kg/m3. With a dimensionless quantity
κ we can relate the ΔLz

w and PW

PW = κΔLz
w, (60)

with κ defined as
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κ = Π

ρw,fl
. (61)

The precipitable water is roughly 0.16 of ΔLz
w. This value can vary by more than

15 %, mainly as a function of latitude and season (Fölsche 1999).
Errors in the factor Π are mainly caused by errors in Tm and the constants in

Eq. (58). According to Fölsche (1999) the influence of errors in the mean temperature
is at least one order of magnitude larger than errors in the constants. It is shown in
the following how accurate Tm has to be determined to get the amount of water vapor
with a certain accuracy.

The partial derivative of Π with respect to the mean temperature yields

∂Π

∂Tm
= 106Mwk3

R
[
k′

2 + k3
Tm

]2
T2

m

. (62)

This means that Π is changed by about 20 kg/m3 if Tm(= 270 K) is changed by
4 K. Assuming a zenith wet delay of 200 mm this corresponds to an error in the
precipitable water of about 4 mm. Requirements for better accuracies of PW (1 mm
or better) indicate that the real weather data should be used to derive the mean
temperature instead of approximations such as provided in Eq. (56).

3.2.3 Optical Zenith Wet Delays

Substituting Eq. (22) into Eq. (30) yields

ΔLz
w = 10−6k̃�

w(ν)

∞∫

h0

ρw(z) dz. (63)

Following Saastamoinen (1972a), the integral
∞∫

h0

ρw(h) dh can be approximated by

∞∫

h0

ρw(z) dz ≈ Rd

4gm
pw0, (64)

where pw0 is the surface pressure of water vapor. Substituting Eq. (64) into Eq. (30),
the zenith wet delay of optical measurements can be modeled as

ΔLz
w0 = 10−6k̃�

w(ν)
Rd

4gm
pw0. (65)
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Equation (65) is slightly different from the one developed by Mendes and Pavlis
(2004), which is expressed as

ΔLz
w0 = 10−6(5.316fnh(ν) − 3.759fh(ν))

Rd

4gm
pw0. (66)

Mendes and Pavlis (2004) derived their own dispersion factors fh(λ) and fnh(λ)

based on the modified dispersion formula in Eq. (24) for the 0.532 µm wavelength.
Equations (65) and (66) produce similar accuracy results if they are applied to real
SLR observations.

4 Modeling Delays in the Neutral Atmosphere

There are basically two ways to handle the atmospheric delays when analyzing space
geodetic data; either external measurements of the atmospheric delays are used to cor-
rect the measurements, or the atmospheric delays are parameterized and estimated
in the data analysis. As seen in Sect. 3.1 the hydrostatic delay can be accurately
determined from surface pressure measurements. However, the wet delay cannot be
estimated that accurately from meteorological measurements at the surface. Thus it is
common when analyzing space geodetic data to use surface pressure measurements
to model the hydrostatic delay, while the wet delay is estimated in the data analysis.
In the data analysis the tropospheric delays are modeled using mapping functions
and gradients (see Sect. 4.2). An alternative strategy is to also use external estimates
of the hydrostatic and wet delays. Such estimates could for example be obtained from
ray-tracing though numerical weather models (Sect. 4.1), a technique also commonly
applied for deriving expression for the tropospheric mapping functions. Another pos-
sibility is to infer the tropospheric delay from measurements by external instruments
such as Water Vapor Radiometers (WVR) (Sect. 4.4). The numerical values etc. given
in these sections are for microwaves, although the general principles could of course
also be applied in the case of optical techniques. Tropospheric modeling for optical
frequencies (e.g. SLR) is discussed in Sect. 4.3.

4.1 Ray-Tracing

From e.g. radiosonde data or numerical weather prediction models we can calculate
the refractivity field of the atmosphere. This could be used to estimate the atmospheric
delay simply by integrating the refractivity along the propagation path of the signal.
However, the problem is that we normally do not exactly know the propagation path.
To discover it we can apply the so-called ray-tracing technique. The ray-tracing
technique has been used in many fields of science where the propagation of an
electro-magnetic wave through a stratified medium has to be quantified. The ray-
tracing is based on the so-called Eikonal equation, which represents the solution of



Path Delays in the Neutral Atmosphere 93

the Helmholtz equation for an electro-magnetic wave propagating through a slowly
varying medium (Iizuka 2008; Wheelon 2001). Using the Eikonal equation, we can
determine the ray path and the optical path length. In the following sub-sections, we
present a ray-tracing system that can be applied for tropospheric modeling and dis-
cuss some basic elements in tropospheric ray-tracing calculations through Numerical
Weather Prediction Models.

4.1.1 Eikonal Equation and Ray Path

To derive the Eikonal equation we start from Maxwell’s equations (Eqs. 1–4). It is
convenient to use the H-field H instead of the magnetic field B, where H is defined by

B = μH. (67)

We can consider a general time-harmonic field

E(r, t) = e(r)ei(k0L(r)−2πνt), (68)

H(r, t) = h(r)ei(k0L(r)−2πνt), (69)

where L(r) is the optical path, and e(r) and h(r) are (complex) vector functions. The
wave number for vacuum (k0) is defined as

k0 = 2πν

c
= 2π

λ0
, (70)

where λ0 is the vacuum wavelength. By inserting these equations into Maxwell’s
equations (Eqs. 1–4) and assume that there are no free charges and zero conductivity,
we get after some calculations (Born and Wolf 1999)

∇L × h + c εe = − 1

ik0
∇ × h, (71)

∇L × e − cμh = − 1

ik0
∇ × e, (72)

e · ∇L = − 1

ik0

(
e · ∇ε

ε
+ ∇ · e

)
, (73)

h · ∇L = − 1

ik0

(
h · ∇μ

μ
+ ∇ · h

)
. (74)

For small vacuum wavelength, and therefore large wave number for vacuum (k0)

∇L × h + c εe =0, (75)

∇L × e − cμh =0, (76)
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e · ∇L =0, (77)

h · ∇L =0. (78)

By eliminating h between Eqs. (75) and (76), and considering Eq. (77), the following
differential equation is obtained which is independent of the amplitude vectors e and h

‖∇L‖2 = n (r)2 , (79)

where ∇L comprises the components of the ray directions, L is the optical path
length, n = c

√
εμ is the refractivity index of a medium, and r is the position vector.

This equation is the well-known Eikonal equation. The surfaces L(r) = constant are
called geometrical wave surfaces or the geometrical wave-fronts.

4.1.2 Hamiltonian Formalism of Eikonal Equation

The above mentioned Eikonal equation is a partial differential equation of the first
order for n (r) and it is possible to express it in many alternative forms. In general,
the Eikonal equation can be written in the Hamiltonian canonical formalism as fol-
lows (Born and Wolf 1999; Cerveny 2005; Nafisi et al. 2012a)

H (r,∇L) = 1

α

(
(∇L · ∇L)

α
2 − n(r)α

)
= 0, (80)

dr
du

= ∂H

∂∇L
, (81)

d∇L

du
= −∂H

∂r
, (82)

dL

du
= ∇L · ∂H

∂∇L
. (83)

Here α is a scalar value related to the parameter of interest u (see Table 3). In
general it is a real number but in our applications we can consider it to be an integer.
H (r,∇L) is called Hamiltonian function or just the Hamiltonian. In a 3D space
this system consists of seven equations. Six equations are obtained from Eqs. (81)
and (82) must be solved together. The result of these six equations is r = r(u) which
is the trajectory of the signal in space. The seventh equation, i.e. Eq. (83), can be
solved independently and yields the optical path length.

4.1.3 Ray-Tracing System for Tropospheric Modeling

Equations (80)–(82) can be used for constructing a ray-tracing system for any specific
application by simply selecting a correct value for the scalar α (Nafisi et al. 2012a).
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Table 3 Different cases for
Hamiltonian formalism

α Parameter of interest

0 du = dT Travel time T along the ray
1 du = ds Arc-length s along the ray
2 du = dσ = dT

n2 Natural variables along the ray

For α = 0, the parameter u represents travel time t along the ray. If α = 1, the
parameter u represents the arc-length s along the ray. In case of α = 2, the parameter
u is equal to dt/dn, which represents the natural variables along the ray (Cerveny
2005).

When applying ray-tracing for the determination of total delays along the ray path
the natural choice is α = 1. However, it is also possible to use α = 2 to construct a
tropospheric ray-tracing system (see Gegout et al. (2011)). Ray-tracing systems can
be expressed and solved in any curvilinear coordinate system, including spherical
coordinates. Selecting α = 1 and representing the function H in a spherical polar
coordinate system (r, θ,λ), Eq. (80) can be rewritten as

H (r, θ,λ, Lr, Lλ, Lθ) ≡
(

L2
r + 1

r2 L2
θ + 1

r2 sin2 θ
L2
λ

) 1
2 − n(r, θ,λ) = 0, (84)

where r is the radial distance, θ is the co-latitude, and λ is the longitude (0 ≤ θ ≤ π,

0 ≤ λ ≤ 2π). Lr = ∂L
∂r , Lθ = ∂L

∂θ and Lλ = ∂L
∂λ are the elements of ray directions.

