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Abstract. In 1997, a minority game (MG) was proposed as a non-cooperative
iterated game with an odd population of agents who make bids whether to buy
or sell. Since then, many variants of the MG have been proposed. However, the
common disadvantage in their characteristics is to ignore the past actions beyond
a constant memory. So it is difficult to simulate actual payoffs of agents if the past
price behavior has a significant influence on the current decision. In this paper we
present a new variant of the MG, called an asset value game (AG), and its exten-
sion, called an extended asset value game (ExAG). In the AG, since every agent
aims to decrease the mean acquisition cost of his asset, he automatically takes the
past actions into consideration. The AG, however, is too simple to reproduce the
complete market dynamics, that is, there may be some time lag between the price
and his action. So we further consider the ExAG by using probabilistic actions,
and compare them by simulation.

Keywords: Multiagent, Minority game, Mean asset value, Asset value game,
Contrarian, Trend-follower.

1 Introduction

Background. A minority game (MG) has been extensively studied since it was origi-
nally proposed [7]. It is considered as a model for financial markets or other applications
in physics. It is a non-cooperative iterated game with an odd population size N of agents
who make bids whether to buy or sell. Since each agent aims to choose the group of mi-
nority population, he is called a contrarian. Every agent makes a decision at each step
based on the prediction of a strategy according to the sequence of the m most recent
outcomes of winners, where m is said to be the memory size of the agents. Though MG
is a very simple model, it captures some of the complex macroscopic behavior of the
markets.

It is also known that the MG cannot capture large price drifts such as bubble/crash
phenomena, but just can do the stationary state of the markets. This can be intuitively
explained as follows. Suppose that a group of buyers can keep a majority for a long time.
Then a group of sellers must continuously win in the bubble phenomenon. However,
since every agent wants to win and thus joins the group of sellers one after another,
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it will gain a majority soon. That is, the group of buyers cannot keep a majority, a
contradiction. Thus, it is difficult to simulate the bubble phenomenon by MG.

Related Work. Much work has been done for the purpose of adapting MG to a real fi-
nancial market. For example, first, several authors investigated the majority game (MJ),
consisting of trend-followers. Marsili [14] and Martino et al. [15] investigated a mixed
majority-minority game by varying the fraction of trend-followers. Tedeschi et al. [17]
considered agents who change themselves from contrarians to trend-followers, and vice
versa, according to the price movements. Second, another way is to incorporate more
realistic mechanism. A grand canonical minority game (GCMG) [5,10,11] is consid-
ered as one of the most successful models of a financial market. In the GCMG, a set of
agents consist of two groups, called producers and speculators, and the speculators are
allowed not to trade in addition to buy and sell. Third, it is also useful to improve the
payoff function. Andersen and Sornette[1] proposed a different market payoff, called
$-game, in which the timing of strategy evaluation is taken into consideration. Ferreira
and Marsili[9] compared the behavior of the $-game with that of the MG/MJ. The diffi-
culty of the $-game is to evaluate its payoff function because we have to know one step
future result. Kiniwa et al. [12] proposed an improved $-game, in which the timing of
evaluation is delayed until the future result is turned out. Fourth, there are some other
kinds of improvement. Liu et al. [13] proposed a modified MG, where agents accumu-
late scores for their strategies from the recent several steps. Recent work by Challet [4]
proposed a more sophisticated model using asynchronous holding positions which are
driven by some patterns. Finally, two books [6,8] comprehensively described the history
of minority games, mathematical analysis, and their variations. Beyond the framework
of MG, efforts to reproduce the real market dynamics are continued [16,18].

Motivation. The purpose of this paper is also to improve MG by the thirdly mentioned
above. Though the framework of MG and its variants seem to be reasonable, we have a
basic question — “Do people always make decisions by using their strategies depending
on the recent history ?” Some people may just take actions by considering losses and
gains. For example, if one has a company’s stock which has rapidly risen (resp. fallen),
he will sell (resp. not sell) it soon without using his strategy as illustrated in Figure 1.
Such a situation gives us the idea of an acquisition cost, or a mean asset value. In the
conventional games, like the original MG, an agent forgets the past events and makes a
decision by observing only the price up/down within the memory size 1. In our game,
however, each agent evaluates the strategies by whether or not the current price exceeds
his mean asset value. Since the mean asset value contains all the past events in a sense,
he can increase his net profit by reducing the mean asset value. We call the game an
asset value game, denoted by AG.

