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Abstract. We present active object categorization experiments with a real hu-
manoid robot. For this purpose, the training algorithm of a recurrent neural net-
work with parametric bias has been extended with adaptive learning rates. This
modification leads to an increase in training speed. Using this new training al-
gorithm we conducted three experiments aiming at object categorization. While
holding different objects in its hand, the robot executes a motor sequence that
induces multi-modal sensory changes. During learning, these high-dimensional
perceptions are ‘engraved’ in the network. Simultaneously, low-dimensional PB
values emerge unsupervised. The geometrical relation of these PB vectors can
then be exploited to infer relations between the original high dimensional time
series characterizing different objects. Even sensations belonging to unknown ob-
jects can be discriminated from known (learned) ones and kept apart from each
other reliably. Additionally, we show that the network tolerates noisy sensory
signals very well.

Keywords: Active Perception, RNNPB, Humanoid Robot.

1 Introduction

Motor actions determine the sensory information that agents receive from their envi-
ronment. Combining sensory and motor processes dynamically facilitates many tasks,
one of those being object classification.

The intention of this experiment is to provide a neuroscientifically and philosophi-
cally inspired model for what do objects feel like? For this purpose, we stress the active
nature of perception within and across modalities. According to the sensorimotor con-
tingencies theory [1], actions are fundamental for perception and help to distinguish the
qualities of sensory experiences in different sensory channels (e.g. ‘seeing’ or ‘touch-
ing’). O’Regan and Nog actually suggest that “seeing is a way of acting” [1]. Exactly
this is mimicked in our computational study.

It has been shown that if the fruit fly drosophila cannot recognize a pattern it starts
to move [2]. It is also known that flies use motion to visually determine the depth of
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perceived obstacles [3]]. Similarly, pigeons bob their heads up and down to recover depth
information [4]. Not only living beings, but robots too are embodied 5], and they have
the ability to act and to perceive. In the presented experiments the robot actually needs
to act to perceive the objects it holds in its hand. The action-driven sensations are guided
by the physical properties of its body, the world and the interplay of both.

A humanoid robot moves toy bricks up and down and rotates them back and forth,
while holding them in its hand. The induced multi-modal sensory impressions are
used to train a modified version of a recurrent neural network with parametric bias
(RNNPB), originally developed by Tani and Ito [6]. The robot is able to self-organize
the contextual information and in turn, to use this learned sensorimotor knowledge for
object classification. Due to the overwhelming generalization capabilities of the recur-
rent architecture, the robot is even able to correctly classify unknown objects. Further-
more, we show that the proposed model is very robust against noise.

2 Theory

Despite its intriguing properties, the recurrent neural network with parametric bias has
hardly been used by anybody other than the original authors. Mostly, the architecture is
utilized to model the mirror neuron system [7/8]]. Here we apply the variant proposed by
Cuijpers et al. [8] using an Elman-type structure [9] at its core. Furthermore, we modify
the training algorithm to include adaptive learning rates for training of the weights, as
well as the PB values. This results in an architecture that is more stable and converges
faster.

2.1 Storage

The recurrent neural network with parametric bias (an overview of the architecture un-
folded in time can be seen in Fig.[Il) can be used for the storage, retrieval and recognition
of sequences. For this purpose, the parametric bias (PB) vector is learned simultane-
ously and unsupervised during normal training of the network. The prediction error
with respect to the desired output is determined and backpropagated through time using
the BPTT algorithm [9]]. However, the error is not only used to correct all the synaptic
weights present in the Elman-type network. Additionally, the error with respect to the
PB nodes 6"'P is accumulated over time and used for updating the PB values after an
entire forward-backward pass of a single time series, denoted as epoch e. In contrast
to the synaptic weights that are shared by all training patterns, a unique PB vector is
assigned to each individual training sequence. The update equations for the ¢-th unit of
the parametric bias pb for a time series of length T is given as:

T

pile+1) = pile) +7 Y _orp, (1)
t=1

pb;(e) = sigmoid(p;(e)) , )

where 7y is the update rate for the PB values, which in contrast to the original version
is not constant during training and not identical for every PB unit. Instead, it is scaled
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Fig. 1. Network architecture. The Elman-type Recurrent Neural Network with Parametric Bias
(RNNPB) unfolded in time. Dashed arrows indicate a verbatim copy of the activations (weight
connections set equal to 1.0). All other adjacent layers are fully connected. ¢ is the current time
step, 1" denotes the length of the time series.

proportionally to the absolute mean value of prediction errors being backpropagated to
the i-th node over time 7'
T
> oid
t=1

The other adjustable weights of the network are updated via an adaptive mechanism,
inspired by the resilient propagation algorithm proposed by Riedmiller and Braun [10].
However, there are decisive differences. First, the learning rate of each neuron is ad-
justed after every epoch. Second, not the sign of the partial derivative of the corre-
sponding weight is used for changing its value, but instead the partial derivative itself
is taken.

To determine if the partial derivative of weight w;; changes its sign we can compute:

OE;; OE;;

i = t—1
i 8w“( ) 811)1‘]‘

: 3)

(t) )

If €;; < 0, the last update was too big and the local minimum has been missed. There-
fore, the learning rate 7;; has to be decreased by a factor £~ < 1. On the other hand, a
positive derivative indicates that the learning rate can be increased by a factor £+ > 1
to speed up convergence. This update of the learning rate can be formalized as:

max(n;;(t — 1) - &, Nmin) if €5 <0,
Nij (t) = min(mj (t — 1) . er, nmaz) if €55 > 0, (&)
7 (t —1) else.

The succeeding weight update Aw;; then obeys the following rule:

Aw;j(t) = { —Aw;(t —1) ifei; <0, ©

aEij
73 (¢) - wy, (t) else.
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In addition to reverting the previous weight change in the case of ¢;; < 0 the partial
derivative is also set to zero (gi; (t) = 0). This prevents changing of the sign of the
derivative once again in the succeeding step and thus a potential double punishment.

We use a nonlinear activation function with parameters recommended by LeCun et
al. [1]] for all neurons in the network, as well as for the PB units (Eq.[2):

2
sigmoid(x) = 1.7159 - tanh (3 : :c) . 7

2.2 Retrieval

The PB vector is usually low dimensional and resembles bifurcation parameters of a
nonlinear dynamical system, i.e. it characterizes fixed-point dynamics of the RNN.
During training the PB values are self-organized, thereby encoding each time series
and arranging it in PB space according to the properties of the training pattern. This
means that the values of similar sequences are clustered together, whereas more dis-
tinguishable ones are located further apart. Once learned, the PB values can be used
for the generation of the time series previously stored. For this purpose, the network
is operated in closed-loop mode. The PB values are ‘clamped’ to a previously learned
value and the forward pass of the network is executed from an initial input I(0). In
the next time steps, the output at time ¢ serves as an input at time ¢ + 1. This leads
to a reconstruction of the training sequence with a very high accuracy (limited by the
convergence threshold used during learning).

2.3 Recognition

A previously stored (time) sequence can also be recognized via its corresponding PB
value. Therefore, the observed sequence is fed into the network without updating any
connection weights. Only the PB values are accumulated according to Eq. [I] and
using a constant learning rate -y this time. Once a stable PB vector is reached, it can be
compared to the one obtained during training.

2.4 Generalized Recognition and Generation

The network has substantial generalization potential. Not only previously stored se-
quences can be reconstructed and recognized. But, (time) sequences apart from the
stored patterns can be generated. Since only the PB values but not the synaptic weights
are updated in recognition mode, a stable PB value can also be assigned to an unknown
sequence.