Now, by substituting Eq. (84) into Eqs. (81) and (82), we obtain

dr

ds
= 1

β
Lr, (85)

dθ

ds
= 1

β

Lθ
r2 , (86)

dλ

ds
= 1

β

Lλ
r2sin2θ

, (87)

dLr

ds
= ∂n(r, θ,λ)

∂r
+ 1

βr

(
L2
θ

r2 + L2
λ

r2 sin2 θ

)

, (88)

dLθ
ds

= ∂n(r, θ,λ)

∂θ
+ 1

β

L2
λ

r2 sin3 θ
, (89)

dLλ
ds

= ∂n(r, θ,λ)

∂λ
, (90)

where

β =
(

L2
r + 1

r2 L2
θ + L2

λ

r2 sin2 θ

) 1
2

= n(r, θ,λ). (91)
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This system of equations is a direct result of Eqs. (81) and (82) in a 3D medium,
and we need to solve all six differential equations simultaneously. The final output
is the positions of the points along the trajectory of the ray. For solving the above
ray-tracing system, the following initial conditions at the starting point (station) can
be used (Nafisi et al. 2012a)

r = r0, (92)

λ = λ0, (93)

θ = θ0, (94)

Lr0 = n0 cos z0, (95)

Lθ0 = n0r0 sin z0 cos a0, (96)

Lλ0 = n0r0 sin z0 sin a0 sin θ0, (97)

where a0 and z0 are the initial geodetic azimuth and zenith angle, respectively. In the
3D case, gradients are important factors which can affect the bending of the ray path
and therefore of the total ray-traced delay. The gradient can be rewritten as

∇n(r,λ, θ) =
[
∂n(r, θ,λ)

∂r
,

1

r

∂n(r, θ,λ)

∂θ
,

1

r sin θ

∂n(r, θ,λ)

∂λ

]T

. (98)

From a practical point of view, we must find a sophisticated technique for computing
the gradients of the refractive index in Eqs. (88), (89) and (90), which are

∇nr = ∂n(r, θ,λ)

∂r
, (99)

∇nθ = ∂n(r, θ,λ)

∂θ
, (100)

∇nλ = ∂n(r, θ,λ)

∂λ
. (101)

Taking the effects of the gradients on the ray-traced delay into account is important
for a ray-tracing algorithm. In particular in the case of symmetries, ray-tracing in
curvilinear coordinates system would be easier. However, in general the ray-tracing
systems in a curvilinear coordinates are more complex and sometimes fail. A typ-
ical example in atmospheric ray-tracing is the solution for ray-tracing in spherical
polar coordinates when θ ≈ 0◦ or θ ≈ 180◦ . According to Cerveny (2005) a gen-
eral solution for removing such singularities is the use of transformations between
ray-tracing systems in various forms. Using standard transformation relations, a ray-
tracing system represented in curvilinear coordinates can be transformed into the
universal Cartesian coordinates, and after ray-tracing computations in this coordi-
nate system the results can be again transformed back to the curvilinear coordinates.
In another method suggested by Alkhalifah and Fomel (2001) a small constant para-
meter (δ) is added in the denominator of fractions in the ray-tracing equations to
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provide numerical stability. The value of this constant must be chosen carefully;
otherwise we may get unreasonable results. Other stability solutions have been sug-
gested by Schneider (1993) and Fowler (1994). In addition, the variation of the size
of the grid cells in polar coordinates can causes a stability problems, especially in
presence of small-scale inhomogeneities (Fowler 1994).

By substituting Eq. (84) into Eq. (83) and solving the equation, we can obtain this
well-known equation to calculate the optical path length L

L =
∫

S
n(r, θ,λ)ds. (102)

Once the position of a point along the ray path has been determined by Eqs. (85)–
(90), the refractivity index n and the optical path length L can be calculated using
Eq. (102). As mentioned before, the total delay is defined as the difference between
the optical path length L and the straight line distance G

ΔL = L − G. (103)

3D ray-tracing can be easily reduced to 2D ray-tracing by substituting ∂n
∂θ = 0 and

∂n
∂λ = 0 into Eqs. (85)–(90). In this case, we assume that the ray does not leave a
plane of constant azimuth angle. For the 2D system, the coupled partial derivatives
in Eqs. (85)–(90) reduce to four equations

dr

ds
= 1

β
Lr, (104)

dθ

ds
= 1

β

Lθ
r2 , (105)

dLr

ds
= ∂n(r, θ,λ)

∂r
+ 1

βr

(
L2
θ

r2 + L2
λ

r2 sin2 θ

)

, (106)

dLθ
ds

= 1

β

L2
λ

r2 sin3 θ
. (107)

Equation (91) remains valid also for 2D ray-tracing systems. For a horizontally strat-
ified atmosphere, further simplifications can be applied to improve the calculation
speed (Thayer 1967). According to Böhm (2004), we can develop a 1D ray-tracing.
Figure 7 shows the geometry of this method for a troposphere with k different refrac-
tivity layers. The geocentric distances can be estimated by adding the radius of the
Earth (Re) to the heights of each layer

ri = Re + hi. (108)

In this method, the elevation angles (ei) are with respect to a horizontal plane of
the station, whereas θi show the angles between the ray path and the tangents to the
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Fig. 7 Geometry of a 1D ray-tracing method, for a receiver located at P1 and the upper limit of the
troposphere at Pk . Points P2 and P3 show two sample points of the ray path. The y- and z-axis of
the Cartesian coordinate system are parallel to horizon and zenith direction at the site, respectively.
S2 = ‖P3 − P2‖ is the distance between two successive points along the path

layers in each intersection point of the trajectory. At the first point (receiver) these
two are same, i.e. e1 = θ1 .

In this coordinate system, the z and y components are equal to r1 and zero, respec-
tively. Following the geometrical relation in Fig. 7 we find

Si =
√

r2
i+1 − r2

i cos θi − ri sin θi, (109)

zi+1 = zi + Si sin ei, (110)

yi+1 = yi + Si cos ei, (111)

ηi+1 = arctan
yi+1

zi+1
, (112)

δi+1 = ηi+1 − ηi, (113)

θi+1 = arccos(
1 + ηi × 10−6

1 + ηi+1 × 10−6 cos(θi + δi+1)), (114)

ei+1 = θi+1 − ηi+1. (115)
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These parameters must be calculated for all layers, and then it is possible to find the
total slant delay (ΔLd) as follow

ΔLd =
n−1∑

i=1

SiNi. (116)

This equation can be divided into two terms for finding hydrostatic and non-
hydrostatic components of the delay separately. By inserting hi (along the zenith
direction) instead of Si (along the slant path) an equation for total zenith delay will
be derived. As mentioned before, the bending effect is a part of the total delay and
must be estimated separately. This parameter is zero for the zenith direction and

ΔLb =
n−1∑

i=1

(Si − cos(ei − ek)Si). (117)

for a slant direction. Implementation of the above ray-tracing system can vary sub-
stantially, with different degrees of complexity and accuracy. Examples of ray-tracing
algorithms in atmospheric studies are given by Bean and Thayer (1959), Thayer
(1967), Budden (1985), Davis (1986), Mendes (1999), Pany (2002), Böhm and Schuh
(2003), Thessin (2005), Hulley (2007), Hobiger et al. (2008), Nievinski (2009),
Wijaya (2010), Gegout et al. (2011) and Nafisi et al. (2012a). Several ray-tracing
algorithms were compared by Nafisi et al. (2012b). Also it is possible to express the
Eikonal equation and the ray-tracing system in curvilinear non-orthogonal coordi-
nates systems. For details see Cerveny et al. (1988).

4.2 Mapping Functions and Gradients

In the analysis of space geodetic data the troposphere path delay ΔL(e) at the ele-
vation angle e is usually represented as the product of the zenith delay ΔLz and an
elevation-dependent mapping function mf (e) with

ΔL(e) = ΔLz · mf (e). (118)

This concept is not only used to determine a priori slant delays for the observa-
tions, but the mapping function is also the partial derivative to estimate residual
zenith delays. Typically, the zenith delay is estimated with a temporal resolution of
20–60 min in VLBI and GPS analysis. In VLBI analysis—when there is only one
observation at a time at a station—this allows the zenith delays to be estimated in
a least-squares adjustment. In the analysis of space geodetic observations not only
the zenith delays are estimated, but also other parameters like the station clocks and
the stations heights (Fig. 8). The partial derivatives of the observed delays w.r.t. the
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e

ΔLz ΔLz .mf(e)

dh

dh.sin(e)

clock

Fig. 8 Different elevation-dependence of the tropospheric delays (red), clock values (green), and
height components (blue). Whereas the partial derivatives for the estimation of clocks and height
components are strictly 1 and sin(e), respectively, the partial derivative for the estimation of the
zenith delay is the mapping function which is approximately 1/sin(e), but is not perfectly known
(modified from Rothacher et al. (1998))

station heights are dependent on the elevation angle only, but whereas the partial
derivatives w.r.t. the clocks (= 1) and the station heights (=sin(e)) are exactly known,
the partial derivatives for the zenith delays (i.e. the mapping functions) are only
known with a limited accuracy. Consequently—via the correlations between zenith
delays, station heights, and clocks—any imperfection of the mapping function will
also result in errors in the station height estimates (and clock errors).

Considering Eq. (118) we find the following relationship: If the mapping function
is in error (too large), then the estimated zenith delay ΔLz is too small, because the
observed tropospheric delay ΔL(e) does not change. Consequently, the estimated
station height goes up. Niell et al. (2001) set up a rule of thumb specifying that the
error in the station height is approximately one third of the delay error at a cutoff
elevation angle of 7◦. Böhm (2004) revisited this rule of thumb for VLBI analysis
(and a cutoff elevation angle of 5◦) specifying that the station height error is about
one fifth of the delay error at the lowest elevation angle. This is close to the value
0.22 found by MacMillan and Ma (1994). The corresponding decrease of the zenith
delay is about one half of the station height increase.

4.2.1 Azimuthal Symmetry: Mapping Functions

Assuming azimuthal symmetry of the neutral atmosphere around the station (i.e. at
a constant elevation angle the delay is not dependent on the azimuth angle of the
observation), the approach as described in Eq. (119) is used (e.g. Davis et al. 1985)

ΔL(e) = ΔLz
h · mfh(e) + ΔLz

w · mfw(e). (119)

ΔL(e) is the total path delay of the microwaves in the neutral atmosphere and e
is the elevation angle of the observation to the satellite or the quasar (vacuum or
geometric elevation angle). ΔLz

h and ΔLz
w are the a priori zenith hydrostatic and the
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estimated wet delays, and mfh(e) and mfw(e) are the so-called mapping functions
which provide the ratio of the delay to the delay in zenith direction. The input to
both mapping functions is the vacuum elevation angle e, because the bending effect
is accounted for by the hydrostatic mapping function.

Errors in the zenith hydrostatic delays or the mapping functions have an influence
on station height errors as described with the rules of thumb by Niell et al. (2001) or
Böhm (2004) mentioned above. The following two examples illustrate this rule of
thumb, which—holding for both GPS and VLBI—depends on the actual distribution
of elevation angels and on whether elevation angle-dependent weighting is used:
The zenith hydrostatic and wet delays shall be 2000 and 200 mm, respectively, the
minimum elevation angle is 5◦, and the corresponding values for the true hydrostatic
and wet mapping functions are 10.15 (mfh(5◦)) and 10.75 (mfw(5◦)) (Böhm et al.
2006b).

