Janis Bubenko - John Krogstie
Oscar Pastor - Barbara Pernici
Colette Rolland - Arne Salvberg Eds.

Seminal
Contributions to
Information
Systems
Engineering

@l CAISE

@ Springer

Seminal Contributions to Information Systems
Engineering

Janis Bubenko « John Krogstie « Oscar Pastor
Barbara Pernici « Colette Rolland « Arne Sglvberg
Editors

Seminal Contributions
to Information Systems
Engineering

25 Years of CAiISE

@ Springer

Editors

Janis Bubenko Barbara Pernici

Royal Institute of Technology Politecnico di Milano

Department of Computer, and Systems Dipartimento di Elettronica, Informazione
Science e Bioingegneria

Kista, Sweden Milan, Italy

John Krogstie Colette Rolland

Arne Sglvberg Université Paris1

Norwegian University of Science Centre de Recherche en Informatique
and Technology Paris, France

Department of Computer
and Information Science
Trondheim, Norway

Oscar Pastor

Universidad Politecnica de Valencia

Depto. Sistemas Informaticos y,
Computacion

Valencia, Spain

ISBN 978-3-642-36925-4 ISBN 978-3-642-36926-1 (eBook)
DOI 10.1007/978-3-642-36926-1
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013940740
ACM Computing Classification (1998): H.4, H.3,D.2, J.1

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

In 2013, the International Conference on Advance Information Systems Engineering
(CAIiSE) is turning 25. Started in 1989, in these years, the conference has provided
a broad forum for researchers working in the area of Information Systems Engineer-
ing. To reflect on the work done so far and to examine perspectives of future work,
the CAiSE Steering Committee decided to collect a selection of papers published
in the conference proceedings in these years and to ask their authors, well-known
researchers in the area, to comment on their work and how it developed during the
years. CAiSE Proceedings have been published by Springer in the Lecture Notes
in Computer Science Series (LNCS) since 1990. The editors of this book, who
are the members of the Conference Advisory Board and the chairs of the Steering
Committee, selected papers from CAiSE conferences from 1992 to 2008, to provide
a broad overview on the topics that were presented and discussed in the conference
and their evolution. The selection phase has not been easy, since many papers were
well received in the research community and had a broad impact on future work. In
the book, the original paper is reprinted, and after it, a short paper illustrating the
evolution of the research related to the paper is included. As editors, we are thankful
to the authors who accepted to participate in this adventure.

In addition, the book provides an overview on the conference from different
points of view: a historical analysis on how it developed and its goals over the years,
a social network analysis of the positioning of CAiSE in the research community,
and future perspectives for the conference in an evolving world. As analyzed in
these chapters, and as it is evident from the selected papers, the scope of the
conference is broad but, at the same time, well positioned in an area which is
related to the topics of modeling and designing information systems, collecting
their requirements, but also with a special attention on how information systems are
engineered, towards their final development as software components. Such focus
has been consistently present in the development of the conference and in recent
years. As such, the conference attracted over the years a larger and larger number
of researchers, participating both in the conference and in its related events, such as
workshops, related conferences, tutorials, and the Doctoral Consortium.

vi Preface

We think that as a whole the book provides a comprehensive overview of the
research in this area and also provides many inspiring considerations for future
work.

A very large number of people have to be thanked for their work in the CAiSE
community in the last 25 years. It is impossible to mention everybody, but authors,
reviewers, conference organizers and chairs, and organizers of related events all
deserve our gratitude for their constant work in the community.

In particular, in the following, we would like to mention the editors of the CAiSE
Proceedings, program chairs, and organizers, listing all conferences proceedings and
the locations and countries in which the conferences were held:

e Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, Stanistaw Wrycza (Eds.):
Advanced Information Systems Engineering — 24th International Conference,
CAISE 2012, Gdansk, Poland, June 25-29, 2012, LNCS 7328, Springer, 2012

* Haralambos Mouratidis, Colette Rolland (Eds.): Advanced Information Systems
Engineering — 23rd International Conference, CAiSE 2011, London, UK, June
20-24,2011, LNCS 6741, Springer, 2011

* Barbara Pernici (Ed.): Advanced Information Systems Engineering, 22nd Inter-
national Conference, CAiSE 2010, Hammamet, Tunisia, June 7-9, 2010, LNCS
6051, Springer, 2010

e Pascal van Eck, Jaap Gordijn, Roel Wieringa (Eds.): Advanced Information
Systems Engineering, 21st International Conference, CAiSE 2009, Amsterdam,
The Netherlands, June §—12, 2009, LNCS 5565, Springer, 2009

* Zohra Bellahsene, Michel Léonard (Eds.): Advanced Information Systems Engi-
neering, 20th International Conference, CAiSE 2008, Montpellier, France, June
16-20, 2008, LNCS 5074, Springer, 2008

e John Krogstie, Andreas L. Opdahl, Guttorm Sindre (Eds.): Advanced
Information Systems Engineering, 19th International Conference, CAiSE 2007,
Trondheim, Norway, June 11-15, 2007, LNCS 4495, Springer, 2007

* Eric Dubois, Klaus Pohl (Eds.): Advanced Information Systems Engineering,
18th International Conference, CAiSE 2006, Luxembourg, Luxembourg, June
5-9, 2006, LNCS 4001, Springer, 2006

e Oscar Pastor, Joao Falcdo e Cunha (Eds.): Advanced Information Systems
Engineering, 17th International Conference, CAiSE 2005, Porto, Portugal, June
13-17, 2005, LNCS 3520, Springer, 2005

* Anne Persson, Janis Stirna (Eds.): Advanced Information Systems Engineering,
16th International Conference, CAiSE 2004, Riga, Latvia, June 7-11, 2004,
LNCS 3084, Springer, 2004

* Johann Eder, Michele Missikoff (Eds.): Advanced Information Systems Engi-
neering, 15th International Conference, CAiSE 2003, Klagenfurt, Austria, June
16-18, 2003, LNCS 2681, Springer, 2003

* Anne Banks Pidduck, John Mylopoulos, Carson C. Woo, M. Tamer Ozsu (Eds.):
Advanced Information Systems Engineering, 14th International Conference,
CAIiSE 2002, Toronto, Canada, May 27-31, 2002, LNCS 2348, Springer, 2002

Preface vii

e Klaus R. Dittrich, Andreas Geppert, Moira C. Norrie (Eds.): Advanced Infor-
mation Systems Engineering, 13th International Conference, CAiSE 2001, Inter-
laken, Switzerland, June 4-8, 2001, LNCS 2068, Springer, 2001

* Benkt Wangler, Lars Bergman (Eds.): Advanced Information Systems Engineer-
ing, 12th International Conference CAiSE 2000, Kista, Stockholm, Sweden, June
5-9, 2000, LNCS 1789, Springer, 2000

* Matthias Jarke, Andreas Oberweis (Eds.): Advanced Information Systems Engi-
neering, 11th International Conference CAiSE’99, Heidelberg, Germany, June
14-18, 1999, LNCS 1626, Springer, 1999

e Barbara Pernici, Costantino Thanos (Eds.): Advanced Information Systems
Engineering, 10th International Conference CAiSE’98, Pisa, Italy, June 8-12,
1998, LNCS 1413, Springer, 1998

* Antoni Olivé, Joan Antoni Pastor (Eds.): Advanced Information Systems Engi-
neering, 9th International Conference, CAiSE’97, Barcelona, Catalonia, Spain,
June 16-20, 1997, LNCS 1250, Springer, 1997

* Panos Constantopoulos, John Mylopoulos, Yannis Vassiliou (Eds.): Advanced
Information System Engineering, 8th International Conference, CAiSE’96, Her-
aklion, Crete, Greece, May 20-24, 1996, LNCS 1080, Springer, 1996

* Juhani livari, Kalle Lyytinen, Matti Rossi (Eds.): Advanced Information Systems
Engineering, 7th International Conference, CAiSE’95, Jyviskyld, Finland, June
12-16, 1995, LNCS 932, Springer, 1995

* Gerard Wijers, Sjaak Brinkkemper, Anthony I. Wasserman (Eds.): Advanced
Information Systems Engineering, CAiSE’94, Utrecht, The Netherlands, June
6-10, 1994, LNCS 811, Springer, 1994

¢ Colette Rolland, Francois Bodart, Corine Cauvet (Eds.): Advanced Information
Systems Engineering, CAiSE’93, Paris, France, June 8-11, 1993, LNCS 685,
Springer, 1993

* Pericles Loucopoulos (Ed.): Advanced Information Systems Engineering,
CAiSE’92, Manchester, UK, May 12-15, 1992, LNCS 593, Springer, 1992

* Rudolf Andersen, Janis A. Bubenko Jr., Arne Sglvberg (Eds.): Advanced Infor-
mation Systems Engineering, CAiSE’91, Trondheim, Norway, May 13-15, 1991,
LNCS 498, Springer, 1991

* Bo Steinholtz, Arne Sglvberg, Lars Bergman (Eds.): Advanced Information Sys-
tems Engineering, Second Nordic Conference CAiSE’90, Stockholm, Sweden,
May 8-10, 1990, LNCS 436, Springer, 1990

¢ Janis Bubenko, Janis Stirna (Eds.) The First Nordic Conference on Advanced
Systems Engineering, CASES89, Kista, Stockholm, Sweden, May 9-11, 1989,
CEUR-WS Vol-961, 2013.

Kista, Sweden Janis Bubenko
Trondheim, Norway John Krogstie
Valencia, Spain Oscar Pastor
Milan, Italy Barbara Pernici
Paris, France Colette Rolland
Trondheim, Norway Arne Sglvberg

February 2013

Contents

The CAISE AAVENtUIe ...ttt et

Janis Bubenko, Colette Rolland, and Arne Sglvberg
Evolution of the CAiSE Author Community: A Social

Network Analysis.........o.oooiiiiiiiiii e

Matthias Jarke, Manh Cuong Pham, and Ralf Klamma

A Natural Language Approach for Requirements

Engineering

C. Rolland and C. Proix

Conceptual Modeling and Natural Language Analysis.....................

Colette Rolland

The Three Dimensions of Requirements Engineering

Klaus Pohl

The Three Dimensions of Requirements Engineering: 20 Years Later

Klaus Pohl and Nelufar Ulfat-Bunyadi

Towards a Deeper Understanding of Quality in Requirements

Engineeringo

John Krogstie, Odd Ivar Lindland, and Guttorm Sindre

20 Years of Quality of ModelsoL L

John Krogstie, Guttorm Sindre, and Odd Ivar Lindland
MetaEdit+ A Fully Configurable Multi-User and Multi-Tool

CASE and CAME Environmentooiiiiiiiiiiinnnn..

Steven Kelly, Kalle Lyytinen, and Matti Rossi

MetaEdit+ atthe Age of 20..................

Steven Kelly, Kalle Lyytinen, Matti Rossi,
and Juha Pekka Tolvanen

ix

X Contents

OO-METHOD: An OO Software Production Environment

Combining Conventional and Formal Methods 139
Oscar Pastor, Emilio Insfran, Vicente Pelechano, José Romero,

and José Merseguer

The Conceptual Model Is The Code. Why Not? 153
Oscar Pastor and Vicente Pelechano

Architecture and Quality in Data Warehouses 161
Matthias Jarke, Manfred A. Jeusfeld, Christoph Quix,
and Panos Vassiliadis

Data Warehouse Architecture and Quality:

Impact and Open Challenges ...t 183
Matthias Jarke, Manfred A. Jeusfeld, Christoph J. Quix,

Panos Vassiliadis, and Yannis Vassiliou

Time Constraints in Workflow Systems........................... 191
Johann Eder, Euthimios Panagos, and Michael Rabinovich

Workflow Time Management Revisited 207
Johann Eder, Euthimios Panagos, and Michael Rabinovich

Adaptive and Dynamic Service Composition in eFlow 215
Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy,
and Ming-Chien Shan

Promises and Failures of Research in Dynamic Service Composition 235
Fabio Casati
On Structured Workflow Modellingcoooiiiiiiiiiin.. 241

Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede,
and Christoph J. Bussler

The Structured Phase of Concurrency............................oo.. 257
Artem Polyvyanyy and Christoph Bussler

A Requirements-Driven Development Methodology......................... 265
Jaelson Castro, Manuel Kolp, and John Mylopoulos

The Evolution of Troposooouiiiiiiiiiiiiiii i 281
John Mylopoulos, Jaelson Castro, and Manuel Kolp

The P2P Approach to Interorganizational Workflows 289
Wil M.P. van der Aalst and Mathias Weske

Reflections on a Decade of Interorganizational Workflow Research 307
Wil M.P. van der Aalst and Mathias Weske

Contents xi

Database Schema Matching Using Machine Learning
with Feature Selection ... 315
Jacob Berlin and Amihai Motro

Automatch Revisited 331
Amihai Motro
Data Integration under Integrity Constraints 335

Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini

Rewrite and Conquer: Dealing with Integrity Constraints in
DatalIntegration............................. . 353
Andrea Cali, Diego Calvanese, Giuseppe De Giacomo, and

Maurizio Lenzerini

Automated Reasoning on Feature Models 361
David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés

Automated Analysis of Stateful Feature Models.............................. 375
Pablo Trinidad, Antonio Ruiz-Cortés, and David Benavides

Change Patterns and Change Support Features in
Process-Aware Information Systems 381
Barbara Weber, Stefanie Rinderle, and Manfred Reichert

Process Change Patterns: Recent Research, Use Cases,
Research Directions ... 397
Manfred Reichert and Barbara Weber

Measuring Similarity between Business Process Models 405
Boudewijn van Dongen, Remco Dijkman, and Jan Mendling

A Short Survey on Process Model Similarity 421
Remco M. Dijkman, Boudewijn F. van Dongen, Marlon Dumas,

Luciano Garcia-Banuelos, Matthias Kunze, Henrik Leopold, Jan

Mendling, Reina Uba, Matthias Weidlich, Mathias Weske, and

Zhigiang Yan

How Much Language Is Enough? Theoretical and Practical
Use of the Business Process Modeling Notation............................... 429
Michael zur Muehlen and Jan Recker

We Still Don’t Know How Much BPMN Is Enough, But We

Are Getting ClOSeroiiiiii i e 445
Michael zur Muehlen and Jan Recker
The Future of CAISE ... i 453

John Krogstie, Oscar Pastor, and Barbara Pernici

The CAISE Adventure

Janis Bubenko, Colette Rolland, and Arne Sglvberg

Abstract What was to become a series of annual international, scientific con-
ferences celebrating its 25th anniversary in 2013 came out of a modest, perhaps
even an accidental start. The following gives an account of the early history of the
CAIiSE conference series, and of the considerations on setting up the organization
and the guiding principles of the conferences. The first conference was arranged in
Stockholm in May 1989 in Stockholm and was originally intended for a mixed
audience of Nordic practitioners and scientists. Soon the conferences developed
more into a meeting place for academic researchers, and have stayed as such for
the remaining sequence of annual conferences up to this date.

1 Prelude

What was to become a series of annual international, scientific conferences cel-
ebrating its 25th anniversary in 2013 came out of a modest, perhaps even an
accidental, start. The first conference was arranged in Stockholm in May 1989.

J. Bubenko (<)

Department of Computer and Systems Science, KTH & Stockholm University, Forum 100,
16440 Kista, Sweden

e-mail: Janis@dsv.su.se

C. Rolland
Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
e-mail: Rolland @univ-paris1.fr

A. Sglvberg

Department of Computer and Information Science, NTNU- The Norwegian University of Science
and Technology, Trondheim, Norway

e-mail: asolvber @idi.ntnu.no

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 1
DOI 10.1007/978-3-642-36926-1_1, © Springer-Verlag Berlin Heidelberg 2013

mailto:Janis@dsv.su.se
mailto:Rolland@univ-paris1.fr
mailto:asolvber@idi.ntnu.no

2 J. Bubenko et al.

The Swedish Institute for Systems Development! (SISU) in co-operation with the
Swedish Society for Information Processing SSI) organized it. The conference was
called CASE - conference on Computer Aided Systems Engineering. The acronym
CAIiSE - Conference on Advanced Information Systems Engineering — came later,
in 1990. The first conference was originally intended for a mixed audience of
Nordic practitioners and scientists. Computer aided information system design was
“in” at the time. Sweden was advanced both in practice and theory. Several CASE
prototypes had been developed in the Nordic countries and had met with interest
by practitioners. The IT department at KTH — The Royal Institute of Technology —
was at the center of academic research of information system design theory and of
methodological research. The department had educated a large number of students
who had found good positions both in industry and in public administration. Janis
had got the chair of Information Systems at KTH and had started the SYSLAB
research group in the early 1980s. Arne and Colette had been in research cooperation
with Janis for years, and were actively supporting this first conference.

The original plan was to create a meeting place for academics and practitioners.
Researchers would be encouraged to present their findings to a mixed indus-
trial/academic audience, and practitioners would be encouraged to challenge the
research community in order to find solutions to their most pressing problems in
designing and using information systems. The aim was to engage the two com-
munities in discussions on practical problems of building real-world information
system, from which both parties could emerge wiser. Janis, Colette and Arne were
all participating in large international scientific and professional networks. They
now called upon their colleagues in the international information systems research
community to contribute. Several researchers from the Nordic countries, Europe and
USA participated in the first 1989 conference.

2 Considerations in Forming the CAiSE Framework

The evaluation of the first conference indicated that one could hardly expect to have
a continuous flow of a sufficient number of high-quality papers from the practical
world lasting for many years unless going international on a much larger scale than
in the Nordic countries alone. The reward mechanisms in industry for producing
research type papers were deemed to be weaker than needed for guaranteeing
sufficient local industry participation in such an endeavor. The question was how
to achieve a framework that could survive.

The discussion about internationalization started prior to the first “CASE”
conference. During the fall of 1989 Janis and Arne engaged in extensive email dis-
cussions on how to proceed after the first conference. Arne spent the academic year
1988-1989 on sabbatical leave in California while Janis stayed put in Stockholm

"More information about SISU can be found at http://www.sisuportal.se/ partly in Swedish.

http://www.sisuportal.se/

The CAISE Adventure 3

building up the research institute SISU. The first CASE conference in 1989 also
fitted well into the plans for establishing the research institute as an active player in
the European research community. This was before the World Wide Web and Skype.
The costs of travelling and telephone usage were high, so email was the preferred
mode of communication.

We all had considerable experiences in arranging international conferences and
workshops. We participated in extensive international networks of scientists in
information systems, databases and software engineering. We had also recently
become involved in EU sponsored projects under the Esprit 2 program. So we were
fairly well placed to develop a new conference series.

In the following we present some considerations that lay behind establishing the
CAIiSE conference series.

2.1 Was There a Need for a New Conference Series?

Conferences that covered different parts of the relevant research fields were
organized within several existing scientific communities. We were involved with
three of them: IFIP Working Group 8.1 (WG8.1) for Information Systems, IFIP
WG2.6 for Data Bases, the conference series VLDB (Very Large Data Bases) and
to a lesser extent with the Entity-Relationship conference series.

The formal title of IFIP WGS8.1 is “Design and evaluation of information
systems”. It includes many aspects of IS use and design such as requirements
analysis, modeling and description of IS, computer aided methods and tools for
IS design, human-computer interaction design, as well as aligning information
systems to organizations and organizational needs. IFIP Technical Committee TC8
on Information Systems was established in 1977. Arne and Colette were national
representatives in TC8 representing Norway and France. The working group WGS.1
was established in 1977. Arne was chair of WGS.1 in the early 1980s (with
Janis as secretary). Colette was member of WGS.1 from the start, and served as
WGS.1 officer from 1988 to 1999. The essential output of an IFIP working group
was working conferences within its scientific field. WG8.1 had a good record
on working conferences, in particular the highly successful CRIS (Comparative
Review of Information Systems Design Methodologies) that were arranged at
Noordwijkerhout in The Netherlands. But IFIP 8.1 lacked an annual “sustainable”
conference focusing on the field as a whole, or a subfield of Information Systems.

IFIP WG2.6 was at this time primarily concerned with issues of data semantics.
While a useful and interesting topic, data semantics was not considered “central” to
the field of Information Systems, at least not by us. Furthermore, a conference on
data semantics would not draw many delegates to a conference. The theme was a bit
narrow.

The first VLDB conference was arranged in Framingham, Massachusetts, in
1975. The conference may be considered as an academic response to a practical
need, as expressed by government, business, and industry, a need to pay more

4 J. Bubenko et al.

attention to approaches to organize, describe, store and search massive amounts
of data, a problem of increasing importance for many practical applications. The
“VLDB problem” is, of course, typical and essential for Information Systems, as
databases are essential parts of any Information System. But the VLDB topic area
seemed a bit too specialized for our purposes. We should also mention that our
relationship to VLDB was excellent. All three of us presented papers at the VLDB
conference in 1979. Both Arne and Janis were members of the VLDB Endowment.
Janis chaired the Endowment 1989-1993. VLDB 1985 was organized in Stockholm
and attended by about 800 delegates.

Peter Chen published his Entity-Relationship model in 1976. The first ER-
conference was arranged in 1979 in Los Angeles and later developed into a series
of conferences. In the beginning these conferences were almost totally focused on
Chen’s ER model. At this time we thought this narrow focus to be too restricted
to base a conference on. Later, of course, the thematic scope of the ER-conferences
widened considerably, to the extent that the conference series later on changed name
to International Conference on Conceptual Modeling.

Our conclusion about the situation was that none of the four groups could
give us what we wanted. VLDB was in its main focus too far off the central
issues of the field of Information Systems Engineering, although the main VLDB
issues were very important, also for Information Systems Engineering. The Entity-
Relationship conference was deemed to be too narrow, and too closely associated
to data modeling of the Entity-Relationship variety. The organizational set-up of
IFIP was deemed to be too closed, not being open enough to attract the young
and up coming. There was no effective organizational mechanism for renewing
membership in the governing bodies. The organizational philosophy as well as the
bureaucracy of IFIP was simply not well suited to serve the rapidly evolving field of
Information Technology.

In the end the choice was not so difficult: we decided to go for a new conference
series provided that we could find an organizational set-up that had acceptable
chances of success.

2.2 Was There a Sufficient Strong Research Basis That Could
Be Tapped Into?

A primary concern was the availability of high quality papers. We had to associate
the new conference series with major research groups. We had to encourage young
PhD students to publish with us. Many of the relevant research groups were already
active in IFIP, primarily in WG8.1. The WG8.1 approach was to arrange one or two
working conferences each year inviting contributions within special topics within
the central theme of information systems. This opened up for us to arrange an
annual conference with a wider thematic coverage. We chose Information Systems
Engineering to be the wider theme. We invited submissions from all research

The CAISE Adventure 5

areas relevant to this theme. By doing this we opened up a publication channel
where researchers once a year could publish a continuity of new research results
as their research projects matured and their PhD students developed their research
from the idea stage to a more mature stage.

The research groups that were associated with WGS8.1 and WG2.6 were deemed
to be not enough to support a sustainable annual conference. We had to evaluate
whether our international contact net could bring more international research groups
into “the fold”. We found that a number of the research groups affiliated with VLDB
also had strong activities in Information Systems Engineering, and were on the
fringes of the VLDB central theme of very large data bases. A similar situation
was found for the emerging ER-conferences. Many research groups were associated
with several of the conference series.

Finally, Norway and Sweden had recently been permitted to participate in EU-
sponsored research projects. Together with several other European research groups,
we had been awarded a 5-year long ESPRIT II project, the TEMPORA project.
This project could provide us with research results that could be published in future
CAISE conferences. The project also provided us with a better economic basis for
pursuing the stabilization of a series of annual conferences. Other Esprit European
projects of relevance to our planned conference came later, e.g., KIWIS (Advanced
Knowledge-Based Environments for Database Systems) and F* (F-cube — from
Fuzzy to Formal — an endeavor in Requirements Engineering). Some of us were
in these projects as well.

Our conclusion was that there was a sufficient strong research basis for support-
ing a new conference series. Last but not least, we could count on the research
institute SISU together with their supporters (about 30 Swedish enterprises) to
provide us an economic stability and guarantee for this kind of endeavor.

2.3 Location: Should We Go for a Regional Conference
or a Global Conference?

A next issue was location. The four conference organizing communities mentioned
above were in principle of a global nature. The Tempora project was strictly
European. The two IFIP groups were in practice mostly European. The two
conference series VLDB and ER were both initially US based, but expanded rapidly
to have a global reach.

After some thinking we decided to go for a European conference. We considered
that there were enough global conferences within the topic area. After all there
was a limit to how many international travels a normal research group budget
could accommodate. We considered it a safer choice to go for a European based
conference series, but with a possibility to arrange CAiSE conferences outside of
Europe if there were strong arguments for this. We gave ourselves the freedom to
elevate non-European countries to a temporary classification of being European.

6 J. Bubenko et al.

Because of the starting point of CAiSE being Nordic, we also permitted ourselves to
build into the conference charter that future CAiSE conferences should be arranged
in the Nordic countries from time to time.

2.4 Timing: Winter, Spring, Summer or Autumn Conference?

It was clear that if we were going international we were up for stiff competition
on the selection of time slots. So we tried to avoid the times for other conferences
with partly overlapping themes. We wanted to be both international and local. We
wanted timing, which was suitable for the Nordic countries as well as for the rest
of Europe and the USA. The spring or early summer was an obvious choice. Few
places on earth are as attractive as the Nordic countries during late spring, late May
and June.

2.5 How to Organize the Continuity of a Conference Series?

Aiming at creating a series of CAiSE conferences it was clear that we had to
associate the conferences to an organizational body, which would exist in between
conferences. Each individual conference would be set up with its own organization
to prepare and operate the conference, and to be dissolved after the conference was
over. But how should we organize the period in-between two conferences? What
procedure to follow when choosing new conference sites? And — how should we
deal with economical matters?

Most conferences at the time were associated with professional societies like
IFIP, ACM and IEEE. A few were independent of the professional societies. They
had created their own boards, which took the responsibility in-between conferences,
like VLDB and the ER-conference.

Our experience from IFIP and VLDB was that we did not want to create an
organization that had to handle money, provide seed money to the next conferences
and things like that. Each conference and its economy should be the responsibility
of its own organizing body. This meant that the organizer had to be prepared to take
a larger risk than if leaning on a central organization. On the other hand, there was
a good chance to make a profit because there was no profit sharing required with a
central organization. Of course, the profit/loss statement had to be openly presented
at each conference.

Initially, the organization and management of CAiSE was simple. There was
to be an ever-extending steering expanding each year with two persons from the
previous conference. Over time this led to a rather large steering group. There was
a need for a smaller body to take day-to-day decisions without having to consult

The CAISE Adventure 7

too widely. So Arne, Janis and later also Colette formed an “advisory committee”.
The advisory committee and the steering group had an informal “non-meeting” at
each CAISE conference. Matters like selecting future conference sites and publicity
issues were handled there. This simple, informal scheme worked very well for many
years, and was not changed until 2011 (see below).

2.6 How to Publish the Papers?

We were aiming at finding a rock solid publisher. It was very clear that there was no
hope of creating a conference series unless we could find a trustworthy publisher.
We all had good experience with Springer so this matter was easily decided. The
cooperation with Springer went very well during all these years, very efficiently and
in a friendly way. We are thankful to Springer for their very positive and reactive
attitude to all our demands. We would like to take this opportunity to particularly
thank Ralf Gerstner who has been our very supportive contact for many years
including setting up this book proposal on a short time notice.

3 The First Conference

The first Conference on “Advanced Systems Engineering”, CASE’89, was arranged
during May 9-11 1989, jointly by SISU (Swedish Institute for Systems Develop-
ment) and SSI (Swedish Society for Information Processing, a member of IFIP).
The conference was also supported by the research laboratory SYSLAB and DSV —
the department of computer and systems science at Royal Institute of Technology
and University of Stockholm. In fact the conference was called “The First Nordic
conference ...” as our initial aim was to anchor this as a Nordic event. The
economic risk and also the economic surplus were solely taken by SISU.

The main aim of CASE’89 was to bridge the gap between theory and practice
in systems development. Consequently, CASE’89 was organised in two parallel
streams, one more theoretical and one more practical. The theoretical track was
traditionally organised by submitted, peer-reviewed, and accepted papers, primarily
from researchers. The practical track consisted mainly of solicited, in some cases
invited, talks from business, industry and the public sector. General conference co-
chairpersons were Agneta Qwerin, Swedish Society for Information Processing,
and Janis Bubenko Jr, the managing director of SISU. The executive Program
Committee consisted of Bjorn Nilsson, SISU, chairman, Hakan Dahl, Christer
Dahlgren, Kurt Gladh, Lars Swird, and C")rjan Odelhog. Lars Bergman, SISU,
chaired the Organising Committee. As can be seen, the program committee was
dominated by practitioners, all Swedish.

8 J. Bubenko et al.

For our first conference we had to have well reputed keynote speakers to set the
future direction: the CAiSE conferences were to become a high quality scientific
conference series. The obvious choice for keynote speaker was Colette Rolland of
Sorbonne. Colette has held the chair of the IFIP WGS8.1, and her staff participated
also in the Tempora, F3 and other EU projects. The three of us had similar ideas
about Information Systems Engineering, and we started to work as a team for
arranging the future CAiSE conferences. Colette later arranged the 1993 conference
in Paris. The theme of Colette’s invited talk was “On the future of modeling —
why current CASE-tools insist on supporting 20 years old methods”.> Indeed an
intriguing topic: the idea was to be a bit provocative in addressing the prevalent view
of CASE tools’ vendors. The ISE community has, already in the 1970s, made the
assumption that an information system captures some excerpt of world history and
hence has concentrated on modelling information about the Universe of Discourse.
This led to the conceptual modelling wave and the creation of a large number of
semantically powerful conceptual models. The talk was arguing that CASE tools’
editors should implement such rich modelling approaches instead of old-fashion
structured analysis and design methods.

CASE’89 turned — a bit unexpectedly — out to be a success. A large number of
contributed papers and international delegates could be noted. Forty-three papers
were presented. The number of attending delegates was about 180.

The program chair of CASE’89, Dr. Bjorn Nilsson (deputy managing director of SISU) and the
invited speaker, Professor Colette Rolland, University of Paris 1 (Photo by Janis Bubenko at the
Riga, Latvia, CAiSE 2004)

2The two other invited speakers were Frans van Assche, James Martin Associates Co. amd Simon
Holloway, DCE, U.K. Frans’s talk was “On the future of CASE tools”. Simon’s theme was
“Organisational implications caused by the fourth generation environment”,

The CAISE Adventure 9
4 The Following Conferences

We were now ready to organize our next CAiSE conference. We decided that
the 1990 conference should take place in Stockholm, and the 1991 conference in
Trondheim.

The success of CASE’89 gave us the courage to continue the CASE conference
in a more international setting. The name of the 1990 conference was, however,
changed to CAIiSE (Conference on Advanced information Systems Engineering)
in order not to be mixed up with another US-based conference, which had taken
the CASE name. CAiSE’90 was also arranged in Stockholm by SISU and was
supported by the department of Computer and Systems Science, the Royal Institute
of Technology and Stockholm University (DSV). The general chair was Arne
Selvberg, the program chair Bo Steinholtz (DSV), and the organising chair was Lars
Bergman (SISU). All three were also co-editors of the first Springer Verlag (Lecture
Notes in Computer Science) publication of the CAiSE’90 proceedings. About
200 delegates from more than 20 countries attended CAiSE’90. Our European
colleagues expressed considerable interest to continue CAiSE on a European scale.
Janis and Arne decided to support this challenge and worked out a few simple rules
for CAISE. Simply speaking, CAiSE was to be a conference with almost no rules. It
was to have an expanding steering committee, which essentially consists of chairs of
previous conferences. The organizing body of each CAiSE conference is responsible
for the finances, profits as well as losses. About every fifth year it is expected that
CAISE returns to a Nordic country. CAiSE is guided by an advisory committee
consisting of Colette Rolland, Janis Bubenko jr., and Arne Solvberg.

Since its start in 1989 and 1990 in Stockholm, CAiSE has been hosted in Norway
(1991, 2007), U.K. (1992, 2011), France (1993), the Netherlands (1994, 2009),

CAiSE-97

The banquet of the 1997 CAISE was celebrated at the Market Place designed by Gaudi at the
Parc GULL in Barcelona. The attendance of CAiSE’97 was exceptionally good so the organisers
decided we could afford this elegant setting and the outstanding menu

10 J. Bubenko et al.

Finland (1995), Greece (1996), Catalonia (1997), Italy (1998), Germany (1999),
Sweden (2000), Switzerland (2001), Canada (2002), Austria (2003), Latvia (2004),
Portugal (2005), Luxembourg (2006), Tunisia (2010) and Poland (2012). The 25th
event of CAiSE will be held in Valencia, 2013. Springer Verlag, Lecture Notes in
Computer Science, has published all CAiSE proceedings, since 1990.

In our opinion the CAIiSE series has been quite successful. Each conference has
attracted between 200 and 300 submitted papers. About 40 of the submissions have
been accepted for inclusion in the conference proceedings, giving an acceptance
rate of 13—17 %. The attendance number has been 200 or more delegates. Papers in
CAISE proceedings have in general had good citation ratings.

5 Seminal Contributions of 25 Years of CAiSE

During these last 25 years, the CAiSE community shared the same broad view of
information systems and the passion to develop advanced engineering solutions.
On one hand, we all place an information system in a big picture in which ICT,
socio-economic, organisational and business issues are intertwined. On the other
hand, CAiSE research is part of design science but we clearly prefer to focus on the
design side of it than on its evaluation dual part. The 17 seminal papers reedited in
this book reflect these two key characteristics of CAiSE contributions.

The first CASE conference was held at the end of the conceptual modelling
wave when providing an automated support to modelling became a key concern of
CAIiSE authors. The three papers on MetaEdit+ (A fully configurable Multi-User &
Multi-tool CASE and CAME environment), OICSI (A natural language approach for
requirements engineering) and OO-Method (An OO software production environ-
ment combining conventional and formal methods) introduced approaches (meta-
modelling, natural language processing, and model transformations, respectively)
that have still interest today.

This was also the time to go beyond the traditional way of engineering informa-
tion systems through conceptual modelling. Whereas conceptual modelling allowed
our community to understand the semantics of information and led to a large number
of semantically powerful conceptual models, experience demonstrated that it failed
in supporting the delivery of systems that were accepted by the community of their
users. Indeed, a number of studies showed that systems failed due to an inadequate
or insufficient understanding of the requirements they seek to address. To correct
this situation, it was necessary to address the issue of requirements elicitation,
validation, and specification in a relatively more focussed manner. The field of
requirements engineering has emerged to meet this expectation. The hope was that
as a result of this, more acceptable systems would be developed in the future. Three
papers in this book address different aspects of requirements engineering: The three
dimensions of requirements engineering: a framework and its applications; Towards

The CAISE Adventure 11

a deeper understanding of quality in requirements engineering; A requirements-
driven development methodology.

Databases have always been part of CAiSE research (Database schema matching
using machine learning with feature selection; Data integration under integrity
constraints).

With time passing, new forms of information systems came into play. The CAiSE
community paid a lot of attention in early 2000s to workflows (Time constraints
in workflow systems; Adaptive and dynamic service composition in eFlow, On
structured workflow modelling; The P2P approach to inter-organizational work-
flows) and to a less extent to data warehouses (Architecture and quality in data
warehouses).

The CAiSE community has always been involved on the topic of methods, lead-
ing to the production of methods on one hand, but also contributing to understanding
what a method is. It is thus, not surprising to note that the concept of Method
Engineering was introduced by CAiSists (!) and further developed by a few groups
in the world deeply involved with CAiSE and the EMMSAD workshop which each
year was organized in conjunction with the main conference. Method engineering
represents the effort to improve the usefulness of systems development methods by
creating an adaptation framework whereby methods are created to match specific
organisational situations. There are at least two objectives that can be associated
to this adaptation. The first objective is the production of contingency methods,
that is, situation-specific methods for certain types of organisational settings. This
objective represents method engineering as the creation of a multiple choice setting.
The second objective is one in which method engineering is used to produce method
“on-the-fly”. Situational method engineering is the construction of methods, which
are tuned to specific situations of development projects. Each system development
starts then, with a method definition phase where the development method is
constructed on the spot.

In recent years the CAiSE community has been involved with emerging concepts
such as variability (Automated reasoning on features models).

Finally, the book reflects the considerable attention received in recent years by
Business Process Management (BPM) and its fundamental concept of a business
process. Process models may be used to configure information systems, but may
also be used to analyze, understand, and improve the processes they describe.
Hence, the introduction of BPM technology has both managerial and technical
ramifications, and may enable significant productivity improvements, cost savings,
and flow-time reductions. The practical relevance of BPM and rapid developments
over the last decade justify the large number of highly cited BPM papers in the last
CAISE conferences (Change patterns and change support features in process-aware
information systems; Measuring similarity between process models; How much
language is enough: Theoretical and practical use of business process modeling
notation).

12 J. Bubenko et al.
6 Other Outcomes of CAiSE

Another interesting effect of CAiSE is its regular set of tutorials and workshops,
normally arranged during 2 days preceding the conference itself. Some well-
known workshops, such as EMMSAD (Evaluating Modelling Methods for Systems
Analysis and Design) have been held every year since the start of CAiSE. EMMSAD
was initially organised by Yair Wand of University of British Columbia, Canada. In
fact, EMMSAD has evolved into being — informally — the “official” IFIP WGS.1
annual working conference. An official, annual WG8.1 business meeting follows
each EMMSAD workshop. Other workshops, such as REFSQ (Requirements
Engineering: Foundation for Software Quality) have evolved into independent
conferences. Another such activity is POEM — Practice of Enterprise Modelling.
One could say that POEM is a “spin-off” from EMMSAD and CAIiSE activities and
is now running as an independent conference.

Last but not least we should mention the doctoral consortium, which is organized
at each CAISE conference. Here young PhD candidates get the chance to present
their early research results to experienced thesis advisors and to discuss their main
findings and ideas.

7 The New CAISE

In 2009 the young generation expressed thought exchanges on the Web, the wish
to have a more controlled organisation of CAiSE conferences. Sensitive to this
movement we proposed to set up a task force to make propositions about a new
and more formalised CAiSE steering committee. Antoni Olivé accepted to chair
this task force who presented its conclusions during the non-committee meeting of
CAISE 2010 in Tunisia. These were accepted, implemented during the year 2011
and finalized during the last non-committee meeting of CAiSE 2011 in London. The
three nominated officers of the new Executive Steering Committee, namely Barbara
Pernici, Oscar Pastor and John Krogstie took the lead at that time.

8 Singing at CAiSE

Singing eventually became a tradition at the CAiSE dinner banquets on Thursdays.
We are not 100 % sure when it all started but already at CAiSE’92 at UMIST,
Manchester, U.K. Keith Jeffery (of Ruherford Appleton Laboratories, RAL) had
brought his guitar and accompanied some singing in the conference center bar. This
somehow developed into an informal rule that the workshops, taking normally place
during Mondays and Tuesdays, should prepare a “show” of singing and dancing to
be presented at the workshop dinner. This idea was extremely well appreciated.

The CAISE Adventure 13

At the same time the advisory committee, then Janis and Arne also wanted to
make a small contribution. Janis came up with the idea to perform a Danish drinking
song (see below). We believe that some CAiSE delegated found it nice while others
were more surprised and/or confused. In any case, after a while we found that the
advisory committee had to be extended — we needed a “farmer’s wife” according
to the text of the song. That is how Colette became the farmer’s wife in our little
“show”. Arne played the farmer and Janis was the “young student”.

The song goes like this:

Han skulle gaa ud efter 6l
(the translation is not guaranteed)
:/: Det var en go’ gammel bondemand
han skulde gaa ud efter 6l.:/:
Han skulde gaa ud efter 0l,
han skulde gaa ud efter o1,
efter 6l, efter hoppsansa, trallallala
han skulde gaa ud efter ol.
There was a gentle old farmer
Who wanted to go out for a beer
:/: Till konen kom der en ung student
mens manden var ude efter 6l.:/:
Mens manden var ude efter 61,
mens manden var ude efter 6,
efter 6l, efter hoppsansa, trallallala
mens manden var ude efter 6l.
A young student came to his wife —
while the farmer was out for a beer
:/: Han kyssed henne paa rosenmund
og klapped henne paa kind.:/:
Mens manden var ude efter 61,
mens manden var ude efter 6,
efter 6l, efter hoppsansa, trallallala
mens manden var ude efter 6l.
He kissed her on her rosy mouth
and cuddled her on her chin
while the farmer was out for a beer
:/: Men manden han stod bagved déren og saa
hvorledes det hele gik til.:/:
De troed’ han var ude efter 0l,
de troed’ han var ude efter 61,
efter 6l, efter hoppsansa, trallallala
de troed” han var ude efter ol.
But the farmer had been standing behind the door — he saw all what
did happen - while they thought he was out for a beer
:/: Saa skod han studenten och kaellingen med
og saa gik han ud efter 6l.:/:
Og saa gik han ud efter dl,
og saa gik han ud efter 61,
efter 6l, efter hoppsansa, trallallala
og saa gik han ud efter 0l.
So the farmer took his gun and shot the student as well as his wife —
and then he went out for a beer

14 J. Bubenko et al.

Og laer her af alle bondemaend
nor I skal gaa ud efter ol.

laas konen inog ta ndglen med

nor I skal gaa ud efter ol.

Nor I skal gaa ud efter 6,

nor I skal gaa ud efter 6,

efter 6l, efter hoppsansa, trallallala
nor I skal gaa ud efter ol.

So let this be a lesson to all of you who want to go out for a beer — first
lock your wife up and bring the key along — when you go out for a beer
This last verse is perhaps a bit rude. There is another and better last verse:
Moralen er, ta din kone med,
nor I skal gaa ud efter 6l.

Etc., etc.

The morale is

Take your wife along

When you go out for a beer

Etc. etc.

Our recommendation is obvious: You should always bring your partner to CAiSE!

Authors of this book chapter performing the drinking song at the 2003 CAIiSE in
Klagenfurt/Velden, Austria

9 Conclusion

In conclusion we have had fantastic 25 years of CAiSE. We have had great fun not
only technically and scientifically but also socially. We all have made many new
friends and met dear old friends many times; we are happy CAiSE has managed to
keep up its scientific and technical quality during all years. What more can we do
than wish our followers at least 25 more years of successful international exchange.

Evolution of the CAiSE Author Community:
A Social Network Analysis

Matthias Jarke, Manh Cuong Pham, and Ralf Klamma

Abstract The CAISE community has always prided itself as more than just a
normal conference — a successful social network with a very special culture. In
this chapter, we apply formal social network analysis to study this community and
its evolution of its first quarter-centennial of existence. Using a methodology and
dataset developed for an analysis of Computer Science as a whole, we demonstrate
the unusual positioning of CAiSE as a quasi-interdisciplinary conference between
several sub-disciplines of Computer Science. We show that under an evolution
model developed in our research CAiSE pursues a very successful and promising
path, and we identify key topics and key players among the CAiSE authors. As
the social network analysis focusses on formal aspects such as co-authorship and
citations, we unfortunately must leave out one of the undoubtedly most critical
success factors: the fun of being in the CAiSE community.

1 Introduction

The CAIiSE community, as the community of other scientific conferences, can be
considered as a community of practice (CoP) [13]. A community of practice is
defined as “a group of people who share a concern, a set of problem, or a passion
about a topic, and who deepen their knowledge and expertise in this area by
interacting on an ongoing basis” [3]. CAiSE is a community of practice due to
several aspects. First, members of CAiSE are working on a common research area,
the Information Systems. Second, members are distributed across disciplines, which
include information systems, database, requirement engineering, business process
management, etc. Members are also distributed across organizations, cultures and

M. Jarke (><) - M.C. Pham - R. Klamma

Information Systems and Databases, RWTH Aachen University, Ahornstr. 55, D52056, Aachen,
Germany

e-mail: jarke @dbis.rwth-aachen.de; pham @dbis.rwth-aachen.de; klamma@dbis.rwth-aachen.de

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 15
DOI 10.1007/978-3-642-36926-1_2, © Springer-Verlag Berlin Heidelberg 2013

mailto:jarke@dbis.rwth-aachen.de
mailto:pham@dbis.rwth-aachen.de
mailto:klamma@dbis.rwth-aachen.de

16 M. Jarke et al.

geographical regions. Third, members communicate with each other via face-to-face
conferences as well as technology-enhanced interaction. Finally, CAiSE attracts not
only fundamental research, but also practical systems and architectures. That results
in a very heterogeneous community where methods from different disciplines are
used and practices are built on the basic and applied research.

In [12], we have developed a framework for analyzing the development of such
scientific communities based on Social Network Analysis (SNA). The framework
allows us to monitor the status of a community, qualify its development and compare
its development pattern with other communities. It also enables the identification of
key members and subgroups of the community. Different techniques are employed
in this framework, including visualization, SNA ranking measures, and clustering
techniques. Using the DBLP and CiteSeer databases as our data set, we applied this
framework to the evolution of Computer Science as a whole. Moreover, we were
able to show formally that a few leading computer science conferences are indeed
equally important in terms of impact as the top journals in the field, which makes
Computer Science quite different from many other disciplines where conference
publications only play a marginal role.

In this chapter, we apply this framework to analyze the evolution of the CAiSE
conference series. In particular, we are interested in the following questions:

* Relationship with other communities: what is the relationship between CAiSE
and other communities in the field? What is the role of CAiSE to those
communities?

e Membership of CAiSE: how do members come and stay in CAiSE? How is the
community stabilized?

* Connectivity: how do members connect to each other? Does the connectivity
grow over time? What is the pattern of the connections?

» Topic analysis: what topics are addressed by CAiSE community? How do topics
connect to each other? who are the key researchers with the highest impact?

The rest of the chapter is organized as follows. In Sect.2, we describe our
analytical framework and the data we used in the analysis. Section 3 presents
the results which aim to answer the above questions. The chapter finishes with a
discussion and conclusion.

2 Methods and Data

Our general study of the evolution of digital libraries in general, and of computer
science in particular [9] has resulted in a model to explain the community-building
process, as well as the co-authoring and citation behavior in conferences and
journals [12]. For example, a study of Technology Enhanced Learning research
communities found interesting development patterns [11]. In this section, we
describe this model and its underlying formal metrics as well as the data set we
used for the analysis of CAiSE.

Evolution of the CAiSE Author Community: A Social Network Analysis 17

Interdisciplinary

<>
Born Bonding Emergence Hierarchical
0 0 0
0
o /. =) =) M — PEN
0 0 0
— _ Focused
—~
Young conferences/journals
<«

Fig. 1 The development model for scientific communities

Readers with a deeper methodological interest can also consult the Ph.D. thesis
[10]. Moreover, an online version of the AERCS' analysis system by which the
results in the thesis and in this paper were derived, is accessible for experimental
use. AERCS does not just support the kind of long-term SNA we show in this paper,
but also offers a component for mobile context-dependent advice to attendees of
specific conferences.

2.1 The Development Model

Our basic evolution model depicted in Fig. 1 includes four stages: born, bonding,
emergence, with the final stage being either interdisciplinary, hierarchical or
focussed. Following earlier research in scientific community network analysis, the
network employs two types of links: co-authorship and citation. The co-authorship
subnet of a conference series consists of authors as nodes. There is an edge between
two authors if they have co-authored at least one paper published in a conference
event in that series. In the born phase, we typically find few connections between
authors. After some events, author groups become apparent in the bonding phase.
In the best case, they gradually integrated through joint publications from more
than one group (emergence phase). Finally, successful conference series typically
forms a network topology that features a strongly connected core group of authors
that is connected to other smaller groups (focused topology). Alternatively, the
co-authorship can develop into an interdisciplinary topology where several groups
are connected via some gatekeepers, but where there is no core group. Or there

Thttp://bosch.informatik.rwth-aachen.de:5080/AERCS/

http://bosch.informatik.rwth-aachen.de:5080/AERCS/

18 M. Jarke et al.

might emerge a hierarchical topology which exposes some “super gatekeepers” who
connect a hierarchy of groups.

Time series analysis. To quantitatively characterize the development process of
a community according to this development model, we apply time series analysis
on the networks to reveal six parameters over time: densification law, clustering
coefficient, maximum betweenness, largest connected component, diameter, and
average path length. These parameters enable us to explain the community building
process in Fig. 1. To interpret the shape of the community, one needs to use a
combination of all of these parameters.

Formally, given the network G = (V, E), where V is the set of vertices or nodes,
and E is the set of edges, these network metrics are defined as follows:

* Densification law: [4] discovered that complex networks densify over time, with
the number of edges growing super-linearly with the number of nodes, meaning
that the average degree (i.e., number of edges) of the nodes is increasing. The
densification follows a power-law pattern: e(¢) o n(t)*, where e(t) and n(t) are
the number of edges and nodes at time 7, respectively, and « is an exponent that
lies between 1 and 2 (¢ = 1 corresponds to constant average degree over time,
while ¢ = 2 corresponds to very dense graph where on average each node has
edges to a constant fraction of all nodes). We use this exponent to differentiate
the “speed” by which networks are densified.

» The clustering coefficient of a network [6] is defined as the total number of pairs
of vertices that have a common neighbor and are themselves connected, divided
by the total number of pairs of vertices that have a common neighbor:

C— 3 X number of triangles in the graph 0

number of connected triples of vertices in the graph

Intuitively, during the born phase, the clustering coefficient is low, since nodes
are unconnected with each other. In the bonding phase, the clustering coefficient
tends to increase quickly as nodes are clustered into very dense, yet unconnected
components. When the unconnected components subsequently start to connect
with each other, the clustering coefficient drops and stays relatively stable after
some time.

