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Abstract. We conduct an experimental study of the effects of manipulations
(i.e., dishonest behaviors) including those of manipulation by annexation and
merging in weighted voting games. These manipulations involve an agent or
agents misrepresenting their identities in anticipation of gaining more power at
the expense of other agents in a game. Using the well-known Shapley-Shubik
and Banzhaf power indices, we first show that manipulators need to do only
a polynomial amount of work to find a much improved power gain, and then
present two enumeration-based pseudopolynomial algorithms that manipulators
can use. Furthermore, we provide a careful investigation of heuristics for annex-
ation which provide huge savings in computational efforts over the enumeration-
based method. The benefits achievable by manipulating agents using these
heuristics also compare with those of the enumeration-based method which serves
as upper bound.

Keywords: Agents, Weighted voting games, Annexation, Merging, Power in-
dices.

1 Introduction

False-name manipulation in weighted voting games (WVGs), which involves an agent
or some agents misrepresenting their identities in anticipation of power increase, has
been identified as a problem. The menace can take different forms. With manipulation
by annexation, an agent, termed, an annexer, takes over the voting weights of some
agents in a game. Power is not shared with the annexed agents. Forming an alliance or
manipulation by merging involves voluntary merging of weights by two or more agents
to form a single bloc [2,13,18]. Merged agents expect to be compensated with their
share of the power gained by the bloc. The agents whose voting weights are taken over
or merged into a bloc are referred to as assimilated agents. The only difference between
merging and annexation is that, in merging, the assimilated agents must be compensated
for their participation by sharing of the power, while in annexation, only the annexer is
compensated for the participation of the group. Annexed agents are assumed to either
voluntary forfeit their weight or be compensated on a one-time basis that is not related
to power. Thus, power increase is much easier to achieve with annexation.

WVGs are classic cooperative games which provide compact representation for coali-
tion formation models in human societies and multiagent systems. Each agent in a WVG
has an associated weight. A subset of agents whose total weight is at least the value of

J. Filipe and A. Fred (Eds.): ICAART 2012, CCIS 358, pp. 364–378, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Manipulation of Weighted Voting Games via Annexation and Merging 365

a specified quota is called a winning coalition. The weights of agents in a game cor-
respond to resources or skills available to the agents, while the quota is the amount of
resources or skills required for a task to be accomplished. For example, in search and
rescue, robotic agents put their resources (i.e., weights) together in large natural disaster
environments to reach the necessary levels (i.e., quota) to save life and property.

The relative power of each agent reflects its significance in the elicitation of a win-
ning coalition. A widely accepted method for measuring such relative power in WVGs
uses power indices. Two prominent power indices for measuring power are the Shapley-
Shubik [23] and the Banzhaf [6] power indices. WVGs can be viewed as a form of com-
petition among agents to share the available fixed power whose total value is always
assumed to be 1. Agents may thus resort to manipulation by annexation or merging to
improve their influence in anticipation of gaining more power. With the possibility of
manipulation, it becomes difficult to establish or maintain trust, and more importantly,
it becomes difficult to assure fairness in such games.

This paper continues the work of [2,13,18,19] on annexation and merging in WVGs.
We first extend the framework of [18] on susceptibility of power indices to manipula-
tion by annexation and merging in WVGs to consider a much improved power gain for
manipulators. Then, we propose and evaluate heuristics that manipulating agents may
employ to engage in such manipulations using the two power indices. Consider a WVG
of n agents. The simulation of [18] is based on a random approach where some agents,
say k < n, in the game are randomly selected to be assimilated in annexation or to form
a voluntary bloc of manipulators in merging. This simple random approach shows that,
on average, annexation can be effective for manipulators using the two power indices to
compute agents’ power. These results also show that merging only has a minor effect on
the power gained for manipulators using the Shapley-Shubik index, while it is typically
non-beneficial (i.e., no power is gained) for manipulators using the Banzhaf index.