For instance, training the network with two sine waves of different frequencies allows
cyclic functions with intermediate frequencies to be generated simply by operating the
network in generation mode and varying the PB values within the interval of the PB
values obtained during training. Furthermore, the PB values obtained during recognition
of a previously unseen sine function with an intermediate frequency (w.r.t. the training
sequences) will lie within the range of the PB values acquired during learning. Hence,
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Fig.2. Generalized recognition of trained and untrained sequences. The PB values of the
two trained 2-D time series using Eq. Bl with 6 = 90 and 6 = 180, respectively, are marked
using white circles. In contrast, the PB values obtained by feeding the network with untrained
sequences generated with varying 6 values are drawn as black dots. These values are arranged in
a structured way, emphasizing the self-organization of the PB space.

the network is able to capture a reciprocal relationship between a time series and its
associated PB value.

These generalized recognition and generation capabilities of the modified RNNPB
are demonstrated in a more complex example. For this purpose, consider the 2-D sinu-
soidal sequences described by the following equation:

T\ _ s [08 0 —sin 0\ (sin 7' ®
To sin 6 cos 6 cos 7{;

Plotting 1 vs. 2 results in a figure-eight shape that is rotated according to the angular
value specified by 6. Two 2-D time series of length ¢ = 25 were generated using 8 = 90
and 6§ = 180, respectively. In contrast to the robot experiments presented below, the
network only has a single PB unit.

After training, the network is able to recognize those sequences based on their trained
PB values (PBg.g9 = —0.01107 and PBy.150 = —0.65604), which differ only by a
small amount (eg.g0 = 0.0005 and €g.150 = 0.002) from the ones obtained during
storage. The PB values of the two trained sequences are plotted in Fig. [2 using white
circular markers. Next to the trained sequences, the network is also fed with novel,
previously untrained, sequences. These are generated using Eq.[§l with varying 6 values.
The network also generates stable PB values for those unknown sequences (black dots
in Fig.2)). It can be seen that the PB values are ordered according to the angular value of
the underlying time series. This reciprocal relationship can be used to infer the angular
value of a sequence generated with an unknown 6 value. Thus, varying the PB value
results in a rotation of the figure-eight shape.
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2.5 Evaluation of the Adaptive Learning Rate

To evaluate the adaptive learning rate proposed in Sec. 2.1 artificial 1-D test data of
length T = 11 in the interval [—m; 7| is generated using the following equations:

x =sin(t), )

sin(3t) - sin(¢)
x = 02 0.5. (10)
Eq.[Qlis referred to as sin and Eq.[[0las s inc. Except for the following differences, the
RNNPB network parameters were identical to the parameters of the robot experiments
(see below). The architecture contained only one input and one output node, as well as

only one PB unit. The convergence criterion was set to 10™%.

2.6 Network Parameters for Robot Experiments

Based on systematic empirical trials, the following parameters have been determined
for our experiments. The network contained two input and two output nodes, 24 hid-
den and 24 context neurons as well as 2 PB units. The convergence criterion for back
propagation through time (BPTT) was set to 10~ in the first, and 10~ in the second
experiment. For recognition of a sequence, the update rate v of the PB values was set to
0.1. The values for all other individual adaptive learning rates (Eq.[3) during training of
the synaptic weights were allowed to be in the range of 1,5, = 1072 and 7,40 = 50;
depending on the gradient they were either increased by £T = 1.01 or decreased by a
factor §~ = 0.9.

3 Scenario

The humanoid robot Nad s programmed to conduct the experiments (Fig. 3la). The
task for the robot is to identify which object (toy brick) it holds in its hand. In total
there are eight object categories that have to be distinguished by the robot: the toy bricks
have four different shapes (circular-, star-, rectangular- and triangular-shaped), of which
each exists in two different weight versions (light and heavy). Hence, for achieving a
successful classification multi-modal sensory impressions are required. Additionally,
active perception is necessary to induce sensory changes essential for discrimination of
—depending on the perspective— similar looking shapes (e.g. star- and circular-shaped
objects). For this purpose, the robot performs a predefined motor sequence and simul-
taneously acquires visual and proprioceptive sensor values.

