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Abstract. The paper presents the Genoa Artificial Power Exchange, an agent-
based framework for modeling and simulating power exchanges implemented in
MATLAB. GAPEX allows creation of artificial power exchanges reproducing ex-
act market clearing procedures of the most important European power-exchanges.
In this paper we present results from a simulation performed on the Italian PEX
where we have reproduced the Locational Marginal Price Algorithm based on
the Italian high-voltage transmission network with its zonal subdivisions and we
considered the Gencos in direct correspondence with the real ones. An enhanced
version of the Roth-Erev algorithm is presented so to be able to consider the pres-
ence of affine total cost functions for the Gencos which results in payoff either
positive, negative and null. A close agreement with historical real market data
during both peak- and off-peak load hours of prices reproduced by GAPEX con-
firm its direct applicability to model and to simulate power exchanges.

Keywords: Agent-based computational economics, Electricity markets, Rein-
forcement learning, Multi-agent systems.

1 Introduction

In the last decade, large efforts have been dedicated in developing theoretical and com-
putational approaches for modeling deregulated electricity markets. Several papers have
appeared in the agent-based computational economics (hereafter ACE) literature on
wholesale electricity markets and ACE has become a reference paradigm for researchers
working on electricity market topics (see as reference examples [17], [3], [4], [1], [7],
and [22]). Generally speaking, these papers adopt a computer-based modeling approach
for studying the electricity markets as result of the interactions between heterogenous
market participants. In particular, the AMES model (Agent-based Modeling of Electric-
ity Systems, [22]) comprised a two-settlement system consisting of a day-ahead market
and a real-time one which are both cleared by means of Locational Marginal Pricing.
[21] presented a model that consists of three sequential oligopolistic energy markets
representing a wholesale gas market, a wholesale electricity market and a retail electric-
ity market. [25] simulated two markets that are cleared sequentially: a day-ahead elec-
tricity market and a market for balancing power. [6] developed a wholesale electricity
market model similar to the Australian National Electricity Market. Detailed reviews
on agent-based models applied to wholesale electricity markets can be found in [26]
and [12]. In this paper, we present the Genoa Artificial Power Exchange (GAPEX), an
agent-based framework for modeling and simulating electricity markets. In particular,
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the general GAPEX framework is presented that allows us to generalize the models and
to overcome some limitations and simplifications that characterized preliminary ver-
sion of the framework ([7], [13] and [19]). In this paper, attention is devoted to model
design and developing within GAPEX. This has direct implication on the features of
the intelligent agents (i.e. Gencos) as well as on the mechanism of the power exchange.
In particular, in order to properly model the decision process of the economic agents,
an enhanced version of the classical Roth-Erev reinforcement learning algorithm [20]
is described so to apply reinforcement learning in case of negative payoffs. Further-
more, due to its complex high-voltage transmission network, the Italian power exchange
(IPEX) is taken as case of study. Results point out that GAPEX is an adequate frame-
work to model and to simulate power exchanges. In particular, the agent-based model
of the Italian Electricity Market is able to replicate market historical results during both
peak- and off-peak load hours as well as to give insights on Genco behaviors. More-
over the proposed enhanced version of the classical Roth-Erev reinforcement learning
algorithm points out effective learning properties with respect to existent variants in the
literature.

The structure of the paper is as follows. In the next Section, the computational design
and architecture of the GAPEX framework is presented. In Section 3 the Italian Elec-
tricity Day-Ahead Market agent-based model is described. In Section 4 the Enhanced
Roth-Erev reinforcement learning algorithm is presented and studied. In Section 5 we
present main results of the agent-based model of the Italian Power exchange, while
Section 6 summarizes main results and remarks.

2 GAPEX Framework Overview

GAPEX is an agent-based framework developed in MATLAB that is suitable for study-
ing the dynamic performances of many electricity markets. The simulator is imple-
mented using OOP programming capabilities of MATLAB, which allows one to de-
fine classes using a Java/C++ like syntax, thus creating a flexible and extensible ABM
framework which can run local simulation and also exploits the Parallel Computing
Toolbox provided with MATLAB. Detailed computational models of the power techno-
socio economic systems can be realistically simulated by means of the agent-based
modeling (hereafter ABM) approach. Agents can range from entities with no cognitive
function (e.g., transmission grids) to sophisticated decision makers capable of commu-
nication and learning (e.g., electricity traders). According to this research paradigm,
we designed and implemented a versatile software framework for studying electricity
markets. Indeed, the philosophy of the project and the modularity of its implementa-
tion provide a valuable computational framework for easily implementing other critical
infrastructure systems relevant to energy markets, e.g., a natural gas market. In order
to properly address the agent behaviors in different economic environments, we have
used a multi-agent learning (MAL) approach so to define appropriate algorithms able
to implement sophisticated decision-making rules. This represents one of the standards
in the ACE literature and some common features characterize the learning models. The
framework is composed by three main classes:
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Fig. 1. GAPEX Class Architecture

– a heap class;
– a statistical off-line analysis module;
– several algorithms and market mechanisms libraries.