Restricting the number of agents in the blocs of assimilation or merging as employed
in the simple random simulation of [18], we show that manipulators need to do only a
polynomial amount of work to find a much improved power gain over the random ap-
proach during manipulation. Given that the problem of computing the Shapley-Shubik
and Banzhaf indices of agents is already NP-hard [21,22], pseudopolynomial or approx-
imation algorithms [7,9,21] are available to compute agents’ power. We then present
two pseudopolynomial-time enumeration algorithms that manipulators may use to find
a much improved power gain. We empirically evaluate our enumeration approach for
manipulation by annexation and merging in WVGs. Our method is shown to achieve
significant improvement in benefits over previous work for manipulating agents in sev-
eral numerical experiments. Thus, unlike the simple random simulation of [18] where
merging has little or no benefits for manipulators using the two power indices, results
from our experiments suggest that manipulation via merging can be highly effective.

The remainder of the paper is organized as follows. Section 2 provides some pre-
liminaries. In Section 3, we provide visual illustrations of manipulation in WVGs to
give some insights into why it is difficult to predict how to merge. We present our
pseudopolynomial-time manipulation algorithms for annexation and merging in Section
4. Section 5 presents results of evaluation of the manipulation algorithms. In Sections
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6, we present heuristics for annexation in WVGs. Section 7 discusses related work and
we conclude in Section 8.

2 Preliminaries

2.1 Weighted Voting Games

Let I = {1, · · · , n} be a set of n agents and the corresponding positive weights of the
agents be w = {w1, · · · , wn}. Let a coalition S ⊆ I be a non-empty subset of agents. A
WVG G with quota q involving agents I is represented as G = [w1, · · · , wn; q]. We
assume that w1 ≤ w2 ≤ . . . ≤ wn. Denote by w(S), the weight of a coalition, S,
derived as the summation of the weights of agents in S, i.e., w(S) =

∑
j∈S wj . A

coalition, S, wins in game G if w(S) ≥ q, otherwise it loses. WVGs belong to the class
of simple voting games. In simple voting games, each coalition, S, has an associated
function v : S → {0, 1}. The value 1 implies a win for S and 0 implies a loss. So,
v(S) = 1 if w(S) ≥ q and 0 otherwise.

2.2 Power Indices

We provide brief descriptions of the two power indices we use in computing agents’
power in WVGs. For further discussion, we refer the reader to [12,17].

Shapley-Shubik Power Index

The Shapley-Shubik index quantifies the marginal contribution of an agent to the grand
coalition (i.e., a coalition of all the agents). Each permutation (or ordering) of the agents
is considered. We term an agent pivotal in a permutation if the agents preceding it
do not form a winning coalition, but by including this agent, a winning coalition is
formed. Shapley-Shubik index assigns power to each agent based on the proportion of
times it is pivotal in all permutations. We specify the computation of the index using no-
tation of [2]. Denote by π, a permutation of the agents, so π : {1, . . . , n} → {1, . . . , n},
and byΠ the set of all possible permutations. Denote by Sπ(i) the predecessors of agent
i in π, i.e., Sπ(i) = {j : π(j) < π(i)}. The Shapley-Shubik index, ϕi(G), for each
agent i in a WVG G is

ϕi(G) =
1

n!

∑

π∈Π

[v(Sπ(i) ∪ {i})− v(Sπ(i))]. (1)

Banzhaf Power Index

An agent i ∈ S is referred to as being critical in a winning coalition, S, if w(S) ≥ q and
w(S\{i}) < q. The Banzhaf power index computation for an agent i is the proportion
of times i is critical compared to the total number of times any agent in the game is
critical. The Banzhaf index, βi(G), for each agent i in a WVG G is given by

βi(G) =
ηi(G)

∑
j∈I ηj(G)

(2)

where ηi(G) is the number of coalitions for which agent i is critical in G.
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2.3 Annexation and Merging in Weighted Voting Games

Felsenthal and Machover [13] consider a real life example of annexation where a share-
holder buys the voting shares of some other shareholders in a firm in order to use them
for her own interest. Clearly, this action allows the manipulator to possess more shares
and makes it easier for her to affect the outcomes of decisions in the firm. Yokoo et al.,
[25] have also considered false-name manipulation in open anonymous environments
which they refer to as collusion. Like in merging, collusion involves many agents acting
as a single agent. They have shown that the manipulation can be difficult to detect in
such environments. Thus, the increase use of online systems (such as trading systems
and peer-to-peer networks, where WVGs are also applicable) means that annexation
or merging remains an important challenge that calls for attention. We now provide a
formal definition of manipulation by annexation and merging in WVGs.

