
Seminal
Contributions to
Information
Systems
Engineering

Janis Bubenko · John Krogstie
Oscar Pastor · Barbara Pernici
Colette Rolland · Arne Sølvberg Eds.

25 Years of

Seminal Contributions to Information Systems
Engineering

Janis Bubenko � John Krogstie � Oscar Pastor
Barbara Pernici � Colette Rolland � Arne Sølvberg
Editors

Seminal Contributions
to Information Systems
Engineering

25 Years of CAiSE

123

ISBN 978-3-642-36925-4 ISBN 978-3-642-36926-1 (eBook)
DOI 10.1007/978-3-642-36926-1
Springer Heidelberg New York Dordrecht London

ACM Computing Classification (1998): H.4, H.3, D.2, J.1

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered
and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of
this publication or parts thereof is permitted only under the provisions of the Copyright Law of the
Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
Permissions for use may be obtained through RightsLink at the Copyright Clearance Center. Violations
are liable to prosecution under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Library of Congress Control Number: 2013940740

Editors
Janis Bubenko
Royal Institute of Technology
Department of Computer, and Systems

Science
Kista, Sweden

John Krogstie
Arne Sølvberg
Norwegian University of Science

and Technology
Department of Computer

Barbara Pernici
Politecnico di Milano
Dipartimento di Elettronica, Informazione

e Bioingegneria
Milan, Italy

Colette Rolland
Université Paris1
Centre de Recherche en Informatique
Paris, France

Trondheim, Norway

Oscar Pastor
Universidad Politecnica de Valencia
Depto. Sistemas Informaticos y,

Computacion
Valencia, Spain

and Information Science

Preface

In 2013, the International Conference on Advance Information Systems Engineering
(CAiSE) is turning 25. Started in 1989, in these years, the conference has provided
a broad forum for researchers working in the area of Information Systems Engineer-
ing. To reflect on the work done so far and to examine perspectives of future work,
the CAiSE Steering Committee decided to collect a selection of papers published
in the conference proceedings in these years and to ask their authors, well-known
researchers in the area, to comment on their work and how it developed during the
years. CAiSE Proceedings have been published by Springer in the Lecture Notes
in Computer Science Series (LNCS) since 1990. The editors of this book, who
are the members of the Conference Advisory Board and the chairs of the Steering
Committee, selected papers from CAiSE conferences from 1992 to 2008, to provide
a broad overview on the topics that were presented and discussed in the conference
and their evolution. The selection phase has not been easy, since many papers were
well received in the research community and had a broad impact on future work. In
the book, the original paper is reprinted, and after it, a short paper illustrating the
evolution of the research related to the paper is included. As editors, we are thankful
to the authors who accepted to participate in this adventure.

In addition, the book provides an overview on the conference from different
points of view: a historical analysis on how it developed and its goals over the years,
a social network analysis of the positioning of CAiSE in the research community,
and future perspectives for the conference in an evolving world. As analyzed in
these chapters, and as it is evident from the selected papers, the scope of the
conference is broad but, at the same time, well positioned in an area which is
related to the topics of modeling and designing information systems, collecting
their requirements, but also with a special attention on how information systems are
engineered, towards their final development as software components. Such focus
has been consistently present in the development of the conference and in recent
years. As such, the conference attracted over the years a larger and larger number
of researchers, participating both in the conference and in its related events, such as
workshops, related conferences, tutorials, and the Doctoral Consortium.

v

vi Preface

We think that as a whole the book provides a comprehensive overview of the
research in this area and also provides many inspiring considerations for future
work.

A very large number of people have to be thanked for their work in the CAiSE
community in the last 25 years. It is impossible to mention everybody, but authors,
reviewers, conference organizers and chairs, and organizers of related events all

In particular, in the following, we would like to mention the editors of the CAiSE
Proceedings, program chairs, and organizers, listing all conferences proceedings and
the locations and countries in which the conferences were held:

• Jolita Ralyté, Xavier Franch, Sjaak Brinkkemper, Stanisław Wrycza (Eds.):
Advanced Information Systems Engineering – 24th International Conference,
CAiSE 2012, Gdansk, Poland, June 25–29, 2012, LNCS 7328, Springer, 2012

• Haralambos Mouratidis, Colette Rolland (Eds.): Advanced Information Systems
Engineering – 23rd International Conference, CAiSE 2011, London, UK, June
20–24, 2011, LNCS 6741, Springer, 2011

• Barbara Pernici (Ed.): Advanced Information Systems Engineering, 22nd Inter-
national Conference, CAiSE 2010, Hammamet, Tunisia, June 7–9, 2010, LNCS
6051, Springer, 2010

• Pascal van Eck, Jaap Gordijn, Roel Wieringa (Eds.): Advanced Information
Systems Engineering, 21st International Conference, CAiSE 2009, Amsterdam,
The Netherlands, June 8–12, 2009, LNCS 5565, Springer, 2009

• Zohra Bellahsene, Michel Léonard (Eds.): Advanced Information Systems Engi-
neering, 20th International Conference, CAiSE 2008, Montpellier, France, June
16–20, 2008, LNCS 5074, Springer, 2008

• John Krogstie, Andreas L. Opdahl, Guttorm Sindre (Eds.): Advanced
Information Systems Engineering, 19th International Conference, CAiSE 2007,
Trondheim, Norway, June 11–15, 2007, LNCS 4495, Springer, 2007

• Eric Dubois, Klaus Pohl (Eds.): Advanced Information Systems Engineering,
18th International Conference, CAiSE 2006, Luxembourg, Luxembourg, June
5–9, 2006, LNCS 4001, Springer, 2006

• Oscar Pastor, João Falcão e Cunha (Eds.): Advanced Information Systems
Engineering, 17th International Conference, CAiSE 2005, Porto, Portugal, June
13–17, 2005, LNCS 3520, Springer, 2005

• Anne Persson, Janis Stirna (Eds.): Advanced Information Systems Engineering,
16th International Conference, CAiSE 2004, Riga, Latvia, June 7–11, 2004,
LNCS 3084, Springer, 2004

• Johann Eder, Michele Missikoff (Eds.): Advanced Information Systems Engi-
neering, 15th International Conference, CAiSE 2003, Klagenfurt, Austria, June
16–18, 2003, LNCS 2681, Springer, 2003

• Anne Banks Pidduck, John Mylopoulos, Carson C. Woo, M. Tamer Özsu (Eds.):
Advanced Information Systems Engineering, 14th International Conference,
CAiSE 2002, Toronto, Canada, May 27–31, 2002, LNCS 2348, Springer, 2002

deserve our gratitude for their constant work in the community.

Preface vii

• Klaus R. Dittrich, Andreas Geppert, Moira C. Norrie (Eds.): Advanced Infor-
mation Systems Engineering, 13th International Conference, CAiSE 2001, Inter-
laken, Switzerland, June 4–8, 2001, LNCS 2068, Springer, 2001

• Benkt Wangler, Lars Bergman (Eds.): Advanced Information Systems Engineer-
ing, 12th International Conference CAiSE 2000, Kista, Stockholm, Sweden, June
5–9, 2000, LNCS 1789, Springer, 2000

• Matthias Jarke, Andreas Oberweis (Eds.): Advanced Information Systems Engi-
neering, 11th International Conference CAiSE’99, Heidelberg, Germany, June
14–18, 1999, LNCS 1626, Springer, 1999

• Barbara Pernici, Costantino Thanos (Eds.): Advanced Information Systems
Engineering, 10th International Conference CAiSE’98, Pisa, Italy, June 8–12,
1998, LNCS 1413, Springer, 1998

• Antoni Olivé, Joan Antoni Pastor (Eds.): Advanced Information Systems Engi-
neering, 9th International Conference, CAiSE’97, Barcelona, Catalonia, Spain,
June 16–20, 1997, LNCS 1250, Springer, 1997

• Panos Constantopoulos, John Mylopoulos, Yannis Vassiliou (Eds.): Advanced
Information System Engineering, 8th International Conference, CAiSE’96, Her-
aklion, Crete, Greece, May 20–24, 1996, LNCS 1080, Springer, 1996

• Juhani Iivari, Kalle Lyytinen, Matti Rossi (Eds.): Advanced Information Systems
Engineering, 7th International Conference, CAiSE’95, Jyväskylä, Finland, June
12–16, 1995, LNCS 932, Springer, 1995

• Gerard Wijers, Sjaak Brinkkemper, Anthony I. Wasserman (Eds.): Advanced
Information Systems Engineering, CAiSE’94, Utrecht, The Netherlands, June
6–10, 1994, LNCS 811, Springer, 1994

• Colette Rolland, François Bodart, Corine Cauvet (Eds.): Advanced Information
Systems Engineering, CAiSE’93, Paris, France, June 8–11, 1993, LNCS 685,
Springer, 1993

• Pericles Loucopoulos (Ed.): Advanced Information Systems Engineering,
CAiSE’92, Manchester, UK, May 12–15, 1992, LNCS 593, Springer, 1992

• Rudolf Andersen, Janis A. Bubenko Jr., Arne Sølvberg (Eds.): Advanced Infor-
mation Systems Engineering, CAiSE’91, Trondheim, Norway, May 13–15, 1991,
LNCS 498, Springer, 1991

• Bo Steinholtz, Arne Sølvberg, Lars Bergman (Eds.): Advanced Information Sys-
tems Engineering, Second Nordic Conference CAiSE’90, Stockholm, Sweden,
May 8–10, 1990, LNCS 436, Springer, 1990

• Janis Bubenko, Janis Stirna (Eds.) The First Nordic Conference on Advanced
Systems Engineering, CASE89, Kista, Stockholm, Sweden, May 9–11, 1989,
CEUR-WS Vol-961, 2013.

Kista, Sweden Janis Bubenko
Trondheim, Norway John Krogstie
Valencia, Spain Oscar Pastor
Milan, Italy Barbara Pernici
Paris, France Colette Rolland
Trondheim, Norway Arne Sølvberg
February 2013

Contents

The CAiSE Adventure
Janis Bubenko, Colette Rolland, and Arne Sølvberg

Conceptual Modeling and Natural Language Analysis
Colette Rolland

20 Years of Quality of Models
John Krogstie, Guttorm Sindre, and Odd Ivar Lindland

MetaEditC at the Age of 20
Steven Kelly, Kalle Lyytinen, Matti Rossi,
and Juha Pekka Tolvanen

A Natural Language Approach for Requirements
Engineering
C. Rolland and C. Proix

1

35

57

The Three Dimensions of Requirements Engineering
Klaus Pohl

63

81

Towards a Deeper Understanding of Quality in Requirements
Engineering 89

103

MetaEdit A Fully Configurable Multi-User and Multi-Tool
CASE and CAME Environment 109

131

John Krogstie, Odd Ivar Lindland, and Guttorm Sindre

Steven Kelly, Kalle Lyytinen, and Matti Rossi

Evolution of the CAiSE Author Community: A Social
Network Analysis
Matthias Jarke, Manh Cuong Pham, and Ralf Klamma

The Three Dimensions of Requirements Engineering: 20 Years Later
Klaus Pohl and Nelufar Ulfat-Bunyadi

C

ix

. .

. 15

. .

. . . .

. .

. .

.

. .

.

. .

Contentsx

The Structured Phase of Concurrency
Artem Polyvyanyy and Christoph Bussler

The Evolution of Tropos
John Mylopoulos, Jaelson Castro, and Manuel Kolp

The Conceptual Model Is The Code. Why Not?
Oscar Pastor and Vicente Pelechano

Workflow Time Management Revisited
Johann Eder, Euthimios Panagos, and Michael Rabinovich

Combining Conventional and Formal Methods
OO-METHOD: An OO Software Production Environment

Oscar Pastor, Emilio Insfrán, Vicente Pelechano, José Romero,
139

153

Architecture and Quality in Data Warehouses 161

183

Johann Eder, Euthimios Panagos, and Michael Rabinovich
Time Constraints in Workflow Systems 191

207

Adaptive and Dynamic Service Composition in eFlow 215
Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy,
and Ming-Chien Shan

235

On Structured Workflow Modelling 241
Bartek Kiepuszewski, Arthur Harry Maria ter Hofstede,
and Christoph J. Bussler

257

Jaelson Castro, Manuel Kolp, and John Mylopoulos
A Requirements-Driven Development Methodology 265

281

Wil M.P. van der Aalst and Mathias Weske
The P2P Approach to Interorganizational Workflows 289

307

Data Warehouse Architecture and Quality:
Impact and Open Challenges
Matthias Jarke, Manfred A. Jeusfeld, Christoph J. Quix,
Panos Vassiliadis, and Yannis Vassiliou

Promises and Failures of Research in Dynamic Service Composition
Fabio Casati

Reflections on a Decade of Interorganizational Workflow Research
Wil M.P. van der Aalst and Mathias Weske

. .

. .

. .

. .

. .

. .

.

. .

. .

. .

. .

. .

. .

.

and José Merseguer

Matthias Jarke, Manfred A. Jeusfeld, Christoph Quix,
and Panos Vassiliadis

Contents xi

Rewrite and Conquer: Dealing with Integrity Constraints in
Data Integration
Andrea Calı̀, Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini

Automated Analysis of Stateful Feature Models
Pablo Trinidad, Antonio Ruiz-Cortés, and David Benavides

Process Change Patterns: Recent Research, Use Cases,
Research Directions
Manfred Reichert and Barbara Weber

A Short Survey on Process Model Similarity
Remco M. Dijkman, Boudewijn F. van Dongen, Marlon Dumas,
Luciano Garcı́a-Bañuelos, Matthias Kunze, Henrik Leopold, Jan
Mendling, Reina Uba, Matthias Weidlich, Mathias Weske, and
Zhiqiang Yan

The Future of CAiSE
John Krogstie, Oscar Pastor, and Barbara Pernici

Automatch Revisited
Amihai Motro

Database Schema Matching Using Machine Learning
with Feature Selection 315
Jacob Berlin and Amihai Motro

331

Data Integration under Integrity Constraints 335
Andrea Calì, Diego Calvanese, Giuseppe De Giacomo, and
Maurizio Lenzerini

353

Automated Reasoning on Feature Models 361
David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés

375

Change Patterns and Change Support Features in
Process-Aware Information Systems
Barbara Weber, Stefanie Rinderle, and Manfred Reichert

381

397

Measuring Similarity between Business Process Models 405
Boudewijn van Dongen, Remco ijkman, and Jan MendlingD

421

Michael zur Muehlen and Jan Recker

How Much Language Is Enough? Theoretical and Practical
Use of the Business Process Modeling Notation 429

445

453

We Still Don’t Know How Much BPMN Is Enough, But We
Are Getting Closer
Michael zur Muehlen and Jan Recker

. .

. .

. .

. .

. .

. .

. .

. .

.

. .

. .

. .

. .

The CAiSE Adventure

Janis Bubenko, Colette Rolland, and Arne Sølvberg

Abstract What was to become a series of annual international, scientific con-
ferences celebrating its 25th anniversary in 2013 came out of a modest, perhaps
even an accidental start. The following gives an account of the early history of the
CAiSE conference series, and of the considerations on setting up the organization
and the guiding principles of the conferences. The first conference was arranged in
Stockholm in May 1989 in Stockholm and was originally intended for a mixed
audience of Nordic practitioners and scientists. Soon the conferences developed
more into a meeting place for academic researchers, and have stayed as such for
the remaining sequence of annual conferences up to this date.

1 Prelude

What was to become a series of annual international, scientific conferences cel-
ebrating its 25th anniversary in 2013 came out of a modest, perhaps even an
accidental, start. The first conference was arranged in Stockholm in May 1989.

J. Bubenko (�)
Department of Computer and Systems Science, KTH & Stockholm University, Forum 100,
16440 Kista, Sweden
e-mail: Janis@dsv.su.se

C. Rolland
Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
e-mail: Rolland@univ-paris1.fr

A. Sølvberg
Department of Computer and Information Science, NTNU- The Norwegian University of Science
and Technology, Trondheim, Norway
e-mail: asolvber@idi.ntnu.no

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 1, © Springer-Verlag Berlin Heidelberg 2013

1

mailto:Janis@dsv.su.se
mailto:Rolland@univ-paris1.fr
mailto:asolvber@idi.ntnu.no

2 J. Bubenko et al.

The Swedish Institute for Systems Development1 (SISU) in co-operation with the
Swedish Society for Information Processing SSI) organized it. The conference was
called CASE – conference on Computer Aided Systems Engineering. The acronym
CAiSE – Conference on Advanced Information Systems Engineering – came later,
in 1990. The first conference was originally intended for a mixed audience of
Nordic practitioners and scientists. Computer aided information system design was
“in” at the time. Sweden was advanced both in practice and theory. Several CASE
prototypes had been developed in the Nordic countries and had met with interest
by practitioners. The IT department at KTH – The Royal Institute of Technology –
was at the center of academic research of information system design theory and of
methodological research. The department had educated a large number of students
who had found good positions both in industry and in public administration. Janis
had got the chair of Information Systems at KTH and had started the SYSLAB
research group in the early 1980s. Arne and Colette had been in research cooperation
with Janis for years, and were actively supporting this first conference.

The original plan was to create a meeting place for academics and practitioners.
Researchers would be encouraged to present their findings to a mixed indus-
trial/academic audience, and practitioners would be encouraged to challenge the
research community in order to find solutions to their most pressing problems in
designing and using information systems. The aim was to engage the two com-
munities in discussions on practical problems of building real-world information
system, from which both parties could emerge wiser. Janis, Colette and Arne were
all participating in large international scientific and professional networks. They
now called upon their colleagues in the international information systems research
community to contribute. Several researchers from the Nordic countries, Europe and
USA participated in the first 1989 conference.

2 Considerations in Forming the CAiSE Framework

The evaluation of the first conference indicated that one could hardly expect to have
a continuous flow of a sufficient number of high-quality papers from the practical
world lasting for many years unless going international on a much larger scale than
in the Nordic countries alone. The reward mechanisms in industry for producing
research type papers were deemed to be weaker than needed for guaranteeing
sufficient local industry participation in such an endeavor. The question was how
to achieve a framework that could survive.

The discussion about internationalization started prior to the first “CASE”
conference. During the fall of 1989 Janis and Arne engaged in extensive email dis-
cussions on how to proceed after the first conference. Arne spent the academic year
1988–1989 on sabbatical leave in California while Janis stayed put in Stockholm

1More information about SISU can be found at http://www.sisuportal.se/ partly in Swedish.

http://www.sisuportal.se/

The CAiSE Adventure 3

building up the research institute SISU. The first CASE conference in 1989 also
fitted well into the plans for establishing the research institute as an active player in
the European research community. This was before the World Wide Web and Skype.
The costs of travelling and telephone usage were high, so email was the preferred
mode of communication.

We all had considerable experiences in arranging international conferences and
workshops. We participated in extensive international networks of scientists in
information systems, databases and software engineering. We had also recently
become involved in EU sponsored projects under the Esprit 2 program. So we were
fairly well placed to develop a new conference series.

In the following we present some considerations that lay behind establishing the
CAiSE conference series.

2.1 Was There a Need for a New Conference Series?

Conferences that covered different parts of the relevant research fields were
organized within several existing scientific communities. We were involved with
three of them: IFIP Working Group 8.1 (WG8.1) for Information Systems, IFIP
WG2.6 for Data Bases, the conference series VLDB (Very Large Data Bases) and
to a lesser extent with the Entity-Relationship conference series.

The formal title of IFIP WG8.1 is “Design and evaluation of information
systems”. It includes many aspects of IS use and design such as requirements
analysis, modeling and description of IS, computer aided methods and tools for
IS design, human-computer interaction design, as well as aligning information
systems to organizations and organizational needs. IFIP Technical Committee TC8
on Information Systems was established in 1977. Arne and Colette were national
representatives in TC8 representing Norway and France. The working group WG8.1
was established in 1977. Arne was chair of WG8.1 in the early 1980s (with
Janis as secretary). Colette was member of WG8.1 from the start, and served as
WG8.1 officer from 1988 to 1999. The essential output of an IFIP working group
was working conferences within its scientific field. WG8.1 had a good record
on working conferences, in particular the highly successful CRIS (Comparative
Review of Information Systems Design Methodologies) that were arranged at
Noordwijkerhout in The Netherlands. But IFIP 8.1 lacked an annual “sustainable”
conference focusing on the field as a whole, or a subfield of Information Systems.

IFIP WG2.6 was at this time primarily concerned with issues of data semantics.
While a useful and interesting topic, data semantics was not considered “central” to
the field of Information Systems, at least not by us. Furthermore, a conference on
data semantics would not draw many delegates to a conference. The theme was a bit
narrow.

The first VLDB conference was arranged in Framingham, Massachusetts, in
1975. The conference may be considered as an academic response to a practical
need, as expressed by government, business, and industry, a need to pay more

4 J. Bubenko et al.

attention to approaches to organize, describe, store and search massive amounts
of data, a problem of increasing importance for many practical applications. The
“VLDB problem” is, of course, typical and essential for Information Systems, as
databases are essential parts of any Information System. But the VLDB topic area
seemed a bit too specialized for our purposes. We should also mention that our
relationship to VLDB was excellent. All three of us presented papers at the VLDB
conference in 1979. Both Arne and Janis were members of the VLDB Endowment.
Janis chaired the Endowment 1989–1993. VLDB 1985 was organized in Stockholm
and attended by about 800 delegates.

Peter Chen published his Entity-Relationship model in 1976. The first ER-
conference was arranged in 1979 in Los Angeles and later developed into a series
of conferences. In the beginning these conferences were almost totally focused on
Chen’s ER model. At this time we thought this narrow focus to be too restricted
to base a conference on. Later, of course, the thematic scope of the ER-conferences
widened considerably, to the extent that the conference series later on changed name
to International Conference on Conceptual Modeling.

Our conclusion about the situation was that none of the four groups could
give us what we wanted. VLDB was in its main focus too far off the central
issues of the field of Information Systems Engineering, although the main VLDB
issues were very important, also for Information Systems Engineering. The Entity-
Relationship conference was deemed to be too narrow, and too closely associated
to data modeling of the Entity-Relationship variety. The organizational set-up of
IFIP was deemed to be too closed, not being open enough to attract the young
and up coming. There was no effective organizational mechanism for renewing
membership in the governing bodies. The organizational philosophy as well as the
bureaucracy of IFIP was simply not well suited to serve the rapidly evolving field of
Information Technology.

In the end the choice was not so difficult: we decided to go for a new conference
series provided that we could find an organizational set-up that had acceptable
chances of success.

2.2 Was There a Sufficient Strong Research Basis That Could
Be Tapped Into?

A primary concern was the availability of high quality papers. We had to associate
the new conference series with major research groups. We had to encourage young
PhD students to publish with us. Many of the relevant research groups were already
active in IFIP, primarily in WG8.1. The WG8.1 approach was to arrange one or two
working conferences each year inviting contributions within special topics within
the central theme of information systems. This opened up for us to arrange an
annual conference with a wider thematic coverage. We chose Information Systems
Engineering to be the wider theme. We invited submissions from all research

The CAiSE Adventure 5

areas relevant to this theme. By doing this we opened up a publication channel
where researchers once a year could publish a continuity of new research results
as their research projects matured and their PhD students developed their research
from the idea stage to a more mature stage.

The research groups that were associated with WG8.1 and WG2.6 were deemed
to be not enough to support a sustainable annual conference. We had to evaluate
whether our international contact net could bring more international research groups
into “the fold”. We found that a number of the research groups affiliated with VLDB
also had strong activities in Information Systems Engineering, and were on the
fringes of the VLDB central theme of very large data bases. A similar situation
was found for the emerging ER-conferences. Many research groups were associated
with several of the conference series.

Finally, Norway and Sweden had recently been permitted to participate in EU-
sponsored research projects. Together with several other European research groups,
we had been awarded a 5-year long ESPRIT II project, the TEMPORA project.
This project could provide us with research results that could be published in future
CAiSE conferences. The project also provided us with a better economic basis for
pursuing the stabilization of a series of annual conferences. Other Esprit European
projects of relevance to our planned conference came later, e.g., KIWIS (Advanced
Knowledge-Based Environments for Database Systems) and F3 (F-cube – from
Fuzzy to Formal – an endeavor in Requirements Engineering). Some of us were
in these projects as well.

Our conclusion was that there was a sufficient strong research basis for support-
ing a new conference series. Last but not least, we could count on the research
institute SISU together with their supporters (about 30 Swedish enterprises) to
provide us an economic stability and guarantee for this kind of endeavor.

2.3 Location: Should We Go for a Regional Conference
or a Global Conference?

A next issue was location. The four conference organizing communities mentioned
above were in principle of a global nature. The Tempora project was strictly
European. The two IFIP groups were in practice mostly European. The two
conference series VLDB and ER were both initially US based, but expanded rapidly
to have a global reach.

After some thinking we decided to go for a European conference. We considered
that there were enough global conferences within the topic area. After all there
was a limit to how many international travels a normal research group budget
could accommodate. We considered it a safer choice to go for a European based
conference series, but with a possibility to arrange CAiSE conferences outside of
Europe if there were strong arguments for this. We gave ourselves the freedom to
elevate non-European countries to a temporary classification of being European.

6 J. Bubenko et al.

Because of the starting point of CAiSE being Nordic, we also permitted ourselves to
build into the conference charter that future CAiSE conferences should be arranged
in the Nordic countries from time to time.

2.4 Timing: Winter, Spring, Summer or Autumn Conference?

It was clear that if we were going international we were up for stiff competition
on the selection of time slots. So we tried to avoid the times for other conferences
with partly overlapping themes. We wanted to be both international and local. We
wanted timing, which was suitable for the Nordic countries as well as for the rest
of Europe and the USA. The spring or early summer was an obvious choice. Few
places on earth are as attractive as the Nordic countries during late spring, late May
and June.

2.5 How to Organize the Continuity of a Conference Series?

Aiming at creating a series of CAiSE conferences it was clear that we had to
associate the conferences to an organizational body, which would exist in between
conferences. Each individual conference would be set up with its own organization
to prepare and operate the conference, and to be dissolved after the conference was
over. But how should we organize the period in-between two conferences? What
procedure to follow when choosing new conference sites? And – how should we
deal with economical matters?

Most conferences at the time were associated with professional societies like
IFIP, ACM and IEEE. A few were independent of the professional societies. They
had created their own boards, which took the responsibility in-between conferences,
like VLDB and the ER-conference.

Our experience from IFIP and VLDB was that we did not want to create an
organization that had to handle money, provide seed money to the next conferences
and things like that. Each conference and its economy should be the responsibility
of its own organizing body. This meant that the organizer had to be prepared to take
a larger risk than if leaning on a central organization. On the other hand, there was
a good chance to make a profit because there was no profit sharing required with a
central organization. Of course, the profit/loss statement had to be openly presented
at each conference.

Initially, the organization and management of CAiSE was simple. There was
to be an ever-extending steering expanding each year with two persons from the
previous conference. Over time this led to a rather large steering group. There was
a need for a smaller body to take day-to-day decisions without having to consult

The CAiSE Adventure 7

too widely. So Arne, Janis and later also Colette formed an “advisory committee”.
The advisory committee and the steering group had an informal “non-meeting” at
each CAiSE conference. Matters like selecting future conference sites and publicity
issues were handled there. This simple, informal scheme worked very well for many
years, and was not changed until 2011 (see below).

2.6 How to Publish the Papers?

We were aiming at finding a rock solid publisher. It was very clear that there was no
hope of creating a conference series unless we could find a trustworthy publisher.
We all had good experience with Springer so this matter was easily decided. The
cooperation with Springer went very well during all these years, very efficiently and
in a friendly way. We are thankful to Springer for their very positive and reactive
attitude to all our demands. We would like to take this opportunity to particularly
thank Ralf Gerstner who has been our very supportive contact for many years
including setting up this book proposal on a short time notice.

3 The First Conference

The first Conference on “Advanced Systems Engineering”, CASE’89, was arranged
during May 9–11 1989, jointly by SISU (Swedish Institute for Systems Develop-
ment) and SSI (Swedish Society for Information Processing, a member of IFIP).
The conference was also supported by the research laboratory SYSLAB and DSV –
the department of computer and systems science at Royal Institute of Technology
and University of Stockholm. In fact the conference was called “The First Nordic
conference : : : ” as our initial aim was to anchor this as a Nordic event. The
economic risk and also the economic surplus were solely taken by SISU.

The main aim of CASE’89 was to bridge the gap between theory and practice
in systems development. Consequently, CASE’89 was organised in two parallel
streams, one more theoretical and one more practical. The theoretical track was
traditionally organised by submitted, peer-reviewed, and accepted papers, primarily
from researchers. The practical track consisted mainly of solicited, in some cases
invited, talks from business, industry and the public sector. General conference co-
chairpersons were Agneta Qwerin, Swedish Society for Information Processing,
and Janis Bubenko Jr, the managing director of SISU. The executive Program
Committee consisted of Björn Nilsson, SISU, chairman, Håkan Dahl, Christer
Dahlgren, Kurt Gladh, Lars Swärd, and Örjan Odelhög. Lars Bergman, SISU,
chaired the Organising Committee. As can be seen, the program committee was
dominated by practitioners, all Swedish.

8 J. Bubenko et al.

For our first conference we had to have well reputed keynote speakers to set the
future direction: the CAiSE conferences were to become a high quality scientific
conference series. The obvious choice for keynote speaker was Colette Rolland of
Sorbonne. Colette has held the chair of the IFIP WG8.1, and her staff participated
also in the Tempora, F3 and other EU projects. The three of us had similar ideas
about Information Systems Engineering, and we started to work as a team for
arranging the future CAiSE conferences. Colette later arranged the 1993 conference
in Paris. The theme of Colette’s invited talk was “On the future of modeling –
why current CASE-tools insist on supporting 20 years old methods”.2 Indeed an
intriguing topic: the idea was to be a bit provocative in addressing the prevalent view
of CASE tools’ vendors. The ISE community has, already in the 1970s, made the
assumption that an information system captures some excerpt of world history and
hence has concentrated on modelling information about the Universe of Discourse.
This led to the conceptual modelling wave and the creation of a large number of
semantically powerful conceptual models. The talk was arguing that CASE tools’
editors should implement such rich modelling approaches instead of old-fashion
structured analysis and design methods.

CASE’89 turned – a bit unexpectedly – out to be a success. A large number of
contributed papers and international delegates could be noted. Forty-three papers
were presented. The number of attending delegates was about 180.

The program chair of CASE’89, Dr. Björn Nilsson (deputy managing director of SISU) and the
invited speaker, Professor Colette Rolland, University of Paris 1 (Photo by Janis Bubenko at the
Riga, Latvia, CAiSE 2004)

2The two other invited speakers were Frans van Assche, James Martin Associates Co. amd Simon
Holloway, DCE, U.K. Frans’s talk was “On the future of CASE tools”. Simon’s theme was
“Organisational implications caused by the fourth generation environment”,

The CAiSE Adventure 9

4 The Following Conferences

We were now ready to organize our next CAiSE conference. We decided that
the 1990 conference should take place in Stockholm, and the 1991 conference in
Trondheim.

The success of CASE’89 gave us the courage to continue the CASE conference
in a more international setting. The name of the 1990 conference was, however,
changed to CAiSE (Conference on Advanced information Systems Engineering)
in order not to be mixed up with another US-based conference, which had taken
the CASE name. CAiSE’90 was also arranged in Stockholm by SISU and was
supported by the department of Computer and Systems Science, the Royal Institute
of Technology and Stockholm University (DSV). The general chair was Arne
Sølvberg, the program chair Bo Steinholtz (DSV), and the organising chair was Lars
Bergman (SISU). All three were also co-editors of the first Springer Verlag (Lecture
Notes in Computer Science) publication of the CAiSE’90 proceedings. About
200 delegates from more than 20 countries attended CAiSE’90. Our European
colleagues expressed considerable interest to continue CAiSE on a European scale.
Janis and Arne decided to support this challenge and worked out a few simple rules
for CAiSE. Simply speaking, CAiSE was to be a conference with almost no rules. It
was to have an expanding steering committee, which essentially consists of chairs of
previous conferences. The organizing body of each CAiSE conference is responsible
for the finances, profits as well as losses. About every fifth year it is expected that
CAiSE returns to a Nordic country. CAiSE is guided by an advisory committee
consisting of Colette Rolland, Janis Bubenko jr., and Arne Sölvberg.

Since its start in 1989 and 1990 in Stockholm, CAiSE has been hosted in Norway
(1991, 2007), U.K. (1992, 2011), France (1993), the Netherlands (1994, 2009),

The banquet of the 1997 CAiSE was celebrated at the Market Place designed by Gaudi at the
Parc GULL in Barcelona. The attendance of CAiSE’97 was exceptionally good so the organisers
decided we could afford this elegant setting and the outstanding menu

10 J. Bubenko et al.

Finland (1995), Greece (1996), Catalonia (1997), Italy (1998), Germany (1999),
Sweden (2000), Switzerland (2001), Canada (2002), Austria (2003), Latvia (2004),
Portugal (2005), Luxembourg (2006), Tunisia (2010) and Poland (2012). The 25th
event of CAiSE will be held in Valencia, 2013. Springer Verlag, Lecture Notes in
Computer Science, has published all CAiSE proceedings, since 1990.

In our opinion the CAiSE series has been quite successful. Each conference has
attracted between 200 and 300 submitted papers. About 40 of the submissions have
been accepted for inclusion in the conference proceedings, giving an acceptance
rate of 13–17 %. The attendance number has been 200 or more delegates. Papers in
CAiSE proceedings have in general had good citation ratings.

5 Seminal Contributions of 25 Years of CAiSE

During these last 25 years, the CAiSE community shared the same broad view of
information systems and the passion to develop advanced engineering solutions.
On one hand, we all place an information system in a big picture in which ICT,
socio-economic, organisational and business issues are intertwined. On the other
hand, CAiSE research is part of design science but we clearly prefer to focus on the
design side of it than on its evaluation dual part. The 17 seminal papers reedited in
this book reflect these two key characteristics of CAiSE contributions.

The first CASE conference was held at the end of the conceptual modelling
wave when providing an automated support to modelling became a key concern of
CAiSE authors. The three papers on MetaEditC (A fully configurable Multi-User &
Multi-tool CASE and CAME environment), OICSI (A natural language approach for
requirements engineering) and OO-Method (An OO software production environ-
ment combining conventional and formal methods) introduced approaches (meta-
modelling, natural language processing, and model transformations, respectively)
that have still interest today.

This was also the time to go beyond the traditional way of engineering informa-
tion systems through conceptual modelling. Whereas conceptual modelling allowed
our community to understand the semantics of information and led to a large number
of semantically powerful conceptual models, experience demonstrated that it failed
in supporting the delivery of systems that were accepted by the community of their
users. Indeed, a number of studies showed that systems failed due to an inadequate
or insufficient understanding of the requirements they seek to address. To correct
this situation, it was necessary to address the issue of requirements elicitation,
validation, and specification in a relatively more focussed manner. The field of
requirements engineering has emerged to meet this expectation. The hope was that
as a result of this, more acceptable systems would be developed in the future. Three
papers in this book address different aspects of requirements engineering: The three
dimensions of requirements engineering: a framework and its applications; Towards

The CAiSE Adventure 11

a deeper understanding of quality in requirements engineering; A requirements-
driven development methodology.

Databases have always been part of CAiSE research (Database schema matching
using machine learning with feature selection; Data integration under integrity
constraints).

With time passing, new forms of information systems came into play. The CAiSE
community paid a lot of attention in early 2000s to workflows (Time constraints
in workflow systems; Adaptive and dynamic service composition in eFlow; On
structured workflow modelling; The P2P approach to inter-organizational work-
flows) and to a less extent to data warehouses (Architecture and quality in data
warehouses).

The CAiSE community has always been involved on the topic of methods, lead-
ing to the production of methods on one hand, but also contributing to understanding
what a method is. It is thus, not surprising to note that the concept of Method
Engineering was introduced by CAiSists (!) and further developed by a few groups
in the world deeply involved with CAiSE and the EMMSAD workshop which each
year was organized in conjunction with the main conference. Method engineering
represents the effort to improve the usefulness of systems development methods by
creating an adaptation framework whereby methods are created to match specific
organisational situations. There are at least two objectives that can be associated
to this adaptation. The first objective is the production of contingency methods,
that is, situation-specific methods for certain types of organisational settings. This
objective represents method engineering as the creation of a multiple choice setting.
The second objective is one in which method engineering is used to produce method
“on-the-fly”. Situational method engineering is the construction of methods, which
are tuned to specific situations of development projects. Each system development
starts then, with a method definition phase where the development method is
constructed on the spot.

In recent years the CAiSE community has been involved with emerging concepts
such as variability (Automated reasoning on features models).

Finally, the book reflects the considerable attention received in recent years by
Business Process Management (BPM) and its fundamental concept of a business
process. Process models may be used to configure information systems, but may
also be used to analyze, understand, and improve the processes they describe.
Hence, the introduction of BPM technology has both managerial and technical
ramifications, and may enable significant productivity improvements, cost savings,
and flow-time reductions. The practical relevance of BPM and rapid developments
over the last decade justify the large number of highly cited BPM papers in the last
CAiSE conferences (Change patterns and change support features in process-aware
information systems; Measuring similarity between process models; How much
language is enough: Theoretical and practical use of business process modeling
notation).

12 J. Bubenko et al.

6 Other Outcomes of CAiSE

Another interesting effect of CAiSE is its regular set of tutorials and workshops,
normally arranged during 2 days preceding the conference itself. Some well-
known workshops, such as EMMSAD (Evaluating Modelling Methods for Systems
Analysis and Design) have been held every year since the start of CAiSE. EMMSAD
was initially organised by Yair Wand of University of British Columbia, Canada. In
fact, EMMSAD has evolved into being – informally – the “official” IFIP WG8.1
annual working conference. An official, annual WG8.1 business meeting follows
each EMMSAD workshop. Other workshops, such as REFSQ (Requirements
Engineering: Foundation for Software Quality) have evolved into independent
conferences. Another such activity is POEM – Practice of Enterprise Modelling.
One could say that POEM is a “spin-off” from EMMSAD and CAiSE activities and
is now running as an independent conference.

Last but not least we should mention the doctoral consortium, which is organized
at each CAiSE conference. Here young PhD candidates get the chance to present
their early research results to experienced thesis advisors and to discuss their main
findings and ideas.

7 The New CAiSE

In 2009 the young generation expressed thought exchanges on the Web, the wish
to have a more controlled organisation of CAiSE conferences. Sensitive to this
movement we proposed to set up a task force to make propositions about a new
and more formalised CAiSE steering committee. Antoni Olivé accepted to chair
this task force who presented its conclusions during the non-committee meeting of
CAISE 2010 in Tunisia. These were accepted, implemented during the year 2011
and finalized during the last non-committee meeting of CAiSE 2011 in London. The
three nominated officers of the new Executive Steering Committee, namely Barbara
Pernici, Oscar Pastor and John Krogstie took the lead at that time.

8 Singing at CAiSE

Singing eventually became a tradition at the CAiSE dinner banquets on Thursdays.
We are not 100 % sure when it all started but already at CAiSE’92 at UMIST,
Manchester, U.K. Keith Jeffery (of Ruherford Appleton Laboratories, RAL) had
brought his guitar and accompanied some singing in the conference center bar. This
somehow developed into an informal rule that the workshops, taking normally place
during Mondays and Tuesdays, should prepare a “show” of singing and dancing to
be presented at the workshop dinner. This idea was extremely well appreciated.

The CAiSE Adventure 13

At the same time the advisory committee, then Janis and Arne also wanted to
make a small contribution. Janis came up with the idea to perform a Danish drinking
song (see below). We believe that some CAiSE delegated found it nice while others
were more surprised and/or confused. In any case, after a while we found that the
advisory committee had to be extended – we needed a “farmer’s wife” according
to the text of the song. That is how Colette became the farmer’s wife in our little
“show”. Arne played the farmer and Janis was the “young student”.

The song goes like this:

Han skulle gaa ud efter öl
(the translation is not guaranteed)
:/: Det var en go’ gammel bondemand
han skulde gaa ud efter öl.:/:
Han skulde gaa ud efter öl,
han skulde gaa ud efter öl,
efter öl, efter hoppsansa, trallallala
han skulde gaa ud efter öl.

There was a gentle old farmer
Who wanted to go out for a beer

:/: Till konen kom der en ung student
mens manden var ude efter öl.:/:
Mens manden var ude efter öl,
mens manden var ude efter öl,
efter öl, efter hoppsansa, trallallala
mens manden var ude efter öl.

A young student came to his wife –
while the farmer was out for a beer

:/: Han kyssed henne paa rosenmund
og klapped henne paa kind.:/:
Mens manden var ude efter öl,
mens manden var ude efter öl,
efter öl, efter hoppsansa, trallallala
mens manden var ude efter öl.

He kissed her on her rosy mouth
and cuddled her on her chin
while the farmer was out for a beer

:/: Men manden han stod bagved dören og saa
hvorledes det hele gik til.:/:
De troed’ han var ude efter öl,
de troed’ han var ude efter öl,
efter öl, efter hoppsansa, trallallala
de troed’ han var ude efter öl.

But the farmer had been standing behind the door – he saw all what
did happen - while they thought he was out for a beer
:/: Saa sköd han studenten och kaellingen med
og saa gik han ud efter öl.:/:
Og saa gik han ud efter öl,
og saa gik han ud efter öl,
efter öl, efter hoppsansa, trallallala
og saa gik han ud efter öl.

So the farmer took his gun and shot the student as well as his wife –
and then he went out for a beer

14 J. Bubenko et al.

Og laer her af alle bondemaend
nor I skal gaa ud efter öl.
laas konen inog ta nöglen med
nor I skal gaa ud efter öl.
Nor I skal gaa ud efter öl,
nor I skal gaa ud efter öl,
efter öl, efter hoppsansa, trallallala
nor I skal gaa ud efter öl.

So let this be a lesson to all of you who want to go out for a beer – first
lock your wife up and bring the key along – when you go out for a beer
This last verse is perhaps a bit rude. There is another and better last verse:
Moralen er, ta din kone med,
nor I skal gaa ud efter öl.
Etc., etc.

The morale is
Take your wife along
When you go out for a beer
Etc. etc.

Our recommendation is obvious: You should always bring your partner to CAiSE!

Authors of this book chapter performing the drinking song at the 2003 CAiSE in
Klagenfurt/Velden, Austria

9 Conclusion

In conclusion we have had fantastic 25 years of CAiSE. We have had great fun not
only technically and scientifically but also socially. We all have made many new
friends and met dear old friends many times; we are happy CAiSE has managed to
keep up its scientific and technical quality during all years. What more can we do
than wish our followers at least 25 more years of successful international exchange.

Evolution of the CAiSE Author Community:
A Social Network Analysis

Matthias Jarke, Manh Cuong Pham, and Ralf Klamma

Abstract The CAiSE community has always prided itself as more than just a
normal conference – a successful social network with a very special culture. In
this chapter, we apply formal social network analysis to study this community and
its evolution of its first quarter-centennial of existence. Using a methodology and
dataset developed for an analysis of Computer Science as a whole, we demonstrate
the unusual positioning of CAiSE as a quasi-interdisciplinary conference between
several sub-disciplines of Computer Science. We show that under an evolution
model developed in our research CAiSE pursues a very successful and promising
path, and we identify key topics and key players among the CAiSE authors. As
the social network analysis focusses on formal aspects such as co-authorship and
citations, we unfortunately must leave out one of the undoubtedly most critical
success factors: the fun of being in the CAiSE community.

1 Introduction

The CAiSE community, as the community of other scientific conferences, can be
considered as a community of practice (CoP) [13]. A community of practice is
defined as “a group of people who share a concern, a set of problem, or a passion
about a topic, and who deepen their knowledge and expertise in this area by
interacting on an ongoing basis” [3]. CAiSE is a community of practice due to
several aspects. First, members of CAiSE are working on a common research area,
the Information Systems. Second, members are distributed across disciplines, which
include information systems, database, requirement engineering, business process
management, etc. Members are also distributed across organizations, cultures and

M. Jarke (�) � M.C. Pham � R. Klamma
Information Systems and Databases, RWTH Aachen University, Ahornstr. 55, D52056, Aachen,
Germany
e-mail: jarke@dbis.rwth-aachen.de; pham@dbis.rwth-aachen.de; klamma@dbis.rwth-aachen.de

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 2, © Springer-Verlag Berlin Heidelberg 2013

15

mailto:jarke@dbis.rwth-aachen.de
mailto:pham@dbis.rwth-aachen.de
mailto:klamma@dbis.rwth-aachen.de

16 M. Jarke et al.

geographical regions. Third, members communicate with each other via face-to-face
conferences as well as technology-enhanced interaction. Finally, CAiSE attracts not
only fundamental research, but also practical systems and architectures. That results
in a very heterogeneous community where methods from different disciplines are
used and practices are built on the basic and applied research.

In [12], we have developed a framework for analyzing the development of such
scientific communities based on Social Network Analysis (SNA). The framework
allows us to monitor the status of a community, qualify its development and compare
its development pattern with other communities. It also enables the identification of
key members and subgroups of the community. Different techniques are employed
in this framework, including visualization, SNA ranking measures, and clustering
techniques. Using the DBLP and CiteSeer databases as our data set, we applied this
framework to the evolution of Computer Science as a whole. Moreover, we were
able to show formally that a few leading computer science conferences are indeed
equally important in terms of impact as the top journals in the field, which makes
Computer Science quite different from many other disciplines where conference
publications only play a marginal role.

In this chapter, we apply this framework to analyze the evolution of the CAiSE
conference series. In particular, we are interested in the following questions:

• Relationship with other communities: what is the relationship between CAiSE
and other communities in the field? What is the role of CAiSE to those
communities?

• Membership of CAiSE: how do members come and stay in CAiSE? How is the
community stabilized?

• Connectivity: how do members connect to each other? Does the connectivity
grow over time? What is the pattern of the connections?

• Topic analysis: what topics are addressed by CAiSE community? How do topics
connect to each other? who are the key researchers with the highest impact?

The rest of the chapter is organized as follows. In Sect. 2, we describe our
analytical framework and the data we used in the analysis. Section 3 presents
the results which aim to answer the above questions. The chapter finishes with a
discussion and conclusion.

2 Methods and Data

Our general study of the evolution of digital libraries in general, and of computer
science in particular [9] has resulted in a model to explain the community-building
process, as well as the co-authoring and citation behavior in conferences and
journals [12]. For example, a study of Technology Enhanced Learning research
communities found interesting development patterns [11]. In this section, we
describe this model and its underlying formal metrics as well as the data set we
used for the analysis of CAiSE.

Evolution of the CAiSE Author Community: A Social Network Analysis 17

Fig. 1 The development model for scientific communities

Readers with a deeper methodological interest can also consult the Ph.D. thesis
[10]. Moreover, an online version of the AERCS1 analysis system by which the
results in the thesis and in this paper were derived, is accessible for experimental
use. AERCS does not just support the kind of long-term SNA we show in this paper,
but also offers a component for mobile context-dependent advice to attendees of
specific conferences.

2.1 The Development Model

Our basic evolution model depicted in Fig. 1 includes four stages: born, bonding,
emergence, with the final stage being either interdisciplinary, hierarchical or
focussed. Following earlier research in scientific community network analysis, the
network employs two types of links: co-authorship and citation. The co-authorship
subnet of a conference series consists of authors as nodes. There is an edge between
two authors if they have co-authored at least one paper published in a conference
event in that series. In the born phase, we typically find few connections between
authors. After some events, author groups become apparent in the bonding phase.
In the best case, they gradually integrated through joint publications from more
than one group (emergence phase). Finally, successful conference series typically
forms a network topology that features a strongly connected core group of authors
that is connected to other smaller groups (focused topology). Alternatively, the
co-authorship can develop into an interdisciplinary topology where several groups
are connected via some gatekeepers, but where there is no core group. Or there

1http://bosch.informatik.rwth-aachen.de:5080/AERCS/

http://bosch.informatik.rwth-aachen.de:5080/AERCS/

18 M. Jarke et al.

might emerge a hierarchical topology which exposes some “super gatekeepers” who
connect a hierarchy of groups.

Time series analysis. To quantitatively characterize the development process of
a community according to this development model, we apply time series analysis
on the networks to reveal six parameters over time: densification law, clustering
coefficient, maximum betweenness, largest connected component, diameter, and
average path length. These parameters enable us to explain the community building
process in Fig. 1. To interpret the shape of the community, one needs to use a
combination of all of these parameters.

Formally, given the network G D .V; E/, where V is the set of vertices or nodes,
and E is the set of edges, these network metrics are defined as follows:

• Densification law: [4] discovered that complex networks densify over time, with
the number of edges growing super-linearly with the number of nodes, meaning
that the average degree (i.e., number of edges) of the nodes is increasing. The
densification follows a power-law pattern: e.t/ / n.t/˛ , where e.t/ and n.t/ are
the number of edges and nodes at time t , respectively, and ˛ is an exponent that
lies between 1 and 2 (˛ D 1 corresponds to constant average degree over time,
while ˛ D 2 corresponds to very dense graph where on average each node has
edges to a constant fraction of all nodes). We use this exponent to differentiate
the “speed” by which networks are densified.

• The clustering coefficient of a network [6] is defined as the total number of pairs
of vertices that have a common neighbor and are themselves connected, divided
by the total number of pairs of vertices that have a common neighbor:

C D 3 � number of triangles in the graph

number of connected triples of vertices in the graph
(1)

Intuitively, during the born phase, the clustering coefficient is low, since nodes
are unconnected with each other. In the bonding phase, the clustering coefficient
tends to increase quickly as nodes are clustered into very dense, yet unconnected
components. When the unconnected components subsequently start to connect
with each other, the clustering coefficient drops and stays relatively stable after
some time.

• Betweenness measures the extent to which a particular node lies between the
other nodes in the network:

B.u/ �
X

u¤i¤j

�u.i; j /

�.i; j /
(2)

where �.i; j / is the number of shortest-paths between nodes i and j , �u.i; j /

is the number of shortest-paths between i and j that pass through u. Nodes
with high betweenness have more power to control the information flow in the

Evolution of the CAiSE Author Community: A Social Network Analysis 19

network, and are normally the gatekeepers who connect several dense groups.
For the network, the maximum betweenness of all authors is therefore a good
indicator of whether there are strong gatekeepers within the network. Maximum
betweenness increases when more components become connected (emergence
stage) and continues to increase when the network develops toward a hierarchical
or interdisciplinary topology. However, maximum betweenness will achieve a
stable value when the network is at focused stage.

• Largest connected component (or giant component) measures the fraction of
nodes that are connected with each other in the largest sub-network. As observed
in Fig. 1, this fraction is small in the first two phases, and gradually increases as
authors from different sub-networks connect with each other. It achieves a stable
state when the fraction of nodes that connect to the largest component is equal to
the fraction of new nodes that stay unconnected from the largest component.

• Diameter is the length of the greatest geodesic distance (i.e., the length of the
longest shortest path) between any two nodes. Intuitively, in the beginning, the
diameter is small, and then it increases. After some time, the diameter starts to
shrink as new edges between existing nodes continue to be added. If the network
develops toward a tree-like topology (hierarchical stage), the diameter will be
larger than in the focused or interdisciplinary topologies.

• Average path length is the average length of all the shortest paths in the network.
Clearly, during the first two phases, the average path length is small and increases
when the network grows. In general, the average path length of a hierarchical
network is larger than that of the other two topologies.

In summary, for the co-authorship network, the emergence of the giant com-
ponent indicates the cohesiveness of collaboration within the community, while
the betweenness shows the existence of gatekeepers and their importance. The
clustering coefficient measures the extent to which the community is clustered into
sub-communities. Other parameters such as diameter and average shortest path
length, show whether the community is still developing or whether it is stable.
For the citation network, combining these parameters helps to understand the
interdisciplinarity of a conference.

2.2 Data: DBLP and CiteSeerX

The data set used in our study integrates the DBLP and CiteSeerX digital libraries.
DBLP is a computer science bibliography, which also includes publications in
interdisciplinary areas of computer science. We retrieved the publication lists of
conferences from DBLP. However, DBLP does not record citations. Therefore, we
used CiteSeerX to fill the citation list of publications in DBLP. DBLP data, as
downloaded in July 2012, consists of 1,138,661 authors, 1,947,188 publications,
3,217 conference series and 1,193 journals. CiteSeerX data was downloaded in
March, 2011, which includes 9,121,166 publications, 22,735,140 references and

20 M. Jarke et al.

over 6 million author names. We combined DBLP and CiteSeerX using the canopy
clustering technique [5]. Overall, the matching algorithm gave us 864,097 pairs
of matched publications. From those data sets, we created the co-authorship and
citation networks for our analysis. The co-authorship network is created based on
DBLP data and the citation network is formulated by the combined DBLP and
CitaSeerX data.

3 Development of CAiSE Community

In this section, we present the analytical results of CAiSE community, concerning
the questions we posed in the introduction. We work inside out, starting with the
positioning of CAiSE within Computer Science, then proceeding to the evolution
pattern of CAiSE with respect to the development model of Sect. 2, and end with
the internal structure of CAiSE concerning its main topics and its key players.

3.1 The Position of CAiSE in Computer Science

Our general study of the evolution of the Computer Science community [12] showed
how the field has evolved a coherent giant component with clearly demarked
subfields that have more or less strong citation interactions with each other (see
Fig. 2); for example, Theoretical Computer Science interacts, albeit somewhat
loosely, with almost all other areas. An extract from this map (see Fig. 3) shows
that CAiSE can be seen as a kind of interdisciplinary gateway between neighboring
research areas such as information systems, databases, software engineering, data
mining and knowledge management, conceptual modeling, process modeling and
world wide web. Overall, 237 conference and journals have at least 50 authors
who also published in CAiSE. Table 1 lists the top 10 among them. Many other
established conferences/journals also have common authors with CAiSE, such as
SIGMOD Record (235 common authors), TKDE (212), TSE (191), ACM SIGMOD
(183), CACM (156), VLDB Journal (127) and IJCAI (105). This demonstrates the
diversity of CAiSE community membership, and its interdisciplinary nature.

The standing of CAiSE within the computer science community can also be
assessed by ranking it in the citation network according to the centrality measures
discussed in the previous section. The data set contains a total of 455 conferences
in the fields of databases, data mining, and software engineering which are close to
CAiSE in the graph. Among these 455 conferences, which include all the traditional
top conferences of these fields, CAiSE is among the top 8 % in terms of PageRank
[8] and the top 5 % in terms of authority [2], which is already quite good, but among
the top 2 % in terms of betweenness. Thus, CAiSE is not just highly interdisciplinary
but also an important bridge among the other fields and even a strong authority for
its kinds of results.

Evolution of the CAiSE Author Community: A Social Network Analysis 21

Fig. 2 The map of Computer Science (giant component)

The interdisciplinarity of CAiSE can be shown in more detail by citation data,
which indicate the knowledge exchange between publications. In detail, CAiSE
publications have been cited by 472 conferences and journals. CAiSE publications
have cited publications from 689 conferences and journals. Tables 2 and 3 list top
conferences and journals who cited CAiSE or were cited by CAiSE. Note that the
citation data we extract from CiteSeerX are incomplete and only cover conferences
and journals indexed by DBLP. Therefore, the actual number of conferences and
journals referenced to and cited by CAiSE is somewhat bigger.

To summarize, CAiSE is a very interdisciplinary conference, shown by the
diversity in its membership as well as the citation data.

3.2 Evolution of Author Community Membership

The next question we want to address is how CAiSE community evolves over time.
We apply the model described in Sect. 2 on the co-authorship network to analyze
its development pattern. To make our analysis more meaningful, we compare the

22 M. Jarke et al.

Fig. 3 The position of CAiSE in the map of Computer Science

Table 1 Top overlapping conferences/journals with CAiSE

Name of conferences/journals #Common authors

1 International Conference on Conceptual Modeling (ER) 624
2 OTM Conferences/Workshops 435
3 Information Systems 421
4 Data and Knowledge Engineering 358
5 Business Process Management 317
6 International Conference on Data Engineering (ICDE) 305
7 Very Large Data Bases (VLDB) Conference 290
8 International Conference on Information and Knowledge

Management(CIKM) 281
9 International World Wide Web Conferences (WWW) 264
10 Information and Software Technology 256

evolution of CAiSE with that of the three well-known conferences at the top of
Table 3: ER, VLDB, and ICDE. Some basic authorship data for these conferences
is summarized in Table 4.

Evolution of the CAiSE Author Community: A Social Network Analysis 23

Table 2 Top conferences/journals who cited CAiSE

Name of conferences/journals #

1 International Conference on Conceptual Modeling (ER) 84
2 Business Process Management 52
3 Data and Knowledge Engineering 41
4 OTM Conferences / Workshops 33
5 Information Systems 28
6 Requirements Engineering 26
7 International Conference on Cooperative Information Systems (CoopIS) 22
8 Semantic Web 22
9 International Conference on Service Oriented Computing 22
10 Very Large Data Bases (VLDB) Conference 21

Table 3 Top conferences/journals cited by CAiSE

Name of conferences/journals #

1 Very Large Data Bases (VLDB) Conference 142
2 Communications of the ACM (CACM) 139
3 International Conference on Conceptual Modeling (ER) 132
4 IEEE Transactions on Software Engineering (TSE) 107
5 International Conference on Data Engineering (ICDE) 97
6 International Conference on Software Engineering (ICSE) 87
7 ACM SIGMOD Conference 87
8 Information Systems 82
9 Requirements Engineering 80
10 Data and Knowledge Engineering 78

Table 4 Data summary of ER, ICDE, VLDB and CAiSE conferences

Conference series Events #Authors #Papers

International Conference on Conceptual Modeling (ER) 1979–2011 2,997 1,945
International Conference on Data Engineering (ICDE) 1984–2011 5,886 3,683
Very Large Data Bases (VLDB) Conference 1975–2010 3,660 2,397
Conference on Advanced Information Systems

Engineering (CAiSE) 1990–2012 3,129 1,876

We begin with a simple analysis of the number of published papers over time.
Figure 4a plots the absolute numbers of authors and papers of CAiSE over years. In
general, the numbers of authors and papers increase over years, with a significant
increase in 2002 and drop in 2007; the latter is obviously due to the decision of
the steering committee at that time to reduce the acceptance rate sharply. A view
into the individual proceedings shows that the number of submissions continued
to increase, such that CAiSE nowadays attracts very high numbers of submissions
despite acceptance rates that are among the toughest in the IS area.

Next, we study the distribution of authorship intensity, i.e. the number of CAiSE
conferences authors have published in, and the number of papers they have written
for CAiSE. Figure 4b plots this distribution in log-log axes. The distribution of

24 M. Jarke et al.

a b

Fig. 4 Number and distribution of authors of CAiSE over years

authors according to the number of conferences and papers follows Power-law
distributions with the exponent ˛ equals to 2:806 and 2:33, respectively. This
indicates that there is a “tail” of authors who significantly contribute to CAiSE
despite appearing there only once. In detail, 79 % of authors contributed only to
one conference, while 21 % contributed to at least 2 conferences and 94 authors
(3 %) contributed to at least 5 conferences. In term of the number of papers, 76 % of
authors contributed only 1 paper and 141 authors (about 4 %) contributed at least 5
papers to CAiSE.

To investigate the contributions of returning authors to CAiSE over the years,
we calculated two measures in comparison to our three benchmark conferences:
the rate of recurring authors and their publications over years. A paper is published
by recurring authors if at least one of its authors has published in the previous
conference. A high rate of recurring authors, together with a low rate of papers
by recurring authors, indicates that recurring authors mainly collaborate with each
other (one paper has more recurring authors). On the other hand, a high rate of
recurring authors, together with a high rate of papers by recurring authors, indicates
that recurring authors collaborate mainly with new authors, which contributes to
community development. Those two measures allow us to assess one important
principle to cultivate scientific communities [13]. On the one hand, a community
needs to retain the authors in order to establish and keep the old ideas. On the other
hand, it also needs to attract new authors who probably will bring new ideas.

In Fig. 5, we recognize that the basic trend during the early stage of all
conferences is to retain authors. The frequency of papers by recurring authors also
increased. In the first 11 years, CAiSE retained the authors at a lower rate (around
25 %) in comparison to VLDB, ER and ICDE. After that, CAiSE managed an author
recurring at a similar rate as VLDB (around 38 %). Similar observation can be made
for the papers by recurring author rate.

Evolution of the CAiSE Author Community: A Social Network Analysis 25

Fig. 5 Recurring authors and papers by recurring authors over years

In summary, CAiSE constantly developed in the last 24 years in term of authors
and contribution intensity. There is set of authors who contribute continuously and
greatly to CAiSE. Over time, CAiSE manages to not only retain authors who are
working on the established ideas of the conference, but also to attract new authors
who would bring fresh ideas to the community. A comparison of the returning
rating of CAiSE authors and their contributions to other conferences shows that
CAiSE now retains a healthy fraction of recurring authors in order to keep the
community open.

3.3 The Evolution of Connectivity in CAiSE

Having looked at the phenomena of author activity at the individual level, we
are now in the position to look at the question what this means for the shape
of the CAiSE author community network as a whole. The basis for this are the
co-authorship graphs, and the six network metrics we defined in Sect. 2.

The evolution of these six metrics for VLDB, ER, ICDE and CAiSE is shown in
Fig. 6. VLDB, ICDE and CAiSE expose the same evolution pattern but with a slight
delay for CAiSE. The maximum betweenness and largest connected component of
the co-authorships of VLDB and ICDE started increasing after 10 years, while it
took CAiSE 15 years. The ER conference faced an even bigger delay (22 years)
which can perhaps be explained somewhat by the very late entry of US research
into their community. Note that in our earlier studies we also found conferences
where this has never happened, which was typically closely correlated with very
low impact in terms of citation. In this sense, all four conferences can nowadays
be considered successful. However, the decreasing parameters average shortest
path length and diameter over long times (VLDB: 10 years, ICDE: 7 years,
CAiSE: 5 years) suggest that these communities are now more stable while the ER

26 M. Jarke et al.

a b

c d

e f

Fig. 6 Co-authorship network parameters of CAiSE and other conferences

community is still developing. Interestingly, the clustering coefficient of CAiSE and
ER is higher than for VLDB and ICDE, indicating that CAiSE and ER are clustered
in more sub-groups (with many disconnected components).

To summarize, the connectivity of CAiSE community has been increasing
significantly over the last 12 years. The community is developing towards a well-
connected and cohesive structure. Compared to other established conferences, we
see that CAiSE is currently developing as fast as VLDB and ICDE. To illustrate
where this might lead in the future, we compare in Figs. 7 and 8 snapshots of the
co-authorship networks of CAiSE and VLDB for every fifth year of their respective
histories (for CAiSE starting 1989, for VLDB 1975). Obviously, CAiSE and VLDB
developed very similarly in the first 25 years, as both of them built their community

Evolution of the CAiSE Author Community: A Social Network Analysis 27

Fig. 7 Development of VLDB co-authorship network. (a) VLDB in 1975. (b) VLDB in 1980.
(c) VLDB in 1985. (d) VLDB in 1990. (e) VLDB in 1995. (f) VLDB in 2000. (g) VLDB in 2005.
(h) VLDB in 2010

28 M. Jarke et al.

Fig. 8 Development of CAiSE co-authorship network. (a) CAiSE in 1990. (b) CAiSE in 1995.
(c) CAiSE in 2000. (d) CAiSE in 2005. (e) CAiSE in 2010. (f) CAiSE in 2012

from a born to bonding, then emergence and finally focused topology. However, the
last 10 years of VLDB (parts (g) and (h) in Fig. 7) also exhibit a possible danger;
they show an ever denser giant component where new authors often can only enter
by co-authoring with members of that component. It might then well happen that
important new topics are not recognized early enough by the community, a danger
that CAiSE has so far well managed to avoid.

The high betweenness centrality and big giant component of the CAiSE
co-authorship network suggest that there is an increasing number of active members

Evolution of the CAiSE Author Community: A Social Network Analysis 29

Fig. 9 The visualization of CAiSE keywords

who collaborate across sub-communities. These very active authors form the core
of the community which we will identify in the next section.

3.4 Main Themes and Key Members of the CAiSE Author
Community

It has been mentioned that CAiSE boasts a somewhat richer structure of
sub-communities in its giant components than e.g. VLDB. This can likely be
linked the diversity themes studied by these sub-communities. One of the simplest
and most popular ways to study this phenomenon automatically is simply the
generation of keyword networks based on the paper titles. There is a link between
two keywords if they co-occur in at least one paper title. The connection is weighted
by the number of co-occurences. We visualize this network using the ForceAtlas
layout (see Fig. 9), where the size of nodes and labels denotes the PageRank score
of keywords. Nodes are colored according to the clusters detected by a modularity-
based clustering algorithm [7].

30 M. Jarke et al.

Fig. 10 Co-authorship network (giant component) of CAiSE (as of 2012)

With surprising clarity, the visualization shows two big clusters around the
topics of Information System and Bussiness Process. For frequent attendees, it
is probably obvious in hindsight that bringing these two themes – one more
from Computer Science, the other more from MIS – together is one of the main
attractions of CAiSE for members of both communities. Indeed, the other major
keywords – Web Service, Process Model, Case Study, Data Warehouse, Object
Oriented, Requirement Engineering, Multi Agent, Ontology Based, Conceptual
Modeling, Management Systems and Semantic Web – are either closely related to
one of these main topics or build some kind of bridge among them.

To investigate the key members in these sub-community and CAiSE as a whole,
we applied two SNA ranking measures: the betweenness and the PageRank score
of authors in the co-authorship network. The CAiSE co-authorship network in
2012 is given in Fig. 10, using again the ForceAtlas layout [1]. Nodes are colored
according to their assignments to sub-communities detected by the modularity-
based clustering algorithm [7]. The size of labels and nodes denotes the PageRank
[8] score of authors. This visualization shows us the key members not only by their
prestige (denoted by PageRank score), but also by their important position in the
collaboration network.

Evolution of the CAiSE Author Community: A Social Network Analysis 31

Table 5 Top 20 authors by betweenness and PageRank in the co-author network

Betweenness PageRank

1 John Mylopoulos 201,591 John Mylopoulos 0.0035
2 Wil M. P. van der Aalst 183,018 Wil M. P. van der Aalst 0.0034
3 Pericles Loucopoulos 148,551 Oscar Pastor 0.0024
4 Birger Andersson 147,759 Jan Mendling 0.0023
5 Raimundas Matulevicius 145,736 Paul Johannesson 0.0022
6 Benkt Wangler 142,569 Boualem Benatallah 0.0021
7 Marlon Dumas 128,972 Manfred Reichert 0.0020
8 Eric Dubois 97,785 Johann Eder 0.0018
9 Jan Mendling 87,883 Moira C. Norrie 0.0017
10 Paul Johannesson 80,494 Colette Rolland 0.0017
11 Arthur H. M. ter Hofstede 79,558 Henderik Alex Proper 0.0016
12 Haralambos Mouratidis 78,250 Barbara Pernici 0.0016
13 Colette Rolland 76,631 Sjaak Brinkkemper 0.0015
14 Paolo Giorgini 70,613 Birger Andersson 0.0015
15 Guttorm Sindre 69,171 Arthur H. M. ter Hofstede 0.0015
16 Boualem Benatallah 67,998 Schahram Dustdar 0.0015
17 Sjaak Brinkkemper 60,984 Mario Piattini 0.0014
18 Jaap Gordijn 60,481 Stefanie Rinderle-Ma 0.0014
19 Roel Wieringa 59,734 Matthias Jarke 0.0014
20 Manfred Reichert 55,062 Pericles Loucopoulos 0.0014

Interestingly, the topic structure is well reflected in this figure, as each of the
themes has a clear “leader”, John Mylopoulos in the case of Information Systems,
and Wil van der Aalst for Business Process. In addition, the many smaller sub-
groups are connected by a set of gatekeepers. For example, Paul Johannesson, Oscar
Pastor, Colette Rolland, Jan Mendling, Manfred Reichert, Pericles Loucopoulo,
Boualem Benatallah, Johann Eder and Barbara Pernici connect their own sub-groups
with many other sub-groups. Those authors together form the core, which ensures
the connectivity of the community as a whole. Moreover, it is interesting to note that
former students and collaborators of the CAiSE founders and Advisory Committee
members Janis Bubenko (most prominently Paul Johannesson), Arne Solvberg (e.g.
John Krogstie and Peter McBrien), and more recently Colette Rolland still play
important betweenness nodes linking the two main subfields. To provide a bit more
detail, Table 5 gives the top 20 authors according to their betweenness and PageRank
score in the co-authorship network.

Complementing the co-authorship network, there is of course the citation
network which, however, extends far beyond the CAiSE community itself. Indeed,
the selection of papers reproduced and commented in this volume was based on
such an analysis, taking the ranking of numbers of citations as a starting point. We
therefore do not discuss this aspect in this chapter. Suffice it to say that the truly
outstanding h indexes of Wil van der Aalst (83) and John Mylopoulos (69) confirm
impressively the exceptional role we also saw in the co-authorship network.

32 M. Jarke et al.

4 Conclusion

The Social Network Analysis of the CAiSE Conference author community shows
a quite interesting strategic position within the Computer Science discipline, and –
after a somewhat slow start – an impressive development towards a conference
community that exhibits all the ingredients of success found in earlier success stories
such as VLDB: a strong giant component of long-term collaborators with very high
impact within and beyond the conference itself, combined with a topical openness
and interdisciplinarity that promises sufficient openness for innovation. The long-
term visionary but very open and friendly leadership of what is now called the
senior Advisory Committee has certainly contributed to this success, as has the small
“revolution” of a few junior key players around 2007 that made CAiSE one of
the most strictly refereed conference in the field and thus – for the naive perhaps
surprisingly – increased not just the prestige and quality, but also the quantity of
submissions from several important collaborating sub-areas.

We hasten to admit that our choice of data sources implies some limitations of
this study. First, both DBLP and CiteSeer show only author and published paper
information about the conference; so our social network is limited to co-authorship,
citation, and keywords. It leaves out the very important network of conference
organizers but also conference attendees and authors of unsuccessful submissions.
Second and perhaps more importantly, especially CiteSeer focuses on Computer
Science only, so our analysis of the integrated data set cannot evaluate impact on or
by related fields in other disciplines such as Management Information Systems.

Despite these limitations, regular CAiSE participants will find that many of their
personal social experiences in CAiSE are reproduced fairly well by even by the
co-author and citation analysis we employ. Perhaps – like the first author – they
have also faced some interesting surprises in this paper which, however, can be
well explained from their deep knowledge of the conference history on second
thought. For ourselves, these limitations create the challenge to find and integrate
data sources which are less narrow in their view of the IT field, yet – unlike much
of the Web of Science – do include information about conferences and their impact.
Especially the broad field of Management Information Systems seems in urgent
need for such a study, as many of their representatives work in business schools
where conference publications are not taken seriously at all.

Acknowledgements This work is supported by the DFG-funded excellence cluster UMIC, the
B-IT Research School, and EU Integrated Project Layers.

References

1. Bastian, M., Heymann, S., and Jacomy, M. (2009). Gephi: An open source software for
exploring and manipulating networks. In International AAAI Conference on Weblogs and
Social Media, pages 361–362.

Evolution of the CAiSE Author Community: A Social Network Analysis 33

2. Kleinberg, J. M. (1999). Authoritative sources in a hyperlinked environment. J. ACM, 46:
604–632.

3. Lave, J. and Wenger, E. (1991). Situated Learning: Legitimate Peripheral Participation.
Learning in Doing. Cambridge University Press.

4. Leskovec, J., Kleinberg, J., and Faloutsos, C. (2005). Graphs over time: densification laws,
shrinking diameters and possible explanations. In Proceedings of the eleventh ACM SIGKDD
international conference on Knowledge discovery in data mining, KDD ’05, pages 177–187,
New York, NY, USA. ACM.

5. McCallum, A., Nigam, K., and Ungar, L. H. (2000). Efficient clustering of high-dimensional
data sets with application to reference matching. In KDD ’00: Proceedings of the sixth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 169–178,
New York, NY, USA. ACM.

6. Newman, M. E. J. (2001). The structure of scientific collaboration networks.
Proc.Natl.Acad.Sci.USA, 98:404.

7. Newman, M. E. J. (2004). Fast algorithm for detecting community structure in networks.
Physical Review E, 69:066133.

8. Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The pagerank citation ranking:
Bringing order to the web. Technical report;, Stanford University.

9. Pham, M. and Klamma, R. (2010). The structure of the computer science knowledge network.
In 2010 International Conference on Advances in Social Networks Analysis and Mining
(ASONAM), pages 17–24.

10. Pham, M. C. (2013). Dynamic Social Network Analysis and Recommender Technologies in
Scientific Communities: The Case of Computer Science. PhD thesis, RWTH Aachen University,
Aachen – Germany.

11. Pham, M. C., Derntl, M., Klamma, R., and Jarke, M. (2012). Development patterns of
scientific communities in technology enhanced learning. Educational Technology and Society,
15(3):323–335.

12. Pham, M. C., Klamma, R., and Jarke, M. (2011). Development of computer science disciplines:
a social network analysis approach. Social Netw. Analys. Mining, 1(4):321–340.

13. Wenger, E., McDermott, R., and Snyder, W. (2002). Cultivating communities of practice: a
guide to managing knowledge. Harvard Business School Press.

A NATURAL LANGUAGE APPROACH FOR
REQUIREMENTS ENGINEERING

C. ROLLANDl C. PROIX2

ABSTRACT : The term Requirements Engineering refers to this part of
a database development cycle that involves investigating the problems and
requirements of the users community and developing a conceptual
specification of the future system.
Natural language plays an important role during this stage that has proved
to be crucial in the development of computerized systems. The required
acquisition of application domain knowledge is achieved either through
documents and texts analysis or by means of interviews i.e through
language manipulation. Similarly validation of the specification is made via
oral discussions with users.
The paper proposes that Requirements Engineering (R.E) should be
supported by a CASE tool based on a linguistic approach. It presents a R.E
support environment that generates the conceptual specification from a
description of the problem space provided through natural language
statements. Complementary, validation is based on texts generation from
the conceptual specification to natural language. The paper focuses on the
linguistic approach, demonstrates its generality and overviews its
implementation in a CASE tool.

KEY WORDS : Requirements engineering, Natural language analysis, conceptual
schema, information system design, text generation

1. Introduction

The need for modelling techniques by which systems may be described in high level
conceptual terms has been recognized in the earlier phases of Databases and Information
Systems (DB/IS) development in industry, business and administration.

1 Universite de Paris 1, 17 rue de Ia Sorbonne, 75231 Paris cedex 05, France
2 Societe CRIL, 146 Boulevard de Valmy 92707 Colombes cedex, France

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

35

C. Rolland and C. Proix

This has caused the introduction of various conceptual models that have proved to be
extremely useful to build in a high level specification of the future system (the so called
conceptual schema) before this system is developed. (see the survey presented by Hull and
King [Hull 87] for example).

However, the task of constructing the conceptual schema remains problematical. The
route to reach the conceptual schema e.g the conceptual modelling process has the purpose
of abstracting and conceptualizing the relevant part of the application domain. This is
guided by requirements. The term Requirements Engineering introduced by Dubois
[Dubois 89] has been used for this part of the DB/IS development that involves
investigating the problems and requirements of the users community and developing a
specification of the future system. The succeeding phase, where this specification is
realized in a working system which is verified against the specification may be called
Design Engineering [Bubenko 90]. Figure 1.1 shows the organization of DB/IS
development cycle based upon requirements and system engineering.

REQUIREMENTS ENGINEERING

validation

Figure 1.1 : DB/IS development cycle

DESIGN
ENGINEERIN

Requirements Engineering consists of knowledge acquisition and validation.

The acquisition task falls into two areas, namely, analysis and modelling. The
Requirements Engineering process starts with an observation of the real world, in order to
identify pertinent real phenomena, their properties and constraints, and to classify similar
phenomena into classes. Then the analyst represents and describes the classes, their
properties and constraints through types of a specific conceptual model. Analysis leads to
problem-statements, while modelling allows the description of elements of the conceptual
schema.

36

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

The validation task has the objective of checking whether the conceptual schema is
consistent and whether it correctly expresses the requirements informally stated by the
users.

In many cases, analysts are able to correctly use concepts of a model but have difficulties
to abstract reality in order to represent it through these concepts. This is similar to school
students who are able to use simple equations but have many difficulties to build in
equations from problem-statements. Similarly correcting a conceptual schema is easy
while validating its adequacy to requirements is more difficult.

Analysis, modelling and validation are cognitive processes. However, analysis is based on
domain-dependent knowledge, modelling requires model-dependent knowledge and
validation requires both. More generally, Vitalari has shown, [Vitalari 83], [Vitalari 85],
that experienced analysts use different categories of knowledge namely : organization
specific knowledge, application domain knowledge, development methodology knowledge
and functional domain knowledge.

It is the authors' belief that there is a need for CASE tools that support the Requirements
Engineering process in a way that better reflects the problem solving behaviour of
experienced analysts. This requires to identify, understand and formalize the cognitive
mechanisms that allow the analyst to abstract reality and to represent it through concepts
and to diagnose the specification from users points of view.

OICSI 1 (French acronym for intelligent tool for information system design) is a system
prototype based on this premise. It exploits knowledge-based paradigms to provide an
active aid to DB/IS analysts during the Requirements Engineering process. OICSI
supports the analysts in the process of problem-statements acquisition, elicitation,
modelling and validation.

In addition, the authors recognize that Requirements Engineering is mainly based on
abstraction and have granted a privilege to a natural language approach.

Indeed, psychological research works dealing with the study of abstraction mechanisms
show that abstraction is strongly interlocked with language manipulation.

Following this line, problem-statements in OICSI are expressed with the French natural
language and automatically interpreted in terms of the OICSI conceptual model.
Complementary, OICSI uses a text generation technique to feed back to the user
information about the specification (i.e the conceptual schema).

This choice is enhanced by the fact that analysts do not proceed by direct observation of
the real world but through a media which is the natural language. Indeed, the two most
common ways for acquiring application domain knowledge are interviews and studies of
existing documents (forms, legal documents ...).

1 OICSI is the name used in the academic area; in the industrial world this case tool is

named ALECSI, it is developed by CRIL company.

37

C. Rolland and C. Proix

According to the OICSI paradigm illustrated in figure 1.2, the analysis task refers to the
description of the relevant real world phenomena using the French natural language, the
modelling task refers to the mapping of problem-statements onto basic concepts of the
OICSI underlying DB/IS development methodology and the validation task is based upon
a paraphrased description of the conceptual schema in the French natural language.

PROBLEM
STATEMENTS

PARAPHRASE
DESCRIPTION

Figure 1.2 : Analysis and Modelling process.

Using OICSI, the conceptual schema is hidden to the future system users. The "system
referential", they have to understand, comment upon and validate, is expressed using
natural language. Even for the analysts the conceptual model and the conceptual schema
are partially hidden since OICSI automatically supports modelling as well as text
generation.

However, it must be mentioned that OICSI provides a graphical interface. Depending on
their personal abilities to understand conceptual modelling, the analysts will use the most
appropriate interface.

Similar approaches to solving Requirements Engineering from the description of the
application domain uttered with natural language sentences have been followed for
example in the AMADEUS project which aims at combining graphics and natural
language [Black 87]. Others examples are SECSI [Bouzegoub 86] and ACME [Kersten
86] which are conceptual modelling expert systems.

Text generation has been used in different areas of databases : it is an important matter in
natural language interfaces to databases; it also used for tutorial purposes in learning a
query language and for generating readable error messages. Examples of prototype systems
are EXPOUND [Chester 76] which translates formal proofs into English, CO-OP
[McKeown 86] based upon a syntactic approach, PERFORM [Muckstein 85] and ELFS
[Luk 86] which are knowledge based approaches for text generation from SQL to natural
language, De Roeck paraphrasing of relational calculus [De Roeck 88] and Grishman
paraphrasing of predicate logic [Grishman 79].
The remainder of this paper describes the natural language approach for Requirements
Engineering and its implementation in OICSI. Section 2 presents the linguistic approach
for requirements acquisition and elicitation. The paraphrasing mechanism for validation is
presented in section 3. A brief overview of implementation aspects is given in section 4.

38

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

2. The linguistic approach

Conceptual modelling in OICSI is based on a linguistic approach that tries to formalize
the linguistic mechanisms through which analysts are able to abstract observed
phenomena onto concepts.

The problem-solving behaviour of analysts is first intuitively introduced. The "CASE for
CASE" theory (which is the foundation of the formalization of the analyst behaviour) is
thus recalled. Finally, our linguistic approach is detailed and the conceptual schema
generation is presented.

2.1 Intuitive introduction to analysts problem solving
behaviour

This section is an attempt to highlight the linguistic mechanisms used by analysts.

Let us imagine that our favourite analyst Ado is used to manipulate the Entity­
Relationship (E-R) model [Chen 76]. This means that Ado will try, when observing the
real world, to identify classes of real world phenomena that can be modelled as entity
types, attributes or relationship types.

Thus, during an interview, if Ado hears the sentence:
"A subscriber has a name and an address."

He will probably introduces in the conceptual schema an entity type SUBSCRIBER with
two attributes NAME and ADDRESS.
Now, in order to understand the analyst behaviour, let us ask the question :"How did Ado
get this result?".

A first response could be that Ado knows the meaning of the words "subscriber", "name"
and "address", and how they relate one with others. This means that Ado uses a kind of
common-sense knowledge to match the sentence onto the E-R schema. This knowledge is
based on couples (word, real object) which allow to relate a word to a well known object
in the real world.

But assume now that the sentence is :
"The colydrena have a pedistylus and afolicul."

As Ado did, many analysts will make the hypothesis that the word "colydrena" is a non
lexical object type that can be modelled by an entity type and that "pedistylus" and
'folicul" are two attributes related to the entity type. Ado is not certain that he did the
right interpretation of the sentence but the interpretation is plausible and he can, later,
validate its truth discussing with domain specialists.

In this case, Ado did not use the same kind of common-sense knowledge as previously.
He does not know the meaning of the words (they are imaginary), but, however without
any understanding of the words he found a model of the described situation (which is,
indeed, correct).

39

C. Rolland and C. Proix

Ado's reasoning is based on the recognition of a particular sentence pattern which is
colloquial to him. The knowledge which is used, is a linguistic knowledge related to
language manipulation. It allows him to recognize and to interpret the following sentence
pattern:

<Subject Group><Verb expressing ownership><Complement Group>

The pre-established interpretation of such pattern allows Ado to associate the subject
group of the sentence to a real entity class as the owner of the attributes represented by the
complement group's words.

The linguistic knowledge is certainly the most common knowledge within the analysts
population. Analysts use it, sometimes explicitly, but most often in an implicit way.
Our goal is to make explicit the different types of sentence patterns in order to formalize
this kind of linguistic knowledge and to support the process of the problem-statements
interpretation and modelling in a computerized way.

The linguistic approach implemented in OICSI is borrowed from the Fillmore's theory
"Case for Case" [Fillmore 68].

Section 2.2 summarizes the main points of this theory. Its specialization for OICSI is
presented in section 2.3.

2.2 The Fillmore's case system

The main concept of the Fillmore's theory is the notion of case introduced as follows:
"the case notions comprise a set of universal, presumably innate, concepts which identify
certain types of judgement human beings are capable of making about the events which
are going on around them ... ".

Cases are types of relationships that groups of words have with the verb in any clause of a
sentence. One of the basic Fillmore's assumption is that it exists a limited number of
cases. Fillmore exhibits six major cases: AGENTIVE, INSTRUMENTAL, DATIVE,
FACTITIVE, LOCATIVE and OBJECTIVE.

(1) John opens the door.
(2) The door is opened by John.
(3) The key opens the door.
(4) John opens the door by means of the key.
(5) John uses the key in order to open the door.
(6) John believes that he will win.
(7) John is ill.

Figure 2.1 : Examples of sentences

For example in sentences (1) and (2) of the figure 2.1 "John" is associated to the case
AGENTIVE and "door" to the case OBJECTIVE; the word "key" in sentences (3), (4), (5)
is associated to the INSTRUMENTAL case, while in sentences (6) and (7) "John" is
associated to the DATIVE case.

40

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

Obviously, the same word can correspond to different cases in different sentences.

One complementary assumption of the Fillmore's theory is that the meaning of any
clause is derivable from the meaning of the verb and the recognition of embedded cases.
This leads to the identification of predefined patterns with associated derivable meanings.

For example, due to the fact that sentence (1) has a structure of the type:
<Verb expressing action, AGENTIVE, OBJECTIVE>

allows to infer that "John" is the agent who performs the action on the object "door".

Sentences (1) and (2) correspond to the previously mentioned structure; the structure of
sentence (3) matches the type:

<Verb expressing action, INSTRUMENTAL, OBJECTIVE>
and finally, sentences (4) and (5) have the following pattern:

<Verb expressing action,OBJECTIVE, AGENTIVE, INSTRUMENTAL>.

The Fillmore's patterns allow to perform a classification of natural language sentences
with regards to their structure and, thus, to infer their meaning according to the class they
belong to.

2.3 Specialization of the Fillmore's case system

Experimentations of the Fillmore's theory convinced the authors that the theory was
applicable and pertinent to support the DB/IS analysis and modelling process. However,
we reach the conclusion that the cases might be adapted to the purpose of establishing
problem-statements allowing the construction of an DB/IS conceptual schema. Indeed
statements about real world phenomena fall into two categories: fact descriptions and
rules.

Examples of fact descriptions (we consider a subscription library system) are as follows:

(1) In the library, a book is described by a unique reference number, the authors'
names, the publisher name and the year and version of editing.
(2) Last and first names of the subscriber, his address, first year of subscription and
last date of subscription fees payment are recorded.
(3) The status of each copy of a book is recorded in real time.

Our understanding of facts is similar to the Nijssen's approach [Nijssen 89].

The following are examples of rules:

(1) Subscription fees are paid every year.
(2) A subscriber, properly registered (i.e who paid the fees) is called an "active"

subscriber.
(3) A subscriber cannot borrow more than three books at the same time.
(4) Books are only loaned to active subscribers.
(5) When a loan request cannot be satisfied it becomes a "waiting request".
(6) After 13 months without paying the subscription fees, the subscriber status

becomes "inactive".
(7) "Waiting request" are treated in their chronological order.

41

C. Rolland and C. Proix

As just exemplified, rules can express management rules independent or dependent of
time, static constraint rules or dynamic constraint rules .

Sentences describing either facts or rules are the problem-statements that OICSI
automatically interprets by performing a case approach.

2.3.1 The case classification

The case notion has been extended in two directions: cases are applicable to clauses and
the classification of cases has been revised .

. According to the Fillmore's theory, cases relate to words in sentences. It is the authors'
belief that the notion of case could be successfully applied not only to words but also to
clauses in sentences. This allows to interpret a complex sentence in a top-down fashion.
The case approach is first applied to subordinate clauses with regards to the verb of the
main clause. Thus, the case approach is again applied to each of the subordinate clause .

. The classification of cases used by OICSI is as follows :
<OWNER, OWNED, ACTOR, TARGET, CONSTRAINED*, CONSTRAINT*,

LOCALIZATION*, ACTION*, OBJECT>.

We exemplified the meaning of these cases on the following set of sentences.

(1) A subscriber is described by a name, an address and a number.
(2) A subscriber borrows books.
(3)When a subscriber makes a request of loan, the request is accepted, if a copy of
the requested book is available, else the request is delayed.

In sentence (1), "subscriber" is associated to the OWNER case and "name", "address" and
"number" are associated to the OWNED case.

In sentence (2), "subscriber" is associated to the ACTOR case and the OWNER case,
while "books" is associated to the OWNED case; these two cases express that there is a
relationship between "subscriber" and "books". The entire clause is associated to the
ACTION case.

In sentence (3) :
- the clause "When a subscriber requests for a loan" is associated to the

LOCALIZATION case,
- inside this clause, the phrase "request of loan" is associated to OBJECT case,
- the clause "if a copy of the requested book is available" is associated to the

CONSTRAINT case,
- the clause "the request is accepted" is associated to the ACTION and the

CONSTRAINED case,
- inside this clause, the word "request" is associated to the TARGET case.

* denotes cases that may be applied to clauses

42

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

Complementary, classes of verbs have been identified. The figure 2.2 shows both the
hierarchy of classes and some examples of class instances.

CLASS

~~\~
OWNERSHIP ACTION STATE EMERGENCE

to include to make to be to arrive
to have to update to appear to occur
to compose to record etc .. to happen
etc .. to erase etc ...

etc ...

Figure 2.4 : Hierarchy and instances of classes of verbs

2.3.2 The linguistic patterns

A set of patterns that combine cases and classes of verbs previously introduced have been
defined. These patterns are of two different types:

- elementary patterns allow to associate cases to syntactic units of a clause,
- sentence patterns allow to associate cases to clauses of a sentence.

Both are introduced and exemplified in turn.

Elementary patterns

They fall again into three different categories:
- structural pattern,
- behavioural pattern,
- constraint pattern.

SPI and SP2 are examples of simple structural patterns.

SPl: [Ng_subject](OWNER) [verbal form](ownership_subject)
[Ng_complement](OWNED)

SP2: [Ng_subject](OWNED) [verbal form](ownership_complement)
[Ng_ complementl(OWNER).

The notation [syntactic unit](case) means that the "syntactic unit" is associated to the case
"case". The following abbreviations Ng, Cl, Sub, Mn, are respectively used to refer to a
Nominal group, a Clause, a Subordinate clause and a Main clause.

The clause: "any subscriber has a name and an address" matches the SPI pattern and can
be interpreted in the following way:

-the clause subject "any subscriber" plays the role of OWNER,
- "has" is the verb belonging to the ownership class,
- "a name " and "an address" are subject complements playing the role of

OWNED.·

43

C. Rolland and C. Proix

It is obvious that patterns of the SPI family are appropriated to fact sentences.

The sentence " loan-requests are made by subscribers" can be unified to pattern SP2.

BPI, BP2, BP3, and BP4 are four examples of behavioural patterns.

BPl: [Ng_subject](ACTOR) [verbal form](action)
[Ng_complement](T ARGET)

BP2 : [Conjunction](LOCALIZATION) [Ng_subject](ACTOR)
[verbal form](action) [Ng_complement](OBJECT)

BP3: [preposition](LOCALIZATION) [Ng](OBJECT)

BP4: [Ng](TARGET) [verbal form](action)

"Subscribers borrow books" is a clause that matches the BPI pattern:
-"subscribers" as the subject of the clause plays the role of ACTOR,
- "borrow" is a verb belonging to the action class,
- "books" is the subject complement which plays the role ofT ARGET.

The clause : "when a subscriber returns a book copy" can be unified with BP2 pattern
with the following interpretation:

- "when" is a conjunction that expresses the LOCALIZATION of the action,
- "a subscriber" is the subject that plays the role of ACTOR,
- "returns" is the verb that belongs to the action class,
-"a book copy" is the complement that plays the role of OBJECT of action.

BP3 is a pattern which deals with circumstantial complements and, for this reason, is not
organized around the verb but around the preposition.

Within the clause: "As soon as the receipt of a subscriber's subscription fees, the
subscriber's status is updated", the phrase "As soon as the receipt of a subscriber's
subscription fees" matches the BP3 pattern with the following interpretation:

- "As soon as" is the preposition that describes the LOCALIZATION of action
expresses by the clause,

-"the receipt of a subscriber's subscription fees" is the phrase that plays the role
of OBJECT.

Finally the BP4 pattern allows to interpret a particular type of clauses which describe
actions such as "the loan is agreed upon".

At last CPl is an example of constraint pattern.

44

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

The clause: "the number of loans is equal or less than three", can be unified to the CPI
pattern in such a way that:

- "the number of loans" plays the role of CONSTRAINED, and
-"equal or less than three" is the predicate group associated to the CONSTRAINT

case.

Sentence patterns

The sentence patterns define the cases of embedded clauses in a same sentence. They are
constructed combining elementary patterns. Let us consider two examples:

SPTl : [Main clause]

SPT2 : [Subordinate clause unifying a BP pattern](LOCALIZA TION)
[Subordinate clause unifying a BP2 pattern](CONSTRAINT)
[main clause unifying a BP pattern with a verb expressing an
actionl(ACTION +CONSTRAINED)

SPTI corresponds to sentences composed with only one main clause. This clause must be
able to match :

- either a structural pattern; the sentence "A subscriber is described by his name
and his address" is an example of it,

-or a behavioural pattern with a verb expressing an action; "Subscribers borrow
copies of books" matches this pattern. The ACTION case is thus affected to the
sentence,

-or a constraint pattern; this corresponds to the sentence "The number of loans is
limited to three". This sentence is associated to the CONSTRAINT case.

The subordinate clause that can be unified to a behavioural pattern determines the spatio­
temporal LOCALIZATION of the action described by the main clause.

The sentence: "When there is a loan request, the loan is agreed only if the subscriber's
status is "active" and if a copy of the requested book is available" corresponds to the SPT2
pattern:

- the clause "When there is a loan request" matches the BP2 pattern and is
associated to the LOCALIZATION case;

- the clauses "only if the subscriber's status" and "if a copy of the requested book is
available" match the CPI pattern and are associated to the CONSTRAINT case.

- the clause "the loan is agreed" matches the BP4 pattern and corresponds
simultaneously to the ACTION and CONSTRAINED cases.

2.4 Conceptual schema generation

We assume that it is possible to simply link cases and concepts. Thus the conceptual
schema generation is grounded upon rules that map cases onto concepts. These rules are
dependant of the target conceptual model. Conversely the linguistic patterns are
independent of a particular modelling technique and can be used within any design
methodology.

45

C. Rolland and C. Proix

Figure 2.3 gives a brief overview of the main mapping rules implemented in the OICSI
envirronment. We recall that OICSI is based upon the REMORA methodology [Rolland
82) which identifies four basic concepts namely, objects, actions, events and constraints.
A detailed description of this aspect can be found in [Rolland 87]. These are the four type
of nodes of the semantic net used by OICSI to implement the conceptual schema under
construction. Arcs of the net are of five types :

- rl : expresses a relationship between two objects nodes;
- md : expresses that an action modifies an object;
- tr : expresses that an event triggers an action;
- act : expresses that an object has a particular state change which is an event;
- ct : connect a constraint to the node (object, action or event) which is
constrained.

CASE to NODE

OWNER
OWNED
ACTOR ~ ENTITY NODE
TARGE"~

OBJECT

LOCALIZATIO~ EVENT NODE

ACTION ACTION NODE

CONSTRAINT CONSTRAINT
NODE

CASE to ARC

OWNER ~ origin of rJ arc

OWNED end ofrl arc

ACTION origin of md arc

TARGET ~ end ofmd arc

LOCALIZATION _. origin of tr arc

ACTION ~ end of tr arc

LOCALIZATION origin of act arc

OBJECT __.. end of act arc

CONSTRAINT ~ origin of ct arc

CONSTRAINED end of ct arc

Figure 2.3 : Mapping rules

46

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

3. Conceptual schema validation and paraphrasing

The Requirements Engineering process includes also the validation cycle. In order to base
the whole Requirements Engineering process on a natural language approach, we propose
to feed back to the user information about the conceptual schema using again the French
natural language.

The paraphrasing technique we have developed has the scope to generate natural language
texts using the words and expressions of the users community and avoiding to describe the
conceptual schema contents in technical terms.

We introduce first the main principles of the techniques used for text generation and then
we present our solution to conceptual schema validation by paraphrasing.

3.1 Principle of natural language generation

A system for text generation must be able to select information from some knowledge
base and to organize it into a natural language text. Several approaches have been
proposed for this purpose. Most of them use the distinction between the "what to say"
from the "how to say". However, they differ from the degree of overlap of these two
aspects.

The "what to say" deals with the determination of informations which are relevant for the
purpose of the text, with what the users need to know, and how much detailed an object or
event must be described.

The "how to say" deals with the choice of a linear order for the information selected,
specifying how to aggregate the information (determination top-form paragraphs and
sentence boundaries).

The structuralist approach, which is mainly represented by Bloomfield [Mounin 72],
[Harris 85], admits this distinction but concentrates the semantics in the "how to say".

The fonctionnalist approach [Harrys 85] is not aware of this distinction. In this approach
the "what to say" and the "how to say" are mixed. The sentences are directly built from the
knowledge base.

Finally the third approach admits that the major part of the semantic is included in the
"what to say" and the minor part of it is in the "how to say" [Chomsky 57]. Chomsky
who has initially followed the structuralist approach is the father of this third approach.

Among the set of possible solutions we have retained the Chomsky approach [Chomsky
65].
The basic Chomsky assumption is the existence of a underlying structure, namely the
deep structure, to any sentence in any human language. In addition, there is an infinite
number of ways, namely the surface structures to represent the deep structure in different
languages.

The deep structure expresses the semantics of a sentence by means of semantic elements
and relationships among them. It corresponds to the "what to say".

47

C. Rolland and C. Proix

Grouped all together, the deep structures corresponding to a knowledge base, allow us to
reach a semantic understanding of its contents.

The surface structure represents each sentence of a text by means of a set of phrases. It
corresponds to the "how to say". Many sets of surface structures may correspond to the
same deep structure. In addition, it is possible to define a set of transformation rules (a
generative grammar [Chomsky 69]) which allow to map a deep structure into an infinite
set of surface structure.

Based upon this distinction the process of generating natural language texts is summarized
in figure 3.1.

Transformation step

Linearization step

Figure 3.1 : process of generating natural language texts

It is assumed that the knowledge base provides the description of some application
domain.

The first step consists of defining the appropriate deep structures for the knowledge base
contents. Deep structures are often represented through semantic nets.

The second step maps the deep structure onto a surface structure. This step uses a
generative grammar [Chomsky 69] which allows to produce skeletons of sentences in the
target natural language. This surface structure includes all the phrases of the future
sentence and its grammatical structure.

The last step, so called linearization step, uses the surface structure to produce a readable
sentence. This step uses a lexical knowledge base in order to solve problem such as:

- determination of valid articles,
- tacking into account singular, plural, ...
-use of idiomatic forms,
- phonological short-cuts.

48

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

It is eventually possible to complete the process by a structuration step which aims at
reorganizing the collection of sentences into chapters, sections and paragraphs.

3.2 The OICSI paraphrasing process

Following the Chomsky's guidelines we have organized the process for paraphrasing from
the conceptual schema to a French text into a similar way which is shown in figure 3.1.

The knowledge base mentioned in figure 3.1 is the OICSI base of facts i.e. the semantic
net which represents the conceptual schema under construction.

The deep structure definition consists of grouping nodes and arcs of the semantic net. As a
matter of fact, two rules are used in order to group in a same deep structure :

- all the nodes and arcs describing an entity,
- all the nodes and arcs describing an event and its triggered operations.

We name a situation of the semantic net, a set of nodes and arcs which correspond to a
deep structure.

This solution is motivated by the fact that we want to restitute to the users descriptions of
their application domain as close as possible to the problem statements they have initially
provided to the system. Following our assumption in section 2.3 , we consider that facts
and management rules are the two easier entry points for users in the process of
developing information systems.

NUMBER COPY

r1 ~SCRIB~· 1 rl
~1,; I AUTHORS

NAMUl . ~
rl BOOK"'"" rl

ADD SS / 'X
rl rl TI1LE

ENTITY

action
constraint

evem~t

~~EQUES~
the request is delayed h · ed " I "reor ~~·

zf a copy of the requested
book is

not available

tr
if a copy of the requested

book is available

Figure 3.2 : The graphical representation of the conceptual schema

49

C. Rolland and C. Proix

Thus the text generated by the system will describe :
- on one hand, the static aspects of the world through entities, their properties and

relationships;
-on the other hand, the behavioural aspects through rules with the standard pattern "when
event, if condition then action".

For example, from the conceptual schema presented in the figure 3.2, the system
recognizes the two deep structures shown in the figure 3.3.

COPY

ld AUTHORS

BOO~

d/ ~TITLE
REQUEST

3.3a

the reg,uest is acc~ted

tr "'' if a copy of the requested
book is available

Wb.a a subscriber Rquesu for a AollliD.

3.3b

Figure 3.3 :The two deep structures recognized from figure 3.2

The 3.3a deep structure includes all informations about the entity BOOK, and the 3.3b
deep structure includes all informations about the event "a subscriber requests for a loan".

The second step is the transformation of a deep structure into a surface structure. We
make the hypothesis that the number of different types of situations in the conceptual
schema is limited and that these situations are well defined. Therefore, the transformation
step is based on a set of surface structure patterns which are associated to each type of
situation.

50

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

For example, the 3.3a deep structure will be associated to the following surface structure:

sentence(verb(to have), subject(book), complement(title, many copies, one or
many authors, one or many requests)).

The 3.3b deep structure corresponds to the following surface structure :

sentence(circumstantial proposition(a subscriber requests for a loan),
conditional proposition (if a copy of the requested book is
available),
main proposition(the request is accepted)).

The last step is the linearization phase. Using lexical knowledge and the surface structure
this step produces readable sentences. The main tasks realized here is :

- to conjugate correctly the verbs of the sentence;
- to determine the conjunctions for the subordinate propositions;
- to select the appropriate articles.

For example, the sentences produced from the previously defined surface structure are :
- A book has a title, many copies and one or many authors.
- When a subscriber requests for a loan, if a copy of the requested book is

available then the request is accepted.

4. Implementation overview

The two processes, namely the conceptual schema generation process and the paraphrasing
process are implemented in an expert system approach. This means that the two processes
are performed by an inference engine which uses rules. For modularity and flexibility
reasons the rules are Prolog production rules.

We limit ourselves to a brief overview of the two processes mentioning the different
classes of rules and their role.

4.1 The conceptual schema generation process

The OICSI inference engine uses three main classes of rules :
- lexical and syntactic rules,
- linguistic rules,
-mapping rules,

in order to progressively transform NL sentences onto nodes and arcs of the semantic net.
The process is organized into three steps .

. During the analysis step the system builds an internal representation of the initial
sentences by means of syntactic trees, with the purpose of decomposing each sentence
into grammatical unit.
This part of the process is based on wellknown techniques developed for the general
purpose of natural language recognition [Bruce 75], [Cordier 79] and [Kayser 81].

51

C. Rolland and C. Proix

The role of lexical rules is to determine the grammatical nature of each word of any clause
of a sentence and to classify the verb clause into the four classes: ownership, action, state,
emergence. Lexical rules use a dictionary which contains information about the
grammatical nature of words and about the meaning and the classification of verbs.
Syntactic rules allow the system, on one hand, to verify that a sentence belongs to the
authorized language, and, on the other hand, to build up the syntactic trees. These rules are
based on the use of a generative grammar which corresponds to the system's grammatical
knowledge .

. During the linguistic step, the system makes pattern matching in order to unify each
syntactic tree with one of the sentence pattern defined in section 2, and to associate each
syntactic unit with a case. Pattern matching and association of cases to the phrases of a
sentence is performed simultaneously in the same rule. Basically any linguistic rule as the
following form :

- the premise of the rule correspond to the conditions that allow to recognize
the sentence (or clause) pattern,

- the conclusions of the rule associate cases to elements of the sentence (or
clause).

Patterns recognition is based both on the class of the verb (as identified during step 1 and
attached to it in the syntactic tree) and on the grammatical structure of the sentence (or
clause). Generally, a pattern is implemented through a set of linguistic rules in order to
take into account the variety of grammatical structures. As an illustration, rules RLI and
RL2 are two examples of rules necessary for implementing the pattern SPI.

RLl:
IF meaning(clause(verbal form))= ownership_subject
AND gram_structure(Ng_subject) =<article, noun_ I>
AND gram_structure(Ng_complement) =<article, noun_2>
THEN case(noun_l) =OWNER

case(noun_2) = OWNED.

RL2
IF meaning(clause(verbal form))= ownership_subject
AND gram_structure(Ng_subject) =<article, noun_l, predicate_!>
AND gram_structure(Ng_complement) = <article, noun_2>
AND gram_structure(predicate_l) =<preposition, article, noun_3>
THEN case(noun_l) = OWNER(verb)* and OWNED(predicate)

case(noun_2) = OWNED.

* the notation OWNER(verb) and OWNED(predicate) mean that the role OWNER is
played in regards to the verb and that the role OWNED is played in regards to the
predicate. By default, the case meaning is in regards to the verb .

• Finally, the mapping step consists of building the semantic net. Each syntactic tree
is mapped onto a set of nodes and arcs of the semantic net. Mapping rules implement the
relationship summarized in figure 2.3 (see section 2). They allow to automatically build
nodes and arcs of the semantic net from cases and patterns determined in the previous step.

52

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

4.2 The paraphrasing process

Similarly the OICSI inference engine uses three main classes of rules :
- extraction rules,
- transformation rules,
- linearization rules,

in order to perform the three steps of the paraphrasing process illustrated in figure 3.2 .

• Extraction rules are used to cluster nodes and arcs related to either an entity or an
event type and to construct the corresponding deep structure .

. Transformation rules allow to map the deep structures into surface structures. A
pattern matching mechanism is used in order to associate to a deep structure the
appropriate surface structure .

. Linearization rules are used in order to rewrite a surface structure into a readable
sentence. They include rules for to conjugate the verbs, to select the article and so on. A
major part of these rules use a dictionary which represents the lexical knowledge of the
tool.

Obviously, the two processes (conceptual schema generation and paraphrasing) are
performed in an interactive way. For example the user's aid may be solicitated during the
analysis step to add a new verb in the dictionary. At any time the user can ask for
explanation about the system deductions and this can lead to pattern transformation. At
last the analyst/user is allowed to directly manipulate the semantic net through a graphical
interface in order to add, delete or change any arc or node of the net. In addition, the two
processes are fully integrated. This means that the user can ask for paraphrasing from the
conceptual schema at any point of its generation process. This allow to constantly keep
the equivalence between a set of natural sentences and the formalized conceptual schema.
We believe that this is helpful to validate the conformance of the system specifications to
the user requirements.

Similar considerations have been discussed as the premise of the RUBRIC [Van Assche
88] and TEMPORA [Loucopoulos 90] projects.

A more detailed description may be found in [Loucopoulos 92].

5. Conclusion

The paper has argued that the natural language plays an important role during the DB/IS
development cycle. Therefore, the ideas that Requirements Engineering should be
supported by a Case tool based on a linguistic approach and that validation of
specifications must be performed by means of text generation technique have been
presented.

In a first time, the work reported in this paper is based on the premise that Requirements
engineering is strongly interrelated to language manipulation. It represents an attempt at
improving problem-statements elicitation, interpretation and modelling through the use of
a linguistic approach. It is proposed that the problem-statements for an information
system development should be expressed via natural language sentences.

53

C. Rolland and C. Proix

The work reported presents how a linguistic approach based on the Case notion can be
used to automatically carry out the IS modelling. The paper details the linguistic approach
and its implementation in the expert design system, known as OICSI. The thesis put
forward in the paper is that the linguistic approach is general, in the double sense that it
can be customized for different modelling techniques and, in addition, it can be applied in a
wider sphere of problems. From this point of view the work reported relates to other
research works such KOD [Vogel88] or SECSI [Bouzeghoub86].

In a second time, the paper presents some solutions based on theoricallinguistic works in
order to validate the conceptual schema by paraphrasing from conceptual schema to natural
language texts. This paraphrasing technique has the scope to generate natural language
texts with. words and expressions of the users community and avoiding description of the
conceptual schema contents in technical terms.

References
[Bouzeghoub 86] M. Bouzeghoub and G. Gardarin : "SECSI : an expert system approach for
data base design", in Proc. of IFIP world congress, Dublin, Sept 1986.
[Bruce 75] B. Bruce : "Case systems for natural language", Artificial Intelligence Nb 6,
1975.
[Black 87] WJ. Black: "Acquisition of Conceptual data models from natural language
descriptions, 3rd Conf. of the European chapter of ACM, Danemark, 1987.
[Bubenko 90] J. Bubenko et all : Syslab/Decode research plan Syslab report 1990.
[Chen 76] P.P.S Chen : "The entity relationship model : toward a unified view" ACM Trans.
on data base systems, Vol 1, Nb1, 1976.
[Chester 76] D. Chester : "The translation of formal proofs into English", Artificial
Intelligence, vol 7, n°2, 1976.
[Chomsky 57] N. Chomsky: "Syntactic strutures", Mouton Ed, The Hague 1957.
[Chomsky 65] N. Chomsky : "Aspects of the theory of syntax", MIT Press Ed, Cambridge
Mass, 1965.
[Chomsky 69] N. Chomsky : "Language and Mind", Payot ed, 1969.
[Cordier 79] M. Cordier: Connaissances semantiques et pragmatiques en comprehension du
langage nature!, 2~me congres AFCET -INRIA, Reconnaissances des formes et Intelligence
Artificielle, Toulouse 1979.
[De Roeck 88] A.N.D Roeck, B.G.T. Lowden : "Generating English paraphrases from formal
relational calculus expressions" Co ling (Pub) 1988.
[Dubois 89] E. Dubois, J. Hagelstein, A. Rifaut : "Formal requirements engineering with
BRAE", Philips journal of research, vol43, N) 3/4 1989.
[Grishman 79] R. Grishman : "Response generation in question answering systems" in ACL
1979.
[Fillmore 68] CJ. Fillmore : "The Case for Case", in Universals in linguistics theory; Holt,
Rinehart and Winston, Inc., E. Bach/R.T. Harms (eds) 1968.
[Harris 85] M. Dee Harris : "Introduction to Natural Language processing", Reston
Publishing company, 1985.
[Hull 87] R. Hull and R. King : Semantic Database Modeling : Survey, Applications and
Research issues", ACM computing Surveys, vol 19, n-3, 1987.
[Kayser 81] D. Kayser : "Les ATN sc;:mantiques" 3~me congras AFCET-INRIA,
Reconnaissances des formes et Intelligence Artificielle, 1981
[Kersten 86] M.L. Kersten, H. Weigand, F. Dignum, J; Proom: "A conceptual modelling
expert system", 5th Int. Conf. ont the ER Approach S. Spaccapietra(ed), Dijon, 1986.
[Loucopoulos 90] P. Loucopoulos et all : "From software engineering to business
engineering: Esprit projects in information systems engineering", in CAISE'90, Int.
Conference on: "Advanced Information System Engineering ",Springer-Verlag, 1990.

54

From: CAiSE 1992, LNCS 593 © Springer-Verlag Berlin Heidelberg 1992

[Loucopoulos 92] "Conceptual modelling databases and Case: an integrated view of
information systems development", P. Loucopoulos (ed), Mac Grawhill (Pub) 1992 (to be
published).
[Luk 86] W.S Luk, S. Kloster : "ELFS: English language from SQL", ACM Trans. on
Databases systems, vol 11, n°4, 1986.
[Me Keown 86] K. Me Keown : "Paraphrasing questions using given and new information",
Am. journal of computational linguistics, vol 9 n°l, 1986.
[Muckstein 87] E.M Muckstein, M.G. Datovsky :" Semantic interpretation of a database
query language", Data and Knowledge engineering, vol 1, 1985.
[Maddison 83] R. Maddison : "Information System methodologies", Wiley-Heyden 1983.
[Monnin 72] G. Mounin : "La linguistique du 20ieme siecle", Presses Universitaires de
France Ed, 1972.
[Nijssen 89] G.M. Nijssen, T.A. Halpin : "Conceptual Schema and relational database
design : a fact oriented approach", Prentice-Hall, Englewood Cliffs, New Jersey, 1989.
[Oile 82] T.W. Olle, H.G. Sol and A.A Verrijn Stuart :"Information System design
methodologies : a comparative review", (IFIP WG 8.1 CRIS 1) North Holland, Amsterdam, NL,
1982.
[Rolland 82] C. Rolland and C. Richard : "The Remora methodology for information
systems design and management" in [011 82].
[Rolland 87] C. Rolland, G. Benci and 0. Foucault : "Conception des systemes
d'information : la methode REMORA", Eyrolles (Pub) 1987.
[Van Assche 88] F. Van Assche, P.J. Layzell, P. Loucopoulos and G. Speltinex :
"Information Systems development : a rule based approach", in Journal of knowledge based
systems, 1988.
[Vit alari 83] N.P. Vitalari and G.W. Dickson : "Problem solving for effective systems
analysis : an experimental exploration ", in Comm. ACM Vol 26 Wl1, (November 1983).
[Vitalari 85] N.P. Vitalari : "Knowledge as a basis for expertise in systems analysis : an
empirical study", MIS Q, (September 1985).
[Vogel 88] : C. Vogel : "Genie cognitif", Masson collection Sciences cognitives, 1988.

55

Conceptual Modeling and Natural Language
Analysis

Colette Rolland

Abstract The CAiSE’92 paper presented a tool called OICSI that used Natural
Language Processing (NLP) techniques to support both the generation of an
Information System (IS) conceptual schema from textual requirements and in the
reverse way, schema paraphrasing to ease schema understanding and evaluation by
stakeholders. Both topics have been of interest during the next 20 years among other
new usages of NLP techniques in the context IS development. For sake of space, this
paper concentrates on an overview of NLP techniques used as elicitation techniques.

1 The Initial Paper and Related Works

The initial paper was written at a stage of IS engineering maturity at which it was
clear that an IS represents some excerpt of the World and that IS engineering shall
focus on modeling the concepts of the world on which IS users need information.
As a consequence of this assumption, a number of conceptual modeling languages
were developed such as [1–4] to name a few. It was also becoming clear that these
languages were not understandable by people other than modelers. This evidence
raised the issue of how to master the creation of a conceptual model (called
schema at that time) as long as the process implies exchanges between domain
experts & stakeholders (who know their wishes, needs and requirements) on one
hand, and modelers (who master conceptual languages) on the other hand. For
the same reason, validation was also an issue as stakeholders can hardly validate
whether the conceptual model really reflects their needs. As long as natural language
is used during this conceptualization process, the end-users and all stakeholders
participating in the IS project have a chance to be involved. Then, the idea to support

C. Rolland (�)
Université Paris1 Panthéon Sorbonne, 90, rue de Tolbiac, 75013 Paris, France
e-mail: Rolland@univ-paris1.fr

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 4, © Springer-Verlag Berlin Heidelberg 2013

57

mailto:Rolland@univ-paris1.fr

C. Rolland

NL communication during both phases of model creation and model validation
came in mind.

OICSI was developed as a CASE tool that supports conceptual model generation
from requirements statements expressed in NL and helps in the validation of this
model by paraphrasing it, i.e. reformulating its semantic content as natural language
sentences. The generation phase is based on the adaptation of the Fillmore’s ‘Case
to Case’ theory [5] whereas the paraphrasing phase uses Chomsky’s approach [6].

Whereas OICSI partly automates the generation of a conceptual model, some
early attempts to support this task were based on manual guidelines [4, 7–9]. The
Functional Grammar [10] was preferred to the Case Grammar used in OICSI in [11]
and [12]. Some other few approaches of the same period presented tools, which used
parsers to extract model elements from NL sentences [13, 14].

From these beginnings, the ways NLP techniques have been used in IS develop-
ment and particularly during requirements engineering and conceptual modeling
are manifold. The analysis of literature suggests to organize them according to
four strategies, which (a) support the generation of models from NL input texts,
(b) support model paraphrasing, (c) help in the general understanding of NL
input texts and (d) Improve NL texts quality. For space restriction this paper only
comments on point (a).

2 Generation of Models from NL Input Texts

Typically, these approaches take as input a document expressed in full or structured
Natural Language (most of the time in English) and generate model elements of a
given conceptual model formalism. They can be further classified into techniques
focusing on (a) structural (static) aspects of an IS conceptual model (e.g. entity-
relationship diagrams) or (b) behavioral aspects (e.g. uses cases & scenarios). Some
approaches (c) deal with the generation of other types of models such business
rule models, ontologies or traceability models or with different activities such as
compliance with regulation documents.

Like in OICSI, many researchers have used NLP techniques to generate struc-
tured or formal models from requirements documents expressed in NL. NL-OOPS
[15] is a Case tool that supports requirements analysis and generates object-oriented
models from NL requirements documents. It uses the LOLITA NLP toolkit that
linguistically analyze texts. CICO [16] transforms tagged requirements statements
into various forms of structured models based on rules. Moreno [17] has developed
a method that transforms NL requirement statements into an object model. Her
method is based on a grammatical analysis of requirement statements, and initially
transforms them into a restricted form of NL. Subsequently, the restricted statements
are transformed into object structures; this is based on patterns that transform
linguistic structures into conceptual structures. The approach was further developed
in [18, 19]. The authors of [20] describe an approach that uses part-of-speech
tagging and morphological analysis for the generation of candidate elements of a

58

Conceptual Modeling and Natural Language Analysis 59

class diagram. Additionally, an ontology is used to refine the candidates according
to the specificity of the real world domain. Finally, classes that do not appear
in relationships and relationships which do not involved at least two classes are
deleted. In [21] controlled NL is used to express requirements that are automatically
transformed into formal specifications.

Approaches concentrating on the extraction of modeling concepts for dynamic
models can be found [22–26]. COLOR-X [22] supports non-automatic construction
of formal events languages from lists of events described in natural language). In
[23] we used a linguistic pattern approach inspired from OICSI to transform a
textual scenario of a use case into a so-called conceptualized scenario. The process
includes a parsing of the full NL scenario text to identify linguistic structures that
allow the identification of linguistic semantic patterns, which in turn, are mapped
to scenario conceptual elements. The conceptualized scenario serves as a basis to
reason about missing requirements and to suggesting additions in the requirements
specification [27]. Extraction of use cases and scenarios are also described in [25,
26]. Vice-versa the approach presented in [24] uses use-cases as inputs to generate
behavior specifications. In the LIDA approach [28] candidate objects, attributes and
methods as well are extracted from textual requirement statements.

NLP techniques have been also used to generate models other than the typical
IS conceptual models. For example, in the area of ontology engineering, the
Text2Onto approach [29] uses machine-learning techniques together with linguistic
processing in order to derive an ontology from a text. A lightweight NLP is
used in [30] to automatically generate and maintain traceability relations between
different types of software requirements artifacts. In the BROCOM approach [31]
the targeted output are business rules. In the SMART approach [32] NLP techniques
are used to automate the generation of a business process model from textual
requirements. Requirements specifications can also be the target of a transformation
process, which uses textual requirements as inputs and generates a precise list of
requirements expressed in some controlled NL [33]. In the area of compliance
with regulations [34] presents a technique to check the compliance of requirements
with regulations while eliciting requirements. The approach checks compliance
by trying to match a newly discovered requirement to regulations represented by
combinations of case frames resulting from the Case Grammar technique. In [35] we
used the Case Grammar to define a Goal template and to develop a tool supporting a
controlled formulation of a goal. A similar linguistic approach to goal formulation
was used in [36] to reason about variability in requirements. The approach considers
the goal linguistic frame elements as variability concerns.

To conclude it seems that NLP techniques remain useful in conceptual modeling
but only occasionally. The reason might be that requirements/concepts elicitation is
part of a decision process that cannot be automated from analysis of NL texts.

Acknowledgements The original paper was co-authored by Christophe Proix, who was my
doctoral student at that time. Christophe deserves an equal share of the credit for the work that
we have accomplished. Unfortunately, I was unable to contact Christophe for the purpose of this
article.