Figure 1 shows the GAPEX class architecture. The Agent class is an abstract class
which is extended by all agents present in GAPEX Framework. It is worth noting that
the Agent class is directly extended in order to define any new types of Electricity Mar-
ket Agents (e.g., Wholesalers, Energy Management Divisions, etc). As concerning the
learning algorithms, they are modeled as interfaces implemented by Gencos. Current
version of GAPEX is characterized by a library of the main solutions for learning al-
gorithms proposed in the literature (e.g., Roth-Erev algorithm, Q-Learning algorithm,
Marimon-McGrattan algorithm, EWA learning and GiGa WoLF algorithm). In particu-
lar, these algorithms have been extended so to consider reward both positive, negative
and null, and the features of the enhanced Roth-Erev algorithm are discussed in Sec-
tion 4. The Electricity Market class allows one to define the market clearing algorithms
and it is based on the Agent class. Currently, the GAPEX allows one to simulate the
Italian Day Ahead Market, the EEX spot market linking DCOPFJ Package [22] and the
Spanish Day Ahead Market. It is worth nothing that all these algorithms are interfaces
as well. The Session class has a two-fold purposes. On the one hand, it acts as a clear-
ing house and allows one to run several iterations of a particular simulation and to call
the statistical off-line module at the end of the simulation. On the other hand, it stores
all market and agent information, thus acting as a repository for all data related to en-
ergy prices and quantities both at market and at agent level (e.g. choices, propensities,
etc). This feature is of crucial importance for economics application as it allows the
GAPEX framework to be used as an artificial world where computational experiments
can be performed. Indeed, such computational experiments are mandatory so to evalu-
ate reproducibility of stylized facts as well as statistical properties of the self-adaptive
complex system under investigation (see [2]). Moveover, in order to model the clear-
ing house feature and characteristics, the mechanism of Heap memory access has been



Gapex 351

simulated and recreated into a MATLAB class. Thus, at the end of every simulation ,
the Clearing House recall the Offline Statistical Module which carry out statistical anal-
ysis as well as visualization of the computational experiment results. Finally, it is worth
remarking that GAPEX allows direct generalization, as it is possible to create different
types of agents, thus allowing the design of extremely realistic agent-based models.

3 Agent-Based Modeling of the Italian Electricity Day-Ahead
Market

As discussed in previous Section, GAPEX is designed as a powerful and extensible
agent-based framework for electricity market modeling and simulation. Current ver-
sion of GAPEX allows one to simulate different power exchange protocols, but due to
its complex structure, in this paper attention is dedicated to the Italian power exchange.
It is worth remarking that a power exchange strongly differs from a stock market from
both structural and behavioral point of view. From the former, the power exchange
mechanism is a uniform double auction whereas the stock market one is continuous
time limit order book. Furthermore, energy is not a storable good (i.e., buy&hold strat-
egy are not even possible) whose consumption is contemporary to the production and
is characterized by strong seasonality (i.e., daily, weekly and yearly). Moreover, from
the latter, the electricity sector is characterized by strong oligopoly (i.e., a limited and
basically time-invariant number of market traders) that repeat the same game on a daily
base. Theoretically speaking, such economic system seems perfect for an analytical
solution based on game theory, but the dimension of the game is so high that it practi-
cally impossible to study equilibria by means of traditional game theory. Despite a first
glance on analytical solutions, all these elements lead to an economic system that can
be effectively studied by means of a computational approach based on learning agents,
thus motivating the development of GAPEX framework for the implementation of the
model of the wholesale Italian Electricity Market. Making use of preliminary versions
of GAPEX, [7] described and implemented an agent-based model of power exchange
with a uniform price auction mechanism and a learning mechanism for the Gencos.
Moreover, [13] provided the first version of the Genoa Artificial Power Exchange and
compared the discriminatory and the uniform price auction mechanism with heteroge-
nous agents. Finally, [19] firstly attempted to create an agent-based model of the Italian
Electricity Market, with a reduced transmission network grid and a simplified descrip-
tion of GenCos. It is worth remarking that version presented and discussed in this pa-
per of both the GAPEX and the agent-based model of the Italian electricity day-ahead
market are characterized by significant extensions. Firstly, agent-based model incor-
porates now the exact procedure employed by the Gestore Mercati Energetici S.p.A.
(hereafter GME) [9] thus overcoming the limitation of previously adopted formulation
that resulted a constrained ill posed optimization procedure. Furthermore, the cogni-
tive agents in the GAPEX make use of the Enhanced Roth-Erev reinforcement learning
algorithm (presented and discussed in Section 4), developed so to take into account pay-
offs of any sign. There are crucial features that allowed us to calculate the energy prices
based on scenarios that correctly emulate real power plants, real transmission limits
and real bids. In this Section we present the agent-based model of the Italian Electricity
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Fig. 2. ABM IPEX simulation flow-diagram

