
The Evolution of Tropos

John Mylopoulos, Jaelson Castro, and Manuel Kolp

Abstract The Tropos project was launched in the Fall of 1999 with main objective
the development of a methodology for building agent-oriented software systems.
The methodology was grounded on i* and was first presented in full at the CAiSE
2001 conference. This short article details some of the directions that were pursued
in the project since that time.

1 Introduction

The Tropos project was launched in the Fall of 1999 with main objective the
development of a methodology for building agent-oriented software systems. The
methodology was grounded on i*, a requirements modeling language founded on
intentional and social concepts, such as actor, goal and social dependencies among
actors [18, 19]. Our CAiSE’01 paper was preceded by a couple of preliminary
publications, most notably [12]. However, the CAiSE’01 paper constitutes the
first comprehensive presentation of the Tropos methodology. Its publication was
followed by two journal papers presenting further details on the methodology.

J. Mylopoulos (�)
Department of Information Engineering and Computer Science, University of Trento,
Via Sommarive, 14 – 38122 Povo – Italy
e-mail: jm@disi.unitn.it

J. Castro
Center of Informatics, Federal University of Pernambuco (UFPE), 50740-560 – Recife – PE,
Brazil
e-mail: jbc@cin.ufpe.br

M. Kolp
School of Management, Catholic University of Louvain, Place des Doyens, B – 1348
Louvain-la-Neuve, Belgium
e-mail: manuel.kolp@uclouvain.be

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 22, © Springer-Verlag Berlin Heidelberg 2013

281

mailto:jm@disi.unitn.it
mailto:jbc@cin.ufpe.br
mailto:manuel.kolp@uclouvain.be


J. Mylopoulos et al.

Castro et al. [5] is an extended version of the CAiSE’01 paper included in the
special issue published for CAiSE’01. Bresciani et al. [3] offers a complementary,
more agent-oriented perspective on the modelling language and the accompanying
methodology.

In what follows, we present in Sects. 2–4 some of the research questions that
were pursued since 2001 at the University of Trento (Italy), the Catholic University
of Louvain (Belgium) and the Federal University of Pernambuco (Brazil). The
presentation is structured according to topic (Formal analysis, Architectures and
Patterns, Methods and Techniques). We conclude with some of the research
questions that the project has raised for the research community.

2 Formal Analysis

Much of the research that followed the CAiSE 2001 paper at the University of
Trento focused on formal analysis techniques for Tropos models, Formal Tropos [7]
extends Tropos by allowing annotations of i* models with Linear Temporal Logic
(LTL) constraints. Formal Tropos models can then be translated into specifications
for a model checker (in our case, nuSMV) to ensure that they satisfy desired formal
properties. Along a parallel path, i* goal models were formalized so that one can
check whether a goal model is satisfiable by using a SAT solver [15]. The PhD
thesis of Volha Bryl uses an off-the-shelf planner to search among alternative ways
of delegating an initial set of requirements among a group of actors and compares
these alternatives using a number of local and global metrics for actor dependency
networks [4].

Three more PhD theses extend the Tropos framework to address security
concerns. Nicola Zannone’s PhD thesis extends Tropos with concepts such as own-
ership, permission and trust forms of analysis that identify ownership/permission
violations [8]. Yudis Asnar’s PhD thesis, on the other hand, introduces risk-
theoretic concepts to Tropos and looks at the problem of identifying suitable
mitigation strategies for identified risks [1]. The thesis of Haralambos Mouratidis
also extends Tropos to support secure software designs, but unlike Zannone, focuses
on methodological extensions rather than ontological ones [11].

3 Architectures and Patterns

Along a different direction, Tropos has been extended to integrate organizational
architectural styles [10] and social design patterns [9] for architectural and detailed
design. Architectural styles are manageable abstractions that describe how system
components interact and work together while design patterns describe a problem
commonly found in software design and prescribe a flexible, reusable solution.

282



The Evolution of Tropos

In Tropos, software architectures – be they multi-agent or component-based
[13] – are considered social structures composed of autonomous and proactive
entities that interact and cooperate with each other to achieve common or private
goals. Since the fundamental concepts that drive Tropos are intentional and social,
rather than implementation-oriented, theories that study social structures could
provide inspiration and insights to define a catalogue of styles and patterns for
designing software architectures with Tropos. For this, we turn for guidance to
organizational theories, namely Organization Theory and Strategic Alliances.

Organization Theory describes the structure and design of an organization;
Strategic Alliances model the strategic collaborations of independent organizational
stakeholders who pursue a set of agreed upon business goals. Both disciplines aim
to identify and study organizational styles. These are modeling abstractions that can
be seen, felt, handled, and operated upon. They have a manifest form and lie in
the objective domain of reality as part of the concrete world. A style is however
not solely a set of execution behaviors. Rather, it exists in various forms at every
stage of crystallization (e.g., specification), and at every level of granularity in the
organization. The more manifest is its representation, the more the style emerges
and becomes recognizable – whether at a high or low level of granularity.