C. Rolland

References

1. Chen, P. P. S. (1976) The entity relationship model: toward a unified view. In: ACM Trans. on
Data Base Systems (TODS), 1(1), pp. 9–38. ACM

2. Dubois, E., Hagelstein, J., and Rifaut, A. (1989) Formal requirements engineering with ERAE.
In: Philips Journal of Research, 43(3). Philips

3. Rolland, C., and Richard, C. (1982) The Remora methodology for information systems
design and management. In: Proc. Int’l Conf. on Comparative Review of Information Systems
Methodologies. CRIS. IFIP WG8.1. North Holland, 1982

4. Nijssen, G.M, Halpin, T.A. (1989) Conceptual schema and relational database design: a fact
oriented approach. Prentice-Hall, Englewood Cliffs, New Jersey

5. Fillmore, C.J. (1968) The Case for Case. In Holt, Rinehart and Winston, Inc.,
E. Bach/R.T. Harms (eds.) Universals in linguistics theory

6. Chomsky, N. (1965) Aspects of the theory of syntax. MIT, Cambridge Massachusetts
7. Chen, P. (1983) English Sentence Structure and Entity Relationship Diagrams. In: Int’l Journal

of Information Sciences. Vol. 29, pp. 127–149
8. Abbott, R.J. (1983) Program Design by Informal English Descriptions. In: Communications of

the ACM. 26 (11), pp. 882–894. ACM
9. Saeki, M., Horai, H., Enomoto, H. (1989) Software Development from Natural Language

Specification. In: Proc. Int’l Conference on Software Engineering (ICSE), pp. 64–73, IEEE
10. Dik, S. (1980) Studies in Functional Grammar. Academic Press
11. Dignum, F., van de Riet, R.P. (1991) Knowledge base modelling based on linguistic and

founded in logic. In: Data & Knowledge Engineering. Vol. 7, pp. 1–34. Elsevier
12. Burg J.F.M. (1997) Linguistic Instruments in Requirements Engineering. IOS Press,

Amsterdam
13. Buchholz, E., Cyriaks, H., Düsterhöft, A., Mehlan, H., and Thalheim, B. (1995) Applying a

Natural Language Dialogue Tool for Designing Databases. In: Int’l Workshop on Applications
of Natural Language to Databases. NLDB’95, pp. 119–133, 1995

14. Tjoa, A.M., Berger, L. (1993) Transformation of Requirement Specification Expressed in
Natural Language into an EER Model. In: Proc. 12th Int’l Conf. on Entity Relationship
Approach. ER1993, pp. 127–149, Springer, Heidelberg, 1993

15. Mich.: NL-OOPS (1996) From natural language to object oriented requirements using the
natural language processing system LOLITA. In: Natural Language Engineering. Cambridge
Universal Press

16. Ambriolla V., Gervazi V. (1997) Processing Natural Language Requirements. In: Proc. of Int’l
Conf. on Automated Software Engineering. ASE ’97, pp. 36–45. IEEE, 1997

17. Moreno A. (1997) Object-Oriented Analysis from Textual Specifications. In: Proc. 9th Int’l
Conf. on Software Engineering and Knowledge Engineering. SEKE 97, 1997

18. Juristo, N., Morant, J.L, and Moreno, A., M. (1999) A formal approach for generating OO
specifications from natural language. In: Journal of Systems and Software. Elsevier

19. Juristo, N., Moreno, A.M., López, M. (2000) How to use linguistic instruments for object-
oriented analysis. Software. IEEE

20. Harmain, H.M., Gaizauskas, R.: CM-Builder (2000) An Automated NL-based Case Tool. In:
15th Int’l Conf. on Automated Software Engineering. ASE’00, pp. 45–54. IEEE, 2000

21. Cabral, C., Sampaio, A. (2008) Formal specification generation from requirement documents.
In: Electronic Notes in Theoretical Computer Science. Elsevier

22. Burg J., van de Riet R. (1995) COLOR-X: Linguistically-based Event Modelling: A General
Approach to Dynamic Modelling. In: Proc. 17th Int. Conf. on Advanced Information System
Engineering. CAiSE1995. LNCS, pp. 26–39, Springer, Heidelberg, 1995

23. Rolland, C., Ben Achour, C. (1998) Guiding the construction of textual use case specifications.
In: Data & Knowledge Engineering, Vol.25, pp. 125–160. Elsevier

24. Menck, V. (2004) Deriving behavior specifications from textual use cases. In: Proc. Workshop
on Intelligent Technologies. Reference.kfupm.edu.sa, 2004

60

Conceptual Modeling and Natural Language Analysis 61

25. Kof, L. (2007) Scenarios: Identifying Missing Objects and Actions by Means of Compu-
tational Linguistics. In: Proc.15th Int’l Requirements Engineering Conference (RE 2007),
pp. 211–130. IEEE, 2007

26. Santos, J., Moreira, A., Araujo, J., Amaral, V., Alferez, M., Kulesza, U. (2008) Generating
Requirements Analysis Models from Textual Requirements. In: First Int’l Workshop on
Managing Requirements Knowledge. MARK2008, pp. 32–41. IEEE, 2008

27. Rolland, C., Souveyet, C., and Ben Achour, C. (1998) Guiding Goal Modelling Using
Scenarios. In.: Transactions on Software Engineering (TSE). 24(12), pp. 1055–1071, IEEE

28. Overmyer, S.P. Lavoie, B. Rambow, O. (2001) Conceptual modeling through linguistic analysis
using LIDA. In: Proc. 23rd Int’l Conference on Software Engineering. ICSE2001, pp. 401–410.
IEEE, 2001

29. Cimiano, P., Völker, J. (2005) Text2Onto: A Framework for Ontology Learning and Data-
driven Change Discovery. In: Proc. 10th Int’l Conf. on Applications of Natural Language to
Information Systems (NLDB). LNCS, vol. 3513, pp. 227–238. Springer, Heidelberg, 2005

30. Zisman, A., Spanoudakis, G., and Pérez-Miñana, E. (2003) Tracing software requirements
artifacts. In: Proc. Int’l Conf. on Software Engineering Research and Practice. SERP, 2003

31. Herbst, H. (1997) Business rule-oriented conceptual modeling. (Physica Verlag). Springer,
Heidelberg

32. Rayson, P., Emmet, L., Garside, R., Sawyer, P. (2001) The REVERE Project: Experiments
with the application of probabilistic NLP to Systems Engineering. In: M. Bouzeghoub et al
(eds.). Natural Language Processing and Information Systems. LNCS, pp. 288–300, Springer,
Heidelberg, 2001

33. Gervasi, V., Zowghi, D. (2005) Reasoning about inconsistencies in natural language
requirements. In: Transactions on Software Engineering and Methodology. TOSEM 14(3),
pp. 277–330. ACM

34. Saeki, M., Kaiya, H. (2008) Supporting the elicitation of requirements compliant with
regulations. In: Z. Bellasene, M. Leonard (eds.). CAiSE 2008. LNCS, vol. 5074, pp. 228–242,
Springer, Heidelberg, 2008

35. Prat, N. (1997) Goal formalisation and classification for requirements engineering. In: Proc. 3rd
Int’l Workshop on Requirements Engineering: Foundations of Software Quality. REFSQ1997.
LNCS, pp. 145–156. Springer, Heidelberg, 1997

36. Liaskos, S., Lapouchnian, A., Yu, Y., Mylopoulos, J. (2006) On goal variability acquisition
and analysis. In: Proc. Int’l Conf. on 14th Requirements Engineering Conference. RE2006,
pp. 79–88. EEE, 2006

The Three Dimensions of Requirements Engineering+

Klaus Pohl

Informatik V, RWTH-Aachen, Ahornstr. 55, 5100 Aachen
pohl@ informatik.rwth-aachen.de

Abstract. Requirements engineering (RE) is perceived as an area of growing importance. Due to
the increasing effort spent for research in this area many contributions to solve different problems
within RE exist. The purpose of this paper is to identify the main goals to be reached during the
requirements engineering process in order to develop a framework for RE. This framework consists
of the three dimensions:

• the specification dimension

• the representation dimension

• the agreement dimension

Looking at the RE research using this framework, the different approaches can be classified and
therefore their interrelationships become much clearer. Additionally the framework offers a first
step towards a common understanding of RE.

1 Introduction

There is general agreement among software engineers and researchers that an early
stage of the software development life cycle called requirements engineering exists.
Furthermore requirements engineering (RE) is perceived as an area of growing importance.
Due to the increasing effort spent for research in this area many contributions to solve
different problems within RE exist. The purpose of this paper is to identify the main
goals to be reached during the requirements engineering process in order to develop a
framework for RE, the three dimensions of requirements engineering. Looking at the RE
research using this framework the different approaches can be classified and therefore
their interrelationships become much clearer. Additionally the framework offers a first
step towards a common understanding of RE.

A first impression of the research subsumed under the term requirements engineering
can be gained by looking at the topics (cf. table 1) of the first major international meeting
on RE (International Symposium on RE 1993).

+ This work was supported by ESPRIT Basic Research Action 6353 (NATURE) which is concerned with Novel
Approaches to Theories Underlying Requirements Engineering and by the state Nordrhein-Westfalen, Germany.

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

63

mailto:pohl@ informatik.rwth-aachen.de

K. Pohl

• formal representation schemes and RE modelling
• descriptions of the RE process
• tools and environments to support RE
• requirements engineering methods;
• requirements analysis and validation;
• requirements elicitation, acquisition and formalization
• establishing traceability to requirements
• reuse and adaptation of requirements;
• intersections with AI, domain modelling and analysis
• intersections with computer-human-interaction and cognitive

science;
• intersections with group and cooperative work
• intersections with systems engineering

Tab. l. Topics of the First International Symposium on Requirements Engineering.

Even to understand the topics, the question "What is requirements engineering?" must
be answered first. For example, before talking about tools and environments for supporting
RE, a clear idea of the aim of RE (e.g., building a requirement specification as defined
in IEEE STD 830-1984) and the problems to deal with, must be available. Also before
looking at the intersections between RE and other research areas, a common understanding
of RE must be gained first. But the topics illustrate, that RE is an interdisciplinary

research area.

To get a more detailed view of the ongoing research, we give a brief overview of the
RE literature. First, we focus on the research dealing with the detection of requirements.

This includes the problems of requirements elicitation and capture as well as the problems
of validation and verification of requirements (e.g., [11], [29], [30], [84], [64], [87]).
To represent requirements formal specification languages (e.g., Z [92], VDM [8], [47],
PAISLey [100]) and knowledge representation languages (e.g., RML [41], ERAE [45],
TELOS [76], [55]) were proposed. They offer the advantage of automatic reasoning (e.g.,
[9), [73], [65], [62], [96]) but applying them to RE is not straight forward (e.g., [4], [46],
[3], [28]). Moreover, they must be generated from, and integrated with, informal RE
specifications (e.g., [41], [6], [57], [38], [34], [74], [59]).

During the RE process different views of the system to be built exist. Some work
concerns view integration and viewpoint resolution (e.g., [63], [64], [31]). Others suggest
to focus on the social and cognitive aspects of RE (e.g., [90], [40]), thus gaining a better
specification. Methods of AI are also used to support the RE process (e.g., [I], [5],
[65], [69], [58], [94], [86], [68]). The advantages of reusing specification for economical
reasons as well as for avoiding errors were lined out (e.g., [7], [36], [66], [94], [67],
[22], [16], [68]). Other research focuses on theRE process (e.g., [43], [17], [44], [53],
[18], [80]). It was recognized, that the RE process must be traceable (e.g., [33]) and
understandable. Therefore the recording of design rationale (e.g., [83], [88], [53]) and
the integration of argumentation concepts into theRE area are proposed (e.g., [15], [85]).
Generally speaking it can be said that methodologies for supporting RE that based on
different representation formalisms exist, but do not tell the requirements engineer very
clearly how to proceed (e.g., ER [13], SA [95], [98], JSD [12], object-oriented analysis
[93], [79], [75], [14], conceptual modelling [77], F-ORM [22], PSUPSA [89], SREM

64

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

[2], ASPIS [84], KBSA [19]). Also some classification of the methods were proposed
(e.g., [101], [21]).

Even with the coarse classification of the literature made above the main goals and
the real problems of RE are not visible. A first step into getting to the heart of RE is to
distinguish between two kinds of problems:

• original requirements engineering problems and
• problems caused by approaches which try to solve the original problems.

Making the original RE problems and the goals to be reached during the process explicit
provides the basis for classifying the research of the RE area and for guiding a RE process.
In section 2, we consider the RE process at an abstract level. Looking at the initial input
and the desired output, three main characteristics can be identified. These features lead to
the three dimensions of requirements engineering which are the main contribution of this
paper (section 3). In section 4 we look at theRE process within the three dimensions. Thus
the goals to be reached by the RE process are recognized and the problems which occur
during the process can be classified. A classification of computer support for requirements
engineering is made in section 5. In section 6 our contributions are summarized.

2 The Requirements Engineering Process

McMenamin and Palmer [71] suggest to distinguish between the essence of a system
and its incarnation. The essence is defined by all essential activities and data stores
whereas the sum of people, phones, computer systems, offices, typewriters, pencils,
rubbers and so forth that are used to implement the system are the incarnation (cf. [71],
[98]). To get a clear idea of the essence of a system they assume that the system can
be implemented using perfect internal technology. This assumption makes it easier to
concentrate on the essence of the system instead of getting influenced by unnecessary
side aspects. Therefore the essence of a system has to be clearly defined first; aspects
which come from the use of imperfect technology are not considered. After this, the
so gained essential model of the system is extended by actions and data stores based on
the use of imperfect technology. In the following we use this approach to look at the
RE process.

Looking at a process (e.g., the requirements engineering process) on a abstract level,
its essence is transforming an input to a desired output. Assuming that the RE process can
make use of perfect technology (perfect tools, no social conflicts, no cognitive limitations
etc.) it is insignificant how the transformation is achieved. Let us focus on the output
of the RE process first.

2.1 The Desired Output

There is no doubt, that at the end of requirements engineering a specification of
the system to be built (at least for the current version of the system) must exist. This
specification serves as a basis for the next phase within the software life cycle. Thus, as
a first characteristic of the output of the RE process, a specification of the system can
be identified. We don't focus on the details of the final specification at this point. It is

65

K. Pohl

enough to keep in mind that the complete specification, as expected, is the basic result
of the RE process.

If the system specification is expressed using e.g. natural language, different people
may understand the same specification in different ways. This may lead to unexpected
designs and implementations. To avoid different interpretation of a specification, more
and more people suggest to use a formal language for representing the specification of the
system. Additionally a formal language offers the possibility of reasoning support. So
the result of the RE process should be expressed using a formal language.

But it is not enough to produce a specification expressed in a formal language.
Assume that a functionality called work control is well defined and that there exists no
problem in mapping this part of the specification into a design and an implementation
later on. But within the requirements engineering team only a few people agree on
this functionality promoted by the people which are responsible for cost control. The
representatives of the users don't like this functionality at all. If no common agreement
is reached during the RE phase, the problems caused by this must be solved later on. As
experience has shown, more effort is needed to correct errors in the later phases of the
software life cycle [11]. To avoid expensive error corrections all people involved in the
RE process should end up on a common agreement on the final specification.

Summarizing the main characteristics of the desired output of the RE process are
a complete system specification expressed using a formal language on which all people
involved agree.

2.2 The Initial Input of the Process

At the beginning of the RE process the knowledge about the system is coarse. Some
features of the system are obvious, whereas about others only vague imaginations exist.
Therefore the understanding of the system and the specification which can be gained out
of it is very opaque. Since people involved in theRE process have various roles (e.g.,
user representative, system develo{fer, maintenance staff, financial officer) and different
skills and knowledge, each of them has his own understanding of the system to be built.
Especially at the beginning of the RE process many different visions of the system exist.
They may have something in common, but this is not necessarily the case. Hence at the
beginning of the RE process many personal views on the system exist and no common
representation format is used to express the expectations. Each stakeholder uses his
preferred representation format for expressing his personal view of the system. Some of
them may just think about the system (representing the knowledge in brain-structures),
others may make notes using natural language, or may draw pictures or graphics. Hence
mainly informal representations are used at the beginning of the RE process.

Summarizing, at the beginning of the RE process opaque personal views of the system
exist which are recorded using informal languages.

3 The Three Dimensions of Requirements Engineering

Looking at the brief description of the initial input and the desired output, three main
goals of the RE process can be identified:

66

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

• improving an opaque system comprehension into a complete system specification;
• transforming informal knowledge into formal representations;
• gaining a common agreement on the specification out of the personal views;

Out of these goals, three dimensions of RE can be gained: specification, represen­
tation and agreement dimension. Within the three dimensions, the initial input, as well
as the desired output can be characterized. This is shown in figure 1, where the initial
input is characterized by personal views, opaque system specification and informal repre­
sentation and the desired output by common agreement, complete system specification and
formal representation. In the following the three dimensions are described.

Fig. I. The Three Dimensions of Requirements Engineering.

3.1 The Specification Dimension

The specification dimension deals with the degree of requirements understanding at
a given time. At the beginning of theRE process the specification of the system and its
environment is more or less opaque. This goes along with the vague imagination of the
system at the early stage of the RE process. Focusing on this dimension, the aim of RE is
to transform the operational need into a complete system specification through an iterative
process of definition and validation (e.g., analysis, trade-off-studies, prototyping).

Several standards and guidelines describe how the final requirements specification
should look like (e.g., IEEE Std. 830 [49], British Standard 6719, European Space Agency
ESA PSS-05-0 [72]). In the following we briefly describe the properties a requirements
specification should have. A more detailed description of the attributes of a requirements
specification and an overview of existing standards and guidelines can be found in [25].

First of all, a. requirement specification is supposed to state what a system should do
and not how (cf. [20]). Additionally, the specification must be unambiguous, complete,
verifiable, consistent, modifiable, traceable and usable during operations and maintenance
(cf. [49] for a detailed description).

67

K. Pohl

Secondly a differentiation between two kinds of requirements can be made:

o functional requirements
o non-functional requirements

The functional requirements specify what the software must do. According to IEEE 830,
non-functional requirements can be further divided into performance, design constraints,
external iflterjace and quality attributes. Performance requirements deal with the execution
time and computational accuracy. Design constraints are predefined designs imposed
on the software development by the customer. External interface requirements define
everything outside the subject of the system the software must deal with (e.g., constraints
from other standards, hardware or people). With quality attributes the quality of the
software to be reached is defined (cf. [61] for examples of quality attributes).

Beside this classification of requirements a distinction between vital requirements and
desirable requirements should be made (cf. British Standard 6719 [48]). Vital require­
ments must be completely accomplished by the system, whereas desirable requirements
may be relaxed and need not be met within the stated limits. Some standards propose
to include costs and schedule information in the requirements specification (e.g., British
Standard 6719) whereas other separate them from requirements engineering (e.g., IEEE
Statement of Work). Additionally many proposals for validation and verification of system
specification were made (e.g., [11], [99], [10], [35], [25], [64]).

Summarizing the first main goal of RE, as identified by many researchers, is to built
a requirements specification, according to the standard and/or guideline used. The degree
of the specification (opaque to complete) is captured by the specification dimension.

3.2 The Representation Dimension

The representation dimension copes with the different representations (informal and
formal languages, graphics, sounds etc.) used for expressing knowledge about the system.
Within RE there are three categories of representations. The first category includes
all informal representations, such as arbitrary graphics, natural language, descriptions
by examples, sounds and animations. The second category subsumes the semi-formal
languages such as SA-diagrams, ER-diagrams, SADT etc. The third category covers
formal languages such as specification languages (e.g., VDM [8], Z [92]) or knowledge
representation languages (e.g. ERAE [45], Telos [76]).

Each of these categories offers some unique advantages. Informal representations
like natural language are user-oriented. They are well known, since they are used in
daily life. The expressive power offered by informal representation is very high and all
kinds of requirements freedom are available (e.g., ambiguity, inconsistency, contradictory;
cf. [4], [28] for more detail). Semi-formal representations like SA or ER diagrams are
based on a structured graphical visualization of the system. The representations are clear
and provide a good overview of the system ("one picture says more than a thousand
words"). Additionally they are widely used within industry as a quasi-standard. In
contrast to informal representation the semi-formal representation come with formally
defined semantics, which could be used for reasoning. But the formal defined semantic
of semi-formal languages is very poor, so still most of the represented knowledge has no
formal meaning. Formal representation languages have a richer well defined semantic.

68

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

Therefore reasoning about most of the represented knowledge is possible. Even code can
be (partially) automatically generated out of a them. So formal representation languages
are more system oriented.

The use of a particular representation language has two main reasons. The first reason
for using a special language is simply personal preference. Due to the advantages of each
representation class, different people prefer different representations. For example the
system user may like natural language, whereas the system specialist may prefers formal
representation. The second reason for using a particular language is the current state of the
specification. At the beginning of the RE process normally informal languages are used,
whereas at the end specifications are often represented using formal languages. Hence
the RE process must assure, that out of the informal requirements a formal specification
is achieved. Since different representation languages are used within the RE process
in parallel, they must additionally be kept consistent. Suppose that a requirement was
expressed using natural language by the customer. Out of this requirement, a formal
specification was built by the system specialist. If, for example, the informal requirement
is revised, it must be assured that the formal representation of the specification is modified
accordingly.

The representation language used does not imply if a specification is vague or precise.
Hence the representation dimension is orthogonal to the specification dimension. A
vague imagination of the system can be expressed using a natural language, but also
using a formal representation language. Also concrete (formally defined) ideas can
obviously be represented using a formal representation language, but they can also be
exactly described using natural language (e.g., lawyers try to do so). Looking at the
specification 'the age o:f Carl is 10 years' and on a formal specification, e.g.,
using first order logic, 'age (Carl, 10, years)' no difference can be recognized.
Whereas the vague specification 'Carl is young' is also vague if it is represented in first
order logic 'young (Carl) '. Hence the difference between the two specifications, vague
versus precise, remains the same, independent of the representation language used.

Summarizing, during the RE process different representation languages are used.
At the beginning of the process the knowledge about the system is expressed using
informal representations, whereas at the end of RE the specification must also be formally
represented.

The second main goal of the RE process is threefold. First, different representations
must be offered. Second, the transformation between the representations (e.g., informal to
semi-formal, informal to formal) must be supported. Third, the different representations
must be kept consistent.

3.3 The Agreement Dimension

The third dimension deals with the degree of agreement reached on a specification.
At the beginning of the RE process each person involved has its own personal view
of the system. Of course few requirements may be shared among the team, but many
requirements exist only within personal views of the people, e.g., stemming from the
various roles the people have (system analyst, manager, user, developer etc.). In the
following the expression comnwn system specification is used for the system specification
on which the RE team has agreed.

69

K. Pohl

The RE process tries to increase the conunon system specification. But still require­
ments exist on which none or only partial agreement was reached. Let's focus on a
simple example. Assume, that a library system is currently specified by an RE team.
An agreement was gained, that data about the real world object 'book' must be stored.
Each stakeholder defines (from his point of view) the properties of the object 'book'.
The user defines the properties 'book-title, author-name, year' using natural
language. The system analyst additionally defines the properties 'book-id, status­
of-book (loaned I available I defect I stolen I ordered) ' using a for­
mal representation language and the specification of the librarian consists of the prop­
erties 'names of authors, keywords, classification-no., location, ... '.
Therefore, the need for storing information about the object book belongs to the common
system specification, whereas at the same time the properties to be stored are pertained by
the personal views. In addition the coexistent specifications are expressed using different
representation languages.

Different views of the same system have positive effects on the RE process. First,
they provide a good basis for requirements elicitation (e.g., [64]). Second, the examination
of the differences resulting from them can be used as a way of assisting in the early
validation of requirements. Hence having different views enables the team to detect
additional requirements. Moreover, if contrasting requirements were stated, conflicts can
be detected and therefore become explicit.

It is important to recognize that the integration of different views at the representation
level (e.g., integrating formally represented views into a comprehensive view) and the
agreement on the integrated view among the people involved in the process are two
separate actions. The fact, that a view was formally integrated has nothing to do with
the agreement which exists on this view. A detected conflict must be solved through
communication among people. Of course this communication has the aim of attaining
an agreement (solving the conflict), but as a side effect additional unknown arguments
(requirements) could be detected (cf. [15], [85]). Support for conflict resolution can
be found in the area of computer supported cooperative work (e.g., [97], [42], [15]).
Additionally support can be offered through different representations, e.g., by providing
informal knowledge for explanation of formal representations, by offering graphical
representation for overview of the system, or by automated detection of differences
between formal specifications.

Summarizing, the agreement dimension is as important as the representation and
specification dimension. We have pointed out that several specifications expressed in
different representation formats may exist at the same time. Further we showed, that the
coexistence of different views has positive effects on the RE process. Thus, allowing
different views and supporting the evolution form the personal views to a common
agreement on the final specification is the third main goal of RE.

4 The RE Process within the Three Dimensions

Looking at the RE process within the three dimension, the aim of the RE process
can be stated as getting from the initial input to the desired output. So the trace of the RE
process is an arbitrary curve within the cube spanned by the three dimensions (cf. figure 2).

70

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

The initial input is characterized as opaque personal views of the system represented using
informal languages, whereas the desired output is characterized as formally represented,
complete system specification on which agreement was gained (cf. section 2 for details).
The main goals of the RE process can be sketched as follow (cf. section 3 for details):

• develop a complete system specification out of a opaque system understanding
• providing integrated representations and support the transformation between them
• accomplish a common agreement on the final specification allowing personal

views.

Fig. 2. The RE process within the three dimensions.

Getting from the initial input to the desired output is an interactive process consisting
of different actions. An action can of course affect more than one dimension; improving
one dimension often lead to a step back in another dimension.

The transformation of informally represented knowledge into a formal specification
is a good example of an action (transformation step) affecting all three dimensions. An
improvement within the representation dimension is gained, since informal knowledge
is transformed into a formal representation. But during the formalization a contradiction
within the formal representation may be detected by automated reasoning. This leads to a
communication within the RE team to gain an agreement about the conflict (improvement
of the agreement dimension), but additionally as a side effect a new requirement was no­
ticed. The integration of the requirement as well as the agreement about the contradiction
lead to an improvement of the specification dimension. The original action, transforming
informally represented knowledge into a formal representation causes the execution of
other actions and therefore affects all three dimensions.

This view of the RE process can not only be applied for the overall system speci­
fication. Also the evolution of each individual requirement can be covered by the three
dimensions. A specific requirement can be represented within different specifications
(personal views), each of these views can be represented using different representations

71

K. Pohl

and the specific requirement can be well understood by a part of the RE team, whereas
the other part may have still only vague ideas about it. Hence, the three dimensions and
the view of theRE process as an interactive transformation process consisting of actions
also helps to understand the RE process at a microscopic level.

Since the RE process takes place in the 'normal' world, the result of the RE process
is influenced by various factors. All of them can have both positive and negative influence
on the RE process. We identified five main factors influencing the RE process:

o Methods and Methodologies: The process is influenced by the methods and
methodologies used for guiding the process. Of course using another method
during the process can lead to different results, since they focus on different
things. If e.g., structured analysis was used, the final formal specification can be
totally different in comparison to a specification gained by using object oriented
analysis.

o Tools: The final specification depends on the tools used during the process. If
e.g., a reasoning tool for formal representations was used, inconsistencies can be
detected, which otherwise could be still in the final specification.

o Social Aspects: The social environment of the RE team affects their working
results. If e.g., there are conflicts between the different persons, they work more
ineffectively; if the people feel fine at work, the output of the work is much better.

• Cognitive Skills: People have different cognitive skills. If very bright people are
involved in the RE process, the final specification is usually better.

• Economical constraints: Economical constraints limit the resources (people,
money, tools, etc.) which can be used during the RE process. It's not always
true, that with more resources a better result can be gained, but if the available
resources are low a certain limit, the output of the process gets less quality.

Discussing these influences in detail is beyond the scope of this paper. But it should be
clear, that these are not unique to the RE process. Most of the existing processes, e.g.,
the production processes, are influenced by these factors.

For these reasons it is necessary to distinguish between problems which are original
RE problems and those problems which are caused by one of the five influences mentioned
above. The problem of keeping SA-diagrams, ER-diagrams as well as the data-dictionary
consistent is an example for a problem caused by one of the five influences mentioned
above (methods). Another example is the problem of motivating people (social aspects).
Original RE problems are all the problems which are caused by the three dimensions.
Hence requirements capture, elicitation of requirements, transformations between different
representations, integration of different views are examples for original RE problems.

5 Computer Support for Requirements Engineering

Traditional CAD/CASE systems have often neglected that computer support for any
engineering activity must be based on an understanding of the process. In this section we
use the framework presented is this paper to characterize the kinds of computer support
that could be useful for RE. We distinguish between computer support for improving the
result of the RE process in one of the three RE dimensions, for guiding the process of
RE and for easing the influences on the process.

72

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

5.1 Specification Dimension

Getting to a deeper understanding of the system and therefore to a better system
specification can mainly be supported by three different kind of approaches.

First, generic knowledge (domain knowledge) can be used to improve the specifi­
cation of the system. There exist generic knowledge which is valid within a particular
domain, e.g., banking systems, but also domain knowledge which is valid within many
domains, e.g., stock control. It was demonstrated by many research contributions that the
use of domain knowledge has positive effects on the RE task (e.g., [5], [1], [36], [84],
[65], [86], [68], [51]).

Second, the reuse of specific knowledge can lead to a better system specification.
Reusing requirements specification of already existing systems leads to better insight of
the systems behavior and avoids misspecifications. If the requirements specification of an
existing system is not available it can be gained through reverse engineering (e.g., [36],
[7], [56], [16]). For both using generic and specific knowledge during the RE process,
support for retrieving suitable knowledge must be offered, e.g. using similarity based
search approaches (e.g., [39], [16], [91]).

Third, the current specification of the system can be improved by applying techniques
for requirements validation. Validating a software specification was characterized by
Boehm as "Am I building the right product" [11]. During the validation errors and gaps
within the current specification can be detected. This leads to a correct specification of
already known requirements (correcting the errors) or the detection of new requirements
(filling the gaps, e.g.,[ll], [30], [87]).

5.2 Representation Dimension

Within the representation dimensions the support which can be offered is twofold.

First, due to certain strengths and weaknesses of the different representation formats
the use of informal representation (e.g., natural language, graphics), semi-formal (e.g.,
ER, SA) and formal representation languages (e.g., VDM, Z, TELOS, ERAE) must be
possible. For keeping the knowledge, expressed in the different representation formats,
consistent, the different representations must be integrated. The relationship between
formal and informal representations is much less understood. But hypertext offers a
opportunity to structure informal requirements and to relate them to formal approaches
(e.g., [60], [15], [85], [59]).

Second, the transformation between informal, semi-formal and formal representations
must be supported. On one side, support for automated derivation of formal specifica­
tions out of informal descriptions has to be offered (e.g., [41], [57], [74], [34], [87]).
On the other side, the transformation process must be supported by offering requirements
freedom within the formal representation language. Formally specifications have tradi­
tionally been expected to be complete, consistent and unambiguous. However, during
the initial definition and revision of formal requirements, they are typically fragmented,
contradictory, incomplete, inconsistent and ambiguous. Furthermore the expressions may
include various levels of abstractions (concrete, examples, general properties etc.). Since
formal requirements are built out of non-formal, the acquisition process must allow many
freedoms (cf. [3], [28], [51]).

73

K. Pohl

5.3 Agreement Dimension

There was not much research done in supporting the agreement dimension within
the area of requirements engineering. Nevertheless, three kinds of essential assistance for
the agreement dimension can be identified.

First, as pointed out in section 3.3, different views of the system exist during the
RE process. Even within formal languages it must be possible, that different views and
different specifications exist in parallel. Also the different views and specifications must
be maintained during the RE process.

Second, support for detecting dissimilarities and inconsistencies between the different
views must be offered. Additionally the integration of different views must be supported
by appropriated tools. Contradictions for example can be made explicit through automatic
reasoning and of course the work out of a solution can be supported. Viewpoint resolution
and view integration are two good examples for such support (e.g., [64], [31]).

Third, as mentioned in section 3.3, an agreement can only be gained through
communication among the involved people. Hence supporting the communications,
conversations, coordination and collaboration between people as well as decision support
leads to better and possibly faster agreements. Research done in the CSCW area can
contribute basic solutions for this (e.g., [97], [42], [32], [27], [70]).

5.4 Process Modeling

To support the overall RE process a suitable process model must be developed for
guiding the RE process within the three dimensions.

According to Dowson [26], process models can be classified in three categories:
activity-oriented, product-oriented and decision-oriented models. From the viewpoint of
requirements engineering, only the last category appears to be partially appropriate. It
is probably difficult to impossible to write down a realistic state-transition diagram (to
cite a popular activity-oriented model) that adequately describes what has to happen or
actually happens in RE. But relying on the pure object history is also insufficient. Even
the decision-based approach (e.g., [52], [88], [82]) offer only limited hints when and how
to decide on what. The central aspect of the process model for RE is therefore that it
makes the notion of situation (in which to decide) explicit and relates it to the broader
question of context handling (e.g., [80]).

Using the three dimensions, for each action a prediction, how the specification will
change after the actions was applied, can be made. For example for validation at least
a prediction can be made, that after the validation, the specification dimension will be
improved. Within the NATURE [50] project it is assumed, that the basic building block
of any process can be modelled as a triplet <situation, decision, action> [43]. A process
model based on this assumption for supporting the RE process within the three dimensions
is currently under development.

The last two feature, to be mentioned here, is the importance of quality orienta­
tion and process improvement (cf. [53], [80] for more information about quality and
improvement oriented process models). It was recognized within the mechanical engi­
neering community, that it is insufficient to correct the missing quality of a product after
the fact it was produced. Quality must be produced in the first place. Therefore quality

74

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

oriented process models are necessary. Especially in rapidly changing areas, like software
production, it is very important to have evolving and quality oriented process models.

5.5 Easing the Influences on RE

As identified in section 4 five main influences on RE exist. Social aspects, cognitive
skills and economical constraints are basic influences on the process. In contrast, methods
and methodologies as well as tools are designed to support the process within the three
dimensions, but also to ease the basic influences on the process (social aspects, cognitive
skills and economical constraints). For designing appropriate methods, methodologies or
tools knowledge gained within other research area can be used, e.g., management methods
(e.g., TQM [23], [78]), organizational measures (e.g. value-added chains [81]).

Beside the task of building suitable methods and tools the need for recording of
process knowledge was recognized to make the development process of software and
specifications traceable (e.g., [24], [88], [54], [531). Informal, semi-formal as well as
formal knowledge must be recorded, and therefore interrelated. Hypertext is supposed to
offer a solution for the integration of different representation (e.g., [37], [6], [38]).

6 Conclusions

In this paper we introduced a framework for requirements engineering (RE). First
we focused on the essence of the RE process. We characterized the 'initial input'
of the RE process as opaque personal views at the system expressed using informal
representation languages. The 'desired output' was sketched as a complete system
specification expressed using formal languages on which an agreement was reached. Based
on this characterization the three main goals of RE were identified:

o gaining a complete system specification out of the opaque views available at the
beginning of the process, according to the standard and/or guideline used,

o offering different representation formats, supporting the transformation between
the representation (e.g., informal to semi-formal, informal to formal) and keeping
the various representations consistent,

o allowing various views and supporting the evolution form personal views to
common agreement on the finial specification.

Out of these, the three dimensions of RE were gained:

o specification,
o representation and
o agreement dimension

Looking at RE using these three dimensions we identified the main tasks and goals to
be reached within each dimension during the RE process. But RE is not only driven
by its goals, it is also influenced by the environment. We identified five main factors
influencing requirements engineering: methods and methodologies, tools, social aspects,
cognitive skills and economical constraints. Accordingly existing research and computer
support was briefly sketched by distinguishing between computer support for improving

75

K. Pohl

the specification in one of the three RE dimension, for guiding the process of RE and
for easing the influences on RE.

Within the NATURE project this framework is used for classifying RE problems and
for making process guidance possible. The framework itself should be seen as a first
attempt to accomplish a common understanding of RE within the community. It should
serve as a basis for discussing research topics and identifying the main problems of RE.

Acknowledgments

I am indebted to Stephan Jacobs and Matthias Jarke for many fruitful comments on an earlier

version of this paper. Additionally I am grateful to John Mylopolous and many colleagues within

the NATURE project for discussions which have positively influenced this paper.

References

1. B. Adelson and E. Soloway. The Role of Domain Experience in Software Design. IEEE
Transaction on Software Engineering, 11(11), 1985.

2. Mack W. Alford. Software Requirements Engineering Methodology (SREM) at the age of two.
In 4th Int. Computer Software & Applications Conference, New York, pages 866-874. IEEE,

1980.
3. R. Balzer. Tolerating Inconsistency. In Int. Conference on Software Engineering, pages 158-

165, Austin, Texas, 1991.

4. R. Balzer, N. Goldman, and D. Wile. Informality in program specifications. IEEE Transactions
on Software Engineering, 4(2):94-103, 1978.

5. D.R. Barstow. Domain Specific Automatic Programming. IEEE Transaction on Software
Engineering, 11(11), 1985.

6. James Bigelow. Hypertext and CASE. IEEE Software, pages 23-27, March 1988.

7. T. Biggerstaff and R. Richter. Reusability Framework, Assesment and Directions. IEEE
Transaction on Software Engineering, 13(2), 1987.

8. D. Bjoerner and C.B. Jones. VDM'87 VDM-A Formal Method at Work. LNCS 252, Springer
Verlag, 1988.

9. Alexander Borgida, Sol Greenspan, and John Mylopoulos. Knowledge Representation as the
Basis for Requirements Specifications. Computer, 18(4):82-91, April 1985.

10. Marilyn Bush. Improving Software Quality: The use of Formal Inspections at the Jet Propulsion
Laboratory . In Proc. of the 12th Int. Conf on Software Engineering, March 26-30, Nice,
France, pages 196-199, 1990.

11. B.W.Boehm. Verifying and Validating Software Requirements and Design Specifications. IEEE
Software, 1(1):75-88, January 1984.

12. John R. Camaron. An Overview of JSD. IEEE Transaction on Software Engineering,
12(2):222-240, February 1986.

13. P.P.S. Chen. The Entity-Relationship Approach: Towards a Unified View of Data. ACM
Transactions on Database Systems, 1(1), 1976.

14. Peter Coad and Edward Yourdon. Object Oriented Analysis. Prentice-Hall, Englewood Cliffs,
New Jersey, 1990.

76

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

15. J. Conklin and M. J. Begeman. giBIS: A Hypertext Tool for Exploratory Policy Discussion.
ACM Transaction on Office lnfonnation Systems, 6(4):303-331, 1988.

16. P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou. Software Information Base:
A server for reuse. ESPRIT project ITHACA, Heraklion, Crete, ICS-FORTH, 1991.

17. B. Curtis, H Krasner, and N. lscoe. Field Study of the Software Design Process for Large
Systems. Communication of the ACM, 33(11):1268-1287, 1988.

18. Bill Curtis, Marc I. Kellner, and Jim Over. Process Modelling. Communications of the ACM,
35(9):75-90, September 1992.

19. A. Czuchry and D. Harris. KBSA: A New Paradigm for Requirements Engineering. IEEE
Expert, 3(4):21-35, 1988.

20. Alan M. David. The Analysis and Specification of Systems and Software Requirements. In
Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements Engineering, pages
119-134. IEEE Computer Society Press- Tutorial, 1990.

21. Alan M. Davids. A Comparison of Techniques for the Specification of External System
Behavior. Communications of the ACM, 31(9):1098-1115, 1988.

22. V. de Antonellis, B. Pernici, and P. Samarati. F-ORM Method: Methodology for reusing
Specifications. ITHACA Journal, (14):1-24, 1991.

23. W. E. Deming. Out of the Crisis. Massachusetts Institiute of Technology, Center for Advanced
Engineering Study, Cambridge, 1986.

24. V. Dhar and M. Jarke. Dependency Directed Reasoning and Learning in System Maintenance
Support. IEEE Transactions on Software Engineering, 14(2):211-228, 1988.

25. Merlin Dorfman and Richard H. Thayer. Standards, Guidelines and Examples on System and
Software Requirements Engineering. IEEE Computer Society Press- Tutorial, 1990.

26. M. Dowson. Iteration in the Software Process. In Proceedings 9th Int. Conf. on Software
Engineering, April 1987.

27. C. A. Ellis, S. J. Gibbs, and G. L. Rein. Groupware: Some Issues and Experience.
Conununication of the ACM, 34(1):38-58, 1991.

28. M. S. Feather and S. Fickas. Coping with Requirements Freedom. In Proceedings of the
International Workshop on the Development of Intelligent lnfonnation Systems, pages 42-46,
Niagara-on-the-Lake, Ontario, Canada, April 1991.

29. S. Fickas. Automating analysis: An example. In Proceedings of the 4th International Workslwp
Software Specification and Design, pages 58-67, Washington, DC, April 1987.

30. S. Fickas and P. Nagarajan. Critiquing Software Specifications. IEEE Software, pages 37-47,
November 1988.

31. A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke. Viewpoints:
A Framework for Integration Multiple Perspectives in System Development. International
Journal of Software Engineering and Knowledge Engineering, 1(2), May 1992.

32. Gerhard Fischer, Raymond McCall, and Anders Morch. JANUS: Integrating Hypertext with
a Knowledge-based Design Environment. In Proceedings of Hypertext '89, November 5-8,
Pittsburgh, Pennsylvania, pages 105-117, 1989.

33. R.F. Flynn and D. Dorfmann. The Automated Requirements Traceability System (ARTS): An
Experience of Eight Year. In Thayer R.H. and M. Dorfman, editors, Systems and Software
Requirements Engineering, pages 423-438. IEEE Computer Society Press- Tutorial, 1990.

34. Martin D. Fraser, Kuldeep Kumar, and Vi jay K. Vaishnavi. Informal and Formal Requirements
Specification Languages Bridging the Gap. IEEE Transactions on Software Engineering,
17(5):454-466, May 1991.

35. Daniel P. Freeman and Gerald M. Weinberg. Handbook of Walkthroughs, Inspections and
Teclmical Reviews. Dorset House Publishing, New York, 1990.

36. P. Freemann, editor. Software reusability. IEEE Press- Tutorial, 1987.

77

K. Pohl

37. Pankaj K. Garg and Walt Scacchi. On Designing Intelligent Hypertext Systems for Information
Management in Software Engineering. In Proceedings of Hypertext '87, November 13-15,
Chapel Hill, North Carolina, pages 409-432, 1987.

38. Pankaj K. Garg and Walt Scacchi. A Hypertext System to Manage Software Life-Cycle
Documents. IEEE Software, pages 90-98, May 1990.

39. D. Gentner. Structure Mapping: A Theoretical Framework for Analogy. Cognitive Science,
5:121-152, 1983.

40. Joseph A. Goguen, Marina Jirotka, and Matthew J. Bickerton. Research on Requirements
Capture and Analysis. Technical report, Oxford University Computing Laboratory, Centre for
Requirements and Foundations, December 1991.

41. S.J. Greenspan. Requirements Modeling: A Knowledge Representation Approach to Software
Requirements Defmition. PhD thesis, Dept. of Computer Science, University of Toronto, 1984.

42. I. Greif, editor. Readings in Computer-Supported Cooperative Work. Morgan Kaufmann, 1988.
43. George Grosz and Colette Roland. Using artificial intelligence techniques to formalize the

information system design process. In Proc. Int. Conf Databases and expert Systems
Applications, pages 374-380, 1990.

44. R. Guidon and B. Curtis. Control of cognitive process during software design: What tools are
needed? In E. Soloway, D. Frye, and S.B. Sheppard, editors, Proc. of CHI '88 Conference:
Human Factors in Computer Systems, pages 263-269. ACM Press NY, 1991.

45. J. Hagelstein. Declarative Approach to Information Systems Requirements. Knowledge Base
Systems, 1(4):211-220, 1988.

46. Anthony Hall. Seven Myths of Formal Methods. IEEE Software, (9): 11-19, September 1990.
47. C.A.R. Hoare. International Conference on VDM and Z. LNCS 428, Springer Verlag, 1990.
48. IEEE. Standards, Guidelines, and Examples on System and Software Requirements Engineer­

ing. IEEE Computer Society Press - Tutorial, 1990.
49. IEEE. IEEE Std. 830-1984. In IEEE Software Engineering Standards Collection. IEEE, New

York, 1991.
50. Matthias Jarke, Janis Bubenko, Colette Rolland, Allistair Sutcliffe, and Yannis Vassiliou.

Theories Underlying Requirements Engineering: An Overview of NATURE at Genesis. In
Proceedings of the lth Int. Symposium of Requirements Engineering, San Diego, CA, 1993.
to appear.

51. Matthias Jarke, Stephan Jacobs, and Klaus Pohl et. al. Requirements Engineering: An
Integrated View of Representation, Process and Domain. In submitted to: ECSE '93, 1993.

52. Matthias Jarke, Manfred Jeusfeld, and Thomas Rose. A Software Process Data Model for
Knowledge Engineering in Information Systems. Information Systems, 15(1):85-116, 1990.

53. Matthias Jarke and Klaus Pohl. Information System Quality and Quality Information Systems.
In Proceedings of the IFIP 8.2 Working Conference on the Impact of Computer-Supported
Techniques on Information Systems Development, 1992.

54. Matthias Jarke and T. Rose. Specification Management with CAD0• In P. Loucopoulos and
R. Zicari, editors, Conceptual Modeling Databases, and CASE, 1991.

55. Manfred Jeusfeld. Anderungskontrolle in deduktiven Objektbanken. INFIX Pub, Bad Honnef,
Germany, 1992.

56. P. Johannesson and K. Kalman. A Method for Translating Relational Schemas into Conceptual
Schemas. In 8th bit. Conf. on Entity-Relationship Approach, pages 279-294, 1989.

57. W. Lewis Johnson. Deriving Specifications from Requirements. In Proceedings of the lOth
International Conference 011 Software Engineering, pages 428-438, Singapore, April 1988.

58. W. Lewis Johnson and Martin Feather. Building An Evolution Transformation Library. In
Proceedings of the 12th International Conference on Software Engineering, pages 428-438,
Nice, France, March 1990.

78

From: CAiSE 1993, LNCS 685 © Springer-Verlag Berlin Heidelberg 1993

59. W. Lewis Johnson, Martin. S. Feather, and David. R. Harris. Representation and Presentation
of Requirements Knowledge. IEEE Transactions on Software Engineering, 18(10), October
1992.

60. W. Lewis Johnson and David R. Harris. The ARIES Project. In Proceedings 5th KBSA
Conference, pages 121-131, Liverpool, N.Y., 1990.

61. S. E. Keller, L. G. Kahn, and R. B.Panara. Specifying Software Quality Requirements
with Metric. In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements
Engineering, pages 145-163. IEEE Computer Society Press- Tutorial, 1990.

62. Manolis Koubarakis, John Mylopoulos, Martin Stanley, and Matthias Jarke. Telos: A
Knowledge Representation Language for Requirements Modelling. Technical Report KRR­
TR-89-1, Department of Computer Science, University of Toronto, 1989.

63. Julio Cesar S. P. Leite. Viewpoint Analysis: A Case Study. In Proceedings of the 5th
International Workshop on Software and Design, pages 111-119, Pittsburgh, PA, 1989.

64. Julio Cesar S. P. Leite and Peter A. Freeman. Requirements Validation Through Viewpoint
Resolution. IEEE Transactions on Software Engineering, 17(12):1253-1269, December 1991.

65. P. Loucopoulos and R. Champion. Knowledge-Based Approach to Requirements Engineering
Using Method and Domain Knowledge. Knowledge-Based Syste1ns, 1(3), 1988.

66. M.D. Lubars and M.T. Harandi. Knowledge-Based Software Design Using Design Schemas.
In Proceedings 9th Int. Conf. on Software Engineering, April 1987.

67. Neil Maiden. Analogy as a Paradigm for Specification Reuse. Software Engineering Journal,
1991.

68. Neil Maiden. Analogical specification Reuse during Requirements Analysis. PhD thesis, City
University London, 1992.

69. M. Mannino and V. Tseng. Inferring Database Requirements from Examples in Forms. In
Int. Conf. on Entity-Relationship Approach, pages 391-405. Elsevier Publishers B.V. (North­
Holland), 1989.

70. David Marca and Geoffrey Bock. Groupware: Software for Computer-Supported Cooperative
Work. IEEE Computer Society Press, Los Alamitos, CA, 1992.

71. Stephen M. McMenamin and John F. Palmer. Essential System Analysis. Yourdon Press,
Prentice Hall, Englewood Cliffs, NJ 07632, 1984.

72. Richard H. Thayer Merlin Dorfman, editor. Standards, Guidelines, and Examples on System
and Software Requirements Engineering, chapter ESA Software Engineering Standards, pages
101-120. IEEE Computer Society Press Tutorial, 1990.

73. Bertrand Meyer. On Formalism in Specifications. IEEE Software, pages 6-26, January 1985.
74. Kauth Miriyala and Mehdi T. Harandi. Automatic Derivation of Formal Software Specifica­

tions Form Informal Descriptions. IEEE Transactions on Software Engineering, 17(10): 1126-
1142, October 1991.

75. David E. Monarchi and Gretchen I. Puhr. A Research 1)'pology for Object-Oriented Analysis
and Design. Communications of the ACM, 35(9):35-47, September 1992.

76. John Mylopoulos, Alex Borgida, Matthias Jarke, and Manolis Koubarakis. Telos: Representing
Knowledge about Information Systems. Transactions on Information SystelllS, 8(4):325-362,
1990.

77. John Mylopoulos and Hector J. Levesque. On Conceptual Modelling. Springer Verlag, 1986.
78. J. S. Oakland. Total Quality Management. In Proceedings 2nd Int. Conf. on Total Quality

Management, pages 3-17. Cotswold Press Ltd., 1989.
79. Barbara Pernici. Requirements Specifications for Object Oriented Systems. ITHACA Journal,

(8):43-63, January 1991.
80. Klaus Pohl and Matthias Jarke. Quality Information Systems: Repository Support for Evolving

Process Models. Technical report, RWTH Aachen, Informatik-Berichte 37-92, 1992.

79

K. Pohl

81. M. Porter. Competitive Advantage. Free Press, New York, 1985.

82. C. Potts. A Generic Model for Representing Design Methods. In Proceedings 11th lntema­
tional Conference on Software Engineering, 1989.

83. C. Potts and G. Bruns. Recording the Reasons for Design Decisions. In Proceedings lOth
lntemational Conference on Software Engineering, 1988.

84. P. Paolo Puncello, Piero Torrigiani, Francesco Pietri, Riccardo Burlon, Bruno Cardile, and
Mirella Conti. ASPIS: A Knowledge-Based CASE Environment. IEEE Software, pages 58-
65, March 1988.

85. B. Ramesh and V. Dhar. Process-Knowledge Based Group Support in Requirements
Engineering. IEEE Transactions on Software Engineering, 18(6), 1992.

86. Howard B. Reubenstein and Richard C. Waters. The Requirements Apprentice: Automated
Assistance for Requirements Acquisition. IEEE Transactions on Software Engineering,
17(3):226-240, March 1991.

87. C. Rolland and C. Proix. A Natural Language Approach for Requirements Engineering.
In Proceedings of the 4th Intemational Conference 011 Advanced lnfonnation Systems
Engineering, LNCS 593, 1992.

88. T. Rose, M. Jarke, M. Gocek, C.G. Maltzahn, and H.W. Nissen. A Decision-based
Configuration Process Environment. Special Issue on Software Process Support, lEE Software
Engineering Journal, 6(5):332-346, 1991.

89. H.H. Sayani. PSUPSA at the Age of Fifteen. In Thayer R.H. and M. Dorfman, editors, Systems
and Software Requirements Engineering, pages 403-417. IEEE Computer Society Press­
Tutorial, 1990.

90. Wall Scacchi. Managing Software Engineering Projects: A Social Analysis. IEEE Transaction
on Software Engineering, 10(1):49-59, 1984.

91. G. Spanoudakis and P. Constanlopoulos. Similarity for Analogical Software Reuse. In Proc.
ERCIM Workshop on Methods and Tools for Software Reuse, Heraklion, Crete, 1992.

92. J.M. Spivey. An introduction to Z and formal specifications. Software Engineering Journal,
4(1):40-50, 1990.

93. Alistair Sutcliffe. Object Oriented Systems Analysis: The Abstract Question. In Proc. I FIP WG
8.1 Conf. The Object Oriented Approach in Jnfonnation Systems, Quebec City, Canada, 1991.

94. Alistair Sutcliffe and Neil Maiden. Software reuseabilily: Delivering Productivity gains or
short cuts. In Proceedings INTERACT, pages 948-956. North-Holland, 1990.

95. C.P. Svoboda. Structured Analysis. In Thayer R.H. and M. Dorfman, editors, Systems and
Software Requirements Engineering, pages 218-227. IEEE Computer Society Press- Tutorial,
1990.

96. Jeanette M. Wing. A Specifier's Introduction to Formal Methods. Computer, (9):8-24,
September 1990.

97. T. Winograd and F. Flores. Understanding Computers and Cognition: A New Foundation for
Design. Ablex Norwood, NJ, 1986.

98. Edward Yourdon. Modem Structured Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1989.
99. Edward Yourdon. Structured Walkthroughs. Prentice-Hall, Englewood Cliffs, NJ, 1989.

100. Pamala Zave. An Insider's Evaluation of PAISLey. IEEE Transactio11 on Software Engineer­
ing, 17(3):212-225, March 1991.

101. Pamela Zave. A Comparison of the Major Approaches to Software Specification and Design.
In Thayer R.H. and M. Dorfman, editors, Systems and Software Requirements Engineering,
pages 197-199. IEEE Computer Society Press- Tutorial, 1990.

80

The Three Dimensions of Requirements
Engineering: 20 Years Later

Klaus Pohl and Nelufar Ulfat-Bunyadi

Abstract Requirements engineering is the process of eliciting stakeholder needs
and desires and developing them into an agreed set of detailed requirements that can
serve as a basis for all other subsequent development activities. In order to structure
this field, we identified in 1993 three key dimensions which drive the requirements
engineering (RE) process, namely, the specification, the representation, and the
agreement dimension. In this chapter, we revisit the three dimensions of RE and
sketch their evolution into our comprehensive RE framework in the past 20 years.

1 The Three Dimensions of Requirements
Engineering (1993)

In the original CAiSE paper from 1993 [3], we identified the three dimensions of
RE as depicted in Fig. 1.

The goal within the specification dimension is to arrive at a preferably complete
requirements specification. At the beginning of the RE process, the understanding
of the system and its requirements is typically opaque. At the end, the understanding
about the requirements should be as complete as possible. In other words, all
functional requirements, quality requirements, and constraints should be known at
the required level of detail.

The goal within the representation dimension is to document all requirements
as formally as possible to avoid misinterpretations. At the beginning of the RE
process, mainly natural language (informal representations) is used to document the
requirements for the system. At the end of the RE process, all requirements should
be documented using a formal language. Key reason for the documentation using

K. Pohl (�) • N. Ulfat-Bunyadi
paluno, The Ruhr Institute for Software Technology, University of Duisburg-Essen,
Essen, Germany
e-mail: klaus.pohl@paluno.uni-due.de; nelufar.ulfat-bunyadi@paluno.uni-due.de

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 6, © Springer-Verlag Berlin Heidelberg 2013

81

mailto:klaus.pohl@paluno.uni-due.de
mailto:nelufar.ulfat-bunyadi@paluno.uni-due.de

Agreement

Representation

Specification desired
output

informal formal

common view

opaque personal views

complete

Agreement

common viewi

personal views

fair

semi-formal

Agreement

common view

personal views

Fig. 1 The three dimensions of RE in 1993 [3]

a formal language is the precise semantics of formal languages which restricts the
interpretation of the requirements and thus avoids some typical misinterpretations.

The goal within the agreement dimension is to reach an agreement on the
requirements among all the stakeholders involved in the RE process. At the
beginning of the RE process, the stakeholders typically have different views with
regard to the goals and the requirements of the system. At the end, these different
views should have converged. In other words, conflicts should have been detected
and resolved and a common, integrated view about the goals and the requirements
the system should fulfill should have been established.

Progress in one dimension can impact progress in the other two dimensions
both, in a positive but also in a negative way. For example, the elicitation of
new requirements may lead to new conflicts among stakeholders or may uncover
existing conflicts. In this case, the progress in the specification dimension leads
to a drawback in the agreement dimension. Or, the formalization of a requirement
may reveal some gaps within the specification which leads to a drawback in the
specification dimension.

2 The Three Dimensions and Their Application (1994)

In the 1994 Information Systems paper [4] (a selected best paper of CAiSE’93), we
outlined various ways of applying the three dimensions including:

• The categorization of existing RE methods and tools by analyzing the support
they provide with regard to the three dimensions and uncovering gaps in the
support;

• The classification of RE problems (e.g. technical, social, and cognitive problems)
by identifying the cause of the problem based on the three dimensions;

82 K. Pohl and N. Ulfat-Bunyadi

The Three Dimensions of Requirements Engineering: 20 Years Later 83

• The analysis of RE practice by identifying problems within industrial RE
processes based on the three dimensions and solving them;

• The description of specific situations of an RE process within the three dimen-
sions which are used as guidance for the engineers and for decisions to be made
by the requirements engineer;

• The support for establishing pre-traceability of requirements by defining the
information to be recorded during the RE process based on the three dimensions.

All these applications have been researched more deeply in the subsequent
years and led to several publications. Our comprehensive textbook “Requirements
Engineering: Fundamentals, Principles, and Techniques” [5] describes most of those
findings and integrates most of these results into a holistic RE framework (see
below).

3 Evolution of the Three Dimensions (2012)

From 1993 till today, various industrial cooperations as well as further research led
to a deeper understanding of RE and in turn to an adaptation of the three dimensions.
The key adaptations are:

• Content dimension (previously specification dimension): We renamed the spec-
ification dimension into content dimension. The reasons for this renaming
are mainly twofold. First, the term ‘specification dimension’ led to various
misunderstandings. Most notably, people mixed it up with the requirements
specification itself. Second, as already described in 1993 [3], the goal of this
dimension is to arrive at a “complete system specification” meaning that all
relevant requirements are known and each requirement is understood at the
required level of detail. Thus, this dimension actually deals with the knowledge
gained during RE about the requirements and the constraints (independently of
how this knowledge is represented). Therefore, ‘content dimension’ is a much
better term for this dimension.

• Documentation dimension (previously representation dimension): We renamed
the representation dimension into documentation dimension. This renaming
reflects the need for documenting different types of information during the
RE process including decisions, rationales, change requests, priorities, risks.
Consequently, we refined and adjusted the goal to be achieved within this dimen-
sion. The goal is to document the content gained during RE using appropriate
documentation languages (e.g. text-based use-case templates, decision tables,
formal RE languages, structured text, graphical languages, pictures and the like)
and to establish, at the end of the RE process, a requirements specification, which
complies with the specification rules defined for the development project (see [5]
for details). The final requirements specification does not necessarily have to
be formal. In general, the choice of the language used to document particular

requirements information during the whole RE process depends on the usage of
the information and the stakeholders using the documentation of the information.
For example, the language used to document the requirements to support a proper
validation could be totally different than, for example, the language used to
document the same content to support design or test activities.

4 Comprehensive Framework for Requirements Engineering

The three dimensions served as a basis for developing our comprehensive RE
framework, which comprises the following main building blocks (see Fig. 2):

• Three Core RE Activities: There are three core RE activities, namely elicitation,
documentation, and negotiation. The three core activities are directly derived
from the three dimensions and are performed iteratively during the RE process
depending on the progress made in each dimension.

• Four System Context Facets: Each system is embedded into a context in which
it is going to operate and for which it has to provide an added value. Among
others, the context comprises the sources for requirements elicitation as well
as the users of the system (people and other systems). The context does not
only strongly influence the elicitation and definition of the requirements and the
constraints about the system, but also the understanding and interpretation of this
information. Since the system context is typically very complex, our framework
structures the context into four facets: the subject, the usage, the IT system,
and the development facet (cf. [1, 2]). Among others, the four facets support
a systematic elicitation of information, stakeholder identification, and validation
during requirements engineering (cf. [5]).

• Three Types of Requirements Artifacts: The requirements artifacts are the main
outcomes of the RE process and are used to drive the RE process itself, e.g.
to decide what to do next. Over the years, the use of goals and scenarios has
proven to be very beneficial for RE as well as subsequent system development.
Thus, goals and scenarios should be used during RE in addition to the traditional
solution-oriented requirements (see [5] for a detailed description). There are
many key reasons for using goals and scenarios during RE. For example,
conflicts among stakeholders can be identified and resolved more easily on a
goal level than on the level of detailed solution-oriented requirements. Or, a
scenario typically describes a concrete, envisioned system usage which provides
a clear business or customer value. Therefore, our framework differentiates
between three key requirements artifacts: goals, scenarios, and solution-oriented
requirements. The latter comprise the traditional functional, data, and behavioral
perspectives on requirements used in system development. In [5], we elaborate
on the three key RE artifacts as well as their usage within the RE process.

84 K. Pohl and N. Ulfat-Bunyadi

The Three Dimensions of Requirements Engineering: 20 Years Later 85

Subject
facet

Usage
facet

IT system
facet

Development
facet

Documentation

System context

Elicitation

Negotiation

Core activities

Goals Scenarios

requirements
Solution-oriented

Requirements artifacts

V
al

id
at

io
n

C
ro

ss
-s

ec
tio

na
l a

ct
iv

ity

M
an

ag
em

en
t

C
ro

ss
-s

ec
tio

na
l a

ct
iv

ity
Fig. 2 Our comprehensive RE framework [5]

• Two Cross-sectional Activities: Two cross-sectional activities, namely validation
and management, complete our comprehensive RE framework:

– Validation: Validation ensures proper quality assurance during the whole
RE process. According to our framework, validation not only comprises the
validation of the three key requirements artifacts but also the validation of the
consideration of the four context facets as well as the validation of a proper
execution of the three core activities (cf. [5]).

– Management: Similar to validation, the cross-sectional management activity
is not restricted to the management of the three key requirements artifacts but
includes the management of the system context (e.g. to identify contextual
changes) and the management of the execution and scheduling of the three
core activities (cf. [5]).

Our comprehensive RE framework is widely used in industry and education.
For example, the framework is used as reference model for structuring RE and
RE processes within organizations, for determining weaknesses and improvement
potentials of RE within the organizations, and as reference structure for trainings
provided to managers, requirements engineers, developers, etc. Moreover it is the

backbone for our RE textbook [5] and used to structure RE lectures and courses
at universities.

5 Our Comprehensive Textbook

Our RE textbook describes the framework in detail and elaborates on the related
foundations, principles, and RE techniques [5]. Throughout the book, we describe
the underlying fundamentals, techniques, and methods for the building blocks and
illustrate key aspects with numerous examples. Moreover, we provide hints and
guidelines for applying the various techniques and methods.

In addition to the elaboration of the building blocks of our framework, we present
our goal- and scenario-based RE method called COSMOD-RE which supports the
intertwined development of requirements and architectural artifacts for software-
intensive (embedded) systems. We further sketch the interrelation between RE and
testing and describe specifics of RE in the context of product line engineering.

6 RE Certification by IREB

IREB (the International Requirements Engineering Board) aims at providing a
certification model and fostering further education in the field of RE. Members
of the board are independent, internationally recognized experts from industry,
research, consulting, and education. The ‘Certified Professional for Requirements
Engineering’ (CPRE) certification model currently offers two qualification levels:
foundation and advanced level.

Our comprehensive RE framework served as a basis for defining the syllabus
and the exams for the foundation level. The foundation level requires being familiar
with the terminology of RE, understanding the basic techniques and methods
of RE and their application, and being familiar with well-known notations for
requirements. To support people in preparing for the CPRE foundation level
certificate, we have published the “Requirements Engineering Fundamentals” book
[6]. This textbook is (will be) available in different languages including English,
German, Portuguese, Spanish, and French. More than 10,000 requirements engi-
neers world-wide have already passed successfully the certification of the IREB
CPRE foundation level.

References

1. M. Jarke, K. Pohl: Establishing Visions in Context – Towards a Model of Requirements
Processes. In: Proceedings of the 14th International Conference on Information Systems, 1993,
pp. 23–34.

86 K. Pohl and N. Ulfat-Bunyadi

The Three Dimensions of Requirements Engineering: 20 Years Later 87

2. J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos – Representing Knowledge
about Information Systems. ACM Transactions on Information Systems, Vol. 8, No. 4, 1990,
pp. 325–362.

3. K. Pohl: The Three Dimensions of Requirements Engineering. In: Proceedings of the 5th
Conference on Advanced Information Systems Engineering (CAiSE’93), Springer, LNCS,
Vol. 22, 1993.

4. K. Pohl: The Three Dimensions of Requirements Engineering – A Framework and its Appli-
cations. In: Information Systems, Special Issue on Computer Supported Information System
Development, Vol. 19, No. 3, 1994.

5. K. Pohl: Requirements Engineering – Fundamentals, Principles, and Techniques. 1st ed.,
Springer, 2010. (also appeared in German: Requirements Engineering – Grundlagen, Prinzipien,
Techniken, 2. ed., dpunkt, 2008)

6. K. Pohl, C. Rupp: Requirements Engineering Fundamentals: A Study Guide for the Certified
Professional for Requirements Engineering Exam. 1st ed., Rocky Nook, 2011. (also appeared in
German: Basiswissen Requirements Engineering, 3. ed., dpunkt, 2011, and in Portuguese)

Towards a Deeper Understanding of
Quality in Requirements Engineering

John Krogstie Odd Ivar Lindland Guttorm Sindre

Faculty of Electrical Engineering and Computer Science
University of Trondheim, Norway

Abstract. The notion of quality in requirements specifications is poorly
understood, and in most literature only bread and butter lists of useful
properties have been provided. However, the recent frameworks of Lind­
land et al. and Pohl have tried to take a more systematic approach. In
this paper, these two frameworks are reviewed and compared. Although
they have different outlook, their deeper structures are not contradictory.

The paper also discusses shortcomings of the two frameworks and pro­
poses extensions to the framework of Lindland et al. The extensions
build on social construction theory and the resulting framework should
contribute to understanding quality in requirements engineering and con­
ceptual modelling.

Keywords: Requirements engineering, conceptual modelling, qual­
ity, social construction

1 Introduction

The notion of quality in requirements specifications is so far poorly understood.
Software metrics [7] have mostly concentrated on the deliverables of the later
phases, such as design and coding, or on detailed process metrics. Moreover,
these efforts have concentrated far more on the issue of 'building the product
right' than 'building the right product', whereas both should be covered to en­
sure quality from the user's point of view [2]. Previously proposed quality goals
for conceptual models [6, 14, 22, 25] have included many useful aspects, but
unfortunately in the form of unsystematic bread and butter lists. Two recent
frameworks [17, 20] have attempted to take a more structured approach to un­
derstanding the problem. Still, both these need more development before they
can result in concrete guidelines for the requirements engineering process. A use­
ful first iteration is to compare the two frameworks and see if they fit together,
and possibly unite and extend them.

The rest of the paper is structured as follows: Section 2 reviews and compares
the two frameworks. Then, section 3 establishes an extended framework based
on the comparison. Section 4 concludes the paper. The terminology used in the
papers follows the one usually used in the areas of conceptual modelling and
requirements engineering. One should be aware of that the use of many terms in
these areas differs significantly from their use in for instance logic programming.

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

89

J. Krogstie, O.I. Lindland and G. Sindre

2 Review and Comparison

We will briefly present the main parts of the two frameworks, before performing
a comparison between them.

2.1 Lindland/Sindre/Sflllvberg's Framework

The main structure of this framework is illustrated in Figure 1. The basic idea is
to evaluate the quality of models along three dimensions - syntax, semantics,
and pragmatics - by comparing sets of statements. These sets are:

- M, the model, i.e., the set of all the statements explicitly or implicitly made
in the model. The explicit model ME, consists of the statements explicitly
made, whereas the implicit model, M1, consist of the statements not made,
but implied by the explicit ones.

- C, the language, i.e., the set of all statements which are possible to make
according to the vocabulary and grammar of the modelling languages used.

- V, the domain, i.e., the set of all statements which would be correct and
relevant about the problem at hand. Hence, notice that the term domain
is used somewhat differently from the usual. Here, it means the 'ideal'
model/solution to the problem.

- I, the audience interpretation, i.e., the set of all statements which the au­
dience (i.e., various actors in the modeling process) think that the model
consists of.

appropriateness

appropriateness

syntactic
quality

pragmatic
quality

Audience
'--------r interpretation 1----------'

appropriateness

Fig.l.: The framework by Lindland et al. (From [17])

The primary sources for model quality are defined using the relationships
between the model and the three other sets:

90

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

- syntactic quality is the degree of correspondence between model and lan­
guage, i.e., the set of syntactic errors is M \C.

- semantic quality is the degree of correspondence between model and do­
main. If M \ 1J -::j:. 0 the model contains invalid statements; if 1J \ M -::j:. 0
the model is incomplete. Since total validity and completeness are generally
impossible, the notions of feasible validity and feasible completeness were in­
troduced. Feasible validity is reached when the benefits of removing invalid
statement from M are less than the drawbacks, whereas feasible complete­
ness is reached when the benefits of adding new statements to M is less than
the drawbacks. The term drawback is used instead of the more familiar term
cost in an effort to cover both purely economic issues and factors like user
preferences and ethics.

- pragmatic quality is the degree of correspondence between model and audi­
ence interpretation (i.e., the degree to which the model has been understood).
If I -::j:. M, the comprehension of the model is not completely correct. Usu­
ally, it is neither necessary nor possible that the whole audience understand
the entire conceptual model - instead each group in the audience should
understand the part of the model which is relevant to them. Feasible com­
prehension was defined along the same lines as feasibility for validity and
completeness.

In addition to these primary quality concerns, it is pointed out that cor­
respondence between domain and language, between domain and audience in­
terpretation, and between language and audience interpretation may affect the
model quality indirectly. These relationships are all denoted appropriateness as
shown in Figure 1.

It is also argued that previously proposed quality goals such as minimality,
traceability, consistency, and unambiguity are subsumed by the four goals of
syntactic correctness, validity, completeness, and comprehension, and a distinc­
tion is made between goals and means to reach these goals. For more details
on this framework, the reader should consult [17]. The parts of the framework
dealing with fault .detection have been applied in connection with integrating
the development and testing of object-oriented software [18].

2.2 Pohl's Framework

Pohl's framework [20] which is one of the results of the NATURE-project (12)
defines three dimensions of requirements engineering:

- the specification dimension deals with the degree of requirements under­
standing. At the beginning of the process, this understanding is opaque.
The desired output of the RE process is a complete system specification,
where completeness is measured against some standard, guideline, or model.

- the representation dimension deals with the degree offormality. Various lan­
guages can be used in the process; informal ones such as natural language,

91

J. Krogstie, O.I. Lindland and G. Sindre

Specification ___ __..----------------~ =~
--------- /// I

..--..--..-- // I
----- // I
~----------------~/ I

I I
I I
I I
I I
I~ I
I Agreement I
I I
I J

fair

I //
I //
I //
I /// Representation opaque

informal semi-formal formal

Fig. 2.: Pohl's framework (From [20])

semi-formal ones such as many graphical modelling languages, and formal
ones (e.g., logic). At the beginning of the process, statements will usually
be informal. Since formal representations allow reasoning and partial code­
generation, these are more system-oriented. Hence, a transformation of in­
formal requirements to a formal representation is desirable.

- the agreement dimension deals with the degree of agreement. The REprocess
has many stakeholders, and in the beginning each of these will have their
personal views concerning the requirements to be made. The goal of the
proceSs is to reach agreement on the requirements. Detected conflicts must
be solved through discussions among those affected.

The RE process can be characterized as an arbitrary curve within the cube
spanned by these three dimensions, as illustrated in Figure 2. Pohl distinguishes
between original RE problems, which are those caused by the three dimensions,
and problems caused by approaches to solve the original problems, i.e., those
related to methods, tools, social aspects, cognitive skills and economical con­
straints. Furthermore, the article discusses the computer support for RE in light
of the three dimensions and discusses how the framework can be applied in
analyzing RE methods, practise, problems, and process situations.

2.3 Overall comparison and critique

At first sight, the two frameworks may seem completely different. The termi­
nology used is different. Lindland et al. [17] defines the quality of models (e.g.,
requirements specifications) according to the linguistic dimensions of syntax,

92

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

semantics, and pragmatics, Pohl's framework [20] identifies the goals of require­
ments engineering along the three dimensions of completeness, formality, and
agreement.

Although the two frameworks have a quite different appearance, they are
rather similar in their deeper structure. The following observations can be made:

- the representation dimension corresponds to the syntactic dimension, since
both these deal with the relationship between the specification and the lan­
guage(s) used. The main differences in this respect is that Pohl's framework
discusses several languages, whereas Lindland's framework sees the language
as one and just considers whether the specification is correct according to
the rules of that language (which may be a union of several languages, for­
mal and informal). It should also be noted that Pohl's framework regards a
formal specification as a goal. Lindland's framework states that formality is
a mean to reach a syntacticly correct specification, as well as higher semantic
and pragmatic quality through consistency checking and model executions
of different kinds.

- the specification dimension corresponds to the semantic dimension, since
both these deal with the goal of completeness. A notable difference here is
that Pohl sees completeness as the sole goal (possibly including validity?),
whereas Lindland's framework also identifies the notions of validity and fea­
sibility. The reason for this discrepancy seems to be a somewhat different use
of the term completeness, where Pohl uses the term relative to some stan­
dard, whereas Lindland et al. uses it relative to the the set of all statements
which would be correct and relevant about the problem at hand.

- the agreement dimension is related to the pragmatic dimension, since both
these deal with the specification's relationship to the audience involved. The
difference is that Pohl states the goal that the specification should be agreed
upon, whereas Lindland et al. aim at letting the model be understood. In a
way these goals are partly overlapping. Agreement without understanding is
not very useful in a democratic process. On the other hand, using the semiotic
levels described in the FRISCO-report [16], it seems more appropriate to
put agreement into the social realm, thus going beyond the framework of
Lindland et al.

Although both frameworks contribute to improving the understanding of
quality issues in requirements engineering, they still have several shortcomings.
For instance, in Pohl's framework it appears that a formal, agreed, and com­
plete specification is the goal of the requirements engineering phase. Although
we support this as desirable, we - as argued in [17] feel that such goals are
unrealistic and we need mechanisms for discussing when the specification/model
is good enough. The notion offeasibility that is included in Lindland's framework
addresses this aspect. In Pohl's framework such mechanisms are only implicitly
included through the adherence to standards which potentially include them.

We also feel it is problematic that a completely formal representation is a goal
of the REprocess. It is not always desirable that all the products of a requirement

93

J. Krogstie, O.I. Lindland and G. Sindre

specification process are formal. For instance, when developing a goal-hierarchy
as used in, e.g., TEMPORA (23], it is not meaningful to formalise the high-level
business goals, even if these are an important result of requirements engineering
in order for the participants to understand and agree about the requirements
to the information system. This kind of information is also of vital importance
when the requirements to the information systems must be reevaluated during
maintenance.

In Lindland's framework, on the other hand, the social aspect of agreement
is currently not handled in a satisfactory way. Even if people understand the
requirements, this does not mean that they will agree to them. When discussing
agreement, the concept of domain as currently defined is also insufficient, since
it represents some ideal knowledge about a particular problem, a knowledge not
obtainable for the actors that are to agree.

3 Framework extensions

This section aims at extending Lindland et al. 's framework in order to include
some of the good aspects of Pohl's framework and also hopefully eliminate the
inherent shortcomings of the current version of Lindland's framework.

The key area for improvement is related to the relationships between the
domain, model, and audience interpretations and the introduction of the social
goal of agreement.

3.1 Background on social construction

Since 'agreement' was not thoroughly discussed in (17], we will first introduce
our ontological position for discussing the concept. This will also influence some
of the other relationships in the framework.

We base our treatment of agreement on the idea that 'reality' is socially con­
structed (1], an idea which is the foundation of most of the current theoretical
discussion within social sciences (5], and which has received increased attention
in the information systems community [8, 16, 24]. For a constructivist, the re­
lationship between 'reality' and models of this reality are subject to negotiation
among the audience, and may be adapted from time to time. This is in contrast
to a more traditional objectivistic ontology, where the relationship between 're­
ality' and models thereof is obvious.

The mechanisms of social construction in an organization can briefly be de­
scribed as follows (9]: An organization consists of individual social actors that
perceive the world in a way specific to them. The local reality is the way the in­
dividual perceives the world that s/he acts in. Whereas some of this local reality
may be made explicit and talked about, a lot of what we know about the world
is tacit. The term 'individual knowledge' is below restricted to the explicit local
reality of an individual actor.

When social actors act, they externalise their local reality. The most impor­
tant ways the social actors of an organization externalise their reality, are to

94

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

speak and to construct languages, artifacts, and institutions. What they do is to
construct organizational reality: To make something that other actors have to
relate to in their work. Finally, internalisation is the process of making sense of
the institutions, artifacts, technology etc. in the organization, and making this
organizational reality part of the individual local reality.

Whereas the development of a requirements specification based on a social
actor's local reality is partly a process of externalisation of her/his reality, the
process of developing conceptual models can also be looked upon as part of a
sense-making process. The views of several actors are collected in a conceptual
model and agreement about the validity of this is reached. It should also be noted
that the ability and possibility for the different stakeholders to externalise their
local reality will differ. Thus, in the words of Goguen one should think about
requirements as " ... emergent, in the sense that they do not already exist, but
rather emerge from interactions between the analyst and the client organization"
(10].

In the framework of Lindland et al, 'reality' is represented by the domain,
V. The domain represents the perfect understanding of the problem. From the
viewpoint of social construction, as well as the view of information systems
engineering as a wicked problem [21], it can be questioned whether a perfect
solution at all exists. This is not an important point, however, since the perfect
solution is anyway stated to be unachievable. Hence, the domain V serves only
as a useful conceptual fixpoint to make it easier to define quality terminology.
To discuss the social aspects, the actors' understanding of the domain must be
added to the framework, in the same sense as their understanding of the model
was already introduced in the previous version of the framework.

Domain
semantic quality

Model
syntactic quality

Language

pragmatic quality

perceived
semantic

Participant quality Audience social knowledge interpretation quality

Fig. 3.: Extended framework

3.2 Extended framework

We are now ready to extend the framework of Lindland et al. The main concepts
and their relationships are shown in Figure 3. The following sets are defined:

95

J. Krogstie, O.I. Lindland and G. Sindre

- .A, the audience, i.e., the union of the set of individual actors A1 , ... ,A.1: the
set of organizational social actors A.1:+1 , ... ,An and the set of technical actors
An+1 , ... ,Am who needs to relate to the model. The individual social actors
being members of the audience is called the participants of the modelling
process. An organizational social actor is made up of several individuals.
The audience consists of all who need to understand the model during the
RE process. The participants are a subset of the stakeholders of the pro­
cess of developing the new or improved information system, a stakeholder
being someone who potentially stands to gain or lose in the process. Stake­
holders typically include project managers, system developers and analysts,
financers, maintainers, and future users.

A technical actor is typically a computer or computer program, which must
"understand" part of the specification to automatically manipulate it. A is
often evolving during the process of requirements engineering.

- M, the model, i.e., the set of all statements explicitly or implicitly made
in the model. At an early point of requirements engineering there may be
one model for each participant, but usually fewer models which are the joint
models of organizational actors exists. For each participant, the part of the
model which is considered relevant for the actor can be seen as a projection
of the total model, hence M can be divided into projections M 1 , ... , Mk
corresponding to the involved participants At, ... , A.~:. Generally, these pro­
jections will not be disjoint, but their union cover M. The complete model
will be evolving during the process of requirements engineering.

- £, the language, i.e., the set of all statements that are possible to make
according to the vocabulary and grammar of the modelling languages used.
Several languages can be in use at the same time, corresponding to the sets
£1, ... ,£j. A sub-language is related to the complete language by limitations
on the vocabulary or on the set of allowed grammar rules or both.

The set £ can be divided into several subsets, e.g., £1, Cs, and Cp for
the informal, semi-formal and formal parts of the language, respectively.
A language with formal syntax is termed semi-formal, whereas a language
which also has formal semantics, is termed formal. Note that this does not
imply that the language has a semantics based on formal logic.

- V, the domain, i.e., the set of all statements which would be correct and
relevant about the problem at hand. V denotes the ideal knowledge about the
problem. The domain evolves during the requirements engineering process.

- I, the audience interpretation, i.e., the set of all statements which the audi­
ence thinks that a model consists of. Various parts of the model will be
of interest to various participants. Just like the model is projected into
calM\ ... ,Mk above, its interpretation can be projected into I1, ... ,Ik ac­
cording to the interests of the participants.

96

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

- IC, the knowledge of the participants, i.e., the union of the sets of statements
ICI, ... ,/Ck, one for each individual social actor in the audience. The set /Ci
contains all possible statements that would be correct and relevant for ad­
dressing the problem at hand according to the knowledge of the actor Ai.
/C; is a subset of the explicit internal reality of the social actor JCi. JCi is also
evolving during requirements engineering. Mi is an externalisation of /Ci and
is a model made on the basis of the knowledge of the individual actor. Even
if the internal reality of each individual will always differ to a certain degree,
the explicit internal reality concerning a constrained area might be equal,
especially within groups of social actors [9, 19].

With this new framework in place, we have an increased potential for dis­
cussing specification quality. The primary goal for semantic quality is a cor­
respondence between the model and the domain, but this correspondence can
neither be established nor checked directly: to build the model, one has to go
through the audience's knowledge of the domain, and to check the model one has
to compare this with the audience's interpretation of the model. Hence, what
we do observe at quality control is not the actual semantic quality of the model,
but a perceived semantic quality based on comparison of the two imperfect in­
terpretations.

Syntactic quality Syntactic quality is the correspondence between the speci­
fication and the language. The goal is syntactic correctness, M \ .C = 0, or for
a given externalization, Mi \ .C = 0. Typical means to ensure syntactic quality
is formal syntax, i.e., that the language is parsable by a technical actor in the
audience, and the modeling activity to perform this is termed syntax checking.

Semantic quality For the semantic quality of the complete model M, no major
changes are necessary to the previous version of the framework. [17] defines two
goals, feasible validity and feasible completeness.

Discussing perceived semantic quality, we get the following:

- Perceived validity of the model projection: 1i \ /Ci = 0.

Perceived completeness of the model projection: /Ci \ Ii = 0.

The perceived semantic quality can change, for better or for worse, either as a
result of changes in (the understanding of) the model, or as a result of changes in
the knowledge about the domain. Notice that one way the knowledge of the actor
can change, is through the internalization of another sub-model. Internalisation
can be expressed crudely as a mapping between the sets of statements, being
part of the explicit internal reality of an actor.

INT: /Ci---> (ICt UN) C Mj \ (0 C /Ci) (1)

i # j, 0 n N = 0, /Ci \ N = /Ci
Nand 0 above is sets of statements. 0 might be empty giving a monotonous

growth of /Ci. If 0 is not empty there is a non-monotonous growth of /Ci.

97

J. Krogstie, O.I. Lindland and G. Sindre

Pragmatic quality Pragmatic quality can be defined largely the same way as
before, the goal being comprehension, i.e. that the model is understood, not its
understandability. [17] also defined this on behalf of various participant groups,
since each such group will usually only be interested in a part of the model.
Similarly, we can define individual comprehension: Ii = Mi, as the goal that
the participant Ai understands the relevant part of the model.

For total comprehension, one must thus have (Vi, i E [l...k]) Ii = Mi, i.e.,
that every participant understands the relevant part of M.

Total comprehension is also an unrealistic goal. Hence it is interesting to
define feasible comprehension as the situation where comprehension can still be
improved, but the drawbacks of doing this exceeds the benefits. This has been
done in [17].

That a model is understood from the technical actor's point of view, means
that ('Vi, i E [n + l...m])Ii = Mi , thus all statements that are relevant to the
technical actor to be able to perform code generation, simulation, etc. is com­
prehended by this actor. In this sense, formality can be looked upon as being
a pragmatic goal, formal syntax and formal semantics are means for achiev­
ing pragmatic quality. This illustrates that pragmatic quality is dependant on
the different actors. This also applies to social actors. Whereas some individu­
als from the outset are used to formal languages, and a formal specification in
fact will be best for them also for comprehension (regardless of execution etc.),
other individuals will find a mix of formal and informal statements to be more
comprehensive, even if the set of statements in the model is in fact redundant.

Some of the means to achieve pragmatic quality have been identified earlier,
namely formality, executability, expressive economy and aesthetics. The corre­
sponding modelling activities are inspection, visualization, filtering, diagram lay­
out, paraphrasing, explanation, execution, animation, and simulation. Another
important activity is training the participants in the syntax and semantics of
the modelling languages used.

Social quality Inspired by Pohl, we set up the goal for social quality as agree­
ment. However, this is not straightforward to define. Four kinds of agreement
can be identified, according distinctions along two orthogonal dimensions:

- agreement in knowledge vs. agreement in model interpretation.

- relative agreement vs. absolute agreement

Agreement in model interpretation will usually be a more limited demand than
agreement in knowledge, since the former one means that the actors agree about
what (they think) is stated in the model, whereas there may still be many issues
they disagree about which have not been stated in the model so far, even if it
might be regarded as relevant for one of the actors.

Relative agreement means that the various projections are consistent -
hence, there may be many statements in the projection of one actor that are
not present in that of another, as long as they do not contradict each other. Ab­
solute agreement, on the other hand, means that all projections are the same.

98

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

Since different participants often have their expertise in different fields, relative
agreement is a more useful concept than absolute agreement. On the other hand,
the different actors must have the possibility to agree on something, i.e. the parts
of the model which are relevant to them have to overlap to some extent.

However, it is not given that all participants will come to agreement. Few
decisions are taken in society under complete agreement, and those that are are
not necessarily good, due to e.g group-think. To answer this we introduce feasible
agreement:

Feasible agreement: A situation of feasible comprehension where inconsisten­
cies between statements in the different Ii are resolved by choosing one of the
alternatives when the benefits of doing this is less than the drawbacks of working
out agreement.

The pragmatic goal of comprehension is looked upon as a social mean. This
because agreement without comprehension is not very useful, at least not when
having democratic ideals. Obviously if someone is trying to manipulate a situa­
tion, agreement without comprehension is useful. The area of model monopoly [3]
is related to this.

Some activities for achieving feasible agreement are:

- Viewpoint analysis [15]: This includes techniques for comparing two or more
models and find the discrepancies.

- Conflict resolution: Specific techniques for this can be found in the area
of computer supported cooperative work, see [4, 11] where argumentation
systems are presented.

- Model merging: Merging two potentially inconsistent models into one con­
sistent one.

The above activities can be done either manually, semi-automatically or auto­
matically, for semi-automatic or automatic support, formal syntax and semantics
are again useful. In addition is it useful to be able to represent inconcistency and
disagreement directly in the model, and not only have to compare separate mod­
els.

4 Concluding Remarks

This paper has reviewed and compared two recent frameworks for disussing
quality of requirement specifications: the framework of Lindland et al. in [17] and
Pohl's framework in [20]. The comparision has shown that the frameworks have
different appearences and uses different terminology, but the deeper structures
of the frameworks are quite similar.

The main objective of the paper has been to push our understanding of
quality aspects in requirements engineering one step further. The comparison of
the two frameworks has been useful in that respect. In particular, the concept
of agreement in Pohl's framework has inspired us to look deeper into the social
process of building a specification.

99

J. Krogstie, O.I. Lindland and G. Sindre

In contrast to the previous version of the framework of Lindland et al. we
are now able to discuss the quality of models where different social actors are
developing their submodels based on individual domain knowledge. Furthermore,
the process of merging different viewpoints is defined as contributing to social
quality. Here, agreement among the actors is the major goal.

Table 1 shows an overview of the goals and means of the extended framework.
The overview is based on a similar one in [17], but has been extended as discussed
above.

Quality types Goals Means

Model properties

Syntactic q. Synt. correctness Formal syntax

Semantic q. Feasible validity Formal semantics
Feasible compl. Modifiability

Perceived sem.q. Perceived validity
Perceived compl.

Pragmatic q. Feasible compr. Expressive economy
Aesthetics

Executability

Social q. Feasible agreement Conflict modelling

Table 1.: Framework for model quality

Activities

Syntax checking

Consistency checking
Statement insertion
Statement deletion

Statement insertion
Statement deletion
Audience training

Inspection
Visualization
Filtering
Diagram layout
Paraphrasing
Explanation
Audience training
Execution
Animation
Simulation

Viewpoint analysis
Conflict resolution
Model merging

Although the framework contributes to our understanding of quality issues
with respect to requirement engineering, the contribution so far lies on a high
level of abstraction. There are several interesting paths for further work by which
the framework can be refined to become more directly useful for requirements
engineering practitioners. Among others, the follow areas need further explo­
ration:

100

From: CAiSE 1995, LNCS 932 © Springer-Verlag Berlin Heidelberg 1995

development of further product metrics: In the current framework quality
goals are mainly defined as the degree of correspondence between various
sets. Future work should concentrate on developing quantitative metrics so
that the quality of the model, audience, and the domain knowledge can be
more explicitly assessed. Some initial efforts in this direction are reported in
(13].

development of process guidelines: The framework gives an overview of de­
cisions that will have to be made in the requirements engineering phase.
Further work should result in guidelines that practitioners may use directly
in concrete projects.

Since semantic, pragmatic and social quality are in practice immeasurable,
process heuristics may be a more interesting issue to pursue than product met­
rics.

References

1. P. Berger and T. Luckmann. The Social Construction of Reality: A Treatise in the
Sociology of Knowledge. Penguin, 1966.

2. B. W. Boehm. Verifying and validating software requirements and design specifi­
cations. IEEE Software, 1:75-88, 1984.

3. S. Braten. Dialogens vilkdr i datasamfunnet (In Norwegian). Universitetsforlaget,
1983.

4. J. Conklin and M. J. Begeman. giBIS: A hypertext tool for exploratory policy
discussion. ACM Transactions on Office Information Systems, 6(4):303-331, 1988.

5. B. Dahlbom. The idea that reality is socialy constructed. In Floyd et al. [8], pages
101-126.

6. A. M. Davis. Software Requirements Analysis & Specification. Prentice-Hall, 1990.
7. N. E. Fenton, editor. Software Metrics- A Rigorous Approach. Chapman & Hall,

1991.
8. C. Floyd, H. Ziillighoven, R. Budde, and R. Keil-Slawik, editors. Software Devel­

opment and Reality Construction. Springer Verlag, 1991.
9. R. Gjersvik. The Construction of Information Systems in Organization: An Action

Research Project on Technology, Organizational Closure, Reflection, and Change.
PhD thesis, ORAL, NTH, Trondheim, Norway, 1993.

10. J. Goguen. Requirements engineering: Reconciliation of technical and social issues.
Technical report, Centre for Requirementss and Foundations, Oxford University,
Cambridge, England, 1992.

11. U. Hahn, M. Jarke, and T. Rose. Group work in software projects: Integrated con­
ceptual models and collaboration tools. In S. Gibbs and A. A. Verrijn-Stuart, edi­
tors, Multi- User Interfaces and Applications: Proceedings of the IFIP WG 8.4 Con­
ference on Multi-User Interfaces and Applications, pages 83-102. North-Holland,
1990.

101

J. Krogstie, O.I. Lindland and G. Sindre

12. M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and Y. Vassiliou. Theories under­
lying requirements engineering: An overview of NATURE at genesis. In Proceed­
ings of the IEEE International Symposium on Requirements Engineering (RE'99),
pages 19-31, 1993.

13. J. Krogstie, 0. I. Lindland, and G. Sindre. Defining quality aspects for conceptual
models. In E. D. Falkenberg et al., editor, Information Systems Concepts, Proc.
ISC03, Marburg, Germany. North-Holland, 1995.

14. C. H. Kung. An analysis of three conceptual models with time perspective. In
Olle et al., editor, Information Systems Design Methodologies: A Feature Analysis,
pages 141-168. North-Holland, 1983.

15. J. C. S. P. Leite and P. A. Freeman. Requirements validation through viewpoint
resolution. IEEE Transactions on Software Engineering, 17(12):1253-1269, De­
cember 1991.

16. P. Lindgren ed. A framework of information systems concepts. Technical Report
Interrim report, FRISCO, May 1990.

17. 0. I. Lindland, G. Sindre, and A. S¢lvberg. Understanding quality in conceptual
modelling. IEEE Software, pages 42-49, April 1994.

18. J. D. McGregor and T. D .. Korson. Integrated object-oriented testing and devel­
opment processes. Communications of the ACM, 37(9), 1994.

19. J. W. Orlikowski and D. C. Gash. Technological frames: Making sense of infor­
mation technology in organizations. ACM Transactions on Information Systems,
12(2):174-207, 1994.

20. K. Pohl. The three dimensions of requirements engineering: A framework and its
applications. Information Systems, 19(3):243-258, April 1994.

21. H. Rittel. On the planning crisis: Systems analysis of the first and second genera­
tions. Bedrifts¢konomen, (8), 1972.

22. G. C. Roman. A taxonomy of current issues in requirements engineering. IEEE
Computer, pages 14-22, April 1985.

23. A. H. Seltveit. An abstraction-based rule approach to large-scale information sys­
tems development. In C. Rolland, F. Bodart, and C. Cauvet, editors, Proceedings
of the 5th International Conference on Advanced Information Systems Engineering
{CAiSE'93}, pages 328-351, Paris, France, June 8-11 1993. Springer Verlag.

24. J. Siddiqi. Challenging universal truths of requirements engineering. IEEE Soft­
ware, pages 18-19, March 1994.

25. R. T. Yeh, P. Zave, A. P. Conn, and G. E. Cole Jr. Software requirements: New
directions and perspectives. In C. Vick and C. Ramamoorthy, editors, Handbook
of Software Engineering, pages 519-543. Van Nostrand Reinhold, 1984.

102

20 Years of Quality of Models

John Krogstie, Guttorm Sindre, and Odd Ivar Lindland

Abstract We are very pleased that our CAiSE’95 paper has been selected to be
included in the Springer book that celebrates the 25th anniversary of the CAiSE
conferences series. This paper entitled ‘Towards a Deeper Understanding of Quality
in Requirements Engineering’ presented a development of work started some years
earlier in the research group of Arne Sølvberg on the topic of quality of models.
This topic has been of interest during the next 20 years by us and a number of other
researchers both in the context of IS development and in other areas, and will in our
view be a relevant topic for the foreseeable future.

1 Background for the Original Model

Work in our group on quality of models can be traced back to at least 1992. The first
manifestation of this work was in the PhD-thesis of Odd Ivar Lindland in 1993 [8].
In one particular group meeting, Odd Ivar described his early ideas on quality of
models, and how to differentiate goals and means and relating modelling languages,
domain, and actors. Jon Atle Gulla and Guttorm Sindre, also having degrees in
linguistics, suggested that he should look at the differentiation between syntax,
semantics, and pragmatics found in linguistics and semiotics, which have been a
cornerstone in our thinking about quality of models from the start. Guttorm Sindre
and Odd Ivar Lindland in particular collaborated on the next step, which ended up
in a widely cited article [9] as one of the best papers of the ICRE conference in 1994
being selected to a special issue in IEEE Software.

J. Krogstie (�) • G. Sindre
IDI, NTNU, Trondheim, Norway
e-mail: krogstie@idi.ntnu.no

O.I. Lindland
Price Waterhouse Coopers, Trondheim, Norway

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 8, © Springer-Verlag Berlin Heidelberg 2013

103

mailto:krogstie@idi.ntnu.no

J. Krogstie et al.

Although a very elegant framework which was easily applicable for understand-
ing important aspects of quality of models, several other works pointed to the need
for extending the framework. Important inspirations in this regard was the three
dimensions of RE [14] (also represented and commented in this volume), and the
work related to the semiotic ladder presented in early versions of the IFIP 8.1
FRISCO framework [7] and work on social construction of ‘reality’ (and models
thereof) constituting the domain, which is typically not as ideal and objectively
given in practice that as the original framework worked with. Specifically the
framework of Pohl also pointed to the need for agreement between the stakeholders
of the model.

These extension, in addition to a specific focus on requirements specification
models resulted in the framework presented in the CAiSE 1995-article, the main
addition being the description of perceived semantic quality and social quality.

2 Later Developments

There was not only us working with quality of models and modelling languages in
the mid-90s. For instance Moody and Shanks and Moody [10] worked in particular
on quality of data models. Becker, Rosemann and Schütte [1] focused on the quality
of process models. For us (and the framework later named SEQUAL) on the other
hand, the story could have ended here. John Krogstie delivered his PhD-thesis in
1995 and started working in Andersen Consulting; Guttorm Sindre took some years
off pursuing a career as a fictional writer, whereas Odd Ivar Lindland had already
joined IBM. Both John and Guttorm though kept in contact with academia, and
drifted back to more academic positions towards the end of the 90s, taking up work
on quality of models.

In hindsight the work done on SEQUAL can be framed as design science
research, with the quality framework as the main artefact. Whereas the early
validation was primarily analytical, later work e.g. together with Moody [11]
has also extended the evaluation with empirical techniques. The framework has
been developed through a number of iterations, and has also in some cases been
established as part of the knowledge base e.g. in the development of a framework
for quality of maps [13]. The current version of the framework is described in [2]
where also newer work on language quality is included. The framework has been
used for evaluation of modelling and modelling languages of a large number of
perspectives, including data [6], process [3, 15], enterprise [5], and goal-oriented
[4] approaches. It has been used both for models on the type level and instance level
(i.e. data quality [12]). The current framework is illustrated in Fig. 1. Quality has
been defined referring to the correspondence between statements belonging to the
following sets:

• G, the set of goals of the modelling task.
• L, the language extension, i.e., the set of all statements that are possible to make

according to the rules of the modelling languages used.

104

20 Years of Quality of Models 105

Fig. 1 SEQUAL framework for discussing quality of models

• D, the domain, i.e., the set of all statements that can be stated about the situation.
• M, the externalized model itself.
• K, the explicit knowledge relevant to the domain of the audience.
• I, the social actor interpretation, i.e., the set of all statements that the audience

interprets that an externalized model consists of.
• T, the technical actor interpretation, i.e., the statements in the model as ‘inter-

preted’ by modelling tools.

The main quality types are:

1. Physical quality: The basic quality goal is that the externalized model M is
available to the relevant actors.

2. Empirical quality deals with comprehension when a visual model M is read
by different social actors. Before evaluating empirical quality, physical quality
should be addressed.

3. Syntactic quality is the correspondence between the model M and the language
extension L. Before evaluating syntactic quality, physical quality should be
addressed.

4. Semantic quality is the correspondence between the model M and the domain D.
This includes both validity and completeness. Before evaluating semantic quality,
syntactic quality should be addressed. Domains can be divided into two parts,
exemplified with a software requirements model:

– Everything the computerized information system (CIS) is supposed to do (for
the moment ignoring the different views the stakeholders have on the CIS to
be produced).

J. Krogstie et al.

– Constraints on the model because of earlier baselined models such as system
level requirements specifications, enterprise architecture models, statements
of work, and earlier versions of the requirement specification to which the
new requirement specification model must be compatible.

– Perceived semantic quality is the similar correspondence between the social
actor interpretation I of a model M and his or hers current knowledge K of
domain D. Before evaluating perceived semantic quality, pragmatic quality
should be addressed.

5. Pragmatic quality is the correspondence between the model M and the actor
interpretation (I and T) of it. One differentiates between social pragmatic quality
(to what extent people understand the model) and technical pragmatic quality (to
what extent tools can be made that can interpret the model). Before evaluating
pragmatic quality, empirical quality should be addressed.

6. The goal defined for social quality is agreement among social actor’s interpreta-
tions (I). Before evaluating social quality, perceived semantic quality should be
addressed.

7. The deontic quality of the model relates to that all statements in the model
M contribute to fulfilling the goals of modelling G, and that all the goals of
modelling G are addressed through the model M. In particular, one often includes
under deontic quality the extent that the participants after interpreting the model
learn based on the model (increase K) and that the audience are able to change
the domain D if this is beneficially to achieve the goals of modelling (if the model
is prescriptive).

3 Future Directions

More and more modelling methodologies take an active approach to the exploitation
of models. In approaches such as Business Process Management (BPM), Model
Driven Architecture (MDA), and Domain specific modelling/domain specific mod-
elling languages (DSM/DSL), Enterprise Architecture (EA), and Active Knowledge
Modelling (AKM), the models are used directly to form the information system
of the organisation. At the same time, similar techniques are used also for
sense-making and communication, simulation, quality assurance and requirements
specification in connection to more traditional forms of information systems
development. Thus we expect the need to judge the quality of models will retain.
Although much work has been done on thinking relative to quality of models
and modelling languages over the last years, there is still room for developments.
Whereas main parts of the framework are supported by empirical evidence some
of the later developments should be worked on further. Even if more guidelines for
modelling is produced [2, 12], having these put into use in methodologies and tools
in an appropriate way are also open for further research and practical exploitation
in future model-based development and evolution of information systems such as
reported in [16].

106

20 Years of Quality of Models

References

1. Becker, J., Rosemann, M., Schütte, R.: Guidelines of Modelling (GoM). Wirtschaftsinformatik
37 (1995) 5, 435–445 (in German)

2. Krogstie, J.: Model-based Development and Evolution of Information Systems: A Quality
Approach, Springer (2012)

3. Krogstie, J.: Quality of Business Process Models. Proceedings PoEM (2012)
4. Krogstie, J.: Integrated Goal, Data and Process modeling: From TEMPORA to Model-

Generated Work-Places. In: Johannesson P, Søderstrøm E (eds) Information Systems Engi-
neering From Data Analysis to Process Networks. IGI, pp 43–65 (2008)

5. Krogstie, J., Arnesen, S.: Assessing Enterprise Modeling Languages using a Generic Quality
Framework. In: Krogstie J, Siau K, Halpin T (eds) Information Modeling Methods and
Methodologies. Idea Group Publishing (2004)

6. Krogstie, J.: Quality of conceptual data models. Accepted for ICISO 2013 March (2013)
7. Lindgren, P. (ed): A framework for information systems concepts. Interrim report FRISCO

(1990)
8. Lindland, O.I.: A Prototyping Approach to Validation of Conceptual Models in Information

Systems Engineering. PhD Thesis IDT, NTH (1993)
9. Lindland, O.I., Sindre G. and Sølvberg, A. Understanding Quality in Conceptual Modeling.

IEEE Software March (1994)
10. Moody, D. L., Shanks, G. G.: What Makes a Good Data Model? Evaluating the Quality of

Entity Relationship Models. In: Proceedings of the 13th International Conference on the Entity-
Relationship Approach (ER’94), pages 94–111, Manchester, England (1994)

11. Moody, D.L., Sindre, G., Brasethvik,T. and Sølvberg, A.: Evaluating the Quality of Process
Models: Empirical Testing of a Quality Framework. In S. Spaccapietra, S.T. March, and
Y. Kambayashi (Eds.): ER 2002, LNCS 2503, pp. 214–231, (2002)

12. Nelson, H.J., Poels, G, Genero M, Piattini, M.: A conceptual modeling quality framework.
Software Quality Journal (2011)

13. Nossum, A., Krogstie, J.: Integrated Quality of Models and Quality of Maps. Paper presented
at the EMMSAD (2009)

14. Pohl, K.: The Three Dimensions of Requirements Engineering. In: Proceedings of CAiSE’93,
Springer, LNCS 685 (1993)

15. Recker, J., Rosemann, M., Krogstie J.: Ontology- versus pattern-based evaluation of process
modeling language: A comparison. CAIS 20:774–799 (2007)

16. Wesenberg, H.: Enterprise Modeling in an Agile World. Proceedings of the 4th conference on
Practice of Enterprise Modeling, Oslo, Norway, November 2–3 (2011)

107

MetaEdit+
A Fully Configurable Multi-User and Multi-Tool

CASE and CAME Environment

Steven Kelly, Kalle Lyytinen
Matti Rossi

Department of Computer Science and Information Systems
University of JyvaskyHi

PL35
FIN-40351 Jyvaskyla

Finland
email: stevek@hyeena.jyu.fi

fax: +358 41 603011

Abstract: Computer Aided Software Engineering (CASE) environments have
spread at a lower pace than expected. One reason for this is the immaturity of
existing environments in supporting development in-the-large and by-many and
their inability to address the varying needs of the software developers. In this
paper we report on the development of a next generation CASE environment
called MetaEdit+. The environment seeks to overcome all the above
deficiencies, but in particular pays attention to catering for the varying needs of
the software developers. MetaEdit+ is a multi-method, multi-tool platform for
both CASE and Computer Aided Method Engineering (CAME). As a CASE
tool it establishes a versatile and powerful multi-tool environment which
enables flexible creation, maintenance, manipulation, retrieval and
representation of design information among multiple developers. As a CAME
environment it offers an easy-to-use yet powerful environment for method
specification, integration, management and re-use. The paper explains the
motivation for developing MetaEdit+, its design goals and philosophy and
discusses the functionality of the CAME tools.

Keywords: CASE, CAME, method, software engineering environments, repository,
metarnodeling, conceptual modeling, object oriented modeling, tool interoperability,
tool integration

1. Introduction

CASE (Computer Aided Systems Engineering) environments have been one of the
major technological innovations in systems development during the last decade. Many
have claimed that CASE technology will solve the information systems (IS)
development problems (Cha86, McC89) that have plagued the community for so long.
These include, among others, mediocre productivity (e.g. unrealistic time schedules
and cost overruns), and insufficient quality (e.g. low product validity and lack of
verifiability) (Bro75, Cha86, Ost87). CASE technologies are expected to provide task
related support for software developers in analyzing, designing and implementing a set
of information systems (IS) or their components according to a method. A method can

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

109

S. Kelly, K. Lyytinen and M. Rossi

be defined as a language (vocabulary and grammatical composition rules) which can
be used to represent features of the information system to a number of actors
(including technical actors such as specific abstract machines like a Smalltalk
machine) and a set of rules which define by whom, when, and how such
representations are derived and/or used.

The origins of CASE date back to the mid 70's when such well-known software tools
as PSL/PSA (Tei77) and SREM (Alf77) were launched. Despite this early start, the
breakthrough of these technologies has only occurred during the 90's. One reason for
this is the declining cost of computing technologies and its increasing functionality -
especially graphical user interfaces. Another is the increased need for disciplining the
art of software development and maintenance through standardized process and
product models. Finally there is a continuing need to improve the quality and
productivity of software production through investments in capital intensive
technologies.

In spite of these developments the rate of adopting CASE has been laggard, and the
success of adoptions doubtful (Wij90, Aae91). One reason for this is software
organizations' lack of the necessary maturity to adopt highly sophisticated
technologies such as CASE. Another is the cost of adopting, using and maintaining the
technological infrastructure and associated know-how. The third reason is the
inadequate technological sophistication of CASE. Most tools in use are stand alone
tools that support creation and maintenance of graphical models and can generate
code to limited problem domains. Accordingly technologies have not matured for
software development in the large and by many. The major deficiencies are thus:
insufficient support in integrating methods, inadequate support for alternative
representation paradigms, lack of mechanisms to cater for multiple users, rigid method
and process support, and focus on task automation (Hen90).

In this paper we report on the development and use experiences of a prototype next
generation CASE tool, MetaEdit+. The environment seeks to overcome all the above
deficiencies, but pays particular attention to the requirements concerning flexibility,
method integration and representational richness. In line with this MetaEdit+ is a
multi-method, multi-user, multi-tool platform for both computer aided software
engineering (CASE) and computer aided method engineering (CAME). As a CASE
tool it establishes a versatile environment for flexible creation, maintenance,
manipulation, retrieval and representation of design objects (information) structured
and created according to a method. As a CAME tool it provides a flexible and easy-to­
use environment for method specification, management, integration and re-use. This
paper will explain the motivations for developing MetaEdit+, its design goals and
philosophy, its design architecture, its current tool set, and its future development.

110

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

2. Related Research

Weaknesses in current CASE tool support can be divided into the following aspects:

1. lack of mechanisms for integrating sets of methods while maintaining consistency
between various models (Kel95, Mar95, Kel94a)

2. lack of support for multiple users to create, modify and delete sets of partly
overlapping model instances,

3. inadequate catering for multiple representational requirements ranging from fully
diagrammatic to fully textual or matrix representations. These are dictated by
different method families (Mar95),

4. failure to provide consistent mapping mechanisms between different
representational paradigms (Kel95, Mar95),

5. lack of flexibility and evolvability in method support ranging from syntactic
variation in methods to crafting totally new method components (Lyy89), and

6. insufficient catering for different information-related needs of a diverse set of
stakeholders (Mar95).

2.1 Lack of Method Integration Mechanisms

Several mechanisms are available for method integration or interaction. At the most
rudimentary level these deal with mechanisms that enable translations from one
representation format to another. Attempts to develop such CASE "EDI'' solutions
abound, e.g. CDIF (CDI91). Their weakness is that they do not support any inter­
model consistency checking, semantic validation and tool interoperability.
Accordingly, they can only be used in static model transfer from one environment to
another. A more advanced approach has been to develop generic and universal method
specification schemata. This "super-schema" would provide a common and universal
semantic model onto which all methods used in the environments could be mapped.
This can be done directly as in the ND Cycle information model (Mer90), or through
method reference models (Hey92) where the mapping takes place through a reference
model. An early solution of this kind was the mapping of system development
methods into generic modeling constructs of PSLIPSA (Tei77). The limitation of this
approach is its closed nature of method integration which cannot tolerate any
flexibility in the mappings. Moreover, it cannot cater for future evolution in the
method arena. Finally, it can only support a limited number of method integration
solutions which deal solely with object sharing and associated consistency checks.

2.2 Insufficient Multi-User Support

A large body of literature exists on concurrency control and alternative strategies to
deal with multiple user operations in software engineering repositories (for a review
see Bro91). A number of strategies have emerged recently for achieving varying levels

111

S. Kelly, K. Lyytinen and M. Rossi

of optimistic concurrency control (Kat84). Despite these advances it is still not known
which granularity levels are appropriate for effective concurrency, what are suitable
.transaction notions, and how much locking and what types of locks are needed.
Moreover, it is not clear how much transaction management should be left to users'
awareness of others' operations. In this respect, most commercial CASE environments
provide solutions that are too crude or inefficient, while advanced mechanisms
suggested by researchers can be computationally too demanding (e.g. use of work
spaces and merge strategies) or cannot be adapted to the existing CASE architectures.
Moreover, a big unsettled issue is how well semantics-driven and dedicated locking
strategies operate in such environments and whether we should cater for differences
between conceptual and representational objects, or between the different tools that
operate on the design data (Kel94a).

2.3 Insufficient Support for Multiple Representation Paradigms

Whilst today's methods contain various representation paradigms - graphical
diagrams, matrices, tables, etc. - most existing CASE tools operate on only one:
graphical diagrams. If other representation forms are needed they are generated by
some user triggered operations such as generating a report. Because of this, CASE
tools do not offer the representation independence that could make them fully
adaptable to differing representation demands. Thus most CASE tools offer only
limited syntactic and graphical modifiability in supported methods. Another weakness
is the lack of hypertext support for semi-structured and non-structured linking of
design objects in different representation formats or model parts. Either the available
functionality provides hypertext features as the CASE environment (Cyb92), or the
support functionality is limited to some model areas (Poh94) or to user interface and
user support (Oin93).

2.4 Lack of Method Modifiability and Evolution

The importance of CAME in CASE has been noticed in several studies (Kum92,
Che88, Bri90, Wij91, Hey93, Ste93). To this end CASE shells- metaCASE tools, or
fully customizable CASE environments - have been developed. Such environments
are expected to overcome the inflexibility of method support. According to Bubenko
(Bub88) "a CASE shell includes mechanisms to define a CASE tool for an arbitrary
technique or a chain of techniques". Yet, metaCASE technology has not yet matured
sufficiently to provide adequate method modifiability though the number of CASE
products leveraging method modification facilities is increasing. Commercial products
offering such features include Customizer™ (lnd87), VSF (Poc91), MetaEdit™
(Smo91a) and Paradigm+ (Pro94). Research versions of CASE shells include
RAMATIC (Ber89), ConceptBase (Hah91) and MetaView (Sor88). Integration of
CASE shells and their CASE environments comes in various kinds. A CASE shell can
be a separate tool that produces a methodology specification which the CASE
environment uses (e.g. Customizer), or it can be an integral part of the CASE
environment (e.g. RAMATIC). MetaEdit ™ was one of the first that offered CAME
and CASE functionality within the same tool. In MetaEdit methods are specified
graphically (Smo91b) and these specifications are converted into a textual form,

112

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

before compiling and loading the complete method specification into a CASE
environment All these have been steps in the right direction. However, environments
that can offer powerful and easy to use modification facilities, method component
libraries, method re-use and run-time adaptability are still largely non-existent.

2.5 Lack of Information Retrieval and Computational Facilities

One problem in current CASE tools is their limited information retrieval and reporting
capability. Some general and computationally powerful solutions exist in
environments that apply a logic programming paradigm (such as ConceptBASE
(Hah91)). Though sufficient in their expressive power and generality the use of such
query functions is limited by their computational complexity and insufficient user­
friendliness. This is due to the lack of data base schema representations and user
friendly query formulation. Another problem is that all existing query systems center
around retrieving and representing textual information while most of the design
information is input and viewed in a graphical format. Finally, few environments
provide a means to browse through the repository via hypertext links or various
browsing mechanisms.

2.6 Summary

The record of CASE research in each area demonstrates that most concerns have been
addressed during the last decade and considerable progress has been made in
rendering CASE environments useful. Yet, what seems to be lacking is a
comprehensive approach that seeks to tackle most, if not all of, these weaknesses
simultaneously. Though this may require some compromises and difficult trade-offs in
achieving all these goals (like improving multi-user facilities and method flexibility)
our contention is that the real impact of future CASE - in the large and by many -
will depend on our capability to offer more comprehensive solutions that address most
of these concerns within the same environment. Unless such environments emerge the
adoption of CASE will in all likelihood continue to be a frustrating experience.

3. The MetaEdit+ Environment

As a meta-CASE environment MetaEdit+ seeks to address most of the above concerns
(2.1-2.5) in a comprehensive manner by offering an environment which is:

• multi-user, i.e. several users can operate concurrently on the repository (2.2),
• multi-tool, i.e. each user can operate several tools simultaneously where each tool

provides a different view to the same object (2.3, 2.5),
• multi-method, i.e. the environment offers several mechanisms for method

integration and consistency checking (2.1),
• multi-form, i.e. the environment provides several representation formats for the

same design object (2.3), and
• multi-level, i.e. the environment is a true metaCASE environment in that both an

IS and its design methods can be engineered within the same environment (2.4).

113

S. Kelly, K. Lyytinen and M. Rossi

The environment seeks to improve the usability (by multiple users, forms, methods
and tools), flexibility (by offering a multi-tool, multi-method approach), and open
nature of CASE (i.e. by enabling evolution and plugging of new tools through well
defined service protocols). The design goal of the environment bas been to base its
architecture in principles of conceptual modeling, layered data base architectures,
and object orientation. In this respect, the approach differs to some extent from other
metaCASB approaches which focus more on the representation of methods as first
order logical theories (Hah91), or on the graphical behavior of design objects (Ber89).
From the viewpoint of conceptual modeling the design of a method specification is
akin to the development of a conceptual schema for a software repository, and the
design of a software tool resembles a design of an external view to a conceptual
schema (ANS75). Hence, the method specification language is at the same time the
conceptual modeling .language for the repository schema, or forms the meta­
metamodellevel in the IRDS standard (IS089). The adoption of full object orientation
enables flexible organization and re-use of software components in the environment
and a high level of interoperability between tools. This is achieved through both data
integration (via shared conceptual schemata) and control integration (via object
organization) thus making the environment fairly open.

Our motivation in using conceptual modeling and object orientation in the design of
MetaBdit+ has suggested three principles for the design: data independence,
representation independence, and level independence. Data independence is defined
in a similar way as in traditional data base theory i.e. tools operate on design
information without "knowledge" of its physical organization, or logical access
structure. Representation independence forms a continuum with data independence
and it allows conceptual design objects to exist independently of their alternative
representations as text, matrix or graphical representations. This principle allows
flexible addition of new tools, each one only responsible for its own paradigmatically
different view on the same underlying data. Level independence means that the
environment follows a symmetrical approach in its treatment of data and metadata.
Accordingly, the specifications of methods and their behaviors can be managed and
manipulated in a similar way to any other object in the environment (therefore the
name metaCASB). Moreover, the specifications can be concurrently operated through
the same or somewhat specialized tools in the environment.

3.1 General Architecture

The functional architecture of MetaBdit+ is illustrated in Fig. 1. The heart of the
environment is the MetaBngine, which handles all operations on the underlying
conceptual data through a well-defined service protocol (Smo93a). In other words, the
MetaBngine embodies the implementation of the underlying conceptual data model
and its operation signature. Accordingly, software tools request services of the
MetaBngine in accessing and manipulating repository data. Thereby they avoid the
need to duplicate the manipulation code. This design choice allows flexible integration
of new tools, each only responsible for its own paradigmatically different view
(including operations) on the same underlying repository data. A tool, as the term is
used within the MetaBdit+ environment, is a window type with its associated

114

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

functionality, through which a user can view and possibly alter a design objects in a
particular way.

The architecture has similarities with that of the ECMA-PCTE (ECM91) - e.g.
common services, separation of components at different levels of integration - but
differs from it, most noticeably in the enforcement of no direct communication
between components at the same level, or over a common bus between components
separated by more than one level: tools communicate only via the MetaEngine.

Repository

Instance of

MetaEdit+

Fig. 1: MetaEdit+ Architecture

Environment
Management

Model
Editing

Model
Retrieval

Model Linking
& Annotation

Method
Management

MetaEdit+ can run either as a single-user workstation environment, or simultaneously
on many workstation clients connected by a network to a server. Each client has a
running instance of MetaEdit+, including all its tools and the MetaEngine. The
MetaEngine takes care of all issues involved in communicating with the server. Tools
communicate with each other only through the MetaEngine, and thereby through the
shared data in the repository. Thus the major integration mechanism applied is data
integration.

115

S. Kelly, K. Lyytinen and M. Rossi

The server forms the software repository holding all the data contained in models, and
also in the metamodel(s), in addition to user and locking information. In particular the
MetaEdit+ repository includes: object specification base containing all the method
specifications represented as GOPRR concepts; symbol specification base containing
all symbols needed to represent Objects, Relationships and Roles; tool related
information base containing all information needed to represent conceptual objects in
different tools (such as spatial coordinates, or size), user information base containing
all information related to various users such as their passwords, access rights, or
current locks held; report specification base containing all report and other output
specifications.