Day-Ahead Market (hereafter ABM IPEX Model). The Italian power exchange (IPEX)
started on 1st April 2004 and is currently administrated by the Gestore Mercati En-
ergetici S.p.A., the Italian market operator. IPEX market structure is characterized by
several subsequent market sessions for both trading energy and managing critical ser-
vices (e.g., reserves and real-time balancing). These are the Day-Ahead Market session
- DAM, (Mercato del Giorno Prima - MGP), the Adjustment Market sessions and the
Ancillary Services Market. The most important (i.e., liquid) session is the Day-Ahead
Market which is organized as a non-discriminatory double-auction market where ap-
proximately 60 percent of national production is traded. The main feature of the Italian
Day-Ahead Market is related to the complex high-voltage transmission network and
results in a zonal splitting with both locational and national energy prices. The ABM
IPEX simulation flow-diagram (i.e., static representation of the objects and their inter-
actions) is shown in Figure 2. It is worth remarking that the ABM IPEX Model consists
of three main building blocks, i.e.:

– the agent-based representation of the Italian Electricity Market and the clearing
mechanism regarding the Day-Ahead Market;

– the representation of the Italian Electricity Network;
– the agent-based representation of traders in the Italian Electricity Market, i.e. Gen-

cos.

These building blocks are discussed in the following sub-sections.

3.1 Day-Ahead Market Model

GAPEX simulates Gencos bidding strategies through a daily market session in the Ital-
ian Electricity DAM. The exact market clearing procedure performed by Italian Market
Operator has been implemented (see [8] for a detailed discussion). Furthermore, the
following agents are currently represented in the model:

– Gencos: They are the economic actors at the supply side of the electricity mar-
ket. They submit supply bids to the GME Market Operator and (after the market
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clearing procedure) they access the GME clearing house in order to retrieve market
results and to update their strategic decisions. They extend GAPEX Agent class;

– Loads: They are aggregations of zonal loads and represent the demand side of the
electricity market as inelastic;

– GME Market Operator: It clears the market and sends information on awarded
prices and quantities to the GME clearing house. It extends GAPEX Electricity
Market class;

– GME Clearing House: It computes all payoffs for the Gencos, updates their market
accounts and stores all market information. It extends GAPEX Session class.

It is worth remarking that the aim of the proposed model is to represent and to study the
strategic behavior of Gencos in the power exchange. Accordingly, the Gencos are char-
acterized by sophisticated decision process (i.e., the Enhanced Roth-Erev reinforcement
learning algorithm presented and discussed in Section 4)) that accounts for the effect
of a repeated game. Furthermore, according to the hypothesis of a competitive electric-
ity market, the Gencos communicate directly only with the GME Market Operator and
GME Clearing House so to account that every Genco is only aware of its own strategies
and payoffs. Finally, all the other agents in the model are passive entities and they are
not endowed with any cognitive capability. Figure 3 shows the UML class diagram for
the agents modeled in the ABM IPEX:

At each iteration step, each ith generator (i = 1, 2, ..., N ) submits to the DAM a bid-
ding curve shown in Figure 4. The curve is described by the triple of Pi ([e/MWh]), Q−

i

([MWh]),Q+
i ([MWh]), i.e., the bidding price, the minimum and the maximum produc-

tion power for ith generator, respectively. After receiving all generators’ bids, the DAM
clears the market by performing a social welfare maximization subject to the constraints
on the zonal energy balance (Kirchhoff’s laws) and on inter-zonal transmission limits
(see [8] for details). The objective function takes into account only the supply side of
the market as the demand is assumed to be price-inelastic. The zonal splitting clearing
mechanism (i.e., DC optimal power flow procedure) allows one to determine both the
unit commitment for each generator and the Locational Marginal Price (LMP) for each
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zone. To this aim, a graph representation of the transmission grid (that defines the area
with relevant transmission constraints) is provided as input to the GAPEX (see Section
3.2). However, with respect to classical literature on power systems, the Italian market
introduces two modifications. Firstly, sellers are paid at the zonal prices, i.e., Loca-
tion Marginal Price (LMP), whereas buyers pay a unique national price (Prezzo Unico
Nazionale - PUN) common for the whole market and computed as a weighted average
of the zonal prices with respect to the zonal loads. Secondly, transmission power-flow
constraints differ according to the flow direction which results in doubling the number
of constraints related to the inter-zonal transmission limits. According to the specific
features of the Italian market, the results of the power exchange auction consist of a set
of the active powers Q∗

i and of a set of Locational Accepted Marginal Prices LMPk for
each zone k ∈ {1, 2, ...,K}.