Let G be a WVG. Let Φ be either of Shapley-Shubik or Banzhaf power index. We
denote the power of an agent i in G by Φi(G). Also, consider a coalition C ⊆ I , we
denote by &C a bloc of assimilated voters formed by agents in C. We say that a power
index Φ is susceptible to manipulation whenever a WVG G is altered by an agent i
(in the case of annexation or by some agents in the case of merging) and such that
there exists a new game G′ where Φi(G

′) > Φi(G). In other words, Φ is susceptible to
manipulation when the power of the agent in the altered game is more than its power in
the original game.

Definition 1. Manipulation by Annexation.

Let agent i alter game G by annexing a coalition C (i /∈ C assimilates the agents in C
to form a bloc &(C∪{i})). We say that Φ is susceptible to manipulation via annexation
if there exists a new game G′ such that Φ&(C∪{i})(G′) > Φi(G); the annexation is
termed advantageous. The factor of increment by which the annexer gains is given by
Φ&(C∪{i})(G′)

Φi(G) . If Φ&(C∪{i})(G′) < Φi(G), then the annexation is disadvantageous.
We provide an example to illustrate annexation in WVG. The annexer and assimi-

lated agents are all shown in bold.

Example 1. Annexation in Weighted Voting Game.

Let G = [12, 16, 18, 19, 23, 26, 43, 46, 50; 195] be a WVG. The Banzhaf power index
of agent 1 with weight 12 is β1(G) = 0.026. Suppose the agent annexes agents 3 and 4
with weights 18 and 19 respectively. An assimilated bloc of weight 49 is formed in the
new game G′ = [16, 23, 26, 43, 46, 49, 50; 195]. The new Banzhaf power index of the
annexer β6(G

′) = 0.177 > β1(G). The agent gains from the annexation and increases
its power index by a factor of 0.177

0.026 = 6.81.

Definition 2. Manipulation by Merging.

Let a manipulators’ coalition, S, alter G by merging into a bloc &S. We say that Φ
is susceptible to manipulation via merging if there exists a new game G′ such that
Φ&S(G

′) >
∑

j∈S Φj(G); the merging is termed advantageous. The factor of increment

by which the manipulators gain is given by Φ&S(G
′)∑

j∈S Φj(G)
. If Φ&S(G

′) <
∑

j∈S Φj(G),
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then the merging is disadvantageous. The agents in a bloc formed by merging are as-
sumed to be working cooperatively and have transferable utility. For the sake of sim-
plicity in our analysis, we also refer to the factor of increment as power gain or benefit.

Example 2 illustrates manipulation by merging in a weighted voting game.

Example 2. Merging in Weighted Voting Game.

Let G = [12, 16, 18, 19, 23, 26, 33, 40, 45; 155] be a WVG. The last four agents in the
game are designated as would-be manipulators. The Banzhaf indices of these agents
are: β6(G) = 0.116, β7(G) = 0.142, β8(G) = 0.174, and β9(G) = 0.200. So,
∑9

j=6 βj(G) = 0.632. Suppose the agents decide to merge their weights. A bloc of
weight 144 is formed in the new game G′ = [12, 16, 18, 19, 23, 144; 155]. The Banzhaf
power index of the bloc β6(G

′) = 0.861 > 0.632. The manipulators gain from the
merging and increase their power indices by a factor of 0.861

0.632 = 1.36.