MetaEdit+ applies pessimistic concurrency control in dealing with user and multi-tool
interactions with the repository. We have found locks useful despite some of their
disadvantages such as stricter user control, interference with users' work, and poorer
overall performance. The gains are greater as locks prevent conflicts from occurring
between different copies of the repository data, help users to be warned about possible
interference, and prevent gaining access to design objects already used in another's
transaction. All these are of utmost importance in software repositories. Transactions
are understood as long transactions. Their length is defined by a user triggered commit
operation (automatically requested by the end of the session). The burden of deciding
what to lock and when is removed from user's responsibilities and decided by the
system. Another feature of the locking strategy is that MetaEdit+ follows more than
one level of granularity in locking repository objects. It distinguishes locking
granularities between metamodels, graphs, conceptual objects, and representation
data. It can thus achieve the following desired features in locking: locks are acquired
only when needed, they are well-placed, and are not too small to overburden the
system. During their work users can gain information about locked objects and ·are
thus aware of who has locks on which design objects. Accordingly, they can
coordinate their actions through negotiating about how locks are freed and transferred.
Although no formal testing has been carried out as yet, initial experiences suggest that
with this strategy lock conflicts are surprisingly rare in normal CASE work.

3.2 Tool Architecture

In the design of the environment we have classified tools into five distinct families
according to their purpose and underlying common functionality. From the viewpoint
of conceptual data in the repository each family portrays similar demands in terms of
manipulation, locking and retrieval of conceptual design objects, though the different
representational paradigms underlying the tools may pose additional demands on
retrieval and locking. This has to be dealt with individually in each tool. Each tool
family contains one or more tools (Fig. 1). The five tool families are the following:

1. Environment management tools: these tools are used to manage features of the
environment, its main components and to launch it.

2. Model editing tools: these tools are used to create, modify and delete model
instances or their parts. In addition, these tools can be used to view the model

116

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

instances from different representational viewpoints, and/or to derive new
information from existing design information.

3. Model retrieval tools: these tools are used for retrieving design objects and their
instances from the repository for reuse and review. These tools can operate on both
models and metamodels.

4. Model linking and annotation tools: these tools are used for linking design
objects for traceability and memorization, annotating model instances, finding
specific "locations" in the design space, or maintaining conversations about design
issues.

5. Method management tools: these tools are for method specification, management
and retrieval.

4. Conceptual Data Model

Because all method specifications in MetaEdit+ are interpreted as high level
conceptual models of method (or methodology) the kernel of the MetaEdit+
functionality and architecture is determined by the underlying conceptual data model
called GOPRR. MetaEdit+ uses the GOPRR conceptual data model as a universal and
generic meta-metamodel i.e. as a sole language to specify methods. Very little if any
method "knowledge" is buried into the code in tools. In addition, GOPRR is primarily
intended to model observed, interpreted and recorded development reality as seen
through the methods (including the world of thought and abstract ideas). In this
respect it differs from the ontological IS models (see e.g. Wan93), which attempt to
model what actually is, rather than just what is perceived and recorded.

4.1 The OPRR Model

Basically, GOPRR (Smo93b) forms an evolutionary extension of the OPRR model
which has been successfully used in specifying methods for MetaEdit (Wel92,
Smo91b). Whereas the original ER model (Che76) provided only sketchy concepts of
attribute: features the object can possess; and of role: the part an object plays in a
relationship; the OPRR model has defined these notions in full.

The basic OPRR modeling constructs are:

• Objects, which consist of independent and identifiable design objects. These
typically appear as shapes in diagrams, and can have properties such as names.
Examples of objects are an Entity in an Entity Relationship Diagram or a Process
in a Data Flow Diagram.

• Properties are attributes of objects and can only be accessed as parts of objects
or relationships. Properties typically appear as textual labels in diagrams, and
they can contain single data entries such as a name, text field or number. An
example of a property is the number of a Process in a Data Flow Diagram
(Gan79).

117

S. Kelly, K. Lyytinen and M. Rossi

• Relationships are associations between objects, and can also have properties.
Relationships typically appear as lines between shapes in diagrams, or verbs in
texts. An example of a relationship is a Data Flow in a Data Flow Diagram.

• Roles define the ways in which objects participate in specific relationships. In
diagrams roles typically appear as the end points of Relationships (e.g. an
arrowhead). Roles too can have properties. An example of a role is the
specification by directed arrow which end of a data flow relationship is 'to' and
which 'from' part of the flow.

In addition OPRR provides constructs for defining cardinality constraints for
relationships (i.e. as properties of relationship meta-objects), and means to determine
properties which uniquely identify each object instance. The OPRR model is founded
on fixed mapping rules between modeling constructs and their graphical behaviors
(Ros92).

OPRR is further designed to be applicable to both the instance (model) and the type
(metamodel) levels. Thus an instance object, say a Process '3.1' in a Data Flow
Diagram model, has an object type of 'Process' on the metamodellevel, while a flow
relationship instance 'order info' on the model level is an instance of a relationship
type 'Data Flow' on the metamodellevel.

4.2 Extensions in the GOPRR Model

GOPRR extends OPRR as a conceptual meta-metamodel in several ways. First, unlike
OPRR the GOPRR model allows multiple representations of the same underlying
conceptual object (e.g. graphical, matrix, text), and even different graphical
representations of the same object in the same representation paradigm. This is
achieved by making available mechanisms that can override the default representation.
In this sense GOPRR forms a true conceptual "kernel" on which varied
representations of data, including not only graphical diagrams but also hypertext, text
and matrices, can be built. This allows GOPRR to support a wide range of
methodologies including matrix, table or text oriented ones, and gives users the ability
to see and manipulate design information in a variety of representations.

Second, the conceptual modeling constructs offered by OPRR have been extended in
the GOPRR in several ways which yields a powerful but yet ease-to-use modeling
language. These new Graph, object orientation, method integration and rule constructs
are described below.

Concept of Graph

The GOPRR model adds the concept of Graph into the modeling constructs. A graph
denotes an aggregate concept which contains a certain set of objects and their
relationships (with specific roles). Graphs typically appear as windows on whole
diagrams which contain objects and their bindings of roles and relationships; a graph
also has its own properties. An example of a graph is a whole Data Flow Diagram {as
a whole or just one level of it). In use, the Graph concept is fundamentally a
generalized decomposition graph: it can be included in a parent graph, attached to an

118

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

object, role or relationship therein. For instance, in Data Flow Diagrams a top level
graph may contain a Process '3', which has a decomposition graph called
'Decomposition of 3', containing Processes '3.1', 3.2' etc. Relationships from '1' and
'2' to '3' in the top level graph are actually interface relationships, as we can specify
that in the lower-level graph they link to e.g. '3.2' and '3.1' respectively. The interface
to the object, and hence to the elements in its decomposition graph, can be shown in
the child graph to any degree between 'not at all' and 'show copies of external
objects'. The interface is maintained distinct from the elements of the decomposition
graph itself, allowing reuse of the decomposition graph in different parent graphs. The
interface 'specification' remains the same in all decompositions, but the elements
attached to the interface at the higher level can be different in different parent graphs,
thus allowing reuse of the graph as a white or black box.

The design of Graph is such that many "representational" graphs can be made for one
"conceptual" graph. For instance, a matrix and diagram representation can be made of
the same conceptual Data Flow Diagram. In this situation changes in conceptual
graphs are propagated between different tools and their "representational" graphs
according to their usefulness to the user. Currently, objects added in one graph are
immediately available to other graphs, but not automatically added. Changes to
properties are made instantly (on transaction commit, if different users are working on
different graphs), and additions to or changes of relationships or roles are made
instantly in the relationship-oriented Matrix Editor, but buffered in the Diagram
Editor, so the user can control their layout when they are added.

The addition of the concept of Graph allows GOPRR to represent multiple methods,
and multiple models, whilst still maintaining the contents of each as a coherent
distinguishable whole. In this way graph enables modeling and representation of
recursive structures such as decompositions, or complex objects as often found in
development methods. The graph notion has also been specialized into a modeling
unit called Project, which can contain other Graphs, and sub-projects. A Project type
thus helps manage the allowed linkages between methods used in a particular project.

It is noteworthy that all concepts included in GOPRR are designed for reuse: both
types and instances of object, relationship, role, property and graph can be reused
within other graph or project types (or instances).

Object Orientation

Another extension, in line with object orientation is the inclusion of generalization
and specialization constructs into the GOPRR language. This extension helps to
organize complex method libraries, enhances reuse, and together with the graph notion
enables to model in economical way most method components.

In line with object orientation objects a third extension is polymorphism of modeling
constructs: objects, relationships, roles and properties are polymorphic in the sense
that an object seen in one method as an object can be seen in another method as a
relationship, or a property. This enables method component re-use and provides a

119

S. Kelly, K. Lyytinen and M. Rossi

powerful and flexible method integration mechanism. In this way the method
specifications can include specifications of a set of interconnections between different
IS models.

Method Integration

In addition to decomposition and polymorphism, GOPRR also adds other powerful
method integration constructs. Objects, relationships and roles can be reused in many
different graphs: a change to the object via one graph is also visible in the other
graphs. Similarly, properties can be shared between several objects, with changes
affecting all objects referring to that property. These two constructs allow different
degrees of saying that two objects in different places are 'the same': an important
factor in representing the same 'real world' fact in two different methods. Explosion
works similarly to decomposition, but with freer semantics. For instance, each object
may have only one decomposition, wherever it occurs, but can have multiple
explosion links for every graph in which it takes part.

Integrity Checking Rules

Finally GOPRR provides enhanced rules for checking the model integrity. It is
possible to attach rules to properties, in addition to the normal type restrictions. For
example, in modeling Data Flow Diagrams, a rule has been added to the property
'DFD Number' which constrains the contents of the string property to be a dot
separated sequence of numbers, disallowing combinations like 'Fred', '2.', '3 .. 2.1 ',
'.'. It is also possible to add constraints on the collection of properties for a given
object, role, relationship, graph or project type. For example, a rule could be added to
specify that a 'start date' must come before an 'end date' in an activity modeling
diagram. These rules, too, are inherited by descendant types, but may be overridden.

4.3 Example

Although the improvements in GOPRR are best seen with complicated methods, for
ease of understanding we take a simple Data Flow Diagram metamodel as our
example. One way to model Data Flow Diagrams with GOPRR is to note the
similarities between the various object types (i.e. processes, externals and stores), and
how they may be connected. For instance, instances of all three object types must have
a name and a description, and they can connect via a Flow relationship with a Process.
These similarities motivate the creation of a generalized 'DFDObject' type, which is
specialized into 'Process', 'External' and 'Store' types. DFDObject itself is marked so
that it can never be instantiated: it is purely an abstract type.

120

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

8 -8
8--0' 0-8

8' 8

Fig. 2: A GOPRR metamodel of Data Flow Diagrams

This inheritance hierarchy can be seen in the center of Fig. 2, where the rectangles are
object types, diamonds are relationship types, circles role types, and ovals property
types. DFDObject thus has two properties, Name and Description, and Process
inherits these two and adds a third, Number. Objects can be connected by a Flow
relationship, with the proviso that one of the objects must always be a Process: on the
left, the Process is in the To role, and on the right, in the From role.

The whole figure within the rectangle represents the Graph type of Data Flow
Diagrams. The fact that a Process can decompose to a lower-level Data Flow Diagram
is represented by the curved gray 'Decompose' relationship between Process and the
DFD graph type's rectangle.

5. Method Management Tools

5.1 Motivation and Purpose of the Method Management Tools

In MetaEdit+ the method management tool family has been developed to ease the
creation and testing of methods, their management and evaluation support. The
primary goal of the tool family is to allow flexibility in method creation and
management and ease method construction. Therefore the environment supports
alternative ways of method engineering: 1) creation from scratch, where all the parts
of the method being defined contain new types, 2) component oriented, where
methods are constructed through using prefabricated parts, and 3) reuse oriented,
where method engineering seeks to achieve maximal generality of the repository
types, and then by specializing these components derive new methods.

121

S. Kelly, K. Lyytinen and M. Rossi

5.2 Design Principles of Method Management Tool Family

The development of the MetaEdit+ method management tool family has been
influenced by earlier method engineering frameworks (Har93, Hey93, Ros95b,
Wel92). These frameworks have sought to consider those aspects that are necessary in
a completely functional method engineering environment. Functionally such an
environment consists of the following parts:

Assemblv

Help
generator

Object etc.
Tools

~ I

Method Report I
support env code
generator generator

Symbol
Editor

MetaEdit+
CASE tool
tailored for
the method

MetaEdit+
Method
Management
family

Metrics &
Statistics

Fig. 3: Method Management Tools in MetaEdit+

Below each subsystem component will be discussed in more detail.

The Method Assembly System

This system part consists of several specialized editors and model retrieval and
analysis tools that are needed in method assembly. These tools together allow one to
specify a method's objects and relationships and their representations, so that they can
be immediately tested within the environment. The most important components are the

122

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

metamodel editors (including object, relationship, role, property and graph editors) by
which every method's components and their connections are specified. Due to their
different semantics and graphical behaviors Objects, Properties, Relationships and
Roles all have their own specification tools. This helps to define their specialized
semantics separately, but in particular allows re-use of existing object, relationship
and role specifications. These concepts are then collected into complete method
specifications using the Graph tool. This also allows the re-use of existing graph
"patterns". Each tool also has a dialog definition subsystem, which allows custom
definition of dialogs associated with each object type.

The Symbol Editor helps specify symbols that are used to distinguish each object type
from other object types. Symbols are defined by a specialized drawing tool and are
thereafter connected to the appropriate metamodel type. The Symbol Editor also
improves re-use as new symbols can be derived by combining or modifying existing
symbol patterns and templates retrieved from the repository. The Consistency
checking system in MetaEdit+ incorporates several rules that ensure the syntactical
completeness and consistency of the resulting method specification. Completeness
checking covers checking for missing values and missing links between different
method components. Consistency checks verify the internal integrity of the method
specification by analyzing that the method specification does not include contradictory
specifications. The Metric & statistics system of the environment offers a number of
reports developed using the report generator tool, that analyze the method
specification (Ros94, Ros95a). The metrics reports provide a set of computed values,
which can be used to review and analyze the properties of the specifications.
Examples of metrics are the number of Object, Relationship and Property types in the
method (Tei80), and the average number of Properties or Relationships per Object
type.

Environment Generation System

This subsystem features several generators that help to deliver a usable and user­
friendly CASE tool by using the information contained in the method specifications.
The Method support environment generation system compiles the method's object
specifications into parts of the metamodel repository as soon as they have been
defined. As noted above such specifications define the structure of MetaEdit+'s
repository data and the symbols to represent and forms to view the object instances.
The Method help generation system generates an on-line help component associated
with each method. This help can then be accessed through a model editing tool
interface from the repository. The generation is based on the defined properties of the
metamodel types such as a definition what is an External and how it is used in
different situations. Report and transformation generation system is used for
delivering various reports and conducting checking on the models. These reports can
be defined using the generic report generator discussed above.

Parts not available in the current MetaEdit+ method management tool family but
recognized in the earlier frameworks are: a selection assistant for selecting the right
method or its parts for a specific project (Kum92, Har94), and process description and

123

S. Kelly, K. Lyytinen and M. Rossi

support (Wij91). These needs are not currently addressed in MetaEdit+, but there are
ongoing activities in the project that aim at adding these features.

5.3 An Example of a Method Specification

Here we show how to develop part of the Data Flow Diagram metamodel. The
example depicts how the defined components of the DFD are connected together to
form the actual method. The tools used to manipulate the GOPRR concepts in the
concept specification database are form-based.

Gr1 hTool

Fig. 4: A Graph Tool

Fig. 4 shows the resulting graph specification of the DFD method. The Graph Tool
allows the user to add, remove and edit components of the method (the components,
i.e. Objects, Relationships and Roles, are modified with similar tools) and to add and
delete method connections. The window on the left shows the definition of the DFD,
its properties (i.e. model name and documentation) and related documentation text for
method help. The window in the upper right corner of the figure shows the
components of the method. The window in the lower right corner shows the possible
explosion connections between objects in the DFD and other Graph types: Processes
can be exploded into lower level DFD's.

6. Discussion and Conclusions

The limited functionality and rigidity of the current information systems development
environments continues to pose a considerable challenge to both academia and
practice. In this paper our goal has been to demonstrate how the prototype metaCASE
environment called MetaEdit+ deals with these concerns. Overall, we have sought to

124

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

develop MetaEdit+ as a platform for trying out different tools and tool construction
principles, and also to try out the use of object oriented architecture in designing and
implementing a metaCASE tool. This is well reflected in its current implementation.
MetaEdit+ has been implemented using VisualW orks Smalltalk environment using the
ArtBase object repository system and NEDT graphical programming environment,
with ENVY as code management system. By doing this, we have been able to re-use
about 70% of all code needed to implement the current functionality.

Our goal in developing MetaEdit+ environment-has been to develop an environment
which:

• Supports high level specification of methods with a powerful yet easy to use
method specification language

• Has an open architecture which separates the conceptual specification of the
repository and the view (or representation) adopted in different tools and thus
conveys a high-level object-oriented API for the tool-repository interactions

• Offers mechanisms for concurrent access of repository data through different tools
and users

• Features a comprehensive and well-organized tool set for diverse and complex
information handling tasks with some new functionality such as matrices, hypertext
tools and the query tool

• Includes flexible, and varying mechanisms for tool integration and both vertical
and horizontal method integration support

• Provides symmetrical treatment of IS models and metamodels, and thus enables re­
use, metamodel management and utilization within the same environment

• Provides novel support for alternative representational paradigms including
matrices, and tables.

We believe that with these features MetaEdit+ addresses many flaws found in current
CASE tools. First, through its novel method integration mechanisms it provides
innovative ways to organize methods and method families into methodologies, and
also to organize methodologies with alternative levels of connectedness and inter­
method integrity constraints. Second, through its concurrency management
mechanisms MetaEdit+ is able to cater for varying needs and demands for
concurrency management for different repository objects. Third, through its open
architecture and tool interoperability MetaEdit+ can support the highly diverse
representational paradigms and information processing needs which are demanded
from software engineering environments. Fourth, through its meta-metamodel
MetaEdit+ provides flexibility and evolvability in the method specification and use
which is unmatched by any other existing metaCASE tool. Fifth, through the
availability of a varied yet uniform (in terms of user accessibility and user interface)
tool set the MetaEdit+ environment is able to cater for diverse needs of different
system development stakeholders. In this sense MetaEdit+ achieves the design goals
of better usability, improved flexibility and a open architecture.

125

S. Kelly, K. Lyytinen and M. Rossi

Despite these advances MetaEdit+ is not currently a fully complete environment,
suitable for all types of development tasks. First, it does not address the need for
multiple distributed repositories which is typical for large scale software development.
Second, its concurrency management strategies can be too demanding for large scale
software repositories. Third, it does not provide flexible integration mechanisms with
other tools (such as electronic publishing or CSCW tools).

Future work in MetaEdit+ will take several directions. First, we want to expand the
flexibility and evolvability to cater not only for method representation specifications,
but also process and actor models for lSD (Mar94). Second, we will finish the
ongoing implementation of the concurrency management system and expand it with
the possibility to try out alternative concurrency management strategies which may be
applicable in different environments. The third direction is to increase the capabilities
to describe integrity constraints within and between method specifications.

On the tool and MetaEngine level the following expansions are currently underway.
The applicability of the concept of reusable graphs with 'interface ports', analogous to
principles encountered in chip design, will be examined on the model and metamodel
levels. The three constructs to represent different levels of 'two things being the same'
in a model (multiple representations of the same concept, property sharing, hypertext
links) will be examined in the light of current practice in methods. The possibilities of
polymorphism based on bindings and metatypes will be examined further in particular
as a solution to the problems of metatype polymorphism in existing methods (e.g.
objectified associations in NIAM (Nij89), which can be viewed as both objects and
relationships). Similarly, the possibilities of the matrix paradigm will be investigated.

To conclude, MetaEdit+ forms a bold attempt to build a versatile platform for
implementing flexible design information systems that will form the necessary
organizational memory and design resource for knowledge intensive systems and
software engineering required in the next millennium. If any improvement has been
made in realizing this vision we have achieved our goals.

Acknowledgments. This research was in part funded by the Ministry of Education,
University of Jyviiskylii, and the Academy of Finland, as the MetaPHOR project
(Lyy94). We are also grateful to our colleagues in the MetaPHOR project who have
been involved in designing and implementing some parts of the system.

Bibliography

Aae91 Aaen, Ivan, Carsten S!llrensen, "A CASE of Great Expectations," Scandinavian
Journal oflnforrnation Systems 3(1) (1991) pp.3-23.

Alf'/7 Alford, M., "A Requirements Engineering Methodology for Real Time Processing
Requirements," IEEE Transactions on Software Engineering 3(1) (1977) pp.60-69.

ANS75 ANSI, "Study Group on Data Base Management Systems: Interim Report 75-02-08,"
ACM SIGMOD Newsletter 7(2) (1975).

Ber89 Bergsten, Per, Janis Bubenko jr., Roland Dahl, Mats Gustafsson and Lars-Ake
Johansson, "RAMATIC- A CASE Shell for Implementation of Specific CASE Tools,"
Tempora T6.1 Report, first draft, SISU, Gothenburg (1989).

126

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

Bri90 Brinkkemper, Sjaak, "Formalisation of Information Systems Modelling," Ph.D.
Thesis, Univ. ofNijmegen, Thesis Publishers, Amsterdam (1990).

Bro75 Brooks, F., "The Mythical Man Month: Essays on Software Engineering," Addison­
Wesley, Reading, Mass, USA (1975).

Bro91 Brown, Alan W., "Object-oriented Databases: their applications to software
engineering," McGraw-Hill, Maidenhead UK (1991).

Bub88 Bubenko, J. A., "Selecting a Strategy for Computer-Aided Software Engineering
(CASE)," Report 59, SYSLAB, University of Stockholm, Sweden (1988).

CDI91 COIF, "CASE Data Interchange Format Interim Standards vol. 1-3," Electronic
Industries Association Engineering Department (1991).

Cha86 Charette, R., "Software Engineering Environments, Concepts and Technology,"
McGraw-Hill, New York, USA (1986).

Che76 Chen, P. P., "The Entity-Relationship Model: Toward a Unified View of Data," ACM
Transactions on Database Systems 1(1) (1976) pp.9-36.

Che88 Chen, Minder, "The Integration of Organization and Information Systems Modeling:
A Metasystem Approach to the Generation of Group Decision Support Systems and
Compute-aided Software Engineering," PhD Thesis, University of Arizona, Tuscan,
USA (1988).

Cyb92 Cybulski, Jacob L., Karl Reed, "A Hypertext-Based Software Engineering
Environment," IEEE Software (March 1992) pp.62-68.

ECM91 ECMA, "Reference Model for Frameworks of Software Engineering Environments,"
Technical Report ECMA TR/55, 2nd Edition (1991).

Gan79 Gane, C., T. Sarson, "Structured Systems Analysis: Tools and Techniques," Prentice
Hall, Englewood Cliffs, NJ (1979).

Hah91 Hahn, U., M. Jarke and T. Rose, "Teamwork Support in a Knowledge-Based
Information Systems Environment," IEEE Transactions on Software Engineering
17(5) (1991) pp.467-481.

Har93 Harmsen, F., S. Brinkkemper, "Computer Aided Method Engineering based on
existing Meta-CASE technology," pp. 125-140 in Proceedings of the Fourth
Workshop on The Next Generation of CASE Tools, Sjaak Brinkkemper, Frank
Harmsen (Ed.)No. 93-32, Univ. ofTwente, Enschede, the Netherlands (1993).

Har94 Harmsen, Frank, Sjaak Brinkkemper and Han Oei, "Situational Method Engineering
for Information System Project Approaches," pp. 169-194 in Methods and
Associated Tools for the Information Systems Life Cycle (A-55), A. A. Verrijn-Stuart
and T. W. Olle (Ed.), Elsevier Science B.V. (North-Holland) (1994).

Hen90 Henderson, J., J. Cooprider, "Dimensions of IS Planning and Design Aids: a
functional model of CASE technology," Information Systems Research 1(3) (1990)
pp.227-254.

Hey92 Heym, M., H. Osterle, "A Reference Model of Information Systems Development,"
pp. 215-240 in The Impact of Computer Supported Technologies on Information
Systems Development, K. E. Kendall, K. Lyytinen, J. L. DeGross (Ed.), North­
Holland, Amsterdam (1992).

Hey93 Heym, M., H. Osterle, "Computer-aided methodology engineering," Information &
Software Technology 35(617) (1993) pp.34S-354.

Ind87 Index Technology Corporation, "Excelerator Reference Guide," Index Technology
Corporation, Cambridge, USA (1987).

IS089 ISO, "Information processing systems: Information Resource Dictionary System
(IRDS) Framework," Draft International Standard ISO/IEC DIS 10027 (1989).

Kat84 Katz, Randy H., "Transaction Management in the Design Environment," in New
Applications of Databases, Georges Garderin and E Ge (Ed.), Academic Press,
London UK (1984).

127

S. Kelly, K. Lyytinen and M. Rossi

Kel94a Kelly, Steven, Veli-Pekka Tahvanainen, "Support for Incremental Method
Engineering and MetaCASE," in Proceedings of the 5th Workshop on the Next
Generation of CASE Tools, B. Theodoulidis (Ed.) Memoranda Informatica 94-25,
Universiteit Twente, Enschede, the Netherlands (1994).

Kel94b Kelly, S., "A Matrix Editor for a MetaCASE Environment," Information and Software
Technology 36(6) (1994) pp.36l-37l.

Kel95 Kelly, Steven, Karl Smolander, "Evolution and Issues in MetaCASE," Information
and Software Technology (to appear) (1995).

Kum92 Kumar, Kuldeep, Richard J. Welke, "Methodology Engineering: A Proposal for
Situation Specific Methodology Construction," pp. 257-269 in Challenges and
Strategies for Research in Systems Development, Kottermann W. W. and Senn J. A.
(Ed.), John Wiley & Sons, Washington (1992).

Liu95 Liu, H., "A Visual Interface for Querying a CASE Repository," in Proc. of the
Eleventh IEEE Symposium on Visual Languages (VL'95), Darmstadt Germany
(1995).

Lyy89 Lyytinen, Kalle, Karl Smolander and Veli-Pekka Tahvanainen, "Modelling CASE
Environments in Systems Development," in Proceedings of the first Nordic
Conference on Advanced Systems, SISU, Stockholm (1989).

Lyy94 Lyytinen, K., P. Kerola, J. Kaipala, S. Kelly, J. Lehto, H. Liu, P. Marttiin, H. Oinas­
Kukkonen, J. Pirhonen, M. Rossi, K. Smolander, V.-P. Tahvanainen and J.-P.
Tolvanen, "MetaPHOR: Final report," University of JyviiskyUi, Finland (1994).

Mar94 Marttiin, P., ''Towards Flexible Process Support with a CASE shell," pp. 14-27 in
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAiSE'94, Utrecht, The Netherlands, June 1994, G. Wijers, S.
Brinkkemper and T. Wasserman (Ed.), Springer-Verlag, Berlin (1994).

Mar95 Marttiin, Pentti, Kalle Lyytinen, Matti Rossi, Veli-Pekka Tahvanainen and Juha­
Pekka Tolvanen, "Modeling requirements for future CASE: issues and
implementation considerations," Information Resources Management Journal 8(1)
(1995) pp.15-25.

McC89 McClure, C., "CASE is Software Automation," Prentice Hall, Englewood Cliffs, NJ
(1989).

Mer90 Mercurio, V. F., B. F. Meyers, A.M. Nisbet and G. Radin, "AD/Cycle strategy and
architecture," IBM Systems Joumal29(2) (1990) pp.l70-l88.

Nij89 Nijssen, G. M., T. A. Halpin, "Conceptual Schema and Relational Database Design:
A fact oriented approach," Prentice-Hall, Englewood Cliffs, NJ (1989).

Oin93 Oinas-Kukkonen, H., "Hypertext Functionality in CASE Environments: Preliminary
Findings," Conference on Computers and Hypermedia in Engineering Education,
Vaasa, Finland (May 24-26 1993).

Ost87 Osterweil, L. J., "Software processes are software too," pp. 180-188 in Proceedings
of the 9th International Conference on Software Engineering (1987).

Poc9l Pocock, John N., "VSF and its Relationship to Open Systems and Standard
Repositories," pp. 53-68 in Software Development Environments and CASE
Technology, A. Endres, H. Weber (Ed.), No. 509, Springer-Verlag, Berlin (1991).

Poh94 Pohl, K., R. Domges and M. Jarke, "PRO-ART: PROcess based Approach to
Requirements Traceability," in Poster Outlines: 6th Conference on Advanced
Information Systems Engineering, Utrecht, Netherlands, June 1994 (1994).

Pro94 ProtoSoft Inc., "Paradigm Plus/ Cadre Edition Reference Manual," ProtoSoft Inc.
(1994).

128

From: CAiSE 1996, LNCS 1080 © Springer-Verlag Berlin Heidelberg 1996

Ros92 Rossi, M., M, Gustafsson, K. Smolander, L.-A. Johansson and K. Lyytinen,
"Metamodeling editor as a front end tool for a case-shell,'' pp. 547-567 in Advanced
Information Systems Engineering, P. Loucopoulos (Ed.), Springer Verlag, Berlin,
Germany (1992).

Ros94 Rossi, M., J.-P. Tolvanen, "Metamodeling approach to method comparison: A survey
of a set of lSD methods," Working Paper, University of JyvliskyUi, Jyvliskylli (1994).

Ros95a Rossi, M., S. Brinkkemper, "Metrics in Method Engineering," pp. 200-216 in
Advanced Information Systems Engineering, Proceedings of the 7th International
Conference CAiSE'95, J. Iivari, K. Lyytinen and M. Rossi (Ed.)No. 932, Springer­
Verlag, Berlin (1995).

Ros95b Rossi, M., "The MetaEdit CAME environment," Proceedings of the Meta Case 95,
University of Sunderland press, Sunderland (1995).

Smo91a Smolander, Karl, Kalle Lyytinen, Veli-Pekka Tahvanainen and Pentti Marttiin,
"MetaEdit - A Flexible Graphical Environment for Methodology Modelling," in
Advanced Information Systems Engineering, Proceedings of the Third International
Conference CAiSE'91, Trondheim, Norway, May 1991, R. Andersen, J. A. Bubenko
jr. and A. Solvberg (Ed.), Springer-Verlag, Berlin (1991).

Smo91b Smolander, Karl, "OPRR: A Model for Modelling Systems Development Methods,"
in Next Generation CASE Tools, K. Lyytinen and V.-P. Tahvanainen (Ed.), lOS
Press, Amsterdam, the Netherlands (1991).

Smo93a Smolander, Karl, "MetaEdit+ Protocols and standard operations for processing
GOPRR information structures: the Application Programmer's lnteiface," Internal
Technical Document, MetaPHOR project, Univ. of JyviiskyUi, JyvliskyHi, Finland
(1993). .

Smo93b Smolander, Kari, "GOPRR: a proposal for a meta level model," University of
Jyvliskylli, Finland (1993).

Sor88 Sorenson, Paul G., Jean-Paul Tremblay and Andrew J; McAllister, "The Metaview
System for Many Specification Environments," IEEE SOFTWARE (March 1988)
pp.30-38.

Ste93 Stegwee, Robert A., Ria M. C. van Waes, "Flexible CASE tools for Information
Systems Planning," pp. 248-292 in Computer-Aided Software Engineering - Issues
and Trends for the 1990s and Beyond, T. Bergin (Ed.), Idea Group Publishing
(1993).

Tei77 Teichroew, Daniel, Ernest A. Hershey_III, "PSUPSA: A Computer-Aided Technique
for Structured Documentation and Analysis of Information Processing Systems,"
IEEE Transactions on Software Engineering (1977).

Tei80 Teichroew, Daniel, Petar Macasovic, III Ernest A. Hershey and Yuzo Yamamoto,
"Application of the entity-relationship approach to information processing systems
modeling," pp. 15-38 in Entity-Relationship Approach to Systems Analysis and
Design, P. P. Chen (Ed.), North-Holland (1980).

Wan93 Wand, Yair, Ron Weber, "On the ontological expressiveness of systems analysis and
design grammars," Journal oflnformation Systems (1993).

Wel92 Welke, R. J., "The CASE Repository: More than another database application," in
Challenges and Strategies for Research in Systems Development, William W.
Cotterman and James A. Senn (Eds.) (Ed.), Wiley, Chichester UK (1992).

Wij90 Wijers, G. M., H. E. van Dort, "Experiences with the use of CASE-tools in the
Netherlands," Advanced Information Systems Engineering (1990) pp.S-20.

Wij91 Wijers, G. M., "Modelling Support in Information Systems Development," Ph.D.
Thesis, Delft University of Technology, Thesis Publishers, Amsterdam (1991).

129

MetaEditC at the Age of 20

Steven Kelly, Kalle Lyytinen, Matti Rossi, and Juha Pekka Tolvanen

Abstract We review the initial vision underlying MetaEditC, discuss its evolution
over the last 20 years, and compare it to the state of the art today. We also note the
rise of domain-specific modeling and the value that MetaEditC and similar tools
have offered in advancing this field. We conclude with a discussion of theoretical
and conceptual advances in this field that have taken place since the implementation
of the tool, and a review of the future of method engineering.

1 Introduction

In the 1996 CAiSE conference we published a paper called “MetaEditC: A Fully
Configurable Multi-User and Multi-Tool CASE and CAME Environment” [8]. The
paper described a state-of-the-art modeling and metamodeling environment that the
ongoing project at the University of Jyväskylä had implemented. The main goals
of the article were to explain the problems found with existing CASE and method
engineering tools, state our vision for the MetaEditC environment, and describe the
architecture and key principles in its design and implementation.

The MetaEditC tool was originally developed in a series of research projects
from 1992 until 2001, building on the research behind the earlier, single user and
single modeling language MetaEdit tool [22]. A spin-off company, MetaCase, was

S. Kelly (�) • J.P. Tolvanen
MetaCase, Jyväskylä, Finland
e-mail: stevek@metacase.com; jpt@metacase.com

K. Lyytinen
Case Western Reserve University, Cleveland, USA
e-mail: kjl13@case.edu

M. Rossi
Aalto University, Espoo, Finland
e-mail: matti.rossi@aalto.fi

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 10, © Springer-Verlag Berlin Heidelberg 2013

131

mailto:stevek@metacase.com
mailto:jpt@metacase.com
mailto:kjl13@case.edu
mailto:matti.rossi@aalto.fi

S. Kelly et al.

founded in 1991 and from 1995 research and development associated with the tool
progressively shifted there and continues today.1 The CAiSE article reflects our
understanding of the necessary system functionality and its architecture in 1996,
at which point most of the initial requirements elicited had been implemented to at
least a working beta level.

By reflecting on the implementation and use of MetaEditC over the years we
have gained a broad and deep appreciation of the challenges of method engineering
and its changing nature as the software industry has evolved. In this paper we
look at how MetaEditC has changed since 1996, and how it has impacted method
engineering research and practice. We conclude with a summary of lessons learned
and briefly discuss the future of method engineering and method engineering tools.

2 Past and Current Research Issues

In the mid-nineties CASE tools and heavyweight methods were seen as a panacea
for most information systems development issues. We observed the need for more
versatile tool support and integration and the ability to adapt tools and methods to
specific situations. This approach was known as ‘situational’ method engineering,
whereby standardized methods were adjusted for varying development tasks and
situations [13]. The 1996 article was one of the first to articulate the challenges of
situational method engineering and its tool support. That vision was explained and
developed further in a series of theses [7, 11, 16, 20, 24, 29] and other publications
[6, 21]. In our experience, history has been kind to that vision, and the solutions it
presented are still valuable and relevant for software development.

Since CAiSE ’96, large-scale methods for systems development have gradually
gone out of fashion. At the same time CASE tools have become standardized work
horses which can improve and support specific design and software development
tasks. The commercial CASE tool market has also largely vanished whilst many
powerful tools have been made open source (Eclipse) or offered for a very low
fee (Visual Studio). Comprehensive and integrated methods and workbenches have
been replaced with lightweight documentation and agile methods [1].

At the same time method engineering tools have found a new lease of life as
language workbenches for Domain-Specific Modeling (DSM) [9]. This fits with the
idea of evolutionary ‘method prototyping’, which was described and evaluated in
Tolvanen’s thesis [24]. OMG’s MDA and Microsoft’s Software Factories approach
[4] have also driven the demand for flexible tools like MetaEditC. The methods and
tools for DSM have been honed in the OOPSLA DSM workshops2 starting in 2001

1http://www.metacase.com
2http://www.dsmforum.org/DSMworkshops.html

132

http://www.metacase.com
http://www.dsmforum.org/DSMworkshops.html

MetaEditC at the Age of 20

[25], and the Language Workbench Challenge3 from 2011. Several special issues
have been published on DSM recently [3, 23, 27].

The move towards DSM use of MetaEditC emerged from its users, most
notably Nokia’s Jyrki Okkonen. As is often the case, research can create something
interesting, but it takes industrial users to make it truly useful. DSM is however no
panacea: most MetaEditC users have been concentrated in areas such as embedded
systems (automotive, medical), consumer electronics, medical systems and telecom-
munications. Common themes have often included some kind of product line, a
development space defined by use of an in-house platform or framework, or the
configuration of complex systems from modular parts.

3 MetaEditC at Age 20

Since 1996 MetaEditC has evolved through industrial needs as well as innovation.
Many of the features included in the 1996 environment have proved their worth,
such as visual modeling, WYSIWYG symbol definition, incremental metamodel
evolution, reporting and code generation facilities, and repository functions. In
contrast, reverse engineering, hypertext, method rationale, and flexible queries and
transformations have been used relatively little.

MetaEditC contains several browsers allowing flexible method composition
from pre-defined parts. This was seen as a key feature of a method development
environment at that time [28]. In practice the reuse of method components has
rarely proven useful, except for large-grained units such as whole diagram types.
The ability to reuse and reference individual elements has, however, proved key for
integration between modeling languages. Similarly, method rationale has not been
used, but hyperlinking generated code back to the model element that produced it
has proved useful in practice.

MetaEditC was by no means a finished product in 1996 and many features have
been added since then. Here we will just mention a few features we consider most
important added between 1996 and the latest 5.0 release in 2012. The ability to
represent complex graphical objects has been found to be vital for implementing
many modeling languages, and for user acceptance of languages (See Fig. 1). The
WYSIWYG Symbol Editor from 1996 has been extended significantly with features
such as conditionality, dynamic templates, and SVG support. A new concept of Port
was introduced, making GOPRR into GOPPRR. In 1996, MetaEditC was rather a
monolithic, closed environment. Since then, support for a wide array of common
image and document formats has been added. Model and metamodel information
can be exported and imported as binary files or in an open XML format, and

3http://www.languageworkbenches.net

133

http://www.languageworkbenches.net

S. Kelly et al.

Fig. 1 Example model in MetaEditC 5.0 Diagram Editor

accessed and manipulated via an API. Open source plugins integrate MetaEditC
into Eclipse and Visual Studio IDEs.

3.1 Research Impact

The MetaPHOR research group, from which MetaEditC was born, has pro-
duced over 10 PhD theses and ca. 50 research papers – most of them after
the publication of the paper.4 MetaEditC has been used as a reference tool in
several tool comparisons (e.g. [10, 12]). The feature sets envisioned have also
formed lists for future tools and MetaEditC has been used in many projects as a
prototyping and development workbench in developing new software development
methods [15, 17–19]. Today more than 50 universities are using MetaEditC to
support both research and teaching. A 2008 IEEE Software article [5] identified
MetaEditC as being at the highest level of abstraction for all software devel-
opment tools, 15 years ahead of the curve. We would include the other early
DSM tools such as Vanderbilt’s GME [14] and Honeywell’s DoME [2] in this
category too.

4http://metaphor.it.jyu.fi/metapubs.html

134

http://metaphor.it.jyu.fi/metapubs.html

MetaEditC at the Age of 20

12

6

0.5

5

25

0

5

10

15

20

25

30

RSA GME MetaEdit+ Obeo GMF

Days to implement BPMN

Fig. 2 Comparison of metamodeling time

3.2 Industry Reception and Practical Impact

The initial version of MetaEditC received recognition from BYTE magazine with a
‘Best of CeBIT’95’ finalist award, with later versions recognized in the Software
Development Magazine Jolt awards (2004, 2005) and SDTimes top 100 (2007,
2008). MetaEditC has been used to develop a wide range of both software and
hardware solutions. A prime example is Nokia feature phones, which have sold
over a billion units running code automatically generated from a DSM language
in MetaEditC. Nokia estimated that applying DSM with MetaEditC increased
productivity by a factor of ten [26]. Similar results have been achieved in fields
as diverse as fish farming, insurance, railway systems, home automation, telecom
services, and wearable sports computers. A recent article [12] by committers on
the Eclipse Papyrus modeling tool compared MetaEditC, IBM Rational Software
Architect, Obeo Designer, GME and Eclipse GMF. The same language, BPMN,
was modeled from scratch with each tool, recording the time taken (Fig. 2).

4 Summary

Advanced information systems engineering has changed technically significantly
in the last 25 years. When we started work on metaCASE tools, there were no
good graphics or persistency libraries available, so everything had to be developed
from scratch. In 2013, creating tool support for modeling language engineering is
technically easier, yet still conceptually challenging.

It can be argued that effective adoption and deployment of tools such as
MetaEditC is no longer limited by the tool capabilities, but by the challenges of
organizing the work through (meta)modeling and the intellectual challenges of
developing original methods through DSM that can provide the necessary produc-
tivity payback. After the divergence to hundreds of languages in the 1980s, the
convergence toward the dominance of UML left only a few creating their own

135

S. Kelly et al.

languages. There is currently a dearth of knowledge of the principles and benefits of
high-level language creation and implementation in industry. Hopefully the recent
growth of language development and uptake of DSM tools in universities can seed
a new generation of language creators.

References

1. Cockburn A (2002) Agile Software development. Addison-Wesley
2. DoME Users Manual (1996). Honeywell Technology Center, Minneapolis
3. Gray J, Rossi M, Tolvanen J-P (2004) Domain-Specific Modeling with Visual Languages.

Journal of Visual Languages & Computing 15 (3-4):207–330
4. Greenfield J, Short K (2004) Software Factories: Assembling Applications with Patterns,

Models, Frameworks, and Tools. Wiley, Indianapolis
5. Helsen S, Ryman A, Spinellis D (2008) Where’s My Jetpack? IEEE Software 25 (5):18–21
6. Jarke M, Pohl K, Weidenhaupt K, Lyytinen K, Marttiin P, Tolvanen J-P, Papazoglou M

(1998) Meta Modeling: A Formal Basis for Interoperability and Adaptability. In: Krämer B,
Papazoglou M (eds) Information Systems Interoperability. John Wiley Research Science Press,
pp 229–263

7. Kelly S (1997) Towards a Comprehensive MetaCASE and CAME Environment: Conceptual,
Architectural, Functional and Usability Advances in MetaEditC. PhD Thesis, University of
Jyväskylä, Jyväskylä

8. Kelly S, Lyytinen K, Rossi M (1996) MetaEditC: A Fully Configurable Multi-User and Multi-
Tool CASE and CAME Environment. In: Constapoulos P, Mylopoulos J, Vassiliou Y (eds)
Advanced Information Systems Engineering, proceedings of the 8th International Conference
CAISE’96. Lecture Notes in Computer Science. Springer-Verlag, Berlin, pp 1–21

9. Kelly S, Tolvanen J-P (2008) Domain-Specific Modeling: Enabling full code generation.
Wiley-IEEE Computer Society Press

10. Kern H, Hummel A, Kühne S Towards a Comparative Analysis of Meta-Metamodels. In:
Rossi M, Sprinkle J, Gray J, Tolvanen J-P (eds) Proceedings of the 11th Workshop on Domain-
Specific Modeling, 2011.

11. Koskinen M (2000) Process metamodelling - Conceptual foundations and application. Disser-
tation, University of Jyväskylä

12. Kouhen El A, Dumoulin C, Gérard S, Boulet P (2012) Evaluation of Modeling Tools
Adaptation.

13. Kumar K, Welke RJ (1992) Methodology Engineering: A Proposal for Situation Specific
Methodology Construction. In: Kottermann WW, Senn JA (eds) Challenges and Strategies for
Research in Systems Development. John Wiley & Sons, Washington

14. Ledeczi A, Maroti M, Bakay A, Karsai G, Garrett J, Thomason C, Nordstrom G, Sprinkle J,
Volgyesi P The generic modeling environment. In: Workshop on Intelligent Signal Processing,
Budapest, Hungary, 2001.

15. Leitner A, Preschern C, Kreiner C (2012) Effective development of automation systems
through domain-specific modeling in a small enterprise context. Software & Systems Modeling

16. Marttiin P (1998) Customisable Process Modelling Support and Tools for Design Environment.
Dissertation, University of Jyväskylä, Jyväskylä

17. Mewes K (2009) Domain-specific Modelling of Railway Control Systems with Integrated
Verication and Validation Disseration

18. Preschern C, Leitner A, Kreiner C (2012) Domain-Specific Language Architecture for
Automation Systems: An Industrial Case Study. Paper presented at the Workshop on Graphical
Modeling Language Development

136

MetaEditC at the Age of 20

19. Qureshi T (2012) Enhancing Model-Based Development of Embedded Systems Dissertation.
Disseration

20. Rossi M (1998) Advanced Computer Support for Method Engineering: Implementation of
CAME Environment in MetaEditC. Dissertation, University of Jyväskylä, Jyväskylä

21. Rossi M, Ramesh B, Lyytinen K, Tolvanen J-P (2004) Managing Evolutionary Method
Engineering by Method Rationale. Journal of AIS 5 (9 article 12)

22. Smolander K, Lyytinen K, Tahvanainen V-P, Marttiin P (1991) MetaEdit-A Flexible
Graphical Environment for Methodology Modelling. In: Andersen R, J. A. Bubenko jr.,
Solvberg A (eds) Advanced Information Systems Engineering, Proceedings of the Third Inter-
national Conference CAiSE’91. Lecture Notes in Computer Science. Springer-Verlag, Berlin,
pp 168–193

23. Sprinkle J, Mernik M, Tolvanen J-P, Spinellis D (2009) Special issue on Domain-Specific
Modeling editorial. IEEE Software 26 (4)

24. Tolvanen J-P (1998) Incremental Method Engineering with Modeling Tools: Theoretical
Principles and Empirical Evidence. Dissertation, University of Jyväskylä

25. Tolvanen J-P, Gray J, Lyytinen K, Kelly S Proceedings of 1st OOPSLA Workshop on Domain-
Specific Visual Languages. In: Tolvanen J-P, Gray J, Lyytinen K, Kelly S (eds) Proceedings
of 1st OOPSLA Workshop on Domain-Specific Visual Languages, 2001. Jyväskylä University
Printing House

26. Tolvanen J-P, Kelly S (2000) Benefits of MetaCASE: Nokia Mobile Phones Case Study.
MetaCase Consulting plc. http://www.metacase.com/papers/MetaEdit in Nokia.pdf. Accessed
1/7 2004

27. Tolvanen J-P, Rossi M, Gray J (2013) Theme Issue on Domain-Specific Modeling in Theory
and Applications editorial. Journal of Software and Systems Modeling to appear

28. Zhang Z Defining components in a MetaCASE environment. In: CAiSE’00, Stockholm,
Sweden, 2000. Springer-Verlag

29. Zhang Z (2004) Model component reuse : conceptual foundations and application in the
metamodeling-based systems analysis and design environment. Dissertation, University of
Jyväskylä, Jyväskylä

137

http://www.metacase.com/papers/MetaEdit_in_Nokia.pdf

00-METHOD: An 00 Software Production Environment
Combining Conventional and Formal Methods

Oscar Pastor, Emilio Insfran, Vicente Pelechano, Jose Romero, Jose Merseguer
Departament de Sistemes Informatics i Computaci6

Universitat Politecnica de Valencia
Cami de Vera s/n

46071 Valencia (Spain)
{opastor I einsfran I pele ljmerse ljromero}@dsic.upv.es

Abstract

00-Method is an 00 Methodology that blends the use of formal specification
systems with conventional 00 methodologies based on practice. In contrast to other
approaches in this field ([Jun95,Esd93]), a set of graphical models provided by the
methodology allows analysts to introduce the relevant system information to obtain the
conceptual model through a requirements collection phase, so that an 00 formal specification
in Oasis ([Pas92, Pas95-1]), can be generated at any time. This formal specification acts as
a high-level system repository. Furthermore, a software prototype which is functionally
equivalent to the Oasis specification is also generated in an automated way. This is achieved
by defining an execution model which gives the pattern for obtaining a concrete
implementation in a declarative or an imperative software development environment
(depending on the user choice). The methodology is supported by a CASE workbench.

1. Introduction

In the context of the object paradigm, several 00 methodologies have
emerged to deal with the set of 00 methods to be used to model and correctly
implement an information system. Two main approaches can be distinguished:

• what could be called conventional 00 methodologies, that come from
practical use in industrial software production environments, which do not have a
formal basis and which often use classical structured concepts together with the
introduction of 00 features ([Wir90],[Rum9l],[Jac92], [Boo94],[Col94]). Recent
proposals are trying to create a unified framework for dealing with all the existing
methods (UML [BRJ96D, with the implicit danger of providing users with an
excessive set of methods that have an overlapping semantics.

• use of 00 formal specification languages (Oblog [Ser87,Esd93], Troll
[Jun91,Har94], Albert [Dub94], Oasis), which have a solid mathematical background
and deducible formal properties such as terms of soundness and completeness.

Our contribution to this state of the art is based on the idea that these two
approaches can be mixed. This mixing offers some advantages: the use of such 00
formal languages can help designers to detect and eliminate ambiguities and
elements of dubious utility. The use of conventional 00 methodologies permits us to
take advantage of the accumulative experience coming from the industrial context.
The research work developed at the DSIC-UPV has been directed towards designing
and implementing an 00 software production environment that aims to combine the
pragmatic aspects attached to the so called conventional methods, with the good
formal properties of the 00 specification languages.

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

139

mailto:{opastor|einsfran|pele|jmerse|jromero}@dsic.upv.es

O. Pastor et al.

In contrast to other works in this area ([Wie93,Kus95]), our approach is to
use this combination of approaches in a graphic, 00 conceptual modeling
environment which collects the system properties considered relevant for building a
formal, textual 00 specification in an automated way. This formal 00 specification
constitutes a high-level system repository. Furthermore, the definition of a concise
execution model and the mapping between the specification language and the
execution model notions, makes it possible to build an operational implementation of
a software production environment allowing for real automated prototyping, by
generating a complete system prototype (including statics and dynamics) in the
target software development environment. A CASE workbench which supports this
working environment in a unified way is currently available for prototyping
purposes.

This blend has produced the 00-Method methodology presented in this
paper and is based on OASIS as a formal 00 specification language. Our intention
is to give a clear description of the most relevant features of the approach,
introducing the basic ideas on 00 conceptual modeling that are in the basis of the
work in section 2, and explaining the main 00-Method features as a methodological
approach in section 3. The methods used to capture the system properties in order to
produce what we will call a conceptual model will be shown. Subsequently we will
show how to represent this model in a particular software development environment
according to an abstract execution model, which will fix the operational steps to
follow when we want to give a concrete system implementation. A software
prototype which is functionally equivalent to a system specification can be obtained
in the context of the methodology. We will describe the code generation strategy
used. Finally, a view of the CASE tool that has been built to support the
methodology will also be introduced.

2. The 00-Method Approach

Nowadays, it is considered mandatory for an 00 methodology to cover the
following aspects:

• Classes and objects
• Abstraction
• Encapsulation
• Inheritance and Aggregation to deal with complex classes
• Interobjectual Communication

However, the current proposals share a common weakness: the value of the
conceptual modeling efforts when the development step is reached is unclear, mainly
because it is not possible to produce an accurate code which is functionally
equivalent to the system requirements specification. We should be able to produce
code in an interactive way from the very beginning of the requirements specification
step, and not generate only static templates for the component system classes as most
00 CASE tools already do. We should be able to generate a complete programming
environment including statics and dynamics. This kind of functional rapid
prototyping would allow analysts to show the users a comprehensive image of the
application state at any given moment, making it possible to detect analysis errors or
misunderstandings as soon as they are originated. Furthermore, system designers

140

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

would have a validated starting point for their development tasks, avoiding having to
start from scratch.

If we work in a declarative environment, the programs generated are
theories of a given logic where the three concepts of machine computation, logic
deduction and satisfaction in a theory's standard model are equivalent. In this case, a
final software product which is formally equivalent to the system specification can be
obtained using declarative programming languages with a well-defined declarative
and operational semantics and with equivalent results between them.

If the target environment is imperative, we lose the quoted declarative
properties. However, we can generate a prototype which is functionally equivalent to
the requirements specification, if we clearly define a mapping between the
conceptual and the execution model. This automated prototyping policy (introduced
as a code generation strategy later on in this paper) constitutes an important
improvement with respect to the current state of the art of the field.

In summary, all these ideas lead us to the 00-Method proposal. 00-Method
is an 00 methodology, which is intended to overcome these problems and whose
contribution is based on the following basic principles:

1. to give support to the 00 conceptual modeling notions,
2. to join 00 formal method concepts with practical and widely used 00

methodologies,
3. to provide an automated prototyping environment, including complete

code generation (data and behaviour) in both declarative and imperative
programming environments.

3. The Methodology

00-Method is an ObJect-Oriented Software Production Methodology whose
phases are shown in Figure 1. Basically, we can distinguish two components: the
conceptual model and the execution model.

When facing the conceptual modeling step of a given Information System,
we have to determine the components of the object society without being worried
about any implementation considerations. The problem at this level is to obtain a
precise system definition, and this is the conceptual model.

Once we have an appropriate system description, a well-defined execution
model will fix the characteristics of the final software product, in terms of user
interface, access control, service activation, etc., in short, all the implementation­
dependent properties.

In this context, we start with an Analysis step where three models are
generated: the Object Model, the Dynamic Model and the Functional Model. They
describe the Object Society from three complementary points of view within a well­
defined 00 framework. For these models we have preserved the names used in many
other well-known and widely-used 00 methodologies, even if the similarities are
purely syntactic as can be seen throughout this paper.

From these analysis models, a corresponding formal and 00 Oasis
specification (the 00-Method design tool) can be obtained in an automated way.

141

O. Pastor et al.

This is done through an automatic translation process. The resultant Oasis
specification acts as a complete system repository, where all the relevant properties
of the component classes are included.

According to the execution model, a prototype which is functionally
equivalent to the specification is built in an automated way. This may be done in
both declarative (Prolog-based) [Can95] and imperative environments (specially
those visual 00 programming environments that are widely used nowadays). The
code generation strategy is independent of any concrete target development
environment, even if at the moment our selected environment for automated code
generation are Visual C++, Delphi, Java, Visual Basic and PowerBuilder.

Conceptual
Model

Execution

Model

00-Method

Automated Translation

~Automated Translation

Fig. 1. Phases of 00-Method.

Next, we explain the characteristics of the three models (object, dynamic
and functional) that constitute the conceptual model, introduce the execution model
features and explain the conversion strategy from the former to the latter.

3.1Conceptual model

Object Model

The Object Model is represented by means of a Class Configuration
Diagram (CCD), a graphic model where system classes are declared, including their
attributes and services. Aggregation and inheritance hierarchies are also graphically
depicted representing class relationships. Additionally, agents are introduced to
specifY who can activate each class service. Classes are the basic modeling units. A
class is represented by a rectangle with three areas:

• a header with the class name.
• a static component where attributes are declared.
• a dynamic component where services are introduced, distinguishing

among new and destroy events, and among private and shared events.

Shared events are connected by solid lines in the CCD. Client classes
(agents) of a given service are represented by dotted lines joining every potential

142

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

client class with the corresponding server class, capturing the client system view in
an easy and intuitive way.

00-Method deals with complexity by introducing aggregation and
inheritance hierarchies.

We represent the aggregation relationship between two classes including its
cardinality (minimum and maximum) to determine how many components can be
attached to a given container and how many containers a component class can be
associated with. See Figure 2.

Fig. 2. Aggregation relationship.
Fig. 3. Inheritance relationship.

Specialization

~"' , ' new 1 de.sr>' ~ndition

Generalization -~ ~ , '
I '

Inheritance is graphically depicted as an arrow from a given subclass to its
superclass. This arrow can be labeled with a condition of specialization, or with the
events that activate/cancel the child role, respectively. See Figure 31•

Next, the CCD corresponding to a classical Library Information System is
shown in the Figure 4. As a basic explanation (for reasons of brevity), we assume
that as usual in such a System, there are readers, books and loans relating a book to
the reader who orders it. Readers can 'play the role' of unreliable readers, if their
return dates expire. Librarian and reader instances are declared as active objects.

1 This is how inheritance is dealt with in Oasis, distinguishing between permanent
and temporal specialization. The permanent case refers to child instances created
when the ancestor instance is created, and they need a condition which is built on
constant attributes. Temporal specialization (role) appears when a superclass event
happens or a condition built on variable attributes holds.

143

O. Pastor et al.

r­
~­

I
I

I ,,

return

"'"

"""""" .. ,.

I "'I
r - - - - - ~ - - - -~~

~·
""*"'­readertnda

. .,
I I
I I ..

I_-----9-------- 1
puni•hlfo,..;"

~~ ciJ ~ -.... ::: '~~~ ~ -
~-

Fig. 4. CCD that represents the Object Model of the Library Information System.

Dynamic Model

The Dynamic Model is used to specifY valid object lives and interobjectual
interaction. To describe valid object lives, we use State Transition Diagrams (STDs,
one for each class). To deal with object interaction, we introduce an Object
Interaction Diagram (OlD), one for the whole System.

State Transition Diagram

STDs are used to describe correct behaviour by establishing valid object
lives. By valid life, we mean a right sequence of states that characterizes the correct
behaviour of the objects for every class. In this context states denote the different
available situations for class objects, and are depicted using a circle labeled with the
state name.

When an object does not exist, a blank circle represents this "state" of non
existence, and will be the source of initial transition labeled by the corresponding
new event. A hull's eye is used to represent the post-mortem state.

UB:retum when
lx>ol<._count>l

UB:Ioan if book._count< 10

Fig.5 STD for a READER.

Transitions represent valid changes of state that can be constrained by
introducing conditions. They follow the syntax shown below:

144

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

event I action I transaction [if precondition] [when control condition]

where precondition is a condition defined on the object attributes that must hold for a
service to occur and a control condition is a condition that avoids the possible non­
determinism for a given action. An example of STD can be seen in Figure 5.

Object Interaction Diagram

The object interactions are represented by diagrams of this kind. We declare
two basic interactions:

• triggers, which are services of objects which are activated in an
automated way when a condition is satisfied by an object of the same or
another class.

• global interactions, which are transactions involving services of
different objects. With these global interactions, interobjectual
transactions can be declared. Formally, they can be seen as a local
service of the aggregation among the classes providing the services that
constitute the global interaction.

Basically, we represent classes in the OlD as boxes with a header including
the class name. Class services are declared as smaller boxes inside the corresponding
class box. The class service boxes are connected when one of the previous types of
interactions is defined. Triggers are introduced by starting the corresponding solid
line in the header of the class and ending it in the triggered action, and global
interactions are introduced by connecting the involved services with a common
global interaction identifier (Glid). The general model for an OlD can be seen in
Figure 6 and 7.

Fig. 6. Trigger Relationships

Class3

Fig. 7. Global Interaction

Functional Model

After declaring object attributes and services in the Object Model and valid
life cycles and object interactions in the Dynamic Model, the aim of the Functional
Model is to capture semantics attached to any change of state in an easy and an

145

O. Pastor et al.

intuitive way. This model specifies the effect of an event on its relevant attributes
through an interactive dialogue. The value of every attribute is modified depending
on the action that has been activated, the involved event arguments and the current
object state.

The specification of an action effect should be made declaratively, as
proposed in Oasis. However, a good specification requires a solid formal basis for
any analyst. To solve this situation, the 00-Method provides a model where the
Analyst only has to categorize every attribute among a predefined set of three
categories and introduce the relevant information depending on the corresponding
selected category.

This classification of attributes [Pas96-2] is a contribution of this method
and gives a clear and simple strategy for dealing with the task of generating the
Execution Model. At the same time, it opens the door to being able to include this
information in an Oasis specification in an automated way.

There are three types of attributes: push-pop, state-independent and
discrete-domain based attributes.

Push-pop attributes are those whose relevant events increase or decrease
their value by a given quantity. Events that reset the attribute to a given value can
also exist.

An example of this category is the book_ number of the reader class, with
REA: loan as increasing action and REA:return as decreasing one (REA is a variable
of type reader).

Attribute : book number
Action Type Action

Incr. REA:Ioan
Deer. REA:retum

Category : push-pop
Effect

+1
-I

Evaluation Condition

Fig. 8. Push-pop attribute book_number of the reader class.

State-independent attributes have a value that depends only on the latest
action that has occurred. Once a relevant action is activated, the new attribute value
ofthe object involved is independent of the previous one. In such a case, we consider
that the attribute remains in a given state, having a certain value for the
corresponding attribute. We can introduce the attribute bookshelfofthe book class as
an example. A book has a bookshelf assigned when the event locate(B) is activated.
When this event occurs, bookshelf takes the argument value independently of any
previous value.

Attribute : bookshelf
Carrier Action Evaluation Condition
LIB:locate

Fig. 9. State-independent attribute bookshelf of the book class.

Discrete-domain valued attributes take their values from a limited domain.
The different values of this domain model the valid situations that are possible for
objects of the class. Through the activation of carrier actions (that assign a given
domain value to the attribute) the object reaches a specific situation. The object
abandons this situation when another event occurs (a "liberator" event). As an
example, let's consider the available attribute of the book class. The available value
tells us what the current book situation is. The carrier event (loan) lets the object into

146

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

a situation where available has the value false. The situation is abandoned when the
event return is activated.

Attribute : available
Actual Value

TRUE
FALSE

Category : discrete-<lomain valued
Action New Value Evaluation Condition

REA: loan FALSE
REA:retum TRUE

Fig. 10. Discrete-valued attribute available in the book class.

All this information, which constitutes the system description, has a textual
representation in Oasis. The specification is obtained at any moment by executing an
automated process of translation that converts the collected graphic information into
a textual 00 specification that constitutes a complete, formal System Repository.

3.2 Execution Model

Once all the relevant system information in the specification that we have
called conceptual model is collected , the execution model has to accurately state the
implementation-dependent features associated to the selected object society machine
representation. More precisely, we have to explain the pattern to be used to
implement object properties in any target software development environment.

Our idea at this point is to give an abstract view of an execution model that
will set the programming pattern to follow when dealing with the problem of
implementing the conceptual model. This execution model has three main steps:

1. access control: first, as users are also objects, the object logging in the
system has to be identified as a member of the corresponding object society.

2. object system view: once the user is connected, he must have a clear
representation of which classes he can access. In other words, his object
society view must be clearly stated, precising the set of object attributes and
services he will be allowed to see or activate, respectively.

3. service activation: finally, after being connected and having a clear object
system view, the object will be able to activate any available service in the
user's world view. Among these services, we will have event or transaction
activation served by other objects, or system observations (object queries).

Any service execution is characterized as the following sequence of actions:

1. object identification: as a first step, the object acting as server has to be
identified. This object existence is an implicit condition for executing
any service, except if we are dealing with a new event. At this moment,
their values (those that characterize its current state) are retrieved.

2. introduction of event arguments: the rest of the arguments of the event
being activated must be introduced.

3. state transition correctness: we have to verifY in the STD that a valid
state transition exists for the selected service in the current object state.

2 Formally, a new event is a service of a metaobject representing the class, which
acts as object factory for creating individual class instances. This metaobject (one
for every class) has as main properties the class population attribute, the next aid
and the quoted new event.

147

O. Pastor et al.

4. precondition satisfaction: the precondition associated to the service that
is going to be executed must hold. If not, an exception will arise,
informing that the service cannot be activated because its precondition
has been violated.

5. valuation fulfilment: once the precondition has been verified, the
induced event modifications are effective in the selected persistent
object system.

6. integrity constraint checking in the new state: to assure that the service
activation leads the object to a valid state, we must verify that the (static
and dynamic) integrity constraints hold in this final resulting state.

7. trigger relationships test: after a valid change of state, and as a final
action, the set of rules condition-action that represent the internal system
activity have to be verified. If any of them holds, the corresponding
service activation will be triggered. It is the analyst's responsibility to
assure the termination and confluence of such triggers.

The previous steps guide the implementation of any program to assure the
functional equivalence among the object system description collected in the
conceptual model and its reification in a software programming environment
according to the execution model.

Next, we are going to present the code generation strategy used in the
implementation of the previous execution model in a well-known Windows95
environment, which opens up the possibility of creating a CASE tool that, starting
from a set of graphical 00 models obtained during the conceptual modeling step
(according to 00-Method) can generate a functional software prototype at any time.

3.3 Code generation strategy

Once an abstract execution model has been introduced, we will have
different concrete implementations of this execution model for different software
development environments. In this paper, we focus on the implementation of the
execution model in a Windows95 context, but it must be noted that other concrete
and alternative implementations are currently being been developed emphasizing one
using Java in an intranet environment. It is important to note that the representation
of the conceptual model in the selected execution model is done according to the
principles introduced above, thus generating a prototype in an automated way by
adapting the code generation strategy that we present to the particularities of the
target development environment.

The execution model implementation selected for a Windows95
environment keeps in mind the main principles attached to such a environment.
Basically, this means that we have:

• to reproduce the user's mental image of the system, within an 00 world view.
Users generally expect an application to operate in accordance with its nature,
and the 00 paradigm provides an operational framework to properly represent a
system as a society of interacting objects, where every individual object can
access other system component objects and can activate those services it is
allowed to. To ensure this consistency, the interfaces built have to resemble the
user's environment. They also have to be consistent, complying with the
standards in presentation (what the user sees), behaviour (how the application

148

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

reacts), sequencing (how the dialogs are sequenced) and functionalities (how
actions are carried out). Finally they have to be transparent, meaning that the
purely technical application mechanisms must be completely transparent to the
user.

• to give control to the user. It is the user who must control the application and not
the contrary.

To properly implement the set of system classes in a standard Windows95
software development environment, we have to deal with a static and a dynamic
point of view. The static one will fix the relational database schema corresponding to
the system specification. This automated relational generation is out of the scope of
this presentation and is explained in depth in [Pas95-2]. In short, every class is
converted into a relation, having the attribute information included in the class
specification. Aggregation and inheritance are treated by defining the corresponding
foreign keys according to the collected complex class properties. Next, we are going
to focus on dynamics explaining the appearence of the prototype which is
automatically generated.

The code generation process creates four types of windows as we can see in
Figure 11:

--Jl ,,

Fig.ll Overview of the generated code structure.

• Access Control Window: this is the log-in window, where the
corresponding active user has to be identified. This is done by
introducing its object identifier, class name and password. The
identification is verified on the database to ensure that the object exists.
Once the object is incorporated to the system, it will see the available
system class services through menu items of the main menu.

Fig.12 Access Control Window

• Main Window; it characterizes the system view that the connected object
has. All the services of the classes are requested through it. It has the
following options:

0 the typical File item option of Windows applications.

149

O. Pastor et al.

0 for every class, a pull-down menu including an item for
observations (queries), a section with its descendent classes (if
any) and a last section with the available class services.

0 an interactions item, which allows for the activation of global
interactions.

Fig.13 Main Window.

• Event window, where the corresponding arguments are introduced and
the induced actions are executed through the OK control button.

• Observations window, this screen is intended to be a Query By Example
pattern where the user can see the results of any query done over the
current object state.

Finally, we will give a quick look at the 00-Method CASE tool.

4. The 00-Method CASE Tool

The 00-Method CASE Tool [Pas96-1] provides an operational
environment that supports all the methodological aspects of 00-Method. It
simplifies the analysis, design and implementation of Information Systems from an
object-oriented perspective, providing a comfortable and friendly interface for
elaborating the 00-Method models taking advantages of Windows95. The CASE
Tool is being used at this moment in the resolution of real complex systems, in the
context of a R&D project carried out jointly by the Valencia University of
Technology and Consoft S.A.

The most interesting contribution of this CASE environment is its ability to
generate code in well-known industrial software development environments from the
system specification, what constitutes an operational approach of the ideas of the
automated programming paradigm: analysts collect information, and can generate a
formal 00 system specification, and a complete (including statics and dynamics)
software prototype which is functionally equivalent to the quoted system
specification whenever the analysts want.

When the CASE Tool is executed, we are placed on a blank blackboard that
represents the CCD where we can draw classes and their properties. By selecting one
of the classes on the CCD the user can change to the STD dynamic model. The OID
completes the dynamic model. In addition to these static and dynamic points of view
the user has to fill the functional model information through friendly and interactive
dialogs.

150

From: CAiSE 1997, LNCS 1250 © Springer-Verlag Berlin Heidelberg 1997

The Figure 14 shows a picture of the CASE Tool. The main menu of the
tool has the typical items of an editing tool and also allows the user to enter in
textual mode the 00-Method models. Two remarkable items are the Project item
that includes the options for the Analysis (object, dynamic and functional models),
Design (Oasis code, generated in an automated way) and Implementation (Visual
C++, Delphi, ... code) steps, and the View item which allows the user to manage the
complexity of the graphic diagrams.

5. Conclusions

fijiidio-.1 Mod<l tlrl+f
~~--r---r---~----~

()6SIS (ode 6<nmtioo

t++Code6ener-o!ioft
~i9hi (ode 6enero:ion

java Code geaoraJion

Fig. 14 00-Method CASE Tool

The main aspects ofthe presented work are the following:

- C X

1. A complete 00 methodology for dealing with all the Software Production
Process phases has been introduced. This methodology uses a formal 00
specification language (Oasis) as a central, well-defined repository, from which
executable application prototypes can be obtained at any given moment.

2. A CASE tool for Rapid Prototyping is provided. It is embedded in the
methodological 00 context of 00-Method, having as basic property that the
collection of system requirements generates a prototype to be run by final users in
order to validate this process of requirements engineering.

3. On the basis of our approach, we find an operational environment blending
classical, widely-used 00 methods with formal specification languages,
complementing their different backgrounds: software development practice on
the one hand, and a mathematical theory background on the other hand.

References

[Boo94] Booch,G. 00 Analysis and Design with Applications. Addison-Wesley,
1994.

[BRJ96] Booch,G.,Rumbaugh,J.,Jacobson,I. Unified Modeling Language. Version
0.91. Rational Software Corporation.

151

O. Pastor et al.

[Can95] Can6s,J.H.;Penades,M.C.Ramos,l. A Knowledge-Based Arquitecture for
Object Societies. Proc. of DEXA-95 (Workshop), pags: 18-25, London,
1995

[Co194] Coleman,D. ;Arnold,P. ;Bodoff,S. ;Dollin,S. ;Gilchrist,H. ;Hayes,F. ;Jeremes,P.
Object-Oriented Development; The Fusion Method. Prentice-Hall1994

[Dub94] Dubois,E.;Du Bois,Ph.;Petit,M.;Wu,S. ALBERT.·A Formal Agent-Oriented
Requirements Language for Distributed Composite Systems. In Proc.
CAiSE'94 Workshop on Formal Methods for Information System
Dynamics, pags: 25-39, University ofTwente, Technical Report 1994.

[Esd93] ESDI S.A., Lisboa. OBLOG CASE Vl.O- User's Guide
[Har94] Hartmann T.,Saake,G.,Jungclaus,R.,Hartel,P.,Kusch,J. Revised Version of

the Modeling Language Troll (Troll version 2.0). Technische Universitat
Braunschweig, Informatik-Berichte, 94-03 April 1994.

[Jac92] Jacobson I.,Christerson M.,Jonsson P.,Overgaard G. 00 Software
Engineering , a Use Case Driven Approach. Reading, Massachusetts.
Addison -Wesley.

[Jun91] Jungclaus, R., Saake, G., Semadas, C. Formal Specification of Object
Systems. Eds. S. Abramsky and T. Mibaum Proceedings of the TapSoft's 91,
Brighton. Lncs. 494, Springer Verlag 1991, pags. 60-82.

[Kus95] Kusch,J.; Hartel,P.;Hartmann,T.;Saake,G. Gaining a Uniform View of
Different Integration Aspects in a Prototyping Environment. Proc of
DEXA-95, pags. 35-42, LNCS 978, Springer-Verlag, 1995

[Pas92] Pastor, O.;Hayes,F.;Bear,S. OASIS.-An 00 Specification Language. Proc. of
CAiSE-92 Conference, Lncs (593), Springer-Verlag 1992, pags: 348-363.

[Pas95-1] Pastor,O., Ramos, I. Oasis 2.1.1: A Class-Definition Language to Model
Information Systems Using an Object-Oriented Approach, October 95 (3
ed).

[Pas95-2] Pastor,O.;Garcia,R.;Cuevas,J. Implementation of an 00 Design in an
Oracle7 Development Environment. Proc. of the European Oracle Users
Group Conference, EOUG-95. Vol.4 pags: 35-47, Firenze (Italy).

[Pas96-1] Pastor,O., Barbera, J.M., Merseguer, J., Romero, J., Ins:fran, E.: The CASE
00-METHOD graphic environment description. Tech. Report, ITI-DT -96.

[Pas96-2] Pastor,O., Pelechano V., Bonet B., Ramos I. : An 00 Methodological
Approach for Making Automated Prototyping Feasible. Proceedings of
DEXA96, Springer-Verlag, September 1996.

[Ser87] Semadas,A.;Semadas,C.;Ehrich,H.D. 00 Specification of Databases: An
Algebraic Approach. In P.M.Stocker, W.Kent eds., Proc. ofVLDB87, pags:
107-116, Morgan Kauffmann, 1987.

[Rum91] Rumbaugh J.,Blaha M., Permerlani W., Eddy F.,Lorensen W. Object
Oriented Modeling and Design. Englewood Cliffs, Nj. Prentice-Hall.

[Wir90] Wirfs-Brock R., Wilkerson B., Wiener L., Designing Object Oriented
Software. Englewood Cliffs, Nj. Prentice-Hall.

[Wie93] Wieringa, R.I., Jungclaus, R., Hartel, P., Hartmann, T., Saake, G.,
OMTROLL Object Modeling in TROLL. Proc. of the International
Workshop on Information Systems - Correctness and Reusability (IS­
CORE'93). Hannover, September 1993. Udo W. Lipeck, G.Koschorrek
(eds.).

152

The Conceptual Model Is The Code. Why Not?

Oscar Pastor and Vicente Pelechano

Abstract The selection of the paper entitled “OO-METHOD: An OO Software
Production Environment Combining Conventional and Formal Methods” for this
book on Advanced Information Systems Engineering allows us to reflect on the
research context where the work was developed and presented (in “CAiSE 1997”)
and to introduce its main contributions, how they have evolved with time and
what influence the approach could have in the emergence of the Model-Driven
Engineering domain. As the main goal was to provide a Software Process that
should be fully Conceptual Model-based, the central message of this chapter is still
the same 16 years later: the Conceptual Model must be the key software artefact
of a sound, correct and complete Software Production Process. Novel approaches
were required to generate a sound software production process, and they should use
conceptual models as the key software artefact. The model should be the code of
the application, and a conceptual modelling programming style should become a
reality. While historically Software Engineering is in practice focused on programs,
we have always tried to provide methods and tools to achieve the objective of
make modelling the essential activity of programming. Why not making true the
statement that “the model is the code?”. This was our point when we published our
referred CAiSE paper, and it is still our position now, with many more results and
experiences to support it, that we introduce throughout this work.

O. Pastor (�) • V. Pelechano
Centro de Investigación en Métodos de Producción de Software, Universitat
Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
e-mail: opastor@pros.upv.es; pele@pros.upv.es

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 12, © Springer-Verlag Berlin Heidelberg 2013

153

mailto:opastor@pros.upv.es
mailto:pele@pros.upv.es

O. Pastor and V. Pelechano

1 Introduction

Among many other significant improvements, last century nineties was the time of
CASE methodologies. Providing a complete software process intended to correctly
support analysis, design and implementation became a priority. Some proposals that
stemmed from Structured Analysis and Design [1, 2] started to apply notions drawn
from Object-Oriented (OO) programming to conceptual modelling. A plethora of
OO methods were proposed (e.g. [3–6]), with different methodological backgrounds
and a diversity of notations, paving the way for the creation of a Unified Modeling
Language called UML [7].

Much effort was devoted to investigating and providing a software process
capable to guarantee the quality of the final application code. The CASE tools
that were constructed constituted a serious attempt to automate, in some degree,
the software production process. The strategy was to define a set of models in a
conceptual modelling step that should be properly transformed first in a software
design, and then in a software code. But unfortunately, too often these CASE tools
generated a frustrating experience in practice. Instead of providing a more effective
and efficient solution to the software development process, as they were committed
to do, users perceived that the tools were adding an additional burden to the problem
of programming. Programming was still a big challenge, but additionally now a new
method and its modelling language had to be learnt to create models that still had to
be converted into code.

In any case, it was becoming clear that the ideas stated already in 1971 in
[8] about the automation of systems building were more alive than never: “the
size, importance and cost of systems building provides an opportunity for the
investigation of ways to improve the process.” These new ways had an increasingly
conceptual model-oriented perspective, and eventually conceptual models were
playing the wished role of essential software artefact.

It was in this historical context where two CAiSE papers [9, 10] were introducing
an approach that had the following original and relevant aspects:

• The proposal of a formal, OO specification language –OASIS- that contained the
conceptual primitives required for specifying an organizational system, with a
precise semantics.

• The definition of an ontology for information systems, based on the FRISCO
proposal [11], to characterize those basic concepts that should be present in a
modelling language.

• The creation of a methodological background clearly distinguishing between
Problem Space (conceptual model-based, focusing on “what” the system is) and
Solution Space (final software product, centred on “how” an appropriate support
is going to be provided), together with the specification of an Execution Model
intended to link the conceptual primitives of the Conceptual Model (Problem
Space) with their corresponding software representation in the final software
application (Solution Space).

154

The Conceptual Model Is The Code. Why Not?

The pair constituted by the OO specification language (OASIS) and its method-
ological support (called the “OO-Method”) conformed a rigorous contribution that
will be presented with full historical detail in Sect. 3.

This work did not come alone. In the following years, a set of proposals,
methods, and tools were generated following the same direction, creating a family of
approaches that shared a common goal. Instead of having a Software Engineering
approach based on the principle that “the code is the model”, the new conceptual
modelling approaches promoted just the contrary: the model should just be the code.
All these proposals have made the dream of automating systems development closer
to truth than ever. The most relevant works are summarized in Sect. 2.

Finally, projections of the results reported in this work in other challenging
domains will be discussed as further work in Sect. 4. Conclusions and a list of
references complete the chapter.

2 Model-Driven Development in Practice: The “Model
Is the Code” Versus “The Code Is the Model”

Assuming that programs are models of implementations, one may argue that the
main challenge of software engineering is to see Conceptual Models as higher-level
programs and to provide sound transformations to convert those conceptual models
(Problem Space representation) into code (Software Solution representation). Such a
full software process should start with the elaboration of a Requirements Model, and
continue with its subsequent transformation into its associated Conceptual Schema
that should be executable through a Conceptual Model Compilation process.

The essential principles behind the OO-Method proposal [10] were turn into
reality by the implementation of the Integranova Conceptual Model Compiler [12],
which was developed and used in an industrial environment.

Morgan introduced in [13] the notion of “Extreme Non-Programming (XNP)”,
opposing Extreme Programming to highlight that XNP programmers should have a
conceptual modelling perspective. This means that they should not do programming
at all –at least they should not program in the traditional programming sense-.
Instead, they should follow the motto “the model is the code”.

Olivé proposed in [14] the concept of “Conceptual Schema-Centric Software
Development”, proposing a precise criteria to support it: to design an Information
System, it is necessary and sufficient to create its Conceptual Schema”. Not only
necessary, but necessary and sufficient.

In the same line of argument, Model-Driven Engineering (MDE), which is also
referred to as Model-Driven Development (MDD) or Model-Driven Architecture
(MDA) [15], advocates in the recent years the creation of software systems by
model specification. This movement has supposed a strong push to all the ideas
that are discussed here, and a plethora of methods and tools have started to appear
under the common, accepted assumptions that (i) models ought to be used as the key

155

O. Pastor and V. Pelechano

software artefacts, and (ii) models are to be seen as abstract conceptualizations of
particular domain concepts, rather than algorithmic specifications written in a high-
level language. Conceptual modelling becomes then the primary means of software
production.

More recently, the “Conceptual Modelling Programming” manifesto [16] puts
together all these principles, focusing on the importance of three basic ideas:
(i) conceptual modelling is programming, (ii) the conceptual model, with which
modellers program, must be complete and holistic, and conceptual but precise, and
(iii) application evolution must occur at the level of the model.

This selection of approaches provides a solid basis to understand the potential of
the ideas discussed in [10, 17] to show how effectively they influenced the advances
that lead to the existing MDE approaches, and to analyse how fruitful their evolution
has been and is still being.

3 The OO-Method Approach: Past, Present and Future

Let us focus now on the most relevant ideas that conformed the contribution
presented in the OO-Method Approach [9, 10, 17], how they have evolved, and
what is their intended projection for the very next future.

In a context where the terms MD* (Model-Driven Development, Model-Driven
Architecture, Model-Driven Engineering, etc.) and Model Transformations did not
exist yet, the OO-Method introduced the following remarkable features [10]:

(a) The use of a formal specification language as a support to characterize the
modelling primitives that are required for designing Organizational Information
Systems. This provided an ontological commitment for the precise conceptual
characterization of the building units of a Conceptual Schema. Since that
moment, Ontology Engineering, Metamodelling-based approaches and Con-
ceptual Modelling-based techniques have evolved towards the challenge of
elaborating a sound and full Software Process based on Conceptual Modelling..

(b) A strategy for executing Conceptual Schemas –so called Execution Model- that
basically defined a set of mappings between the conceptual primitives of the
Conceptual Model and their corresponding software representation counterpart
in the selected target software development environment.

These two contributions together paved the way to the implementation of a
Conceptual Model Compiler, as it happened with the design and implementation
of Integranova, a Conceptual Modelling Programming tool created by CARE Tech
[12] that created an industrial tool to put into practice all the ideas behind the OO-
Method approach.

Since then, the approach has had to be adapted to the appearance of new software
development environments, which means that the Conceptual Model Compiler must
be always ready to evolve in two ways: finding out better software representations
and adapting to diverse software architectures that guide the software generation

156

The Conceptual Model Is The Code. Why Not?

process and that require to extend the Conceptual Model Compiler offer. As the
Conceptual Model level is stable, whenever a new development environment (e.g.
a new programming language) is targeted, new mappings between the conceptual
primitives and their software representation counterpart in the “new” environment
are to be properly designed and implemented.

The future of the approach is related to the “Requirements Engineering” (RE)
connection that should provide a full Software Process coverage for the method.
This will be more detailed in the next section.

4 What Is Next?

Several lines of both, theoretical and applied research, have given a challenging
continuity to the results that were originated by the work presented in [10].

Firstly, the ideas originally applied to the context of Organizational Systems
were extended to other IS domains. A set of works designed and implemented a
similar type of Conceptual Modelling-based Software Process to: (1) Specify and
Implement Web Applications (by building the OOWS methodological approach
[18]), (2) Specify and Generate code for AmI systems (by providing the PervML
methodological approach [19] and (3) Specifying and Generating Business Pro-
cess Driven Web Applications [20]). New conceptual primitives have conformed
new conceptual models, and the subsequent Conceptual Modelling Programming
environments have been designed and implemented. Currently, we are providing
solutions in the Software Engineering field to tackle with the new technological
and engineering challenges such as those introduced by the development of the
Internet of Things (integration of the physical and logic worlds) [21] and the
Autonomic Computing (reconfiguration, adaptability at run-time of services and
user interfaces) [22].

Secondly, once the transformation of a Conceptual Schema (PIM in MDA
terms) into code has been defined by constructing a Conceptual Model Compiler
(that contains the PSM logic in MDA terms), the process is to be extended
with what is was called the Requirements Engineering (RE) connection above.
This means that the Conceptual Schema must be seen as the output of a higher-
level model –the Requirements Model (RM), the CIM in MDA terms)- This
RM must be defined, together with a sound transformation intended to create
its corresponding Conceptual Schema with as much automation as possible. This
is probably not a fully automated process, because the Conceptual Schema must
add some information that is not present yet at the requirements modelling step. But
the metaphor of moving from Requirements to Code through a precise, well defined
set of models and model transformation is closer than ever to become a reality. Some
steps in this direction have been already taken (see [24]), but much work is still to
be done to answer the questions (i) what RM should be selected (ii) how to define
the corresponding model transformation.

Thirdly, a very interesting perspective is to think about further domains were
all these ideas could be used to improve the current software development process

157

O. Pastor and V. Pelechano

and obtain better results. Some challenging candidates can be aircraft control
weather prediction, vehicle mobile clouds, digital TV, video-games, etc. But there
is one especially appealing that is the modelling of life. Conceptual Modelling
of the Human Genome can provide a different perspective of the same problem:
considering alive beings “implementations” of a (genetic) code, the problem is
to understand the modelling primitives that could make feasible to define models
and to understand how these models are converted into the final code (the human
being). The clinical projection of this challenge is especially interesting, intended
to apply a conceptual modelling-oriented approach to find out and manage the
“bugs” (illnesses) that are a consequence of a (genetic) code mistake. Some previous
promising results have been reported in [23].

5 Conclusions

Producing a sound information system design and implementing such design into
a software product of high quality sounds simple, but it is still a nightmare for
Software and Information Systems Engineering. The well-know problems often
referred to as the crisis of software remain alive. In most of the complex software
projects, the design, programming and testing activities still require a substantial
manual effort and are keep being error-prone. From the point of view of conceptual
modelling and the role of models, we claim that the software development process
has not changed much over the past 40 years. We mean that the “program”
has been and still is often considered the essential software artefact. Trying to
prioritize conceptual modelling over programing,, many attempts have promoted
that “the model should be code” instead of insisting that “the code is and will ever
be the model”. Assuming that looking for a different way for producing software
was worth to be explored, we presented in [10] an approach that intended to fulfil
that goal. Through a clear separation between Problem Space (Conceptual Schema)
and Solution Space (application code), a ontologically well-founded modelling
environment was presented, together with an execution strategy to transform the
modelling primitives into software components through a process of conceptual-
model compilation. This was one of the first works presenting a concrete solution
for a domain that a few years later was extensively explored under the model-
driven development paradigm, for which it could be argued that it was indeed a
very significant contribution.

References

1. DeMarco, T., Structured analysis and system specification. 1979, Englewood Cliffs,
New Jersey: Yourdon Press.

2. Ward, P.T, Mellor, S. Structured Development for Real-Time Systems: Essential Modeling
Techniques. Prentice Hall.

158

The Conceptual Model Is The Code. Why Not?

3. Rumbaugh, J., Blaha. M, Premerlani. W, Eddy. F, Lorensen. W. Object-Oriented Modeling and
Design. Prentice Hall. 1999.

4. Booch. G, Maksimchuk. R. A., Engel. M. W., Young. B.J. Object-Oriented Analysis and
Design with Applications. Addison-Wesley

5. Jacobson. I., Christerson. M, Jonsson. P, Overgaard. G. Object-Oriented Software Engineering:
A Use Case Driven Approach (ACM Press). Addison-Wesley, 1992,

6. Wirfs-Brock. R.J. Designing Object-Oriented Software, with Brian Wilkerson and Lauren
Wiener, Prentice-Hall, 1990

7. Booch, G., Rumbaugh, J., Jacobson, I. The Unified Modeling Language User Guide. Addison-
Wesley.

8. Teichroew, D., Sayani, H.: Automation of System Building, Datamation (1971).
9. Pastor. O, Hayes. F., Bear. S. OASIS: An Object-Oriented Specification Language. CAiSE

1992: 348–363
10. Pastor. O, Insfrán. E, Pelechano. V., Romero. J.R., Merseguer. J. OO-METHOD: An OO

Software Production Environment Combining Conventional and Formal Methods. CAiSE
1997: 145–158.

11. Falkenberg. E.D., Hesse. W., Lindgreen. P., Nilsson. B.E., Oei. J.L.H., Rolland. C.,
Stamper. R.K., Van Assche. F.J.M., Verrijn-Stuart. A.A., Voss. K. FRISCO : A Framework
of Information System Concepts, The IFIP WG 8.1 Task Group FRISCO, December 1996.

12. Integranova Software Soluctions. Available on: http://www.integranova.com/. Last Access:
January 19, 2013.

13. Morgan, T.: Business Rules and Information Systems – Aligning IT with Business Goals.
Addison-Wesley, Reading (2002).

14. Olivé, À.: Conceptual Schema-Centric Development: A Grand Challenge for Information
Systems Research. In: Pastor, Ó., Falcão e Cunha, J. (eds.) CAiSE 2005. LNCS, vol. 3520,
pp. 1–15. Springer, Heidelberg (2005).

15. Booch. G, Brown. A., Iyengar. S., Rumbaugh. J., Selic. B. An MDA Manifesto. The MDA
Journal: Model Driven Architecture Straight from the Masters, pages 133–143, 2004.

16. Embley. D. W., Liddle. S.W, Pastor, O. Conceptual-Model Programming: A Manifesto.
Handbook of Conceptual Modeling, 2011, pp 3–16. Springer.

17. Pastor, O., Gomez, J., Insfrán, E., Pelechano, V.: The OO-Method approach for information
systems modeling: from object-oriented conceptual modeling to automated programming.
Information Systems 26(7), 507–534 (2001).

18. Fons. J, Pelechano. V, Albert. M, Pastor. O. Development of Web Applications from Web
Enhanced Conceptual Schemas. ER 2003: 232–245.

19. Muñoz. J., Pelechano. V. Building a Software Factory for Pervasive Systems Development.
CAiSE 2005: 342–356

20. Torres. V., Giner. P., Pelechano. V. Developing BP-driven web applications through the use of
MDE techniques. Software and System Modeling 11(4): 609–631 (2012)

21. Giner. P., Cetina. C., Fons. J., Pelechano. V. Developing Mobile Workflow Support in the
Internet of Things. IEEE Pervasive Computing 9(2): 18–26 (2010)

22. Cetina. C., Giner. P., Fons. J., Pelechano. V. Vicente Pelechano: Autonomic Computing through
Reuse of Variability Models at Runtime: The Case of Smart Homes. IEEE Computer 42(10):
37–43 (2009)

23. Oscar Pastor, Juan Carlos Casamayor, Matilde Celma, Laura Mota, M. Ángeles Pastor,
Ana M. Levin: Conceptual Modeling of Human Genome: Integration Challenges. Conceptual
Modelling and Its Theoretical Foundations 2012: 231–250

24. Oscar Pastor, Sergio España: Full Model-Driven Practice: From Requirements to Code
Generation. CAiSE 2012: 701–702

159

http://www.integranova.com/

Architecture and Quality in Data Warehouses1

Matthias Jarke0), Manfred A. Jeusfeld(2
)

Christoph Quix0), Panos Vassiliadis(3
)

(1) RWTH Aachen, Germany, {jarke,quix} @informatik.rwth--aachen.de

(2) Til burg University, The Netherlands, jeusfeld@kub.nl

(3) National Technical University of Athens, Greece, pvassil@dbnet.ece.ntua.gr

Abstract. Most database researchers have studied data warehouses (DW) in
their role as buffers of materialized views, mediating between update­
intensive OLTP systems and query-intensive decision support. This neglects
the organizational role of data warehousing as a means of centralized
information flow control. As a consequence, a large number of quality aspects
relevant for data warehousing cannot be expressed with the current DW meta
models. This paper makes two contributions towards solving these problems.
Firstly, we enrich the meta data about DW architectures by explicit enterprise
models. Secondly, many very different mathematical techniques for
measuring or optimizing certain aspects of DW quality are being developed.
We adapt the Goal-Question-Metric approach from software quality
management to a meta data management environment in order to link these
special techniques to a generic conceptual framework of DW quality. Initial
feedback from ongoing experiments with a partial implementation of the
resulting meta data structure in three industrial case studies provides a partial
validation of the approach.

1 Introduction

Data warehouses provide large-scale caches of historic data. They sit between

information sources gained externally or through online transaction processing

systems (OLTP), and decision support or data mining queries following the vision of

1 This research was partially supported by the European Commission in ESPRIT Long Term
Research Project DWQ (Foundations of Data Warehouse Quality), by the General Secretariat
of Research and Technology (Greece) under the PENED program; and by the Deutsche
Forschungsgemeinschaft through Graduiertenkolleg "lnformatik und Technik".

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

161

mailto:{jarke,quix}@informatik.rwth--aachen.de

M. Jarke et al.

online analytic processing (OLAP). Three main arguments have been put forward in

favor of this caching approach:

1. Peiformance and safety considerations: The concurrency control methods of

most DBMSs do not react well to a mix of short update transactions (as in

OLTP) and OLAP queries that typically search a large portion of the database.

Moreover, the OLTP systems are often critical for the operation of the

organization and must not be under danger of corruption of other applications.

2. Logical interpretability problems: Inspired by the success of spreadsheet

techniques, OLAP users tend to think in terms of highly structured multi­

dimensional data models, whereas information sources offer at best relational,

often just semi-structured data models.

3. Temporal and granularity mismatch: OLTP systems focus on current

operational support in great detail, whereas OLAP often considers historical

developments at a somewhat less detailed granularity.

Thus, quality considerations have accompanied data warehouse research from the

beginning. A large body of literature has evolved over the past few years in addressing

the problems introduced by the DW approach, such as the trade-off between freshness

of DW data and disturbance of OLTP work during data extraction; the minimization

of data transfer through incremental view maintenance; and a theory of computation

with multi-dimensional data models.

However, the heavy use of highly qualified consultants in data warehouse applications

indicates that we are far from a systematic understanding and usage of the interplay

between quality factors and design options in data warehousing. The goal of the

European DWQ project [JV97] is to address these issues by developing, prototyping

and evaluating comprehensive Foundations for Data Warehouse Quality, delivered

through enriched meta data management facilities in which specific analysis and

optimization techniques are embedded.

This paper develops the DWQ architecture and quality management framework and

describes first steps towards its implementation and validation. The main

contributions include an extension of the standard DW architecture used in the

literature by enterprise modeling aspects, and a strategy for embedding special­

purpose mathematical reasoning tools in the architecture which will enable a

computationally tractable yet rich quality analysis or quality-driven design process.

Interaction with DW tool vendors, DW application developers and administrators has

shown that the standard framework used in the DW literature is insufficient to capture

in particular the business role of data warehousing. A DW is a major investment made

162

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

to satisfy some business goal of the enterprise; quality model and DW design should

reflect this business goal as well as its subsequent evolution over time. In section 2,

we discuss this problem in detail; our new architectural framework separates (and

links) explicitly the concerns of conceptual enterprise perspectives, logical data

modeling (the main emphasis of DW research to date), and physical information flow

(the main concern of commercial DW products to date).

In section 3, we first build on literature frameworks for data and software quality to

come up with a suitable set of DW quality dimensions, as perceived by different

groups of stakeholders. We then adapt a variant of the so-called Goal-Question­

Metric approach used in software quality management. Through materialized quality

views, we link conceptual quality goals to specific analysis techniques developed in

DW research and practice, and enable trade-offs between heterogeneous quality goals.

Initial experiences with a prototypical implementation of the resulting meta database

using the ConceptBase deductive object manager have been gained in cooperation

with industrial case studies. Section 4 relates our approach to other work in data

warehousing, data and software quality, while section 5 provides a summary and

conclusions.

2 The Architecture of a Data Warehouse

Physically, a data warehouse system consists of databases (source databases,

materialized views in the distributed data warehouse), data transport agents that ship

data from one database to another and a data warehouse repository which stores all

kinds of meta data about the system. The content of the repository determines to a

large extent how the data warehouse system can be used and evolved. The main goal

of our approach is therefore to define a meta database schema which can capture and

link all relevant aspects of DW architecture and quality. We shall tackle this very

difficult undertaking in several steps.

2.1 Three Perspectives of Data Warehouse Meta Data

Almost all current research and practice understand a data warehouse architecture as a

stepwise information flow from information sources through materialized views

towards analyst clients, as shown in figure 2.1. Our key observation is that this

architecture covers only partially the tasks faced in data warehousing and is therefore

unable to even express, let alone support, a large number of important quality

problems and management strategies.

163

M. Jarke et al.

Clients

Admlnstratlon

Wrappers/\" '­
Loaders

Sources

Figure 2.1: Current Understanding of a Data Warehouse

As a consequence, we propose a separation of three perspectives as shown in figure

2.2: a conceptual enterprise perspective, a logical data modeling perspective, and a

physical data flow perspective.

The main argument we wish to make is the need for a conceptual enterprise

perspective. To explain, consider the left two columns of figure 2.2. Suppose an

analyst wants to know something about the business -- the question mark in the figure.

She does not have the time to observe the business directly but must rely on existing

information gained by operational departments, and documented as a side effect of

OL TP systems. This way of information gathering implies already a bias which needs

to be compensated when selecting OL TP data for uploading and cleaning into a DW

where it is then further pre-processed and aggregated in data marts for certain analysis

tasks. Considering the long path the data has taken, it is obvious that also the last step,

the formulation of conceptually adequate queries and the conceptually adequate

interpretation of the answers presents a major problem to the analyst.

The traditional DW literature only covers two of the five steps in figure 2.2. Thus, it

has no answers to typical practitioner questions such as "how come my operational

departments put so much money in their data quality, and still the quality of my DW is

terrible?" (answer: the enterprise views of the operational departments are not easily

compatible with each other or with the analysts view), or "what is the effort required

164

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

to analyze problem X for which the DW currently offers no information?" (could

simply be a problem of wrong aggregation in the materialized views, could require

access to not-yet-integrated OLTP sources, or even involve setting up new OLTP

sensors in the organization).

An adequate answer to such questions requires an explicit model of the conceptual

relationships between an enterprise model, the information captured by OLTP

departments, and the OLAP clients whose task is the decision analysis. We have

argued that a DW is a major investment undertaken for a particular business purpose.

We therefore do not just introduce the enterprise model as a minor part of the

environment, but demand that all other models are defined as views on this enterprise

model. Perhaps surprisingly, even information source schemas define views on the

enterprise model -- not vice versa as suggested by figure 2.1 !

Client
Model

Enterprise
Model

?

Operational
Department

Model

Logical
Perspective

Physical
Perspective

Client
Data Store

---- Transportation
Agent

ow
Data Store

Source
Data Store

Figure 2.2 The Data Warehouse Meta Data Framework

The wrapping and aggregation transformations performed in the (traditionally

discussed) logical perspective can thus be checked for interpretability, consistency or

completeness with respect to the enterprise model -- provided an adequately powerful

representation and reasoning mechanism is available. At the same time, the logical

transformations need to be implemented safely and efficiently by physical storage and

transportation -- the third perspective in our approach. It is clear that physical quality

aspects require completely different modeling formalisms than the conceptual factors,

typical techniques stemming from queuing theory and combinatorial optimization.

165

M. Jarke et al.

There is no single decidable formalism that could handle all of these aspects

uniformly in a meta database. We have therefore decided to capture the architectural

framework in a deductive object data model in a comprehensive but relatively

shallow manner. Special-purpose reasoning mechanisms such as the ones mentioned

above can be linked to the architectural framework as discussed in secti9n 3, below.

2.2 A Notation for Data Warehouse Architecture

We use the meta database to store an abstract representation of data warehouse

applications in terms of the three-perspective scheme. The architecture and quality

models are represented in Telos [MBJK90], a metadata modeling language. Its

implementation in the ConceptBase system [JGJ+95] provides query facilities, and

definition of constraints and deductive rules. Telos is well suited because it allows to

formalize specialized modeling notations by means of meta classes. Preloaded with

these metaclasses, the ConceptBase system serves as the meta database for quality­

oriented data warehouses.

A condensed graphical overview of the architecture notation is given in Figure 2.3.

Bold arrows denote specialization links. The most general meta class is DW_Object. It

subsumes objects at any perspective (conceptual, logical, or physical) and at any level

(source, data warehouse, or client).

Figure 2.3: Overview of the Architecture Notation

Within each perspective, we distinguish between the modules it offers (e.g. client

model) and the kinds of information found within these modules (e.g. concepts and

their subsumption relationships). The horizontal links hasSchema and isViewOn

establish the way how the horizontal links in Figure 2.2 are interpreted: the types of a

166

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

schema (i.e., relational or multidimensional structures) are defined as logical views on

the concepts in the conceptual perspectives. On the other hand, the components of the

physical perspective get a schema from the logical perspective as their schema.

Each object can have an associated set of materialized views called

QualityMeasurements. These materialized views (which can also be specialized to the

different perspectives -- not shown in the figure) constitute the bridge to the quality

model discussed in section 3.

The horizontal levels of the objects are coded by the three subclasses attached to

Model, Schema, and DataStore. We found this notation adequate to represent physical

data warehouse architectures of commercial applications, such as the SourcePoint tool

marketed by Software AG [SAG96] or the DW architecture underlying a data mining

project at Swiss Life [SKR97]. The logical perspective currently supports relational

schema definitions whereas the conceptual perspective supports the family of

extended entity-relationship and similar semantic data modeling languages. Note that

all objects in Figure 2.3 are meta classes: actual conceptual models, logical schemas,

and data warehouse components are represented as instances of them in the meta

database. In the following subsections, we elaborate on the purpose of representing

each of the three perspectives.

2.3 Conceptual Perspective

The conceptual perspective describes the business models underlying the information

systems of an enterprise. The central role is played by the enterprise model, which

gives an integrative overview of the conceptual objects of an enterprise. The models

of the client and source information systems are views on the enterprise model, i.e.

their contents are described in terms of the enterprise model. One goal of the

conceptual perspective is to have a model of the information independent from

physical organization of the data, so that relationships between concepts can be

analyzed by intelligent tools, e.g. to simplify the integration of the information

sources. On the client side, the interests of user groups can also be described as views

on the enterprise model.

In the implementation of the conceptual perspective in the meta database, the central

class is Model. A model is related to a source, a client or the relevant section of the

enterprise, and it represents the concepts which are available in the corresponding

source, client or enterprise. The classes ClientModel, SourceModel and

EnterpriseModel are needed, to distinguish the models of several sources, clients and

the enterprise itself. A model consists of Concepts, each representing a concept of the

167

M. Jarke et al.

real world, i.e. the business world. If the user provides some information about the

relationship between concepts in a formal language like description logics, a reasoner

can check for subsumption of concepts [CDL97].

The results of the reasoning process _are stored in the model as attribute isSubsumedBy

of the corresponding concepts. Essentially, the repository can serve as a cache for

reasoning results. Any tool can ask the repository for containment of concepts. If the

result has already been computed, it can directly be answered by the repository.

Otherwise, a reasoner is invoked by the repository to compute the result.

2.4 Logical Perspective

The logical perspective conceives a data warehouse from the view point of the actual

data models involved, i.e. the data model of the logical schema is given by the

corresponding physical component, which implements the logical schema. The central

point in the logical perspective is Schema. As a model consists of concepts a schema

consists of Types. We have implemented the relational model as an example for a

logical data model; other data models such as the multi-dimensional or the object­

oriented data model are also being integrated in this framework.

Like in the conceptual perspective, we distinguish in the logical perspective between

ClientSchema, DWSchema and SourceSchema for the schemata of clients, the data

warehouse and the sources. For each client or source model, there is one

corresponding schema. This restriction is guaranteed by a constraint in the

architecture model. The link to the conceptual model is implemented by the relation­

ship between concepts and types: each type is expressed as a view on concepts.

2.5 Physical Perspective

Data warehouse industry has mostly explored the physical perspective, so that many

aspects in the physical perspective are taken from the analysis of commercial data

warehouse solutions such as Software AG's SourcePoint tool [SAG96], the data

warehouse system of RedBrick [RedB97], Informix's MetaCube[lnfo97], Essbase of

Arbor Software [Arbo96] or the product suite of MicroStrategy [MStr97]. We have

observed that the basic physical components in a data warehouse architecture are

agents and data stores. Agents are programs that control other components or

transport data from one physical location to another. Data stores are databases which

store the data that is delivered by other components.

168

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

The basic class in the physical perspective is DW_Component. A data warehouse

component may be composed out of other components. This fact is expressed by the

attribute hasPart. Furthermore, a component deliversTo another component a Type,

which is part of the logical perspective. Another link to the logical model is the

attribute hasSchema of DW_Component. Note that a c;omponent may have a schema,

i.e. a set of several types, but it can only deliver a type to another component. This is

due to the observation that agents usually transport only "one tuple at a time" of a

source relation rather than a complex object.

One type of component in a data warehousing environment is an Agent. There are two

types of agents: ControlAgent which controls other components and agents, e.g. it
notifies another agent to start the update process, and TransportationAgent which

transports data from one component to another component. An Agent may also notify

other agents about errors or termination of its process.

Another type of component is a DataStore. It physically stores the data which is

described by models and schemata in the conceptual and logical perspective. As in the

other perspectives, we distinguish between ClientDataStore, DW_DataStore and

SourceDataStore for data stores of clients, the data warehouse and the sources.

3 Managing Data Warehouse Quality

In this section, we discuss how to extend the DW architecture model by explicit

quality models and their support. There are two basic issues to be resolved. On the

one hand, quality is a subjective phenomenon so we must organize quality goals

according to the stakeholder groups that pursue these goals. On the other hand, quality

goals are highly diverse in nature. They can be neither assessed nor achieved directly

but require complex measurement, prediction, and design techniques, often in the

form of an interactive process. The overall problem of introducing quality models in

meta data is therefore to achieve breadth of coverage without giving up the detailed

knowledge available for certain criteria. Only if this combination is achieved,

systematic quality management becomes possible.

3.1 Stakeholders in Data Warehouse Quality

There exist different roles of users in a data warehouse environment. The Decision

Maker usually employs an OLAP query tool to get answers interesting to him. A

decision maker is usually concerned with the quality of the stored data, their

timeliness and the ease of querying them through the OLAP tools. The Data

169

M. Jarke et al.

Warehouse Administrator needs facilities like error reporting, metadata accessibility

and knowledge of the timeliness of the data, in order to detect changes and reasons for

them, or problems in the stored information. The Data Warehouse Designer needs to

measure the quality of the schemata of the data warehouse environment (both existing

~r newly produced) and the quality of the metadata as well. Furt~ermore, he needs

software evaluation standards to test the software packages he considers purchasing.

The Programmers of Data Warehouse Components can make good use of software

implementation standards in order to accomplish and evaluate their work. Metadata

reporting can also facilitate their job, since they can avoid mistakes related to schema

information.

Based on this analysis, we can safely argue that different roles imply a different

collection of quality dimensions, which a quality model should be able to address in a

consistent and meaningful way. In the following, we summarize the quality

dimensions of three stakeholders, the data warehouse administrator, the programmer,

and the decision maker. A more detailed presentation can be found in [DWQ97b].

Design and Administration Quality. The design and administration quality can be

analyzed into more detailed dimensions, as depicted in Figure 3.1. The schema quality

refers to the ability of a schema or model to represent adequately and efficiently the

information. The correctness dimension is concerned with the proper comprehension

of the entities of the real world, the schemata of the sources (models) and the user

needs. The completeness dimension is concerned with the preservation of all the

crucial knowledge in the data warehouse schema (model). The minimality dimension

describes the degree up to which undesired redundancy is avoided during the source

integration process. The traceability dimension is concerned with the fact that all

kinds of requirements of users, designers, administrators and managers should be

traceable to the data warehouse schema. The interpretability dimension ensures that

all components of the data warehouse are well described, so as to be administered

easily. The metadata evolution dimension is concerned with the way the schema

evolves during the data warehouse operation.

Software Implementation Quality. Software implementation and/or evaluation is not

a task with specific data warehouse characteristics. We are not actually going to

propose a new model for this task, but adopt the ISO 9126 standard [IS091]. The

quality dimensions of ISO 9126 are Functionality (Suitability, Accuracy,

Interoperability, Compliance, Security), Reliability (Maturity, Fault tolerance,

Recoverability), Usability (Understandability, Learnability, Operability), Software

Efficiency (Time behavior, Resource Behavior), Maintainability (Analyzability,

Changeability, Stability, Testability), Portability (Adaptability, Installability,

Conformance, Replaceability).

170

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

Figure 3.1 Design and administration quality dimensions

Data Usage Quality. Since databases and -in our case- data warehouses are built in

order to be queried, the most basic process of the warehouse is the usage and querying

of its data. Figure 3.2 shows the hierarchy of quality dimensions related to data usage.

Figure 3.2 Data usage quality dimensions

The accessibility dimension is related to the possibility of accessing the data for

querying. The security dimension describes the authorization policy and the privileges

each user has for the querying of the data. System availability describes the percentage

of time the source or data warehouse system is available (i.e. the system is up and no

backups take place, etc.). The transactional availability dimension, as already

mentioned, describes the percentage of time the information in the warehouse or the

source is available due to the absence of update processes which write-lock the data.

171

M. Jarke et al.

The usefulness dimension describes the temporal characteristics (timeliness) of the
data as well as the responsiveness of the system. The responsiveness is concerned
with the interaction of a process with the user (e.g. a query tool which is self reporting
on the time a query might take to be answered). The currency dimension describes
when the information was entered in the sources or/and the data warehouse. The
volatility dimension describes the time period for which the information is valid in the
real world. The interpretability dimension, as already mentioned, describes the extent
to which the data warehouse is modeled efficiently in the information repository. The
better the explanation is, the easier the queries can be posed.

3.2 From Architecture to Quality

We now turn to the formal handling and repository-based management of OW quality
goals such as the ones described in the previous section.

A first formalization could be based on a qualitative analysis of relationships between
the quality factors themselves, e.g. positive or negative goal-subgoal relationships or
goal-means relationships. The stakeholders could then enter their subjective
evaluation of individual goals as well as possible weightings of goals and be
supported in identifying good trade-offs. The entered as well as computed evaluations
could be used as quality measurements in the architecture model of figure 2.3, thus
enabling a very simple integration of architecture and quality model.

Such an approach is widely used in industrial engineering under the label of Quality
Function Deployment, using a special kind of matrix representation called the House
of Quality [Akao90]. Formal reasoning in such a structure has been investigated in
works about the handling of non-functional requirements in software engineering, e.g.
[MCN92]. Visual tools have shown a potential for negotiation support under multiple
quality criteria [GJJ97].

However, while this simple approach certainly has a useful role in cross-criteria
decision making, using it alone would throw away the richness of work created by
research in measuring, predicting, or optimizing individual DW quality factors. In the
DWQ project, such methods are systematically adopted or newly developed for all
quality factors found important in the literature or our own empirical work. To give an
impression of the richness of techniques to be considered, we use a single quality
factor-- responsiveness in the sense of good query performance -- for which the DWQ
project has studied three different approaches, one each from the conceptual, logical,
and physical perspective.

172

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

We start with the logical perspective [TS97]. Here, the quality indicator associated
with responsiveness is taken to be a weighted average of query and update "costs" for
a given query mix and given information sources. A combinatorial optimization
technique is then proposed that selects a collection of materialized views as to
minimize the total costs. This can be considered .a very simple case of the above
Quality Function Deployment approach, but with the advantage of automated design
of a solution.

If we include the physical perspective, the definition of query and update "costs"
becomes an issue in itself: what do we mean by costs -- response time, throughput, or
a combination of both (e.g. minimize query response time and maximize update
throughput)? what actually produces these costs -- is database access or the network
traffic the bottleneck? A comprehensive queuing model [NJ97] enables the prediction
of such detailed metrics from which the designer can choose the right ones as quality
measurements for his design process. In addition, completely new design options
come into play : instead of materializing more views to improve query response time
(at the cost of disturbing the OL TP systems longer at update time), the designer could
buy a faster client PC or DBMS, or use an ISDN link rather than using slow modems.

Yet other options come into play, if a rich logic is available for the conceptual
perspective. The description logic DWQ uses for formalizing the conceptual
perspective [CDL97], allows to state that, e.g., information about all instances of one
concept in the enterprise model is maintained in a particular information source, i.e.
the source is complete with respect to the domain. This enables the DW designer to
drop the materialization of all views on other sources, thus reducing the update effort
semantically without any loss in completeness of the answers.

It is clear that there can be no decidable formal framework that even comes close to
covering all of these aspects in a uniform language. When designing the meta database
extensions for quality management, we therefore had to look for another solution that
still maintains the overall picture offered by the shallow quality management
techniques discussed at the beginning of this section but is at the same time open for
the embedding of specialized techniques.

Our solution to this problem builds on the widely used Goal-Question-Metric (GQM)
approach to software quality management [OB92]. The idea of GQM is that quality
goals can usually not be assessed directly, but their meaning is circumscribed by
questions that need to be answered when evaluating the quality. Such questions again
can usually not be answered directly but rely on metrics applied to either the product
or process in question; techniques such as statistical process control charts are then
applied to derive the answer of a question from the measurements.

173

M. Jarke et al.

Our repository solution uses a similar approach to bridge the gap between quality goal

hierarchies on the one hand, and very detailed metrics and reasoning techniques on the

other. The bridge is defined through the idea of quality measurements as materialized

views over the data warehouse which we already introduced in figure 2.3, and through

generic queries over these quality measurements. This implementation strategy

provides more technical support than usual GQM implementations. It is enabled

through the powerful parameterized query class mechanism offered by the

ConceptBase system.

Figure 3.3: A notation for Data Warehouse Quality

The purpose of a quality goal is usually to improve some quality values of the DW or

to achieve a certain quality value. Quality goals are associated with types of queries

defined over quality measurements. These queries will support the evaluation of a

specific quality goal when parameterized with a given (part of a) DW meta database.

Such a query usually compares the analysis goal to a certain expected interval in order

to assess the level of quality achieved. Furthermore, goals are established by

stakeholders, who may have several subjective quality preferences. As a consequence,

the quality measurement must contain information about both expected and actual

values. Both could be entered into the meta database manually, or computed

inductively by a given metric through a specific reasoning mechanism. For example,

for a given physical design and some basic measurements of component and network

speeds, the queuing model in [NJ97] computes the quality values for response time

and throughput, and it could indicate if network or database access is the bottleneck in

the given setting. This could then be combined with conceptual or logical quality

measurements at the level of optimizing the underlying quality goal.

174

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

The interplay Qf goals, queries, and metrics with the basic concepts of the architecture

model is shown in the Telos meta model of figure 3.3. While the development and

integration of numerous specific metrics is the goal of ongoing work in the DWQ

project, our current implementation just covers the upper levels of the picture, such

that only ~;Tianual entry of quality measurements is supported. A number of quality

queries have been implemented, focusing on some that turned out to be relevant when

validating the architecture against three case studies: creating a model of Software

AG's SourcePoint DW loading environment, modeling data quality problems

hindering the application of data mining techniques in Swiss Life, and conceptually

re-constructing some design decisions underlying the administrative data warehouses

of the City of Cologne, Germany [DWQ97a, DWQ97b].

Quality queries access information recorded in quality measurements. A quality

measurement stores the following information about data warehouse components:

1. an interval of expected quality measures

2. the current quality measure

3. the metric used to compute a measure

4. dependencies to other quality measurements

The dependencies between quality measurements can be used to trace quality

measurements outside the expected interval to their causes. The following two queries

exemplify how quality measurements classify data warehouse components and how

the backtracing of quality problems can be done by queries to the meta database:

QueryClass BadQualityMeasurement isA QualityMeasurement
with constraint

c: $ not (this.expected contains this.current) $
end

GenericQueryClass CauseOfBadQuality isA DW_Object
with parameter

badObject : DW_Object
constraint

end

c: $ exists ql,q2/QualityMeasurement
(badObject measuredBy ql) and
(ql in BadQualityMeasurement) and
(ql dependsOn q2) and

(q2 in BadQualityMeasurement) and
((this measuredBy q2) or
(exists o/DW_Object (o measuredBy q2) and
(this in CauseOfBadQuality[o/badObject]))) $

175

M. Jarke et al.

4 Related Work

Our approach extends and merges results from data warehouse research and
data/software quality research.

Starting with the data warehouse literature, the well-known projects have focused
almost exclusively on what we call the logical and physical perspectives of DW
architecture. While the majority of early projects have focused on source integration
aspects, the recent effort has shifted towards the efficient computation and re­
computation of multi-dimensional views. The business perspective is considered at
best indirectly in these projects. The Information Manifold (IM) developed at AT&T
is the only one that employs a rich domain model for information gathering from
disparate sources such as databases, SGML documents, unstructured files [LSK95,
KLSS95, LR096] in a manner similar to our approach.

TSIMMIS (The Stanford-IBM Manager of Multiple Information Sources) is a project
with the goal of providing tools for the integrated access to multiple and diverse
information sources and repositories [CGMH+94, Ull97]. Each information source is
equipped with a wrapper that encapsulates the source, converting the underlying data
objects to a common data model - called Object Exchange Model (OEM). On top of
wrappers, mediators [Wie92] can be conceptually seen as views of data found in one
or more sources which are suitably integrated and processed.

Similarly, but with slightly different implementation strategies, the Squirrel Project
[HZ96, ZHK96] provides a framework for data integration based on the notion of
integration mediator. Integration mediators are active modules that support
incrementally maintained integrated views over multiple databases. Moreover, data
quality is considered by defining formal properties of consistency and freshness for
integrated views.

The WHIPS (WareHouse Information Prototype at Stanford) system [HGMW+95,
WGL+96] has the goal of developing algorithms for the collection, integration and
maintenance of information from heterogeneous and autonomous sources. The
WHIPS architecture consists of a set of independent modules implemented as
CORBA objects. The central component of the system is the integrator, to which all
other modules report.

Turning to data quality analysis, Wang et al. [WSF95] present a framework based on
the ISO 9000 standard. They review a significant part of the literature on data quality,
yet only the research and development aspects of data quality seem to be relevant to
the cause of data warehouse quality design. In [WRK95], an attribute-based model is
presented that can be used to incorporate quality aspects of data products. The basis of

176

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

this approach is the assumption that the quality design of an information system can be

incorporated in the overall design of the system. The model proposes the extension of

the relational model as well as the annotation of the results of a query with the

appropriate quality indicators. Further work on data quality can be found in [BT89],

[BWPT93], [Jans88], [LU90], [Hall78], [Kri~79], and [AA87].

Variants of the Goal-Question-Metric (GQM) approach are widely adopted in

software quality management [OB92]. A structured overview of the issues and

strategies, embedded in a repository framework, can be found in [JP92]. Several goal

hierarchies of quality factors have been proposed, including the GE Model [MRW78]

and [Boeh89]. ISO 9126 [IS091] suggests six basic factors which are further refined

to an overall 21 quality factors. In [HR96] a comparative presentation of these three

models is offered and the SATC software quality model is proposed, along with

metrics for all their software quality dimensions.

5 Discussion and Conclusions

The goal of our work is to enrich meta data management in data warehouses such that

it can serve as a meaningful basis for systematic quality analysis and quality-driven

design. To reach this goal, we had to overcome two limitations of current data

warehouse research.