3.2 Transmission Grid Model

The market clearing procedure described in Section 3.1 requires the definition of a
transmission network. The grid structure adopted in this paper is shown in Figure ??
and reproduces the exact zonal market structure and the relative maximum transmis-
sion capacities between neighboring zones of the Italian grid model as indicated by
Terna S.p.A. the Italian transmission system operator. The relevant areas of the network
correspond to physical geographic areas (e.g. Northern Italy, Sicily, Sardinia, etc.) in
which loads and generators, virtual production areas (i.e. foreign neighboring coun-
tries) or limited production areas (e.g. Priolo Gargallo) are present. It is worth remark-
ing that each zone is represented as a bus to whom generators and loads are connected.
Furthermore, the arches linking the zone represent the transmission connections and
account for the constraints in transmissions for the power flow. Finally, transmission
power-flow constraints differ according to the flow direction, e.g., power flowing from
Central-South to Central-North is subject to a transmission limit that is different from
the one relates to the power flowing from Central-North to Central-South. A detailed
discussion of the Italian transmission grid can be found in [23].

3.3 Genco Model

The supply side of the market is composed by Gencos submitting bids for each of
their power plants. In this paper attention is focussed on thermal power plants strategic
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behavior, as the remaining national production (i.e., hydro, geothermal, solar, wind)
and imported production can be generally modeled as bids at zero price [16]. A set
of thermal power plants consisting of N = 175 generating units is considered. These
comprise five different technologies (i.e., Coal-Fired (CF), Oil-Fired (OF), Combined
Cycle (CC), Turbogas (TG) and Repower (RP)) and in the model a learning agent is
associated to each generating unit. The constant marginal costs of the ith generator is
assumed to be given by:

MCi = πi [e/MWh] (1)

The coefficients πi has been selected using an econometric analysis on real historical
bids. The total cost function of ith generator is assumed to be given by:

TCi(Qi) = ai ·Qi + bi [e/h] (2)

The coefficients ai ([e/MWh]) and bi ([e/h]) are assumed constants. ai depends mainly
on the class of efficiency and on the technology of the power plant, whereas bi (which is
specific for each power plant) accounts for investment and other quasi-fixed costs that
must be recovered and that are not negligible for capital intensive industry such as the
electricity one. As a consequence, the coefficients ai have been evaluated on the basis of
MCi(Qi) with fuel costs, technology and efficiency as exogenous variables, whereas
the coefficients bi have been determined by the literature on technological business
cases [15]. Stated the cost functions of the Gencos, it is necessary to define the decision
process that drives the bidding strategy. In this respect, we assume that the bidding price
Pi of the ith generator (see Section 3.1) is a mark-up μi applied to the marginal cost
MCi in equation 1, i.e.,

Pi = (1 + μi) ·MCi (3)

As a consequence, the decision variable of the ith generator is the mark-up μi and
the learning process should individuate a profitable value for μi as results of the inter-
action (through the energy market) with the other Gencos. In particular, the profit Ri(h)
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depends on the market clearing at hour h. Assuming that the ith Genco belongs to zone
k, Ri(h) is given by

Ri(h) = LMPk(h) ·Q∗
i (h)− TCi(Q

∗
i (h)) [e/h] (4)

where TCi is ith Genco total-cost, LMPk(h) is the Location Marginal Price of zone
k at hour h and Q∗

i (h) is the awarded quantity to the ith Genco at hour h. Finally, it
is worth remarking that the marginal cost is the reference parameter for the bids (see
equation 3), whereas the total costs are crucial in order to evaluate the real profitability
of the bids (see equation 4).