3.1 Data Acquisition

The recorded time series comprises 14 sensor values for each modality. In each single
trial the robot turns its wrist with the object between its fingers by 45.8 © back and forth

! http://www.aldebaran-robotics.com
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Fig. 3. Scenario. a) Toy bricks in front of the humanoid robot Nao. The toy bricks exist in four
different shapes, have an identical color and are either light-weight (15 g) or heavy (50 g). This
results in a total of eight categories that have to be distinguished by the robot. b) Rotation move-
ment with the star-shaped object captured by the robot camera. In the upper row the raw camera
image is shown, whereas the bottom row depicts the preprocessed image that is used to compute
the visual features.

twice, followed by lifting the object up and down three times (thereby altering the pitch
of the shoulder joint by 11.5 ©) and, finally, turning it again twice.

After an action has been completed, the raw image of the lower camera of the Nao
robot is captured, whereas the electric current of the shoulder pitch servo motor is
recorded constantly (sampling frequency 10 Hz) over the entire movement interval. For
each object category 10 single trial time series are recorded in the described way and
processed in real-time. This yields 80 bi-modal time series in total.

3.2 Data Processing

For the proprioceptive measurements only the mean values are computed for the time
intervals in between movements. The visual processing, on the other hand, involves
several steps (Fig.[3b), which are accomplished using OpenCV [12]. First, the raw color
image is converted to a binary image using a color threshold. Next, the convex hull is
computed and, based on that, the contour belonging to the toy brick is extracted [13].
For the identified contour the first Hu moment is calculated [14]]. Finally, the visual
measurements are scaled to be within the interval [—0.5,0.5].

3.3 Training and Test Data

For testing, the data of single trials are used, i.e. 10 2-D time series per object category
(one dimension for each modality). However, for training, a prototype is determined for
each object category and modality (Fig. ). To obtain this subclass representative, the
mean value of pooled single trials, with regard to identical object properties, is com-
puted. This means that, for instance, all circular-shaped objects are combined (n = 20)
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Fig. 4. Training data. The mean values of the two weight conditions (light and heavy, top) and
the four visual conditions (matching symbols, bottom) are shown. These mean time series are
used as prototypes for training the RNNPB. Vertical gray shaded areas represents the up and
down movement, whereas back and forth movements are unshaded. The area surrounding the
signals delineates two standard deviations from the mean.

and used to compute the visual prototype for circular-shaped objects. To find the pro-
prioceptive prototype for e.g. all heavy objects, all individual measurements with this
property (n = 40) are aggregated and used to calculate the mean value at each time
step. The subclass prototypes are then combined to form a 2-D multi-modal time series
that serves as an input for the recurrent neural network during training.
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4 Results

4.1 Evaluation of the Adaptive Learning Rate

To evaluate the improvements caused by introduction of the adaptive learning rate as
described in Sec.[2.]] an RNNPB was trained 1000 times with two 1-D sequences (Eq.
[0 and [T0). The results are statistically evaluated using a t-test. To compensate for the
sample size bias, the optimal sample size was determined based on the mean value and
the standard deviation of the data. This optimal sample size was used to draw 10,000
random subsets of the data, which were subsequently evaluated to obtain an average
p-value for the t-test. The results are summarized in Tab.[Il The modifications lead, on
average, to a 22-fold speedup of the training times (¢t(5) = —17.13, p = 0.000) for this
particular example. Also the number of recognition steps has improved significantly
(t(20) = —3.55, p = 0.002). However, no significant changes of the retrieval accuracy
measured with the mean squared error (MSE) can be found.

Table 1. Statistical evaluation of the adaptive learning rate. Mean values and standard deviations
are shown, significant changes (t-test, p < 0.005) are marked bold.

Modified Classical

RNNPB RNNPB Factor
Total steps 5,520 (£1,713) 122,709 (£20,027) 22.2
Total time 34 5 (£10) 751 s (£124) 22
MSE sin 43 x 1074 (£1.2 x 107%) 5.5 x 1074 (£3 x 1074
MSE sinc 47 x 1074 (£8.7x 1074 1.9 x 107*(£1.9 x 1074 -
R iti
stepse 192 (+85) 284 (£101) 1.48

Plotting the average MSE against the number of steps needed until the convergence
criterion is reached, further highlights the drastic improvement in speed (Fig.[3). The
error, shown separately for both sequences, decreases for both algorithms in a simi-
lar manner. However, the adaptive version looks ‘compressed’ in comparison to the
classical algorithm. In addition, the fluctuations are reduced, indicating a more stable
behavior of the modified RNNPB.