However, there is still an unsolved problem in AG that stems from the framework
of MG: the payoff function does not give an action, but just adds points to desirable
strategies. Thus, if the adopted strategy is not desirable, the agent has to wait until the

1 Recently, several studies [2,3] in this direction have been made from the viewpoint of evolu-
tionary learning.
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Fig. 1. Illustration of our idea

desirable one gains the highest score. So, there is a time lag between the rapid change
of a price and the adjustment of an agent’s behavior.

To improve the time lag, we allow each agent another action that satisfies the payoff
function with some probability. If the price rises/falls rapidly and the difference between
the price and agent i’s mean asset value exceeds some threshold, the agent i may take
the action according to the payoff function (regardless of the strategy). By tuning up the
threshold, etc., we can reproduce the real market dynamics. We call the variant of AG
an extended asset value game, denoted by ExAG.

Contributions. Our contributions in this paper are summarized as follows:

– We present a new variant of the MG, called an asset value game.
– To improve the problem of AG, we further consider an extended AG.
– We investigate the behavior of AG and ExAG in detail.

The rest of this paper is organized as follows. Section 2 states our model, which contains
MG, MJ, AG and ExAG. Section 3 presents an analysis of AG. Section 4 describes a
simulation model and shows some experimental results. Finally, Section 5 concludes
the paper.

2 Models

In this section, we first describe MG and MJ in Section 2.1, then the difference between
MG and AG in Section 2.2. Finally, we describe the difference between AG and ExAG
in Section 2.3.

2.1 Previous Model — MG and MJ

At the beginning of the game, each agent i ∈ {1, . . . , N} is randomly given s strategies
Ri,a for a ∈ {1, . . . , s}. The number of agents, N , is assumed to be odd in order to
break a tie. Any strategy Ri,a(μ) ∈ Ri,a maps an m-length binary string μ into a
decision −1 or 1, that is,

Ri,a : {−1, 1}m −→ {−1, 1}, (1)
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where m is the memory of agents. A history H , e.g., [−1, 1, 1, . . .], is a sequence of
−1 and 1 representing a winning decision h(t) for each time step t ∈ T = (0, 1, 2, . . .).
The winning decision of MG (resp. MJ) is determined by the minority (resp. majority)
group of −1 or 1. Each strategy Ri,a(μ) ∈ Ri,a is given a score Ui,a(t) so that the
best strategy can make a winning decision. For the last m winning decisions, denoted
by μ = hm(t − 1) ⊆ H , agent i’s strategy Ri,a(μ) ∈ Ri,a determines −1 or 1 by (1).
Among them, each agent i selects his highest scored strategy R∗

i (μ) ∈ Ri,a and makes
a decision ai(t) = R∗

i (μ) at time t ∈ T . The highest scored strategy is represented by

R∗
i (μ) = arg max

a∈{1,...,s}
Ui,a(t), (2)

which is randomly selected if there are many ones. An aggregate value
A(t) =

∑N
i=1 ai(t) is called an excess demand. If A(t) > 0, agents with ai(t) = −1

win, and otherwise, agents with ai(t) = 1 win in MG, and vice versa in MJ. Hence the
payoffs gMG

i and gMJ
i of agent i are represented by

gMG
i (t+ 1) = −ai(t)A(t) and (3)

gMJ
i (t+ 1) = ai(t)A(t), respectively. (4)

The winning decision h(t) = −1 or 1 is added to the end of the history H , i.e.,
hm+1(t) = [hm(t − 1), h(t)], and then it will be reflected in the next step. After the
winning decision has been turned out, every score is updated by

Ui,a(t+ 1) = Ui,a(t)⊕Ri,a(μ) · sgn(A(t)), (5)

where ⊕ means subtraction for MG (addition for MJ) and sgn(x) = 1 (x ≥ 0), =
−1 (x < 0). In other words, the scores of winning strategies are increased by 1, while
those of losing strategies are decreased by 1. We simply say that an agent increases
selling (resp. buying) strategies if the scores of selling (resp. buying) strategies are in-
creased by 1. Likewise the decrement of scores. Notice that the score is an accumulated
value from an initial state in the original MG. In contrast, we define it as a value from
the last Hp steps according to [13]. That is, we use