3 Visual Description of Manipulation by Annexation and Merging
in Weighted Voting Games

We provide visual description of manipulation by annexation and merging in WVGs to
further explain the intricases of what goes on during manipulation. We use the Shapley-
Shubik power index for this illustration. Consider a WVG of three agents denoted by
the following patterns: Agent 1 ( ), Agent 2 ( ), and Agent 3 ( ). The weight of
each agent in the game is indicated by the associated length of the pattern. A box in
the pattern corresponds to a unit weight. Suppose all permutations (or ordering) of the
three agents are given as shown in Figure 1 where we vary the values of the quota of
the game from q = 1 to q = 6. The Shapley-Shubik indices of the three agents are also
computed from the figure and shown in the associated table of the figure. These power
indices for the agents in the game correspond to using various values of the quota for
the same weights of the agents in the game.

Consider the case of manipulation by merging where Agent 1 and Agent 3 merge
their weights to form a new agent, say Agent X. In this situation, Agent 1 and Agent
3 cease to exist since they have been assimilated by Agent X. Thus, we have only two
agents (Agent X and Agent 2) in the altered WVG. Figure 2 shows the results of the
merging between Agent 1 and Agent 3. Consider the cases when the quota of the game
is 1 or 6, the power of the assimilated agents for Agent X from Figure 1 shows that
Agent 1 and Agent 3 each has a power of 1

3 for a total power of 2
3 . Whereas, the power

of Agent X which assimilates these two agents in the two cases is each 1
2 < 2

3 . On the
other hand, the power of the manipulators stays the same for the cases where the quota
is either 2 or 5. Specifically, the sum of the powers of Agent 1 and Agent 3 is 1

2 for
these cases. This is also true of Agent X for these cases. Finally, for the cases where the
quota of the game is either 3 of 4, the power of Agent X is 1 which is greater than 5

6 ,
the sum of the powers of Agent 1 and Agent 3 in the original game. Note the difficulty
of predicting what will happen when manipulators engage in merging.

Now, suppose Agent 1 annexes Agent 3 instead of the merging between the two
agents as described earlier, then Agent 3 ceases to exist as shown in Figure 3. In this
case, Agent 1’s power does not decrease. Felsenthal and Machover [12] have already
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Fig. 1. Six permutations of three agents and corresponding power indices of the agents for various
values of quota from q = 1 to q = 6

Fig. 2. Manipulation by merging between Agent 1 and Agent 3 (from Figure 1) to form a new
Agent X. The power indices of Agent X and Agent 2 as computed by Shapley-Shubik index after
the merging for various values of the quota is also shown.

shown that annexation is never disadvantageous for an annexer using the Shapley-
Shubik power index. However, that is not the case when the annexer uses the Banzhaf
power index. This they have dubbed the bloc paradox.

4 Manipulation Algorithms for Annexation and Merging

4.1 Overview

We propose an enumeration approach for manipulation by annexation and merging in
WVGs using the two power indices to compute agents’ power. To begin with, we re-
call that the problem of calculating the Shapley-Shubik and Banzhaf indices is NP-
hard and admit pseudopolynomial algorithms using generating functions or dynamic
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Fig. 3. Manipulation by annexation where Agent 1 assimilates Agent 3 (from Figure 1). The new
power indices of Agent 1 as computed by Shapley-Shubik index after the annexation for various
values of the quota is also shown.

programming [7,9,21]. Given that the problem of computing the two indices is already
NP-hard, and only pseudopolynomial or approximation algorithms are available to com-
pute agents’ power, it is reasonable that the manipulation algorithms we propose are also
pseudopolynomial since we necessarily need to use these indices in computing agents’
benefits during manipulation.

4.2 Manipulation Algorithm for Merging

The brute force approach to determine a coalition that yields the most improved benefit
in merging in a WVG is to simply enumerate all the possible coalitions of agents in
the game and then compute the benefit for each of these coalitions. We can then output
the coalition with the highest value. Unfortunately, enumerating all the possible coali-
tions is exponential in the number of agents. Also, computing the power indices naively
from their definitions means that we have two exponential time problems to solve. We
provide an alternative approach.