4.2 Classification Using All Object Categories for Training

In the first experiment the modified recurrent neural network with parametric bias was
trained with the bi-modal prototype time series of all eight object categories (Sec. 3.3).
During training, the PB values for the respective categories emerged in an unsupervised
way. This means, the two-dimensional PB space self-organizes based on the inherent
properties of the sensory data that was presented to the network. Hence, objects with
similar dynamic sensory properties are clustered together. This can be seen in Fig.|6l For
instance, the learned PB vectors representing star- and circular-shaped objects, either
light-weight (white symbol) or heavy (black symbol), are located in close proximity,
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Fig.5. Error plot comparing classical (left) to modified (right) RNNPB. The mean squared
error (MSE) of the sin sequence is shown in black, whereas the average MSE of the sinc
sequence is drawn in gray.
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Fig. 6. Classification using all object categories for training. PB values are depicted using
white (light-weight) and black (heavy) symbols matching the corresponding shape. Large sym-
bols represent the class prototypes used for training. Smaller symbols depict PB values obtained

during testing with bi-modal single trial data. If the objects have not been correctly classified,
they are shown gray.

whereas the PB values coding for the triangular-shaped objects are positioned more
distantly. This is due to the deviating visual sensory impression they generate (Fig. H)).
The experiment has been repeated several times with different random initializations of
the network weights. However, the obtained PB values of the different classes always
demonstrate a comparable geometric relation with respect to each other.

To demonstrate the retrieval properties (Sec. 2.2) of the fully trained architecture,
the PB values acquired during training were ‘clamped’ to the network. Operating the
network in closed-loop mode showed that the input sequences used for training can be
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Fig. 8. Steps until stable PB values are reached. Bi-modal sensory sequences for all light-
weight and heavy objects (represented by matching symbols in light and dark gray, respectively)
are consecutively fed into the network. The time courses of PB value 1 (solid line) and PB value
2 (dashed line) during the recognition process are plotted.

retrieved with a very high accuracy. As an example this is shown in Fig. [7] (left) for the
heavy star-shaped object.

The steps needed until stable PB values are reached, which in turn can be used for
recognition, are illustrated in Fig.[8] The bi-modal sensory sequences for all light-weight
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and heavy objects were fed consecutively into the network. On average it took less than
100 steps (about 200 ms on a contemporary desktop computer) until the PB values con-
verged. The convergence criterion was set to 20 consecutive iterations where the cumu-
lative change of both PB values was < 107°. To assure that the PB values reached a
stable state, this number has been successfully increased to 100,000 consecutive steps
in preliminary experiments (not shown). Note, that the network and PB values was not
reinitialized when the next sensory sequence was presented to the network. Thus, the
robot can continuously interact with the toy bricks and is able to immediately recognize
an object based on its sensorimotor sequence.

For testing, the network was operated in generalized recognition mode (Sec. 2.4).
Single trial bi-modal sensory sequences were presented to the network that in turn pro-
vided an ‘identifying’ PB value. The class membership, i.e. which object the robot holds
in its hand and how heavy this object is, was then determined based on the minimal Eu-
clidean distance to the PB values of the class prototypes (large symbols). In Fig. [0l the
PB values of all 80 single trial test patterns are depicted.

Only 4 out of 80 objects are misclassified (shown in gray), yielding an error rate
of 5 %. Interestingly, only star- and circular-shaped objects are confused by the net-
work, which indeed generate very similar sensory impressions (cf. Fig. d). To assess
the meaning of the error rate and estimate how challenging the posed problem is, we
evaluated the data with two other commonly used techniques in machine learning. First,
we trained a multi-layer perceptron (28 input, 14 hidden and one output unit) with the
prototype sequences. Testing with the single trial data resulted in an error rate of 46.8 %,
reflecting weaker generalization capabilities of the non-recurrent architecture. Next, we
trained and evaluated our data with a support vector classifier (SVC) using default pa-
rameters [[15]. In contrast, this method is able to classify the data perfectly.