Firstly, the basic architecture in which data warehouses are typically described turned

out to be too weak to allow a meaningful quality assessment : as quality is usually

detected only by its absence, quality-oriented meta data management requires that we

address the full sequence of steps from the capture of enterprise reality in operational

departments to the interpretation of DW information by the client analyst. This in turn

implied the introduction of an explicit enterprise model as a central feature in the

architecture. To forestall possible criticism that full enterprise modeling has proven a

risky and expensive effort, we point out that our approach to enterprise model

formation (including the formal language used in [CDL97]) is fully incremental such

that it is perfectly feasible to construct the enterprise model step by step, e.g. as a side

effect of source integration or of other business process analysis efforts.

The second major problem is the enormous richness in quality factors, each associated

with its own wealth of measurement and design techniques. Our quest for an open

quality management environment that can accommodate existing or new such

techniques led us to an adaptation and repository integration of the Goal-Question

Metric approach where parameterized queries and materialized quality views serve as

the missing link between specialized techniques and the general quality framework.

177

M. Jarke et al.

The power of the repository modeling language determines the boundary between

precise but narrow metrics and comprehensive but shallow global repository. The

deductive object base formalism of the Telos language provides a fairly sophisticated

level of global quality analysis in our prototype implementation but is still fully

adaptable and general; once the quality framework h~s sufficiently stabilized, a

procedurally object-oriented approach could do even more, by encoding some metrics

directly as methods, of course at the expense of flexibility. Conversely, a simple

relational meta database could take up some of the present models with less semantics

than offered in the ConceptBase system, but with the same flexibility.

As of now, both the framework and its implementation can only be considered

partially validated. One strain of current work therefore continues the validation

against several major case studies, in order to set priorities among the quality criteria

to be explicated in specific metrics and analysis techniques. A second overlapping

strain concerns the development of these techniques themselves, and their linkage into

the overall framework through suitable quality measurements and extensions to global

design and optimization techniques. Especially when progressing from the definition

of metrics and prediction techniques to actual design methods, it is expected that these

will not be representable as closed algorithms but must take the form of interactive

work processes defined over the DW architecture.

As an example, feedback from at least two case studies suggests that, in practice, the

widely studied strategy of incremental view maintenance in the logical sense is far less

often problematic than the time management at the physical and conceptual level,

associated with the question when to refresh DW views such that data are sufficiently

fresh for analysis, but neither analysts nor OLTP applications are unduly disturbed in

their work due to locks on their data. Our research therefore now focuses on extending

the conceptual level by suitable (simple) temporal representation and reasoning

mechanisms for representing freshness requirements, complemented by an array of

design and implementation methods to accomplish these requirements and the

definition of processes at the global level to use these methods in a goal-oriented

manner to fulfill the requirements.

While such extensions will certainly refine and in parts revise the approach reported

here, the experiences gained so far indicate that it is a promising way towards more

systematic and computer-supported quality management in data warehouse design and

operation.

Acknowledgements. The authors would like to thanks their project partners in DWQ,
especially Maurizio Lenzerini, Mokrane Bouzeghoub and Enrico Franconi, for fruitful
discussions of the architecture and quality model.

178

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

6 References

[AA87] N. Agmon, N.Ahituv, Assessing data reliability in an information

system, J. Management Information Systems 4, 2 (1987)

[Akao90]

[Arbo96]

[Boeh89]

[BT89]

[BWPT93]

Akao, Y., ed., Quality Function Deployment, Productivity Press,

Cambridge MA. , 1990

Arbor Software Corporation. Arbor Essbase.

http://www .arborsoft.cornlessbase.html, 1996.

Boehm, B., Software Risk Manaf?ement, IEEE Computer Society

Press, CA, 1989.

D.P. Ballou, K.G. Tayi, Methodology for allocating resources for

data quality enhancement, Comm. ACM, 32, 3 (1989)

D.P. Ballou, R.Y. Wang, H.L. Pazer, K.G. Tayi, Modeling Data

Manufacturing Systems To Determine Data Product Quality, (No.

TDQM-93-09) Cambridge Mass.: Total Data Quality Management

Research Program, MIT Sloan School of Management, 1993

[CDL97] D. Calvanese, G. De Giacomo, M. Lenzerini. Conjunctive query

containment in Description Logics with n-ary relations.

International Workshop on Description Logics, Paris, 1997.

[CGMH+94] S. Chawathe, H. Garcia-Molina, J. Hammer, K. Ireland,

[DWQ97a]

[DWQ97b]

[GJJ97]

[Hall78]

Y. Papakonstantinou, J. Ullman, and J. Widom. The TSIMMIS

project: Integration of heterogeneous information sources. In Proc.

of IPS/ Conference, Tokyo (Japan), 1994.

DWQ, Deliverable Dl.l, Data Warehouse Quality Requirements

and Framework, NTUA, RWTH, INRIA, DFKI, Uniroma, IRST,

DWQTRDWQ-NTUA-1001, 1997

DWQ, Deliverable D2.1, Data Warehouse Architecture and

Quality Model, RWTH, NTUA, Uniroma, INRIA, DWQ TR DWQ

- RWTH- 002, 1997

M. Gebhardt, M. Jarke, S. Jacobs, CoDecide -- a toolkit for

negotiation support interfaces to multi-dimensional data. Proc.

ACM-SIGMOD Conf Management of Data, Tucson, Az, 1997.

Halloran et al., Systems development quality control, MIS

Quarterly, vol. 2, no.4, 1978

[HGMW+95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, Y. Zhuge. The

Stanford Data Warehousing Project. Data Eng., Special Issue

Materialized Views on Data Warehousing, 18(2), 41-48. 1995.

179

http://www.arborsoft.com/essbase.html

M. Jarke et al.

[HR96]

[HZ96]

[Info97]

[IS091]

[Jans88]

[JGJ+95]

[JP92]

[JV97]

[KLSS95]

[Krie79]

[LR096]

[LSK95]

[LU90]

L. Hyatt, L. Rosenberg, A Software Quality Model and Metrics for

Identifying Project Risks and Assessing Software Quality, 8th

Annual Software Technology Conference, Utah, April, 1996.

R. Hull, G. Zhou. A Framework for supporting data integration

using the materialized and virtual approaches. Proc. ACM SIGMOD

Inti. Conf Management of Data, 481 - 492, Montreal 1996.

Informix, Inc.: The INFORMIX-MetaCube Product Suite.

http://www.informix.com/informix/products/new_plo/metabro/meta

bro2.htm, 1997.

ISO!IEC 9126, Information technology -Software product

evaluation- Quality charac~veristics and guidelines for their use,

International Organization for Standardization, http://www.iso.ch

M. Janson, Data quality: The Achilles heel of end-user computing,

Omega J. Management Science, 16, 5 (1988)

M. Jarke, R. Gallersdorfer, M.A. Jeusfeld, M. Staudt, S. Eherer:

ConceptBase - a deductive objectbase for meta data management.

In Journal of Intelligent Information Systems, 4, 2, 167-192, 1995.

M.Jarke, K.Pohl. Information systems quality and quality

information systems. In Kendaii!Lyytinen/DeGross (eds.): Proc.

IFIP 8.2 Working Conf The Impact of Computer-Supported

Technologies on Information Systems Development (Minneapolis

1992), North-Holland 1992, pp. 345-375.

M. Jarke, Y. Vassiliou. Foundations of data warehouse quality -- a

review of the DWQ project. Proc. 2nd lntl. Conf Information

Quality (/Q-97), Cambridge, Mass. 1997.

T. Kirk, A.Y. Levy, Y. Sagiv, and D. Srivastava. The Information

Manifold. Proc. AAAI 1995 Spring Symp. on information Gathering

from Heterogeneous, Distributed Environments, pp. 85-91, 1995.

C. Kriebel, Evaluating the quality of information system, Design

and Implementation of Computer Based Information Systems, N.

Szyperski/ E.Grochla ,eds. Sijthoff and Noordhoff, 1979

A.Y. Levy, A. Rajaraman, and J. J. Ordille. Query answering

algorithms for information agents. Proc. 13th Nat. Conf on

Artificial Intelligence (AAA/-96), pages 40-47, 1996.

A.Y. Levy, D. Srivastava, and T. Kirk. Data model and query

evaluation in global information systems. Journal of Intelligent

Information Systems, 5:121-143, 1995.

G.B. Liepins and V.R.R. Uppuluri, Accuracy and Relevance and the

Quality of Data, A.S. Loebl, ed., vol. 112, Marcel Dekker, 1990

180

http://www.informix.com/informix/products/new_plo/metabro/metabro2.htm

From: CAiSE 1998, LNCS 1413 © Springer-Verlag Berlin Heidelberg 1998

[MBJK90]

[MCN92]

[MRW78]

[MStr97]

[NJ97]

[OB92]

[SAG96]

[SKR97]

[TS97]

[Ull97]

[WGL+96]

[Wie92]

[WRK95]

[WSF95]

[ZHK96]

J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis: Telos - a

language for representing knowledge about information systems .. In

ACM Trans. Information Systems, 8, 4, 1990, pp. 325-362.

J. Mylopou1os, L. Chung, B. Nixon. Representing and using non­

functional requirements -- a process-oriented approach. IEEE

Trans. Sqftware Eng. 18, 6 (1992).

J.A. McCall, P.K. Richards, G.F. Walters, Factors in software

quality, Technical Report, Rome Air Development Center, 1978

MicroStrategy, Inc. MicroStrategy's 4.0 Product Line.

http://www .strategy .com/launch/ 4 _O_arc l.htm, 1997.

M. Nicola, M. Jarke. Integrating Replication and Communication in

Performance Models of Distributed Databases. Technical Report,

RWTH Aachen, AlB 97-10, 1997.

M. Oivo, V. Basili: Representing software engineering models: the

TAME goal-oriented approach. IEEE Trans. Software Eng. 18, 10

(1992).

Software AG: SourcePoint White Paper. Software AG, Uhlandstr

12,64297 Darmstadt, Germany, 1996.

M. Staudt, J.U. Kietz, U. Reimer. ADLER: An Environment for

Mining Insurance Data. Proc. 4th Workshop KRDB-97, Athens,

1997.

D. Theodoratos, T. Sellis. Data Warehouse Configuration. Proc.

23th VLDB Conference, Athens, 1997.

J.D. Ullman. Information integration using logical views. In Proc.

6th Int. Conf. on Database Theory (ICDT-97), Lecture Notes in

Computer Science, pages 19-40. Springer-Verlag, 1997

J. L. Wiener, H. Gupta, W. J. Labio, Y. Zhuge, H. Garcia-Molina,

J. Widom. A System Prototype for Warehouse View Maintenance.

Proceedings ACM Workshop on Materialised Views: Techniques

and Applications, Montreal, Canada, June 7, 1996, 26-33.

G. Wiederhold. Mediators in the architecture of future information

systems. IEEE Computer, pp. 38-49, March 1992.

R.Y. Wang, M.P. Reddy, H.B. Kon, Towards quality data: an

attribute-based approach, Decision Support Systems, 13(1995)

R.Y. Wang, V.C. Storey, C.P. Firth, A framework for analysis of

data quality research, IEEE Trans. Knowledge and Data Eng. 7, 4

(1995)

G. Zhou, R. Hull, R. King. Generating Data Integration Mediators

that Use Materialization. Journal of Intelligent Information

Systems, 6(2), 199-221, 1996.

181

http://www.strategy.com/launch/ 4_O_arc l.htm

Data Warehouse Architecture and Quality:
Impact and Open Challenges

Matthias Jarke, Manfred A. Jeusfeld, Christoph J. Quix, Panos Vassiliadis,
and Yannis Vassiliou

Abstract The CAiSE 98 paper “Architecture and Quality in Data Warehouses”
and its expanded journal version [18] was the first to add a Zachman-like [37]
explicit conceptual enterprise modeling perspective to the architecture of data
warehouses. Until then, data warehouses were just seen as collections of – typically
multidimensional and historized – materialized views on relational tables, without
consideration of modeling of the (business) concepts underlying their structure. The
paper pointed out that this additional conceptual perspective was not just necessary
for a truly semantic data integration but also a prerequisite for bringing the then very
active data warehouse movement together with another topic of quickly growing
importance, that of data quality.

We were happy to see the citation and industrial uptake success of this paper as
it played a central role in our European IST basic research project “Foundations
of Data Warehouse Quality (DWQ)”. Indeed, the paper was the first in a series
of three CAiSE papers from 1998 to 2000 all three of which were selected as
“best” CAiSE papers for expanded journal publication in Information Systems and

M. Jarke (�) • C.J. Quix
Information Systems, RWTH Aachen University & Fraunhofer FIT, Ahornstr. 55,
52074 Aachen, Germany
e-mail: jarkejquix@cs.rwth-aachen.de

M.A. Jeusfeld
Information Management, Tilburg University, Tilburg, Netherlands
e-mail: manfred.jeusfeld@acm.org

P. Vassiliadis
Department Computer Science, University of Ioannina, Ioannina, Greece
e-mail: pvassil@cs.uoi,gr

Y. Vassiliou
DBLab, National Technical University of Athens, Athens, Greece
e-mail: yv@cs.ntua.gr

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 14, © Springer-Verlag Berlin Heidelberg 2013

183

mailto:jarke|quix@cs.rwth-aachen.de
mailto:manfred.jeusfeld@acm.org
mailto:pvassil@cs.uoi,gr
mailto:yv@cs.ntua.gr

M. Jarke et al.

collected about 415 citations by end of 2012 according to Google Scholar. The final
DWQ results were published in the book [19], still organized around basically the
same architecture and quality model.

On a more personal note, it is worth mentioning that for the two junior co-authors
(CQ, PV), this was their first major refereed publication, and has strongly influenced
their follow-up research over more than a decade.

In this short note, we shall briefly summarize this own follow-up research as
well as the impact on research and practice, in the three areas of data quality, data
warehouse process engineering, and automated model management. We end with
some ongoing research questions and open challenges.

1 Data Quality and Enterprise Integration

In 1998, the time was ripe for a serious treatment of quality as a first-class problem
in information system engineering. Few years after the publication of the CAiSE’98
paper, both the necessity of handling data quality as a top-level concern and the
idea of injecting quality properties in the metadata started gaining ground, as
demonstrated by a proliferation of industrial efforts [2], books [3, 36], papers in
top-ranked conferences and journals (e.g. [11]) and workshop series like DMDW,
IQIS, and QDB. The CAiSE’98 paper contributed to the establishment of the
idea that apart from relieving the operational systems from the query load, data
warehouses also conceptually serve Inmon’s “single version of the truth” principle
for an organization.

A number of our own case studies confirmed this view and developed it further.
In [30], we report the enormous impact of introducing DWQ-like semantic data
cleaning and integration approaches into the worldwide financial reporting ware-
house of Deutsche Bank, then one of the largest and most complex financial data
warehouses worldwide. The project reduced the latency of consistent summary data
from about 3 months to less than 1 day, at much better data quality. Subsequently,
many business IT research groups expanded the conceptual modeling perspective
from a management perspective [16], a user perspective [8], or the viewpoint of
specific nonfunctional requirements [27].

In science and engineering applications, DW data often reflect project experi-
ences, and our CAiSE’98 model had to be adapted for such knowledge warehouse
settings. Already shortly after the CAiSE 98 paper, the Bayer company transferred
our architectural concept to what they called their “process data warehouse” [20]
for (chemical) process engineering. But this domain requires a richness of facets
well beyond business applications, so it took our chemical engineering collaborators
a decade to formulate an adequate, widely accepted set of core ontologies for
this domain [7]. In a case study with Daimler, we also saw that data quality of
long-lived data warehouses is often corrupted by creeping changes in the human

184

Data Warehouse Architecture and Quality: Impact and Open Challenges

interpretation of the schemas, such that data mining techniques had to be developed
to reverse-engineer the evolution of schema semantics over time [25]. Query
processing over such multiple DW schema versions has been studied by [13].

Last not least, the quality models had to be made more efficiently usable. More
than 100 KPI’s from the literature were grouped into classes, with mappings to
DW schemas. Moreover, it was noticed that quality metrics should not be kept
separately but integrated directly into the architecture metamodel and its supporting
repository. Manfred Jeusfeld extended ConceptBase, the system in which the CAiSE
98 models were first implemented, to include active rules and recursive functions
with optimized execution by tabling prior function calls [17]. This enables natural
definition of quality metrics even over hierarchically organized architectural and
data elements. A similarly deep integration of quality into quality-aware DW reports
has recently also been pursued at IBM [9].

2 Data Warehouse Process Engineering

With the benefit of the hindsight, an interesting omission of the CAiSE’98 paper was
the treatment of software processes within a data warehouse. At the time the paper
was authored, both the research and the industrial world viewed data warehouses
from a static point of view. However, once the core problems of the design of the data
architecture (and its contents) had been resolved, the main effort of data warehouse
project teams has been devoted to the establishment of the refreshment process [23].

The CAiSE paper was the root of a research agenda that has lasted for more than
a decade on the topic, technology, aiming at the establishment of ETL (Extract-
Transform-Load) technology as a top-level topic in the data management and
information systems engineering research communities [35]. Contributions have
been made towards establishing methods that (a) allow administrators to design
ETL workflows at conceptual and logical levels (e.g., [34]), (b) implement and tune
these workflows at the physical level (e.g., [31]), and, (c) come up with efficient
algorithms that can be incorporated in ETL tools to allow the efficient execution of
ETL workflows (e.g., [28]). However, the first paper in this line of research came
from practically the same team of authors of the CAiSE’98 paper, again in a CAiSE
conference [33]. One can safely argue that the two papers should be considered as
a pair as the CAiSE’98 paper covers the data architecture aspect and the CAiSE
2000 paper complements it with the management of operational processes for data
warehouse metadata and quality.

Nowadays, both tasks are widely accepted in industrial practice – the ETL-
based process perspective typically under the label of Enterprise Application
Integration, the semantic data integration perspective under the label of Enterprise
Data Integration. For both aspects, the OMG has in the meantime published some
metamodel standards, such as the Common Warehouse Metamodel [29].

185

M. Jarke et al.

3 Automated Model Management

CWM also began to address another emerging issue, the growing heterogeneity
of data models, by including source modeling packages not just for the relational
model but also for XML or direct multidimensional models. But meanwhile, het-
erogeneity has gone much further. The explosion of IT in business and engineering
(cyber-physical systems) has outpaced the possibilities of central data warehouses.
Richer information integration architectures such as peer-to-peer networks, data
stream management, or personal dataspaces are under investigation. The CAiSE’98
approach of carefully designing a central conceptual model as the basis for integra-
tion and quality is becoming infeasible, as a much higher degree of automation even
in the handling of schemas/metamodels is required.

The first wave of this so-called model management movement [4] focused on
introducing a model algebra with operators such as the automated generation of
formal mappings by matching of schema elements, the semantically meaningful
merging of schemas based on these mappings, and the composition of mappings
as a basis for distributed query optimization, update propagation, or even schema
evolution. In competition to programming solutions attempting to implement such
an algebra, research on logic-based approaches continued.

In the end, it turned out that both approaches had to be combined. The key
observation in the CLIO project at IBM Research was that the representation of
mappings as simple correspondence links between schema elements are far too
weak to allow for automated code generation and code optimization e.g. from com-
posed mappings. These mappings needed to be expressed at least as (conjunctive)
Datalog queries between any pair of sources to be integrate. For automated data
integration, a new variant of so-called tuple-generating dependencies, second-order
tuple-generating dependencies [12] were shown to allow correct and complete code
generation even with composed mappings among relational sources.

In model management 2.0 [5], model management is reconsidered under such
richer mapping representations. In our work, we have aimed to extend the CLIO
results to the case of heterogeneous data models: conceptual modeling formalisms
such as UML or the ER model as well as the different kinds of structured and
unstructured database models. A detailed analysis of the richness of these models,
combined with the many subtle model variations in the chemical engineering case
studies, led us to the conclusion that using the Telos language supporting by the
ConceptBase system [26] would lead to a combinatorial explosion of subclass
hierarchies which could not be handled with reasonable effort.

The GeRoMe metamodel [21] introduces a role concept at the metalevel which
avoids this combinatorial explosion by using role annotations instead of subclassing,
However, it maintains the efficient mapping of the conceptual modeling formalism
to Datalog. In this way, we could show that query optimization and update
propagation as in CLIO is possible even across an open architecture like a peer-
to-peer network with heterogeneous data models among the peers [22]; in addition,

186

Data Warehouse Architecture and Quality: Impact and Open Challenges

algorithms can be found to do schema merging in different scenarios not just with
preservation of semantics, but also with minimization of the merged schemas [24].

4 Beyond Data Warehouses

In conclusion, we mention two further developments which at first glance seem
much more revolutionary but surprisingly also show relationships to this work.

Firstly, we are observing a confluence of database, data warehouse, and search
engine technologies. Naı̈ve users expect to ask simple keyword questions also to
structured databases, and conversely, many people want to ask structured queries
a la SQL or multidimensional versions of it, to databases whose content is text or
even multimedia objects. As one well-known example, the YAGO project extracts
semantic knowledge in the form of RDF graphs from very large text bases such as
Wikipedia [32]. Currently, this is being extended to a kind of RDF warehouse by
adding temporal and spatial context [15]. Interestingly, a data quality framework
for this web archiving similar to our CAiSE 98 approach has been recently
developed [10].

The development of novel column-based main memory databases, such as SAP’s
HANA system, claims to void the need for separate data warehousing altogether
[6, 14]. Other so-called NoSQL databases have also made broad claims, but each
approach is typically best suited for particular applications and workload patterns,
such that again, it is highly likely than an integration of multiple such non-
standard database solutions with each other and with traditional databases will be
necessary. At the operational level, a very nice approach to support such integration
by a common programming framework has recently been proposed by [1] but it
remains open what this implies for the enterprise architecture and for data quality
management.

In summary, the field of architecture and quality in information integration
appears alive and well for many years to come.

References

1. Atzeni P, Bugiotti B, Rossi L (2012) Uniform access to non-relational database systems.
24th Intl Conf Advanced Information Systems Engineering (CAiSE 2012), Gdansk/Poland,
160–174

2. Barateiro J, Galhardas H (2005) A survey of data quality tools. Datenbank-Spektrum 14: 15–21
3. Batini C, Scannapieco M (2006) Data Quality: Concepts, Methodologies & Techniques.

Springer
4. Bernstein PA, Haas LM, Jarke M, Rahm E, Wiederhold G (2000) Is generic metadata

management feasible? 26. Intl Conf Very Large Databases (VLDB 2000), Cairo/Egypt,
660–662

187

M. Jarke et al.

5. Bernstein PA, Melnik S (2007) Model management 2.0: manipulating richer mappings. ACM
SIGMOD Conf., Beijing, China: 1–12

6. Bog A, Sachs S, Plattner H (2012) Interactive performance monitoring of a composite OLTP
and OLAP workload. ACM SIGMOD Intl Conf Mgmt of Data, Scottsdale, Az, 645–648

7. Brandt SC, Morbach J, Miatidis M, Theißen M, Jarke M, Marquardt W (2008) An ontology-
based approach to knowledge management in design processes. Computers & Chemical
Engineering 32, 1–2: 320–342

8. Cappiello C, Francalanci C, Pernici B (2004) Data quality assessment from the user’s
perspective. ACM SIGMOD Workshop Information Quality in Information Systems, Paris,
68–73

9. Daniel F, Casati F, Palpanas T, Chayka O, Cappiello C (2008) Enabling better decisions through
quality-aware reports. Intl Conf Information Quality (ICIQ), Cambridge/Mass

10. Denev D, Mazeika A, Spaniol M, Weikum G (2011) The SHARC framework for data quality
in web archiving. VLDB Journal 20, 2: 183–207

11. Elmagarmid AK, Ipeirotis PG, Verykio VS (2007) Duplicate record detection: a survey. IEEE
Trans. Knowl. & Data Eng. 19, 1: 1–16

12. Fagin R, Kolaitis P, Popa L, Tan WC (2005) Composing schema mappings: second-order
dependencies to the rescue. ACM Trans. Database Systems 30, 4: 994–1055

13. Golfarelli M, Lechtenbörger J, Rizzi S, Vossen G (2006) Schema versioning in data ware-
houses: Enabling cross-version querying via schema augmentation. Data Knowl. Eng. 59,
2: 435–459

14. Grund M, Krüger J, Plattner P, Zeier A (2010) Cudré-Mauroux P, Samuel Madden S: HYRISE -
A Main Memory Hybrid Storage Engine. PVLDB 4, 2: 105–116

15. Hoffart J, Suchanek FM, Berberich K, Weikum G (2013) YAGO2: A spatially and temporally
enhanced knowledge base from Wikipedia. Artif. Intell. 194: 28–61

16. Holten R (2003) Specification of management views in information warehouse projects.
Information Systems 28, 7: 709–751

17. Jeusfeld, M.A.; Quix, C.; Jarke, M. (2011) ConceptBase.cc User Manual Version 7.3. Technical
Report, Tilburg University, http://arno.uvt.nl/show.cgi?fid=113912

18. Jarke M, Jeusfeld MA, Quix C, Vassiliadis P (1999) Architecture and quality in data
warehouses: an extended repository approach. Inform. Systems 24, 3: 131–158.

19. Jarke M, Lenzerini M, Vassiliou Y, Vassiliadis P (2003) Fundamentals of Data Warehouses.
2nd edn., Springer.

20. Jarke M, List T, Köller J (2000) The challenge of process data warehousing. 26. Intl Conf Very
Large Databases (VLDB 2000, Cairo/Egypt), 473–483.

21. Kensche D, Quix C, Chatti MA, Jarke M (2007) GeRoMe: a generic role-based metamodel for
model management. J. Data Semantics 8: 82–117.

22. Kensche D, Quix C, Li X, Li Y, Jarke M (2009) Generic schema mappings for composition
and query answering. Data & Knowledge Engineering 68, 7: 599–621

23. Kimball R, Caserta J (2004) The Data Warehouse ETL Toolkit. Willey
24. Li X, Quix C (2011) Merging relational views: a minimization approach. 30th Intl Conf

Conceptual Modeling (ER 2011), Brussels/Belgium, 379–392
25. Lübbers D, Grimmer U, Jarke M (2003) Systematic development of data mining-based data

quality tools. 26. Intl Conf Very Large Databases (VLDB 2003, Berlin/Germany), 548–559
26. Mylopoulos J, Borgida A, Jarke M, Koubarakis M (1990) Telos: representing knowledge about

information systems. ACM Trans. Information Systems 8, 4: 325–362
27. Pardillo J, Trujillo J: Integrated model-driven development of goal-oriented data warehouses

and data marts. 27th Intl Conf Conceptual Modeling (ER 2008), Barcelona, Spain: 426–439
28. Polyzotis N, Skiadopoulos S, Vassiliadis P, Simitsis A, Frantzell N-E (2007) Supporting

streaming updates in an active data warehouse. 23rd Intl Conf Data Engineering (ICDE 2007),
Constantinople, Turkey, 476–485

29. Poole J, Chang D, Tolbert D, Mellor D: Common Warehouse Metamodel Developer’s Guide,
Wiley Publishing, 2003

188

http://arno.uvt.nl/show.cgi?fid=113912

Data Warehouse Architecture and Quality: Impact and Open Challenges

30. Schaefer E, Becker J-D, Boehmer A, Jarke M (2000) Controlling data warehouses with
know-ledge networks. 26. Intl Conf Very Large Databases (VLDB 2000), Cairo/Egypt,
715–718

31. Simitsis A, Vassiliadis P, Sellis TK (2005) Optimizing ETL processes in data warehouses. 21st
Intl Conf Data Engineering (ICDE 2005), Tokyo, Japan, 564–575

32. Suchanek FM,, Kasneci G, Weikum G (2007) Yago: a core of semantic knowledge. 16th Intl
Conf World Wide Web (WWW 2007), Banff/Canada, 697–706

33. Vassiliadis P, Quix C, Vassiliou Y, Jarke M (2001) Data warehouse process management.
Special Issue on Selected Papers from CAiSE 2000, Information Systems 26, 3: 205–236.

34. Vassiliadis P, Simitsis A, Georgantas PO, Terrovitis M (2003) A framework for the design of
ETL scenarios. 15th CAiSE, Klagenfurt/Austria, 520–535

35. Vassiliadis P, Simitsis A (2009) Extraction-Transformation-Loading, In Liu L, Öszu T (eds.):
Encyclopedia of Database Systems, Springer

36. Wang RY, Ziad M, Lee YW (2001) Data Quality. Advances in Database Systems 23, Kluwer
37. Zachman JA (1987) A framework for information systems architecture. IBM Systems Journal

26, 3: 276–292

189

Time Constraints in Workflow Systems

Johann Eder?, Euthimios Panagos, and Michael Rabinovich

AT&T Labs - Research
180 Park Avenue

Florham Park, NJ 07932
eder@acm.org, {thimios, misha}@research.att.com

Abstract. Time management is a critical component of workflow-based process
management. Important aspects of time management include planning of work-
flow process execution in time, estimating workflow execution duration, avoiding
deadline violations, and satisfying all external time constraints such as fixed-date
constraints and upper and lower bounds for time intervals between activities. In
this paper, we present a framework for computing activity deadlines so that the
overall process deadline is met and all external time constraints are satisfied.

1 Introduction

Dealing with time and time constraints is crucial in designing and managing business
processes. Consequently, time management should be part of the core management
functionality provided by workflow systems to control the lifecycle of processes. At
build-time, when workflow schemas are developed and defined, workflow modelers
need means to represent time-related aspects of business processes (activity durations,
time constraints between activities, etc.) and check their feasibility (i.e., timing con-
straints do not contradict each other). At run-time, when workflow instances are in-
stantiated and executed, process managers need pro-active mechanisms for receiving
notifications of possible time constraint violations. Workflow participants need infor-
mation about urgencies of the tasks assigned to them to manage their personal work
lists. If a time constraint is violated, the workflow system should be able to trigger ex-
ception handling to regain a consistent state of the workflow instance. Business process
re-engineers need information about the actual time consumption of workflow execu-
tions to improve business processes. Controllers and quality managers need information
about activity start times and execution durations.

At present, support for time management in workflow systems is limited to process
simulations (to identify process bottlenecks, analyze activity execution durations, etc.),
assignment of activity deadlines, and triggering of process-specific exception-handling
activities (called escalations) when deadlines are missed at run time [10,8,7,18,2,3,17].
Furthermore, few research activities about workflow and time management exist in the
literature. A comparison with these efforts is presented in Section 7.

Our contributions in this paper include the formulation of richer modeling primi-
tives for expressing time constraints, and the development of techniques for checking
? On leave from the University of Klagenfurt, Austria

M. Jarke, A. Oberweis (Eds.): CAiSE’99, LNCS 1626, pp. 286–300, 1999.
c© Springer-Verlag Berlin Heidelberg 1999

191

mailto:{thimios, misha}@research.att.com

satisfiability of time constraints at process build and instantiation time and enforcing
these constraints at run time. The proposed primitives include upper and lower bounds
for time intervals between workflow activities, and binding activity execution to certain
fixed dates (e.g., first day of the month). Our technique for processing time constraints
computes internal activity deadlines in a way that externally given deadlines are met
and no time constraints are violated.

In particular, at build time, we check whether for a given workflow schema there
exists an execution schedule that does not violate any time constraints. The result is
a timed activity graph that includes deadline ranges for each activity. At process in-
stantiation time, we modify the the timed activity graph to include the deadlines and
date characteristics given when the workflow is started. At run time, we dynamically
recompute the timed graph for the remaining activities to monitor satisfiability of the
remaining time constraints, given the activity completion times and execution paths
taken in the already-executed portion of a workflow instance.

The remainder of the paper is organized as follows. Section 2 describes our work-
flow model and discusses time constraints. Section 3 presents the workflow representa-
tion we assume in this paper. Section 4 presents the calculations that take place during
build time. Section 5 shows how these calculations are adjusted at process instantiation
to take into account actual date constraints. Section 6 covers run time issues. Section 7
offers a comparison with related work and, finally, Section 8 concludes our presentation.

2 Workflow Model and Time Constraints

A workflow is a collection of activities, agents, and dependencies between activities.
Activities correspond to individual steps in a business process. Agents are responsible
for the enactment of activities, and they may be software systems (e.g., database appli-
cation programs) or humans (e.g., customer representatives). Dependencies determine
the execution sequence of activities and the data flow between these activities. Conse-
quently, a workflow can be represented by a workflow graph, where nodes correspond
to activities and edges correspond to dependencies between activities.

Here, we assume that execution dependencies between activities form an acyclic di-
rected graph. We should note that we do not propose a new workflow model. Rather, we
describe a generic workflow representation for presenting our work. In particular, we
assume that workflows are well structured. A well-structured workflow consists of m
sequential activities, T1 . . . Tm. Each activity Ti is either a primitive activity, which is
not decomposed any further, or a composite activity, which consists of ni parallel con-
ditional or unconditional sub-activities Ti

1, . . . , Ti
ni . Each sub-activity may be, again,

primitive or composite. Typically, well structured workflows are generated by workflow
languages that provide the usual control structures and adhere to a structured program-
ming style of workflow definitions (e.g., Panta Rhei [4]).

In addition, we assume that each activity has a duration assigned to it. For sim-
plicity, we assume that activity durations are deterministic. Time is expressed in some
basic time units, at build-time relative to the start of the workflow, at run-time in some
calendar-time. Some time constraints follow implicitly from control dependencies and
activity durations of a workflow schema. They arise from the fact that an activity can

J. Eder, E. Panagos and M. Rabinovich192

only start when its predecessor activities have finished. We call such constraints the
structural time constraints since they reflect the control structure of the workflow.

In addition, explicit time constraints can be specified by workflow designers. These
constraints are derived from organizational rules, laws, commitments, and so on. Such
explicit constraints are either temporal relations between events or bindings of events to
certain sets of calendar dates. In workflow systems, events correspond to start and end
of activities. For temporal relationships between events, the following constraints exist:

Lower Bound Constraint: The duration between events A and B must be greater than
or equal to δ. We write lbc(A, B, δ) to express that δ is a lower bound for the time-
interval between source event A and destination event B.

Upper Bound Constraint: The distance between events A and B must be smaller than
or equal to δ. We write ubc(A, B, δ) to express that δ is an upper bound for the
time-interval between source event A and destination event B.

An example of lower-bound constraint includes a legal workflow with activities of
serving a warning and closing a business, with the requirement that a certain time period
passes between serving the warning and closing the business. Another example is that
the invitation for a meeting has to be mailed to the participants at least one week before
the meeting. Upper-bound constraints are even more common. The requirement that a
final patent filing is done within a certain time period after the preliminary filing, or time
limits for responses to business letters, or guaranteed reaction times after the report of
a hardware malfunction provide typical examples of upper-bound constraints.

To express constraints that bind events to sets of particular calendar dates, we first
need to provide an abstraction that generalizes a, typically infinite, set of dates such
as “every other Monday” or “every fifth workday of a month”. Examples of such con-
straints include: vacant positions are announced at the first Wednesday of each month;
loans above USD 1M are approved during scheduled meetings of the board of directors;
inventory checks have to be finished on December 31st.

Fixed-Date Type: A fixed-date (type) is a data type F with the following methods:
F.valid(D) returns true if the arbitrary date D is valid for F ; F.next(D) and
F.prev(D) return, respectively, the next and previous valid dates after D; F.period
returns the maximum distance between valid dates; and F.dist(F ′) returns the
maximum distance between valid dates of F and F ′, (with F.period as default
value).

Fixed-Date Constraint: Event B can only occur on certain (fixed) dates. We write
fdc(B, T), where T is a fixed-date, to express the fact that B can only occur on
dates which are valid for T .

In the remainder of the paper, we assume that at most one fixed-date constraint can
be associated with an activity.

3 Workflow Representation

Our techniques for time constraint management are based on the notion of the timed
activity graph. This graph is essentially the same as the workflow graph where each

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 193

Finish Time

Name

Activity Activity

Duration

Earliest Latest

Finish Time

Fig. 1. Activity node of a timed workflow graph

25

10

2827

5

8

8

135

1B

5 GF

E

DC

H20

3

2 1I

16

10

56

L

46

12

56

46

4338
4

34

K

45

4335

43

15

46

4

4

A

30

34

J

Fig. 2. Example timed workflow graph

activity node n is augmented with two values that represent termination time points for
activity executions1.

– n.E: the earliest point in time n can finish execution.
– n.L: the latest point in time n has to finish in order to meet the deadline of the

entire workflow.

Figure 1 shows the representation of an activity node in the timed workflow graph.
Without explicit time constraints, E and L values can be computed using the Critical
Path Method (CPM) [14], a well known project planning method that is frequently used
in project management software. CPM assumes that activity durations are deterministic.
We are aware that this assumption does not hold for many workflows, and that for these
workflows a technique dealing with a probability distribution of activity durations like
the Project Evaluation and Review Technique (PERT) [14] would be more appropri-
ate. However, we chose CPM because it allows us to present the concept more clearly
without the math involved with probability distributions.

Figure 2 shows the timed workflow graph we use in the rest of the paper. The in-
terpretation of E- and L-values is as follows. The earliest point in time for activity F

1 Since activity durations are assumed to be deterministic, we do not need to represent activity
start points. These time points can be computed by subtracting activity durations from activity
termination times.

J. Eder, E. Panagos and M. Rabinovich194

to terminate is 10 time units after the start of the workflow. If F is finished 38 time
units after the start of the workflow, the duration of the entire workflow is not extended.
Activity L is the last activity of the workflow, and the earliest and latest completion
times are the same, 56. This also means that the entire workflow has a duration of 56
time units. The distance between the E-value and the L-value of an activity is called
its buffer time. In our example, activity F has a buffer of 28 time units. This buffer,
however, is not exclusively available to one activity, but it might be shared with other
activities. In our example, the buffer of F is shared with B, G, H , and I . If B uses
some buffer-time, then the buffer of F is reduced.

Computing the timed workflow graph delivers the duration of the entire workflow,
and deadlines for all activities such that the termination of the entire workflow is not de-
layed. Incorporating explicit time constraints into the timed activity graph is explained
in detail later. For simplicity, we only consider constraints for end events of activities.
Therefore, we will use a shortcut and say that an activity (meaning “the end event of
the activity”) participates in a constraint. The following additional properties are used
for representing workflow activities: n.d represents the activity duration; n.pos repre-
sents whether the activity n is a start, end, or internal node of the workflow; n.pred
represents the predecessors and n.succ the successor activities of n; n.deadline holds
the externally assigned deadline of n; n.tt the actual termination time of an activity
instance.

For an upper- or lowerbound-constraint c we represent the source activity with c.s,
the destination activity with c.d and the bound with c.δ. For a fixed-date constraint f ,
we write f.a for the activity on which f is posed and f.T for the fixed-date.

Since we assume well structured workflows, in the remainder of the paper we as-
sume that for all upper and lower bound constraints the source node is before the desti-
nation node according to the ordering implied by the workflow graph.

4 Build-Time Calculations

At build time, our goal is to check if the set of time constraints is satisfiable, i.e., that
it is possible to find a workflow execution that satisfies all timing constraints. We start
from the original workflow graph and construct a timed workflow graph such that an ex-
ecution exists that satisfies all constraints. Initially, all fixed-date constraints are trans-
formed into lower-bound constraints. Then, the E- and L-values of all activity nodes
in the timed graph are computed from activity durations and lower-bound constraints,
using a straightforward modification of the CPM method. Finally, upper-bound con-
straints are incorporated into the timed graph. The resulting timed graph has at least
two (possibly not distinct) valid executions. These executions are obtained if all activ-
ities complete at their E-values or all activities complete at their L-values. There may
be other valid combinations of activity completion times within (E, L) ranges. We say
that a timed graph satisfies a constraint if the executions in which all activities complete
at their E- or L-values are valid with respect to this constraint.

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 195

4.1 Fixed-Date Constraints

The conversion of fixed-date constraints into lower-bound constraints is done using
worst-case estimates. This is because at build time we do not have calendar value(s)
for the start of the workflow and, thus, we can only use information about the duration
between two valid time points for a fixed-date object. At process-instantiation time we
will have more information concerning the actual delays due to fixed-date constraints.

Consider a fixed-date constraint fdc(a, T). Assume that activities start instanta-
neously after all their predecessors finish. In the worst case, activity a may finish at
T.period + a.d after its last predecessor activity finishes. Indeed, let t1 and t2 be valid
dates in T with the maximum time-interval between them. i.e., t2− t1 = T.period, and
let b be the last predecessor activity to finish. The time-interval between end-events of
b and a is the longest if b finishes just after time t1 − a.d, because then a cannot start
immediately (it would then not finish at valid date t1), and would have to wait until time
t2−a.d before starting. In this case, the distance between b and a is δ = (t2− t1)+a.d
= T.period+a.d, assuming b itself does not have a fixed-date constraint associated with
it. If b has a fixed-date constraint fdc(b, T ′), one can use similar reasoning to obtain
δ = T.dist(T ′) if a.d ≤ T.dist(T ′) and δ = a.d + T.period otherwise.

To guarantee the satisfiability of all time constraints at build-time, without knowing
the start date of the process, the timed graph must allow the distance of at least δ be-
tween a and all it’s predecessors, where δ is computed for each predecessor as shown
above. Consequently, the fixed-date constraint fdc(a, T) is replaced by a lower-bound
constraint lbc(b, a, δ) for every predecessor b of activity a.

4.2 Lower-Bound Constraints

The construction of the timed workflow graph that includes structural and lower-bound
constraints is presented below. We should note that due to the way we carry out the
computations, the activities in the resulting graph satisfy all lower-bound constraints.

Forward Calculations

for all activities a with a.pos = start
a.E := a.d

endfor
for all activities a with a.pos 6= start

in a topological order
a.E := max({b.E + b.d | b ∈ a.pred},

{m.s.E + m.δ | m = lbc(s,a,δ)})
endfor

Backward Calculations

for all activities a with a.pos = end
a.L := a.E

endfor
for all activities a with a.pos 6= end

in a reverse topological order
a.L := min({s.L - s.d| s ∈ a.succ},

{m.d.L - m.δ | m = lbc(a,d,δ)})
endfor

J. Eder, E. Panagos and M. Rabinovich196

1

45402010

10 D

40

DCBA 2

b)

a)

CBA 2

10

252010

10 DCB

30 504035
d)

5

40

1A

1

452540202010 40

2

553025

5

5

70

2010

10 DCBA

25 40

5
c)

40

1

3035

2

55

Fig. 3. Incorporating upper-bound constraints

4.3 Upper-Bound Constraints

In the timed workflow graph constructed during the previous step, an upper-bound con-
straint ubc(s, d, δ) is violated when either s.E + δ < d.E or s.L + δ < d.L. In this
case, we can use the buffer times of s and d to increase the E-value of s and decrease the
L-value of the d in an attempt to satisfy the constraint. However, buffer time availabil-
ity is a necessary but not sufficient condition for satisfying an upper-bound constraint.
For example, in the workflow graph shown in Figure 2, the upper-bound constraint
ubc(B, C, 8) cannot be satisfied because the value of C.E is always increased by the
same amount as B.E.

A necessary condition for constraint ubc(s, d, δ) to be satisfiable is that the distance
between s and d is less than δ. The distance is the sum of the durations of the activities
on the longest path between s and d, and it can be computed by using the forward or
backward calculations presented in the previous section, with s the starting node and d
the ending node. We should note that for well structured workflows this distance does
not change when the deadline of the entire workflow is relaxed and, therefore, more
buffer becomes available for each activity. Consequently, extending the deadline of the
whole workflow does not help us in satisfying violated upper-bound constraints.

One can show that if there is a node n between s and d with less buffer than both
of them, then the buffer of s and the buffer of d can be reduced without influencing the
E-values or L-values of the other node by: min(buffer(s)−buffer(n), buffer(d)−
buffer(n)). Instead of finding the “safe” value by which the buffer of one end-point of
the constraint can be reduced without affecting E and L values of the other end-point,
we follow a more constructive approach.

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 197

If an upper-bound constraint is violated, we set the E-value of the source node to
the value of d.E − δ. If this value is greater than s.L, the upper-bound constraint is
violated. Otherwise, we recompute the E-values of the timed graph starting at s and
if the E-value of d does not change, the constraint is satisfied. In a similar way, we
decrease the L-value of the destination node by δ and if this value is not less than d.E,
we recompute the L-values of all predecessors of d. If the L-value of s does not change,
the constraint is satisfied.

While the above can be used for individual upper-bound constraints, it is not enough
for handling multiple upper-bound constraints. Figure 3 shows an example that demon-
strates this problem. Figure 3a) shows the starting timed graph. Figure 3b) shows the
timed graph after the integration of ubc(B, D, 15). When ubc(A, C, 20) is integrated,
ubc(B, D, 15) is violated at the L-values, as shown in Figure 3c). Finally, Figure 3d)
shows the successful integration of both constraints.

We address this problem by checking whether an already incorporated upper-bound
constraint is violated when new upper-bound constraints are incorporated into the timed
graph. The following unoptimized algorithm summarizes this procedure. In this algo-
rithm, the re-computation of the timed graph involves the forward and backward com-
putations presented in the previous section.

repeat
error := false
for each m = ubc(s,d,δ)

if m.s.E + m.δ < m.d.E (* violation at E *)
if m.s.L > m.d.E - m.δ (* slack at m.s *)

m.s.E := m.d.E - m.δ
recompute timed graph
if m.d.E changes

error := true
endif

else
error := true

endif
endif
if m.s.L + m.δ < m.d.L (* violation at L *)

if m.d.E < m.s.L + m.δ (* slack at m.d *)
m.d.L := m.s.L + m.δ
recompute timed graph
if m.s.L changes

error := true
endif

else
error := true

endif
endif

endfor
until error = true or nothing changed

This algorithm for the incorporation of upper-bound constraints has the following
properties:

1. Termination: The algorithm terminates.
At each loop there is at least one node x for which x.E is increased or x.L is
decreased by at least one unit. Since there is a finite number of nodes, and the E-
and L-values are bound, the algorithm must terminate.

J. Eder, E. Panagos and M. Rabinovich198

2. Admissibility: A solution is found if there exists a timed graph satisfying all con-
straints.
For an upper-bound constraint m(s, d, δ), m.d.E − m.δ is less than or equal to
m.s.E and m.s.L + m.δ is greater than or equal to m.d.L for any timed graph sat-
isfying the constraints. Since we set m.s.E and m.d.L to these values and, more-
over, we know that the algorithm terminates, we can conclude that the algorithm
will compute a solution, if one exists.

3. Generality: The algorithm finds the most general solution, if one exists.
Let G and G′ be timed graphs which differ only in the E- and L-values. We call G
more general than G′, if for every activity a the following condition holds: aG.E ≤
aG′ .E and aG.L ≥ aG′ .L. Following the discussion of admissibility, it is easy to
see that the timed graph generated by the algorithm above is more general than any
other timed graph satisfying the constraints.

4. Complexity: The worst-case complexity of the algorithm is O(m ∗ d ∗ n), where
m is the number of upper-bound constraints, d is the largest buffer, and n is the
number of activities.
We can give an upper bound for number of iterations of this algorithm as follows:
in each iteration there is at least one E-value increased or one L-value decreased at
least by one unit. If there are m upper-bound constraints, and d is the largest buffer,
then the number of iterations is m ∗ d ∗ 2 in the worst case. The recalculation is
linear with the number of nodes.

5 Calculations at Process Instantiation Time

At process instantiation time, an actual calendar is used in order to transform all time
information which was computed relative to the start of the workflow to absolute time
points. It is also possible at this procedure to set the a.deadline value for an activity a,
and increase or decrease the buffers computed at build time. Based on the calculations
performed at build time, a deadline for an activity a is valid if it is greater than or equal
to a.E. Fixed-date constraints are also resolved at process instantiation time, since they
rely on absolute time points. (We used worst case estimates for these constraints during
build time).

The computations that take place at process instantiation time are presented below,
assuming that the variable start corresponds to the start-time of the workflow instance.

Forward Calculations

for all activities a with a.pos = start
a.E := start + a.d

endfor
for all activities a with a.pos 6= start

in a topological order
a.E := max({b.E + b.d | b ∈ a.pred},

{m.s + m.δ | m = lbc(s,a,δ)})
if there exists dc = fdc(a,T)

a.E := dc.T.next(a.E)
endif

endfor

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 199

Backward Calculations

for all activities a with a.pos = end
if a.deadline < a.E

raise exception
else

a.L := a.deadline
endfor
for all activities a with a.pos 6= end

in a reverse topological order
a.L := min({s.L - s.d| s ∈ a.succ},

{m.d - m.δ | m = lbc(a,d,δ)})
if exists a.deadline and a.deadline < a.L

a.L := a.deadline
endif
if there exists dc = fdc(a,T)

a.L := dc.T.prev(a.L)
endif
if a.L < a.E

raise exception
endif

endfor

Incorporation of Upper-Bound Constraints: incorporate()

repeat
error := false
ok := true
for each m = ubc(s,d,δ)

if m.s.E + m.δ < m.d.E (* violation at E *)
m.s.E := m.d.E - m.δ
ok := false
if there exists dc = fdc(m.s,T)

m.s.E := dc.T.next(m.s.E)
endif
if m.s.E > m.s.L

error := true
endif

endif
if m.s.L + m.δ < m.d.L (* violation at L *)

m.d.L := m.s.L + m.δ
ok := false
if there exists dc = fdc(m.d,T)

m.s.L := dc.T.prev(m.d.L)
endif
if m.d.E > m.d.L

error := true
endif

endif
endfor
if ok = false and error = false

error := recompute();
endif

until error = true or ok = true

Timed Graph Re-computation: recompute()

for all activities a in topological order
a.E := max({b.E + b.d | b ∈ a.pred},

{m.s + m.δ | m = lbc(s,a,δ)}, a.E)

J. Eder, E. Panagos and M. Rabinovich200

if there exists dc = fdc(a,T)
a.E := dc.T.next(a.E)

endif
if a.L < a.E

return false
endif

endfor
for all activities a in reverse topological order

a.L := min({s.L - s.d | s ∈ a.succ},
{m.d - m.δ | m = lbc(a,d,δ)}, a.L)

if there exists dc = fdc(a,T)
a.L := dc.T.prev(a.L)

endif
if a.L < a.E

return false
endif

endfor
return true

There is a possibility of optimizing the re-computation procedure by starting at
the first node where an E-value was changed. However, there is additional overhead
associated with this. Finally, the algorithm for incorporating upper-bound constraints
into the timed graph has the same properties as the corresponding one presented in
Section 4.

6 Time Management at Run-Time

6.1 General Computations

During the execution of a given workflow instance, we have to ensure that deadlines
are not missed and any time constraints attached to activities are not violated. In order
to achieve this, we may have to delay the execution of some of the activities that are
either sources of upper-bound constraints or destinations of lower-bound constraints.
Figure 4 shows a workflow segment having the upper-bound constraints ubc(C, I, 18)
and ubc(G, H, 7). In this example, if F ends at 10 and C ends at 25 and, thus, D will
end at 33 and H at 35, G must not start before 28 because the upper-bound constraint
will be violated.

Even when we can immediately start the execution of an activity that is the source
of some upper-bound constraint, it can be advantageous to delay its enactment so that
the remaining activities have more buffer. In the example of Figure 4, if C starts at 7,
it will finish at 10 and the buffer for all other activities is reduced. In particular, E, H ,
and I will have no buffer available since they have to finish at their E-values to satisfy
the upper-bound constraints.

Selecting an optimal delay value for an activity is part of on-going work. Further-
more, existing work [11,12,13] can be used for distributing available buffer and slack
times to activities and avoid time exceptions – assign-deadline() corresponds
to this in the algorithm presented below. Buffer distribution addresses the distribution
of extra buffer time that results from the assignment of an overall workflow deadline
that is greater than the L-values of all activities with no successors. Slack distribution
addresses the distribution of slack time that becomes available when activities finish
before their L-values.

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 201

12

3

20

5 5

1 IB

C D

E

F G

H

5 13

20

25

8

1810 25

10

35

3328

33 2827 36

33

Fig. 4. Workflow segment with ubc(C, I, 18) and ubc(G, H, 7)

The algorithm presented below assumes that activities finish within the interval de-
fined by their E- and L-values (this implies that the termination of an activity should be
delayed until, at least, its E-value. Allowing activities to finish before their E-values is
subject of on-going work). When activity a finishes in the interval (a.E, a.L), we may
have to recompute the timed graph and re-incorporate upper-bound constraints before
modifying the L-values of the ready activities according to the buffer and slack dis-
tribution algorithm. In addition, the re-computation of the timed graph should use the
L-values of any active activities for computing E-values in order to avoid upper-bound
constraint violations.

if a.tt ≤ a.L (* a.tt = actual termination time *)
a.L := a.tt
a.E := a.tt
done := false
if a is the source of a lower-bound constraint

recompute()
incorporate()
done := true

endif
for each b in a.succ that is ready for execution

if b is source of an upper-bound constraint
if done = false

recompute()
incorporate()

endif
b.L := assign-deadline(b)
recompute()
incorporate()
done := true

else
b.L := assign-deadline(b)
done := false

endif
launch b for execution

endfor
else

invoke escalation process, deadline was missed
endif

J. Eder, E. Panagos and M. Rabinovich202

6.2 Schedules

The execution of a workflow instance according to the procedures above requires re-
computation of the timed graph after the completion of an activity that is the source
of a lower-bound constraint or has a successor that is the source of an upper-bound
constraint. We can avoid these re-computations by sacrificing some flexibility in the
timed graph. Recall that the timed graph specifies ranges for activity completion times
such that there exists a combination of activity completion times that satisfies all timing
constraints and in which each completion time is within the range of its activity. Run-
time re-computation was required because, once completion time for finished activities
has been observed, not all completion times within the ranges of the remaining activities
continue to be valid.

We define a schedule to be a (more restrictive) timed graph in which any combina-
tion of activity completion times within [E, L] ranges satisfies all timing constraints. In
other words, given a schedule, no violations of time constraints occur as long as each
activity a finishes at time within the interval [a.E, a.L]. Consequently, as long as ac-
tivities finish within their ranges, no timed graph re-computation is needed. Only when
an activity finishes outside its range must the schedule for the remaining activities be
recomputed.

It follows directly from the schedule definition that, for every upper-bound con-
straint ubc(s, d, δ), s.E + δ ≥ d.L and for every lower-bound constraint lbc(s, d, δ),
s.L + δ ≤ d.E; the reverse is also true, i.e., the timed graph that satisfies these proper-
ties is a schedule (compare this property with the two inequalities that are incorporated
into the timed graph in Section 4). From the way we compute E- and L-values for the
activities in a timed workflow graph, the E- and L-values already qualify as schedules.
Consequently, when every workflow activity finishes execution at its E-value, there is
no need to check for time constraint violations. The same is true when activities finish
execution at L-values.

The development of algorithms for computing schedules with various characteris-
tics is subject of ongoing research.

7 Related Work

The area of handling time-related issues and detecting potential problems at build, in-
stantiation, and run time has not received adequate attention in the workflow literature.
Existing workflow systems offer some limited abilities to handle time. For example,
they support the assignment of execution durations, and deadlines to business processes
and their activities, and they monitor whether deadlines are met.

In [9], an ontology of time is developed for identifying time structures in workflow
management systems. They propose the usage of an Event Condition Action (ECA)
model of an active database management system (DBMS) to represent time aspects
within a workflow environment. They also discuss special scheduling aspects and basic
time-failures. We used parts of their definitions as basis of our concept.

In [11,12,13], the authors propose to use static data (e.g., escalation costs), statisti-
cal data (e.g., average activity execution time and probability of executing a conditional

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 203

activity), and run-time information (e.g., agent work-list length) to adjust activity dead-
lines and estimate the remaining execution time for workflow instances. However, this
work can be used only at run-time, and it does not address explicit time constraints.

[1] proposes the integration of workflow systems with project management tools
to provide the functionality necessary for time management. However, these project
management tools do not allow the modeling of explicit time constraints and, therefore,
have no means for their resolution.

In [15], the authors present an extension to the net-diagram technique PERT to com-
pute internal activity deadlines in the presence of sequential, alternative, and concurrent
executions of activities. Under this technique, business analysts provide estimates of
the best, worst, and median execution times for activities, and the β-distribution is used
to compute activity execution times as well as shortest and longest process execution
times. Having done that, time constraints are checked at build time and escalations
are monitored at run-time. Our work extends this work by providing a technique for
handling both structural and explicit time constraints at process build and instantiation
times, and enforcing these constraints at run-time.

In [6,16], the notion of explicit time constraints is introduced. Nevertheless, this
work focused more on the formulation of time constraints in workflow definitions, the
enforcement of time constraints through monitoring of time constraints at run-time and
the escalation of time failures within workflow transactions [5]. Our work follows the
work described in [6,16] and extends it with the incorporation of explicit time con-
straints into workflow schedules.

8 Conclusions

Dealing with time and time constraints is crucial in designing and managing business
processes.

In this paper, we proposed modeling primitives for expressing time constraints be-
tween activities and binding activity executions to certain fixed dates (e.g., first day of
the month). Time constraints between activities include lower- and upper-bound con-
straints. In addition, we presented techniques for checking satisfiability of time con-
straints at process build and process instantiation time, and enforcing these constraints
at run-time. These techniques compute internal activity deadlines in a way that exter-
nally assigned deadlines are met and all time constraints are satisfied. Thus the risk of
missing an external deadline is recognized early and steps to avoid a time failure can be
taken, or escalations are triggered earlier, when their costs are lower.

Our immediate work focuses on: (1) using the PERT-net technique for computing
internal deadlines to express deviations from the average execution duration of activ-
ities; (2) addressing conditionally and repetitive executed activities by providing exe-
cution probabilities to estimate average duration and variance for workflow executions;
(3) considering optional activities and pruning the workflow graph when such activities
should be eliminated to avoid time exceptions; and (4) addressing the different duration
values that could be used at build time: best, average, and worst case execution times
and turn-around times, which include the time an activity spends in the work-list and
the time between start and end of an activity.

J. Eder, E. Panagos and M. Rabinovich204

References

1. C. Bussler. Workflow Instance Scheduling with Project Management Tools. In 9th Work-
shop on Database and Expert Systems Applications DEXA’98, Vienna, Austria, 1998. IEEE
Computer Society Press.

2. CSESystems. Benutzerhandbuch V 4.1 Workflow. CSE Systems, Computer & Software
Engineering GmbH, Klagenfurt, Austria, 1996.

3. CSE Systems Homepage. http://www.csesys.co.at/, February 1998.
4. J. Eder, H. Groiss, and W. Liebhart. The Workflow Management System Panta Rhei. In

A. Dogac et al., editor, Advances in Workflow Management Systems and Interoperability.
Springer, Istanbul, Turkey, August 1997.

5. J. Eder and W. Liebhart. Workflow Transactions. In P. Lawrence, editor, Workflow Handbook
1997. John Wiley, 1997.

6. Johann Eder, Heinz Pozewaunig, and Walter Liebhart. Timing issues in workflow manage-
ment systems. Technical report, Institut f”ur Informatik-Systeme, Universit”at Klagenfurt,
1997.

7. TeamWare Flow. Collaborative workflow system for the way people work. P.O. Box 780,
FIN-00101, Helsinki, Finland.

8. InConcert. Technical product overview. XSoft, a division of xerox. 3400 Hillview Avenue,
Palo Alto, CA 94304. http://www.xsoft.com.

9. Heinrich Jasper and Olaf Zukunft. Zeitaspekte bei der Modellierung und Ausführung
von Workflows. In S. Jablonski, H. Groiss, R. Kaschek, and W. Liebhart, editors,
Geschäftsprozeßmodellierung und Workflowsysteme, volume 2 of Proceedings Reihe der In-
formatik ’96, pages 109 – 119, Escherweg 2, 26121 Oldenburg, 1996.

10. F. Leymann and D. Roller. Business process management with flowmark. In Proceedings of
the 39th IEEE Computer Society International Conference, pages 230–233, San Francisco,
California, February 1994. http://www.software.ibm.com/workgroup.

11. E. Panagos and M. Rabinovich. Escalations in workflow management systems. In DART
Workshop, Rockville, Maryland, November 1996.

12. E. Panagos and M. Rabinovich. Predictive workflow management. In Proceedings of the 3rd
International Workshop on Next Generation Information Technologies and Systems, Neve
Ilan, ISRAEL, June 1997.

13. E. Panagos and M. Rabinovich. Reducing escalation-related costs in WFMSs. In A. Dogac
et al., editor, NATO Advanced Study Institue on Workflow Management Systems and Interop-
erability. Springer, Istanbul, Turkey, August 1997.

14. Susy Philipose. Operations Research - A Practical Approach. Tata McGraw-Hill, New Delhi,
New York, 1986.

15. H. Pozewaunig, J. Eder, and W. Liebhart. ePERT: Extending PERT for Workflow Manage-
ment Systems. In First EastEuropean Symposium on Advances in Database and Information
Systems ADBIS 9́7, St. Petersburg, Russia, Sept. 1997.

16. Heinz Pozewaunig. Behandlung von Zeit in Workflow-Managementsystemen - Model-
lierung und Integration. Master’s thesis, University of Klagenfurt, 1996.

17. SAP Walldorf, Germany. SAP Business Workflow c©Online-Help, 1997. Part of the SAP
System.

18. Ultimus. Workflow suite. Business workflow automation. 4915 Waters Edge Dr., Suite 135,
Raleigh, NC 27606. http://www.ultimus1.com.

From: CAiSE 1999, LNCS 1626 © Springer-Verlag Berlin Heidelberg 1999 205

Workflow Time Management Revisited

Johann Eder, Euthimios Panagos, and Michael Rabinovich

Abstract Time is an important aspect of business process management. Here we
revisit the following contributions of early workflow time management approaches:
representation of temporal information and temporal constraints, analysis of tem-
poral constraint satisfiability, and computation of workflow execution plans that
satisfy temporal constraints. In particular, we summarize some of the most important
research efforts and results in: (a) modeling temporal aspects of workflows,
(b) analysis of temporal properties of workflow models, (c) computation of work-
flow execution schedules, (d) minimization of exceptions due to violation of
temporal constraints, (e) monitoring of temporal workflow aspects, and (f) modeling
and calculation of temporal properties for distributed workflows and for guarantee-
ing Quality of Service in Web-service composition.

1 Introduction

Time is an important component of the management and execution of (business)
processes. Processes have to be planned in a temporal dimension for several
reasons, e.g., users demand information about process duration, and managers need

J. Eder (�)
Alpen Adria Universität Klagenfurt, Universitätsstrasse 65, 9020, Klagenfurt, Austria
e-mail: johann.eder@aau.at

E. Panagos
Applied Communication Sciences, 150 Mt Airy Road (2N-021), Basking Ridge, NJ 07920, USA
e-mail: epanagos@appcomsci.com

M. Rabinovich
Electrical Engineering & Computer Science, Case Western Reserve University,
10900 Euclid Avenue, Cleveland, OH 44106-7071, USA
e-mail: michael.rabinovich@case.edu

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 16, © Springer-Verlag Berlin Heidelberg 2013

207

mailto:johann.eder@aau.at
mailto:epanagos@appcomsci.com
mailto:michael.rabinovich@case.edu

J. Eder et al.

temporal information for scheduling and organizing work and workforce. Temporal
information is necessary for improving business processes, lower cost, and allow
timely reactions to external events. Many business processes have restrictions
such as limited duration of subprocesses or activities, terms of delivery, dates of
re-submission, or activity deadlines. Typically, violations of temporal constraints
increase the cost of business processes, may create unnecessary additional work, or
lead to the violation of contracts with clients. In summary, poor consideration of
temporal aspects reduces the quality of the services offered by an organization and
lowers its competitiveness.

Therefore workflow managements systems should care for the following require-
ments [13, 15]:

• At build-time, when workflow schemas are defined and developed, workflow
modelers need means to represent time-related aspects of business processes
(activity durations, time constraints between activities, etc.) and check their
feasibility.

• Process managers need support to compute schedules for the execution of
processes. They need means to be warned about possible violations of temporal
constraints as early as possible such that they can react and take measures to
avoid time failures, e.g. by extending internal deadlines if possible, assigning
overtime, or invoking “emergency” processes.

• Workflow participants need information about urgencies of the tasks assigned to
them to manage their personal work lists in accordance with the overall goals.

• Workflow management systems should recognize violations of temporal con-
straints and trigger exception handling steps to regain a consistent state of active
workflow instances.

• Recording temporal information about business process executions helps
improving (re-engineering) business processes and allows better planning of
process execution.

At the end of the 1990s, the temporal aspects of workflows were taken up
by Information Systems Engineering research. Solutions in related areas could
not be easily applied to workflows. Production scheduling was an established
discipline, but workflows differ from shop floor processes considerably, especially
in the information about the individual activities (process steps), the resources they
require, the decisions (choices) made during run-time, etc. Project management
tools, on the other hand, are tailored towards supporting individual projects rather
than the management of multi-instance workflows. While temporal reasoning was
helpful for model analysis, it did not address disjunctive constraints (XOR splits)
and did not provide support for the other requirements outlined above.

Around 1997–1999 the first papers (e.g. [4, 16, 31, 35, 37]) raising the issues
of time management for workflows were published and set the topic on the
agenda.

208

Workflow Time Management Revisited

2 Time Constraints in Workflow Systems

In [16], we made contributions to: the formulation of the requirements for workflow
time management, the representation of temporal information in workflow models,
the temporal analysis of workflow models, and the computation of schedules for
workflow execution.

In addition to the definition of the duration of workflow activities and the
specification of deadlines for the execution of workflows, we introduced lower-
and upper-bound constraints between start and end execution events associated with
workflow activities. Furthermore, we allowed events to be bound to fixed dates.

We presented an algorithm that effectively checks whether the set of temporal
constraints is satisfiable for a given workflow at build time. The algorithm is
constructive in the sense that it computes a time plan specifying the admissible
intervals for the start and end events. At process instantiation time, the time plan
is mapped to an actual calendar, and the fixed date constraints are resolved and
incorporated in the schedule. At run time, execution progress is monitored and the
schedule is refined by taking the actual time points of the events into account.

3 Temporal Aspects in Workflows

During the last decade, the management of temporal aspects for workflows has
attracted considerable research efforts across different dimensions. We summarize
what we consider the most important strands of research in this space and
exemplarily reference some relevant papers below.

• Modeling of temporal aspects and analysis of workflows: The types of temporal
information represented in workflows has been extended by including more
complex forms of constraints, such as transport times, and supporting more
complex workflow models by considering more complex control structures. The
algorithms for computing time plans have been modified accordingly to address
these extensions [3, 10, 11, 14, 27, 28].

• Probabilistic time calculations: Uncertainty is an integral characteristic of many
workflows that can be introduced by many factors, including branching at split
points, iterations, and varying activity durations. To better deal with uncertainty,
probabilistic temporal workflow models have been developed which allow the
computation of probabilistic execution plans [12, 29].

• Patterns: The different approaches for representing temporal information and
temporal constraints for workflows have been consolidated and documented as
temporal workflow patterns [25].

• Resource constraints: While temporal constraints are very important, workflow
management must also address resource constraints in many scenarios [2, 26].

• Scheduling: The information available in timed workflow graphs has been used
to support scheduling of workflow activities, computation of individual schedules

209

J. Eder et al.

for workflow participants to organize their work, and for various attempts to
improve the performance of workflow execution [17, 23, 38].

• Exception handling: The violation of temporal constraints leads to exceptions
in the execution of a workflow. To capture and manage these exceptions in an
automatic or an semi-automatic way, various techniques combined approaches
from temporal workflow management and exception handling [33, 36, 39].

• Prediction: Another approach comes from the confluence of temporal workflow
management with workflow mining. While workflow time calculation always
relied on empirical data coming from workflow logs, the analysis of these
logs with workflow mining techniques provides additional valuable data for
scheduling [1].

• Adaptability, change, flexibility: In many situations, workflows cannot be exe-
cuted in their entirety as planned. Rather, they have to be modified at runtime
to accommodate unforeseen situations. Adaptable workflows and flexible work-
flows provide the means for dealing with these situations in an adequate
an reliable way. Temporal information is quite important there as changed
workflows have to satisfy temporal obligations [9, 24, 32].

• Grid workflows: Applications in e-science require the execution of workflows
over the grid. The scheduling of these workflows requires temporal information,
as well as an efficient way for monitoring execution progress in order to react to
different load distributions [6, 7].

• Distributed workflows: Business processes do not stop at the perimeter of organi-
zations, but typically transcend organization boundaries. Different approaches for
inter-organizational workflows representation and exchange of temporal infor-
mation between the organizations participating in an inter-organizational work-
flow have been developed. In addition, various algorithms have been developed to
allow time management by exchanging only the permitted temporal information
required for balancing the need for temporal workflow management with restric-
tions associated with passing information between participants [19, 20, 30].

• QoS for web service composition: Temporal information is associated with the
quality of Web service executions. The techniques of workflow time management
have been taken up and adopted for the calculation of Quality-of-Service aspects
for the composition of web services [5, 18, 22, 36, 40, 41].

• Application: Workflow time management methods have been applied to solve
problems in specific application areas like supply chains [21], health care and
hospital information systems [8, 34], or scientific workflows [29].

4 Conclusions

Workflow time management was a very productive field of research during the last
decade. Enormous progress was made towards providing workflow management
systems and workflow applications with sophisticated models and techniques

210

Workflow Time Management Revisited

for representing temporal information and temporal constraints and to greatly
improve the quality of execution of business processes from a temporal perspective.
Developed techniques reduce the number of violations of temporal constraints, and
provide better temporal information for workflow managers, workflow participants
and the consumers of process executions.

References

1. van der Aalst, W., Schonenberg, M., Song, M.: Time prediction based on process mining.
Information Systems 36(2), 450–475 (2011)

2. Avanes, A.: Adaptive workflow scheduling under resource allocation constraints and network
dynamics. In: PVLDB, pp. 1631–1637. VLDB Endowment (2008)

3. Bettini, C., Wang, X., Jajodia, S.: Temporal reasoning in workflow systems. Distributed and
Parallel Databases 11(3), 269–306 (2002)

4. Bussler, C.: Workflow instance scheduling with project management tools. In: Proc. Database
and Expert Systems Applications, pp. 753–758. IEEE (1998)

5. Cardoso, J., Sheth, A., Miller, J., Arnold, J., Kochut, K.: Quality of service for workflows and
web service processes. Journal of Web Semantics 1(3), 281–308 (2004)

6. Chen, J., Yang, Y.: Key research issues in grid workflow verification and validation. In:
Proceedings of the 2006 Australasian workshops on Grid computing and e-research-Volume
54, pp. 97–104. Australian Computer Society, Inc. (2006)

7. Chen, J., Yang, Y.: Adaptive selection of necessary and sufficient checkpoints for dynamic
verification of temporal constraints in grid workflow systems. ACM Transactions on
Autonomous and Adaptive Systems (TAAS) 2(2) (2007). DOI 10.1145/1242060.1242063

8. Combi, C., Gozzi, M., Juarez, J., Oliboni, B., Pozzi, G.: Conceptual modeling of temporal
clinical workflows. In: Temporal Representation and Reasoning, 14th International Sympo-
sium on, pp. 70–81. IEEE (2007)

9. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual modeling of flexible temporal
workflows. ACM Transactions on Autonomous and Adaptive Systems (TAAS) 7(2) (2012).
DOI 10.1145/2240166.2240169

10. Combi, C., Posenato, R.: Controllability in temporal conceptual workflow schemata. In:
Business process management (BPM), LNCS, vol. 5701, pp. 64–79. Springer (2009)

11. Combi, C., Pozzi, G.: Temporal conceptual modelling of workflows. In: Conceptual Modeling -
ER 2003, LNCS, vol. 2813, pp. 59–76. Springer (2003)

12. Eder, J., Eichner, H., Pichler, H.: A probabilistic approach to reduce the number of deadline
violations and the tardiness of workflows. In: On the Move to Meaningful Internet Systems
2006: OTM 2006 Workshops, LNCS, vol. 4277, pp. 5–7. Springer (2006)

13. Eder, J., Gruber, W., Panagos, E.: Temporal modeling of workflows with conditional execution
paths. In: Database and Expert Systems Applications, LNCS, vol. 1873, pp. 243–253. Springer
(2000)

14. Eder, J., Panagos, E.: Managing time in workflow systems, pp. 109–132. Future Strategies Inc.
i.a.w. Workflow Management Coalition (2001)

15. Eder, J., Panagos, E., Pozewaunig, H., Rabinovich, M.: Time management in workflow
systems. BIS 99, 265–280 (1999)

16. Eder, J., Panagos, E., Rabinovich, M.: Time constraints in workflow systems. In: Advanced
Information Systems Engineering, LNCS, vol. 1626, pp. 286–300. Springer (1999)

17. Eder, J., Pichler, H., Gruber, W., Ninaus, M.: Personal schedules for workflow systems. In:
Business Process Management, LNCS, vol. 2678, pp. 216–231. Springer (2003)

211

J. Eder et al.

18. Eder, J., Pichler, H., Vielgut, S.: An architecture for proactive timed web service compositions.
In: Business Process Management Workshops, LNCS, vol. 4103, pp. 323–335. Springer
(2006)

19. Eder, J., Pichler, H., Vielgut, S.: Avoidance of deadline-violations for inter-organizational
business processes. In: Databases and Information Systems, 2006, pp. 33–40. IEEE (2006)

20. Eder, J., Tahamtan, A.: Temporal conformance of federated choreographies. In: Database and
Expert Systems Applications, LNCS, vol. 5181, pp. 668–675. Springer (2008)

21. Goel, A., Gupta, S., Srinivasan, S., Jha, B.: Integration of supply chain management using
multiagent system & negotiation model. International Journal of Computer and Electrical
Engineering 3(3) (2011)

22. Guermouche, N., Godart, C.: Timed model checking based approach for web services analysis.
In: ICWS 2009. IEEE International Conference on Web Services, pp. 213–221. IEEE (2009)

23. Hyun Son, J., Ho Kim, M.: Improving the performance of time-constrained workflow
processing. Journal of Systems and Software 58(3), 211–219 (2001)

24. Klingemann, J.: Controlled flexibility in workflow management. In: Advanced Information
Systems Engineering, LNCS, vol. 1789, pp. 126–141. Springer (2000)

25. Lanz, A., Weber, B., Reichert, M.: Workflow time patterns for process-aware information
systems. In: Enterprise, Business-Process and Information Systems Modeling, Proc., LNBIP,
vol. 50, pp. 94–107. Springer (2010)

26. Li, H., Yang, Y., Chen, T.: Resource constraints analysis of workflow specifications. Journal of
Systems and Software 73(2), 271–285 (2004)

27. Li, J., Fan, Y., Zhou, M.: Timing constraint workflow nets for workflow analysis. Systems, Man
and Cybernetics, Part A: Systems and Humans, IEEE Transactions 33(2), 179–193 (2003)

28. Li, J., Fan, Y., Zhou, M.: Performance modeling and analysis of workflow. Systems, Man and
Cybernetics, Part A: Systems and Humans, IEEE Transactions on 34(2), 229–242 (2004)

29. Liu, X., Ni, Z., Chen, J., Yang, Y.: A probabilistic strategy for temporal constraint management
in scientific workflow systems. Concurrency and Computation: Practice and Experience
23(16), 1893–1919 (2011)

30. Makni, M., Tata, S., Yeddes, M., Ben Hadj-Alouane, N.: Satisfaction and coherence of deadline
constraints in inter-organizational workflows. In: On the Move to Meaningful Internet Systems:
OTM 2010, Proc., LNCS, vol. 6426, pp. 523–539. Springer (2010)

31. Marjanovic, O., Orlowska, M.: On modeling and verification of temporal constraints in
production workflows. Knowledge and Information Systems 1(2), 157–192 (1999)

32. Müller, R., Greiner, U., Rahm, E.: Agentwork: a workflow system supporting rule-based
workflow adaptation. Data & Knowledge Engineering 51(2), 223–256 (2004)

33. Müller, R., Rahm, E.: Dealing with logical failures for collaborating workflows. In: Coopera-
tive Information Systems, pp. 210–223. Springer (2000)

34. Ouyang, C., Wynn, M.T., Kuhr, J.C., Adams, M.J., Becker, T., ter Hofstede, A.H., Fidge, C.J.:
Workflow support for scheduling in surgical care processes. In: The 19th European Conference
on Information Systems : ICT and Sustainable Service Development (ECIS 2011). Aalto
University School of Economics, Helsinki (2011). URL http://eprints.qut.edu.au/41956/

35. Panagos, E., Rabinovich, M.: Predictive workflow management. In: Proceedings of the 3rd
International Workshop on Next Generation Information Technologies and Systems. (1997)

36. Pichler, H., Wenger, M., Eder, J.: Composing time-aware web service orchestrations. In:
Advanced Information Systems Engineering, LNCS, vol. 5565, pp. 349–363. Springer (2009)

37. Pozewaunig, H., Eder, J., Liebhart, W.: epert: Extending pert for workflow management
systems. In: First EastEuropean Symposium on Advances in Database and Information
Systems ADBIS, pp. 217–224. Nevsky Dialect (1997)

38. Senkul, P., Kifer, M., Toroslu, I.: A logical framework for scheduling workflows under resource
allocation constraints. In: Proc. of the 28th international conference on Very Large Data Bases,
pp. 694–705. VLDB Endowment, ACM (2002)

39. Van Der Aalst, W., Rosemann, M., Dumas, M.: Deadline-based escalation in process-aware
information systems. Decision Support Systems 43(2), 492–511 (2007)

212

http://eprints.qut.edu.au/41956/

Workflow Time Management Revisited

40. Wang, M., Cheung, W., Liu, J., Xie, X., Luo, Z.: E-service/process composition through multi-
agent constraint management. In: Business Process Management, Proc. BPM 2006, LNCS,
vol. 4102, pp. 274–289. Springer (2006)

41. Zeng, L., Benatallah, B., Dumas, M., Kalagnanam, J., Sheng, Q.: Quality-driven web services
composition. In: Proc. of the 12th International Conference on the World Wide Web, pp. 411–
421. ACM Press (2003). DOI 10.1145/775152.775211

213

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 13-31, 2000
© Springer-Verlag Berlin Heidelberg 2000

Adaptive and Dynamic Service Composition in eFlow

Fabio Casati, Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy1,
and Ming-Chien Shan

Software Technology Lab
Hewlett-Packard Laboratories, 1U-4A

1501 Page Mill Road
Palo Alto, CA, 94304

{casati,ilnicki,ljjin,shan}@hpl.hp.com

Abstract. E-Services are typically delivered point-to-point. However, the e-
service environment creates the opportunity for providing value-added,
integrated services, which are delivered by composing existing e-services. In
order to enable organizations to pursue this business opportunity we have
developed eFlow, a system that supports the specification, enactment, and
management of composite e-services, modeled as processes that are enacted by
a service process engine. Composite e-services have to cope with a highly
dynamic business environment in terms of services and service providers. In
addition, the increased competition forces companies to provide customized
services to better satisfy the needs of every individual customer. Ideally, service
processes should be able to transparently adapt to changes in the environment
and to the needs of different customers with minimal or no user intervention. In
addition, it should be possible to dynamically modify service process
definitions in a simple and effective way to manage cases where user
intervention is indeed required. In this paper we show how eFlow achieves
these goals.

1 Introduction and Motivations

In recent years the Web has become the platform through which many companies
communicate with their partners, interact with their back-end systems, and perform
electronic commerce transactions. Today, organizations use the Web not only as an
efficient and cost-effective way to sell products and deliver information, but also as a
platform for providing services to businesses and individual customers. Examples of
e-services include bill payment, customized on-line newspapers, or stock trading
services. As Web technologies continue to improve, allowing for smaller and more
powerful web servers, and as more and more appliances become web-enabled, the
number and type of services that can be made available through the Internet is likely
to increase at an exponential rate.

1 Now with Rightworks corp., 31 N. Second St., suite 400, San Jose, CA, USA. email:
vasu@rightworks.com

215

mailto:{casati,ilnicki,ljjin,shan}@hpl.hp.com

F. Casati et al.

Today, services are typically delivered point-to-point. However, the e-service
environment creates the business opportunity for providing value-added, integrated
services, which are delivered by composing existing e-services, possibly offered by
different companies. For instance, an eMove composite service could support
customers that need to relocate, by composing truck rental, furniture shipments,
address change, and airline reservation services, according to the customer's
requirements.

In order to support organizations in pursuing this business opportunity we have
developed eFlow, a platform for specifying, enacting, and monitoring composite e-
services. Composite services are modeled as business processes, enacted by a service
process engine. eFlow provides a number of features that support service process
specification and management, including a powerful yet simple service composition
language, events and exception handling, ACID service-level transactions, security
management, and monitoring tools.

Unlike "traditional" business processes, which are mostly executed in a predictable
and repetitive way, composite services delivered through the Internet have to cope
with a highly dynamic environment, where new services become available on a daily
basis and the number of service providers is constantly growing. In addition, the
availability of many service providers from different countries increases the
competition and forces companies to provide customized services to better satisfy the
need of every individual customer. These two characteristics of the e-service
environment impose demanding requirements on a system that supports the
development and delivery of composite services.

In order to stay competitive, service providers should offer the best available
service in every given moment to every specific customer. Clearly, it is unfeasible to
continuously change the process to reflect changes in the business environment, since
these occur too frequently and modifying a process definition is a delicate and time-
consuming activity. Ideally, service processes should be able to transparently adapt to
changes in the environment and to the needs of different customers with minimal or
no user intervention. Furthermore, it should be possible to dynamically modify
service process definition in a simple and effective way to manage cases where user
intervention is required, for instance to handle major changes in the environment or to
cope with unexpected exceptional situations.

This paper shows how eFlow supports the definition and enactment of adaptive
and dynamic service processes. We illustrate how the eFlow model enables the
specification of processes that can automatically configure themselves at run-time
according to the nature and type of services available on the Internet and to the
requests and needs of each individual customer. We then present the dynamic change
features provided by eFlow, that allow a great flexibility in modifying service process
instances and service process definitions, enabling changes to every aspect of a
process. Since dynamic process modification is a very powerful but delicate
operation, one of our main goal has been to define very simple modification
semantics, so that users can have a clear understanding of the effects of a
modification. Prior to applying the changes, eFlow will enforce consistency rules, to
avoid run-time errors resulting from the modifications, as well as authorization rules,
to guarantee that only authorized users perform the modifications.

216

2 Overview of eFlow

This section presents an overview of the eFlow process model. We only present basic
concepts that are needed in order to illustrate its adaptive and dynamic features. The
interested reader is referred to [5] for details about the model and the implementation.

In eFlow, a composite service is described as a process schema that composes
other basic or composite services. A composite service is modeled by a graph (the
flow structure), which defines the order of execution among the nodes in the process.
The graph may include service, decision, and event nodes. Service nodes represent the
invocation of a basic or composite service; decision nodes specify the alternatives and
rules controlling the execution flow, while event nodes enable service processes to
send and receive several types of events. Arcs in the graph may be labeled with
transition predicates defined over process data, meaning that as a node is completed,
nodes connected to outgoing arcs are executed only if the corresponding transition
predicate evaluates to true. A service process instance is an enactment of a process
schema. The same service process may be instantiated several times, and several
instances may be concurrently running.

Fig. 1 shows a simple graph describing a composite service that helps customers in
organizing an award ceremony. In the figures, rounded boxes represent invocations of
basic or composite services, filled-in circles represent the starting and ending point of
the process, while horizontal bars are one of eFlow decision node types, and are used
to specify parallel invocation of services and synchronization after parallel service
executions.

The semantics of the schema is the following: when a new instance is started,
service node Data Collection gathers information regarding the customer and his/her
preferences and needs. Then, the Restaurant Reservation service is invoked, in order
to book the restaurant and select the meals for the banquet. This node is executed first,
since the characteristics of the selected restaurant (e.g., its location and the number of
seats) affect the remainder of the service execution, i.e., the organization of the
ceremony. Then, several services are invoked in parallel: the Advertisement service
prepares a marketing campaign to advertise the ceremony, the Invitation service
proposes a choice of several types of invitation cards and delivers them to the
specified special guests, while the Registration service handles guest registrations and
payments. Finally, the Billing service is invoked in order to present a unified bill to
the organizing customer. All services can be either basic services (possibly provided
by different organizations) or composite services, specified by eFlow processes.

Service nodes can access and modify data included in a case packet. Each process
instance has a local copy of the case packet, and the eFlow engine controls access to
these data. The specification of each service node includes the definition of which
data the node is authorized to read or to modify.

The eFlow model also includes the notion of transactional regions. A transactional
region identifies a portion of the process graph that should be executed in an atomic
fashion. If for any reason the part of the process identified by the transactional region
cannot be successfully completed, then all running services in the region are aborted
and completed ones are compensated, by executing a service-specific compensating
action. Compensating actions may be defined for each service or may be defined at
the region level. For instance, by enclosing the Advertisement, Registration, and
Invitation services in a transactional region, and by providing compensating actions

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 217

for each of these services (or one compensating action at the region level), we are
guaranteed that either all of the services are executed, or none is.

Transactional regions may also include the specification of different isolation
modes, that prevent data read or modified by nodes in the regions to be accessed by
services that are outside the transactional region.

Process instances are enacted by the eFlow engine. The main function of the
engine is to process messages notifying completion status of service nodes, by
updating the value of case packet variables accessed by the service node and by
subsequently scheduling the next node to be activated in the instance, according to the
process definition. The engine then contacts the service broker in order to discover the
actual service (and service provider) that can fulfill the requests specified in the
service node definition, and eventually contacts the provider in order to execute the
service.

The engine also processes events (either detected by the eFlow event monitor or
notified by external event managers), by delivering them to the requesting event
nodes. Notifications of occurred events and of service node completions are inserted
into two separate transactional, First-in-First-Out queues (see Fig. 2). The engine
extracts elements from the queues and processes them one by one. eFlow does not
specifies any priority between the queues, but it does guarantee that every element in
the queues is eventually processed. Finally, the engine logs every event related to
process instance executions (to enable process monitoring, compensation, and to
support dynamic process modifications) and ensures process integrity by enforcing

Fig. 1. Ceremony service process definition

Data collection

Billing

Invitation

Restaurant
Reservation

Registration Advertisment

Award Ceremony Service

F. Casati et al.218

transactional semantics and by compensating nodes executed within transactional
regions in case of failures.

Like most Internet-based services, the Award Ceremony service provided by the
OneStopShop company is executed in a highly dynamic environment. For instance,
providers will continue to improve their e-services, and new providers may enter the
market while some of the existing ones may cease their business. In addition, new
types of e-services that can support the organization of an award ceremony may
become available, such as renting of mega-screens and cameras, live broadcast of the
ceremony over the Internet, or selection of trained personnel such as an anchorman. In
the remainder of the paper we will show how eFlow addresses these challenges in
order to allow service designer to provide composite services that naturally adapt to
changes in the environment with minimal user intervention, that can be customized to
fit the needs of every customer, and that are able to cope with unexpected exceptional
situations.

3 Adaptive Service Processes

In order to manage and even take advantage of the frequent changes in the
environment, service processes need to be adaptive, i.e., capable of adjusting
themselves to changes in the environmental conditions with minimal or no manual
intervention. eFlow provides several features and constructs to achieve this goal.

Fig. 2. The eFlow engine processes events and notifications of service completions in order to
schedule service node executions

eFlow engine

service completion
notifications

event notifications

proxy

Service

Event

monitor

proxy

the engine invokes the
service a service returned by
the broker(through a proxy)

insert notification of
completion and return
data into transactional
queue

Internal or External event
monitors notify events
which are translated into
the eFlow event format and
inserted in the transactional
event queue.

eFlow service
broker

The engine invokes
the broker to find a
suitable service

repository of
service

descriptions

External
service
broker

repository of
schema

definitions

instance
execution log

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 219

These include dynamic service discovery, multiservice nodes, and generic nodes. In
the following we present an overview of these features.

3.1 Dynamic Service Discovery

A service node represents the invocation of a basic or composite service. Besides
defining the data that the node is allowed to read and modify, and possibly a deadline
to manage delays in service execution, a service node specification includes the
description of the service to be invoked. For instance, within the Advertisement
service node, we may specify that eFlow should invoke the e-campaign service
offered by the GreatAdvert.com provider. While useful in some situations, such a
static service binding is often too rigid, since it does not allow to:

− select the appropriate service depending on the customer's requirements: for
instance, some customers may prefer a low-cost e-mail campaign, while other
may prefer advertisements via TV, radio stations, or web sites;

− decouple service selection from the process definition: different service processes
may require an advertisement service, and the selection criteria may need to be
defined at the company level rather than at the composite service level;

− dynamically discover the best currently available service that fits the need of a
specific customer.

To cope with the characteristics of the Internet environment, eFlow provides an
open and dynamic approach to service selection. The service node includes the
specification of a service selection rule, which can have several input parameters
(defined by references to workflow variables). When a service node is started, the
eFlow engine invokes a service broker that will execute the specified rule and return
the appropriate service. Service selection rules are defined in a service broker-specific
language, such as XQL if e''speak [4] is used as the service broker.

eFlow only requires that the rule returns an XML document which includes the
definition of input and output data, the URI used to contact the service, billing and
payment information, and a priority value used to select a specific service when
several services are returned by the rule (choice among services with the same priority
is non deterministic). Mapping between service node input/output data and the
parameters of the invoked service is performed by a mapping function, specified as a
set of string pairs <case packet variable name, service variable
name>. A mapping function must be defined for a <service node, service
description> pair before the service can be invoked in the context of the service node.

eFlow users can replace the default broker and plug-in the service broker that best
fits their needs. Plugged-in brokers are not even required to access the service
repository: they can dynamically discover services by contacting other external
brokers or service advertisement facility, in order to get the most up to date
information about available services and their characteristics.

Service selection rules will be then defined in the language supported by that
broker, and can include arbitrary service selection policies. Plugged-in brokers must
either present to the engine the same (simple) interface of the default one, or an
adapter must be interposed between the engine and the broker to map requests and

F. Casati et al.220

responses. In addition, if service brokers dynamically discover services not stored in
the service description repository, they must also return a mapping function that
allows the mapping of service node input/output data to service parameters.

3.2 Multiservice Nodes

In some composite service processes there is the need of invoking multiple, parallel
instances of the same type of service. For instance, a restaurant reservation brokering
service may request rates and availability to several restaurants that provide on-line
access to these information.

In order to allow the specification of these kinds of process semantics, eFlow
includes the notion of multiservice node. The multiservice node is a particular kind of
node that allows for multiple, parallel activation of the same service node.

The number of service nodes to be activated is determined at run time in one of the
following ways:

1. It can be determined by the number of service providers able to provide a given
service. For instance, for the award ceremony service, we may want to contact all
restaurant in the San Francisco Bay Area that can host a specified number of
guests.

2. It can be equal to the number of elements in a case packet variable of type list. In
this case each service node instance receives one and only one of the list items as
input parameter. The value of such item will affect service selection and
execution. For instance, a list may include a set of customers of different
nationalities for which we want to check their credit history. The number of
service nodes that will be instantiated within the multiservice node will be equal
to the number of customers, and each node will focus on one customer. A service
selection rule will be executed for each service node to be activated; the rule can
have the customer's data as input parameter, in order to select the appropriate
credit check service for each customer, for instance depending on the customer's
nationality.

An important part of a multiservice is the specification of when the multiservice
can be considered completed and the flow can proceed with the successor service
node. In most cases, the flow can proceed only when all invoked services have been
completed. However, in other cases, there is no need to wait for all service instances
to be completed, since the multiservice goal may have already been achieved before.
For instance, suppose that we want to verify a customer's credit with several agencies:
if our acceptance criteria is that all agencies must give a positive judgment for the
customer to be accepted, then as soon as one agency gives a negative opinion we can
proceed with service execution, without waiting for the completion of the other
services, which may be canceled. The multiservice termination is specified by a
condition, checked every time one of its service nodes terminate. If the condition
holds, then the successor of the multiservice is activated and services in execution are
canceled. An example of termination condition for the credit check example could be
Rejections.length>0, where Rejections is a variable of type ListOf
(String), and length is an attribute common to every list variable that contains the
number of elements in the list. Fig. 3 shows a sample specification of a multiservice
node in eFlow. The specification includes the reference to the service node to be

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 221

instantiated (multiple times) as part of the multiservice node, as well as the activation
and termination conditions.

3.3 Dynamic Service Node Creation

An important requirement for providers of Internet-based services is the ability of
providing personalized services, to better satisfy the needs of every individual
customer.

While the service process depicted in Fig. 1 may be suited for some customer, other
customers might need additional services, such as rental of video/audio equipment or
the hiring of trained personnel to work with such equipment. At the same time, some
customers may not need the services offered by the Award Ceremony service process.
For instance, they may not need an advertisement service or they may provide for it
by themselves. Clearly, it is practically unfeasible to foresee all possible combinations
of services which may be needed by each customer and to define a process for each
potential type of customer. Besides, this would imply a very high maintenance cost,
especially in the e-service environment where new types of services become available
on a daily basis.

To cope with these demanding needs, eFlow supports the dynamic creation of
service process definitions by including in its model the notion of generic service
node. Unlike ordinary service nodes, generic nodes are not statically bound or limited
to a specific set of services. Instead, they include a configuration parameter that can
be set with a list of actual service nodes either at process instantiation time (through
the process instance input parameters) or at runtime. The parameter is a variable of
type ListOf(Service_Node). The specified services will be executed in parallel
or sequentially depending on an executionMode attribute of the generic service node.

Generic nodes are resolved each time they are activated, in order to allow
maximum flexibility and to cope with processes executed in highly dynamic
environments. For instance, if the generic node is within a loop, then its configuration
parameters can be modified within the loop, and the node can be resolved into
different ordinary service nodes for each loop of the execution. Notice that generic
nodes are different from multiservice nodes: multiservice nodes model the activation
of a dynamically determined number of instances of the same service node, while
generic nodes allow the dynamic selection of different service nodes.

Fig. 3. Specification of a multiservice node in eFlow

<MULTISERVICE_NODE id="check_customers_credit">
<NAME> Check Customers' credit </NAME>
<SERVICE_NODE id="check_single_customer_credit" />

 <DESCRIPTION> Multiservice node that checks the credit
history of several customers in parallel

</DESCRIPTION>
<ACTIVATION mode="by_variable" varref="customers_list" />

 <TERMINATION> rejections.length>0 </TERMINATION>
</MULTISERVICE_NODE>

F. Casati et al.222

4 Dynamic Service Process Modifications

While adaptive processes considerably reduce the need for human intervention in
managing and maintaining process definitions, there may still be cases in which
process schemas need to be modified, or in which actions need to be taken on running
process instances to modify their course. Process modifications may be needed to
handle unexpected exceptional situations, to incorporate new laws or new business
policies, to improve the process, or to correct errors or deficiencies in the current
definition. We distinguish between two types of service process modifications:
− Ad-hoc changes are modifications applied to a single running service process

instance. They are typically needed to manage exceptional situations that are not
expected to occur again, such as the unavailability of a restaurant that had been
booked for a ceremony.

− Bulk changes refer to modifications collectively applied to a subset (or to all) the
running instances of a service process. For instance, suppose that an
advertisement company on which many ceremony advertisement campaigns
relied upon goes out of business. This situation can affect many instances, and it
is practically unfeasible to separately modify each single instance. Bulk changes
may also be needed when a new, improved version of a process is defined. If, for
instance, a new law forces a modification of a process, then running instances
will need to respect the new constraints as well.

4.1 Ad-hoc Changes

Ad-hoc changes are modifications applied to a single, running process instance.
eFlow allows two types of ad-hoc changes: modifications of the process schema and
modifications of the process instance state. In the remainder of this section we show
how eFlow supports both type of changes.

Ad-hoc Changes to the Process Schema
eFlow allows authorized users to modify the schema followed by a given service
process instance. The modifications are applied by first defining a new schema
(usually by modifying the current one) and by then migrating the instance from its
current schema (called source schema) to the newly defined one (called destination

Fig. 4. Sample XML description of a generic service node in eFlow

 <GENERIC_NODE id="award_ceremony_services">
<NAME> Award Ceremony Services </NAME>
<SERVICE_NODE_POOL> Ceremony Service Pool </SERVICE_NODE_POOL>

 <DESCRIPTION> Placeholder for service nodes related
 to a ceremony service,to be executed in parallel

</DESCRIPTION>
<SERVICE_SELECTION_VAR> SelectedServices</SERVICE_SELECTION_VAR>

 <EXECUTION_MODE mode="parallel" />
</GENERIC NODE>

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 223

schema). For instance, suppose that a customer of OneStopShop, John Doe, is
accessing a restaurant reservation service within an Award Ceremony process; John
found a restaurant, Chez Jaques, that fully satisfies his needs in terms of number of
seats, location, and atmosphere, but that does not serve food of satisfactory quality.
John then asks OneStopShop to provide him a catering service, so that he can rent
only the place and separately arrange for the food. Since John is a good customer and
the company wants to keep his business, the process responsible decides to satisfy his
request and modify the process definition (for this particular instance only) by adding
a catering service, as depicted in Fig. 5.

Authorized users can modify every aspect of a schema, including the flow
structure, the definition of service, decision, and event nodes, process data, and even
transactional regions. eFlow only verifies that behavioral consistency is respected
when migrating an instance to a destination schema (i.e., that instance migration does
not generate run-time errors and that transactional semantics can be enforced).

Case migration is a very delicate operation, since it allows changing the rules of
the game while it is in progress. Hence, our main design goal has been to define a
very simple migration semantics, so that users can easily and clearly understand the
behavior of the instance after the modifications have been applied, and avoid the risk
of unexpected and undesired effects. In the following we describe how eFlow
manages and performs instance migrations.

Fig. 5. Ad-hoc process definition to handle the request by customer John Doe

Data collection

Billing

Invitation

Restaur ant
Reservation

RegistrationAdvertisment

Award Ceremony Service -Temp - John
Doe

Catering

F. Casati et al.224

Case migration operations
Case migrations are performed by a suitable eFlow module, called migration
manager. The following operations are performed in order to migrate an instance
from a schema to another:
1. An authorized user accesses the migration manager and identifies the instance to

be migrated as well as the destination schema (details on user authorizations are
provided in section 4.3). The destination schema must have been previously
defined, either from scratch or by modifying the one being followed by the
instance to be migrated.

2. The migration manager notifies to the eFlow engine that instance execution (for
the process instance to be migrated) should be suspended. When a process
instance is suspended, running services are allowed to complete. However, the
engine does not schedule any new service and does not deliver events. When the
engine processes a service completion notification related to a service node of the
suspended instance, it puts this notification into an ad-hoc, temporary queue
maintained for the suspended instance. The notification will be processed when
instance execution is resumed. Similarly, events to be delivered to the suspended
instance are also placed in a different logical queue (see Fig. 6), and will be
delivered as instance execution is resumed. An instance can only be suspended
when the engine is not processing messages related to it: in fact, the sequence of
operations performed by the engine to process events or service node completion
messages and to activate subsequent nodes is atomic.

3. The migration manager verifies that the migration preserves behavioral
consistency.

4a. If behavioral consistency is preserved, then the migration manager builds an
execution state for the instance in the new schema (details are provided below).

4b. If the instance cannot be migrated, the user is notified of the reason that does not
allow the migration and is asked to modify the destination schema (or to indicate

Fig. 6. Events and notifications related to suspended instances are not processed, but are placed
in a separate queue

eFlow engine

service completion
notifications

event notifications

proxy

Service

Event

monitor
proxy event

notifications/JohnDoe

service completion
notifications/JohnDoe

The engine does not process event notifications
and service node completion messages related
to a suspended case. Instead, it (logically)
copies them into a case-dedicated queue so that
they can be processes as the case is resumed.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 225

a different destination schema). Steps 1 to 4 will then be repeated. In the
meantime, instance execution remains suspended.

5. The migration manager informs eFlow that instance execution can be resumed,
now according to the destination schema.

At any time during this sequence of operations the user can abort the migration, and
instance execution will be resumed according to the old process schema. The
operations performed by the migration manager are summarized in Fig. 7.

Consistency rules
An instance can be migrated from a version to another only if behavioral consistency
is preserved. Behavioral consistency implies that the migration does not result in run-
time errors or non-deterministic behaviors. In order to guarantee behavioral
consistency, eFlow enforces the following rules:

1. Each service or event node that is active when the instance is suspended must be
present in the destination schema. This rule is necessary since it allows the
definition of an execution state for the instance in the new schema, and in
particular the definition of which nodes should be set to the active state when
execution is resumed, as explained below. In addition, it allows the engine to
know how to correctly process completion messages related to those running
services that will eventually be received. While the definition of active service
nodes can differ from the one in the source schema (e.g., they may have different
input data or different deadlines), their write list must be the same, since it is

Fig. 7. Sequence of operations performed by the migration manager when migrating an instance

eFlow engine migration
manager

instance
execution log

(1): The user specifies the case to be
migrated and the destination
schema, which is typically defined
by modifying the current schema
followed by the instance

repository of
schema

definitions

(2): the migration manager orders
the engine to suspend the execution
of the specified instance

(3): the migration manager accesses
the instance execution state and the
definition of the source and
destination schema in order to
verify whether the case can be
migrated (i.e., consistency rules are
respected)

4a

(4a): the migration manager builds
an execution state for the instance
in the new schema.

(5): the migration manager notifies
to the engine that instance execution
can be resumed.

3

3

(4b): the migration manager
informs the user that consistency
rules are violated: the user must
modify the destination schema or
abort the migration

5

2 1

4b

F. Casati et al.226

expected that the running nodes will actually try to modify the value of those
variables.

2. If a variable in the destination schema is also present in the source schema, then it
must be of the same type. This rule is needed since variables will keep their
current value after migration, and therefore the types in the source and
destination schema must be the same.

3. Transactional regions not present in the source schema must not include any node
which is part of the source schema and which is active or completed.

4. If a transactional region with the same identifier is present both in the source and
destination schema, and the region was active at migration time, then:
a. The isolation properties of these transactional regions must be the same.
b. No node in the region of the destination schema should read (write) variables

which are not also read (written) by at least one node of the same
transactional region in the source schema. The only allowed exception is
when the newly introduced variable is only used within the region.

c. The region should not be extended "in the past", i.e., it should not include
nodes that are also in the source schema, that have already been executed,
and that are not part of the region in the source schema.

Rules related to transactional regions are necessary since eFlow acquires the
read and write locks necessary for enforcing the specified isolation mode at the
start of the transactional region.

Migration semantics
The essence of the migration process consists in building an execution state for the
instance in the new schema, and then in resuming instance execution. An execution
state is formed by the value of the case packet variables and by the execution state of
all service and event nodes in the instance. The values of case packet variables are set
as follows:

− Variables in the destination schema that are also present in the source schema
keep the value they had in the case packet of the migrated instance.

− Variables in the destination schema that are not present in the source schema are
initialized with their default value (or are left undefined if no default value was
provided).

The execution state of service and event nodes is defined as follows:

− Nodes of the destination schema that are also present in the source schema are
initialized with the same execution state they had in the migrated instance (e.g.,
not started, active, completed, failed, canceled, timed out).

− Nodes of the destination schema that are not present in the source schema are
initialized to the not started state.

After the instance state has been reconstructed, the migration is completed. The
migration manager will then inform the engine that instance execution can be
resumed. The eFlow engine then processes all events and all service completion
messages included in the event and service completion queues that were created to
manage instance suspension. Elements in these queues are processed with the same
semantics used to process elements in the standard queues. After all elements
included in both queues have been processed, the engine discards these queues and
resume normal operations, that is, it resumes processing of the standard queues.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 227

Modifications to the Process State
Besides changes to the process schema, authorized users can perform the following
operations on an instance in execution:
− Change the value of case packet variables.
− Initiate the rollback of a process region or of the entire process.
− Terminate the process.
− Reassign a node to a different service: the running service is canceled, and the

one specified by the user is invoked.
These actions are performed through the service operation monitor component of

eFlow, and do not require instance suspension.

4.2 Bulk Changes

Bulk changes handle exceptional situations that affect many instances of the same
process. Instead of handling running instances on a case-by-case basis, eFlow allows
authorized users to apply changes to sets of instances that have common properties.
Modifications are introduced by specifying one or more destination schemas and by
defining which set of instances should be migrated to each schema. For instance,
suppose that OneStopShop decides to provide, as a bonus, a security service for all
ceremonies that involve more than 100 guests. To perform this, a new service process
is defined, by modifying the Award Ceremony one, in order to include a security
personnel service, as shown in Fig. 8.

Fig. 8. Modified Award Ceremony service, now including a security service

Data collection

Billing

Invitation

Restaurant
Reservation

Registration Advertisment

Security
personnel

Bonus Ceremony Service

F. Casati et al.228

Next, the service process responsible can migrate all running instances (related to a
Ceremony service that involves more than 100 guests) to the newly defined one.
Migrations are defined by means of a simple, rule-based language. A migration rule
identifies a subset of the running instances of a given process and specifies the
schema to which instances in this subset should be migrated. Rules have the form IF
<condition> THEN MIGRATE TO <schema>. The condition is a predicate
over service process data and service process execution state that identifies a subset of
the running instances, while <schema> denotes the destination schema. Instances
whose state does not fulfill the migration condition will proceed with the same
schema. An example of migration rule is: IF (guests>100) THEN MIGRATE
TO "Bonus_Ceremony_Service".

The set of rules must define a partitioning over the set of active instances, so that each
instance is migrated to one schema at most. Instances that do not satisfy any rule
condition are not migrated. Fig. 9 exemplifies bulk migration. The sequence of
operations performed in bulk migration is as follows:

Fig. 9. Bulk migration: instances are migrated to different destination schemas depending on
migration rules

Destination
schema D2

Destination
schema D3

Destination
schema D1

MIGRATION RULES

IF cond1 THEN MIGRATE TO D1
IF cond2 THEN MIGRATE TO D2
IF cond3 THEN MIGRATE TO D3

Instances that satisfy
cond1 (but not cond2
and cond3)

Instances that satisfy
cond3 (but not cond1
and cond2)

Instances that satisfy
cond2 (but not cond1
and cond3)

Instances that do not
satisfy any condition
among of cond1 , cond2 ,
and cond3

Source schema S

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 229

1. The user defines, compiles, and checks in the migration rules. All destination
schemas referred to by migration rules must have been previously defined.

2. eFlow suspends all running instances of the process.
3. eFlow verifies that the migration rules actually define a partition over the set

of running instances. If the state of an instance satisfies more that one
migration condition, the user is asked to revise the rules or abort the migration.

4. eFlow verifies that each instance can be migrated to the specified destination
version of the process schema, i.e., it checks that behavioral consistency is
preserved. In addition, it checks that the user who started the migration has the
required authorizations to migrate each of the selected instances. Due to the
delicacy of a bulk migration operation, eFlow does not perform any migration
until all instances can be safely migrated to their destination schema.

5. If all migrations can preserve behavioral consistency, then instances are
migrated to their destination schema. Instance executions are then resumed.

4.3 Security in Dynamic Process Modifications

Dynamic service process modifications in eFlow are constrained by authorization
rules that defines which user or application is authorized to perform a given
modification. Rules are specified at process definition time, and can include an
arbitrary number of input parameters, taken from case packet variable. This enables
the definition of security rules that differs according to the particular execution state
of the instance. Each process definition includes the following authorization rules
with respect to process modifications:

− Authorized_State_Modifiers: identifies the users (services) that have write access
to case packet variables, i.e., that can perform state changes to the instance.

− Authorized_Node_Modificators: identifies the users (services) authorized to
modify service nodes in the process instance. This rule can also be specified at
the node level, to further constrain authorizations.

− Authorized_Flow_Modificators: identifies the users (services) authorized to make
any kind of dynamic changes to the process instance.

− Authorized_Initiators: identifies the users (services) authorized to start an
instance of this process

Each time a state change or a migration is requested, eFlow verifies that the
requestor has the appropriate authorizations, according to the defined rules and to the
differences between source and destination schema. In particular, in case of a bulk
migration, authorization rule Authorized_Node_Modificators (or
Authorized_Flow_Modificators, depending on the extent of the changes) defined in
the source schema are executed for each instance to be migrated, and the migration is
performed only if the user has the privileges to migrate all of these instances. In
addition, since the migration will result in executions of the destination schema, rule
Authorized_Initiators of the defined destination schema will be executed, to verify
that the user is authorized to create instance of that schema.

F. Casati et al.230

5 Related Work

To the best of our knowledge, there is no commercial process management system
that supports adaptive and dynamic features such as those of eFlow, neither among
traditional workflow management systems (such as MQ Workflow [11] or InConcert
[10]), nor among newly developed, open, XML- and web-based systems such as
Forte' Fusion [9] and KeyFlow [6].

A few of these systems, such as InConcert and KeyFlow, provide some support for
ad-hoc changes, by allowing simple modifications to the schema followed by a given
instance as well as execution state modifications. Recently, some approaches to
handle dynamic changes have been presented in the literature by the workflow
research community.

One of the first contributions come from [2], that defines a correctness criterion for
instance migration, based on the definition of the set of all valid node sequences: a
change is correct if the execution sequence could have been obtained with the new
schema. The paper, however, introduces a simple workflow model and restricts to a
limited set of modifications.

Ad-hoc and bulk changes are discussed in [7]. Workflow changes are specified by
transformation rules composed of a source schema fragment, a destination schema
fragment, and of a condition. The system checks for parts of the process that are
isomorphic with the source schema and replaces them with the destination schema for
all instances for which the condition is verified. The paper also proposes a migration
language for managing instance-specific migrations, conceptually similar to our
migration language.

Other contributions to the area of workflow evolution come from [8,12]. In [12], a
complete and minimal set of workflow modification operations is presented.
Correctness properties are defined in order to determine whether a specific change
can be applied to a given instance. If these constraints are violated, the change is
either rejected or the correctness must be explicitly restored with exception handling
techniques. Liu et al [8] focus instead on a language for workflow evolution, by
which the designer can specify which instances should be migrated to which versions,
depending on conditions over workflow data. The language is conceptually similar to
that of [7] and to ours.

In designing eFlow, we took advantage of all these research contributions and
extended them as follows:
− We designed a model and system that provides all the flexibility features required

for a dynamic environment such as that of the Internet, including a wide range of
possible ad-hoc and bulk changes;

− we designed a very simple, yet powerful migration language and a very simple
migration semantics, to enable an easy understanding of the instance behavior
after migration. This is a fundamental requirement in operational environments;

− we discussed migration in the context of a rich process model, which includes
events and transactions. These model features posed us additional challenges in
managing migrations;

− we introduced authorization constraints that allows the definition who is
authorized to perform a given type of change;

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 231

− we defined the process followed by the system when the changes are made,
focusing in particular on the delicate issue of instance suspension;

− finally, in addition to dynamic change support, eFlow also provides a set of
adaptive features in order to strongly reduce the need for dynamic changes.

Adaptive process management is also recently gaining attention. The workflow
model proposed in [1] includes a "shoot tip" activity: when a shoot tip activity is
executed, the control is transferred to a process modeler that can extend the flow
structure with one additional activity, which is inserted before the shoot tip activity.
Next, instance execution will proceed by activating the newly inserted task and
subsequently another "shoot tip" activity to determine the next step. Another
interesting approach, which also allows for automatic adaptation, is proposed in [3].
The presented workflow model includes a placeholder activity, which is an abstract
activity replaced at runtime with a concrete activity type, which must have the same
input and output data of those defined as part of the placeholder. A selection policy
can be specified to indicate the activity that should be executed. The model has an
expressive power similar to the one allowed by eFlow dynamic service discovery
mechanism. However, we do not restrict the input and output parameters of the
selected activity to be the same of those of the node. In addition, we also provide the
notion of generic and multiservice node for further achieving additional flexibility and
we provide a set of dynamic modification features to cope with situations in which
changes in the flow are needed.

6 Conclusions

In this paper we have shown how eFlow supports the dynamic composition,
enactment, and management of composite e-services, i.e., of e-services built on top of
other basic or composite services. In particular, we focused on the adaptive and
dynamic features of eFlow, which are essential characteristics in order to cope with
dynamic environments such as that of e-services. Our future research will be focused
on providing effective means for monitoring and analyzing instances that have been
modified one or more times during their executions.

In summary, we believe that the eFlow platform has the required characteristics
and functionality to satisfy the need of Internet-based service providers. eFlow is
integrated with the Hewlett-Packard e-service strategy; however, it is an open
technology: it is based on Java and it is compliant with the workflow and Internet
standards, such as XML and the Workflow Management Coalition Interface
standards. Hence, it can be integrated and used in virtually any IT environment.

References

1. T. Dirk Meijler, H. Kessels, C. Vuijst and R. le Comte. Realising Run-time Adaptable
Workflow by means of Reflection in the Baan Workflow Engine. Proceedings of the
CSCW Workshop on Adaptive Workflow Management, Seattle, WA, 1998.

F. Casati et al.232

2. S. Ellis, K. Keddara and G. Rozenberg, Dynamic Change within Workflow Systems,
Proceedings of (COOCS '95), Milpitas, California, 1995.

3. D. Georgakopoulos, H. Schuster, D. Baker, and A. Cichocki. Managing Escalation of
Collaboration Processes in Crisis Mitigation Situations. Proceedings of ICDE 2000, San
Diego, CA, USA, 2000.

4. Hewlett-Packard. e''speak Architectural Specifications. 2000.
5. Hewlett-Packard. eFlow model and architecture, version 1.0. 2000.
6. Keyflow Corp. Workflow Server and Workflow designer. 1999.
7. G. Joeris and O. Herzog. Managing Evolving Workflow Specifications with Schema

Versioning and Migration Rules. TZI Technical Report 15, University of Bremen, 1999.
8. C. Liu, M. Orlowska and H. Li. Automating Handover in Dynamic Workflow

Environments. Proceedings of CAiSE '98, Pisa, Italy, 1998.
9. J. Mann. Forte' Fusion. Patricia Seybold Group report, 1999.
10. R. Marshak. InConcert Workflow. Workgroup Computing report, Vol 20, No. 3, Patricia

Seybold Group, 1997.
11. IBM. MQ Series Workflow - Concepts and Architectures. 1998.
12. M. Reichert, P. Dadam. ADEPTflex - Supporting Dynamic Changes of Workflows Without

Loosing Control. Technical report 97-07, DBIS, University of Ulm, 1997.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 233

Promises and Failures of Research in Dynamic
Service Composition

Fabio Casati

Abstract This short articles discusses the evolution of research in composition
technologies, from workflows to mashups. It emphasizes the failures of composition
technologies and makes the case for domain-specific workflows as a possible
successful way to leverage composition technologies.

1 Dynamic Workflows

This short articles discusses the evolution of research in composition technologies,
from workflows to mashups. It takes as a starting point the work reported in the
paper Adaptive and dynamic service composition in eFlow[1], published in CAiSE
2000. The objective of that paper was to discuss how we can make a service
composition more flexible, deciding at deployment or at runtime which concrete
service or sets of services should be invoked. We had already realized, back then,
that human intervention in this adaptation would be needed, and so the goal of
the paper was to discuss how we could simplify the adaptation process, rather
than automating it. At that point, web services and the research area of service
composition was in its infancy. Web services themselves were a rather new concept,
and indeed in that year we had organized the first workshop on Technologies
for e-services in conjunction with the VLDB conference. Back then, research in
composition technologies was still mostly in the domain of workflow management.

Workflow technology was born in the late 1980s with the promise to automate
office procedures and facilitate the coordination and data flow among employees.
Composition and workflows – and the related languages and technologies – seemed
to make a lot of sense. We have tasks (and often business tasks) which we do need
to coordinate and orchestrate to achieve some business value, so why not design a

F. Casati (�)
University of Trento, Trento, Italy
e-mail: Fabio.Casati@unitn.it

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 18, © Springer-Verlag Berlin Heidelberg 2013

235

mailto:Fabio.Casati@unitn.it

F. Casati

simple graphical language to help users specify the coordination logic and manage
the data exchange among the activities, thereby also avoiding extra work, data entry
errors, and allowing accurate work tracking? It seemed like a no brainer and a sure
success.

The equivalent of dynamic composition in the workflow space was called
dynamic resource selection, consisting of languages, policies, and technologies for
defining to which person or role a workflow task should be assigned. Research
in this area has been extensive, and produced many languages that allowed the
specification of complex assignment policies that consider aspects such as workers’
skills, schedule, and even compliance rules such as separation of duties [3].

However, the success of workflow systems has been much lower than anticipated.
Nearly all major software companies and many startups had an offering in the
workflow space, but sales were very low. As I reported in my book [2], part of
the problem was that workflow systems were very expensive and “heavy”, that is,
complex to install and operate as they included lots of functionality (this was not the
only problem, but we’ll get back to this a bit later). Most of the deployments were
done for the purpose of tracking work more so than automating it. The implication
is that the abundant research results were in fact rarely used and had very little
impact in practice, especially research in dynamic resource assignment. In a way,
we as researchers were trying to solve an advanced and complex problem without
addressing (or even understanding) the basic issues that impeded the success of
workflow technology.

2 Dynamic Service Composition

In the mid and late 1990s, Enterprise Application Integration (EAI) platforms
came about, facilitating the interconnection of enterprise systems. Workflows then
evolved from orchestrating the work among humans to orchestrating the information
flow across enterprise systems. While EAI platforms were rather successful,
workflows still enjoyed limited adoption.

Web services seemed to be a key enabler for composition technologies,
overcoming some of the issues that impeded the adoption of workflow systems.
What web services and the related middlware bring to the table is (at least in
principle) a standard way for describing interfaces and interaction protocols and
for transporting data. The thought shared by many researchers and practitioners
in the area was that every company would expose their services as web services,
following a same standard and publishing their interfaces and protocols, so that it
would therefore be easy to write program that access these services. As a result
we would have a myriad of services available and with them the opportunity of
combining such services to obtain a functionality of interest. A global registry
(UDDI[4], you may remember it) would contain pointers to all specifications of all
services in the world.

236

Promises and Failures of Research in Dynamic Service Composition

The main point of attraction here was that because of the highly standardized
(at least technically) nature of web services, it would be easy to interoperate
with them. If we could develop a (graphical) language and a model to enable the
composition of services (with a supporting execution engine), we would have a
powerful tool to quickly create complex services out of other services. The high
degree of standardization would reduce the complexity of the composition engines,
thereby making the products lighter and cheaper.

This technological development fueled research in workflows under the hat of
service composition. New (or, actually, refurbished) models and languages started
to appear to support the specification of various aspects of a composition.

Despite the hopes, however, the situation soon mirrored what happened to
workflows: lots of hype on service composition, lots of tools by big and small
companies, lots of investment, and very limited adoption. Part of the problem
here has nothing to do with service composition: web services themselves had
a lot of success as a concept (more and more functionality is now accessible
programmatically) but there is no standard really used for interface and protocol
description, it all really boils down to http. To a large extent, interfaces are specified
in plain English, and structured in arbitrary ways. Formal or semantic specifications
of interfaces is something that requires highly skilled (and very careful, very precise)
people. It works in theory but not in practice.

A part of the problem however does have to do with service composition. The
issue here is that, while most languages claimed to be “easy to use”, in practice
service composition required professional programmers. And because programmers
knew how to program, it was and is just easier to code the composition with a
conventional programming language rather than learn yet another language and
install and maintain yet another piece of software. Most programmers also prefer to
script rather than to use graphical languages. Composition systems did provide some
extra features (such as advanced transactional models) but once again programmers
resorted to the comfort of databases, which were well known and widely tested, and
in most cases that was enough.