* Betweenness measures the extent to which a particular node lies between the
other nodes in the network:

“(@i,)
B(u) = Z ; (2)
uFiF j o(i,)

where o (i, j) is the number of shortest-paths between nodes i and j, o“(i, j)
is the number of shortest-paths between i and j that pass through u. Nodes
with high betweenness have more power to control the information flow in the

Evolution of the CAiSE Author Community: A Social Network Analysis 19

network, and are normally the gatekeepers who connect several dense groups.
For the network, the maximum betweenness of all authors is therefore a good
indicator of whether there are strong gatekeepers within the network. Maximum
betweenness increases when more components become connected (emergence
stage) and continues to increase when the network develops toward a hierarchical
or interdisciplinary topology. However, maximum betweenness will achieve a
stable value when the network is at focused stage.

* Largest connected component (or giant component) measures the fraction of
nodes that are connected with each other in the largest sub-network. As observed
in Fig. 1, this fraction is small in the first two phases, and gradually increases as
authors from different sub-networks connect with each other. It achieves a stable
state when the fraction of nodes that connect to the largest component is equal to
the fraction of new nodes that stay unconnected from the largest component.

* Diameter is the length of the greatest geodesic distance (i.e., the length of the
longest shortest path) between any two nodes. Intuitively, in the beginning, the
diameter is small, and then it increases. After some time, the diameter starts to
shrink as new edges between existing nodes continue to be added. If the network
develops toward a tree-like topology (hierarchical stage), the diameter will be
larger than in the focused or interdisciplinary topologies.

* Average path length is the average length of all the shortest paths in the network.
Clearly, during the first two phases, the average path length is small and increases
when the network grows. In general, the average path length of a hierarchical
network is larger than that of the other two topologies.

In summary, for the co-authorship network, the emergence of the giant com-
ponent indicates the cohesiveness of collaboration within the community, while
the betweenness shows the existence of gatekeepers and their importance. The
clustering coefficient measures the extent to which the community is clustered into
sub-communities. Other parameters such as diameter and average shortest path
length, show whether the community is still developing or whether it is stable.
For the citation network, combining these parameters helps to understand the
interdisciplinarity of a conference.

2.2 Data: DBLP and CiteSeerX

The data set used in our study integrates the DBLP and CiteSeerX digital libraries.
DBLP is a computer science bibliography, which also includes publications in
interdisciplinary areas of computer science. We retrieved the publication lists of
conferences from DBLP. However, DBLP does not record citations. Therefore, we
used CiteSeerX to fill the citation list of publications in DBLP. DBLP data, as
downloaded in July 2012, consists of 1,138,661 authors, 1,947,188 publications,
3,217 conference series and 1,193 journals. CiteSeerX data was downloaded in
March, 2011, which includes 9,121,166 publications, 22,735,140 references and

20 M. Jarke et al.

over 6 million author names. We combined DBLP and CiteSeerX using the canopy
clustering technique [5]. Overall, the matching algorithm gave us 864,097 pairs
of matched publications. From those data sets, we created the co-authorship and
citation networks for our analysis. The co-authorship network is created based on
DBLP data and the citation network is formulated by the combined DBLP and
CitaSeerX data.

3 Development of CAiSE Community

In this section, we present the analytical results of CAiSE community, concerning
the questions we posed in the introduction. We work inside out, starting with the
positioning of CAiSE within Computer Science, then proceeding to the evolution
pattern of CAiSE with respect to the development model of Sect.2, and end with
the internal structure of CAiSE concerning its main topics and its key players.

3.1 The Position of CAiSE in Computer Science

Our general study of the evolution of the Computer Science community [12] showed
how the field has evolved a coherent giant component with clearly demarked
subfields that have more or less strong citation interactions with each other (see
Fig.2); for example, Theoretical Computer Science interacts, albeit somewhat
loosely, with almost all other areas. An extract from this map (see Fig.3) shows
that CAiSE can be seen as a kind of interdisciplinary gateway between neighboring
research areas such as information systems, databases, software engineering, data
mining and knowledge management, conceptual modeling, process modeling and
world wide web. Overall, 237 conference and journals have at least 50 authors
who also published in CAiSE. Table 1 lists the top 10 among them. Many other
established conferences/journals also have common authors with CAiSE, such as
SIGMOD Record (235 common authors), TKDE (212), TSE (191), ACM SIGMOD
(183), CACM (156), VLDB Journal (127) and IJCAI (105). This demonstrates the
diversity of CAiSE community membership, and its interdisciplinary nature.

The standing of CAiSE within the computer science community can also be
assessed by ranking it in the citation network according to the centrality measures
discussed in the previous section. The data set contains a total of 455 conferences
in the fields of databases, data mining, and software engineering which are close to
CAIiSE in the graph. Among these 455 conferences, which include all the traditional
top conferences of these fields, CAiSE is among the top 8 % in terms of PageRank
[8] and the top 5 % in terms of authority [2], which is already quite good, but among
the top 2 % in terms of betweenness. Thus, CAiSE is not just highly interdisciplinary
but also an important bridge among the other fields and even a strong authority for
its kinds of results.

Evolution of the CAiSE Author Community: A Social Network Analysis 21

Bl Maching Learning and Pattern Recogniion
B Hubmeda
W Maturad Languige and Speech
Networks aad Commenications
Operatng Systems
B inat-Time asd Embedded Systems
-
- s
-
™ -

World Wide Web
W Agorthes and Theory
Aetificial Inteligence
Bonlomatics and Computationsl Beiogy
B Computer Education
B Computer Visicn
Databases
B Cats Mang
I Distributed and Pacallel Computing
B Graghics

I Hardware and Archibecture.
B Human-Computer Interacton
B Informaten Retreval i -

Fig. 2 The map of Computer Science (giant component)

The interdisciplinarity of CAiSE can be shown in more detail by citation data,
which indicate the knowledge exchange between publications. In detail, CAiSE
publications have been cited by 472 conferences and journals. CAiSE publications
have cited publications from 689 conferences and journals. Tables 2 and 3 list top
conferences and journals who cited CAiSE or were cited by CAiSE. Note that the
citation data we extract from CiteSeerX are incomplete and only cover conferences
and journals indexed by DBLP. Therefore, the actual number of conferences and
journals referenced to and cited by CAiSE is somewhat bigger.

To summarize, CAiSE is a very interdisciplinary conference, shown by the
diversity in its membership as well as the citation data.

3.2 Evolution of Author Community Membership

The next question we want to address is how CAiSE community evolves over time.
We apply the model described in Sect.2 on the co-authorship network to analyze
its development pattern. To make our analysis more meaningful, we compare the

22 M. Jarke et al.

Fig. 3 The position of CAiSE in the map of Computer Science

Table 1 Top overlapping conferences/journals with CAiSE

Name of conferences/journals #Common authors

1 International Conference on Conceptual Modeling (ER) 624
2 OTM Conferences/Workshops 435
3 Information Systems 421
4 Data and Knowledge Engineering 358
5 Business Process Management 317
6 International Conference on Data Engineering (ICDE) 305
7 Very Large Data Bases (VLDB) Conference 290
8 International Conference on Information and Knowledge

Management(CIKM) 281
9 International World Wide Web Conferences (WWW) 264
10 Information and Software Technology 256

evolution of CAISE with that of the three well-known conferences at the top of
Table 3: ER, VLDB, and ICDE. Some basic authorship data for these conferences
is summarized in Table 4.

Evolution of the CAiSE Author Community: A Social Network Analysis 23

Table 2 Top conferences/journals who cited CAiSE

Name of conferences/journals #
1 International Conference on Conceptual Modeling (ER) 84
2 Business Process Management 52
3 Data and Knowledge Engineering 41
4 OTM Conferences / Workshops 33
5 Information Systems 28
6 Requirements Engineering 26
7 International Conference on Cooperative Information Systems (CooplS) 22
8 Semantic Web 22
9 International Conference on Service Oriented Computing 22
10 Very Large Data Bases (VLDB) Conference 21

Table 3 Top conferences/journals cited by CAiSE

Name of conferences/journals #
1 Very Large Data Bases (VLDB) Conference 142
2 Communications of the ACM (CACM) 139
3 International Conference on Conceptual Modeling (ER) 132
4 IEEE Transactions on Software Engineering (TSE) 107
5 International Conference on Data Engineering (ICDE) 97
6 International Conference on Software Engineering (ICSE) 87
7 ACM SIGMOD Conference 87
8 Information Systems 82
9 Requirements Engineering 80
10 Data and Knowledge Engineering 78

Table 4 Data summary of ER, ICDE, VLDB and CAIiSE conferences

Conference series Events #Authors #Papers
International Conference on Conceptual Modeling (ER) 19792011 2,997 1,945
International Conference on Data Engineering (ICDE) 19842011 5,886 3,683
Very Large Data Bases (VLDB) Conference 1975-2010 3,660 2,397
Conference on Advanced Information Systems

Engineering (CAiSE) 1990-2012 3,129 1,876

We begin with a simple analysis of the number of published papers over time.
Figure 4a plots the absolute numbers of authors and papers of CAiSE over years. In
general, the numbers of authors and papers increase over years, with a significant
increase in 2002 and drop in 2007; the latter is obviously due to the decision of
the steering committee at that time to reduce the acceptance rate sharply. A view
into the individual proceedings shows that the number of submissions continued
to increase, such that CAiSE nowadays attracts very high numbers of submissions
despite acceptance rates that are among the toughest in the IS area.

Next, we study the distribution of authorship intensity, i.e. the number of CAiSE
conferences authors have published in, and the number of papers they have written
for CAISE. Figure 4b plots this distribution in log-log axes. The distribution of

24 M. Jarke et al.

a b
Distribution of authors according to

Number of authors and papers of CAISE the number of conferences and papers

500 6
—— Author Conference
450 1| —— Paper y=200.311x72806
4 * Paper
400 P
y=81.532x 3%

350
300
250
200

Cumulative frequency
o

150 -2

Number of authors and papers

100

-4
50

0 -6
1990 1995 2000 2005 2010 2015 0 1 2 3 4

Year Number of conferences/papers

Fig. 4 Number and distribution of authors of CAiSE over years

authors according to the number of conferences and papers follows Power-law
distributions with the exponent « equals to 2.806 and 2.33, respectively. This
indicates that there is a “tail” of authors who significantly contribute to CAiSE
despite appearing there only once. In detail, 79 % of authors contributed only to
one conference, while 21 % contributed to at least 2 conferences and 94 authors
(3 %) contributed to at least 5 conferences. In term of the number of papers, 76 % of
authors contributed only 1 paper and 141 authors (about 4 %) contributed at least 5
papers to CAiSE.

To investigate the contributions of returning authors to CAiSE over the years,
we calculated two measures in comparison to our three benchmark conferences:
the rate of recurring authors and their publications over years. A paper is published
by recurring authors if at least one of its authors has published in the previous
conference. A high rate of recurring authors, together with a low rate of papers
by recurring authors, indicates that recurring authors mainly collaborate with each
other (one paper has more recurring authors). On the other hand, a high rate of
recurring authors, together with a high rate of papers by recurring authors, indicates
that recurring authors collaborate mainly with new authors, which contributes to
community development. Those two measures allow us to assess one important
principle to cultivate scientific communities [13]. On the one hand, a community
needs to retain the authors in order to establish and keep the old ideas. On the other
hand, it also needs to attract new authors who probably will bring new ideas.

In Fig.5, we recognize that the basic trend during the early stage of all
conferences is to retain authors. The frequency of papers by recurring authors also
increased. In the first 11 years, CAiSE retained the authors at a lower rate (around
25 %) in comparison to VLDB, ER and ICDE. After that, CAiSE managed an author
recurring at a similar rate as VLDB (around 38 %). Similar observation can be made
for the papers by recurring author rate.

Evolution of the CAiSE Author Community: A Social Network Analysis 25

Recurring authors of VLDB, Paper by recurring authors of VLDB,
ER, ICDE and CAISE ER, ICDE and CAISE
0.6 1
—e—VLDB —e—VLDB
——ER , 09 || ——ER
0.5 | —e—ICDE 0.8 || —¢—ICDE
CAISE ’ CAISE

0.4

Percentage
Percentage

0.3

0.1

30
Age

Fig. 5 Recurring authors and papers by recurring authors over years

In summary, CAiSE constantly developed in the last 24 years in term of authors
and contribution intensity. There is set of authors who contribute continuously and
greatly to CAiSE. Over time, CAiSE manages to not only retain authors who are
working on the established ideas of the conference, but also to attract new authors
who would bring fresh ideas to the community. A comparison of the returning
rating of CAiSE authors and their contributions to other conferences shows that
CAIiSE now retains a healthy fraction of recurring authors in order to keep the
community open.

3.3 The Evolution of Connectivity in CAiSE

Having looked at the phenomena of author activity at the individual level, we
are now in the position to look at the question what this means for the shape
of the CAIiSE author community network as a whole. The basis for this are the
co-authorship graphs, and the six network metrics we defined in Sect. 2.

The evolution of these six metrics for VLDB, ER, ICDE and CAIiSE is shown in
Fig. 6. VLDB, ICDE and CAIiSE expose the same evolution pattern but with a slight
delay for CAiSE. The maximum betweenness and largest connected component of
the co-authorships of VLDB and ICDE started increasing after 10 years, while it
took CAISE 15 years. The ER conference faced an even bigger delay (22 years)
which can perhaps be explained somewhat by the very late entry of US research
into their community. Note that in our earlier studies we also found conferences
where this has never happened, which was typically closely correlated with very
low impact in terms of citation. In this sense, all four conferences can nowadays
be considered successful. However, the decreasing parameters average shortest
path length and diameter over long times (VLDB: 10 years, ICDE: 7 years,
CAISE: 5 years) suggest that these communities are now more stable while the ER

26 M. Jarke et al.

Densification law Clustering Coefficient

—6— VLDB:0.028295"" %% —S—VLDB
€ —+—ER
g,) 10* | —— ER:0.15248"" 2% 2 —6— ICDE
3 —— ICDE:0.17605*x 2924 5
— Q
S 1 CAISE:0.46776*x"1%%" |4 o
[P =
Qo =
E 5
3 10 2
s}
10’ 08
10' 162 168 10° 0 5 10 15 20 25 30
Number of nodes Age
c _ d
Maximum Betweenness Largest connected component
0.06 € 08
2 —e—VIDB | ogoee? 2 —e— VLDB
] 0.05 r| ——ER é_ —+—ER
0.6
c —— ICDE —— ICDE
3 004 8
= el
=] Q
@ 0.03 5 04
< g
> 0.02 g
£ S 02
3 001 ?
= S
S o0
30 0 5 10 15 20 25 30
Age Age
e f
Diameter Average Path Length
25 10
—e—VLDB —6— VLDB
20 | ——ER £ gfl——ER
—6— ICDE) 2 —o— ICDE
= CAISE °
g 15 c 6
E 3
a 10 § 4
g
5 e < 2
ea G
o 0
0 5 10 15 20 25 30 0 5 10 15 20 25 30
Age Age

Fig. 6 Co-authorship network parameters of CAiSE and other conferences

community is still developing. Interestingly, the clustering coefficient of CAiSE and
ER is higher than for VLDB and ICDE, indicating that CAiSE and ER are clustered
in more sub-groups (with many disconnected components).

To summarize, the connectivity of CAiSE community has been increasing
significantly over the last 12 years. The community is developing towards a well-
connected and cohesive structure. Compared to other established conferences, we
see that CAiSE is currently developing as fast as VLDB and ICDE. To illustrate
where this might lead in the future, we compare in Figs. 7 and 8 snapshots of the
co-authorship networks of CAiSE and VLDB for every fifth year of their respective
histories (for CAiSE starting 1989, for VLDB 1975). Obviously, CAiSE and VLDB
developed very similarly in the first 25 years, as both of them built their community

Evolution of the CAiSE Author Community: A Social Network Analysis 27

Fig. 7 Development of VLDB co-authorship network. (a) VLDB in 1975. (b) VLDB in 1980.
(c) VLDB in 1985. (d) VLDB in 1990. (e) VLDB in 1995. (f) VLDB in 2000. (g) VLDB in 2005.
(h) VLDB in 2010

28 M. Jarke et al.

Fig. 8 Development of CAiSE co-authorship network. (a) CAiSE in 1990. (b) CAiSE in 1995.
(c) CAISE in 2000. (d) CAiSE in 2005. (e) CAiSE in 2010. (f) CAiSE in 2012

from a born to bonding, then emergence and finally focused topology. However, the
last 10 years of VLDB (parts (g) and (h) in Fig. 7) also exhibit a possible danger;
they show an ever denser giant component where new authors often can only enter
by co-authoring with members of that component. It might then well happen that
important new topics are not recognized early enough by the community, a danger
that CAiSE has so far well managed to avoid.

The high betweenness centrality and big giant component of the CAiSE
co-authorship network suggest that there is an increasing number of active members

Evolution of the CAiSE Author Community: A Social Network Analysis 29

Aoay.

]

‘ nlue.rns-nrr-nn.maaﬁs;m;, h Jh ., .
USESS process

.
.y
_—
Roy

Fig. 9 The visualization of CAiSE keywords

who collaborate across sub-communities. These very active authors form the core
of the community which we will identify in the next section.

3.4 Main Themes and Key Members of the CAiSE Author
Community

It has been mentioned that CAISE boasts a somewhat richer structure of
sub-communities in its giant components than e.g. VLDB. This can likely be
linked the diversity themes studied by these sub-communities. One of the simplest
and most popular ways to study this phenomenon automatically is simply the
generation of keyword networks based on the paper titles. There is a link between
two keywords if they co-occur in at least one paper title. The connection is weighted
by the number of co-occurences. We visualize this network using the ForceAtlas
layout (see Fig.9), where the size of nodes and labels denotes the PageRank score
of keywords. Nodes are colored according to the clusters detected by a modularity-
based clustering algorithm [7].

30 M. Jarke et al.

s o

o e

L Genrt Poels
Jean uc Hainaut
PR e R A M, Plattini
S/ Rindere-Ma
r S fopivn gy
o -© M. Reichert -
e o
O afinmie
- A p
o553 ~P. Aalst.

t

5% A K Mendhngu Rosamann

e K o) H. F}/Pfcper
S e g AT i ,_
J M I IMmIn.fllle o O has — B e
eter [ora—
ylopouigs: o et
R0 oo s, Brinkkemper m"é‘gau B
el A . Maiden Qﬁ’z‘qland e -) B. Pernici
“‘""U‘m £ e o
: J. Eder
0. P?Stor S. Dlstdar
v?Mww
RigiELifea M. C-Norrie

Fig. 10 Co-authorship network (giant component) of CAiSE (as of 2012)

With surprising clarity, the visualization shows two big clusters around the
topics of Information System and Bussiness Process. For frequent attendees, it
is probably obvious in hindsight that bringing these two themes — one more
from Computer Science, the other more from MIS — together is one of the main
attractions of CAiSE for members of both communities. Indeed, the other major
keywords — Web Service, Process Model, Case Study, Data Warehouse, Object
Oriented, Requirement Engineering, Multi Agent, Ontology Based, Conceptual
Modeling, Management Systems and Semantic Web — are either closely related to
one of these main topics or build some kind of bridge among them.

To investigate the key members in these sub-community and CAiSE as a whole,
we applied two SNA ranking measures: the betweenness and the PageRank score
of authors in the co-authorship network. The CAiSE co-authorship network in
2012 is given in Fig. 10, using again the ForceAtlas layout [1]. Nodes are colored
according to their assignments to sub-communities detected by the modularity-
based clustering algorithm [7]. The size of labels and nodes denotes the PageRank
[8] score of authors. This visualization shows us the key members not only by their
prestige (denoted by PageRank score), but also by their important position in the
collaboration network.

Evolution of the CAiSE Author Community: A Social Network Analysis 31

Table 5 Top 20 authors by betweenness and PageRank in the co-author network

Betweenness PageRank
1 John Mylopoulos 201,591 John Mylopoulos 0.0035
2 ‘Wil M. P. van der Aalst 183,018 Wil M. P. van der Aalst 0.0034
3 Pericles Loucopoulos 148,551 Oscar Pastor 0.0024
4 Birger Andersson 147,759 Jan Mendling 0.0023
5 Raimundas Matulevicius 145,736 Paul Johannesson 0.0022
6 Benkt Wangler 142,569 Boualem Benatallah 0.0021
7 Marlon Dumas 128,972 Manfred Reichert 0.0020
8 Eric Dubois 97,785 Johann Eder 0.0018
9 Jan Mendling 87,883 Moira C. Norrie 0.0017
10 Paul Johannesson 80,494 Colette Rolland 0.0017
11 Arthur H. M. ter Hofstede 79,558 Henderik Alex Proper 0.0016
12 Haralambos Mouratidis 78,250 Barbara Pernici 0.0016
13 Colette Rolland 76,631 Sjaak Brinkkemper 0.0015
14 Paolo Giorgini 70,613 Birger Andersson 0.0015
15 Guttorm Sindre 69,171 Arthur H. M. ter Hofstede 0.0015
16 Boualem Benatallah 67,998 Schahram Dustdar 0.0015
17 Sjaak Brinkkemper 60,984 Mario Piattini 0.0014
18 Jaap Gordijn 60,481 Stefanie Rinderle-Ma 0.0014
19 Roel Wieringa 59,734 Matthias Jarke 0.0014
20 Manfred Reichert 55,062 Pericles Loucopoulos 0.0014

Interestingly, the topic structure is well reflected in this figure, as each of the
themes has a clear “leader”, John Mylopoulos in the case of Information Systems,
and Wil van der Aalst for Business Process. In addition, the many smaller sub-
groups are connected by a set of gatekeepers. For example, Paul Johannesson, Oscar
Pastor, Colette Rolland, Jan Mendling, Manfred Reichert, Pericles Loucopoulo,
Boualem Benatallah, Johann Eder and Barbara Pernici connect their own sub-groups
with many other sub-groups. Those authors together form the core, which ensures
the connectivity of the community as a whole. Moreover, it is interesting to note that
former students and collaborators of the CAiSE founders and Advisory Committee
members Janis Bubenko (most prominently Paul Johannesson), Arne Solvberg (e.g.
John Krogstie and Peter McBrien), and more recently Colette Rolland still play
important betweenness nodes linking the two main subfields. To provide a bit more
detail, Table 5 gives the top 20 authors according to their betweenness and PageRank
score in the co-authorship network.

Complementing the co-authorship network, there is of course the citation
network which, however, extends far beyond the CAiSE community itself. Indeed,
the selection of papers reproduced and commented in this volume was based on
such an analysis, taking the ranking of numbers of citations as a starting point. We
therefore do not discuss this aspect in this chapter. Suffice it to say that the truly
outstanding h indexes of Wil van der Aalst (83) and John Mylopoulos (69) confirm
impressively the exceptional role we also saw in the co-authorship network.

32 M. Jarke et al.

4 Conclusion

The Social Network Analysis of the CAiSE Conference author community shows
a quite interesting strategic position within the Computer Science discipline, and —
after a somewhat slow start — an impressive development towards a conference
community that exhibits all the ingredients of success found in earlier success stories
such as VLDB: a strong giant component of long-term collaborators with very high
impact within and beyond the conference itself, combined with a topical openness
and interdisciplinarity that promises sufficient openness for innovation. The long-
term visionary but very open and friendly leadership of what is now called the
senior Advisory Committee has certainly contributed to this success, as has the small
“revolution” of a few junior key players around 2007 that made CAiSE one of
the most strictly refereed conference in the field and thus — for the naive perhaps
surprisingly — increased not just the prestige and quality, but also the quantity of
submissions from several important collaborating sub-areas.

We hasten to admit that our choice of data sources implies some limitations of
this study. First, both DBLP and CiteSeer show only author and published paper
information about the conference; so our social network is limited to co-authorship,
citation, and keywords. It leaves out the very important network of conference
organizers but also conference attendees and authors of unsuccessful submissions.
Second and perhaps more importantly, especially CiteSeer focuses on Computer
Science only, so our analysis of the integrated data set cannot evaluate impact on or
by related fields in other disciplines such as Management Information Systems.

Despite these limitations, regular CAiSE participants will find that many of their
personal social experiences in CAiSE are reproduced fairly well by even by the
co-author and citation analysis we employ. Perhaps — like the first author — they
have also faced some interesting surprises in this paper which, however, can be
well explained from their deep knowledge of the conference history on second
thought. For ourselves, these limitations create the challenge to find and integrate
data sources which are less narrow in their view of the IT field, yet — unlike much
of the Web of Science — do include information about conferences and their impact.
Especially the broad field of Management Information Systems seems in urgent
need for such a study, as many of their representatives work in business schools
where conference publications are not taken seriously at all.

Acknowledgements This work is supported by the DFG-funded excellence cluster UMIC, the
B-IT Research School, and EU Integrated Project Layers.

References

1. Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for
exploring and manipulating networks. In International AAAI Conference on Weblogs and
Social Media, pages 361-362.

Evolution of the CAiSE Author Community: A Social Network Analysis 33

10.

11.

12.

13.

. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J. ACM, 46:

604-632.

. Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation.

Learning in Doing. Cambridge University Press.

. Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: densification laws,

shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, KDD 05, pages 177-187,
New York, NY, USA. ACM.

. McCallum, A., Nigam, K., and Ungar, L. H. (2000). Efficient clustering of high-dimensional

data sets with application to reference matching. In KDD ’00: Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 169-178,
New York, NY, USA. ACM.

. Newman, M. E. J. (2001). The structure of scientific collaboration networks.

Proc.Natl.Acad.Sci.USA, 98:404.

. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks.

Physical Review E, 69:066133.

. Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking:

Bringing order to the web. Technical report;, Stanford University.

. Pham, M. and Klamma, R. (2010). The structure of the computer science knowledge network.

In 2010 International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 17-24.

Pham, M. C. (2013). Dynamic Social Network Analysis and Recommender Technologies in
Scientific Communities: The Case of Computer Science. PhD thesis, RWTH Aachen University,
Aachen — Germany.

Pham, M. C., Derntl, M., Klamma, R., and Jarke, M. (2012). Development patterns of
scientific communities in technology enhanced learning. Educational Technology and Society,
15(3):323-335.

Pham, M. C., Klamma, R., and Jarke, M. (2011). Development of computer science disciplines:
a social network analysis approach. Social Netw. Analys. Mining, 1(4):321-340.

Wenger, E., McDermott, R., and Snyder, W. (2002). Cultivating communities of practice: a
guide to managing knowledge. Harvard Business School Press.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

A NATURAL LANGUAGE APPROACH FOR
REQUIREMENTS ENGINEERING

C. ROLLAND! C. PROIX?

ABSTRACT : The term Requirements Engineering refers to this part of
a database development cycle that involves investigating the problems and
requirements of the users community and developing a conceptual
specification of the future system.

Natural language plays an important role during this stage that has proved
to be crucial in the development of computerized systems. The required
acquisition of application domain knowledge is achieved either through
documents and texts analysis or by means of interviews i.e through
language manipulation. Similarly validation of the specification is made via
oral discussions with users.

The paper proposes that Requirements Engineering (R.E) should be
supported by a CASE tool based on a linguistic approach. It presents a R.E
support environment that generates the conceptual specification from a
description of the problem space provided through natural language
statements. Complementary, validation is based on texts generation from
the conceptual specification to natural language. The paper focuses on the
linguistic approach, demonstrates its generality and overviews its
implementation in a CASE tool.

KEY WORDS : Requirements engineering, Natural language analysis, conceptual
schema, information system design, text generation

1. Introduction

The need for modelling techniques by which systems may be described in high level
conceptual terms has been recognized in the earlier phases of Databases and Information
Systems (DB/IS) development in industry, business and administration.

1 Université de Paris 1, 17 rue de la Sorbonne, 75231 Paris cedex 05, France
2 Société CRIL, 146 Boulevard de Valmy 92707 Colombes cedex, France

35

36 C. Rolland and C. Proix

This has caused the introduction of various conceptual models that have proved to be
extremely useful to build in a high level specification of the future system (the so called
conceptual schema) before this system is developed. (see the survey presented by Hull and
King [Hull 87] for example).

However, the task of constructing the conceptual schema remains problematical. The
route to reach the conceptual schema e.g the conceptual modelling process has the purpose
of abstracting and conceptualizing the relevant part of the application domain. This is
guided by requirements. The term Requirements Engineering introduced by Dubois
[Dubois 89] has been used for this part of the DB/IS development that involves
investigating the problems and requirements of the users community and developing a
specification of the future system. The succeeding phase, where this specification is
realized in a working system which is verified against the specification may be called
Design Engineering [Bubenko 90]. Figure 1.1 shows the organization of DB/IS
development cycle based upon requirements and system engineering.

REQUIREMENTS ENGINEERING

knowledge
lisition
T~ DESIGN
o CONCEPTUAL
lidat
validation \ SCHEMA A ENGINEERING
— N

.\ design
verification _\ \

COMPUTERIZED
SYSTEM

Figure 1.1 : DB/IS development cycle
Requirements Engineering consists of knowledge acquisition and validation.

The acquisition task falls into two areas, namely, analysis and modelling. The
Requirements Engineering process starts with an observation of the real world, in order to
identify pertinent real phenomena, their properties and constraints, and to classify similar
phenomena into classes. Then the analyst represents and describes the classes, their
properties and constraints through types of a specific conceptual model. Analysis leads to
problem-statements, while modelling allows the description of elements of the conceptual
schema.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 37

The validation task has the objective of checking whether the conceptual schema is
consistent and whether it correctly expresses the requirements informally stated by the
users.

In many cases, analysts are able to correctly use concepts of a model but have difficulties
to abstract reality in order to represent it through these concepts. This is similar to school
students who are able to use simple equations but have many difficulties to build in
equations from problem-statements. Similarly correcting a conceptual schema is easy
while validating its adequacy to requirements is more difficult.

Analysis, modelling and validation are cognitive processes. However, analysis is based on
domain-dependent knowledge, modelling requires model-dependent knowledge and
validation requires both. More generally, Vitalari has shown, [Vitalari 83], [Vitalari 85],
that experienced analysts use different categories of knowledge namely : organization
specific knowledge, application domain knowledge, development methodology knowledge
and functional domain knowledge.

It is the authors' belief that there is a need for CASE tools that support the Requirements
Engineering process in a way that better reflects the problem solving behaviour of
experienced analysts. This requires to identify, understand and formalize the cognitive
mechanisms that allow the analyst to abstract reality and to represent it through concepts
and to diagnose the specification from users points of view.

oIcsI! (French acronym for intelligent tool for information system design) is a system
prototype based on this premise. It exploits knowledge-based paradigms to provide an
active aid to DB/IS analysts during the Requirements Engineering process. OICSI
supports the analysts in the process of problem-statements acquisition, elicitation,
modelling and validation.

In addition, the authors recognize that Requirements Engineering is mainly based on
abstraction and have granted a privilege to a natural language approach.

Indeed, psychological research works dealing with the study of abstraction mechanisms
show that abstraction is strongly interlocked with language manipulation.

Following this line, problem-statements in OICSI are expressed with the French natural
language and automatically interpreted in terms of the OICSI conceptual model.
Complementary, OICSI uses a text generation technique to feed back to the user
information about the specification (i.e the conceptual schema).

This choice is enhanced by the fact that analysts do not proceed by direct observation of
the real world but through a media which is the natural language. Indeed, the two most
common ways for acquiring application domain knowledge are interviews and studies of
existing documents (forms, legal documents...).

1 OICSI is the name used in the academic area; in the industrial world this case tool is
named ALECSI, it is developed by CRIL company.

38 C. Rolland and C. Proix

According to the OICSI paradigm illustrated in figure 1.2, the analysis task refers to the
description of the relevant real world phenomena using the French natural language, the
modelling task refers to the mapping of problem-statements onto basic concepts of the
OICSI underlying DB/IS development methodology and the validation task is based upon
a paraphrased description of the conceptual schema in the French natural language.

PROBLEM
analysing STATEMENTS mapping
describing
APPLICATION) CONCEPTUAL
DOMAIN SCHEMA
validating paraphrasing
PARAPHRASED]
DESCRIPTION

Figure 1.2 : Analysis and Modelling process.

Using OICSI, the conceptual schema is hidden to the future system users. The "system
referential”, they have to understand, comment upon and validate, is expressed using
natural language. Even for the analysts the conceptual model and the conceptual schema
are partially hidden since OICSI automatically supports modelling as well as text
generation.

However, it must be mentioned that OICSI provides a graphical interface. Depending on
their personal abilities to understand conceptual modelling, the analysts will use the most
appropriate interface.

Similar approaches to solving Requirements Engineering from the description of the
application domain uttered with natural language sentences have been followed for
example in the AMADEUS project which aims at combining graphics and natural
language [Black 87]. Others examples are SECSI [Bouzegoub 86] and ACME [Kersten
86] which are conceptual modelling expert systems.

Text generation has been used in different areas of databases : it is an important matter in
natural language interfaces to databases; it also used for tutorial purposes in learning a
query language and for generating readable error messages. Examples of prototype systems
are EXPOUND [Chester 76] which translates formal proofs into English, CO-OP
[McKeown 86] based upon a syntactic approach, PERFORM [Muckstein 85] and ELFS
[Luk 86] which are knowledge based approaches for text generation from SQL to natural
language, De Roeck paraphrasing of relational calculus [De Roeck 88} and Grishman
paraphrasing of predicate logic [Grishman 79].

The remainder of this paper describes the natural language approach for Requirements
Engineering and its implementation in OICSI. Section 2 presents the linguistic approach
for requirements acquisition and elicitation. The paraphrasing mechanism for validation is
presented in section 3. A brief overview of implementation aspects is given in section 4.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 39

2. The linguistic approach

Conceptual modelling in OICSI is based on a linguistic approach that tries to formalize
the linguistic mechanisms through which analysts are able to abstract observed
phenomena onto concepts.

The problem-solving behaviour of analysts is first intuitively introduced. The "CASE for
CASE" theory (which is the foundation of the formalization of the analyst behaviour) is
thus recalled. Finally, our linguistic approach is detailed and the conceptual schema
generation is presented.

2.1 Intuitive introduction to analysts problem solving
behaviour

This section is an attempt to highlight the linguistic mechanisms used by analysts.

Let us imagine that our favourite analyst Ado is used to manipulate the Entity-
Relationship (E-R) model [Chen 76]. This means that Ado will try, when observing the
real world, to identify classes of real world phenomena that can be modelled as entity
types, attributes or relationship types.

Thus, during an interview, if Ado hears the sentence:

"A subscriber has a name and an address.”
He will probably introduces in the conceptual schema an entity type SUBSCRIBER with
two attributes NAME and ADDRESS.
Now, in order to understand the analyst behaviour, let us ask the question :"How did Ade
get this result?".

A first response could be that Ado knows the meaning of the words "subscriber”, "name"
and "address", and how they relate one with others. This means that Ado uses a kind of
common-sense knowledge to match the sentence onto the E-R schema. This knowledge is
based on couples (word, real object) which allow to relate a word to a well known object
in the real world.

But assume now that the sentence is :

"The colydrena have a pedistylus and a folicul."
As Ado did, many analysts will make the hypothesis that the word "colydrena" is a non
lexical object type that can be modelled by an entity type and that "pedistylus" and
"folicul” are two attributes related to the entity type. Ado is not certain that he did the
right interpretation of the sentence but the interpretation is plausible and he can, later,
validate its truth discussing with domain specialists.

In this case, Ado did not use the same kind of common-sense knowledge as previously.
He does not know the meaning of the words (they are imaginary), but, however without
any understanding of the words he found a model of the described situation (which is,
indeed, correct).

40 C. Rolland and C. Proix

Ado's reasoning is based on the recognition of a particular sentence pattern which is
colloquial to him. The knowledge which is used, is a linguistic knowledge related to
language manipulation. It allows him to recognize and to interpret the following sentence
pattern :

<Subject Group><Verb expressing ownership><Complement Group>

The pre-established interpretation of such pattern allows Ado to associate the subject
group of the sentence to a real entity class as the owner of the attributes represented by the
complement group's words.

The linguistic knowledge is certainly the most common knowledge within the analysts
population. Analysts use it, sometimes explicitly, but most often in an implicit way.
Our goal is to make explicit the different types of sentence patterns in order to formalize
this kind of linguistic knowledge and to support the process of the problem-statements
interpretation and modelling in a computerized way.

The linguistic approach implemented in OICSI is borrowed from the Fillmore's theory
"Case for Case" [Fillmore 68].

Section 2.2 summarizes the main points of this theory. Its specialization for OICSI is
presented in section 2.3,

2.2 The Fillmore's case system

The main concept of the Fillmore's theory is the notion of case introduced as follows:
"the case notions comprise a set of universal, presumably innate, concepts which identify
certain types of judgement human beings are capable of making about the events which
are going on around them...".

Cases are types of relationships that groups of words have with the verb in any clause of a
sentence. One of the basic Fillmore's assumption is that it exists a limited number of
cases. Fillmore exhibits six major cases: AGENTIVE, INSTRUMENTAL, DATIVE,
FACTITIVE, LOCATIVE and OBJECTIVE.

(1) John opens the door.

(2) The door is opened by John.

(3) The key opens the door.

(4) John opens the door by means of the key.
(5) John uses the key in order to open the door.
(6) John believes that he will win.

(7) John is ill.

Figure 2.1 : Examples of sentences

For example in sentences (1) and (2) of the figure 2.1 "John" is associated to the case
AGENTIVE and "door" to the case OBJECTIVE; the word "key" in sentences (3), (4), (5)
is associated to the INSTRUMENTAL case, while in sentences (6) and (7) "John" is
associated to the DATIVE case.

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 41

Obviously, the same word can correspond to different cases in different sentences.

One complementary assumption of the Fillmore's theory is that the meaning of any
clause is derivable from the meaning of the verb and the recognition of embedded cases.
This leads to the identification of predefined patterns with associated derivable meanings.

For example, due to the fact that sentence (1) has a structure of the type:
<Verb expressing action, AGENTIVE, OBJECTIVE>
allows to infer that "John" is the agent who performs the action on the object "door".

Sentences (1) and (2) correspond to the previously mentioned structure; the structure of
sentence (3) matches the type :
<Verb expressing action, INSTRUMENTAL, OBJECTIVE>
and finally, sentences (4) and (5) have the following pattern :
<Verb expressing action,OBJECTIVE, AGENTIVE, INSTRUMENTAL>,

The Fillmore's patterns allow to perform a classification of natural language sentences
with regards to their structure and, thus, to infer their meaning according to the class they
belong to.

2.3 Specialization of the Fillmore's case system

Experimentations of the Fillmore's theory convinced the authors that the theory was
applicable and pertinent to support the DB/IS analysis and modelling process. However,
we reach the conclusion that the cases might be adapted to the purpose of establishing
problem-statements allowing the construction of an DB/IS conceptual schema. Indeed
statements about real world phenomena fall into two categories: fact descriptions and
rules.

Examples of fact descriptions (we consider a subscription library system) are as follows:

(1) In the library, a book is described by a unique reference number, the authors'
names, the publisher name and the year and version of editing.

(2) Last and first names of the subscriber, his address, first year of subscription and
last date of subscription fees payment are recorded.

(3) The status of each copy of a book is recorded in real time.

Our understanding of facts is similar to the Nijssen's approach [Nijssen 89].
The following are examples of rules:

(1) Subscription fees are paid every year.

(2) A subscriber, properly registered (i.e who paid the fees) is called an "active"
subscriber.

(3) A subscriber cannot borrow more than three books at the same time.

(4) Books are only loaned to active subscribers.

(5) When a loan request cannot be satisfied it becomes a "waiting request".

(6) After 13 months without paying the subscription fees, the subscriber status
becomes "inactive".

(7) "Waiting request" are treated in their chronological order.

42 C. Rolland and C. Proix

As just exemplified, rules can express management rules independent or dependent of
time, static constraint rules or dynamic constraint rules .

Sentences describing either facts or rules are the problem-statements that OICSI
automatically interprets by performing a case approach.

2.3.1 The case classification

The case notion has been extended in two directions: cases are applicable to clauses and
the classification of cases has been revised.

. According to the Fillmore's theory, cases relate to words in sentences. It is the authors'
belief that the notion of case could be successfully applied not only to words but also to
clauses in sentences. This allows to interpret a complex sentence in a top-down fashion.
The case approach is first applied to subordinate clauses with regards to the verb of the
main clause. Thus, the case approach is again applied to each of the subordinate clause.

. The classification of cases nsed by OICSI is as follows :
<OWNER, OWNED, ACTOR, TARGET, CONSTRAINED", CONSTRAINT®,
LOCALIZATION® , ACTION® , OBJECT>.

We exemplified the meaning of these cases on the following set of sentences.

(1) A subscriber is described by a name, an address and a number.
(2) A subscriber borrows books.
(3)When a subscriber makes a request of loan, the request is accepted, if a copy of
the requested book is available, else the request is delayed.
In sentence (1), "subscriber” is associated to the OWNER case and "name”, "address” and
"number" are associated to the OWNED case.

In sentence (2), "subscriber" is associated to the ACTOR case and the OWNER case,
while "books" is associated to the OWNED case; these two cases express that there is a
relationship between "subscriber" and "books". The entire clause is associated to the
ACTION case.

In sentence (3) :

- the clause "When a subscriber requests for a loan" is associated to the
LOCALIZATION case,

- inside this clause, the phrase "request of loan" is associated to OBJECT case,

- the clause "if a copy of the requested book is available” is associated to the
CONSTRAINT case,

- the clause "the request is accepted" is associated to the ACTION and the
CONSTRAINED case,

- inside this clause, the word "request" is associated to the TARGET case.

* denotes cases that may be applied to clauses

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 43

Complementary, classes of verbs have been identified. The figure 2.2 shows both the
hierarchy of classes and some examples of class instances.

/ N
OWNERSHIP ACTION STATE EMERGENCE
to include to make to be to arrive
to have to update to appear to occur
to compose to record etc.. to happen
elc.. 1o erase elc...
etc...

Figure 2.4 : Hierarchy and instances of classes of verbs

2.3.2 The linguistic patterns

A set of patterns that combine cases and classes of verbs previously introduced have been
defined. These patterns are of two different types:

- elementary patterns allow to associate cases to syntactic units of a clause,

- sentence patterns allow to associate cases to clauses of a sentence.
Both are introduced and exemplified in turn.

Elementary patterns

They fall again into three different categories:
- structural pattern,
- behavioural pattern,
- constraint pattern.

SP1 and SP2 are examples of simple structural patterns.

SP1 : [Ng_subject](OWNER) [verbal form](ownership_subject)
[Ng_complement}(OWNED)

SP2 : [Ng_subject](OWNED) [verbal form](ownership_complement)
[Ng complement](OWNER).

The notation [syntactic unit](case) means that the "syntactic unit" is associated to the case
"case”. The following abbreviations Ng, Cl, Sub, Mn, are respectively used to refer to a
Nominal group, a Clause, a Subordinate clause and a Main clause.

The clause : "any subscriber has a name and an address" matches the SP1 pattern and can
be interpreted in the following way:
- the clause subject "any subscriber” plays the role of OWNER,
- "has" is the verb belonging to the ownership class,
- "a name " and "an address" are subject complements playing the role of
OWNED.:

44 C. Rolland and C. Proix

It is obvious that patterns of the SP1 family are appropriated to fact sentences.
The sentence " loan-requests are made by subscribers" can be unified to pattern SP2.

BP1, BP2, BP3, and BP4 are four examples of behavioural patterns.

BP1 : [Ng_subject](ACTOR) [verbal form](action)
[Ng_complement](TARGET)

BP2 : [Conjunction](LOCALIZATION) [Ng_subject](ACTOR)
[verbal form](action) [Ng_complement](OBJECT)

BP3 : [preposition](LOCALIZATION) [Ng](OBJECT)

BP4 : [Ng](TARGET) [verbal form](action)

"Subscribers borrow books" is a clause that matches the BP1 pattern :
- "subscribers" as the subject of the clause plays the role of ACTOR,
- "borrow" is a verb belonging to the action class,
- "books" is the subject complement which plays the role of TARGET.

The clause : "when a subscriber returns a book copy" can be unified with BP2 pattern
with the following interpretation:

- "when" is a conjunction that expresses the LOCALIZATION of the action,

- "a subscriber" is the subject that plays the role of ACTOR,

- "returns” is the verb that belongs to the action class,

- "a book copy" is the complement that plays the role of OBJECT of action.

BP3 is a pattern which deals with circumstantial complements and, for this reason, is not
organized around the verb but around the preposition.

Within the clause: "As soon as the receipt of a subscriber’s subscription fees, the
subscriber’s status is updated”, the phrase "As soon as the receipt of a subscriber’s
subscription fees" matches the BP3 pattern with the following interpretation:
- "As soon as" is the preposition that describes the LOCALIZATION of action
expresses by the clause,
- "the receipt of a subscriber's subscription fees" is the phrase that plays the role
of OBJECT.

Finally the BP4 pattern allows to interpret a particular type of clauses which describe
actions such as "the loan is agreed upon".

At last CP1 is an example of constraint pattern.

CP1 : [Ng_subject](CONSTRAINED) [verbal form](state)
[Ng_complement}(CONSTRAINT)

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 45

The clause: "the number of loans is equal or less than three", can be unified to the CP1
pattern in such a way that:
- "the number of loans" plays the role of CONSTRAINED, and
- "equal or less than three" is the predicate group associated to the CONSTRAINT
case.

Sentence patterns

The sentence patterns define the cases of embedded clauses in a same sentence. They are
constructed combining elementary patterns. Let us consider two examples:

SPT1 : [Main clause]

SPT2 : [Subordinate clause unifying a BP pattern}(LOCALIZATION)
[Subordinate clause unifying a BP2 pattern](CONSTRAINT)
[main clause unifying a BP pattern with a verb expressing an
action](ACTION + CONSTRAINED)

SPT1 corresponds to sentences composed with only one main clause. This clause must be
able to match :

- either a structural pattern; the sentence "A subscriber is described by his name
and his address" is an example of it,

- or a behavioural pattern with a verb expressing an action; "Subscribers borrow
copies of books" matches this pattern. The ACTION case is thus affected to the
sentence,

- or a constraint pattern; this corresponds to the sentence "The number of loans is
limited to three". This sentence is associated to the CONSTRAINT case.

The subordinate ¢lause that can be unified to a behavioural pattern determines the spatio-
temporal LOCALIZATION of the action described by the main clause.

The sentence: "When there is a loan request, the loan is agreed only if the subscriber’s
status is "active" and if a copy of the requested book is available™ corresponds to the SPT2
pattern :
- the clause "When there is a loan request” matches the BP2 pattern and is
associated to the LOCALIZATION case;
- the clauses "only if the subscriber’s status" and "if a copy of the requested book is
available” match the CP1 pattern and are associated to the CONSTRAINT case.
- the clause "the loan is agreed" matches the BP4 pattern and corresponds
simultaneously to the ACTION and CONSTRAINED cases.

2.4 Conceptual schema generation

We assume that it is possible to simply link cases and concepts. Thus the conceptual
schema generation is grounded upon rules that map cases onto concepts. These rules are
dependant of the target conceptual model. Conversely the linguistic patterns are
independent of a particular modelling technique and can be used within any design
methodology.

46 C. Rolland and C. Proix

Figure 2.3 gives a brief overview of the main mapping rules implemented in the OICSI
envirronment. We recall that OICSI is based upon the REMORA methodology [Rolland
82] which identifies four basic concepts namely, objects, actions, events and constraints.
A detailed description of this aspect can be found in [Rolland 87]. These are the four type
of nodes of the semantic net used by OICSI to implement the conceptual schema under
construction. Arcs of the net are of five types :

-1l : expresses a relationship between two objects nodes;

- md : expresses that an action modifies an object;

- tr : expresses that an event triggers an action;

- act ; expresses that an object has a particular state change which is an event;

- ct : connect a constraint to the node (object, action or event) which is

constrained. ,

CASE to NODE
OWNER
OWNED
ACTOR = ENTITY NODE
TARGET
OBJECT

LOCALIZATIONa=p» EVENT NODE

ACTION i ACTION NODE
CONSTRAINT == CONSTRAINT
NODE
CASE to ARC
OWNER =g origin of 1] arc
OWNED == endofrlarc
ACTION == origin of md arc
TARGET =g end of md arc
LOCALIZATION e origin of tr arc
ACTION =g end of tr arc
LOCALIZATION mseap- origin of act arc
OBJECT maup end of act arc
CONSTRAINT ammgm origin of ct arc
CONSTRAINED =g end of ct arc

Figure 2.3 : Mapping rules

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 47

3. Conceptual schema validation and paraphrasing

The Requirements Engineering process includes also the validation cycle. In order to base
the whole Requirements Engineering process on a natural language approach, we propose
to feed back to the user information about the conceptual schema using again the French
natural language.

The paraphrasing technique we have developed has the scope to generate natural language
texts using the words and expressions of the users community and avoiding to describe the
conceptual schema contents in technical terms.

We introduce first the main principles of the techniques used for text generation and then
we present our solution to conceptual schema validation by paraphrasing.

3.1 Principle of natural language generation

A system for text generation must be able to select information from some knowledge
base and to organize it into a natural language text. Several approaches have been
proposed for this purpose. Most of them use the distinction between the "what to say"
from the "how to say". However, they differ from the degree of overlap of these two
aspeclts.

The "what to say" deals with the determination of informations which are relevant for the
purpose of the text, with what the users need to know, and how much detailed an object or
event must be described.

The "how to say" deals with the choice of a linear order for the information selected,
specifying how to aggregate the information (determination top-form paragraphs and
sentence boundaries).

The structuralist approach, which is mainly represented by Bloomfield [Mounin 72],
[Harris 85], admits this distinction but concentrates the semantics in the "how to say".

The fonctionnalist approach [Harrys 85] is not aware of this distinction. In this approach
the "what to say” and the "how to say" are mixed.The sentences are directly built from the
knowledge base.