• We assume an error in the total pressure at the station of +10 hPa, e.g. when
using the “mean” pressure from GPT during a time of low pressure. + 10 hPa
correspond to ≈+20 mm zenith hydrostatic delay (Saastamoinen 1972b), which
is then mapped down to 5◦ elevation angle using the wrong mapping function
(wet instead of hydrostatic, factor −0.6 = 10.15–10.75). At 5◦ elevation angle
the mapping function error is −12 mm, and one fifth of it, i.e. −2.4 mm, would
be the resulting station height error. This results in a kind of atmosphere loading
correction (see Part 4, Wijaya et al. (2013)), because during a pressure low the
station heights go up (Tregoning and Herring 2006; Steigenberger et al. 2009).

• We consider an error in the wet mapping function of 0.1 (mfw(5◦)= 10.85 instead
of 10.75) or in the hydrostatic mapping function of 0.01 (mfh(5◦)= 10.16 instead
of 10.15). The error at 5◦ elevation angle is in both cases 20 mm, i.e. the resulting
error in the station height would be approximately +4 mm.

The scale height of the wet part in the troposphere is about 2 km, whereas the
scale height of the hydrostatic part is about 8 km (cf. Fig. 9). The mapping func-
tions describe the ratio (AB)/(B0B) (wet) and (AC)/(C0C) (hydrostatic). Due to the
curvature of the Earth and the smaller scale height of the wet part, the hydrostatic

hydrostatic

wet

Earth

A e

B

B0

C

C0

Fig. 9 The scale height of the wet part of the troposphere is about 2 km, the scale height of the
hydrostatic part is about 8 km. The mapping functions describe the ratio of the paths (AB)/(B0B)

(wet) and (AC)/(C0C) (hydrostatic). The wet mapping function is larger than the hydrostatic map-
ping function
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mapping function is smaller than the wet mapping function. Exceptions are mapping
functions for observations at very low elevation angles where the geometric bending
effect, which is attributed to the hydrostatic mapping function, is increasing consider-
ably. Thus, the mapping functions are a measure for the thickness of the atmosphere
compared to the Earth radius (Niell et al. 2001). If the thickness of the atmosphere
gets smaller, it appears to be flatter, and the mapping function approaches 1/sin(e).
Assuming a flat and evenly stratified atmosphere the mapping function is 1/sin(e).
For higher elevation angles (>20◦ elevation) these mapping functions are sufficiently
accurate. Marini (1972) showed that the dependence on the elevation angle of the
mapping functions for any horizontally stratified atmosphere can be described with
continued fractions, when a, b, c, etc. are constants (Eq. 120). For verification Marini
(1972) used standard atmosphere data but no real weather data.

mf (e) = 1

sin(e) + a

sin(e) + b

sin(e) + c

sin(e) + ...

. (120)

This concept was first used in a model for the refraction of the hydrostatic atmosphere
(Marini and Murray 1973) which has since then been applied in the analysis of geo-
detic and astrometric VLBI observations for a long time. The zenith delay corre-
sponds to that by Saastamoinen (1972b), and the mapping functions are represented
by a continued fraction form with two coefficients a and b. The first mapping func-
tions for space geodetic applications with different coefficients for the hydrostatic
and wet parts were published by Chao (1974) who replaced the second sin(e) by
tan(e) to get unity in zenith direction.

Davis et al. (1985) developed the mapping function CfA2.2 for the hydrosta-
tic delays down to 5◦ elevation; it is based on the approach by Chao (1974) but
extended by an additional constant c. Based on ray-tracing through various standard
atmospheres with elevation angles between 5 and 90◦, the coefficients a, b, and c
were determined as functions of pressure, water vapor pressure, and temperature
at the Earth surface, and from vertical temperature gradients and the height of the
troposphere. Herring (1992) developed coefficients for the mapping function MTT
(MIT Temperature) as functions of latitude, height, and the temperature at the site.
Unlike Davis et al. (1985) he did not use standard atmospheres but radiosonde data.
The MTT mapping functions are based on a slightly changed continued fraction form
which is widely accepted nowadays

mf (e) =

1 + a

1 + b

1 + c

sin(e) + a

sin(e) + b

sin(e) + c

. (121)
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The factor in the denominator ensures that the mapping function is equal to one in
the zenith direction. The strong dependence of the MTT mapping function (Herring
1992) on surface temperature induced Niell (1996) to develop the New Mapping
Functions (NMF, now often called Niell Mapping Functions). The NMF do not use
meteorological parameters at the sites, but only the day of the year (doy), station
latitude, and station height as input parameters. Thus, they can be easily applied at
stations without meteorological sensors, which often is the case for GNSS stations.
Niell (1996) used standard atmosphere data at various latitudes to determine hydro-
static and wet mapping functions down to 3◦ elevation. Similar to Davis et al. (1985)
and Herring (1992), he used ray-tracing methods to determine the coefficients a, b,
and c of the continued fraction form in Eq. (121). NMF is based on sine functions to
describe the temporal variation of the coefficients. The period is 365.25 days and the
maximum/minimum is set to January 28 (doy 28). There is also a height correction
for the hydrostatic NMF (NMFh) which describes that mapping functions increase
with increasing height, i.e. the atmosphere above the site becomes flatter.

Niell (2000) was the first to determine mapping functions from numerical weather
models which are often available with a time resolution of 6 h. For the Isobaric
Mapping Functions (IMF), he used empirical functions for b and c, and he determined
the coefficients a of the continued fraction in Eq. (121) from re-analysis data of the
Goddard Space Flight Center Data Assimilation Office (DAO) (Schubert et al. 1993).
For the hydrostatic IMF he used the height of the 200 hPa pressure level which is
readily available with most numerical weather models and which is describing the
thickness of the atmosphere well. For the wet IMF Niell suggested to use a coarse
ray-trace at 3.3◦ initial elevation angle through numerical weather models. However,
some practical and conceptual limitations in the computation of the wet IMF induced
Böhm and Schuh (2004) to develop the Vienna Mapping Functions (VMF).

Thus, the VMF are characterized by the removal of some weaknesses of the
IMFw, e.g. the coarse vertical resolution of weather model data is improved by
vertical interpolation and the bending effect is taken into account rigorously. The
same approach is applied for the wet and the hydrostatic mapping function, i.e.
a ray-tracing is performed at an initial elevation angle of 3.3◦ for the hydrostatic and
wet components yielding the hydrostatic delay, the wet delay, as well as the bending
effect and the outgoing (vacuum) elevation angle which is ≈3◦. (Please notice that
always the refractivity profile above the site vertical is used, which makes the 1D ray-
tracing simple and causes the delays to be symmetric with azimuth.) Together with
the zenith hydrostatic and wet delays which are also determined by ray-tracing, the
hydrostatic and wet mapping functions (Eq. (121)) at the outgoing elevation angle
are calculated. The geometric bending effect is added to the hydrostatic mapping
function. Similar to IMF, empirical functions are used for the b and c coefficients,
which allows the determination of a in Eq. (121) by simple inversion. Since the
coefficients a, b, and c are highly correlated, small errors in b and c can easily be
compensated with the a coefficients. However, Böhm et al. (2006b) improved the b
and c coefficients, and consequently the a coefficients had to be re-calculated. The
coefficients of the so-called VMF1 are bh = 0.0029, bw = 0.00146, cw = 0.04391,
and the coefficient ch is provided with Eq. (122) and Table 4
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Table 4 Parameters c0, c10, c11, and ψ needed for computing the coefficient c of the hydrostatic
mapping function

Hemisphere c0 c10 c11 ψ

Northern 0.062 0.001 0.005 0
Southern 0.062 0.002 0.007 π

Mind that the cxx coefficient is incorrect in the paper by Böhm et al. (2006b)

Table 5 Parameters c0, c10,
c11, and ψ needed for
computing the coefficient c of
the total mapping function

Hemisphere c0 c10 c11 ψ

Northern 0.063 0.000 0.004 0
Southern 0.063 0.001 0.006 π

ch = c0 +
((

cos

(
doy − 28

365.25
· 2π + ψ

)

+ 1

)

· c11

2
+ c10

)

· (1 − cos θ). (122)

The VMF1 are valid (tuned) for elevation angles above 3◦, and the largest devi-
ations from ray-traces at other elevations show up at about 5◦ elevation angle. The
Vienna Mapping Function 1 is realized as discrete time series (resolution 6 h) of coef-
ficients a, either on a global grid or at certain geodetic sites (see http://ggosatm.hg.
tuwien.ac.at/). Mind that with the gridded version of the VMF1, the height correction
of Niell (1996) has to be applied.

Instead of separating the delays into a hydrostatic and a wet part, an alternative
concept of total mapping functions has also been investigated for troposphere delay
modeling (Böhm et al. 2006b), i.e. the use of a single total mapping function mft
(Eq. 123) both for mapping down the a priori zenith total delays ΔLz

t,0 and as partial
derivative for the estimation of the residual total delays ΔLz

t,res (Eqs. 124 and 125).
Table 5 summarizes the parameters for the ct coefficient which have been determined
with the same approach as the ch coefficients of the hydrotstatic VMF1. The b
coefficient of the total VMF1 is also bt = 0.0029.

mft(e) = ΔLh(e) + ΔLw(e) + ΔLbend

ΔLz
h + ΔLz

w
, (123)

ΔLz
t = ΔLz

h + ΔLz
w = ΔLz

t,0 + ΔLz
t,res, (124)

ΔL(e) = ΔLz
t,0 · mft(e) + ΔLz

t,res · mft(e). (125)

Although a priori zenith total delays are required in the data analysis, a priori
zenith hydrostatic delays can also be applied because the mapping function for the a
priori zenith delays is the same as for the residual zenith delays (this only holds if there
are no constraints on the estimated zenith delays). With the classical separation into
a hydrostatic and a wet part, errors of the a priori zenith hydrostatic delays cannot be
fully compensated by the estimation of the remaining wet part since the hydrostatic
and wet mapping functions are not identical, especially at low elevation angles. The
advantage of the concept of total mapping functions is that the results are not affected

http://ggosatm.hg.tuwien.ac.at/
http://ggosatm.hg.tuwien.ac.at/
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by poor a priori zenith hydrostatic delays (Böhm et al. 2006b). On the other hand, the
value of total mapping function is close to that of the hydrostatic mapping function,
so it cannot account for the rapid variation of the wet zenith delays which occurs
even between the 6 hourly epochs of the total VMF1. Thus, it is preferable to keep
the separation into a hydrostatic and a wet mapping function, at least as long as the
time resolution is not 3 h or better.