In this context, once again research on dynamic service composition was
flourishing, and still today we often come across new papers proposing some
algorithms that improves the status quo. Most papers assumed the existence
of several services with the same interface and similar functionality, and that
consequently these services could be easily and seamlessly swapped. An algorithm
would then determine which service provided the best quality at the lower cost,
based on various criteria. The main flaw I see now in this thread of research is
that (i) swapping a service with another is not easy from a business perspective.
Service relationships are based on contractual agreements and in general the service
provider a company chooses depends on many factors difficult to encode; (ii) Most
importantly, even if two services have the same interface, the hope to replace one
with another and have the composition continue to work smoothly is vain. This is
because interoperability with any non-trivial service must be repeatedly tested and
the meaning of the different parameters must be fully understood. In my experience,
this is true no matter how well the service interface is described. Different

237

F. Casati

services with the same interface would always behave differently because different
implementations interpret and understand parameters differently. The reason why
these issues are rarely addressed in papers is that they show up in real settings,
but not in lab tests. Composition, including dynamic composition, is intuitively
attractive, but it is only when we apply it in a real setting that we see the real issues
surfacing. And because there were very few real services out there, it was difficult
to have them surface.

Additional thread of research included semantic composition (where algorithms
were even trying to understand the service goals and behaviors, going beyond the
interface, and take dynamic composition decisions based on that) and goal-oriented
planning, where a partial or complete composition is created (semi-)automatically
based on a description of the goal of the composition. These approaches suffered and
still suffer from issues similar to the one described above, only extended because
there are more aspects considered by the algorithms besides the interface.

3 Lessons Learned

So, as we saw, history has been repeating in the field of (dynamic) composition.
Interestingly, the same is happening today with mashups.

The interesting aspect is, however, to look at those cases where composition
is indeed successful. These cases always have a common aspect: they tackle
domain-specific problems. Prominent examples of these are data transformation
tools or scientific workflows, but there are many others. These tools are specific
enough and limited enough to actually become usable by non-programmers and to
provide out of the box features that make them attractive. It is the specificity (and the
consequent simplicity), not the generality, that makes these tools useful. Somehow
we tend as researchers to drive towards generic solution as we feel that this is the
goal of research, but in composition technologies we have learned that flexibility
comes at a very high price, that of making the technology difficult to use and, very
often, useless. The challenge that lies in front of us is, therefore, that of finding
ways to easily create domain-specific composition models that are simple enough
(and, necessarily, limited enough) to be applicable to one class of problems and that
are amenable to non-programmers, meaning, such that non-programmers can create
a complete application from start to finish without the need of writing code outside
of the platform, or of specifying composition logic that, although graphical, presents
all the difficulties (complex parallelism, data transformation, complex exception
handling) of programming languages. Unless we can get empower users at the
skill level of the average Excel user to write complete composition (possibly after
some training), this technology will remain attractive in theory but ineffective in
practice.

Acknowledgements A big thanks to the friends, colleagues, and co-authors of the original CAiSE
paper: Ski Ilnicki, LiJie Jin, Vasudev Krishnamoorthy, and Ming-Chien Shan.

238

Promises and Failures of Research in Dynamic Service Composition

References

1. F. Casati, S. Ilnicki, L.J. Jin, V. Krishnamoorthy and M.C. Shan, Adaptive and Dynamic Service
Composition in eFlow, Procs of Caise’00, Sweden. Springer.

2. G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services Concepts, Architectures and
Applications. Springer-Verlag, Berlin, 2004.

3. R. Botha and J.Eloff, Separation of duties for access control enforcement in workflow
environments, IBM Systems Journal 40 (3), 2001.

4. Luc Clement, Andrew Hately, Claus von Riegen, and Tony Rogers. UDDI Version 3. OASIS
UDDI Spec TC, 2004.

239

On Structured Workflow Modelling�

Bartek Kiepuszewski1, Arthur Harry Maria ter Hofstede2,
and Christoph J. Bussler3

1 Mincom Limited, GPO Box 1397, Brisbane, Qld 4001, Australia,
bartek@mincom.com

2 Cooperative Information Systems Research Centre, Queensland University of
Technology, GPO Box 2434, Brisbane, Qld 4001, Australia, arthur@icis.qut.edu.au

3 Netfish Technologies Inc., 2350 Mission College Blvd., Santa Clara, CA 95054,
USA, cbussler@netfish.com

Abstract. While there are many similarities between the languages of
the various workflow management systems, there are also significant dif-
ferences. One particular area of differences is caused by the fact that
different systems impose different syntactic restrictions. In such cases,
business analysts have to choose between either conforming to the lan-
guage in their specifications or transforming these specifications after-
wards. The latter option is preferable as this allows for a separation of
concerns. In this paper we investigate to what extent such transforma-
tions are possible in the context of various syntactical restrictions (the
most restrictive of which will be referred to as structured workflows). We
also provide a deep insight into the consequences, particularly in terms
of expressive power, of imposing such restrictions.

1 Introduction

Despite the interest in workflow management, both from academia and industry,
there is still little consensus about its conceptual and formal foundations (see
e.g. [7]). While there are similarities between the languages of various commer-
cially available workflow management systems, there are also many differences.
However, it is often not clear whether these differences are fundamental in na-
ture. For example, as different systems impose different syntactic restrictions,
one may wonder whether this affects the expressive power of the resulting lan-
guages. In addition to that, such variations result in business analysts being
confronted with the question as to whether to conform to the target language
right away when they specify their workflows, or to transform their specifications
in a later stage.

In this paper focus is on syntactic variations in workflow specification lan-
guages. Different workflow management systems impose different syntactical re-
strictions. The most restrictive types of workflows will be referred to as structured
� This research is supported by an ARC SPIRT grant “Component System Archi-
tecture for an Open Distributed Enterprise Management System with Configurable
Workflow Support” between QUT and Mincom.

B. Wangler, L. Bergman (Eds.): CAiSE 2000, LNCS 1789, pp. 431–445, 2000.
c© Springer-Verlag Berlin Heidelberg 2000

241

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler

workflows. Systems such as SAP R/3 and Filenet Visual Workflo allow for the
specification of structured workflows only. While enforcing restrictions may have
certain benefits (e.g. verification and implementation become easier), the price
that may have to be paid is that the resulting language is more difficult to use
and has less expressive power.

In this paper, it will be shown that some syntactic restrictions will lead to a
reduction of expressive power of the language involved, while other restrictions
are of a less serious nature and can be overcome by the introduction of equiva-
lence preserving transformation rules. It will be also shown that even though for
certain workflow models it is possible to transform them to equivalent structured
forms, the resulting models are less suitable than the original ones. Neverthe-
less, the automation of such rules could potentially lead to tools giving business
analysts greater freedom in workflow specification without compromising their
realisability in terms of commercially available (and preferred) workflow man-
agement systems.

2 Structured Workflows: Definitions

In this section the notion of a structured workflow is formally defined and some
elementary properties stated. Workflows as used in this paper will employ con-
cepts used in most commercial workflow management systems. Although the
graphical notation used for representing workflows is irrelevant in terms of the
results presented in this paper, we have to agree on one in order to provide
examples to illustrate our arguments. Process elements will be represented by
large circles; or-joins and or-splits will correspond to small, white circles, while
and-joins and and-splits will correspond to small, shaded circles (the indegree
and outdegree will always make it clear whether we are dealing with a join
or a split). There are many examples of languages that support the specifica-
tion of arbitrary workflows, e.g. Staffware (www.staffware.com), Forte Conductor
(www.forte.com) and Verve WorkFlow (www.verveinc.com).

A structured workflow is a workflow that is syntactically restricted in a num-
ber of ways. Intuitively a structured workflow is a workflow where each or-split
has a corresponding or-join and each and-split has a corresponding and-join.
These restrictions will guarantee certain important properties shown later in
the paper and in some cases correspond to restrictions imposed by commercial
workflow management systems.

Definition 1. A structured workflow model (SWM) is inductively defined as
follows.

1. A workflow consisting of a single activity is a SWM. This activity is both
initial and final.

2. Let X and Y be SWMs. The concatenation of these workflows, where the
final activity of X has a transition to the initial activity of Y , then also is
a SWM. The initial activity of this SWM is the initial activity of X and its
final activity is the final activity of Y .

242

3. Let X1, . . . , Xn be SWMs and let j be an or-join and s an or-split. The
workflow with as initial activity s and final activity j and transitions between
s and the initial activities of Xi, and between the final activities of Xi and j,
is then also a SWM. Predicates can be assigned to the outgoing transitions
of s. The initial activity of this SWM is s and its final activity is j.

4. Let X1, . . . , Xn be SWMs and let j be an and-join and s an and-split. The
workflow with as initial activity s and final activity j and transitions between
s and the initial activities of Xi, and between the final activities of Xi and
j, is then also a SWM. The initial activity of this SWM is s and its final
activity is j.

5. Let X and Y be SWMs and let j be an or-join and s an or-split. The workflow
with as initial activity j and as final activity s and with transitions between
j and the initial activity of X, between the final activity of X and s, between
s and the initial activity of Y , and between the final activity of Y and j, is
then also a SWM. The initial activity of this SWM is j and its final activity
is s.

All commercial WfMSs known to the authors allow for the specification of work-
flow models that are equivalent to structured models as defined in definition 1.
Some of these WfMSs do not allow for the specification of arbitrary models
though and they impose certain levels of structuredness by means of syntactical
restrictions typically implemented in the graphical process designer.

The most restricted workflow modelling languages known to the authors with
respect to imposing structuredness are the languages of FileNet’s Visual Work-
Flo (www.filenet.com) (VW) and SAP R/3 Workflow. In both languages it is
possible to design structured models only. These models resemble the definition
provided earlier very closely with some minor exceptions such as that in VW
the loops can only be of the form “WHILE p DO X”. In SAP R/3 Workflow
no loops are allowed to be modelled in a direct way. An example of syntactical
restrictions in the more general area of data and process modelling can be found
in UML’s activity diagrams where business modellers are forced to exclusively
specify structured models.

The definition of SWMs guarantees these types of workflows to have certain
properties. Specifically, by the use of structural induction it can easily be shown
that SWMs do not deadlock (see [5]). In addition to that, in SWMs it is not
possible to have multiple instances of the same activity active at the same time.
This situation is easily modelled in an arbitrary workflow if an and-split is fol-
lowed by an or-join construct. Similarly, an arbitrary workflow will deadlock if
an or-split is followed by an and-join.

Since in the following sections we will regularly pay attention to arbitrary
workflow models that do not deadlock and do not result in multiple instances, for
terminological convenience we introduce the notion of well-behaved workflows.

Definition 2. A workflow model is well-behaved if it can never lead to deadlock
nor can it result in multiple active instances of the same activity.

Corollary 1. Every structured workflow model is well-behaved.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 243

Instead of requiring workflows to be structured, it is more common for workflow
languages to impose restrictions on loops only. For example IBMMQSeries/Work-
flow (www.ibm.com/software) and InConcert (www.inconcert.com) do not allow
the explicit modelling of loops. Instead they have to be modelled by the use of
decomposition. This is equivalent to using a “REPEAT X UNTIL p” loop. In
case of MQSeries/Workflow, predicate p is specified as the Exit Condition of
the decomposition. Hence, in between arbitrary workflow models and structured
workflow models, we recognise a third class of workflow models, referred to as
restricted loop models.

Definition 3. A restricted loop workflow model (RLWFM) is inductively defined
as follows:

1. An arbitrary workflow model without cycles is an RLWFM.
2. Let X and Y be RLWFMs with each one initial and one final node. Let j be

an or-join and s an or-split. The workflow with as initial activity j and as
final activity s and with transitions between j and the initial activity of X,
between the final activity of X and s, between s and the initial activity of Y ,
and between the final activity of Y and j, is then also a RLWFM.

Note that languages that support loops through decomposition are a subset of
the class defined by the above definition (in those cases, essentially, Y corre-
sponds to the empty workflow). Naturally, every SWF is an RLWFM and every
RLWFM is an arbitrary workflow model.

3 Equivalence in the Context of Control Flow

As there exist workflow languages that do not allow for the specification of
arbitrary workflows, business analysts are confronted with the option to either
restrict their specifications such that they conform to the tool that is used or
specify their workflows freely and transform them to the required language in a
later stage. From the point of view of separation of concerns, the latter option
is preferable. To support such a way of working it would be best to have a set
of transformations that could be applied to a workflow specification in order
to transform it to a structured workflow in the sense of the previous section.
Naturally, these transformations should not alter the semantics of the workflows

B

D

CA

D

CA

B

CA

D

F

Arbitrary specification Structured specification Restricted loop workflow model

B E

E

Fig. 1. Illustration of the three different workflow model classes

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler244

to which they are applied, they should be equivalence preserving. However, this
immediately raises the question as to what notion of process equivalence is the
most applicable in the context of workflows (for an overview of different notions
of process equivalence the reader is referred to [4]).

One of the most commonly used equivalence notions is that of bisimulation.
The formal definition of bisimulation between two different workflow systems,
given the fact that they would most likely use different syntax and semantics,
would have to be defined using some common formalism that can be applied to
both systems. One of the most convenient ways to do it is to define bisimula-
tion formally in terms of their Petri-net representation. That immediately leads
to the conclusion that weak bisimulation has to be considered since Petri-net
representations of workflow models may use many, internal, non-labelled places.

In the context of workflow processes with parallelism, the notion of basic weak
bisimulation is not strong enough. Bisimulation is defined in terms of execution
sequences, i.e. in terms of arbitrary interleaving. As such, however, bisimulation
cannot distinguish between a concurrent system and its sequential simulation.
For that reason a stronger equivalence notion is needed. Such a notion is pro-
vided in [3] where it is referred to as fully concurrent bisimulation. Given the
fact that the formal definition is relatively complex and the details are not par-
ticularly useful for the purpose of this paper, we will present fully concurrent
bisimulation in the context of workflow specification in terms of the bisimulation
game (adapted from [8]):

1. There are two players, Player A and Player B, each of which having a work-
flow model specification (Workflow A and Workflow B).

2. Player A starts the initial activities in his workflow model specification.
Player B responds by starting the initial activities in his workflow model
specification (which should exactly correspond to those of player A).

3. Player A may choose to finish any of its activities and start a corresponding
subsequent activity. Player B responds accordingly by finishing and starting
an activity with the same label (possibly performing some internal, non-
labeled, steps first).

4. If Player B cannot imitate the move of Player A, he looses. By imitating
we mean that at any point in time the same set of activities in workflow B
should be completed and started as in workflow A. Player B wins if he can
terminate his workflow once Player A has terminated his workflow. Similarly
Player B wins if he can deadlock his workflow once Player A has deadlocked
his workflow. The case of an infinite run of the game is considered to be
successful for Player B too.

If there is a strategy for defending player (Player B) to always prevent Player
A from winning then we say that workflow B can simulate workflow A. If the
reverse applies as well (workflow A can simulate workflow B) then we consider
the two workflow specifications to be equivalent.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 245

4 From Arbitrary Workflow Models to SWMs

In this section transformations from arbitrary workflow models to SWMs are
studied and to what extent such transformations are possible. All transforma-
tions presented in this section assume that the workflow patterns they operate on
do not contain data dependencies between decisions, in other words for all intents
and purposes all decisions can be treated as nondeterministic. This assumption
allows us to assume that all possible executions permitted by the control flow
specification are possible.

4.1 Simple Workflows without Parallelism

Workflows that do not contain parallelism are simple models indeed. Their se-
mantics is very similar to elementary flow charts that are commonly used for
procedural program specification. The or-split corresponds to selection (if-then-
else statement) while the activity corresponds to an instruction in the flow chart.
It is well known that any unstructured flow chart can be transformed to a struc-
tured one. In this section we will revisit these transformation techniques and
present and analyse them in the context of workflow models.

Following [11] we will say that the process of reducing a workflow model
consists of replacing each occurrence of a base model. within the workflow model
by a single activity box. This is repeated until no further replacement is possible.
A process that can be reduced to a single activity box represents a structured
workflow model. Each transformation of an irreducible workflow model should
allow us to reduce the model further and in effect reduce the number of activities
in the model.

The strong similarity of simple workflow models and flow diagrams suggests
that if we do not consider parallelism, there are only four basic causes of un-
structuredness (see e.g. [11,9]): 1) Entry into a decision structure, 2) Exit from
a decision structure, 3) Entry into a loop structure, and 4) Exit from a loop
structure. Entry to any structure is modelled in a workflow environment by an
or-join construct. Similarly, an exit is modelled by an or-split. Once parallelism
is introduced we will also consider synchronised entry and parallel exit modelled
by and-join and and-split constructs respectively.

The first transformation (all transformations in this section are based on [9]),
depicted in figure 2, can be performed when transforming a diagram containing
an exit from a decision structure. It is important to observe that variable Φ
is needed since activity D can potentially change the value of β or, if β is a
complex expression, it could change the value of one of its components. This
transformation is achieved through the use of auxiliary variables.

The transformations as depicted in figure 3 are used when a workflow model
contains an entry to a decision structure. Here workflow B2 is a transformation
of B1 achieved through node duplication, whereas workflow B3 is a transforma-
tion of B1 achieved through the use of auxiliary variables. The following two
diagrams, depicted in figures 4 and 5, capture transformations to be used when

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler246

A

B C

E

F

D

a~a

b ~b

A

B C

F

D

a~a

~F

F

F:=b

F:=True

E

F

~F

Workflow A1 Workflow A2

Fig. 2. Exit from a decision structure

A

B C E

F

D

a~a

A

B C E

F

D

a~a

D

A

B C E

D

~F

F

Workflow B1 Workflow B2 Workflow B3

F

F:=a

F
~F

F:=True

Fig. 3. Entry into a decision structure

a model contains an entry to, or an exit from a loop structure, respectively. Re-
peated application of the transformations discussed in this section can remove
all forms of unstructuredness from a workflow. Hence the following theorem.

Theorem 1. All unstructured workflows without parallelism have an equivalent
structured form.

Finally, it should be remarked that in some cases we have presented alternative
transformations (not using auxiliary variables) and in some cases we have not.
In later sections, we will show that this has a reason: in the cases where no extra
transformations (not using auxiliary variables) are presented, such transforma-
tions turn out not to exist.

4.2 Workflows with Parallelism but without Loops

Addition of parallelism immediately introduces problems related to deadlock
and multiple instances. As noted in section 2, structured workflow models never

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 247

E

A B

F

C
a

~a

A

Workflow C1 Workflow C2 Workflow C3

F
~F

F:=False

B

E

C

A

F

~a

a

B

A

F

C

E

F:=True

F:=a

~F

F

Fig. 4. Entry into a loop structure

E
A

B

F

C

a

~a

A

Workflow D1 Workflow D2

F:=a

C

~FF

E

F

B

b

~b

Q:=bQ:=False

Q ~Q F

~F

Fig. 5. Exit from a loop structure

result in deadlock nor multiple instances of the same activity at the same time.
Hence, structured workflow models are less expressive than arbitrary workflow
models. This immediately raises the question as to whether well-behaved work-
flow models can be transformed to structured workflow models. As the next
theorem shows, the answer to this question is negative.

Theorem 2. There are arbitrary, well-behaved, workflow models that cannot be
modelled as structured workflow models.

A

B

C

D

E

F

B D

C E

Fig. 6. Arbitrary workflow and illustration of its essential causal dependencies

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler248

Proof. Consider the workflow fragment in figure 6. The first observation is that
as activities B and C are causally independent (that is, they can be executed
concurrently) they have to be in different branches of some parallel structure in a
corresponding structured workflow. As activities C and E are causally dependent
(E is always performed after C) there must be a path from C to some activity
named E. This activity has to be in the same branch as C as it cannot be
outside the parallel structure as that would make it causally dependent on B. By
applying similar reasoning, an activity named D has to be in the same branch of
a parallel structure as B. Now we have that as C and D are in different branches
of a parallel structure they are causally independent. However, in the original
model they are causally dependent. Contradiction. No corresponding structured
workflow exists. ��

To find out which workflow models can be effectively transformed into SWMs,
let us concentrate on the causes of unstructuredness that can occur when par-
allelism is added. If loops are not taken into account, these causes are: 1) Entry
to a decision structure, 2) Exit from a decision structure, 3) Entry to a parallel
structure, 4) Exit from a parallel structure, 5) Synchronised entry to a decision
structure, 6) Parallel exit from a decision structure, 7) Synchronised entry to
a parallel structure, and 8) Parallel exit from a parallel structure. In the re-
mainder of this section we will concentrate on which of these structures can be
transformed to a structure model.

Entries and exits from decision structures are dealt with in section 4.1 and
can obviously be transformed to a structured model.

As a synchronised entry to a decision structure and an exit from a parallel
structure leads to a potential deadlock (i.e. there are instances of the model
that will deadlock), it follows that if the original workflow contains any of these
patterns, it cannot be transformed into a SWM.

Parallel exits and synchronised entries to a parallel structure are dealt with
in theorem 2. The reasoning of this theorem can be applied to any model that
contains these patterns. Hence such models, even though they may be well-
behaved, cannot be transformed into SWMs.

Before analysing the two remaining structures let us define a syntactical
structure called an overlapping structure. This structure has been previously
introduced in the context of workflow reduction for verification purposes in [10].
A specific instance of it is shown in figure 7. An overlapping structure consists of
an or-split followed by i instances of and-splits, followed by j instances of or-joins
and finally by an and-join. The structure of figure 7 has both i and j degrees
equal to two. The overlapping structure contains both an entry to a parallel
structure and a parallel exit from a decision structure and it never results in a
deadlock. It is possible to transform an overlapping structure into a SWM as
shown in figure 7.

A thorough analysis of the causes of deadlock and multiple instances in work-
flow models (see e.g. [10]) leads to the conclusion that workflow models contain-
ing a parallel exit from a decision or an entry to a parallel structure will cause
a potential deadlock unless they form a part of an overlapping structure or the

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 249

A

B C

D E F G

I J

K

A

B C

D E F G

K

I J I J

Fig. 7. Overlapping structure

exit path from the decision does not join the main execution path. Hence we
conclude:

– An entry to a parallel structure can cause a potential deadlock unless it is
part of an overlapping structure (in which case it can be transformed as
shown).

– Similarly, a parallel exit from a decision structure can cause a potential
deadlock and cannot be transformed into a SWM unless it is part of an
overlapping structure or if the exit path does not join the main path (figure 8
illustrates the second case and the corresponding transformation).

The observations in this section have led us to the following conjecture:

Conjecture 1. Any arbitrary well-behaved workflow model that does not have
loops, when reduced, does not have a parallel exit from a parallel structure, and,
when reduced, does not have a synchronised entry into a parallel structure, can
be translated to a SWM.

Workflow C1 Workflow C2

A

B

C

E

F

D

a

~a

A

B

C

E

F

D
a

~a

F

Fig. 8. Exit path not joining main path in parallel exit from decision structure

4.3 Workflows with Parallelism and Loops

Finding out whether a workflow can deadlock or not in the context of loops is
much more complex and conjecture 1 cannot be automatically applied. To expose

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler250

potential difficulties let us concentrate on what kind of loops we can encounter
in a workflow model once and-join and and-split constructs are used. Every cycle
in a graph has an entry point that can be either an or-join or an and-join and an
exit point that can be either an and-split or an or-split. Cycles without an entry
point cannot start and cycles without an exit point cannot terminate. The latter
case can be represented by a cycle with an exit point where the exit condition
on the or-split is set to false.

Most cycles will have an or-joins and or-splits as entry and exit points re-
spectively (note that there may be many exit and entry points in the cycle)
provided that the workflow is well-behaved. The transformation of such cycles
is straightforward using transformations as presented earlier in this section.

If the cycle has an and-join as an entry point, the workflow will most likely
deadlock. Examples of two workflows containing cycles with and-join as an entry-
point that do not deadlock are shown in figure 9.

A

C D

B

G

E F

H Workflow A

A

C D

B

G

E F

K

Workflow B

H I

J

~a

a

~a

a

Fig. 9. Two workflow models with arbitrary loops

Conversely, most workflows that have an and-split as an exit point will most
likely result in multiple instances. Our previous observation that any workflow
resulting in deadlock or multiple instances cannot be modelled as a structured
workflow certainly holds whether or not the workflow has loops. The major
impact of introducing loops though is that finding out if the workflow deadlocks
or results in multiple instances becomes a non-trivial task [6].

In rare cases when a cycle has an and-join as entry and an and-split as
exit point and the workflow involved does not deadlock nor result in multiple
instances, theorem 2 is helpful when determining if such a workflow can be
remodelled as a structured workflow. In figure 9 for example, workflow A can be
remodelled as a structured workflow whereas workflow B cannot. The equivalent
workflow to workflow A is shown in figure 10.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 251

C

D

G

E

F

H

Workflow A

C

D

A

B

~a
~a

a
a

Fig. 10. Structured version of leftmost workflow of figure 9

4.4 Suitability of Transformations

The transformations presented earlier in this section are using two major tech-
niques: 1) node duplication and 2) use of auxiliary variables to control conditions.
In this section we will comment on the suitability of these solutions.

Suitability in general refers to the relation between concepts offered in the
specification technique and concepts required by the problem domain. There
are a number of aspects in a workflow specification, e.g. data and control flow,
and there are a number of ways in which the same underlying model can be
presented, e.g. data flow and control flow “view”. Yet, conceptual models, in
general, are required to convey a certain amount of information which should
not be split up, if the model is to be effective (this corresponds to the Cognitive
Sufficiency Principle promulgated by [2]). For example we believe that the model
that conveys all control flow interdependencies between activities in a control
view is a better model than the model that requires both the control flow view
and data flow view to understand relationships between activities. Consider for
example the three models from figure 3. In models B1 and B2 it is clear that
activitiesB andD are exclusive in the sense that they will never be both executed
in any process instance. On the other hand, in model B3, it seems that activity
D can follow the execution of activity B. Only close inspection of the or-splits’
predicates as well as implicit knowledge that activity B does not change the
value of variable Φ can lead to the conclusion that activities B and D are indeed
exclusive.

To retain the suitability of a certain workflow model, transformations should
avoid using auxiliary variables to control or-splits through predicates. Unfortu-
nately, this is not always possible.

Theorem 3. There are forms of unstructuredness that cannot be transformed
without the use of auxiliary variables.

Proof. Consider the workflow model of figure 5. This workflow model contains
multiple exits from a loop and as such is unstructured. Now consider another
workflow model equivalent to this model, which is structured. The first observa-
tion is that as workflow representations are finite, this structured workflow model
needs to contain at least one loop as the associated language is infinite. On one
such loop there has to be an occurrence of both activities A and C. Activities
B and F should be outside any loop (as we cannot use predicates anymore to
prevent paths containing these activities to be chosen if they are included in the

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler252

body of the loop). Playing the bisimulation game yields that after each instance
of activity A one should be able to choose to perform either C or B. Since B
is outside any loop, there has to be an exit point from the loop sometime after
activity A (but before activity C, as one cannot use predicates that guarantee
that activity C will be skipped after the decision has been made to exit the
loop). Similarly, after each instance of activity C one should be able to choose to
perform either activity E or activity F . As F is outside any loop, we also have
an exit point from this loop after activity C (but before activity E). Hence, the
loop under consideration has at least two exit points and the workflow cannot
be structured. Contradiction. Hence a structured workflow equivalent, not using
auxiliary variables, to the workflow of figure 5 does not exist. ��

An alternative technique to transform arbitrary models into a structured form
requires node duplication. As has been proved earlier, it cannot be used for every
model, but even when it can be used, it is not without associated problems.
Consider once again the model in figure 3. If activity D in the left model is
followed by a large workflow specification, the transformation presented in the
right model would need to duplicate the whole workflow specification following
activity D. The resulting workflow will be almost twice as big as the original
and will therefore be more difficult to comprehend.

5 Restricted Loops

In this section we will focus on languages that impose restrictions on loops only.
Examples of such languages are MQSeries/Workflow and InConcert. The main
reason these languages impose restrictions on loops is that the introduction of
cycles in their workflow specifications would result in an immediate deadlock
because of their evaluation strategy. MQSeries/Workflow for example propagates
true and false tokens and its synchronizing or-join expects tokens from every
incoming branch before execution can resume; this results in deadlock if one
of these branches is dependent on execution of the or-join itself. Note that the
semantics of the synchronising or-join is different from the semantics of the
or-join as presented earlier in this paper, but that does not compromise the
obtained results. The approach chosen in MQSeries/Workflow and InConcert
guarantees that their specifications are well-behaved (for MQSeries/Workflow
this is formally proven in [5]).

Even though one may ask the question whether any arbitrary workflow spec-
ification can be translated to a specification that uses restricted loops only, the
more practical question would be to ask whether any well-behaved arbitrary
specification can be translated to a specification using restricted loops only. As
the next theorem shows, the answer to this question is negative.

Theorem 4. There are well-behaved arbitrary workflow specifications that can-
not be expressed as RLWFMs.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 253

A

GH

B

C

ED

F

E1

E2

~a

~a

a

a

Fig. 11. Well-behaved arbitrary workflow

Proof. By showing that the workflow from figure 11 cannot be modelled as an
RLWFM. Observe that after completion of the initial activity and as long as α
evaluates to true, there will be at least two tokens in the corresponding Petri-
net. That means that in an equivalent workflow specification that has restricted
loops only, there have to be two concurrent restricted loops running in parallel
(if there was only one loop, the moment the exit condition was evaluated there
would be only one token in the corresponding Petri-net). One of the restricted
loops would have to contain activities A, B, C, and E, and the other loop would
have to contain activities D, F , G, and H. In the original workflow specification
A is causally dependent on D. That means that there must be a path between
A and D but that is impossible if A belongs to a different restricted loop than
D according to the definition of a restricted loop. ��
The careful reader may have noticed that in the workflow model of figure 11 data
is used to make sure that both loops are exited at the same time (otherwise dead-
lock would occur). It is an open question as to whether there exist well-behaved
arbitrary workflow specifications that do not contain decision dependencies and
that can not be transformed into an RLWFM.

6 Conclusions

The transformation of arbitrary workflow models to workflows in a structured
form is a necessity typically faced by either an application programmer who has
to implement a non-structured workflow specification in an environment sup-
porting structured specifications only (e.g. SAP R/3 workflow or Filenet Visual
Workflo), or by a business analyst who is trying to capture real-world require-
ments in a structured workflow specification technique (e.g. UML’s activity di-
agrams). In this paper we have shown that even simple transformations require
the use of auxiliary variables which results in the introduction of dependencies
between decisions in a workflow graph. As a result the transformed workflow
specification is typically more difficult to understand for end-users. Moreover,
some arbitrary specifications cannot be transformed at all to a structured form.
Hence in general, structured models are less expressive and less suitable than

B. Kiepuszewski, A.H.M. ter Hofstede and C.J. Bussler254

arbitrary models. For these reasons it is our contention that any high-end work-
flow management system should support the execution of arbitrary workflow
specifications. To some, this might seem to contrast with the common consensus
of avoiding GOTO statements (and using WHILE loops instead) in procedural
programming languages, but, as shown throughout this paper, the presence of
parallelism as well as the nature of workflow specifications provide the essential
difference. As a consequence, the good workflow modelling environment should
be supported by a powerful verification engine that would help process modellers
detect syntactical problems such as potential deadlock or unwanted multiple in-
stances. Using sophisticated verification tools for these purposes (incorporating
techniques from state-of-the-art Petri-net theory) seems feasible from a practical
perspective (see [1]).

References

1. W.M.P. van der Aalst and A.H.M. ter Hofstede. Verification of Workflow Task
Structures: A Petri-net-based Approach. Information Systems, 2000. (to appear).

2. A.P. Barros and A.H.M. ter Hofstede. Towards the construction of workflow-
suitable conceptual modelling techniques. Information Systems Journal, 8(4):313–
337, October 1998.

3. E. Best, R. Devillers, A. Kiehn, and L. Pomello. Concurrent bisimulations in Petri
nets. Acta Informatica, 28:231–254, 1991.

4. R.J. van Glabbeek. The linear time-branching time spectrum. In J.C.M. Baeten
and J.W. Klop, editors, Proceedings of CONCUR’90. Theories of Concurrency:
Unification and Extension, pages 278–297, Berlin, Germany, 1990. Springer-Verlag.

5. A.H.M. ter Hofstede and B. Kiepuszewski. Formal Analysis of Deadlock Behaviour
in Workflows. Technical report, Queensland University of Technology/Mincom,
Brisbane, Australia, April 1999. (submitted for publication).

6. A.H.M. ter Hofstede and M.E. Orlowska. On the Complexity of Some Verification
Problems in Process Control Specifications. Computer Journal, 42(5):349–359,
1999.

7. S. Jablonski and C. Bussler. Workflow Management: Modeling Concepts, Archi-
tecture, and Implementation. International Thomson Computer Press, London,
United Kingdom, 1996.

8. P. Jančar. Decidability Questions for Bismilarity of Petri Nets and Some Related
Problems. In P. Enjalbert, E.W. Mayr, and K.W. Wagner, editors, STACS 94,
11th Annual Symposium on Theoretical Aspects of Computer Science, volume 775
of Lecture Notes in Computer Science, pages 581–592, Caen, France, February
1994. Springer-Verlag.

9. G. Oulsnam. Unravelling Unstructured Programs. Computer Journal, 25(3):379–
387, 1982.

10. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Iden-
tifying Structural Conflicts in Process Models. In Proceedings of the 11th Conf
on Advanced Information Systems Engineering (CAiSE’99), pages 195–209, Hilde-
berg, Germany, June 1999.

11. M. H. Williams. Generating structured flow diagrams: the nature of unstructured-
ness. Computer Journal, 20(1):45–50, 1977.

From: CAiSE 2000, LNCS 1789 © Springer-Verlag Berlin Heidelberg 2000 255

The Structured Phase of Concurrency

Artem Polyvyanyy and Christoph Bussler

Abstract This extended abstract summarizes the state-of-the-art solution to the
structuring problem for models that describe existing real world or envisioned
processes. Special attention is devoted to models that allow for the true concurrency
semantics. Given a model of a process, the structuring problem deals with answering
the question of whether there exists another model that describes the process
and is solely composed of structured patterns, such as sequence, selection, option
for simultaneous execution, and iteration. Methods and techniques for structuring
developed by academia as well as products and standards proposed by industry are
discussed. Expectations and recommendations on the future advancements of the
structuring problem are suggested.

1 Introduction to Concurrency

Processes are properties of dynamic systems that are usually defined as series of
steps taken to achieve a goal, e.g., chemical or thermodynamic processes. Many
scientific disciplines study processes by means of modeling. A model of processes,
or a process model, is a particular representation of processes of the same nature.
The study of processes is predominant to the computer science discipline. Computer
programs and workflows are examples of process models.

Concurrency is a property of a process which indicates that steps of the process
can be performed simultaneously by several autonomous “workers” that may
coordinate their work by means of communication, e.g., instructions of a computer

A. Polyvyanyy (�)
Queensland University of Technology, Brisbane, QLD, Australia
e-mail: artem.polyvyanyy@qut.edu.au

C. Bussler
Analytica, Inc., Palo Alto, CA, USA
e-mail: chris@real-programmer.com

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 20, © Springer-Verlag Berlin Heidelberg 2013

257

mailto:artem.polyvyanyy@qut.edu.au
mailto:chris@real-programmer.com

A. Polyvyanyy and C. Bussler

program carried out by several processing units within a single or across multiple
computers. Usually, concurrent processes are more efficient than processes in which
all work is performed by a single worker, where efficiency is the measure of the
amount of work accomplished within a given time frame.

There exist several formalisms for describing concurrent processes, cf., [1]
for examples and a classification of formalisms. Concurrency can be represented
implicitly in a process model as a nondeterministic choice between all possible
sequentializations of concurrent steps. Afterwards, an option for a simultaneous
execution of steps can be deduced based on the interleaving of these steps. Alter-
natively, concurrency can be modeled based on partially-ordered sets of steps—an
approach that is often referred to as the true concurrency semantics of processes.
The true concurrency semantics specifies that unordered steps of a process can be
enabled and performed simultaneously. Observe that process models which account
for the true concurrency semantics are more informative. They explicitly represent
steps that can be performed by different workers, as well as describe all possible
sequentializations of steps.

Concurrent processes are complex. The complexity is primarily due to the fact
that the number of all possible sequentializations of process steps is exponential to
the number of concurrent steps in the process. Consequently, concurrent processes
are complex to design and analyze because one needs to account for all possible
interleavings of steps that can lead to potential flaws.

The next section defines the structured property of process models. Afterwards,
Sect. 3 reviews progress achieved in academia and industry that relates to the
structuring problem of process models. Finally, expectations and recommendations
on the future advancements with respect to structuring are proposed.

2 The Structured Phase

A process can be formalized in many different ways following different modeling
styles, i.e., it can take different forms. This reminds of various states that a physical
matter can take on. For example, H2O is a substance that its gas, liquid, and solid
states are widely known, viz. steam, water, and ice, respectively. Often, there exist
several phases of the same state of matter, where a phase is a region of space
(a thermodynamic system), throughout which all physical properties of a material
are essentially uniform [2]. For instance, diamond and graphite are both solid carbon
with different physical characteristics, e.g., color, crystal shape, etc. Similarly, there
can exist several different models of the same process that are captured in the same
formal language.

Besides many existing modeling styles, processes are usually formalized by
following on the principles of the imperative paradigm. Process models that follow
the imperative style are described in terms of sequences of statements/commands
that change a process state. Intuitively, an imperative process model can be

258

The Structured Phase of Concurrency

perceived as a directed graph with nodes representing commands and pairs of
subsequent commands representing edges.

Process graphs, i.e., graphs induced by imperative process models, can take
different forms. However, it is often preferred that process graphs obey some
structural rules, like the one that a process graph should be structured.

A process graph is structured, if for every node with multiple outgoing edges (a split) there
exists a corresponding node with multiple incoming edges (a join), and vice versa, such
that the subgraph between the split and the join forms a single-entry-single-exit fragment;
otherwise the graph is unstructured.

Consequently, a process model is structured if and only if a process graph
induced by the model is structured. The reader can refer to [3] for a detailed
motivation of structured process modeling. In summary, most of the benefits of
using structured process models boil down to the observation that it is often straight-
forward to modularize handling of structured process graphs at various stages of
their life cycles. For example, it is evident that structured computer programs are
easier to understand and maintain as opposed to unstructured ones, which contain
arbitrary “jump” constructs leading to programs that induce “spaghetti” process
graphs. Nevertheless, unstructured modeling is often praised for the freedom it offers
when designing a process model. Indeed, there are no restrictions on which form a
process graph can take. Considering modeling to be a highly creative activity, the
freedom of expressing concepts and ideas in models is of significant importance.

When proposing a process modeling methodology, one faces a dilemma of
whether to allow or forbid unstructuredness. Allowing for unstructuredness supports
creativity of process designers, while forbidding it comes with a continuous and
seamless ability to enjoy benefits of structured models. The problem of structuring
a process model deals with the automated construction of a structured model that
represents the process described in the given model, i.e., finding the structured phase
of the process.

3 State of the Art

In this section, we review the progress achieved by the research community on a
solution to the structuring problem for process models that account for the true
concurrency semantics (Sect. 3.1), as well as analyze the support of structured and
unstructured process modeling by the software industry sector (Sect. 3.2).

3.1 Research: Methods and Techniques

In this section, we discuss scientific results on methods for structuring process
models. Special attention is paid to techniques that address structuring of models
that account for the true concurrency semantics.

259

A. Polyvyanyy and C. Bussler

Results on structuring sequential process models, i.e., models that describe non-
concurrent processes, are mainly due to results on elimination of goto constructs
in computer programs. The structured program theorem [4] provides the theoretical
foundation of structured programming. It states that every program can be expressed
with three patterns: sequence, selection, and iteration. Moreover, it is well-known
that a sequential process model, e.g., a program, can be formalized as a flowchart
and structured, e.g., by using the techniques proposed in [5, 6].

The concurrent world is a bit more complex. In this world, the results on
structuring of sequential process models cease to hold. In [7], Kiepuszewski et al.
showed that not all acyclic concurrent process models, i.e., models of concurrent
processes that induce acyclic process graphs, can be structured. The above fact has
been proven by means of a counter-example—a Z-structure pattern (the name is due
to the constellation of causal relations between the concurrent steps). The authors
demonstrated that under the true concurrency semantics there exists no structured
model that captures the process described by the Z-structure pattern.

In [8, 9], the authors proposed a solution to the structuring problem of acyclic
concurrent process models. The technique is capable of recognizing inherently
unstructured process models, i.e., models that have no equivalent structured repre-
sentations. The theoretical basis of the approach builds on interplay of two parsing
techniques: a technique for discovering the structure of process graphs [10] and
a technique for decomposing causal, conflict, and concurrency relations [11, 12]
between process steps by means of the modular decomposition [13].

The work in [14] addresses structuring of acyclic concurrent process models that
have no equivalent structured versions but which, nevertheless, can be partially
structured into their maximally-structured representations. Intuitively, a process
model M of a concurrent process P is maximally-structured if and only if there
exists no process model that describes P and is composed of more structured mod-
eling patterns (single-entry-single-exit fragments) than M. A maximally-structured
process model is a mixture of structured and unstructured phases of the process,
similar to an ice-water mixture which has ice cubes as one phase and water as a
second phase of the same substance.

The cyclic case of the structuring problem is addressed in [3]. This work proposes
a structuring technique and argues about the rationality of its individual stages (by
means of proof-sketching). The technique can be seen as a two-stage approach.
First, an input process model is transformed into an equivalent one in which all the
concurrency is kept encapsulated in single-entry-single-exit fragments. Second, the
obtained model is structured by iteratively applying the approach from [9] to its
parts.

3.2 Industry: Products and Standards

The software industry has a long tradition in implementing workflow or process
management systems that are based on explicit control flow. Early publications

260

The Structured Phase of Concurrency

show quite a variety of systems that were available [15]. Based on the variety and
sheer number of systems, standards were developed in context of process modeling
and process execution: Web Services Business Process Execution Language (BPEL)
[16] and Business Process Model and Notation (BPMN) [17].

By its nature, BPEL is a structured language. It does not propose native
support for unstructured control flow patterns. Whenever an inherently unstructured
process needs to be specified in BPEL, one has to rely on the means in BPEL
for implicit control flow definition, e.g., the event handler construct [18] or a
combination of flow and link constructs [19]. For example, an event handler can
be used to orchestrate a subset of concurrent process steps via event-action rules,
which essentially are preconditions for execution of concurrent steps. In contrast,
BPMN allows unstructured process modeling. This means that BPMN as the
process definition language supports unstructured process specifications. Systems
that implement their execution model and semantics based on BPMN can support
unstructured process execution.

In the following, we give some examples of process management systems
proposed by the software industry (the list is by no means exhaustive). Examples
of systems that support BPEL are: Oracle BPEL Process Manager [20] and IBM
Business Process Manager Advanced [21]. Those supporting BPMN are: TIBCO
ActiveMatrix BPM [22], IBM Business Process Manager [21], Appian BPM Suite
[23] and Pegasystems [24]. The system from IBM appears to be a hybrid system that
supports both, BPMN and BPEL. Yet, there are process management systems that
follow neither BPEL nor BPMN, and those might very well support unstructured
processes. For instance, a system not based on standards is Microsoft Workflow
Manager [25, 26]; note that the documentation of this product suggests that the
control flow model is supporting only structured modeling. Finally, the web site
www.workflowpatterns.com [27] discusses some details of unstructured support and
compares a few industry products.

Constructs for concurrency are natively supported in several programming
languages, e.g., Java and C#. The Windows Workflow Foundation (WWF) has been
introduced as a part of the .NET Framework and is a means of implementing long-
running processes. It is a common requirement for programming languages that
fragments of control flow that include concurrency must be structured. For instance,
the WWF does not support arbitrary cycles with parallel branching [28].

4 Expectations and Recommendations

Concurrent process modeling/programming has been practiced for years. However,
recently, one can observe a remarkable growth of interest in concurrent processes;
mainly, for the purpose of automation. One of the reasons for this is physical con-
straints that forbid frequency scaling in modern computer processors. Nowadays,
parallel computing is the dominant paradigm in computer architectures. It gets
harder to rely on hardware when getting performance improvements out of good

261

www.workflowpatterns.com

A. Polyvyanyy and C. Bussler

old sequential processes [29]. Rather, sequential processes should be redesigned to
allow for simultaneous execution of their parts. We expect that this trend will remain
for years to come leading to new requirements on the way processes are modeled.

A formal language that includes constructs for representing process steps and
arbitrary jumps between steps can be employed to describe any process (with
respect to control flow). Nevertheless, for considerations like clarity, quality,
maintainability, modularity, etc., of process models, formal process languages often
include high level constructs. Advantages of the structured process modeling style
over the unstructured one (and vice versa) have been a topic of active debates
for decades. Structured process modeling confines itself to constructs that map to
single-entry-single-exit patterns. If the structured process modeling methodology is
enforced, one has to accept that certain concurrent processes cannot be modeled.

Results reported in [3, 7–9, 14] provide a basis for structured modeling of
concurrent processes, most of which are implemented in a tool called bpstruct;
the tool is publicly available at http://code.google.com/p/bpstruct/. Evaluations
conducted in [9, 14] report on small average times required to structure real world
process models taken from industry. However, in theory, the structuring techniques
are inherently complex. For instance, for certain inputs, these techniques subsume
a problem for which finding a solution is NP-complete. Future studies must show if
the theoretic complexity of structuring algorithms can be improved. Other directions
for future work on structuring are outlined in [3].

In terms of products and standards, our expectation is that over time more and
more products will support structured as well as unstructured modeling in order
to cater for more and wider use cases. Our recommendation is that standards and
companies explicitly discuss their support for unstructured processes and extend
their modeling tools to incorporate automated transformation from unstructured to
structured processes where possible.

Acknowledgments The first author is supported by the ARC Linkage Project LP110100252
“Facilitating Business Process Standardisation and Reuse”.

References

1. Sassone, V., Nielsen, M., Winskel, G.: Models for concurrency: Towards a classification.
Theoretical Computer Science (TCS) 170(1–2) (1996) 297–348

2. Modell, M., Reid, R.: Thermodynamics and Its Applications. International Series in the
Physical and Chemical Engineering Sciences. Prentice-Hall (1974)

3. Polyvyanyy, A.: Structuring Process Models. PhD thesis, University of Potsdam (2012)
4. Böhm, C., Jacopini, G.: Flow diagrams, Turing machines and languages with only two

formation rules. Communications of the ACM (CACM) 9(5) (1966) 366–371
5. Williams, M.H., Ossher, H.L.: Conversion of unstructured flow diagrams to structured form.

The Computer Journal (CJ) 21(2) (1978) 161–167
6. Oulsnam, G.: Unravelling unstructured programs. The Computer Journal (CJ) 25(3) (1982)

379–387

262

http://code.google.com/p/bpstruct/

The Structured Phase of Concurrency

7. Kiepuszewski, B., ter Hofstede, A.H.M., Bussler, C.: On structured workflow modelling. In:
Conference on Advanced Information Systems Engineering (CAiSE). Volume 1789 of Lecture
Notes in Computer Science., Springer (2000) 431–445

8. Polyvyanyy, A., Garcı́a-Bañuelos, L., Dumas, M.: Structuring acyclic process models. In:
Business Process Management (BPM). Volume 6336 of Lecture Notes in Computer Science.,
Springer (2010) 276–293

9. Polyvyanyy, A., Garcı́a-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Infor-
mation Systems (IS) 37(6) (2012) 518–538

10. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and generalization of the
refined process structure tree. In: Web Services and Formal Methods (WS-FM). Volume 6551
of Lecture Notes in Computer Science., Springer (2010) 25–41

11. McMillan, K.L.: A technique of state space search based on unfolding. Formal Methods in
System Design (FMSD) 6(1) (1995) 45–65

12. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algorithm.
Formal Methods in System Design (FMSD) 20(3) (2002) 285–310

13. McConnell, R.M., de Montgolfier, F.: Linear-time modular decomposition of directed graphs.
Discrete Applied Mathematics (DAM) 145(2) (2005) 198–209

14. Polyvyanyy, A., Garcı́a-Bañuelos, L., Fahland, D., Weske, M.: Maximal structuring of acyclic
process models. The Computer Journal (CJ). (first published online September 19, 2012)
doi:10.1093/comjnl/bxs126.

15. Jablonski, S., Bussler, C.: Workflow Management — Modeling Concepts, Architecture and
Implementation. International Thomson (1996)

16. OASIS: Web Services Business Process Execution Language Version 2.0. OASIS Standard.
(April 2007) http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf.

17. Object Management Group (OMG): Business Process Model and Notation (BPMN) Version
2.0. OMG Standard. (January 2011) http://www.omg.org/spec/BPMN/2.0.

18. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P., Mendling, J.: From
business process models to process-oriented software systems. ACM Transactions on Software
Engineering and Methodology (TOSEM) 19(1) (2009)

19. Lohmann, N., Kleine, J.: Fully-automatic translation of open workflow net models into simple
abstract BPEL processes. In: Modellierung. Volume 127 of Lecture Notes in Informatics., GI
(2008) 57–72

20. Oracle BPEL Process Manager: http://www.oracle.com/technetwork/middleware/bpel/
overview/index.html.

21. IBM Business Process Manager and IBM Business Process Manager Advanced: ftp://
ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/
ibpmoverviewpdfen.pdf.

22. TIBCO ActiveMatrix BPM: http://www.tibco.com/multimedia/ds-amx-bpmtcm8-11546.pdf.
23. Appian BPM Suite: http://www.appian.com/bpm-software/bpm-for-designers/process-

management.jsp.
24. Craggs, S.: Comparing BPM from Pegasystems, IBM and TIBCO. (August 2011) http://

soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-IBM-vs-Pega.pdf.
25. Microsoft Workflow Manager: http://msdn.microsoft.com/en-us/library/windowsazure/

jj193528%28v=azure.10%29.aspx.
26. Control Flow Activity Designers: http://msdn.microsoft.com/en-us/library/ee829560.aspx.
27. www.workflowpatterns.com: Pattern 10 (Arbitrary Cycles). http://www.workflowpatterns.

com/patterns/control/structural/wcp10.php.
28. Zapletal, M., van der Aalst, W.M.P., Russell, N., Liegl, P., Werthner, H.: An analysis of

Windows workflow’s control-flow expressiveness. In: European Conference on Web Services
(ECOWS), IEEE Computer Society (2009) 200–209

29. Sutter, H.: The free lunch is over: A fundamental turn toward concurrency in software.
Dr. Dobb’s Journal 30(3) (2005) 202–210

263

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.omg.org/spec/BPMN/2.0
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
http://www.oracle.com/technetwork/middleware/bpel/overview/index.html
ftp://ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/ibpm overview pdf en.pdf
ftp://ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/ibpm overview pdf en.pdf
ftp://ftp.software.ibm.com/software/integration/business-process-manager/library/pdf801/ibpm overview pdf en.pdf
http://www.tibco.com/multimedia/ds-amx-bpm tcm8-11546.pdf
http://www.appian.com/bpm-software/bpm-for-designers/process-management.jsp
http://www.appian.com/bpm-software/bpm-for-designers/process-management.jsp
http://soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-IBM-vs-Pega.pdf
http://soapower.com/IBMBPM/Whitepapers/IBM-BPM-Analyst-Report-on-IBM-vs-Pega.pdf
http://msdn.microsoft.com/en-us/library/windowsazure/jj193528%28v=azure.10%29.aspx
http://msdn.microsoft.com/en-us/library/windowsazure/jj193528%28v=azure.10%29.aspx
http://msdn.microsoft.com/en-us/library/ee829560.aspx
www.workflowpatterns.com
http://www.workflowpatterns.com/patterns/control/structural/wcp10.php
http://www.workflowpatterns.com/patterns/control/structural/wcp10.php

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CaiSE 2001, LNCS 2068, pp. 108–123, 2001
© Springer-Verlag Berlin Heidelberg 2001

A Requirements-Driven Development Methodology∗

Jaelson Castro1, Manuel Kolp2,and John Mylopoulos2

1 Centro de Informática, Universidade Federal de Pernambuco, Av. Prof. Luiz Freire S/N,

Recife PE, Brazil 50732-970∗∗
jbc@cin.ufpe.br

2 Department of Computer Science, University of Toronto, 10 King’s College Road,
Toronto M5S3G4, Canada

{mkolp,jm}@cs.toronto.edu

Abstract. Information systems of the future will have to better match their
operational organizational environment. Unfortunately, development
methodologies have traditionally been inspired by programming concepts, not
organizational ones, leading to a semantic gap between the system and its
environment. To reduce as much as possible this gap, this paper proposes a
development methodology named Tropos which is founded on concepts used to
model early requirements. Our proposal adopts the i* organizational modeling
framework [18], which offers the notions of actor, goal and (actor) dependency,
and uses these as a foundation to model early and late requirements,
architectural and detailed design. The paper outlines Tropos phases through an
e-business example. The methodology seems to complement well proposals for
agent-oriented programming platforms.

1 Introduction

Information systems have traditionally suffered from an impedance mismatch. Their
operational environment is understood in terms of actors, responsibilities, objectives,
tasks and resources, while the information system itself is conceived as a collection of
(software) modules, entities (e.g., objects, agents), data structures and interfaces. This
mismatch is one of the main factors for the poor quality of information systems, also
the frequent failure of system development projects.

One cause of this mismatch is that development methodologies have traditionally
been inspired and driven by the programming paradigm of the day. This means that
the concepts, methods and tools used during all phases of development were based on
those offered by the pre-eminent programming paradigm. So, during the era of
structured programming, structured analysis and design techniques were proposed
[9,17], while object-oriented programming has given rise more recently to object-

∗ The Tropos project has been partially funded by the Natural Sciences and Engineering

Research Council (NSERC) of Canada, and Communications and Information Technology
Ontario (CITO), a centre of excellence, funded by the province of Ontario.

∗∗ This work was carried out during a visit to the Department of Computer Science, University
of Toronto. Partially supported by the CNPq – Brazil under grant 203262/86-7.

265

mailto:{mkolp,jm}@cs.toronto.edu

oriented design and analysis [1,15]. For structured development techniques this meant
that throughout software development, the developer can conceptualize the system in
terms of functions and processes, inputs and outputs. For object-oriented
development, on the other hand, the developer thinks throughout in terms of objects,
classes, methods, inheritance and the like.

Using the same concepts to align requirements analysis with system design and
implementation makes perfect sense. For one thing, such an alignment reduces
impedance mismatches between different development phases. Moreover, such an
alignment can lead to coherent toolsets and techniques for developing system (and it
has!) as well, it can streamline the development process itself.

But, why base such an alignment on implementation concepts? Requirements
analysis is arguably the most important stage of information system development.
This is the phase where technical considerations have to be balanced against social
and organizational ones and where the operational environment of the system is
modeled. Not surprisingly, this is also the phase where the most and costliest errors
are introduced to a system. Even if (or rather, when) the importance of design and
implementation phases wanes sometime in the future, requirements analysis will
remain a critical phase for the development of any information system, answering the
most fundamental of all design questions: “what is the system intended for?”

Information systems of the future like ERP, Knowledge Management or e-business
systems should be designed to match their operational environment. For instance,
ERP systems have to implement a process view of the enterprise to meet business
goals, tightly integrating all functions from the operational environment. To reduce as
much as possible this impedance mismatch between the system and its environment,
we outline in this paper a development framework, named Tropos, which is
requirements-driven in the sense that it is based on concepts used during early
requirements analysis. To this end, we adopt the concepts offered by i* [18], a
modeling framework offering concepts such as actor (actors can be agents, positions
or roles), as well as social dependencies among actors, including goal, softgoal, task
and resource dependencies. These concepts are used for an e-commerce example1 to
model not just early requirements, but also late requirements, as well as architectural
and detailed design. The proposed methodology spans four phases:

• Early requirements, concerned with the understanding of a problem by studying an
organizational setting; the output of this phase is an organizational model which
includes relevant actors, their respective goals and their inter-dependencies.

• Late requirements, where the system-to-be is described within its operational
environment, along with relevant functions and qualities.

• Architectural design, where the system’s global architecture is defined in terms of
subsystems, interconnected through data, control and other dependencies.

• Detailed design, where behaviour of each architectural component is defined in
further detail.

The proposed methodology includes techniques for generating an implementation
from a Tropos detailed design. Using an agent-oriented programming platform for the
implementation seems natural, given that the detailed design is defined in terms of

1 Although, we could have included a simpler (toy) example, we decided to present a

realistic e-commerce system development exercise of moderate complexity [6].

J. Castro, M. Kolp and J. Mylopoulos 266

(system) actors, goals and inter-dependencies among them. For this paper, we have
adopted JACK as programming platform to study the generation of an implementation
from a detailed design. JACK is a commercial product based on the BDI (Beliefs-
Desires-Intentions) agent architecture. Early previews of the Tropos methodology
appeared in [2, 13].

Section 2 of the paper describes a case study for a B2C (business to consumer) e-
commerce application. Section 3 introduces the primitive concepts offered by i* and
illustrates their use with an example. Sections 4, 5, and 6 illustrate how the technique
works for late requirements, architectural design and detailed design respectively.
Section 7 sketches the implementation of the case study using the JACK agent
development environment. Finally, Section 8 summarizes the contributions of the
paper, and relates it to the literature.

2 A Case Study

Media Shop is a store selling and shipping different kinds of media items such as
books, newspapers, magazines, audio CDs, videotapes, and the like. Media Shop
customers (on-site or remote) can use a periodically updated catalogue describing
available media items to specify their order. Media Shop is supplied with the latest
releases and in-catalogue items by Media Supplier. To increase market share, Media
Shop has decided to open up a B2C retail sales front on the internet. With the new
setup, a customer can order Media Shop items in person, by phone, or through the
internet. The system has been named Medi@ and is available on the world-wide-web
using communication facilities provided by Telecom Cpy. It also uses financial
services supplied by Bank Cpy, which specializes on on-line transactions.

The basic objective for the new system is to allow an on-line customer to examine
the items in the Medi@ internet catalogue, and place orders.

There are no registration restrictions, or identification procedures for Medi@ users.
Potential customers can search the on-line store by either browsing the catalogue or
querying the item database. The catalogue groups media items of the same type into
(sub)hierarchies and genres (e.g., audio CDs are classified into pop, rock, jazz, opera,
world, classical music, soundtrack, …) so that customers can browse only
(sub)categories of interest.

An on-line search engine allows customers with particular items in mind to search
title, author/artist and description fields through keywords or full-text search. If the
item is not available in the catalogue, the customer has the option of asking Media
Shop to order it, provided the customer has editor/publisher references (e.g., ISBN,
ISSN), and identifies herself (in terms of name and credit card number).

3 Early Requirements with i*

During early requirements analysis, the requirements engineer captures and analyzes
the intentions of stakeholders. These are modeled as goals which, through some form
of a goal-oriented analysis, eventually lead to the functional and non-functional
requirements of the system-to-be [7]. In i* (which stands for “distributed

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 267

intentionality’’), early requirements are assumed to involve social actors who depend
on each other for goals to be achieved, tasks to be performed, and resources to be
furnished. The i* framework includes the strategic dependency model for describing
the network of relationships among actors, as well as the strategic rationale model for
describing and supporting the reasoning that each actor goes through concerning its
relationships with other actors. These models have been formalized using intentional
concepts from AI, such as goal, belief, ability, and commitment (e.g., [5]). The
framework has been presented in detail in [18] and has been related to different
application areas, including requirements engineering, software processes and
business process reengineering.

A strategic dependency model is a graph, where each node represents an actor, and
each link between two actors indicates that one actor depends on another for
something in order that the former may attain some goal. We call the depending actor
the depender and the actor who is depended upon the dependee. The object around
which the dependency centers is called the dependum. Figure 1 shows the beginning
of an i* model.

Orders
Customer

Handle

Items
Buy Media

Increase
Market Share

Customers
Happy

Media
ShopCustomer

Fig. 1. “Customers want to buy media items, while the Media Shop wants to increase market
share, handle orders and keep customers happy”

The two main stakeholders for a B2C application are the consumer and the
business actors named respectively in our case Customer and Media Shop. The
customer has one relevant goal Buy Media Items (represented as an oval-shaped icon),
while the media store has goals Handle Customer Orders, Happy Customers, and
Increase Market Share. Since the last two goals are not well-defined, they are
represented as softgoals (shown as cloudy shapes).

Once the relevant stakeholders and their goals have been identified, a strategic
rationale model determines through a means-ends analysis how these goals (including
softgoals) can actually be fulfilled through the contributions of other actors. A
strategic rationale model is a graph with four types of nodes – goal, task, resource,
and softgoal – and two types of links – means-ends links and process decomposition
links. A strategic rationale graph captures the relationship between the goals of each
actor and the dependencies through which the actor expects these dependencies to be
fulfilled.

Figure 2 focuses on one of the (soft)goal identified for Media Shop, namely
Increase Market Share. The analysis postulates a task Run Shop (represented in terms
of a hexagonal icon) through which Increase Market Share can be fulfilled. Tasks are
partially ordered sequences of steps intended to accomplish some (soft)goal. Tasks

J. Castro, M. Kolp and J. Mylopoulos 268

can be decomposed into goals and/or subtasks, whose collective fulfillment completes
the task. In the figure, Run Shop is decomposed into goals Handle Billing and Handle
Customer Orders, tasks Manage Staff and Manage Inventory, and softgoal Improve
Service which together accomplish the top-level task. Sub-goals and subtasks can be
specified more precisely through refinement. For instance, the goal Handle Customer
Orders is fulfilled either through tasks OrderByPhone, OrderInPerson or
OrderByInternet while the task Manage Inventory would be collectively
accomplished by tasks Sell Stock and Enhance Catalogue.

Means-ends link

Legend Actor Boundary

Actor

Softgoal

Task

Ressource

Goal

Decomposition link

Dependency
XDepender Dependee

Happy
Customers

Process
InternetBank Cpy

Market Share
Increase

Accounting

Cpy
Telecom Communication

Services Medi@

Supplier
Media

Items
Media

Orders

Customer

Items
Buy Media

Service
Improve

Phone
OrderBy

Be Friendly

Enhance
Catalogue

Run Shop

Select
Items

Consult
Catalogue

OrderBy
Internet

Staff
Training

Billing
Handle

Business
Continuing

Orders
Customer
Handle

Person
OrderIn

Determine
Amount

Sell Stock

Shop
Manage
Staff

Inventory
Manage

Media

Desires
Customer
Satisfy

Fig. 2. Means-ends analysis for the softgoal Increase Market Share

4 Late Requirements Analysis

Late requirements analysis results in a requirements specification which describes all
functional and non-functional requirements for the system-to-be. In Tropos, the
information system is represented as one or more actors which participate in a
strategic dependency model, along with other actors from the system’s operational
environment. In other words, the system comes into the picture as one or more actors
who contribute to the fulfillment of stakeholder goals. For our example, the Medi@
system is introduced as an actor in the strategic dependency model depicted in
Figure 3.

With respect to the actors identified in Figure 2, Customer depends on Media Shop
to buy media items while Media Shop depends on Customer to increase market share
and remain happy (with Media Shop service). Media Supplier is expected to provide

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 269

Media Shop with media items while depending on the latter for continuing long-term
business. He can also use Medi@ to determine new needs from customers, such as
media items not available in the catalogue. As indicated earlier, Media Shop depends
on Medi@ for processing internet orders and on Bank Cpy to process business
transactions. Customer, in turn, depends on Medi@ to place orders through the
internet, to search the database for keywords, or simply to browse the on-line
catalogue. With respect to relevant qualities, Customer requires that transaction
services be secure and usable, while Media Shop expects Medi@ to be easily
maintainable (e.g., catalogue enhancing, item database evolution, user interface
update, …). The other dependencies have already been described in Figure 2.

Increase
Market Share

Browse
Catalogue

Buy Media

Usability

Telecom
Cpy

Media
Supplier

Items

Services
Internet

Services
Communication

Customer

Orders
Internet
Process

Place Order

Keyword
Search

Bank Cpy

Find User
Medi@

Business
Continuing

Media Shop

Media Items

New Needs

Security

Maintainability

Transactions
Money

Process
On-line

Accounting

Happy
Customers

Fig. 3. Strategic dependency model for a media shop

As late requirements analysis proceeds, Medi@ is given additional responsibilities,
and ends up as the depender of several dependencies. Moreover, the system is
decomposed into several sub-actors which take on some of these responsibilities. This
decomposition and responsibility assignment is realized using the same kind of
means-ends analysis along with the strategic rationale analysis illustrated in Figure 2.
Hence, the analysis in Figure 4 focuses on the system itself, instead of a external
stakeholder.

The figure postulates a root task Internet Shop Managed providing sufficient
support (++) [3] to the softgoal Increase Market Share. That task is firstly refined into
goals Internet Order Handled and Item Searching Handled, softgoals Attract New
Customer, Secure and Usable and tasks Produce Statistics and Maintenance. To
manage internet orders, Internet Order Handled is achieved through the task
Shopping Cart which is decomposed into subtasks Select Item, Add Item, Check Out,
and Get Identification Detail. These are the main process activities required to design
an operational on-line shopping cart [6]. The latter (goal) is achieved either through

J. Castro, M. Kolp and J. Mylopoulos 270

sub-goal Classic Communication Handled dealing with phone and fax orders or
Internet Handled managing secure or standard form orderings. To allow for the
ordering of new items not listed in the catalogue, Select Item is also further refined
into two alternative subtasks, one dedicated to select catalogued items, the other to
preorder unavailable products.

To provide sufficient support (++) to the Maintainable softgoal, Maintenance is
refined into four subtasks dealing with catalogue updates, system evolution, interface
updates and system monitoring.

++

++

Place

Market Share

Items

Cpy

Buy

Keyword

Media

Order

Secure

Usable

-

-
-

Search

Usability

+

Catalogue

Consulting

On-line
Money

Transactions

Process

Media

+

-

+

Cpy
Telecom

-
Catalogue

Order

Supplier

Form

Bank

Media
Shop

Orders
Internet
Process

Browse

Secure

Get

+

Detail

Update
Catalogue

Maintenance

Produce
Statistics

Security

Identification

Customer
Attract New

Customer

Maintainability

IncreaseServices

Internet

Handled

Internet

Internet
Handled

Searching
Item

Managed
Shop

Handled

New Needs

Internet

Orders

Find User

Medi@

Shopping

Database
System

Monitoring

Handled

Cart

Standard

Evolution
System

ClassicPre-Order

Form

Order
FaxPhone

Order

Order

CommunicationAvailable

Check Out
Add Item

Non Available

Querying

Item

Maintainable

Select Item

Pick

Item

Update GUI

Fig. 4. Strategic rationale model for Medi@

The goal Item Searching Handled might alternatively be fulfilled through tasks
Database Querying or Catalogue Consulting with respect to customers’ navigating
desiderata, i.e., searching with particular items in mind by using search functions or
simply browsing the catalogued products.

In addition, as already pointed, Figure 4 introduces softgoal contributions to model
sufficient/partial positive (respectively ++ and +) or negative (respectively - - and -)
support to softgoals Secure, Usable, Maintainable, Attract New Customers and

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 271

Increase Market Share. The result of this means-ends analysis is a set of (system and
human) actors who are dependees for some of the dependencies that have been
postulated.

Figure 5 suggests one possible assignment of responsibilities identified for Medi@.
The Medi@ system is decomposed into four sub-actors: Store Front, Billing
Processor, Service Quality Manager and Back Store.

Store Front interacts primarily with Customer and provides her with a usable front-
end web application. Back Store keeps track of all web information about customers,
products, sales, bills and other data of strategic importance to Media Shop. Billing
Processor is in charge of the secure management of orders and bills, and other
financial data; also of interactions to Bank Cpy. Service Quality Manager is
introduced in order to look for security gaps, usability bottlenecks and maintainability
issues.

Telecom
Cpy

Accounting

Buy Media
Items

Bills
Processing

Customer

Medi@

Store
Front

Manager
Quality
Service

Bank Cpy

Store
Back

Process
On-line Money
Transactions

Data Report

Web

Manager
Media

Delivery
Media

Media
Shop

Usability

Catalogue
Browse

Keyword
Search

Maintainability

Place Order

Security

Network
Tracing

Quality
Monitor

Deliver
Order

Billing
Processor

Fig. 5. The web system consists of four inside actors, each with external dependencies

All four sub-actors need to communicate and collaborate. For instance, Store Front
communicates to Billing Processor relevant customer information required to process
bills. For the rest of the section, we focus on Store Front. This actor is in charge of
catalogue browsing and item database searching, also provides on-line customers with
detailed information about media items. We assume that different media shops
working with Medi@ may want to provide their customers with various forms of
information retrieval (Boolean, keyword, thesaurus, lexicon, full text, indexed list,
simple browsing, hypertext browsing, SQL queries, etc.).

Store Front is also responsible for supplying a customer with a web shopping cart
to keep track of selected items. We assume that different media shops using the
Medi@ system may want to provide customers with different kinds of shopping carts
with respect to their internet browser, plug-ins configuration or platform or simply
personal wishes (e.g., Java mode, simple browser, frame-based, CGI shopping
cart,…)

J. Castro, M. Kolp and J. Mylopoulos 272

Finally, Store Front initializes the kind of processing that will be done (by Billing
Processor) for a given order (phone/fax, internet standard form or secure encrypted
form). We assume that different media shop managers using Medi@ may be
processing various types of orders differently, and that customers may be selecting the
kind of delivery system they would like to use (UPS, FedEx, …).

Resource, task and softgoal dependencies correspond naturally to functional and
non-functional requirements. Leaving (some) goal dependencies between system
actors and other actors is a novelty. Traditionally, functional goals are
“operationalized” during late requirements [7], while quality softgoals are either
operationalized or “metricized” [8]. For example, Billing Processor may be
operationalized during late requirements analysis into particular business processes
for processing bills and orders. Likewise, a security softgoal might be operationalized
by defining interfaces which minimize input/output between the system and its
environment, or by limiting access to sensitive information. Alternatively, the security
requirement may be metricized into something like “No more than X unauthorized
operations in the system-to-be per year”.

Leaving goal dependencies with system actors as dependees makes sense whenever
there is a foreseeable need for flexibility in the performance of a task on the part of
the system. For example, consider a communication goal “communicate X to Y”.
According to conventional development techniques, such a goal needs to be
operationalized before the end of late requirements analysis, perhaps into some sort of
a user interface through which user Y will receive message X from the system. The
problem with this approach is that the steps through which this goal is to be fulfilled
(along with a host of background assumptions) are frozen into the requirements of the
system-to-be. This early translation of goals into concrete plans for their fulfillment
makes systems fragile and less reusable.

In our example, we have left three goals in the late requirements model. The first
goal is Usability because we propose to implement Store Front and Service Quality
Manager as agents able to automatically decide at run-time which catalogue browser,
shopping cart and order processor architecture fit best customer needs or
navigator/platform specifications. Moreover, we would like to include different search
engines, reflecting different search techniques, and let the system dynamically choose
the most appropriate. The second key softgoal in the late requirements specification is
Security. To fulfil it, we propose to support in the system’s architecture a number of
security strategies and let the system decide at run-time which one is the most
appropriate, taking into account environment configurations, web browser
specifications and network protocols used. The third goal is Maintainability, meaning
that catalogue content, database schema, and architectural model can be dynamically
extended to integrate new and future web-related technologies.

5 Architectural Design

A system architecture constitutes a relatively small, intellectually manageable model
of system structure, which describes how system components work together. For our
case study, the task is to define (or choose) a web-based application architecture. The
canonical web architecture consists of a web server, a network connection,
HTML/XML documents on one or more clients communicating with a Web server

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 273

via HTTP, and an application server which enables the system to manage business
logic and state. This architecture is not intended to preclude the use of distributed
objects or Java applets; nor does it imply that the web server and application server
cannot be located on the same machine.

By now, software architects have developed catalogues of web architectural styles
(e.g., [6]). The three most common styles are the Thin Web Client, Thick Web Client
and Web Delivery. Thin Web Client is most appropriate for applications where the
client has minimal computing power, or no control over its configuration. The client
requires only a standard forms-capable web browser. Thick Web Client extends the
Thin Web Client style with the use of client-side scripting and custom objects, such as
ActiveX controls and Java applets. Finally, Web Delivery offers a traditional
client/server system with a web-based delivery mechanism. Here the client
communicates directly with object servers, bypassing HTTP. This style is appropriate
when there is significant control over client and network configuration.

The first task during architectural design is to select among alternative architectural
styles using as criteria the desired qualities identified earlier. The analysis involves
refining these qualities, represented as softgoals, to sub-goals that are more specific
and more precise and then evaluating alternative architectural styles against them, as
shown in Figure 6. The styles are represented as operationalized softgoals (saying,
roughly, “make the architecture of the new system Web Delivery-/Thin Web-/Thick
Web-based”) and are evaluated with respect to the alternative non-functional softgoals
as shown in Figure 6. Design rationale is represented by claim softgoals drawn as
dashed clouds. These can represent contextual information (such as priorities) to be
considered and properly reflected into the decision making process. Exclamation
marks (! and !!) are used to mark priority softgoals while a check-mark “✔” indicates
a fulfilled softgoal, while a cross “✕✕✕✕ ” labels a unfulfillable one.

++

Performance

! !

!!

++

--

+

--

+

+

--

-

!!

!!

!

+ +

!

["Vital Goals"]
Claim

Usability Security

Confidentiality

Integrity Performance

Comprehen-
sibility

Web Delivery Architecture Thick Web ArchitectureThin Web Architecture

Reusability

Availability

--

++

["Restrictions

+
+

+

++

++

Sophisticated
Interface

to browse
the catalogue"]

Claim

Claim
["Anonymous

the system"]
people can use

++

+

--

++ ++

-

-

Dynamicity

++

Maintainability

Portability

Updatibility
+

Time

Fig. 6. Refining softgoals in architectural design

The Usability softgoal has been AND-decomposed into sub-goals Comprehen-
sibility, Portability and Sophisticated Interface. From a customer perspective, it is
important for Medi@ to be intuitive and ergonomic. The look-and-feel of the interface

J. Castro, M. Kolp and J. Mylopoulos 274

must naturally guides customer actions with minimal computer knowledge. Equally
strategic is the portability of the application across browser implementations and the
quality of the interface. Note that not all HTML browsers support scripting, applets,
controls and plug-ins. These technologies make the client itself more dynamic, and
capable of animation, fly-over help, and sophisticated input controls. When only
minimal business logic needs to be run on the client, scripting is often an easy and
powerful mechanism to use. When truly sophisticated logic needs to run on the client,
building Java applets, Java beans, or ActiveX controls is probably a better approach.
A comparable analysis is carried out for Security and Maintainability.

As shown in Figure 6, each of the three web architectural styles contributes
positively or negatively to the qualities of interest. For instance, Thin Web Client is
useful for applications where only the most basic client configuration can be
guaranteed. Hence, this architecture does well with respect to Portability. However, it
has a limited capacity to support Sophisticated User Interfaces. Moreover, this
architecture relies on a connectionless protocol such as HTTP, which contributes
positively to system availability.

On the other hand, Thick Web Client is generally not portable across browser
implementations, but can more readily support sophisticated interfaces. As with Thin
Web Client, all communication between client and server is done with HTTP, hence
its positive contribution to Availability. On the negative side, client-side scripting and
custom objects, such as ActiveX controls and Java applets, may pose risks to client
confidentiality. Last but not least, Web Delivery is highly portable, since the browser
has some built-in capabilities to automatically download the needed components from
the server. However, this architecture requires a reliable network.

This phase also involves the introduction of new system actors and dependencies,
as well as the decomposition of existing actors and dependencies into sub-actors and
sub-dependencies which are delegated some of the responsibilities of the key system
actors introduced earlier.

Figure 7 focuses on the latter kind of refinement. To accommodate the
responsibilities of Store Front, we introduce Item Browser to manage catalogue
navigation, Shopping Cart to select and custom items, Customer Profiler to track
customer data and produce client profiles, and On-line Catalogue to deal with digital
library obligations. To cope with the non-functional requirement decomposition
proposed in Figure 6, Service Quality Manager is further refined into four new system
sub-actors Usability Manager, Security Checker, Maintainability Manager and
Performance Monitor, each of them assuming one of the top main softgoals explained
previously. Further refinements are shown on Figure 7.

An interesting decision that comes up during architectural design is whether
fulfillment of an actor’s obligations will be accomplished through assistance from
other actors, through delegation (”outsourcing”), or through decomposition of the
actor into component actors. Going back to our running example, the introduction of
other actors described in the previous paragraph amounts to a form of delegation in
the sense that Store Front retains its obligations, but delegates subtasks, sub-goals etc.
to other actors. An alternative architectural design would have Store Front
outsourcing some of its responsibilities to some other actors, so that Store Front
removes itself from the critical path of obligation fulfilment. Lastly, StoreFront may
be refined into an aggregate of actors which, by design work together to fulfil Store
Front’s obligations. This is analogous to a committee being refined into a collection
of members who collectively fulfil the committee’s mandate. It is not clear, at this

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 275

point, how the three alternatives compare, nor what are their respective strengths and
weaknesses.

Manager
ability

Maintain-

Processor
Order

Delivery
Processor

Processor
Statistics

Manager
Usability

Security
Checker

Usable

Secure

Selected
Items

Ratings

Maintainable

Browser
Item

Item
Detail

Shopping
Cart

Profiler
Customer

Customer
Data

Profile
Customer

Information
Billing

Check
Out

Front
Store

Processor
Billing

Back
Store

Service
Quality
Manager

Performance

Performance
Monitor

Catalogue
On-line

Consult
Catalogue

Item
Select

Information
Cart

Processor Invoice
Processor

Accounting

Payment
Request

Process
Invoice

Detail
Delivery

Fig. 7. Strategic Dependency Model for Medi@ actors

6 Detailed Design

The detailed design phase is intended to introduce additional detail for each
architectural component of a system. In our case, this includes actor communication
and actor behavior. To support this phase, we propose to adopt existing agent
communication languages, message transportation mechanisms and other concepts
and tools. One possibility, for example, is to adopt one of the extensions to UML
proposed by the FIPA (Foundation for Intelligent Agents) and the OMG Agent Work
group [14]. The rest of the section concentrates on the Shopping cart actor and the
check out dependency.

To specify the checkout task, for instance, we use AUML - the Agent Unified
Modeling Language [14], which supports templates and packages to represent
checkout as an object, but also in terms of sequence and collaborations diagrams.

Figure 8 focuses on the protocol between Customer and Shopping Cart which
consists of a customization of the FIPA Contract Net protocol [14]. Such a protocol
describes a communication pattern among actors, as well as constraints on the
contents of the messages they exchange.

When a Customer wants to check out, a request-for-proposal message is sent to
Shopping Cart, which must respond before a given timeout (for network security and
integrity reasons). The response may refuse to provide a proposal, submit a proposal,
or express miscomprehension. The diamond symbol with an “✕✕✕✕ ” indicates an
“exclusive or” decision. If a proposal is offered, Customer has a choice of either

J. Castro, M. Kolp and J. Mylopoulos 276

accepting or canceling the proposal. The internal processing of Shopping Cart’s
checkout plan is described in Figure 9.

12/19/00
9:31 53

X

X

X

Timeout

Plan Diagram (cf. Figure 9)

checkout-request for proposal

refuse

not-understood Notification

propose

Decision

cancel-proposal

accept-proposal

inform
succeeded

failure

FIPA Contract Net Protocol

accept-proposal, succeeded, failure
propose, cancel-proposal
checkout-rfp, refuse, not-understood,

12/19/00 at 9:31 53

Customer, Shopping Cart

Fig. 8. Agent interaction protocol focusing on a checkout dialogue

At the lowest level, we use plan diagrams [12] (See Figure 9), to specify the
internal processing of atomic actors. The initial transition of the plan diagram is
labeled with an activation event (Press checkout button) and activation condition
([checkout button activated]) which determine when and in what context the plan
should be activated. Transitions from a state automatically occur when exiting the
state and no event is associated (e.g., when exiting Fields Checking) or when the
associated event occurs (e.g., Press cancel button), provided in all cases that the
associated condition is true (e.g., [Mandatory fields filled]). When the transition
occurs any associated action is performed (e.g., verifyCC()).

An important feature of plan diagrams is their notion of failure. Failure can occur
when an action upon a transition fails, when an explicit transition to a fail state
(denoted by a small no entry sign) occurs, or when the activity of an active state
terminates in failure and no outgoing transition is enabled.

Figure 9 depicts the plan diagram for checkout, triggered by pushing the checkout
button. Mandatory fields are first checked. If any mandatory fields are not filled, an
iteration allows the customer to update them. For security reasons, the loop exits after
5 tries ([i<5]) and causes the plan to fail. Credit Card validity is then checked. Again
for security reasons, when not valid, the CC# can only be corrected 3 times.
Otherwise, the plan terminates in failure. The customer is then asked to confirm the
CC# to allow item registration. If the CC# is not confirmed, the plan fails. Otherwise,
the plan continues: each item is iteratively registered, final amounts are calculated,
stock records and customer profiles are updated and a report is displayed. When
finally the whole plan succeeds, the ShoppingCart automatically logs out and asks the
Order Processor to initialize the order. When, for any reason, the plan fails, the
ShoppingCart automatically logs out. At anytime, if the cancel button is pressed, or

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 277

the timeout is more than 90 seconds (e.g., due to a network bottleneck), the plan fails
and the Shopping Cart is reinitialized.

Checking

[i=3]

Fields
Checking

Credit Card

[i=5]

Fields Updated

[[Not all mandatory
fields filled] ^ [i<5]]

Updating Correcting
CC#

Updated

Fields

Press checkout button [checkout button activated] / shoppingCart.checkout()

Checkout

fail /shoppingCart.logout()

[Mandatory fields filled]
/verifyCC()

/ cancel()
[Not confirmed]

Updating
Stock Records

[foreach
selected item]

Amounts
calculated

Records updated

[Already registered]

[new customer]

[foreach
registered item]

Displaying
Reportsucceeded [report asked]

/ initializeReport()/ shoppingCart.logout()

succeeded/ shoppingcart.logout()

Calculating
Final Amounts

Item
Registering

Customer Profile
Updating

Items
Registered

pass / orderProcessor.
processOrder(this)

profile
updated

^ [i<3]]
[[CC# not valid]

[CC# valid]
/ confirm()? /confirm()

Press confirm button

any [[Cancel button pressed] OR
[timeout>90 sec]] / shoppingCart.initialize()

Fig. 9. A plan diagram for checkout

7 Generating an Implementation

JACK Intelligent Agents [4] is an agent-oriented development environment designed
to provide agent-oriented extensions to Java.

JACK agents can be considered autonomous software components that have
explicit goals to achieve, or events to cope with (desires). To describe how they
should go about achieving these desires, agents are programmed with a set of plans
(intentions).

Each plan describes how to achieve a goal under different circumstances. Set to
work, the agent pursues its given goals (desires), adopting the appropriate plans
(intentions) according to its current set of data (beliefs) about the state of the world.
To support the programming of BDI agents, JACK offers five principal language
constructs. These are agents, capabilities, database relations, events, and plans.

I* actors, (informational/data) resources, softgoals, goals and tasks will be
respectively mapped into BDI agents, beliefs, desires and intentions. In turn, a BDI
agent will be mapped as a JACK agent, a belief will be asserted (or retracted) as a
database relation, a desire will be posted (sent internally) as a BDIGoalEvent
(representing an objective that an agent wishes to achieve) and handled as a plan, and
an intention will be implemented as a plan. Finally, an i* dependency will be directly
realized as a BDIMessageEvent (received by agents from other agents).

Figure 10 depicts the JACK layout presenting each of the five JACK constructs as
well as the implementation of the first part of the dialogue shown in Figure 8. The
request for proposal checkout-rfp is a MessageEvent (extends MessageEvent) sent by

J. Castro, M. Kolp and J. Mylopoulos 278

Customer and handled by the Shopping Cart’s checkout plan (extends Plan) as
detailed in Figure 9. Finally, Timeout (which we consider a belief) is implemented as
a closed world (i.e., true or false) database relation asserting for each Shopping Cart
one or several timeout delays.

Fig. 10. Partial implementation of Figure 8 in JACK

8 Conclusion and Discussion

We have proposed a development methodology founded on intentional concepts, and
inspired by early requirements modeling. We believe that the methodology is
particularly appropriate for generic, componentized systems like e-business
applications that can be downloaded and used in a variety of operating environments
and computing platforms around the world. Preliminary results suggest that the
methodology complements well proposals for agent-oriented programming
environments.

There already exist some proposals for agent-oriented software development, most
notably [10, 11, 14, 16]. Such proposals are mostly extensions to known object-

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 279

oriented and/or knowledge engineering methodologies. Moreover, all these proposals
focus on design – as opposed to requirements analysis – for agent-oriented software
and are therefore considerably narrower in scope than Tropos.

Of course, much remains to be done to further refine the proposed methodology
and validate its usefulness with real case studies. We are currently working on the
development of formal analysis techniques for Tropos, also the development of tools
which support different phases of the methodology.

References

[1] Booch, G., Rumbaugh, J. and Jacobson, I., The Unified Modeling Language User Guide,
The Addison-Wesley Object Technology Series, Addison-Wesley, 1999.

[2] Castro, J., Kolp, M. and Mylopoulos, J., Developing Agent-Oriented Information
Systems for the Enterprise, Proceedings of the Second International Conference On
Enterprise Information Systems (ICEIS00), Stafford, UK, July 2000.

[3] Chung, L. K., Nixon, B. A., Yu, E. and Mylopoulos, J., Non-Functional Requirements
in Software Engineering, Kluwer Publishing, 2000.

[4] Coburn, M., Jack Intelligent Agents: User Guide version 2.0, AOS Pty Ltd, 2000.
[5] Cohen, P. and Levesque, H., “Intention is Choice with Commitment”, Artificial

Intelligence, 32(3), 1990, pp. 213-261.
[6] Conallen, J., Building Web Applications with UML, The Addison-Wesley Object

Technology Series, Addison-Wesley, 2000.
[7] Dardenne, A., van Lamsweerde, A. and Fickas, S., “Goal–directed Requirements

Acquisition”, Science of Computer Programming, 20, 1993, pp. 3-50.
[8] Davis, A., Software Requirements: Objects, Functions and States, Prentice Hall, 1993.
[9] DeMarco, T., Structured Analysis and System Specification, Yourdon Press, 1978.
[10] Iglesias, C., Garrijo, M. and Gonzalez, J., “A Survey of Agent-Oriented Methodologies”,

Proceedings of the 5th International Workshop on Intelligent Agents: Agent Theories,
Architectures, and Languages (ATAL-98), Paris, France, July 1998, pp. 317-330.

[11] Jennings, N. R., “On agent-based software engineering”, Artificial lntelligence, 117,
2000, pp. 277-296.

[12] Kinny, D. and Georgeff, M., “Modelling and Design of Multi-Agent System”,
Proceedings of the Third International Workshop on Agent Theories, Architectures, and
Languages (ATAL-96), Budapest, Hungary, August 1996, pp. 1-20.

[13] Mylopoulos, J. and Castro, J., “Tropos: A Framework for Requirements-Driven Software
Development”, Brinkkemper, J. and Solvberg, A. (eds.), Information Systems
Engineering: State of the Art and Research Themes, Springer-Verlag, June 2000, pp.
261-273.

[14] Odell, J., Van Dyke Parunak, H. and Bauer, B., “Extending UML for Agents”,
Proceedings of the Agent-Oriented Information System Workshop at the 17 National
Conference on Artificial Intelligence, pp. 3-17, Austin, USA, July 2000.

[15] Wirfs-Brock, R., Wilkerson, B. and Wiener, L., Designing Object-Oriented Software,
Englewood Cliffs, Prentice-Hall, 1990.

[16] Wooldridge, M., Jennings, N. R. and Kinny D., “The Gaia Methodology for Agent-
Oriented Analysis and Design”, Journal of Autonomous Agents and Multi-Agent Systems,
3(3), to appear, 2000.

[17] Yourdon, E. and Constantine, L., Structured Design: Fundamentals of a Discipline of
Computer Program and Systems Design, Prentice-Hall, 1979.

[18] Yu, E., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis,
Department of Computer Science, University of Toronto, Canada, 1995.

J. Castro, M. Kolp and J. Mylopoulos 280

The Evolution of Tropos

John Mylopoulos, Jaelson Castro, and Manuel Kolp

Abstract The Tropos project was launched in the Fall of 1999 with main objective
the development of a methodology for building agent-oriented software systems.
The methodology was grounded on i* and was first presented in full at the CAiSE
2001 conference. This short article details some of the directions that were pursued
in the project since that time.

1 Introduction

The Tropos project was launched in the Fall of 1999 with main objective the
development of a methodology for building agent-oriented software systems. The
methodology was grounded on i*, a requirements modeling language founded on
intentional and social concepts, such as actor, goal and social dependencies among
actors [18, 19]. Our CAiSE’01 paper was preceded by a couple of preliminary
publications, most notably [12]. However, the CAiSE’01 paper constitutes the
first comprehensive presentation of the Tropos methodology. Its publication was
followed by two journal papers presenting further details on the methodology.

J. Mylopoulos (�)
Department of Information Engineering and Computer Science, University of Trento,
Via Sommarive, 14 – 38122 Povo – Italy
e-mail: jm@disi.unitn.it

J. Castro
Center of Informatics, Federal University of Pernambuco (UFPE), 50740-560 – Recife – PE,
Brazil
e-mail: jbc@cin.ufpe.br

M. Kolp
School of Management, Catholic University of Louvain, Place des Doyens, B – 1348
Louvain-la-Neuve, Belgium
e-mail: manuel.kolp@uclouvain.be

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 22, © Springer-Verlag Berlin Heidelberg 2013

281

mailto:jm@disi.unitn.it
mailto:jbc@cin.ufpe.br
mailto:manuel.kolp@uclouvain.be

J. Mylopoulos et al.

Castro et al. [5] is an extended version of the CAiSE’01 paper included in the
special issue published for CAiSE’01. Bresciani et al. [3] offers a complementary,
more agent-oriented perspective on the modelling language and the accompanying
methodology.

In what follows, we present in Sects. 2–4 some of the research questions that
were pursued since 2001 at the University of Trento (Italy), the Catholic University
of Louvain (Belgium) and the Federal University of Pernambuco (Brazil). The
presentation is structured according to topic (Formal analysis, Architectures and
Patterns, Methods and Techniques). We conclude with some of the research
questions that the project has raised for the research community.

2 Formal Analysis

Much of the research that followed the CAiSE 2001 paper at the University of
Trento focused on formal analysis techniques for Tropos models, Formal Tropos [7]
extends Tropos by allowing annotations of i* models with Linear Temporal Logic
(LTL) constraints. Formal Tropos models can then be translated into specifications
for a model checker (in our case, nuSMV) to ensure that they satisfy desired formal
properties. Along a parallel path, i* goal models were formalized so that one can
check whether a goal model is satisfiable by using a SAT solver [15]. The PhD
thesis of Volha Bryl uses an off-the-shelf planner to search among alternative ways
of delegating an initial set of requirements among a group of actors and compares
these alternatives using a number of local and global metrics for actor dependency
networks [4].

Three more PhD theses extend the Tropos framework to address security
concerns. Nicola Zannone’s PhD thesis extends Tropos with concepts such as own-
ership, permission and trust forms of analysis that identify ownership/permission
violations [8]. Yudis Asnar’s PhD thesis, on the other hand, introduces risk-
theoretic concepts to Tropos and looks at the problem of identifying suitable
mitigation strategies for identified risks [1]. The thesis of Haralambos Mouratidis
also extends Tropos to support secure software designs, but unlike Zannone, focuses
on methodological extensions rather than ontological ones [11].

3 Architectures and Patterns

Along a different direction, Tropos has been extended to integrate organizational
architectural styles [10] and social design patterns [9] for architectural and detailed
design. Architectural styles are manageable abstractions that describe how system
components interact and work together while design patterns describe a problem
commonly found in software design and prescribe a flexible, reusable solution.

282

The Evolution of Tropos

In Tropos, software architectures – be they multi-agent or component-based
[13] – are considered social structures composed of autonomous and proactive
entities that interact and cooperate with each other to achieve common or private
goals. Since the fundamental concepts that drive Tropos are intentional and social,
rather than implementation-oriented, theories that study social structures could
provide inspiration and insights to define a catalogue of styles and patterns for
designing software architectures with Tropos. For this, we turn for guidance to
organizational theories, namely Organization Theory and Strategic Alliances.

Organization Theory describes the structure and design of an organization;
Strategic Alliances model the strategic collaborations of independent organizational
stakeholders who pursue a set of agreed upon business goals. Both disciplines aim
to identify and study organizational styles. These are modeling abstractions that can
be seen, felt, handled, and operated upon. They have a manifest form and lie in
the objective domain of reality as part of the concrete world. A style is however
not solely a set of execution behaviors. Rather, it exists in various forms at every
stage of crystallization (e.g., specification), and at every level of granularity in the
organization. The more manifest is its representation, the more the style emerges
and becomes recognizable – whether at a high or low level of granularity.

Taking real-world social structures as metaphor, Tropos has then been extended
to propose a set of generic architectural structures:

– At the architectural design level, organizational styles inspired from organiza-
tion theory and strategic alliances will be used to design the overall system
architecture. Styles from organization theory will describe the internal structure
and design of the architecture, while styles from strategic alliances will model
the cooperation of independent architectural organizational entities that pursue
shared goals.

– At the detailed design level, social patterns drawn from research on cooperative
and distributed architectures, will offer a more microscopic view of the social
architecture description. They will define the software entities and the social
dependencies that are necessary for the achievement of goals [9].

Mediation patterns constitute a particular category of social patterns featuring
intermediate agents that help other agents reach agreements about an exchange of
services. Mediation patterns include ones for monitor, broker, mediator, wrapper,
embassy and matchmaker.

Although it is possible to reuse design solutions by using mediation patterns,
current practices for instantiating these patterns in multi-agent system (MAS)
development makes the application core highly coupled with the patterns’ imple-
mentation, thereby reducing opportunities of reuse. To address this limitation,
we proposed an agent-oriented design pattern description technique, called Agent
Pattern Specifications (APS) [16], which takes into account the separation of
pattern-related concerns in the MAS design level. A concern is some part of the
problem that we want to treat as an integral conceptual unit. In addition, we
used aspect-oriented programming to separate pattern-related concerns in the MAS
implementation level. To do so, mapping guidelines were defined to guide the

283

J. Mylopoulos et al.

implementation of patterns described according to APS by using an integration of
JADE and AspectJ. This implementation was evaluated in terms of a suite of metrics
for assessing well-known software engineering attributes, such as separation of
concerns, coupling, cohesion and size. This assessment showed that aspect-oriented
solutions for mediation patterns improved the separation of pattern-related concerns.

4 Methods and Techniques

Another line of research concerns the establishment of a relationship between
requirements and architectural descriptions. The SIRA approach constitutes an
initial proposal along this direction [2]. Both requirements and architectural designs
are described in term of i* as actor dependency diagrams. One such diagram
captures the social organization, while another captures a corresponding archi-
tectural organization. The organizational model, the main goals are identified by
understanding a requirement model as the functionality requested for the system.
The organization of the social system consists roles and interactions, as intended
by the system and its environment. Additionally, goals and softgoals are used to
select an organizational architectural style [10]. In the Assignment Model, roles are
clustered into subgroups related to components, based on their similarity with the
architectural components. The result is an architectural configuration, which is the
allocation of sub-groups to architectural components.

The proliferation of iterative and incremental software development processes
as de facto standards for SE practice, suggests a strong integration between
requirements engineering and software architecture activities. Such integration can
facilitate traceability and the propagation of changes between the models produced
within these activities. Recognizing the close relation between architectural design
description and requirements specification, we have advocated the use of model
transformation approaches as an effective way to generate architectural models
from requirements ones, where correlations between requirements and architectural
models are accurately specified.

Hence, we have proposed STREAM, a systematic process for generating archi-
tectural models from requirements ones, based on horizontal and vertical trans-
formations rules [6]. Horizontal transformations have source and target models at
the same level of abstraction, while vertical transformations operate on models
at different abstraction levels. In our case, the horizontal transformations are
applied to the requirements models resulting in intermediary requirements models
closer to architectural concerns. Vertical transformations, on the other hand, map
these intermediary models into architectural models. Architectural design activities
involve the selection and application of architectural patterns that best satisfy non-
functional requirements. In STREAM, requirements models are described in i*,
whereas architectural models are described using the Acme ADL.

Some quality attributes, such as adaptivity, are known to have an impact on
the overall architecture of a system, so they need to be properly handled since

284

The Evolution of Tropos

the beginning of the development process. Accordingly, we have proposed a
new process called STREAM-A that includes six activities [14]. The first three
are related to requirements engineering: (a) requirements refactoring; (b) context
annotation and analysis; and (c) identification of sensors and monitors. The last
three activities are architecture-related: (d) generate architectural model; (e) define
architectural model; and (f) introduce a self-adaptation component.

Also, on the methodological process level, Tropos has been extended to offer
iterative and incremental software project management [17].“I-Tropos develop-
ment” is an extension of the Tropos methodology that supports iterative and agile
development.

The notions of phase and discipline are often presented as synonyms in the
software engineering literature. Indeed, Tropos is described as composed of five
phases (Early Requirements, Late Requirements, Architectural Design, Detailed
Design and Implementation). However, a discipline can be defined as a collection
of activities that are all related to a major “area of concern”, while phases
here are not the traditional sequence of requirements analysis, design, coding,
integration, and test. They are completely orthogonal to traditional phases. Each
phase is concluded with a major milestone. In order to be compliant with the
most generic terminology, traditional Tropos phases are then called disciplines in
the I-Tropos process description since “they partition activities under a common
theme”. In the same way, phases are considered as groups of iterations that are
workflows with a minor milestone. In I-Tropos, the Organizational Modeling and
Requirements Engineering disciplines respectively correspond to Tropos’ Early and
Late Requirements disciplines. The Architectural and Detailed Design disciplines
correspond to the same stages of the traditional Tropos process.

I-Tropos includes core disciplines, i.e., Organizational Modeling, Requirements
Engineering, Architectural Design, Detailed Design, Implementation, Test and
Deployment but also supports disciplines to handle Risk Management, Time
Management, Quality Management and Software Process Management. For an
iterative process, the need to support disciplines to manage the whole software
project is of primary importance to precisely understand which project aspect to
work on (and through which activity) at a specific time and with the best use of
existing resources.

5 Conclusions

The focus of the Tropos project was agent-oriented software for good reasons.
To the eyes of many in the Software Engineering and the Multi-Agent System
communities, agent-orientation with its promise of autonomous, distributed, open
computation seemed like a promising direction. In today’s ever-more volatile world,
our vision for the software systems of the future has been refined and placed
into focus. We don’t want just agent-oriented software systems, but rather socio-
technical systems consisting of software, human and social actors that work together

285

J. Mylopoulos et al.

to fulfill stakeholder requirements. The addition of human and social elements in
the design has introduced new uncertainties that can only be addressed through
adaptation mechanisms that our systems need to be endowed with. Perhaps more
importantly, we don’t aspire any more to design systems right from scratch. Rather,
we expect to evolve systems continuously and so our methodologies have to be
evolution-oriented. Like Darwin, we don’t focus anymore on how software species
came to be. Rather, we are interested in the ways they can evolve in order to survive.

References

1. Asnar, Y., Giorgini, P., Mylopoulos, J.: Goal-driven risk assessment in requirements engineer-
ing. Requirements Engineering Journal 16(2), 101–116 (2011)

2. Bastos, L.R.D., de Castro, J.B.: Systematic integration between requirements and architecture.
In: Springer (ed.) Software Engineering for Multi-Agent Systems III: Research Issues and
Practical Applications, no. 3390 in LNCS, pp. 85–103 (2005)

3. Bresciani, P., Perini, A., Giorgini, P., Giunchiglia, F., Mylopoulos, J.: Tropos: An agent-
oriented software development methodology. Autonomous Agents and Multi-Agent Systems
8(3), 203–236 (2004)

4. Bryl, V., Giorgini, P., Mylopoulos, J.: Designing socio-technical systems: From stakeholder
goals to social networks. Requirements Engineering Journal 14(1), 47–70 (2009)

5. Castro, J., Kolp, M., Mylopoulos, J.: Towards requirements-driven information systems
engineering: the tropos project. Information Systems 27(6), 365–389 (2002)

6. Castro, J., Lucena, M., Silva, C.T.L.L., Alencar, F.M.R., Santos, E., Pimentel, J.: Changing
attitudes towards the generation of architectural models. Journal of Systems and Software
85(3), 463–479 (2012)

7. Fuxman, A., Liu, L., Mylopoulos, J., Roveri, M., Traverso, P.: Specifying and analyzing early
requirements in tropos. Requirements Engineering Journal 9(2), 132–150 (2004)

8. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Modeling security requirements
through ownership, permission and delegation. In: Proceedings of the IEEE International
conference on Requirements Engineering (RE’05), pp. 167–176 (2005)

9. Kolp, M., Do, T.T., Faulkner, S.: Social-centric development of multi-agent architectures.
Journal of Organizational Computing and E-Commerce 18(2), 150–175 (2008)

10. Kolp, M., Giorgini, P., Mylopoulos, J.: Multi-agent architectures as organizational structures.
Autonomous Agents and Multi-Agent Systems 13(1), 3–25 (2006)

11. Mouratidis, H., Giorgini, P., Manson, G.: Integrating security and systems engineering:
Towards the modelling of secure information systems. In: 15th International Conference on
Advanced Information Systems Engineering (CAiSE’03), Klagenfurt, vol. 2681, pp. 63–78.
Springer-Verlag (2003)

12. Mylopoulos, J., Castro, J., Kolp, M.: Tropos: A framework for requirements-driven software
development. In: Information Systems Engineering: State Of The Art And Research Themes,
pp. 261–273. Springer-Verlag (2000)

13. Nguyen, T., Kolp, M., Penserini, L.: A development framework for component-based agent-
oriented business services. International Journal of Agent Oriented Systems Engineering
3(2/3), 328–367 (2009)

14. Pimentel, J.a., Lucena, M., Castro, J., Silva, C., Santos, E., Alencar, F.: Deriving software archi-
tectural models from requirements models for adaptive systems: the STREAM-A approach.
Requirements Engineering Journal 17(4), 259–281 (2012)

286

The Evolution of Tropos

15. Sebastiani, R., Giorgini, P., Mylopoulos, J.: Simple and minimum-cost satisfiability for goal
models. In: 16th International Conference on Advanced Information Systems Engineering
(CAiSE ’04), Riga, vol. 3084, pp. 20–35. Springer-Verlag (2004)

16. Silva, C., Castro, J., Araujo, J., Moreira, A., Tedesco, P., Mylopoulos, J.: Advanced separation
of concerns in agent-oriented design patterns. International Journal of Agent-Oriented
Software Engineering 3(2–3), 306–327 (2009)

17. Wautelet, Y., Kolp, M., Poelmans, S.: Requirements-driven iterative project planning. In: S.B.
Escalona Maria Jos Cordeiro Jos (ed.) Communications in Computer and Information Science,
Communications in Computer and Information Science, vol. 303(6), pp. 121–135. Springer-
Verlag (2012)

18. Yu, E.: Towards modeling and reasoning support for early-phase requirements engineering. In:
Proceedings of the 3rd IEEE International Symposium on Requirements Engineering, RE ’97,
pp. 226–235. IEEE Computer Society, Washington, DC, USA (1997)

19. Yu, E., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling for Requirements Engineer-
ing. Cooperative Information Systems Series. Mit Press (2011)

287

The P2P Approach
to Interorganizational Workflows

Wil M.P. van der Aalst and Mathias Weske

Department of Technology Management, Eindhoven University of Technology
P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

{w.m.p.v.d.aalst, m.weske}@tm.tue.nl

Abstract. This paper describes in an informal way the Public-To-
Private (P2P) approach to interorganizational workflows, which is based
on a notion of inheritance. The approach consists of three steps: (1) create
a common understanding of the interorganizational workflow by specify-
ing a shared public workflow, (2) partition the public workflow over the
organizations involved, and (3) for each organization, create a private
workflow which is a subclass of the respective part of the public work-
flow. Using an example, we explain that the P2P approach yields an
interorganizational workflow which is guaranteed to realize the behavior
specified in the public workflow.

1 Introduction

In today’s corporations, products and services are typically created by business
processes, and workflow technology can be used for enhancing the flexibility
and efficiency of these processes [14,19]. Corporations often operate across or-
ganizational boundaries, for example in E-commerce and extended enterprises
[11,20,27]. Consequently, workflows between organizations – interorganizational
workflows – are becoming increasingly important [21,12]. Interorganizational
workflows are typically subject to conflicting constraints of the organizations
involved. On the one hand, there is a strong need for coordination to optimize
the flow of work in and between organizations. On the other hand, the orga-
nizations involved are essentially autonomous and have the freedom to create
or modify workflows at any point in time. Some of the issues resulting from
these conflicting goals will be tackled in this paper: We introduce the Public-
To-Private (P2P) approach to interorganizational workflows which provides the
means to specify a common public workflow, to partition it according to the
organizations involved and to allow for private refinement of the parts by the
organizations, based on a notion of inheritance. The P2P approach guarantees
that the private workflows of the participating organizations (or, as we prefer to
say, the domains) satisfy the public workflow as agreed upon; it consists of the
following steps:

– Step 1: The organizations involved agree on a common public workflow,
which serves as a contract between these organizations.

K.R. Dittrich, A. Geppert, M.C. Norrie (Eds.): CAiSE 2001, LNCS 2068, pp. 140–156, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

289

mailto:{w.m.p.v.d.aalst, m.weske}@tm.tue.nl

– Step 2: Each task of the public workflow is mapped onto one of the domains.
Each domain is responsible for a part of the public workflow, referred to as
its public part.

– Step 3: Each domain can now make use of its autonomy to create a private
workflow. To satisfy the correctness of the overall interorganizational work-
flow, however, each domain may only choose a private workflow which is a
subclass of its public part.

This paper introduces the P2P approach in an informal way, guided by an ex-
ample of an electronic bookstore. The paper is structured according to the steps
mentioned, and for each step concepts and notations are introduced when re-
quired; the complete definitions and the technical details of the proofs can be
found in [4]. Sections 2 through 4 present the phases of the P2P approach, and
Section 5 summarizes the main results. A discussion of related work and con-
cluding remarks complete this paper.

2 Designing the Public Workflow (Step 1)

The example used throughout this paper is inspired by electronic bookstores such
as Amazon [8] and Barnes and Noble [9]. In this section, we design the public
workflow for ordering books. The scope of the workflow process includes the
ordering, billing and shipping of books, involving the customer, the bookstore,
the publisher, and the shipper.
The P2P approach uses workflow nets (WF-nets) [2] for modeling workflows,

which are a specific form of Petri nets. In WF-nets, tasks are modeled by tran-
sitions, and causal dependencies are modeled by places and arcs. In fact, a place
corresponds to a condition which can be used as pre- and/or post-condition
for tasks. An AND-split corresponds to a transition with two or more output
places, and an AND-join corresponds to a transition with two or more input
places. OR-splits/OR-joins correspond to places with multiple outgoing/ingoing
arcs. A WF-net has one source place and one sink place because any case (i.e.,
workflow instance) represented by the WF-net is created when it enters the
workflow management system and is deleted once it is completely handled. An
additional requirement is that there should be no dangling tasks or conditions,
i.e., tasks and conditions which do not contribute to the processing of cases.
Therefore, all the nodes of the workflow should be on some path from source to
sink. WF-nets with these properties are called sound [1,2].
Figure 1 shows the public workflow Npubl of the electronic bookstore. This

workflow can be regarded as a contract between the domains, i.e., the customer,
the bookstore, the publisher, and the shipper. We stress that the public work-
flow does not necessarily show the way the tasks are actually executed; the real
process may be much more detailed, and it may involve much more tasks. The
public workflow only contains the tasks which are of interest to all parties. The
public workflow shown in Fig. 1 is defined as a WF-net. While the mapping of the
tasks to domains is only done in the next step, one can think of the tasks in the
left column as performed by the customer, for instance the place c order task.

W.M.P. van der Aalst and M. Weske290

i

o

place_c_order handle_c_order
c_order

handle_c_order

place_b_order

b_order
eval_b_order

b_accept
b_reject

b_decline

rec_decl
c_decline

decide

c_accept

alt_publ

b_confirm

c_confirm

s_request

req_shipment

s_decline

s_confirm

s_reject
s_accept

eval_s_req

alt_shipper

inform_publ

prepare_b

send_book

prepare_s

ship

notify

book_to_s

book_to_c

notification

ship_info

send_bill

bill

payment

pay

rec_acc

rec_book
rec_bill

handle_payment

c_reject

Customer Bookstore Publisher Shipper

Fig. 1. The public workflow Npubl .

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 291

The next columns to the right belong to the bookstore (containing, e.g., the han-
dle c order task to handle the customer order), the publisher (e.g., eval b order),
and the shipper (e.g., eval s req), respectively.
The workflow process is initiated by a customer placing an order (represented

by the task place c order). This customer order is sent to and is handled by the
bookstore (handle c order). The electronic bookstore is a virtual company which
has no books in stock. Therefore, the bookstore transfers the order of the desired
book to a publisher (place b order). The bookstore order is evaluated by the
publisher (eval b order) and either accepted (b accept) or rejected (b reject). In
both cases an appropriate signal is sent to the bookstore. If the bookstore receives
a negative answer, it decides (decide) to either search for an alternative publisher
(alt publ) or to reject the customer order (c reject). If the bookstore searches for
an alternative publisher, a new bookstore order is sent to another publisher,
etc. If the customer receives a negative answer (rec decl), then the workflow
terminates. If the bookstore receives a positive answer (c accept), the customer
is informed (rec acc), and the bookstore continues processing the customer order.
Once the order is confirmed, the bookstore sends a request to a shipper

(req shipment), the shipper evaluates the request (eval s req) and either accepts
(s accept) or rejects (b reject) the shipping request. If the bookstore receives a
negative answer, it searches for another shipper. This process is repeated until
a shipper accepts. Note that, unlike the unavailability of the book, the unavail-
ability of a shipper can not lead to a cancellation of the order. After a shipper is
found, the publisher is informed (inform publ), the publisher prepares the book
for shipment (prepare b), and the book is sent from the publisher to the shipper
(send book). The shipper prepares the shipment to the customer (prepare s) and
actually ships the book to the customer (ship). The customer receives the book
(rec book) and the shipper notifies the bookstore (notify). The bookstore sends
the bill to the customer (send bill). After receiving both the book and the bill
(rec bill), the customer makes a payment (pay). Then the bookstore processes
the payment (handle payment) and the interorganizational workflow terminates.
The public workflow shown in Fig. 1 is indeed a sound WF-net, since it has

exactly one input place and one output place, at the moment when the work-
flow reaches the output place, all tasks have completed, and there are no dead
transitions, i.e., all tasks of the WF-net are in fact reachable during workflow
executions.

3 Partitioning the Public Workflow (Step 2)

In the second step of the P2P approach, the public workflow is partitioned
according to the domains, and the public parts are related to each other, making
up an interorganizational workflow. An interorganizational workflows is defined
by an interorganizational workflow net (IOWF-net). An IOWF-net consists of a
set of WF-nets, a set of channels, a set of methods, and a channel flow relation.
In our example, the public workflow is partitioned over four domains: the

customer domain, the bookstore domain, the publisher domain, and the shipper

W.M.P. van der Aalst and M. Weske292

domain, as shown in Fig. 2. Methods of the domains are represented by shaded
boxes, and they are linked to channels by the channel flow relation, which is
represented by arrows. In Fig. 2, the public parts of the customer, the bookstore,
the publisher and the shipper are represented by boxes Npart

C , Npart
B , Npart

P , and
Npart

S , respectively. Channels are represented by icons, and the channel flow
relation represented by arrows specifies the linkage of the domains. For example,
the c order channel and the attached arrows represent the fact that customer
order information flows from the customer domain to the bookstore domain,
while the confirmation of the order flows in opposite direction, making use of
channel c confirm.
Based on this description it is clear how the public workflow needs to be

partitioned. The public part of the customer domain is quite simple (cf. Fig. 3):
The customer first places an order, using the method place c order. Then either
the order is accepted, the book and the bill are received and the bill is paid, or
the order is declined. Notice that for each transition in the WF-net, there is a
method linked to it by a dotted line, representing the actual function which is
invoked when the task is executed.
The public part of the bookstore workflow is slightly more complex (cf.

Fig. 4): After the order arrives, the bookstore checks for a publisher ready for
providing the ordered book. If no publisher can be found, the order is rejected.
Otherwise, shipment is requested from a shipper, and payment is handled. The
public parts of the publisher and shipper workflow are shown in Fig. 5.
The IOWF-net is a high-level representation of the domains and their depen-

dencies; its semantics are given in terms of a labeled P/T net. A IOWF-net is
transformed into a labeled P/T net by taking the union of all WF-nets, adding
a place for each channel, connecting transitions to these newly added places,
and removing superfluous source and sink places. We call this the flattening of
the interorganizational workflow. As shown in [4], we can easily make sure that
the partitioning is valid, i.e., all public parts are sound WF-nets and there is no
multiple activation. We mention that the flattened IOWF-net equals the public
workflow. Hence, flattening the interorganizational workflow shown in Fig. 2 re-
sults in the public workflow shown in Fig. 1.

4 Designing the Private Workflows (Step 3)

After partitioning the public workflow, each domain can realize the correspond-
ing public part of the interorganizational workflow in any way they want, as long
as they make sure that their private workflow is a subclass of their public part.
The subclass relationship between WF-nets is based on a specific notion of in-

heritance, called projection inheritance. Projection inheritance has been defined
in [6,10] and uses encapsulation as a mechanism to establish subclass-superclass
relationships. The basic idea of projection inheritance can be characterized as
follows:

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 293

NC
part

customer

c_order

c_decline

c_confirm

bill

NB
part

bookstore

payment

NP
part

publisher

b_order

b_decline

b_confirm

ship_info

book_to_s

NS
part

shipper

s_request

s_decline

s_confirm

notification

book_to_c

Fig. 2. The interorganizational workflow Qpart .

W.M.P. van der Aalst and M. Weske294

customer

place_c_order

pay

rec_acc

rec_bill

i

rec_decl

o

rec_book

Fig. 3. The WF-net Npart
C (public part of the customer domain).

bookstore

handle_c_order

c_reject

c_accept

i

send_bill

handle_payment

place_b_order

decide

inform_publ

req_shipment

alt_shipper

o

alt_publ

Fig. 4. The WF-net Npart
B (public part of the bookstore domain).

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 295

publisher

send_book

prepare_b

b_accept

b_reject

eval_b_order

i

o

shipper

eval_s_req

prepare_s

ship

notify

s_reject

s_accept

i

o

Fig. 5. The WF-net Npart
P (public parts of the publisher and shipper domains).

If it is not possible to distinguish the behaviors of x and y when arbitrary
methods of x are executed, but when only the effects of methods that are
also present in y are considered, then x is a subclass of y.

Projection inheritance is based on branching bisimilarity as the standard equiv-
alence relation on marked, labeled P/T-nets [15]. For projection inheritance, all
new methods (i.e., methods added in the subclass) are hidden; an abstraction
operator τ is used to hide methods.
For any two sound WF-nets N and N ′, N ′ is a subclass of N under projec-

tion inheritance if and only if the externally visible behavior of N ′ is branching
bisimilar to N . Let us consider the five WF-nets shown in Fig. 6. N1 is not a
subclass of N0 because hiding of the new task d results in a potential execution
where a is followed by c without executing b, i.e., the WF-net where d is hidden
is not branching bisimilar. N2 is a subclass of N0 because hiding e in N2 results
in a behavior equivalent to the behavior of N0, i.e., the addition of e only post-
pones the execution of b and does not allow for a bypass such as the one in N1.
N3 is also a subclass of N0: Hiding the parallel branch containing f yields the
original behavior. Finally, N4 is also a subclass of N0.
Based on the notion of projection inheritance we have defined three inheri-

tance-preserving transformation rules. These rules correspond to design patterns
when extending a superclass to incorporate new behavior: (1) adding a loop (rule
PPS), (2) inserting methods in-between existing methods (rule PJS), and (3)
putting new methods in parallel with existing methods (rule PJ3S). The formal
definitions of these transformation rules, their preconditions, and the proofs that
these rules actually preserve projection inheritance are given in [6,10].
In the P2P approach, projection inheritance is used as a formal link between

the public parts of the domains and the private workflows which are actually
executed. Transformation rules are the key mechanism to create specializations
of a given WF-net, making use of the fact that applying these rules to a given

W.M.P. van der Aalst and M. Weske296

i

o

a

c

N0

b

i

o

a

c

N1

b d

i

o

a

c

N2

b

e

i

o

a

c

N3

b f

i

o

a

c

N4

b g

Fig. 6. N2, N3, and N4 are subclasses of N0 under projection inheritance.

WF-net is guaranteed to create a subclass of that WF-net. Hence, the P2P
approach is constructive in the sense that any modification applied to a WF-net
via transformation rules PPS , PJS , and PJ3S yields a subclass of the WF-net.
Figure 7 shows the private workflow of the bookstore. Five new tasks, i.e.,

tasks not present in the public workflow, have been added. After the customer
order is handled, the customer profile (information about the interests of the
customer) is updated (update customer profile). This task is executed in parallel
with the placement of the bookstore order. After both tasks have been executed,
the marketing department is informed (inform marketing). The tasks moni-
tor order, monitor shipment, and monitor payment have been added to monitor
the behavior of the publisher, shipper, and customer. The task monitor order
can be executed as long as the bookstore is waiting for a response of the pub-
lisher. The task monitor shipment can be executed between the moment the
publisher is informed and the moment the shipper sends a notification. The task
monitor payment can be executed after the bill is sent to the customer. Note
that each of the monitor tasks can be executed multiple times. For example, the
bookstore checks every week whether the customer has paid and if needed takes
action, e.g., sending a bailiff.
We now show by construction that the private workflow Npriv

B (Fig. 7) is
indeed a subclass of Npart

B (Fig. 4): tasks monitor order, monitor shipment, and
monitor payment can be added by applying transformation rule PPS three times;

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 297

bookstore

handle_c_order

c_reject

c_accept

i

send_bill

handle_payment

place_b_order

decide

inform_publ

req_shipment

alt_shipper

o

alt_publ

update_customer_profile

inform_marketing

monitor_order

monitor_shipment

monitor_payment

Fig. 7. The WF-net Npriv
B (private workflow of the bookstore domain).

task inform marketing can be added using transformation rule PJS . To complete
the construction, the task update customer profile can be added using transfor-
mation rule PJ3S .
Similarly, the private workflow of the publisher (Fig. 8) has been created by

applying transformation rule PJS to the public part: The task check warehouse
has been added in-between the receipt of the order and the decision. In fact,
the decision is based on the result of check warehouse. After accepting the order
of the bookstore, the corresponding inventory item is locked (lock inventory),
the stock is replenished (if possible) (replenish), and the book is moved to
the part of the warehouse reserved for books which are waiting for shipment
(move book to release buffer). It is easy to verify that the private workflow Npriv

P

is a subclass of Npart
P , using the transformation rule PJS .