Finally the third approach admits that the major part of the semantic is included in the
"what to say" and the minor part of it is in the "how to say" [Chomsky 57]. Chomsky
who has initially followed the structuralist approach is the father of this third approach.

Among the set of possible solutions we have retained the Chomsky approach [Chomsky
65] .

The basic Chomsky assumption is the existence of a underlying structure, namely the
deep structure, to any sentence in any human language. In addition, there is an infinite
number of ways, namely the surface structures to represent the deep structure in different
languages.

The deep structure expresses the semantics of a sentence by means of semantic elements
and relationships among them. It corresponds to the "what to say".

48 C. Rolland and C. Proix

Grouped all together, the deep structures corresponding to a knowledge base, allow us to
reach a semantic understanding of its contents.

The surface structure represents each sentence of a text by means of a set of phrases. It
corresponds to the "how to say". Many sets of surface structures may correspond to the
same deep structure. In addition, it is possible to define a set of transformation rules (a
generative grammar {Chomsky 691) which allow to map a deep structure into an infinite
set of surface structure.

Based upon this distinction the process of generating natural language texts is summarized
in figure 3.1.

Knowledge
Base

J Extraction step

Deep
structures

Transformation step

Surface structures

Linearization step

Y

Sentences

Figure 3.1 : process of generating natural language texts

It is assumed that the knowledge base provides the description of some application
domain.

The first step consists of defining the appropriate deep structures for the knowledge base
contents. Deep structures are often represented through semantic nets.

The second step maps the deep structure onto a surface structure. This step uses a
generative grammar [Chomsky 69] which allows to produce skeletons of sentences in the
target natural language. This surface structure includes all the phrases of the future
sentence and its grammatical structure.

The last step, so called linearization step, uses the surface structure to produce a readable
sentence. This step uses a lexical knowledge base in order to solve problem such as :

- determination of valid articles,

- tacking into account singular, plural, ...

- use of idiomatic forms,

- phonological short-cuts.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 49

It is eventually possible to complete the process by a structuration step which aims at
reorganizing the collection of sentences into chapters, sections and paragraphs.

3.2 The OICSI paraphrasing process

Following the Chomsky's guidelines we have organized the process for paraphrasing from
the conceptual schema to a French text into a similar way which is shown in figure 3.1.

The knowledge base mentioned in figure 3.1 is the OICSI base of facts i.e. the semantic
net which represents the conceptual schema under construction.

The deep structure definition consists of grouping nodes and arcs of the semantic net. As a
matter of fact, two rules are used in order to group in a same deep structure :

- all the nodes and arcs describing an entity,

- all the nodes and arcs describing an event and its triggered operations.

We name a situation of the semantic net, a set of nodes and arcs which correspond to a
deep structure.

This solution is motivated by the fact that we want to restitute to the users descriptions of
their application domain as close as possible to the problem statements they have initially
provided to the system. Following our assumption in section 2.3 , we consider that facts
and management rules are the two easier entry points for users in the process of
developing information systems.

NUMBER
1 CoPY ENTITY
i \SCRIB 1l aclion
I\/ 1 AUTHORS constraint
NAME event
i BOO
ADDRESS
d TITLE

md»— REQUES

T ‘\md

the request is delayed .
the request is accepted

a .
r

tr
if a copy of the requested if a copy of the requested

book is book is available
not available

When a subscriber requests for & loan

Figure 3.2 : The graphical representation of the conceptual schema

50 C. Rolland and C. Proix

Thus the text generated by the system will describe :

- on one hand, the static aspects of the world through entities, their properties and
relationships;

- on the other hand, the behavioural aspects through rules with the standard pattern "when
event, if condition then action”.

For example, from the conceptual schema presented in the figure 3.2, the system
recognizes the two deep structures shown in the figure 3.3.

COPY

1l
AUTHORS

Boox(r
1l '/ rl\ TITLE

REQUEST

33a

the request is accepted

e

if a copy of the requested
book is available

When a subscriber requests for 2 loan

33b
Figure 3.3 : The two deep structures recognized from figure 3.2

The 3.3a deep structure includes all informations about the entity BOOK, and the 3.3b
deep structure includes all informations about the event "a subscriber requests for a loan".

The second step is the transformation of a deep structure into a surface structure. We
make the hypothesis that the number of different types of situations in the conceptual
schema is limited and that these situations are well defined. Therefore, the transformation
step is based on a set of surface structure patterns which are associated to each type of
situation.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 51

For example, the 3.3a deep structure will be associated to the following surface structure:

sentence(verb(to have), subject(book), complement(title, many copies, one or
many authors, one or many requests)).

The 3.3b deep structure corresponds to the following surface structure :

sentence(circumstantial proposition(a subscriber requests for a loan),
conditional proposition (if a copy of the requested book is
available),
main proposition(the request is accepted)).

The last step is the linearization phase. Using lexical knowledge and the surface structure
this step produces readable sentences. The main tasks realized here is :

- to conjugate correctly the verbs of the sentence;

- to determine the conjunctions for the subordinate propositions;

- to select the appropriate articles.

For example, the sentences produced from the previously defined surface structure are :
- A book has a title, many copies and one or many authors.
- When a subscriber requests for a loan, if a copy of the requested book is
available then the request is accepted.

4. Implementation overview

The two processes, namely the conceptual schema generation process and the paraphrasing
process are implemented in an expert system approach. This means that the two processes
are performed by an inference engine which uses rules. For modularity and flexibility
reasons the rules are Prolog production rules.

We limit ourselves to a brief overview of the two processes mentioning the different
classes of rules and their role.

4.1 The conceptual schema generation process

The OICSI inference engine uses three main classes of rules :

- lexical and syntactic rules,

- linguistic rules,

- mapping rules,
in order to progressively transform NL sentences onto nodes and arcs of the semantic net.
The process is organized into three steps.

. During the analysis step the system builds an internal representation of the initial
sentences by means of syntactic trees, with the purpose of decomposing each sentence
into grammatical unit.

This part of the process is based on wellknown techniques developed for the general
purpose of natural language recognition [Bruce 75], [Cordier 79] and [Kayser 81].

52 C. Rolland and C. Proix

The role of lexical rules is to determine the grammatical nature of each word of any clause
of a sentence and to classify the verb clause into the four classes: ownership, action, state,
emergence. Lexical rules use a dictionary which contains information about the
grammatical nature of words and about the meaning and the classification of verbs.
Syntactic rules allow the system, on one hand, to verify that a sentence belongs to the
authorized language, and, on the other hand, to build up the syntactic trees. These rules are
based on the use of a generative grammar which corresponds to the system’s grammatical
knowledge.

. During the linguistic step, the system makes pattern matching in order to unify each
syntactic tree with one of the sentence pattern defined in section 2, and to associate each
syntactic unit with a case. Pattern matching and association of cases to the phrases of a
sentence is performed simultaneously in the same rule. Basically any linguistic rule as the
following form :
- the premise of the rule correspond to the conditions that allow to recognize
the sentence (or clause) pattern,
- the conclusions of the rule associate cases to elements of the sentence (or
clause).

Patterns recognition is based both on the class of the verb (as identified during step 1 and
attached to it in the syntactic tree) and on the grammatical structure of the sentence (or
clause). Generally, a pattern is implemented through a set of linguistic rules in order to
take into account the variety of grammatical structures. As an illustration, rules RL1 and
RL2 are two examples of rules necessary for implementing the pattern SP1.

RL1 :
IF meaning(clause(verbal form)) = ownership_subject
AND gram_structure(Ng_subject) = <article, noun_1>
AND gram_structure(Ng_complement) = <article, noun_2>
THEN case(noun_1) = OWNER

case(noun_2) = OWNED.

RL2 :

IF meaning(clause(verbal form)) = ownership_subject

AND gram_structure(Ng_subject) = <article, noun_1, predicate_1>

AND gram_structure(Ng_complement) = <article, noun_2>

AND gram_structure(predicate_1) = <preposition, article, noun_3>

THEN case(noun_1) = OWNER(verb)* and OWNED(predicate)
case(noun_2) = OWNED.

* the notation OWNER(verb) and OWNED(predicate) mean that the role OWNER is
played in regards to the verb and that the role OWNED is played in regards to the
predicate. By default, the case meaning is in regards to the verb.

. Finally, the mapping step consists of building the semantic net. Each syntactic tree
is mapped onto a set of nodes and arcs of the semantic net. Mapping rules implement the
relationship summarized in figure 2.3 (see section 2). They allow to automatically build
nodes and arcs of the semantic net from cases and patterns determined in the previous step.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 53

4.2 The paraphrasing process

Similarly the OICSI inference engine uses three main classes of rules :
- extraction rules,
- transformation rules,
- linearization rules,
in order to perform the three steps of the paraphrasing process illustrated in figure 3.2.

. Extraction rules are used to cluster nodes and arcs related to either an entity or an
event type and to construct the corresponding deep structure.

. Transformation rules allow to map the deep structures into surface structures. A
pattern matching mechanism is used in order to associate L0 a deep structure the
appropriate surface structure.

. Linearization rules are used in order to rewrite a surface structure into a readable
sentence. They include rules for to conjugate the verbs, to select the article and so on. A
major part of these rules use a dictionary which represents the lexical knowledge of the
tool.

Obviously, the two processes (conceptual schema generation and paraphrasing) are
performed in an interactive way. For example the user's aid may be solicitated during the
analysis step to add a new verb in the dictionary. At any time the user can ask for
explanation about the system deductions and this can lead to pattern transformation. At
last the analyst/user is allowed to directly manipulate the semantic net through a graphical
interface in order to add, delete or change any arc or node of the net. In addition, the two
processes are fully integrated. This means that the user can ask for paraphrasing from the
conceptual schema at any point of its generation process. This allow to constantly keep
the equivalence between a set of natural sentences and the formalized conceptual schema.
We believe that this is helpful to validate the conformance of the system specifications to
the user requirements.

Similar considerations have been discussed as the premise of the RUBRIC [Van Assche
88] and TEMPORA [Loucopoulos 90] projects.

A more detailed description may be found in [Loucopoulos 92].

5. Conclusion

The paper has argued that the natural language plays an important role during the DB/IS
development cycle. Therefore, the ideas that Requirements Engineering should be
supported by a Case tool based on a linguistic approach and that validation of
specifications must be performed by means of text generation technique have been
presented.

In a first time, the work reported in this paper is based on the premise that Requirements
engineering is strongly interrelated to language manipulation. It represents an attempt at
improving problem-statements elicitation, interpretation and modelling through the use of
a linguistic approach. It is proposed that the problem-statements for an information
system development should be expressed via natural language sentences.

54 C. Rolland and C. Proix

The work reported presents how a linguistic approach based on the Case notion can be
used to automatically carry out the IS modelling. The paper details the linguistic approach
and its implementation in the expert design system, known as OICSI. The thesis put
forward in the paper is that the linguistic approach is general, in the double sense that it
can be customized for different modelling techniques and, in addition, it can be applied in a
wider sphere of problems. From this point of view the work reported relates to other
research works such KOD {Vogel 88] or SECSI [Bouzeghoub86].

In a second time, the paper presents some solutions based on theorical linguistic works in
order to validate the conceptual schema by paraphrasing from conceptual schema to natural
language texts. This paraphrasing technique has the scope to generate natural language
texts with. words and expressions of the users community and avoiding description of the
conceptual schema contents in technical terms,

References

[Bouzeghoub 86] M. Bouzeghoub and G. Gardarin : "SECSI : an expert system approach for
data base design", in Proc. of IFIP world congress, Dublin, Sept 1986.

[Bruce 75] B. Bruce : "Case systems for natural language”, Artificial Intelligence Nb 6,
1975.

[Black 87] WIJ. Black: "Acquisition of Conceptual data models from natural language
descriptions, 3rd Conf. of the European chapter of ACM, Danemark, 1987.

[Bubenko 90] J. Bubenko et all : Syslab/Decode research plan Syslab report 1990.

[Chen 76] P.P.S Chen : "The entity relationship model : toward a unified view" ACM Trans.
on data base systems, Vol 1, Nbl, 1976.

[Chester 76] D. Chester : "The translation of formal proofs into English”, Artificial
Intelligence, vol 7, n°2, 1976.

[Chomsky 57} N. Chomsky : "Syntactic strutures”, Mouton Ed, The Hague 1957.
[Chomsky 65] N. Chomsky : "Aspects of the theory of syntax”, MIT Press Ed, Cambridge
Mass, 1965.

[Chomsky 69] N. Chomsky : "Language and Mind", Payot ed, 1969.

[Cordier 79] M. Cordier: Connaissances sémantiques et pragmatiques en compréhension du
langage naturel, 2Cme congrés AFCET-INRIA, Reconnaissances des formes et Intelligence
Artificielle, Toulouse 1979.

[De Roeck 88] AN.D Roeck, B.G.T. Lowden : "Generating English paraphrases from formal
relational calculus expressions” Coling (Pub) 1988.

[Dubois 89] E. Dubois, J. Hagelstein, A. Rifaut : "Formal requirements engineering with
ERAE", Philips journal of research, vol 43, N) 3/4 1989.

[Grishman 79] R. Grishman : "Response generation in question answering systems" in ACL
1979.

[Fillmore 68} CIJ. Fillmore : "The Case for Case", in Universals in linguistics theory; Holt,
Rinehart and Winston, Inc., E. Bach/R.T. Harms (eds) 1968.

[Harris 85] M. Dee Harris : "Introduction to Natural Language processing”, Reston
Publishing company, 1985.

[Hull 87] R. Hull and R. King : Semantic Database Modeling : Survey, Applications and
Research issues”, ACM computing Surveys, vol 19, n”3, 1987.

[Kayser 81] D. Kayser : "Les ATN sCmantiques" 3Cme congris AFCET-INRIA,
Reconnaissances des formes et Intelligence Artificielle, 1981

[Kersten 86) M.L. Kersten, H. Weigand, F. Dignum, J; Proom: "A conceptual modelling
expert system", 5th Int. Conf. ont the ER Approach §. Spaccapietra(ed), Dijon, 1986.
[Loucopoulos 90] P. Loucopoulos et all : "From software engineering to business
engineering: Esprit projects in information systems engineering”, in CAISE'90, Int.
Conference on : "Advanced Information System Engineering ", Springer-Verlag, 1990.

From: CAIiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992 55

[Loucopoulos 92] "Conceptual modelling databases and Case: an integrated view of
information systems development”, P. Loucopoulos (ed), Mac Grawhill (Pub) 1992 (to be
published).

[Luk 86] W.S Luk, S. Kloster : "ELFS: English language from SQL", ACM Trans. on
Databases systems, vol 11, n°4, 1986.

[Mc Keown 86] K. Mc Keown : "Paraphrasing questions using given and new information",
Am. journal of computational linguistics, vol 9 n°1, 1986.

[Muckstein 871 E.M Muckstein, M.G. Datovsky :" Semantic interpretation of a database
query language”, Data and Knowledge engineering, vol 1, 1985.

[Maddison 83] R. Maddison : "Information System methodologies”, Wiley-Heyden 1983.
[Mounin 72] G. Mounin : "La linguistique du 20iéme siécle", Presses Universitaires de
France Ed, 1972.

[Nijssen 89] G.M. Nijssen, T.A. Halpin : "Conceptual Schema and relational database
design : a fact oriented approach”, Prentice-Hall, Englewood Cliffs, New Jersey, 1989.

[Olle 82] T.W. Olle, H.G. Sol and A.A Verrijn Stuart :"Information System design
methodologies : a comparative review", (IFIP WG 8.1 CRIS 1) North Holland, Amsterdam , NL,
1982.

[Rolland 82} C. Rolland and C. Richard : "The Remora methodology for information
systems design and management” in [Oll 82].

[Rolland 87] C. Rolland, G. Benci and O. Foucault : "Conception des systémes
d'information : la méthode REMORA", Eyrolles (Pub) 1987.

[Van Assche 88] F. Van Assche, P.J. Layzell, P. Loucopoulos and G. Speltinex :
"Information Systems development : a rule based approach”, in Journal of knowledge based
systems, 1988.

[Vit alari 83] N.P. Vitalari and G.W. Dickson : "Problem solving for effective systems
analysis : an experimental exploration ", in Comm. ACM Vol 26 N711, (November 1983).
[Vitalari 851 N.P. Vitalari : "Knowledge as a basis for expertise in systems analysis : an
empirical study”, MIS Q, (September 1985).

[Vogel 88] : C. Vogel : "Génie cognitif', Masson collection Sciences cognitives, 1988.

Conceptual Modeling and Natural Language
Analysis

Colette Rolland

Abstract The CAiISE’92 paper presented a tool called OICSI that used Natural
Language Processing (NLP) techniques to support both the generation of an
Information System (IS) conceptual schema from textual requirements and in the
reverse way, schema paraphrasing to ease schema understanding and evaluation by
stakeholders. Both topics have been of interest during the next 20 years among other
new usages of NLP techniques in the context IS development. For sake of space, this
paper concentrates on an overview of NLP techniques used as elicitation techniques.

1 The Initial Paper and Related Works

The initial paper was written at a stage of IS engineering maturity at which it was
clear that an IS represents some excerpt of the World and that IS engineering shall
focus on modeling the concepts of the world on which IS users need information.
As a consequence of this assumption, a number of conceptual modeling languages
were developed such as [1-4] to name a few. It was also becoming clear that these
languages were not understandable by people other than modelers. This evidence
raised the issue of how to master the creation of a conceptual model (called
schema at that time) as long as the process implies exchanges between domain
experts & stakeholders (who know their wishes, needs and requirements) on one
hand, and modelers (who master conceptual languages) on the other hand. For
the same reason, validation was also an issue as stakeholders can hardly validate
whether the conceptual model really reflects their needs. As long as natural language
is used during this conceptualization process, the end-users and all stakeholders
participating in the IS project have a chance to be involved. Then, the idea to support

C. Rolland (<)
Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
e-mail: Rolland @univ-paris1.fr

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 57
DOI 10.1007/978-3-642-36926-1_4, © Springer-Verlag Berlin Heidelberg 2013

mailto:Rolland@univ-paris1.fr

58 C. Rolland

NL communication during both phases of model creation and model validation
came in mind.

OICSI was developed as a CASE tool that supports conceptual model generation
from requirements statements expressed in NL and helps in the validation of this
model by paraphrasing it, i.e. reformulating its semantic content as natural language
sentences. The generation phase is based on the adaptation of the Fillmore’s ‘Case
to Case’ theory [5] whereas the paraphrasing phase uses Chomsky’s approach [6].

Whereas OICSI partly automates the generation of a conceptual model, some
early attempts to support this task were based on manual guidelines [4, 7-9]. The
Functional Grammar [10] was preferred to the Case Grammar used in OICSI in [11]
and [12]. Some other few approaches of the same period presented tools, which used
parsers to extract model elements from NL sentences [13, 14].

From these beginnings, the ways NLP techniques have been used in IS develop-
ment and particularly during requirements engineering and conceptual modeling
are manifold. The analysis of literature suggests to organize them according to
four strategies, which (a) support the generation of models from NL input texts,
(b) support model paraphrasing, (c) help in the general understanding of NL
input texts and (d) Improve NL texts quality. For space restriction this paper only
comments on point (a).

2 Generation of Models from NL Input Texts

Typically, these approaches take as input a document expressed in full or structured
Natural Language (most of the time in English) and generate model elements of a
given conceptual model formalism. They can be further classified into techniques
focusing on (a) structural (static) aspects of an IS conceptual model (e.g. entity-
relationship diagrams) or (b) behavioral aspects (e.g. uses cases & scenarios). Some
approaches (c) deal with the generation of other types of models such business
rule models, ontologies or traceability models or with different activities such as
compliance with regulation documents.

Like in OICSI, many researchers have used NLP techniques to generate struc-
tured or formal models from requirements documents expressed in NL. NL-OOPS
[15]is a Case tool that supports requirements analysis and generates object-oriented
models from NL requirements documents. It uses the LOLITA NLP toolkit that
linguistically analyze texts. CICO [16] transforms tagged requirements statements
into various forms of structured models based on rules. Moreno [17] has developed
a method that transforms NL requirement statements into an object model. Her
method is based on a grammatical analysis of requirement statements, and initially
transforms them into a restricted form of NL. Subsequently, the restricted statements
are transformed into object structures; this is based on patterns that transform
linguistic structures into conceptual structures. The approach was further developed
in [18, 19]. The authors of [20] describe an approach that uses part-of-speech
tagging and morphological analysis for the generation of candidate elements of a

Conceptual Modeling and Natural Language Analysis 59

class diagram. Additionally, an ontology is used to refine the candidates according
to the specificity of the real world domain. Finally, classes that do not appear
in relationships and relationships which do not involved at least two classes are
deleted. In [21] controlled NL is used to express requirements that are automatically
transformed into formal specifications.

Approaches concentrating on the extraction of modeling concepts for dynamic
models can be found [22-26]. COLOR-X [22] supports non-automatic construction
of formal events languages from lists of events described in natural language). In
[23] we used a linguistic pattern approach inspired from OICSI to transform a
textual scenario of a use case into a so-called conceptualized scenario. The process
includes a parsing of the full NL scenario text to identify linguistic structures that
allow the identification of linguistic semantic patterns, which in turn, are mapped
to scenario conceptual elements. The conceptualized scenario serves as a basis to
reason about missing requirements and to suggesting additions in the requirements
specification [27]. Extraction of use cases and scenarios are also described in [25,
26]. Vice-versa the approach presented in [24] uses use-cases as inputs to generate
behavior specifications. In the LIDA approach [28] candidate objects, attributes and
methods as well are extracted from textual requirement statements.

NLP techniques have been also used to generate models other than the typical
IS conceptual models. For example, in the area of onfology engineering, the
Text20nto approach [29] uses machine-learning techniques together with linguistic
processing in order to derive an ontology from a text. A lightweight NLP is
used in [30] to automatically generate and maintain traceability relations between
different types of software requirements artifacts. In the BROCOM approach [31]
the targeted output are business rules. In the SMART approach [32] NLP techniques
are used to automate the generation of a business process model from textual
requirements. Requirements specifications can also be the target of a transformation
process, which uses textual requirements as inputs and generates a precise list of
requirements expressed in some controlled NL [33]. In the area of compliance
with regulations [34] presents a technique to check the compliance of requirements
with regulations while eliciting requirements. The approach checks compliance
by trying to match a newly discovered requirement to regulations represented by
combinations of case frames resulting from the Case Grammar technique. In [35] we
used the Case Grammar to define a Goal template and to develop a tool supporting a
controlled formulation of a goal. A similar linguistic approach to goal formulation
was used in [36] to reason about variability in requirements. The approach considers
the goal linguistic frame elements as variability concerns.

To conclude it seems that NLP techniques remain useful in conceptual modeling
but only occasionally. The reason might be that requirements/concepts elicitation is
part of a decision process that cannot be automated from analysis of NL texts.

Acknowledgements The original paper was co-authored by Christophe Proix, who was my
doctoral student at that time. Christophe deserves an equal share of the credit for the work that
we have accomplished. Unfortunately, I was unable to contact Christophe for the purpose of this
article.

60 C. Rolland
References
1. Chen, P. P. S. (1976) The entity relationship model: toward a unified view. In: ACM Trans. on

2.

3.

10.

11

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Data Base Systems (TODS), 1(1), pp. 9-38. ACM

Dubois, E., Hagelstein, J., and Rifaut, A. (1989) Formal requirements engineering with ERAE.
In: Philips Journal of Research, 43(3). Philips

Rolland, C., and Richard, C. (1982) The Remora methodology for information systems
design and management. In: Proc. Int’l Conf. on Comparative Review of Information Systems
Methodologies. CRIS. IFIP WG8.1. North Holland, 1982

. Nijssen, G.M, Halpin, T.A. (1989) Conceptual schema and relational database design: a fact

oriented approach. Prentice-Hall, Englewood Cliffs, New Jersey

. Fillmore, C.J. (1968) The Case for Case. In Holt, Rinehart and Winston, Inc.,

E. Bach/R.T. Harms (eds.) Universals in linguistics theory

. Chomsky, N. (1965) Aspects of the theory of syntax. MIT, Cambridge Massachusetts
. Chen, P. (1983) English Sentence Structure and Entity Relationship Diagrams. In: Int’l Journal

of Information Sciences. Vol. 29, pp. 127-149

. Abbott, R.J. (1983) Program Design by Informal English Descriptions. In: Communications of

the ACM. 26 (11), pp. 882-894. ACM

. Saeki, M., Horai, H., Enomoto, H. (1989) Software Development from Natural Language

Specification. In: Proc. Int’l Conference on Software Engineering (ICSE), pp. 64-73, IEEE
Dik, S. (1980) Studies in Functional Grammar. Academic Press

. Dignum, F., van de Riet, R.P. (1991) Knowledge base modelling based on linguistic and

founded in logic. In: Data & Knowledge Engineering. Vol. 7, pp. 1-34. Elsevier

Burg J.EM. (1997) Linguistic Instruments in Requirements Engineering. IOS Press,
Amsterdam

Buchholz, E., Cyriaks, H., Diisterhoft, A., Mehlan, H., and Thalheim, B. (1995) Applying a
Natural Language Dialogue Tool for Designing Databases. In: Int’l Workshop on Applications
of Natural Language to Databases. NLDB’95, pp. 119-133, 1995

Tjoa, A.M., Berger, L. (1993) Transformation of Requirement Specification Expressed in
Natural Language into an EER Model. In: Proc. 12th Int’l Conf. on Entity Relationship
Approach. ER1993, pp. 127-149, Springer, Heidelberg, 1993

Mich.: NL-OOPS (1996) From natural language to object oriented requirements using the
natural language processing system LOLITA. In: Natural Language Engineering. Cambridge
Universal Press

Ambriolla V., Gervazi V. (1997) Processing Natural Language Requirements. In: Proc. of Int’l
Conf. on Automated Software Engineering. ASE *97, pp. 36-45. IEEE, 1997

Moreno A. (1997) Object-Oriented Analysis from Textual Specifications. In: Proc. 9th Int’l
Conf. on Software Engineering and Knowledge Engineering. SEKE 97, 1997

Juristo, N., Morant, J.L, and Moreno, A., M. (1999) A formal approach for generating OO
specifications from natural language. In: Journal of Systems and Software. Elsevier

Juristo, N., Moreno, A.M., Lopez, M. (2000) How to use linguistic instruments for object-
oriented analysis. Software. IEEE

Harmain, H.M., Gaizauskas, R.: CM-Builder (2000) An Automated NL-based Case Tool. In:
15th Int’l Conf. on Automated Software Engineering. ASE’00, pp. 45-54. IEEE, 2000
Cabral, C., Sampaio, A. (2008) Formal specification generation from requirement documents.
In: Electronic Notes in Theoretical Computer Science. Elsevier

Burg J., van de Riet R. (1995) COLOR-X: Linguistically-based Event Modelling: A General
Approach to Dynamic Modelling. In: Proc. 17th Int. Conf. on Advanced Information System
Engineering. CAiSE1995. LNCS, pp. 26-39, Springer, Heidelberg, 1995

Rolland, C., Ben Achour, C. (1998) Guiding the construction of textual use case specifications.
In: Data & Knowledge Engineering, Vol.25, pp. 125-160. Elsevier

Menck, V. (2004) Deriving behavior specifications from textual use cases. In: Proc. Workshop
on Intelligent Technologies. Reference.kfupm.edu.sa, 2004

Conceptual Modeling and Natural Language Analysis 61

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Kof, L. (2007) Scenarios: Identifying Missing Objects and Actions by Means of Compu-
tational Linguistics. In: Proc.15th Int’l Requirements Engineering Conference (RE 2007),
pp. 211-130. IEEE, 2007

Santos, J., Moreira, A., Araujo, J., Amaral, V., Alferez, M., Kulesza, U. (2008) Generating
Requirements Analysis Models from Textual Requirements. In: First Int’l Workshop on
Managing Requirements Knowledge. MARK2008, pp. 32-41. IEEE, 2008

Rolland, C., Souveyet, C., and Ben Achour, C. (1998) Guiding Goal Modelling Using
Scenarios. In.: Transactions on Software Engineering (TSE). 24(12), pp. 1055-1071, IEEE
Overmyer, S.P. Lavoie, B. Rambow, O. (2001) Conceptual modeling through linguistic analysis
using LIDA. In: Proc. 23rd Int’l Conference on Software Engineering. ICSE2001, pp. 401-410.
IEEE, 2001

Cimiano, P., Volker, J. (2005) Text2Onto: A Framework for Ontology Learning and Data-
driven Change Discovery. In: Proc. 10th Int’l Conf. on Applications of Natural Language to
Information Systems (NLDB). LNCS, vol. 3513, pp. 227-238. Springer, Heidelberg, 2005
Zisman, A., Spanoudakis, G., and Pérez-Mifiana, E. (2003) Tracing software requirements
artifacts. In: Proc. Int’l Conf. on Software Engineering Research and Practice. SERP, 2003
Herbst, H. (1997) Business rule-oriented conceptual modeling. (Physica Verlag). Springer,
Heidelberg

Rayson, P, Emmet, L., Garside, R., Sawyer, P. (2001) The REVERE Project: Experiments
with the application of probabilistic NLP to Systems Engineering. In: M. Bouzeghoub et al
(eds.). Natural Language Processing and Information Systems. LNCS, pp. 288-300, Springer,
Heidelberg, 2001

Gervasi, V., Zowghi, D. (2005) Reasoning about inconsistencies in natural language
requirements. In: Transactions on Software Engineering and Methodology. TOSEM 14(3),
pp. 277-330. ACM

Saeki, M., Kaiya, H. (2008) Supporting the elicitation of requirements compliant with
regulations. In: Z. Bellasene, M. Leonard (eds.). CAiSE 2008. LNCS, vol. 5074, pp. 228-242,
Springer, Heidelberg, 2008

Prat, N. (1997) Goal formalisation and classification for requirements engineering. In: Proc. 3rd
Int’l Workshop on Requirements Engineering: Foundations of Software Quality. REFSQ1997.
LNCS, pp. 145-156. Springer, Heidelberg, 1997

Liaskos, S., Lapouchnian, A., Yu, Y., Mylopoulos, J. (2006) On goal variability acquisition
and analysis. In: Proc. Int’l Conf. on 14th Requirements Engineering Conference. RE2006,
pp. 79-88. EEE, 2006

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

The Three Dimensions of Requirements Engineering*

Klaus Pohl

Informatik V, RWTH-Aachen, Ahornstr. 55, 5100 Aachen
pohl@informatik.rwth-aachen.de

Abstract. Requirements engineering (RE) is perceived as an area of growing importance. Due o
the increasing cffort spent for research in this arca many contributions to solve different problems
within RE exist. The purpose of this paper is to identify the main goals to be reached during the
requirements enginecring process in order to develop a framework for RE. This framework consists
of the three dimensions:

+ the specification dimension
* the representation dimension
+ the agreement dimension

Looking at the RE research osing this framework, the different approaches can be classified and
therefore their interrelalionships become much clearer. Additionally the framework offers a first
siep lowards a common understanding of RE.

1 Introduction

There is gencral agreement among software engineers and researchers that an early
stage of the software development life cycle called requirements engincering exists.
Furthermore requirements engineering (RE) is perceived as an area of growing importance.
Due to the increasing effort spent for research in this area many contributions to solve
different problems within RE exist. The purpose of this paper is to identify the main
goals to be reached during the requirements engineering process in order to develop a
framework for RE, the three dimensions of requirements engineering. Looking at the RE
research using this framework the different approaches can be classified and therefore
their interrelationships become much clearer. Additionally the framework offers a first
step towards a common understanding of RE,

A first impression of the research subsumed under the term requirements engineering
can be gained by looking at the topics (cf. table 1) of the first major international meeting
on RE (International Symposium on RE 1993).

* This work was supported by ESPRIT Basic Research Action 6353 (NATURE) which is concerned with Novel
Approaches to Theories Underlying Requirements Engineering and by the state Nordrhein-Westfalen, Germany.

63

mailto:pohl@ informatik.rwth-aachen.de

64 K. Pohl

formal representation schemes and RE modelling
descriptions of the RE process

tools and environments to support RE

requirements engineering methods;

requirements analysis and validation;

requirements elicitation, acquisition and formalization
establishing traceability to requirements

reuse and adaptation of requirements;

intersections with Al, domain modelling and analysis
intersections with computer-human-interaction and cognitive
scicnce;

* intersections with group and cooperative work

* intersections with systems enginecring

« €& & & @ ¢ o o s @

Tab. 1. Topics of the First International Symposium on Requirements Engineering.

Even to understand the topics, the question “What is requirements engineering?” must
be answered first. For example, before talking about tools and environments for supporting
RE, a clear idea of the aim of RE (e.g., building a requirement specification as defined
in IEEE STD 830-1984) and the problems to deal with, must be available. Also before
looking at the intersections between RE and other research areas, a common understanding
of RE must be gained first. But the topics illustrate, that RE is an interdisciplinary
research area.

To get a more detailed view of the ongoing research, we give a brief overview of the
RE literature. First, we focus on the research dealing with the detection of requiremens.
This includes the problems of requirements elicitation and capture as well as the problems
of validation and verification of requirements (e.g., [11], [29], {301, [84], [64], [87]).
To represent requirements formal specification languages (e.g., Z [92], VDM [8], [47],
PAISLey [100]) and knowledge representation languages (e.g., RML [41], ERAE [45],
TELOS [76], [55]) were proposed. They offer the advantage of automatic reasoning (e.g.,
191, [73], [65], [62], [96]) but applying them to RE is not straight forward (e.g., [4], [46],
[3], [28]). Moreover, they must be gencrated from, and integrated with, informal RE
specifications (e.g., [41], [6], [57], [38], [34], [74], [59]}.

During the RE process different views of the system to be built exist. Some work
concerns view integration and viewpoint resolution (e.g., [63], [64], [31]). Others suggest
to focus on the social and cognitive aspects of RE (e.g., [90], [40]), thus gaining a better
specification. Methods of Al are also used to support the RE process (e.g., [1], [5],
[651, [69], [58], [94], [86], [68]). The advantages of reusing specification for economical
reasons as well as for avoiding errors were lined out (e.g., [7], [36], [66], [94], [67],
[22], [16], [68]). Other research focuses on the RE process (e.g., [43], [17], [44], [53],
(18], {80]). It was recognized, that the RE process must be traceable (e.g., [33]) and
understandable. Therefore the recording of design rationale (e.g., [83], [88], [53]) and
the integration of argumentation concepts into the RE area are proposed (e.g., [15], [85]).
Generally speaking it can be said that methodologies for supporting RE that based on
different representation formalisms exist, but do not tell the requirements engineer very
clearly how to proceed (e.g., ER [13], SA [95], [98], JSD [12], object—oriented analysis
[931, [79], [75], [14], conceptual modelling [77], F-ORM [22], PSL/PSA [89], SREM

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 65

[2], ASPIS [84], KBSA [19]). Also some classification of the methods were proposed
(e.g., [101], [21]).

Even with the coarse classification of the literature made above the main goals and
the real problems of RE are not visible. A first step into getting to the heart of RE is to
distinguish between two kinds of problems:

« original requirements engineering problems and
+ problems caused by approaches which try to solve the original problems.

Making the original RE problems and the goals to be reached during the process explicit
provides the basis for classifying the research of the RE area and for guiding a RE process.
In section 2, we consider the RE process at an abstract level. Looking at the initial input
and the desired output, three main characteristics can be identified. These features lead to
the three dimensions of requirements engineering which are the main contribution of this
paper (section 3). In section 4 we look at the RE process within the three dimensions. Thus
the goals to be reached by the RE process are recognized and the problems which occur
during the process can be classified. A classification of computer support for requirements
engineering is made in section 5. In section 6 our contributions are summarized.

2 The Requirements Engineering Process

McMenamin and Palmer {71] suggest to distinguish between the essence of a system
and its incarnation. The essence is defined by all essential activities and data stores
whereas the sum of people, phones, computer systems, offices, typewriters, pencils,
rubbers and so forth that are used to implement the system are the incarnation (cf. [71],
[98]). To get a clear idea of the essence of a system they assume that the system can
be implemented using perfect internal technology. This assumption makes it easier to
concentrate on the essence of the system instead of getting influenced by unnecessary
side aspects. Therefore the essence of a system has to be clearly defined first; aspects
which come from the use of imperfect technology are not considered. After this, the
so gained essential model of the system is extended by actions and data stores based on
the use of imperfect technology. In the following we use this approach to look at the
RE process.

Looking at a process (e.g., the requirements engineering process) on a abstract level,
its essence is transforming an input to a desired output. Assuming that the RE process can
make use of perfect technology (perfect tools, no social conflicts, no cognitive limitations
etc.) it is insignificant how the transformation is achieved. Let us focus on the output
of the RE process first.

2.1 The Desired Output

There is no doubt, that at the end of requirements engineering a specification of
the system to be built (at least for the current version of the system) must exist. This
specification serves as a basis for the next phase within the software life cycle. Thus, as
a first characteristic of the output of the RE process, a specification of the system can
be identified. We don’t focus on the details of the final specification at this point. It is

66 K. Pohl

enough to keep in mind that the complete specification, as expected, is the basic result
of the RE process.

If the system specification is expressed using e.g. natural language, different people
may understand the same specification in different ways. This may lead to unexpected
designs and implementations. To avoid different interpretation of a specification, more
and more people suggest to use a formal language for representing the specification of the
system. Additionally a formal language offers the possibility of reasoning support. So
the result of the RE process should be expressed using a formal language.

But it is not enough to produce a specification expressed in a formal language.
Assume that a functionality called work control is well defined and that there exists no
problem in mapping this part of the specification into a design and an implementation
later on. But within the requirements engineering team only a few people agree on
this functionality promoted by the people which are responsible for cost control. The
representatives of the users don’t like this functionality at all. If no common agreement
is reached during the RE phase, the problems caused by this must be solved later on. As
experience has shown, more effort is needed to correct errors in the later phases of the
software life cycle [11]. To avoid expensive error corrections all people involved in the
RE process should end up on a common agreement on the final specification.

Summarizing the main characteristics of the desired output of the RE process are
a complete system specification expressed using a formal language on which all people
involved agree.

2.2 The Initial Input of the Process

At the beginning of the RE process the knowledge about the system is coarse. Some
features of the system are obvious, whereas about others only vague imaginations exist.
Therefore the understanding of the system and the specification which can be gained out
of it is very opaque. Since people involved in the RE process have various roles (e.g.,
user representative, system developer, maintenance staff, financial officer) and different
skills and knowledge, each of them has his own understanding of the system to be built.
Especially at the beginning of the RE process many different visions of the system exist.
They may have something in common, but this is not necessarily the case. Hence at the
beginning of the RE process many personal views on the system exist and no common
representation format is used to express the expectations. Each stakeholder uses his
preferred representation format for expressing his personal view of the system. Some of
them may just think about the system (representing the knowledge in brain-structures),
others may make notes using natural language, or may draw pictures or graphics. Hence
mainly informal representations are used at the beginning of the RE process.

Summarizing, at the beginning of the RE process opaque personal views of the system
exist which are recorded using informal languages.

3 The Three Dimensions of Requirements Engineering

Looking at the brief description of the initial input and the desired output, three main
goals of the RE process can be identified:

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 67

« improving an opaque system comprehension into a complete system specification;
* transforming informal knowledge into formal representations;
* gaining a common agreement on the specification out of the personal views;

Out of these goals, three dimensions of RE can be gained: specification, represen-
tation and agreement dimension. Within the three dimensions, the initial input, as well
as the desired output can be characterized. This is shown in figure 1, where the initial
input is characterized by personal views, opaque system specification and informal repre-
sentation and the desired output by common agreement, complete system specification and
formal representation. In the following the three dimensions are described.

Fig. 1. The Three Dimensions of Requirements Engineering.

3.1 The Specification Dimension

The specification dimension deals with the degree of requirements understanding at
a given time. At the beginning of the RE process the specification of the system and its
environment is more or less opaque. This goes along with the vague imagination of the
system at the early stage of the RE process. Focusing on this dimension, the aim of RE is
to transform the operational need into a complete system specification through an iterative
process of definition and validation (e.g., analysis, trade-off-studies, prototyping).

Several standards and guidelines describe how the final requirements specification
should look like (e.g., IEEE Std. 830 [49], British Standard 6719, European Space Agency
ESA PSS-05-0 [72]). In the following we briefly describe the properties a requirements
specification should have. A more detailed description of the attributes of a requirements
specification and an overview of existing standards and guidelines can be found in [25].

First of all, a requirement specification is supposed to state what a system should do
and not how (cf. [20]). Additionally, the specification must be unambiguous, complete,
verifiable, consistent, modifiable, traceable and usable during operations and maintenance
(cf. [49] for a detailed description).

68 K. Pohl

Secondly a differentiation between two kinds of requirements can be made:

* functional requirements
» non-functional requirements

The functional requirements specify what the software must do. According to IEEE 830,
non-functional requirements can be further divided into performance, design constraints,
external interface and quality attributes. Performance requirements deal with the execution
time and computational accuracy. Design constraints are predefined designs imposed
on the software development by the customer. External interface requirements define
everything outside the subject of the system the software must deal with (e.g., constraints
from other standards, hardware or people). With quality attributes the quality of the
software to be reached is defined (cf. [61] for examples of quality attributes).

Beside this classification of requirements a distinction between vital requirements and
desirable requirements should be made (cf. British Standard 6719 [48]). Vital require-
ments must be completely accomplished by the system, whereas desirable requirements
may be relaxed and need not be met within the stated limits. Some standards propose
to include costs and schedule information in the requirements specification (e.g., British
Standard 6719) whereas other separate them from requirements engineering (e.g., IEEE
Statement of Work). Additionally many proposals for validation and verification of system
specification were made (e.g., [11], [99], [10], [35], [25], [64]).

Summarizing the first main goal of RE, as identified by many researchers, is to built
a requirements specification, according to the standard and/or guideline used. The degree
of the specification (opaque to complete) is captured by the specification dimension.

3.2 The Representation Dimension

The representation dimension copes with the different representations (informal and
formal languages, graphics, sounds etc.) used for expressing knowledge about the system.
Within RE there are three categories of representations. The first category includes
all informal representations, such as arbitrary graphics, natural language, descriptions
by examples, sounds and animations. The second category subsumes the semi-formal
languages such as SA-diagrams, ER-diagrams, SADT etc. The third category covers
formal languages such as specification languages (e.g., VDM [8], Z [92]) or knowledge
representation languages (e.g. ERAE [45], Telos [76]).

Each of these categories offers some unique advantages. Informal representations
like natural language are user-oriented. They are well known, since they are used in
daily life. The expressive power offered by informal representation is very high and all
kinds of requirements freedom are available (e.g., ambiguity, inconsistency, contradictory;
cf. [4], [28] for more detail). Semi-formal representations like SA or ER diagrams are
based on a structured graphical visualization of the system. The representations are clear
and provide a good overview of the system (“one picture says more than a thousand
words”). Additionally they are widely used within industry as a quasi-standard. In
contrast to informal representation the semi-formal representation come with formally
defined semantics, which could be used for reasoning. But the formal defined semantic
of semi-formal languages is very poor, so still most of the represented knowledge has no
formal meaning. Formal representation languages have a richer well defined semantic.

From: CAIiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 69

Therefore reasoning about most of the represented knowledge is possible. Even code can
be (partially) automatically generated out of a them. So formal representation languages
are more system oriented.

The use of a particular representation language has two main reasons. The first reason
for using a special language is simply personal preference. Due to the advantages of each
representation class, different people prefer different representations. For example the
system user may like natural language, whereas the system specialist may prefers formal
representation. The second reason for using a particular language is the current state of the
specification. At the beginning of the RE process normally informal languages are used,
whereas at the end specifications are often represented using formal languages. Hence
the RE process must assure, that out of the informal requirements a formal specification
is achieved. Since different representation languages are used within the RE process
in parallel, they must additionally be kept consistent. Suppose that a requirement was
expressed using natural language by the customer. Out of this requirement, a formal
specification was built by the system specialist. If, for example, the informal requirement
is revised, it must be assured that the formal representation of the specification is modified
accordingly.

The representation language used does not imply if a specification is vague or precise.
Hence the representation dimension is orthogonal to the specification dimension. A
vague imagination of the system can be expressed using a natural language, but also
using a formal representation language. Also concrete (formally defined) ideas can
obviously be represented using a formal representation language, but they can also be
exactly described using natural language (e.g., lawyers try to do so). Looking at the
specification ‘the age of Carl is 10 years’ and on a formal specification, e.g.,
using first order logic, *age (Carl, 10, years)’ no difference can be recognized.
Whereas the vague specification 'Carl is young’ is also vague if it is represented in first
order logic ’young (Carl) ‘. Hence the difference between the two specifications, vague
versus precise, remains the same, independent of the representation language used.

Summarizing, during the RE process different representation languages are used.
At the beginning of the process the knowledge about the system is expressed using
informal representations, whereas at the end of RE the specification must also be formally
represented.

The second main goal of the RE process is threefold. First, different representations
must be offered. Second, the transformation between the representations (e.g., informal to
semi-formal, informal to formal) must be supported. Third, the different representations
must be kept consistent.

3.3 The Agreement Dimension

The third dimension deals with the degree of agreement reached on a specification.
At the beginning of the RE process each person involved has its own personal view
of the system. Of course few requirements may be shared among the team, but many
requirements exist only within personal views of the people, e.g., stemming from the
various roles the people have (system analyst, manager, user, developer etc.). In the
following the expression common system specification is used for the system specification
on which the RE team has agreed.

70 K. Pohl

The RE process tries to increase the common system specification. But still require-
ments exist on which none or only partial agreement was reached. Let’s focus on a
simple example. Assume, that a library system is currently specified by an RE team.
An agreement was gained, that data about the real world object ‘book’ must be stored.
Each stakeholder defines (from his point of view) the properties of the object ‘book’.
The user defines the properties ‘book-title, author-name, year’ using natural
language. The system analyst additionally defines the properties ‘book-id, status-
of-book (loaned | available | defect | stolen | ordered)’ using a for-
mal representation language and the specification of the librarian consists of the prop-
erties ‘names of authors, keywords, classification~no., location,...’.
Therefore, the need for storing information about the object book belongs to the commion
system specification, whereas at the same time the properties to be stored are pertained by
the personal views. In addition the coexistent specifications are expressed using different
representation languages.

Different views of the same system have positive effects on the RE process. First,
they provide a good basis for requirements elicitation (e.g., [64]). Second, the examination
of the differences resulting from them can be used as a way of assisting in the early
validation of requirements. Hence having different views enables the team to detect
additional requirements. Moreover, if contrasting requirements were stated, conflicts can
be detected and therefore become explicit.

It is important to recognize that the integration of different views at the representation
level (e.g., integrating formally represented views into a comprehensive view) and the
agreement on the integrated view among the people involved in the process are two
separate actions. The fact, that a view was formally integrated has nothing to do with
the agreement which exists on this view. A detected conflict must be solved through
communication among people. Of course this communication has the aim of attaining
an agreement (solving the conflict), but as a side effect additional unknown arguments
(requirements) could be detected (cf. [15], {85]). Support for conflict resolution can
be found in the area of computer supported cooperative work (e.g., [97], [42], [15]).
Additionally support can be offered through different representations, e.g., by providing
informal knowledge for explanation of formal representations, by offering graphical
representation for overview of the system, or by automated detection of differences
between formal specifications.

Summarizing, the agreement dimension is as important as the representation and
specification dimension. We have pointed out that several specifications expressed in
different representation formats may exist at the same time. Further we showed, that the
coexistence of different views has positive effects on the RE process. Thus, allowing
different views and supporting the evolution form the personal views to a common
agreement on the final specification is the third main goal of RE.

4 The RE Process within the Three Dimensions

Looking at the RE process within the three dimension, the aim of the RE process
can be stated as getting from the initial input to the desired output. So the trace of the RE
process is an arbitrary curve within the cube spanned by the three dimensions (cf. figure 2).

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 71

The initial input is characterized as opaque personal views of the system represented using
informal languages, whereas the desired output is characterized as formally represented,
complete system specification on which agreement was gained (cf. section 2 for details).
The main goals of the RE process can be sketched as follow (cf. section 3 for details):

* develop a complete system specification out of a opaque system understanding

« providing integrated representations and support the transformation between them

« accomplish a common agreement on the final specification allowing personal
views.

Fig. 2. The RE process within the three dimensions.

Getting from the initial input to the desired output is an interactive process consisting
of different actions. An action can of course affect more than one dimension; improving
one dimension often lead to a step back in another dimension.

The transformation of informally represented knowledge into a formal specification
is a good example of an action (transformation step) affecting all three dimensions. An
improvement within the representation dimension is gained, since informal knowledge
is transformed into a formal representation. But during the formalization a contradiction
within the formal representation may be detected by automated reasoning. This leads to a
communication within the RE team to gain an agreement about the conflict (improvement
of the agreement dimension), but additionally as a side effect a new requirement was no-
ticed. The integration of the requirement as well as the agreement about the contradiction
lead to an improvement of the specification dimension. The original action, transforming
informally represented knowledge into a formal representation causes the execution of
other actions and therefore affects all three dimensions.

This view of the RE process can not only be applied for the overall system speci-
fication. Also the evolution of each individual requirement can be covered by the three
dimensions. A specific requirement can be represented within different specifications
(personal views), each of these views can be represented using different representations

72 K. Pohl

and the specific requirement can be well understood by a part of the RE team, whereas
the other part may have still only vague ideas about it. Hence, the three dimensions and
the view of the RE process as an interactive transformation process consisting of actions
also helps to understand the RE process at a microscopic level.