The goal of the Global Mapping Functions (GMF; Böhm et al. 2006a) is to make
available mapping functions which can be used globally and implemented easily in
existing geodetic data analysis softwares and which are consistent with NWM-based
mapping functions, in particular with the VMF1 (Böhm et al. 2006b). Compared
to the NMF (Niell 1996), the parameterization of the coefficients in the three-term
continued fraction (Eq. 121) has been refined to include also a longitude dependence.
Using global grids of monthly mean profiles for pressure, temperature, and humidity
from the ECMWF 40 years reanalysis data (ERA40), the coefficients ah and aw were
determined using data from the period September 1999 to August 2002 applying the
same strategy and the same b and c coefficients used for VMF1. Thus, at each of
the 312 grid points, 36 monthly a values were obtained for the hydrostatic and wet
mapping functions, respectively. The hydrostatic coefficients were reduced to mean
sea level by applying the height correction given by Niell (1996). The mean values,
a0, and the annual amplitudes, A, of the sinusoidal function (Eq. 126) were fitted to
the a parameter time series of each grid point, with the phases referred to January 28,
corresponding to the NMF. The standard deviations of the monthly values at the
single grid points with respect to the values obtained from Eq. (126) increase from
the equator towards larger latitudes, with a maximum value of 8 mm (expressed
as equivalent station height error) in Siberia. For the wet component, the standard
deviations are generally smaller, with the maximum values being about 3 mm at the
equator Böhm et al. (2006a).

a = a0 + A · cos

(
doy − 28

365.25
· 2π

)

, (126)

a0 =
9∑

n=0

n∑

m=0

Pnm(sinθ)(Anm cos(mλ) + Bnm sin(mλ)). (127)

Then, the global grid of the mean values a0 and that of the amplitudes A for both
the hydrostatic and wet coefficients of the continued fraction form were expanded
into spatial spherical harmonic coefficients up to degree and order 9 (according to
Eq. (127) for a0) in a least-squares adjustment. The residuals of the global grid of a0
and A values to the spherical harmonics are in the sub-millimeter range (in terms of
station height). The hydrostatic and wet coefficients a for any site coordinates and
day of year can then be determined using Eq. (126).

In Fig. 10 VMF1 and GMF hydrostatic mapping functions at 5◦ elevation angle
are plotted for Fortaleza, Brazil. The GMF reflects a seasonal variability and, in
this respect, agrees well with the VMF1. However, a deficiency is evident in the
empirical mapping function compared to the VMF1 because GMF does not reveal



106 T. Nilsson et al.

Fig. 10 Hydrostatic mapping
functions VMF1 and GMF
at 5◦ elevation at Fortaleza,
Brazil. Phenomena such as the
El Niño event in 2009 cannot
be captured with empirical
mapping functions like GMF
that contain only average
seasonal terms
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the special meteorological conditions described by the VMF1 during the El Niño
event in 2009/10.

Niell (2006) compared the mapping functions VMF1, IMF, GMF, and NMF with
mapping functions derived from ray-tracing of radiosonde data in 1992, which were
assumed to be the most accurate reference possible. The standard deviation was
converted to station height scatter with the rule of thumb by Niell et al. (2001)
(one third of the delay at 7◦ elevation angle). The best agreement was found for
the VMF1, both for the hydrostatic and the wet mapping function. All hydrostatic
mapping functions show the lowest scatter at the equator, because there are only
small pressure and temperature variations. The scatter increases with station latitude,
in particular for the empirical GMF and NMF, which of course cannot account for
the variations at synoptic time scales (∼10 days). The situation is different for the
wet mapping functions where the scatter is largest at the equator. This is due to the
fact that the zenith wet delays are largest over the equator (up to 40 cm). At the
poles, there is hardly any humidity; thus, errors in the wet mapping functions are
not critical for the estimation of station heights (and zenith wet delays). Again, the
performance of the wet VMF1 is best. However, it has to be mentioned here that
the radiosonde data might have been assimilated in the NWM which are used to
determine the VMF1 and IMF. Consequently the station height scatter for these two
mapping functions may be too optimistic.

There have been many investigations comparing the application of different map-
ping functions in VLBI or GPS analysis. For example, Böhm et al. (2007) and
Steigenberger et al. (2009) compared various mapping functions in GPS analysis,
and Tesmer et al. (2007) compared them in VLBI analysis. Moreover, Kouba (2008)
compared the gridded VMF1 against the VMF1 determined for specific sites, or
Böhm et al. (2009b) assessed the accuracy of forecast VMF1 for the application in
real time analysis.
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Fig. 11 The refractivity in the vicinity of the vertical profile above the site can be determined with
the linear horizontal gradients of refractivity ξ

4.2.2 Azimuthal Asymmetry: Gradients

Mapping functions as described above allow for the modeling of path delays under
the assumption of azimuthal symmetry of the neutral atmosphere around the station.
Consequently, vertical refractivity profiles above the sites are sufficient to determine
the path delays at arbitrary elevation angles or the mapping functions, respectively,
because the refractivity is always taken from the vertical profile as it is the case for
the VMF1. However, due to certain climatic and weather phenomena path delays will
not be constant at varying azimuths. For example, at sites at northern latitudes the
path delay towards south will be systematically larger than towards north, because
the height of the troposphere above the equator is larger than above the poles.

In the following the derivation of linear horizontal gradients is shown following
Davis et al. (1993). The Taylor series up to degree one for the refractivity at a station
is (Fig. 11)

N(x, z) = N0(z) + ξ(z) · x, (128)

ξi(z) = ∂N(x, z)

∂xi

∣
∣
∣
∣
x=0

. (129)

N0(z) is the refractivity above the site, x is the horizontal position vector (origin is
placed at the site), and ξ(z) is the linear horizontal gradient vector of refractivity at
height z. The index i refers to the i-th component of x: 1 towards north and 2 towards
east. The path delay (hydrostatic or wet) at an arbitrary direction can be found by
integration of Eq. (128) along the path s. If expressed with elevation angle e and
azimuth angle a, we get

ΔL(a, e) = 10−6
∫ ∞

0
N(s) ds = 10−6

∫ ∞

0
N0(z) ds+10−6

∫ ∞

0
ξ(z) ·x ds, (130)

ΔL(a, e) = ΔL0(e) + 10−6
∫ ∞

0
ξ(z) · x ds, (131)
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where ΔL0 is the delay without gradients. In Eq. (131) the difference between the
paths with and without gradients has been neglected. Davis et al. (1993) state that
this difference is as large as 1 mm for N = 300, ∂N/∂xi = 1 km−1, and e = 20◦.
If the concept of an azimuth-dependent mapping function is used, Eq. (131) can be
written as

ΔL(a, e) = ΔLz · mf (a, e), (132)

with

mf (a, e) = mf0(e) + δmf (a, e) = mf0(e) + 10−6
∫ ∞

0
ζ(z) · x ds, (133)

where

ζ(z) = ξ(z)

ΔLz
, (134)

and mf0 and ΔLz are the mapping function and the path delay in zenith direction
for the symmetric case. Thus, the gradients cause a change in the mapping function
which can be described by an additional term δmf . With

x(a, e) ≈ z · cot(e′)(cos(a)n̂ + sin(a)ê), (135)

ds ≈ dz · mf0(e), (136)

and normalized gradients of refractivity

ζ(z) = ζn · n̂ + ζe · ê, (137)

and when n̂ and ê refer to the unit vectors in north and east direction and e′ is the
refracted elevation angle (which only differs from the geometric elevation angle at
low elevations), we get

δmf (a, e) ≈ 10−6mf0(e) cot(e′)
(

cos(a)

∫ ∞
0

z · ζn(z) · dz + sin(a)

∫ ∞
0

z · ζe(z) · dz

)

,

(138)
and

δmf (a, e) = mf0(e) cot(e′)(Zn cos(a) + Ze sin(a)), (139)

when

Z = 10−6
∫ ∞

0
z · ζ(z) dz. (140)

Equation (138) shows that the elevation-dependence of the azimuth-dependent map-
ping function δmf (a, e) consists of two parts: the dependence on mf0 and on the
factor cot(e′). As already mentioned the mapping functions are dependent on the
geometric elevation angle e, whereas the cotangent depends on the refracted eleva-
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tion angle e′, because close to the site this angle determines the refraction. It holds
that

e′ = e + δe(e), (141)

where δe can be described with (Davis et al. 1993)

δe ≈ 10−6NS cot(e). (142)

NS is the refractivity at the Earth surface, and for NS = 300, e = 5◦ we get δe ≈ 0.2◦.
Since δe is small, cot(e′) can be expanded into a series, and we get for the deviation
from the symmetric mapping function

δmf (a, e) = mf0(e) cot(e)(1 − 10−6NS csc2(e))(Zn cos(a) + Ze sin(a)). (143)

With the delay gradients (or just gradients) G

G = Z · ΔLz, (144)

we get for the path delay

ΔL(a, e) = ΔL0(e) + mf0(e) cot(e)(1 − 10−6NS csc2(e))(Gn cos(a) + Ge sin(a)).

(145)
The equations above can be used to determine gradients by integrating over the

horizontal gradients of refractivity along the site vertical (see e.g. MacMillan and
Ma (1997), Böhm and Schuh (2007))

Ga = 10−6
∫ ∞

0
ξa z dz, (146)

where a denotes the azimuth direction (e.g. e or n). Figure 12 shows refractivity
gradients at the site vertical for the station Fortaleza.

Fig. 12 Weighted (with
height) refractivity gradients
(dN(z) · z) towards east at
Fortaleza (Brazil) on 21
November 2011 at 0:00 UT.
The black line shows the
hydrostatic, the red line the
wet gradients
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In the following it is shown how gradients can be interpreted. Equation (128) can
be written in the form

N(x, z) = N0(z)(1 + α · x), (147)

α = ξ(z)/N0(z), (148)

with the constant vector α. This means that the relative gradient of refractivity is
constant, and we get for the gradient of the delay

G = 10−6 α

∫ ∞

0
z N0(z) dz. (149)

Supposing that refractivity decreases exponentially with height, i.e.