4 Enhanced Roth-Erev Reinforcement Learning Algorithm

Electricity markets are characterized by inherent complexity and repeated games that
requires adequate modeling of strategic behavior of traders. This is usually achieved by
endowing the Gencos with learning capability. The literature on agent-based electric-
ity market models points out three major kind of learning algorithms: zero-intelligence
algorithms [10],[11], reinforcement and belief-based models [5] and evolutionary ap-
proach [18]. In this paper, the strategic agent behavior is modeled by means of a rein-
forcement learning approach. It is worth remarking that the solutions proposed in the
literature generally account for positive and null payoffs (e.g., [18] represented a first
modification of the original work proposed by Roth and Erev [20] so to account for null
payoffs). Unfortunately, this is a severe limitation in order to determine profitable strat-
egy for economic agents in real a economic context. Indeed, the presence of fixed-costs
in the cost function (see equation 2) together with market awarded quantity Q∗

i (h) ≥ 0
for the ith Genco at hour h leads to payoffs that are either positive, negative or null. This
opens a question for a reinforcement learning approach that is able to cope with payoffs
of any sign and to this aim we have developed an enhanced version of the Roth and
Erev algorithm that is able to cope with both positive, negative and null payoffs. The
original Roth and Erev learning model (hereafter referred to as RE algorithm) considers
three psychological aspects of human learning:

– the power law of practice, i.e., learning curves are initially steep and tend to pro-
gressively flatten out;

– the recency (or forgetting) effect, i.e., players recent experience plays a larger role
than past experience in determining his behavior;

– the experimentation effect, i.e., not only experimented strategy but also similar
strategies are reinforced.

For each strategy aj ∈ Aj (i = 1, ..,M ), at every round t, propensities Sj,t−1(aj) are
updated according to:

Sj,t(aj) = (1− r) · Sj,t−1(aj) + Ej,t(aj) (5)

where r ∈ [0, 1] is the recency parameters which contributes to decrease exponentially
the effect of past results. The second term of equation 5 is called the experimentation
function and is given by:
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Ej,t(aj) =

{
Πj,t(âj) · (1− e) aj = âj

Πj,t(âj) · e

M−1
aj �= âj

(6)

where e ∈ [0, 1] is the experimentation parameter which assigns different weights
between the played strategy and the non-played strategies and Πj,t(âj) is the reward
obtained by playing strategy (âj) at round t. Propensities are then normalized so to de-
termine the probability for the strategy selection policy πj,t+1(aj) for the next auction
round as:

πj,t+1(aj) =
Sj,t(aj)∑
aj

Sj,t(aj)
(7)

The modified Roth and Erev learning model (hereafter referred to as MRE algorithm) by
[18] proposed a solution for the case of zero payoffs by modifying the experimentation
function in equation 6 according to:

Ej,t(aj) =

{
Πj,t(âj) · (1− e) aj = âj

Sj,t−1(aj) · e
M−1

aj �= âj
(8)

It is worth remarking that MRE and RE are identical for a positive reward Πj,t(âj),
whereas for null payoff MRE introduces an implicit premium for non-played strate-
gies with respect to the ineffective (i.e. with negative Πj,t(âj)) played strategy. MRE
represents a first but not final extension of the Roth and Erev algorithm as neither MRE
algorithm nor the later VRE algorithm proposed by [22] are able to cope with negative
payoffs. In order to overcome such limitation of the Roth-Erev algortihm, we propose
to extend the MRE algorithm by enhancing the experimentation mechanism for non-
played strategies according to:

Ej,t(aj) =

{
G[Πj,t(âj)] · (1 − e) aj = âj

F [Πj,t(âj)] · Sj,t−1(aj) · e

M−1
aj �= âj

(9)

where

G[x] =

{
−γ · tanh(x) x ≥ 0

0 x ≤ 0
(10)

and

F [x] =

{
α · tanh(x) + 1 x ≤ 0

1 x ≥ 0
(11)

Figure 6 shows functions G[...] and F [...]. It is worth noting that the proposed enhanced
version represents an extension of the MRE. In particular, in the case of negative payoff,
the experimentation function for the played strategies is calculated as in MRE proposed
by [17] for the case of null payoffs, whereas the experimentation function of the non-
played strategies is enhanced by a larger amplification the more negative is the payoff
Πj,t(âj). This leads to an Enhanced Roth and Erev algorithm (hereafter referred to as
ERE algorithm). In the simulations discussed hereafter, we have adopted the values of
0.12 and 0.20 for the parameters e and r, respectively. Moreover, the value of 3.0 and
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10.0 have been chosen for the parameters α and γ, respectively. It is worth noting that
the values for e, r, α, ad γ have been chosen so to guarantee stability of the differ-
ence equations involved in the learning process (i.e., equations 5 and 9). In order to
understand effectiveness of the proposed Enhanced Roth and Erev algorithm and the
interrelation between learning convergence and economic results, we firstly studied the
behavior and the convergence of the learning in the power exchange model. We have as-
sumed the initial (i.e., at t = 0) propensities Sj,t(aj) in equation 5 to be uniformly dis-
tributed among the possible strategies in the strategy space. Furthermore, as discussed
in Section 3.3, the strategy space is related to the mark-up variables. In all computa-
tional experiments discussed hereafter we have considered a uniformly spaced grid for
μi in the range [0.8, 2.3] with step 0.05. This results in a set of 31 possible strategies
for each of the N = 175 generators. Stated this simulation context, the evolution of the
strategy probabilities pointed out three groups of agents:

– those whose bids are lower than clearing prices and are always accepted by the mar-
ket. We denote them as price-takers agents and are characterized by a convergence
of the strategy probabilities;

– those whose bids are higher than clearing prices and are always rejected by the mar-
ket. We denote them as out-of-the-market agents and are generally characterized by
randomly chosen strategies, as they do not participate to the market price formation
and accordingly receive always negative payoffs;

– those whose bids are able to set the Locational Marginal Price. We denote them
as price-maker agents and are characterized by the faster convergence time in the
learning process.