Since the RE process takes place in the ‘normal’ world, the result of the RE process
is influenced by various factors. All of them can have both positive and negative influence
on the RE process. We identified five main factors influencing the RE process:

» Methods and Methodologies: The process is influenced by the methods and
methodologies used for guiding the process. Of course using another method
during the process can lead to different results, since they focus on different
things. If e.g., structured analysis was used, the final formal specification can be
totally different in comparison to a specification gained by using object oriented
analysis.

* Tools: The final specification depends on the tools used during the process. If
e.g., a reasoning tool for formal representations was used, inconsistencies can be
detected, which otherwise could be still in the final specification.

« Social Aspects: The social environment of the RE team affects their working
results. If e.g., there are conflicts between the different persons, they work more
ineffectively; if the people feel fine at work, the output of the work is much better.

« Cognitive Skills: People have different cognitive skills. If very bright people are
involved in the RE process, the final specification is usually better.

« Economical constraints: Economical constraints limit the resources (people,
money, tools, etc.) which can be used during the RE process. It’s not always
true, that with more resources a better result can be gained, but if the available
resources are low a certain limit, the output of the process gets less quality.

Discussing these influences in detail is beyond the scope of this paper. But it should be
clear, that these are not unique to the RE process. Most of the existing processes, e.g.,
the production processes, are influenced by these factors.

For these reasons it is necessary to distinguish between problems which are original
RE problems and those problems which are caused by one of the five influences mentioned
above. The problem of keeping SA-diagrams, ER-diagrams as well as the data-dictionary
consistent is an example for a problem caused by one of the five influences mentioned
above (methods). Another example is the problem of motivating people (social aspects).
Original RE problems are all the problems which are caused by the three dimensions.
Hence requirements capture, elicitation of requirements, transformations between different
representations, integration of different views are examples for original RE problems.

5 Computer Support for Requirements Engineering

Traditional CAD/CASE systems have often neglected that computer support for any
engineering activity must be based on an understanding of the process. In this section we
use the framework presented is this paper to characterize the kinds of computer support
that could be useful for RE. We distinguish between computer support for improving the
result of the RE process in one of the three RE dimensions, for guiding the process of
RE and for easing the influences on the process.

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 73

5.1 Specification Dimension

Getting to a deeper understanding of the system and therefore to a better system
specification can mainly be supported by three different kind of approaches.

First, generic knowledge (domain knowledge) can be used to improve the specifi-
cation of the system. There exist generic knowledge which is valid within a particular
domain, e.g., banking systems, but also domain knowledge which is valid within many
domains, e.g., stock control. It was demonstrated by many research contributions that the
use of domain knowledge has positive effects on the RE task (e.g., [5], [1], [36], [84],
[65], [86], [68], [51]).

Second, the reuse of specific knowledge can lead to a better system specification.
Reusing requirements specification of already existing systems leads to better insight of
the systems behavior and avoids misspecifications. If the requirements specification of an
existing system is not available it can be gained through reverse engineering (e.g., [36],
[7], [56], [16]). For both using generic and specific knowledge during the RE process,
support for retrieving suitable knowledge must be offered, e.g. using similarity based
search approaches (e.g., [39], [16], [91]).

Third, the current specification of the system can be improved by applying techniques
for requirements validation. Validating a software specification was characterized by
Boehm as “Am [building the right product” [11]. During the validation errors and gaps
within the current specification can be detected. This leads to a correct specification of
already known requirements (correcting the errors) or the detection of new requirements
(filling the gaps, e.g..[11], [30], [87]).

5.2 Representation Dimension

Within the representation dimensions the support which can be offered is twofold.

First, due to certain strengths and weaknesses of the different representation formats
the use of informal representation (e.g., natural language, graphics), semi-formal (e.g.,
ER, SA) and formal representation languages (e.g., VDM, Z, TELOS, ERAE) must be
possible. For keeping the knowledge, expressed in the different representation formats,
consistent, the different representations must be integrated. The relationship between
formal and informal representations is much less understood. But hypertext offers a
opportunity to structure informal requirements and to relate them to formal approaches
(e.g., [60], [15], [85], [59D).

Second, the transformation between informal, semi-formal and formal representations
must be supported. On one side, support for automated derivation of formal specifica-
tions out of informal descriptions has to be offered (e.g., [41), [57], [74], [34], [87]).
On the other side, the transformation process must be supported by offering requirements
freedom within the formal representation language. Formally specifications have tradi-
tionally been expected to be complete, consistent and unambiguous. However, during
the initial definition and revision of formal requirements, they are typically fragmented,
contradictory, incomplete, inconsistent and ambiguous. Furthermore the expressions may
include various levels of abstractions (concrete, examples, general properties etc.). Since
formal requirements are built out of non-formal, the acquisition process must allow many
freedoms (cf. [3], [28], [51]).

74 K. Pohl

5.3 Agreement Dimension

There was not much research done in supporting the agreement dimension within
the area of requirements engineering. Nevertheless, three kinds of essential assistance for
the agreement dimension can be identified.

First, as pointed out in section 3.3, different views of the system exist during the
RE process. Even within formal languages it must be possible, that different views and
different specifications exist in parallel. Also the different views and specifications must
be maintained during the RE process.

Second, support for detecting dissimilarities and inconsistencies between the different
views must be offered. Additionally the integration of different views must be supported
by appropriated tools. Contradictions for example can be made explicit through automatic
reasoning and of course the work out of a solution can be supported. Viewpoint resolution
and view integration are two good examples for such support (e.g., [64], [31]).

Third, as mentioned in section 3.3, an agreement can only be gained through
communication among the involved people. Hence supporting the communications,
conversations, coordination and collaboration between people as well as decision support
leads to better and possibly faster agreements. Research done in the CSCW area can
contribute basic solutions for this (e.g., [97], [42], [32], [27], [70]).

5.4 Process Modeling

To support the overall RE process a suitable process model must be developed for
guiding the RE process within the three dimensions.

According to Dowson [26], process models can be classified in three categories:
activity-oriented, product-oriented and decision-oriented models. From the viewpoint of
requirements engineering, only the last category appears to be partially appropriate. It
is probably difficult to impossible to write down a realistic state-transition diagram (to
cite a popular activity-oriented model) that adequately describes what has to happen or
actually happens in RE. But relying on the pure object history is also insufficient. Even
the decision-based approach (e.g., [52], [88], [82]) offer only limited hints when and how
to decide on what. The central aspect of the process model for RE is therefore that it
makes the notion of situation (in which to decide) explicit and relates it to the broader
question of context handling (e.g., [80]).

Using the three dimensions, for each action a prediction, how the specification will
change after the actions was applied, can be made. For example for validation at least
a prediction can be made, that after the validation, the specification dimension will be
improved. Within the NATURE [50] project it is assumed, that the basic building block
of any process can be modelled as a triplet <situation, decision, action> [43). A process
model based on this assumption for supporting the RE process within the three dimensions
is currently under development.

The last two feature, to be mentioned here, is the importance of quality orienta-
tion and process improvement (cf. [53], [80] for more information about quality and
improvement oriented process models). It was recognized within the mechanical engi-
neering community, that it is insufficient to correct the missing quality of a product after
the fact it was produced. Quality must be produced in the first place. Therefore quality

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 75

oriented process models are necessary. Especially in rapidly changing areas, like software
production, it is very important to have evolving and quality oriented process models.

5.5 Easing the Influences on RE

As identified in section 4 five main influences on RE exist. Social aspects, cognitive
skills and economical constraints are basic influences on the process. In contrast, methods
and methodologies as well as tools are designed to support the process within the three
dimensions, but also to ease the basic influences on the process (social aspects, cognitive
skills and economical constraints). For designing appropriate methods, methodologies or
tools knowledge gained within other research area can be used, e.g., management methods
(e.g., TQM [23], [78]), organizational measures (e.g. value-added chains [81]).

Beside the task of building suitable methods and tools the need for recording of
process knowledge was recognized to make the development process of software and
specifications traceable (e.g., [24], [88], [54], [53]). Informal, semi-formal as well as
formal knowledge must be recorded, and therefore interrelated. Hypertext is supposed to
offer a solution for the integration of different representation (e.g., [37], [6], [38]).

6 Conclusions

In this paper we introduced a framework for requirements engineering (RE). First
we focused on the essence of the RE process. We characterized the ’initial input’
of the RE process as opaque personal views at the system expressed using informal
representation languages. The ‘desired output’ was sketched as a complete system
specification expressed using formal langnages on which an agreement was reached. Based
on this characterization the three main goals of RE were identified:

* gaining a complete system specification out of the opaque views available at the
beginning of the process, according to the standard and/or guideline used,

* offering different representation formats, supporting the transformation between
the representation (e.g., informal to semi-formal, informal to formal) and keeping
the various representations consistent,

+ allowing various views and supporting the evolution form personal views to
common agreement on the finial specification.

Out of these, the three dimensions of RE were gained:

* specification,
* representation and
* agreement dimension

Looking at RE using these three dimensions we identified the main tasks and goals to
be reached within each dimension during the RE process. But RE is not only driven
by its goals, it is also influenced by the environment. We identified five main factors
influencing requirements engineering: methods and methodologies, tools, social aspects,
cognitive skills and economical constraints. Accordingly existing research and computer
support was briefly sketched by distinguishing between computer support for improving

76 K. Pohl

the specification in one of the three RE dimension, for guiding the process of RE and
for easing the influences on RE.

Within the NATURE project this framework is used for classifying RE problems and
for making process guidance possible. The framework itself should be seen as a first
attempt to accomplish a common understanding of RE within the community. It should
serve as a basis for discussing research topics and identifying the main problems of RE.

Acknowledgments

I am indebted to Stephan Jacobs and Matthias Jarke for many fruitful comments on an earlier
version of this paper. Additionally T am grateful to John Mylopolous and many colleagues within
the NATURE project for discussions which have positively influenced this paper.

References

1. B. Adelson and E. Soloway. The Role of Domain Experience in Software Design. IEEE
Transaction on Software Engineering, 11(11), 1985.

2. Mack W. Alford. Softwarc Requirements Engincering Methodology (SREM) at the age of two.
In 4th Int. Computer Software & Applications Conference, New York, pages 866-874, IEEE,
1980. -

3. R. Balzer. Tolerating Inconsistency. In Int. Conference on Software Engineering, pages 158~
165, Austin, Texas, 1991.

4, R. Balzer, N. Goldman, and D. Wile. Informality in program specifications. IEEE Transactions
on Software Engineering, 4(2):94-103, 1978.

5. D.R. Barstow. Domain Specific Automatic Programming. /EEE Transaction on Software
Engineering, 11(11), 1985.

6. James Bigelow. Hypertext and CASE. IEEE Sofiware, pages 23-27, March 1988.

7. T. Biggerstaff and R. Richter. Reusability Framework, Assesment and Dircctions. [EEE
Transaction on Software Engineering, 13(2), 1987.

8. D. Bjoerner and C.B. Jones. VDM'87 VDM-A Formal Method at Work. LNCS 252, Springer
Verlag, 1988.

9. Alexander Borgida, Sol Greenspan, and John Mylopoulos. Knowledge Representation as the
Basis for Requirements Specifications. Computer, 18(4):82-91, April 1985.

10. Marilyn Bush. Improving Software Quality: The use of Formal Inspections at the Jet Propulsion
Laboratory . In Proc. of the 12th Int. Conf. on Software Engineering, March 26-30, Nice,
France, pages 196-199, 1990.

11. B.W.Boehm. Verifying and Validating Software Requirements and Design Specifications. IJEEE
Saftware, 1(1):75-88, January 1984.

12. John R. Camaron. An Overview of JSD. IEEE Transaction on Sofiware Engineering,
12(2):222-240, February 1986.

13. P.P.S. Chen. The Entity-Rclationship Approach: Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 1976.

14. Peter Coad and Edward Yourdon. Object Oriented Analysis. Prentice-Hall, Englewood Cliffs,
New Jersey, 1990.

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 77

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34,

35.

36.

J. Conklin and M. J. Begeman. gIBIS: A Hypertext Tool for Exploratory Policy Discussion.
ACM Transaction on Office Information Systems, 6(4):303-331, 1988.

P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou. Software Information Base:
A server for reuse. ESPRIT project ITHACA, Heraklion, Crete, ICS-FORTH, 1991.

B. Curtis, H Krasner, and N. Iscoe. Field Study of the Software Design Process for Large
Systems. Communication of the ACM, 33(11):1268-1287, 1988.

Bill Curtis, Marc 1. Kellner, and Jim Over. Process Modelling. Communications of the ACM,
35(9):75-90, September 1992,

A. Czuchry and D. Harris. KBSA: A New Paradigm for Requirements Engineering. IEEE
Expert, 3(4):21-35, 1988.

Alan M. David. The Analysis and Specification of Systems and Software Requirements. In
Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements Engineering, pages
119134, IEEE Computer Society Press — Tutorial, 1990.

Alan M. Davids. A Comparison of Techniques for the Specification of External System
Behavior. Communications of the ACM, 31(9):1098-1115, 1988.

V. de Antonellis, B. Pernici, and P. Samarati. FFORM Method: Methodology for reusing
Specifications. ITHACA Journal, (14):1-24, 1991,

W. E. Deming. Out of the Crisis. Massachusetts Institiute of Technology, Center for Advanced
Engineering Study, Cambridge, 1986.

V. Dhar and M. Jarke. Dependency Directed Reasoning and Learning in System Maintenance
Support. IEEE Transactions on Software Engineering, 14(2):211-228, 1988.

Meilin Dorfman and Richard H. Thayer. Standards, Guidelines and Examples on System and
Software Requirements Engineering, IEEE Computer Society Press — Tutorial, 1990.

M. Dowson, lteration in the Software Process. In Proceedings 9th Int. Conf. on Software
Engineering, April 1987.

C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: Some Issucs and Experience.
Communication of the ACM, 34(1):38-58, 1991,

M. S. Feather and S. Fickas. Coping with Requirements Freedom. In Proceedings of the
International Workshop on the Development of Intelligent Information Systems, pages 42-46,
Niagara-on-the-Lake, Ontario, Canada, April 1991.

S. Fickas. Automating analysis: An example. In Proceedings of the 4th International Workshop
Software Specification and Design, pages 58-67, Washington, DC, April 1987.

S. Fickas and P. Nagarajan. Critiquing Software Specifications. IEEE Software, pages 37-47,
November 1988.

A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
A Framework for Integration Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge Engineering, 1(2), May 1992,

Gerhard Fischer, Raymond McCail, and Anders Morch. JANUS: Integrating Hypertext with
a Knowledge-based Design Environment. In Proceedings of Hypertext '89, November 5-8,
Pittsburgh, Pennsylvania, pages 105-117, 1989.

R.F. Flynn and D. Dorfmann. The Automated Requirements Traceability System (ARTS): An
Experience of Eight Year. In Thayer R.H. and M. Dorfman, editors, Systems and Sofiware
Requirements Engineering, pages 423-438. IEEE Computer Society Press — Tutorial, 1990.
Martin D. Fraser, Kuldeep Kumar, and Vijay K. Vaishnavi. Informal and Formal Requirements
Specification Languages Bridging the Gap. IEEE Transactions on Sofiware Engineering,
17(5):454-466, May 1991.

Daniel P. Freeman and Gerald M. Weinberg. Handbook of Walkihroughs, Inspections and
Technical Reviews. Dorset House Publishing, New York, 1990.

P. Freemann, editor. Software reusability. 1EEE Press — Tutorial, 1987.

78

37.

38.

39.

40.

41.

42.
43.

45.
46.
47.
48,
49.

50.

51

52.

53.

54.

55.

56.

57.

58.

K. Pohl

Pankaj K. Garg and Walt Scacchi. On Designing Intelligent Hypertext Systems for Information
Management in Software Engineering. In Proceedings of Hypertext '87, November 13-15,
Chapel Hill, North Carolina, pages 409-432, 1987,

Pankaj K. Garg and Walt Scacchi. A Hypertext System to Manage Software Life-Cycle
Documents. I[EEE Software, pages 90-98, May 1990.

D. Gentner. Structure Mapping: A Theoretical Framework for Analogy. Cognitive Science,
5:121-152, 1983.

Joseph A. Goguen, Marina Jirotka, and Matthew J. Bickerton, Research on Requirements
Capture and Analysis. Technical report, Oxford University Computing Laboratory, Centre for
Requirements and Foundations, December 1991.

S.J. Greenspan. Requirements Modeling: A Knowledge Representation Approach to Software
Regquirements Definition. PhD thesis, Dept. of Computer Science, University of Toronto, 1984.
L. Greif, editor. Readings in Computer-Supported Cooperative Work. Morgan Kaufmann, 1988.
George Grosz and Colette Roland. Using artificial intelligence techniques to formalize the
information system design process. In Proc. Int. Conf Databases and expert Systems
Applications, pages 374-380, 1990.

R. Guidon and B. Curtis. Control of cognitive process during software design: What tools are
needed? In E. Soloway, D. Frye, and S.B. Sheppard, editors, Proc. of CHI '88 Conference:
Human Factors in Computer Systems, pages 263-269. ACM Press NY, 1991,

J. Hagelstein. Declarative Approach to Information Systems Requirements. Knowledge Base
Systems, 1(4):211-220, 1988,

Anthony Hall. Seven Myths of Formal Methods. IEEE Software, (9):11-19, September 1990,
C.AR. Hoare. International Conference on VDM and Z. LNCS 428, Springer Verlag, 1990.
IEEE. Standards, Guidelines, and Examples on System and Software Requirements Engineer-
ing. IEEE Computer Society Press — Tutorial, 1990.

IEEE. IEEE Std. 830-1984. In [EEE Software Engineering Standards Collection. 1IEEE, New
York, 1991.

Matthias Jarke, Janis Bubenko, Colette Rolland, Allistair Sutcliffe, and Yannis Vassiliou.
Theories Underlying Requirements Engineering: An Overview of NATURE at Genesis. In
Proceedings of the Ith Int. Symposiwm of Requirements Engineering, San Diego, CA, 1993.
to appear.

Matthias Jarke, Stephan Jacobs, and Klaus Pohl et. al. Requirements Engineering: An
Integrated View of Representation, Process and Domain. In submitted to: ECSE '93, 1993.
Matthias Jarke, Manfred Jeusfeld, and Thomas Rose. A Software Process Data Model for
Knowledge Engineering in Information Systems. Information Systems, 15(1):85-116, 1990.
Matthias Jarke and Klaus Pohl. Information System Quality and Quality Information Systems,
In Proceedings of the IFIP 8.2 Working Conference on the Impact of Computer-Supported
Technigues on Information Systemns Development, 1992,

Matthias Jarke and T. Rose. Specification Management with CAD®, In P. Loucopoulos and
R. Zicari, editors, Conceptual Modeling Databases, and CASE, 1991.

Manfred Jeusfeld, Anderungskontrolle in deduktiven Objektbanken. INFIX Pub, Bad Honnef,
Germany, 1992,

P. Johannesson and K. Kalman. A Method for Translating Relational Schemas into Conceptual
Schemas. In 8th Int. Conf. on Entity-Relationship Approach, pages 279-294, 1989.

W. Lewis Johnson. Deriving Specifications from Requirements. In Proceedings of the 10th
International Conference on Software Engineering, pages 428-438, Singapore, April 1988.
W. Lewis Johnson and Martin Feather. Building An Evolution Transformation Library. In
Proceedings of the 12th International Conference on Software Engineering, pages 428-438,
Nice, France, March 1990.

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993 79

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

5.

76.

71.

78.

79.

80.

W. Lewis Johnson, Marlin. S. Feather, and David. R. Harris. Representation and Presentation
of Requirements Knowledge. IEEE Transactions on Software Engineering, 18(10), October
1992.

W. Lewis Johnson and David R. Harris. The ARIES Project. In Proceedings 5th KBSA
Conference, pages 121-131, Liverpool, N.Y., 1990.

S. E. Keller, L. G. Kahn, and R. B.Panara. Specifying Software Quality Requirements
with Metric. In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements
Engineering, pages 145-163. IEEE Computer Society Press — Tutorial, 1990.

Manolis Koubarakis, John Mylopoulos, Martin Stanley, and Matthias Jarke. Telos: A
Knowledge Representation Language for Requirements Modelling. Technical Report KRR-
TR-89-1, Department of Computer Science, University of Toronto, 1989,

Julio Cesar S. P. Leite. Viewpoint Analysis: A Case Study. In Proceedings of the 5th
International Workshop on Software and Design, pages 111-119, Pittsburgh, PA, 1989.

Julio Cesar S. P. Leite and Peter A. Freeman. Requirements Validation Through Viewpoint
Resolution, IEEE Transactions on Software Engineering, 17(12):1253-1269, December 1991.
P. Loucopoulos and R. Champion. Knowledge-Based Approach to Requirements Engineering
Using Method and Domain Knowledge. Knowledge-Based Systems, 1(3), 1988.

M.D. Lubars and M.T. Harandi. Knowledge-Based Software Design Using Design Schemas.
In Proceedings 9th Int. Conf. on Software Engineering, April 1987,

Neil Maiden. Analogy as a Paradigm for Specification Reuse. Software Engineering Journal,
1991.

Neil Maiden. Analogical specification Reuse during Requirements Analysis. PhD thesis, City
University London, 1992.

M. Mannino and V. Tseng. Inferring Database Requirements from Examples in Forms. In
Int. Conf. on Entity-Relationship Approach, pages 391-405. Elsevier Publishers B.V. (North-
Holland), 1989.

David Marca and Geoffrey Bock. Groupware: Software for Computer-Supported Cooperative
Work. IEEE Computer Society Press, Los Alamitos, CA, 1992,

Stephen M. McMenamin and John F. Palmer. Essential System Analysis. Yourdon Press,
Prentice Hall, Englewood Cliffs, NJ 07632, 1984.

Richard H. Thayer Metlin Dorfman, editor. Standards, Guidelines, and Examples on System
and Software Requirements Engineering, chapter ESA Software Engineering Standards, pages
101-120. IEEE Computer Society Press Tutorial, 1990.

Bertrand Meyer. On Formalism in Specifications. IEEE Safiware, pages 6-26, January 1985.
Kanth Miriyala and Mehdi T. Harandi. Automatic Derivation of Formal Software Specifica-
tions Form Informal Descriptions. IEEE Transactions on Software Engineering, 17(10):1126—~
1142, October 1991.

David E. Monarchi and Gretchen 1. Puhr. A Research Typology for Object-Oriented Analysis
and Design. Communications of the ACM, 35(9):35-47, September 1992,

John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing
Knowledge about Information Systems. Transactions on Information Systems, 8(4):325-362,
1990.

John Mylopoulos and Hector J. Levesque. On Conceptual Modelling. Springer Verlag, 1986.
J. S. Oakland. Total Quality Management. In Proceedings 2nd Int. Conf. on Total Quality
Management, pages 3-17. Cotswold Press Ltd., 1989,

Barbara Pernici. Requirements Specifications for Object Oriented Systems. ITHACA Journal,
(8):43-03, January 1991.

Klaus Pohi and Matthias Jarke. Quality Information Systems: Repository Support for Evolving
Process Models. Technical report, RWTH Aachen, Informatik-Berichte 37-92, 1992,

80

81.
82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

9s.

96.

97.

98.
99.

100.

101.

K. Pohl

M. Porter. Competitive Advantage. Free Press, New York, 1985.
C. Potts. A Generic Model for Representing Design Methods. In Proceedings 11th Interna-
tional Conference on Software Engineering, 1989.
C. Potts and G. Bruns. Recording the Reasons for Design Decisions. In Proceedings 10th
International Conference on Software Engineering, 1988.
P. Paolo Puncello, Piero Torrigiani, Francesco Pietri, Riccardo Burlon, Bruno Cardile, and
Mirella Conti. ASPIS: A Knowledge-Bascd CASE Environment. IEEE Software, pages 58—
65, March 1988.
B. Ramesh and V. Dhar. Process-Knowledge Based Group Support in Requirements
Engineering. IEEE Transactions on Software Engineering, 18(0), 1992.
Howard B. Reubenstein and Richard C. Waters. The Requirements Apprentice: Automated
Assistance for Requirements Acquisition. JEEE Transactions on Software Engineering,
17(3):226-240, March 1991,
C. Rolland and C. Proix. A Natural Language Approach for Requirements Engineering.
In Proceedings of the 4th International Conference on Advanced Information Systems
Engineering, LNCS 593, 1992.
T. Rose, M. Jarke, M. Gocek, C.G. Maltzahn, and H.W. Nissen. A Decision-based
Configuration Process Environment. Special Issue on Software Process Support, IEE Sofiware
Engineering Journal, 6(5):332-346, 1991.
H.H. Sayani. PSL/PSA at the Age of Fifteen. In Thayer R.H. and M. Dorfman, editors, Systems
and Sofiware Requirements Engineering, pages 403-417. IEEE Computer Society Press —
Tutorial, 1990.
Walt Scacchi. Managing Software Engineering Projects: A Social Analysis. IEEE Transaction
on Software Engineering, 10(1):49-59, 1984,
G. Spanoudakis and P. Constantopoulos. Similarity for Analogical Software Reuse. In Proc.
ERCIM Workshop on Methods and Tools for Software Reuse, Heraklion, Crete, 1992.
J.M. Spivey. An introduction to Z and formal specifications. Software Engineering Journal,
4(1):40-50, 1990.
Alistair Sutcliffe. Object Oriented Systems Analysis: The Abstract Question. In Proc. IFIP WG
8.1 Conf. The Object Oriented Approach in Information Systems, Quebec City, Canada, 1991,
Alistair Sutcliffe and Neil Maiden. Software reuseability: Delivering Productivity gains or
short cuts. In Proceedings INTERACT, pages 948-956. North-Holland, 1990.
C.P. Svoboda. Structured Analysis. In Thayer R.H. and M. Dorfman, editors, Systems and
Software Requirements Engineering, pages 218-227. IEEE Computer Society Press —— Tutorial,
1990.
Jeanette M. Wing. A Specificr’s Introduction to Formal Methods. Computer, (9):8-24,
September 1990.
T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foundation for
Design, Ablex Norwood, NJ, 1986.
Edward Yourdon. Modern Structured Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1989.
Edward Yourdon. Structured Walkthroughs. Prentice-Hall, Englewood Cliffs, NJ, 1989.
Pamala Zave. An Insider’s Evaluation of PAISLey. IEEE Transaction on Software Engineer-
ing, 17(3):212-225, March 1991.
Pamela Zave. A Comparison of the Major Approaches to Software Specification and Design.
In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements Engineering,
pages 197-199. 1IEEE Computer Society Press — Tutorial, 1990.

The Three Dimensions of Requirements
Engineering: 20 Years Later

Klaus Pohl and Nelufar Ulfat-Bunyadi

Abstract Requirements engineering is the process of eliciting stakeholder needs
and desires and developing them into an agreed set of detailed requirements that can
serve as a basis for all other subsequent development activities. In order to structure
this field, we identified in 1993 three key dimensions which drive the requirements
engineering (RE) process, namely, the specification, the representation, and the
agreement dimension. In this chapter, we revisit the three dimensions of RE and
sketch their evolution into our comprehensive RE framework in the past 20 years.

1 The Three Dimensions of Requirements
Engineering (1993)

In the original CAiSE paper from 1993 [3], we identified the three dimensions of
RE as depicted in Fig. 1.

The goal within the specification dimension is to arrive at a preferably complete
requirements specification. At the beginning of the RE process, the understanding
of the system and its requirements is typically opaque. At the end, the understanding
about the requirements should be as complete as possible. In other words, all
functional requirements, quality requirements, and constraints should be known at
the required level of detail.

The goal within the representation dimension is to document all requirements
as formally as possible to avoid misinterpretations. At the beginning of the RE
process, mainly natural language (informal representations) is used to document the
requirements for the system. At the end of the RE process, all requirements should
be documented using a formal language. Key reason for the documentation using

K. Pohl (0<) ¢ N. Ulfat-Bunyadi

paluno, The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Essen, Germany

e-mail: klaus.pohl @paluno.uni-due.de; nelufar.ulfat-bunyadi @paluno.uni-due.de

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 81
DOI 10.1007/978-3-642-36926-1_6, © Springer-Verlag Berlin Heidelberg 2013

mailto:klaus.pohl@paluno.uni-due.de
mailto:nelufar.ulfat-bunyadi@paluno.uni-due.de

82

K. Pohl and N. Ulfat-Bunyadi

Specification..” i desired
A 7 : T output
comp|ete [ECTRrevres 5
PN)
7 ~~7
< o= == ~ 4
: ~
Ieo WY,
N\ Agrec\ament
fair = Y \
1 ; 2
1 {
I- ~'L ~
‘ -
‘ .
opaque + < personal views
- A R

" Representation

x i -
informal semi-formal formal

Fig. 1 The three dimensions of RE in 1993 [3]

a formal language is the precise semantics of formal languages which restricts the
interpretation of the requirements and thus avoids some typical misinterpretations.

The goal within the agreement dimension is to reach an agreement on the
requirements among all the stakeholders involved in the RE process. At the
beginning of the RE process, the stakeholders typically have different views with
regard to the goals and the requirements of the system. At the end, these different
views should have converged. In other words, conflicts should have been detected
and resolved and a common, integrated view about the goals and the requirements
the system should fulfill should have been established.

Progress in one dimension can impact progress in the other two dimensions
both, in a positive but also in a negative way. For example, the elicitation of
new requirements may lead to new conflicts among stakeholders or may uncover
existing conflicts. In this case, the progress in the specification dimension leads
to a drawback in the agreement dimension. Or, the formalization of a requirement
may reveal some gaps within the specification which leads to a drawback in the
specification dimension.

2 The Three Dimensions and Their Application (1994)

In the 1994 Information Systems paper [4] (a selected best paper of CAiSE’93), we
outlined various ways of applying the three dimensions including:

* The categorization of existing RE methods and tools by analyzing the support
they provide with regard to the three dimensions and uncovering gaps in the
support;

* The classification of RE problems (e.g. technical, social, and cognitive problems)
by identifying the cause of the problem based on the three dimensions;

The Three Dimensions of Requirements Engineering: 20 Years Later 83

e The analysis of RE practice by identifying problems within industrial RE
processes based on the three dimensions and solving them;

» The description of specific situations of an RE process within the three dimen-
sions which are used as guidance for the engineers and for decisions to be made
by the requirements engineer;

* The support for establishing pre-traceability of requirements by defining the
information to be recorded during the RE process based on the three dimensions.

All these applications have been researched more deeply in the subsequent
years and led to several publications. Our comprehensive textbook “Requirements
Engineering: Fundamentals, Principles, and Techniques” [5] describes most of those
findings and integrates most of these results into a holistic RE framework (see
below).

3 Evolution of the Three Dimensions (2012)

From 1993 till today, various industrial cooperations as well as further research led
to a deeper understanding of RE and in turn to an adaptation of the three dimensions.
The key adaptations are:

* Content dimension (previously specification dimension): We renamed the spec-
ification dimension into content dimension. The reasons for this renaming
are mainly twofold. First, the term ‘specification dimension’ led to various
misunderstandings. Most notably, people mixed it up with the requirements
specification itself. Second, as already described in 1993 [3], the goal of this
dimension is to arrive at a “complete system specification” meaning that all
relevant requirements are known and each requirement is understood at the
required level of detail. Thus, this dimension actually deals with the knowledge
gained during RE about the requirements and the constraints (independently of
how this knowledge is represented). Therefore, ‘content dimension’ is a much
better term for this dimension.

* Documentation dimension (previously representation dimension): We renamed
the representation dimension into documentation dimension. This renaming
reflects the need for documenting different types of information during the
RE process including decisions, rationales, change requests, priorities, risks.
Consequently, we refined and adjusted the goal to be achieved within this dimen-
sion. The goal is to document the content gained during RE using appropriate
documentation languages (e.g. text-based use-case templates, decision tables,
formal RE languages, structured text, graphical languages, pictures and the like)
and to establish, at the end of the RE process, a requirements specification, which
complies with the specification rules defined for the development project (see [5]
for details). The final requirements specification does not necessarily have to
be formal. In general, the choice of the language used to document particular

84 K. Pohl and N. Ulfat-Bunyadi

requirements information during the whole RE process depends on the usage of
the information and the stakeholders using the documentation of the information.
For example, the language used to document the requirements to support a proper
validation could be totally different than, for example, the language used to
document the same content to support design or test activities.

4 Comprehensive Framework for Requirements Engineering

The three dimensions served as a basis for developing our comprehensive RE
framework, which comprises the following main building blocks (see Fig. 2):

* Three Core RE Activities: There are three core RE activities, namely elicitation,
documentation, and negotiation. The three core activities are directly derived
from the three dimensions and are performed iteratively during the RE process
depending on the progress made in each dimension.

» Four System Context Facets: Each system is embedded into a context in which
it is going to operate and for which it has to provide an added value. Among
others, the context comprises the sources for requirements elicitation as well
as the users of the system (people and other systems). The context does not
only strongly influence the elicitation and definition of the requirements and the
constraints about the system, but also the understanding and interpretation of this
information. Since the system context is typically very complex, our framework
structures the context into four facets: the subject, the usage, the IT system,
and the development facet (cf. [1, 2]). Among others, the four facets support
a systematic elicitation of information, stakeholder identification, and validation
during requirements engineering (cf. [5]).

o Three Types of Requirements Artifacts: The requirements artifacts are the main
outcomes of the RE process and are used to drive the RE process itself, e.g.
to decide what to do next. Over the years, the use of goals and scenarios has
proven to be very beneficial for RE as well as subsequent system development.
Thus, goals and scenarios should be used during RE in addition to the traditional
solution-oriented requirements (see [5] for a detailed description). There are
many key reasons for using goals and scenarios during RE. For example,
conflicts among stakeholders can be identified and resolved more easily on a
goal level than on the level of detailed solution-oriented requirements. Or, a
scenario typically describes a concrete, envisioned system usage which provides
a clear business or customer value. Therefore, our framework differentiates
between three key requirements artifacts: goals, scenarios, and solution-oriented
requirements. The latter comprise the traditional functional, data, and behavioral
perspectives on requirements used in system development. In [5], we elaborate
on the three key RE artifacts as well as their usage within the RE process.

The Three Dimensions of Requirements Engineering: 20 Years Later 85

=

l Negotiation

Cross-sectional activity
Validation
Cross-sectional activity
Management

Goals Scenarios
Solution-oriented
requirements

Fig. 2 Our comprehensive RE framework [5]

—

* Two Cross-sectional Activities: Two cross-sectional activities, namely validation
and management, complete our comprehensive RE framework:

— Validation: Validation ensures proper quality assurance during the whole
RE process. According to our framework, validation not only comprises the
validation of the three key requirements artifacts but also the validation of the
consideration of the four context facets as well as the validation of a proper
execution of the three core activities (cf. [5]).

— Management: Similar to validation, the cross-sectional management activity
is not restricted to the management of the three key requirements artifacts but
includes the management of the system context (e.g. to identify contextual
changes) and the management of the execution and scheduling of the three
core activities (cf. [5]).

Our comprehensive RE framework is widely used in industry and education.
For example, the framework is used as reference model for structuring RE and
RE processes within organizations, for determining weaknesses and improvement
potentials of RE within the organizations, and as reference structure for trainings
provided to managers, requirements engineers, developers, etc. Moreover it is the

86 K. Pohl and N. Ulfat-Bunyadi

backbone for our RE textbook [5] and used to structure RE lectures and courses
at universities.

S Our Comprehensive Textbook

Our RE textbook describes the framework in detail and elaborates on the related
foundations, principles, and RE techniques [5]. Throughout the book, we describe
the underlying fundamentals, techniques, and methods for the building blocks and
illustrate key aspects with numerous examples. Moreover, we provide hints and
guidelines for applying the various techniques and methods.

In addition to the elaboration of the building blocks of our framework, we present
our goal- and scenario-based RE method called COSMOD-RE which supports the
intertwined development of requirements and architectural artifacts for software-
intensive (embedded) systems. We further sketch the interrelation between RE and
testing and describe specifics of RE in the context of product line engineering.

6 RE Certification by IREB

IREB (the International Requirements Engineering Board) aims at providing a
certification model and fostering further education in the field of RE. Members
of the board are independent, internationally recognized experts from industry,
research, consulting, and education. The ‘Certified Professional for Requirements
Engineering’ (CPRE) certification model currently offers two qualification levels:
foundation and advanced level.

Our comprehensive RE framework served as a basis for defining the syllabus
and the exams for the foundation level. The foundation level requires being familiar
with the terminology of RE, understanding the basic techniques and methods
of RE and their application, and being familiar with well-known notations for
requirements. To support people in preparing for the CPRE foundation level
certificate, we have published the “Requirements Engineering Fundamentals™ book
[6]. This textbook is (will be) available in different languages including English,
German, Portuguese, Spanish, and French. More than 10,000 requirements engi-
neers world-wide have already passed successfully the certification of the IREB
CPRE foundation level.

References

1. M. Jarke, K. Pohl: Establishing Visions in Context — Towards a Model of Requirements
Processes. In: Proceedings of the 14th International Conference on Information Systems, 1993,
pp. 23-34.

The Three Dimensions of Requirements Engineering: 20 Years Later 87

2. J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos — Representing Knowledge
about Information Systems. ACM Transactions on Information Systems, Vol. 8, No. 4, 1990,
pp. 325-362.

3. K. Pohl: The Three Dimensions of Requirements Engineering. In: Proceedings of the 5th
Conference on Advanced Information Systems Engineering (CAiSE’93), Springer, LNCS,
Vol. 22, 1993.

4. K. Pohl: The Three Dimensions of Requirements Engineering — A Framework and its Appli-
cations. In: Information Systems, Special Issue on Computer Supported Information System
Development, Vol. 19, No. 3, 1994.

5. K. Pohl: Requirements Engineering — Fundamentals, Principles, and Techniques. 1% ed.,
Springer, 2010. (also appeared in German: Requirements Engineering — Grundlagen, Prinzipien,
Techniken, 2. ed., dpunkt, 2008)

6. K. Pohl, C. Rupp: Requirements Engineering Fundamentals: A Study Guide for the Certified
Professional for Requirements Engineering Exam. 1% ed., Rocky Nook, 2011. (also appeared in
German: Basiswissen Requirements Engineering, 3. ed., dpunkt, 2011, and in Portuguese)

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

Towards a Deeper Understanding of
Quality in Requirements Engineering

John Krogstie Odd Ivar Lindland Guttorm Sindre

Faculty of Electrical Engineering and Computer Science
University of Trondheim, Norway

Abstract. The notion of quality in requirements specifications is poorly
understood, and in most literature only bread and butter lists of useful
properties have been provided. However, the recent frameworks of Lind-
land et al. and Pohl have tried to take a more systematic approach. In
this paper, these two frameworks are reviewed and compared. Although
they have different outlook, their deeper structures are not contradictory.

The paper also discusses shortcomings of the two frameworks and pro-
poses extensions to the framework of Lindland et al. The extensions
build on social construction theory and the resulting framework should
contribute to understanding quality in requirements engineering and con-
ceptual modelling.

Keywords: Requirements engineering, conceptual modelling, qual-
ity, social construction

1 Introduction

The notion of quality in requirements specifications is so far poorly understood.
Software metrics [7] have mostly concentrated on the deliverables of the later
phases, such as design and coding, or on detailed process metrics. Moreover,
these efforts have concentrated far more on the issue of ’building the product
right’ than ’building the right product’, whereas both should be covered to en-
sure quality from the user’s point of view [2]. Previously proposed quality goals
for conceptual models [6, 14, 22, 25] have included many useful aspects, but
unfortunately in the form of unsystematic bread and butter lists. Two recent
frameworks [17, 20] have attempted to take a more structured approach to un-
derstanding the problem. Still, both these need more development before they
can result in concrete guidelines for the requirements engineering process. A use-
ful first iteration is to compare the two frameworks and see if they fit together,
and possibly unite and extend them.

The rest of the paper is structured as follows: Section 2 reviews and compares
the two frameworks. Then, section 3 establishes an extended framework based
on the comparison. Section 4 concludes the paper. The terminoclogy used in the
papers follows the one usually used in the areas of conceptual modelling and
requirements engineering. One should be aware of that the use of many terms in
these areas differs significantly from their use in for instance logic programming.

89

90 .

J. Krogstie, O.1. Lindland and G. Sindre

2 Review and Comparison

We will briefly present the main parts of the two frameworks, before performing

a comparison between them.

2.1 Lindland/Sindre/Sglvberg’s Framework

The main structure of this framework is illustrated in Figure 1. The basic idea is
to evaluate the quality of models along three dimensions — syntax, semantics,

and pragmatics — by comparing sets of statements. These sets are:

~ M, the model, i.e., the set of all the statements explicitly or implicitly made
in the model. The explicit model Mg, consists of the statements explicitly
made, whereas the implicit model, M, consist of the statements not made,

but implied by the explicit ones.

— L, the language, i.e., the set of all statements which are possible to make
according to the vocabulary and grammar of the modelling languages used.

— D, the domain, i.e., the set of all statements which would be correct and
relevant about the problem at hand. Hence, notice that the term domain
is used somewhat differently from the usual. Here, it means the ’ideal’

model/solution to the problem.

— Z, the audience interpretation, i.e., the set of all statements which the au-
dience (i.e., various actors in the modeling process) think that the model

consists of.

Domain

appropriateness

appropriateness

semantic
quality

Model

quality

Audience

syntactic
quality

pragmatic

Language

appropriateness

interpretation

Fig.1.: The framework by Lindland et al. (From [17])

The primary sources for model quality are defined using the relationships

between the model and the three other sets:

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 91

— syntactic quality is the degree of correspondence between model and lan-
guage, i.e., the set of syntactic errors is M \ L.

— semantic quality is the degree of correspondence between model and do-
main. If M\ D # @ the model contains invalid statements; if D\ M # §
the model is incomplete. Since total validity and completeness are generally
impossible, the notions of feasible validity and feasible completeness were in-
troduced. Feasible validity is reached when the benefits of removing invalid
statement from M are less than the drawbacks, whereas feasible complete-
ness is reached when the benefits of adding new statements to M is less than
the drawbacks. The term drawback is used instead of the more familiar term
cost in an effort to cover both purely economic issues and factors like user
preferences and ethics.

— pragmatic guality is the degree of correspondence between model and audi-
ence interpretation (i.e., the degree to which the model has been understood).
If T # M, the comprehension of the model is not completely correct. Usu-
ally, it is neither necessary nor possible that the whole audience understand
the entire conceptual model — instead each group in the audience should
understand the part of the model which is relevant to them. Feasible com-
prehension was defined along the same lines as feasibility for validity and
completeness.

In addition to these primary quality concerns, it is pointed out that cor-
respondence between domain and language, between domain and audience in-
terpretation, and between language and audience interpretation may affect the
model quality indirectly. These relationships are all denoted appropriateness as
shown in Figure 1.

It is also argued that previously proposed quality goals such as minimality,
traceability, consistency, and unambiguity are subsumed by the four goals of
syntactic correctness, validity, completeness, and comprehension, and a distinc-
tion is made between goals and means to reach these goals. For more details
on this framework, the reader should consult [17]. The parts of the framework
dealing with fault detection have been applied in connection with integrating
the development and testing of object-oriented software [18].

2.2 Pohl’s Framework

Pohl’s framework {20] which is one of the results of the NATURE-project [12)
defines three dimensions of requirements engineering:

— the specification dimension deals with the degree of requirements under-
standing. At the beginning of the process, this understanding is opaque.
The desired output of the RE process is a complete system specification,
where completeness is measured against some standard, guideline, or model.

— the representation dimension deals with the degree of formality. Various lan-~
guages can be used in the process; informal ones such as natural language,

92 J. Krogstie, O.1. Lindland and G. Sindre

{l
______________ desired
Specification - //“3? output
-~ -~ ‘
= A
- /// I
complete wec” _]/ i
} |
& [
o‘f [|
%5 |
) |
fair == | /‘Zgreement {
' |
[i
common view I 7~ -
initial] //
input l P -
opaque == T4 o iows | /// Representation
.y — !/ -
informal semi-formal formal

Fig.2.: Pohl’s framework (From [20])

semi-formal ones such as many graphical modelling languages, and formal
ones (e.g., logic). At the beginning of the process, statements will usually
be informal. Since formal representations allow reasoning and partial code-
generation, these are more system-oriented. Hence, a transformation of in-
formal requirements to a formal representation is desirable.

— the agreement dimension deals with the degree of agreement. The RE process
has many stakeholders, and in the beginning each of these will have their
personal views concerning the requirements to be made. The goal of the
process is to reach agreement on the requirements. Detected conflicts must
be solved through discussions among those affected.

The RE process can be characterized as an arbitrary curve within the cube
spanned by these three dimensions, as illustrated in Figure 2. Pohl distinguishes
between original RE problems, which are those caused by the three dimensions,
and problems caused by approaches to solve the original problems, i.e., those
related to methods, tools, social aspects, cognitive skills and economical con-
straints. Furthermore, the article discusses the computer support for RE in light
of the three dimensions and discusses how the framework can be applied in
analyzing RE methods, practise, problems, and process situations.

2.3 Overall comparison and critique

At first sight, the two frameworks may seem completely different. The termi-
nology used is different. Lindland et al. [17] defines the quality of models (e.g.,
requirements specifications) according to the linguistic dimensions of syntax,

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 93

semantics, and pragmatics, Pohl’s framework [20] identifies the goals of require-
ments engineering along the three dimensions of completeness, formality, and
agreement.

Although the two frameworks have a quite different appearance, they are
rather similar in their deeper structure. The following observations can be made:

— the representation dimension corresponds to the syntactic dimension, since
both these deal with the relationship between the specification and the lan-
guage(s) used. The main differences in this respect is that Pohl’s framework
discusses several languages, whereas Lindland’s framework sees the language
as one and just considers whether the specification is correct according to
the rules of that language (which may be a union of several languages, for-
mal and informal). It should also be noted that Pohl’s framework regards a
formal specification as a goal. Lindland’s framework states that formality is
a mean to reach a syntacticly correct specification, as well as higher semantic
and pragmatic quality through consistency checking and model executions
of different kinds.

— the specification dimension corresponds to the semantic dimension, since
both these deal with the goal of completeness. A notable difference here is
that Pohl sees completeness as the sole goal (possibly including validity?),
whereas Lindland’s framework also identifies the notions of validity and fea-
sibility. The reason for this discrepancy seems to be a somewhat different use
of the term completeness, where Pohl uses the term relative to some stan-
dard, whereas Lindland et al. uses it relative to the the set of all statements
which would be correct and relevant about the problem at hand.

— the agreement dimension is related to the pragmatic dimension, since both
these deal with the specification’s relationship to the audience involved. The
difference is that Pohl states the goal that the specification should be agreed
upon, whereas Lindland et al. aim at letting the model be understood. In a
way these goals are partly overlapping. Agreement without understanding is
not very useful in a democratic process. On the other hand, using the semiotic
levels described in the FRISCO-report [16], it seems more appropriate to
put agreement into the social realm, thus going beyond the framework of
Lindland et al.

Although both frameworks contribute to improving the understanding of
quality issues in requirements engineering, they still have several shortcomings.
For instance, in Pohl’s framework it appears that a formal, agreed, and com-
plete specification is the goal of the requirements engineering phase. Although
we support this as desirable, we — as argued in [17] feel that such goals are
unrealistic and we need mechanisms for discussing when the specification/model
is good enough. The notion of feasibility that is included in Lindland’s framework
addresses this aspect. In Pohl’s framework such mechanisms are only implicitly
included through the adherence to standards which potentially include them.

We also feel it is problematic that a completely formal representation is a goal
of the RE process. It is not always desirable that all the products of a requirement

94 J. Krogstie, O.1. Lindland and G. Sindre

specification process are formal. For instance, when developing a goal-hierarchy
as used in, e.g., TEMPORA [23], it is not meaningful to formalise the high-level
business goals, even if these are an important result of requirements engineering
in order for the participants to understand and agree about the requirements
to the information system. This kind of information is also of vital importance
when the requirements to the information systems must be reevaluated during
maintenance.

In Lindland’s framework, on the other hand, the social aspect of agreement
is currently not handled in a satisfactory way. Even if people understand the
requirements, this does not mean that they will agree to them. When discussing
agreement, the concept of domain as currently defined is also insufficient, since
it represents some ideal knowledge about a particular problem, a knowledge not
obtainable for the actors that are to agree.

3 Framework extensions

This section aims at extending Lindland et al.’s framework in order to include
some of the good aspects of Pohl’s framework and also hopefully eliminate the
inherent shortcomings of the current version of Lindland’s framework.

The key area for improvement is related to the relationships between the
domain, model, and audience interpretations and the introduction of the social
goal of agreement.

3.1 Background on social construction

Since ’agreement’ was not thoroughly discussed in [17], we will first introduce
our ontological position for discussing the concept. This will also influence some
of the other relationships in the framework.

We base our treatment of agreement on the idea that reality’ is socially con-
structed [1], an idea which is the foundation of most of the current theoretical
discussion within social sciences [5], and which has received increased attention
in the information systems community [8, 16, 24]. For a constructivist, the re-
lationship between ’reality’ and models of this reality are subject to negotiation
among the audience, and may be adapted from time to time. This is in contrast
to a more traditional objectivistic ontology, where the relationship between ’re-
ality’ and models thereof is obvious.

The mechanisms of social construction in an organization can briefly be de-
scribed as follows [9]: An organization consists of individual social actors that
perceive the world in a way specific to them. The local reality is the way the in-
dividual perceives the world that s/he acts in. Whereas some of this local reality
may be made explicit and talked about, a lot of what we know about the world
is tacit. The term ’individual knowledge’ is below restricted to the ezplicit local
reality of an individual actor.