Taking real-world social structures as metaphor, Tropos has then been extended
to propose a set of generic architectural structures:

– At the architectural design level, organizational styles inspired from organiza-
tion theory and strategic alliances will be used to design the overall system
architecture. Styles from organization theory will describe the internal structure
and design of the architecture, while styles from strategic alliances will model
the cooperation of independent architectural organizational entities that pursue
shared goals.

– At the detailed design level, social patterns drawn from research on cooperative
and distributed architectures, will offer a more microscopic view of the social
architecture description. They will define the software entities and the social
dependencies that are necessary for the achievement of goals [9].

Mediation patterns constitute a particular category of social patterns featuring
intermediate agents that help other agents reach agreements about an exchange of
services. Mediation patterns include ones for monitor, broker, mediator, wrapper,
embassy and matchmaker.

Although it is possible to reuse design solutions by using mediation patterns,
current practices for instantiating these patterns in multi-agent system (MAS)
development makes the application core highly coupled with the patterns’ imple-
mentation, thereby reducing opportunities of reuse. To address this limitation,
we proposed an agent-oriented design pattern description technique, called Agent
Pattern Specifications (APS) [16], which takes into account the separation of
pattern-related concerns in the MAS design level. A concern is some part of the
problem that we want to treat as an integral conceptual unit. In addition, we
used aspect-oriented programming to separate pattern-related concerns in the MAS
implementation level. To do so, mapping guidelines were defined to guide the

283



J. Mylopoulos et al.

implementation of patterns described according to APS by using an integration of
JADE and AspectJ. This implementation was evaluated in terms of a suite of metrics
for assessing well-known software engineering attributes, such as separation of
concerns, coupling, cohesion and size. This assessment showed that aspect-oriented
solutions for mediation patterns improved the separation of pattern-related concerns.

4 Methods and Techniques

Another line of research concerns the establishment of a relationship between
requirements and architectural descriptions. The SIRA approach constitutes an
initial proposal along this direction [2]. Both requirements and architectural designs
are described in term of i* as actor dependency diagrams. One such diagram
captures the social organization, while another captures a corresponding archi-
tectural organization. The organizational model, the main goals are identified by
understanding a requirement model as the functionality requested for the system.
The organization of the social system consists roles and interactions, as intended
by the system and its environment. Additionally, goals and softgoals are used to
select an organizational architectural style [10]. In the Assignment Model, roles are
clustered into subgroups related to components, based on their similarity with the
architectural components. The result is an architectural configuration, which is the
allocation of sub-groups to architectural components.

The proliferation of iterative and incremental software development processes
as de facto standards for SE practice, suggests a strong integration between
requirements engineering and software architecture activities. Such integration can
facilitate traceability and the propagation of changes between the models produced
within these activities. Recognizing the close relation between architectural design
description and requirements specification, we have advocated the use of model
transformation approaches as an effective way to generate architectural models
from requirements ones, where correlations between requirements and architectural
models are accurately specified.

Hence, we have proposed STREAM, a systematic process for generating archi-
tectural models from requirements ones, based on horizontal and vertical trans-
formations rules [6]. Horizontal transformations have source and target models at
the same level of abstraction, while vertical transformations operate on models
at different abstraction levels. In our case, the horizontal transformations are
applied to the requirements models resulting in intermediary requirements models
closer to architectural concerns. Vertical transformations, on the other hand, map
these intermediary models into architectural models. Architectural design activities
involve the selection and application of architectural patterns that best satisfy non-
functional requirements. In STREAM, requirements models are described in i*,
whereas architectural models are described using the Acme ADL.

Some quality attributes, such as adaptivity, are known to have an impact on
the overall architecture of a system, so they need to be properly handled since

284



The Evolution of Tropos

the beginning of the development process. Accordingly, we have proposed a
new process called STREAM-A that includes six activities [14]. The first three
are related to requirements engineering: (a) requirements refactoring; (b) context
annotation and analysis; and (c) identification of sensors and monitors. The last
three activities are architecture-related: (d) generate architectural model; (e) define
architectural model; and (f) introduce a self-adaptation component.

Also, on the methodological process level, Tropos has been extended to offer
iterative and incremental software project management [17].“I-Tropos develop-
ment” is an extension of the Tropos methodology that supports iterative and agile
development.

The notions of phase and discipline are often presented as synonyms in the
software engineering literature. Indeed, Tropos is described as composed of five
phases (Early Requirements, Late Requirements, Architectural Design, Detailed
Design and Implementation). However, a discipline can be defined as a collection
of activities that are all related to a major “area of concern”, while phases
here are not the traditional sequence of requirements analysis, design, coding,
integration, and test. They are completely orthogonal to traditional phases. Each
phase is concluded with a major milestone. In order to be compliant with the
most generic terminology, traditional Tropos phases are then called disciplines in
the I-Tropos process description since “they partition activities under a common
theme”. In the same way, phases are considered as groups of iterations that are
workflows with a minor milestone. In I-Tropos, the Organizational Modeling and
Requirements Engineering disciplines respectively correspond to Tropos’ Early and
Late Requirements disciplines. The Architectural and Detailed Design disciplines
correspond to the same stages of the traditional Tropos process.