N0(z) = NS e−z/H , (150)

and H is the scale height, we get for the integral in Eq. (149) the expression

G = 10−6α · NS · H2, (151)

and for the gradient of refractivity

ξ(z) = 106 G
H2 e−z/H . (152)

The scale height H is the height of the neutral atmosphere (or of a part of it) if the
density is constant with height and the total mass is conserved. For the gradients of
refractivity at the Earth surface we get

ξ(z) = 106 G
H2 . (153)

This shows that for a given value of G the gradients of refractivity ξ are inversely
proportional to the squared scale heights H. A typical value for the gradients G is
1 mm. This corresponds to a path delay of ≈65 mm at 7◦ elevation. Assuming a
scale height H of 1 km the gradient of refractivity ξ is 1 km−1. With a scale height
of 8 km |ξ| = 0.015 km−1. Hydrostatic atmospheric gradients which are caused by
pressure and temperature gradients, have a large spatial resolution of about 100 km
(Gardner 1976) and a temporal resolution of hours to days. Wet gradients have a
small spatial resolution (<10 km) and they can vary at hourly time scales or faster,
although longer time scales are also possible (e.g. at coastal regions). Wet gradients
are functions of water vapor pressure and temperature.

Presently, two models for the gradients are used in the analysis of space geodetic
techniques. These are the model by MacMillan (1995) that follows Davis et al. (1993)
and the model by Chen and Herring (1997). Both concepts will be described below.
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Furthermore, it is shown that the concept of horizontal gradients corresponds to a
tilting of the mapping functions. This is used by Niell (2001) who uses the tilting of
the 200 hPa pressure level to get hydrostatic gradients. MacMillan (1995) proposes
to use the simple model

ΔL(a, e) = ΔL0(e) + mfh(e) cot(e)(Gn cos(a) + Ge sin(a)), (154)

i.e. the difference between e and e′ is neglected. Chen and Herring (1997) use the
gradient model

ΔL(a, e) = ΔL0(e) + mfg(e)(Gn cos(a) + Ge sin(a)), (155)

mfg(e) = 1

sin(e) tan(e) + C
, (156)

and

C = 3
∫
ξ · z2 · dz

2
∫
ξ · z · (z + Re) · dz

. (157)

After integration they get for the coefficient C

C = 3H/Re. (158)

For scale heights of 6.5 km for the hydrostatic part and 1.5 km for the wet part of the
neutral atmosphere, they find the values 0.0031 and 0.0007 for the hydrostatic and
wet coefficients C, respectively. For the estimation of total gradients, Herring (1992)
suggests using 0.0032.

Gradients can also be interpreted by a tilting of the mapping function (Rothacher
et al. 1998) see Fig. 13. The basic relations are shown below assuming that the
atmosphere is flat (mapping function 1/sin(e)) and that the path delay in zenith
direction is not changed by the tilting. If the gradient G is the deflection of the path

Earth

e
Atmosphere

Lz Lz

β

β
G

G cot(e)
G.cot(e).mf(e)

Lz cot(e)

Fig. 13 Tilting of the mapping function by the angleβ assuming a horizontally stratified atmosphere
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delay in zenith direction due to the tilting angle β, it is shown that the path delay at
the elevation angle e due to the gradients is cot(e)mf (e)G, which is exactly what is
proposed by MacMillan (1995). Starting with

ΔL(e − β) = ΔLz · mf (e − β) ≈ ΔLz
(

mf (e) + ∂mf

∂e
(−β)

)

, (159)

and using 1/sin(e) as mapping function and with

β = G/Lz, (160)

we get
ΔL(e − β) = ΔLz · mf (e) + cot(e)mf (e)G. (161)

A gradient G of 1 mm corresponds to tilting angles of 1.5’ (hydrostatic) and 17’
(wet). The effects on the zenith delays are 2 · 10−4 and 2 · 10−5 mm, respectively,
and can be neglected.

It is important to estimate gradients in the analysis of space geodetic observations,
in particular when observing at low elevation angles. On the other hand, there is no
need to apply a priori gradients if no constraints are applied on the estimation of
gradients.

4.3 Atmospheric Delays for SLR

4.3.1 Single-Color SLR Observations

The accuracy of the results obtained from Satellite Laser Ranging (SLR) measure-
ments is ultimately limited by the atmospheric propagation effects (as well as by by
the hardware system). In the 1970s, Marini and Murray (1973) developed a model to
correct the atmospheric delays in SLR measurements and their model became a stan-
dard correction model at that time. In the early 2000s, Mendes et al. (2002) pointed
out some limitation in that model, namely as regards the modeling of the elevation
dependency of the zenith atmospheric delays (the mapping function component of
the model). Thus, Mendes et al. (2002) developed their mapping functions (FCULa
and FCULb) that represents significant improvement over the mapping functions of
the Marini-Murray model. Of particular interest is the ability of the new mapping
functions to be used in combination with any zenith delay model, i.e. Mendes and
Pavlis (2004) model, used to predict the atmosphere delay in the zenith direction.

Similar to the microwave frequencies, the mapping functions are normally mod-
eled using Eq. (121). New mapping functions have been developed based on ray-
tracing through one full year (1999) of radiosonde data from 180 stations, globally
distributed, with a variable number of balloon launches per day. Two different para-
meterizations were proposed by Mendes et al. (2002) with the coefficients in Eq. (121)
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written as functions of the selected parameters. One parameterization of the mapping
function (FCULa) requires both site location and meteorological (surface tempera-
ture) data. The coefficients of the mapping function have the following mathematical
formulation

a = a0 + a1 T0 + a2 cos θ + a3 h0, (162)

where T0 is the temperature at the station in degrees centigrade, θ is the station
latitude, and h0 is the orthometric height of the station, in meters. The coefficients b
and c are modeled similarly.

The second parameterization (FCULb) does not depend on any meteorological
data, i.e. similar to the model developed by Niell (1996) for radio wavelengths. For
this function, the coefficients have the following form

a = a0 + (a1 + a2 θ
2
d) cos

(
2π

365.25
(doy − 28)

)

+ a3 h0 + a4 cos θ, (163)

where θd is the latitude of the station, in degrees, and doy is the decimal day of year
(UTC day since the beginning of the year). The coefficients in Eq. (163) are different
with those in Eq. (122) as the later one is derived based on microwave refractivity
index, which is independent on frequency.

These mapping functions along with the zenith delay model of Mendes and Pavlis
(2004) have become the standard model for correcting SLR measurements. Compar-
ing to the previously used mapping functions, the advantages of the new mapping
functions are obvious. They represent simpler expressions than those proposed by
the Marini and Murray (1973) model and allow the use of better zenith delay models.
The coefficients of the mapping functions are presented in Table 6.

The latest progress in atmospheric corrections for single-color SLR is provided by
Hulley and Pavlis (2007) who applied a ray-tracing technique to calculate propagation
effects, including the effects of horizontal refractivity gradients. The use of ray-
tracing trough numerical weather models has been shown to improve the accuracy
of the SLR results.

4.3.2 Two-Color SLR Observations

The alternative to modeling is the application of two-color (i.e. two-frequency) SLR
measurements for the direct computation of the propagation delay by utilizing the
fact that the neutral atmosphere is dispersive for optical frequencies. The dispersion
causes the optical path lengths at two different frequencies to differ. This difference
depends on the two frequencies and is proportional to the path integrated atmospheric
density. Thus, the difference between the two optical paths can be used for calculating
the propagation delays (Wijaya and Brunner 2011). This method has the potential to
improve the accuracy of SLR results (Abshire and Gardner 1985).

Based on the previous works of Prilepin (1957) and Bender and Owens (1965),
Abshire and Gardner (1985) developed an atmospheric correction formula for the
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Table 6 Coefficients (ai, bi, and ci) for FCULa and FCULb mapping functions (Mendes et al.
2002)

FCULa FCULb

a0 (12100.8 ± 1.9) × 10−7 (11613.1 ± 1.6) × 10−7

a1 (1729.5.8 ± 4.3) × 10−9 (−933.8 ± 9.7) × 10−8

a2 (319.1 ± 3.1) × 10−7 (−595.8 ± 4.1) × 10−11

a3 (−1847.8 ± 6.5) × 10−11 (−2462.7 ± 6.8) × 10−11

a4 − (1286.4 ± 2.2) × 10−7

b0 (30496.5 ± 6.6) × 10−7 (29814.1 ± 4.5) × 10−7

b1 (234.6 ± 1.5) × 10−8 (−56.9 ± 2.7) × 10−7

b2 (−103.5 ± 1.1) × 10−6 (−165.5 ± 1.1) × 10−10

b3 (−185.6 ± 2.2) × 10−10 (−272.5 ± 1.9) × 10−10

b4 − (302.0 ± 5.9) × 10−7

c0 (6877.7 ± 1.2) × 10−5 (68183.9 ± 9.1) × 10−6

c1 (197.2 ± 2.8) × 10−7 (93.5 ± 5.4) × 10−6

c2 (−345.8 ± 2.0) × 10−5 (−239.4 ± 2.3) × 10−9

c3 (106.0 ± 4.2) × 10−9 (30.4 ± 3.8) × 10−9

c4 − (−230.8 ± 1.2) × 10−5

two-color SLR measurements (the 2C-SLR formula). This formula was later studied
by several investigators (Greene and Herring 1986).

From the two-color SLR measurements theoretical path lengths R1 and R2 are
obtained (assume that the system measures simultaneously individual optical paths).
With the 2C-SLR formula (Abshire and Gardner 1985), the chord (straight line)
distance σ can be calculated by adding the term μ(R2 − R1) to R1

σ = R1 + μ(R1 − R2), (164)

where

μ = k(ν1)

k(ν2) − k(ν1)
, (165)

with k(νi) being the dispersion factor. This factor depends on frequency and can be
calculated using (Edlén 1966; Abshire and Gardner 1985)

k(νi) = 0.9650 + 0.0164

λ2
i

+ 0.000228

λ2
i

, (166)

where λi is the i:th wavelength in meters.
The 2C-SLR formula presented in Eq. (164) remove the largest part of the total

propagation delay, namely that associated with the dry atmospheric density. However,
the water vapor density and curvature effects still remain (Abshire and Gardner 1985;
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Greene and Herring 1986). At optical frequencies, water vapor contributes only
about 1 % of the refractivity, however, since it is highly variable and it can introduce
substantial errors. By using ray-tracing through atmospheric profiles, Wijaya and
Brunner (2011) showed that the zenith wet delay can be several millimeters for SLR
measurements. Furthermore, the magnitude of the bending effects could reach a few
centimeters for measurements taken at an elevation angle of 10◦.

The precision required for the range difference (R1 − R2) measurements is very
stringent (few micrometers), which is mainly due to amplification of the measurement
noise by the scaling factor μ (Abshire and Gardner 1985; Greene and Herring 1986).
This requirement cannot currently be achieved. However, if in the future the range
difference measurements could be improved to reach the required precision, the two-
color SLR system would be an interesting way of reduce atmospheric propagation
effects.