When social actors act, they externalise their local reality. The most impor-
tant ways the social actors of an organization externalise their reality, are to

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 95

speak and to construct languages, artifacts, and institutions. What they do is to
construct organizational reality: To make something that other actors have to
relate to in their work. Finally, internalisation is the process of making sense of
the institutions, artifacts, technology etc. in the organization, and making this
organizational reality part of the individual local reality.

Whereas the development of a requirements specification based on a social
actor’s local reality is partly a process of externalisation of her/his reality, the
process of developing conceptual models can also be looked upon as part of a
sense-making process. The views of several actors are collected in a conceptual
model and agreement about the validity of this is reached. It should also be noted
that the ability and possibility for the different stakeholders to externalise their
local reality will differ. Thus, in the words of Goguen one should think about
requirements as “ ...emergent, in the sense that they do not already exist, but
rather emerge from interactions between the analyst and the client organization”
[10}.

In the framework of Lindland et al, ’reality’ is represented by the domain,
D. The domain represents the perfect understanding of the problem. From the
viewpoint of social construction, as well as the view of information systems
engineering as a wicked problem [21], it can be questioned whether a perfect
solution at all exists. This is not an important point, however, since the perfect
solution is anyway stated to be unachievable. Hence, the domain D serves only
as a useful conceptual fixpoint to make it easier to define quality terminology.
To discuss the social aspects, the actors’ understanding of the domain must be
added to the framework, in the same sense as their understanding of the model
was already introduced in the previous version of the framework.

. semantic quality syntactic quality
Domain Model Language

pragmatic quality

perceived

sem]gamic
Participant quality Audience ;
knowledge interpretation :?gﬁtly

Fig.3.: Extended framework

3.2 Extended framework

We are now ready to extend the framework of Lindland et al. The main concepts
and their relationships are shown in Figure 3. The following sets are defined:

96 J. Krogstie, O.1. Lindland and G. Sindre

— A, the audience, i.e., the union of the set of individual actors A,,...,Ay the
set of organizational social actors Ag41,...,A, and the set of technical actors
Ant1,..»Am who needs to relate to the model. The individual social actors
being members of the audience is called the participants of the modelling
process. An organizational social actor is made up of several individuals.
The audience consists of all who need to understand the model during the
RE process. The participants are a subset of the stakeholders of the pro-
cess of developing the new or improved information system, a stakeholder
being someone who potentially stands to gain or lose in the process. Stake-
holders typically include project managers, system developers and analysts,
financers, maintainers, and future users.

A technical actor is typically a computer or computer program, which must
“understand” part of the specification to automatically manipulate it. A is
often evolving during the process of requirements engineering.

— M, the model, i.e., the set of all statements explicitly or implicitly made
in the model. At an early point of requirements engineering there may be
one model for each participant, but usually fewer models which are the joint
models of organizational actors exists. For each participant, the part of the
model which is considered relevant for the actor can be seen as a projection
of the total model, hence M can be divided into projections M1, ..., M¥
corresponding to the involved participants Ai, ..., Ax. Generally, these pro-
jections will not be disjoint, but their union cover M. The complete model
will be evolving during the process of requirements engineering.

— L, the language, i.e., the set of all statements that are possible to make
according to the vocabulary and grammar of the modelling languages used.
Several languages can be in use at the same time, corresponding to the sets
L1,...,L;. A sub-language is related to the complete language by limitations
on the vocabulary or on the set of allowed grammar rules or both.

The set £ can be divided into several subsets, e.g., Ly, Ls, and Lp for
the informal, semi-formal and formal parts of the language, respectively.
A language with formal syntax is termed semi-formal, whereas a language
which also has formal semantics, is termed formal. Note that this does not
imply that the language has a semantics based on formal logic.

— D, the domain, i.e., the set of all statements which would be correct and
relevant about the problem at hand. D denotes the ideal knowledge about the
problem. The domain evolves during the requirements engineering process.

— T, the audience interpretation, i.e., the set of all statements which the audi-
ence thinks that a model consists of. Various parts of the model will be
of interest to various participants. Just like the model is projected into
cal M1, ..., M}, above, its interpretation can be projected into 73, ...,Zx ac-
cording to the interests of the participants.

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 97

— K, the knowledge of the participants, i.e., the union of the sets of statements
Ki,...,K, one for each individual social actor in the audience. The set K;
contains all possible statements that would be correct and relevant for ad-
dressing the problem at hand according to the knowledge of the actor A;.
K; is a subset of the explicit internal reality of the social actor K*. Kt is also
evolving during requirements engineering. M; is an externalisation of K; and
is a model made on the basis of the knowledge of the individual actor. Even
if the internal reality of each individual will always differ to a certain degree,
the explicit internal reality concerning a constrained area might be equal,
especially within groups of social actors [9, 19].

With this new framework in place, we have an increased potential for dis-
cussing specification quality. The primary goal for semantic quality is a cor-
respondence between the model and the domain, but this correspondence can
neither be established nor checked directly: to build the model, one has to go
through the audience’s knowledge of the domain, and to check the model one has
to compare this with the audience’s interpretation of the model. Hence, what
we do observe at quality control is not the actual semantic quality of the model,
but a perceived semantic quality based on comparison of the two imperfect in-
terpretations.

Syntactic quality Syntactic quality is the correspondence between the speci-
fication and the language. The goal is syntactic correctness, M \ L = §, or for
a given externalization, M; \ £ = 0. Typical means to ensure syntactic quality
is formal syniaz, i.e., that the language is parsable by a technical actor in the
audience, and the modeling activity to perform this is termed syntax checking.

Semantic quality For the semantic quality of the complete model M, no major
changes are necessary to the previous version of the framework. [17] defines two
goals, feasible validity and feasible completeness.

Discussing perceived semantic quality, we get the following:

— Perceived validity of the model projection: Z; \ K; = 0.
— Perceived completeness of the model projection: K; \ Z; = 0.

The perceived semantic quality can change, for better or for worse, either as a
result of changes in (the understanding of) the model, or as a result of changes in
the knowledge about the domain. Notice that one way the knowledge of the actor
can change, is through the internalization of another sub-model. Internalisation
can be expressed crudely as a mapping between the sets of statements, being
part of the explicit internal reality of an actor.

INTIIC,‘—-*(IC,‘UN)CM;‘\(OCIC;)' (1)
1#£5,0NN=0,K;\N =K;

N and @ above is sets of statements. 3 might be empty giving a monotonous
growth of ;. If O is not empty there is a non-monotonous growth of K;.

98 J. Krogstie, O.1. Lindland and G. Sindre

Pragmatic quality Pragmatic quality can be defined largely the same way as
before, the goal being comprehension, i.e. that the model is understood, not its
understandability. [17] also defined this on behalf of various participant groups,
since each such group will usually only be interested in a part of the model.
Similarly, we can define individual comprehension: Z; = M?, as the goal that
the participant A; understands the relevant part of the model.

For total comprehension, one must thus have (Vi,i € [1...k]) Z; = M, i.e.,
that every participant understands the relevant part of M.

Total comprehension is also an unrealistic goal. Hence it is interesting to
define feasible comprehension as the situation where comprehension can still be
improved, but the drawbacks of doing this exceeds the benefits. This has been
done in [17].

That a model is understood from the technical actor’s point of view, means
that (Vi,i € [n+ 1...m])Z; = M’ | thus all statements that are relevant to the
technical actor to be able to perform code generation, simulation, etc. is com-
prehended by this actor. In this sense, formality can be looked upon as being
a pragmatic goal, formal syntax and formal semantics are means for achiev-
ing pragmatic quality. This illustrates that pragmatic quality is dependant on
the different actors. This also applies to social actors. Whereas some individu-
als from the outset are used to formal languages, and a formal specification in
fact will be best for them also for comprehension (regardless of execution etc.),
other individuals will find a mix of formal and informal statements to be more
comprehensive, even if the set of statements in the model is in fact redundant.

Some of the means to achieve pragmatic quality have been identified earlier,
namely formality, executability, expressive economy and aesthetics. The corre-
sponding modelling activities are inspection, visualization, filtering, diagram lay-
out, paraphrasing, explanation, execution, animation, and simulation. Another
important activity is training the participants in the syntax and semantics of
the modelling languages used.

Social quality Inspired by Pohl, we set up the goal for social quality as agree-
ment. However, this is not straightforward to define. Four kinds of agreement
can be identified, according distinctions along two orthogonal dimensions:

— agreement in knowledge vs. agreement in model interpretation.
— relative agreement vs. absolute agreement

Agreement in model interpretation will usually be a more limited demand than
agreement in knowledge, since the former one means that the actors agree about
what (they think) is stated in the model, whereas there may still be many issues
they disagree about which have not been stated in the model so far, even if it
might be regarded as relevant for one of the actors.

Relative agreement means that the various projections are consistent —
hence, there may be many statements in the projection of one actor that are
not present in that of another, as long as they do not contradict each other. Ab-
solute agreement, on the other hand, means that all projections are the same.

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 99

Since different participants often have their expertise in different fields, relative
agreement is a more useful concept than absolute agreement. On the other hand,
the different actors must have the possibility to agree on something, i.e. the parts
of the model which are relevant to them have to overlap to some extent.

However, it is not given that all participants will come to agreement. Few
decisions are taken in society under complete agreement, and those that are are
not necessarily good, due to e.g group-think. To answer this we introduce feasible
agreement:

Feasible agreement: A situation of feasible comprehension where inconsisten-
cies between statements in the different Z; are resolved by choosing one of the
alternatives when the benefits of doing this is less than the drawbacks of working
out agreement.

The pragmatic goal of comprehension is looked upon as a social mean. This
because agreement without comprehension is not very useful, at least not when
having democratic ideals. Obviously if someone is trying to manipulate a situa-
tion, agreement without comprehension is useful. The area of model monopoly [3]
is related to this.

Some activities for achieving feasible agreement are:

— Viewpoint analysis [15]: This includes techniques for comparing two or more
models and find the discrepancies.

— Conflict resolution: Specific techniques for this can be found in the area
of computer supported cooperative work, see [4, 11] where argumentation
systems are presented.

— Model merging: Merging two potentially inconsistent models into one con-
sistent one.

The above activities can be done either manually, semi-automatically or auto-
matically, for semi-automatic or automatic support, formal syntax and semantics
are again useful. In addition is it useful to be able to represent inconcistency and
disagreement directly in the model, and not only have to compare separate mod-
els.

4 Concluding Remarks

This paper has reviewed and compared two recent frameworks for disussing
quality of requirement specifications: the framework of Lindland et al. in {17] and
Pohl’s framework in [20]. The comparision has shown that the frameworks have
different appearences and uses different terminology, but the deeper structures
of the frameworks are quite similar.

The main objective of the paper has been to push our understanding of
quality aspects in requirements engineering one step further. The comparison of
the two frameworks has been useful in that respect. In particular, the concept
of agreement in Pohl’s framework has inspired us to look deeper into the social
process of building a specification.

100 J. Krogstie, O.1. Lindland and G. Sindre

In contrast to the previous version of the framework of Lindland et al. we
are now able to discuss the quality of models where different social actors are
developing their submodels based on individual domain knowledge. Furthermore,
the process of merging different viewpoints is defined as contributing to social
quality. Here, agreement among the actors is the major goal.

Table 1 shows an overview of the goals and means of the extended framework.
The overview is based on a similar one in [17], but has been extended as discussed
above.

Quality types

Syntactic q.

Semantic q.

Perceived sem.q.

Pragmatic q.

Social q.

Goals

Synt. correctness

Feasible validity
Feasible compl.

Perceived validity
Perceived compl.

Feasible compr.

Feasible agreement

Means
Model properties
Formal syntax

Formal semantics
Modifiability

Expressive economy
Aesthetics

Executability

Conflict modelling

Activities
Syntax checking

Consistency checking
Statement insertion
Statement deletion

Statement insertion
Statement deletion
Audience training

Imspection
Visualization
Filtering

Diagram layout
Paraphrasing
Explanation
Audience training
Execution
Animation
Simulation

Viewpoint analysis
Contflict resolution
Model merging

Table 1.: Framework for model quality

Although the framework contributes to our understanding of quality issues
with respect to requirement engineering, the contribution so far lies on a high
level of abstraction. There are several interesting paths for further work by which
the framework can be refined to become more directly useful for requirements

engineering practitioners. Among others, the follow areas need further explo-
ration:

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995 101

— development of further product metrics: In the current framework quality

goals are mainly defined as the degree of correspondence between various
sets. Future work should concentrate on developing quantitative metrics so
that the quality of the model, audience, and the domain knowledge can be
more explicitly assessed. Some initial efforts in this direction are reported in
[13].

— development of process guidelines: The framework gives an overview of de-

cisions that will have to be made in the requirements engineering phase.
Further work should result in guidelines that practitioners may use directly
in concrete projects.

Since semantic, pragmatic and social quality are in practice immeasurable,

process heuristics may be a more interesting issue to pursue than product met-
rics.

References

1.

2.

3.

10.

11.

P. Berger and T. Luckmann. The Social Construction of Reality: A Treatise in the
Sociology of Knowledge. Penguin, 1966.

B. W. Boehm. Verifying and validating software requirements and design specifi-
cations. IEEFE Software, 1:75-88, 1984.

S. Brdten. Dialogens vilkdr i datasamfunnet (In Norwegian). Universitetsforlaget,
1983.

. J. Conklin and M. J. Begeman. gIBIS: A hypertext tool for exploratory policy

discussion. ACM Transactions on Office Information Systems, 6(4):303-331, 1988.

. B. Dahlbom. The idea that reality is socialy constructed. In Floyd et al. [8], pages

101-126.

. A. M. Davis. Software Requirements Analysis & Specification. Prentice-Hall, 1990.
. N. E. Fenton, editor. Software Metrics — A Rigorous Approach. Chapman & Hall,

1991.

. C. Floyd, H. Ziillighoven, R. Budde, and R. Keil-Slawik, editors. Software Devel-

opment and Reality Construction. Springer Verlag, 1991.

. R. Gjersvik. The Construction of Information Systems in Organization: An Action

Research Project on Technology, Organizational Closure, Reflection, and Change.
PhD thesis, ORAL, NTH, Trondheim, Norway, 1993.

J. Goguen. Requirements engineering: Reconciliation of technical and social issues.
Technical report, Centre for Requirementss and Foundations, Oxford University,
Cambridge, England, 1992.

U. Hahn, M. Jarke, and T. Rose. Group work in software projects: Integrated con-
ceptual models and collaboration tools. In S. Gibbs and A. A. Verriju-Stuart, edi-
tors, Multi- User Interfaces and Applications: Proceedings of the IFIP WG 8.4 Con-
ference on Multi- User Interfaces and Applications, pages 83-102. North-Holland,
1990.

102

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

J. Krogstie, O.1. Lindland and G. Sindre

M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theories under-
lying requirements engineering: An overview of NATURE at genesis. In Proceed-
ings of the IEEE International Symposium on Requirements Engineering (RE’93),
pages 19-31, 1993.

J. Krogstie, O. I. Lindland, and G. Sindre. Defining quality aspects for conceptual
models. In E. D. Falkenberg et al., editor, Information Systems Concepts, Proc.
ISCO03, Marburg, Germany. North-Holland, 1995.

C. H. Kung. An analysis of three conceptual models with time perspective. In
Olle et al., editor, Information Systems Design Methodologies: A Feature Analysis,
pages 141-168. North-Holland, 1983.

J. C. S. P. Leite and P. A. Freeman. Requirements validation through viewpoint
resolution. IEEE Transactions on Software Engineering, 17(12):1253-1269, De-
cember 1991.

P. Lindgren ed. A framework of information systems concepts. Technical Report
Interrim report, FRISCO, May 1990.

O. I. Lindland, G. Sindre, and A. Sglvberg. Understanding quality in conceptual
modelling. IEEE Software, pages 42—49, April 1994.

J. D. McGregor and T. D.. Korson. Integrated object-oriented testing and devel-
opment processes. Communications of the ACM, 37(9), 1994.

J. W. Orlikowski and D. C. Gash. Technological frames: Making sense of infor-
mation technology in organizations. ACM Transactions on Information Systems,
12(2):174-207, 1994.

K. Pohl. The three dimensions of requirements engineering: A framework and its
applications. Information Systems, 19(3):243-258, April 1994.

H. Rittel. On the planning crisis: Systems analysis of the first and second genera-
tions. Bedriftsgkonomen, (8), 1972.

G. C. Roman. A taxonomy of current issues in requirements engineering. IEEE
Computer, pages 14-22, April 1985.

A. H. Seltveit. An abstraction-based rule approach to large-scale information sys-
tems development. In C. Rolland, F. Bodart, and C. Cauvet, editors, Proceedings
of the 5th International Conference on Advanced Information Systems Engineering
(CAiSE’93), pages 328-351, Paris, France, June 8-11 1993. Springer Verlag.

J. Siddiqi. Challenging universal truths of requirements engineering. JIEEE Soft-
ware, pages 18-19, March 1994.

R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole Jr. Software requirements: New
directions and perspectives. In C. Vick and C. Ramamoorthy, editors, Handbook
of Software Engineering, pages 519-543. Van Nostrand Reinhold, 1984.

20 Y ears of Quality of Models

John Krogstie, Guttorm Sindre, and Odd Ivar Lindland

Abstract We are very pleased that our CAISE’95 paper has been selected to be
included in the Springer book that celebrates the 25th anniversary of the CAiSE
conferences series. This paper entitled ‘Towards a Deeper Understanding of Quality
in Requirements Engineering’ presented a development of work started some years
earlier in the research group of Arne Sglvberg on the topic of quality of models.
This topic has been of interest during the next 20 years by us and a number of other
researchers both in the context of IS development and in other areas, and will in our
view be a relevant topic for the foreseeable future.

1 Background for the Original Model

Work in our group on quality of models can be traced back to at least 1992. The first
manifestation of this work was in the PhD-thesis of Odd Ivar Lindland in 1993 [8].
In one particular group meeting, Odd Ivar described his early ideas on quality of
models, and how to differentiate goals and means and relating modelling languages,
domain, and actors. Jon Atle Gulla and Guttorm Sindre, also having degrees in
linguistics, suggested that he should look at the differentiation between syntax,
semantics, and pragmatics found in linguistics and semiotics, which have been a
cornerstone in our thinking about quality of models from the start. Guttorm Sindre
and Odd Ivar Lindland in particular collaborated on the next step, which ended up
in a widely cited article [9] as one of the best papers of the ICRE conference in 1994
being selected to a special issue in IEEE Software.

J. Krogstie (<) » G. Sindre
IDI, NTNU, Trondheim, Norway
e-mail: krogstie@idi.ntnu.no

O.I Lindland
Price Waterhouse Coopers, Trondheim, Norway

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 103
DOI 10.1007/978-3-642-36926-1_8, © Springer-Verlag Berlin Heidelberg 2013

mailto:krogstie@idi.ntnu.no

104 J. Krogstie et al.

Although a very elegant framework which was easily applicable for understand-
ing important aspects of quality of models, several other works pointed to the need
for extending the framework. Important inspirations in this regard was the three
dimensions of RE [14] (also represented and commented in this volume), and the
work related to the semiotic ladder presented in early versions of the IFIP 8.1
FRISCO framework [7] and work on social construction of ‘reality’ (and models
thereof) constituting the domain, which is typically not as ideal and objectively
given in practice that as the original framework worked with. Specifically the
framework of Pohl also pointed to the need for agreement between the stakeholders
of the model.

These extension, in addition to a specific focus on requirements specification
models resulted in the framework presented in the CAiSE 1995-article, the main
addition being the description of perceived semantic quality and social quality.

2 Later Developments

There was not only us working with quality of models and modelling languages in
the mid-90s. For instance Moody and Shanks and Moody [10] worked in particular
on quality of data models. Becker, Rosemann and Schiitte [1] focused on the quality
of process models. For us (and the framework later named SEQUAL) on the other
hand, the story could have ended here. John Krogstie delivered his PhD-thesis in
1995 and started working in Andersen Consulting; Guttorm Sindre took some years
off pursuing a career as a fictional writer, whereas Odd Ivar Lindland had already
joined IBM. Both John and Guttorm though kept in contact with academia, and
drifted back to more academic positions towards the end of the 90s, taking up work
on quality of models.

In hindsight the work done on SEQUAL can be framed as design science
research, with the quality framework as the main artefact. Whereas the early
validation was primarily analytical, later work e.g. together with Moody [11]
has also extended the evaluation with empirical techniques. The framework has
been developed through a number of iterations, and has also in some cases been
established as part of the knowledge base e.g. in the development of a framework
for quality of maps [13]. The current version of the framework is described in [2]
where also newer work on language quality is included. The framework has been
used for evaluation of modelling and modelling languages of a large number of
perspectives, including data [6], process [3, 15], enterprise [5], and goal-oriented
[4] approaches. It has been used both for models on the type level and instance level
(i.e. data quality [12]). The current framework is illustrated in Fig. 1. Quality has
been defined referring to the correspondence between statements belonging to the
following sets:

* G, the set of goals of the modelling task.
* L, the language extension, i.e., the set of all statements that are possible to make
according to the rules of the modelling languages used.

20 Years of Quality of Models 105

Perceived semantic

Social actor <
explicit
knowledge. K Social
ocia
Deontic Y
(leamning) -
Goals of Social actor
modelling interpretation
I
Deontic Physical
Deontic agmatic
(action) s (hurnan
understanding)

Modelling - Model Language
domain externalisation g extension
D Semantic M Syntactic t

Pragmatic
Empirical q

(tool understanding)

Technical
actor
interpretation

Fig. 1 SEQUAL framework for discussing quality of models

D, the domain, i.e., the set of all statements that can be stated about the situation.
M, the externalized model itself.

K, the explicit knowledge relevant to the domain of the audience.

I, the social actor interpretation, i.e., the set of all statements that the audience
interprets that an externalized model consists of.

T, the technical actor interpretation, i.e., the statements in the model as ‘inter-
preted’ by modelling tools.

The main quality types are:

. Physical quality: The basic quality goal is that the externalized model M is
available to the relevant actors.

. Empirical quality deals with comprehension when a visual model M is read
by different social actors. Before evaluating empirical quality, physical quality
should be addressed.

. Syntactic quality is the correspondence between the model M and the language
extension L. Before evaluating syntactic quality, physical quality should be
addressed.

. Semantic quality is the correspondence between the model M and the domain D.
This includes both validity and completeness. Before evaluating semantic quality,
syntactic quality should be addressed. Domains can be divided into two parts,
exemplified with a software requirements model:

— Everything the computerized information system (CIS) is supposed to do (for
the moment ignoring the different views the stakeholders have on the CIS to
be produced).

106 J. Krogstie et al.

— Constraints on the model because of earlier baselined models such as system
level requirements specifications, enterprise architecture models, statements
of work, and earlier versions of the requirement specification to which the
new requirement specification model must be compatible.

— Perceived semantic quality is the similar correspondence between the social
actor interpretation I of a model M and his or hers current knowledge K of
domain D. Before evaluating perceived semantic quality, pragmatic quality
should be addressed.

5. Pragmatic quality is the correspondence between the model M and the actor
interpretation (I and T) of it. One differentiates between social pragmatic quality
(to what extent people understand the model) and technical pragmatic quality (to
what extent tools can be made that can interpret the model). Before evaluating
pragmatic quality, empirical quality should be addressed.

6. The goal defined for social quality is agreement among social actor’s interpreta-
tions (I). Before evaluating social quality, perceived semantic quality should be
addressed.

7. The deontic quality of the model relates to that all statements in the model
M contribute to fulfilling the goals of modelling G, and that all the goals of
modelling G are addressed through the model M. In particular, one often includes
under deontic quality the extent that the participants after interpreting the model
learn based on the model (increase K) and that the audience are able to change
the domain D if this is beneficially to achieve the goals of modelling (if the model
is prescriptive).

3 Future Directions

More and more modelling methodologies take an active approach to the exploitation
of models. In approaches such as Business Process Management (BPM), Model
Driven Architecture (MDA), and Domain specific modelling/domain specific mod-
elling languages (DSM/DSL), Enterprise Architecture (EA), and Active Knowledge
Modelling (AKM), the models are used directly to form the information system
of the organisation. At the same time, similar techniques are used also for
sense-making and communication, simulation, quality assurance and requirements
specification in connection to more traditional forms of information systems
development. Thus we expect the need to judge the quality of models will retain.
Although much work has been done on thinking relative to quality of models
and modelling languages over the last years, there is still room for developments.
Whereas main parts of the framework are supported by empirical evidence some
of the later developments should be worked on further. Even if more guidelines for
modelling is produced [2, 12], having these put into use in methodologies and tools
in an appropriate way are also open for further research and practical exploitation
in future model-based development and evolution of information systems such as
reported in [16].

20 Years of Quality of Models 107

References

1.

2.

3.
4.

10.

11.

12.

13.

14.

15.

16.

Becker, J., Rosemann, M., Schiitte, R.: Guidelines of Modelling (GoM). Wirtschaftsinformatik
37 (1995) 5, 435-445 (in German)

Krogstie, J.: Model-based Development and Evolution of Information Systems: A Quality
Approach, Springer (2012)

Krogstie, J.: Quality of Business Process Models. Proceedings POEM (2012)

Krogstie, J.: Integrated Goal, Data and Process modeling: From TEMPORA to Model-
Generated Work-Places. In: Johannesson P, Sgderstrgm E (eds) Information Systems Engi-
neering From Data Analysis to Process Networks. IGI, pp 43-65 (2008)

. Krogstie, J., Arnesen, S.: Assessing Enterprise Modeling Languages using a Generic Quality

Framework. In: Krogstie J, Siau K, Halpin T (eds) Information Modeling Methods and
Methodologies. Idea Group Publishing (2004)

. Krogstie, J.: Quality of conceptual data models. Accepted for ICISO 2013 March (2013)
. Lindgren, P. (ed): A framework for information systems concepts. Interrim report FRISCO

(1990)

. Lindland, O.I.: A Prototyping Approach to Validation of Conceptual Models in Information

Systems Engineering. PhD Thesis IDT, NTH (1993)

. Lindland, O.1., Sindre G. and Sglvberg, A. Understanding Quality in Conceptual Modeling.

IEEE Software March (1994)

Moody, D. L., Shanks, G. G.: What Makes a Good Data Model? Evaluating the Quality of
Entity Relationship Models. In: Proceedings of the 13th International Conference on the Entity-
Relationship Approach (ER’94), pages 94—111, Manchester, England (1994)

Moody, D.L., Sindre, G., Brasethvik,T. and Sglvberg, A.: Evaluating the Quality of Process
Models: Empirical Testing of a Quality Framework. In S. Spaccapietra, S.T. March, and
Y. Kambayashi (Eds.): ER 2002, LNCS 2503, pp. 214-231, (2002)

Nelson, H.J., Poels, G, Genero M, Piattini, M.: A conceptual modeling quality framework.
Software Quality Journal (2011)

Nossum, A., Krogstie, J.: Integrated Quality of Models and Quality of Maps. Paper presented
at the EMMSAD (2009)

Pohl, K.: The Three Dimensions of Requirements Engineering. In: Proceedings of CAiSE’93,
Springer, LNCS 685 (1993)

Recker, J., Rosemann, M., Krogstie J.: Ontology- versus pattern-based evaluation of process
modeling language: A comparison. CAIS 20:774-799 (2007)

Wesenberg, H.: Enterprise Modeling in an Agile World. Proceedings of the 4th conference on
Practice of Enterprise Modeling, Oslo, Norway, November 2-3 (2011)

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

MetaEdit+
A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment

Steven Kelly, Kalle Lyytinen
Matti Rossi
Department of Computer Science and Information Systems
University of Jyviskyld
PL 35
FIN-40351 Jyviskyld
Finland
email: stevek@hyeena.jyu.fi
fax: 4358 41 603011

Abstract: Computer Aided Software Engineering (CASE) environments have
spread at a lower pace than expected. One reason for this is the immaturity of
existing environments in supporting development in-the-large and by-many and
their inability to address the varying needs of the software developers. In this
paper we report on the development of a next generation CASE environment
called MetaEdit+. The environment seeks to overcome all the above
deficiencies, but in particular pays attention to catering for the varying needs of
the software developers. MetaEdit+ is a multi-method, multi-tool platform for
both CASE and Computer Aided Method Engineering (CAME). As a CASE
tool it establishes a versatile and powerful multi-tool environment which
enables flexible creation, maintenance, manipulation, retrieval and
representation of design information among multiple developers. As a CAME
environment it offers an easy-to-use yet powerful environment for method
specification, integration, management and re-use. The paper explains the
motivation for developing MetaEdit+, its design goals and philosophy and
discusses the functionality of the CAME tools.

Keywords: CASE, CAME, method, software engineering environments, repository,
metamodeling, conceptual modeling, object oriented modeling, tool interoperability,
tool integration

1. Introduction

CASE (Computer Aided Systems Engineering) environments have been one of the
major technological innovations in systems development during the last decade. Many
have claimed that CASE technology will solve the information systems (IS)
development problems (Cha86, McC89) that have plagued the community for so long.
These include, among others, mediocre productivity (e.g. unrealistic time schedules
and cost overruns), and insufficient quality (e.g. low product validity and lack of
verifiability) (Bro75, Cha86, Ost87). CASE technologies are expected to provide task
related support for software developers in analyzing, designing and implementing a set
of information systems (IS) or their components according to a method. A method can

109

110 S. Kelly, K. Lyytinen and M. Rossi

be defined as a language (vocabulary and grammatical composition rules) which can
be used to represent features of the information system to a number of actors
(including technical actors such as specific abstract machines like a Smalltalk
machine) and a set of rules which define by whom, when, and how such
representations are derived and/or used.

The origins of CASE date back to the mid 70’s when such well-known software tools
as PSL/PSA (Tei77) and SREM (Alf77) were launched. Despite this early start, the
breakthrough of these technologies has only occurred during the 90°s. One reason for
this is the declining cost of computing technologies and its increasing functionality —
especially graphical user interfaces. Another is the increased need for disciplining the
art of software development and maintenance through standardized process and
product models. Finally there is a continuing need to improve the quality and
productivity of software production through investments in capital intensive
technologies.

In spite of these developments the rate of adopting CASE has been laggard, and the
success of adoptions doubtful (Wij90, Aae91). One reason for this is software
organizations’ Jlack of the necessary maturity to adopt highly sophisticated
technologies such as CASE. Another is the cost of adopting, using and maintaining the
technological infrastructure and associated know-how. The third reason is the
inadequate technological sophistication of CASE. Most tools in use are stand alone
tools that support creation and maintenance of graphical models and can generate
code to limited problem domains. Accordingly technologies have not matured for
software development in the large and by many. The major deficiencies are thus:
insufficient support in integrating methods, inadequate support for alternative
representation paradigms, lack of mechanisms to cater for multiple users, rigid method
and process support, and focus on task automation (Hen90).

In this paper we report on the development and use experiences of a prototype next
generation CASE tool, MetaEdit+. The environment seeks to overcome ail the above
deficiencies, but pays particular attention to the requirements concerning flexibility,
method integration and representational richness. In line with this MetaEdit+ is a
multi-method, multi-user, multi-tool platform for both computer aided software
engineering (CASE) and computer aided method engineering (CAME). As a CASE
tool it establishes a versatile environment for flexible creation, maintenance,
manipulation, retrieval and representation of design objects (information) structured
and created according to a method. As a CAME tool it provides a flexible and easy-to-
use environment for method specification, management, integration and re-use. This
paper will explain the motivations for developing MetaEdit+, its design goals and
philosophy, its design architecture, its current tool set, and its future development.

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 111

2. Related Research

Weaknesses in current CASE tool support can be divided into the following aspects:

1. lack of mechanisms for integrating sets of methods while maintaining consistency
between various models (Kel95, Mar95, Kel94a)

2. lack of support for multiple users to create, modify and delete sets of partly
overlapping model instances,

3. inadequate catering for multiple representational requirements ranging from fully
diagrammatic to fully textual or matrix representations. These are dictated by
different method families (Mar95),

4. failure to provide consistent mapping mechanisms between different
representational paradigms (Kel95, Mar95),

5. lack of flexibility and evolvability in method support ranging from syntactic
variation in methods to crafting totally new method components (Lyy89), and

6. insufficient catering for different information-related needs of a diverse set of
stakeholders (Mar95).

2.1 Lack of Method Integration Mechanisms

Several mechanisms are available for method integration or interaction. At the most
rudimentary level these deal with mechanisms that enable translations from one
representation format to another. Attempts to develop such CASE “EDI” solutions
abound, e.g. CDIF (CDI91). Their weakness is that they do not support any inter-
model consistency checking, semantic validation and tool interoperability.
Accordingly, they can only be used in static model transfer from one environment to
another. A more advanced approach has been to develop generic and universal method
specification schemata. This “super-schema” would provide a common and universal
semantic model onto which all methods used in the environments could be mapped.
This can be done directly as in the A/D Cycle information model (Mer90), or through
method reference models (Hey92) where the mapping takes place through a reference
model. An early solution of this kind was the mapping of system development
methods into generic modeling constructs of PSL/PSA (Tei77). The limitation of this
approach is its closed nature of method integration which cannot tolerate any
flexibility in the mappings. Moreover, it cannot cater for future evolution in the
method arena. Finally, it can only support a limited number of method integration
solutions which deal solely with object sharing and associated consistency checks.

2.2 Insufficient Multi-User Support

A large body of literature exists on concurrency control and alternative strategies to
deal with multiple user operations in software engineering repositories (for a review
see Bro91). A number of strategies have emerged recently for achieving varying levels

112 S. Kelly, K. Lyytinen and M. Rossi

of optimistic concurrency control (Kat84). Despite these advances it is still not known
which granularity levels are appropriate for effective concurrency, what are suitable
transaction notions, and how much locking and what types of locks are needed.
Moreover, it is not clear how much transaction management should be left to users’
awareness of others’ operations. In this respect, most commercial CASE environments
provide solutions that are too crude or inefficient, while advanced mechanisms
suggested by researchers can be computationally too demanding (e.g. use of work
spaces and merge strategies) or cannot be adapted to the existing CASE architectures.
Moreover, a big unsettled issue is how well semantics-driven and dedicated locking
strategies operate in such environments and whether we should cater for differences
between conceptual and representational objects, or between the different tools that
operate on the design data (Kel94a).

2.3 Insufficient Support for Multiple Representation Paradigms

Whilst today’s methods contain various representation paradigms — graphical
diagrams, matrices, tables, etc. — most existing CASE tools operate on only one:
graphical diagrams. If other representation forms are needed they are generated by
some user triggered operations such as generating a report. Because of this, CASE
tools do not offer the representation independence that could make them fully
adaptable to differing representation demands. Thus most CASE tools offer only
limited syntactic and graphical modifiability in supported methods. Another weakness
is the lack of hypertext support for semi-structured and non-structured linking of
design objects in different representation formats or model parts. Either the available
functionality provides hypertext features as the CASE environment (Cyb92), or the
support functionality is limited to some model areas (Poh94) or to user interface and
user support (Oin93).

2.4 Lack of Method Modifiability and Evolution

The importance of CAME in CASE has been noticed in several studies (Kum92,
Che88, Brioo, Wij91, Hey93, Ste93). To this end CASE shells — metaCASE tools, or
fully customizable CASE environments — have been developed. Such environments
are expected to overcome the inflexibility of method support. According to Bubenko
(Bub88) “a CASE shell includes mechanisms to define a CASE tool for an arbitrary
technique or a chain of techniques”. Yet, metaCASE technology has not yet matured
sufficiently to provide adequate method modifiability though the number of CASE
products leveraging method modification facilities is increasing. Commercial products
offering such features include Customizer™ (Ind87), VSF (Poc91), MetaEdit™
(Smo91a) and Paradigm+ (Pro94). Research versions of CASE shells include
RAMATIC (Ber89), ConceptBase (Hah91) and MetaView (Sor88). Integration of
CASE shells and their CASE environments comes in various kinds. A CASE shell can
be a separate tool that produces a methodology specification which the CASE
environment uses (e.g. Customizer), or it can be an integral part of the CASE
environment (e.g. RAMATIC). MetaEdit™ was one of the first that offered CAME
and CASE functionality within the same tool. In MetaEdit methods are specified
graphically (Smo91b) and these specifications are converted into a textual form,

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 113

before compiling and loading the complete method specification into a CASE
environment. All these have been steps in the right direction. However, environments
that can offer powerful and easy to use modification facilities, method component
libraries, method re-use and run-time adaptability are still largely non-existent.

2.5 Lack of Information Retrieval and Computational Facilities

One problem in current CASE tools is their limited information retrieval and reporting
capability. Some general and computationally powerful solutions exist in
environments that apply a logic programming paradigm (such as ConceptBASE
(Hah91)). Though sufficient in their expressive power and generality the use of such
query functions is limited by their computational complexity and insufficient user-
friendliness. This is due to the lack of data base schema representations and user
friendly query formulation. Another problem is that all existing query systems center
around retrieving and representing textual information while most of the design
information is input and viewed in a graphical format. Finally, few environments
provide a means to browse through the repository via hypertext links or various
browsing mechanisms.

2.6 Summary

The record of CASE research in each area demonstrates that most concerns have been
addressed during the last decade and considerable progress has been made in
rendering CASE environments useful. Yet, what seems to be lacking is a
comprehensive approach that seeks to tackle most, if not all of, these weaknesses
simultaneously. Though this may require some compromises and difficult trade-offs in
achieving all these goals (like improving multi-user facilities and method flexibility)
our contention is that the real impact of future CASE — in the large and by many —
will depend on our capability to offer more comprehensive solutions that address most
of these concerns within the same environment. Unless such environments emerge the
adoption of CASE will in all likelihood continue to be a frustrating experience.

3. The MetaEdit+ Environment

As a meta-CASE environment MetaEdit+ seeks to address most of the above concerns
(2.1-2.5) in a comprehensive manner by offering an environment which is:

multi-user, i.e. several users can operate concurrently on the repository (2.2),

e multi-tool, i.e. each user can operate several tools simultaneously where each tool
provides a different view to the same object (2.3, 2.5),

o multi-method, ie. the environment offers several mechanisms for method
integration and consistency checking (2.1),

e multi-form, i.e. the environment provides several representation formats for the
same design object (2.3), and

¢ multi-level, i.e. the environment is a true metaCASE environment in that both an
IS and its design methods can be engineered within the same environment (2.4).

114 S. Kelly, K. Lyytinen and M. Rossi

The environment seeks to improve the usability (by multiple users, forms, methods
and tools), flexibility (by offering a multi-tool, muiti-method approach), and open
nature of CASE (i.e. by enabling evolution and plugging of new tools through well
defined service protocols). The design goal of the environment has been to base its
architecture in principles of conceptual modeling, layered data base architectures,
and object orientation. In this respect, the approach differs to some extent from other
metaCASE approaches which focus more on the representation of methods as first
order logical theories (Hah91), or on the graphical behavior of design objects (Ber89),
From the viewpoint of conceptual modeling the design of a method specification is
akin to the development of a conceptual schema for a software repository, and the
design of a software tool resembles a design of an external view to a conceptual
schema (ANS75). Hence, the method specification language is at the same time the
conceptual modeling language for the repository schema, or forms the meta-
metamodel level in the IRDS standard (ISO89). The adoption of full object orientation
enables flexible organization and re-use of software components in the environment
and a high level of interoperability between tools. This is achieved through both data
integration (via shared conceptual schemata) and control integration (via object
organization) thus making the environment fairly open.

Our motivation in using conceptual modeling and object orientation in the design of
MetaEdit+ has suggested three principles for the design: data independence,
representation independence, and level independence. Data independence is defined
in a similar way as in traditional data base theory i.e. tools operate on design
information without “knowledge” of its physical organization, or logical access
structure. Representation independence forms a continuum with data independence
and it allows conceptual design objects to exist independently of their alternative
representations as text, matrix or graphical representations. This principle allows
flexible addition of new tools, each one only responsible for its own paradigmatically
different view on the same underlying data. Level independence means that the
environment follows a symmetrical approach in its treatment of data and metadata.
Accordingly, the specifications of methods and their behaviors can be managed and
manipulated in a similar way to any other object in the environment (therefore the
name metaCASE). Moreover, the specifications can be concurrently operated through
the same or somewhat specialized tools in the environment.

3.1 General Architecture

The functional architecture of MetaEdit+ is illustrated in Fig. 1. The heart of the
environment is the MetaEngine, which handles all operations on the underlying
conceptual data through a well-defined service protocol (Smo93a). In other words, the
MetaEngine embodies the implementation of the underlying conceptual data model
and its operation signature. Accordingly, software tools request services of the
MetaEngine in accessing and manipulating repository data. Thereby they avoid the
need to duplicate the manipulation code. This design choice allows flexible integration
of new tools, each only responsible for its own paradigmatically different view
(including operations) on the same underlying repository data. A tool, as the term is
used within the MetaEdit+ environment, is a window type with its associated

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 115

functionality, through which a user can view and possibly alter a design objects in a
particular way.

The. architecture has similarities with that of the ECMA-PCTE (ECM91) — e.g.
common services, separation of components at different levels of integration — but
differs from it, most noticeably in the enforcement of no direct communication
between components at the same level, or over a common bus between components
separated by more than one level: tools communicate only via the MetaEngine.

oy

Instance of Startup/Main
MetaEdit+ Launcher

Diagram
Editor

Matrix
Editor

Environment
Management

T

Model
Editing

Table
Editor

Repository
Browsers

[query @I Model
Edit etrieval
network =

MetaEngine Report
Editor

Hyper-
text Tool

Debate
Browser

H [El

H

j

Model Linking
& Annotation

Repository

X

Object etc.
Tools

Method
Management

Symbol
Editor

O

MetaEngine

Fig. 1: MetaEdit+ Architecture

MetaEdit+ can run either as a single-user workstation environment, or simultaneously
on many workstation clients connected by a network to a server. Each client has a
running instance of MetaEdit+, including all its tools and the MetaEngine. The
MetaEngine takes care of all issues involved in communicating with the server. Tools
communicate with each other only through the MetaEngine, and thereby through the
shared data in the repository. Thus the major integration mechanism applied is data
integration.

116 S. Kelly, K. Lyytinen and M. Rossi

The server forms the software repository holding all the data contained in models, and
also in the metamodel(s), in addition to user and locking information. In particular the
MetaEdit+ repository includes: object specification base containing all the method
specifications represented as GOPRR concepts; symbol specification base containing
all symbols needed to represent Objects, Relationships and Roles; ool related
information base containing all information needed to represent conceptual objects in
different tools (such as spatial coordinates, or size), user information base containing
all information related to various users such as their passwords, access rights, or
current locks held; report specification base containing all report and other output
specifications.

MetaEdit+ applies pessimistic concurrency control in dealing with user and multi-tool
interactions with the repository. We have found locks useful despite some of their
disadvantages such as stricter user control, interference with users’ work, and poorer
overall performance. The gains are greater as locks prevent conflicts from occurring
between different copies of the repository data, help users to be warned about possible
interference, and prevent gaining access to design objects already used in another’s
transaction. All these are of utmost importance in software repositories. Transactions
are understood as long transactions. Their length is defined by a user triggered commit
operation (automatically requested by the end of the session). The burden of deciding
what to lock and when is removed from user’s responsibilitics and decided by the
system. Another feature of the locking strategy is that MetaEdit+ follows more than
one level of granularity in locking repository objects. It distinguishes locking
granularities between metamodels, graphs, conceptual objects, and representation
data. It can thus achieve the following desired features in locking: locks are acquired
only when needed, they are well-placed, and are not too small to overburden the
system, During their work users can gain information about locked objects and are
thus aware of who has locks on which design objects. Accordingly, they can
coordinate their actions through negotiating about how locks are freed and transferred.
Although no formal testing has been carried out as yet, initial experiences suggest that
with this strategy lock conflicts are surprisingly rare in normal CASE work.

3.2 Tool Architecture

In the design of the environment we have classified tools into five distinct families
according to their purpose and underlying common functionality. From the viewpoint
of conceptual data in the repository each family portrays similar demands in terms of
manipulation, locking and retrieval of conceptual design objects, though the different
representational paradigms underlying the tools may pose additional demands on
retrieval and locking. This has to be dealt with individually in each tool. Each tool
family contains one or more tools (Fig. 1). The five tool families are the following:

1. Environment management tools: these tools are used to manage features of the
environment, its main components and to launch it.

2. Model editing tools: these tools are used to create, modify and delete model
instances or their parts. In addition, these tools can be used to view the model

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 117

instances from different representational viewpoints, and/or to derive new
information from existing design information.

3. Model retrieval tools: these tools are used for retrieving design objects and their
instances from the repository for reuse and review. These tools can operate on both
models and metamodels.

4. Model linking and annotation tools: these tools are used for linking design
objects for traceability and memorization, annotating model instances, finding
specific “locations” in the design space, or maintaining conversations about design
issues.

5. Method management tools: these tools are for method specification, management
and retrieval.

4. Conceptual Data Model

Because all method specifications in MetaEdit+ are interpreted as high level
conceptual models of method (or methodology) the kernel of the MetaEdit+
functionality and architecture is determined by the underlying conceptual data model
called GOPRR. MetaEdit+ uses the GOPRR conceptual data model as a universal and
generic meta-metamodel i.e. as a sole language to specify methods. Very little if any
method “knowledge” is buried into the code in tools. In addition, GOPRR is primarily
intended to model observed, interpreted and recorded development reality as seen
through the methods (including the world of thought and abstract ideas). In this
respect it differs from the ontological IS models (see e.g. Wan93), which attempt to
model what actually s, rather than just what is perceived and recorded.

4.1 The OPRR Model

Basically, GOPRR (Smo93b) forms an evolutionary extension of the OPRR model
which has been successfully used in specifying methods for MetaEdit (Wel92,
Smo91b). Whereas the original ER model (Che76) provided only sketchy concepts of
attribute: features the object can possess; and of role: the part an object plays in a
relationship; the OPRR model has defined these notions in full.

The basic OPRR modeling constructs are:

e Objects, which consist of independent and identifiable design objects. These
typically appear as shapes in diagrams, and can have properties such as names.
Examples of objects are an Entity in an Entity Relationship Diagram or a Process
in a Data Flow Diagram.

e Properties are attributes of objects and can only be accessed as parts of objects
or relationships. Properties typically appear as textual labels in diagrams, and
they can contain single data entries such as a name, text field or number. An
example of a property is the number of a Process in a Data Flow Diagram
(Gan79).

118 S. Kelly, K. Lyytinen and M. Rossi

e Relationships are associations between objects, and can also have properties.
Relationships typically appear as lines between shapes in diagrams, or verbs in
texts. An example of a relationship is a Data Flow in a Data Flow Diagram.

e Roles define the ways in which objects participate in specific relationships. In
diagrams roles typically appear as the end points of Relationships (e.g. an
arrowhead). Roles too can have properties. An example of a role is the
specification by directed arrow which end of a data flow relationship is ‘to’ and
which ‘from’ part of the flow.

In addition OPRR provides constructs for defining cardinality constraints for
relationships (i.e. as properties of relationship meta-objects), and means to determine
properties which uniquely identify each object instance. The OPRR model is founded
on fixed mapping rules between modeling constructs and their graphical behaviors
(Ros92).

OPRR is further designed to be applicable to both the instance (model) and the type
(metamodel) levels. Thus an instance object, say a Process ‘3.1’ in a Data Flow
Diagram model, has an object type of ‘Process’ on the metamodel level, while a flow
relationship instance ‘order info’ on the model level is an instance of a relationship
type ‘Data Flow’ on the metamodel level.

4.2 Extensions in the GOPRR Model

GOPRR extends OPRR as a conceptual meta-metamodel in several ways. First, unlike
OPRR the GOPRR model allows multiple representations of the same underlying
conceptual object (e.g. graphical, matrix, text), and even different graphical
representations of the same object in the same representation paradigm. This is
achieved by making available mechanisms that can override the default representation.
In this sense GOPRR forms a true conceptual ‘“kernel” on which varied
representations of data, including not only graphical diagrams but also hypertext, text
and matrices, can be built. This allows GOPRR to support a wide range of
methodologies including matrix, table or text oriented ones, and gives users the ability
to see and manipulate design information in a variety of representations.

Second, the conceptual modeling constructs offered by OPRR have been extended in
the GOPRR in several ways which yields a powerful but yet ease-to-use modeling
language. These new Graph, object orientation, method integration and rule constructs
are described below.

Concept of Graph

The GOPRR model adds the concept of Graph into the modeling constructs. A graph
denotes an aggregate concept which contains a certain set of objects and their
relationships (with specific roles). Graphs typically appear as windows on whole
diagrams which contain objects and their bindings of roles and relationships; a graph
also has its own properties. An example of a graph is a whole Data Flow Diagram (as
a whole or just one level of it). In use, the Graph concept is fundamentally a
generalized decomposition graph: it can be included in a parent graph, attached to an

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 119

object, role or relationship therein. For instance, in Data Flow Diagrams a top level
graph may contain a Process ‘3’, which has a decomposition graph called
‘Decomposition of 3’, containing Processes ‘3.1°, 3.2’ etc. Relationships from ‘1’ and
2’ to ‘3’ in the top level graph are actually interface relationships, as we can specify
that in the lower-level graph they link to e.g. ‘3.2’ and ‘3.1’ respectively. The interface
to the object, and hence to the elements in its decomposition graph, can be shown in
the child graph to any degree between ‘not at all’ and ‘show copies of external
objects’. The interface is maintained distinct from the elements of the decomposition
graph itself, allowing reuse of the decomposition graph in different parent graphs. The
interface ‘specification’ remains the same in all decompositions, but the elements
attached to the interface at the higher level can be different in different parent graphs,
thus allowing reuse of the graph as a white or black box.