Figure 9 shows the private workflow of the shipper. Using the transformation
rules, six new tasks have been added: Task check availability trucks is executed
after the request by the bookstore is received. Based on this task the request
is accepted or rejected. Tasks update file and quality control are executed in

W.M.P. van der Aalst and M. Weske298

publisher

send_book

prepare_b

b_accept

b_reject

eval_b_order

i

o

check_warehouse

lock_inventory

move_book_to_release_buffer

replenish

Fig. 8. The WF-net Npriv
P (private workflow of the publisher domain).

parallel with the preparation and shipment tasks. After preparation, shipments
are assigned to trucks (assignment). Based on the assignment, the routing of
the truck is determined (routing). In-between tasks assignment and routing the
task re-assignment can be executed multiple times. Again it is easy to verify
that the WF-net shown in Fig. 9 is indeed a subclass of the one shown in Fig. 5.
Task check availability trucks can be added using transformation rule PJS . Tasks
update file and quality control can be added using transformation rule PJ3S .
Tasks assignment, re-assignment, and routing can be added using transformation
rule PJS . Note that it is also possible to first add tasks assignment and routing
using PJS , and then add task re-assignment using transformation rule PPS .
The design of the interorganizational workflow involving a customer, book-

store, publisher, and shipper presented in this paper is a simplification of the
real process. In the real process customers can order multiple books at the same
time, the customer can return books, the customer can refuse to pay, etc. One
can imagine that for realistic interorganizational workflows where the public part
consists of more than fifty tasks and the overall workflow consists of hundreds
of tasks, a structured approach is needed to avoid all kinds of anomalies. In
our opinion, the P2P approach could be used as a starting point for a more
comprehensive approach which also deals with other aspects such as data and
security.

5 Summary and Main Results

To summarize the P2P approach, in the first step the public workflow is specified
in terms of a sound WF-net; it serves as a contract between the business partners
involved. In the second step, the public workflow is partitioned over the set of
domains. Note that each domain corresponds to an organizational entity. As a

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 299

shipper

eval_s_req

prepare_s

ship

notify

s_reject

s_accept

i

o

check_availability_trucks

update_file

quality_control routing

assignment

re-assignment

Fig. 9. The WF-net Npriv
S (private workflow of the shipper domain).

result of the partitioning, each fragment of the partitioned workflow corresponds
to one of the domains and is represented by a sound WF-net, called public
part. In the final step, the public parts are replaced by private workflows. Each
private workflow corresponds to an actual workflow as it is executed in one
of the domains. The P2P approach guarantees that each private workflow is
a subclass of the corresponding public part under projection inheritance. It is
important to note that the P2P approach is constructive: By applying the three
transformation rules introduced above, the design is guaranteed to be correct
without the need to check whether each private workflow is actually a subclass
of the corresponding public part.
Following the general tone of this paper, we explain the main results in-

formally and introduce concepts if and when required. Please refer to [4] for a
detailed theoretical discussion. The first result concerns the overall workflow,
which consists of all private workflows of the participating domains.

Result 1: The overall workflow is a sound WF-net.

This property is based on the observation that a part of a WF-net (called
subflow) can be replaced by a specialization (i.e., a subclass subflow) without
endangering soundness of the overall workflow. This result is proven in [4], based
on a theorem which shows the compositionality of projection inheritance. From
an application point of view, Result 1 makes sure that the P2P approach guar-
antees that the overall workflow is free of deadlocks and other anomalies.

Result 2: The overall workflow is a subclass of the public workflow.

This result shows that the dynamic behavior of the interorganizational workflow
which the business partners agreed upon in the public workflow is in fact guaran-

W.M.P. van der Aalst and M. Weske300

teed to be satisfied by the execution of the interorganizational workflow, i.e., the
overall workflow. From an application point of view, this is an important result,
since it provides the business partners with the ability to perform any private
modifications to their public workflow part, as long as the subclass relationship
holds. Transformation rules are used for this purpose. Hence, an organization
can be sure that its private workflow indeed satisfies the requirements specified
in the contract, i.e., the public workflow.
The next result is based on the notion of local views of the domains. To intro-

duce local views, we mention that each domain is aware of its private workflow
and of the public parts of the other domains. The information which each domain
has with respect to the overall workflow is called the local view of that domain.
With respect to local views, the following interesting result can be obtained,
which stresses the soundness of the P2P approach.

Result 3: The overall workflow is a subclass of the local views of all
domains, which in turn are subclasses of the public workflow.

For the final two properties we have to introduce some notation. Since projection
inheritance is a partial ordering on the set of WF-nets, the Greatest Common
Denominator (GCD) and the Least Common Multiple (LCM) can be defined.
GCD and LCM are general concepts that apply to any ordering, and there are
different applications of these concepts in the context of WF-nets, as described
in more detail in [6]. In essence, the GCD of a set of WF-nets is a WF-net that
captures the part these nets have in common, i.e., the part where they agree on.
The LCM captures all possible behaviors. Note that projection inheritance is a
partial order but not a lattice. Therefore, suitable definitions of GCD and LCM
are far from trivial but can be defined as is shown in [6].
For an illustration of these concepts, consider the WF-nets N0, N2, N3, and

N4 shown in Fig. 6. The GCD of these four nets is N0, i.e., each of the four
WF-nets is a subclass of this net and it is not possible to find a different WF-net
which is also a superclass of N2, N3, and N4 and at the same time a subclass of
N0. Figure 10 shows NGCD = N0 as the GCD of N0, N2, N3, and N4. Figure 10
also shows the WF-net NLCM . NLCM is a subclass of each of the four nets
considered. Moreover, it is not possible to find a different WF-net which is also
a subclass of N0, N2, N3, and N4 and at the same time a superclass of NLCM .
Any execution sequence generated by one of the four nets can also be generated
by NLCM after the appropriate abstraction. Based on the characterization of
GCD and LCM we are now ready to present the following result:

Result 4: The GCD of all local views is the public workflow.

The application specific interpretation of this result is as follows: The public
workflow is the superclass of the local views of all domains, and it is minimal
in the sense that no different WF-net can be found, which is a superclass of the
local views and at the same time a subclass of the public workflow. This is an
interesting, yet not surprising result. It shows that the local views of the domains
have exactly the public workflow in common.

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 301

i

o

a

c

NGCD

b

e

f

i

o

a

c

NLCM

b g

Fig. 10. The greatest common divisor NGCD and least common multiple NLCM of N0,
N2, N3, and N4 shown in Fig. 6.

Analogously to the discussion of Result 4, the final result states a relationship
between the local views of the domains and the overall workflow, as it is executed:

Result 5: The LCM of all local views is the overall workflow.

We interpret Result 5 as follows: The overall workflow is a specialization of all
local views; conversely, the local views are superclasses of the overall workflow.
The overall workflow is minimal in the sense that it is not possible to find
a different WF-net which is also a subclass of all local views and which is a
superclass of the overall workflow.

6 Related Work and Conclusions

Petri nets have been proposed for modeling workflow process definitions long
before the term “workflow management” was coined and workflow management
systems became readily available. Consider for example the work on Information
Control Nets, a variant of the classical Petri nets, in the late seventies [13].
Only a few papers in the literature focus on the verification of workflow

process definitions. In [16] some verification issues have been examined and the
complexity of selected correctness issues has been identified, but no concrete
verification procedures have been suggested. In [1] and [7] concrete verification
procedures based on Petri nets have been proposed. This paper builds upon the
work presented in [1] where the concept of a sound WF-net was introduced. The

W.M.P. van der Aalst and M. Weske302

technique presented in [7] has been developed for checking the consistency of
transactional workflows including temporal constraints. However, the technique
is restricted to acyclic workflows and only gives necessary conditions (i.e., not
sufficient conditions) for consistency. In [23] a reduction technique has been pro-
posed. This reduction technique uses a correctness criterion which corresponds
to soundness and the class of workflow processes considered are in essence acyclic
free-choice Petri nets.
This paper differs from the above approaches because the focus is on in-

terorganizational workflows. Only a few papers explicitly focus on the problem
of verifying the correctness of interorganizational workflows [3,17]. In [3] the
interaction between domains is specified in terms of message sequence charts
and the actual overall workflow is checked with respect to these message se-
quence charts. A similar, but more formal and complete, approach is presented
by Kindler, Martens, and Reisig in [17]. The authors give local criteria, using
the concept of scenarios (similar to runs or basic message sequence charts), to
guarantee the absence of certain anomalies at the global level. Both approaches
[3,17] are not constructive, i.e., they only specify criteria for various notions of
correctness but do not provide concrete design rules such as the transformation
rules.
In the last decade several researchers explored notions of behavioral inheri-

tance (also named subtyping or substitutability), see [10] for an overview. Re-
searchers in the domain of formal process models (e.g., Petri-nets and process
algebras) have tackled similar questions based on the explicit representation
of a process by using various notions of (bi)simulation . The inheritance no-
tion used in this paper is characterized by the fact that it is equipped with
both inheritance-preserving transformation rules to construct subclasses [10] and
transfer rules to migrate instances from a superclass to a subclass and vice versa
[6]. These features are very relevant for a both constructive and robust approach
towards interorganizational workflows.
We have developed a tool named Woflan (WOrkFLow ANalyzer [2,28]).

Woflan is an analysis tool which can be used to verify the correctness of a
workflow process definition. The analysis tool uses state-of-the-art techniques to
find potential errors in the definition of a workflow process. Woflan is designed
as a workflow management system independent analysis tool. In principle it can
interface with many workflow management systems. At the moment, Woflan
can interface with the workflow management systems COSA (Software Ley [25]),
METEOR (LSDIS [24]), Staffware (Staffware [26]), and with the business process
re-engineering tool Protos (Pallas Athena [22]). Woflan has not been designed
to analyze interorganizational workflows. However, it can be used to verify the
soundness property used throughout this paper, and it can also check whether
a given workflow is a subclass of another workflow.
In the future we hope to extend the P2P approach in several directions. First

of all, we want to address local dynamic changes. The transfer rules presented in
[6] can be used to migrate workflow instances from a superclass to a subclass and
vice versa. Therefore, it is possible to change the workflows in each of the domains

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 303

on the fly, i.e., it is possible to automatically transfer each case to the latest
version of the process. Other aspects of future work include the reconfiguration
of interorganizational workflows (tasks move from one domain to another), the
usage of alternative inheritance notions and the implementation of the concepts
in prototypical workflow management systems, e.g., by using METEOR [5,24]
or InterProcs [18].

References

1. W.M.P. van der Aalst. Verification of Workflow Nets. In P. Azéma and G. Balbo,
editors, Application and Theory of Petri Nets 1997, volume 1248 of Lecture Notes
in Computer Science, pages 407–426. Springer-Verlag, Berlin, 1997.

2. W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management.
The Journal of Circuits, Systems and Computers, 8(1):21–66, 1998.

3. W.M.P. van der Aalst. Interorganizational Workflows: An Approach based on Mes-
sage Sequence Charts and Petri Nets. Systems Analysis - Modelling - Simulation,
34(3):335–367, 1999.

4. W.M.P. van der Aalst. Inheritance of Interorganizational Workflows: How to Agree
to Disagree Without Loosing Control? BETA Working Paper Series, WP 46,
Eindhoven University of Technology, Eindhoven, 2000.

5. W.M.P. van der Aalst and K. Anyanwu. Inheritance of Interorganizational Work-
flows to Enable Business-to-Business E-commerce. In Proceedings of the Sec-
ond International Conference on Telecommunications and Electronic Commerce
(ICTEC’99), pages 141–157, Nashville, Tennessee, October 1999.

6. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An approach
to tackling problems related to change. Theoretical Computer Science, 2001 (to
appear).

7. N.R. Adam, V. Atluri, and W. Huang. Modeling and Analysis of Workflows using
Petri Nets. Journal of Intelligent Information Systems, 10(2):131–158, 1998.

8. Amazon.com, Inc. Amazon.com. http://www.amazon.com, 1999.
9. Barnes and Noble. bn.com. http://www.bn.com, 1999.
10. T. Basten. In Terms of Nets: System Design with Petri Nets and Process Algebra.

PhD thesis, Eindhoven University of Technology, Eindhoven, The Netherlands,
December 1998.

11. R. Benjamin and R. Wigand. Electronic markets and virtual value chains on the
information superhighway. Sloan Management Review, pages 62–72, 1995.

12. R.W.H. Bons, R.M. Lee, and R.W. Wagenaar. Designing trustworthy interorgani-
zational trade procedures for open electronic commerce. International Journal of
Electronic Commerce, 2(3):61–83, 1998.

13. C.A. Ellis. Information Control Nets: A Mathematical Model of Office Information
Flow. In Proceedings of the Conference on Simulation, Measurement and Modeling
of Computer Systems, pages 225–240, Boulder, Colorado, 1979. ACM Press.

14. D. Georgakopoulos, M. Hornick, and A. Sheth. An Overview of Workflow Manage-
ment: From Process Modeling to Workflow Automation Infrastructure. Distributed
and Parallel Databases, 3:119–153, 1995.

15. R.J. van Glabbeek and W.P. Weijland. Branching Time and Abstraction in Bisim-
ulation Semantics. Journal of the ACM, 43(3):555–600, 1996.

16. A.H.M. ter Hofstede, M.E. Orlowska, and J. Rajapakse. Verification Problems in
Conceptual Workflow Specifications. Data and Knowledge Engineering, 24(3):239–
256, 1998.

W.M.P. van der Aalst and M. Weske304

17. E. Kindler, A. Martens, and W. Reisig. Inter-Operability of Workflow Applica-
tions: Local Criteria for Global Soundness. In W.M.P. van der Aalst, J. Desel, and
A. Oberweis, editors, Business Process Management: Models, Techniques, and Em-
pirical Studies, volume 1806 of Lecture Notes in Computer Science, pages 235–253.
Springer-Verlag, Berlin, 2000.

18. R.M. Lee. Distributed Electronic Trade Scenarios: Representation, Design, Proto-
typing. International Journal of Electronic Commerce, 3(2):105–120, 1999.

19. F. Leymann and D. Roller. Production Workflow: Concepts and Techniques.
Prentice-Hall PTR, Upper Saddle River, New Jersey, USA, 1999.

20. T.W. Malone, R.I. Benjamin, and J. Yates. Electronic Markets and Electronic
Hierarchies: Effects of Information Technology on Market Structure and Corporate
Strategies . Communications of the ACM, 30(6):484–497, 1987.

21. M. Merz, B. Liberman, K. Muller-Jones, and W. Lamersdorf. Interorganisational
Workflow Management with Mobile Agents in COSM. In Proceedings of PAAM96
Conference on the Practical Application of Agents and Multiagent Systems, 1996.

22. Pallas Athena. Protos User Manual. Pallas Athena BV, Plasmolen, The Nether-
lands, 1999.

23. W. Sadiq and M.E. Orlowska. Applying Graph Reduction Techniques for Identify-
ing Structural Conflicts in Process Models. In Proceedings of the 11th International
Conference on Advanced Information Systems Engineering (CAiSE ’99), volume
1626 of Lecture Notes in Computer Science, pages 195–209. Springer-Verlag, Berlin,
1999.

24. A. Sheth, K. Kochut, and J. Miller. Large Scale Distributed Information Systems
(LSDIS) laboratory, METEOR project page.
http://lsdis.cs.uga.edu/proj/meteor/meteor.html.

25. Software-Ley. COSA User Manual. Software-Ley GmbH, Pullheim, Germany,
1998.

26. Staffware. Staffware 2000 / GWD User Manual. Staffware plc, Berkshire, United
Kingdom, 1999.

27. The White House. A Framework for Global Electronic Commerce.
http://www.ecommerce.gov/framewrk.htm, 1997.

28. H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing Workflow
Processes using Woflan. Computing Science Report 99/02, Eindhoven University
of Technology, Eindhoven, 1999.

From: CAiSE 2001, LNCS 2068 © Springer-Verlag Berlin Heidelberg 2001 305

Reflections on a Decade of Interorganizational
Workflow Research

Wil M.P. van der Aalst and Mathias Weske

Abstract The Public-To-Private (P2P) approach presented at CAiSE in 2001 pro-
vides a correctness-by-construction approach to realize interorganizational work-
flows. A behavioral inheritance notion is used to ensure correctness: organizations
can alter their private workflows as long as these remain subclasses of the agreed-
upon public workflow. The CAiSE‘01 paper illustrates the strong relationship
between business process management and service-orientation. Since 2001, there
is a trend from the investigation of individual process orchestrations to interacting
processes, i.e., process choreographies. In this paper, we reflect on the original
problem statement and discuss related work.

1 Introduction

In a Service Oriented Architecture (SOA) services are interacting by exchang-
ing messages and by combining services more complex services are created.
Choreography is concerned with the composition of such services seen from a
global viewpoint focusing on the common and complementary observable behavior.

W.M.P. van der Aalst (�)
Architecture of Information Systems, Eindhoven University of Technology, NL-5600 MB,
Eindhoven, The Netherlands

Business Process Management Discipline, Queensland University of Technology, Brisbane,
QLD, Australia

International Laboratory of Process-Aware Information Systems, National Research University
Higher School of Economics, Moscow, Russia
e-mail: w.m.p.v.d.aalst@tue.nl

M. Weske
Hasso Plattner Institute at the University of Potsdam, Prof.-Dr.-Helmert-Strasse 2-3, 14482
Potsdam, Germany
e-mail: Mathias.Weske@hpi.uni-potsdam.de

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 24, © Springer-Verlag Berlin Heidelberg 2013

307

mailto:w.m.p.v.d.aalst@tue.nl
mailto:Mathias.Weske@hpi.uni-potsdam.de

W.M.P. van der Aalst and M. Weske

Choreography is particularly relevant in a setting where there is not a single
coordinator. Orchestration is concerned with the composition of such services seen
from the viewpoint of single service. Independent of the viewpoint (choreography or
orchestration) there is a need to make sure that the services work together properly
to ensure the correct execution of business processes. The resulting system should
be free of deadlocks, livelocks, and other anomalies.

The Public-To-Private (P2P) approach presented at CAiSE‘01 [7] addressed
such correctness concerns using a notion of inheritance defined for Workflow nets
(WF-nets) [3, 4, 9]. The P2P approach consists of three steps: (1) create a common
understanding of the interorganizational workflow by specifying a shared public
workflow, (2) partition the public workflow over the organizations involved, and (3)
for each organization, create a private workflow which is a subclass of the respective
part of the public workflow. Subsequently, projection inheritance ensures that the
resulting interorganizational workflow realizes the behavior specified in the public
workflow.

In the remainder, we reflect on a decade of interorganizational workflow
research.1 In Sect. 2 we study the trend in business process management research
from process orchestrations to process choreographies, which started about 10 years
ago. Two streams of research are highlighted. Formal investigations on how interact-
ing business processes can be analyzed and results related to the modeling of process
choreographies and the impact of this research stream on today’s standards in
business process modeling. In Sect. 3, we challenge the correctness-by-construction
approach of [7] and advocate the more active use of event data at run-time.

2 From Process Orchestrations to Process Choreographies

Until about 2001, research in business process management or—at that time—
workflow management, centered around individual processes that are enacted within
a single organization, i.e., process orchestrations. Process orchestrations consist
of activities that are executed in coordination in a technical and organizational
environment and are performed to achieve a business goal [22]. Workflow research
looked at formal aspects related to process behavior but also at conceptual aspects
like the flexibility of processes. In all of these research areas, individual processes
were in the center of attention.

After 2001, the scope of research broadened from individual processes performed
by single organizations to interactions between several processes performed by
different organizations. From today’s perspective, this step was quite obvious, since
process orchestrations tend to talk to process orchestrations performed by other
organizations.

1Due to space restrictions, we can only list a tiny fraction of the work on process orchestrations
and choreographies and do not suggest being complete in any way.

308

Reflections on a Decade of Interorganizational Workflow Research

For instance, when ordering a new laptop computer, we ask several hardware
suppliers for quotes. The receipt of such a quote by a supplier spawns a new process
orchestration at the supplier’s side. Depending on, e.g., the specification of the
laptop, the dealer might decide to issue a quote. On receiving a sufficiently large set
of quotes, we collect and compare them, and send an purchase order to one of them.
In real-world scenarios, the interactions of processes can be much more complex
than in this example. However, it shows that process orchestrations are actually
interconnected with each other. Studying these types of connections is worthwhile
and challenging, both from an academic and from a practical perspective.

2.1 Formal Investigations

A major stream of work relates to the formal investigation of interacting processes.
At the beginning of the Millennium, Service Oriented Architectures (SOA) were “en
vogue”, so many academics started to formalize service notions. After abstracting
reality to formal models, such as Petri nets, services and process orchestrations can
no longer be distinguished from one another.

One of the earliest results were presented in [15, 16], where the interactions of
services were defined by a specific type of Petri nets, called workflow modules, and
correctness criteria for interacting services were proposed. Based on this work, [17]
looked at the service selection problem, which so far had mostly been discussed
from a either a software technology or from a semantics perspective. Operating
guidelines for services have been introduced as a powerful behavioral specification
of all services that can successfully cooperate with the specific service under consid-
eration. At the same time papers such as [14] related concrete execution languages
like the Business Process Execution Language for Web Services (BPEL [8]) to
formalisms like Petri nets. The main results of this stream of research are surveyed
and partly extended in [23], where controllability of services is in the center of
attention by answering the question “Does my service have partners?”. Based on
this work, a question very similar to that of the original P2P paper was addressed
in [6], where multiparty contracts are proposed. These define the overall intended
process interactions and the roles of the parties involved. Based on a contract,
each party implements its own process orchestration, guided by an accordance
criterion.

There is a specific aspect that separates process orchestrations from choreogra-
phies; while the former have a static structure, the latter have a dynamic structure.
During run-time, a participating organization might select a new partner, so that
the structure of the system evolves over time. These aspects can be captured using
the pi calculus which provides a mobility notion allowing for communication
structures to be changed while the system runs. Decker et al. [10] formally specifies
a set of service interaction patterns based on the pi calculus. With interaction
soundness, a new criterion for interacting processes was defined in [20]. These
results are surveyed and partly extended in [21].

309

W.M.P. van der Aalst and M. Weske

2.2 Modeling and Impact

In addition to the investigation of formal aspects, considerable work on the modeling
of process choreographies has been conducted. As of version Version 1 released in
2003, BPMN can be used to model interacting business processes (by drawing a
pool for each participant and specifying the interactions between pools by message
flow). There were two options to do so. Either the internal processes were hidden or
only communication activities were drawn with their local control flow constraints.
This modeling technique proves error prone, since the distribution of responsibilities
among the participants could not be described properly, which could lead to
undesired interaction behavior, such as deadlocks.

In [24, 25], a new modeling technique called Let’s Dance was introduced,
together with a set of desirable properties of interacting processes, such as
local enforceability. The basic idea of this approach is avoiding to connect the
communication interfaces of the participants, but to concentrate on the actual
interactions and define control flow between them. The term interaction-based
choreography modeling was coined for this modeling style. In a follow-up paper on
interaction BPMN [11], the basic concepts of Let’s Dance were maintained, while
taking advantage of the BPMN notation. Behavioral consistency of interacting
processes was addressed in [12]; the results of this stream of research was surveyed
and partly extended in [13].

Based on these insights, BPMN provides dedicated diagram types for modeling
process choreographies as of Version 2 [19]. For example, choreography diagrams
are directly based on the concepts introduced in the research papers mentioned.

3 Correctness-by-Construction Versus Service Mining

The P2P approach provides a correctness-by-construction approach, i.e., parties do
not need to know each others’ private workflows. However, one needs to assume that
the private workflow of another organization is indeed a subclass of the respective
part of the public workflow. This assumption seems to be too strong:

• Organizations may implement a non-compliant private workflow (i.e., a work-
flow that is not a subclass under projection inheritance).

• Private workflows may change over time without an explicit notification and
possibly violating earlier agreements.

• There are private workflows that are not a subclass under projection inheritance,
but that can never lead to problems. For example, two parallel sending transitions
can be made sequential without causing any problems. However, the resulting
workflow is not a subclass.

As suggested in [2, 5, 18], it may be better to observe the messages exchanged and
use conformance checking instead. Consider for example the public view shown in
Fig. 1. Sending payments sp before receiving goods rg (i.e., effectively removing

310

Reflections on a Decade of Interorganizational Workflow Research

po
place
order

rr
receive

rejection

rg
receive
goods

sp
send

payment

cg
confirm
goods

pc
payment

confirmed

clclose

ro
receive
order

rp
receive
payment

sg
send
goods

cp
confirm
payment

gc
goods
confirmed

sr
send
rejection

m4

m5

m6

m2

m1

m3

p1

p2 p3

p4

p5

p6 p7

p8

p9

p10

p11

p12

p13

p14

customer supplier

q1

q2

Fig. 1 An interorganizational workflow modeling two interacting processes. Removing place q1

may result in deadlock, cf. trace hpo; ro; sr; spi. Removing place q2 changes behavior (payment
confirmation may occur before confirming goods) but this cannot jeopardize correctness

place q1) may cause deadlocks. This can be observed when message m4 precedes
message m2. Receiving a payment conformation pc before confirming goods cg
(i.e., effectively removing place q2) is harmless. All suppliers that can cooperate
well with the customer workflow shown in Fig. 1, can also cooperate with the
alternative workflow without place q2 (which is not a subclass). This illustrates that
the P2P approach may be too strict. Moreover, one needs to monitor the message
exchanges to detect violations, because, often, private workflows of other parties
cannot be controlled. Therefore, we suggest putting more effort in service mining
[2], i.e., the application of process mining techniques [1] as a tool for discovering,
checking, and improving interorganizational workflows.

References

1. W.M.P. van der Aalst. Process Mining: Discovery, Conformance and Enhancement of Business
Processes. Springer-Verlag, 2011.

2. W.M.P. van der Aalst. Service Mining: Using Process Mining to Discover, Check, and Improve
Service Behavior. IEEE Transactions on Services Computing, 2013.

311

W.M.P. van der Aalst and M. Weske

3. W.M.P. van der Aalst and T. Basten. Life-cycle Inheritance: A Petri-net-based Approach. In
P. Azéma and G. Balbo, editors, Application and Theory of Petri Nets 1997, volume 1248 of
Lecture Notes in Computer Science, pages 62–81. Springer-Verlag, 1997.

4. W.M.P. van der Aalst and T. Basten. Inheritance of Workflows: An Approach to Tackling
Problems Related to Change. Theoretical Computer Science, 270(1–2):125–203, 2002.

5. W.M.P. van der Aalst, M. Dumas, C. Ouyang, A. Rozinat, and H.M.W. Verbeek. Conformance
Checking of Service Behavior. ACM Transactions on Internet Technology, 8(3):29–59, 2008.

6. W.M.P. van der Aalst, N. Lohmann, P. Massuthe, C. Stahl, and K. Wolf. Multiparty
Contracts: Agreeing and Implementing Interorganizational Processes. The Computer Journal,
53(1):90–106, 2010.

7. W.M.P. van der Aalst and M. Weske. The P2P approach to Interorganizational Workflows. In
International Conference on Advanced Information Systems Engineering (CAiSE’01), volume
2068 of Lecture Notes in Computer Science, pages 140–156. Springer-Verlag, 2001.

8. A. Alves et al. Web Services Business Process Execution Language Version 2.0 (OASIS
Standard). WS-BPEL TC OASIS, http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html,
2007.

9. T. Basten and W.M.P. van der Aalst. Inheritance of Behavior. Journal of Logic and Algebraic
Programming, 47(2):47–145, 2001.

10. G. Decker, F. Puhlmann, and M. Weske. Formalizing Service Interactions. In International
Conference on Business Process Management (BPM 2006), volume 4102 of Lecture Notes in
Computer Science, pages 414–419. Springer-Verlag, 2006.

11. G. Decker and A. Barros. Interaction Modeling Using BPMN. In Arthur H. M. ter Hofstede,
Boualem Benatallah, and Hye-Young Paik, editors, Business Process Management Workshops,
volume 4928 of Lecture Notes in Computer Science, pages 208–219. Springer, 2007.

12. G. Decker and M. Weske. Behavioral Consistency for B2B Process Integration. In John
Krogstie, Andreas L. Opdahl, and Guttorm Sindre, editors, CAiSE, volume 4495 of Lecture
Notes in Computer Science, pages 81–95. Springer, 2007.

13. G. Decker and M. Weske. Interaction-centric Modeling of Process Choreographies. Informa-
tion Systems, 36(2):292–312, 2011.

14. N. Lohmann, P. Massuthe, C. Stahl, and D. Weinberg. Analyzing Interacting BPEL Processes.
In International Conference on Business Process Management (BPM 2006), volume 4102 of
Lecture Notes in Computer Science, pages 17–32. Springer-Verlag, 2006.

15. A. Martens. On Compatibility of Web Services. In 10th Workshop on Algorithms and Tools
for Petri Nets (AWPN 2003), Eichstätt, Germany, 2003.

16. A. Martens. On Usability of Web Services. In Fourth International Conference on Web
Information Systems Engineering Workshops, IEEE, 2003.

17. P. Massuthe, W. Reisig, and K. Schmidt. An Operating Guideline Approach to the SOA. In
South-East European Workshop on Formal Methods (SEEFM’05), Ohrid, 2005.

18. R. Müller, W.M.P. van der Aalst, and C. Stahl. Conformance Checking of Services Using the
Best Matching Private View. In N. Lohmann and M. ter Beek, editors, WS-FM 2012, Lecture
Notes in Computer Science. Springer-Verlag, 2012.

19. Object Management Group. Business Process Model and Notation (BPMN) Version 2.0,
formal/2011-01-03 edition, 2011.

20. F. Puhlmann and M. Weske. Interaction Soundness for Service Orchestrations. In Service-
Oriented Computing (ICSOC 2006), volume 4294 of Lecture Notes in Computer Science,
pages 302–313. Springer-Verlag, 2006.

21. F. Puhlmann and M. Weske. A Look Around the Corner: The Pi-Calculus. In Transactions on
Petri Nets and Other Models of Concurrency II, pages 64–78. Springer-Verlag, 2009.

22. M. Weske. Business Process Management: Concepts, Languages, Architectures. Springer-
Verlag, second edition, 2012.

23. K. Wolf. Does my Service Have Partners? In Transactions on Petri Nets and Other Models of
Concurrency II, pages 152–171. Springer-Verlag, 2009.

312

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.html

Reflections on a Decade of Interorganizational Workflow Research

24. J.M. Zaha, A. Barros, M. Dumas, and A.H.M. ter Hofstede. Let’s Dance: A Language for
Service Behavior Modeling. In International Conference on Cooperative Information Systems,
volume 4275 of Lecture Notes in Computer Science, pages 145–162. Springer-Verlag, 2006.

25. J.M. Zaha, M. Dumas, A. ter Hofstede, A. Barros, and G. Decker. Service Interaction
Modeling: Bridging Global and Local Views. In International Enterprise Distributed Object
Computing Conference (EDOC 2006), pages 45–55. IEEE Computer Society, 2006.

313

Database Schema Matching
Using Machine Learning with Feature Selection

Jacob Berlin and Amihai Motro

Information and Software Engineering Department
George Mason University, Fairfax, VA 22030

{jberlin,ami}@gmu.edu

Abstract. Schema matching, the problem of finding mappings between
the attributes of two semantically related database schemas, is an im-
portant aspect of many database applications such as schema integra-
tion, data warehousing, and electronic commerce. Unfortunately, schema
matching remains largely a manual, labor-intensive process. Further-
more, the effort required is typically linear in the number of schemas
to be matched; the next pair of schemas to match is not any easier than
the previous pair. In this paper we describe a system, called Automatch,
that uses machine learning techniques to automate schema matching.
Based primarily on Bayesian learning, the system acquires probabilistic
knowledge from examples that have been provided by domain experts.
This knowledge is stored in a knowledge base called the attribute dic-
tionary. When presented with a pair of new schemas that need to be
matched (and their corresponding database instances), Automatch uses
the attribute dictionary to find an optimal matching. We also report
initial results from the Automatch project.

1 Introduction

Schema matching is the problem of finding mappings between the attributes of
two semantically related database schemas. The schema matching problem is an
important, current issue for many database applications such as schema integra-
tion, data warehousing, and electronic commerce [12,15]. Unfortunately, schema
matching remains largely a manual, labor-intensive process. Furthermore, the
effort required is typically linear in the number of schemas to be matched; the
next pair of schemas to match is not any easier than the previous pair. Thus,
database applications that require schema matching are limited to environments
in which the set of member information sources is small and stable. These ap-
plications would scale-up to much larger communities of member sources if the
schema matching “bottleneck” was broken by automating the matching process.

In this paper we discuss such a system, called Automatch, for automating
the schema matching process. Based primarily on Bayesian learning, the sys-
tem acquires probabilistic knowledge from examples of schemas that have been
“mapped” by domain experts into a knowledge base of database attributes called
the attribute dictionary. Roughly speaking, this dictionary characterizes different

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 452–466, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

315

mailto:{jberlin,ami}@gmu.edu

attributes by means of their possible values and the probability estimates of these
values. Furthermore, the dictionary may be extended to contain any attribute
metadata that has a probabilistic interpretation (e.g. attribute names or string
patterns).

When presented with a pair of “client” schemas that need to be matched (and
their corresponding database instances), Automatch matches them “through” its
dictionary. Using probabilistic methods, an attempt is made to match every at-
tribute of one client schema with every attribute of the other client schema,
resulting in individual “scores.” An optimization process based on a Minimum
Cost Maximum Flow network algorithm finds the overall optimal matching be-
tween the two client schemas, with respect to the sum of the individual attribute
matching scores.

To overcome the problem of very large dictionaries caused by very large
attribute domains, Automatch employs statistical feature selection techniques
to learn an efficient representation of the examples. That is, each attribute is
represented with a minimal set of most informative values. Thus the attribute
dictionary is made human understandable through aggressive reduction in the
number of values. Although the example schemas may contain many thousands
of values, we are able to focus learning on a very small subset, consisting of as
few as 10% of the initial values.

The results of our initial experimentation with Automatch are encouraging
as they show performance that exceeds 70% (measured as the harmonic mean
of the soundness and the completeness of the matching process). Although the
attribute dictionary was built for Automatch, we conjecture that it could be
employed as a knowledge asset in other schema matching systems.

The remainder of this paper is organized as follows. Section 3 describes the
basic methodology of Automatch; in particular, the probabilistic information
in the acquired knowledge base and how it is used to infer optimal matchings
between “client” schemas. Section 4 describes alternative methods for reducing
the size of the knowledge base through feature selection. Section 5 explains
the experiment and its conclusions. Section 6 summarizes the contributions and
suggests future research directions. We begin with a brief discussion of other
published approaches and how they are related to Automatch.

2 Related Work

A thorough discussion of schema matching techniques and implementations can
be found in [6,11,15]. Here we mention two such approaches and compare them
to Automatch. Automated schema matching can be classified as rule based and
learner based [6].

The Artemis system [5] is a rule-based approach for schema integration. This
system determines the affinity of attributes from two schemas in a pair-wise fash-
ion. Affinity is based on comparisons of attribute names, structure, and domain
types and is scored on a [0,1] interval. The process relies on thesauri to deter-
mine semantic relationships. The system uses hierarchical clustering based on

J. Berlin and A. Motro316

affinity values to group together related attributes. Finally, a set of unification
rules are employed to interactively guide a user through the construction of an
integrated schema. In contrast with Automatch, Artemis considers schema in-
formation; Automatch considers instance information. Furthermore, knowledge
in Artemis is “pre-coded” in the thesaurus and unification rules; knowledge in
Automatch is learned from examples.

SemInt [9,10] is a learner-based system that uses neural networks to identify
similar attributes from different schemas. This system uses a combination of
schema and instance information. Schema information includes such information
as data types, field length, and constraint information. Instance information
includes such information as value distributions, character ratios, numeric mean
and variance.

For each type of information the system exploits, it determines a numerical
value on a [0, 1] interval. A tuple of these numerical values for one attribute
is the signature of the attribute. The system uses these signatures to cluster
similar attributes within the same schema. The system then uses the signatures
of the cluster centers to train a neural network to output an attribute category
based on the input signatures. Given a new schema, the system determines the
signature of each schema attribute using the same type of schema and instance
information used for training. These signatures are then applied to the neural
network to determine the category of the respective attributes. In contrast with
Automatch, SemInt uses a fixed set of features for learning; Automatch combines
feature selection with learning to find an optimal set of features for a given
problem domain. Furthermore, SemInt discovers matches to attribute clusters;
Automatch discovers matches to individual attributes.

3 Methodology

This section describes the basic methodology of Automatch, providing details of
its data structures and algorithms. It begins with an intuitive description of the
approach and a formal description of the problem.

3.1 The Overall Approach

Automatch is based on a knowledge base about schema attributes which is con-
structed from examples. When presented with two new “client” schemas that
need to be matched (and their corresponding database instances), Automatch
checks every client attribute against its attribute dictionary, obtaining individual
“matching scores” for each pair of client attribute and dictionary attribute.

These client-dictionary attribute scores are combined to generate client-client
attribute scores. To illustrate, assume B is an attribute of one client scheme, C
is an attribute of the other client scheme, and A is an attribute of the dictionary,
and assume that the matching of B to A is scored w1 and the matching of C
to A is scored w2; then the matching B ↔ C receives the score w1 + w2.1

1 We combine the individual scores by their sum, but other combinations are also
possible; for example, their product.

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 317

In turn, these individual client-client attribute scores are combined to gener-
ate overall schema-schema matching scores. To illustrate, assume schemas R1 =
{B1, B2} and R2 = {C1, C2} and assume the client-client attribute scores: w1 :
B1 ↔ C1, w2 : B1 ↔ C2, w3 : B2 ↔ C1, and w4 : B2 ↔ C2. The schema match-
ing {B1 ↔ C2, B2 ↔ C1} is then scored w2 + w3. Other schema matchings are
scored similarly.

In a subsequent optimization process, Automatch finds the schema matching
with the highest schema-schema score.

3.2 Formalization of the Problem

Our formalization is based on the relational model. However, we are confi-
dent that the methods can be extended to other models, such as the object-
oriented or the semi-structured models. A database schema is simply a finite
set of attributes {A1, . . . , An}. Given two database schemas R1 = {B1, . . . , Bp}
and R2 = {C1, . . . , Cq}, a matching is a mapping between a subset of R1 and a
subset of R2.

We assume a knowledge base about database attributes, called the attribute
dictionary and denoted D. In this knowledge base, each attribute is characterized
by a select set of possible values and their probability estimates.

In addition, we assume a scoring function f that, given (1) the attribute dic-
tionary D, (2) a pair of database schemas R1 and R2, (3) a pair of corresponding
database instances r1 and r2, and (4) a matching between R1 and R2, issues a
value (a real number), that indicates the “goodness” of the matching.

The problem is then to find the best matching for two given schemas R1
and R2. This abstract description leaves two major issues to be discussed in
detail:

1. The nature of the attribute dictionary D and the scoring function f .
2. The optimization of f (i.e., finding the best schema matching).

These two issues are discussed in the next two subsections.

3.3 The Attribute Dictionary and the Scoring Function

The attribute dictionary D consists of a finite set of schema attributes {A1, . . . ,
Ar}. Each attribute in the attribute dictionary is characterized by a set of pos-
sible values and their probability estimates. The attribute dictionary serves as a
knowledge base that accumulates information about attributes. All attempts to
match attributes of client schemas refer to this knowledge base. We use Bayesian
learning to populate the attribute dictionary with example values provided by
domain experts.

Recall from the intuitive description in Section 3.1 that the first task is to
determine client-dictionary attribute scores.

Let X be a client attribute, let A denote a dictionary attribute, and let V
denote a set of values that are observed in X (these values are derived from the
instance of the client schema to which X belongs).

J. Berlin and A. Motro318

Let P (A) be the prior probability that X maps to A (before observing any
values of X), let P (V) represent the unconditional probability of observing val-
ues V in X , and let P (V |A) represent the conditional probability of observing
the values V , given that X maps to A. Bayes Theorem states that

P (A|V) =
P (V |A) · P (A)

P (V)
. (1)

P (A|V) is referred to as the posterior probability that X maps to A, because
it reflects the probability that a mapping of X to A holds after the values V
have been observed. This posterior probability serves as the score of the client
attribute X and the dictionary attribute A.

Letting V be a sequence of values (v1, . . . , vn), and assuming conditional
independence of values given the mapping, the client-dictionary attribute score
is

M(X, A) =
P (A)
P (V)

·
n∏

k=1

P (vk|A) . (2)

Although the attribute values may not be conditionally independent, such
an assumption has been shown to be an acceptable approach, aimed at reducing
the number of probabilities to a tractable amount while not sacrificing optimal-
ity [7,8,13].

To build the attribute dictionary for each attribute A we must learn and store
the probability estimates P (A), P (¬A), P (v|A), and P (v|¬A) for all dictionary
attributes A and values v. Note that we do not need to learn P (V) because this
term is determined by the requirement that M(X, A) + M(X,¬A) = 1.

P (A), the probability that a client attribute X maps to A, is estimated by the
proportion of examples provided by the domain expert that have been mapped
to A. P (v|A), the probability that attribute value v occurs given that a mapping
to A holds, is estimated by counting the occurrences of v in the set of examples
provided by the domain expert. The remaining terms are learned in a similar
fashion. For numeric data values, we assume a normal distribution and use the
normal probability density function to estimate the conditional probabilities.
A thorough discussion of the algorithms for estimating these terms is reported
in [4]. A critical selection process that reduces the number of values v that are
maintained for each attribute A is discussed in Section 4.

3.4 Optimal Schema Matching

Assume now two given schemas R1 and R2 with their corresponding instances r1
and r2, and let D denote the attribute dictionary.

The scores M(X, A) from Equation 2 are calculated for each attribute X
in the given schema and for each attribute A of the dictionary. A threshold is
then adopted, and scores that are below this threshold are interpreted as evi-
dence that X should not be mapped to A. These results may be represented in
a weighted tripartite graph in which nodes correspond to attributes, edges cor-
respond to matches, and edge weights correspond to the posterior probabilities.

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 319

Fig. 1. Weighted tripartite graph for representing individual attribute-attribute
scores

Figure 1 shows such a graph for a simple case in which R1 = {B1, B2}, R2 =
{C1, C2}, and D = {A1, A2, A3}. This example shows a full tripartite graph
(every node in the left or right partitions is connected to every node in the
center partition), but the use of a threshold implies that in general the graph
need not be full.

Recall from the intuitive description in Section 3.1, that the client-dictionary
attribute scores wi are combined to generate client-client attribute scores. Note,
however, that every two client attributes may be matched through every dic-
tionary attribute. In the example, B1 and C1 may be matched through A1
(with score w1 + w7), through A2 (with score w3 + w9) and through A3 (with
score w5+w11). Note that associating a dictionary attribute with every attribute
match is like providing a common type for the matching attribute pair.

In turn, client-client attribute scores are used in generating overall schema-
schema scores. In the example, the schema matching comprising of B1

A1↔ C2

and B2
A3↔ C1 receives the score w1 + w8 + w6 + w11. Obviously, the number

of possible matchings between R1 and R2 is too high for a simple process that
enumerates all the matchings and scores each.

One obvious approach for matching R1 and R2 is to choose for each client
attribute the most probable dictionary attribute. For instance, in the example,

J. Berlin and A. Motro320

the highest of w1, w3 and w5 will determine whether B1 is mapped to A1, A2
or A3. Then a mapping can be established between those schema attributes
that share a node in the attribute dictionary. In the example, assume that the
highest of w1, w3 and w5 is w3; (i.e., B1 is best mapped to A2), and assume
that the highest of w8, w10 and w12 is w10 (i.e., C2 is best mapped to A2); the
conclusion would then be that B1 is best matched with C2. The problem with
such an approach is that it easily leads to ambiguity. In the example, if the
optimal mappings correspond to the edges with weights w3, w4, w9 and w10,
we have established a match between the schemas, but the attribute mapping
is ambiguous. Furthermore, the approach easily leads to no match; e.g., if the
optimal mappings correspond to the edges with weights w1, w6, w9, and w10.

To avoid these pitfalls, we impose an additional constraint on the matching
of R1 and R2. Specifically, we limit our search to schema mappings in which the
paths between attributes in R1 and R2 are free of intersections. That is, two
attributes of a client scheme never map to the same dictionary attribute. The
resulting problem can then be solved using efficient flow network techniques.
Towards this, we must first extend the tripartite graph in several ways.

First, we add two nodes to the graph: a source node S on the left, which is
then connected to all the R1 nodes, and a target node T on the right, which
is then connected to all the R2 nodes. Next, we split each attribute dictionary
node A into two nodes, Ain and Aout. Each Ain

i is connected to its correspond-
ing Aout

i node. Next, we reconnect the edges from R1 and R2 to the appropri-
ate Ain or Aout node. Finally, each edge is given direction, capacity, and cost. All
edges are directed away from the source node S and towards the target node T .
The capacity for each edge is 1 (thus, the flow through an edge will be either 0
or 1). The cost of each of the new edges added to the graph is 0. The cost of
each of the old edges is the negation of the edge weight. Figure 2 shows the new
graph for the example of Figure 1. Edge capacities and costs were omitted for
clarity.

The reason for the negation of the weights is that we will be using an algo-
rithm that searches for a minimum when we actually wish to find the maximum
(finding a maximum is equivalent to finding the minimum of the negation). With
these modifications, we can now find a matching between the schemas R1 and R2
that conforms to our constraints by using a Minimum Cost Maximum Flow net-
work algorithm [1]. In the current implementation of Automatch, we use the
LEDA software package for this purpose [2].

Specifically for Figure 2, since the source has two outgoing edges of capacity
1 and the target has two incoming edges of capacity 1 (i.e., two attributes are
matched on each side), the maximum flow is 2. Thus, we seek to find the edges
in the graph that have the minimum cost while supporting a maximum flow of
2. The edges in this set correspond to the optimal mapping of attributes of R1
to R2.

Note that when the client schemas do not have the same number of attributes,
some of the attributes of the larger schema will be matchless. Moreover, since
the tripartite is not necessarily full, the optimal matching may leave attributes

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 321

Fig. 2. Minimum-Cost-Maximum-Flow graph for finding optimal schema match-
ing

in the smaller schema matchless as well. This is not an undesirable consequence,
as it simply indicates that the client schemas include attributes that are unique
to their schemas.

4 Optimal Selection of Dictionary Values

Recall that the attribute dictionary of Automatch represents each attribute with
a set of possible values and their probability estimates. For schema attributes
that contain text, the number of needed probabilities is proportional to the num-
ber of unique values of this attribute. An attribute such as CustomerName could
assume thousands of values, thus imposing considerable space and processing re-
quirements. Furthermore, not all of these probabilities are equally informative.
Indeed, many of them are either uninformative (irrelevant) or misleading (noise).

A critical consideration in our methods is to reduce the dictionary repre-
sentation of attributes while retaining the most informative values. In machine
learning terminology these values are called features and the reduction process
is called feature selection. To reduce the size of the Automatch dictionary, we
have tested and compared three statistical feature selection strategies: Mutual
Information, Information Gain, and Likelihood Ratio. The former two strategies

J. Berlin and A. Motro322

are commonly used for feature selection; to our knowledge the latter strategy
has not been used for this purpose.

We will discuss each feature selection strategy in turn. Common to all these
approaches is that each feature is assigned a “score.” These feature scores can
be calculated from the probability estimates in the attribute dictionary. In all
of these approaches, higher scores are better. Once these scores have been cal-
culated for a given approach, a percentage of the highest scoring features is
retained with ties broken arbitrarily.

Finally, we must normalize the probabilities of the remaining features to sum
to unity. Thus, statistical feature selection imposes very little overhead in our
approach. In contrast, other machine learning approaches (e.g. neural networks,
rule learners, etc.) must execute their respective learning algorithms after feature
selection is completed.

4.1 Mutual Information

Mutual information has been used previously as a feature selection strategy in
information retrieval tasks such as [16]. The mutual information of a value v and
an attribute A is defined as

MI(v, A) = log
P (v ∧A)

P (v) · P (A)
. (3)

When v and A are independent, the mutual information of v and A is zero.
Intuitively, P (v) is a measure of the event that a value v occurs in the client at-
tribute X , and P (A) is a measure of the event the client attribute X is mapped to
the dictionary attribute A. Hence, MI(v, A) is a measure of the co-occurrence of
these two events. For example, if the events are independent (their co-occurrence
is unbiased), then the mutual information is 0.

For the purpose of characterizing dictionary attributes, we wish to retain the
values that have the greatest score regardless of whether they favor A or ¬A.
Therefore, we score values in the MI approach using this formula:

MImax(v, A) = max
{
log

P (v ∧A)
P (v) · P (A)

, log
P (v ∧ ¬A)

P (v) · P (¬A)

}
. (4)

The values v with the highest MImax(v, A) are chosen as the characterization
of attribute A. The actual number of values chosen is discussed in Section 5.2.

4.2 Information Gain

Information gain is often used in machine learning to determine the value of a
particular feature [13]. Given a client attribute X and a dictionary attribute A,
the issue is whether X maps to A or not. This issue may be formatted as a
binary message: 1 if yes, 0 if no.

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 323

Denote P (A) the probability that X maps to A. Assume first that our only
knowledge is the proportion of attributes that are mapped to A (how “popu-
lar” A is as a target of mappings). The entropy (information content) of the
message is then

H = −(P (A) · logP (A) + P (¬A) · logP (¬A)) . (5)

Assume now that we know a new fact: v ∈ X . The new entropy (information
content) of the message is

H1 = −(P (A | v) · logP (A | v) + P (¬A | v) · logP (¬A | v)) . (6)

Assume now that we know an alternative fact: v
∈ X . The new entropy
(information content) of the message is

H2 = −(P (A | ¬v) · logP (A | ¬v) + P (¬A | ¬v) · logP (¬A | ¬v)) . (7)

H1 and H2 may be combined using P (v), the probability that v is in X .
Then the entropy (information content) of the message is

H ′ = P (v) ·H1 + p(¬v) ·H2 . (8)

The information gained by knowing the presence or absence of v is

IG(v, A) = H −H ′ . (9)

4.3 Likelihood Ratio

The likelihood ratio for a value v and attribute A, defined as P (v|A)/P (v|¬A),
measures the retrospective support given to A by the occurrence of v [14]. The
likelihood ratio produces scores on the interval (0,∞). It has a value of 1 if
the feature provides no support. Likelihood ratios greater than 1 indicate that
the feature supports A; likelihood ratios less than 1 indicate that the feature
supports ¬A.

For the task at hand, we wish to retain the features that provide the most
support regardless of whether they favor A or ¬A. The features that favor A are
on the interval (1,∞), with higher values indicating stronger support, whereas
the features that favor ¬A are on the interval (0, 1), with lower values indicating
stronger support. Consequently, it is difficult to use the likelihood ratio as de-
fined, because higher scores are not necessarily better. For this reason, we use an
adjustment that inverts the likelihood ratios that support ¬A, placing them on
the same scale as likelihood ratios that support A, and then choose the stronger
of the supports:

LR(v, A) = max
{

P (v|A)
P (v|¬A)

,
P (v|¬A)
P (v|A)

}
. (10)

This strategy produces scores on the interval (1,∞) and higher scores are
always better.

J. Berlin and A. Motro324

5 Experimentation

5.1 Setting Up the Experiment

To experiment with the methods discussed in this paper, we built an attribute
dictionary for computer retail information with the following attributes: Desk-
topManufacturer, MonitorManufacturer, PrinterManufacturer, DesktopModel,
MonitorModel, PrinterModel, DesktopCost, PeripheralCost, Inventory.

Data for this experiment was taken from the web sites of 15 different com-
puter retailers (e.g. Gateway, Outpost, etc). A total of 22 relations were ex-
tracted. The data was collected off-line from HTML web pages and imported
into relational database tables accessible through the ODBC protocol.

To experiment with this data, we used a procedure from data mining called
stratified cross-validation which we briefly describe (see [17] for a complete de-
scription). Each of the 22 schemas was manually mapped into our attribute dic-
tionary. We then partitioned these 22 schemas into three folds of approximately
equal size. Using two folds for learning and one fold for testing, we repeated
the experiment for the three possible combinations of folds. For the test fold, we
chose two schemas at a time (for all possible combinations) and used Automatch
to match the schemas. We used the manually constructed mappings to judge the
mappings which Automatch concluded.

5.2 Measuring Performance

To measure performance, each schema-matching result was interpreted as set
of mapping decisions for pairs of schema attributes 〈R1(Bi), R2(Cj)〉, where i
ranges over all the attributes of R1 and j ranges over all the attributes of R2.
Each of these attribute mapping decisions falls into one of four sets, A, B, C,
and D, where

A = True Positives (decision to map R1(Bi) to R2(Cj) is correct).
B = False Negatives (decision to not map R1(Bi) to R2(Cj) is incorrect).
C = False Positives (decision to map R1(Bi) to R2(Cj) is incorrect).
D = True Negatives (decision to not map R1(Bi) to R2(Cj) is correct).

The ratio |A|/(|A|+ |C|) is the proportion of true positives among the cases
thought to be positive; i.e., it measures the accuracy of Automatch when it
decides True. The ratio |A|/(|A| + |B|) is the proportion of positives detected
by Automatch among the complete set of positives; i.e., it measures the ability
to detect positives. Specifically to our application, the former ratio measures
the soundness of the discovery process, and the latter ratio measures its com-
pleteness. These two ratios are known from the field of information retrieval
as precision and recall, but we shall refer to them here as the soundness and
completeness of the schema matching process.

To simplify the comparison of the three feature selection approaches, we
combined soundness and completeness into a single performance measure using
their harmonic mean. The harmonic mean of precision and recall is often used

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 325

in information retrieval whenever a single performance measure is preferred [3].
The harmonic mean for our mapping problem is calculated as

F (x) = 2 · S(x) · C(x)
S(x) + C(x)

(11)

where S(x) and C(x) are the soundness and completeness of the discovery process
at a given percent reduction x in the feature space. The harmonic mean assumes
high values only when both soundness and completeness are high. Thus, maxi-
mizing the harmonic mean can be thought of as the best compromise between
soundness and completeness.

To measure the performance of each of the feature selection strategies that
were discussed in Section 4, we determine the harmonic mean of soundness and
completeness for each strategy as we increase the percentage of the feature space
that is discarded. We reduce the feature space in increments of 5 percent until
95 percent of the feature space has been discarded.

5.3 Interpreting the Results

First we measured the performance of Automatch without any attempt at op-
timizing the dictionary through feature selection; that is, we use the Bayesian
approach to score matches (Section 3.3) and the flow graph approach to optimize
matches (Section 3.4). Using cross validation, we achieved a performance of 66%
(measured as the harmonic mean of soundness and completeness). In a separate
experiment, we used random guessing to match the same schemas and achieved
a performance of 10%.

Next, we compared the three feature selection strategies of Section 4 and
assessed their impact on schema matching. Figure 3 shows the performance for
schema matching for each of the feature selection strategies. The x-axis is the
percentage of low-scoring features that have been discarded, and the y-axis is the
performance, measured as the harmonic mean of soundness and completeness.
The leftmost point in the graph corresponds to our first experiment with no
feature selection.

Initially, with 5% feature reduction, all the feature selection strategies im-
prove performance by at least 6%. The strategies then perform comparably up to
60% reduction. At levels of reduction over 80%, IG and LR continue to produce
improved matching performance (relative to no feature selection) while MI falls
below performance with no feature selection.

All three feature selection strategies improve performance when compared to
the initial performance with no feature selection (though the level to which they
sustain this improvement varies). This observation indicates that all of these
approaches are acceptable for reducing the feature space. Furthermore, if we are
seeking the most ambitious reduction in the feature space, LR is preferable to
IG which is preferable to MI.

J. Berlin and A. Motro326

0.50

0.55

0.60

0.65

0.70

0.75

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90

LR IG MI

Fig. 3. Harmonic mean of soundness and completeness (y-axis) as the feature
set is reduced in increments of 5 percent (x-axis)

6 Conclusion

In this paper we described an automated solution for the well-known problem
of database schema matching. Our approach uses Bayesian machine learning,
statistical feature selection, and the Minimum Cost Maximum Flow network
algorithm to find an optimal matching of attributes between two semantically
related schemas.

Our significant findings and contributions in this paper were:

– The Automatch system is a new and viable approach to eliminate the sche-
ma-matching bottleneck present in modern database applications. Our re-
sults are encouraging as they show performance that exceeds 70% (measured
as the harmonic mean of the soundness and the completeness of the attribute
matching process).

– Statistical feature selection can be used to improve the performance of Au-
tomatch. The improvement is in three areas: (1) in the storage require-
ments for the auxiliary knowledge base, (2) in the computational costs of
the matching algorithm, and (3) in the quality (soundness and completeness)
of the results. We estimate that statistical feature selection can be used to
improve the performance of other automated schema-matching approaches
(such as [6,10]) that must deal with high-dimensional feature spaces.

– Statistical feature selection incurs little overhead in Automatch since we
are using a probabilistic learning approach. Learning after feature selection
consists simply of normalizing the probabilities of the remaining features.
In contrast, other machine learning approaches (e.g. neural networks, rule
learners, etc.) must execute their respective learning algorithms after feature
selection is completed.

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 327

While the performance of 70% in these experiments is promising, user inter-
action is still necessary to complete the matching process. In our future research,
we plan on building a user interface that allows a domain expert to adjust the
attribute mappings that have been proposed by Automatch. Furthermore, the in-
terface will allow for iterative adjustment (i.e., after the user adjusts some of the
mappings, we can re-apply Automatch for the remaining unmapped attributes).

An important benefit of user interaction in Automatch is that the system
will be able to learn continuously. As new matches are provided through the
user interface, the learner will be able to combine this information with what has
already been learned. Note that this is significantly different than re-executing
the entire learning algorithm. Such continuous learning is possible due to the
statistical nature of the learning algorithm. As new matches are validated by a
user, we can learn from these additional examples by updating the frequency
counts of the features.

Finally, while this initial experimentation is encouraging, it is admittedly of
a limited scale. Additional experimentation is planned to validate these prelim-
inary conclusions.

Acknowledgement

The authors wish to thank Joseph (Seffi) Naor for his important suggestions in
the area of network flows.

References

1. Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network Flows:
Theory, Algorithms, and Applications. Prentice Hall, 1993. 458

2. Algorithmic Solutions. The LEDA Users Manual (Version 4.2.1), 2001. 458
3. Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval.

ACM Press, 1999. 463
4. Jacob Berlin and Amihai Motro. Autoplex: Automated discovery of content for

virtual databases. In Proceedings of the Ninth International Conference on Coop-
erative Information Systems, pages 108–122, 2001. 456

5. Silvana Castano and Valeria De Antonellis. A schema analysis and reconciliation
tool environment for heterogeneous databases. In Proceedings of the International
Database Engineering and Applications Symposium, pages 53–62, 1999. 453

6. AnHai Doan, Pedro Domingos, and Alon Y. Halevy. Reconciling schemas of dis-
parate data sources: A machine-learning approach. In Proceedings ACM Special
Interest Group for the Management of Data (SIGMOD), 2001. 453, 464

7. Pedro Domingos and Michael Pazzani. Conditions for the optimality of the simple
bayesian classifier. In Proceedings of the 13th International Conference on Machine
Learning, pages 105–112, 1996. 456

8. Pat Langley, Wayne Iba, and Kevin Thompson. An analysis of bayesian classifiers.
In Proceedings of the Tenth National Conference on Artificial Intelligence, pages
223–228, 1992. 456

J. Berlin and A. Motro328

9. Wen-Syan Li and Chris Clifton. Semantic integration in heterogeneous databases
using neural networks. In Proceedings of 20th International Conference on Very
Large Data Bases, pages 1–12, 1994. 454

10. Wen-Syan Li and Chris Clifton. Semint: A tool for identifying attribute corre-
spondences in heterogeneous databases using neural networks. Data & Knowledge
Engineering, 33(1):49–84, 2000. 454, 464

11. Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm. Generic schema match-
ing with cupid. In Proceedings of the 27th International Conferences on Very Large
Databases, pages 49–58, 2001. 453

12. Renée Miller, Laura Haas, and Mauricio Hernández. Schema mapping as query
discovery. In Proceedings of the 26th International Conferences on Very Large
Databases, pages 77–88, 2000. 452

13. Tom Mitchell. Machine Learning. McGraw-Hill, 1997. 456, 460
14. Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann, 1988. 461
15. Erhard Rahm and Philip Bernstein. On matching schemas automatically. Technical

Report MSR-TR-2001-17, Microsoft, Redmond, WA, February 2001. 452, 453
16. Mehran Sahami, Susan Dumais, David Heckerman, and Eric Horvitz. A bayesian

approach to filtering junk e-mail. AAAI-98 Workshop on Learning for Text Cate-
gorization, 1998. 460

17. Ian H. Witten and Eibe Frank. Data Mining: Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann, 2000. 462

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 329

Automatch Revisited

Amihai Motro

Abstract We revisit the Autoplex and Automatch projects from 2001–2005, and
in particular the results reported in the paper Database Schema Matching Using
Machine Learning with Feature Selection, presented in the 14th International
Conference on Advanced Information Systems Engineering (2002). We provide the
motivation and background for these projects, examine their impact a decade later,
and sketch possible research directions.

1 Virtual Databases

The problem of integrating information from multiple, independent and hetero-
geneous information sources has received considerable attention for almost four
decades. The problem has been addressed in different ways [2], but the general
approach has been that of creating a virtual database, a term originally suggested
in [8]. In this approach, illustrated in Fig. 1, a single database schema is created
that provides an integrated view of the information included in all the information
sources. But whereas a conventional database includes data that correspond to its
schema, in a virtual database this content is replaced with a mapping that associates
the elements of this “global” schema with the corresponding data in the component
databases. Users may then present queries to the global schema. Using the mapping,
each such query is decomposed by the database system into a set of queries that are
presented to the component databases; the answers retrieved are then assembled in
a single answer that is returned to the user. Ideally, this entire process should be
transparent: that is, users should be unaware that the database they are querying is
virtual. The main advantage of this approach is that it can be applied in situations in
which physical integration (i.e., the construction of a new database that incorporates

A. Motro (�)
Computer Science Department, George Mason University, Fairfax, VA 22030, USA
e-mail: ami@gmu.edu

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 26, © Springer-Verlag Berlin Heidelberg 2013

331

mailto:ami@gmu.edu

A. Motro

User

Wrapper Wrapper Wrapper

Virtual
database

Schema

Mapping

Query
translation
and answer
assembly

Source 1 Source 2 Source n

…

Fig. 1 The architecture of a
virtual database system

the information in all the component databases) is impractical—either because it
would be too costly or too time-consuming.

This area was continuously evolving during the 1980s, and then enjoyed substan-
tial increase of interest in the 1990s with the decision of DARPA to sponsor research
projects in this area. Projects from that period include TSIMMIS [6], Multiplex [10]
and Clio [7].

Whereas the original problem assumed mostly a small and static scenario—
a small number of databases were to be integrated, and the virtual solution was
to endure for an extended period—with the explosion of the Internet in the late
1990s, this scenario has changed dramatically. The set of databases could now be
much larger and more dynamic: New relevant databases could become available
frequently and would need to be integrated, and old databases might become
unavailable and would need to be withdrawn.

Additionally, it has been recognized that the main contributor to the cost of
constructing virtual databases was the creation and maintenance of the global
schema. This task required comprehending the schemas of the component databases
and matching them to the global schema—a laborious task. And when this matching
has to be extended and adjusted with each new source, it becomes prohibitively
expensive. In brief, a scale-up of the problem needed to be addressed.

2 The Challenge

Given this scenario, it became obvious that one should attempt to automate, at
least in part, the process of mapping the global schema to the schemas of the
component databases. The intuitive metaphor imagined that one picks up a sheet
of paper from the floor and sees a table of some sort; the table is just a grid
of values, without any explanations and even without column headings. One then

332

Automatch Revisited

wonders: “What is the meaning of these values?”, and “Can I incorporate them into
my accumulated knowledge?” In Internet terms, we envisioned a large collection of
sites containing tabular data, possibly discovered with the help of a search engine
that was presented with a query comprising global schema terms (e.g., column
headings). Each table would then be analyzed to uncover its semantics, and an
attempt would be made to match it to the global schema. (This would not only
incorporate sources automatically, but would discover new sources and thus enrich
the virtual database.)

The project was named Autoplex1 and was described in [3]. It was then observed
that a critical part of this automatic resource discovery and global-local schema
mapping can be abstracted and generalized to address additional problem domains.
Specifically, the problem of matching two independent database schemas (not
necessarily global vs. local) has applications, among others, in data warehousing
and e-commerce [11]. This sub-project was named Automatch and was the subject
of the paper being revisited here.

Automatch applies techniques from machine learning. It assumes a knowledge-
base about schema attributes, which has been constructed from examples (in the
case of the Autoplex application, these examples would be mappings of the global
schema to several component schemas, to be performed manually by experts).
This knowledge-base is utilized whenever two new schemas need to be matched.
Simply put, the knowledge-base helps score every possible matching of an attribute
from one schema with an attribute of the other schema (and eventually, every
comprehensive matching of the complete set of attributes of one schema with the
complete set of attributes of the other schema).

3 Impact and Future

The work has been well-received and has enjoyed a fair number of bibliographic
citations. Arguably, this success is due to the fact that it is part of a trend in the
field of information systems to accept solutions that are good but not necessarily
perfect. In the pre-Internet years, the focus has been on “critical” applications.
Typical domains of interest would be financial, engineering or defense, and there
had to be absolute certainty that all solutions are perfect: that data in the database
are at all times consistent with the real world, that every answer to a query is precise,
and that two databases are integrated flawlessly. While there has been on-going
work on information uncertainty and “soft” solutions to information systems tasks
(e.g., [1, 9]), with the possible exception of information retrieval, such work has
been outside the mainstream, and was generally not awarded center-stage status.
The magnitude of the information made available on the Internet has convinced
the research community that good but imperfect solutions are sometimes the only
available recourse.

1The name was a reference to earlier virtual database projects called Multiplex and Fusionplex;
Retroplex would follow: : :

333

A. Motro

Schema matching and database integration deal with data that are structured,
typically in tables. With most of the information in the public domain being
unstructured, the new challenges are to identify correspondence and similarity
between information items that are not values in tables (possibly phrases of
free text), and to virtually aggregate and integrate non-structured repositories of
information. Possibly, this could be approached by imposing some type of structure
on the unstructured information items. A related effort was described in [5]. Indeed,
information might be encapsulated in services, where stored functions deliver
information in response to query-like requests. An attempt to find correspondence
among such information items and cluster them in repositories was recently
described in [4].

Acknowledgements The original paper was co-authored by Jacob Berlin, who was my doctoral
student at that time. Jake deserves an equal share of the credit for the work that we have
accomplished. Unfortunately, I was unable to contact Jake for the purpose of this article.

References

1. Andreasen, T., Christiansen, H., Larsen, H.L. (Editors). Flexible Query Answering Systems.
Kluwer Academic Publishers, 1997.

2. Batini, C., Lenzerini, M., Navathe, S.B. A comparative analysis of methodologies for database
schema integration. Computing Surveys, 18(4):323–364, 1989.

3. Berlin, J., Motro, A. Autoplex: Automated discovery of contents for virtual databases. In
Proceedings of COOPIS 01, Sixth IFCIS International Conference on Cooperative Information
Systems, Trento, Italy. Lecture Notes in Computer Science No. 2172, pp. 108–122, 1999.

4. Church, J., Motro, A. Learning service behavior with progressive testing. In Proceedings of
SOCA 11, IEEE International Conference on Service-Oriented Computing and Applications,
Irvine, CA, USA. pp. 1–8, 2011.

5. Etzioni, O., Halevy, A., Doan, A., Ives, Z.G, Madhaven, J., McDowell, L., Tatarinov, I.
Crossing the structure chasm. In Proceedings of CIDR-03, First Biennial Conference on
Innovative Data Systems Research, Asilomar, CA, USA., 2003. Available online at http://
www-db.cs.wisc.edu/cidr/cidr2003/program/p11.pdf.

6. Garcia-Molina, H., Papakonstantinou, Y., Rajaraman, A., Sagiv, Y., Ullman, J., Vassalos, V.,
Widom, J. The TSIMMIS approach to mediation: data models and languages. Journal of
Intelligent Information Systems, 8(2):117–132, 1997.

7. Miller, R.J., Hernandez, M.A., Haas, L.M., Yan, L., Ho, C.T.H., Fagin, R., Popa, L. The Clio
project: managing heterogeneity. SIGMOD Record 30(1):78–83, 2001.

8. Motro, A. Interrogating superviews. In Proceedings of ICOD-2, Second International Confer-
ence on Databases, Cambridge, England, pp. 107–126, 1981.

9. Motro, A., Smets, P. Uncertainty Management in Information Systems: from Needs to
Solutions. Kluwer Academic Publishing, 1996.

10. Motro, A. Multiplex: a formal model for multidatabases and its implementation. In Proceed-
ings of NGITS 96, Fourth International Workshop on Next Generation Information Tecnolo-
gies and Systems, Zichron Yaacov, Israel. Lecture Notes in Computer Science No. 1649,
pp. 138–158, 1999.

11. Rahm, E., Bernstein, P.A. A survey of approaches to automatic schema matching. The VLDB
Journal, 10(4), pp. 334–350, 2001.

334

http://www-db.cs.wisc.edu/cidr/cidr2003/program/p11.pdf
http://www-db.cs.wisc.edu/cidr/cidr2003/program/p11.pdf

Data Integration under Integrity Constraints

Andrea Cal̀ı, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Dipartimento di Informatica e Sistemistica, Università di Roma “La Sapienza”
Via Salaria 113, I-00198 Roma, Italy

lastname @dis.uniroma1.it,
http://www.dis.uniroma1.it/~lastname

Abstract. Data integration systems provide access to a set of hetero-
geneous, autonomous data sources through a so-called global schema.
There are basically two approaches for designing a data integration sys-
tem. In the global-centric approach, one defines the elements of the global
schema as views over the sources, whereas in the local-centric approach,
one characterizes the sources as views over the global schema. It is well
known that processing queries in the latter approach is similar to query
answering with incomplete information, and, therefore, is a complex task.
On the other hand, it is a common opinion that query processing is much
easier in the former approach. In this paper we show the surprising re-
sult that, when the global schema is expressed in the relational model
with integrity constraints, even of simple types, the problem of incom-
plete information implicitly arises, making query processing difficult in
the global-centric approach as well. We then focus on global schemas
with key and foreign key constraints, which represents a situation which
is very common in practice, and we illustrate techniques for effectively
answering queries posed to the data integration system in this case.

1 Introduction

Integrating heterogeneous data sources is a fundamental problem in databases,
which has been studied extensively in the last two decades both from a formal
and from a practical point of view [1,2,3,4,5,6]. Recently, mostly driven by the
need to integrate data sources on the Web, much of the research on integration
has focussed on so called data integration [7,8,6]. Data integration is the problem
of combining the data residing at different sources, and providing the user with
a unified view of these data. Such a unified view is structured according to a
so-called global schema, which represents the intensional level of the integrated
and reconciled data, and provides the elements for expressing the queries over
the data integration system. It follows that, in formulating the queries, the user
is freed from the knowledge on where data are, how data are structured at the
sources, and how data are to be merged and reconciled to fit into the global
schema.

The interest in this kind of systems has been continuously growing in the
last years. Many organizations face the problem of integrating data residing
in several sources. Companies that build a Data Warehouse, a Data Mining,

A. Banks Pidduck et al. (Eds.): CAISE 2002, LNCS 2348, pp. 262–279, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

335

mailto:lastname@dis.uniroma1.it

or an Enterprise Resource Planning system must address this problem. Also,
integrating data in the World Wide Web is the subject of several investigations
and projects nowadays. Finally, applications requiring accessing or re-engineering
legacy systems must deal somehow with data integration.

The design of a data integration system is a very complex task, which requires
addressing several different issues. Here, we concentrate on two basic issues:

1. specifying the mapping between the global schema and the sources,
2. processing queries expressed on the global schema.

With regard to issue (1), two basic approaches have been used to specify the
mapping between the sources and the global schema [7,7,9]. The first approach,
called global-centric [10,11,12], requires that the global schema is expressed in
terms of the data sources. More precisely, to every element of the global schema,
a view over the data sources is associated, so that its meaning is specified in
terms of the data residing at the sources. In general, the views associated to the
elements of the global schema are considered sound, i.e., all the data provided
by a view satisfies the corresponding element of the global schema, but there
may be additional data satisfying the element not provided by the view. The
second approach, called source-centric [13,14,15], requires the global schema to
be specified independently from the sources. In turn, the sources are defined as
views over the global schema. Comparisons of the two approaches are reported
in [8,16]. In this paper, we study global-centric data integration systems, and,
according to the usual approach, we assume that the views associated to the
elements of the global schema are sound.

Issue (2) is concerned with one of the most important problems in the design
of a data integration system, namely, the choice of the method for computing
the answer to queries posed in terms of the global schema. For this purpose,
the system should be able to reformulate the query in terms of a suitable set of
queries posed to the sources. These queries are then shipped to the sources, and
the results are assembled into the final answer. It is well known that processing
queries in the source-centric approach is a difficult task [8,17,14,18,19]. Indeed,
in this approach the only knowledge we have about the data in the global schema
is through the views representing the sources, and such views provide only par-
tial information about the data. Therefore, extracting information from the data
integration system is similar to query answering with incomplete information,
which is a complex task [20]. On the other hand, query processing is considered
much easier in the global-centric approach, where in general it is assumed that
answering a query basically means unfolding its atoms according to their defini-
tions in terms of the sources [7]. The reason why unfolding does the job is that
the global-centric mapping essentially specifies a single database satisfying the
global schema, and evaluating the query over this unique database is equivalent
to evaluating its unfolding over the sources.

While this is a common opinion in the literature, we show in this paper that
the presence of integrity constraints in the global schema poses new challenges,
specially related to the need of taking the semantics of constraints into account
during query processing. The importance of allowing integrity constraints in the

A. Cal̀ı et al.336

global schema has been stressed in several work on data integration [15,21,22].
Since the global schema acts as the interface to the user for query formulation,
it should mediate among different representations of overlapping worlds, and
therefore the schema definition language should incorporate flexible and pow-
erful representation mechanisms, such as the ones based on semantic integrity
constraints.

The first contribution in this paper is to show that, when the global schema
contains integrity constraints, even of simple forms, the semantics of the data
integration system is best described in terms of a set of databases, rather than a
single one, and this implies that, even in the global-centric approach, query pro-
cessing is intimately connected to the notion of querying incomplete databases.
The fact that the problem of incomplete information is overlooked in current
approaches can be explained by observing that traditional data integration sys-
tems follow one of the following strategies: they either express the global schema
as a set of plain relations without integrity constraints, or consider the sources
as exact (see, e.g., [23,24]), as opposed to sound. On the contrary, the goal of
our work is to study the more general setting where the global schema contains
integrity constraints, and sources are considered sound (but not necessarily com-
plete). The above result demonstrates that, in this case, we have to account for
multiple global databases.

The second contribution of the paper is to study the case of global schemas
expressed in the relational model with key and foreign key constraints, which
represents a situation very common in practice. Although the problem of multiple
global databases arises in this case, we have devised techniques for effectively
answering queries posed to the data integration system. The resulting algorithm
runs in polynomial time with respect to data complexity, i.e., with respect to
the size of data at the sources.

The paper is organized as follows. In Section 2 we describe a formal frame-
work for data integration. In Section 3 we show that the presence of integrity
constraints in the global schema complicates the task of query processing. In Sec-
tions 4 and 5 we present our query processing algorithm for the case of global
relational schema with key and foreign key constraints. Section 6 concludes the
paper.

2 Framework for Data Integration

In this section we illustrate our formalization of a data integration system, which
is based on the relational model with integrity constraints.

In the relational model, predicate symbols are used to denote the relations in
the database, whereas constant symbols denote the objects and the values stored
in relations. We assume to have a fixed (infinite) alphabet Γ of constants, and,
if not specified otherwise, we will consider only databases over such alphabet.
We adopt the so-called unique name assumption, i.e., we assume that different
constants denote different objects. A relational schema C is constituted by:

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 337

– An alphabet A of predicate (or relation) symbols, each one with the asso-
ciated arity, i.e., the number of arguments of the predicate (or, attributes
of the relation). We do not use names for referring to attributes, rather, we
simply use the numbers corresponding to their positions.

– A set of integrity constraints, i.e., assertions on the symbols of the alphabet
A that express conditions that are intended to be satisfied in every database
coherent with the schema.

A relational database (or simply, database) DB for a schema C is a set of
relations with constants as atomic values, and with one relation rDB of arity n
for each predicate symbol r of arity n in the alphabet A. It is well known that
a database can be seen as a first-order interpretation for the relation symbols in
the schema: the relation rDB is the interpretation of the predicate symbol r in
DB, in the sense that it contains the set of tuples that satisfy the predicate r in
DB. A database DB for a schema C is said to be legal if every constraints of C is
satisfied by DB. The notion of satisfaction depends on the type of constraints.

In our framework we consider the relational model with two kinds of con-
straints:

– Key constraints: given a relation r in the schema, a key constraint over r
is expressed in the form key(r) = A, where A is a set of attributes of r.
Such a constraint is satisfied in a database DB if for each t1, t2 ∈ rDB we
have t1[A] �= t2[A], where t[A] is the projection of the tuple t over A.

– Foreign key constraints: a foreign key constraint is a statement of the form
r1[A] ⊆ r2[B], where r1, r2 are relations, A is a sequence of distinct at-
tributes of r1, and B is a sequence formed by the distinct attributes forming
the key of r2. Such a constraint is satisfied in a database DB if for each
tuple t1 in rDB

1 there exists a tuple t2 in rDB
2 such that t1[A] = t2[B].

A relational query is a formula that specifies a set of tuples to be retrieved
from a database. In this work, we restrict our analysis to the class of conjunctive
queries. Formally, a conjunctive query (CQ) q of arity n is written in the form

q(x1, . . . , xn) ← conj (x1, . . . , xn, y1, . . . , ym)

where: q belongs to a new alphabet Q (the alphabet of queries, that is disjoint
from both Γ and A); conj (x1, . . . , xn, y1, . . . , ym) is a conjunction of atoms in-
volving the variables x1, . . . , xn, y1, . . . , ym, and a set of constants from Γ ; and
the predicate symbols of the atoms are in C.

The answer to a query q of arity n over a database DB for G, denoted qDB, is
the set of n-tuples of constants (c1, . . . , cn), such that, when substituting each ci
for xi, the formula ∃(y1, . . . , yn).conj (x1, . . . , xn, y1, . . . , ym) evaluates to true in
DB. Note that the answer to q over DB is a relation whose arity is equal to the
arity of the query q.

We now turn our attention to the notion of data integration system.

Definition 1. A data integration system I is a triple I = 〈G,S,MG,S〉, where
G is the global schema, S is the source schema, and MG,S is the mapping
between G and S.

A. Cal̀ı et al.338

Now we describe the characteristics of the components of a data integration
system in our approach. In particular, we specialize the general framework as
follows:

– The global schema is expressed in the relational model with both key and
foreign key constraints. We assume that in the global schema there is exactly
one key constraint for each relation.

– The source schema is expressed in the relational model without integrity
constraints. In other words, we conceive each source as a relation, and we
consider the set of all relations as a unique schema, called source schema.

– The mapping MG,S is defined in the global-centric approach: to each rela-
tion r of G we associate a query ρ(r) over the source schema. No limitation
is posed on the language used to express queries in the mappingMG,S .

– Queries over the global schema are conjunctive queries.

Example 1. An example of data integration system is I1 = 〈G1, S1, M1
G,S〉

where G1 is constituted by the relation symbols student(Scode ,Sname,Scity),
university(Ucode ,Uname), and enrolled(Scode ,Ucode) and the constraints

key(student) = {Scode}
key(university) = {Ucode}

key(enrolled) = {Scode, Ucode}
enrolled[Scode] ⊆ student[Scode]
enrolled[Ucode] ⊆ university[Ucode]

S1 consists of three sources. Source s1, of arity 4, contains information about students
with their code, name, city, and date of birth. Source s2, of arity 2, contains codes
and names of universities. Finally, Source s3, of arity 2, contains information about
enrollment of students in universities. The mapping M1

G,S is defined by

ρ(student) = st(X, Y, Z) ← s1(X, Y, Z, W)
ρ(university) = un(X, Y) ← s2(X, Y)

ρ(enrolled) = en(X, W) ← s3(X, W)

In order to define the semantics of a data integration system I =
〈G,S,MG,S〉, we start from the data at the sources, and specify which are the
data that satisfy the global schema. A source database D for I is constituted by
one relation rD for each source r in S. We call global database for I, or simply
database for I, any database for G. A database B for I is said to be legal with
respect to D if:

– B satisfies the integrity constraints of G.
– B satisfiesMG,S with respect to D, i.e., for each relation r in G, the set of

tuples rB that B assigns to r is a subset of the set of tuples ρ(r)D computed
by the associated query ρ(r) over D, i.e., ρ(r)D ⊆ rB.
Note that the above definition amounts to consider any view ρ(r) as sound,

which means that the data provided by the sources are not necessarily complete.
Other assumptions on views are possible (see [14,18]). In particular, views may
be complete, i.e., for each r in G, we have ρ(r)D ⊇ rB, or exact, i.e., for each r
in G, we have ρ(r)D = rB. In this paper, we restrict our attention to sound

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 339

views only, which are typically considered the most natural in a data integration
setting.

At this point, we are able to give the semantics of a data integration system,
which is formally defined as follows.

Definition 2. If I = 〈G,S,MG,S〉, and D is a source database for I, the se-
mantics of I w.r.t. D, denoted semD(I), is the set of databases for I that are
legal w.r.t. D, i.e., that satisfy both the constraints of G, and the mappingMG,S
with respect to D. If semD(I) �= ∅, then I said to be consistent w.r.t. D.

By the above definition, it is clear that the semantics of a data integration
systems is formulated in terms of a set of databases, rather than a single one.
Indeed, as we will show in the sequel, the cardinality of semD(I) is in general
greater than one. The impact of this property on query answering will be studied
in the next section.

3 Query Answering in the Presence of Constraints

The ultimate goal of a data integration system is to answer queries posed by
the user in terms of the global schema. Answering a query posed to a system
representing a set of databases, is a complex task, as shown by the following
example.

Example 2. Referring to Example 1, suppose to have the following source database
D1:

sD
1

1 :
12 anne florence 21
15 bill oslo 24

sD
1

2 :
AF bocconi
BN ucla

sD
1

3 :
12 AF

16 BN

Now, due to the integrity constraints in G1, 16 is the code of some student. Observe,
however, that nothing is said by D1 about the name and the city of such student.
Therefore, we must accept as legal all databases that differ in such attributes of the
student with code 16. Note that this is a consequence of the assumption of having
sound views. If we had exact or complete views, this situation would have lead to an
inconsistency of the data integration system. Instead, when dealing with sound views,
we can think of extending the data contained in the sources in order to satisfy the
integrity constraint over the global schema. The fact that, in general, there are several
possible ways to carry out such extension implies that there are several legal databases
for the data integration systems.

Let us now turn our attention to the notion of answer to a query posed
to the data integration system. In our setting, a query q to a data integration
system I = 〈G,S,MG,S〉 is a conjunctive query, whose atoms have symbols
in G as predicates. Our goal is to specify which are the tuples that form the
answer to a certain query posed to I. The task is complicated by the existence
of several global databases which are legal for I with respect to a source database
D. In order to address this problem, we adopt the following approach: a tuple
(c1, . . . , cn) is considered an answer to the query only if it is a certain answer,
i.e., it satisfies the query in every database that belongs to the semantics of the
data integration system.

A. Cal̀ı et al.340

Definition 3. Let I = 〈G,S,MG,S〉 be a data integration system, let D be a
source database for I, and let q be a query of arity n to I. The set of certain
answers qI,D to q with respect to I and D is the set of tuples (c1, . . . , cn) such
that (c1, . . . , cn) ∈ qB, for each B ∈ semD(I).

As mentioned, it is generally assumed that query answering is an easy task
in the global-centric approach. Indeed, the most common technique for query
answering in this approach is based on unfolding, i.e. substituting to each relation
symbol r in the query its definition ρ(r) in terms of the sources. We now show
a simple unfolding strategy is not sufficient for providing all correct answers in
the presence of integrity constraints.

Example 3. Referring again to Example 1, consider the query

q(X) ← student(X, Y, Z) ∧ enrolled(X, W)

The correct answer to the query is {12, 16}, because, due to the integrity constraints
in G1, we know that 16 appears in the first attribute of student in all the databases
for I that are legal w.r.t. D1. However, we do not get this information from sD1

1 , and,
therefore, a simple unfolding strategy retrieves only the answer {12} from D1, thus
proving insufficient for query answering in this framework. Notice that, if the query
asked for the student name instead of the student code (i.e., the head is q(Y) instead
of q(X)), then one could not make use of the dependencies to infer additional answers.

The above example shows that, in the presence of integrity constraints, even
in the global-centric approach we have to deal with incomplete information dur-
ing query processing.

4 General Description of the Approach

We present the general ideas that are at the basis of our method for query
answering in data integration systems.

Let I = 〈G,S,MG,S〉 be a data integration system. In this paper we assume
that, for each relation r of the global schema, the query ρ(r) over the source
schema that the mappingMG,S associates to r preserves the key constraint of r.
This may require that ρ(r) implements a suitable duplicate record elimination
strategy that ensures that, for every source database D no pairs of tuples are
extracted from D by ρ(r) with the same value for the key of r. The problem
of duplicate record elimination, and, more generally, of data cleaning, is a crit-
ical issues in data integration systems, however it is orthogonal to the problem
addressed here. We refer to [25,26] for more details.

Let q be a query posed to I, and D a source database for I. We illustrate
a naive method for computing the answer qI,D to q w.r.t. I and D. The naive
computation of qI,D proceeds as follows.

1. For each relation r of the global schema, we compute the relation rD by
evaluating the query ρ(r) over the source database D. The various relations
so obtained form what we call the retrieved global database ret(I,D). Note

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 341

that, since we assume that ρ(r) does not violate the key constraints, it follows
that the retrieved global database satisfies all key constraints in G.

2. If, additionally, the retrieved global database satisfies all foreign key con-
straints in G, then we are basically done: we simply evaluate q over ret(I,D),
and we obtain the answer to the query.
Otherwise, based on the retrieved global database, we can build a database
for I still satisfying the key constraints by suitably adding tuples to the rela-
tions of the global schema in such a way that also the foreign key constraints
are satisfied.1 Obviously, there are several possible ways to add tuples to the
global relations.
We may try to infer all the legal databases for I that are coherent with the
retrieved global database, and we compute the tuples that satisfy the query q
in all such legal databases. However, such a solution is not easy to pursue.
Indeed, the direct way to implement it, i.e., building all the legal databases
for I that are coherent with the retrieved global database, is not feasible:
in general, there is an infinite number of legal databases that are coherent
with the retrieved global database. Fortunately, starting from the retrieved
global database, we can build another database, that we call canonical, that
has the interesting property of faithfully representing all legal databases that
are coherent with the retrieved global database.

Let us start by showing how to build the canonical database. First of all, we
define the domain of such database, which we denote HD(D), as follows. Based
on the global schema G of I, we introduce the following set of function symbols:

HT (G) = {fr,i | r ∈ G and i ≤ arity(r) and i �∈ key(r)}

Thus, each fr,i is a function symbol, and such a function symbol has the same
arity as the number of attributes of key(r), i.e., arity(fr,i) = arity(key(r)). From
D, we now define the domain HD(D) as the smallest set satisfying the following
conditions:

– Γ ⊆ HD(D),
– if α1, . . . , αk ∈ HD(D), and fR,i ∈ HT (G), with arity(fR,i) = k, then
fR,i(α1, . . . , αk) ∈ HD(D).
Now, given the retrieved global database ret(I,D), we obtain the canonical

database can(I,D) over the domain HD(D) by repeatedly applying the following
rule:

if (x1, . . . , xh) ∈ r[A], and the foreign key constraint r1[A] ⊆ r2[B] is
in G,
then insert the tuple t in r2 such that

1 Note that, since views are sound, i.e., they return a subset of the tuples in a global
relation, we cannot conclude that the data integration system violates the foreign
key constraints of G. Indeed, it may be the case that the tuples needed to satisfy
such constraints are not part of the retrieved subsets.

A. Cal̀ı et al.342

– t[B] = (x1, . . . , xh), and
– for each i ≤ arity(r2) not in B, t[i] = fr2,i(x1, . . . , xh).

Observe that can(I,D) is indeed a database over the domain HD(D), and
that, in general, can(I,D) is infinite. However, it enjoys important properties, as
shown below. The first property is related to the satisfaction of the constraints
of G.
Theorem 1. If I = 〈G,S,MG,S〉, and D is a source database for I, then
can(I,D) does not violate any foreign key constraint in G.
Proof. Suppose by contradiction that the foreign key constraint r1[A] ⊆ r2[B]
is violated in can(I,D). This implies that there is a tuple t in r1 such that for
no tuple t′ in r2 t′[B] = t[A]. But this would imply that we can apply the rule
and insert a new tuple t′′ in r2 such that t′′[B] = t[A], and for each i ≤ arity(r2)
not in B, t′[i] = fr2,i(t[A]). But this contradicts the assumption.

We now show that there exists a legal database for I w.r.t. D (called
can−(I,D)), which implies that I is consistent w.r.t. D, if and only if ret(I,D)
does not violate any key constraint in G.
Theorem 2. If I = 〈G,S,MG,S〉, and D is a source database for I, then there
exists a legal database for I w.r.t. D if and only if ret(I,D) does not violate any
key constraint in G.
Proof. It is immediate to see that if ret(I,D) violates some key constraint in G,
then no legal database exists for I w.r.t. D.

It remains to show that, if ret(I,D) does not violate any key constraint in G,
then there exists a legal database can−(I,D) for I w.r.t. D, which implies that
I is consistent w.r.t. D. We construct can−(I,D) from G and D similarly to
can(I,D), with the only difference that we use the rule:

If (x1, . . . , xh) ∈ r1[A], (x1, . . . , xh) �∈ r2[B], and the foreign key con-
straint r1[A] ⊆ r2[B] is in G,
then insert the tuple t in r2 such that
– t[B] = (x1, . . . , xh), and
– for each i ≤ arity(r2) different from B, t[i] = fr2,i(x).

It is easy to see that can−(I,D) ⊆ can(I,D). To show that can−(I,D) is indeed
a legal database for I w.r.t. D, we consider key and foreign key constraints
separately. As for key constraints, it is easy to see that the tuples inserted during
the process of computing can−(I,D) cannot violate any key constraints of G.
Indeed, in computing can−(I,D), we insert a tuple into a relation r only when
the key component of that tuple is not already present in r. Since ret(I,D) does
not violate any key constraint in G, it follows that no key constraint of G is
violated in can−(I,D). As for foreign key constraints, suppose by contradiction
that the foreign key constraint r1[A] ⊆ r2[B] is violated in can−(I,D). This
implies that there is a tuple t in r1 such that for no tuple t′ in r2 t′[B] = t[A]. But
this would imply that we can apply the above rule and insert a new tuple t′′ in r2
such that t′′[B] = t[A], and for each i ≤ arity(r2) not in B, t′[i] = fr2,i(t[A]).
But this contradicts the assumption.

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 343

The canonical database can(I,D) has the interesting property of faithfully
representing all legal databases that are coherent with the retrieved global data-
base ret(I,D).
Theorem 3. Let I = 〈G,S,MG,S〉, let D be a source database for I, and let B be
a legal database for I w.r.t. D. There is a total function ψ from HD(D) to Γ such
that, for each relation r of arity n in G, and each tuple (c1, . . . , cn) constituted
by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then (ψ(c1), . . . , ψ(cn)) ∈ rB.
Proof. We define the function ψ from HD(D) to Γ inductively, and we si-
multaneously show that for each relation r of arity n in G, and each tuple
(c1, . . . , cn) constituted by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then
(ψ(c1), . . . , ψ(cn)) ∈ rB.

We proceed by induction on the application of the rule used during the
construction of can(I,D). As a base step, the function ψ maps each constant in
ret(I,D) into itself. It follows that, for each r, if c1, . . . , cn are constants, and
(c1, . . . , cn) ∈ rret(I,D), then it is obvious that both (c1, . . . , cn) ∈ rcan(I,D), and
(ψ(c1), . . . , ψ(cn)) ∈ rB.

Inductive step. Suppose, without loss of generality, that in the application
of the rule, we are inserting the tuple (α, fr,i1(α), fr,i2(α)) in rcan(I,D) where r
has arity 3, key(r) = {1}, and the tuple is inserted in rcan(I,D) because of the
foreign key constraint w[j] ⊆ r[1]. Since we are applying the rule because of the
constraint w[j] ⊆ r[1], we have that there is a tuple t in wcan(I,D) such that
t[j] = α. For the induction hypothesis, there is a β in Γ such that ψ(α) = β,
and there is a tuple t′ ∈ wB such that for each i, t′[i] = ψ(t[i]), and t′[j] =
ψ(α) = β. Because of the constraint w[j] ⊆ r[1], and because B is legal, there
is one and only one tuple (β, γ, δ) in rB (since 1 is a key of r, β appears once
in rB[1]). Then, we set ψ(fr,i1(α)) = γ, ψ(fr,i2(α)) = δ, and we can conclude
that (ψ(α), ψ(fr,i1 (α)), ψ(fr,i2 (α))) ∈ rB.

Finally, we show that, if I is consistent w.r.t. D, then a tuple t of constants
is in qI,D if and only if t is in the answer to q over the database can(I,D).
Theorem 4. Let I = 〈G,S,MG,S〉, let q be a query posed to I, D a source
database for I, and t a tuple of constants of the same arity as q. If I is consistent
w.r.t. D, then t ∈ qI,D if and only if t is in the answer to q over can(I,D).
Proof. For the “if” direction, we show that if t is in the answer to q over
can(I,D), then t ∈ qI,D. Indeed, consider any B that is a legal database for
I w.r.t. D. By theorem 3, there is a total function ψ from HD(D) to Γ such
that, for each relation r of arity n in G, and each tuple (c1, . . . , cn) constituted
by elements in HD(D), if (c1, . . . , cn) ∈ rcan(I,D), then (ψ(c1), . . . , ψ(cn)) ∈ rB.
The fact that t is in the answer to q over can(I,D) means that there is an as-
signment α from the variables of q to objects in HD(D) such that all atoms of q
are true with respect to the assignment. It is easy to see that the assignment
α · ψ can be used to show that t is in the answer to q over B.

A. Cal̀ı et al.344

As for the “only-if” direction, first note that, by hypothesis I is consistent
w.r.t. D, and, therefore, by theorem 2, ret(I,D) does not violate any key con-
straint in G, which implies that can−(I,D) is a legal database for I w.r.t. D.
Now, since can−(I,D) ⊆ can(I,D), and since q is a conjunctive query, the fact
that t is not in the answer to q over can(I,D) implies that t is not in the answer
of q over can−(I,D). Therefore, we can conclude that t �∈ qI,D.

Based on the above results, we can conclude that can(I,D) is the right
abstraction for answering queries posed to the data integration system. In the
next section we show that, in processing a query q posed to the data integration
system, we can find the answers to q over can(I,D) without actually building
can(I,D).

5 Query Reformulation

The naive computation described in the previous section is impractical, because
it requires to build the canonical database, which is in general infinite. In order
to overcome the problem, we have devised an algorithm, whose main ideas are
as follows.

1. First, as we said in the previous section, we assume that, for each relation r of
the global schema, the query ρ(r) over the source schema that the mapping
MG,S associates to r preserve the key constraint of r.

2. Instead of referring explicitly to the canonical database for query answer-
ing, we transform the original query q into a new query expG(q) over the
global schema, called the expansion of q w.r.t. G, such that the answer to
expG(q) over the retrieved global database is equal to the answer to q over
the canonical database.

3. In order to avoid building the retrieved global database, we do not evaluate
expG(q) on the retrieved global database. Instead, we unfold expG(q) to a
new query, called unfMG,S (expG(q)), over the source relations on the basis
of MG,S , and we use the unfolded query unfMG,S (expG(q)) to access the
sources.

We refer to steps 1 and 2 as the “query reformulation” step. Step 3 is called the
“source access”. In the rest of the section we discuss the first two steps.

Let I = 〈G,S,MG,S〉 be a data integration system, let D be a source data-
base, and let q be a query over the global schema G. We show how to reformulate
the original query q into a new query expG(q) over the global schema, called the
expansion of q w.r.t. G, such that the answer to expG(q) over the (virtual) re-
trieved global database is equal to the answer to q over the canonical database.

The basic idea to do so is that the constraints in G can be captured by a
suitable logic program PG . To build PG , we introduce a new relation p′ (called
primed relation) for each relation p in G. Then, from the semantics of G we devise
the following rules for PG (expressed in Logic Programming notation [27]):

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 345

– for each relation r, we have:

r′(X1, . . . , Xn) ← r(X1, . . . , Xn)

– for each foreign key constraint r1[A] ⊆ r2[B] in G, where A and B are sets of
attributes and B is a key for r2 (assuming for simplicity that the attributes
involved in the foreign key are the first h):

r′2(X1, . . . , Xh, fh+1(X1, . . . , Xh), . . . , fn(X1, . . . , Xh))
← r′1(X1, . . . , Xh, . . . , Xm)

where fi are fresh function symbols, called Skolem functions.

We can use the logic program PG to generate the query expG(q) associated
to the original query q. This is done as follows.

1. First, we rewrite q by substituting each relation symbol r in the body body(q)
of q with a new symbol r′. We denote by q′ the resulting query. In the
following we call “primed atom” every atom whose relation symbol is primed,
i.e., it has the form r′ for some r.

2. Then we build a partial evaluation tree for q′, i.e., a tree having each node
labeled by a conjunctive query g, with one of the atoms in body(g) marked
as “selected”, obtained as follows.
(a) The root is labeled by q′, and has one (primed) atom (for example the

first in left-to-right order) marked as selected.
(b) Except if condition (2c) below is satisfied, a node, labeled by a query g

having a “selected” atom α, has one child for each rule φ in PG such
that there exists a most general unifier2mgu(α, head(φ)) between the
atom α and the head head(φ) of the rule φ, such that the distinguished
variables are not assigned to terms involving Skolem functions. Each of
such children has the following properties:
– it is labeled by the query obtained from g by replacing the atom α

with body(φ) and by substituting the variables withmgu(α, head (φ));
– it has as marked “selected” one of the primed atoms (for example

the first in left-to-right order).
(c) If a node d is labeled by a query g, and there exist a predecessor d′ of d

labeled by a query g′ and a substitution θ of the variables of g′ that
makes g′ equal to g, then d has a single child, which is labeled by the
empty query (a query whose body is false).

3. Finally we return as result the query expG(q) formed as the union of all
non-empty queries in the leaves of the partial evaluation tree.

Theorem 5 (Termination). The algorithm above always terminates.

2 We recall that given two atoms α and β the most general unifier mgu(α, β) is a most
general substitution for the variables in α and β that makes α and β equal [27].

A. Cal̀ı et al.346

Proof. The termination of the algorithm follows directly from the following ob-
servations:

– The queries in all nodes on the tree have exactly the same number of atoms
as the original query q. This is an immediate consequence of the fact that
for rule φ in PG , body(φ) is formed by exactly one atom.

– Condition (2c) guarantees a finite bound on the nesting of Skolem functions
in the queries in the nodes.

As a consequence, the number of queries along each branch of the partial eval-
uation tree must be finite, hence the thesis holds.

Our goal now is to show that if I is consistent w.r.t. D, then t ∈ qI,D if and
only if t is in the answer to unfMG,S (expG(q)) over D. We will prove such result
by applying results from the logic programming theory [27] and, in particular,
results on the partial evaluation of logic programs [28]. We first observe that
ret(I,D) can be seen as a (finite) set of ground facts in logic programming
terms. We proceed by proving a series of lemmas, each dealing with a particular
aspect of the proof. The relationship between the logic program PG and the
canonical database of the data integration system I is characterized by the
following lemma.

Lemma 1. Up to the renaming of each relation symbol r by the corresponding
primed symbol r′, can(I,D) coincides with the minimal model of PG ∪ ret(I,D).
Proof. The thesis is an immediate consequence of the semantics of can(I,D)
and PG ∪ ret(I,D) [27].

Next we focus on SLD-refutation. We observe that, since the query q is a
conjunctive query, the query q′ is a union of conjunctive queries:

q′(X1, . . . , Xn) ← disj1 ∨ · · · ∨ disjk
An SLD-refutation for PG ∪ ret(I,D) ∪ ¬q′(t) is defined as an SLD-refutation
for PG ∪ P ′

q ∪ ret(I,D) ∪ ¬q′(t), where P ′
q is constituted by the rules:

q(X1, . . . , Xn) ← disj1
· · ·

q(X1, . . . , Xn) ← disjk

one for each disjunct disji of the query q′ (see [27]).

Lemma 2. q′(t) is true in the minimal model of PG ∪ ret(I,D) iff there is an
SLD-refutation for PG ∪ ret(I,D) ∪ {¬q′(t)}.
Proof. The thesis follows directly from the soundness and completeness of SLD-
resolution for definite logic programs, see e.g., [27].

Next, let us consider a slight modification of the algorithm above where
Condition (2c) is replaced by the following one:

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 347

If a node d that is labeled by a query g and there exists a predecessor d′

of d labeled by a query g′ and a substitution θ of the variables of g′ that
makes g′ equal to g, then d has a single child, which is labeled by g itself
but without any atom marked as selected.

Let us call exp−
G (q) the query obtained from such a modified algorithm. For

exp−
G (q), we have the following result.

Lemma 3. PG ∪ ret(I,D) ∪ {¬q′(t)} has an SLD-refutation iff ret(I,D)∪
{¬exp−

G (q)(t)} has an SLD-refutation.

Proof. It is easy to see that the modified algorithm generates a so-called partial
evaluation [28] of the program PG w.r.t. the query q′. From the results in [28] on
soundness and completeness of partial evaluation of logic programs, the thesis
follows.

Lemma 4. PG ∪ ret(I,D) ∪ {¬q′(t)} has an SLD-refutation iff ret(I,D)∪
{¬expG(q)(t)} has an SLD-refutation.

Proof. The difference between exp−
G (q) and expG(q) is that in expG(q) we drop

the disjuncts coming from those nodes labeled by a query g such that there exists
a query g′ and a substitution θ of the variables of g′ that makes g′ equal to g.
Next we show that, in doing this we do not loose any potential SLD-refutation
of PG ∪ ret(I,D) ∪ {¬q′(t)}.

Suppose that the shortest (possibly the only one) SLD-refutation for PG ∪
ret(I,D) ∪ {¬q′(t)} goes through a node labeled by one such g. Let us say
the length of the SLD-refutation is n, and that node labeled by g is the k-
th node along the SLD-refutation. From such SLD-refutation we get an SLD-
refutation for PG ∪ ret(I,D) ∪ {¬g(t)} of length n− k. Observe that, by the so
called Lifting Lemma [27], such an SLD-refutation is also an SLD-refutation for
PG ∪ ret(I,D)∪{¬g′(t)}. Hence there exists an SLD-refutation for which occurs
in a node of the SLD-refutation for PG ∪ ret(I,D) ∪ {¬q(t)} that is shorter
than n, which leads to contradiction. It follows that for each SLD-refutation for
PG ∪ ret(I,D)∪{¬q′(t)} going through a node satisfying Condition (2c) there is
also another (a shorter one in fact) that does not go through that node. Hence
we may drop from the partial evaluation exp−

G (q) all the conjuncts involving such
nodes, thus getting expG(q) without loosing any SLD-refutation for the original
query.

Finally, we observe that, since expG(q) does not involve any prime atom,
the rules in PG cannot be applied along an SLD-refutation for PG ∪ ret(I,D) ∪
{¬expG(q)(t)}. Hence every SLD-refutation for PG ∪ ret(I,D) ∪ {¬expG(q)(t)}
is also an SLD-refutation for PG ∪ ret(I,D) ∪ {¬expG(q)(t)}.

With this lemma in place we can finally present our main theorem.

Theorem 6 (Soundness and Completeness). Let I = 〈G,S,MG,S〉, let q
be a query posed to I, D a source database for I, and t a tuple of constants of
the same arity as q. If I is consistent w.r.t. D, then t ∈ qI,D if and only if t is
in the answer to unfMG,S (expG(q)) over D.

A. Cal̀ı et al.348

Proof. By Lemma 1, Lemma 2, Lemma 4, we have that q(t) is true in can(I,D)
iff ret(I,D) ∪ {¬expG(q)(t)} has an SLD-refutation. That is by, again applying
Lemma 2, q(t) is true in can(I,D) iff t is in the answer to expG(q) over ret(I,D),
i.e., by the semantics of ret(I,D), iff t is in the answer to unfMG,S (expG(q))
over D.

With regard to the characterization of the computational complexity of the
algorithm, we observe that the number of disjuncts in expG(q) can be exponential
in the number of rules in the logic program PG (and therefore in the size of the
global schema G), and in the number of variables in the original query q. Note,
however, that this bound is independent of the size of D, i.e., the size of data at
the sources. We remind the reader that the evaluation of a union of conjunctive
queries can be done in time polynomial with respect to the size of the data.
Since expG(q) is a union of conjunctive queries, as the queries associated by
MG,S to the elements of G are, then evaluating unfMG,S (expG(q)) over D is
also polynomial in the size of the data at the sources. It follows that our query
answering algorithm is polynomial with respect to data complexity.

The following example illustrates the application of the expansion algorithm
in a simple case.

Example 4. Suppose we have the following relations in the global schema G of a data
integration system:

person(Pcode, Age,CityOfBirth)
student(Scode ,University)
city(Name, Major)

with the following integrity constraints:

key(person) = {Pcode}
key(student) = {Scode}

key(city) = {Name}

person[CityOfBirth] ⊆ city[Name]
city[Major] ⊆ person[PCode]

student[SCode] ⊆ person[PCode]

The logic program PG makes use of the predicates person′/3, student′/1, city′/2 and
constitutes of the following rules:

person′(X, Y, Z) ← person(X, Y, Z)
student′(X, Y) ← student(X, Y)

city′(X, Y) ← city(X, Y)

city′(X, f1(X)) ← person′(Y,Z, X)
person′(Y, f2(Y), f3(Y)) ← city′(X, Y)

person′(X, f4(X), f5(X)) ← student′(X, Y)

Suppose the user query is q(X) ← person(X, Y, Z).

���
���
���
���

person′(X, Y, Z)

student′(X, W1)

city(Z, W2) person′(W3, W4, Z)

✷

student(X, W1)

city′(Z, W2)person(X, Y, Z)

Fig. 1. Partial evaluation tree for the query of Example 4

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 349

The partial evaluation tree of q is shown in Figure 1. Note that in the rightmost
branch, Condition (2c) is verified and hence the evaluation stops, producing the empty
clause ✷. This prevents the evaluation process to get into an infinite branch. The new
variables W1, W2, and W3 are introduced in order to avoid variable clashes when per-
forming unification. The non-empty leaves, shaded in the figure, provide the following
expansion q′ = expG(q) of the query q:

q′(X) ← person(X, Y, Z)
q′(X) ← student(X, W1)

q′(W2) ← city(Z, W2)

Intuitively, we see that the expanded query searches for codes of persons not only in
the relation person, but also in student and city, where, due to the integrity constraints,
it is known that codes of persons are stored.

6 Conclusions

While it is a common opinion that query processing is an easy task in the global-
centric approach to data integration, we have shown the surprising result that,
when the global schema contains integrity constraints, even of simple forms,
query processing becomes more difficult. The difficulties basically arise because
of the need of dealing with incomplete information, similarly to the case of the
source-centric approach to data integration. We have studied the case of global
schemas expressed in the relational model with key and foreign key constraints,
and we have presented techniques for effectively answering queries posed to the
data integration system in this case.

As future work, we aim at considering more forms of integrity constraints in
the global schema, with the goal of modifying the algorithm described in this
paper in order to take into account the new classes of constraints during query
processing.

References

1. Batini, C., Lenzerini, M., Navathe, S. B.: A comparative analysis of methodologies
for database schema integration. ACM Computing Surveys 18 (1986) 323–364 262

2. Sheth, A. P., Larson, J. A.: Federated database systems for managing distributed,
heterogeneous, and autonomous databases. ACM Computing Surveys 22 (1990)
183–236 262

3. Thomas, G., Thompson, G. R., Chung, C. W., Barkmeyer, E., Carter, F., Tem-
pleton, M., Fox, S., Hartman, B.: Heterogeneous distributed database systems for
production use. ACM Computing Surveys 22 (1990) 237–266 262

4. Litwin, W., Mark, L., Roussopoulos, N.: Interoperability of multiple autonomous
databases. ACM Computing Surveys 22 (1990) 267–293 262

5. Catarci, T., Lenzerini, M.: Representing and using interschema knowledge in coop-
erative information systems. J. of Intelligent and Cooperative Information Systems
2 (1993) 375–398 262

6. Hull, R.: Managing semantic heterogeneity in databases: A theoretical perspective.
In: Proc. of PODS’97. (1997) 262

A. Cal̀ı et al.350

7. Halevy, A. Y.: Answering queries using views: A survey. VLDB Journal 10 (2001)
270–294 262, 263

8. Ullman, J. D.: Information integration using logical views. In: Proc. of ICDT’97.
Volume 1186 of LNCS., Springer (1997) 19–40 262, 263

9. Li, C., Chang, E.: Query planning with limited source capabilities. In: Proc. of
ICDE 2000. (2000) 401–412 263

10. Garcia-Molina, H., Papakonstantinou, Y., Quass, D., Rajaraman, A., Sagiv, Y.,
Ullman, J. D., Vassalos, V., Widom, J.: The TSIMMIS approach to mediation:
Data models and languages. J. of Intelligent Information Systems 8 (1997) 117–132
263

11. Anthony Tomasic, Louiqa Raschid, P. V.: Scaling access to heterogeneous data
sources with DISCO. IEEE Trans. on Knowledge and Data Engineering 10 (1998)
808–823 263

12. Goh, C. H., Bressan, S., Madnick, S. E., Siegel, M. D.: Context interchange:
New features and formalisms for the intelligent integration of information. ACM
Trans. on Information Systems 17 (1999) 270–293 263

13. Kirk, T., Levy, A. Y., Sagiv, Y., Srivastava, D.: The Information Manifold. In:
Proceedings of the AAAI 1995 Spring Symp. on Information Gathering from Het-
erogeneous, Distributed Enviroments. (1995) 85–91 263

14. Abiteboul, S., Duschka, O.: Complexity of answering queries using materialized
views. In: Proc. of PODS’98. (1998) 254–265 263, 266

15. Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi, D., Rosati, R.: Data integra-
tion in data warehousing. Int. J. of Cooperative Information Systems 10 (2001)
237–271 263, 264

16. Cal̀ı, A., De Giacomo, G., Lenzerini, M.: Models for information integration: Turn-
ing local-as-view into global-as-view. In: Proc. of Int. Workshop on Foundations
of Models for Information Integration (10th Workshop in the series Foundations
of Models and Languages for Data and Objects). (2001) 263

17. Gryz, J.: Query folding with inclusion dependencies. In: Proc. of ICDE’98. (1998)
126–133 263

18. Grahne, G., Mendelzon, A. O.: Tableau techniques for querying information sources
through global schemas. In: Proc. of ICDT’99. Volume 1540 of LNCS., Springer
(1999) 332–347 263, 266

19. Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M. Y.: Query processing
using views for regular path queries with inverse. In: Proc. of PODS 2000. (2000)
58–66 263

20. van der Meyden, R.: Logical approaches to incomplete information. In Chomicki,
J., Saake, G., eds.: Logics for Databases and Information Systems. Kluwer Aca-
demic Publisher (1998) 307–356 263

21. Fernandez, M. F., Florescu, D., Levy, A., Suciu, D.: Verifying integrity constraints
on web-sites. In: Proc. of IJCAI’99. (1999) 614–619 264

22. Fernandez, M. F., Florescu, D., Kang, J., Levy, A. Y., Suciu, D.: Catching the
boat with strudel: Experiences with a web-site management system. In: Proc. of
ACM SIGMOD. (1998) 414–425 264

23. Carey, M. J., Haas, L. M., Schwarz, P. M., Arya, M., Cody, W. F., Fagin, R.,
Flickner, M., Luniewski, A., Niblack, W., Petkovic, D., Thomas, J., Williams, J.
H., Wimmers, E. L.: Towards heterogeneous multimedia information systems: The
Garlic approach. In: Proc. of the 5th Int. Workshop on Research Issues in Data
Engineering – Distributed Object Management (RIDE-DOM’95), IEEE CS Press
(1995) 124–131 264

From: CAiSE 2002, LNCS 2348 © Springer-Verlag Berlin Heidelberg 2002 351

24. Li, C., Yerneni, R., Vassalos, V., Garcia-Molina, H., Papakonstantinou, Y., Ullman,
J. D., Valiveti, M.: Capability based mediation in TSIMMIS. In: Proc. of ACM
SIGMOD. (1998) 564–566 264

25. Galhardas, H., Florescu, D., Shasha, D., Simon, E.: An extensible framework for
data cleaning. Technical Report 3742, INRIA, Rocquencourt (1999) 268

26. Bouzeghoub, M., Lenzerini, M.: Introduction to the special issue on data extrac-
tion, cleaning, and reconciliation. Information Systems 26 (2001) 535–536 268

27. Lloyd, J. W.: Foundations of Logic Programming (Second, Extended Edition).
Springer, Berlin, Heidelberg (1987) 272, 273, 274, 275

28. Lloyd, J. W., Shepherdson, J. C.: Partial evaluation in logic programming. J. of
Logic Programming 11 (1991) 217–242 274, 275

A. Cal̀ı et al.352

Rewrite and Conquer: Dealing with Integrity
Constraints in Data Integration

Andrea Calı̀, Diego Calvanese, Giuseppe De Giacomo, and Maurizio Lenzerini

Abstract The work “Data Integration under Integrity Constraints”, published at
the CAiSE 2002 Conference, proposes a rewriting technique for answering queries
in data integration systems, when the global schema contains the classical key
and foreign key constraints, and the mapping between the data sources and the
global schema is of the global-as-view type. In this addendum, we explain why this
research was important and how it gave rise to several results in the following years.

1 Introduction

Our work [3], republished in this volume, considers a data integration setting where
a set of data sources is integrated into a global schema by means of global-as-view
(GAV) mappings, and where the global schema contains integrity constraints. In data
integration, the mapping establishes the relationship between the data at the sources
and the elements of the global schema. While in the local-as-view (LAV) approach
to mappings, every data source is described in terms of a view over the global
schema, in the GAV approach the data sources are mapped to the global schema
by associating to each element in the global schema a view over the data sources,
with the meaning that every tuple satisfying the view at the sources, also satisfies

A. Calı̀ (�)
University of London, Birkbeck College, UK

University of Oxford, UK
e-mail: andrea@dcs.bbk.ac.uk

D. Calvanese
Free University of Bozen-Bolzano, Bolzano, Italy
e-mail: calvanese@inf.unibz.it

G. De Giacomo � M. Lenzerini
“Sapienza” Università di Roma, Rome, Italy
e-mail: degiacomo@dis.uniroma1.it; lenzerini@dis.uniroma1.it

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 28, © Springer-Verlag Berlin Heidelberg 2013

353

mailto:andrea@dcs.bbk.ac.uk
mailto:calvanese@inf.unibz.it
mailto:degiacomo@dis.uniroma1.it
mailto:lenzerini@dis.uniroma1.it

A. Calı̀ et al.

the element of the global schema in the virtual global database. On the other hand,
the global schema provides a common representation for the domain of interest,
and including integrity constraints is important if we aim at modeling the domain
of interest with reasonable expressive power. Indeed, integrity constraints are the
obvious means to express rules corresponding to semantic conditions characterizing
the domain.

Referring to the setting described above, the paper addresses one of the most
important problems in the design of a data integration system, namely, the definition
of the method for computing the answer to queries posed in terms of the global
schema. The integrity constraints considered in the paper are key and foreign
key constraints, which are very popular mechanisms for adding semantics to a
plain relational database schema. The challenge posed by the considered setting
derives exactly from the presence of such integrity constraints. The query answering
algorithm should compute the answer to queries by taking into account not only
the data and the mapping, but also the facts implied by the constraints in the
global schema.

The first contribution in the paper was to show that, when the global schema
contains key and foreign key constraints, the semantics of the data integration
system is best described in terms of a set of databases, rather than a single one,
and this implies that query processing is intimately connected to the notion of
querying incomplete databases. As a simple example, suppose that a foreign key
constraint in the global schema asserts that every value of attribute A of relation r

should appear in the (unary) key K of relation s, and assume that the data retrieved
from the sources through the mappings do not satisfy this constraints, i.e., there is a
value a in rŒA� that does not appear in position (attribute) K in any tuple of s. How
do we interpret the semantics of the data integration system in this case? One option
would be to consider the whole system incorrect, and not even try to answer queries,
which is obviously unacceptable. Another option is to interpret the absence of the
tuple in s as a form of incompleteness, and consider as possible global databases
every global database that has a new tuple t in s such that tŒK� D a. To account
for incompleteness, given a query q, we should make sure that we answer q by
computing the tuples that satisfy the query in every possible database, i.e, the
so-called certain answers to q. This is exactly the approach adopted in the paper.

The second contribution of the paper was to propose a specific method to answer
conjunctive queries posed to the global schema in the case of GAV mappings, and
with key and foreign key constraints in the global schema. The method is based
on a rewriting technique. A conjunctive query q is first rewritten into a union of
conjunctive queries q0 taking into account the integrity constraints in the global
schema, and then q0 is rewritten, taking into account the mapping, into a query q00 to
be evaluated at the sources. The correctness of the method was proved by showing
that the algorithm computes exactly the set of certain answers to the original query
q. It is important to note that the query q00 is a first-order query over the data sources,
and therefore the query answering algorithm runs in polynomial time (actually,
in AC0) with respect to data complexity, i.e., with respect to the size of data at
the sources.

354

Rewrite and Conquer: Dealing with Integrity Constraints in Data Integration

In the following, we first place these results in the historical context of research
in data integration, and highlight then two lines of research resulting from our work:
approaches based on rewriting queries into efficiently evaluable first-order queries,
and approaches aiming at tractable query answering by resorting to Datalog.

2 Historical Perspective

At the time of CAiSE 2002, the research on data integration was very active [17].
However, most of the contributions were based on the LAV approach, and only some
of them considered the presence of integrity constraints in the global schema [17].
As for the GAV approach, there was the common belief that query answering is
somehow trivial, because, at least in principle, a simple unfolding strategy suffices:
substitute every atom ˛ of the query with the source query associated to ˛ by the
mapping. Obviously, if the views over the sources are first-order queries, the query
to be sent to the sources is also first-order, and the complexity of the whole process
is AC0 in data complexity. While this is true for the case of GAV without constraints,
our work in [3] demonstrates that the presence of integrity constraints in the global
schema, even of a very basic form, may change the picture considerably: key and
foreign key constraints introduce a form of incomplete information in the system,
and such incompleteness must be reasoned upon during query answering, which
cannot be reduced to simple mapping-based unfolding.