Let procedure PowerIndex(G, i) be a pseudopolynomial algorithm for computing the
power index of an agent i in a WVG G of n agents for Shapley-Shubik or Banzhaf index
according to any of [7,9,21]. We first use PowerIndex(G, i) as a subroutine in the con-
struction of a procedure, GetMergeBenefit(G,S). Procedure GetMergeBenefit(G,S)
accepts a WVG G and a would-be manipulators’ coalition, S. It first computes the sum
of the individual power index of the assimilated agents in S using PowerIndex(G, i).
Then, it alters G by replacing the sum of the weights of the assimilated agents in G
with a single weight in a new game G′ before computing the power of the bloc &S in
G′. Finally, GetMergeBenefit(G,S) returns the factor of increment of the merged bloc
&S. Let A(G) be the pseudopolynomial running time of PowerIndex(G, i). Now, since
|S| ≤ |I| = n, procedure GetMergeBenefit(G,S) takes at most O(n·A(G)) time which
is pseudopolynomial.

We now use GetMergeBenefit(G,S) to construct an algorithm that manipulators can
use to determine a coalition that yields a good benefit in merging. We first argue that
manipulators tend to prefer coalitions which are small in size because they are easier to
form and less likely to be detected. Also, intra-coalition coordination, communication,
and other overheads increase with coalition size. Thus, we suggest a limit on the size
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of the manipulators’ coalitions since it is unrealistic and impractical that all agents in a
WVG will belong to the manipulators’ coalition. This reasoning is consistent with the
assumptions of the previous work on annexation and merging [2,18] as well as coali-
tion formation [24]. We note, however, that limiting the manipulators coalitions’ size
this way does not change the complexity class of the problem as finding the coalition
that yields the most improved benefit remains NP-hard.

Consider a WVG of n agents. Suppose the manipulators’ coalitions, S, have a limit,
k < n, on the size of the members of the coalitions, i.e., S, are bounded as 2 ≤ |S| ≤
k. In this case, the number of coalitions that the manipulators need to examine is at most
O(nk) which is polynomial in n. Specifically, the total number of these coalitions is:

(
n
2

)

+

(
n
3

)

+ · · ·+
(
n
k

)

=
k∑

j=2

(
n
j

)

. (3)

So, we have

k∑

j=2

(
n
j

)

=

k∑

j=2

n(n− 1) · · · (n− j + 1)

j!

≤
k∑

j=2

nj

j!

≤
k∑

j=2

nj

2j−1

=
n2

21
+

n3

22
+ · · ·+ nk

2k−1
= O(nk).

Running GetMergeBenefit(G,S) while updating the most1 improved benefit found so
far from each of these coalitions requires a total running time of O(nk · A(G)) which
is pseudopolynomial, and thus becomes reasonable to compute.

4.3 Manipulation Algorithm for Annexation

Our pseudopolynomial manipulation algorithm for annexation provides a modification
of the merging algorithm. We first replace GetMergeBenefit(G,S) with another pro-
cedure, GetAnnexationBenefit(G, i, S). GetAnnexationBenefit(G, i, S) accepts a WVG
G, an annexer, i, and a coalition S to be assimilated by i. The procedure then returns
the factor of increment of the assimilated bloc &(S ∪ {i}).

We use GetAnnexationBenefit(G, i, S) to construct an algorithm that the annexer can
use to determine the coalition that yields the most improved benefit in annexation. The

1 We refer to the most improved benefit among the O(nk) polynomial coalitions and not from
the original 2n coalitions since we have restricted each manipulators’ coalition size to a con-
stant k < n.
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method of construction of the algorithm is the same as that of the manipulation algo-
rithm for merging with the exception that we add the weight of an annexer i to the
weight of each coalition S and compare the power index Φ&(S∪{i})(G′) of the assim-
ilated bloc in a new game G′ to the power index Φi(G) of the annexer in the original
game G. The annexer examines a polynomial number of coalitions of the agents assum-
ing a limit k < n on the size of each coalition. Since the annexer belongs to a coalition
it annexes, the total number of coalitions examined by the annexer is:

(
n− 1
1

)

+ · · ·+
(
n− 1
k − 1

)

=

k−1∑

j=1

(
n− 1
j

)

. (4)

Bounding this equation using similar approach as in Equation 3 shows that Equation
4 is O(nk). Thus, as before, the manipulation algorithm for annexation also runs in
pseudopolynomial time, with a total running time of O(nk ·A(G)).