Ui,a(t+ 1) = Ui,a(t)⊕Ri,a(μ) · sgn(A(t))− Ui,a(t−Hp). (6)

The constant Hp is not relevant to m, but is only used for selecting the highest score.
Analogous to a financial market, the decision ai(t) = 1 (respectively, −1) represents
buying (respectively, selling) an asset. Usually, the price of an asset is defined as

p(t+ 1) = p(t) · exp A(t)

N
. (7)

2.2 Asset Value Game

The difference between MG and our asset value game is the payoff function. Let vi(t)
be agent i’s mean asset value at time t, and ui(t) the number of units of his asset. The
payoff function in AG is defined as

gAG
i (t+ 1) = −ai(t)Fi(t), (8)
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where Fi(t) = p(t) − vi(t). The mean asset value vi(t) and the number of asset units
ui(t) are updated by

vi(t+ 1) =
vi(t)ui(t) + p(t)ai(t)

ui(t) + ai(t)
(9)

and
ui(t+ 1) = ui(t) + ai(t), (10)

respectively. That is, the payoff function (3) in MG is replaced by (8) in AG. Without
loss of generality, we assume that vi(t), ui(t) > 0 for any t ∈ T .

The basic idea behind the payoff function is that each agent wants to decrease his
acquisition cost in order to make his appraisal gain. Figure 2(a) shows the relationship
between the price and the mean asset values of N = 3 agents, where the price is
represented by the solid, heavy line. Notice that if the population size N is small, the
price change becomes drastic.

The most important feature of the AG is to appreciate the past gains and losses.
Even though an agent has bought a high-priced asset during the asset-inflated term (see
Figure 1), the mean asset value of the agent reflects the fact and an appropriate action
compared with the current price is recommended.

2.3 Extended Asset Value Game

Here we consider the drawbacks of AG, and present an extended AG, denoted by ExAG,
to improve them. Though the AG captures a good feature of an agent’s behavior, the
payoff function indirectly appreciates desirable strategies. If the adopted strategy is not
desirable, the agent has to wait until the desirable one gains the highest score. So, there
is a time lag between the rapid change of a price and the adjustment of an agent’s
behavior.

More precisely, the movement of price is followed by the asset values (see arrows
in Figure 2(a)). This behavior can be explained by the following reasons. If the price
rapidly rises, it exceeds almost all the mean asset values. Then, Fi(t) = p(t) − vi(t)
becomes plus and the ai(t) = −1 (i.e., sell) action is recommended. So, some agents
change from trend-followers to contrarians in a few steps. During the steps, such agents
remain trend-followers, that is, buy assets at the high price. Thus, their mean asset
values follow the movement of price.

trim = 10mm 80mm 20mm 5mm, clip, width=3cm
Our solution is to provide another option of the agent. That is, the agent who has

much higher/lower asset value than the current price can directly act as the payoff func-
tion, called a direct action. However, if so, every agent may take the same action when
the price go beyond every asset value. To avoid such an extreme situation, we give the
direct action with some probability.

Let K = K+ (Fi ≥ 0), K− (Fi < 0) be the Fi’s threshold over which the agent
may take the direct action, and let λ be some constant. Each agent takes the same action
as the payoff function (without using his strategy) with probability

p =

{
1− exp{−λ(|Fi| −K)} (K ≤ |Fi|)
0 (|Fi| < K),

(11)
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Fig. 2. Price influence on mean asset values

where

K =

{
K+ 0 ≤ Fi

K− Fi < 0 such that K− < K+

and takes the action according to his strategy with probability 1− p. In short, in ExAG

– agent i takes an action ai(t) satisfying gAG
i (t+ 1) > 0 with probability p, and

– an action ai(t) = R∗
i (μ) with probability 1− p.