In order to anticipate possible future development of the two-color SLR systems,
Wijaya and Brunner (2011) have developed a new correction formula that can be
seen as an extension of the 2C-SLR formula

σ = R1 + μ(R1 − R2) + (νP21 − κ1) + H21 · SIWV. (167)

The power of dispersion μ is given by

μ = k̃d(ν1)

k̃d(ν2) − k̃d(ν1)
, (168)

and the water vapor factor is

H21 = 10−6k̃�
w(ν1)ν K, (169)

where K =
(

k̃�
w(ν2)

k̃�
w(ν1)

− k̃d(ν2)

k̃d(ν1)

)

. The slant integrated water vapor (SIWV) is

SIWV =
∫

S1

ρv(r1) ds1. (170)

The formula in Eq. (167) eliminates the total atmospheric density effect including
its gradient and provides two terms to calculate the water vapor and the curvature
effects. The dispersion effect (contained in the second term in Eq. (167)) can be
obtained from the observed optical path length difference (R1 −R2). The third term
represents the curvature effect of the ray path S1 and the propagation corrections
from S2 to S1. The last term represents the effects of the water vapor density. The
constant μ represent the power of the dispersion effects and the constant H21 is the
scaling factor for the wet delays. Both of these coefficients only dependent on the
frequencies of the optical signals and can be calculated using Eqs. (168) and (169).
The new formula, Eq. (167), is a general expression for the atmospheric correction
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of two-color SLR measurements. When the water vapor and the curvature effects are
neglected, the new formula reduces to the 2C-SLR formula, Eq. (164). Further detail
of this new formula can be found in Wijaya and Brunner (2011).

4.4 Water Vapor Radiometry

A Water Vapor Radiometer (WVR) is an instrument that can be used to estimate the
atmospheric wet delay. It does this by measuring the thermal radiation from the sky
at microwave frequencies where the atmospheric attenuation due to water vapor is
relatively high. These measurements can then be related to the wet delay.

Equation (9) describes the attenuation of radio signals caused by the atmosphere.
The attenuation will depend upon frequency, as well as on temperature, pressure,
humidity, and liquid water content. For details about how α can be modeled as
function of these quantities, see e.g. Liebe et al. (1993) and Rosenkranz (1998).

Normally the radiation power from the sky is expressed using the brightness
temperature TB, which is defined as the physical temperature a black body would
have if it radiates the same amount of power as the sky. For low frequencies TB is
related to Wsky by

Wsky(ν) = kb TB(ν) B, (171)

where kb is Bolzmann’s constant and B the observed bandwidth. This relation is
valid for frequencies ν � kbT/h, where h is Planck’s constant. This requirement is
fulfilled at microwave frequencies for normal atmospheric conditions.

The brightness temperature can be calculated from the equation of radiative
transfer

TB(ν) = Tbg e−τ (∞,ν) +
∫

S
T(s)α(s, ν) e−τ (s,ν) ds, (172)

where Tbg is the brightness temperature of the cosmic microwave background
(≈2.7 K). The opacity τ (s, ν) is given by

τ (s, ν) =
∫ s

0
α(s′, ν) ds′. (173)

TB depends upon the pressure, temperature, humidity, and liquid water density pro-
files. The dependencies on these quantities will vary with frequency; for some fre-
quencies (e.g. close to the center of a water vapor absorption line like 22.235 or
183 GHz) there will be a high sensitivity to water vapor while other frequencies (e.g.
close to the center of the oxygen absorption lines around 60 and 120 GHz) are more
sensitive to the pressure and temperature. For good sensitivity to these parameters,
the attenuation needs to be high but not too high. If the attenuation is too high the
brightness temperature will approach the physical temperature of the atmosphere,
thus the sensitivity to the atmospheric properties will be lost. For retrieval of the
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water vapor content the frequencies close to the 22.235 GHz line are normally the
most suitable ones since this line is not too strong. For very dry conditions (e.g. high
altitudes) higher frequencies (e.g. 183 GHz) will give higher sensitivity, however for
normal conditions the attenuation is too high.

The sensitivity to the different atmospheric quantities also varies with height, e.g.
some frequencies have a higher sensitivity to humidity close to the ground (frequen-
cies on the edge of a water vapor absorption line) while others are more sensitive to the
humidity at high altitudes (frequencies close to a water vapor absorption line). Thus
it is in principle possible to estimate the humidity profile using radiometer measure-
ments at several different frequencies having different sensitivity to humidity with
height, a so-called radiometric profiler (Askne and Westwater 1986; Scheve and
Swift 1999). This humidity profile could then be taken to calculate the tropospheric
delay. However, the need for using many channels makes the radiometric profilers
expensive, and it is difficult to find a set of frequencies from which the humidity pro-
file can be estimated without running into any singularity problems. Furthermore,
if only the integrated amount of water vapor—or the wet delay—is of interest we
do not necessarily need to know the profile. If a frequency can be found where the
sensitivity to the refractivity is constant with height, this is sufficient.

Normally the brightness temperature is not used directly to estimate the wet delay.
Instead the opacity τ (∞, ν) is calculated from the brightness temperature, which is
then used for the wet delay estimation. By introducing the effective temperature of
the atmosphere Teff

Teff (ν) =
∫

S T(s)α(s, ν) e−τ (s,ν) ds
∫

S α(s, ν) e−τ (s,ν) ds
, (174)

we can write TB as

TB(ν) = Tbg e−τ (∞,ν) + Teff (ν)
(

1 − e−τ (∞,ν)
)
. (175)

Thus the opacity can be estimated by

τ (∞, ν) = − ln

[
Teff − TB

Teff − Tbg

]

. (176)

Some WVR retrieval algorithms to estimate the wet delay from τ directly (Westwa-
ter et al. 1989; Bosisio and Mallet 1998). However, this requires that the effective
temperature Teff is accurately estimated. An alternative way is to use the linearized
brightness temperature T ′

B (Wu 1979)

T ′
B(ν) = Tbg [1 − τ (∞, ν)] +

∫

S
T(s)α(s, ν) ds. (177)

The linearized brightness temperature can be calculated from the opacity by
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T ′
B(ν) = Tbg +

(
T ′

eff (ν) − Tbg

)
τ (∞, ν), (178)

where the linearized effective temperature T ′
eff is given by

T ′
eff (ν) =

∫
S T(s)α(s, ν) ds

τ (∞, ν)
. (179)

If Teff and T ′
eff are consistently modeled, the error in T ′

B caused by an error in Teff

will be approximately canceled by the error in T ′
eff . Thus the linearized brightness

temperature can normally be estimated with higher accuracy than the opacity.
The linearized brightness temperature can be divided into four parts

T ′
B(ν) = Tbg + T ′

wv + T ′
lw + T ′

ox, (180)

where T ′
wv, T ′

lw, and T ′
ox are the contributions from water vapor, liquid water, and oxy-

gen, respectively. Tbg is constant and well known. The oxygen part can be accurately
modeled using measurements of the surface pressure and temperature (Jarlemark
1997), while the liquid water contribution is approximately proportional to the fre-
quency squared (if the water droplets are much smaller than the wavelength). If the
frequencies are properly chosen, T ′

wv is proportional to the wet delay. Thus the wet
delay can be estimated by a combination of measurements at two different frequen-
cies ν1 and ν2

ΔLw = cb

[(
ν2

ν1

)2

T ′
B(ν1) − T ′

B(ν2) − Tbg,ox

]

, (181)

where Tbg,ox is the contribution from oxygen and the cosmic microwave background.
For the estimation of the wet delay we need to know the retrieval coefficient cb,

as well as Tbg,ox, Teff , and T ′
eff . Normally these parameters are modeled as functions

of the surface pressure, temperature, and humidity. To model cb, one can use WVR
measurements and simultaneous observations of the wet delay made by another
instruments. Then the model coefficients can be obtained by fitting the radiometer
observations to the wet delay observations. The disadvantage of this method is that
it requires a long time series of measurements, ideally longer than one year in order
to be able to take seasonal variations into account. Furthermore, any systematic
error in the wet delay measurements will cause systematic errors in the retrieval
coefficient. A more commonly used method is to use profiles of pressure, temperature
and humidity obtained from e.g. radiosondes to calculate the theoretical values of T ′

B,
Tbg,ox, Teff , T ′

eff , and ΔLw. These can then be used to estimate appropriate models
for the parameters. For details, see e.g. Elgered (1993) and Jarlemark (1997).

Several studies have been performed where WVRs have been used to correct for
the wet tropospheric delays in space geodetic (mostly VLBI) data analysis. Examples
of such studies are Elgered et al. (1991), Kuehn et al. (1991), Ware et al. (1993),
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Emardson et al. (1999) and Nothnagel et al. (2007). The results indicate that the
accuracy of the VLBI estimates can be improved if WVRs are used to calibrate the
tropospheric delay compared to the normal method of estimating the tropospheric
delay as function in the data analysis (see Sect. 4.2), although the results are incon-
clusive. It should be noted that the WVR calibration was only applied at a few sites
since most VLBI stations are not equipped with radiometers. One problem with
radiometers is that they cannot be used during rain for several reasons (liquid water
on radiometer antenna, saturation problems, water droplets may not be “small”, …).
Furthermore, most radiometer antennas have relatively large beam-widths (several
degrees), and thus the observations are limited to high elevation angles (>15–20◦)
in order to avoid picking up radiation from the ground. Hence, either VLBI observa-
tions made at low elevation angles have to be excluded, or the WVR measurements
need to be extrapolated to low elevation angles, which is a process that can introduce
errors.

5 Atmospheric Turbulence

The normal modeling of atmospheric delays in space geodesy, i.e. using mapping
functions and horizontal gradients assumes that the spatial variations in the refrac-
tivity are linear, and that the temporal variations can be described by e.g. piece-wise
linear functions. For the large-scale variations this is an adequate approximation,
however at small scales there are non-linear variations caused by atmospheric turbu-
lence. Although it is normally impossible to correct for these random fluctuations, it
can be important to model them in order to minimize their effect on the results.

Atmospheric turbulence occurs when energy from e.g. wind shears and temper-
ature gradients creates turbulent eddies. These eddies then break down into smaller
eddies until at very small scales the energy of the eddies are dissipated into heat.
Inside each eddy the air is mixed, and thus large-scale variations in any atmospheric
quantity, e.g. refractivity, will be mixed to create random small-scale variations.