5 Evaluation of the Manipulation Algorithms

We first argue that the simple random simulation of [18] for manipulation by annexation
and merging is unintelligent. Thus, it is impractical that strategic agents would employ
such method to engage in manipulation [19]. This is because simply guessing a partic-
ular coalition from among all the exponential possible coalitions provides a rare chance
for strategic agents to benefit in both manipulation by annexation and merging. We note
also that this chance of success by the manipulators decreases as the number of agents
in a game becomes large. Now, since it is impractical to exhaustively consider all the
exponential possible coalitions, we have presented two pseudopolynomial manipulation
algorithms where we have restricted the sizes of coalitions to be considered by the ma-
nipulators to a constant k which is less than the number n of the agents in the game. Our
idea is for the manipulators to sacrifice optimality for good merging or annexation. By
doing so, the manipulation algorithms potentially bypass a lot of search. Although, the
manipulation algorithms are incomplete, nonetheless, they consider more search space
than the simple random approach, and hence, are guaranteed to find a much improved
factor of increment than the simple random simulation of [18].

We perform experiments to confirm the above hypothesis. First, we make a sim-
ple modification to the random simulation of [18] which provides manipulators with
higher average factor of increment. The modification involves the selection of the best
factor of increment from three random choices (which we refer to as the best-of-three
method). We compare results of our enumeration-based method with those of the best-
of-three method. We randomly generate WVGs. The weights of agents in each game
are chosen such that all weights are integers and drawn from a normal distribution,
N(μ, σ2), where μ and σ2 are the mean and variance. We have used μ = 50 and val-
ues of standard deviation σ from the set {5, 10, . . . , 40}. When creating a new game,
the quota, q, of the game is randomly generated such that 1

2w(I) < q ≤ w(I), where
w(I) is the sum of the weights of all agents in the game. The number of agents, n, in
each of the original WVGs is chosen uniformly at random from the set {10, 11, . . . , 20}
while the number of assimilated agents k is uniformly chosen at random from the set
{5, 6, . . . , 10}.
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Fig. 4. The average factor of increment for merging for the enumeration and best-of-three meth-
ods using various values of size of bloc divided by the number of agents in the games

We have used a total of 500 original WVGs for each experiment and compute the
average factor of increments over the entire set of games for the two power indices. The
evaluation is carried out for the proportion of agents in manipulators’ blocs and the
variance of the weights of agents in the WVGs. We have implemented efficient exact
polynomial methods of computing the Shapley-Shubik and Banzhaf indices for integer
weights using generating functions [7,9] which can be exponential-time in complexity
in the worst case.

We first present the results of the case of manipulation by merging and then provide
discussion on the results of manipulation by annexation. Figure 4 shows the benefits
from merging for both the best-of-three and enumeration-based methods using the two
indices. The x-axes indicates the proportion of agents in the manipulators’ bloc (i.e.
|S|
|I| =

k
n ) whose factor of increment were reported while the y-axes are the average fac-

tor of increment achieved by manipulating agents in those coalitions. For the Shapley-
Shubik power index, Figure 4(a) shows that manipulating agents achieved improved
power using the enumeration approach than using the best-of-three method. There are
cases where the manipulators achieved more than 2.4 times as much as the original
power for the enumeration method, and in general the average factor of increment
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Fig. 5. The average factor of increment for merging for the enumeration and best-of-three meth-
ods using different variances of agents’ weights

is between 1.5 and 2.7 times the original power of the manipulators. Whereas, the
best-of-three method has only minor effects for the manipulators as the average fac-
tors of increment in these tests are below 1.3. Similar trends between the enumeration
and best-of-three methods are observed for the case of Banzhaf index too (See Figure
4(b)). However, the average factor of increment is lower for the two methods using the
Banzhaf index. On average, merging does not appear to significantly improve power
using the best-of-three method for either the Shapley-Shubik or Banzhaf index, and in
most cases is harmful for the agents. We conclude that since improvement in power over
the best-of-three method can be achieved with only a polynomial amount of work, then,
manipulators are more likely to seek a much improved power gain in merging using the
enumeration-based approach.