Figure 7 shows an example of reference convergence time-path. For the sake of repre-
sentativeness, the strategy characterized by the largest final probability (i.e., the action
most willing to be played ) of three reference Gencos is considered and their probabili-
ties plotted as function of the simulation iterations. Figure 7 points out that both price-
taker and price-maker are characterized by a learning process that select the preferred
action strategy (i.e., the one whose probability converge to 1). Conversely, it is worth
noting that only some of the out-of-the-market agents are characterized by a conver-
gence of the strategy probabilities. Indeed, those agents whose bids are slightly higher
than the LMP tend to converge even if their bids are always rejected by the market. This
can be interpreted as a result of an almost complete exploration process of their strategy
spaces that allows them to conclude that the strategies played by the near competitors
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(i.e., the price maker agents) were characterized by a bidding price lower enough to
keep them out of the market. In this exploration process, they are characterized by the
slower convergence time, thus corroborating such conclusion.
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Fig. 7. Convergence time-path for the different groups of interacting agents in ABM IPEX

5 Computational Experiments

Learning algorithms and agent-based models should stick to empirical criteria in order
to demonstrate that they are able to reproduce reality. In particular, at the micro-level,
learning algorithms should converge toward a price during the experiments, whereas,
at the macro-level, practitioners should be able to observe stylized facts and economic
emergent behaviors. Completed the learning convergence (see Section 4), we focussed
our attention to a set of computational experiments in order to understand the ability
of the framework to reproduce the emergent properties shown by the IPEX DAM at
macro-level. Firstly, we have chosen a reference power exchange setting (i.e., Gencos
and loads). In this respect, the scenario has been based on a real off-peak hour (i.e.,
hour 5 AM of Wednesday 16th December 2009) as during off-peak hour competition
among producers is generally limited and thus limiting the impact on the level of prices.
For the reference power exchange setting, we have performed 100 computational ex-
periments with different random seeds in order to analyze the ensemble results of the
same repeated game. Both agent convergence and system convergence have been ob-
served. While the former has been discussed in Section 4 and used as a validation proof
of the enhanced Roth-Erev learning algorithm, we now concentrate on the system con-
vergence. This type of convergence (or its lack) can be defined with respect to the
convergence of the PUN time path (i.e. the clearing price converge to a value after a
specific time which depends only from the participating agents). Indeed, the PUN is a
weighted-average of the Locational Marginal Prices by means of the inelastic loads and
an adequate representative of the market clearing and its convergence a good proxy that
the system has reached an equilibrium. In this context, we searched for the ”best per-
forming” economic-learning algorithm, i.e. the selection of the algorithm should have
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lead both to learning convergence and to economic meanings. Due to the proportional
update mechanism of the strategy selection probability (see Section 4), this is a real
system convergence and not a fictitious one induced by a cooling parameter. We also
observe that at the aggregate the learning process achieves an equilibrium that corre-
sponds to a local optimum rather than to a global one, as the PUN and LMP dependent
both on profits (i.e. payoffs) and on strategy spaces. Similar fictitious results have been
already discussed for the Roth-Erev algorithm in a simplified agent-based electricity
model (see [14]) as well as for Q-Learning (see [24]). Furthermore, in the case of VRE
learning algorithm the shape of the curve suggests that although the probabilities of
strategy spaces of the agents have been updated during the simulation, prices at the
beginning of the simulation are the same as at the end. This directly points out that
agents have not learnt any preferred strategy (i.e. there is no convergence) and leads to
a ”random noise shape” of the prices, as discussed in [14]. It is worth remarking that
these results further point out effectiveness of the proposed Enhanced Roth and Erev
algorithm (with the respect to the other state-of-the-art version proposed by the liter-
ature) and its direct applicability to economic and financial context characterized by
positive, null and negative rewards. Finally, the complete 24 hours PUNs of Wednesday
16th December 2009 have been simulated. Again, we have performed 100 computa-
tional experiments (each with a length of 5,000 steps) with different random seeds in
order to analyze the ensemble results of the same repeated game. It is worth remark-
ing, that the energy market is characterized by a strong seasonality (i.e., daily, weekly,
and yearly), therefore the strategic behavior of Gencos can be properly studied on a
daily base. Figure 9 compares the GAPEX simulated PUNs to the GME real PUNs.
Figure 9 points out that the simulated results are in good agreement throughout the
whole 24 hours. Indeed, most of the GME real PUNs fall within the 95 percent (i.e.,
2*σ) confidence band evaluated over the 100 computational experiment whereas the
outliers are however quite close to the limit of the 95 percent confidence band. This
further states the quality and importance of the proposed methodology which is mostly
able to replicate the aggregate results by means of the strategic interactions of the Gen-
cos rather than of a black-box forecast. Understanding the origin of the market results
is a crucial element from an economic point of view as it allows us to determine the
drivers and model of the power exchange. Every policy measure, antitrust action and
market design requires a clear understanding of these elements in order to be effec-
tive. Furthermore, it is worth noting that in the case of the computational experiments,
the generation universe is kept fixed with cost functions unchanged for the whole 24
hours. This has been assumed in order to evaluate the ability of the learning algorithm
for selecting the most profitable strategy in different condition of demands. However,
such condition is not present in the real GME market sessions as the generation plants
are characterized by outages. The absence of outages in the computational experiments
can explain the small difference between GAPEX simulated PUNs to the GME real
PUNs and it is worth noting that including outages in the GAPEX is easy and direct.
However, such an interesting scenario for computer science results of limited interest
from an economics perspective. Indeed, it is characterized by such a large ex − ante
information (the exact information of the hourly participation of the Gencos to the
power auction) that it results practically irrelevant and for this reason it has not been
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considered. Finally, the good agreement between the GAPEX simulated PUNs and the
GME real PUNs achieved by the strategic computational experiments remarks the im-
portance of including fixed-costs in the decision-making process of Gencos. Indeed,
results point out a strong relationship between fixed-costs and profits that the Enhanced
Roth-Erev algorithm was able to incorporate thus improving realism of the model.
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6 Conclusions