The design of Graph is such that many “representational” graphs can be made for one
“conceptual” graph. For instance, a matrix and diagram representation can be made of
the same conceptual Data Flow Diagram. In this situation changes in conceptual
graphs are propagated between different tools and their “representational” graphs
according to their usefulness to the user. Currently, objects added in one graph are
immediately available to other graphs, but not automatically added. Changes to
properties are made instantly (on transaction commit, if different users are working on
different graphs), and additions to or changes of relationships or roles are made
instantly in the relationship-oriented Matrix Editor, but buffered in the Diagram
Editor, so the user can control their layout when they are added.

The addition of the concept of Graph allows GOPRR to represent multiple methods,
and multiple models, whilst still maintaining the contents of each as a coherent
distinguishable whole. In this way graph enables modeling and representation of
recursive structures such as decompositions, or complex objects as often found in
development methods. The graph notion has also been specialized into a modeling
unit called Project, which can contain other Graphs, and sub-projects. A Project type
thus helps manage the allowed linkages between methods used in a particular project.

It is noteworthy that all concepts included in GOPRR are designed for reuse: both
types and instances of object, relationship, role, property and graph can be reused
within other graph or project types (or instances).

Object Orientation

Another extension, in line with object orientation is the inclusion of generalization
and specialization constructs into the GOPRR language. This extension helps to
organize complex method libraries, enhances reuse, and together with the graph notion
enables to model in economical way most method components.

In line with object orientation objects a third extension is polymorphism of modeling
constructs: objects, relationships, roles and properties are polymorphic in the sense
that an object seen in one method as an object can be seen in another method as a
relationship, or a property. This enables method component re-use and provides a

120 S. Kelly, K. Lyytinen and M. Rossi

powerful and flexible method integration mechanism. In this way the method
specifications can include specifications of a set of interconnections between different
IS models.

Method Integration

In addition to decomposition and polymorphism, GOPRR also adds other powerful
method integration constructs. Objects, relationships and roles can be reused in many
different graphs: a change to the object via one graph is also visible in the other
graphs. Similarly, properties can be shared between several objects, with changes
affecting all objects referring to that property. These two constructs allow different
degrees of saying that two objects in different places are ‘the same’: an important
factor in representing the same ‘real world’ fact in two different methods. Explosion
works similarly to decomposition, but with freer semantics. For instance, each object
may have only one decomposition, wherever it occurs, but can have multiple
explosion links for every graph in which it takes part.

Integrity Checking Rules

Finally GOPRR provides enhanced rules for checking the model integrity. It is
possible to attach rules to properties, in addition to the normal type restrictions. For
example, in modeling Data Flow Diagrams, a rule has been added to the property
‘DFD Number’ which constrains the contents of the string property to be a dot
separated sequence of numbers, disallowing combinations like ‘Fred’, ‘2.’, ‘3..2.1’,
‘. It is also possible to add constraints on the collection of properties for a given
object, role, relationship, graph or project type. For example, a rule could be added to
specify that a ‘start date’ must come before an ‘end date’ in an activity modeling
diagram. These rules, too, are inherited by descendant types, but may be overridden.

4.3 Example

Although the improvements in GOPRR are best seen with complicated methods, for
ease of understanding we take a simple Data Flow Diagram metamodel as our
example. One way to model Data Flow Diagrams with GOPRR is to note the
similarities between the various object types (i.e. processes, externals and stores), and
how they may be connected. For instance, instances of all three object types must have
a name and a description, and they can connect via a Flow relationship with a Process.
These similarities motivate the creation of a generalized ‘DFDObject’ type, which is
specialized into ‘Process’, ‘External’ and ‘Store’ types. DFDObject itself is marked so
that it can never be instantiated: it is purely an abstract type.

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 121

Name Descriptiol

B i I
(teme)— | 2CD
Store Process External

Decompos

Fig. 2: A GOPRR metamodel of Data Flow Diagrams

This inheritance hierarchy can be seen in the center of Fig. 2, where the rectangles are
object types, diamonds are relationship types, circles role types, and ovals property
types. DFDObject thus has two properties, Name and Description, and Process
inherits these two and adds a third, Number. Objects can be connected by a Flow
relationship, with the proviso that one of the objects must always be a Process: on the
left, the Process is in the To role, and on the right, in the From role.

The whole figure within the rectangle represents the Graph type of Data Flow
Diagrams. The fact that a Process can decompose to a lower-level Data Flow Diagram
is represented by the curved gray ‘Decompose’ relationship between Process and the
DFD graph type’s rectangle.

5. Method Management Tools

5.1 Motivation and Purpose of the Method Management Tools

In MetaEdit+ the method management tool family has been developed to ease the
creation and testing of methods, their management and evaluation support. The
primary goal of the tool family is to allow flexibility in method creation and
management and ease method construction. Therefore the environment supports
alternative ways of method engineering: 1) creation from scratch, where all the parts
of the method being defined contain new types, 2) component oriented, where
methods are constructed through using prefabricated parts, and 3) reuse oriented,
where method engineering seeks to achieve maximal generality of the repository
types, and then by specializing these components derive new methods.

122 S. Kelly, K. Lyytinen and M. Rossi

5.2 Design Principles of Method Management Tool Family

The development of the MetaEdit+ method management tool family has been
influenced by earlier method engineering frameworks (Har93, Hey93, Ros95b,
Wel92). These frameworks have sought to consider those aspects that are necessary in
a completely functional method engineering environment. Functionally such an
environment consists of the following parts:

MetaEdit+

| CASE tool

tailored for

the method
| Hel Method Report / MetaEdit+ ‘

| foeee - : cj’o” 1 Method

Generators| [ES"CTatr supportenv| [code f M ‘
generator generator ‘ anagement ‘
I ‘ family ‘.
Object etc. | [Symbol Consistency | |Metrics & :
Assembly | |Tools Editor checking Statistics |
i

Fig. 3: Method Management Tools in MetaEdit+

Below each subsystem component will be discussed in more detail.

The Method Assembly System

This system part consists of several specialized editors and model retrieval and
analysis tools that are needed in method assembly. These tools together allow one to
specify a method’s objects and relationships and their representations, so that they can
be immediately tested within the environment. The most important components are the

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 123

metamodel editors (including object, relationship, role, property and graph editors) by
which every method’s components and their connections are specified. Due to their
different semantics and graphical behaviors Objects, Properties, Relationships and
Roles all have their own specification tools. This helps to define their specialized
semantics separately, but in particular allows re-use of existing object, relationship
and role specifications. These concepts are then collected into complete method
specifications using the Graph tool. This also allows the re-use of existing graph
“patterns”. Each tool also has a dialog definition subsystem, which allows custom
definition of dialogs associated with each object type.

The Symbol Editor helps specify symbols that are used to distinguish each object type
from other object types. Symbols are defined by a specialized drawing tool and are
thereafter connected to the appropriate metamodel type. The Symbol Editor also
improves re-use as new symbols can be derived by combining or modifying existing
symbol patterns and templates retrieved from the repository. The Consistency
checking system in MetaEdit+ incorporates several rules that ensure the syntactical
completeness and consistency of the resulting method specification. Completeness
checking covers checking for missing values and missing links between different
method components. Consistency checks verify the internal integrity of the method
specification by analyzing that the method specification does not include contradictory
specifications. The Metric & statistics system of the environment offers a number of
reports developed using the report generator tool, that analyze the method
specification (Ros94, Ros95a). The metrics reports provide a set of computed values,
which can be used to review and analyze the properties of the specifications.
Examples of metrics are the number of Object, Relationship and Property types in the
method (Tei80), and the average number of Properties or Relationships per Object

type.
Environment Generation System

This subsystem features several generators that help to deliver a usable and user-
friendly CASE tool by using the information contained in the method specifications.
The Method support environment generation system compiles the method’s object
specifications into parts of the metamodel repository as soon as they have been
defined. As noted above such specifications define the structure of MetaEdit+’s
repository data and the symbols to represent and forms to view the object instances.
The Method help generation system generates an on-line help component associated
with each method. This help can then be accessed through a model editing tool
interface from the repository. The generation is based on the defined properties of the
metamodel types such as a definition what is an External and how it is used in
different situations. Report and transformation generation system is used for
delivering various reports and conducting checking on the models. These reports can
be defined using the generic report generator discussed above.

Parts not available in the current MetaEdit+ method management tool family but
recognized in the earlier frameworks are: a selection assistant for selecting the right
method or its parts for a specific project (Kum92, Har94), and process description and

124 S. Kelly, K. Lyytinen and M. Rossi

support (Wij91). These needs are not currently addressed in MetaEdit+, but there are
ongoing activities in the project that aim at adding these features.

5.3 An Example of a Method Specification

Here we show how to develop part of the Data Flow Diagram metamodel. The
example depicts how the defined components of the DFD are connected together to
form the actual method. The tools used to manipulate the GOPRR concepts in the
concept specification database are form-based.

=] B GraphTesl “[a sraph types definer =14

k]

X 1 rroma = 3l
3 [Blbwe - %0 . A
Modly J 1yt][L j
|) Do o
SR e— I —

Fig. 4: A Graph Tool

Fig. 4 shows the resulting graph specification of the DFD method. The Graph Tool
allows the user to add, remove and edit components of the method (the components,
i.e. Objects, Relationships and Roles, are modified with similar tools) and to add and
delete method connections. The window on the left shows the definition of the DFD,
its properties (i.e. model name and documentation) and related documentation text for
method help. The window in the upper right corner of the figure shows the
components of the method. The window in the lower right corner shows the possible
explosion connections between objects in the DFD and other Graph types: Processes
can be exploded into lower level DFD’s.

6. Discussion and Conclusions

The limited functionality and rigidity of the current information systems development
environments continues to pose a considerable challenge to both academia and
practice. In this paper our goal has been to demonstrate how the prototype metaCASE
environment called MetaEdit+ deals with these concerns. Overall, we have sought to

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 125

develop MetaEdit+ as a platform for trying out different tools and tool construction
principles, and also to try out the use of object oriented architecture in designing and
implementing a metaCASE tool. This is well reflected in its current implementation.
MetaEdit+ has been implemented using VisualWorks Smalltalk environment using the
ArtBase object repository system and NEDT graphical programming environment,
with ENVY as code management system. By doing this, we have been able to re-use
about 70% of all code needed to implement the current functionality.

Our goal in developing MetaEdit+ environment has been to develop an environment
which:

e Supports high level specification of methods with a powerful yet easy to use
method specification language

e Has an open architecture which separates the conceptual specification of the
repository and the view (or representation) adopted in different tools and thus
conveys a high-level object-oriented API for the tool-repository interactions

e Offers mechanisms for concurrent access of repository data through different tools
and users

e Features a comprehensive and well-organized tool set for diverse and complex
information handling tasks with some new functionality such as matrices, hypertext
tools and the query tool

o Includes flexible, and varying mechanisms for tool integration and both vertical
and horizontal method integration support

* Provides symmetrical treatment of IS models and metamodels, and thus enables re-
use, metamodel management and utilization within the same environment

e Provides novel support for alternative representational paradigms including
matrices, and tables.

We believe that with these features MetaEdit+ addresses many flaws found in current
CASE tools. First, through its novel method integration mechanisms it provides
innovative ways to organize methods and method families into methodologies, and
also to organize methodologies with alternative levels of connectedness and inter-
method integrity constraints. Second, through its concurrency management
mechanisms MetaEdit+ is able to cater for varying needs and demands for
concurrency management for different repository objects. Third, through its open
architecture and tool interoperability MetaEdit+ can support the highly diverse
representational paradigms and information processing needs which are demanded
from software engineering environments. Fourth, through its meta-metamodel
MetaEdit+ provides flexibility and evolvability in the method specification and use
which is unmatched by any other existing metaCASE tool. Fifth, through the
availability of a varied yet uniform (in terms of user accessibility and user interface)
tool set the MetaEdit+ environment is able to cater for diverse needs of different
system development stakeholders. In this sense MetaEdit+ achieves the design goals
of better usability, improved flexibility and a open architecture.

126 S. Kelly, K. Lyytinen and M. Rossi

Despite these advances MetaEdit+ is not currently a fully complete environment,
suitable for all types of development tasks. First, it does not address the need for
multiple distributed repositories which is typical for large scale software development.
Second, its concurrency management strategies can be too demanding for large scale
software repositories. Third, it does not provide flexible integration mechanisms with
other tools (such as electronic publishing or CSCW tools).

Future work in MetaEdit+ will take several directions. First, we want to expand the
flexibility and evolvability to cater not only for method representation specifications,
but also process and actor models for ISD (Mar94). Second, we will finish the
ongoing implementation of the concurrency management system and expand it with
the possibility to try out alternative concurrency management strategies which may be
applicable in different environments. The third direction is to increase the capabilities
to describe integrity constraints within and between method specifications.

On the tool and MetaEngine level the following expansions are currently underway.
The applicability of the concept of reusable graphs with ‘interface ports’, analogous to
principles encountered in chip design, will be examined on the model and metamodel
levels. The three constructs to represent different levels of ‘two things being the same’
in a model (multiple representations of the same concept, property sharing, hypertext
links) will be examined in the light of current practice in methods. The possibilities of
polymorphism based on bindings and metatypes will be examined further in particular
as a solution to the problems of metatype polymorphism in existing methods (e.g.
objectified associations in NIAM (Nij89), which can be viewed as both objects and
relationships). Similarly, the possibilities of the matrix paradigm will be investigated.

To conclude, MetaEdit+ forms a bold attempt to build a versatile platform for
implementing flexible design information systems that will form the necessary
organizational memory and design resource for knowledge intensive systems and
software engineering required in the next millennium. If any improvement has been
made in realizing this vision we have achieved our goals.

Acknowledgments. This research was in part funded by the Ministry of Education,
University of Jyviskyld, and the Academy of Finland, as the MetaPHOR project
(Lyy94). We are also grateful to our colleagues in the MetaPHOR project who have
been involved in designing and implementing some parts of the system.

Bibliography

Aae91 Aaen, Ivan, Carsten Sgrensen, “A CASE of Great Expectations,” Scandinavian
Journal of Information Systems 3(1) (1991) pp.3-23.

Alf77 Alford, M., “A Requirements Engineering Methodology for Real Time Processing
Requirements,” IEEE Transactions on Software Engineering 3(1) (1977) pp.60-69.

ANS75 ANSI, “Study Group on Data Base Management Systems: Interim Report 75-02-08,”
ACM SIGMOD Newsletter 7(2) (1975).

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and Lars-Ake
Johansson, “RAMATIC - A CASE Shell for Implementation of Specific CASE Tools,”
Tempora T6.1 Report, first draft, SISU, Gothenburg (1989).

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 127

Bri90

Bro75
Bro91
Bub88
CDI91
Cha86
Che76

Che88

Cyb92
ECM91
Gan79

Hah91

Har93

Har94

Hen90

Hey92

Hey93
Ind87
1SO89

Kat84

Brinkkemper, Sjaak, “Formalisation of Information Systems Modelling,” Ph.D.
Thesis, Univ. of Nijmegen, Thesis Publishers, Amsterdam (1990).

Brooks, F., “The Mythical Man Month: Essays on Software Engineering,” Addison-
Wesley, Reading, Mass, USA (1975).

Brown, Alan W., “Object-oriented Databases: their applications to software
engineering,” McGraw-Hill, Maidenhead UK (1991).

Bubenko, J. A., “Selecting a Strategy for Computer-Aided Software Engineering
(CASE),” Report 59, SYSLAB, University of Stockholm, Sweden (1988).

CDIF, “CASE Data Interchange Format Interim Standards vol. 1-3,” Electronic
Industries Association Engineering Department (1991).

Charette, R., “Software Engineering Environments, Concepts and Technology,”
McGraw-Hill, New York, USA (1986).

Chen, P. P., “The Entity-Relationship Model: Toward a Unified View of Data,” ACM
Transactions on Database Systems 1(1) (1976) pp.9-36.

Chen, Minder, “The Integration of Organization and Information Systems Modeling:
A Metasystem Approach to the Generation of Group Decision Support Systems and
Compute-aided Software Engineering,” PhD Thesis, University of Arizona, Tuscon,
USA (1988).

Cybulski, Jacob L., Karl Reed, “A Hypertext-Based Software Engineering
Environment,” IEEE Software (March 1992) pp.62—-68.

ECMA, “Reference Model for Frameworks of Software Engineering Environments,”
Technical Report ECMA TR/S35, 2nd Edition (1991).

Gane, C., T. Sarson, “Structured Systems Analysis: Tools and Techniques,” Prentice
Hall, Englewood Cliffs, NJ (1979).

Hahn, U., M. Jarke and T. Rose, “Teamwork Support in a Knowledge-Based
Information Systems Environment,” IEEE Transactions on Software Engineering
17(5) (1991) pp.467-481.

Harmsen, F., S. Brinkkemper, “Computer Aided Method Engineering based on
existing Meta-CASE technology,” pp. 125-140 in Proceedings of the Fourth
Workshop on The Next Generation of CASE Tools, Sjaak Brinkkemper, Frank
Harmsen (Ed.)No. 93-32, Univ. of Twente, Enschede, the Netherlands (1993).
Harmsen, Frank, Sjaak Brinkkemper and Han Oei, “Situational Method Engineering
for Information System Project Approaches,” pp. 169-194 in Methods and
Associated Tools for the Information Systems Life Cycle (A-55), A. A. Verrijn-Stuart
and T. W, Olle (Ed.), Elsevier Science B.V. (North-Holland) (1994).

Henderson, J., 1. Cooprider, “Dimensions of IS Planning and Design Aids: a
Sunctional model of CASE technology,” Information Systems Research 1(3) (1990)
pp.227-254.

Heym, M., H. Osterle, “A Reference Model of Information Systems Development,”
pp. 215-240 in The Impact of Computer Supported Technologies on Information
Systems Development, K. E. Kendall, K. Lyytinen, J. L. DeGross (Ed.), North-
Holland, Amsterdam (1992).

Heym, M., H. Osterle, “Computer-aided methodology engineering,” Information &
Software Technology 35(6/7) (1993) pp.345-354.

Index Technology Corporation, “Excelerator Reference Guide,” Index Technology
Corporation, Cambridge, USA (1987).

ISO, “Information processing systems: Information Resource Dictionary System
(IRDS) Framework,” Draft International Standard ISO/IEC DIS 10027 (1989).

Katz, Randy H., “Transaction Management in the Design Environment,” in New
Applications of Databases, Georges Garderin and E Ge (Ed.), Academic Press,
London UK (1984).

128

Kel9%4a

Kel94b

Kel95

Kum92

Liu95

Lyy89

Lyy94

Mar94

Mar95

McC89
Mer90
Nij89
0Oin93
Ost87

Poc91

Poh94

Pro94

S. Kelly, K. Lyytinen and M. Rossi

Kelly, Steven, Veli-Pekka Tahvanainen, “Support for Incremental Method
Engineering and MetaCASE,” in Proceedings of the 5th Workshop on the Next
Generation of CASE Tools, B. Theodoulidis (Ed.) Memoranda Informatica 94-25,
Universiteit Twente, Enschede, the Netherlands (1994).

Kelly, S., “A Matrix Editor for a MetaCASE Environment,” Information and Software
Technology 36(6) (1994) pp.361-371.

Kelly, Steven, Kari Smolander, “Evolution and Issues in MetaCASE,” Information
and Software Technology (to appear) (1995).

Kumar, Kuldeep, Richard J. Welke, “Methodology Engineering: A Proposal for
Situation Specific Methodology Construction,” pp. 257-269 in Challenges and
Strategies for Research in Systems Development, Kottermann W. W. and Senn J. A.
(Ed.), John Wiley & Sons, Washington (1992).

Liu, H., “A Visual Interface for Querying a CASE Repository,” in Proc. of the
Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt Germany
(1995). .

Lyytinen, Kalie, Kari Smolander and Veli-Pekka Tahvanainen, “Modelling CASE
Environments in Systems Development,” in Proceedings of the first Nordic
Conference on Advanced Systems, SISU, Stockholm (1989).

Lyytinen, K., P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P. Marttiin, H. Oinas-
Kukkonen, J. Pirhonen, M. Rossi, K. Smolander, V.-P. Tahvanainen and J.-P.
Tolvanen, “MetaPHOR: Final report,” University of Jyvaskyld, Finland (1994).
Marttiin, P., “Towards Flexible Process Support with a CASE shell,” pp. 14-27 in
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAISE'94, Utrecht, The Netherlands, June 1994, G. Wijers, S.
Brinkkemper and T. Wasserman (Ed.), Springer-Verlag, Berlin (1994).

Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen and Juha-
Pekka Tolvanen, “Modeling requirements for future CASE: issues and
implementation considerations,” Information Resources Management Journal 8(1)
(1995) pp.15-25.

McClure, C., “CASE is Software Automation,” Prentice Hall, Englewood Cliffs, NJ
(1989).

Mercurio, V. F., B. F. Meyers, A. M. Nisbet and G. Radin, “AD/Cycle strategy and
architecture,” IBM Systems Journal 29(2) (1990) pp.170-188.

Nijssen, G. M., T. A. Halpin, “Conceptual Schema and Relational Database Design:
A fact oriented approach,” Prentice-Hall, Englewood Cliffs, NJ (1989).
Oinas-Kukkonen, H., “Hypertext Functionality in CASE Environments: Preliminary
Findings,” Conference on Computers and Hypermedia in Engineering Education,
Vaasa, Finland (May 24-26 1993).

Osterweil, L. J., “Software processes are software too,” pp. 180-188 in Proceedings
of the 9th International Conference on Software Engineering (1987).

Pocock, John N., “VSF and its Relationship to Open Systems and Standard
Repositories,” pp. 53-68 in Software Development Environments and CASE
Technology, A. Endres, H. Weber (Ed.), No. 509, Springer-Verlag, Berlin (1991).
Pohl, K., R. Démges and M. Jarke, “PRO-ART: PROcess based Approach to
Requirements Traceability,” in Poster Outlines: 6th Conference on Advanced
Information Systems Engineering, Utrecht, Netherlands, June 1994 (1994).

ProtoSoft Inc., “Paradigm Plus/ Cadre Edition Reference Manual,” ProtoSoft Inc.
(1994).

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996 129

Ros92

Ros94

Ros95a

Ros95b

Smo91la

Smo91b

Smo93a

Smo93b

Sor88

Ste93

Tei77

Tei80

Wan93

Wel92

Wij90

Wijol

Rossi, M., M. Gustafsson, K. Smolander, L.-A. Johansson and K. Lyytinen,
“Metamodeling editor as a front end tool for a case-shell,” pp. 547--567 in Advanced
Information Systems Engineering, P. Loucopoulos (Ed.), Springer Verlag, Berlin,
Germany (1992).

Rossi, M., J.-P. Tolvanen, “Metamodeling approach to method comparison: A survey
of a set of ISD methods,” Working Paper, University of Jyviskyld, Jyviskylad (1994).
Rossi, M., S. Brinkkemper, “Metrics in Method Engineering,” pp. 200-216 in
Advanced Information Systems Engineering, Proceedings of the 7th International
Conference CAISE'95, J. livari, K. Lyytinen and M. Rossi (Ed.)No. 932, Springes-
Verlag, Beilin (1995). '

Rossi, M., “The MetaEdit CAME environment,” Proceedings of the MetaCase 95,
University of Sunderland press, Sunderland (1995).

Smolander, Kari, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti Marttiin,
“MetaEdit — A Flexible Graphical Environment for Methodology Modelling,” in
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAISE'91, Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenko
jr. and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Smolander, Kari, “OPRR: A Model for Modelling Systems Development Methods,”
in Next Generation CASE Tools, K. Lyytinen and V.-P. Tahvanainen (Ed.), IOS
Press, Amsterdam, the Netherlands (1991).

Smolander, Kari, “MetaEdit+ Protocols and standard operations for processing
GOPRR information structures: the Application Programmer's Interface,” Internal
Technical Document, MetaPHOR project, Univ. of Jyviskyld, Jyviskyld, Finland
(1993). .
Smolander, Kari, “GOPRR: a proposal for a meta level model,” University of
Jyviskyld, Finland (1993).

Sorenson, Paul G., Jean-Paul Tremblay and Andrew J. McAllister, “The Metaview
System for Many Specification Environments,” IEEE SOFTWARE (March 1988)
pp.30-38.

Stegwee, Robert A., Ria M. C. van Waes, “Flexible CASE tools for Information
Systems Planning,” pp. 248-292 in Computer-Aided Software Engineering — Issues
and Trends for the 1990s and Beyond, T. Bergin (Ed.), Idea Group Publishing
(1993).

Teichroew, Daniel, Ernest A. Hershey_lII, “PSL/PSA: A Computer-Aided Technique
for Structured Documentation and Analysis of Information Processing Systems,”
1EEE Transactions on Software Engineering (1977).

Teichroew, Daniel, Petar Macasovic, III Emest A. Hershey and Yuzo Yamamoto,
“Application of the entity-relationship approach to information processing systems
modeling,” pp. 15-38 in Entity-Relationship Approach to Systems Analysis and
Design, P. P. Chen (Ed.), North-Holland (1980).

Wand, Yair, Ron Weber, “On the ontological expressiveness of systems analysis and
design grammars,” Journal of Information Systems (1993).

Welke, R. J., “The CASE Repository: More than another database application,” in
Challenges and Strategies for Research in Systems Development, William W.
Cotterman and James A. Senn (Eds.) (Ed.), Wiley, Chichester UK (1992).

Wijers, G. M., H. E. van Dort, “Experiences with the use of CASE-tools in the
Netherlands,” Advanced Information Systems Engineering (1990) pp.5-20.

Wijers, G. M., “Modelling Support in Information Systems Development,” Ph.D.
Thesis, Delft University of Technology, Thesis Publishers, Amsterdam (1991).

MetaEdit+ at the Age of 20

Steven Kelly, Kalle Lyytinen, Matti Rossi, and Juha Pekka Tolvanen

Abstract We review the initial vision underlying MetaEdit+, discuss its evolution
over the last 20 years, and compare it to the state of the art today. We also note the
rise of domain-specific modeling and the value that MetaEdit+ and similar tools
have offered in advancing this field. We conclude with a discussion of theoretical
and conceptual advances in this field that have taken place since the implementation
of the tool, and a review of the future of method engineering.

1 Introduction

In the 1996 CAISE conference we published a paper called “MetaEdit+: A Fully
Configurable Multi-User and Multi-Tool CASE and CAME Environment” [8]. The
paper described a state-of-the-art modeling and metamodeling environment that the
ongoing project at the University of Jyviskyld had implemented. The main goals
of the article were to explain the problems found with existing CASE and method
engineering tools, state our vision for the MetaEdit+ environment, and describe the
architecture and key principles in its design and implementation.

The MetaEdit+ tool was originally developed in a series of research projects
from 1992 until 2001, building on the research behind the earlier, single user and
single modeling language MetaEdit tool [22]. A spin-off company, MetaCase, was

S. Kelly (0<) « J.P. Tolvanen
MetaCase, Jyviskyld, Finland
e-mail: stevek @metacase.com; jpt@metacase.com

K. Lyytinen
Case Western Reserve University, Cleveland, USA
e-mail: kjl13@case.edu

M. Rossi
Aalto University, Espoo, Finland
e-mail: matti.rossi @aalto.fi

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 131
DOI 10.1007/978-3-642-36926-1_10, © Springer-Verlag Berlin Heidelberg 2013

mailto:stevek@metacase.com
mailto:jpt@metacase.com
mailto:kjl13@case.edu
mailto:matti.rossi@aalto.fi

132 S. Kelly et al.

founded in 1991 and from 1995 research and development associated with the tool
progressively shifted there and continues today.! The CAiSE article reflects our
understanding of the necessary system functionality and its architecture in 1996,
at which point most of the initial requirements elicited had been implemented to at
least a working beta level.

By reflecting on the implementation and use of MetaEdit+ over the years we
have gained a broad and deep appreciation of the challenges of method engineering
and its changing nature as the software industry has evolved. In this paper we
look at how MetaEdit+ has changed since 1996, and how it has impacted method
engineering research and practice. We conclude with a summary of lessons learned
and briefly discuss the future of method engineering and method engineering tools.

2 Past and Current Research Issues

In the mid-nineties CASE tools and heavyweight methods were seen as a panacea
for most information systems development issues. We observed the need for more
versatile tool support and integration and the ability to adapt tools and methods to
specific situations. This approach was known as ‘situational’ method engineering,
whereby standardized methods were adjusted for varying development tasks and
situations [13]. The 1996 article was one of the first to articulate the challenges of
situational method engineering and its tool support. That vision was explained and
developed further in a series of theses [7, 11, 16, 20, 24, 29] and other publications
[6, 21]. In our experience, history has been kind to that vision, and the solutions it
presented are still valuable and relevant for software development.

Since CAIiSE ’96, large-scale methods for systems development have gradually
gone out of fashion. At the same time CASE tools have become standardized work
horses which can improve and support specific design and software development
tasks. The commercial CASE tool market has also largely vanished whilst many
powerful tools have been made open source (Eclipse) or offered for a very low
fee (Visual Studio). Comprehensive and integrated methods and workbenches have
been replaced with lightweight documentation and agile methods [1].

At the same time method engineering tools have found a new lease of life as
language workbenches for Domain-Specific Modeling (DSM) [9]. This fits with the
idea of evolutionary ‘method prototyping’, which was described and evaluated in
Tolvanen’s thesis [24]. OMG’s MDA and Microsoft’s Software Factories approach
[4] have also driven the demand for flexible tools like MetaEdit+. The methods and
tools for DSM have been honed in the OOPSLA DSM workshops? starting in 2001

Thttp://www.metacase.com

Zhttp://www.dsmforum.org/DSMworkshops.html

http://www.metacase.com
http://www.dsmforum.org/DSMworkshops.html

MetaEdit+ at the Age of 20 133

[25], and the Language Workbench Challenge® from 2011. Several special issues
have been published on DSM recently [3, 23, 27].

The move towards DSM use of MetaEdit+ emerged from its users, most
notably Nokia’s Jyrki Okkonen. As is often the case, research can create something
interesting, but it takes industrial users to make it truly useful. DSM is however no
panacea: most MetaEdit+ users have been concentrated in areas such as embedded
systems (automotive, medical), consumer electronics, medical systems and telecom-
munications. Common themes have often included some kind of product line, a
development space defined by use of an in-house platform or framework, or the
configuration of complex systems from modular parts.

3 MetaEdit+ at Age 20

Since 1996 MetaEdit+ has evolved through industrial needs as well as innovation.
Many of the features included in the 1996 environment have proved their worth,
such as visual modeling, WYSIWYG symbol definition, incremental metamodel
evolution, reporting and code generation facilities, and repository functions. In
contrast, reverse engineering, hypertext, method rationale, and flexible queries and
transformations have been used relatively little.

MetaEdit+ contains several browsers allowing flexible method composition
from pre-defined parts. This was seen as a key feature of a method development
environment at that time [28]. In practice the reuse of method components has
rarely proven useful, except for large-grained units such as whole diagram types.
The ability to reuse and reference individual elements has, however, proved key for
integration between modeling languages. Similarly, method rationale has not been
used, but hyperlinking generated code back to the model element that produced it
has proved useful in practice.

MetaEdit+ was by no means a finished product in 1996 and many features have
been added since then. Here we will just mention a few features we consider most
important added between 1996 and the latest 5.0 release in 2012. The ability to
represent complex graphical objects has been found to be vital for implementing
many modeling languages, and for user acceptance of languages (See Fig. 1). The
WYSIWYG Symbol Editor from 1996 has been extended significantly with features
such as conditionality, dynamic templates, and SVG support. A new concept of Port
was introduced, making GOPRR into GOPPRR. In 1996, MetaEdit+ was rather a
monolithic, closed environment. Since then, support for a wide array of common
image and document formats has been added. Model and metamodel information
can be exported and imported as binary files or in an open XML format, and

3http://www.languageworkbenches.net

http://www.languageworkbenches.net

134 S. Kelly et al.

- Mumbser of smorswamangs § -
Aetives Hane Subgraphist: Hone GO) Saap [Show | B 10 - B

Fig. 1 Example model in MetaEdit+ 5.0 Diagram Editor

accessed and manipulated via an API. Open source plugins integrate MetaEdit+-
into Eclipse and Visual Studio IDEs.

3.1 Research Impact

The MetaPHOR research group, from which MetaEdit+ was born, has pro-
duced over 10 PhD theses and ca. 50 research papers — most of them after
the publication of the paper.* MetaEdit+ has been used as a reference tool in
several tool comparisons (e.g. [10, 12]). The feature sets envisioned have also
formed lists for future tools and MetaEdit4 has been used in many projects as a
prototyping and development workbench in developing new software development
methods [15, 17-19]. Today more than 50 universities are using MetaEdit+ to
support both research and teaching. A 2008 IEEE Software article [5] identified
MetaEdit4 as being at the highest level of abstraction for all software devel-
opment tools, 15 years ahead of the curve. We would include the other early
DSM tools such as Vanderbilt’s GME [14] and Honeywell’s DoME [2] in this
category too.

“http://metaphor.it.jyu.fi/metapubs.html

http://metaphor.it.jyu.fi/metapubs.html

MetaEdit+ at the Age of 20 135

30
Days to implement BPMN 25

25
20
15

12
10 4

6 5
5 p
T

0 - - . . .

RSA GME MetaEdit+ Obeo GMF

Fig. 2 Comparison of metamodeling time

3.2 Industry Reception and Practical Impact

The initial version of MetaEdit+4 received recognition from BYTE magazine with a
‘Best of CeBIT’95’ finalist award, with later versions recognized in the Software
Development Magazine Jolt awards (2004, 2005) and SDTimes top 100 (2007,
2008). MetaEdit+ has been used to develop a wide range of both software and
hardware solutions. A prime example is Nokia feature phones, which have sold
over a billion units running code automatically generated from a DSM language
in MetaEdit+. Nokia estimated that applying DSM with MetaEdit+ increased
productivity by a factor of ten [26]. Similar results have been achieved in fields
as diverse as fish farming, insurance, railway systems, home automation, telecom
services, and wearable sports computers. A recent article [12] by committers on
the Eclipse Papyrus modeling tool compared MetaEdit+, IBM Rational Software
Architect, Obeo Designer, GME and Eclipse GMF. The same language, BPMN,
was modeled from scratch with each tool, recording the time taken (Fig. 2).

4 Summary

Advanced information systems engineering has changed technically significantly
in the last 25 years. When we started work on metaCASE tools, there were no
good graphics or persistency libraries available, so everything had to be developed
from scratch. In 2013, creating tool support for modeling language engineering is
technically easier, yet still conceptually challenging.

It can be argued that effective adoption and deployment of tools such as
MetaEdit+ is no longer limited by the tool capabilities, but by the challenges of
organizing the work through (meta)modeling and the intellectual challenges of
developing original methods through DSM that can provide the necessary produc-
tivity payback. After the divergence to hundreds of languages in the 1980s, the
convergence toward the dominance of UML left only a few creating their own

136

S. Kelly et al.

languages. There is currently a dearth of knowledge of the principles and benefits of

hig

h-level language creation and implementation in industry. Hopefully the recent

growth of language development and uptake of DSM tools in universities can seed
a new generation of language creators.

References

—

V)]

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Cockburn A (2002) Agile Software development. Addison-Wesley
. DoME Users Manual (1996). Honeywell Technology Center, Minneapolis
. Gray J, Rossi M, Tolvanen J-P (2004) Domain-Specific Modeling with Visual Languages.

Journal of Visual Languages & Computing 15 (3-4):207-330

. Greenfield J, Short K (2004) Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. Wiley, Indianapolis

. Helsen S, Ryman A, Spinellis D (2008) Where’s My Jetpack? IEEE Software 25 (5):18-21
. Jarke M, Pohl K, Weidenhaupt K, Lyytinen K, Marttiin P, Tolvanen J-P, Papazoglou M

(1998) Meta Modeling: A Formal Basis for Interoperability and Adaptability. In: Krdamer B,
Papazoglou M (eds) Information Systems Interoperability. John Wiley Research Science Press,
pp 229-263

. Kelly S (1997) Towards a Comprehensive MetaCASE and CAME Environment: Conceptual,

Architectural, Functional and Usability Advances in MetaEdit+-. PhD Thesis, University of
Jyviskyld, Jyviskyld

. Kelly S, Lyytinen K, Rossi M (1996) MetaEdit+: A Fully Configurable Multi-User and Multi-

Tool CASE and CAME Environment. In: Constapoulos P, Mylopoulos J, Vassiliou Y (eds)
Advanced Information Systems Engineering, proceedings of the 8th International Conference
CAISE’96. Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 1-21

. Kelly S, Tolvanen J-P (2008) Domain-Specific Modeling: Enabling full code generation.

Wiley-IEEE Computer Society Press

Kern H, Hummel A, Kiihne S Towards a Comparative Analysis of Meta-Metamodels. In:
Rossi M, Sprinkle J, Gray J, Tolvanen J-P (eds) Proceedings of the 11th Workshop on Domain-
Specific Modeling, 2011.

Koskinen M (2000) Process metamodelling - Conceptual foundations and application. Disser-
tation, University of Jyvéskyla

Kouhen El A, Dumoulin C, Gérard S, Boulet P (2012) Evaluation of Modeling Tools
Adaptation.

Kumar K, Welke RJ (1992) Methodology Engineering: A Proposal for Situation Specific
Methodology Construction. In: Kottermann WW, Senn JA (eds) Challenges and Strategies for
Research in Systems Development. John Wiley & Sons, Washington

Ledeczi A, Maroti M, Bakay A, Karsai G, Garrett J, Thomason C, Nordstrom G, Sprinkle J,
Volgyesi P The generic modeling environment. In: Workshop on Intelligent Signal Processing,
Budapest, Hungary, 2001.

Leitner A, Preschern C, Kreiner C (2012) Effective development of automation systems
through domain-specific modeling in a small enterprise context. Software & Systems Modeling
Marttiin P (1998) Customisable Process Modelling Support and Tools for Design Environment.
Dissertation, University of Jyviskyld, Jyviskyld

Mewes K (2009) Domain-specific Modelling of Railway Control Systems with Integrated
Verication and Validation Disseration

Preschern C, Leitner A, Kreiner C (2012) Domain-Specific Language Architecture for
Automation Systems: An Industrial Case Study. Paper presented at the Workshop on Graphical
Modeling Language Development

MetaEdit+ at the Age of 20 137

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Qureshi T (2012) Enhancing Model-Based Development of Embedded Systems Dissertation.
Disseration

Rossi M (1998) Advanced Computer Support for Method Engineering: Implementation of
CAME Environment in MetaEdit+. Dissertation, University of Jyviskyld, Jyviskyld

Rossi M, Ramesh B, Lyytinen K, Tolvanen J-P (2004) Managing Evolutionary Method
Engineering by Method Rationale. Journal of AIS 5 (9 article 12)

Smolander K, Lyytinen K, Tahvanainen V-P, Marttiin P (1991) MetaEdit-A Flexible
Graphical Environment for Methodology Modelling. In: Andersen R, J. A. Bubenko jr.,
Solvberg A (eds) Advanced Information Systems Engineering, Proceedings of the Third Inter-
national Conference CAiSE’91. Lecture Notes in Computer Science. Springer-Verlag, Berlin,
pp 168-193

Sprinkle J, Mernik M, Tolvanen J-P, Spinellis D (2009) Special issue on Domain-Specific
Modeling editorial. IEEE Software 26 (4)

Tolvanen J-P (1998) Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence. Dissertation, University of Jyviskylad

Tolvanen J-P, Gray J, Lyytinen K, Kelly S Proceedings of 1st OOPSLA Workshop on Domain-
Specific Visual Languages. In: Tolvanen J-P, Gray J, Lyytinen K, Kelly S (eds) Proceedings
of 1st OOPSLA Workshop on Domain-Specific Visual Languages, 2001. Jyviskyld University
Printing House

Tolvanen J-P, Kelly S (2000) Benefits of MetaCASE: Nokia Mobile Phones Case Study.
MetaCase Consulting plc. http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf. Accessed
1/7 2004

Tolvanen J-P, Rossi M, Gray J (2013) Theme Issue on Domain-Specific Modeling in Theory
and Applications editorial. Journal of Software and Systems Modeling to appear

Zhang Z Defining components in a MetaCASE environment. In: CAiSE’00, Stockholm,
Sweden, 2000. Springer-Verlag

Zhang Z (2004) Model component reuse : conceptual foundations and application in the
metamodeling-based systems analysis and design environment. Dissertation, University of
Jyviskyld, Jyviskyld

http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

OO-METHOD: An OO Software Production Environment
Combining Conventional and Formal Methods

Oscar Pastor, Emilio Insfran, Vicente Pelechano, José Romero, José Merseguer
Departament de Sistemes Informatics i Computacidé
Universitat Politécnica de Valéncia
Cami de Vera s/n
46071 Valencia (Spain)
{opastor | einsfran| pele |jmerse ljromero} @dsic.upv.es

Abstract

Q0-Method is an OO Methodology that blends the use of formal specification
systems with conventional OO methodologies based on practice. In contrast to other
approaches in this field ([Jun95,Esd93]), a set of graphical models provided by the
methodology allows analysts to introduce the relevant system information to obtain the
conceptual medel through a requirements collection phase, so that an OO formal specification
in Oasis ([Pas92, Pas95-1]), can be generated at any time. This formal specification acts as
a high-level system repository. Furthermore, a sofiware prototype which is fanctionally
equivalent to the Oasis specification is also generated in an automated way. This is achieved
by defining an execution model which gives the pattern for obtaining a concrete
implementation in a declarative or an imperative software development environment
{depending on the user choice). The methodology is supported by a CASE workbench.

1. Introduction

In the context of the object paradigm, several OO methodologies have
emerged to deal with the set of OO methods to be used to model and correctly
implement an information system. Two main approaches can be distinguished:

» what could be cailed conventional OO methodologies, that come from
practical use in industrial software production environments, which do not have a
formal basis and which often use classical structured concepts together with the
introduction of QO features ([Wir90],[Rum91],[Jac92], [Boo%4],[Col94]). Recent
proposals are trying to create a unified framework for dealing with all the existing
methods (UML [BRJ96]), with the implicit danger of providing users with an
excessive set of methods that have an overlapping semantics.

e use of QO formal specification languages (Oblog [Ser87,Esd%3], Troll
[Jun91,Har94], Albert {Dub94}, Oasis), which have a solid mathematical background
and deducibie formal properties such as terms of soundness and completeness.

Our contribution to this state of the art is based on the idea that these two
approaches can be mixed. This mixing offers some advantages: the use of such OO
formal languages can help designers to detect and eliminate ambiguities and
elements of dubicus utility. The use of conventional OO methodologies permits us to
take advantage of the accumulative experience coming from the industrial context.
The research work developed at the DSIC-UPV has been directed towards designing
and implementing an OO software production environment that aims to combine the
pragmatic aspects attached to the so called conventional methods, with the good
formal properties of the QOO specification languages.

139

mailto:{opastor|einsfran|pele|jmerse|jromero}@dsic.upv.es

140 O. Pastor et al.

In contrast to other works in this area ([Wie93,Kus95]), our approach is to
use this combination of approaches in a graphic, OO conceptual modeling
environment which collects the system properties considered relevant for building a
formal, textual OO specification in an automated way. This formal OO specification
constitutes a high-level system repository. Furthermore, the definition of a concise
execution model and the mapping between the specification language and the
execution model notions, makes it possible to build an operational implementation of
a software production environment allowing for real automated prototyping, by
generating a complete system prototype (including statics and dynamics) in the
target software development environment. A CASE workbench which supports this
working environment in a unified way is currently available for prototyping

purposes.

This blend has produced the OO-Method methodology presented in this
paper and is based on OASIS as a formal OO specification language. Our intention
is to give a clear description of the most relevant features of the approach,
introducing the basic ideas on OO conceptual modeling that are in the basis of the
work in section 2, and explaining the main OO-Method features as a methodological
approach in section 3. The methods used to capture the system properties in order to
produce what we will call a conceptual model will be shown. Subsequently we will
show how to represent this model in a particular software development environment
according to an abstract execution model, which will fix the operational steps to
follow when we want to give a concrete system implementation. A software
prototype which is functionally equivalent to a system specification can be obtained
in the context of the methodology. We will describe the code generation strategy
used. Finally, a view of the CASE tool that has been built to support the
methodology will also be introduced.

2. The OO-Method Approach

Nowadays, it is considered mandatory for an OO methodology to cover the
following aspects:

« Classes and objects

« Abstraction

+ Encapsulation

« Inheritance and Aggregation to deal with complex classes
« Interobjectual Communication

However, the current proposals share a common weakness: the value of the
conceptual modeling efforts when the development step is reached is unclear, mainly
because it is not possible to produce an accurate code which is functionally
equivalent to the system requirements specification. We should be able to produce
code in an interactive way from the very beginning of the requirements specification
step, and not generate only static templates for the component system classes as most
00 CASE tools already do. We should be able to generate a complete programming
environment including statics and dynamics. This kind of functional rapid
prototyping would allow analysts to show the users a comprehensive image of the
application state at any given moment, making it possible to detect analysis errors or
misunderstandings as soon as they are originated. Furthermore, system designers

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 141

would have a validated starting point for their development tasks, avoiding having to
start from scratch.

If we work in a declarative environment, the programs generated are
theories of a given logic where the three concepts of machine computation, logic
deduction and satisfaction in a theory’s standard model are equivalent. In this case, a
final software product which is formally equivalent to the system specification can be
obtained using declarative programming languages with a well-defined declarative
and operational semantics and with equivalent results between them.

If the target environment is imperative, we lose the quoted declarative
properties. However, we can generate a prototype which is functionally equivalent to
the requirements specification, if we clearly define a mapping between the
conceptual and the execution model. This automated prototyping policy (introduced
as a code generation strategy later on in this paper) constitutes an important
improvement with respect to the current state of the art of the field.

In summary, all these ideas lead us to the OO-Method proposal. OO-Method
is an OO methodology, which is intended to overcome these problems and whose
contribution is based on the following basic principles:

1. to give support to the OO conceptual modeling notions,

2. to join OO formal method concepts with practical and widely used QO
methodologies,

3. to provide an automated prototyping environment, including complete
code generation (data and behaviour) in both declarative and imperative
programming environments.

3. The Methodology

OO-Method is an Object-Oriented Software Production Methodology whose
phases are shown in Figure 1. Basically, we can distinguish two components: the
conceptual model and the execution model.

When facing the conceptual modeling step of a given Information System,
we have to determine the components of the object society without being worried
about any implementation considerations. The problem at this level is to obtain a
precise system definition, and this is the conceptual model.

Once we have an appropriate system description, a well-defined execution
model will fix the characteristics of the final software product, in terms of user
interface, access control, service activation, etc., in short, all the implementation-
dependent properties.

In this context, we start with an Analysis step where three models are
generated: the Object Model, the Dynamic Model and the Functional Model. They
describe the Object Society from three complementary points of view within a well-
defined OO framework. For these models we have preserved the names used in many
other well-known and widely-used OO methodologies, even if the similarities are
purely syntactic as can be seen throughout this paper.

From these analysis models, a corresponding formal and OO Oasis
specification (the OO-Method design tool) can be obtained in an automated way.

142 O. Pastor et al.

This is done through an automatic translation process. The resultant Oasis
specification acts as a complete system repository, where all the relevant properties
of the component classes are included.

According to the execution model, a prototype which is functionally
equivalent to the specification is built in an automated way. This may be done in
both declarative (Prolog-based) [Can95] and imperative environments (specially
those visual OO programming environments that are widely used nowadays). The
code generation strategy is independent of any concrete target development
environment, even if at the moment our selected environment for automated code
generation are Visual C++, Delphi, Java, Visual Basic and PowerBuilder.

00-Method

Conceptual -
Model
<L Automated Translation
Execution

%Automated Translation

Model /2

PowerBuilder l Java Visual C++ Delphi
RDB RDB RDB RDB

Fig. 1. Phases of OO-Method.

Next, we explain the characteristics of the three models (object, dynamic
and functional) that constitute the conceptual model, introduce the execution model
features and explain the conversion strategy from the former to the latter.

3.1Conceptual model
Object Model

The Object Model is represented by means of a Class Configuration
Diagram (CCD), a graphic model where system classes are declared, including their
attributes and services. Aggregation and inheritance hierarchies are also graphically
depicted representing class relationships. Additionally, agents are introduced to
specify who can activate each class service. Classes are the basic modeling units. A
class is represented by a rectangle with three areas:

a header with the class name.

a static component where attributes are declared.

a dynamic component where services are introduced, distinguishing
among new and destroy events, and among private and shared events.

Shared events are connected by solid lines in the CCD. Client classes
(agents) of a given service are represented by dotted lines joining every potential

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 143

client class with the corresponding server class, capturing the client system view in
an easy and intuitive way.

0O-Method deals with complexity by introducing aggregation and
inheritance hierarchies.

We represent the aggregation relationship between two classes including its
cardinality (minimum and maximum) to determine how many components can be
attached to a given container and how many containers a component class can be
associated with. See Figure 2.

Specialization Generalization

Fig. 2. Aggregation relationship.
Fig. 3. Inheritance relationship.

Inheritance is graphically depicted as an arrow from a given subclass to its
superclass. This arrow can be labeled with a condition of specialization, or with the
events that activate/cancel the child role, respectively. See Figure 3'.

Next, the CCD corresponding to a classical Library Information System is
shown in the Figure 4. As a basic explanation (for reasons of brevity), we assume
that as usual in such a System, there are readers, books and loans relating a book to
the reader who orders it. Readers can ‘play the role’ of unreliable readers, if their
return dates expire. Librarian and reader instances are declared as active objects.

I This is how inheritance is dealt with in Oasis, distinguishing between permanent
and temporal specialization. The permanent case refers to child instances created
when the ancestor instance is created, and they need a condition which is built on
constant attributes. Temporal specialization (role) appears when a superclass event
happens or a condition built on variable attributes holds.