A few months after CAiSE 2002, a seminal paper on data exchange, namely [11],
was presented at ICDT 2003. Data exchange is a form of information integration
where the emphasis is on transferring data from a source to a target database
according to a set of mappings. Thus, differently from data integration, where
the global database can be virtual, in data exchange the main task is to use the
mappings to materialize a database starting from the source data. The work in [11]
illustrates the importance of the chase for data exchange. The chase is a fixpoint
algorithm enforcing implication of data dependencies over an incomplete database.
Since mappings can be expressed as special dependencies, namely, tuple-generating
dependencies, the chase turns out to be the right tool to exchange data from
the source to the target. Now, if the target schema includes integrity constraints,
depending on the form of such constraints, the chase may not terminate. For this
reason, [11] introduced a specific form of target constraints, namely, weakly-acyclic
tuple-generating dependencies, for which the chase terminates, so that a correct
target database can be computed by chasing source data with respect to both the
mappings and the integrity constraints in the target schema.

Unfortunately, this algorithm does not work in the case of key and foreign key
constraints: indeed, in the presence of such constraints, and in particular when
the foreign keys are cyclic, the chase might not terminate. We believe that one
of the merits of [3] was to show an alternative way to treat integrity constraints
in the global schema with respect to a chase-based algorithm, namely via rewriting.
Our work also indicated that classes of practically relevant integrity constraints, that
cannot be treated by the chase, can still be taken into account in data integration.

355

A. Calı̀ et al.

In the next two sections, we discuss two lines of research following the approach
and the methodology presented in [3]. Section 3 describes the efforts to single out
new classes of integrity constraints that can be dealt with by means of first-order
rewriting algorithms. Section 4 reports on recent research work on incorporating
the constraints considered in [3] in Datalog-like languages for expressing the
global schema.

3 First-Order Rewritability

One line of research deriving from our work [3] has been concerned with identifying
classes of languages to express constraints over the global-schema that allow for
computing certain answers with an approach based on rewriting. The key feature of
this approach is that the constraints are taken into account by rewriting, indepen-
dently of the underlying data, the given query q into a new query qr that can be
expressed in first-order logic. Hence qr can be unfolded and evaluated by a standard
relational database engine. This property of an integrity constraint language is what
later became known as first-order rewritability of query answering [8], and it has
been investigated intensively in the setting of ontology languages.

First-order rewritability imposes strict conditions on the expressive power of the
underlying constraint/ontology language. It has led to the development of the DL-
Lite family of lightweight ontology languages [8]. On the one hand, for the logics
of this family conjunctive query answering is first-order rewritable. On the other
hand, such logics are tightly connected to conceptual modeling formalisms, and
can indeed capture the most important modeling features of UML class diagrams
and Entity-Relationship diagrams, as well as constructs that are part of the OWL
standard [1, 7]. An exception are covering constraints, which require disjunction to
be represented, and lead to query answering that is coNP-hard in data complexity,
hence not first-order rewritable [9]. Interestingly, first-order rewritability does not
impose any form of acyclicity on the set of constraints. Hence, the logics of the DL-
Lite family depart from the constraint languages adopted in data-exchange to ensure
finiteness of the chase (but see also Sect. 4).

First-order rewritability per se does not guarantee overall efficiency of query
answering. In general, rewritings expressed as unions of conjunctive queries [8]
may be very large (in the worst case exponential in the size of the original query),
and hence not manageable by the DBMS engine. Experiments have shown that such
a blowup typically occurs in real-world scenarios. This triggered the development of
alternative rewriting techniques [14, 18, 21], whose focus has been on the reduction
of the size of generated queries. These techniques produce rewritings that in many
cases are polynomial, however the worst-case complexity is still exponential. The
technique proposed in [12] produces worst-case polynomial rewritings at the cost of
significantly complicating their structure, so that their execution is likely to suffer
from poor performance [13]. An alternative, so called combined, approach has also
been developed [15], in which the original data is first expanded with respect to

356

Rewrite and Conquer: Dealing with Integrity Constraints in Data Integration

the constraints/ontology (cf. Sect. 4), and then a rewritten query is executed over
this expanded data. This allows for keeping the rewriting both small and efficiently
executable, offering good performance at query time. However, it might not be
applicable in those settings where no direct control over the data sources is granted,
e.g., in data integration scenarios. Current research is investigating approaches in
which a holistic view of the query answering/integration system is taken, that
considers together with the constraints/ontology expressed at the global level, also
the dependencies coming from the data sources and/or induced by the mappings, to
optimize the overall query answering process [10, 19, 20].

4 Datalog-Based Approach: Tractable Query Answering

Our work [3], which deals with “traditional” key and foreign key constraints,
was the starting point of several studies on more general constraint languages.
Datalog, in particular, has been used as a paradigmatic query language for over
three decades, and can be naturally adopted in data integration. Datalog has some
limits in modeling ontologies, which can be overcome with the introduction of
existential quantification in the rule heads; this way, rules become tuple-generating
dependencies (TGDs). Unfortunately, checking the entailment of a ground fact by
a database (set of ground facts) and a set of TGDs is undecidable. The Datalog˙
family of languages [4] naturally extends [3] by proposing several TGD-based
languages based on restrictions on the form of TGD bodies, so as to ensure
decidability of query answering, and in some case tractability in data complexity.
The two main decidability paradigms in Datalog˙ are guardedness and stickiness,
which we briefly discuss below. Notice that, following the approach of our paper [3],
none of the Datalog˙ languages guarantees the finiteness of the chase, which – we
believe – is a necessary premise to ensure sufficient expressive power.

Guardedness is a well-known property of first-order theories that guarantees
decidability. Guarded TGDs [4], or guarded Datalog˙, have been inspired by this
notion, and offer PTIME data complexity of query answering. Linear TGDs, or
linear Datalog˙, are a less expressive extension of the keys and foreign keys of [3],
which enjoys better computational properties that guarded Datalog˙; in particular,
linear Datalog˙ is first-order rewritable, with a technique analogous to that of [3].
Extension of guarded Datalog˙ include the addition of stratified negation, and a
relaxation of guardedness that defines weakly-guarded Datalog˙ [6].

Stickiness is a completely different paradigm from guardedness, and it has been
designed with the aim of devising a first-order rewritable Datalog˙ language. Sticky
sets of TGDs, or sticky Datalog˙ [6], are defined by an easily testable syntactic
condition, and are obviously first-order rewritable. Extension of sticky Datalog˙
are also studied in [6].

To achieve better expressive power, some works extend Datalog˙ with so-called
negative constraints [6] and equality-generating dependencies [5], the latter obvi-
ously extending the key constraints in our original work [3].

357

A. Calı̀ et al.

Datalog˙ languages have found several applications; without the restriction of
chase termination, their expressive power allows for capturing several ontology
languages. Interestingly, the work [16] unites the notions of chase termination and
guardedness in a single language.

Other works propose semantic characterizations of sets of TGDs, with emphasis
on rewriting. The work [2] defines the notion of finite unification set, that is,
a set of TGDs that is first-order rewritable by means of a backward-chaining
unification algorithm. Rewritability, introduced by us in data integration under
integrity constraints in [3], remains a crucial notion for reasons of efficiency of
query answering.

Acknowledgements We acknowledge the support of the EU through the large-scale integrating
project (IP) Optique (Scalable End-user Access to Big Data), grant agreement n.�FP7-318338.

References

1. A. Artale, D. Calvanese, R. Kontchakov, and M. Zakharyaschev. The DL-Lite family and
relations. J. of Artificial Intelligence Research, 36:1–69, 2009.

2. J.-F. Baget, M. Leclère, M.-L. Mugnier, and E. Salvat. On rules with existential variables:
Walking the decidability line. Artificial Intelligence, 175(9–10):1620–1654, 2011.

3. A. Calı̀, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under integrity
constraints. In Proc. of CAiSE 2002, volume 2348 of LNCS, pages 262–279. Springer, 2002.

4. A. Calı̀, G. Gottlob, T. Lukasiewicz, B. Marnette, and A. Pieris. DatalogC=�: A family
of logical knowledge representation and query languages for new applications. In Proc. of
LICS 2010, pages 228–242, 2010.

5. A. Calı̀, G. Gottlob, G. Orsi, and A. Pieris. On the interaction of existential rules and equality
constraints in ontology querying. In Correct Reasoning, pages 117–133, 2012.

6. A. Calı̀, G. Gottlob, and A. Pieris. Towards more expressive ontology languages: The query
answering problem. Artificial Intelligence, 193:87–128, 2012.

7. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, M. Rodrı́guez-Muro, and
R. Rosati. Ontologies and databases: The DL-Lite approach. In S. Tessaris and E. Franconi,
editors, Semantic Technologies for Informations Systems – 5th Int. Reasoning Web Summer
School (RW 2009), volume 5689 of LNCS, pages 255–356. Springer, 2009.

8. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning and
efficient query answering in description logics: The DL-Lite family. J. of Automated Reasoning,
39(3):385–429, 2007.

9. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Data complexity of
query answering in description logics. Artificial Intelligence, 195:335–360, 2013.

10. F. Di Pinto, D. Lembo, M. Lenzerini, R. Mancini, A. Poggi, R. Rosati, M. Ruzzi, and
D. F. Savo. Optimizing query rewriting in ontology-based data access. In Proc. of EDBT 2013,
2013.

11. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query
answering. In Proc. of ICDT 2003, pages 207–224, 2003.

12. G. Gottlob and T. Schwentick. Rewriting ontological queries into small nonrecursive Datalog
programs. In Proc. of KR 2012, pages 254–263, 2012.

13. S. Kikot, R. Kontchakov, V. Podolskii, and M. Zakharyaschev. Long rewritings, short rewrit-
ings. In Proc. of DL 2012, volume 846 of CEUR, ceur-ws.org, 2012.

358

http://ceur-ws.org

Rewrite and Conquer: Dealing with Integrity Constraints in Data Integration

14. S. Kikot, R. Kontchakov, and M. Zakharyaschev. Conjunctive query answering with
OWL 2 QL. In Proc. of KR 2012, pages 275–285, 2012.

15. R. Kontchakov, C. Lutz, D. Toman, F. Wolter, and M. Zakharyaschev. The combined approach
to ontology-based data access. In Proc. of IJCAI 2011, pages 2656–2661, 2011.

16. M. Krötzsch and S. Rudolph. Extending decidable existential rules by joining acyclicity and
guardedness. In Proc. of IJCAI 2011, pages 963–968, 2011.

17. M. Lenzerini. Data integration: A theoretical perspective. In Proc. of PODS 2002, pages 233–
246, 2002.

18. H. Pérez-Urbina, B. Motik, and I. Horrocks. Tractable query answering and rewriting under
description logic constraints. J. of Applied Logic, 8(2):186–209, 2010.

19. M. Rodriguez-Muro and D. Calvanese. High performance query answering over DL-Lite
ontologies. In Proc. of KR 2012, pages 308–318, 2012.

20. R. Rosati. Query rewriting under extensional constraints in DL-Lite. In Proc. of DL 2012,
volume 846 of CEUR, ceur-ws.org, 2012.

21. R. Rosati and A. Almatelli. Improving query answering over DL-Lite ontologies. In Proc. of
KR 2010, pages 290–300, 2010.

359

http://ceur-ws.org

Automated Reasoning on Feature Models�

David Benavides, Pablo Trinidad, and Antonio Ruiz-Cortés

Dpto. de Lenguajes y Sistemas Informáticos,
University of Seville, Av. de la Reina Mercedes S/N, 41012 Seville, Spain

{benavides, trinidad, aruiz}@tdg.lsi.us.es

Abstract. Software Product Line (SPL) Engineering has proved to be an effec-
tive method for software production. However, in the SPL community it is well
recognized that variability in SPLs is increasing by the thousands. Hence, an au-
tomatic support is needed to deal with variability in SPL. Most of the current
proposals for automatic reasoning on SPL are not devised to cope with extra–
functional features. In this paper we introduce a proposal to model and reason
on an SPL using constraint programming. We take into account functional and
extra–functional features, improve current proposals and present a running, yet
feasible implementation.

1 Introduction and Motivation

Research on SPLs is thriving. Unlike other approaches reuse in SPL has to become
systematic instead of ad–hoc. In order to achieve such a goal, SPL practices guide orga-
nizations towards the development of products from existing assets rather than the de-
velopment of separated products one by one from scratch. Thus, features that are shared
by all SPL products are reused in every single product. Most of the existing methods
[3, 6] for SPL engineering agree that a way for modelling SPL is needed. In this context
feature models [7, 9, 11, 13, 22] have been quoted as one of the most important contri-
butions to SPL modelling [7, pag.82]. As in other cases, first applications in routine
production are stimulating the development of a supporting science for improving the
production methods [17].

Feature models are used to model SPL in terms of features and relations amongst
them. In this type of models, the number of potential products of an SPL increases with
the number of features. Consequently, a large number of features lead to SPLs with a
large number of potential products. In an extremely flexible SPL, where all features may
or may not appear in all potential products, the number of potential products is equal to
2n, being n the number of features. Moreover, current feature models are only focused
on modelling functional features and in the most quoted proposals [7, 9, 11, 13, 22] there
is a lack of modelling artifacts that deal with extra–functional features (features related
to so–called quality or non–functional features). If extra–functional features are taken

� A preliminary version of this paper was presented at [4]. This work was partially funded by the
Spanish Ministry of Science and Technology under grant TIC2003-02737-C02-01 (AgilWeb)
and PRO-45-2003 (FAMILIES).

O. Pastor and J. Falcão e Cunha (Eds.): CAiSE 2005, LNCS 3520, pp. 491–503, 2005.
c© Springer-Verlag Berlin Heidelberg 2005

361

mailto:{benavides, trinidad, aruiz}@tdg.lsi.us.es

into account the number of potential products increases even further. Although it is
accepted that in an SPL it is necessary to deal with these extra–functional features
[5, 11, 12], there is no consensus about how to deal with them.

Automated reasoning is an ever challenging field in SPL engineering [18, 23]. It
should be considered specially when the number of features increases due to the in-
crease in the number of potential products. To the best of our knowledge, there are only
a couple of limited attempts by Van Deursen et al. and Mannion [8, 14] that treat au-
tomatic manipulation of feature models. Although those proposals only consider func-
tional features, leaving out extra–functional features. Van Deursen et al. [8] explore
automated manipulation of feature descriptions providing an algebra to operate on the
feature diagrams proposed in [7]. Mannion’s proposal [14] uses first–order logic for
product line reasoning. However it only provides a model based on propositional–logic
using AND, OR and XOR logical operators to model SPLs. Both attempts have sev-
eral limitations:

1. They do not allow to deal with extra–functional features (both attempts leave this
work pending).

2. They basically answer to the single question of how many products a model has.
3. As far as we know, they have no available an implementation.

In addition, Mannion’s model uses the XOR (⊕) operator to model alternative re-
lations, which is either a mistake or a limitation because the model becomes invalid if
more than two features are involved in an alternative relation.

The contribution of this paper is threefold. First, we extend existing feature models
to deal with extra–functional features. Secondly, we deal with automatic reasoning on
extended feature models answering five generic questions, namely i) how many poten-
tial products a model has ii) which is the resulting model after applying a filter (e.g.
users constraint) to a model, iii) which are the products of a model, iv) is it a valid
model, and v) which is the best product of a model according to a criterion and finally
giving an accessible, running implementation.

The remainder of this paper is structured as follows. In Section 2, we propose an
extension to deal with extra–functional features. In Section 3, we present a mapping
to transform an extended feature model into a Constraint Satisfaction Problem (CSP)
in order to formalize extended feature models using constraint programming [15]. In
Section 4, we improve current reasoning on feature models and we give some definitions
to be able to automatically answer several questions on extended feature models. In
Section 5, we show how our model can be applied to other important activities such as
obtaining commonality and variability information. In Section 6, we briefly present a
running prototype implementation. Finally, we summarize our conclusions and describe
our future work in Section 7.

2 Extending Feature Models with Extra–Functional Features

2.1 Feature Models

The main goal of feature modelling is to identify commonalities and differences among
all products of a SPL. The output of this activity is a compact representation of all po-

D. Benavides, P. Trinidad and A. Ruiz-Cortés362

HIS

Supervision systems Control Services

fire intrusion flood

light control temperature

appliances
control

Video on
Demand

Internet
Conection

ADSL WirelessMandatory Feature
Optional Feature

Alternative Feature

Or Feature

Power Line

Fig. 1. Feature model of an SPL in the HIS domain

tential products of an SPL, hereinafter called ”feature model”. Feature models are used
to model SPL in terms of features and relations among them. Roughly speaking, a fea-
ture is a distinctive characteristic of a product. Depending on the stage of development,
it may refer to a requirement [10], a component in an architecture [2] or even to pieces
of code [16] (feature oriented programming) of a SPL.

There are several notations to design feature models [7, 9, 11, 13, 22]. We found that
the one proposed by Czarnecki is the most comprehensible and flexible as well as being
one of the most quoted. Figure 1 depicts a possible feature model of an SPL for the
domain of Home Integration Systems (HIS) using Czarneky’s notation. This example
is partially inspired by [13].

Czarnecki’s notation proposes four relations, namely: mandatory, optional, alter-
native and or–relation. In these relations, there is always a parent feature and one (in
the case of mandatory and optional relations) or more (in the case of alternative and
or–relation) child features.

– Mandatory: the child feature in this relation is always present in the SPL’s products
when its parent feature is present. For example, Every HIS is equipped with i) fire
and intrusion supervision systems and ii) light and temperature control.

– Optional: the child feature in an optional relation may or may not be present in
a product when its parent feature is present. For Example, there are HISs with
services and others without them.

– Alternative: a child feature in an alternative relation may be present in a product if
its parent feature is included. In this case, only one feature of the set of children is
present. For example, in a HIS product if an Internet connection is included, then
the customer has to choose between an ADSL, powerline or wireless connection,
but only one.

– Or–relation: the child feature in an or–relation may be present in a product if its
parent feature is included. Then, at least one feature of the set of children may be
present. For example, in a HIS the products may have Video or Internet or both at
the same time.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 363

D. Benavides, P. Trinidad and A. Ruiz-Cortés

This model includes 32 potential products (you can check this on http://www.tdg-
seville.info/topics/spl). Examples of them are: i)Basic product: consisting of a fire and
intrusion supervision systems and light and temperature control. ii)Full product: a prod-
uct with all supervision and control features as well as a power line, ADSL or wireless
Internet connection.

2.2 Extended Feature Models

Current proposals only deal with characteristics related to the functionality offered by
an SPL (functional features). Thus, there exists no solid proposal for dealing with the
remaining characteristics, also called extra-functional features. There are several con-
cepts that we would like to clarify before analyzing current proposals and framing our
contribution:

– Feature: a prominent characteristic of a product. Depending on the stage of devel-
opment, it may refer to a requirement [10] (if products are requirement documents),
a component in an architecture [2] (if products are component architectures) or even
to pieces of code [16] (if products are binary code in a feature oriented program-
ming approach) of an SPL.

– Attribute: the attribute of a feature is any characteristic of a feature that can be
measured. Availability and cost are examples of attributes of the Service feature
of figure 1. Latency and bandwidth may be examples of attributes of an Internet
connection.

– Attribute domain: the space of possible values where the attribute takes its val-
ues. Every attribute belongs to a domain. It is possible to have discrete domains
(e.g:integers, booleans, enumerated) or continuous domains (e.g.:real).

– Extra–functional feature: a relation between one or more attributes of a feature. For
instance: bandwidth = 256,Latency/Availability > 50 and so on. These relations
are associated to a feature.

In figure 1, every feature refers to functional features of the HIS product line so
that every product differs because of its functional features. However, every feature of
figure 1 may have associated extra–functional features. For instance, considering the
services feature, it is possible to identify extra–functional features related to it, such
as relations among attributes like availability,reliability, development time, cost and
so forth. Likewise the Internet Connection feature can have extra–functional features
such as relations among latency or bandwidth. Furthermore, the attributes’ values of
extra–functional features can differ from one product to another. It means, every product
not only differs because of its functional features, but because of its extra–functional
features too.

Consider the full product of the HIS product line example presented formerly with
the same functional features. It is possible to offer several products with the same func-
tional features but different extra–functional features, for instance: i) High quality full
product: a product with full functionality and high quality: high availability and relia-
bility and high cost too. ii) Basic quality full product: a product with full functionality
but lower quality: lower availability and reliability and lower cost too.

364

Services

Video on
Demand

Internet
Conection

ADSL WirelessPower Line

DTIME in {1000..2000} DTIME in {1500..2500} DTIME in {3000..4000}

PRICE in {100..200} PRICE in {100..200} PRICE in {150..250}

DTIME in {18000..25000}

PRICE in {80..100}

DTIME = POWERLINE.DTIME +
ADSL.DTIME + WIRELESS.DTIME

PRICE = 20 + POWERLINE.PRICE
+ ADSL.PRICE +

WIRELESS.PRICE

DTIME = VIDEO.DTIME +
INTERNET.DTIME

PRICE = VIDEO.PRICE + INTERNET.PRICE

Fig. 2. Extended feature model for an SPL in the HIS domain

To date, we have not found any proposal dealing with functional and extra–
functional features in the same model. However, there are some works in the litera-
ture that suggest the need of dealing with extra–functional features: Kang et. al have
been suggesting the need to take into account extra–functional features since 1990 [11,
pag. 38] when they depicted a classification of features, although they did not provide
a way to do it. Later, in 1998 Kang et. al [12] made an explicit reference to what they
called ’non–functional’ features (a possible type of what we call extra–functional fea-
tures). However the authors still did not propose a way to solve it. In 2001 Kang et. al
[5], proposed some guidelines for feature modelling: in [5, pag. 19], the authors once
again made the distinction between functional and quality features and pointed out the
need of a specific method to include extra–functional features, but they did not provide
this specific method on this occasion either.

2.3 A Notation for Extended Feature Models

We propose to extend Czarneki’s feature models with extra–functional features and
improve previous vague notations proposed in [20] by allowing relations amongst at-
tributes. Using the HIS example, every feature may have one or more attribute relations,
for example, the price (PRICE) and development time (expressed in hours) (DTIME)
taking a range of values in both a discrete or continuous domain (integer or real for
example). Thus, it would be possible to decorate the graphical feature model with this
kind of information. Figure 2 illustrates a piece of the feature model of figure 1 with
extra–functional features with our own notation inspired by [20].

In this example, every sub feature of the Service feature has two attributes: PRICE

and DTIME . Each of the attributes of leaf features are in a domain of values. For
instance, the price of an ADSL connection can range from 100 to 200 1. In the case
of parent features, the values of the attributes are the addition of their children values.
For example, the price of an Internet connection is the sum of the prices of the possible
Internet connections.

1 These values are just illustrative, they may have nothing to do with real values.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 365

3 Mapping Extended Feature Models onto CSP

3.1 Preliminaries

Constraint Satisfaction Problems [21] have been object of research in Artificial Intelli-
gence in the last few decades. A Constraint Satisfaction Problem (CSP) is defined as a
set of variables, each ranging on a finite domain, and a set of constraints restricting all
the values that variables can take simultaneously. A solution to a CSP is an assignment
of a value from its domain to every variable, in such a way that all constraints are satis-
fied simultaneously. We may want to find: i) just one solution, with no preference as to
which one, ii) all solutions, iii) an optimal solution by means of an objective function
defined in terms of one or more variables. Solutions to a CSP can be found by searching
(systematically) through all possible value assignments to variables.

In many real-life applications, we do not want to find any solution but a good solu-
tion. The quality of a solution is usually measured by an application dependent function
called objective function. The goal is to find a solution that satisfies all the constraints
and minimize or maximize the objective function, respectively. Such problems are re-
ferred to as Constraint Satisfaction Optimization Problems (CSOP), which consist of a
standard CSP and an optimization function that maps every solution (complete labelling
of variables) to a numerical value. These are some basic definitions of what a CSP is.

Definition 1 (CSP). A CSP is a three–tuple of the form (V,D,C) where V �= ∅ is a
finite set of variables, D �= ∅ is a finite set of domains (one for each variable) and C is
a constraint defined on V .

Consider, for instance, the CSP: ({a, b}, {[0..2], [0..2]}, {a + b < 4})
Definition 2 (Solution). Let ψ be a CSP, a solution of ψ is whatever valid assignment
of all elements in V as satisfies C.

In the previous example, a possible solution is (2, 0) since it verifies that 2 + 0 < 4.

Definition 3 (Solution space). Let ψ be a CSP of the form (V,D,C), its solution space
denoted as sol(ψ) is made up of all its possible solutions. A CSP is satisfiable if its
solution space is not empty.

sol(ψ) = {S | ∀si · si ∈ S ⇒ C(si) = true}
In the previous example, there are eight solutions. The only assignment that does not

satisfy a+ b < 4 is (2, 2). Nevertheless, if we replace the constraint with a+ b < −1,
then the CSP is not satisfiable.

Definition 4 (CSOP). A CSOP is a four–tuple of the form (V,D,C,O) where V , D
and C stand for a CSP and O is a real function defined on D.

Consider, for instance, the CSOP: ({a, b}, {[0..2], [0..2]}, {a + b < 4}, a)
Definition 5 (Optimum space). Let ψ be a CSOP of the form (V,D,C,O), its opti-
mum space denoted as max/min(ψ,O) is made up of all solutions that maximize or
minimize O.

max(ψ,O) = {s | ∀s′ · s′ ∈ sol(ψ) ∧ s′ �= s ⇒ O(s) ≥ O(s′)}

D. Benavides, P. Trinidad and A. Ruiz-Cortés366

min(ψ,O) = {s | ∀s′ · s′ ∈ sol(ψ) ∧ s′ �= s ⇒ O(s) ≤ O(s′)}
In the previous example, max(ψ, a) = {(2, 0), (2, 1)}.

3.2 The Mapping

In [1] we presented an algorithm to transform an extended feature model into a CSP.
The mapping between a feature model and a CSP has the following general form: i)
the features make up the set of variables, ii) the domain of each variable is the same:
{true, false}, iii) extra–functional features are expressed as constraints and iv) every
relation of the feature model becomes a constraint among its features in the following
way:

– Mandatory relation: Let f be the parent and f1 the child in a mandatory relation ,
then the equivalent constraint is: f1 = f

– Optional relation: Let f be the parent and f1 the child in an optional relation, then
the equivalent constraint is: f1 ⇒ f

– Or–relation: Let f be the parent in an or–relation and fi | i ∈ [1 . . . n] the set of
children, then the equivalent constraint is: f1 ∨ f2 ∨ . . . fn ⇔ f .

– Alternative relation: Let f be the parent of an alternative relation and and fi | i ∈
[1 . . . n] the set of children, then the equivalent constraint is:
(f1 ⇔ (¬f2 ∧ . . . ∧ ¬fn ∧ f))∧ (f2 ⇔ (¬f1 ∧ ¬f3 . . . ∧ ¬fn ∧ f))∧
(fn ⇔ (¬f1 ∧ . . . ∧ ¬fn−1 ∧ f))

There may be several different algorithms to map extended feature models. The one
presented in [1] is a possible one. Hereinafter, we refer to the equivalent CSP resulting
from the mapping as ψM . Using this mapping, constraints for functional and extra–
functional features can be handled together. Thus, table 1 shows the equivalent con-
straints for figure 1 with the extra–functional features of figure 2. Constraints of extra–
functional features are denoted by an asterisk. POWERLINE, ADSL and WIRELESS

extra–functional features are not shown for lack of space as they are very similar to the
V IDEO. ones.

4 Automated Reasoning on Extended Feature Models

Since we go toward automated reasoning on feature models, a formal model of SPL
becomes necessary. We propose to use Constraint Programming to reason on extended
features models.

Our model is able to answer the following questions:

4.1 Number of Products

One of the questions to be answered is how many potential products a FM contains.
This is a key question in SPL engineering because if the number of products increases
the SPL becomes more flexible as well as more complex.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 367

Table 1. A trace of the algorithm presented in [1] for HIS example

Relation ψHIS

HIS 1 (SUPERV ISION = HIS)

HIS 2 (CONTROL = HIS)

HIS 3 (SERV ICES ⇒ HIS)

SUPERVISION 1 (FIRE = SUPERV ISION)

SUPERVISION 2 (INTRUSION = SUPERV ISION)

SUPERVISION 3 (FLOOD ⇒ SUPERV ISION)

CONTROL 1 (LIGHT = CONTROL)

CONTROL 2 (APPLIANCE ⇒ CONTROL)

CONTROL 3 (TEMPERATURE = CONTROL)

SERVICES 1 ((V IDEO ∨ INTERNET) ⇔ SERV ICES)

SERVICES * (SERV ICES.PRICE = V IDEO.PRICE + INTERNET.PRICE)∧
(SERV ICES.DTIME = V IDEO.DTIME + INTERNET.DTIME)

VIDEO * ((V IDEO.PRICE ∈ [80 100]) ⇔ V IDEO)∧
((V IDEO.PRICE = 0) ⇔ ¬V IDEO)∧
((V IDEO.DTIME ∈ [18000, 25000]) ⇔ V IDEO)∧
((V IDEO.DTIME = 0) ⇔ ¬V IDEO)

INTERNET 1 (POWERLINE ⇔ (¬ADSL ∧ ¬WIRELESS ∧ INTERNET))∧
(ADSL ⇔ (¬POWERLINE ∧ ¬WIRELESS ∧ INTERNET))∧
(WIRELESS ⇔ (¬POWERLINE ∧ ¬ADSL ∧ INTERNET))

INTERNET * ((INTERNET.PRICE = ADSL.PRICE + WIRELESS.PRICE

+POWERLINE.PRICE + 20) ⇔ INTERNET)∧
((INTERNET.PRICE = 0) ⇔ ¬INTERNET)∧
((INTERNET.DTIME = ADSL.DTIME + WIRELESS.DTIME

+POWERLINE.DTIME) ⇔ INTERNET)∧
((INTERNET.DTIME = 0) ⇔ ¬INTERNET)

Definition 6 (Cardinal). Let M be an extended feature model, the number of potential
products of M , hereinafter cardinal, is equal to the solution number of its equivalent
CSP ψM .

cardinal(M) = |sol(ψM)|
In the HIS example of figure 1 cardinal(HIS) = 32, simply by adding for exam-

ple a new service like Radio Streaming, the number of potential products raises to 64.
Likewise adding the attributes of figure 2 cardinal(HIS) = 260.

4.2 Filter

There should be a way to apply filters to the model. These filters can be imposed by
the users. A filter acts as a limitation for the potential products of the model. A typical
application of this operation occurs when customers are looking for a product with a
specific set of characteristics, that is, they are not interested in all potential products but
in some of them only (those passing the filter).

D. Benavides, P. Trinidad and A. Ruiz-Cortés368

Definition 7 (Filter). Let M be an extended feature model and F a constraint repre-
senting a filter, the filtered model of ψM , hereinafter filter, is equal to ψM adding the
constraint F .

filter(M,F) = (ψM ∧ F)

A possible filter for the HIS example would be to ask for all products with video
on demand, making the number of potential products decrease from 32 to 16. It is also
possible to apply filters to attributes. For example, it would be possible to ask for all
products whose prices are lower than 200, 12then

cardinal(filter(HIS, SERV ICES.PRICE< 200)) = 44
(when any filter is imposed, it decreases from 260 to 44).

4.3 Products

Once ψM is defined, there should be a way to get the solutions of the model, that is the
products of ψM .

Definition 8 (Products). Let M be an extended feature model, the potential products
of the model M , hereinafter products, is equal to the solutions of the equivalent CSP
ψM .

products(M) = {s ∈ sol(ψM)}
In the HIS example we would want to get all the possible products of the model or

even apply a filter and then get the products. Thus M = filter(HIS,VIDEO = true) and
products(M) = {s ∈ sol(ψHIS∧ VIDEO=true))}.

4.4 Validation

A valid extended feature model is a model where at least one product can be selected.
That is, a model where ψM has at least one solution.

Definition 9 (Valid model). A feature model M is valid if its equivalent CSP is satisfi-
able.

valid(M) ⇐⇒ products(M) �= ∅
The HIS model of the example is valid, but there might be situations where the

constraints are not satisfiable, making the model invalid. For instance, if the Service’s
price is lower than 100, and a filter is imposed to have INTERNET , then the model
is not valid:

valid(filter(HIS, INTERNET = true ∧ SERV ICE.PRICE < 100)) = false

4.5 Optimum Products

Finding out the best products according to a determinate criterion is an essential task in
our model.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 369

Definition 10 (Optimum). Let M be an extended feature model and O an objective
function, then the optimum set of products, hereinafter max and min, is equal to the
optimum space of ψM .

max(M,O) = max(ψM , O)
min(M,O) = min(ψM , O)

It is also possible to apply a filter to the HIS example and then ask for an optimal
product. Thus, a possible optimum criterion for the HIS example would be to ask for all
products with video on demand, and the minimum value for the multiplication of price
and development time. In this case selected products Popt are:
The model presented in this section can support current feature models. The only dif-

M = filter(HIS, V IDEO = true)
O = SERV ICE.PRICE ∗ SERV ICE.DTIME

Popt = min(M, O)

ference is that current feature models do not support extra–functional features which
means that when using our model to reason on current feature models, attributes are
not taken into account. Thus, the algorithm presented in [1] and all previous definitions
remain valid for current feature models.

5 Realising the Benefits

Compared to others, our approach is very flexible because it is so easy to extend. Be-
low, we show two more definitions based on the previous ones to demonstrate how our
approach can be extended and give valuable information to SPL engineers.

5.1 Variability

As mentioned previously, feature models are composed of a set of features and relations
among them. If relations restrict the number of products to only one, we are consider-
ing the lowest variability while a feature model defining no possible product would be
considered a non-valid model. On the other hand, considering no relations, the number
of products within the feature model would be the highest. This case would represent
the highest variability. Relations restrict the number of potential products, so variability
depends on relation types.

Let a leaf feature be a feature that has no child feature. Parent features add no vari-
ability to the model, because they are feature aggregates. We define the variability factor
as follows.

Definition 11 (Variability Factor(VF)). LetM be an extended feature model, and ψM

the equivalent CSP. Let MV be another extended feature model, considering the leaf
features in M and no relation among its features, and ψV

M the equivalent CSP.

V F (M) =
cardinal(M)
cardinal(Mv)

=
|sol(ψM)|
|sol(ψV

M)|

D. Benavides, P. Trinidad and A. Ruiz-Cortés370

The variability factor in the real domain would take values ranging from 0 to 1.
VF can assist decision making. For instance, when many products are going to be

developed one of the first decisions to be taken, is whether the SPL approach or tradi-
tional approach is going to be applied. A high VF may suggest an SPL approach; a low
VF may suggest a traditional approach.

5.2 Commonality

In a feature model, some features will appear in every product, some in only one product
and others in some products. When deciding the order in which features are going to be
developed, it is very important to know which are the most common features in order
to prioritize their building. Obtaining commonality information from the feature model
can be feasible by asking questions to our model. We define the feature commonality
as the percentage of products containing that feature.

Definition 12 (Commonality). Let M be an extended feature model and F the feature
we want to know its commonality.

commonality(M,F) =
cardinal(filter(M,F = true))

cardinal(M)

6 Implementation

We have already implemented some of the ideas presented in this paper using OPL
Studio, a commercial CSP solver. This implementation is available at http://www.tdg-
seville.info/topics/spl.

Three modules have been developed in our implementation: first, a feature markup
language and XML Schema were agreed on. This language allows to represent the
Czarnecki’s feature model [7]. Secondly, a parser to transform this XML documents to
a CSP following the algorithm described in [1] was developed. Finally, a web–based
prototyping interface was made available to allow to test some of the capabilities of
the model. In order to test our implementation, we have modeled four problems (two
academical and two real product lines) that are available on the web site.

In order to evaluate the implementation, we measured its performance and effec-
tiveness. We implemented the solution using Java. We ran our tests on a WINDOWS
XP PROFESSIONAL machine that was equipped with a 1.5Ghz AMD Athlon XP mi-
croprocessor, and 496 MB of DDR 266Mhz RAM memory. The test was based on the
feature model in Figure 1, adding new features. Several tests were made on each feature
model in order to avoid as many exogenous interferences as possible.

We have experimentally inferred that the implementation presented has an exponen-
tial behavior while increasing the number of features in the feature model and maintain-
ing a constant variability factor. We have measured the solving time for products(M),
which is the most complex to obtain, and have considered it for different values of VF
as shown in Figure 3. Our test determines our model has a good performance up to 25
features while the VF is kept constant.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 371

0
200
400

600
800

1000
1200

1400
1600
1800

15 17 19 21 23 25
Number of features

T
im

e
(m

s)

VF = 0.0313 VF = 0.0156 VF = 0.0078

Fig. 3. Empirical performance test for products(M)

7 Conclusion and Further Work

In this paper we set the basis for reasoning on SPL with features and attribute relations
at the same time and in the same model using constraint programming.

There are some challenges we have to face in the near feature, namely: i) extending
our model to support dependencies such as a feature that requires or excludes another
feature (e.g. video on demand requiresADSL128) that are also proposed in other feature
models ii) extending our current feature markup language to include extra–functional
features iii) developing a case tool to validate our model on an industrial context, iv)
performing a more rigorous validation of our implementation, studying the influences as
well as the number of solutions, the types of relations, the number of features, and so on,
v) comparing our work with others in the product configuration field[19].

References

1. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Coping with automatic reasoning on soft-
ware product lines. In Proceedings of the 2nd Groningen Workshop on Software Variability
Management, November 2004.

2. M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families of software systems with
process algebras. ACM Transactions on Software Engineering and Methodology, 11(4):386–
426, 2002.

3. J. Bosch. Design and Use of Software Architectures. Addison-Wesley, 1th edition, 2000.

D. Benavides, P. Trinidad and A. Ruiz-Cortés372

4. J. Bosch and H. Obbink. Proceedings of the 2nd Groningen Workshop on Software Vari-
ability Management. Technical Report to be published, University of Groningen, November
2004.

5. G. Chastek, P. Donohoe, K.C. Kang, and S. Thiel. Product Line Analysis: A Practical
Introduction. Technical Report CMU/SEI-2001-TR-001, Software Engineering Institute,
Carnegie Mellon University, June 2001.

6. P.C. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series
in Software Engineering. Addison–Wesley, August 2001.

7. K. Czarnecki and U.W. Eisenecker. Generative Programming: Methods, Techniques, and
Applications. Addison–Wesley, may 2000. ISBN 0–201–30977–7.

8. A. van Deursen and P. Klint. Domain–specific language design requires feature descriptions.
Journal of Computing and Information Technology, 10(1):1–17, 2002.

9. M. Griss, J. Favaro, and M. d’Alessandro. Integrating feature modeling with the RSEB. In
Proceedings of theFifthInternational Conference on Software Reuse, pages 76–85, Canada,
1998.

10. S. Jarzabek, Wai Chun Ong, and Hongyu Zhang. Handling variant requirements in domain
modeling. The Journal of Systems and Software, 68(3):171–182, 2003.

11. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, November 1990.

12. K.C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh. FORM: A feature–oriented
reuse method with domain–specific reference architectures. Annals of Software Engineering,
5:143–168, 1998.

13. K.C. Kang, J. Lee, and P. Donohoe. Feature–Oriented Product Line Engineering. IEEE
Software, 19(4):58–65, July/August 2002.

14. M. Mannion. Using First-Order Logic for Product Line Model Validation. In Proceedings
of the Second Software Product Line Conference (SPLC2), LNCS 2379, pages 176–187, San
Diego, CA, 2002. Springer.

15. K. Marriot and P.J. Stuckey. Programming with Constraints: An Introduction. The MIT
Press, 1998.

16. Christian Prehofer. Feature-oriented programming: A new way of object composition. Con-
currency and Computation: Practice and Experience, 13(6):465–501, 2001.

17. M. Shaw. Prospects for an engineering discipline of software. IEEE Softw., 7(6):15–24,
1990.

18. M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch. COVAMOF: A Framework for Modeling
Variability in Software Product Families. In Proceedings of the Third Software Product Line
Conference (SPLC04), San Diego, CA, 2004.

19. T. Soininen, J. Tiihonen, T. Männistö, and R. Sulonen. Towards a general ontology of con-
figuration. AI EDAM, 12(4):357–72, 1998.

20. D. Streitferdt, M. Riebisch, and I. Philippow. Details of formalized relations in feature mod-
els using ocl. In Proceedings of 10th IEEE International Conference on Engineering of
Computer–Based Systems (ECBS 2003), Huntsville, USA. IEEE Computer Society, pages
45–54, 2003.

21. Edward Tsang. Foundations of Constraint Satisfaction. Academic Press, 1995.
22. J. van Gurp, J. Bosch, and M. Svahnberg. On the notion of variability in software prod-

uct lines. In Proceedings of the Working IEEE/IFIP Conference on Software Architecture
(WICSA’01), IEEE Computer Society, pages 45–54, 2001.

23. A. Wasowski. Automatic Generation of Program Families by Model Restrictions. In Pro-
ceedings of the Third Software Product Line Conference (SPLC04), San Diego, CA, 2004.

From: CAiSE 2005, LNCS 3520 © Springer-Verlag Berlin Heidelberg 2005 373

Automated Analysis of Stateful Feature Models

Pablo Trinidad, Antonio Ruiz-Cortés, and David Benavides

Abstract In CAiSE 2005, we interpreted the extraction of relevant information
from extended feature models as an automated reasoning problem based on
constraint programming. Such extraction is driven by a catalogue of basic and
compound operations. Much has been done since, renaming the problem as the
automated analysis of feature models, a widely accepted problem in the Software
Product Line (SPL) community. In this chapter, we review this seminal contribution
and its impact in the community, highlighting the key milestones up to a more
complete problem formulation that we coin as the Automated Analysis of Stateful
Feature Models (AASFM). Finally, we envision some breakthroughs and challenges
in the AASFM.

1 Original Contribution

SPL engineering [1] is an emerging paradigm to build families of software products
in a given domain considering systematic reuse as a must since very early stages of
development. Feature Models (FMs) are one of the most widely used models
to manage variability and compactly represent the set of products in a SPL
[2]. These products are defined as a set of features, each of which describe an
increment in product functionality. Besides features, FMs can use attributes to model
certain properties of products in so-called Extended Feature Models (EFMs). The
automated analysis of FM defined as the automated extraction of information from
FMs is an important task to support decision making such as product configuration
or model debugging.

In CAiSE 2005 [3] we interpreted the automated analysis of FM and EFMs as an
automated reasoning problem based on Constraint Satisfaction Problems (CSPs).

P. Trinidad (�) � A. Ruiz-Cortés � D. Benavides
University of Seville, Seville, Spain
e-mail: ptrinidad@us.es; aruiz@us.es; benavides@us.es

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 30, © Springer-Verlag Berlin Heidelberg 2013

375

mailto:ptrinidad@us.es
mailto:aruiz@us.es
mailto:benavides@us.es

P. Trinidad et al.

Our main contribution was supporting the automated analysis as a catalogue of five
basic operations (cardinal, filter, products, valid model and optimum product) and
two derived operations (commonality and variability factor), giving a semantics to
these operations in terms of a unique semantics domain: constraint programming.
The main advantage of CSPs over other automated reasoning techniques was its
high declarativity and the wide offer of off-the-shelf solvers to build a reference
implementation of the operations by the catalogue.

2 Impact and Evolution

An analysis on the references to our work inclines us to think that its main attraction
lies in four factors: (i) we pioneered the use of off-the-shelf solvers for the automated
analysis. (ii) despite EFMs had already been used for modelling purposes, it was
the first approach that enabled their automated analysis. (iii) the proposal of the
optimum product operation, which was the first specific analysis operation of EFMs.
(iv) we envisioned the composability of the analysis operations, opening the door to
the future addition of new analysis operations.

This work has been a reference for many authors [4] who (i) have extended the
operations catalogue up to more than 30 operations [5], and (ii) have proposed new
techniques which offer a better performance for certain operations. For the authors
of the paper, it has been the base of Benavides’ and Trinidad’s doctoral dissertations
[6, 7]. Benavides’s work formalises a catalogue of operations for the Automated
Analysis of Feature Models (AAFM). The more recent Trinidad’s work proposes
Stateful Feature Models (SFMs) as a kind of fully-configurable FM, and a catalogue
of analysis operations on them, which subsumes the AAFM adding a full support
for explanatory operations in the so-called Automated Analysis of Stateful Feature
Models (AASFM). In Sect. 3 and 4 we provide an overview on the AAFM and the
AASFM respectively.

3 Automated Analysis of Feature Models

The AAFM can be seen as a black-box process that takes an FM (with maybe
some additional information) as an input and outputs a result which depends on an
analysis operation (see Fig. 1). For some analysis operations, additional information
is needed such as a minimality criterion to find an optimum product, a feature
to calculate its commonality, or a Configuration Model (CM), which collects the
decisions made by users along a configuration process, to check if there exists at
least one product in the FM that fits into their decisions.

The use of declarative approaches is a trend in the AAFM. In [3] we proposed
the first interpretation of FMs in terms of CSPs. The seven analysis operations were
defined in terms of CSP operations. So for example, searching for all the solutions in
a CSP provides the list of products in a FM; or counting all the solutions it is possible

376

Automated Analysis of Stateful Feature Models

CSP

SolverTranslator

Knowledge

Opera�ons

Filter Valid

#Pr List

Opt

VF

Com

Result

FM

Addi�onal
infoCM

Fig. 1 Schema of the automated reasoning of feature models proposed in [3]

to obtain the number of products defined within a FM. This was the first proposal
to date that were able use attributes for analysis purposes, enabling an optimisation
operation that searches for the best product according to a given criterion.

Since our work, other authors have proposed the use of other declarative
paradigms such as binary decision diagrams, satisfiability problems or description
logics. All these works interpret one or more analysis operations in terms of
reasoning problems under these declarative paradigms, generally improving the
performance or the expressiveness of previous approaches. In 2010, we counted
up to 30 analysis operations [5] using up to 10 different solvers or techniques.
Nowadays, the AAFM keeps on being an ongoing discipline in the SPL community
with more than 40 proposed operations.

The homogeneity of the AAFM proposals allowed us to develop the FAMA
Framework [8], an open-source tool for the AAFM widely used by several research
institutions and companies. This tool offers an easy-to-use interface with the most
updated catalogue of analysis operations, each of them implemented in several
off-the-shelf solvers.

The verification of AAFM tools, i.e. the detection of inconsistencies between
AAFM implementation and specification, is an important task in our research.
Testing techniques have been developed to verify any AAFM tool in general and
FAMA Framework in particular [9].

4 Automated Analysis of Stateful Feature Models

Since 2006, one of the open issues in the AAFM was the explanatory analysis [10],
i.e. a set of analysis operations to obtain the reasons why another analysis operation
has provided a certain result. So for example, if a filter operation detects that there
exist no product for a given CM, the explanatory analysis provides for the user

377

P. Trinidad et al.

decisions that may be in conflict; or if a FM is detected to be void, i.e. it defines no
product due to the use of contradictory relationships, the explanatory analysis can
suggest the relationships in conflict.

In [11], we proposed a catalogue of 11 explanatory operations. In [7] we
establish the inability of making reference to cardinalities and attributes in CMs.
This limitation prevents the representation of decisions such as “I want a system
that costs less than a given price” or “I want two different Internet connections”,
necessary to solve all the explanatory operations. We propose SFMs as a new kind
of model that (i) enables user decisions on cardinalities and attributes. (ii) joins FMs
and CMs in a single model.

Thanks to SFMs, we provided a semantics for all the explanatory operations
but also enabled a new formal specification framework for analysis operations. We
interpret all the analysis operations as particular cases of deductive and abductive
reasoning, two well-known forms of reasoning in the Artificial Intelligence commu-
nity. With this approach, we propose a reasoner-independent semantics for all the
analysis operations on SFMs in the so-called AASFM.

Besides improving the expressiveness, SFMs aim to improve the analysis
capabilities of the AAFM in two aspects: (i) giving a semantics to all the explanatory
operations defined in [11], and (ii) as formal specification frameworks are as difficult
to build and taking into account that currently there are more than 40 analysis
operations, which 11 of them are explanatory operations, we aim to provide a formal
specification framework that overcomes these drawbacks.

With this two main goals in mind, the AASFM provides a simple, configurable
and expressive semantics to all the explanatory operations, even for those that
remained undiscovered in the AAFM. It enables the definition of the following
minimal set of core analysis operations whose semantics is given in terms of
deductive and abductive operations:

• Validation: this operation determines if a SFM is valid, i.e. it checks if the
decisions within the SFM satisfy all the relationships.

• Product listing: this operation obtains a list of all the products in a SFM that
satisfy all the user decisions and relationships.

• Propagation: this operation calculates a new SFM where user decisions are
automatically suggested from previous user decisions.

• Relationship explanation: this operation explains the possible causes why an
SFM is invalid in terms of the relationships that can be causing it [12].

• Configuration explanation: this operation explains the possible causes why an
SFM is invalid in terms of the user decisions that must be repaired to reach a
valid configuration [13].

Besides these core operations, we provide the composition mechanisms that
enables the definition of a set of compound operations inspired in the catalogue
of analysis operations proposed for the AAFM, while we open the door for the
definition of new operations. Figure 2 shows an overview of the AASFM where we
can see the differences with respect to AAFM.

378

Automated Analysis of Stateful Feature Models

AASFM

Basic Ops

Compund Ops

Query Explanatory

Result

DP Ops

Is Inferred

Solu�ons

Is Sa�sfiable

AP Ops

MinConf

MinExp
OHF

OHF

MappingSFM

Addi�onal
info

Fig. 2 General schema of the automated analysis of stateful feature models

As a last contribution, we have explored the use of Model-driven Engineering
(MDE) approaches to build engines for the AASFM. The large number of solvers
and analysis operations in FAMA Framework becomes its maintenance in a time
consuming task. With MDE, models are transformed into other models in a chain
of transformations until a suitable representation is obtained. The AAFM and the
AASFM can be seen as a chain of transformations, what makes the MDE a natural
approach to implement them that reduces the maintenance costs.

5 Breakthroughs, Challenges and Applications

The AASFM subsumes the AAFM, providing new analysis operations and covering
some important gaps in the AAFM, such as the lack of expressiveness of CMs
and an incomplete support of explanatory operations. The extensibility of the new
catalogue of operations lets the users define their own analysis operations in terms
of basic operations, even reducing the efforts to build AASFM engines.

One of the main challenges in the AASFM is the verification of all the operations
in the catalogue, adapting existing proposals from the AAFM to the AASFM.
Besides verification, obtaining a good performance for AASFM engines in order
to incorporate them to the most widespread SPL tools is another challenge in the
AASFM.

379

P. Trinidad et al.

We conjecture that the results in the AASFM are very close to the automated
analysis of other variability models. We understand that it is possible to apply our
results to those domains where variability models are used in general such as cloud
infrastructures, configuration management and autonomic computing. We envision
that the key for this approach to real-world applications resides in not reinventing
the wheel but focusing on interpreting real-world problems as a combination of the
existing analysis operations in the AASFM catalogue.

Acknowledgements This work has been partially supported by the European Commission
(FEDER) and Spanish Government (TIN2009-07366) and by the Andalusian Government
(TIC-5906).

References

1. P. Clements and L. Northrop. Software Product Lines: Practices and Patterns. SEI Series in
Software Engineering. Addison–Wesley, 2001.

2. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature–Oriented Domain Analysis
(FODA) Feasibility Study. Technical Report CMU/SEI-90-TR-21, Software Engineering
Institute, Carnegie Mellon University, nov 1990.

3. D. Benavides, A. Ruiz-Cortés, and P. Trinidad. Automated reasoning on feature models.
LNCS, Advanced Information Systems Engineering: 17th International Conference, CAiSE
2005, 3520:491–503, 2005.

4. Microsoft Academic Research. Automating reasoning of feature models references. http://goo.
gl/Yj5iL, 2012.

5. D. Benavides, S. Segura, and A. Ruiz Cortés. Automated analysis of feature models 20 years
later: A literature review. Information Systems, 35(6):615–636, 9 2010.

6. D. Benavides. On the Automated Analysis of Software Product Lines Using Feature Models.
A framework for developing automated tool support. PhD thesis, University of Seville, 2007.

7. P. Trinidad. Automating the Analysis of Stateful Feature Models. PhD thesis, University of
Seville, http://www.lsi.us.es/�trinidad, 2012.

8. P. Trinidad, D. Benavides, A. Ruiz-Cortés, S. Segura, and A.Jimenez. Fama framework. In
S. Thiel and K. Pohl, editors, Software Product Lines, 12th International Conference, SPLC
2008, Limerick, Ireland, September 8–12, 2008, Proceedings. Second Volume (Workshops).
Lero Int. Science Centre, University of Limerick, Ireland, 2008.

9. Sergio Segura, Robert M. Hierons, David Benavides, and Antonio Ruiz-Cortés. Automated
metamorphic testing on the analyses of feature models. Information and Software Technology,
53(3):245–258, 2011.

10. D. Batory, D. Benavides, and A. Ruiz-Cortés. Automated analysis of feature models:
Challenges ahead. Communications of the ACM, 49(12):45–47, December 2006.

11. P. Trinidad and A. Ruiz-Cortés. Abductive reasoning and automated analysis of feature models:
How are they connected? In 3rd. International Workshop VAMOS’09, pages 145–153, Sevilla,
Spain, Jan 2009. ICB Research Report N. 29.

12. P. Trinidad, D. Benavides, A. Durán, A. Ruiz-Cortés, and M. Toro. Automated error analysis
for the agilization of feature modeling. Journal of Systems and Software, 81(6):883–896, 2008.

13. J. White, D. Benavides, D.C. Schmidt, P. Trinidad, B. Dougherty, and A. Ruiz-Cortes.
Automated diagnosis of feature model configurations. Journal of Systems and Software,
83(7):1094–1107, 2010.

380

http://goo.gl/Yj5iL
http://goo.gl/Yj5iL
http://www.lsi.us.es/~trinidad

Change Patterns and Change Support Features
in Process-Aware Information Systems

Barbara Weber1,�, Stefanie Rinderle2, and Manfred Reichert3

1 Quality Engineering Research Group, University of Innsbruck, Austria
Barbara.Weber@uibk.ac.at

2 Inst. Databases and Information Systems, Ulm University, Germany
stefanie.rinderle@uni-ulm.de

3 Information Systems Group, University of Twente, The Netherlands
m.u.reichert@cs.utwente.nl

Abstract. In order to provide effective support, the introduction of
process-aware information systems (PAIS) must not freeze existing busi-
ness processes. Instead PAIS should allow authorized users to flexibly
deviate from the predefined processes if required and to evolve busi-
ness processes in a controlled manner over time. Many software ven-
dors promise flexible system solutions for realizing such adaptive PAIS,
but are often unable to cope with fundamental issues related to process
change (e.g., correctness and robustness). The existence of different
process support paradigms and the lack of methods for comparing exist-
ing change approaches makes it difficult for PAIS engineers to choose the
adequate technology. In this paper we suggest a set of changes patterns
and change support features to foster systematic comparison of existing
process management technology with respect to change support. Based
on these change patterns and features, we provide an evaluation of se-
lected systems.

1 Introduction

Contemporary information systems (IS) more and more have to be aligned in a
process-oriented way. This new generation of IS is often referred to as Process-
Aware IS (PAIS) [1]. In order to provide effective process support, PAIS should
capture real-world processes adequately, i.e., there should be no mismatch be-
tween the computerized processes and those in reality. In order to achieve this,
the introduction of PAIS must not lead to rigidity and freeze existing business
processes. Instead PAIS should allow authorized users to flexibly deviate from
the predefined processes as required (e.g., to deal with exceptions) and to evolve
PAIS implementations over time (e.g., due to process optimizations or legal
changes). Such process changes should be enabled at a high level of abstraction
and without affecting the robustness of the PAIS [2].

The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies. Contemporary
� This work was done during a postdoctoral fellowship at the University of Twente.

J. Krogstie, A.L. Opdahl, and G. Sindre (Eds.): CAiSE 2007, LNCS 4495, pp. 574–588, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

381

PAIS, in combination with service-oriented computing, offer promising perspec-
tives in this context. Many vendors promise flexible software solutions for realiz-
ing adaptive PAIS, but are often unable to cope with fundamental issues related
to process change (e.g., correctness and robustness). This problem is further ag-
gravated by the fact that several competing process support paradigms exist,
all trying to tackle the need for more process flexibility (e.g., adaptive processes
[3,4,5] or case handling [6]). Furthermore, there exists no method for system-
atically comparing the change frameworks provided by existing process-support
technologies. This, in turn, makes it difficult for PAIS engineers to assess the
maturity and change capabilities of those technologies. Consequently, this often
leads to wrong decisions and misinvestments.

During the last years we have studied processes from different application
domains and elaborated the flexibility and change support features of numerous
tools and approaches. Based on these experiences, in this paper we suggest a
set of changes patterns and change support features to foster the comparison
of existing approaches with respect to process change support. Change patterns
allow for high-level process adaptations at the process type as well as the process
instance level. Change support features ensure that changes are performed in a
correct and consistent way, traceability is provided, and changes are facilitated
for users. Both change patterns and change support features are fundamental to
make changes applicable in practice. Finally, another contribution of this paper
is the evaluation of selected approaches/systems based on the presented change
patterns and change support features.

Section 2 summarizes background information needed for the understanding
of this paper. Section 3 describes 17 change patterns and Section 4 deals with
6 crucial change support features. Based on this, Section 5 evaluates different
approaches from both academia and industry. Section 6 discusses related work
and Section 7 concludes with a summary.

2 Backgrounds

A PAIS is a specific type of information system which allows for the separation
of process logic and application code. At run-time the PAIS orchestrates the
processes according to their defined logic. Workflow Management Systems (e.g.,
Staffware [1], ADEPT [3], WASA [5]) and Case-Handling Systems (e.g., Flower
[1,6]) are typical technologies enabling PAIS.

For each business process to be supported a process type represented by a
process schema S has to be defined. In the following, a process schema is repre-
sented by a directed graph, which defines a set of activities – the process steps
– and control connections between them (i.e., the precedence relations between
these activities). Activities can either be atomic or contain a sub process (i.e.,
a reference to a process schema S′) allowing for the hierarchical decomposition
of a process schema. In Fig. 1a, for example, process schema S1 consists of six
activities: Activity A is followed by activity B in the flow of control, whereas C
and D can be processed in parallel. Activities A to E are atomic, and activity
F constitutes a sub process with own process schema S2. Based on a process

B. Weber, S. Rinderle and M. Reichert382

schema S, at run-time new process instances I1, . . . , In can be created and ex-
ecuted. Regarding process instance I1 from Fig. 1a, for example, activity A is
completed and activity B is activated (i.e., offered in user worklists). Generally,
a large number of process instances might run on a particular process schema.

PAIS must be able to cope with change. In general, changes can be triggered
and performed at two levels – the process type and the process instance level
(cf. Fig. 1b) [2]. Schema changes at the type level become necessary to deal with
the evolving nature of real-world processes (e.g., to adapt to legal changes). Ad-
hoc changes of single instances are usually performed to deal with exceptions,
resulting in an adapted instance-specific process schema.

BA

C

D

E F

Process Type Level

Process Schema S1 F1 F2 F3

Process Instance Level

Process Instance I1 Process Instance I2 Process Instance I3

(Sub-)Process Schema S2

Changes at the Process Instance Level

X

Y

dI5

X

Y

dI4

X

Y

dI1

BA

C

D

E F

Changes at the Process Type Level

S1‘

BA

D

E FX

Y

d

C X

Y

dI5

X

Y

dI4

X

Y

dI1

change

propagation

schema
evolution

S1

I1

Instance
change

W
it

h
o

u
t

C
h

an
g

e
(a

)
W

it
h

 C
h

an
g

e
(b

)

completed

activated

Fig. 1. Core Concepts

3 Change Patterns

In this section we describe 17 characteristic patterns we identified as relevant
for control flow changes (cf. Fig. 2). Adaptations of other process aspects (e.g.,
data or resources) are outside the scope of this paper. Change patterns reduce
the complexity of process change (like design patterns in software engineering
reduce system complexity [7]) and raise the level for expressing changes by pro-
viding abstractions which are above the level of single node and edge operations.
Consequently, due to their lack of abstraction, low level change primitives (add
node, delete edge, etc.) are not considered to be change patterns and thus are
not covered in this section.

As illustrated in Fig. 2, we divide our change patterns into adaptation pat-
terns and patterns for predefined changes. Adaptation patterns allow modify-
ing the schema of a process type (type level) or a process instance (instance
level) using high-level change operations. Generally, adaptation patterns can be

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 383

applied to the whole process schema or process instance schema respectively;
they do not have to be pre-planned, i.e., the region to which the adaptation pat-
tern is applied can be chosen dynamically. By contrast, for predefined changes,
at build-time, the process engineer defines regions in the process schema where
potential changes may be performed during run-time.

For each pattern we provide a name, a brief description, an illustrating ex-
ample, a description of the problem it addresses, a couple of design choices, re-
marks regarding its implementation, and a reference to related patterns. Design
Choices allow for parametrization of patterns keeping the number of distinct
patterns manageable. Design choices which are not only relevant for particular
patterns, but for a whole pattern category, are described only once at the cat-
egory level. Typically, existing approaches only support a subset of the design
choices in the context of a particular pattern. We denote the combination of
design choices supported by a particular approach as a pattern variant.

CHANGE PATTERNS

ADAPTATION PATTERNS (AP)

Pattern Name Scope Pattern Name Scope

AP1: Insert Process Fragment(*) I / T AP8: Embed Process Fragment in Loop I / T

AP2: Delete Process Fragment I / T AP9: Parallelize Process Fragment I / T

AP3: Move Process Fragment I / T AP10: Embed Process Fragment in Conditional Branch I / T

AP4: Replace Process Fragment I / T AP11: Add Control Dependency I / T

AP5: Swap Process Fragment I / T AP12: Remove Control Dependency I / T

AP6: Extract Sub Process I / T AP13: Update Condition I / T

AP7: Inline Sub Process I / T

PATTERNS FOR PREDEFINED CHANGES (PP)

Pattern Name Scope Pattern Name Scope

PP1: Late Selection of Process Fragments I / T PP3: Late Composition of Process Fragments I / T

PP2: Late Modeling of Process Fragments I / T PP4: Multi-Instance Activity I / T

I… Instance Level, T … Type Level
(*) A process fragment can either be an atomic activity, an encapsulated sub process or a process (sub) graph

Fig. 2. Change Patterns Overview

3.1 Adaptation Patterns

Adaptation patterns allow to structurally change process schemes. Examples
include the insertion, deletion and re-ordering of activities (cf. Fig. 2). Fig. 3
describes general design choices valid for all adaptation patterns. First, each
adaptation pattern can be applied at the process type or process instance level
(cf. Fig. 1b). Second, adaptation patterns can operate on an atomic activity, an
encapsulated sub process or a process (sub-)graph (cf. Fig. 3). We abstract from
this distinction and use the generic concept process fragment instead. Third,
the effects resulting from the use of an adaptation pattern at the instance level
can be permanent or temporary. A permanent instance change remains valid
until completion of the instance (unless it is undone by a user). By contrast, a
temporary instance change is only valid for a certain period of time (e.g., one
loop iteration) (cf. Fig. 3).

B. Weber, S. Rinderle and M. Reichert384

Design Choices for Adaptation Patterns
A. What is the scope of the respective pattern?

1. The respective pattern can be applied at the process instance level
2. The respective pattern can be applied at the process type level

B. Where does a respective change pattern operate on? (*)

1. On an atomic activity
2. On a sub process
3. On a process sub-graph

C. What is the validity period of the change?
1. The change can be of temporary nature
2. The change can be of permanent nature

(*) Design Choice B is only valid for AP1-AP10

Process Instance I
Temporary Change

B

C

D

E

B D E

B

C

D

E

1st loop iteration

2nd loop iteration
BA

C

D

E

F

Process Instance I
F1 F2 F3

Sub Process

G

X Z
X

Atomic Activity
Sub Graph

Design Choice B Design Choice C

Fig. 3. Design Choices for Adaptation Patterns

We describe four selected adaptation patterns in more detail. These four pat-
terns allow for the insertion, deletion, movement, and replacement of process
fragments in a given process schema. The Insert Process Fragment pattern (cf.
Fig. 4a) can be used to add process fragments to a process schema. In addition
to the general options described in Fig. 3, one major design choice for this pat-
tern (Design Choice D) describes the way the new process fragment is embedded
in the respective schema. There are systems which only allow to serially insert
a fragment between two directly succeeding activities. By contrast, other sys-
tems follow a more general approach allowing the user to insert new fragments
between two arbitrary sets of activities [3]. Special cases of the latter variant
include the insertion of a fragment in parallel to another one or the association
of the newly added fragment with an execution condition (conditional insert).
The Delete Process Fragment pattern, in turn, can be used to remove a process
fragment (cf. Fig 4b). No additional design choices exist for this pattern. Fig.
4b depicts alternative ways in which this pattern can be implemented.

The Move Process Fragment pattern (cf. Fig. 5a) allows to shift a process frag-
ment from its current position to a new one. Like for the Insert Process Fragment
pattern, an additional design choice specifies the way the fragment can be em-
bedded in the process schema afterwards. Though the Move Process Fragment
pattern could be realized by the combined use of AP1 and AP2 (Insert/Delete
Process Fragment), we introduce it as separate pattern as it provides a higher
level of abstraction to users. The latter also applies when a process fragment has
to be replaced by another one. This change is captured by the Replace Process
Fragment pattern (cf. Fig. 5b).

We have only described the most relevant adaptation patterns. Additional
patterns we identified are: swapping of activities (AP5), extraction of a sub
process from a process schema (AP6), inclusion of a sub process into a process
schema (AP7), embedding of an existing process fragment in a loop (AP8),

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 385

a) Pattern AP1: Insert Process Fragment
Description: A process fragment is added to a process schema.
Example: For a particular patient an allergy test has to be added due to a drug incompatibility.
Problem: In a real world process a task has to be accomplished which has not been modeled in
the process schema so far.
Design Choices (in addition to the ones in Fig. 3):

D. How is the additional process fragment X embedded in the process schema?
1. X is inserted between 2 directly succeeding activities (serial insert)
2. X is inserted between 2 activity sets (insert between node sets)

a) Without additional condition (parallel insert)
b) With additional condition (conditional insert)

X

A B

serialInsert

XA B A B C

X

A B C

X

parallelInsert

A B

X

conditionalInsert

x>0

else

X

A B

If x>0

Implementation: The insert adaptation pattern can be realized by transforming the high level
insertion operation into a sequence of low level change primitives (e.g., add node, add control
dependency).

b) Pattern AP2: Delete Process Fragment
Description: A process fragment is deleted from a process schema.
Example: For a particular patient no computer tomography is performed due to the fact that he
has a cardiac pacemaker (i.e., the computer tomography activity is deleted).
Problem: In a real world process a task has to be skipped or deleted.

BA

C

D

E F BA D E F

Implementation: Several options for implementing the delete pattern exist: (1) The fragment is
physically deleted (i.e., corresponding activities and control edges are removed from the process
schema), (2) the fragment is replaced by one or more null activities (i.e., activities without
associated activity program) or (3) the fragment is embedded in a conditional branch with
condition false (i.e., the fragment remains part of the schema, but is not executed).

Fig. 4. Insert (AP1) and Delete (AP2) Process Fragment patterns

a) Pattern AP3: Move Process Fragment
Description: A process fragment is moved from its current position in the process schema to
another position.
Example: Usually employees are only allowed to book a flight, after getting approval from the
manager. For a particular process instance the booking of a flight is exceptionally done in
parallel to the approval activity (i.e., the book flight activity is moved from its current position to
a position parallel to the approval activity).
Problem: Predefined ordering constraints cannot be completely satisfied for a set of activities.

BA

C

D E B

C

D EA

Design Choices:
D. How is the process fragment X embedded in the process schema?

1. X is inserted between 2 directly succeeding activities (serial move)
2. X is inserted between 2 activity sets (move between node sets)

a) Without additional condition (parallel move)
b) With additional condition (conditional move)

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).
Related Patterns: Swap adaptation pattern (AP5) (not detailed in the paper)

b) Pattern AP4: Replace Process Fragment
Description: A process fragment is replaced by another process fragment.
Example: Instead of the computer tomography activity, the X-ray activity shall be performed for
a particular patient.
Problem: A process fragment is no longer adequate, but can be replaced by another one.

BA

C

D E BA

X

D E

X

Implementation: This adaptation pattern can be implemented based on Pattern AP1 and AP2
(insert / delete process fragment).

Fig. 5. Move (AP3) and Replace (AP4) Process Fragment patterns

B. Weber, S. Rinderle and M. Reichert386

parallelization of process fragments (AP9), embedding of a process fragment in
a conditional branch (AP10), addition of control dependencies (AP11), removal
of control dependencies (AP12), and update of transition conditions (AP13). A
description of these patterns can be found in [8].

3.2 Patterns for Predefined Changes

The applicability of adaptation patterns is not restricted to a particular process
part a priori. By contrast, the following patterns predefine constraints concern-
ing the parts that can be changed. At run-time changes are only permitted
within these parts. In this category we have identified 4 patterns, Late Selection
of Proces Fragments (PP1), Late Modeling of Process Fragments (PP2), Late
Composition of Process Fragments (PP3) and Multi-Instance Activity (PP4) (cf.
Fig. 6). The Late Selection of Process Fragments pattern (cf. Fig. 7) allows to
select the implementation for a particular process step at run-time either based
on predefined rules or user decisions. The Late Modeling of Process Fragments
pattern (cf. Fig. 8a) offers more freedom and allows to model selected parts of
the process schema at run-time. Furthermore the Late Composition of Process
Fragments pattern (cf. Fig. 8b) enables the on-the fly composition of process
fragments (e.g., by dynamically introducing control dependencies between a set
of fragments).

In case of Multi-Instance Activities the number of instances created for a par-
ticular activity is determined at run-time. We do not consider multi-instance
activity patterns in detail as they constitute some of the workflow patterns
described in [9]. Multi-instance activities enable the creation of a particular
process activity during run-time. The decision how many activity instances
are created can be based either on knowledge available at build-time or on
some run-time knowledge. We do not consider multi-instances of the former
kind as change pattern since their use does not lead to change. For all other
types of multi-instance activities the number of instances is determined based
on run-time knowledge which can or cannot be available a-priori to the exe-
cution of the multi-instance activity. While in the former case the number of
instances can be determined at some point during run-time, this is not pos-
sible for the latter case. We consider multi-instance activities as change pat-
terns too, since their dynamic creation works like a dynamic schema
expansion.

4 Change Support Features

So far, we have introduced a set of change patterns, which can be used to accom-
plish changes at the process type and/or process instance level. However, simply
counting the number of supported patterns is not sufficient to analyze how well a
system can deal with process change. In addition, change support features must
be considered to make change patterns useful in practice (cf. Fig. 9). Relevant
change support features include process schema evolution and version control,

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 387

Process
Instance
Level

Process
Type
Level

Process
Instance
Level

S1

B

C

D

E FA

I1

Process
Type
Level

S1
B C

D

E FA

I1 How should the execution

of instance I1 proceed?

Pattern PP4Pattern PP3

S1

B

C

D

E FA

X Y Z

VU

S T R

Pr. Fragments for
Implementation of F

selection based on rules of

user decisions

IF …. THEN

ELSE IF

ELSE …

Pattern PP1 S1

B

C

D

E FA

I1 How to realize step B for

process instance I1?

Pattern PP2

D

E FA

?

I1

Fig. 6. Patterns for Predefined Changes (Overview)

Pattern PP1: Late Selection of Process Fragments
Description: For particular activities the corresponding implementation (activity program or sub
process model) can be selected during run-time. At build time only a placeholder is provided,
which is substituted by a concrete implementation during run-time (cf. Fig. 6).
Example: For the treatment of a particular patient one of several different sub-processes can be
selected depending on the patient’s disease.
Problem: There exist different implementations for an activity (including sub-processes), but for
the selection of the respective implementation run-time information is required.
Design Choices:

A. How is the selection process done?
1. Automatically based on predefined rules
2. Manually by an authorized user
3. Semi-automatically: options are reduced by applying some predefined rules; user

can select among the remaining options
B. What object can be selected?

1. Atomic activity
2. Sub process

C. When does late selection take place?
1. Before the placeholder activity is enabled
2. When enabling the placeholder activity

Implementation: By selecting the respective sub process or activity program, a reference to it is
dynamically set and the selected sub-process or activity program is invoked.
Related Patterns: Prerequisite for Pattern Late Modeling of Process Fragment (PP2)

Fig. 7. Late Selection of Process Fragments (PP1)

change correctness, change traceability, access control and change reuse1. As
illustrated in Fig. 9 the described change support features are not equally im-
portant for both process type level and process instance level changes. Version
control, for instance, is primarily relevant for changes at the type level, while
change reuse is particularly useful at the instance level [10].

4.1 Schema Evolution, Version Control and Instance Migration

In order to support changes at the process type level, version control for process
schemes should be supported (cf. Fig. 9). In case of long-running processes, in

1 Again we restrict ourselves to the most relevant change support features. Additional
change support features not covered in this paper are change concurrency control
and change visualization.

B. Weber, S. Rinderle and M. Reichert388

a) Pattern PP2: Late Modeling of Process Fragments
Description: Parts of the process schema have not been defined at build-time, but are modeled during
run-time for each process instance (cf. Fig. 6). For this purpose, placeholder activities are provided,
which are modeled and executed during run-time. The modeling of the placeholder activity must be
completed before the modeled process fragment can be executed.
Example: The exact treatment process of a particular patient is composed out of existing process
fragments at run-time.
Problem: Not all parts of the process schema can be completely specified at build time.
Design Choices:

A. What are the basic building blocks for late modeling?
1. All process fragments (including activities) from the repository can be chosen
2. A constraint-based subset of the process fragments from the repository can be chosen
3. New activities or process fragments can be defined

B. What is the degree of freedom regarding late modeling?
1. Same modeling constructs and change patterns can be applied as for modeling at the

process type level (*)

2. More restrictions apply for late modeling than for modeling at the process type level
C. When does late modeling take place?

1. When a new process instance is created
2. When the placeholder activity is instantiated
3. When a particular state in the process is reached (which must precede the instantiation

of the placeholder activity)
D. Does the modeling start from scratch?

1. Late modeling may start with an empty template
2. Late modeling may start with a predefined template which can then be adapted

Implementation: After having modeled the placeholder activity with the editor, the fragment is
stored in the repository and deployed. Finally, the process fragment is dynamically invoked as an
encapsulated sub-process. The assignment of the respective process fragment to the placeholder
activity is done through late binding.
Related Patterns: necessitates Late Selection of Process Fragments (PP1) of the dynamically
modified fragment
(*) Which of the adaptation patterns are supported within the placeholder activity is determined
by the expressiveness of the used modeling language.

b) Pattern PP3: Late Composition of Process Fragments
Description: At build time a set of process fragments is defined out of which a concrete process
instance can be composed at run time. This can be achieved by dynamically selecting fragments and
adding control dependencies on the fly (cf. Fig. 6).
Example: Several medical examinations can be applied for a particular patient. The exact
examinations and the order in which they are performed are defined for each patient individually.
Problem: There exist several variants of how process fragments can be composed. In order to reduce
the number of process variants to be specified by the process engineer during build time, process
instances are dynamically composed out of fragments.

Fig. 8. Late Modeling (PP2) and Late Composition of Process Fragments (PP3)

Change Support Features
Change Support Feature Scope Change Support Feature Scope

2. By change primitives F1: Schema Evolution, Version Control and
Instance Migration

T

F3: Correct Behavior of Instances After Change I + T

No version control – Old schema is overwritten F4: Traceability & Analysis I + T

1. Running instances are canceled 1. Traceability of changes

2. Running instances remain in the system 2. Annotation of changes

Version control 3. Change Mining

3. Co-existence of old/new instances, no instance migration F5: Access Control for Changes I+T

4. Uncontrolled migration of all process instances 1. Changes in general can be restricted to authorized users

5. Controlled migration of compliant process instances 2. Application of single change patterns can be restricted

F2: Support for Ad-hoc Changes I 3. Authorizations can depend on the object to be changed

1. By change patterns F6: Change Reuse I

T … Type Level, I … Instance Level

Fig. 9. Change Support Features

addition, controlled migration of already running instances, from the old process
schema version to the new one, might be required. In this subsection we describe
different existing options in this context (cf. Fig. 10).

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 389

If a PAIS provides no version control feature, either the process designer can
manually create a copy of the process schema (to be changed) or this schema is
overwritten (cf. Fig. 10a). In the latter case running process instances can either
be withdrawn from the run-time environment or, as illustrated in Fig. 10a, they
remain associated with the modified schema. Depending on the execution state
of the instances and depending on how changes are propagated to instances
which have already progressed too far, this missing version control can lead to
inconsistent states and, in a worst case scenario, to deadlocks or other errors
[2]. As illustrated in Fig. 10a process schema S1 has been modified by inserting
activities X and Y with a data dependency between them. For instance I1 the
change is uncritical, as I1 has not yet entered the change region. However, I2
and I3 would be both in an inconsistent state afterwards as instance schema and
execution history do not match (see [2]). Regarding I2, worst case, deadlocks or
activity invocations with missing input data might occur.

By contrast, if a PAIS provides explicit version control two support features
can be differentiated: running process instances remain associated with the old
schema version, while new instances will be created on the new schema ver-
sion. This approach leads to the co-existence of process instances of different
schema versions (cf. Fig. 10b). Alternatively a migration of a selected collec-
tion of process instances to the new process schema version is supported (in
a controlled way) (cf. Fig. 10c). The first option is shown in Fig. 10b where
the already running instances I1, I2 and I3 remain associated with schema S1,
while new instances (I4-I5) are created from schema S1′ (co-existence of process
instances of different schema versions). By contrast, Fig. 10c illustrates the con-
trolled migration of process instances. Only those instances are migrated which
are compliant2 with S1′ (I1). All other instances (I2 and I3) remain running
according to S1. If instance migration is uncontrolled (as it is not restricted to
compliant process instances) this will lead to inconsistencies or errors. Never-
theless, we treat the uncontrolled migration of process instances as a separate
design choice since this functionality can be found in several existing systems
(cf. Section 5).

4.2 Other Change Support Features

Support for Ad-hoc Changes: In order to deal with exceptions PAIS must
support changes at the process instance level either through high level changes
in the form of patterns (cf. Section 3) or through low level primitives. Although
changes can be expressed in both ways, change patterns allow to define changes
at a higher level of abstraction making change definition easier.

Correctness of Change: The application of change patterns must not lead
to run-time errors (e.g., activity program crashes due to missing input data,
deadlocks, or inconsistencies due to lost updates or vanishing of instances).

2 A process instance I is compliant with process schema S, if the current execution
history of I can be created based on S (for details see [2]).

B. Weber, S. Rinderle and M. Reichert390

Process
Type
Level

Process
Instance
Level

X

Y

d

?

d

B

C

D

E F

X Y
dS1

I1 I2 dI3

A

Process
Type
Level

Process
Instance
Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

Process
Type
Level

Process
Instance
Level

BA

C

D

E F

S1 S1‘

BA

D

E FX

Y

d

C

X

Y

dI5

S
ch

em
a

is
 o

ve
rw

ri
tt

en
(a

)

C
o

-e
xi

st
en

ce
 o

f
p

ro
ce

ss

in
st

an
ce

s
o

f
d

if
fe

re
n

t
sc

h
em

a
ve

rs
io

n
s

(b
)

In
st

an
ce

 M
ig

ra
ti

o
n

(c
)

Instances I2 and I3 are in inconsistent sates

X

Y

dI4

X

Y

dI4

X

Y

dI4

X

Y

dI1

?

Type change overwrites S1

Type change results

in a new schema

version S1’

Instances created from S1

I3
I2

I1

Instances created from S1’

Non-compliant instances

Type change results

in a new schema

version S1’

and the

migration of

compliant

instance I1

old instances

remain with

S1

I3
I2

Fig. 10. Version Control

Different criteria (see [2]) have been introduced to ensure that instances can
only be updated to a new schema if they are compliant with it.

Traceability and Analysis: To ensure traceability of changes, they have to
be logged. For adaptation patterns the applied changes have to be stored in
a change log as change patterns and/or change primitives. While both options
allow for traceability, change mining [11] becomes easier when the change log
contains high-level information about the changes as well. Regarding patterns for
predefined changes, an execution log is usually sufficient to enable traceability.
In addition, logs can be enriched with more semantical information, e.g., about
the reasons and context of the changes [10]. Finally, change mining allows for
the analysis of changes (e.g., to support continuous process improvement) [11].

Access Control for Changes: The support of change patterns leads to in-
creased PAIS flexibility. This, in turn, imposes security issues as the PAIS be-
comes more vulnerable to misuse. Therefore, the application of changes at the
process type and the process instance level must be restricted to authorized
users. Access control features differ significantly in their degree of granularity.
In the simplest case, changes are restricted to a particular group of people (e.g.,
to process engineers). More advanced access control components allow to define
restrictions at the level of single change patterns (e.g., a certain user is only
allowed to insert additional activities, but not to delete activities). In addition,
authorizations can depend on the object to be changed, e.g., the process schema.

Change Reuse: In the context of ad-hoc changes ”similar” deviations (i.e.,
combination of one or more adaptation patterns) can occur more than once. As

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 391

it requires significant user experience to define changes from scratch change reuse
should be supported. To reuse changes they must be annotated with contextual
information (e.g., about the reasons for the deviation) and be memorized by the
PAIS. This contextual information can be used for retrieving similar problem
situations and therefore ensures that only changes relevant for the current situa-
tion are presented to the user [12,10]. Regarding patterns for predefined changes,
reuse can be supported by making historical cases available to the user and by
saving frequently re-occurring instances as templates.

5 Change Patterns and Change Support in Practice

In this section we evaluate approaches from both academia and industry regard-
ing their support for change patterns as well as change features. For academic
approaches the evaluation has been mainly based on literature. In cases where it
was unclear whether a particular change pattern or change feature is supported
or not, the respective research groups were additionally contacted. The evalu-
ated academic approaches are ADEPT[3], WIDE [13], Pockets of Flexibility [14],
Worklets/Exlets [4,15], CBRFlow [12,10], MOVE [16], HOON [17], and WASA
[5]. In respect to commercial systems only such systems have been considered
for which we have hands on experience as well as a running system installed.
This allowed us to test the change patterns and change features. As commer-
cial systems Staffware [1] and Flower [6] were considered. Evaluation results are
summarized in Fig. 11. A detailed description of the evaluated approaches can
be found in [8].

If a change pattern or change support feature is not supported at all, the
respective table entry will be labeled with ”-”. Otherwise, it describes the exact
pattern variants as supported by listing all available design choices. In case
no design choices exist for a particular change pattern, which is supported, the
respective table entry is simply labeled with ”+”. Partial support is labeled with
”◦”. As an example take change pattern PP1 of the Worklet/Exlet approach
[4,15]. The string ”A[1,2], B[1,2], C[2]” indicates that design choices A, B and
C are supported. Further, it shows for every design choice the exact options
available (e.g., for design choice A, Options 1 and 2 are supported).

In particular an adaptation pattern will be only considered as being provided,
if the respective system supports the pattern directly, i.e., based on one high-level
change operation. Of course, adaptation patterns can be always expressed by
means of a set of basic change primitives (like add node, delete node, add edge,
etc.). However, this is not the idea behind adaptation patterns. Since process
schema changes (at the type level) based on these modification primitives are
supported by almost each process editor, this is not sufficient to qualify for
pattern support. By contrast, the support of high-level change operations allows
introducing changes at a higher level of abstraction and consequently hides a
lot of the complexity from the user. Therefore changes can be performed in a
more efficient and less error prone way. In addition, in order to qualify as an
adaptation pattern the application of the respective change operations must not
be restricted to predefined regions in the process.

B. Weber, S. Rinderle and M. Reichert392

Several of the adaptation patterns (e.g., AP3 or AP4) can be implemented by
applying a combination of the more basic patterns AP1, AP2, AP10 and AP11.
However, a given approach will only qualify for a particular adaptation pattern,
if it supports this pattern directly (i.e., it offers one respective change operation).

Note that missing support for adaptation patterns does not necessarily mean
that no run-time changes can be performed. As long as feature F2 is supported
ad-hoc changes to running process instances are possible (for details see [8]). In
general, if a respective approach provides support for predefined change patterns
like for instance late modeling of process fragments (PP1) or late selection of
process fragments (PP2) the need for structural changes of the process schema
can be decreased making feature F3 less crucial.

The evaluation of selected approaches shows that there exists no single system
which supports all changepatterns and features (cf.Table 11). Inparticular, noneof
the approachesprovides both adaptation patterns and predefined change patterns,
which would allow addressing a much broader process spectrum. While predefined
change patterns allow to reduce the need for structural changes during run-time by
providing more flexible models, adaptation patterns allow for structural changes
which cannot be pre-planned. In addition, they make changes more efficient, less
complex and less error-prone through providing high-level change operations.

Change Patterns and Change Support

Academic Commercial
Pattern/
Feature ADEPT /

CBRFlow WIDE
Pockets of
Flexibility

Worklets /
Exlets MOVE HOON WASA Staffware Flower

Change Patterns

Adaptation Patterns

AP1
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

A[2], B[1],
C[2], D[1,2] – – – – – – –

AP2 A[1, 2],
B[1,2,3], C[1,2]

A[2], B[1],
C[2] – – – – – – A[2], B[1],

C[2]

AP3
A[1, 2],

B[1,2,3], C[1,2],
D[1, 2]

– – – – – – – –

AP4 – A[2], B[1],
C[2] – A[1], B[2],

C[1,2] – – – – –

Preplanned Change Patterns

PP1 – – – A[1,2],
B[1,2], C[2] – A[1,2],

B[1,2], C[2] – A[1,2],
B[1,2], C[2] –

PP2 – – A[1,2], B[2],
C[2], D[1,2] – A[1], B[1],

C[3], D[1,2] – – – –

PP3 – – – – – – – – –

PP4 – + – – – – – + +

Change Features

F1 3, 5 3, 5 – 3 – – 3, 5 3, 4 1, 2, 3

F2 1 – 2 2 2 2 2 2 1

F3 + + + ° + + + – –

F4 1, 2, 3 1 1 1 1 1 1 1 1

F5 1, 2, 3 1, 3 1, 2, 3 1, 2, 3 1, 3 1, 2, 3 1 1, 2, 3 1, 2, 3*

F6 + – + + – – – – –
(*) Flower supports Option 2 and 3 of feature F4 only for process instance changes, but not for process type changes

Fig. 11. Change Patterns and Change Support Features in Practice

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 393

6 Related Work

Patterns were first used to describe solutions to recurring problems by Ch.
Alexander, who applied patterns to descibe best practices in architecture [18].
Patterns also have a long tradition in computer science. Gamma et al. applied
the same concepts to software engineering and described 23 patterns in [7].

In the area of workflow management, patterns have been introduced for an-
alyzing the expressiveness of process modeling languages (i.e., control flow pat-
terns [9]). In addition, workflow data patterns [19] describe different ways for
modeling the data aspect in PAIS and workflow resource patterns [20] describe
how resources can be represented and utilized in workflows. The introduction
of workflow patterns has significant impact on the design of PAIS and has con-
tributed to the systematic evaluation of PAIS and process modeling standards.
However, to evaluate the powerfulness of a PAIS regarding its ability to deal
with changes, the existing patterns are important, but not sufficient. In addi-
tion, a set of patterns for the aspect of workflow change is needed. Further,
the degree to which control flow patterns are supported provides an indica-
tion of how complex the change framework under evaluation is. In general,
the more expressive the process modeling language is (i.e., the more control
flow and data patterns are supported), the more difficult and complex changes
become.

In [21] exception handling patterns which describe different ways for coping
with exceptions are proposed. In contrast to change patterns, exception han-
dling patterns like Rollback only change the state of a process instance (i.e., its
behavior), but not its schema. The patterns described in this paper do not only
change the observable behavior of a process instance, but additionally adapt the
process structure. For a complete evaluation of flexibility, both change patterns
and exception handling patterns must be evaluated.

7 Summary and Outlook

In this paper we proposed 17 change patterns (and described 8 of them in detail)
and 6 change support features, which in combination allow to assess the power
of a particular change framework. In addition, we evaluated selected approaches
and systems regarding their ability to deal with process changes. We believe that
the introduction of change patterns complements existing workflow patterns and
allows for more meaningful evaluations of existing systems and approaches. In
combination with workflow patterns the presented change framework will enable
(PA)IS engineers to choose process management technologies

Future work will include change patterns for aspects other than control flow
(e.g., data or resources) and patterns for more advanced adaptation policies
(e.g., the accompanying adaptation of the data flow when introducing control
flow changes) as well as the evaluation of additional systems and approaches.

B. Weber, S. Rinderle and M. Reichert394

Acknowledgements. We would like to thank S. Shadiq, M. Adams, M. Weske
and Y. Han for their valuable feedback and the many fruitful discussions, which
helped us to significantly improve this paper.

References

1. Dumas, M., ter Hofstede, A., van der Aalst, W. (eds.): Process Aware Information
Systems. Wiley Publishing, Chichester (2005)

2. Rinderle, S., Reichert, M., Dadam, P.: Correctness criteria for dynamic changes in
workflow systems – a survey. Data and Knowledge Engineering 50, 9–34 (2004)

3. Reichert, M., Dadam, P.: ADEPTflex – supporting dynamic changes of workflows
without losing control. JIIS 10, 93–129 (1998)

4. Adams, M., ter Hofstede, A.H.M., Edmond, D., v.d.Aalst, W.M.: A service-oriented
implementation of dynamic flexibility in workflows. In: Coopis’06 (2006)

5. Weske, M.: Workflow management systems: Formal foundation, conceptual design,
implementation aspects. University of Münster, Germany, Habil Thesis (2000)

6. van der Aalst, W., Weske, M., Grünbauer, D.: Case handling: A new paradigm for
business process support. Data and Knowledge Engineering. 53, 129–162 (2005)

7. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, New York (1995)

8. Weber, B., Rinderle, S., Reichert, M.: Identifying and evaluating change patterns
and change support features in process-aware information systems. Technical Re-
port Report No. TR-CTIT-07-22, CTIT, Univ. of Twente, The Netherlands (2007)

9. van der Aalst, W.M.P., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.:
Workflow patterns. Distributed and Parallel Databases 14, 5–51 (2003)

10. Rinderle, S., Weber, B., Reichert, M., Wild, W.: Integrating process learning and
process evolution - a semantics based approach. In: BPM 2005, pp. 252–267 (2005)

11. Günther, C., Rinderle, S., Reichert, M., van der Aalst, W.: Change mining in
adaptive process management systems. In: CoopIS’06, pp. 309–326 (2006)

12. Weber, B., Wild, W., Breu, R.: CBRFlow: Enabling adaptive workflow manage-
ment through conversational cbr. In: ECCBR’04, Madrid, pp. 434–448 (2004)

13. Casati, F.: Models, Semantics, and Formal Methods for the design of Workflows
and their Exceptions. PhD thesis, Milano (1998)

14. Sadiq, S., Sadiq, W., Orlowska, M.: A framework for constraint specification and
validation in flexible workflows. Information Systems 30, 349–378 (2005)

15. Adams, M., ter Hofstede, A.H.M., Edmond, D., v. d. Aalst, W.M.: Dynamic and
extensible exception handling for workflows: A service-oriented implementation.
Technical Report BPM Center Report BPM-07-03, BPMcenter.org (2007)

16. Th. Herrmann, A.-W., Scheer, H.W. (eds.): Verbesserung von Geschftsprozessen
mit flexiblen Workflow-Management-Systemen - Verffentlichungen des Forschung-
sprojektes MOVE. Bd. 1 - 4. Physica Verlag, Heidelberg (1998)

17. Han, Y.: Software Infrastructure for Configurable Workflow Systems. PhD thesis,
Univ. of Berlin (1997)

18. Alexander, C., Ishikawa, S., Silverstein, M. (eds.): A Pattern Language. Oxford
University Press, New York (1977)

19. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow data pat-
terns. Technical Report FIT-TR-2004-01, Queensland Univ. of Techn. (2004)

20. Russell, N., ter Hofstede, A., Edmond, D., van der Aalst, W.: Workflow resource
patterns. Technical Report WP 127, Eindhoven Univ. of Technology (2004)

21. Russell, N., van der Aalst, W.M., ter Hofstede, A.H.: Exception handling patterns
in process-aware information systems. In: CAiSE’06 (2006)

From: CAiSE 2007, LNCS 4495 © Springer-Verlag Berlin Heidelberg 2007 395

Process Change Patterns: Recent Research,
Use Cases, Research Directions

Manfred Reichert and Barbara Weber

Abstract In previous work, we introduced change patterns to foster a systematic
comparison of process-aware information systems with respect to change support.
This paper revisits change patterns and shows how our research activities have
evolved. Further, it presents characteristic use cases and gives insights into current
research directions.

1 Introduction

Information systems (IS) are increasingly aligned in a process-oriented way.
This emerging generation of IS is referred to as process-aware information systems
(PAIS) [1]. A PAIS should support real-world processes properly, i.e., there should
be no mismatch between the processes implemented by it and those existing in
reality. Hence, advanced support is needed for customizing a PAIS to its application
environment as well as for quickly adapting implemented processes to changing
needs. The increasing demand for process change support poses new challenges for
IS engineers and requires the use of change enabling technologies.

Accordingly, a method is required that allows PAIS engineers to systematically
assess the change capabilities of available technologies. In [2], we introduced
change patterns as well as change support features to enable such a systematic
assessment of PAIS with respect to process change support. In particular, change
patterns allow for high-level process adaptations. In turn, change support features

M. Reichert (�)
University of Ulm, Ulm, Germany
e-mail: manfred.reichert@uni-ulm.de

B. Weber
University of Innsbruck, Innsbruck, Austria
e-mail: barbara.weber@uibk.ac.at

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 32, © Springer-Verlag Berlin Heidelberg 2013

397

mailto:manfred.reichert@uni-ulm.de
mailto:barbara.weber@uibk.ac.at

M. Reichert and B. Weber

summarize fundamental features to be provided by a PAIS in order to change and
evolve implemented processes in a correct, robust and secure way.

This paper discusses how our research on change patterns has evolved, how they
have been used in theory and practice, and what research directions are.

2 Background: Process Change Patterns

Originally, in [2] we introduced 17 patterns for realizing control flow changes. These
patterns reduce the complexity of process changes and raise the level for expressing
changes by providing abstractions above the level of primitive change operations.
To structure the change patterns, we divided them into adaptation patterns and
change patterns for predefined changes (cf. Fig. 2 in [2]). While the former enable
structural changes of a process schema, the latter allow process participants to add
information regarding unspecified parts of a process schema during run-time.

An adaptation pattern (AP) enables structural changes of process schemes.
AP1 (AP2) allows inserting (deleting) a process fragment. Moving and replacing
fragments is supported by AP3 (Move Process Fragment), AP4 (Replace Process
Fragment), AP5 (Swap Process Fragment), and AP14 (Copy Process Fragment).
AP6 and AP7 allow adding or removing levels of hierarchy: the extraction of a
sub-process from a process schema is supported by AP6, whereas the inclusion
of a sub-process into a process schema is supported by AP7. Patterns AP8–AP12
support adaptations of control dependencies: embedding a process fragment in a
loop (AP8), parallelizing a process fragment (AP9), embedding a process fragment
in a conditional branch (AP10), and adding/removing control dependencies (AP11,
AP12). Finally, AP13 allows changing transition conditions. Generally, the region
to which an adaptation pattern is applied may be chosen dynamically. Hence,
adaptation patterns are well suited for realizing ad-hoc changes and coping with
the evolving nature of business processes [1]. For each adaptation pattern, we have
provided a name, a description, an illustrating example, a description of the problem
it addresses, a couple of design choices, remarks regarding its implementation, and
references to related patterns. In this context, design choices allow parameterizing
change patterns keeping the number of distinct patterns manageable.

Patterns for changes in pre-defined regions allow for better dealing with
uncertainty by deferring decisions regarding the exact control-flow to the run-time.
Instead of requiring a process model to be fully specified prior to execution, parts
of the model may remain unspecified. As opposed to adaptation patterns, whose
application is not restricted a priori to a particular process part, the parts of a
process schema that may be changed or expanded are constrained. In this category,
we identified four patterns: Late Selection (PP1), Late Modeling (PP2) and Late
Composition of Process Fragments (PP3), and Multi-Instance Activity (PP4). These
four patterns differ regarding the parts that may remain unspecified resulting in a
different degree of freedom during run-time.

398

Process Change Patterns: Recent Research, Use Cases, Research Directions

3 Recent Research on Process Change Patterns

In recent work we have detailed the change patterns and provided empirical
evidence for them. Further, we have formalized and implemented them. In detail:

Detailing change patterns and empirical evidence. We extended our original
work in [3], which provides an in-depth description of all change patterns; it
describes the pattern selection criteria, the data sources used, and the procedure
applied for pattern identification. Further, it discusses how the patterns were
identified based on the analysis of large process model collections from the
healthcare and automotive domains. Finally, Weber et al. [3] introduces additional
patterns and provides an extended pattern-based evaluation of selected approaches
from industry as well as academia.

Change pattern formalization. To obtain unambiguous pattern descriptions and
ground pattern implementation as well as pattern-based analyses on a sound basis,
we provided a formal semantics for change patterns in [4]. For each change pattern,
its formal semantics is specified by comparing the execution traces producible on
a process schema before and after applying the pattern to it. The formalization
is independent from any process meta model and thus allows implementing the
patterns in a variety of process support tools.

Pattern implementation. The change patterns were implemented in an adaptive
PAIS – the AristaFlow BPM Suite [5]. The adaptation patterns are realized
in terms of high-level change operations, which can be used for creating and
changing process schemes. Hence, flexible exception handling and controlled
process evolution become possible. Further, adaptation patterns are associated with
pre-/post-conditions to ensure structural and behavioral soundness of a process
schema after pattern application; i.e., correctness by construction is ensured.

Recently, we complemented the existing workflow patterns by a set of time
patterns to make PAIS comparable with respect to their ability to deal with temporal
constraints [6].

4 Characteristic Use Cases for Change Patterns

On one hand, change patterns provide the basis for realizing changes in different
stages of the process life cycle [7]. On the other, they serve as benchmark for
evaluating change support in existing languages and tools.

4.1 Supporting Process Changes Along the Process Life Cycle

We first discuss fundamental use cases for realizing changes in different stages of
the process life cycle:

399

M. Reichert and B. Weber

Process schema creation. Change patterns have been used for intelligent process
schema creation [8]. For example, AristaFlow allows modeling a sound process
schema based on an extensible set of adaptation patterns [5]. Only those patterns
may be applied in a given context, which do not violate the soundness of the process
schema. In turn, Gschwind et al. [9] describes a set of pattern compounds, similar to
the adaptation patterns, allowing for the context-sensitive selection and composition
of workflow patterns during process modeling. Finally, adaptation patterns have
been used for the model-based integration of services into business applications
at later stages during the process life cycle [10].

Process schema configuration. The configuration of a reference process schema
constitutes another use case for adaptation patterns. Provop, for example, allows
creating a process variant by applying a sequence of adaptation patterns (e.g., AP1,
AP2 or AP3) to the given reference schema [11]. By utilizing the semantics of the
adaptation patterns applied in a given configuration setting, it is further ensured that
the resulting process variant schema is sound [12].

Process instance change. An important use case is to enable actors to deviate
from a pre-specified process schema at run-time, e.g., to cope with exceptions.
For this purpose, AristaFlow supports instance-specific changes based on the
same adaptation patterns as used for process modeling [5]. Further, it utilizes the
semantics of the applied adaptation patterns to ensure correctness of the resulting
process instance schema. Recently, approaches aiming at automated instance
changes have emerged. Usually, they only consider a subset of the adaptation
patterns. For example, Q-Advice uses AP1 and its variants to automatically inject
quality measure activities into the workflows of software engineers at run-time.
The activities to be added are determined situationally using contextual knowledge
and quality goal tracking [13]. A more generic approach to automate instance
adaptations, which is based on declarative processes and planning, is described
in [14]. Regarding ad-hoc changes, Kumar et al. [15] additionally ensures com-
pliance of process instance adaptations with defined semantic constraints. For
this, integer programming formulation is used to validate the applied adaptation
patterns against the given set of semantic constraints (AP1–AP5 are considered).
An approach for the flexible support of product development processes is presented
in [16]; the sub-processes of such a process, which refine analysis, synthesis, and
verification activities, may be dynamically selected to allow for a flexible process
execution without need for structural adaptations. Thereby, a subset of the patterns
for changes in pre-defined regions is considered (i.e., PP1–PP3).

Process schema evolution. Adaptive PAIS allow for schema evolution considering
version management and the migration of already running process instances to
the new schema version. Gerth et al. [17] presents techniques for detecting and
resolving conflicting change operations, which rely on selected adaptation patterns
and their semantics. In turn, Küster et al. [18] shows how to compute a sequence of
adaptation patterns required to transform a given schema version into another one.

400

Process Change Patterns: Recent Research, Use Cases, Research Directions

Both scenarios consider AP1, AP2, and AP3. Particularly, adaptation patterns play a
crucial role for ensuring the correctness of schema changes and instance migrations.
In AristaFlow, schema evolution is based on the same adaptation patterns as used for
process modeling and ad-hoc changes [5]. Thereby, pattern semantics is utilized to
cope with conflicting changes at the type and instance level, to increase the number
of migratable process instances, and to efficiently represent applied changes [19–
21]. Note that similar concepts exist for evolving service compositions [22].
Furthermore, continuous process improvement, relying on case-based reasoning and
adaptation patterns, is considered in [23]. Finally, Jamshidi and Pahl [24] introduces
patterns for co-evolving processes and software architectures. These patterns are
based on selected adaptation patterns and allow describing the impact a business
process change has on corresponding software architectures.

Process schema refactoring. A specific kind of schema evolution is provided by
process schema refactorings; i.e., syntactical transformations of a process schema
not changing its behavior. Examples of such refactorings and their relation to
adaptation patterns (e.g., AP6 and AP7) are discussed in [25].

Process change reuse. When handling exceptions, it might be useful to reuse
changes applied in similar problem contexts earlier [26]. For example, ProCycle
fosters change reuse based on case-based reasoning and semantic change
annotations [7]. Further, it supports AP1–AP5 and utilizes their specific semantics
to adjust parameter settings of recorded changes when reusing them.

Process schema comparison. Comparing two process schemes is crucial to decide
how similar the schemes are or how to derive the one from the other. In this context,
adaptation patterns can be used to describe the structural difference (i.e., edit
distance) between schemes in terms of high-level changes. Based on specific
variants of patterns AP1–AP3, Li et al. [27] presents a technique that allows
determining this difference. A similar approach is presented in [28].

Process change analysis. Adaptive PAIS capture process changes in change logs,
which record applied adaptation patterns and their parameter settings. For change
analysis, different techniques exist. Based on AP1–AP3, Günther et al. [29] applies
process mining to change logs to discover change processes providing an aggregated
visualization of all changes. In turn, MinAdept does not presume the existence of a
change log, but allows analyzing a collection of process variants derived from the
same schema [30]; algorithms are provided discovering a reference process schema
whose average edit distance to the process variants is minimal.

In summary, process change patterns are relevant for a variety of use cases
in the process life cycle. As shown, the patterns have served as basis for the
design and implementation of techniques supporting these use cases. While tools
like AristaFlow enable a broad support of most use cases and adaptation patterns,
other proposals only consider a specific use case and a subset of the adaptation
patterns.

401

M. Reichert and B. Weber

4.2 Assessing and Designing Process Change Frameworks

Change patterns have been used for realizing pattern catalogs for specific modeling
languages, assessing existing PAIS, and enabling user-friendly changes. Examples
of corresponding approaches are presented in the following.

Realizing a pattern catalog for a specific modeling language. Döhring et al. [31]
combines change, exception and time patterns into a BPMN pattern catalog. Change
patterns are referred to as generic patterns, which are tailored and extended to
be applicable to BPMN. In turn, Tragatschnig and Zdun [32] uses the adaptation
patterns for designing a pattern catalog for BPEL schema changes.

Assessing existing approaches. A measure for a pattern-based assessment of
service orchestration languages is defined in [33]. In particular, the designed pattern
catalog includes the patterns for changes in predefined regions (i.e., PP1–PP4) and
discusses how they are supported in existing BPEL dialects.

Enabling user-friendly changes. Kolb et al. [34] presents an approach enabling
end users to change large process schemes based on personalized process views;
AP1, AP2, and AP8–AP10 may be applied to a process view, followed by the
propagation of the defined changes to the underlying process schema. In turn,
Kolb et al. [35] introduces a user-centric approach for creating, changing and
visualizing process schemes based on the Concurrent Task Tree (CTT) – a task
modeling language known from end-user programming. Thereby, the described
adaptation patterns are mapped to CTT change operations. Finally, Kolb et al. [36]
presents a controlled experiment that investigates the way users create and change
process schemes on multi-touch devices. Based on this, a gesture set for realizing
adaptation patterns AP1, AP2, AP6, AP7, AP8, AP10, and AP11 on multi-touch
devices is designed.

5 Research Directions

When using change patterns for modeling, the quality of process schemes might
increase. Particularly appealing in this context is the mentioned correctness by
construction. However, the use of change patterns implies a different way of
creating process schemes compared to the use of change primitives. First of all, the
correctness-by-construction principle imposes a rather structured way of modeling
and hence constraints on change pattern combinations. In addition, the exact set
of change patterns (e.g., presence vs. non-presence of the move pattern) might
determine how patterns have to be combined to create a process fragment. While
the creation of process schemes based on change primitives has caused attention in
recent years [37], only little is known about the process of process modeling when
utilizing change patterns. To obtain an in-depth understanding of it, we are currently
working on empirical studies on the use of change patterns.

402

Process Change Patterns: Recent Research, Use Cases, Research Directions

References

1. Reichert, M., Weber, B.: Enabling Flexibility in Process-Aware Information
Systems - Challenges, Methods, Technologies. Springer (2012)

2. Weber, B., Rinderle, S., Reichert, M.: Change patterns and change support features in
process-aware information systems. In: Proc. CAiSE’07. (2007) 574–588

3. Weber, B., Reichert, M., Rinderle-Ma, S.: Change patterns and change support
features - enhancing flexibility in process-aware information systems. Data and Knoweldge
Engineering 66 (2008) 438–466

4. Rinderle-Ma, S., Reichert, M., Weber, B.: On the formal semantics of change patterns in
process-aware information systems. In: Proc. ER’08. (2008) 279–293

5. Dadam, P., Reichert, M.: The ADEPT project: a decade of research and development for robust
and flexible process support. Comp Scie - R&D 23 (2009) 81–97

6. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware information systems.
Requirements Engineering (2013)

7. Weber, B., Reichert, M., Wild, W., Rinderle-Ma, S.: Providing integrated life cycle support
in process-aware information systems. Int’l Journal of Cooperative Information Systems 18
(2009) 115–165

8. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Object-sensitive action patterns in process
model repositories. In: Proc. BPM’10 Workshops. (2010) 251–263

9. Gschwind, T., Koehler, J., Wong, J.: Applying patterns during business process modeling. In:
Proc BPM’08. (2008) 4–19

10. Heller, M., Allgaier, M.: Model-based service integration for extensible enterprise systems
with adaptation patterns. In: ICE-B. (2010) 163–168

11. Hallerbach, A., Bauer, T., Reichert, M.: Capturing variability in business process models:
The Provop approach. Journal of Software Maintenance and Evolution: Research and Practice
22 (2010) 519–546

12. Hallerbach, A., Bauer, T., Reichert, M.: Guaranteeing soundness of configurable process
variants in Provop. In: Proc. CEC’09. (2009) 98–105

13. Grambow, G., Oberhauser, R., Reichert, M.: Contextual injection of quality measures into
software engineering processes. Int’l J Adv in Software 4 (2011) 76–99

14. Marrella, A., Mecella, M., Russo, A.: Featuring automatic adaptivity through workflow
enactment and planning. In: Proc CollaborateCom’11. (2011) 372–381

15. Kumar, A., Yao, W., Chu, C.H., Li, Z.: Ensuring compliance with semantic constraints in
process adaptation with rule-based event processing. In: Proc RuleML’10. (2010) 50–65

16. Reichel, T., Rünger, G., Steger, D.: Flexible workflows for an energy-oriented product
development process. In: Proc ISSS/BPSC’10. (2010) 243–254

17. Gerth, C., Küster, J., Luckey, M., Engels, G.: Detection and resolution of conflicting change
operations in version management of process models. SOSYM (2011) 1–19

18. Küster, J., Gerth, C., Engels, G.: Dynamic computation of change operations in version
management of business process models. In: ECMFA’10. (2010) 201–216

19. Rinderle, S., Reichert, M., Dadam, P.: On dealing with structural conflicts between process
type and instance changes. In: Proc. BPM’04, Potsdam (2004) 274–289

20. Rinderle-Ma, S., Reichert, M., Weber, B.: Relaxed compliance notions in adaptive process
management systems. In: Proc. ER’08. (2008) 232–247

21. Rinderle, S., Reichert, M., Jurisch, M., Kreher, U.: On representing, purging, and utilizing
change logs in process management systems. In: BPM’06. (2006) 241–256

22. Andrikopoulos, V., Benbernou, S., Papazoglou, M.P.: Managing the evolution of service
specifications. In: Proc. CAiSE’08. (2008) 359–374

23. Kim, D., Lee, N., Kang, S.H.: An approach to continuous process improvement based on
case-based reasoning and process change patterns. IJICIC 8 (2011)

24. Jamshidi, P., Pahl, C.: Business process and software architecture model co-evolution patterns.
In: Proc. MISE’12. (2012) 91–97

403

M. Reichert and B. Weber

25. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactoring large process model
repositories. Computers in Industry 62 (2011) 467–486

26. Aghakasiri, Z., Mirian-Hosseinabadi, S.H.: Workflow change patterns: Opportunities for
extension and reuse. In: Proc. SERA’09. (2009) 265–275

27. Li, C., Reichert, M., Wombacher, A.: On measuring process model similarity based on
high-level change operations. In: Proc. ER’08. (2008) 248–264

28. Küster, J.M., Gerth, C., Förster, A., Engels, G.: Detecting and resolving process model
differences in the absence of a change log. In: BPM’08. (2008) 244–260

29. Günther, C.W., Rinderle, S., Reichert, M., van der Aalst, W.M.P.: Change mining in adaptive
process management systems. In: Proc. CoopIS’06. (2006) 309–326

30. Li, C., Reichert, M., Wombacher, A.: Mining business process variants: Challenges, scenarios,
algorithms. Data & Knowledge Engineering 70 (2011) 409–434

31. Döhring, M., Zimmermann, B., Karg, L.: Flexible workflows at design- and runtime using
bpmn2 adaptation patterns. In: Proc. BIS. (2011) 25–36

32. Tragatschnig, S., Zdun, U.: Runtime process adaptation for bpel process execution engines.
In: EDOCW, IEEE Computer Society (2011) 155–163

33. Lenhard, J., Schönberger, A., Wirtz, G.: Edit distance-based pattern support assessment of
orchestration languages. In: OTM Conferences (1). (2011) 137–154

34. Kolb, J., Kammerer, K., Reichert, M.: Updatable process views for user-centered adaption of
large process models. In: Proc. ICSOC’12. (2012) 484–498

35. Kolb, J., Reichert, M., Weber, B.: Using concurrent task trees for stakeholder-centered
modeling and visualization of business processes. In: S-BPM ONE. (2012)

36. Kolb, J., Rudner, B., Reichert, M.: Towards gesture-based process modeling on multi-touch
devices. In: Proc. CAiSE Workshops. (2012) 280–293

37. Pinggera, J., et al: Modeling styles in business process modeling. In: BMMDS/EMMSAD.
(2012) 151–166

404

Measuring Similarity between Business Process Models

Boudewijn van Dongen1, Remco Dijkman1, and Jan Mendling2

1 Eindhoven University of Technology, The Netherlands
{b.f.v.dongen,r.m.dijkman}@tue.nl

2 Queensland University of Technology, Brisbane, Australia
j.mendling@qut.edu.au

Abstract. Quality aspects become increasingly important when business process
modeling is used in a large-scale enterprise setting. In order to facilitate a storage
without redundancy and an efficient retrieval of relevant process models in model
databases it is required to develop a theoretical understanding of how a degree of
behavioral similarity can be defined. In this paper we address this challenge in a
novel way. We use causal footprints as an abstract representation of the behav-
ior captured by a process model, since they allow us to compare models defined
in both formal modeling languages like Petri nets and informal ones like EPCs.
Based on the causal footprint derived from two models we calculate their simi-
larity based on the established vector space model from information retrieval. We
validate this concept with an experiment using the SAP Reference Model and an
implementation in the ProM framework.

Keywords: Business Process Modeling, Event-driven Process Chains, Similarity,
Equivalence.

1 Introduction

Many multi-national companies use tools such as ARIS Toolset for documenting their
business processes. Due to the operational diversity of such large enterprises, there are
often several thousands of processes modeled and stored in the database of the mod-
eling tool [26]. The sheer number causes serious problems for the management and
maintenance of these model: It is difficult to see the forest because there are too many
trees, as a German proverb puts it. While quality aspects of process models (e.g. [15])
and process modeling languages (e.g. [10]) are quite well understood, there is a notable
research gap on quality issues across models.

The similarity between business process models can be related to several of these
cross-model quality issues. Consider a large organization that wants to identify redun-
dancies in the operations of different divisions. Models are indeed helpful to discuss
the overlap of two processes and the potential for integration, yet it is difficult and
time-consuming to identify similarities in a process database with several thousands of
models. Clearly, there is a need for automatic detection of similarities between process
models to facilitate certain model management activities. There are several model man-
agement activities that would benefit from good tool support. Firstly, similar models
as well as the corresponding business operations can be integrated into one process.
This is interesting not only for refactoring the model database, but also to facilitate the

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 450–464, 2008.
c© Springer-Verlag Berlin Heidelberg 2008

405

mailto:{b.f.v.dongen,r.m.dijkman}@tue.nl

integration of business operations in a merger scenario. Secondly, the reference mod-
els of an ERP system vendor could be automatically compared to company processes.
This way, organizations could more easily decide which packages match their current
operations best. Thirdly, multi-national enterprises can identify specialized processes
of some national branch which no longer comply with the procedures defined in the
company-wide reference model using a similarity measurement.

In this paper, we discuss the foundations of detecting and measuring similarity be-
tween business process models. In particular, our contribution is an approach considering
linguistic and behavioral aspects of process models to calculate a degree of similarity.
We validate the approach using the SAP reference model. The results highlight which
benefits organizations can have from tool support for similarity detection.

The remainder of the paper is organized as follows. Section 2 introduces Event-
driven Process Chains (EPCs), a popular process modeling language that we use to il-
lustrate our approach. Furthermore, we discuss one particular redundancy problem that
was identified in the SAP reference model in prior research. Section 3 then presents
our approach to calculate the degree of similarity between two processes based on their
causal footprint. A causal footprint covers extensive behavioral information about a
process without calculating its state space, but requires the identification of matching
functions in the EPCs being compared. Section 4 addresses the problem of matching
functions across different processes, with an emphasis on EPCs. We discuss an ap-
proach to identify matches between functions automatically. In Section 5, the presented
techniques are combined, applied to a large portion of the SAP reference model, and
empirically validated against human interpretations of similarity. Then, Section 6 dis-
cusses related work to our approach before Section 7 concludes the paper.

2 Background on EPCs

In this paper, we will illustrate our argument using Event-driven Process Chains (EPCs).
The EPC is a popular business process modeling language that was introduced in [13].
EPCs are used by most companies that manage their process models with ARIS Toolset.
This way, our results are directly applicable for these organizations.

EPCs capture the control flow of a process in terms of the temporal and logical
dependencies of activities [13]. EPCs offer function type elements to represent these
activities, event type elements describing pre- and post-conditions of functions, and
three kinds of connector types including AND, OR, and XOR. Control flow arcs are
used to link these elements. Connectors have either multiple incoming and one outgoing
arc (join connectors) or one incoming and multiple outgoing arcs (split connectors). As
a syntax rule, functions and events have to alternate on each path through the EPC,
either directly or indirectly when they are linked via one or more connectors.

The informal (or intended) semantics of an EPC can be described as follows. The
AND-split activates all subsequent branches in a concurrent manner. The XOR-split
represents a choice between one of several alternative branches. The OR-split triggers
one, two or up to all of multiple branches based on conditions. For both XOR-splits and
OR-splits, the activation conditions are given in events subsequent to the connector.
The AND-join waits for all incoming branches to complete, then it propagates control

B. van Dongen, R. Dijkman and J. Mendling406

to the subsequent EPC element. The XOR-join merges alternative branches. The OR-
join synchronizes all active incoming branches. This feature is called non-locality since
the state of all transitive predecessor nodes has to be considered. For a recent discussion
of formal semantics of EPCs refer to [18].

The following definition formalizes EPC. We need this definition in the section on
behavioral similarity. Furthermore, we define a notion of syntactical correctness that we
check before applying our approach to the SAP reference model.

Definition 2.1. (EPC)
An EPC = (E, F, C, l, A) consists of three pairwise disjoint and finite sets E, F, C, a
mapping l : C → {and, or, xor}, and a binary relation A ⊆ (E∪F ∪C) × (E∪F ∪C)
such that

– An element of E is called event. E �= ∅.
– An element of F is called function. F �= ∅.
– An element of C is called connector.
– The mapping l specifies the type of a connector c ∈ C as and, or, or xor.
– The relation A defines the control flow as a coherent, directed graph. An element

of A is called an arc. An element of the union N = E ∪ F ∪ C is called a node.

In order to be able to discuss the events surrounding a function, or the functions sur-
rounding an event, notations are introduced for paths and connector chains.

Definition 2.2. (Paths and Connector Chains)
Let N be a set of nodes and A ⊆ N × N a binary relation over N defining the arcs.
For each node n ∈ N , we define path a ↪→ b refers to the existence of a sequence of
EPC nodes n1, . . . , nk ∈ N with a = n1 and b = nk such that for all i ∈ 1, . . . , k
holds: (n1, n2), (n2, n3), . . . , (nk−1, nk) ∈ A. This includes the empty path of length
zero, i.e., for any node a : a ↪→ a. If a �= b ∈ N and n2, . . . , nk−1 ∈ C, the path

a
c

↪→ b is called connector chain. This includes the empty connector chain, i.e., a
c

↪→ b
if (a, b) ∈ A.

In this paper, we focus on syntactically correct EPCs, i.e. EPCs with at least one initial
and final events, at least one function and strict alternation of functions and events on
all paths. According to this definition, both example EPCs of Figure 1 are syntactically
correct. Therefore, we can apply the techniques for matching functions that are dis-
cussed later in Section 4. Out of the 604 EPCs in the SAP reference model mentioned
before, 556 are syntactically correct. Please note that we demand a strict alternation of
functions and events, which is not included in all EPC syntax definitions.