Figure 5 provides further comparison of the enumeration and best-of-three meth-
ods for the two indices using different variances of agents’ weights. It is clear from
both Figures 5(a) and 5(b) that irrespective of the variances in the weights of agents
in the games, the enumeration method is better in all cases. As before, the figures also
show that on average, the best-of-three method does not appear to improve average
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factor of increment. Finally, for the case of manipulation by annexation and for both the
Shapley-Shubik and Banzhaf indices, the impovement in power achieved by manipulat-
ing agents using the enumeration method is by far more than those achieved using the
best-of-three method.

6 Heuristics for Annexation and Merging in WVGs

Unlike the manipulation algorithms for annexation and merging of Section 4 where we
have n and k as the number of agents and the number of assimilated agents in a WVG,
manipulating agents may not be interested in achieving the most improved power gain
among the O(nk) polynomial coalitions described before. This is because the number
of these coalitions may be large even for small values of n and k. Thus, we propose
heuristics that agents may use for annexation in WVGs. Considering the basic require-
ments for a good heuristic as its ease of computation and to be as informative as possible
[14], the heuristics we propose are designed to first avoid the enumeration approach of
the manipulation algorithms in Section 4. Second, we avoid the unintelligent simple
random approach of [18] to ensure that our heuristics provide good information for
manipulating agents to make decisions on how to annex in WVGs.

6.1 Annexation Heuristics

We recall the definition of annexation in Section 2 and from [2,13], the power of the
assimilated bloc in an altered WVG is compared to the power of the annexer in the
original game. By this definition, intuition suggests that annexation should always be
advantageous. This intuition is indeed true using the Shapley-Shubik index to compute
agents’ power. However, there exist situations where annexation is disadvantageous
for the annexer using the Banzhaf index. See [2,3,13] for examples of WVGs where
annexation is disadvantageous for the annexer using the Banzhaf index. This case where
annexation results in power decrease for the annexer is refer to as the bloc paradox [13].

Again, recall from Equation 4 that an annexer needs to examine a polynomial num-
ber of assimilated coalitions of size at most k − 1 to find the most improved power
gain among these coalitions whose sizes we have restricted to k. We note also that the
assimilated coalitions with maximal weights among these coalitions are those of sizes
k − 1. Thus, it is enough for a particular annexer to check only the assimilated coali-
tions of size exactly k − 1 in order for the annexer to find the coalition with the most
improved benefit using the two power indices. This indeed is the case for the Shapley-
Shubik index. For the case of Banzhaf index, we conduct a test to check the highest
factor of increment among all the coalitions of 2, 000 different WVGs. We found that
the coalitions with maximal weights (i.e., those having sizes of k− 1) yield the highest
possible factor of increment in over 82% of the games. The remaining highest factor of
increment are archieved by manipulators’ blocs with lower number of agents in them. In
none of these two situations do we experience the bloc paradox. This suggests that the
bloc paradox for the Banzhaf power index may be a rare phenomenon in practice.

There are only

(
n− 1
k − 1

)

such assimilated coalitions to be considered by this an-

nexer. As seen, the amount of work carried out by the annexer is still polynomial,
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however, this heuristic requires smaller computational effort compared to that of the
enumeration-based method and thus makes it more useful in practice. We can even do
better using the idea in the following heuristic:

MaximalWeights Heuristic:
Given: A WVG of n agents with a distinguished annexer i.
Procedure: Since agents’ weights are given in ascending order, let agent i annex
the last k − 1 agents from the remaining n− 1 agents in the game.