In this paper, an agent-based electricity market framework has been presented. The
framework has been implemented in MATLAB using the OOP paradigm and it allows
creation of artificial power exchanges characterized by real market mechanisms and by
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economic agents with learning capabilities. In order to overcome limitations in the sign
of payoff typical of reinforcement learning algorithms proposed in the literature, an en-
hanced version of the Roth-Erev algorithm (i.e., which takes into account positive, null
and negative payoffs) has been presented and discussed. Furthermore, due to its com-
plex high-voltage transmission network, the Italian power exchange (IPEX) has been
taken as case of study. This resulted in replicating the exact market clearing procedure
and considering generation plants in direct correspondence with the real ones. Results
on the convergence of the enhanced Roth-Erev learning algorithm pointed out effective-
ness of the proposed algorithm. In particular, the evolution of the strategy probabilities
pointed out different groups of agents characterized by different convergence rates that
strongly depend on the role of the agent in the market. This fact confirms the direct ap-
plicability of the proposed Enhanced Roth-Erev learining algorithm for economic and
financial applications. Moreover, computational experiments of the ABM IPEX model
performed within the GAPEX pointed out a close agreement with historical data during
both peak- and off-peak load hours, confirming the direct applicability of the GAPEX
to model and to simulate power exchanges in particular for what-if analysis and market
design.

Acknowledgements. E. Guerci and M.A. Rastegar collaborated to the design and the
development of the GAPEX framework. This work has been partially supported by the
University of Genoa, by the Italian Ministry of Education, University and Research
(MUR) under grant PRIN 2007, by the European Social Fund (ESF) and by Regione
Liguria, Italy.

References

1. Bagnall, A., Smith, G.: A multi-agent model of the UK market in electricity generation. IEEE
Transactions on Evolutionary Computation 9(5), 522–536 (2005)

2. Ball, P.: The earth simulator. New Scientist 2784, 48–51 (2010)
3. Bower, J., Bunn, D.W.: Experimental analysis of the efficiency of uniform-price versus dis-

criminatory auctions in the England and wales electricity market. Journal of Economic Dy-
namics & Control 25, 561–592 (2001)

4. Bunn, D.W., Oliveira, F.: Agent-based simulation: an application to the new electricity
trading arrangements of England and wales. IEEE Transactions on Evolutionary Compu-
tation 5(5), 493–503 (2001)

5. Camerer, C., Ho, T.: Experience-weighted attraction learning in normal-form games. Econo-
metrica 67, 827–874 (1999)

6. Cau, T.D.H., Anderson, E.J.: A co-evolutionary approach to modelling the behaviour of par-
ticipants in competitive electricity markets. In: IEEE Power Engineering Society Summer
Meeting, vol. 3, pp. 1534–1540 (2002)