4.3 Classification Using Only the Light Circular-Shaped and the Heavy
Triangular-Shaped Object for Training

In the second experiment, only the bi-modal prototypes for the light circular- and heavy
triangular-shaped objects were used to train the RNNPB. Although, the absolute PB
values obtained during training differ from the ones being determined in the previous
experiment, their relative Euclidean distance in PB space is nearly the same (1.39 vs.
1.35), stressing the data-driven self-organization of the parametric bias space.

For testing, initially only the bi-modal sensory time series matching the two training
conditions were fed into the network, thereby determining their PB values. Using the
Euclidean distance subsequently to obtain the class membership resulted in a flawless
identification of the two categories.

Further evaluation of the single trial test data was performed in two stages. In a primary
step the remaining test data was presented to the network and the respective PB values
were computed (generalized recognition, Sec.[2.4)). Despite not having been trained with
prototypes for the remaining six object categories, the network is able to cluster PB values
stemming from similar sensory situations, i.e. identical object categories. In a succeeding
step we computed the centroid for each class (mean PB value) and classified again based
on the Euclidean distance. This time only two single trial time series were misclassified
by the network (error rate 2.5 %). The results are shown in Fig.
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Fig. 9. Classification using only the light circular-shaped and the heavy triangular-shaped
object for training. PB values of the class prototypes and the a posteriori computed cluster
centers of the untrained object categories are depicted using larger symbols that match the objects
shape. Smaller symbols are used for PB values of sensory data of single trials. If the objects have
not been classified correctly they are shown in gray, otherwise white is used for light-weight and
black for heavy-weight objects.

The generalization potential (Sec. 2.4) of the architecture is presented in Fig. []
(right) for the heavy star-shaped object. For this purpose, the mean PB values (centroid
of the respective class) were clamped to the network, which was operated in closed-
loop mode. The network had only been trained with the light circular- and the heavy
triangular-shaped object. Still, it was possible to generate sensory predictions for unseen
objects, e.g. the heavy star-shaped toy brick, that match the real sensory impressions
fairly well.

4.4 Noise Tolerance

Based on the network weights that had been obtained in experiment 2 (training the
RNNPB only with the bi-modal prototypes for the light circular- and heavy triangular-
shaped objects), we evaluated the noise tolerance of the recurrent neural architecture.
For this purpose, uniformly distributed noise of increasing levels was added to the visual
prototype time series (Fig.[10).

Even high levels of noise allow for a reliable linear discrimination of the two classes.
Furthermore, the PB values of increasing noise levels show commonalities and are clus-
tered together, again providing evidence for a data-driven self-organization of the PB
space. Thus, determining the Euclidean distance of the PB values obtained from the
noisy signals to the class representatives enables not only the class membership to be
determined, it also allows the noise level to be estimated with respect to the prototypical
sensory impression. It also can be show that the network tolerates noise added to the
time series of both modalities very well [L6].
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Fig. 10. Noise tolerance. On the right uniformly distributed noise of increasing levels (grayscale
coded) is added to the visual prototype time series for the light-weight circle and the heavy
triangle. The PB values are determined and marked with a matching symbol. The white circle
and large black triangle show the PB values obtained during training without noise. On the left
the impact of the noise level is shown exemplarily for the visual prototype time series of the
circular shape.

5 Discussion

By introducing modifications to the learning algorithm of the RNNPB we were able
to achieve a significant 22-fold increase in speed (Tab. [I}) for the storage of two 1-D
signals. It was also confirmed that the storage and retrieval of those time series was
stable and that learning converged in a well-behaved manner (Fig. [§). Admittedly, the
storage of other sequences with e.g. a different dimensionality, length or dynamic, may
well result in a different performance outcome.