I-Tropos includes core disciplines, i.e., Organizational Modeling, Requirements
Engineering, Architectural Design, Detailed Design, Implementation, Test and
Deployment but also supports disciplines to handle Risk Management, Time
Management, Quality Management and Software Process Management. For an
iterative process, the need to support disciplines to manage the whole software
project is of primary importance to precisely understand which project aspect to
work on (and through which activity) at a specific time and with the best use of
existing resources.

5 Conclusions

The focus of the Tropos project was agent-oriented software for good reasons.
To the eyes of many in the Software Engineering and the Multi-Agent System
communities, agent-orientation with its promise of autonomous, distributed, open
computation seemed like a promising direction. In today’s ever-more volatile world,
our vision for the software systems of the future has been refined and placed
into focus. We don’t want just agent-oriented software systems, but rather socio-
technical systems consisting of software, human and social actors that work together

285



J. Mylopoulos et al.

to fulfill stakeholder requirements. The addition of human and social elements in
the design has introduced new uncertainties that can only be addressed through
adaptation mechanisms that our systems need to be endowed with. Perhaps more
importantly, we don’t aspire any more to design systems right from scratch. Rather,
we expect to evolve systems continuously and so our methodologies have to be
evolution-oriented. Like Darwin, we don’t focus anymore on how software species
came to be. Rather, we are interested in the ways they can evolve in order to survive.

References

1. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engineer-
ing. Requirements Engineering Journal 16(2), 101–116 (2011)

2. Bastos, L.R.D., de Castro, J.B.: Systematic integration between requirements and architecture.
In: Springer (ed.) Software Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications, no. 3390 in LNCS, pp. 85–103 (2005)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3), 203–236 (2004)

4. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing socio-technical systems: From stakeholder
goals to social networks. Requirements Engineering Journal 14(1), 47–70 (2009)

5. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the tropos project. Information Systems 27(6), 365–389 (2002)

6. Castro, J., Lucena, M., Silva, C.T.L.L., Alencar, F.M.R., Santos, E., Pimentel, J.: Changing
attitudes towards the generation of architectural models. Journal of Systems and Software
85(3), 463–479 (2012)

7. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and analyzing early
requirements in tropos. Requirements Engineering Journal 9(2), 132–150 (2004)

8. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proceedings of the IEEE International
conference on Requirements Engineering (RE’05), pp. 167–176 (2005)

9. Kolp, M., Do, T.T., Faulkner, S.: Social-centric development of multi-agent architectures.
Journal of Organizational Computing and E-Commerce 18(2), 150–175 (2008)

10. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-agent architectures as organizational structures.
Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

11. Mouratidis, H., Giorgini, P., Manson, G.: Integrating security and systems engineering:
Towards the modelling of secure information systems. In: 15th International Conference on
Advanced Information Systems Engineering (CAiSE’03), Klagenfurt, vol. 2681, pp. 63–78.
Springer-Verlag (2003)

12. Mylopoulos, J., Castro, J., Kolp, M.: Tropos: A framework for requirements-driven software
development. In: Information Systems Engineering: State Of The Art And Research Themes,
pp. 261–273. Springer-Verlag (2000)

13. Nguyen, T., Kolp, M., Penserini, L.: A development framework for component-based agent-
oriented business services. International Journal of Agent Oriented Systems Engineering
3(2/3), 328–367 (2009)

14. Pimentel, J.a., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriving software archi-
tectural models from requirements models for adaptive systems: the STREAM-A approach.
Requirements Engineering Journal 17(4), 259–281 (2012)

286



The Evolution of Tropos

15. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-cost satisfiability for goal
models. In: 16th International Conference on Advanced Information Systems Engineering
(CAiSE ’04), Riga, vol. 3084, pp. 20–35. Springer-Verlag (2004)

16. Silva, C., Castro, J., Araujo, J., Moreira, A., Tedesco, P., Mylopoulos, J.: Advanced separation
of concerns in agent-oriented design patterns. International Journal of Agent-Oriented
Software Engineering 3(2–3), 306–327 (2009)

17. Wautelet, Y., Kolp, M., Poelmans, S.: Requirements-driven iterative project planning. In: S.B.
Escalona Maria Jos Cordeiro Jos (ed.) Communications in Computer and Information Science,
Communications in Computer and Information Science, vol. 303(6), pp. 121–135. Springer-
Verlag (2012)

18. Yu, E.: Towards modeling and reasoning support for early-phase requirements engineering. In:
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, RE ’97,
pp. 226–235. IEEE Computer Society, Washington, DC, USA (1997)

19. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engineer-
ing. Cooperative Information Systems Series. Mit Press (2011)

287


	The Evolution of Tropos
	1 Introduction
	2 Formal Analysis
	3 Architectures and Patterns
	4 Methods and Techniques
	5 Conclusions
	References