7. Cincotti, S., Guerci, E., Raberto, M.: Agent-based simulation of power exchange with het-
erogeneous production companies. Computing in Economics and Finance 2005, Society for
Computational Economics 334 (2005)

8. GME: Official web site (2010),
http://www.mercatoelettrico.org/En/Default.aspx

9. GME: Uppo auction module user manual, appendix a - market splitting auction algorithm.
Tech. rep., GME (2010), http://www.mercatoelettrico.org/En/
MenuBiblioteca/Documenti/20100429MarketSplitting.pdf

http://www.mercatoelettrico.org/En/Default.aspx
http://www.mercatoelettrico.org/En/MenuBiblioteca/Documenti/20100429MarketSplitting.pdf
http://www.mercatoelettrico.org/En/MenuBiblioteca/Documenti/20100429MarketSplitting.pdf


Gapex 363

10. Gode, D.D.K., Sunder, S.: Allocative efficiency of markets with zero intelligence traders.
Market as a partial substitute for individual rationality. J. Polit. Econ. 101(1), 119–137 (1993)

11. Gode, D.D.K., Sunder, S.: Double auction dynamics: structural effects of non-binding price
controls. Journal of Economic Dynamics and Control 28(9), 1707–1731 (2004)

12. Guerci, E., Rastegar, M., Cincotti, S.: Agent-based modeling and simulation of competitive
wholesale electricity markets. Handbook of Power Systems 3(2), 241–286 (2010)

13. Guerci, E., Ivaldi, S., Raberto, M., Cincotti, S.: Learning oligopolistic competition in elec-
tricity auctions. Computational Intelligence 23(2), 197–220 (2007)

14. Jing, Z., Ngan, H., Wang, Y., Zhang, Y., Wang, J.: Study on the convergence property of
roth-erev learning model in electricity market simulation. In: 8th International Conference
on Advances in Power System Control, Operation and Management (APSCOM 2009), pp.
1–5 (November 2009)

15. Kirschen, D.S., Strbac, G.: Fundamentals of Power System Economics. Wiley (2004)
16. Migliavacca, G.: Srems: a short-medium run electricity market simulator based on game the-

ory and incorporating network constraints. In: Power Tech, 2007 IEEE Lausanne, Switzer-
land, pp. 813–818 (July 2007)

17. Nicolaisen, J., Petrov, V., Tesfatsion, L.: Market power and efficiency in a computational
electricity market with discriminatory double-auction pricing. IEEE Transactions on Evolu-
tionary Computation 5(5), 504–523 (2001)

18. Nicolaisen, J., Smith, M., Petrov, V., Tesfatsion, L.: Concentration and capacity effects on
electricity market power. In: Proceedings of the 2000 Congress on Evolutionary Computa-
tion, La Jolla, USA, vol. 2, pp. 1041–1047 (2000)

19. Rastegar, M., Guerci, E., Cincotti, S.: Agent-based model of the Italian wholesale electricity
market. In: Proceedings of the 6th International Conference on the European Energy Market,
EEM 2009 (2009)

20. Roth, A.E., Erev, I.: Learning in extensive form games: Experimental data and simple dy-
namic models in the intermediate term. Games Econ. Behav. 8(1), 164–212 (1995)

21. Ruperez Micola, A., Banal Estaol, A., Bunn, D.W.: Incentives and coordination in vertically
related energy markets. Journal of Economic Behavior and Organization 67, 381–393 (2008)

22. Sun, J., Tesfatsion, L.: Dynamic testing of wholesale power market designs: An open-source
agent-based framework. Comput. Econ. 30, 291–327 (2007)

23. TERNA S.p.A.: Individuazione della rete rilevante - italian version only. Tech. rep., TERNA
S.p.A. (2008)

24. Watkins, C., Dayan, P.: Q-learning. Machine Learning 8(3-4), 279–292 (1992)
25. Weidlich, A., Veit, D.J.: Bidding in interrelated day-ahead electricity markets: Insights from

an agent-based simulation model. In: Proceedings of the 29th IAEE International Confer-
ence, Potsdam (2006)

26. Weidlich, A., Veit, D.J.: A critical survey of agent-based wholesale electricity market models.
Energy Economics 30, 1728–1759 (2008)


	The Genoa Artificial Power-Exchange
	Introduction
	GAPEX Framework Overview
	Agent-Based Modeling of the Italian Electricity Day-Ahead Market
	Day-Ahead Market Model
	Transmission Grid Model
	Genco Model

	Enhanced Roth-Erev Reinforcement Learning Algorithm
	Computational Experiments
	Conclusions
	References