Figure 1 gives an example of two EPCs that captures similar processes (cf. [19]).
Both are taken from the aforementioned SAP Reference Model. The EPC on the left-
hand side of Figure 1 stems from the Sales and Distribution branch and its name is
Customer Inquiry. In essence, when a customer inquires about a product (denoted by
the event “Customer inquires about products”), this inquiry is processed and a quotation
is created which results in the fact that a customer project is needed. As an alternative,
the need for a customer project can arise based on plan data which triggers a resource
related quotation. The EPC on the right-hand side of Figure 1 is taken from the Project
Management branch and it is called Customer Inquiry and Quotation Processing. It

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 407

Customer
inquiries about

products

Customer
inquiry

processing

Customer
inquiries about

products

Document to
be created
from sales

activity

Quotation to
be created
from inquiry

Quotation to
be created
from inquiry

XOR

Customer
quotation

processing

Quotation
must be

created based
on plan data

Resource
related

quotation

Customer
project

required
XOR

Customer
inquiry is

transmitted

Inquiry items
are rejected

Inquiry is
created

V

XOR

Client inquiry
query

processing

=

=

=

Fig. 1. Customer Inquiry and Customer Inquiry and Quotation Processing EPCs

identifies a sales activity as alternative reason to process a customer inquiry. As a result
the inquiry is created and transmitted. Furthermore, either a quotation is created or the
inquiry is rejected. The processes share two equivalent events and one equivalent func-
tion as depicted in Figure 1 . Since the overlapping part of the models, i.e. the sequence
“customer inquiry”, “inquiry processing”, and “quotation to be created”, can be handled
by both processes, they could easily be integrated into one model, for instance using the
approach defined in [19].

In Section 3, we provide a metric for determining how similar two business processes
are, given that it is known which functions (or activities in the more general sense) in
one model correspond to functions in the other model. In Section 4, we show how to
automatically find the relations between functions of different models.

3 Similarity of Behavior

Comparing the behavior of processes using traditional notions such as bisimulation is
problematic for different reasons. Firstly, most of these notions are defined as a verifi-
cation property which yield as yes or no, but no degree of similarity. Secondly, process
models with concurrency suffer from a state explosion problem. For some process mod-
eling languages a formalization of the reachability graph as a transition system is even
missing. Thirdly, if there are deadlocks or dead transitions in the process model, these
parts are not captured in the behavioral comparison. Motivated by these problems, we
defined the concept of a causal footprint [7] which is a collection of the essential be-
havioral constraints imposed by a process model.1 We will use the causal footprints of
two processes as a basis to calculate their similarity. Section 3.1 describes the deriva-
tion of a causal footprint, then Section 3.2 defines the degree of similarity for causal
footprints.

1 Note that this paper adopts the concept of a causal footprint from [7] where we use it for
verification purposes. In contrast to [7] we use this concept for measuring similarity.

B. van Dongen, R. Dijkman and J. Mendling408

3.1 Deriving the Causal Footprint of an EPC

Before defining a causal footprint of an EPC, we first need to introduce the notion of a
case as well as the semantics of look-back and look-ahead links.

A case basically captures the behavior of one particular execution sequence of func-
tions according to the rules of a process model. Consider N as the set of nodes of an
EPC. The behavior of the process ΦEPC is defined as the set W ⊆ N∗, where N∗ is
the set of all sequences that are composed of zero of more nodes from N . A σ ∈ W
is called a case, i.e. a possible execution of the EPC. To denote a function at a specific
index in σ, we use σ[i], where i is the index ranging from 1 to |σ|.

The causal footprint identifies two relationships between nodes in N that are called
look-back and look-ahead links. For each look-ahead link, we say that the execution
of the source of that link leads to the execution of at least one of the targets of that
link, i.e., if (a, B) ∈ Lla, then any execution of a is followed by the execution of some
b ∈ B. A look-ahead link is denoted as a bullet with one or more outgoing arrows.
Furthermore, for each look-back link, the execution of the target is preceded by at least
one of the sources of that link, i.e., if (A, b) ∈ Llb, then any execution of b is preceded
by the execution of some a ∈ A. The notation of a look-back link is a bullet with one
or more incoming arrows. Note that we do not give any information about when in the
future or past executions took place, but only that they are there. This way of describing
a process is related to work on dominance and control dependence in program analysis
(see e.g. [12]), and similar to the work presented in [8]. However, by splitting up the
semantics in the two different directions (i.e. forward and backward), causal footprints
are more expressive. With footprints you can for example express the fact that task A is
always succeeded by B, but that B can also occur before A, which is typically hard to
express in other languages.

Definition 3.1. (Causal Footprint)
We define a causal footprint G = (N, Llb, Lla) as a graph where, where:

- N is a finite set of nodes (activities),
- Llb ⊆ (P(N) × N) is a set of look-back links2

- Lla ⊆ (N × P(N)) is a set of look-ahead links.

For relating the definition of a causal footprint to the behavior of an EPC we define a
notion of consistency based on the cases implied by the EPC process model.

Definition 3.2. (Consistency of Causal Footprint with EPC)
Let N be a set of nodes and EPC = (E, F, C, l, A) be an EPC with behavior W . Fur-
thermore, let G = (N, Llb, Lla) be a causal footprint. We say that G = (N, Llb, Lla) is
consistent with the behavior of EPC, denoted by G ∈ FEPC , if and only if:

1. N = F , i.e. the nodes of the footprint represent the functions of the EPC,
2. For all (a, B) ∈ Lla holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = a, there is a j : i < j ≤ −1, such that σ[j] ∈ B,
3. For all (A, b) ∈ Llb holds that for each σ ∈ W with n = |σ|, such that there is a

0 ≤ i ≤ n − 1 with σ[i] = b, there is a j : 0 ≤ j < i, such that σ[j] ∈ A,

2 With P(N), we denote the powerset of N , where ∅ �∈ P(N).

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 409

a

C B a

C B

a

C B a

C B

Xa

C B

Va

C B

/\a

C BXa

C B

Va

C B

/\a

C B

Fig. 2. Mapping of EPCs to causal footprints

While the different cases of an EPC can explicitly be generated using the seman-
tics formalization defined in [18], there is a more efficient way. The mapping defined
in [7] and depicted in Figure 2 yields a consistent causal footprint for an EPC under
the assumption that no AND-join or OR-join deadlocks. Furthermore, it is clear from
Definition 3.2 that a causal footprint is not unique, i.e., different processes can have
common footprints. For example, G = (N, ∅, ∅) is the causal footprint of any process
having activities F . Therefore, we aim at footprints that are more informative without
trying to capture detailed semantics. In [7] a set of rules for calculating the transitive
closure of a causal footprint are introduced such that the closure is still a causal footprint
that is consistent with the EPC. In Section 5, where we present the application to the
SAP reference model, we used the rules of Figure 2 in combination with the transitive
closure rules of [7] to obtain a causal footprint for all EPCs.

3.2 Similarity of Causal Footprints

In information retrieval the degree of similarity between a document and a query plays a
very important role for ranking the returned documents according to their relevance. For
calculating similarity, we use the well-known vector model [2, 28] which is one of the
basic techniques used for information filtering, information retrieval, and the indexing
of web pages. Its classical application is to determine the similarity between a query and
a document. The original vector space model proposed by Salton, Wong, and Yang in
[28] attaches weights based on term frequency to the so-called “document vector”. We
use a more liberal interpretation, where other weights are possible. However, to explain
the basic mechanism we use terms originating from the domain of information retrieval,
i.e., terms like “document collection”, a set of “terms”, and a set of “weights” relating
to the terms. Later we will provide a mapping of these terms to causal footprints.

The document collection contains a set of documents. Each of these documents is
considered to be a list of terms which are basically the words of the document. The
union of all terms of all documents is then used to describe each document as a vector.
For one specific document an entry in the vector represents that the term associated
with the vector position of this entry is included in the document. In a simple case the
occurrence of a term can be indicated by a one and the non-occurrence with a zero,
however there is also the option to assign weights to terms in order to address the fact
that they differ in relevance. A common choice is to use one divided by the number of
occurrences of a term throughout all documents of the document collection as a weight

B. van Dongen, R. Dijkman and J. Mendling410

which has the effect that scarcely used terms get a higher weight. A query can also be
considered as a document, i.e., a list of terms.

The similarity between a query and a document is then calculated based on their
vector representation as the cosine of the angle between the two vectors [2, 28]. Calcu-
lating this degree of similarity for each document provides a mechanism to rank them
according to their relevance for the query.

Our proposal for determining the similarity of two business process models builds on
the vector model and causal footprints. We consider causal footprints of two processes
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) as input for the calculation. In
order to apply the vector model, we have to define (1) the document collection, (2) the
set of terms, and (3) the set of weights.

The document collection includes two entries, namely the two causal footprints that
need to be compared. We will refer to the first and the second causal footprint as
G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la)).

The set of terms is build from the union over nodes, look back, and look ahead links
of the two causal footprints. We define Θ = N1 ∪L1,lb ∪L1,la ∪N2 ∪L2,lb ∪L2,la

as the set of terms and λ : Θ → {1, 2, . . . |Θ|} as an indexing function that assigns
a running number to each term, i.e., the set of all elements appearing in the two
footprints are enumerated. (Note that we implicitly assume all sets of nodes and
links to be disjoint in a single model.)

The relevance of each term is closely related to the number of tasks from which it is
built. Consider for example two look ahead links xla = (a, {g}) ∈ Lla and yla =
(a, {b, c, d, e, f}) ∈ Lla. xla refers to only two tasks: a and g. yla refers to six tasks
(a through f). It seems obvious that the look ahead links with fewer tasks are more
informative and therefore more important. To address this we use weights depending
on the number of tasks involved in a look-ahead/back link.

The weights are determined using the size of the relations. If θ ∈ Θ is a single node
(i.e. θ ∈ N1 ∪ N2), then we define the weight of θ as wθ = 1. Furthermore, since
the number of potential look ahead and look back links depends upon the powerset
of nodes, is seems natural to use exponentially decreasing weights. Therefore, for
all links θ ∈ Θ, we define the weight of a link wθ = 1/(2|θ|−1), where |θ| denotes
the number of tasks in the link.

For the two look ahead links xla = (a, {g}) and yla = (a, {b, c, d, e, f}), we get
wxla

= 1/(22−1) = 0.5 and wyla
= 1/(26−1) = 0.03125 as their weights.

Using the document collection, the set of terms and the weights presented above, we
define the document vectors, which we call footprint vectors.

Definition 3.3. (Footprint vectors)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. We define two footprint
vectors, −→g1 = (g1,1, g1,2, . . . g1,|Θ|) and −→g2 = (g2,1, g2,2, . . . g2,|Θ|) for the two models
as follows. For each element θ ∈ Θ, we say that for each i ∈ {1, 2} holds that

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 411

gi,λ(θ) =

⎧⎪⎨
⎪⎩

0 if θ �∈ (Ni ∪ Li,lb ∪ Li,la)

wθ =
1

2|θ|−1 if θ ∈ (Li,lb ∪ Li,la)

wθ = 1 if θ ∈ Ni

Using the two footprint vectors, we can define the similarity between two footprints as
the cosine of the angle between these two vectors.

Definition 3.4. (Footprint similarity)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2
be the corresponding footprint vectors. We say that the similarity between G1 and G2,
denoted by sim(G1, G2) is the cosine of the angle between those vectors, i.e.

sim(G1, G2) =
−→g1 × −→g2

|−→g1 | · |−→g2 |
=

∑|Θ|
j=1 g1,j · g2,j√∑|Θ|

j=1 g2
1,j ·

√∑|Θ|
j=1 g2

2,j

The value of sim(G1, G2) ranges from 0 (no similarity) to 1 (equivalence). In this
paper, we do not elaborate on this formula. If one accepts the weights that we associate
to the “terms” in a causal footprint, then the cosine of the angle between these two
vectors provides a generally accepted way to quantify similarity [2, 28].

The similarity sim(G1, G2) between footprints can be calculated for any two foot-
prints G1 and G2. However, for the similarity to exceed 0, there should be at least one
node n ∈ N1 ∩ N2.

Property 3.5. (Disjoint footprints have similarity 0)
Let G1 = (N1, L1,lb, L1,la) and G2 = (N2, L2,lb, L2,la) be two causal footprints, with
Θ the set of terms and λ : Θ → IN an indexing function. Furthermore, let −→g1 and −→g2 be
the corresponding footprint vectors. If N1 ∩ N2 = ∅ then sim(G1, G2) = 0.

Proof. It is sufficient to show that −→g1 × −→g2 = 0, i.e. that
∑|Θ|

j=1 g1,j · g2,j = 0. Assume
that for some 1 ≤ j ≤ |Θ| holds that g1,j > 0. Then, from Definition 3.3, we know that
λ(θ) = j with either θ ∈ N1, or θ ∈ (L1,lb ∪ L1,la). Assume θ ∈ N1. Then we know
that g2,j = 0, since θ �∈ Ni. Hence g1,j · g2,j = 0. Assume θ ∈ (L1,lb ∪ L1,la). Since
Definition 3.1 shows that L1,lb ⊆ (P(N1)×N1) and L1,la ⊆ (N1 ×P(N1)), we know

that θ �∈ (L2,lb ∪ L2,la) and hence that g1,j · g2,j = 0. Therefore,
∑|Θ|

j=1 g1,j · g2,j = 0
and hence sim(G1, G2) = 0. �
Property 3.5 shows that for two footprints to be considered similar, we need to iden-
tify nodes that appear in both footprints. For this, we use the notion of an equivalence
mapping defined in Section 4.

4 Matching Functions

When comparing EPCs it is not realistic to assume that equivalent functions and events
have labels that are the same to the letter. Figure 1 illustrates this: the functions “Cus-
tomer inquiry processing” and “Client inquiry query processing” are similar from a
human perspective, but they have different labels.

B. van Dongen, R. Dijkman and J. Mendling412

To determine the match between functions from different EPCs, we:

1. determine how similar pairs of functions are on a 0 to 1 scale, based on the equiva-
lence of words in their labels (we call this the semantic similarity score);

2. determine whether a function matches another function on a true/false scale, based
on the semantic similarity score;

3. determine what the best mapping is between all functions from one EPC and all
functions from another, based on the semantic similarity score; and

4. extend this technique by determining the best match by not only looking at the
semantic similarity score of the functions themselves, but also at the semantic sim-
ilarity scores of the events that surround these functions (we call this the contextual
similarity score).

These techniques are explained successively in the following subsections.
We experimented with other techniques for determining function mappings, inspired

by the work of Ehrig, Koschmider and Oberweis [9]. We also experimented with dif-
ferent parameters for these techniques. However, we obtained the best results for the
techniques and parameters explained below. A comparison is presented in the technical
report that accompanies this paper [6].

4.1 Determine the Semantic Similarity Score between Two Functions

Given two functions, their semantic similarity score is the degree of similarity, based
on equivalence between words in their labels. Words that are identical are given an
equivalence score of 1, while words that are synonymous are given an equivalence
score of 0.75, a value that was determined experimentally. We assume an exact match
is preferred over a match on synonyms. Hence, the semantic similarity score is defined
as follows.

Definition 4.1. (Semantic similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions (and assume that f1 and f2 are sets of words, i.e. we denote
the number of words by |f1|). We define the semantic similarity as follows:

sem(f1, f2) =
1.0 · |f1 ∩ f2| + 0.75 ·

∑
(s,l)∈f1\f2×f2\f1

synonym(s, l)

max(|f1|, |f2|)

Where synonym is a function that returns 1 if the given words are synonyms and 0 if
they aren’t.

For example, consider the functions “Customer inquiry processing” and “Client in-
quiry query processing” from figure 1, which consist of the collections of words f1 =
[“Customer”,“inquiry”,“processing”] and f2 =[“Client”, “inquiry”, “query”, “process-
ing”], respectively. We only need to consider a synonym mapping between f1 \ f2 and
f2 \f1, i.e. between [“Customer”] and [“Client”,“query”]. Therefore, the semantic sim-
ilarity between f1 and f2 equals
sem(f1, f2) = 1.0·2+0.75·(1+0)

4 ≈ 0.69.

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 413

When determining equivalence between words, we disregard special symbols, and
we change all characters to lower-case. Furthermore, we skip frequently occurring
words, such as “a”, “an” and “for”. Also we stem words using Porter’s stemming al-
gorithm [23]. Stemming reduces words to their stem form. For example, “stemming”,
“stemmed” and “stemmer” are stemmed into “stem”.

4.2 Determine a Semantic Match between Two Functions

The semantic similarity score of two functions is a value between 0 and 1. However,
when determining equivalence, we require a boolean result stating whether or not two
functions are equivalent, i.e. we need cut-off values that state when the similarity score
exceeds this value then the functions are equivalent. The optimal cut-off value is the cut-
off value for which the syntactic similarity degree most accurately reflects the equiva-
lence judgements of a human.

We conducted experiments to optimize these cut-off values for use in the context of
the SAP Reference Models. In particular, we compared the semantic similarity scores
with human judgement for 210 function pairs from the SAP Reference Model. Their
similarity degrees were evenly distributed over the 0 to 1 range and they were com-
pared against human judgement as to whether these function pairs are equivalent of not.
Based on this experiment, we determined an optimal cut-off for the similarity scores to
decide whether functions match or not. We expect that these cut-off values and correct-
ness score are typical for the SAP reference model, since other data-sets yield different
values [9].

Our experiments determined that for semantic similarity, a cut-off value of 0.89 while
giving synonyms a similarity score higher than 0.75 is optimal. It leads to a prediction
of whether functions are a match according to humans, with a 90% accuracy.

4.3 Determine a Semantic Mapping between All Functions

So far, we only considered the similarity between two functions. However, the behav-
ioral comparison presented in Section 3 requires a symmetric mapping between func-
tions of two process models, i.e. we have to select pairs of functions that we consider a
match, where each pair consists of a function from one model and a function from the
other model.

Definition 4.2. (Equivalence mapping)
Let F1, F2 be two disjoint sets. Furthermore, let s : F1 × F2 → {0..1} be a symmetric
similarity function and let c ∈ {0..1} be a cut-off value. A function m : F1 → F2 is an
equivalence mapping, if and only if:

– m is invertible (m(f1) = f2 implies that m(f2) = f1), and
– m(f1) = f2 implies that s(f1, f2) ≥ c.

In the following section, we evaluate the degree of similarity calculation for the SAP
Reference Model with different approaches to matching functions.
An optimal equivalence mapping mopt : F1 → F2 is an equivalence mapping, such
that for all other equivalence mappings m holds that

B. van Dongen, R. Dijkman and J. Mendling414

∑
(f1,f2)∈mopt s(f1, f2) ≥

∑
(f1,f2)∈m s(f1, f2).

When determining an equivalence mapping between the functions of two EPCs, each
mapping satisfying Definition 4.2 is a good mapping, i.e. each element of the mapping
satisfies the criterium that the similarity between the two functions exceeds the cut-off
value. However, many equivalence mappings are possible. Therefore, we define the con-
cept of an optimal equivalence mapping mopt, i.e. the sum of the similarities expressed
by mopt is greater than the sum of the similarities of all other possible equivalence
mappings3. An optimal equivalence mapping can be calculated in a straightforward
way using integer linear programming techniques with binary variables.

4.4 Contextual Similarity

The techniques that we provided so far can be applied when comparing any two business
process models. However, we are specifically considering EPCs, where each function
has a preset and a postset of events. We define a second similarity metric based on this
pre- and postset, which we call the contextual similarity metric. This metric produces
better results than the semantic similarity metric.

Given two functions the contextual similarity technique returns the degree of simi-
larity, based on the similarity of the events that precede and succeed them. We call these
input and output events the input and output context of a function, respectively.

Definition 4.3. (Input and output context)
Let (E, F, C, l, A) be an EPC. For a function f ∈ F , we define the input context f in =
{e ∈ E | e

c
↪→ f} and the output context fout = {e ∈ E | f

c
↪→ e}

Now, we use the concept of equivalence mappings to determine the contextual similarity
between functions.

Definition 4.4. (Contextual similarity)
Let (E1, F1, C1, l1, A1) and (E2, F2, C2, l2, A2) be two disjoint EPCs. Let f1 ∈ F1 and
f2 ∈ F2 be two functions. Furthermore, let mopt

in : f in
1 → f in

2 and mopt
out : fout

1 → fout
2

be equivalence mappings between the input and output contexts of f1 and f2 respec-
tively. We define the contextual similarity as follows:

con(f1, f2) =
|{mopt

in }|
2 ·

√
|f in

1 | ·
√

|f in
2 |

+
|{mopt

out}|
2 ·

√
|fout

1 | ·
√

|fout
2 |

A full implementation of the function matching and the similarity degree calculation
is available in the Process Mining framework ProM, which can freely be downloaded
from www.processmining.org. In the following section we evaluate our approach using
the data generated by this tool.

3 Note that there might be more optimal equivalence mappings, however they all express a good
mapping and we have no way of distinguishing between them, so any optimal equivalence
mapping will suffice.

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 415

y = 5,4763x + 1,7809

1,00

2,00

3,00

4,00

5,00

6,00

7,00

0 0,2 0,4 0,6 0,8 1

Similarity Score

H
u
m
a
n
 J
u
d
g
e
m
e
n
t

Fig. 3. Correlation between Similarity Score and Human Judgement.

5 Empirical Validation

We validated our approach to calculate the degree of similarity by computing its corre-
lation with a similarity assessment of process modelers.

We obtained the similarity assessment using an online questionnaire that was dis-
tributed among academic process modelers. This questionnaire consisted of 48 pairs of
process models from the SAP reference model database. For each pair of models, we
asked the participants whether they agreed or disagreed (on a 1 to 7 Likert scale) with
the proposition: ‘These processes are similar.’ To obtain a representative collection of
model pairs, we selected the model pairs to be evenly distributed over the 0 to 1 sim-
ilarity degree range. More details on how a representative collection of processes was
obtained is described in the technical report that accompanies this paper [6].

We computed the correlation of the human assessment with various similarity degree
metrics, which we obtained by varying cut-off values and relative importance of the
syntactic, semantic and contextual similarity. We observed the best correlation for a
similarity score metric that:

– does not consider syntactic similarity,
– uses a cut-off value of 0.89 for semantic similarity of events,
– uses a relative importance of semantic:contextual similarity of 1:2 and a cut-off

value of 0.90 for similarity of functions.

Figure 3 shows the correlation between the similarity degree (computed using the
settings described above) and the similarity assessment as obtained from the question-
naire. Each point in the graph represent a pair of processes, with a similarity degree as
indicated by its x-value and a human similarity assessment as indicated by its y-value.
The confidence intervals are also plotted (with a 90% confidence). For this metric we

B. van Dongen, R. Dijkman and J. Mendling416

got a high (Pearson) correlation coefficient of 0.84 with the human judgement. The
correlation is represented as a straight line in the graph. The correlation for two other
metrics that we investigated was lower, i.e. the metric presented here was the best one.
Details on all similarity degree metrics are given in the technical report that accompa-
nies this paper [6].

An important observation is that, within the ‘sales and distribution’ branch of the
SAP reference model (which contains 74 models), there are 124 process pairs with a
similarity score of 1 (this is 50 more than the expected 74 pairs that represent com-
parison of a process with itself). In addition to that there are 52 process pairs with a
similarity score s, such that 0.5 ≤ s < 1.0. These figures show the overlap between
processes in ‘sales and distribution’ branch. This information can be used by people that
are searching the SAP reference model for a suitable process; they can find overlapping
processes based on this information. It can also be used to maintain consistency when
updating a process for which there exists an overlapping process.

6 Related Work

This paper mainly relates to two streams of research, namely (1) similarity of business
process models and (2) quality of business process models.

Existing work in the context of determining similarity between process models can
be assigned to three categories: verification, behavioral similarity, and textual similarity.
There are different notions of equivalence of process models that are subject to verifi-
cation such as trace equivalence and bisimulation. While trace equivalence is based
on a comparison of the sets of completed execution traces, bisimulation also considers
at which point of time which decisions are taken, i.e., bisimulation is a stricter notion
of equivalence. Details on different equivalence notions are given e.g. in [1]. A gen-
eral problem of such verification approaches is that it provides a true-false answer to
the question whether two models are similar. While some work has been done on de-
termining a degree of behavioral similarity that measures the fitness of a set of event
logs relative to a process model [1], we compare causal footprints [7] of two process
models. Since causal footprints capture constraints instead of the state space, this ap-
proach relates to declarative approaches to process modeling and verification [8,17,22].
Beyond that, there are some works on textual or metadata similarity of process models
(e.g. [9,14,20]). In this paper we adapt some concepts from this area for matching func-
tion labels, and we combine this approach with the calculation of behavioral similarity.

While there has been intensive research into quality aspects of process models and
process modeling languages [3, 10, 15], there is little work on quality issues across
models. The guidelines of modeling [3] touch this area by stressing the importance of
a systematic design. The novelty of our approach is that systematic design in terms of
non-overlapping models can now be checked automatically. This might prove valuable
for providing tool support for process model normalization as defined in [21]. Beyond
that, the quantification of a degree of behavioral similarity between process models
could be a useful contribution for the area of process model integration. While there are
several approaches reported on integration issues [5] and regarding how two models are
integrated (e.g. [11,19,24]) the similarity degree gives an answer to the question which

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 417

two process models might be good candidates for integration, e.g. in a merger situation.
The redundancies that we identified in the SAP reference model underline the need
for techniques and tools to manage process model variants such as defined in [25, 27].
Furthermore, there is clearly a need for a view concept on business process models in
order to avoid anomalies [4] as they were identified in database research before.

7 Conclusion

In this paper, we presented a novel approach for measuring the degree of similarity
of business process models. This approach builds on the vector model from informa-
tion retrieval, an abstract representation of process behavior as causal footprints, and
an automatic matching of functions across process models. While quality aspects of
single process models and process modeling languages are well understood, this work
contributes to a better foundation of those quality aspects across models that relate to
similarity. Our approach has been validated using the SAP Reference Model, and a
respective implementation is available as part of the ProM framework.

The results that we obtained for the SAP Reference Model clearly highlight the need
for an automatic detection of similarity for supporting refactoring activities of a pro-
cess model database. In future research we will investigate the benefits of our approach
in various case studies. In particular, we aim to use the degree of similarity to detect
operational overlap between companies that engage in a merger. While the application
for the SAP Reference Model could build on a presumably homogeneous vocabulary
of function labels, we assume that synonyms in function labels might play a more im-
portant role in a merger. Furthermore, there are some practical issues with reading the
similarity matrix for a large set of models that need to be addressed. Once there is com-
mercial tool support available, companies will find it easier to maintain large databases
of process models.

References

1. van der Aalst, W.M.P., Alves de Medeiros, A.K., Weijters, A.J.M.M.: Process Equivalence:
Comparing two process models based on observed behavior. In: Dustdar, S., Fiadeiro, J.L.,
Sheth, A. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144. Springer, Heidelberg (2006)

2. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. ACM Press, New
York (1999)

3. Becker, J., Rosemann, M., von Uthmann, C.: Guidelines of Business Process Modeling. In:
van der Aalst, W.M.P., Desel, J., Oberweis, A. (eds.) Business Process Management. Models,
Techniques, and Empirical Studies, pp. 30–49. Springer, Berlin (2000)

4. Biskup, J.: Achievements of relational database schema design theory revisited. In: Libkin,
L., Thalheim, B. (eds.) Semantics in Databases 1995. LNCS, vol. 1358, pp. 29–54. Springer,
Heidelberg (1998)

5. Dijkman, R.: A Classification of Differences between Similar Business Processes. In: Pro-
ceedings of the 11th IEEE EDOC Conference (EDOC 2007), pp. 37–50 (2007)

6. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Detection of similarity between business
process models. BETA Working Paper 233, Eindhoven University of Technology (2007)

7. van Dongen, B.F., Mendling, J., van der Aalst, W.M.P.: Structural Patterns for Soundness of
Business Process Models. In: Proceedings of the 10th IEEE International EDOC Conference
(EDOC 2006), pp. 116–128. IEEE, Los Alamitos (2006)

B. van Dongen, R. Dijkman and J. Mendling418

8. Eertink, H., Janssen, W., Oude Luttighuis, P., Teeuw, W.B., Vissers, C.A.: A business pro-
cess design language. In: Wing, J.M., Woodcock, J.C.P., Davies, J. (eds.) FM 1999. LNCS,
vol. 1708, pp. 76–95. Springer, Heidelberg (1999)

9. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In: Roddick, J.F., Hinze, A. (eds.) Proceedings of the Fourth Asia-Pacific
Conference on Conceptual Modelling (APCCM 2007), pp. 71–80 (2007)

10. Green, P., Rosemann, M.: Integrated Process Modeling. An Ontological Evaluation. Infor-
mation Systems 25(2), 73–87 (2000)

11. Grossmann, G., Ren, Y., Schrefl, M., Stumptner, M.: Behavior based integration of composite
business processes. In: van der Aalst, W.M.P., Benatallah, B., Casati, F., Curbera, F. (eds.)
BPM 2005. LNCS, vol. 3649, pp. 186–204. Springer, Heidelberg (2005)

12. Johnson, R., Pearson, D., Pingali, K.: The program structure tree: Computing control regions
in linear time. In: Proceedings of the ACM SIGPLAN’94 Conference on Programming Lan-
guage Design and Implementation. SIGPLAN Notices, vol. 29(6), pp. 171–185 (1994)

13. Keller, G., Nüttgens, M., Scheer, A.-W.: Semantische Prozessmodellierung auf der Grund-
lage Ereignisgesteuerter Prozessketten (EPK). Heft 89, Institut für Wirtschaftsinformatik,
Saarbrücken, Germany (1992)

14. Klein, M., Bernstein, A.: Toward high-precision service retrieval. IEEE Internet Comput-
ing 8(1), 30–36 (2004)

15. Krogstie, J., Sindre, G., Jørgensen, H.D.: Process models representing knowledge for action:
a revised quality framework. Europ. J. of Information Systems 15(1), 91–102 (2006)

16. Levenshtein, I.: Binary code capable of correcting deletions, insertions and reversals. Cyber-
netics and Control Theory 10(8), 707–710 (1966)

17. Manna, Z., Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems: Specifica-
tion. Springer, New York (1991)

18. Mendling, J., van der Aalst, W.M.P.: Formalization and Verification of EPCs with OR-Joins
Based on State and Context. In: Krogstie, J., Opdahl, A., Sindre, G. (eds.) CAiSE 2007 and
WES 2007. LNCS, vol. 4495, pp. 439–453. Springer, Heidelberg (2007)

19. Mendling, J., Simon, C.: Business Process Design by View Integration. In: Eder, J., Dustdar,
S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 55–64. Springer, Heidelberg (2006)

20. Momotko, M., Subieta, K.: Process query language: A way to make workflow processes
more flexible. In: Benczúr, A.A., Demetrovics, J., Gottlob, G. (eds.) ADBIS 2004. LNCS,
vol. 3255, pp. 306–321. Springer, Heidelberg (2004)

21. Pankratius, V., Stucky, W.: A formal foundation for workflow composition, workflow view
definition, and workflow normalization based on petri nets (2005)

22. Pesic, M., Schonenberg, M.H., Sidorova, N., van der Aalst, W.M.P.: Constraint-based work-
flow models: Change made easy, pp. 77–94 (2007)

23. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
24. Preuner, G., Conrad, S., Schrefl, M.: View integration of behavior in object-oriented

databases. Data & Knowledge Engineering 36(2), 153–183 (2001)
25. Recker, J., Mendling, J., Rosemann, M., van der Aalst, W.M.P.: Model-driven Enterprise

Systems Configuration. In: Dubois, E., Pohl, K. (eds.) CAiSE 2006. LNCS, vol. 4001, pp.
369–383. Springer, Heidelberg (2006)

26. Rosemann, M.: Potential pitfalls of process modeling: part b. Business Process Management
Journal 12(3), 377–384 (2006)

27. Rosemann, M., van der Aalst, W.: A Configurable Reference Modelling Language. Informa-
tion Systems 32, 1–23 (2007)

28. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing. Commu-
nications of the ACM 18(11), 613–620 (1975)

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 419

A Short Survey on Process Model Similarity

Remco M. Dijkman, Boudewijn F. van Dongen, Marlon Dumas,
Luciano Garcı́a-Bañuelos, Matthias Kunze, Henrik Leopold, Jan Mendling,
Reina Uba, Matthias Weidlich, Mathias Weske, and Zhiqiang Yan

Abstract Process model similarity has developed into a prolific field of investiga-
tion. This paper summarizes the research after the CAISE 2008 paper on this topic.
We identify categories of problems and provide an outlook on future directions.

1 Introduction

Analysing the similarity of process models has become a dynamic field of
research in business process management. This short paper serves as commentary
to the CAISE 2008 paper on “Measuring Similarity between Business Process
Models” [1] – one of the first major conference papers on this topic after early

R.M. Dijkman (�) � B.F. van Dongen � Z. Yan
TU Eindhoven, 5600 MB Eindhoven, The Netherlands
e-mail: R.M.Dijkman@tue.nl; b.f.v.dongen@tue.nl; zhiqiang.yan.1983@gmail.com

M. Dumas � L. Garcı́a-Bañuelos � R. Uba
University of Tartu, 50409 Tartu, Estonia
e-mail: marlon.dumas@ut.ee; luciano.garcia@ut.ee; reinak@ut.ee

M. Kunze � M. Weske
HPI – University of Potsdam, 14482 Potsdam, Germany
e-mail: matthias.kunze@hpi.uni-potsdam.de; mathias.weske@hpi.uni-potsdam.de

H. Leopold
Humboldt-University Berlin, 10099 Berlin, Germany
e-mail: henrik.leopold@wiwi.hu-berlin.de

J. Mendling
Wirtschaftsuniversität Wien, 1090 Wien, Austria
e-mail: jan.mendling@wu.ac.at

M. Weidlich
Technion – Israel Institute of Technology, 32000 Haifa, Israel
e-mail: weidlich@tx.technion.ac.il

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 34, © Springer-Verlag Berlin Heidelberg 2013

421

mailto:R.M.Dijkman@tue.nl
mailto:b.f.v.dongen@tue.nl
mailto:zhiqiang.yan.1983@gmail.com
mailto:marlon.dumas@ut.ee
mailto:luciano.garcia@ut.ee
mailto:reinak@ut.ee
mailto:matthias.kunze@hpi.uni-potsdam.de
mailto:mathias.weske@hpi.uni-potsdam.de
mailto:henrik.leopold@wiwi.hu-berlin.de
mailto:jan.mendling@wu.ac.at
mailto:weidlich@tx.technion.ac.il

R.M. Dijkman et al.

papers by Mendling, van Dongen and van der Aalst [2], Ehrig, Koschmider and
Oberweis [3], Eshuis and Grefen [4], and Corrales, Grigori and Bouzeghoub [5]
were published before. The article by Dijkman et al. [6] summarizes contributions
before 2011.

The aim of this paper is to summarize the essential directions that emerged from
these initial papers. Section 2 discusses the similarity problem in a very general
way. Section 3 reviews alternative notions for calculating the similarity of process
models. Section 4 turns to the problem of finding matching activities in a pair of
process models. Section 5 highlights how the calculation of similarity between
process models can help in search and indexing. Section 6 identifies directions of
future research as a conclusion of this commentary.

2 The Challenge of Process Model Similarity

Process model similarity calculation is hindered by multiple inherent sources of
heterogeneity. Even if two process models define exactly the same behaviour at the
same level of granularity and with the same projection on the real-world process, the
process models might still look quite different. We might encounter heterogeneity
of behavioural representation, labelling styles, and terminology [7].

The first reason for this observation is that the representation of the same
behaviour can be achieved with different structures. Partially, this phenomenon
relates to the option to “multiply out” different choices in the process. Indeed,
corresponding techniques are defined in [8] for making an unstructured process
model structured. Therefore, we cannot assume that a different structure of process
models does actually imply a difference in behaviour. Second, it has been observed
that the labels can be formulated in different grammatical ways. Activities like
“Send Invoice” (verb plus object) and “Sending of Invoice” (gerund plus preposition
plus object) clearly point to the same type of activity. However, we cannot assume
that a difference in the grammatical structure implies a difference in the activity.
Techniques for automatically transforming activity labels to a canonical verb-object
style are presented in [9]. Third, we can use syntactically different terms to defer to
the same matter. For instance, two activity labels in verb-object style like “Check
Invoice” and “Evaluate Bill” might use synonymous terms to refer to the same
matter. Here again, we cannot assume that a difference in terms always implies a
difference in meaning. Calculating the similarity of process models becomes much
easier in a setting where we can assume that these heterogeneities are resolved.

These issues of heterogeneous representation can be present even if two models
capture one process at the same level of granularity and using the same projections.
Yet, even projections and granularity may differ. In the first case, we have to deal
with problems that parts of a first process model might simply be left out in a
second process model. The question then becomes to which extent the calculation of
similarity should punish such a difference in projection. Technically this question
relates to the properties of underlying notions for similarity calculation. For the
second case, we have to consider questions of granularity. In terms of similarity,

422

A Short Survey on Process Model Similarity

it has to be decided in how far a sequence of activities in one model shall be punished
when it is shown as a single abstracted activity in the second model.

3 Underlying Notions for Process Model Similarity
Calculation

Most approaches for process similarity are based on either the process model’s
graph structure or the behaviour captured in the model [10]. Similarity is typically
quantified by symmetric and non-negative distance functions that capture the
amount of differences a pair of process models exposes. Accordingly, two process
models are identical if their distance equals 0.

The process model graph plus the execution semantics of its elements prescribe
the allowed behaviour of the process, which is typically analysed by means of
reachability graphs or the set of allowed execution traces. The problem of calcu-
lating the similarity of two process models based on both these options is that both
approaches suffer from exponential complexity due to concurrency and loops in
the process model [11]. Hence, abstractions have been proposed that only consider
the order in which two activities can be executed in any process instance [12].
Two variants are (1) the transition adjacency relation [13, 14] that consider pairs
of activities that can be executed directly after each other (non-transitive) and
(2) weak order relations [4, 15] which consider any pair of activities that can
be executed after each other eventually (transitive). An extension of the latter
are behavioural profiles, which distinguish these relations by mutual exclusion,
strict, and interleaving order [16,17]. Although these relations abstract from certain
behavioural aspects, e.g., causality and cardinality, they have been shown to support
the human assessment of process model similarity [18]. Higher precision can be
achieved based on event structures which yield a matrix of relations that fully
characterizes a model in terms of a strong notion of behavioral equivalence [19].

An alternative to a notion of distance based on behavioural relations is graph
edit distance [20]. The graph edit distance is the minimum number of basic graph
operations that is needed to transform one graph into another. The basic operations
are: add node, remove node, add edge and remove edge. In labelled graphs, node
substitution can also be used as an operation, in which one node is substituted by
another node with a different label. The graph edit distance can be transformed into
a similarity metric in different ways, e.g., by dividing the distance by the number of
nodes and edges of the largest graph and using one minus the result of that.

4 Process Model Matching

A basic technique required for many approaches to process model similarity is
matching, the construction of correspondences between the process model activities.
Process model matching is inspired by schema and ontology matching [21, 22]

423

R.M. Dijkman et al.

and adopts techniques for syntactic or semantic matching proposed in these fields.
Despite the conceptual similarities, the problem of matching process models differs
from the one of matching data schemas. For instance, the distinguished labelling
styles observed for activities and the execution semantics of a process model may be
leveraged for matching process models. On other hand, unlike in schema matching,
instance data is typically not available for matching.

Recently, several approaches for process model matching have been presented.
Most of them combine concepts for textual comparison of activity labels with
the aforementioned similarity measures. A generic architecture for process model
matching is defined by the ICoP framework [23]. Following this architecture, a
matcher may rely on the string edit distance for comparing activity labels and a
structural similarity measure for process model graphs, as presented in [24]. Activity
labels have also been compared based on semantic annotations derived by part of
speech tagging. Leopold et al. [25] derive match hypotheses from these annotations
and rely on probabilistic inference for the construction of correspondences.

A major challenge for process model matching are differences in modelling
granularity. The construction of complex 1:n or even n:m correspondences between
activities is hindered by a combinatorial problem: there are exponentially many
activity subsets in either process model that form possible candidate correspon-
dences. Heuristics to select candidate correspondences are based on the graph
distance [23] or structural decomposition of the process model graph [23,26]. Then,
sets of activities (potentially including their descriptions) are textually compared
using coefficients over terms or bigrams [26] or vector space scoring [23].

5 Process Model Search and Indexing

One of the applications of process similarity lies in finding all process models in a
process model collection that are sufficiently similar to a so-called “search process
model”. Indexing techniques are required for implementing such a search efficiently.
Pairwise computation of the distance of process models allows comparing a given
query with models from a process repository, and thus, to find similar models. They
also need to be ranked [27]. However, traditional indexes cannot be applied as the
notion of pairwise similarity does not yield any ordering of process models. There
are two competing approaches to indexing process models: (1) indexing process
model elements [28, 29]; and (2) indexing complete process models, provided a
similarity metric is used that satisfied the triangle inequality property [30].

The first approach is based on breaking each process model up into parts on
which existing indexing techniques can be applied. In particular MTree [28] and
BC tree [29] indexing techniques have been used. The types of parts that have been
used include: the labels of the tasks in the process models, paths of subsequent tasks
and more complex constructs such as choices between tasks or parallel tasks. Using
these indexing techniques, the search for similar models is executed by breaking
the search model up into parts (e.g. only selecting the task labels) and then using

424

A Short Survey on Process Model Similarity

the index to find the process models that have sufficiently many similar parts (e.g.
similar task labels). The work on process model search and indexing is related to
general graph search and its application to e.g. face recognition and fingerprint
search.

The second approach uses metric spaces [31] to tackle this problem, as they
facilitate efficient search in the absence of coordinates and ordering of elements
if the distance function, beside the properties mentioned above, satisfies the triangle
inequality. This property allows determining minimum and maximum distance of
two process models without computing the distance function, if their pairwise
distance to a third model is given. Such transitivity improves search efficiency
and can be applied to both structural [32] and behavioural [18] process model
similarities.

6 Future Research on Process Model Similarity

Though we have seen exciting advancements in research on process model similar-
ity, several challenges still await solutions. While behavioural and label styles can
be homogenized with recent techniques, we are missing approaches to harmonize
terminology and the level of granularity. These challenges are specifically important
for process model matching. Another open issue is the lack of reference samples to
perform thorough evaluations of different approaches. Dijkman et al. [6] conducted
a survey and let process model experts judge on the similarity of 1,000 pairs of
process models, which helped to refine techniques. More such datasets are required
in order to increase the degree of repeatability and reproducibility in this field of
research. This will provide a good basis for further comparative studies such as [33].
Related application scenarios such as clustering process models [34], detection
of clones [35] and behavioural patterns [36] are expected to further benefit from
research into process model similarity.

References

1. van Dongen, B.F., Dijkman, R.M., Mendling, J.: Measuring similarity between business
process models. In Bellahsene, Z., Léonard, M., eds.: CAiSE 2008. LNCS 5074 (2008)
450–464

2. Mendling, J., van Dongen, B.F., van der Aalst, W.M.P.: On the degree of behavioral similarity
between business process models. In Nüttgens, M., Rump, F.J., Gadatsch, A., eds.: EPK
Workshop 2007. Volume 303 of CEUR Workshop Proceedings, CEUR-WS.org (2007) 39–58

3. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring similarity between semantic business
process models. In Roddick, J.F., Hinze, A., eds.: APCCM 2007. CRPIT 67 (2007) 71–80

4. Eshuis, R., Grefen, P.W.P.J.: Structural matching of bpel processes. In: ECOWS 2007, IEEE
Computer Society (2007) 171–180

5. Corrales, J.C., Grigori, D. Bouzeghoub, M.: BPEL Processes Matchmaking for Service
Discovery. In: OTM 2006, Part I, LNCS 4275 (2006) 237–254

425

R.M. Dijkman et al.

6. Dijkman, R.M., Dumas, M., van Dongen, B.F., Käärik, R., Mendling, J.: Similarity of business
process models: Metrics and evaluation. Inf. Syst. 36(2) (2011) 498–516

7. Mendling, J.: Three challenges for process model reuse. In Daniel, F., Barkaoui, K.,
Dustdar, S., eds.: BPM Workshops (2). LNBIP 100 (2011) 285–288

8. Polyvyanyy, A., Garcı́a-Bañuelos, L., Dumas, M.: Structuring acyclic process models. Inf.
Syst. 37(6) (2012) 518–538

9. Leopold, H., Smirnov, S., Mendling, J.: On the refactoring of activity labels in business process
models. Inf. Syst. 37(5) (2012) 443–459

10. Dumas, M., Garcı́a-Bañuelos, L., Dijkman, R.M.: Similarity search of business process
models. IEEE Data Eng. Bull. 32(3) (2009) 23–28

11. Valmari, A.: The state explosion problem. In Reisig, W., Rozenberg, G., eds.: Petri Nets.
LNCS 1491 (1996) 429–528

12. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process
models from event logs. IEEE Trans. Knowl. Data Eng. 16(9) (2004) 1128–1142

13. Bae, J., Liu, L., Caverlee, J., Zhang, L.J., Bae, H.: Development of distance measures for
process mining, discovery and integration. Int. J. Web Service Res. 4(4) (2007) 1–17

14. Zha, H., Wang, J., Wen, L., Wang, C., Sun, J.: A workflow net similarity measure based on
transition adjacency relations. Computers in Industry 61(5) (2010) 463–471

15. Weidlich, M., Mendling, J., Weske, M.: A foundational approach for managing process
variability. In Mouratidis, H., Rolland, C., eds.: CAiSE 2011. LNCS 6741 (2011) 267–282

16. Weidlich, M., Mendling, J., Weske, M.: Efficient consistency measurement based on behavioral
profiles of process models. IEEE Trans. Software Eng. 37(3) (2011) 410–429

17. Weidlich, M., Polyvyanyy, A., Mendling, J., Weske, M.: Causal behavioural profiles - efficient
computation, applications, and evaluation. Fundam. Inform. 113(3–4) (2011) 399–435

18. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity - a proper metric. In Rinderle-
Ma, S., Toumani, F., Wolf, K., eds.: BPM 2011. LNCS 6896 (2011) 166–181

19. Armas-Cervantes, A., Garcı́a-Bañuelos, L., Dumas, M.: Event structures as a foundation for
process model differencing, part 1: acyclic processes, In: WS-FM 2012. (to appear)

20. Dijkman, R.M., Dumas, M., Garcı́a-Bañuelos, L.: Graph matching algorithms for business
process model similarity search. In Dayal, U., Eder, J., Koehler, J., Reijers, H.A., eds.: BPM
2009. LNCS 5701 (2009) 48–63

21. Bellahsene, Z., Bonifati, A., Rahm, E., eds.: Schema Matching and Mapping. Springer (2011)
22. Euzenat, J., Shvaiko, P.: Ontology matching. Springer (2007)
23. Weidlich, M., Dijkman, R.M., Mendling, J.: The ICoP framework: Identification of correspon-

dences between process models. In CAiSE 2010. LNCS 6051 (2010) 483–498
24. Dijkman, R.M., Dumas, M., Garcı́a-Bañuelos, L., Käärik, R.: Aligning business process

models. In: EDOC 2009, IEEE Computer Society (2009) 45–53
25. Leopold, H., Niepert, M., Weidlich, M., Mendling, J., Dijkman, R.M., Stuckenschmidt, H.:

Probabilistic optimization of semantic process model matching. In Barros, A.P., Gal, A.,
Kindler, E., eds.: BPM 2012. LNCS 7481 (2012) 319–334

26. Branco, M.C., Troya, J., Czarnecki, K., Küster, J.M., Völzer, H.: Matching business process
workflows across abstraction levels. In France, R.B., Kazmeier, J., Breu, R., Atkinson, C., eds.:
MoDELS 2012. LNCS 7590 (2012) 626–641

27. Grigori, D., Corrales, J.C., Bouzeghoub, M., Gater, A.: Ranking bpel processes for service
discovery. IEEE T. Services Computing 3(3) (2010) 178–192

28. Yan, Z., Dijkman, R., Grefen, P.: Fast business process similarity search. Distributed and
Parallel Databases 30 (2012) 105–144

29. Jin, T., Wang, J., Wu, N., La Rosa, M., ter Hofstede, A.: Efficient and accurate retrieval of
business process models through indexing. In: OTM, Part I. LNCS 6426 (2010) 402–409

30. Kunze, M., Weidlich, M., Weske, M.: Behavioral similarity – a proper metric. In: BPM 2011.
LNCS 7481 (2011) 166–181

31. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Approach.
Volume 32 of Advances in Database Systems. Kluwer (2006)

426

A Short Survey on Process Model Similarity

32. Kunze, M., Weske, M.: Metric trees for efficient similarity search in large process model
repositories. In zur Muehlen, M., Su, J., eds.: BPM Workshops. LNBIP 66 (2010) 535–546

33. Becker, M., Laue, R.: A comparative survey of business process similarity measures.
Computers in Industry 63(2) (2012) 148–167

34. Niemann, M., Siebenhaar, M., Schulte, S., Steinmetz, R.: Comparison and retrieval of process
models using related cluster pairs. Computers in Industry 63(2) (2012) 168–180

35. Ekanayake, C.C., Dumas, M., Garcı́a-Bañuelos, L., Rosa, M.L., ter Hofstede, A.H.M.:
Approximate clone detection in repositories of business process models. In Barros, A.P.,
Gal, A., Kindler, E., eds.: BPM 2012. LNCS 7481 (2012) 302–318

36. Smirnov, S., Weidlich, M., Mendling, J., Weske, M.: Action patterns in business process model
repositories. Computers in Industry 63(2) (2012) 98–111

427

Z. Bellahsène and M. Léonard (Eds.): CAiSE 2008, LNCS 5074, pp. 465–479, 2008.
© Springer-Verlag Berlin Heidelberg 2008

How Much Language Is Enough?
Theoretical and Practical Use of the
Business Process Modeling Notation

Michael zur Muehlen1 and Jan Recker2

1 Stevens Institute of Technology, Howe School of Technology Management,
Castle Point on Hudson, Hoboken, NJ 07030 USA
Michael.zurMuehlen@stevens.edu

2 Queensland University of Technology, Faculty of Information Technology, 126 Margaret
Street, Brisbane QLD 4000, Australia

j.recker@qut.edu.au

Abstract. The Business Process Modeling Notation (BPMN) is an increasingly
important industry standard for the graphical representation of business proc-
esses. BPMN offers a wide range of modeling constructs, significantly more
than other popular languages. However, not all of these constructs are equally
important in practice as business analysts frequently use arbitrary subsets of
BPMN. In this paper we investigate what these subsets are, and how they differ
between academic, consulting, and general use of the language. We analyzed
120 BPMN diagrams using mathematical and statistical techniques. Our find-
ings indicate that BPMN is used in groups of several, well-defined construct
clusters, but less than 20% of its vocabulary is regularly used and some con-
structs did not occur in any of the models we analyzed. While the average
model contains just 9 different BPMN constructs, models of this complexity
have typically just 4-5 constructs in common, which means that only a small
agreed subset of BPMN has emerged. Our findings have implications for the
entire ecosystems of analysts and modelers in that they provide guidance on
how to reduce language complexity, which should increase the ease and speed
of process modeling.

Keywords: BPMN, Language Analysis, Process Modeling.

1 Introduction

The Business Process Modeling Notation (BPMN) [1] is emerging as a standard lan-
guage for capturing business processes, especially at the level of domain analysis and
high-level systems design. A growing number of process design, enterprise architec-
ture, and workflow automation tools provide modeling environments for BPMN. The
development of BPMN was influenced by the demand for a graphical notation that
complements the BPEL standard for executable business processes. Although this
development gives BPMN a technical focus, the intention of the BPMN designers
was to develop a modeling language that can equally well be applied to typical busi-
ness modeling activities. This is clearly visible in the specification document, which

429

M. zur Muehlen and J. Recker

separates the BPMN constructs into a set of core graphical elements and an extended,
more specialized set. BPMN’s developers envisaged the core set to be used by busi-
ness analysts for the essential, intuitive articulation of business processes in very easy
terms. The full set of constructs would then enable users to specify even complex
process scenarios with a level of detail that facilitates process simulation, evaluation
or even execution. This separation mirrors an emerging tendency in industry to sepa-
rate business-focused process modeling from implementation-oriented workflow
implementation.

The evolution of BPMN closely mirrors the emergence of another modeling stan-
dard, UML [2]. Both have been ratified by the standardization body OMG. Both con-
tain a larger set of constructs in contrast to competing languages, and offer a multitude
of options for conceptual modeling. Both have been found in analytical studies to be
not only semantically richer but also theoretically more complex than other modeling
languages, [e.g., 3, 4]. And, in UML’s case, this complexity motivated users to deliber-
ately reduce the set of constructs for system analysis and design tasks. Related studies
found that frequently not even 20% of the constructs are used in practice [5, 6].

The apparent complexity of the BPMN standard seems to be similar to the UML
standard, which raises a number of questions: Are BPMN users able – and willing –
to cope with the complexity of the language? Does the separation into core and
extended constructs provided by the specification hold in modeling practice? And –
really – how exactly is BPMN used in practice?

While BPMN has been receiving significant attention not only in practice but also
in academia, virtually all contributions have been made on an analytical or conceptual
level, [7, 8]. There are only few empirical insights into how BPMN is used in practice
– exceptions are reported in [9] and [10].

Accordingly, our research imperative has been to provide empirical evidence on
the usage of BPMN in real-life process modeling practice. The aim of this paper is to
examine, using statistical techniques, which elements of BPMN are used in practice.
We collected a large set of BPMN diagrams from three different application areas
(i.e., consulting, education, process re-engineering) and analyzed the models regard-
ing their construct usage. This study is a first step to determine the most commonly
used set of BPMN constructs and to provide the ecosystem of process modelers with
specific advice which elements of BPMN to use when. BPMN training programs
could benefit from a structure that introduces students to the most commonly used
subset first before moving on to advanced modeling concepts.

We proceed as follows: The next section briefly introduces the background of our
research, viz., BPMN and our data sources, and presents our research design. Section
3 presents the analysis results and discusses them. Section 4 concludes this paper with
a discussion of contributions, implications and limitations, and provides an outlook to
future research.

2 Background

2.1 Introduction to BPMN

The Business Process Modeling Notation [1] is a recently published notation stan-
dard for business processes. Its development has been based on the revision of other

430

notations including UML, IDEF, ebXML, RosettaNet, LOVeM and Event-driven
Process Chains.

BPMN was developed by an industry consortium (BPMI.org), whose constituents
represented a wide range of BPM tool vendors but no end users. The standardization
process took six years and more than 140 meetings, both physical and virtual. The
BPMN working group developed a specification document that differentiates the
BPMN constructs into a set of core graphical elements and an extended specialized set.
The complete BPMN specification defines 50 constructs plus attributes, grouped into
four basic categories of elements, viz., Flow Objects, Connecting Objects, Swimlanes
and Artefacts. Flow Objects, such as events, activities and gateways, are the most basic
elements used to create BPMN models. Connecting Objects are used to inter-connect
Flow Objects through different types of arrows. Swimlanes are used to group activities
into separate categories for different functional capabilities or responsibilities (e.g.,
different roles or organizational departments). Artefacts may be added to a model
where deemed appropriate in order to display further related information such as proc-
essed data or other comments. For further information on BPMN refer to [1].

Existing research related to BPMN includes, inter alia, analyses and evaluations,
[e.g., 9, 11], use in combination with other grammars, especially BPEL [7], or its
support for workflow concepts and technologies [8]. This and other research is mostly
analytical in nature. Few insights exist into the practical use of BPMN, which has
motivated our study.

2.2 Data Sources

In order to arrive at an informed opinion about the use of BPMN in practice we col-
lected BPMN models from three types of sources: A search using Internet search
engines for “BPMN model” resulted in 57 BPMN diagrams, obtained from organiza-
tions’ web sites, from practitioner forums and similar sites. These diagrams were
labeled in a variety of languages, but since our study focuses on the modeling con-
structs and not their content this was no hindrance. We collected an additional 37
BPMN diagrams from consulting projects to which we had access. These diagrams
depicted as-is and to-be processes from business improvement projects or software
deployment projects. An additional 26 diagrams were collected through BPMN edu-
cation seminars taught by the authors. These diagrams were created by seminar par-
ticipants and depicted business processes from the participants’ organization. Overall,
our data set consists of 126 BPMN models approximating the use of BPMN for a
variety of purposes including process (re-) design, education, consulting, and software
and workflow engineering. 6 models were excluded from the analysis because they
explicitly illustrated nonsensical diagrams or were duplicates.

While by no means do we claim our data set to be statistically representative of the
overall use of BPMN in practice, it nevertheless gives us an informed opinion about the
real use of BPMN beyond the examples typically given by developers or tool vendors.

2.3 Research Design

Having obtained a large set of BPMN models, our next step was to prepare these
models for analysis. We created an Excel spread sheet counting the type of BPMN

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 431

M. zur Muehlen and J. Recker

constructs in use per model. Each occurrence of a BPMN construct was marked as 1,
otherwise 0. This coding allowed us to treat the individual models as binary strings
for further analysis. In our coding effort, we kept track of the data sources for each
model, which, for analysis purposes, we labeled ‘web’ (those models that we obtained
from Internet search engines), ‘consulting’ (those that we obtained from consulting
engagements) and ‘seminar’ (those obtained from educational seminars).

The resulting tables provided the basis for the application of statistical techniques
such as cluster analysis, frequency analysis, covariance analysis and distribution
analysis. We employed analysis techniques available in Excel (frequency counts),
Mathematica (covariance matrices, Hamming distances) and R (cluster analysis). The
following sections provide further details about the exact application of the various
techniques used, and discuss the results we obtained.

3 Analysis and Discussion

3.1 Overall Use of BPMN Constructs

BPMN offers 50 modeling constructs, ranging from Task and Sequence Flow to
Compensation Associations and Transaction Boundaries. Our first question was:
Which of these symbols are used in practice and how frequently?

Fig. 1 shows the frequency distribution of the individual BPMN constructs, sepa-
rated by the three sample sets and ranked by overall frequency. Generally speaking,
the distribution of constructs follows a power-law distribution, with only four con-
structs being common to more than 50% of the diagrams: Sequence Flow, Task, End
Event, and Start Event. Notably, these constructs all belong to the originally specified
BPMN core set [1].

Fig. 1 shows that every model contained the Sequence Flow construct, and nearly
every model contained the basic Task construct (the diagrams that did not contain the
Task construct used the Subprocess construct). The majority of Web and Seminar
models contained Start and End Events, while the Consulting models replaced these
with more specific event types (e.g., Message or Timer Events for Start Events, Termi-
nate, Message, or Link, for End Events). The other BPMN constructs were unevenly
distributed. A visual inspection of Fig. 1 leads to a number of interesting observations:

While the majority of consulting models contained Data-based XOR Gateways
(77%), Pools (81%) and Lanes (69%), these constructs were much less frequent in the
other two sample sets (57%, 30%, 21% and 23%, 56%, 16% respectively for web and
seminar models). This indicates that the consulting models depict organizational
structure in more detail than the random web sample. The majority of consulting
models contained detailed Gateway constructs, whereas only ¼ of the seminar models
did not used them. This implies that beginning modelers tend to create diagrams with
few alternative or parallel flows.

The Web diagrams use (non-specific) Gateways frequently (observed in 55% of
the models), whereas the consulting and seminar sets make much less use of this
symbol (5% and 12%, respectively). Models in the web sample express the control
flow logic of the diagrams in plain text (which can be inserted into the basic Gate-
ways), rather than the more formal XOR, AND, and Inclusive OR constructs.

432

Fig. 1. Occurrence Frequency of BPMN Constructs

A sizable fraction of seminar models contain Intermediate Message constructs
(41%) whereas only 7% of web models and 12% of consulting models contain this
construct. This indicates that this construct is emphasized in BPMN classes but not
very common in practice. A potential explanation may stem from the underlying de-
sign paradigm for process choreography in BPMN, which typically requires a lot of
time to explain in classrooms. Practitioners in general may not be fully confident in

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 433

M. zur Muehlen and J. Recker

the use of these choreography concepts, which could be explain the less frequent
usage of the related constructs.

3.2 Frequency Distribution of BPMN Constructs

The ranked frequency distribution of BPMN constructs generally follows an exponen-
tial (power-law) distribution, similar to long-tailed distributions that have been ob-
served as a result of preferential attachment [12]. This particular shape has been ob-
served previously in studies of natural languages, [e.g., 13, 14]. Fig. 2 shows a plot of
the frequency distribution of the BPMN elements in the three sample sets compared
with the Zipfian distribution [14].

Fig. 2. Frequency Plot of BPMN Constructs by Rank

Zipf’s Law states that the frequency of words in natural languages is inverse to
their rank (in other words, the second most frequent word is used 1/2 the time of the
first, the third most frequent word 1/3 of the time, and so on) and has been observed
in numerous contexts [see, for instance, 13]. While not a perfect fit, the BPMN sub-
sets exhibit a distribution that is very close to the distribution of word usage in natural
languages. This suggests that the use of BPMN constructs to design (graphical) state-
ments about organizational or system processes mirrors the use of natural languages.

This finding is of importance for future research on the way users learn, retain, and
use BPMN constructs, and – really – any other graphical modeling language. For
instance, linguistics research could be used to formulate conjectures about appropriate
modeling training programs – a still under-researched aspect of modeling research in

434

IS. In general terms, the distribution of BPMN constructs shows that BPMN – as
many natural languages – has a few essential constructs, a wide range of constructs
commonly used, and an abundance of constructs virtually unused. Based on this ob-
servation, training and usage guidelines can be designed to reduce the complexity of
the language to inexperienced analysts and to deliberately build such models that can
safely be assumed to depict the core essence of a process without adding too much
complexity.

3.3 BPMN Construct Correlations

Having determined the most frequent set of BPMN constructs in use, we turn to some
related questions: Which of the BPMN constructs are typically used in combination?
Which are used in alternation? In order to answer these questions, we used Mathe-
matica to generate covariance matrices, which allowed us to examine pairs of BPMN
constructs with regard to their combined or alternative use. Those pairs of constructs
with negative covariance (p < -0.05) indicate alternatively used constructs while those
with positive covariance (p > 0.05) indicate constructs used in combination. Table 1
summarizes the results.

Table 1. Combined and alternative use of BPMN constructs

Constructs with p > 0.05 Constructs with p < -0.05
Data Object Association Start Event Start Message
Pool Message Flow Gateway Data-based XOR
Start Event End Event Text Annotation Message Flow
Start Message Data-based XOR Start Message End Event
Start Message Intermediate Message Start Message Gateway
Start Message End Terminate Start Event Data-based XOR
Pool Lane End Event Data-based XOR
Lane Message Flow

Our findings present some interesting implications regarding BPMN modeling
practice. Looking at the combined use of BPMN constructs (left column in Table 1),
most correlations confirm that BPMN modeling practice obeys the grammatical rules
of BPMN. For instance, Data Objects need to be linked to flow objects via the Asso-
ciation constructs, Pools can only communicate with other Pools via message flow,
Lanes require Pools, and BPMN models require both Start and End Event. However,
at least two interesting observations emerge. First, the positive correlation of Start
Message events with End Terminate events indicates a more sophisticated level of
BPMN modeling, suggesting that when users start using the differentiated event con-
structs, they tend to use a variety of these. Similarly, the combined use of Start Mes-
sage events with the Data-based XOR constructs indicates an advanced use of the
language for models in which different types of messages lead to different variants of
a process, depending on the actual content of the arriving message.

Looking at the alternative use of BPMN constructs (right column in Table 1), we
can identify additional interesting patterns of BPMN use. For instance, the negative
correlation between Gateway and Data-based XOR suggests that when modelers refine
the semantics of their models they choose the data-based XOR over the unspecific

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 435

M. zur Muehlen and J. Recker

Gateway in order to clarify the control flow semantics of their models. The negative
correlation between Text Annotation and Message Flow suggests that at initial stages,
modelers avoid choreography concepts and instead use free-form text to indicate mes-
sage exchange. More advanced modeling relies on the provided semantic constructs
instead of simple textual additions. Similarly, the negative correlations between Start
Message event and the Gateway construct, and the Start/End Event and the Data-based
XOR imply that modelers who refine the event constructs have achieved a level
of sophistication of language use at which they avoid the use of the non-descriptive
gateways altogether and instead rely on the more differentiated gateway and event
subtypes.

3.4 BPMN Construct Clusters

In addition to identifying pairs of constructs that are used alternatively or in combina-
tion, we were also interested in uncovering whether clusters of BPMN constructs can
be found in practice. To that end, we performed a hierarchical cluster analysis using
the Euclidian distance measure in order to classify the set of BPMN constructs into
distinct subsets. Fig. 3 shows the resulting dendrogram.

Fig. 3. Cluster Dendrogram of BPMN Constructs

In Fig. 3 six construct clusters are highlighted. First, the Task and Normal Flow
cluster depicts the core of process modeling – the orchestration of activities that con-
stitute a business process. Together with start and event conditions (through the use of
events), these clusters indicate the simplest form of depicting the essence of a process
in a graphical model. A third cluster is comprised of elements that are used to embel-
lish and explain such process models through the use of text annotations, gateways
(that specify control flow conditions of sequences of tasks) and data processing in-
formation. Clusters four and five essentially denote additions to these core modeling
concepts by adding information about the organizational task allocation schemes,

436

required roles and responsibilities as well as choreography information in collabora-
tive scenarios, or refinements to the orchestration of the flow of the process through
different types of event and gateway constructs. The sixth cluster we found denotes
the set of constructs that are very simply not used at all (e.g., compensation associa-
tion, end message, etc).

The clustering of BPMN constructs provides a promising starting point for a com-
plete ecosystem of BPMN users – vendors, consultants, coaches and end users alike.
These users can be guided in their efforts to learn and apply BPMN in an effective
and efficient manner. Training programs, for instance, could focus on the ‘basic mod-
eling’ clusters first before teaching advanced concepts such as organizational model-
ing and control flow orchestration. Coaches and consultants in charge of modeling
conventions are guided by delineating the most common – and most frequently
avoided – BPMN constructs.

3.5 Core or Extended Set?

According to the BPMN specification, BPMN modelers are envisaged to choose ei-
ther the core set of ten BPMN constructs, or an extended set in which these core con-
structs are modified (i.e., revised and extended). Our questions are: Do modelers use
core or extended constructs? Do they comply with the differentiation?
In order to answer these questions we split the modeling constructs into 10 sets:

• Tasks are split into Basic Tasks and an extended task set which contains the con-
structs for Subprocesses (collapsed and expanded) as well as Tasks with additional
semantics, such as Multiple Instance Tasks, Compensations, or Transactions.

• Sequence flow constructs are split into a basic set (the Normal Flow) and an ex-
tended set (consisting of Default Flow, Conditional, and Exception flow).

• Gateways are split into the Basic (blank) XOR Gateway, and an extended Gateway
set, which comprises Data- (X-labeled) and Event-based XOR, Inclusive-OR, and
Parallel Gateways. We contrast these two sets with the representation of routing in-
formation through the Conditional Sequence Flow construct.

• Events are split into the Basic Events, and an extended Event set including con-
structs such as Messages, Rule Events, Links, etc.

• In addition we distinguished from these constructs Layout elements such as off-
page connectors and the Grouping construct.

For these sets, we performed three separate frequency counts, for each of the three
data sets. The results are shown in Fig. 4.

The usage patterns exhibited in Fig. 4 shed some light on when users turn to ele-
ments from the extended set of BPMN constructs. First, while users tend to employ
basic task and sequence flow constructs, they mostly employ an extended set of gate-
way constructs. Especially the sequence flow extensions are rarely used in practice. In
terms of event constructs, basic and extended sets appear to be equally utilized. The
following additional observations can be made from the frequency analysis:

• Consultants especially avoid extended task constructs and use mainly basic tasks.
On the other hand, they largely utilize the set of specialized gateway constructs.

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 437

M. zur Muehlen and J. Recker

Fig. 4. Use of Core and Extended BPMN Constructs

• Decision Sequence Flow constructs are very rarely used. This would suggest that
BPMN users prefer the explicit decision routing representation capacity of Gate-
ways over the alternative, rather implicit way of annotating sequence flows.

• Basic Gateways are dominant on the web. However, neither consulting nor seminar
models use them in large numbers. This suggests that formal training (as exercised
through seminar courses or trained consultants) leads to the use of precise seman-
tics for articulating process orchestration.

• Layout constructs are very rarely used. This suggests two things. First, language
users often use tool functionality to annotate diagrams (e.g., meta-tags, free form
tags, navigation capacity). Second, it may be worthwhile externalizing such con-
structs from a modeling language in order to reduce their complexity.

3.6 Complexity of BPMN Models

Previous studies on the usage of UML [5, 6] uncovered that the theoretical complex-
ity of a language (as measured by the number of constructs originally specified) often
considerably differs from the practical complexity (the number of constructs actually
used in a model). We are interested in whether a similar situation exists in the case of
BPMN. In other words, while the theoretical complexity of BPMN is standardized by
its specification [1], we wanted to measure the practical complexity of BPMN (i.e.,
the vocabulary used in practice). To that end, we contrasted the semantic complexity
of the BPMN models we obtained (i.e., the size of the models) with their syntactic
complexity (i.e., the number of semantically different BPMN constructs used in these
models). Fig. 5 illustrates the results of this analysis.

438

Fig. 5. Syntactic Complexity of BPMN Models

While the 50 BPMN constructs theoretically allow for 250 permutations, the actual
number of usable subsets is much smaller. All BPMN models obviously require the
use of Tasks and Sequence Flow. Since the majority of models we observed used a
BPMN vocabulary of between 6 and 12 constructs, the number of possible BPMN

vocabulary subsets in practice is between =194,580 and = 6,540,715,896.
Given that 9 constructs in our sample were used by fewer than two models we can

exclude these from the search space and arrive at a theoretical range from =

82,251 to = 635,745,396. On average, we found the average number of semanti-
cally different BPMN constructs to be 9 (consulting), 8.78 (web), and 8.7 (seminar),
respectively. However, while this finding indicates the size of the average BPMN
vocabulary used in practice, it does not mean that every model with 9 BPMN con-
structs uses the exact same BPMN subset. In fact, a pair wise comparison of the 120
models revealed only 6 pairs of models that shared the same BPMN subset between
each pair (i.e., there were 6 identical pairs of construct sets).

3.7 Variety of BPMN Subsets

In order to determine the variety of BPMN subsets, we computed the Hamming Dis-
tance [15] for each model vocabulary. Originally, the Hamming distance between two
strings of equal length is the number of positions for which the corresponding sym-
bols are different. In other words, it measures the minimum number of substitutions
required to change one into the other. In the case of BPMN, we treated each model
vocabulary as a 50-bit binary string, where a positive bit at position i signals the usage
of BPMN construct [i]. The Hamming Distance between two model vocabularies then
indicates the number of bits that differ between the two vocabularies, in other words
the discrepancy between the BPMN constructs used in the creation of two models.
The results are visualized in Fig. 6.

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 439

M. zur Muehlen and J. Recker

Fig. 6. Hamming Distance of BPMN Vocabularies

The average Hamming distance for the three subsets was 7.6 (web), 7.5 (consult-
ing), and 8.8 (seminar), indicating a slightly more diverse use of BPMN constructs by
novice modelers, whereas the web and consulting sets were slightly more homogene-
ous (but not by much). These metrics indicate that the average dissimilarity between
two BPMN subsets is 7-8 constructs. A common scenario would be that one model
uses 4 BPMN constructs that the other model does not exhibit and vice versa. As
BPMN becomes more prevalent we plan on observing this metric over time, to see
whether the commonly used vocabularies become more homogeneous over time.
Annotating these BPMN subsets with context information (e.g., the process modeling
purpose), in turn, could provide a starting point for deriving the most suitable BPMN
subsets for a variety of application areas.

3.8 The Common Core of BPMN

Our evaluation thus far has focused on the individual elements and their grouping into
core and extended constructs. However, one of our questions relates to the subset of
BPMN constructs that are shared by different models. While we found six pairs of
models that each share a complete set of constructs, there are subsets that are shared
by more than two models. Figure Fig. 7 shows a Venn diagram of different BPMN
construct combinations. The number in the corner of each grouping indicates the
number of models that contained this specific subset of the language. We included
combinations of constructs that were shared by more than 10 models.

The most apparent subset is the combination of Tasks and Sequence Flow – 97%
of the models we analyzed shared this subset, and those that did not used a representa-
tion for tasks from the extended BPMN set (e.g., Subprocess). The addition of Start
and End Events is the next most common subset – used by more than half of the mod-
els we analyzed. The following subsets show an interesting pattern: Either modelers
focus on process orchestration through by adding gateways and their refinement to
their models, or they focus on process choreography and add related organizational
constructs, such as Pools and Lanes. While the addition of Pools leads to a subset that
is common in nearly 30% of all models, the addition of Lanes halves this fraction.

440

Adding Basic Gateways or Parallel Gateways to the core set leads to a subset that is
shared by 20% of all models. The popularity of the Data-based XOR Gateway and the
Parallel Gateway construct indicate that they are a core element in many modeler
vocabularies, even though the BPMN specification places them in the extended set of
the language. The same situation holds for Message and Timer Events (both Start
Events and Intermediate Events). While other event types were used very infre-
quently, these two event types were the most popular addition to the core modeling
set in lieu of unspecified events.

Fig. 7. Most popular BPMN Vocabulary Subsets

Overall, BPMN models appear to fall into two main sets (indicated in Fig. 7 by ho-
rizontal versus vertical grouping). The horizontal groups contain tasks, basic events
plus constructs for separating organizational duties and responsibilities (Pools and
Lanes). Consultants will use these types of models will most likely for organizational
(re-)engineering and process improvement. The vertical groups add to this set of con-
structs refined constructs for specifying the exact control flow of processes (through
various gateway types) as well as the exact event conditions pertaining to a process
(i.e., various event construct types). This is not shown in Fig. 7 in the interest of clar-
ity. Overall, this set of BPMN construct combinations can be expected to be favored
by designers and analysts seeking to articulate the precise flow conditions, for in-
stance, in the context of workflow engineering or process simulation rather than the
organizational responsibilities (depicted by Lanes or Pools).

An interesting property of the BPMN subsets is their frequency distribution. The
ranked frequency distribution again follows an exponential distribution, mirroring the
behavior of individual BPMN constructs. This suggests that modelers use blocks or
subsets of BPMN constructs in a similar fashion as they use individual constructs.

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 441

M. zur Muehlen and J. Recker

Combinations of BPMN constructs can thus be treated as metawords and be analyzed
as such.

4 Contributions, Limitations, and Outlook

In this paper we studied the use of BPMN in actual process modeling practice. We
obtained 126 (120 considered) BPMN models and used a wide range of statistical
techniques to shed light onto the practical complexity afforded by the use of BPMN.
Our paper makes a key contribution to the growing area of process modeling by re-
flecting on empirical data about the use of a rising industry standard. The most impor-
tant finding is that the complexity of BPMN in practice differs considerably from its
theoretical complexity. This, in turn, suggests that future research should take this
distinction into account when considering BPMN’s expressive power, complexity or
other features or characteristics. Our study shows that the frequency of BPMN con-
structs follows an exponential distribution, both at the elementary level and the subset
level. This means that the practical use of a formal modeling language shows similari-
ties to the use of natural language, and suggests that linguistic techniques can be ap-
plied to better understand the formation and use of languages in conceptual modeling
overall. We see an opportunity for replicating our study with other standardized mod-
eling approaches (e.g., UML) to obtain further evidence for this conjecture.

Our findings have major implications, both for language developers and the organ-
izational ecosystems in which modeling languages are used. Our findings point to
some areas of concern in current language standardization practices, which appear to
prefer language extensions (more expressive languages) to language revision (more
lean languages). Our findings indicate that this may be to some extent contradictory to
practical usage. Also, our findings motivate organizations to invest resources into
conventions management in order to be able to manage and limit the complexity
brought to bear by the languages employed for process modeling.

The presented research findings have to be contextualized in light of some limita-
tions. First, the source of empirical evidence is limited to three sets of data sources
and 126 BPMN models overall. We also did not consider any longitudinal data (e.g.,
the evolution of BPMN models through various iterations). However, we made an
effort to collect data from multiple application areas and to consider these in our
analysis. While we grouped the models by origin, we did not have sufficient informa-
tion about the model content to analyze the models based on their intended use. We
performed a hierarchical cluster analysis on the models themselves, but did not iden-
tify significant clusters. While this supports the random nature of our sample, it con-
tradicts one of our expectations – that there is a clear differentiation between BPMN
models depending on their intended use.

In future research, we will continue our data collection and extend it with more
context-related information, e.g., for what purpose were the models created, what
types of modelers created the models etc. This will allow us to triangulate our find-
ings with contextual variables so as to arrive at informed opinions about BPMN usage
across a wide range of application areas. In a related stream of research, we will apply
a number of complexity metrics [e.g., 16] to the identified BPMN clusters to make a
statement about how complex the frequently used BPMN constructs subsets are.

442

References

1. BPMI.org, OMG: Business Process Modeling Notation Specification. Final Adopted
Specification. Object Management Group (2006), http://www.bpmn.org

2. Fowler, M.: UML Distilled: A Brief Guide To The Standard Object Modelling Language,
3rd edn. Addison-Wesley Longman, Boston, Massachusetts (2004)

3. Siau, K., Cao, Q.: Unified Modeling Language: A Complexity Analysis. Journal of Data-
base Management 12, 26–34 (2001)

4. Rosemann, M., Recker, J., Indulska, M., Green, P.: A Study of the Evolution of the Repre-
sentational Capabilities of Process Modeling Grammars. In: Dubois, E., Pohl, K. (eds.)
CAiSE 2006. LNCS, vol. 4001, pp. 447–461. Springer, Heidelberg (2006)

5. Siau, K., Erickson, J., Lee, L.Y.: Theoretical vs. Practical Complexity: The Case of UML.
Journal of Database Management 16, 40–57 (2005)

6. Kobryn, C.: UML 2001: A Standardization Odyssey. Communications of the ACM 42,
29–37 (1999)

7. Ouyang, C., Dumas, M., ter Hofstede, A.H.M., van der Aalst, W.M.P.: Pattern-based
Translation of BPMN Process Models to BPEL Web Services. International Journal of
Web Services Research 5, 42–61 (2008)

8. Recker, J., Rosemann, M., Krogstie, J.: Ontology- versus Pattern-based Evaluation of
Process Modeling Languages: A Comparison. Communications of the Association for In-
formation Systems 20, 774–799 (2007)

9. Recker, J., Indulska, M., Rosemann, M., Green, P.: How Good is BPMN Really? Insights
from Theory and Practice. In: Ljungberg, J., Andersson, M. (eds.) Proceedings of the 14th
European Conference on Information Systems. Association for Information Systems,
Goeteborg, Sweden, pp. 1582–1593 (2006)

10. zur Muehlen, M., Ho, D.T.-Y.: Service Process Innovation: A Case Study of BPMN in
Practice. In: Sprague Jr., R.H. (ed.) Proceedings of the 41th Annual Hawaii International
Conference on System Sciences, Waikoloa, Hawaii (2008)

11. Wahl, T., Sindre, G.: An Analytical Evaluation of BPMN Using a Semiotic Quality
Framework. In: Siau, K. (ed.) Advanced Topics in Database Research, vol. 5, pp. 102–
113. Idea Group, Hershey, Pennsylvania (2006)

12. Barabási, A.-L., Bonabeau, E.: Scale-Free Networks. Scientific American 288, 50–59
(2003)

13. Li, W.: Random Texts Exhibit Zipf’s-Law-Like Word Frequency Distribution. IEEE
Transactions on Information Theory 38, 1842–1845 (1992)

14. Zipf, G.K.: On the Dynamic Structure of Concert Programs. Journal of Abnormal and So-
cial Psychology 41, 25–36 (1946)

15. Hamming, R.W.: Error Detecting and Error Correcting Codes. Bell System Technical
Journal 26, 147–160 (1950)

16. Rossi, M., Brinkkemper, S.: Complexity Metrics for Systems Development Methods and
Techniques. Information Systems 21, 209–227 (1996)

From: CAiSE 2008, LNCS 5074 © Springer-Verlag Berlin Heidelberg 2008 443

We Still Don’t Know How Much BPMN
Is Enough, But We Are Getting Closer

Michael zur Muehlen and Jan Recker

Abstract Process models expressed in BPMN typically rely on a small subset of all
available symbols. In our 2008 study, we examined the composition of these subsets,
and found that the distribution of BPMN symbols in practice closely resembles the
frequency distribution of words in natural language. We offered some suggestions
based on our findings, how to make the use of BPMN more manageable and also
outlined ideas for further development of BPMN. Since this paper was published
it has provoked spirited debate in the BPM practitioner community, prompted the
definition of a modeling standard in US government, and helped shape the next
generation of the BPMN standard.

1 Motivation and Genesis of Paper

Process modeling is not a new phenomenon, but the notations for mapping out
process diagrams seem to be in constant state of flux. Established notations
are applied, refined, evolve, and are replaced with new notations. Like natural
languages, process representations and their associated grammars seem to evolve.
The Business Process Model & Notation (BPMN) has evolved since its inception
in 2001 and has found its fair share of adopters in both modeling tool vendors,
and industrial applications. Since the BPMN notation contains a large number of
constructs (compared to older process notations such as Flow Charts, Petri Nets,

M. zur Muehlen (�)
Howe School of Technology Management, Stevens Institute of Technology, Castle Point
on Hudson, Hoboken NJ 07030, USA
e-mail: Michael.zurMuehlen@stevens.edu

J. Recker
Information Systems School, Queensland University of Technology, Brisbane
QLD 4000, Australia
e-mail: j.recker@qut.edu.au

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 36, © Springer-Verlag Berlin Heidelberg 2013

445

mailto:Michael.zurMuehlen@stevens.edu
mailto:j.recker@qut.edu.au

M. zur Muehlen and J. Recker

or Event-driven Process Chains), we were interested in the question which subset
of BPMN elements modelers would choose to represent models. Was the language
mature? Was there a defined subset that modelers naturally gravitated toward? Both
authors approached this topic from different starting points – one (Recker) from the
empirical use of modeling notations, the other (zur Muehlen) from the evolution of
standards over time. Both of us expected modelers to use a problem-specific subset
of the notation, but neither of us knew how large this subset would be, nor which
symbols it would contain.

To address the research question, we began collecting BPMN diagrams. Both
authors had worked in process modeling projects in industry, so the models
generated as part of consulting engagements became a seed data set. This was
complemented with models generated by students in process modeling courses,
and models that were collected through Internet searches. Once we felt that we
had obtained a sufficient number of models we began counting symbols, and tallied
our results in a statistical software package. The results confirmed our hunch: Most
models contained a small fraction of BPMN symbols, and the overall frequency
distribution of symbols followed closely the exponential Zipf-curve that is indicative
of the word distribution in natural languages. We concluded from this study that we
can learn much about how we could and should use BPMN from our use of natural
languages in different settings such as informal conversations, tech talks, essays and
so forth.

2 Impact on Industry

2.1 Reception in Practice: Feedback by Practitioners

If you have even a passing interest in BPMN, you’re probably aware of the great debate
happening amongst a few of the BPM bloggers in the past week. [: : :] It’s worth taking the
time to work your way through this debate, and keep and eye on Bruce and Michael’s blogs
for any further commentary. (Sandy Kemsley, Column 2, blog post 13 March 2008, http://
www.column2.com/2008/03/the-great-bpmn-debate/).

One of the interesting phenomena that emerged around our paper was its
reception by the BPM community of practitioners. To aid the transfer of research
into practice, we decided to blog about what we believed to be main find-
ings and implications (http://www.workflow-research.com/2008/03/03/how-much-
bpmn-do-you-need/). This post led to some spirited comments and related blog
posts. We were surprised by the number of commentaries and the critical feedback
we received from the community, starting with Bruce Silver’s challenge of the
implications we laid out in our post (http://www.brsilver.com/wordpress/2008/03/
09/on-how-much-bpmn-do-you-need/), and with the views of other participants
that responded to this debate (e.g., http://processdevelopments.blogspot.com/2008/
03/hottest-bpmn-process-modelling-debate.html).

446

http://www.column2.com/2008/03/the-great-bpmn-debate/
http://www.column2.com/2008/03/the-great-bpmn-debate/
http://www.workflow-research.com/2008/03/03/how-much-bpmn-do-you-need/
http://www.workflow-research.com/2008/03/03/how-much-bpmn-do-you-need/
http://www.brsilver.com/wordpress/2008/03/09/on-how-much-bpmn-do-you-need/
http://www.brsilver.com/wordpress/2008/03/09/on-how-much-bpmn-do-you-need/
http://processdevelopments.blogspot.com/2008/03/hottest-bpmn-process-modelling-debate.html
http://processdevelopments.blogspot.com/2008/03/hottest-bpmn-process-modelling-debate.html

We Still Don’t Know How Much BPMN Is Enough, But We Are Getting Closer

Much of this debate was dedicated to interpreting the findings in a set of
actionable implications for the community. While we had originally set out to study
how BPMN was being used, it became clear that practitioners were interested in
how BPMN should be used. We aspired to formulate recommendations especially
for vendors and training providers; and obviously some of our arguments were
deliberately challenging and provocative, in an effort to inspire certain changes
around standard making, method and tool design and training development.

Some, but not all, of our recommendations and interpretations were lauded by
respondents to the blogs; some responses were equally challenging and provocative,
and also criticized the scientific method applied. In hindsight, we very much
welcomed all the feedback we received and we still see this debate as a prime
example of a healthy and fertile debate between industry and academia – especially
because such conversations more often than not are absent [8].

What we learned from this episode are two things: First, making research insights
more relevant requires a thorough re-write and re-publication in more accessible
and readable forums, and proves to be a very worthwhile activity for academics.
Second, sparking (and not necessarily winning) a debate is in itself an extremely
useful activity as it sparks imagination, critical analysis and reflection – both on
the side of the contributors and the recipients. We have certainly learned from this
episode and continue to attempt as often as possible to convey our research not only
within our scientific forums but also decisively outside of this community.

2.2 Practical Impact: The US Department of Defense

After the paper generated some interest in the BPM practitioner community, we
were invited to speak at industry conferences, including the 2007 Transforma-
tion C Innovation conference in Washington, DC. The CTO and Chief Architect
of the US Department of Defense’s Business Mission Area was the keynote speaker
at this event and talked about a practical issue: The several hundred information
systems in the department were documented in various proprietary languages and
notations, making systems integration challenging and training onerous. Was there a
way to design and implement a standard-based notation to describe the department’s
processes? The conference chairman facilitated a behind-the-scenes meeting, which
led to an invitation to present our findings in Washington.

The brief presentation led to the initiation of a project to define the smallest
usable set of BPMN constructs for the DoD’s Business Mission Area, accompanied
by a style guide that would help modelers develop process models in a uniform
fashion. The main driver for this style guide was the disambiguation of process
fragments that could be represented in BPMN in more than one way, for example
branching moments that could be represented either by using a gateway or by
using conditional sequence flows. The findings from our original paper guided the

447

M. zur Muehlen and J. Recker

selection of modeling constructs, while the design of the style guide was driven by
the work on workflow patterns [14].

Once the BPMN subset and patterns had been field-tested, a question arose:
The available process modeling tools did not enforce the reduced symbol pallet,
much less the design patterns that had been established. What would it take to get
the BPM vendor community to support the effort? We began talking to the Object
Management Group’s BPMN Finalization Task Force.

2.3 Method Impact: Shaping BPMN 2.0 Conformance Classes

The original study of BPMN models was based on version 1.2 of the BPMN stan-
dard. As our work with stakeholders in industry progressed, the Object Management
Group began finalizing version 2.0 of the BPMN specification. In talking to some
key stakeholders in the finalization task force, namely Robert Shapiro, Bruce Silver,
and Denis Gagne, it became clear that there was appetite to group BPMN constructs
into subsets to facilitate process modeling at different levels of sophistication. Bruce
Silver had proposed three levels of BPMN modeling in his book [11], Robert
Shapiro was representing the interests of the Workflow Management Coalition,
which needed a defined subset to tailor the XPDL model interchange format to
[13], and the Department of Defense had a vital interest in anchoring the newly
formulated BPMN primitives in the official standard. Through a series of meetings,
the elements for three BPMN conformance classes were defined: Descriptive
for simple, flowchart-like diagrams; Analytic for more sophisticated models that
include event handling and messaging; and Common Executable with a focus on
the model attributes that a Business Process Management System would expect. The
three conformance classes became part of the official BPMN 2.0 specification [12].

2.4 Application: Conformance Classes in Practice

Now that the conformance classes were defined, they could be designated a
mandatory feature of process modeling tools that could be procured by the U.S. gov-
ernment. Vendor briefings were held, policy was written, and after a development
period of more than 3 years, the BPMN Analytic Conformance class was officially
adopted as the process modeling standard for the Business Mission Area. Today,
an increasing number of BPMN tools support the conformance classes defined by
the Object Management Group. But simply providing a defined subset of symbols
in software was not sufficient to ensure its proper use in practice. Training classes
needed to be developed, and style guides had to be written. This work is still ongoing
today.

448

We Still Don’t Know How Much BPMN Is Enough, But We Are Getting Closer

3 Academic Research on the Use of Process Modeling
Notations

We have always been proud of the impact that the paper generated in industry. Still,
as academics we also envisaged to leave a footprint in the body of knowledge. How
do you gauge the impact of a paper on the trajectory of research in the community?
A standard way of measuring impact is by means of scientometric analysis, e.g., by
examining citation statistics [e.g., 1].

The 2008 CAiSE paper ranks as the third-most cited research paper on BPMN,
as per Harzing’s Publish or Perish (behind a paper on the semantics of the BPMN
specification [2] and Steven White’s guide to modeling with BPMN [10]). The paper
attracted over 130 citations in the 5 years since its publication.

Exploring the types of research that perused our findings, we find that the
research inspired research across empirical, analytical and formal dimensions, on
BPMN [6], other process modeling notations [3, 7] and even other research domains
such as web services [9], process mining [4] or software development, amongst
others [5].

Two themes have dominated the research building on our work:

(a) How suitable is BPMN for modeling certain kinds of processes? One way that
our research was continued by our colleagues was to adopt the key finding
of our study (that modelers use specialized and limited subsets of the BPMN
vocabulary) and examine dedicated application scenarios – which part of
BPMN do we need when we model web service interfaces? How much BPMN
do we need for software development?

(b) How do modelers learn to use BPMN? Another vein of research has started
to explore another implication of our work: if modelers use different subsets
of BPMN only, how could a staged approach to learning BPMN look like?
Which (sets of) symbols are easier or harder to apply, and which of the symbol
characteristics are more likely to introduce modeling errors or understandability
problems?

The true impact of papers on the ever-evolving body of knowledge remains to be
seen in the long term. There might be studies still at the planning stage that build on,
extend, challenge or dispute the findings from the 2008 paper. In whatever format
this work is extended, we are hoping that the study remains a fertile ground for
other academics to start thinking about BPM research, even if this means that at
some stage our findings will be disconfirmed and replaced with much better theory
and explanation of how much language is enough.

4 Insights

In looking back at our 2008 paper, we believe there are a number of properties of
the paper – and the research it describes – that offer insights to the next 25 years of
advanced information systems engineering and the wider IS community.

449

M. zur Muehlen and J. Recker

First, at the time of writing the content of the paper – an empirical study of the
use of a notation that was predominantly subject to formal and analytical research
so far – was clearly a niche topic in a densely populated subject area. Both authors
continue to look for such niche topics, hoping to contribute to popular debates with
a different view.

Second, we learned about the importance of complementing the scientific
work with other reporting styles and formats that make the findings available to
and accessible for other communities that may have an interest. Means such as
blogging, essaying or presenting allow academics to deliberately and decisively
address different audiences beyond academia – even if that means further work.
To create practical impact from a research study may take much longer than the
next publishing cycle, but it can fuel the next round of inquiry.

Last but not least, one of the most important lessons is the value of feedback, and
the virtue of welcoming and working with such feedback – especially the critical
type. Only this way a true debate is emerging, and only through debate can we
continue to identify topics that are (a) challenging (otherwise there would be no
debate) and (b) relevant (otherwise debates would not become intense and fierce).

We look forward to the next 25 years of advanced information systems engineer-
ing research and the lessons and challenges that this era will bring.

References

1. Chen, C., Song, I.-Y., Yuan, X., Zhang, J.: The Thematic and Citation Landscape of Data and
Knowledge Engineering (1985–2007). Data & Knowledge Engineering 67 (2008) 234–259

2. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and Analysis of Business Process Models
in BPMN. Information and Software Technology 50 (2008) 1281–1294

3. Lassen, K.B., van der Aalst, W.M.P.: Complexity Metrics for Workflow Nets Information and
Software Technology 51 (2009) 610–626

4. Li, C., Reichert, M., Wombacher, A.: Mining Business Process Variants: Challenges, Scenar-
ios, Algorithms. Data & Knowledge Engineering 70 (2011) 409–434

5. Monsalve, C., Abran, A., April, A.: Measuring Software Functional Size from Business
Process Models. International Journal of Software Engineering and Knowledge Engineering
21 (2011) 311–338

6. Recker, J.: Opportunities and Constraints: The Current Struggle with BPMN. Business Process
Management Journal 16 (2010) 181–201

7. Recker, J., Rosemann, M., Indulska, M., Green, P.: Business Process Modeling: A Comparative
Analysis. Journal of the Association for Information Systems 10 (2009) 333–363

8. Robey, D., Markus, M.L.: Beyond Rigor and Relevance: Producing Consumable Research
about Information Systems. Information Resource Management Journal 11 (1998) 7–15

9. Swanson, E.B.: Information System Implementation: Bridging the Gap Between Design and
Utilization. Irwin, Homewood, Illinois (1988)

10. White, S.A., Miers, D.: BPMN Modeling and Reference Guide. Lighthouse Point, Florida,
Future Strategies (2008)

11. Silver, B.: BPMN Method and Style, 2nd Edition, with BPMN Implementer’s Guide:
A structured approach for business process modeling and implementation using BPMN 2.0.
Cody-Cassidy Press, Aptos, CA (2011).

450

We Still Don’t Know How Much BPMN Is Enough, But We Are Getting Closer

12. Object Management Group: Business Process Model and Notation (BPMN 2.0). OMG
Specification dtc/11-01-03. Framingham, MA (2011)

13. WfMC: XML Process Definition Language (XPDL), WfMC Standards. WFMC-TC-1025,
http://www.wfmc.org, 2001.

14. van Der Aalst, W. M., Ter Hofstede, A. H., Kiepuszewski, B., & Barros, A. P.: Workflow
Patterns. Distributed and Parallel Databases, 14 (2003) 1, 5–51.

451

http://www.wfmc.org

The Future of CAiSE

John Krogstie, Oscar Pastor, and Barbara Pernici

Abstract In this chapter an analysis of the current goals and positioning of CAiSE
is provided and aims and goals for future years are discussed. First, the conference
role in the Information Systems community is considered, then we focus on how
the goal of maintaining the conference at top level could be achieved, in a world in
which new communication venues and practices are changing established scientific
practices.

1 The CAiSE Experience and the Changing World
of Publications

Most of the editors and authors of this book have participated in many CAiSE
conferences and have considered it a place where attending regularly would not
only provide an excellent publication forum, but also a place where ideas could
be exchanged with other researchers in the field, and, for the youngest ones, an
opportunity was given to discuss new ideas with established researchers in the field.

In contrast to many other scientific disciplines, computer science considers
conference publications, and as illustrated in [1] one can show formally that a few
computer science conferences are equally important in terms of impact as the top
journals in the field. In the last few years, a debate has started in the Computer

J. Krogstie (�)
Department of Computer and Information Science, NTNU- The Norwegian University
of Science and Technology, Trondheim, Norway
e-mail: krogstie@idi.ntnu.no

O. Pastor
Centro de Investigación ProS, DSIC – Edificio 1 F, Universidad Politécnica de Valenci,
Camino de Vera S/N, Valencia 46022, Spain

B. Pernici
Politecnico di Milano, piazza Leonardo da Vinci, 32, Milan, Italy

J. Bubenko et al. (eds.), Seminal Contributions to Information Systems Engineering,
DOI 10.1007/978-3-642-36926-1 37, © Springer-Verlag Berlin Heidelberg 2013

453

mailto:krogstie@idi.ntnu.no

J. Krogstie et al.

Science field on publication venues and on the role of conferences and journals in
the field. It has been claimed that the focus on publications through conferences
is a sign that the fields of Computer Science/Information Systems is not mature,
and it is indicated also CS/IS should shift to have journals as the main publication
channel, and that “Computer science should refocus the conference system on its
primary purpose of bringing researchers together” [2]. We think that this is to a
large degree happening already (e.g. in most countries, it is the best journals that are
the most prestigious publication outlets, in particular when research evaluations and
selections for positions are performed) although the set of focused workshops and
conferences is very important, especially for PhD candidates to get feedback from
the research community quickly enough for it to be useful towards their PhD thesis.
It is also useful for a discipline like Information Systems and Information Systems
Engineering, which deals with designed (and not natural) artifacts in interaction
with human reality to have robust mechanism to build arenas for bringing people
together to bring the research ahead. In particular for new research directions it is
not sufficient to only read each other works in scientific journals; discussion and
interaction are needed.

The paper published in CACM also lists a number of reasons for having
conferences [2]:

1. To rate publications and researchers.
2. To disseminate new research results and ideas.
3. To network, gossip, and recruit.
4. To discuss controversial issues in the community.

In most fields, items 2, 3 and partly 4 are most important, although also the first
is relevant as we have seen.

On the other hand, an increasing number of conferences in the Information
Systems area are emerging, focusing either on general topics or on more specialized
issues. The challenge therefore is not only to have a conference to provide an
interesting discussion environment, but also a conference that is considered a high
quality forum for exchanging ideas and meeting other researchers.

In an attempt to compare conferences in the Computer Science domain, the
position of the conference in international rankings can be taken into consideration.
Ranking also give criteria for such evaluations that can be considered as goals for
a top level conference. For instance, in his web site,1 Osmar R. Zaı̈ane lists the
following criteria: “based on general reputation of the conference in the field, the
citation of the papers published in the conference, reputation of program committee
members and reputation of the review process. : : : Top conferences are known for
their impact history and their rigorous review process. They should be equivalent, if
not superior in impact and prestige, to reputable journals”.

1http://webdocs.cs.ualberta.ca/�zaiane/htmldocs/ConfRanking.html

454

http://webdocs.cs.ualberta.ca/~zaiane/htmldocs/ConfRanking.html

The Future of CAiSE

In the most comprehensive list of relevant conferences,2 published by The
Computing Research and Education Association of Australasia (CORE), CAiSE
is rated as a top conference, a position which we should work to keep.

As indicated above there are several indicators that can be taken into considera-
tion in the evaluation of a conference. For community-building, one possible metric
is the ratio attendants/papers. Another important point here is that the conference
is relatively focused as for topics. A conference accepting papers across a large
number of areas will seldom be central to a specific community. As for value for
researchers, the review process is also important, with a well managed reviewing
process that provides constructive feedback to the authors, both for accepted and
rejected papers. One can also look at impacts (as for citations). Although not on the
same level as for the top journals, the best conferences have an H-index on the same
level as the second-best journals (the numbers below are from ‘Journal Impact on
Publish or Parish (based on google scholar)’. The data quality might differ between
different events, based on how consistently they are referenced though. Here also
some SE-outlets are included (the best computing journals have an H-index in the
area of 200–300):

• EJIS-journal: 81
• IST-journal: 80
• ICSE-conference: 73
• CAiSE-conference: 66 based on conference papers (73 if you include papers in

special issues)
• JAIS-journal: 66
• ICIS-conference: 58
• CAIS-journal: 57

Apart from noticeable impact as indicated above, how is CAiSE doing so far?

– Community gathering: In total the number of participants to the conference has
been around 200 with around 40 papers to the main conference. Many of the
those not having a role in the conference do have other roles though, e.g., in
the Forum or in Workshops, thus we should work to make the conference even
more attractive as a community event (e.g. have possibilities to arrange meetings
for related activities, as in the case of the IFIP 8.1 Working Group, which since
many years has had its business meeting at the conference). On mix of focus and
development, [3] writes: “Over time, CAiSE manages to not only retain authors
who are working on the established ideas of the conference, but also to attract
new authors who would bring fresh ideas to the community. A comparison of the
returning rating of CAiSE authors and their contributions to other conferences
shows that CAiSE now retains a healthy fraction of recurring authors in order to
keep the community open.” Thus we can argue that there is a logical place for

2http://core.edu.au/index.php/categories/conference%20rankings/1

455

http://core.edu.au/index.php/categories/conference%20rankings/1

J. Krogstie et al.

Accepted full % accepted

50

45

40

35

30

25

20

15

10

5

0

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

Fig. 1 Submission and
acceptance rates

ISE, merging the more technical SE area with the more business oriented SE area
as also concluded by [3].

– A top conference should have good possibilities for interaction (e.g., long
discussions, special interactive sessions, doctoral consortium etc.). This should
also have a positive impact for conferences and workshop that would be less
prestigious as independent events: for instance, whereas the main paper sessions
in CAiSE has been relatively traditional, the workshops such as EMMSAD are
organized with a format where each paper is discussed over a 45 min slot in which
the main presentation is only half of this time, thus providing more interaction. So
does the forum, both types of events being able to also support the dissemination
of more novel ideas. Controversial issues for the community are openly addressed
in panel sessions in the main conference.

– A top conference should have a rigorous review process that ensures fair review
and detailed review comments to all authors. In CAiSE for instance, three usually
quite comprehensive reviews are provided from members of the international
program committee. A member of the program board then looks on the reviews,
and supports a discussion among the reviewers where there are differences in
the ratings. Based on the reviews and further discussions, the program board
and program committee members select the papers to be accepted in a program
board meeting going over 2 days. Papers with novel ideas that are not thoroughly
validated yet to be accepted for the main conference might be proposed for either
the forum or one of the workshops.

– Impact: A top level conference typically has a 20 year C history, and it is also
cited quite a lot. A top level conference would thus be expected to have a H-
index above 50. As we mentioned above, this is valid for e.g. CAiSE (and other
top IS and SE conferences).

– A top level conference should have low acceptance rate (<20). Figure 1 shows
an illustration of the development of acceptance figures for CAiSE over the years.

456

The Future of CAiSE

Whereas acceptance rate until 2004 was around 25 %, over the last years it has
been below 15 % (which some might argue is even a bit too low).

2 Future Plans

In terms of the future, the CAiSE environment provides a set of significant features
that show a promising, successful future. Modern IT requirements recognize more
than ever the importance of Engineering Information Systems correctly. It is not
just a matter of “Software”. Information Systems design and implementation cover
all the facets of our society, and new challenges appear continuously. CAiSE is
intended to be the natural forum where past, present and future of Information
Systems Engineering should be properly discussed and explored.

While keeping a top quality level – including both an academic perspective
and the practical applications – is already a must for CAiSE, it is also remarkable
the friendly atmosphere that has been created during this 25-years old trip. When
a sound and rigorous scientific environment is linked to a friendly and pleasant
working environment, centered around a relatively well-defined topic area the
working context as a whole becomes much richer. This is happening year after year
with CAiSE, and this is part of the conference idiosyncrasy that every organizer is
committed to preserve and reinforce.

Incorporating young, brilliant researchers to the community is another “must”
for the CAiSE community. It is well recognized how important it is to balance
the experience of seniors with the enthusiasm of juniors. The quality required by
the Scientific Committees of the conference requires also to open the community
to different countries. From its initially European conception, the very next future
will continue broadening the CAiSE influence to the rest of the world, reinforcing
continuously the already relevant participation of scientists from America, Asia,
Australia, and Africa.

There are many other tasks to accomplish. Improving and adapting the con-
ference format with the new times, using extensively the capabilities of social
networks, exploring advance channels of publication of papers, providing a journal-
based style for the CAiSE audience : : : Many new ideas to explore to show to the
community the sound compromise of fitting the requirements of our modern IT-
oriented society. Our CAiSE community has a real potential to make all these goals
come true, through the accumulated amount of people and knowledge that is ready
to explore new ways being fully respectful with all the experience accumulated in
the past. This is by far the most important legacy of these 25 years of history. We
have a very strong basis to face new challenges.

Summarizing, from the hard and brilliant work that so many people have done
in this 25 exciting years, CAiSE has the exciting challenge of becoming the most
top-ranked international conference of Information Systems Engineering. We are all
committed to this task, and you are all invited to share the CAiSE adventure with us
for – at the very least – the next 25 years.

457

J. Krogstie et al.

References

1. Pham, M.C., Klamma, R., and Jarke, M. (2011) Development of computer science disciplines:
a social network analysis approach. Social Netw. Analys. Mining, 1(4):321–340.

2. Fortnow L. (2011) CACM Viewpoint: Time for computer science to grow up, Communications
of the ACM, Vol. 52 No. 8, Pages 33–35

3. Jarke, M., Pham, M.C., and Klamma, R. (2013) Evolution of the CAiSE Author Community:
A Social Network Analysis. This book, Chapter 2, Springer.

458

	Preface
	Contents
	The CAiSE Adventure
	1 Prelude
	2 Considerations in Forming the CAiSE Framework
	2.1 Was There a Need for a New Conference Series?
	2.2 Was There a Sufficient Strong Research Basis That Could Be Tapped Into?
	2.3 Location: Should We Go for a Regional Conference or a Global Conference?
	2.4 Timing: Winter, Spring, Summer or Autumn Conference?
	2.5 How to Organize the Continuity of a Conference Series?
	2.6 How to Publish the Papers?

	3 The First Conference
	4 The Following Conferences
	5 Seminal Contributions of 25 Years of CAiSE
	6 Other Outcomes of CAiSE
	7 The New CAiSE
	8 Singing at CAiSE
	9 Conclusion

	Evolution of the CAiSE Author Community: A Social Network Analysis
	1 Introduction
	2 Methods and Data
	2.1 The Development Model
	2.2 Data: DBLP and CiteSeerX

	3 Development of CAiSE Community
	3.1 The Position of CAiSE in Computer Science
	3.2 Evolution of Author Community Membership
	3.3 The Evolution of Connectivity in CAiSE
	3.4 Main Themes and Key Members of the CAiSE Author Community

	4 Conclusion
	References

	A NATURAL LANGUAGE APPROACH FOR REQUIREMENTS ENGINEERING
	1. Introduction
	2. The linguistic approach
	2.1 Intuitive introduction to analysts problem solving behaviour
	2.2 The Fillmore's case system
	2.3 Specialization of the Fillmore's case system
	2.3.1 The case classification
	2.3.2 The linguistic patterns
	Elementary patterns
	Sentence patterns

	2.4 Conceptual schema generation

	3. Conceptual schema validation and paraphrasing
	3.1 Principle of natural language generation
	3.2 The OICSI paraphrasing process

	4. Implementation overview
	4.1 The conceptual schema generation process
	4.2 The paraphrasing process

	5. Conclusion
	References

	Conceptual Modeling and Natural Language Analysis
	1 The Initial Paper and Related Works
	2 Generation of Models from NL Input Texts
	References

	The Three Dimensions of Requirements Engineering
	1 Introduction
	2.1 The Desired output
	2.2 The Initial Input of the Process

	3 The Three Dimensions of Requirements Engineering
	3.1 The Specification Dimension
	3.2 The Representation Dimension
	3.3 The Agreement Dimension

	4 The RE Process within the Three Dimensions
	5 Computer Support for Requirements Engineering
	5.1 Specification Dimension
	5.2 Representation Dimension
	5.3 Agreement Dimension
	5.4 Process Modeling
	5.5 Easing the Influences on RE

	6 Conclusions
	Acknowledgments
	References

	The Three Dimensions of Requirements Engineering: 20 Years Later
	1 The Three Dimensions of Requirements Engineering (1993)
	2 The Three Dimensions and Their Application (1994)
	3 Evolution of the Three Dimensions (2012)
	4 Comprehensive Framework for Requirements Engineering
	5 Our Comprehensive Textbook
	6 RE Certification by IREB
	References

	Towards a Deeper Understanding of Quality in Requirements Engineering
	1 Introduction
	2 Review and Comparison
	2.1 Lindland/Sindre/Sølvberg's Framework
	2.2 Pohl's Framework
	2.3 Overall comparison and critique

	3 Framework extensions
	3.1 Background on social construction
	3.2 Extended framework
	4 Concluding Remarks

	References

	20 Years of Quality of Models
	1 Background for the Original Model
	2 Later Developments
	3 Future Directions
	References

	MetaEdit+ A Fully Configurable Multi-User and Multi-Tool CASE and CAME Environment
	1. Introduction
	2. Related Research
	2.1 Lack of Method Integration Mechanisms
	2.2 Insufficient Multi-User Support
	2.3 Insufficient Support for Multiple Representation Paradigms
	2.4 Lack of Method Modifiability and Evolution
	2.5 Lack of Information Retrieval and Computational Facilities
	2.6 Summary

	3. The MetaEdit+ Environment
	3.1 General Architecture
	3.2 Tool Architecture

	4. Conceptual Data Model
	4.1 The OPRR Model
	4.2 Extensions in the GOPRR Model
	Concept of Graph
	Object Orientation
	Method Integration
	Integrity Checking Rules

	4.3 Example

	5. Method Management Tools
	5.1 Motivation and Purpose of the Method Management Tools
	5.2 Design Principles of Method Management Tool Family
	The Method Assembly System
	Environment Generation System

	5.3 An Example of a Method Specification

	6. Discussion and Conclusions
	Bibliography

	MetaEdit+ at the Age of 20
	1 Introduction
	2 Past and Current Research Issues
	3 MetaEdit=+ at Age 20
	3.1 Research Impact
	3.2 Industry Reception and Practical Impact

	4 Summary
	References

	00-METHOD: An 00 Software Production Environment Combining Conventional and Formal Methods
	1. Introduction
	2. The 00-Method Approach
	3. The Methodology
	3.1 Conceptual model
	Object Model
	Dynamic Model
	State Transition Diagram
	Object Interaction Diagram

	Functional Model

	3.2 Execution Model
	3.3 Code generation strategy

	4. The 00-Method CASE Tool
	5. Conclusions
	References

	The Conceptual Model Is The Code. Why Not?
	1 Introduction
	2 Model-Driven Development in Practice: The “ModelIs the Code” Versus “The Code Is the Model”
	3 The OO-Method Approach: Past, Present and Future
	4 What Is Next?
	5 Conclusions
	References

	Architecture and Quality in Data Warehouses
	1 Introduction
	2 The Architecture of a Data Warehouse
	2.1 Three Perspectives of Data Warehouse Meta Data
	2.2 A Notation for Data Warehouse Architecture
	2.3 Conceptual Perspective
	2.4 Logical Perspective
	2.5 Physical Perspective

	3 Managing Data Warehouse Quality
	3.1 Stakeholders in Data Warehouse Quality
	3.2 From Architecture to Quality

	4 Related Work
	5 Discussion and Conclusions
	6 References

	Data Warehouse Architecture and Quality:Impact and Open Challenges
	1 Data Quality and Enterprise Integration
	2 Data Warehouse Process Engineering
	3 Automated Model Management
	4 Beyond Data Warehouses
	References

	Time Constraints in Workflow Systems
	1 Introduction
	2 Workflow Model and Time Constraints
	3 Workflow Representation
	4 Build-Time Calculations
	4.1 Fixed-Date Constraints
	4.2 Lower-Bound Constraints
	4.3 Upper-Bound Constraints

	5 Calculations at Process Instantiation Time
	6 Time Management at Run-Time
	6.1 General Computations
	6.2 Schedules

	7 Related Work
	8 Conclusions
	References

	Workflow Time Management Revisited
	1 Introduction
	2 Time Constraints in Workflow Systems
	3 Temporal Aspects in Workflows
	4 Conclusions
	References

	Adaptive and Dynamic Service Composition in eFlow
	1 Introduction and Motivations
	2 Overview of eFlow
	3 Adaptive Service Processes
	3.1 Dynamic Service Discovery
	3.2 Multiservice Nodes
	3.3 Dynamic Service Node Creation

	4 Dynamic Service Process Modifications
	4.1 Ad-hoc Changes
	Ad-hoc Changes to the Process Schema
	Case migration operations
	Consistency rules
	Migration semantics

	Modifications to the Process State

	4.2 Bulk Changes
	4.3 Security in Dynamic Process Modifications

	5 Related Work
	6 Conclusions
	References

	Promises and Failures of Research in Dynamic Service Composition
	1 Dynamic Workflows
	2 Dynamic Service Composition
	3 Lessons Learned
	References

	On Structured Workflow Modelling
	1 Introduction
	2 Structured Workflows: Definitions
	3 Equivalence in the Context of Control Flow
	4 From Arbitrary Workflow Models to SWMs
	4.1 Simple Workflows without Parallelism
	4.2 Workflows with Parallelism but without Loops
	4.3 Workflows with Parallelism and Loops
	4.4 Suitability of Transformations

	5 Restricted Loops
	6 Conclusions
	References

	The Structured Phase of Concurrency
	1 Introduction to Concurrency
	2 The Structured Phase
	3 State of the Art
	3.1 Research: Methods and Techniques
	3.2 Industry: Products and Standards

	4 Expectations and Recommendations
	References

	A Requirements-Driven Development Methodology
	1 Introduction
	2 A Case Study
	3 Early Requirements with i*
	4 Late Requirements Analysis
	5 Architectural Design
	6 Detailed Design
	7 Generating an Implementation
	8 Conclusion and Discussion
	References

	The Evolution of Tropos
	1 Introduction
	2 Formal Analysis
	3 Architectures and Patterns
	4 Methods and Techniques
	5 Conclusions
	References

	The P2P Approach to Interorganizational Workflows
	1 Introduction
	2 Designing the Public Workflow (Step 1)
	3 Partitioning the Public Workflow (Step 2)
	4 Designing the Private Workflows (Step 3)
	5 Summary and Main Results
	6 Related Work and Conclusions
	References

	Reflections on a Decade of Interorganizational Workflow Research
	1 Introduction
	2 From Process Orchestrations to Process Choreographies
	2.1 Formal Investigations
	2.2 Modeling and Impact

	3 Correctness-by-Construction Versus Service Mining
	References

	Database Schema Matching Using Machine Learning with Feature Selection
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 The Overall Approach
	3.2 Formalization of the Problem
	3.3 The Attribute Dictionary and the Scoring Function
	3.4 Optimal Schema Matching

	4 Optimal Selection of Dictionary Values
	4.1 Mutual Information
	4.2 Information Gain
	4.3 Likelihood Ratio

	5 Experimentation
	5.1 Setting Up the Experiment
	5.2 Measuring Performance
	5.3 Interpreting the Results

	6 Conclusion
	Acknowledgement
	References

	Automatch Revisited
	1 Virtual Databases
	2 The Challenge
	3 Impact and Future
	References

	Data Integration under Integrity Constraints
	1 Introduction
	2 Framework for Data Integration
	3 Query Answering in the Presence of Constraints
	4 General Description of the Approach
	5 Query Reformulation
	6 Conclusions
	References

	Rewrite and Conquer: Dealing with Integrity Constraints in Data Integration
	1 Introduction
	2 Historical Perspective
	3 First-Order Rewritability
	4 Datalog-Based Approach: Tractable Query Answering
	References

	Automated Reasoning on Feature Models
	1 Introduction and Motivation
	2 Extending Feature Models with Extra–Functional Features
	2.1 Feature Models
	2.2 Extended Feature Models
	2.3 A Notation for Extended Feature Models

	3 Mapping Extended Feature Models onto CSP
	3.1 Preliminaries
	3.2 The Mapping

	4 Automated Reasoning on Extended Feature Models
	4.1 Number of Products
	4.2 Filter
	4.3 Products
	4.4 Validation
	4.5 Optimum Products

	5 Realising the Benefits
	5.1 Variability
	5.2 Commonality

	6 Implementation
	7 Conclusion and FurtherWork
	References

	Automated Analysis of Stateful Feature Models
	1 Original Contribution
	2 Impact and Evolution
	3 Automated Analysis of Feature Models
	4 Automated Analysis of Stateful Feature Models
	5 Breakthroughs, Challenges and Applications
	References

	Change Patterns and Change Support Features in Process-Aware Information Systems
	1 Introduction
	2 Backgrounds
	3 Change Patterns
	3.1 Adaptation Patterns
	3.2 Patterns for Predefined Changes

	4 Change Support Features
	4.1 Schema Evolution, Version Control and Instance Migration
	4.2 Other Change Support Features

	5 Change Patterns and Change Support in Practice
	6 Related Work
	7 Summary and Outlook
	References

	Process Change Patterns: Recent Research, Use Cases, Research Directions
	1 Introduction
	2 Background: Process Change Patterns
	3 Recent Research on Process Change Patterns
	4 Characteristic Use Cases for Change Patterns
	4.1 Supporting Process Changes Along the Process Life Cycle
	4.2 Assessing and Designing Process Change Frameworks

	5 Research Directions
	References

	Measuring Similarity between Business Process Models
	1 Introduction
	2 Background on EPCs
	3 Similarity of Behavior
	3.1 Deriving the Causal Footprint of an EPC
	3.2 Similarity of Causal Footprints

	4 Matching Functions
	4.1 Determine the Semantic Similarity Score between Two Functions
	4.2 Determine a Semantic Match between Two Functions
	4.3 Determine a Semantic Mapping between All Functions
	4.4 Contextual Similarity

	5 Empirical Validation
	6 Related Work
	7 Conclusion
	References

	A Short Survey on Process Model Similarity
	1 Introduction
	2 The Challenge of Process Model Similarity
	3 Underlying Notions for Process Model Similarity Calculation
	4 Process Model Matching
	5 Process Model Search and Indexing
	6 Future Research on Process Model Similarity
	References

	How Much Language Is Enough? Theoretical and Practical Use of the Business Process Modeling Notation
	1 Introduction
	2 Background
	2.1 Introduction to BPMN
	2.2 Data Sources
	2.3 Research Design

	3 Analysis and Discussion
	3.1 Overall Use of BPMN Constructs
	3.2 Frequency Distribution of BPMN Constructs
	3.3 BPMN Construct Correlations
	3.4 BPMN Construct Clusters
	3.5 Core or Extended Set?
	3.6 Complexity of BPMN Models
	3.7 Variety of BPMN Subsets
	3.8 The Common Core of BPMN

	4 Contributions, Limitations, and Outlook
	References

	We Still Don't Know How Much BPMN Is Enough, But We Are Getting Closer
	1 Motivation and Genesis of Paper
	2 Impact on Industry
	2.1 Reception in Practice: Feedback by Practitioners
	2.2 Practical Impact: The US Department of Defense
	2.3 Method Impact: Shaping BPMN 2.0 Conformance Classes
	2.4 Application: Conformance Classes in Practice

	3 Academic Research on the Use of Process Modeling Notations
	4 Insights
	References

	The Future of CAiSE
	1 The CAiSE Experience and the Changing World of Publications
	2 Future Plans
	References