144 O. Pastor et al.

punish/forgive

Fig. 4. CCD that represents the Object Model of the Library Information System.

Dynamic Model

The Dynamic Model is used to specify valid object lives and interobjectual
interaction. To describe valid object lives, we use State Transition Diagrams (STDs,
one for each class). To deal with object interaction, we introduce an Object
Interaction Diagram (OID), one for the whole System.

State Transition Diagram

STDs are used to describe correct behaviour by establishing valid object
lives. By valid life, we mean a right sequence of states that characterizes the correct
behaviour of the objects for every class. In this context states denote the different
available situations for class objects, and are depicted using a circle labeled with the
state name.

When an object does not exist, a blank circle represents this “state” of non
existence, and will be the source of initial transition labeled by the corresponding
new event. A bull’s eye is used to represent the post-mortem state.

LIBretum when
book_count>1

LIB:joan

LIBioan if book _count< 10

Fig.5 STD for a READER.

Transitions represent valid changes of state that can be constrained by
introducing conditions. They follow the syntax shown below:

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 145

event | action | transaction [if precondition] [when control condition |

where precondition is a condition defined on the object attributes that must hold for a
service to occur and a control condition is a condition that avoids the possible non-
determinism for a given action. An example of STD can be seen in Figure 5.

Object Interaction Diagram

The object interactions are represented by diagrams of this kind. We declare

two basic interactions:

e triggers, which are services of objects which are activated in an
automated way when a condition is satisfied by an object of the same or
another class.

e global interactions, which are transactions involving services of
different objects. With these global interactions, interobjectual
transactions can be declared. Formally, they can be seen as a local
service of the aggregation among the classes providing the services that
constitute the global interaction.

Basically, we represent classes in the OID as boxes with a header including
the class name. Class services are declared as smaller boxes inside the corresponding
class box. The class service boxes are connected when one of the previous types of
interactions is defined. Triggers are introduced by starting the corresponding solid
line in the header of the class and ending it in the triggered action, and global
interactions are introduced by connecting the involved services with a common
global interaction identifier (GIid). The general model for an OID can be seen in
Figure 6 and 7.

self::(condition) 0id: diti)
Classt ; Class2 : Class3 ’>
| eventt event2 l event3

Fig. 6. Trigger Relationships

Class3

[event3

Glid

event2

Fig. 7. Global Interaction
Functional Model

After declaring object attributes and services in the Object Model and valid
life cycles and object interactions in the Dynamic Model, the aim of the Functional
Model is to capture semantics attached to any change of state in an easy and an

146 O. Pastor et al.

intuitive way. This model specifies the effect of an event on its relevant attributes
through an interactive dialogue. The value of every attribute is modified depending
on the action that has been activated, the involved event arguments and the current
object state.

The specification of an action effect should be made declaratively, as
proposed in Oasis. However, a good specification requires a solid formal basis for
any analyst. To solve this situation, the OO-Method provides a2 model where the
Analyst only has to categorize every attribute among a predefined set of three
categories and introduce the relevant information depending on the corresponding
selected category.

This classification of attributes [Pas96-2] is a contribution of this method
and gives a clear and simple strategy for dealing with the task of generating the
Execution Model. At the same time, it opens the door to being able to include this
information in an Qasis specification in an automated way.

There are three types of attributes: push-pop, state-independent and
discrete-domain based attributes.

Push-pop attributes are those whose relevant events increase or decrease
their value by a given quantity. Events that reset the attribute to a given value can
also exist.

An example of this category is the book_number of the reader class, with
REA:loan as increasing action and REA:return as decreasing one (REA is a variable
of type reader).

Attribute : book_number Category : push-pop
Action Type Action Effect Evaluation Condition
Incr. REA:loan +1
Decr. REAreturn -1

Fig. 8. Push-pop attribute book_number of the reader class.

State-independent attributes have a value that depends only on the latest
action that has occurred. Once a relevant action is activated, the new attribute value
of the object involved is independent of the previous one. In such a case, we consider
that the attribute remains in a given state, having a certain value for the
corresponding attribute. We can introduce the attribute bookshelf of the book class as
an example. A book has a bookshelf assigned when the event /ocate(B) is activated.
When this event occurs, bookshelf takes the argument value independently of any
previous value.

Attribute : bookshelf Category . state-independent
Carrier Action Action Effect Evaluation Condition
LIB:locate(B) =B

Fig. 9. State-independent attribute bookshelf of the book class.

Discrete-domain valued attributes take their values from a limited domain.
The different values of this domain model the valid situations that are possible for
objects of the class. Through the activation of carrier actions (that assign a given
domain value to the attribute) the object reaches a specific situation. The object
abandons this situation when another event occurs (a “liberator” event). As an
example, let’s consider the available attribute of the book class. The available value
tells us what the current book situation is. The carrier event (loan) lets the object into

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 147

a situation where available has the value false. The situation is abandoned when the
event return is activated.

Atribute : available Category : discrete-domain valued

Actual Value Action New Value Evaluation Condition
TRUE REA:loan FALSE
FALSE REA:return TRUE

Fig. 10. Discrete-valued attribute available in the book class.

All this information, which constitutes the system description, has a textual
representation in Oasis. The specification is obtained at any moment by executing an
automated process of translation that converts the collected graphic information into
a textual OO specification that constitutes a complete, formal System Repository.

3.2 Execution Model

Once all the relevant system information in the specification that we have
called conceptual model is collected , the execution model has to accurately state the
implementation-dependent features associated to the selected object society machine
representation. More precisely, we have to explain the pattern to be used to
implement object properties in any target software development environment.

Our idea at this point is to give an abstract view of an execution model that
will set the programming pattern to follow when dealing with the problem of
implementing the conceptual model. This execution model has three main steps:

1. access control: first, as users are also objects, the object logging in the
system has to be identified as a member of the corresponding object society.

2. object system view: once the user is connected, he must have a clear
representation of which classes he can access. In other words, his object
society view must be clearly stated, precising the set of object attributes and
services he will be allowed to see or activate, respectively.

3. service activation: finally, afier being connected and having a clear object
system view, the object will be able to activate any available service in the
user’s world view. Among these services, we will have event or transaction
activation served by other objects, or system observations (object queries).

Any service execution is characterized as the following sequence of actions:

1. object identification: as a first step, the object acting as server has to be
identified. This object existence is an implicit condition for executing
any service, except if we are dealing with a new’ event. At this moment,
their values (those that characterize its current state) are retrieved.

2. introduction of event arguments: the rest of the arguments of the event
being activated must be introduced.

3. state tramsition correciness: we have to verify in the STD that a valid
state transition exists for the selected service in the current object state.

2 Formally, a new event is a service of a metaobject representing the class, which
acts as object factory for creating individual class instances. This metaobject (one
for every class) has as main properties the class population attribute, the next oid
and the quoted new event.

148 O. Pastor et al.

4. precondition satisfaction: the precondition associated to the service that
is going to be executed must hold. If not, an exception will arise,
informing that the service cannot be activated because its precondition
has been violated.

5. valuation fulfilment. once the precondition has been verified, the
induced event modifications are effective in the selected persistent
object system.

6. integrity constraint checking in the new state: to assure that the service
activation leads the object to a valid state, we must verify that the (static
and dynamic) integrity constraints hold in this final resulting state.

7. trigger relationships test: after a valid change of state, and as a final
action, the set of rules condition-action that represent the internal system
activity have to be verified. If any of them holds, the corresponding
service activation will be triggered. It is the analyst’s responsibility to
assure the termination and confluence of such triggers.

The previous steps guide the implementation of any program to assure the
functional equivalence among the object system description collected in the
conceptual model and its reification in a sofiware programming environment
according to the execution model.

Next, we are going to present the code generation strategy used in the
implementation of the previous execution model in a well-known Windows95
environment, which opens up the possibility of creating a CASE tool that, starting
from a set of graphical OO models obtained during the conceptual modeling step
(according to OO-Method) can generate a functional software prototype at any time.

3.3 Code generation strategy

Once an abstract execution model has been introduced, we will have
different concrete implementations of this execution model for different software
development environments. In this paper, we focus on the implementation of the
execution model in a Windows95 context, but it must be noted that other concrete
and alternative implementations are currently being been developed emphasizing one
using Java in an intranet environment. It is important to note that the representation
of the conceptual model in the selected execution model is done according to the
principles introduced above, thus generating a prototype in an automated way by
adapting the code generation strategy that we present to the particularities of the
target development environment.

The execution model implementation selected for a Windows95
environment keeps in mind the main principles attached to such a environment.
Basically, this means that we have:

o to reproduce the user’s mental image of the system, within an OO world view.
Users generally expect an application to operate in accordance with its nature,
and the OO paradigm provides an operational framework to properly represent a
system as a society of interacting objects, where every individual object can
access other system component objects and can activate those services it is
allowed to. To ensure this consistency, the interfaces built have to resemble the
user’s environment. They also have to be consistent, complying with the
standards in presentation (what the user sees), behaviour (how the application

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 149

reacts), sequencing (how the dialogs are sequenced) and functionalities (how
actions are carried out). Finally they have to be transparent, meaning that the
purely technical application mechanisms must be completely transparent to the
user.

¢ to give control to the user. It is the user who must control the application and not
the contrary.

To properly implement the set of system classes in a standard Windows95
software development environment, we have to deal with a static and a dynamic
point of view. The static one will fix the relational database schema corresponding to
the system specification. This automated relational generation is out of the scope of
this presentation and is explained in depth in [Pas95-2]. In short, every class is
converted into a relation, having the attribute information included in the class
specification. Aggregation and inheritance are treated by defining the corresponding
foreign keys according to the collected complex class properties. Next, we are going
to focus on dynamics explaining the appearence of the prototype which is
automatically generated.

The code generation process creates four types of windows as we can see in
Figure 11:

e Access Control Window: this is the log-in window, where the
corresponding active user has to be identified. This is done by
introducing its object identifier, class name and password. The
identification is verified on the database to ensure that the object exists.
Once the object is incorporated to the system, it will see the available
system class services through menu items of the main menu.

lm. -
Y rr—|

O E—

0w s ! Concdd I

Fig.12 Access Control Window

e Main Window; it characterizes the system view that the connected object
has. All the services of the classes are requested through it. It has the
following options:

O the typical File item option of Windows applications.

150 O. Pastor et al.

¢ for every class, a pull-down menu including an item for
observations (queries), a section with its descendent classes (if
any) and a last section with the available class services.

¢ an interactions item, which allows for the activation of global
interactions.

Litarian lederactinns

Chsnrysoons,

return
ow

Fig.13 Main Window.

s Event window, where the corresponding arguments are introduced and
the induced actions are executed through the OK control button.

s (Observations window; this screen is intended to be a Query By Example
pattern where the user can see the results of any query donc over the
current object state.

Finally, we will give a quick look at the OO-Method CASE tool.

4. The OO0-Method CASE Tool

The ©OO-Method CASE Tool [Pas96-1] provides an operational
environment that supports all the methodological aspects of OO-Method. It
simplifies the analysis, design and implementation of Information Systems from an
object-oriented perspective, providing a comfortable and friendly interface for
elaborating the QO-Method models taking advantages of Windows95. The CASE
Tool is being used at this moment in the resolution of real complex systems, in the
context of a R&D project carried out jointly by the Valencia University of
Technology and Consoft S.A.

The most interesting contribution of this CASE environment is its ability to
generate code in well-known industrial software development environments from the
system specification, what constitutes an operational approach of the ideas of the
automated programming paradigm: analysts collect information, and can generate a
formal OO system specification, and a complete (including statics and dynamics)
software prototype which is functionally equivalent to the quoted system
specification whenever the analysts want.

When the CASE Tool is executed, we are placed on a blank blackboard that
represents the CCD where we can draw classes and their properties. By selecting one
of the classes on the CCD the user can change to the STD dynamic model. The OID
completes the dynamic model. In addition to these static and dynamic points of view
the user has to fill the functional model information through friendly and interactive
dialogs.

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997 151

The Figure 14 shows a picture of the CASE Tool. The main menu of the
tool has the typical items of an editing tool and also allows the user to enter in
textual mode the OO-Method models. Two remarkable items are the Project item
that includes the options for the Analysis (object, dynamic and functional models),
Design (Oasis code, generated in an automated way) and Implementation (Visual
C++, Delphi,... code) steps, and the View item which allows the user to manage the
complexity of the graphic diagrams.

Fig. 14 O0-Methed CASE Tool

5. Conclusions
The main aspects of the presented work are the following:

1. A complete OO methodology for dealing with all the Software Production
Process phases has been introduced. This methodology uses a formal OO
specification language (Oasis) as a central, well-defined repository, from which
executable application prototypes can be obtained at any given moment.

2. A CASE tool for Rapid Prototyping is provided. It is embedded in the
methodological OO context of OO-Method, having as basic property that the
collection of system requirements generates a prototype to be run by final users in
order to validate this process of requirements engineering.

3. On the basis of our approach, we find an operational environment blending
classical, widely-used QO methods with formal specification languages,
complementing their different backgrounds: software development practice on
the one hand, and a mathematical theory background on the other hand.

References

[Boo94] Booch,G. OO0 Arnalysis and Design with Applications. Addison-Wesley,
1994,

[BRJ96] Booch,G.,Rumbaugh.J. . Jacobson,l. Unified Modeling Language. Version
0.91. Rational Software Corporation.

152 O. Pastor et al.

[Can95] Canés,)J.H.;Penadés,M.C.Ramos,I. 4 Knowledge-Based Arquitecture for
Object Societies. Proc. of DEXA-95 (Workshop), pags: 18-25, London,
1995

[Col94] Coleman,D.;Arnold,P.;Bodoff,S.;Dollin,S.;Gilchrist,H.;Hayes,F.;Jeremes,P.
Object-Oriented Development; The Fusion Method. Prentice-Hall 1994

[Dub94] Dubois,E.;Du Bois,Ph.;Petit, M.;Wu,S. ALBERT:A Formal Agent-Oriented
Requirements Language for Distributed Composite Systems. In Proc.
CAiSE’94 Workshop on Formal Methods for Information System
Dynamics, pags: 25-39, University of Twente, Technical Report 1994.

[Esd93] ESDI S.A., Lisboa. OBLOG CASE V1.0- User’s Guide

[Har94] Hartmann T.,Saake,G.,Jungclaus,R.,Hartel,P.,Kusch,l. Revised Version of
the Modeling Language Troll (Troll version 2.0). Technische Universitat
Braunschweig, Informatik-Berichte, 94-03 April 1994.

[Jac92] Jacobson I.,Christerson M.Jonsson P.,Overgaard G. OO Software
Engineering , a Use Case Driven Approach. Reading, Massachusetts.
Addison -Wesley.

[Jun91] Jungclaus, R., Saake, G., Sernadas, C. Formal Specification of Object
Systems. Eds. S. Abrarsky and T. Mibaum Proceedings of the TapSoft's 91,
Brighton. Lncs. 494, Springer Verlag 1991, pags. 60-82.

[Kus95] Kusch,J.; Hartel,P.;Hartmann,T.;Saake,G. Gaining a Uniform View of
Different Integration Aspects in a Prototyping Environment. Proc of
DEXA-95, pags. 35-42, LNCS 978, Springer-Verlag, 1995

[Pas92] Pastor, O.;Hayes,F.;Bear,S. OASIS:An OO Specification Language. Proc. of
CAISE-92 Conference, Lncs (593), Springer-Verlag 1992, pags: 348-363.

[Pas95-1] Pastor,0., Ramos, I. Oasis 2.1.1: A Class-Definition Language to Model
Information Systems Using an Object-Oriented Approach, October 95 (3
ed).

[Pas95-2] Pastor,0.;Garcia,R.;Cuevas,]. Implementation of an OO Design in an
Oracle7 Development Environment. Proc. of the European Oracle Users
Group Conference, EOUG-95. Vol.4 pags: 35-47, Firenze (Italy).

[Pas96-1] Pastor,0., Barbera, J.M., Merseguer, J., Romero, J., Insfran, E.: The CASE
QO-METHOD graphic environment description. Tech. Report, ITI-DT-96.

[Pas96-2] Pastor,0., Pelechano V., Bonet B., Ramos 1. : An OO Methodological
Approach for Making Automated Prototyping Feasible. Proceedings of
DEXA96, Springer-Verlag, September 1996.

[Ser7] Sernadas,A.;Sernadas,C.;Ehrich, HD. OO Specification of Databases: An
Algebraic Approach. In P.M.Stocker, W.Kent eds., Proc. of VLDB87, pags:
107-116, Morgan Kauffmann, 1987.

[Rum91] Rumbaugh J..Blaha M., Permerlani W., Eddy F.,Lorensen W. Object
Oriented Modeling and Design. Englewood Cliffs, Nj. Prentice-Hall.

[Wir90] Wirfs-Brock R., Wilkerson B., Wiener L., Designing Object Oriented
Software. Englewood Cliffs, Nj. Prentice-Hall.

[Wie93] Wieringa, R.J.,, Jungclaus, R., Hartel, P., Hartmann, T., Saake, G.,
OMTROLL Object Modeling in TROLL. Proc. of the International
Workshop on Information Systems - Correctness and Reusability (IS-
CORE’93). Hannover, September 1993. Udo W. Lipeck, G.Koschorrek
(eds.).

The Conceptual Model Is The Code. Why Not?

Oscar Pastor and Vicente Pelechano

Abstract The selection of the paper entitled “OO-METHOD: An OO Software
Production Environment Combining Conventional and Formal Methods” for this
book on Advanced Information Systems Engineering allows us to reflect on the
research context where the work was developed and presented (in “CAiSE 1997”)
and to introduce its main contributions, how they have evolved with time and
what influence the approach could have in the emergence of the Model-Driven
Engineering domain. As the main goal was to provide a Software Process that
should be fully Conceptual Model-based, the central message of this chapter is still
the same 16 years later: the Conceptual Model must be the key software artefact
of a sound, correct and complete Software Production Process. Novel approaches
were required to generate a sound software production process, and they should use
conceptual models as the key software artefact. The model should be the code of
the application, and a conceptual modelling programming style should become a
reality. While historically Software Engineering is in practice focused on programs,
we have always tried to provide methods and tools to achieve the objective of
make modelling the essential activity of programming. Why not making true the
statement that “the model is the code?”. This was our point when we published our
referred CAiSE paper, and it is still our position now, with many more results and
experiences to support it, that we introduce throughout this work.

O. Pastor (D<) » V. Pelechano

Centro de Investigacién en Métodos de Produccién de Software, Universitat
Politecnica de Valéncia, Camino de Vera s/n, 46022 Valencia, Spain

e-mail: opastor@pros.upv.es; pele@pros.upv.es

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 153
DOI 10.1007/978-3-642-36926-1_12, © Springer-Verlag Berlin Heidelberg 2013

mailto:opastor@pros.upv.es
mailto:pele@pros.upv.es

154 O. Pastor and V. Pelechano
1 Introduction

Among many other significant improvements, last century nineties was the time of
CASE methodologies. Providing a complete software process intended to correctly
support analysis, design and implementation became a priority. Some proposals that
stemmed from Structured Analysis and Design [1, 2] started to apply notions drawn
from Object-Oriented (OO) programming to conceptual modelling. A plethora of
0O methods were proposed (e.g. [3—6]), with different methodological backgrounds
and a diversity of notations, paving the way for the creation of a Unified Modeling
Language called UML [7].

Much effort was devoted to investigating and providing a software process
capable to guarantee the quality of the final application code. The CASE tools
that were constructed constituted a serious attempt to automate, in some degree,
the software production process. The strategy was to define a set of models in a
conceptual modelling step that should be properly transformed first in a software
design, and then in a software code. But unfortunately, too often these CASE tools
generated a frustrating experience in practice. Instead of providing a more effective
and efficient solution to the software development process, as they were committed
to do, users perceived that the tools were adding an additional burden to the problem
of programming. Programming was still a big challenge, but additionally now a new
method and its modelling language had to be learnt to create models that still had to
be converted into code.

In any case, it was becoming clear that the ideas stated already in 1971 in
[8] about the automation of systems building were more alive than never: “the
size, importance and cost of systems building provides an opportunity for the
investigation of ways to improve the process.” These new ways had an increasingly
conceptual model-oriented perspective, and eventually conceptual models were
playing the wished role of essential software artefact.

It was in this historical context where two CAiSE papers [9, 10] were introducing
an approach that had the following original and relevant aspects:

» The proposal of a formal, OO specification language —OASIS- that contained the
conceptual primitives required for specifying an organizational system, with a
precise semantics.

* The definition of an ontology for information systems, based on the FRISCO
proposal [11], to characterize those basic concepts that should be present in a
modelling language.

e The creation of a methodological background clearly distinguishing between
Problem Space (conceptual model-based, focusing on “what” the system is) and
Solution Space (final software product, centred on “how” an appropriate support
is going to be provided), together with the specification of an Execution Model
intended to link the conceptual primitives of the Conceptual Model (Problem
Space) with their corresponding software representation in the final software
application (Solution Space).

The Conceptual Model Is The Code. Why Not? 155

The pair constituted by the OO specification language (OASIS) and its method-
ological support (called the “O0O-Method”) conformed a rigorous contribution that
will be presented with full historical detail in Sect. 3.

This work did not come alone. In the following years, a set of proposals,
methods, and tools were generated following the same direction, creating a family of
approaches that shared a common goal. Instead of having a Software Engineering
approach based on the principle that “the code is the model”, the new conceptual
modelling approaches promoted just the contrary: the model should just be the code.
All these proposals have made the dream of automating systems development closer
to truth than ever. The most relevant works are summarized in Sect. 2.

Finally, projections of the results reported in this work in other challenging
domains will be discussed as further work in Sect. 4. Conclusions and a list of
references complete the chapter.

2 Model-Driven Development in Practice: The “Model
Is the Code” Versus “The Code Is the Model”

Assuming that programs are models of implementations, one may argue that the
main challenge of software engineering is to see Conceptual Models as higher-level
programs and to provide sound transformations to convert those conceptual models
(Problem Space representation) into code (Software Solution representation). Such a
full software process should start with the elaboration of a Requirements Model, and
continue with its subsequent transformation into its associated Conceptual Schema
that should be executable through a Conceptual Model Compilation process.

The essential principles behind the OO-Method proposal [10] were turn into
reality by the implementation of the Integranova Conceptual Model Compiler [12],
which was developed and used in an industrial environment.

Morgan introduced in [13] the notion of “Extreme Non-Programming (XNP)”,
opposing Extreme Programming to highlight that XNP programmers should have a
conceptual modelling perspective. This means that they should not do programming
at all —at least they should not program in the traditional programming sense-.
Instead, they should follow the motto “the model is the code”.

Olivé proposed in [14] the concept of “Conceptual Schema-Centric Software
Development”, proposing a precise criteria to support it: to design an Information
System, it is necessary and sufficient to create its Conceptual Schema”. Not only
necessary, but necessary and sufficient.

In the same line of argument, Model-Driven Engineering (MDE), which is also
referred to as Model-Driven Development (MDD) or Model-Driven Architecture
(MDA) [15], advocates in the recent years the creation of software systems by
model specification. This movement has supposed a strong push to all the ideas
that are discussed here, and a plethora of methods and tools have started to appear
under the common, accepted assumptions that (i) models ought to be used as the key

156 O. Pastor and V. Pelechano

software artefacts, and (ii) models are to be seen as abstract conceptualizations of
particular domain concepts, rather than algorithmic specifications written in a high-
level language. Conceptual modelling becomes then the primary means of software
production.

More recently, the “Conceptual Modelling Programming” manifesto [16] puts
together all these principles, focusing on the importance of three basic ideas:
(i) conceptual modelling is programming, (ii) the conceptual model, with which
modellers program, must be complete and holistic, and conceptual but precise, and
(iii) application evolution must occur at the level of the model.

This selection of approaches provides a solid basis to understand the potential of
the ideas discussed in [10, 17] to show how effectively they influenced the advances
that lead to the existing MDE approaches, and to analyse how fruitful their evolution
has been and is still being.

3 The OO-Method Approach: Past, Present and Future

Let us focus now on the most relevant ideas that conformed the contribution
presented in the OO-Method Approach [9, 10, 17], how they have evolved, and
what is their intended projection for the very next future.

In a context where the terms MD* (Model-Driven Development, Model-Driven
Architecture, Model-Driven Engineering, etc.) and Model Transformations did not
exist yet, the OO-Method introduced the following remarkable features [10]:

(a) The use of a formal specification language as a support to characterize the
modelling primitives that are required for designing Organizational Information
Systems. This provided an ontological commitment for the precise conceptual
characterization of the building units of a Conceptual Schema. Since that
moment, Ontology Engineering, Metamodelling-based approaches and Con-
ceptual Modelling-based techniques have evolved towards the challenge of
elaborating a sound and full Software Process based on Conceptual Modelling..

(b) A strategy for executing Conceptual Schemas —so called Execution Model- that
basically defined a set of mappings between the conceptual primitives of the
Conceptual Model and their corresponding software representation counterpart
in the selected target software development environment.

These two contributions together paved the way to the implementation of a
Conceptual Model Compiler, as it happened with the design and implementation
of Integranova, a Conceptual Modelling Programming tool created by CARE Tech
[12] that created an industrial tool to put into practice all the ideas behind the OO-
Method approach.

Since then, the approach has had to be adapted to the appearance of new software
development environments, which means that the Conceptual Model Compiler must
be always ready to evolve in two ways: finding out better software representations
and adapting to diverse software architectures that guide the software generation

The Conceptual Model Is The Code. Why Not? 157

process and that require to extend the Conceptual Model Compiler offer. As the
Conceptual Model level is stable, whenever a new development environment (e.g.
a new programming language) is targeted, new mappings between the conceptual
primitives and their software representation counterpart in the “new” environment
are to be properly designed and implemented.

The future of the approach is related to the “Requirements Engineering” (RE)
connection that should provide a full Software Process coverage for the method.
This will be more detailed in the next section.

4 What Is Next?

Several lines of both, theoretical and applied research, have given a challenging
continuity to the results that were originated by the work presented in [10].

Firstly, the ideas originally applied to the context of Organizational Systems
were extended to other IS domains. A set of works designed and implemented a
similar type of Conceptual Modelling-based Software Process to: (1) Specify and
Implement Web Applications (by building the OOWS methodological approach
[18]), (2) Specify and Generate code for Aml systems (by providing the PervML
methodological approach [19] and (3) Specifying and Generating Business Pro-
cess Driven Web Applications [20]). New conceptual primitives have conformed
new conceptual models, and the subsequent Conceptual Modelling Programming
environments have been designed and implemented. Currently, we are providing
solutions in the Software Engineering field to tackle with the new technological
and engineering challenges such as those introduced by the development of the
Internet of Things (integration of the physical and logic worlds) [21] and the
Autonomic Computing (reconfiguration, adaptability at run-time of services and
user interfaces) [22].

Secondly, once the transformation of a Conceptual Schema (PIM in MDA
terms) into code has been defined by constructing a Conceptual Model Compiler
(that contains the PSM logic in MDA terms), the process is to be extended
with what is was called the Requirements Engineering (RE) connection above.
This means that the Conceptual Schema must be seen as the output of a higher-
level model —the Requirements Model (RM), the CIM in MDA terms)- This
RM must be defined, together with a sound transformation intended to create
its corresponding Conceptual Schema with as much automation as possible. This
is probably not a fully automated process, because the Conceptual Schema must
add some information that is not present yet at the requirements modelling step. But
the metaphor of moving from Requirements to Code through a precise, well defined
set of models and model transformation is closer than ever to become a reality. Some
steps in this direction have been already taken (see [24]), but much work is still to
be done to answer the questions (i) what RM should be selected (ii) how to define
the corresponding model transformation.

Thirdly, a very interesting perspective is to think about further domains were
all these ideas could be used to improve the current software development process

158 O. Pastor and V. Pelechano

and obtain better results. Some challenging candidates can be aircraft control
weather prediction, vehicle mobile clouds, digital TV, video-games, etc. But there
is one especially appealing that is the modelling of life. Conceptual Modelling
of the Human Genome can provide a different perspective of the same problem:
considering alive beings “implementations” of a (genetic) code, the problem is
to understand the modelling primitives that could make feasible to define models
and to understand how these models are converted into the final code (the human
being). The clinical projection of this challenge is especially interesting, intended
to apply a conceptual modelling-oriented approach to find out and manage the
“bugs” (illnesses) that are a consequence of a (genetic) code mistake. Some previous
promising results have been reported in [23].

5 Conclusions

Producing a sound information system design and implementing such design into
a software product of high quality sounds simple, but it is still a nightmare for
Software and Information Systems Engineering. The well-know problems often
referred to as the crisis of software remain alive. In most of the complex software
projects, the design, programming and testing activities still require a substantial
manual effort and are keep being error-prone. From the point of view of conceptual
modelling and the role of models, we claim that the software development process
has not changed much over the past 40 years. We mean that the “program”
has been and still is often considered the essential software artefact. Trying to
prioritize conceptual modelling over programing,, many attempts have promoted
that “the model should be code” instead of insisting that “the code is and will ever
be the model”. Assuming that looking for a different way for producing software
was worth to be explored, we presented in [10] an approach that intended to fulfil
that goal. Through a clear separation between Problem Space (Conceptual Schema)
and Solution Space (application code), a ontologically well-founded modelling
environment was presented, together with an execution strategy to transform the
modelling primitives into software components through a process of conceptual-
model compilation. This was one of the first works presenting a concrete solution
for a domain that a few years later was extensively explored under the model-
driven development paradigm, for which it could be argued that it was indeed a
very significant contribution.

References

1. DeMarco, T., Structured analysis and system specification. 1979, Englewood Cliffs,
New Jersey: Yourdon Press.

2. Ward, P.T, Mellor, S. Structured Development for Real-Time Systems: Essential Modeling
Techniques. Prentice Hall.

The Conceptual Model Is The Code. Why Not? 159

3.

4.

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Rumbaugh, J., Blaha. M, Premerlani. W, Eddy. F, Lorensen. W. Object-Oriented Modeling and
Design. Prentice Hall. 1999.

Booch. G, Maksimchuk. R. A., Engel. M. W., Young. B.J. Object-Oriented Analysis and
Design with Applications. Addison-Wesley

Jacobson. 1., Christerson. M, Jonsson. P, Overgaard. G. Object-Oriented Software Engineering:
A Use Case Driven Approach (ACM Press). Addison-Wesley, 1992,

. Wirfs-Brock. R.J. Designing Object-Oriented Software, with Brian Wilkerson and Lauren

Wiener, Prentice-Hall, 1990

. Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User Guide. Addison-

Wesley.

. Teichroew, D., Sayani, H.: Automation of System Building, Datamation (1971).
. Pastor. O, Hayes. F.,, Bear. S. OASIS: An Object-Oriented Specification Language. CAiSE

1992: 348-363

Pastor. O, Insfran. E, Pelechano. V., Romero. J.R., Merseguer. J. OO-METHOD: An OO
Software Production Environment Combining Conventional and Formal Methods. CAiSE
1997: 145-158.

Falkenberg. E.D., Hesse. W., Lindgreen. P.,, Nilsson. B.E., Oei. J.L.H., Rolland. C.,
Stamper. R.K., Van Assche. FJ.M., Verrijn-Stuart. A.A., Voss. K. FRISCO : A Framework
of Information System Concepts, The IFIP WG 8.1 Task Group FRISCO, December 1996.
Integranova Software Soluctions. Available on: http://www.integranova.com/. Last Access:
January 19, 2013.

Morgan, T.: Business Rules and Information Systems — Aligning IT with Business Goals.
Addison-Wesley, Reading (2002).

Olivé, A.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, C)., Falcao e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp- 1-15. Springer, Heidelberg (2005).

Booch. G, Brown. A., Iyengar. S., Rumbaugh. J., Selic. B. An MDA Manifesto. The MDA
Journal: Model Driven Architecture Straight from the Masters, pages 133—143, 2004.

Embley. D. W., Liddle. S.W, Pastor, O. Conceptual-Model Programming: A Manifesto.
Handbook of Conceptual Modeling, 2011, pp 3-16. Springer.

Pastor, O., Gomez, J., Insfran, E., Pelechano, V.: The OO-Method approach for information
systems modeling: from object-oriented conceptual modeling to automated programming.
Information Systems 26(7), 507-534 (2001).

Fons. J, Pelechano. V, Albert. M, Pastor. O. Development of Web Applications from Web
Enhanced Conceptual Schemas. ER 2003: 232-245.

Muiioz. J., Pelechano. V. Building a Software Factory for Pervasive Systems Development.
CAISE 2005: 342-356

Torres. V., Giner. P., Pelechano. V. Developing BP-driven web applications through the use of
MBDE techniques. Software and System Modeling 11(4): 609-631 (2012)

Giner. P., Cetina. C., Fons. J., Pelechano. V. Developing Mobile Workflow Support in the
Internet of Things. IEEE Pervasive Computing 9(2): 18-26 (2010)

Cetina. C., Giner. P., Fons. J., Pelechano. V. Vicente Pelechano: Autonomic Computing through
Reuse of Variability Models at Runtime: The Case of Smart Homes. IEEE Computer 42(10):
37-43 (2009)

Oscar Pastor, Juan Carlos Casamayor, Matilde Celma, Laura Mota, M. Angcles Pastor,
Ana M. Levin: Conceptual Modeling of Human Genome: Integration Challenges. Conceptual
Modelling and Its Theoretical Foundations 2012: 231-250

Oscar Pastor, Sergio Espafia: Full Model-Driven Practice: From Requirements to Code
Generation. CAiSE 2012: 701-702

http://www.integranova.com/

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

Architecture and Quality in Data Warehouses'

Matthias J arke“), Manfred A. Jeusfeld*”
Christoph Quix“), Panos Vassiliadis™

(1) RWTH Aachen, Germany, {jarke.quix} @informatik.rwth--aachen.de
(2) Tilburg University, The Netherlands, jeusfeld@kub.nl
(3) National Technical University of Athens, Greece, pvassil@dbnet.ece.ntua.gr

Abstract. Most database researchers have studied data warchouses (DW) in
their role as buffers of materialized views, mediating between update-
intensive OLTP systems and query-intensive decision support. This neglects
the organizational role of data warehousing as a means of centralized
information flow control. As a consequence, a large number of quality aspects
relevant for data warehousing cannot be expressed with the current DW meta
models. This paper makes two contributions towards selving these problems.
Firstly, we enrich the meta data about DW architectures by explicit enterprise
models. Secondly, many very different mathematical techniques for
measuring or optimizing certain aspects of DW quality are being developed.
We adapt the Goal-Question-Metric appreach from software quality
management (0 a meta data management environment in order to link these
special techniques to a generic conceptual framework of DW quality. Initial
feedback from ongoing experiments with a partial implementation of the
resulting meta data structure in three industrial case studies provides a partial
validation of the approach.

1 Introduction

Data warehouses provide large-scale caches of historic data. They sit between
information sources gained externally or through online transaction processing
systems (OLTP), and decision support or data mining queries following the vision of

! This research was partially supported by the European Commission in ESPRIT Long Term
Research Project DW(Q (Foundations of Data Warehouse Quality), by the General Secretariat
of Research and Technology (Greece) under the PENED program; and by the Deutsche
Forschungsgemeinschaft through Graduiertenkolleg “Informatik und Technik”.

161

mailto:{jarke,quix}@informatik.rwth--aachen.de

162 M. Jarke et al.

online analytic processing (OLAP). Three main arguments have been put forward in
favor of this caching approach:

1. Performance and safety considerations: The concurrency control methods of
most DBMSs do not react well to a mix of short update transactions (as in
OLTP) and OLAP queries that typically search a large portion of the database.
Moreover, the OLTP systems are often critical for the operation of the
organization and must not be under danger of corruption of other applications.

2. Logical interpretability problems: Inspired by the success of spreadsheet
techniques, OLAP users tend to think in terms of highly structured multi-
dimensional data models, whereas information sources offer at best relational,
often just semi-structured data models.

3. Temporal and granularity mismatch: OLTP systems focus on current
operational support in great detail, whereas OLAP often considers historical
developments at a somewhat less detailed granularity.

Thus, quality considerations have accompanied data warehouse research from the
beginning. A large body of literature has evolved over the past few years in addressing
the problems introduced by the DW approach, such as the trade-off between freshness
of DW data and disturbance of OLTP work during data extraction; the minimization
of data transfer through incremental view maintenance; and a theory of computation
with multi-dimensional data models.

However, the heavy use of highly qualified consultants in data warehouse applications
indicates that we are far from a systematic understanding and usage of the interplay
between quality factors and design options in data warehousing. The goal of the
European DWQ project [JV97] is to address these issues by developing, prototyping
and evaluating comprehensive Foundations for Data Warehouse Quality, delivered
through enriched meta data management facilities in which specific analysis and
optimization techniques are embedded.

This paper develops the DWQ architecture and quality management framework and
describes first steps towards its implementation and validation. The main
contributions include an extension of the standard DW architecture used in the
literature by enterprise modeling aspects, and a strategy for embedding special-
purpose mathematical reasoning tools in the architecture which will enable a
computationally tractable yet rich quality analysis or quality-driven design process.

Interaction with DW tool vendors, DW application developers and administrators has
shown that the standard framework used in the DW literature is insufficient to capture
in particular the business role of data warehousing. A DW is a major investment made

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 163

to satisfy some business goal of the enterprise; quality model and DW design should
reflect this business goal as well as its subsequent evolution over time. In section 2,
we discuss this problem in detail; our new architectural framework separates (and
links) explicitly the concerns of conceptual enterprise perspectives, logical data
modeling (the main emphasis of DW research to date), and physical information flow
(the main concern of commercial DW products to date).

In section 3, we first build on literature frameworks for data and software quality to
come up with a suitable set of DW quality dimensions, as perceived by different
groups of stakeholders. We then adapt a variant of the so-called Goal-Question-
Metric approach used in software quality management. Through materialized quality
views, we link conceptual quality goals to specific analysis techniques developed in
DW research and practice, and enable trade-offs between heterogeneous quality goals.
Initial experiences with a prototypical implementation of the resulting meta database
using the ConceptBase deductive object manager have been gained in cooperation
with industrial case studies. Section 4 relates our approach to other work in data
warehousing, data and software quality, while section 5 provides a summary and
conclusions.

2 The Architecture of a Data Warehouse

Physically, a data warehouse system consists of databases (source databases,
materialized views in the distributed data warehouse), data transport agents that ship
data from one database to another and a data warehouse repository which stores all
kinds of meta data about the system. The content of the repository determines to a
large extent how the data warehouse system can be used and evolved. The main goal
of our approach is therefore to define a meta database schema which can capture and
link all relevant aspects of DW architecture and quality. We shall tackle this very
difficult undertaking in several steps.

21 Three Perspectives of Data Warehouse Meta Data

Almost all current research and practice understand a data warehouse architecture as a
stepwise information flow from information sources through materialized views
towards analyst clients, as shown in figure 2.1. Our key observation is that this
architecture covers only partially the tasks faced in data warehousing and is therefore
unable to even express, let alone support, a large number of important quality
problems and management strategies.

164 M. Jarke et al.

Clients l?;ﬂ (OLAP , nssl

Adminstration

Data
Warehouse

Wrappers/ \
Loaders \

External

Sources data

Figure 2.1: Current Understanding of a Data Warehouse

As a consequence, we propose a separation of three perspectives as shown in figure
2.2: a conceptual enterprise perspective, a logical data modeling perspective, and a
physical data flow perspective.

The main argument we wish to make is the need for a conceptual enterprise
perspective. To explain, consider the left two columns of figure 2.2. Suppose an
analyst wants to know something about the business -- the question mark in the figure.
She does not have the time to observe the business directly but must rely on existing
information gained by operational departments, and documented as a side effect of
OLTP systems. This way of information gathering implies already a bias which needs
to be compensated when selecting OLTP data for uploading and cleaning into a DW
where it is then further pre-processed and aggregated in data marts for certain analysis
tasks. Considering the long path the data has taken, it is obvious that also the last step,
the formulation of conceptually adequate queries and the conceptually adequate
interpretation of the answers presents a major problem to the analyst.

The traditional DW literature only covers two of the five steps in figure 2.2. Thus, it
has no answers to typical practitioner questions such as "how come my operational
departments put so much money in their data quality, and still the quality of my DW is
terrible?" (answer: the enterprise views of the operational departments are not easily
compatible with each other or with the analysts view), or "what is the effort required

From: CAIiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 165

to analyze problem X for which the DW currently offers no information?" (could
simply be a problem of wrong aggregation in the materialized views, could require
access to not-yet-integrated OLTP sources, or even involve setting up new OLTP
sensors in the organization).

An adequate answer to such questions requires an explicit model of the conceptual
relationships between an enterprise model, the information captured by OLTP
departments, and the OLAP clients whose task is the decision analysis. We have
argued that a DW is a major investment undertaken for a particular business purpose.
We therefore do not just introduce the enterprise model as a minor part of the
environment, but demand that all other models are defined as views on this enterprise
model. Perhaps surprisingly, even information source schemas define views on the
enterprise model -- not vice versa as suggested by figure 2.1!

Conceptual Logical Physical
Perspective Perspective Perspective
2 s

by :
Client OLAP Client i | Client
Model * € Schema 1 | Data Store
s

1
1 i Transportation
9 Aggregation - — aliopriativ
: : ustomization ~——— Agent
[
] —
. I - DW
Enterprise | | Data Store
Model ——— e
Observation I\ - l ___ Transportation
< > Wrapper - Agent
~
. .
Operational g = Source Source
) . |
Department oLTP Schema | Data Store

Model

Figure 2.2 The Data Warehouse Meta Data Framework

The wrapping and aggregation transformations performed in the (traditionally
discussed) logical perspective can thus be checked for interpretability, consistency or
completeness with respect to the enterprise model -- provided an adequately powerful
representation and reasoning mechanism is available. At the same time, the logical
transformations need to be implemented safely and efficiently by physical storage and
transportation -- the third perspective in our approach. It is clear that physical quality
aspects require completely different modeling formalisms than the conceptual factors,
typical techniques stemming from queuing theory and combinatorial optimization.

166 M. Jarke et al.

There is no single decidable formalism that could handle all of these aspects
uniformly in a meta database. We have therefore decided to capture the architectural
framework in a deductive object data model in a comprehensive but relatively
shallow manner. Special-purpose reasoning mechanisms such as the ones mentioned
above can be linked to the architectural framework as discussed in section 3, below.,

2.2 A Notation for Data Warehouse Architecture

We use the meta database to store an abstract representation of data warehouse
applications in terms of the three-perspective scheme. The architecture and quality
models are represented in Telos [MBJK90], a metadata modeling language. Its
implementation in the ConceptBase system [JGJ+95] provides query facilities, and
definition of constraints and deductive rules. Telos is well suited because it allows to
formalize specialized modeling notations by means of meta classes. Preloaded with
these metaclasses, the ConceptBase system serves as the meta database for quality-
oriented data warehouses.

A condensed graphical overview of the architecture notation is given in Figure 2.3.
Bold arrows denote specialization links. The most general meta class is DW_Object. It
subsumes objects at any perspective (conceptual, logical, or physical) and at any level
(source, data warchouse, or client).

| DW_Object —_measuredBy Quality
Ll ha— Measurement

C;;nc-cpluaIOb;octE [LogwcaIObleu J [Physncabﬁ}eét]

N

(_ﬁ{DW Compﬂ'wm \

CTént |
Schema |

7 Enlurpnb
Model

; Schema
ource = -
Model s | | ource
R Agent| | Agent

_Schema DataStore

Figure 2.3: Overview of the Architecture Notation

Within each perspective, we distinguish between the modules it offers (e.g. client
model) and the kinds of information found within these modules (e.g. concepts and
their subsumption relationships). The horizontal links hasSchema and isViewOn
establish the way how the horizontal links in Figure 2.2 are interpreted: the types of a

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 167

schema (i.e., relational or multidimensional structures) are defined as logical views on
the concepts in the conceptual perspectives. On the other hand, the components of the
physical perspective get a schema from the logical perspective as their schema.

Each object can have an associated set of materialized views called
QualityMeasurements. These materialized views (which can also be specialized to the
different perspectives -- not shown in the figure) constitute the bridge to the quality
model discussed in section 3.

The horizontal levels of the objects are coded by the three subclasses attached to
Model, Schema, and DataStore. We found this notation adequate to represent physical
data warehouse architectures of commercial applications, such as the SourcePoint tool
marketed by Software AG [SAG96] or the DW architecture underlying a data mining
project at Swiss Life [SKR97]. The logical perspective currently supports relational
schema definitions whereas the conceptual perspective supports the family of
extended entity-relationship and similar semantic data modeling languages. Note that
all objects in Figure 2.3 are meta classes: actual conceptual models, logical schemas,
and data warehouse components are represented as instances of them in the meta
database. In the following subsections, we elaborate on the purpose of representing
each of the three perspectives.

23 Conceptual Perspective

The conceptual perspective describes the business models underlying the information
systems of an enterprise. The central role is played by the enterprise model, which
gives an integrative overview of the conceptual objects of an enterprise. The models
of the client and source information systems are views on the enterprise model, i.e.
their contents are described in terms of the enterprise model. One goal of the
conceptual perspective is to have a model of the information independent from
physical organization of the data, so that relationships between concepts can be
analyzed by intelligent tools, e.g. to simplify the integration of the information
sources. On the client side, the interests of user groups can also be described as views
on the enterprise model.

In the implementation of the conceptual perspective in the meta database, the central
class is Model. A model is related to a source, a client or the relevant section of the
enterprise, and it represents the concepts which are available in the corresponding
source, client or enterprise. The classes ClientModel, SourceModel and
EnterpriseModel are needed, to distinguish the models of several sources, clients and
the enterprise itself. A model consists of Concepts, each representing a concept of the

168 M. Jarke et al.

real world, i.e. the business world. If the user provides some information about the
relationship between concepts in a formal language like description logics, a reasoner
can check for subsumption of concepts [CDL97].

The results of the reasoning process are stored in the model as attribute isSubsumedBy
of the corresponding concepts. Esséntially, the repository can serve as a cache for
reasoning results. Any tool can ask the repository for containment of concepts. If the
result has already been computed, it can directly be answered by the repository.
Otherwise, a reasoner is invoked by the repository to compute the result.

24 Logical Perspective

The logical perspective conceives a data warehouse from the view point of the actual
data models involved, i.e. the data model of the logical schema is given by the
corresponding physical component, which implements the logical schema. The central
point in the logical perspective is Schema. As a model consists of concepts a schema
consists of Types. We have implemented the relational model as an example for a
logical data model; other data models such as the multi-dimensional or the object-
oriented data model are also being integrated in this framework.

Like in the conceptual perspective, we distinguish in the logical perspective between
ClientSchema, DWSchema and SourceSchema for the schemata of clients, the data
warehouse and the sources. For each client or source model, there is one
corresponding schema. This restriction is guaranteed by a constraint in the
architecture model. The link to the conceptual model is implemented by the relation-
ship between concepts and types: each type is expressed as a view on concepts.

2.5 Physical Perspective

Data warehouse industry has mostly explored the physical perspective, so that many
aspects in the physical perspective are taken from the analysis of commercial data
warehouse solutions such as Software AG’s SourcePoint tool [SAG96], the data
warehouse system of RedBrick [RedB97], Informix’s MetaCube[Info97], Essbase of
Arbor Software [Arbo96] or the product suite of MicroStrategy [MStr97]. We have
observed that the basic physical components in a data warehouse architecture are
agents and data stores. Agents are programs that control other components or
transport data from one physical location to another. Data stores are databases which
store the data that is delivered by other components.

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 169

The basic class in the physical perspective is DW_Component. A data warehouse
component may be composed out of other components. This fact is expressed by the
attribute hasPart. Furthermore, a component deliversTo another component a Type,
which is part of the logical perspective. Another link to the logical model is the
attribute hasSchema of DW_Component. Note that a component may have a schema,
i.e. a set of several types, but it can only deliver a type to another component. This is
due to the observation that agents usually transport only one tuple at a time” of a
source relation rather than a complex object.

One type of component in a data warehousing environment is an Agent. There are two
types of agents: ControlAgent which controls other components and agents, e.g. it
notifies another agent to start the update process, and TransportationAgent which
transports data from one component to another component. An Agent may also notify
other agents about errors or termination of its process.

Another type of component is a DataStore. It physically stores the data which is
described by models and schemata in the conceptual and logical perspective. As in the
other perspectives, we distinguish between ClientDataStore, DW_DataStore and
SourceDataStore for data stores of clients, the data warehouse and the sources.

3 Managing Data Warehouse Quality

In this section, we discuss how to extend the DW architecture model by explicit
quality models and their support. There are two basic issues to be resolved. On the
one hand, quality is a subjective phenomenon so we must organize quality goals
according to the stakeholder groups that pursue these goals. On the other hand, quality
goals are highly diverse in nature. They can be neither assessed nor achieved directly
but require complex measurement, prediction, and design techniques, often in the
form of an interactive process. The overall problem of introducing quality models in
meta data is therefore to achieve breadth of coverage without giving up the detailed
knowledge available for certain criteria. Only if this combination is achieved,
systematic quality management becomes possible.

31 Stakeholders in Data Warehouse Quality

There exist different roles of users in a data warehouse environment. The Decision
Maker usually employs an OLAP query tool to get answers interesting to him. A
decision maker is usually concerned with the quality of the stored data, their
timeliness and the ease of querying them through the OLAP tools. The Data

170 M. Jarke et al.

Warehouse Administrator needs facilities like error reporting, metadata accessibility
and knowledge of the timeliness of the data, in order to detect changes and reasons for
them, or problems in the stored information. The Data Warehouse Designer needs to
measure the quality of the schemata of the data warehouse environment (both existing
or newly produced) and the quality of the metadata as well. Furthermore, he needs
software evaluation standards to test the software packages he considers purchasing.
The Programmers of Data Warehouse Components can make good use of software
implementation standards in order to accomplish and evaluate their work. Metadata
reporting can also facilitate their job, since they can avoid mistakes related to schema
information.