After confirming flawless operation of the training algorithm we conducted three ex-
periments aiming at object categorization. While holding different objects (Sec.[3)) in its
hand, the robot executes a motor sequence that induces multi-modal sensory changes.
During learning these high-dimensional perceptions are ‘engraved’ in the network. Si-
multaneously, low-dimensional PB values emerge unsupervised, coding for a sensori-
motor sequence characterizing the interplay of the robot with an object. We show that
2-D time series of length T' = 14 can be reliably represented by a 2-D PB vector and
that this vector allows learned sensory sequences to be recalled with a high accuracy
(Fig.[7 left). Furthermore, the geometrical relation of PB vectors of different objects
can be used to infer relations between the original high dimensional time series, e. g.
the sensation of a star-shaped object ‘feels’ more like a circular-shaped object than a
triangular-shaped one. Due to the experimental noise of single trials, identical objects
cause varying sensory impressions. Still, the RNNPB can be used to recognize those
(Fig.[6). Additionally, sensations belonging to unknown objects can be discriminated
from known (learned) ones. Moreover, sensations arising from different unknown ob-
jects can be kept apart from each other reliably (Fig.[0).
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Comparing the classification results of the fully trained RNNPB with the SVC re-
veals a superior performance of the support vector classifier. Nevertheless, it has to be
kept in mind that the maximum margin classifier cannot be used to generate or retrieve
time series. Interestingly, the error rate is lower if the recurrent network is only trained
with two object categories (Sec.[4.3). A potential explanation, besides random fluctu-
ations, could be that during training a common set of weights has to be found for all
object categories. This process presumably interferes, due to the challenging input data,
with the self-organization of the PB space.

A drawback of the presented model is that it currently operates on a fixed motor
sequence. It would be desirable if the robot performed motor babbling [17] leading
not only to a self-organization of the sensory space, but to a self-organization of the
sensorimotor space. A simple solution to this problem would be to train the network
additionally with the motor sequence most appropriate for an object, i.e. reflecting its
affordance [18]. This would lead to an even better classification result because the motor
sequences themselves would help to distinguish the objects from each other and, thus,
the emerging PB values would be arranged further apart in PB space (conversely, this
means currently it does not make sense to train the network with the identical motor
sequences in addition). However, that does not address the fact that the robot should
identify the object affordances, the movements characterizing an object, by itself.

In related research, Ogata ef al. also extract multi-modal dynamic features of ob-
jects, while a humanoid robot interacts with them [[19]. However, there are distinct dif-
ferences. Despite using fewer objects in total, the problem posed in our experiments
is considerably harder. Our toy bricks have approximately the same circumference and
identical color. Furthermore, they exist in two weight classes with an identical in-class
weight that can only be discriminated via multi-modal sensory information. We provide
classification results, compare the results to other methods (MLP and SVC) and eval-
uate the noise tolerance of the architecture. In addition, only prototype time series are
used for training (in contrast to using all single-trial time series), resulting in a reduced
training time. Further, it is demonstrated that, if the network has already acquired senso-
rimotor knowledge of certain objects, it is able to generalize and provide fairly accurate
sensory predictions for unseen ones (Fig.[Z right).

There are several potential applications of the presented model. As shown in Fig.[1Q,
the network tolerates noise very well. This fact can be exploited for sensor de-noising.
Despite receiving a noisy sensory signal, the robot still will be able to determine the PB
values of the class representative based on the Euclidean distance. In turn, these values
can be used to operate the RNNPB in retrieval mode (Sec.[2.2)), generating the noise-free
sensory signal previously stored, which then can be processed further. In fact, Kording
and Wolpert suggested that the central nervous system combines, in nearly optimal
fashion, visual, proprioceptive and other sensory information to overcome sensory and
motor noise [20]. Next to their Bayesian framework an RNNPB might also be a possible
way to model this ‘de-noising” happening in the brain.

In conclusion, we present a promising framework for object classification based on
action-driven perception implemented on a humanoid robot. The underlying design
principles are rooted in neuroscientific and philosophical hypotheses.
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