A turbulent eddy with a size R will have a characteristic wind velocity v. Kol-
mogorov (1941a, b) assumed that the rate of which kinetic energy (per unit mass)
of an eddy is transferred to smaller eddies is only dependent on R and v. By dimen-
sional analysis it is clear that this rate must be proportional to v3/R. For stationary
turbulence the kinetic energy for the eddies of a specific size will be constant, i.e.
the kinetic energy received from larger eddies must be equal to the energy lost to
smaller scale eddies (assuming no dissipation into heat at larger scale). At small
scales the kinetic energy is dissipated into heat with a dissipation rate ε, which thus
must be equal to the kinetic energy rate of all larger eddies. Thus v ∝ ε1/3R1/3, or
equivalently that the structure function for the velocity fluctuations between r and
r + R is given by

Dv(R) =
〈
[v(r) − v(r + R)]2

〉
= C2

v ε
2/3 ‖R‖2/3 , (182)
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where Cv is the velocity structure constant.
It can be shown that the structure functions for other atmospheric variables, like

the temperature and the refractive index, are similar (i.e. also proportional to ‖R‖2/3).
Thus the fluctuations in refractive index between two locations, r and r + R, can be
described by the structure function Dn(R)

Dn(R) =
〈
[n(r) − n(r + R)]2

〉
= C2

n ‖R‖2/3 . (183)

The constant C2
n is called the refractive index structure constant. This equation is how-

ever not valid for large scales since it becomes infinite when the distance approaches
infinity, which is unrealistic. In order to fix this problem, Treuhaft and Lanyi (1987)
modified the expression by introducing a saturation length scale L

Dn(R) =
〈
[n(r) − n(r + R)]2

〉
= C2

n
‖R‖2/3

1 +
[‖R‖

L

]2/3 . (184)

With this expression Dn(R) will converge to C2
nL2/3 as ‖R‖ goes to infinity.

Turbulence does not only cause spatial variations in the refractive index, but also
temporal variations. One way to describe the temporal variations is to assume Taylor’s
frozen flow hypothesis (Taylor 1938). In this hypothesis the turbulent variations in
the refractive index in the atmosphere are frozen and move with the wind velocity v,
i.e. it is assumed that n(r, t) = n(r − v(t − t0), t0). This is an approximation which
works well over shorter time periods but may not be valid over longer time periods
(hours, days). By using Taylor’s frozen flow hypothesis the temporal variations in
the refractive index over a time period T can be d escribed by the structure function
Dn(T)

Dn(T) =
〈
[n(t) − n(t + T)]2

〉
= C2

n
[‖v‖ T ]2/3

1 +
[‖v‖ T

L

]2/3 . (185)

By combining Eqs. (184) and (185) we get a general expression for the structure
function for the fluctuations in the refractive index between r1 at time t1 and r2 at
time t2

Dn(r1, t1; r2, t2)=
〈
[n(r1, t1) − n(r2, t2)]

2
〉
=C2

n
[‖r1 − r2 − v(t1 − t2)‖]2/3

1 +
[‖r1 − r2 − v(t1 − t2)‖

L

]2/3 .

(186)
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5.1 Turbulence Effects on Tropospheric Delays

For the modeling of the effects of turbulence on tropospheric delays we make two
assumptions. First that the geometric optics approximation is still valid, i.e. that the
turbulent variation within one wavelength can be ignored. Furthermore, we assume
that there is no effect on the propagation path of the signal. Both these assumption
can be considered approximately valid for weak turbulence. For the case of very
strong turbulence more advanced considerations need to be made, see e.g. Tatarskii
(1971) and Ishimaru (1978).

The fluctuations in the refractive index will cause variations in the atmospheric
delays of radio signals; both in time and as function of direction and location. When
describing these fluctuations it is convenient to work with the Equivalent Zenith
Tropospheric Delay (EZTD) instead of the slant delays. The EZTD ΔLz is the slant
tropospheric delay divided by a symmetric mapping function mf

ΔLz(e, a, t) = ΔL(e, a, t)

mf (e)
=

∫ ∞

0
[n(r(z), t) − 1] dz, (187)

where e is the elevation angle, a is the azimuth angle, and r(z) denotes the position
of the ray at height z.

The structure function between two EZTD, observed at two different times in two
different directions and possibly from two different locations, can be calculated by:

DL =
〈[

ΔLz
1 − ΔLz

2

]2
〉

(188)

=
〈(∫ ∞

0
[n(r1(z), t1) − 1] dz −

∫ ∞

0
[n(r2(z), t2) − 1] dz

)2
〉

=
∫ ∞

0

∫ ∞

0

[〈
n(r1(z), t1) n(r1(z

′), t1)
〉 + 〈

n(r2(z), t2) n(r2(z
′), t2)

〉

〈
n(r1(z), t1) n(r2(z

′), t2)
〉 + 〈

n(r2(z), t2) n(r1(z
′), t1)

〉]
dz dz′ .

Using the relation A · B = 0.5(A2 + B2 − (A − B)2, this simplifies to

DL =
∫ ∞

0

∫ ∞

0

[

Dn(r1(z), t1; r2(z
′), t2) − 1

2
Dn(r1(z), t1; r1(z

′), t1) (189)

− 1

2
Dn(r2(z), t2; r2(z

′), t2)

]

dz dz′.

With the expression for Dn given by Eq. (186), the structure function DL can be
calculated.

Figure 14 shows the structure function DL(ρ) for spatial variations in the zenith
wet delay as function of the distance ρ. In the calculations it was assumed that
C2

n = 1 ·10−14 m−2/3 up to a height of H = 2 km and zero above, and L = 3000 km.
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Fig. 14 The spatial structure function DL (Eq. 186) for the zenith wet delay

We can here note three regions: for ρ � H we have DL(ρ) ∝ ρ5/3, for H � ρ � L
we have DL(ρ) ∝ ρ2/3, and for ρ � L we DL(ρ) ≈ C2

n H2 L2/3 (i.e. constant).
From he structure function DL the covariance matrix for the turbulent fluctuations

in the tropospheric delay can be calculated. This can then be applied to weight the
observations in the estimation procedure. For more details, see e.g. Treuhaft and
Lanyi (1987). It is also possible to use DL for simulating tropospheric delays, see
e.g. Nilsson and Haas (2010).

5.2 Estimating C2
n

In order to calculate the structure function DL the profile of the structure constant
C2

n needs to be known. This parameter is highly variable, both in time and between
different locations. Several methods to determine C2

n exist, see Nilsson and Haas
(2010) for a review of some of them.

One way to determine C2
n is to use observations of variations in the tropospheric

delay. For example, C2
n can be estimated from the observed variations of the tro-

pospheric delay between different directions (Nilsson et al. 2005) or between differ-
ent locations (Treuhaft and Lanyi 1987). Here we describe how to estimate C2

n from
observations of the zenith delay variance over a time period T

σ2
L(T) =

〈
1

T

∫ T

0

[

ΔLz(t + t0) − 1

T

∫ T

0
Lz(t′ + t0) dt′

]2

dt

〉

. (190)
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After some calculations, it can be shown that (Treuhaft and Lanyi 1987)

σ2
L(T) = 1

T2

∫ T

0
(T − t) DL(t) dt. (191)

In order to estimate C2
n using observations of σ2

L we need to know the shape of the
C2

n profile. When we want to estimate a C2
n that can be used for calculating DL it

is however not critical to know the exact shape of the profile, most important is
then that the integrated value of C2

n is correct. Thus we can for example make the
approximation that C2

n has an exponential profile or, even more simple, assume that
C2

n is constant up to a height H and zero above as done by Treuhaft and Lanyi (1987).
Using the latter approximation, C2

n at heights lower than H can be calculated from

C2
n = σ2

L(T)
∫ T

0 (T − t)
∫ H

0

∫ H
0

{[
(z − z′)2 + (v t)2

]1/3 − |z − z′|2/3
}

dz dz′ dt
. (192)

The height H should be chosen such that the largest fluctuations in the refractive
index occur below H. For microwaves where the fluctuations in the wet delay is
dominating an appropriate choice is the scale height of water vapor (approximately
2 km).

Another possible way to obtain C2
n is to use vertical profiles of pressure, tempera-

ture, and humidity obtained from e.g. radiosonde measurements. As discussed above,
when turbulence is present, large-scale variations (gradients) in the atmosphere are
mixed and create small-scale fluctuations. Thus there will be variations caused by
both the large-scale gradients as well as turbulence. At large scales the variations due
to gradients will dominate, and at small scales turbulence. At some scale in between
the magnitudes of the large-scale gradients and by turbulence will be equal. This
scale is proportional to the so-called outer scale of turbulence L0. Typically values
of L0 range between a few meters to several hundreds of meters. The value can vary
with time, but for the calculations of C2

n typically a mean value is used (d’Auria et al.
1993). Hence

C2
n L2/3

0 ∝ ‖∇n‖2 L2
0 . (193)

Thus C2
n could be calculated from the gradient in n. Since the gradient of the refractive

index is typically more than one order of magnitude larger in the vertical direction
than in the horizontal direction, we can approximate the refractive index gradient by
its vertical component. However, one problem that needs to be considered is that the
refractive index is not conserved in adiabatic motion in the atmosphere. When an air
parcel is moved up or down in the atmosphere (e.g. due to turbulence) its size will
change due to the change of atmospheric pressure with height. This in turn will cause
the temperature and partial pressure of water vapor—and thus also the refractivity—
to change. This needs to be corrected for when calculating C2

n . The way to do this is
to consider the vertical gradient in the refractive index caused by vertical gradients
in quantities conserved under adiabatic motion in the atmosphere, e.g. the potential
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temperature θ and the specific humidity q

θ = T

(
p0

p

)0.286

, (194)

q = pw

1.62p
, (195)

where p0 =1000 hPa. Thus C2
n can be calculated as

C2
n = a2 L4/3

0

[
∂n

∂θ

∂θ

∂z
+ ∂n

∂q

∂q

∂z

]2

, (196)

where a2 is a constant (a2 ≈ 2.8 (d’Auria et al. 1993)). The vertical gradients should
not contain any variations due to turbulence, thus they should be evaluated over
height intervals larger than L0.