As before, letA(G)be the pseudopolynomial running time of Shapley-Shubik or Banzhaf
power index of an agent according to [7,9]. The running time of the MaximalWeights
heuristic is O(n + A(G)). Here is a brief analysis. We just need to sum the weights of
the last k − 1 agents from the remaining n− 1 agents to that of the annexer at a cost of
O(k). In the worst case, it takes O(n) to sum the weights when k = n, i.e., the annexer
is able to annex all the remaining n− 1 agents. Computing the power of the annexer in
each of the original and altered games takes O(A(G)). Therefore, the total running time
of the heuristic is O(n + A(G)). Now, apart from the fact that this heuristic appears to
find the most improved gain, its running time is by far less than the O(nk · A(G)) run-
ning times of the manipulation algorithm for annexation of Subsection 4.3 and the above
heuristic especially when k is large. Thus, the MaximalWeights heuristic is more useful
in practice for the annexer.

7 Related Work

Weighted voting games and power indices are widely studied [8,12,17]. Prominent real-
life situations where WVGs have found applications include the United Nations Secu-
rity Council, the International Monetary Fund [1,20], the Council of Ministers, and
the European Community [12]. The need to compensate agents from jointly derived
payoff in WVGs has also necessitated the assignment of power to players. A widely
accepted method for measuring power of agents in WVGs uses power indices. Fair-
ness in the assignment of power to players in a game is also a concern of most of the
power indices. The two most prominent and widely used power indices are Shapley-
Shubik [23] and Banzhaf [6] power indices. Other power indices found in the liter-
ature include Deegan-Packel [10], Johnsoton [16], and Holler-Packel [15] power in-
dices. Computing the Shapley-Shubik and Banzhaf power indices of players in WVGs
is NP-hard [22]. The power indices of voters using any of Shapley-Shubik and Banzhaf
power indices can be computed in pseudo-polynomial time using dynamic program-
ming [21]. Efficient exact algorithms using generating functions [7,9] also exist for
both the Shapley-Shubik and Banzhaf power indices for WVGs where the weights of
all agents are restricted to integers. There are also approximation algorithms [5,11] for
computing the Shapley-Shubik and Banzhaf power indices in WVGs.

Felsenthal and Machover [12,13] originally studied annexation and alliance (or merg-
ing) in WVGs. They consider when the blocs formed by annexation or merging are
advantageous or disadvantageous. They show that using the Shapley-Shubik index, it
is always advantageous for a player to annex some other players in the game. How-
ever, this is not true for Banzhaf power index. Furthermore, they show that merging
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can be advantageous or disadvantageous for the two power indices. In contrast to our
work, they do not consider the extent to which the agents involved in annexation or
merging may gain, which we study in this paper. Aziz et al. [2], have also considered
the computational aspects of the problem of annexation and merging in WVGs. They
show that determining if there exists a beneficial merge in a WVG is NP-hard using
both the Shapley-Shubik and Banzhaf indices. The same is also true for determining
the existence of beneficial annexation using the Banzhaf index.

8 Conclusions

We investigate the effects of manipulations (i.e., dishonest behaviors) by annexation
and merging in weighted voting games. These manipulations involve an agent or agents
misrepresenting their identities in anticipation of gaining more power in a game. We
evaluate the effects of these manipulations using two prominent power indices, Shapley-
Shubik and Banzhaf indices, to compute agents’ power. We first provide visual illus-
trations of manipulation in weighted voting games to give some insights into why it
is difficult to predict how to merge. We then show that manipulators need to do only
a polynomial amount of work to find a much improved power gain, and present two
enumeration-based pseudopolynomial algorithms that manipulators can use. Further-
more, we provide a careful investigation of heuristics for annexation which provide
huge savings in computational efforts over the enumeration-based method. The benefits
achievable by manipulating agents using these heuristics also compare with those of the
enumeration-based method which serves as upper bound.
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