Based on this analysis, we can safely argue that different roles imply a different
collection of quality dimensions, which a quality model should be able to address in a
consistent and meaningful way. In the following, we summarize the quality
dimensions of three stakeholders, the data warehouse administrator, the programmer,
and the decision maker. A more detailed presentation can be found in [DWQ97b].

Design and Administration Quality. The design and administration quality can be
analyzed into more detailed dimensions, as depicted in Figure 3.1. The schema quality
refers to the ability of a schema or model to represent adequately and efficiently the
information. The correctness dimension is concerned with the proper comprehension
of the entities of the real world, the schemata of the sources (models) and the user
needs. The completeness dimension is concerned with the preservation of all the
crucial knowledge in the data warehouse schema (model). The minimality dimension
describes the degree up to which undesired redundancy is avoided during the source
integration process. The traceability dimension is concerned with the fact that all
kinds of requirements of users, designers, administrators and managers should be
traceable to the data warehouse schema. The interpretability dimension ensures that
all components of the data warehouse are well described, so as to be administered
easily. The metadata evolution dimension is concerned with the way the schema
evolves during the data warehouse operation.

Software Implementation Quality. Software implementation and/or evaluation is not
a task with specific data warehouse characteristics. We are not actually going to
propose a new model for this task, but adopt the ISO 9126 standard [ISO91]. The
quality dimensions of ISO 9126 are Functionality (Suitability, Accuracy,
Interoperability, Compliance, Security), Reliability (Maturity, Fault tolerance,
Recoverability), Usability (Understandability, Learnability, Operability), Software
Efficiency (Time behavior, Resource Behavior), Maintainability (Analyzability,
Changeability, Stability, Testability), Portability (Adaptability, Installability,
Conformance, Replaceability).

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 171

Figure 3.1 Design and administration quality dimensions

Data Usage Quality. Since databases and -in our case- data warehouses are built in
order to be queried, the most basic process of the warehouse is the usage and querying
of its data. Figure 3.2 shows the hierarchy of quality dimensions related to data usage.

Data usage
quality

accessibility

usefulness

System
availability

Transactional
availability

Figure 3.2 Data usage quality dimensions

The accessibility dimension is related to the possibility of accessing the data for
querying. The security dimension describes the authorization policy and the privileges
each user has for the querying of the data. System availability describes the percentage
of time the source or data warehouse system is available (i.e. the system is up and no
backups take place, etc.). The transactional availability dimension, as already
mentioned, describes the percentage of time the information in the warehouse or the
source is available due to the absence of update processes which write-lock the data.

172 M. Jarke et al.

The usefulness dimension describes the temporal characteristics (timeliness) of the
data as well as the responsiveness of the system. The responsiveness is concerned
with the interaction of a process with the user (e.g. a query tool which is self reporting
on the time a query might take to be answered). The currency dimension describes
when the information was entered in the sources or/and the data warehouse. The
volatility dimension describes the time period for which the information is valid in the
real world. The interpretability dimension, as already mentioned, describes the extent
to which the data warehouse is modeled efficiently in the information repository. The
better the explanation is, the easier the queries can be posed.

32 From Architecture to Quality

We now turn to the formal handling and repository-based management of DW quality
goals such as the ones described in the previous section.

A first formalization could be based on a qualitative analysis of relationships between
the quality factors themselves, e.g. positive or negative goal-subgoal relationships or
goal-means relationships. The stakeholders could then enter their subjective
evaluation of individual goals as well as possible weightings of goals and be
supported in identifying good trade-offs. The entered as well as computed evaluations
could be used as quality measurements in the architecture model of figure 2.3, thus
enabling a very simple integration of architecture and quality model.

Such an approach is widely used in industrial engineering under the label of Quality
Function Deployment, using a special kind of matrix representation called the House
of Quality [Akao90]. Formal reasoning in such a structure has been investigated in
works about the handling of non-functional requirements in software engineering, e.g.
[MCNB92). Visual tools have shown a potential for negotiation support under multiple
quality criteria [GJI97].

However, while this simple approach certainly has a useful role in cross-criteria
decision making, using it alone would throw away the richness of work created by
research in measuring, predicting, or optimizing individual DW quality factors. In the
DWQ project, such methods are systematically adopted or newly developed for all
quality factors found important in the literature or our own empirical work. To give an
impression of the richness of techniques to be considered, we use a single quality
factor -- responsiveness in the sense of good query performance -- for which the DWQ
project has studied three different approaches, one each from the conceptual, logical,
and physical perspective.

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 173

We start with the logical perspective [TS97]. Here, the quality indicator associated
with responsiveness is taken to be a weighted average of query and update "costs" for
a given query mix and given information sources. A combinatorial optimization
technique is then proposed that selects a collection of materialized views as to
minimize the total costs. This can be considered a very simple case of the above
Quality Function Deployment approach, but with the advantage of automated design
of a solution.

If we include the physical perspective, the definition of query and update "costs"
becomes an issue in itself: what do we mean by costs -- response time, throughput, or
a combination of both (e.g. minimize query response time and maximize update
throughput)? what actually produces these costs -- is database access or the network
traffic the bottleneck? A comprehensive queuing model [NJ97] enables the prediction
of such detailed metrics from which the designer can choose the right ones as quality
measurements for his design process. In addition, completely new design options
come into play : instead of materializing more views to improve query response time
(at the cost of disturbing the OLTP systems longer at update time), the designer could
buy a faster client PC or DBMS, or use an ISDN link rather than using slow modems.

Yet other options come into play, if a rich logic is available for the conceptual
perspective. The description logic DWQ uses for formalizing the conceptual
perspective [CDL97], allows to state that, e.g., information about all instances of one
concept in the enterprise model is maintained in a particular information source, i.e.
the source is complete with respect to the domain. This enables the DW designer to
drop the materialization of all views on other sources, thus reducing the update effort
semantically without any loss in completeness of the answers.

It is clear that there can be no decidable formal framework that even comes close to
covering all of these aspects in a uniform language. When designing the meta database
extensions for quality management, we therefore had to look for another solution that
still maintains the overall picture offered by the shallow quality management
techniques discussed at the beginning of this section but is at the same time open for
the embedding of specialized techniques.

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM)
approach to software quality management [OB92]. The idea of GQM is that quality
goals can usually not be assessed directly, but their meaning is circumscribed by
questions that need to be answered when evaluating the quality. Such questions again
can usually not be answered directly but rely on metrics applied to either the product
or process in question; techniques such as statistical process control charts are then
applied to derive the answer of a question from the measurements.

174 M. Jarke et al.

Our repository solution uses a similar approach to bridge the gap between quality goal
hierarchies on the one hand, and very detailed metrics and reasoning techniques on the
other. The bridge is defined through the idea of quality measurements as materialized
views over the data warehouse which we already introduced in figure 2.3, and through
generic queries over these quality measurements. This implementation strategy
provides more technical support than usual GQM implementations. It is enabled
through the powerful parameterized query class mechanism offered by the
ConceptBase system.

_w| Sting
Lual lty
Goal ke
holder

/ Quality Quallry
Query Dimension ">)

url tricAgent

1

ua ' ower
Measure

Figure 3.3: A notation for Data Warehouse Quality

The purpose of a quality goal is usually to improve some quality values of the DW or
to achieve a certain quality value. Quality goals are associated with types of queries
defined over quality measurements. These queries will support the evaluation of a
specific quality goal when parameterized with a given (part of a) DW meta database.
Such a query usually compares the analysis goal to a certain expected interval in order
to assess the level of quality achieved. Furthermore, goals are established by
stakeholders, who may have several subjective quality preferences. As a consequence,
the quality measurement must contain information about both expected and actual
values. Both could be entered into the meta database manually, or computed
inductively by a given metric through a specific reasoning mechanism. For example,
for a given physical design and some basic measurements of component and network
speeds, the queuing model in [NJ97] computes the quality values for response time
and throughput, and it could indicate if network or database access is the bottleneck in
the given setting. This could then be combined with conceptual or logical quality
measurements at the level of optimizing the underlying quality goal.

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 175

The interplay of goals, queries, and metrics with the basic concepts of the architecture
model is shown in the Telos meta model of figure 3.3. While the development and
integration of numerous specific metrics is the goal of ongoing work in the DWQ
project, our current implementation just covers the upper levels of the picture, such
that only manual entry of quality measurements is supported. A number of quality
queries have been implemented, focusing on some that turned out to be relevant when
validating the architecture against three case studies: creating a model of Software
AG’ SourcePoint DW loading environment, modeling data quality problems
hindering the application of data mining techniques in Swiss Life, and conceptually
re-constructing some design decisions underlying the administrative data warehouses
of the City of Cologne, Germany [DWQ97a, DWQ97b].

Quality queries access information recorded in quality measurements. A quality
measurement stores the following information about data warehouse components:

1. an interval of expected quality measures

2. the current quality measure

3. the metric used to compute a measure

4. dependencies to other quality measurements

The dependencies between quality measurements can be used to trace quality
measurements outside the expected interval to their causes. The following two queries
exemplify how quality measurements classify data warehouse components and how
the backtracing of quality problems can be done by queries to the meta database:

QueryClass BadQualityMeasurement isA QualityMeasurement
with constraint

c: $ not (this.expected contains this.current) $
end

GenericQueryClass CauseOfBadQuality isA DW_Object
with parameter
badObject : DW_Object
constraint
c: $ exists gl,g2/QualityMeasurement
(badObject measuredBy gl) and
(gl in BadQualityMeasurement) and
(gl dependsOn g2) and
(g2 in BadQualityMeasurement) and
((this measuredBy g2) or
(exists o/DW_Object (o measuredBy g2) and
(this in CauseOfBadQuality[o/badObject})})) $
end

176 M. Jarke et al.

4 Related Work

Our approach extends and merges results from data warehouse research and
data/software quality research.

Starting with the data warehouse literature, the well-known projects have focused
almost exclusively on what we call the logical and physical perspectives of DW
architecture. While the majority of early projects have focused on source integration
aspects, the recent effort has shifted towards the efficient computation and re-
computation of multi-dimensional views. The business perspective is considered at
best indirectly in these projects. The Information Manifold (IM) developed at AT&T
is the only one that employs a rich domain model for information gathering from
disparate sources such as databases, SGML documents, unstructured files [LSK95,
KLSS95, LRO96] in a manner similar to our approach.

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) is a project
with the goal of providing tools for the integrated access to multiple and diverse
information sources and repositories [CGMH+94, Ull97]. Each information source is
equipped with a wrapper that encapsulates the source, converting the underlying data
objects to a common data model - called Object Exchange Model (OEM). On top of
wrappers, mediators [Wie92] can be conceptually seen as views of data found in one
or more sources which are suitably integrated and processed.

Similarly, but with slightly different implementation strategies, the Squirrel Project
[HZ96, ZHK96] provides a framework for data integration based on the notion of
integration mediator. Integration mediators are active modules that support
incrementally maintained integrated views over multiple databases. Moreover, data
quality is considered by defining formal properties of consistency and freshness for
integrated views.

The WHIPS (WareHouse Information Prototype at Stanford) system [HGMW+95,
WGL+96] has the goal of developing algorithms for the collection, integration and
maintenance of information from heterogeneous and autonomous sources. The
WHIPS architecture consists of a set of independent modules implemented as
CORBA objects. The central component of the system is the integrator, to which all
other modules report.

Turning to data quality analysis, Wang et al. [WSF95] present a framework based on
the ISO 9000 standard. They review a significant part of the literature on data quality,
yet only the research and development aspects of data quality seem to be relevant to
the cause of data warehouse quality design. In [WRK95], an attribute-based model is
presented that can be used to incorporate quality aspects of data products. The basis of

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 177

this approach is the assumption that the quality design of an information system can be
incorporated in the overall design of the system. The model proposes the extension of
the relational model as well as the annotation of the results of a query with the
appropriate quality indicators. Further work on data quality can be found in [BT89],
[BWPT93], [Jans88], [LU90], [Hall78], [Krie79], and [AABT].

Variants of the Goal-Question-Metric (GQM) approach are widely adopted in
software quality management [OB92]. A structured overview of the issues and
strategies, embedded in a repository framework, can be found in [JP92]. Several goal
hierarchies of quality factors have been proposed, including the GE Model [MRW78]
and [Boeh89]. ISO 9126 [ISO91] suggests six basic factors which are further refined
to an overall 21 quality factors. In [HR96] a comparative presentation of these three
models is offered and the SATC software quality model is proposed, along with
metrics for all their software quality dimensions.

5 Discussion and Conclusions

The goal of our work is to enrich meta data management in data warehouses such that
it can serve as a meaningful basis for systematic quality analysis and quality-driven
design. To reach this goal, we had to overcome two limitations of current data
warehouse research.

Firstly, the basic architecture in which data warehouses are typically described turned
out to be too weak to allow a meaningful quality assessment : as quality is usually
detected only by its absence, quality-oriented meta data management requires that we
address the full sequence of steps from the capture of enterprise reality in operational
departments to the interpretation of DW information by the client analyst. This in turn
implied the introduction of an explicit enterprise model as a central feature in the
architecture. To forestall possible criticism that full enterprise modeling has proven a
risky and expensive effort, we point out that our approach to enterprise model
formation (including the formal language used in [CDL97]) is fully incremental such
that it is perfectly feasible to construct the enterprise model step by step, e.g. as a side
effect of source integration or of other business process analysis efforts.

The second major problem is the enormous richness in quality factors, each associated
with its own wealth of measurement and design techniques. Our quest for an open
quality management environment that can accommodate existing or new such
techniques led us to an adaptation and repository integration of the Goal-Question
Metric approach where parameterized queries and materialized quality views serve as
the missing link between specialized techniques and the general quality framework.

178 M. Jarke et al.

The power of the repository modeling language determines the boundary between
precise but narrow metrics and comprehensive but shallow global repository. The
deductive object base formalism of the Telos language provides a fairly sophisticated
level of global quality analysis in our prototype implementation but is still fully
adaptable and general; once the quality framework has sufficiently stabilized, a
procedurally object-oriented approach could do even more, by encoding some metrics
directly as methods, of course at the expense of flexibility. Conversely, a simple
relational meta database could take up some of the present models with less semantics
than offered in the ConceptBase system, but with the same flexibility.

As of now, both the framework and its implementation can only be considered
partially validated. One strain of current work therefore continues the validation
against several major case studies, in order to set priorities among the quality criteria
to be explicated in specific metrics and analysis techniques. A second overlapping
strain concerns the development of these techniques themselves, and their linkage into
the overall framework through suitable quality measurements and extensions to global
design and optimization techniques. Especially when progressing from the definition
of metrics and prediction techniques to actual design methods, it is expected that these
will not be representable as closed algorithms but must take the form of interactive
work processes defined over the DW architecture.

As an example, feedback from at least two case studies suggests that, in practice, the
widely studied strategy of incremental view maintenance in the logical sense is far less
often problematic than the time management at the physical and conceptual level,
associated with the question when to refresh DW views such that data are sufficiently
fresh for analysis, but neither analysts nor OLTP applications are unduly disturbed in
their work due to locks on their data. Our research therefore now focuses on extending
the conceptual level by suitable (simple) temporal representation and reasoning
mechanisms for representing freshness requirements, complemented by an array of
design and implementation methods to accomplish these requirements and the
definition of processes at the global level to use these methods in a goal-oriented
manner to fulfill the requirements.

While such extensions will certainly refine and in parts revise the approach reported
here, the experiences gained so far indicate that it is a promising way towards more
systematic and computer-supported quality management in data warehouse design and
operation.

Acknowledgements. The authors would like to thanks their project partners in DWQ,
especially Maurizio Lenzerini, Mokrane Bouzeghoub and Enrico Franconi, for fruitful
discussions of the architecture and quality model.

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 179

6 References

[AA87] N. Agmon, N.Ahituv, Assessing data reliability in an information
system, J. Management Information Systems 4, 2 (1987)

[Akao90] Akao, Y., ed., Quality Function Deployment, Productivity Press,
Cambridge MA. , 1990

[Arbo96] Arbor Software Corporation. Arbor Essbase.
http://www.arborsoft.comlessbase.htmi, 1996.

[Boeh89] Boehm, B., Software Risk Management, IEEE Computer Society
Press, CA, 1989.

[BT89] D.P. Ballou, K.G. Tayi, Methodology for allocating resources for

data quality enhancement, Comm. ACM, 32, 3 (1989)

[BWPTO3] D.P. Ballou, R.Y. Wang, H.L. Pazer, K.G. Tayi, Modeling Data
Manufacturing Systems To Determine Data Product Quality, (No.
TDQM-93-09) Cambridge Mass.: Total Data Quality Management
Research Program, MIT Sloan School of Management, 1993

[CDL97] D. Calvanese, G. De Giacomo, M. Lenzerini. Conjunctive query
containment in Description Logics with n-ary relations.
International Workshop on Description Logics, Paris, 1997.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,
Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS
project: Integration of heterogeneous information sources. In Proc.
of IPSI Conference, Tokyo (Japan), 1994,

[DWQ97a] DWQ, Deliverable D1.1, Data Warehouse Quality Requirements
and Framework, NTUA, RWTH, INRIA, DFKI, Uniroma, IRST,
DWQ TR DWQ - NTUA - 1001, 1997

[DWQ97b] DWQ, Deliverable D2.1, Data Warehouse Architecture and
Quality Model, RWTH, NTUA, Uniroma, INRIA, DWQ TR DWQ
- RWTH - 002, 1997

[GII9T] M. Gebhardt, M. Jarke, S. Jacobs, CoDecide -- a toolkit for
negotiation support interfaces to multi-dimensional data. Proc.
ACM-SIGMOD Conf. Management of Data, Tucson, Az, 1997.

[Hall78] Halloran et al, Systems development quality control, MIS
Quarterly, vol. 2, no.4, 1978

[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. The
Stanford Data Warehousing Project. Data Eng., Special Issue
Materialized Views on Data Warehousing, 18(2), 41-48. 1995.

http://www.arborsoft.com/essbase.html

180

[HR96]

[HZ96]

{Info97]

[ISO91]

[Jans88]

[IGJ+95]

[JP92]

V97

[KLSS95]

[Krie79]

[LRO96]

[LSK95]

[LU90]

M. Jarke et al.

L. Hyat, L. Rosenberg, A Software Quality Model and Metrics for
Identifying Project Risks and Assessing Software Quality, 8th
Annual Software Technology Conference, Utah, April, 1996.

R. Hull, G. Zhou. A Framework for supporting data integration
using the materialized and virtual approaches. Proc. ACM SIGMOD
Intl. Conf. Management of Data, 481 - 492, Montreal 1996.
Informix, Inc.: The INFORMIX-MetaCube Product Suite.
http://www.informix.com/informix/products/new_plo/metabro/meta
bro2.htm, 1997.

ISO/IEC 9126, Information technology -Software product
evaluation- Quality charactveristics and guidelines for their use,
International Organization for Standardization, http://www.iso.ch
M. Janson, Data quality: The Achilles heel of end-user computing,
Omega J. Management Science, 16, 5 (1988)

M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt, S. Eherer:
ConceptBase - a deductive objectbase for meta data management.
In Journal of Intelligent Information Systems, 4, 2, 167-192, 1995.
M.Jarke, K.Pohl. Information systems quality and quality
information systems. In Kendall/Lyytinen/DeGross (eds.): Proc.
IFIP 8.2 Working Conf. The Impact of Computer-Supported
Technologies on Information Systems Development (Minneapolis
1992), North-Holland 1992, pp. 345-375.

M. Jarke, Y. Vassiliou. Foundations of data warehouse quality -- a
review of the DWQ project. Proc. 2nd Intl. Conf. Information
Quality (I1Q-97), Cambridge, Mass. 1997.

T. Kirk, A.Y. Levy, Y. Sagiv, and D. Srivastava. The Information
Manifold. Proc. AAAI 1995 Spring Symp. on Information Gathering
from Heterogeneous, Distributed Environments, pp. 85-91, 1995.
C. Kriebel, Evaluating the quality of information system, Design
and Implementation of Computer Based Information Systems, N.
Szyperski/ E.Grochla ,eds. Sijthoff and Noordhoff, 1979

AY. Levy, A. Rajaraman, and J.J. Ordille. Query answering
algorithms for information agents. Proc. I3th Nat. Conf on
Artificial Intelligence (AAAI-96), pages 40-47, 1996.

A.Y.Levy, D. Srivastava, and T. Kirk. Data model and query
evaluation in global information systems. Journal of Intelligent
Information Systems, 5:121-143, 1995.

G.E. Liepins and V.R.R. Uppuluri, Accuracy and Relevance and the
Quality of Data, A.S. Loebl, ed., vol. 112, Marcel Dekker, 1990

http://www.informix.com/informix/products/new_plo/metabro/metabro2.htm

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998 181

[MBJK90] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos —~ a
language for representing knowledge about information systems.. In
ACM Trans. Information Systems, 8, 4, 1990, pp. 325-362.

[MCN92] J. Mylopoulos, L. Chung, B. Nixon. Representing and using non-
functional requirements -- a process-oriented approach. IEEE
Trans. Software Eng. 18, 6 (1992).

[MRW78] J.A. McCall, P.K. Richards, G.F. Walters, Factors in software
quality, Technical Report, Rome Air Development Center, 1978

[MStr97] MicroStrategy, Inc. MicroStrategy’s 4.0 Product Line.
http://www.strategy.com/launch/ 4_0_arci.htm, 1997.

[NJ97] M. Nicola, M. Jarke. Integrating Replication and Communication in
Performance Models of Distributed Databases. Technical Report,
RWTH Aachen, AIB 97-10, 1997.

{OB92] M. Oivo, V. Basili: Representing software engineering models: the
TAME goal-oriented approach. IEEE Trans. Software Eng. 18, 10
(1992).

[SAG96] Software AG: SourcePoint White Paper. Software AG, Uhlandstr
12, 64297 Darmstadt, Germany, 1996.

[SKR97] M. Staudt, J.U. Kietz, U. Reimer. ADLER: An Environment for
Mining Insurance Data. Proc. 4th Workshop KRDB-97, Athens,
1997.

[TS97) D. Theodoratos, T. Sellis. Data Warehouse Configuration. Proc.
23th VLDB Conference, Athens, 1997.

[U1197] J.D. Ullman. Information integration using logical views. In Proc.

6th Int. Conf. on Database Theory (ICDT-97), Lecture Notes in
Computer Science, pages 19-40. Springer-Verlag, 1997

[WGL+96] J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina,
J. Widom. A System Prototype for Warehouse View Maintenance.
Proceedings ACM Workshop on Materialised Views: Techniques
and Applications , Montreal, Canada, June 7, 1996, 26-33.

[Wie92] G. Wiederhold. Mediators in the architecture of future information
systems. IEEE Computer, pp. 38-49, March 1992.

[WRKO95] R.Y. Wang, M.P. Reddy, H.B. Kon, Towards quality data: an
attribute-based approach, Decision Support Systems, 13(1995)

[WSF95] R.Y. Wang, V.C. Storey, C.P. Firth, A framework for analysis of
data quality research, [EEE Trans. Knowledge and Data Eng. 7, 4
(1995)

[ZHK96] G. Zhou, R. Hull, R. King. Generating Data Integration Mediators
that Use Materialization. Journal of Intelligent Information
Systems, 6(2), 199-221, 1996.

http://www.strategy.com/launch/ 4_O_arc l.htm

Data Warehouse Architecture and Quality:
Impact and Open Challenges

Matthias Jarke, Manfred A. Jeusfeld, Christoph J. Quix, Panos Vassiliadis,
and Yannis Vassiliou

Abstract The CAISE 98 paper “Architecture and Quality in Data Warehouses”
and its expanded journal version [18] was the first to add a Zachman-like [37]
explicit conceptual enterprise modeling perspective to the architecture of data
warehouses. Until then, data warehouses were just seen as collections of — typically
multidimensional and historized — materialized views on relational tables, without
consideration of modeling of the (business) concepts underlying their structure. The
paper pointed out that this additional conceptual perspective was not just necessary
for a truly semantic data integration but also a prerequisite for bringing the then very
active data warehouse movement together with another topic of quickly growing
importance, that of data quality.

We were happy to see the citation and industrial uptake success of this paper as
it played a central role in our European IST basic research project “Foundations
of Data Warehouse Quality (DWQ)”. Indeed, the paper was the first in a series
of three CAIiSE papers from 1998 to 2000 all three of which were selected as
“best” CAISE papers for expanded journal publication in Information Systems and

M. Jarke (>4) » C.J. Quix

Information Systems, RWTH Aachen University & Fraunhofer FIT, Ahornstr. 55,
52074 Aachen, Germany

e-mail: jarke|quix @cs.rwth-aachen.de

M.A. Jeusfeld
Information Management, Tilburg University, Tilburg, Netherlands
e-mail: manfred.jeusfeld @acm.org

P. Vassiliadis
Department Computer Science, University of Ioannina, Ioannina, Greece
e-mail: pvassil@cs.uoi,gr

Y. Vassiliou
DBLab, National Technical University of Athens, Athens, Greece
e-mail: yv@cs.ntua.gr

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering, 183
DOI 10.1007/978-3-642-36926-1_14, © Springer-Verlag Berlin Heidelberg 2013

mailto:jarke|quix@cs.rwth-aachen.de
mailto:manfred.jeusfeld@acm.org
mailto:pvassil@cs.uoi,gr
mailto:yv@cs.ntua.gr

184 M. Jarke et al.

collected about 415 citations by end of 2012 according to Google Scholar. The final
DWQ results were published in the book [19], still organized around basically the
same architecture and quality model.

On a more personal note, it is worth mentioning that for the two junior co-authors
(CQ, PV), this was their first major refereed publication, and has strongly influenced
their follow-up research over more than a decade.

In this short note, we shall briefly summarize this own follow-up research as
well as the impact on research and practice, in the three areas of data quality, data
warehouse process engineering, and automated model management. We end with
some ongoing research questions and open challenges.

1 Data Quality and Enterprise Integration

In 1998, the time was ripe for a serious treatment of quality as a first-class problem
in information system engineering. Few years after the publication of the CAiSE’98
paper, both the necessity of handling data quality as a top-level concern and the
idea of injecting quality properties in the metadata started gaining ground, as
demonstrated by a proliferation of industrial efforts [2], books [3, 36], papers in
top-ranked conferences and journals (e.g. [11]) and workshop series like DMDW,
IQIS, and QDB. The CAiSE’98 paper contributed to the establishment of the
idea that apart from relieving the operational systems from the query load, data
warehouses also conceptually serve Inmon’s “single version of the truth” principle
for an organization.

A number of our own case studies confirmed this view and developed it further.
In [30], we report the enormous impact of introducing DWQ-like semantic data
cleaning and integration approaches into the worldwide financial reporting ware-
house of Deutsche Bank, then one of the largest and most complex financial data
warehouses worldwide. The project reduced the latency of consistent summary data
from about 3 months to less than 1 day, at much better data quality. Subsequently,
many business IT research groups expanded the conceptual modeling perspective
from a management perspective [16], a user perspective [8], or the viewpoint of
specific nonfunctional requirements [27].

In science and engineering applications, DW data often reflect project experi-
ences, and our CAiSE’98 model had to be adapted for such knowledge warehouse
settings. Already shortly after the CAiSE 98 paper, the Bayer company transferred
our architectural concept to what they called their “process data warehouse” [20]
for (chemical) process engineering. But this domain requires a richness of facets
well beyond business applications, so it took our chemical engineering collaborators
a decade to formulate an adequate, widely accepted set of core ontologies for
this domain [7]. In a case study with Daimler, we also saw that data quality of
long-lived data warehouses is often corrupted by creeping changes in the human

Data Warehouse Architecture and Quality: Impact and Open Challenges 185

interpretation of the schemas, such that data mining techniques had to be developed
to reverse-engineer the evolution of schema semantics over time [25]. Query
processing over such multiple DW schema versions has been studied by [13].

Last not least, the quality models had to be made more efficiently usable. More
than 100 KPT’s from the literature were grouped into classes, with mappings to
DW schemas. Moreover, it was noticed that quality metrics should not be kept
separately but integrated directly into the architecture metamodel and its supporting
repository. Manfred Jeusfeld extended ConceptBase, the system in which the CAiSE
98 models were first implemented, to include active rules and recursive functions
with optimized execution by tabling prior function calls [17]. This enables natural
definition of quality metrics even over hierarchically organized architectural and
data elements. A similarly deep integration of quality into quality-aware DW reports
has recently also been pursued at IBM [9].

2 Data Warehouse Process Engineering

With the benefit of the hindsight, an interesting omission of the CAiSE’98 paper was
the treatment of software processes within a data warehouse. At the time the paper
was authored, both the research and the industrial world viewed data warehouses
from a static point of view. However, once the core problems of the design of the data
architecture (and its contents) had been resolved, the main effort of data warehouse
project teams has been devoted to the establishment of the refreshment process [23].

The CAIiSE paper was the root of a research agenda that has lasted for more than
a decade on the topic, technology, aiming at the establishment of ETL (Extract-
Transform-Load) technology as a top-level topic in the data management and
information systems engineering research communities [35]. Contributions have
been made towards establishing methods that (a) allow administrators to design
ETL workflows at conceptual and logical levels (e.g., [34]), (b) implement and tune
these workflows at the physical level (e.g., [31]), and, (c) come up with efficient
algorithms that can be incorporated in ETL tools to allow the efficient execution of
ETL workflows (e.g., [28]). However, the first paper in this line of research came
from practically the same team of authors of the CAiSE’98 paper, again in a CAiSE
conference [33]. One can safely argue that the two papers should be considered as
a pair as the CAiSE’98 paper covers the data architecture aspect and the CAiSE
2000 paper complements it with the management of operational processes for data
warehouse metadata and quality.

Nowadays, both tasks are widely accepted in industrial practice — the ETL-
based process perspective typically under the label of Enterprise Application
Integration, the semantic data integration perspective under the label of Enterprise
Data Integration. For both aspects, the OMG has in the meantime published some
metamodel standards, such as the Common Warehouse Metamodel [29].

186 M. Jarke et al.
3 Automated Model Management

CWM also began to address another emerging issue, the growing heterogeneity
of data models, by including source modeling packages not just for the relational
model but also for XML or direct multidimensional models. But meanwhile, het-
erogeneity has gone much further. The explosion of IT in business and engineering
(cyber-physical systems) has outpaced the possibilities of central data warehouses.
Richer information integration architectures such as peer-to-peer networks, data
stream management, or personal dataspaces are under investigation. The CAiSE’98
approach of carefully designing a central conceptual model as the basis for integra-
tion and quality is becoming infeasible, as a much higher degree of automation even
in the handling of schemas/metamodels is required.

The first wave of this so-called model management movement [4] focused on
introducing a model algebra with operators such as the automated generation of
formal mappings by matching of schema elements, the semantically meaningful
merging of schemas based on these mappings, and the composition of mappings
as a basis for distributed query optimization, update propagation, or even schema
evolution. In competition to programming solutions attempting to implement such
an algebra, research on logic-based approaches continued.

In the end, it turned out that both approaches had to be combined. The key
observation in the CLIO project at IBM Research was that the representation of
mappings as simple correspondence links between schema elements are far too
weak to allow for automated code generation and code optimization e.g. from com-
posed mappings. These mappings needed to be expressed at least as (conjunctive)
Datalog queries between any pair of sources to be integrate. For automated data
integration, a new variant of so-called tuple-generating dependencies, second-order
tuple-generating dependencies [12] were shown to allow correct and complete code
generation even with composed mappings among relational sources.

In model management 2.0 [5], model management is reconsidered under such
richer mapping representations. In our work, we have aimed to extend the CLIO
results to the case of heterogeneous data models: conceptual modeling formalisms
such as UML or the ER model as well as the different kinds of structured and
unstructured database models. A detailed analysis of the richness of these models,
combined with the many subtle model variations in the chemical engineering case
studies, led us to the conclusion that using the Telos language supporting by the
ConceptBase system [26] would lead to a combinatorial explosion of subclass
hierarchies which could not be handled with reasonable effort.

The GeRoMe metamodel [21] introduces a role concept at the metalevel which
avoids this combinatorial explosion by using role annotations instead of subclassing,
However, it maintains the efficient mapping of the conceptual modeling formalism
to Datalog. In this way, we could show that query optimization and update
propagation as in CLIO is possible even across an open architecture like a peer-
to-peer network with heterogeneous data models among the peers [22]; in addition,

Data Warehouse Architecture and Quality: Impact and Open Challenges 187

algorithms can be found to do schema merging in different scenarios not just with
preservation of semantics, but also with minimization of the merged schemas [24].

4 Beyond Data Warehouses

In conclusion, we mention two further developments which at first glance seem
much more revolutionary but surprisingly also show relationships to this work.

Firstly, we are observing a confluence of database, data warehouse, and search
engine technologies. Naive users expect to ask simple keyword questions also to
structured databases, and conversely, many people want to ask structured queries
a la SQL or multidimensional versions of it, to databases whose content is text or
even multimedia objects. As one well-known example, the YAGO project extracts
semantic knowledge in the form of RDF graphs from very large text bases such as
Wikipedia [32]. Currently, this is being extended to a kind of RDF warehouse by
adding temporal and spatial context [15]. Interestingly, a data quality framework
for this web archiving similar to our CAiSE 98 approach has been recently
developed [10].

The development of novel column-based main memory databases, such as SAP’s
HANA system, claims to void the need for separate data warehousing altogether
[6, 14]. Other so-called NoSQL databases have also made broad claims, but each
approach is typically best suited for particular applications and workload patterns,
such that again, it is highly likely than an integration of multiple such non-
standard database solutions with each other and with traditional databases will be
necessary. At the operational level, a very nice approach to support such integration
by a common programming framework has recently been proposed by [1] but it
remains open what this implies for the enterprise architecture and for data quality
management.

In summary, the field of architecture and quality in information integration
appears alive and well for many years to come.

References

1. Atzeni P, Bugiotti B, Rossi L (2012) Uniform access to non-relational database systems.
24" Intl Conf Advanced Information Systems Engineering (CAiSE 2012), Gdansk/Poland,
160-174

2. Barateiro J, Galhardas H (2005) A survey of data quality tools. Datenbank-Spektrum 14: 15-21

3. Batini C, Scannapieco M (2006) Data Quality: Concepts, Methodologies & Techniques.
Springer

4. Bernstein PA, Haas LM, Jarke M, Rahm E, Wiederhold G (2000) Is generic metadata
management feasible? 26. Intl Conf Very Large Databases (VLDB 2000), Cairo/Egypt,
660-662

188

5.

6.

7.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

25.

26.

217.

28.

29.

M. Jarke et al.

Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. ACM
SIGMOD Conf., Beijing, China: 1-12

Bog A, Sachs S, Plattner H (2012) Interactive performance monitoring of a composite OLTP
and OLAP workload. ACM SIGMOD Intl Conf Mgmt of Data, Scottsdale, Az, 645-648
Brandt SC, Morbach J, Miatidis M, Theiflen M, Jarke M, Marquardt W (2008) An ontology-
based approach to knowledge management in design processes. Computers & Chemical
Engineering 32, 1-2: 320-342

. Cappiello C, Francalanci C, Pernici B (2004) Data quality assessment from the user’s

perspective. ACM SIGMOD Workshop Information Quality in Information Systems, Paris,
68-73

. Daniel F, Casati F, Palpanas T, Chayka O, Cappiello C (2008) Enabling better decisions through

quality-aware reports. Intl Conf Information Quality (ICIQ), Cambridge/Mass

Denev D, Mazeika A, Spaniol M, Weikum G (2011) The SHARC framework for data quality
in web archiving. VLDB Journal 20, 2: 183-207

Elmagarmid AK, Ipeirotis PG, Verykio VS (2007) Duplicate record detection: a survey. IEEE
Trans. Knowl. & Data Eng. 19, 1: 1-16

Fagin R, Kolaitis P, Popa L, Tan WC (2005) Composing schema mappings: second-order
dependencies to the rescue. ACM Trans. Database Systems 30, 4: 994-1055

Golfarelli M, Lechtenborger J, Rizzi S, Vossen G (2006) Schema versioning in data ware-
houses: Enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59,
2: 435459

Grund M, Kiriiger J, Plattner P, Zeier A (2010) Cudré-Mauroux P, Samuel Madden S: HYRISE -
A Main Memory Hybrid Storage Engine. PVLDB 4, 2: 105-116

Hoffart J, Suchanek FM, Berberich K, Weikum G (2013) YAGO2: A spatially and temporally
enhanced knowledge base from Wikipedia. Artif. Intell. 194: 28-61

Holten R (2003) Specification of management views in information warehouse projects.
Information Systems 28, 7: 709-751

Jeusfeld, M. A.; Quix, C.; Jarke, M. (2011) ConceptBase.cc User Manual Version 7.3. Technical
Report, Tilburg University, http://arno.uvt.nl/show.cgi?fid=113912

Jarke M, Jeusfeld MA, Quix C, Vassiliadis P (1999) Architecture and quality in data
warehouses: an extended repository approach. Inform. Systems 24, 3: 131-158.

Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (2003) Fundamentals of Data Warehouses.
2" edn., Springer.

Jarke M, List T, Koller J (2000) The challenge of process data warehousing. 26. Intl Conf Very
Large Databases (VLDB 2000, Cairo/Egypt), 473-483.

Kensche D, Quix C, Chatti MA, Jarke M (2007) GeRoMe: a generic role-based metamodel for
model management. J. Data Semantics 8: 82-117.

Kensche D, Quix C, Li X, Li Y, Jarke M (2009) Generic schema mappings for composition
and query answering. Data & Knowledge Engineering 68, 7: 599-621

Kimball R, Caserta J (2004) The Data Warehouse ETL Toolkit. Willey

Li X, Quix C (2011) Merging relational views: a minimization approach. 30" Intl Conf
Conceptual Modeling (ER 2011), Brussels/Belgium, 379-392

Liibbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data
quality tools. 26. Intl Conf Very Large Databases (VLDB 2003, Berlin/Germany), 548-559
Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990) Telos: representing knowledge about
information systems. ACM Trans. Information Systems 8, 4: 325-362

Pardillo J, Trujillo J: Integrated model-driven development of goal-oriented data warehouses
and data marts. 27" Intl Conf Conceptual Modeling (ER 2008), Barcelona, Spain: 426-439
Polyzotis N, Skiadopoulos S, Vassiliadis P, Simitsis A, Frantzell N-E (2007) Supporting
streaming updates in an active data warehouse. 23rd Intl Conf Data Engineering (ICDE 2007),
Constantinople, Turkey, 476485

Poole J, Chang D, Tolbert D, Mellor D: Common Warehouse Metamodel Developer’s Guide,
Wiley Publishing, 2003

http://arno.uvt.nl/show.cgi?fid=113912

Data Warehouse Architecture and Quality: Impact and Open Challenges 189

30.

31.
32.
33.
34.
35.

36.
. Zachman JA (1987) A framework for information systems architecture. IBM Systems Journal

37

Schaefer E, Becker J-D, Boehmer A, Jarke M (2000) Controlling data warehouses with
know-ledge networks. 26. Intl Conf Very Large Databases (VLDB 2000), Cairo/Egypt,
715-718

Simitsis A, Vassiliadis P, Sellis TK (2005) Optimizing ETL processes in data warehouses. 21st
Intl Conf Data Engineering (ICDE 2005), Tokyo, Japan, 564-575

Suchanek FM,, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. 16™ Intl
Conf World Wide Web (WWW 2007), Banff/Canada, 697-706

Vassiliadis P, Quix C, Vassiliou Y, Jarke M (2001) Data warehouse process management.
Special Issue on Selected Papers from CAiSE 2000, Information Systems 26, 3: 205-236.
Vassiliadis P, Simitsis A, Georgantas PO, Terrovitis M (2003) A framework for the design of
ETL scenarios. 15th CAiSE, Klagenfurt/Austria, 520-535

Vassiliadis P, Simitsis A (2009) Extraction-Transformation-Loading, In Liu L, Oszu T (eds.):
Encyclopedia of Database Systems, Springer

Wang RY, Ziad M, Lee YW (2001) Data Quality. Advances in Database Systems 23, Kluwer

26, 3: 276292

Time Constraints in Workflow Systems

Johann Eder*, Euthimios Panagos, and Michael Rabinovich

AT&T Labs - Research
180 Park Avenue
Florham Park, NJ 07932
edere@acm.org, {thimios, misha}@research.att.com

Abstract. Time management is a critical component of workflow-based process
management. Important aspects of time management include planning of work-
flow process execution in time, estimating workflow execution duration, avoiding
deadline violations, and satisfying all external time constraints such as fixed-date
constraints and upper and lower bounds for time intervals between activities. In
this paper, we present a framework for computing activity deadlines so that the
overall process deadline is met and all external time constraints are satisfied.

1 Introduction

Dealing with time and time constraints is crucial in designing and managing business
processes. Consequently, time management should be part of the core management
functionality provided by workflow systems to control the lifecycle of processes. At
build-time, when workflow schemas are developed and defined, workflow modelers
need means to represent time-related aspects of business processes (activity durations,
time constraints between activities, efc.) and check their feasibility (i.e., timing con-
straints do not contradict each other). At run-time, when workflow instances are in-
stantiated and executed, process managers need pro-active mechanisms for receiving
notifications of possible time constraint violations. Workflow participants need infor-
mation about urgencies of the tasks assigned to them to manage their personal work
lists. If a time constraint is violated, the workflow system should be able to trigger ex-
ception handling to regain a consistent state of the workflow instance. Business process
re-engineers need information about the actual time consumption of workflow execu-
tions to improve business processes. Controllers and quality managers need information
about activity start times and execution durations.

At present, support for time management in workflow systems is limited to process
simulations (to identify process bottlenecks, analyze activity execution durations, efc.),
assignment of activity deadlines, and triggering of process-specific exception-handling
activities (called escalations) when deadlines are missed at run time [10/8[7L18[23[17].
Furthermore, few research activities about workflow and time management exist in the
literature. A comparison with these efforts is presented in Section[7.

Our contributions in this paper include the formulation of richer modeling primi-
tives for expressing time constraints, and the development of techniques for checking

* On leave from the University of Klagenfurt, Austria

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 286300, 1999. 191
(© Springer-Verlag Berlin Heidelberg 1999

mailto:{thimios, misha}@research.att.com

192 J. Eder, E. Panagos and M. Rabinovich

satisfiability of time constraints at process build and instantiation time and enforcing
these constraints at run time. The proposed primitives include upper and lower bounds
for time intervals between workflow activities, and binding activity execution to certain
fixed dates (e.g., first day of the month). Our technique for processing time constraints
computes internal activity deadlines in a way that externally given deadlines are met
and no time constraints are violated.

In particular, at build time, we check whether for a given workflow schema there
exists an execution schedule that does not violate any time constraints. The result is
a timed activity graph that includes deadline ranges for each activity. At process in-
stantiation time, we modify the the timed activity graph to include the deadlines and
date characteristics given when the workflow is started. At run time, we dynamically
recompute the timed graph for the remaining activities to monitor satisfiability of the
remaining time constraints, given the activity completion times and execution paths
taken in the already-executed portion of a workflow instance.

The remainder of the paper is organized as follows. Section 2] describes our work-
flow model and discusses time constraints. Section Blpresents the workflow representa-
tion we assume in this paper. Section Bl presents the calculations that take place during
build time. Section[3]shows how these calculations are adjusted at process instantiation
to take into account actual date constraints. Section [6] covers run time issues. Section [7]
offers a comparison with related work and, finally, Section[§]concludes our presentation.

2 Workflow Model and Time Constraints

A workflow is a collection of activities, agents, and dependencies between activities.
Activities correspond to individual steps in a business process. Agents are responsible
for the enactment of activities, and they may be software systems (e.g., database appli-
cation programs) or humans (e.g., customer representatives). Dependencies determine
the execution sequence of activities and the data flow between these activities. Conse-
quently, a workflow can be represented by a workflow graph, where nodes correspond
to activities and edges correspond to dependencies between activities.

Here, we assume that execution dependencies between activities form an acyclic di-
rected graph. We should note that we do not propose a new workflow model. Rather, we
describe a generic workflow representation for presenting our work. In particular, we
assume that workflows are well structured. A well-structured workflow consists of m
sequential activities, 71 . .. T),. Each activity 7T; is either a primitive activity, which is
not decomposed any further, or a composite activity, which consists of n; parallel con-
ditional or unconditional sub-activities T;", ..., T;™. Each sub-activity may be, again,
primitive or composite. Typically, well structured workflows are generated by workflow
languages that provide the usual control structures and adhere to a structured program-
ming style of workflow definitions (e.g., Panta Rhei [4]).

In addition, we assume that each activity has a duration assigned to it. For sim-
plicity, we assume that activity durations are deterministic. Time is expressed in some
basic time units, at build-time relative to the start of the workflow, at run-time in some
calendar-time. Some time constraints follow implicitly from control dependencies and
activity durations of a workflow schema. They arise from the fact that an activity can

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 193

only start when its predecessor activities have finished. We call such constraints the
structural time constraints since they reflect the control structure of the workflow.

In addition, explicit time constraints can be specified by workflow designers. These
constraints are derived from organizational rules, laws, commitments, and so on. Such
explicit constraints are either temporal relations between events or bindings of events to
certain sets of calendar dates. In workflow systems, events correspond to start and end
of activities. For temporal relationships between events, the following constraints exist:

Lower Bound Constraint: The duration between events A and B must be greater than
or equal to . We write [bc(A, B,) to express that ¢ is a lower bound for the time-
interval between source event A and destination event B.

Upper Bound Constraint: The distance between events A and B must be smaller than
or equal to §. We write ubc(A4, B, d) to express that § is an upper bound for the
time-interval between source event A and destination event B.

An example of lower-bound constraint includes a legal workflow with activities of
serving a warning and closing a business, with the requirement that a certain time period
passes between serving the warning and closing the business. Another example is that
the invitation for a meeting has to be mailed to the participants at least one week before
the meeting. Upper-bound constraints are even more common. The requirement that a
final patent filing is done within a certain time period after the preliminary filing, or time
limits for responses to business letters, or guaranteed reaction times after the report of
a hardware malfunction provide typical examples of upper-bound constraints.

To express constraints that bind events to sets of particular calendar dates, we first
need to provide an abstraction that generalizes a, typically infinite, set of dates such
as “every other Monday” or “every fifth workday of a month”. Examples of such con-
straints include: vacant positions are announced at the first Wednesday of each month;
loans above USD 1M are approved during scheduled meetings of the board of directors;
inventory checks have to be finished on December 3 1st.

Fixed-Date Type: A fixed-date (type) is a data type F' with the following methods:
F.valid(D) returns true if the arbitrary date D is valid for F'; F.next(D) and
F.prev(D) return, respectively, the next and previous valid dates after D; F.period
returns the maximum distance between valid dates; and F.dist(F") returns the
maximum distance between valid dates of F' and F’, (with F.period as default
value).

Fixed-Date Constraint: Event B can only occur on certain (fixed) dates. We write
fde(B,T), where T is a fixed-date, to express the fact that B can only occur on
dates which are valid for 7.

In the remainder of the paper, we assume that at most one fixed-date constraint can
be associated with an activity.

3 Workflow Representation

Our techniques for time constraint management are based on the notion of the timed
activity graph. This graph is essentially the same as the workflow graph where each

194 J. Eder, E. Panagos and M. Rabinovich

Activity Activity
Name Duration
Earliest Latest

Finish Time | Finish Time

Fig. 1. Activity node of a timed workflow graph

‘C}‘ ‘DS
8

35 | 6] &

20
5 13 25| 43

|
/ 27 45‘ ‘ 28| 46

ol
w
Q
w

() (]
o)]

Fig. 2. Example timed workflow graph

27

activity node n is augmented with two values that represent termination time points for
activity executionsfl.

— n.E: the earliest point in time n can finish execution.
— n.L: the latest point in time n has to finish in order to meet the deadline of the
entire workflow.

Figure[llshows the representation of an activity node in the timed workflow graph.
Without explicit time constraints, £ and L values can be computed using the Critical
Path Method (CPM) [[14], a well known project planning method that is frequently used
in project management software. CPM assumes that activity durations are deterministic.
We are aware that this assumption does not hold for many workflows, and that for these
workflows a technique dealing with a probability distribution of activity durations like
the Project Evaluation and Review Technique (PERT) [[14] would be more appropri-
ate. However, we chose CPM because it allows us to present the concept more clearly
without the math involved with probability distributions.

Figure P]shows the timed workflow graph we use in the rest of the paper. The in-
terpretation of E- and L-values is as follows. The earliest point in time for activity F’

! Since activity durations are assumed to be deterministic, we do not need to represent activity
start points. These time points can be computed by subtracting activity durations from activity
termination times.

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 195

to terminate is 10 time units after the start of the workflow. If F' is finished 38 time
units after the start of the workflow, the duration of the entire workflow is not extended.
Activity L is the last activity of the workflow, and the earliest and latest completion
times are the same, 56. This also means that the entire workflow has a duration of 56
time units. The distance between the E-value and the L-value of an activity is called
its buffer time. In our example, activity F' has a buffer of 28 time units. This buffer,
however, is not exclusively available to one activity, but it might be shared with other
activities. In our example, the buffer of F' is shared with B, G, H, and I. If B uses
some buffer-time, then the buffer of F' is reduced.

Computing the timed workflow graph delivers the duration of the entire workflow,
and deadlines for all activities such that the termination of the entire workflow is not de-
layed. Incorporating explicit time