Equation (196) is however only valid if there is turbulence present. When no
turbulence is present C2

n should be (close to) zero. One way to determine if the air is
turbulent or not is to use the Richardson number Ri (Richardson 1920)

Ri = g

θ

∂θ

∂z

∥
∥
∥
∥
∂v
∂z

∥
∥
∥
∥

−2

. (197)

The atmosphere is turbulent when Ri is larger than a critical Richardson number Ric,
typically Ric ≈ 0.25. Thus Eq. (196) modifies to

C2
n = a2 L4/3

0 F

[
∂n

∂θ

∂θ

∂z
+ ∂n

∂q

∂q

∂z

]2

, (198)

where F = 1 if Ri < Ric and zero otherwise. This is however still a bit too simplistic
since this assumes a very sharp transition between a turbulent and a non-turbulent
state. d’Auria et al. (1993) presented a model for F giving a more smooth transition
between 0 and 1 around Ric.

6 Applications of Space Geodetic Techniques for Atmospheric
Studies

As discussed earlier, it is important to have a good model of the delay in the neutral
atmosphere in order to obtain the highest accuracy in the space geodetic results
(e.g. station positions). Since external estimates of the wet delay with high enough
accuracy are typically not available (at least for microwave techniques), the common
way of handling the wet delay in the data analysis is to estimate it, i.e. by modeling it
using mapping functions and gradients as described in Sect. 4.2. Thus the results of
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the data analysis will also contain information about the tropospheric delay, which is
closely related to the IWV (see Sect. 3.2.2). Several studies investigated the accuracy
of the zenith wet delays and IWV estimated from VLBI and GNSS (e.g. Herring et al.
1990, Tralli and Lichten 1990, Bevis et al. 1992, Snajdrova et al. 2006, Teke et al.
2011), and these show that it is on the same level or better then that of other techniques.
Thus there exists a large interest in applying space geodetic techniques, especially
GNSS, for atmospheric studies. For example, zenith wet delays can be used to study
climate trends (Sect. 6.1), or assimilated into numerical weather prediction models to
improve weather forecasts (Sect. 6.2). With wet delays estimated from a local GNSS
network one can even attempt to estimate the 3D structure of the atmospheric water
vapor by applying tomographic methods (Sect. 6.3).

6.1 Long-Term Water Vapor Trends

Since the zenith wet delay is closely related to the integrated water vapor content
(see Sect. 3.2.2), we can analyze ΔLz

w estimated from space geodetic techniques to
study the variations of the atmospheric water vapor content in time. For example,
it is possible to study diurnal and seasonal variations as well as long term trends in
the water vapor content. Such information is of great interest in climatology since
the water vapor content is closely related to the temperature. Climate models typi-
cally predict that the average relative humidity remains constant as the temperature
changes (Trenberth et al. 2003). Since the saturation water vapor pressure depends
approximately exponentially on the temperature, this means that a a change in the
temperature will cause a corresponding change in the water vapor content. It is pre-
dicted that an increase in temperature of 1 K will increase the water vapor content by
6–7 % (Trenberth et al. 2003; Bengtsson et al. 2004). It is important to monitor the
water vapor content since water vapor is a greenhouse gas, in fact the most impor-
tant one. Additionally, higher water vapor content can also indicate an intensified
hydrological cycle, including increased precipitation.

Several studies have calculated long-term trends in ΔLz
w (or IWV) estimated from

GNSS and VLBI, e.g. Gradinarsky et al. (2002); Jin et al. (2007); Steigenberger et al.
(2007); Heinkelmann et al. (2007); Ning and Elgered (2012). An example of ΔLz

w
trends calculated from ten years of GPS data in Sweden and Finland is shown in
Fig. 15. For more details, see Nilsson and Elgered (2008).

6.2 GNSS Meteorology

Water vapor is a very important parameter in meteorology and in order to get accu-
rate weather forecasts it is very important to have accurate measurements of the
water vapor content. A problem is that the water vapor content is highly variable
in both space and time, and traditional instruments (e.g. radiosondes) do not pro-
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Fig. 15 Zenith wet delay trends in mm/decade estimated from GPS data in Sweden and Finland,
1997–2006. Modified from Nilsson and Elgered (2008)

vide the water vapor content with high enough spatial and temporal resolution. With
the establishment of relative dense GNSS networks the meteorological community
has started to be interested in assimilating zenith total delays or zenith wet delays
estimated from these GNSS networks in the numerical weather prediction models
(Gutman and Benjamin 2001; Poli et al. 2007).

Several investigations of assimilating GNSS tropospheric delays in numerical
weather prediction models have been performed. For example, in Europe this has
been investigated in the projects COST-716 (Elgered et al. 2005), TOUGH (Vedel
2006), and E-GVAP (http://egvap.dmi.dk/). It has been shown that the quality of
the forecasts improve if GNSS data are assimilated, especially in cases of high
precipitation (Vedel and Huang 2004; Karabatić et al. 2011).

6.3 GNSS Tropospheric Tomography

Tomography is a method which can be used to estimate the 2D or 3D structure of a
quantity from measurements of the integral of the quantity along different paths. It is
a method commonly used in medicine, seismology, material science, and a number
of other fields. Tomography can also be applied to atmospheric delay measurements

http://egvap.dmi.dk/
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Fig. 16 Example of a GNSS tomography scenario. Note that for better visibility the relative size
of the troposphere have been enlarged; in reality the troposphere (= top of highest voxel) is about
10 km heigh, the inter-station distances a few km, while the satellites are are at about 20000 km
altitude

in order to reconstruct the 3D structure of the wet (or total) refractivity. This requires
that the slant wet delays are measured by several stations in a local (inter-station
distance maximum a few km) network. The only space geodetic technique for which
such dense networks are available is GNSS.

A picture of a GNSS tomography scenario is shown in Fig. 16. In order to esti-
mate the wet refractivity field from the observed wet delays, the atmosphere above
the GNSS network is parameterized. The most commonly used parameterization
is voxels, although other parameterizations are also possible (Perler et al. 2011).
Voxel parameterization means that the atmosphere is divided into a number of boxes
(called voxels, volume pixels) in which the refractivity is assumed constant. Thus
the wet tropospheric delays along the rays of the observed GNSS signals can be
described by a linear combination of the voxel refractivities

ΔLi =
nvox∑

j=1

Nj Dij. (199)

ΔLi is the wet tropospheric delay along the ith ray, nvox is the number of voxels, Nj

is the refractivity of the jth voxel, and Dij is the distance traveled by ray i in voxel j.
Since the station and satellite coordinates are normally known, Dij can be calculated.
Having observations of the tropospheric delays along several different rays, a linear
system of equations is obtained

ΔL = DN. (200)
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ΔL and N are vectors containing the wet delays and the refractivities, respectively,
and D is a matrix containing the Dij values. By inverting the system, the voxel
refractivities are estimated.

There are however a few problems with this method. One is how to estimate the
slant wet delays along the GNSS signal rays. One way is to estimate the zenith wet
delay and gradients in a normal GNSS analysis, then use these to calculate the slant
wet delays. This is for example done by Champollion et al. (2005). However, this
method will limit the accuracy since it assumes that all horizontal variations in the
refractivity above a station are linear, something which is not always realistic. In order
to improve the slant wet delays, it is often assumed that the post-fit residuals of the
GNSS analysis will contain the unmodeled parts of the slant wet delays, and thus
adding these to the calculated slant wet delays will give the true delays (Alber et al.
2000; Troller et al. 2006). This is not true, the residuals will contain also other errors
of the GNSS measurements (e.g. multi-path). Another approach is to model the slant
delays by using Eq. (199) in the GNSS data analysis instead of zenith delays and
gradients. First results using this approach are presented by Nilsson and Gradinarsky
(2006) and Nilsson et al. (2007).

Another problem is the normally weak geometry since tomography ideally
requires that there are rays crossing the investigated volume in all possible directions.
In GNSS tomography, however, all rays are going between the top of the troposphere
to the stations on the surface of the Earth, while there are no rays entering and/or
leaving the voxel grid at the sides. This makes the sensitivity to the vertical refractiv-
ity profile very low and as a result the equation system (200) will be ill-conditioned.
This problem can be solved by either constraining the refractivity field to some a pri-
ori field obtained either by models or external measurements like radiosondes. The
problem is not as big if the GNSS stations are placed at very different altitudes (e.g.
if there are differences of several kilometers between highest and lowest stations)
(Nilsson and Gradinarsky 2006).

Furthermore, since the satellite geometry will change during the day, some vox-
els may at times have no or only a few rays passing through it. Thus, in order to
avoid singularity problems, constraints need to be applied. Simple constraints are
for example inter-voxel constraints which constrain the refractivity of a voxel to the
mean refractivity of the neighboring voxels (Flores et al. 2000). A more advanced
approach is to use a Kalman filter with a covariance matrix for the voxel refractivity
calculated from turbulence theory using Eq. (186) (Gradinarsky and Jarlemark 2004;
Nilsson and Gradinarsky 2006).

Figure 17 shows the results of two simulations demonstrating the strengths and
weaknesses of GNSS tomography. In the upper plot the case where the refractivity is
20 mm/km in the layer between 3 and 4 km altitude and zero elsewhere is simulated.
As seen the tomographic reconstruction is not working well. This is because of the
weak geometry in the vertical direction, resulting in a very low sensitivity to the height
of the layer with non-zero refractivity. Thus the refractivity is spread out over all
layers in the tomographic reconstruction. Most refractivity is put in the lower layers
simply because the tomographic software is set up to allow for a higher variability in
the refractivity at lower altitudes than at higher altitudes. The estimated refractivity
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Fig. 17 Simulation results
of tomographic reconstruc-
tion of the refractivity field.
The upper plot shows the
result obtained when the
simulated refractivity field
was 20 mm/km in the fifth
layer and zero elsewhere. In
the lower plot the simulated
refractivity field is 20 mm/km
only in the middle voxel of the
fifth layer, and zero elsewhere.
These results are from Nilsson
(2007)
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in the lowest layer is however correctly estimated to zero. Here the sensitivity is
higher since the stations are at slightly different altitudes. In the lower plot of Fig. 17
the simulated refractivity field is non-zero just in one voxel: the middle voxel (of
25) of the layer between 3 and 4 km. In this case the tomographic reconstruction is
working better. This demonstrates that GNSS tomography can have a good sensitivity
to horizontal fluctuations in the refractivity field, and is even able to determine at
which height these fluctuations are occurring. For more details about the simulation
setup and other results from similar simulations, see Nilsson (2007).
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