Figure 2(b) shows the behavior of the price and the mean asset values for N = 3 agents
in our extended AG, where K+ = 300, K− = 50 and λ = 0.001. Notice that the
change of price in Figure 2(b) is not so drastic as that in Figure 2(a). In addition, all the
values do not follow the price movement.

3 Analysis of AG

In this section we briefly investigate the features of AG. Though we mainly discuss
the bubble in the following, similar arguments hold for the crash. For convenience, we
define a contrarian as follows. If ai(t) = −1 (resp. ai(t) = 1) for a history hm(t−1) =
{1}m (resp. hm(t − 1) = {−1}m), agent i is a contrarian. Let tr be the first time at
which the winning decision is reversed after t−m. Let CMJ (t), CAG(t) and CMG(t)
denote the set of contrarians in MJ, AG and MG, respectively. The next theorem means
that the bubble phenomenon is likely to occur in the order of MJ, AG and MG.

Theorem 1. Suppose that the same set of agents experience hm(t−1) = {1}m starting
from the same scores since t−m. Then, for any t′ ∈ T = (t, . . . , tr − 1) we have

CMJ (t′) ⊆ CAG(t′) ⊆ CMG(t′).

Proof. First, we show that CAG(t) = CMG(t) at time t. Consider an arbitrary agent i.
Notice that agent i has the same score both in AG and in MG. Since hm(t−1) = {1}m,
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agent i takes the same action based on the same strategy both in AG and in MG. Thus,
we have CAG(t) = CMG(t) at time t.

Next, we show that CAG(t′) ⊆ CMG(t′) at time t′ ∈ T . Notice that all the agents in
MG increase the selling strategies for hm(t−1) = {1}m. On the other hand, notice that
the agents in AG that have smaller mean asset values v(t) than the price p(t) increase
the selling strategies for hm(t − 1) = {1}m. Since every contrarian refers to the same
part (i.e., {1}m) of the strategy, he does not change his decision during the interval T .
If an agent increases the selling strategies in AG, it also increases the selling strategies
in MG. Thus we have CAG(t′) ⊆ CMG(t′) at time t′ ∈ T .

The similar argument holds for CMJ (t′) ⊆ CAG(t′). �	
We call an agent a bi-strategist if he can take both buy and sell actions, that is, has
strategies Ri,a containing both actions, for hm(t−1) = {1}m or hm(t−1) = {−1}m.
The following lemma states that there is a time lag between the price rising and the
action of agent’s payoff function.

Lemma 1. In AG, suppose that a history H contains hm(t − 1) = {1}m. Even if a
bi-strategist keeps the opposite action of the payoff function for Hp steps, he takes the
same action as the payoff function after the Hp + 1-st step.

Proof. Suppose that a bi-strategist i has a strategy Ri,a1 (resp. and a strategy Ri,a2 )
which takes the opposite action of (resp. the same action as) the payoff function. If
i adopts the strategy Ri,a1 now, the score difference between Ri,a1 and Ri,a2 is at
most 2Hp. Since the difference decreases by 2 for a step, the scores of Ri,a1 and Ri,a2

becomes the same point at the Hp-th step. Then, after the Hp + 1-st step, he takes the
strategy Ri,a2 . �	
For simplicity, we assume that the size of Hp is greater than m enough.

Lemma 2. In AG, suppose that a history H contains hm(t− 1) = {1}m. For any time
steps t1, t2 ∈ T = (t, . . . , tr − 1), where t1 < t2, we have

CAG(t1) ⊆ CAG(t2).

Proof. Suppose that agent i belongs to CAG(t1). We show that once the rising price
p(t1) overtakes the mean asset value vi(t1) of agent i, vi(t1) will not overtake p(t1) as
long as p(t1) is rising. Since

vi(t+ 1)− vi(t) =
a(p− v)

u+ a
> 0 and 0 <

a

u+ a
< 1,

p > v holds as long as p(t1) is rising. Thus, agent i is contrarian at time t1 + 1. We
have CAG(t1) ⊆ CAG(t1 + 1), and can inductively show CAG(t1) ⊆ CAG(t2). �	
We say that the bubble is monotone if hm(t − 1) = {1}m holds for any t ∈ T =
(t, . . . , tr − 1).

Lemma 3. In AG, as long as more than half population are bi-strategists, the price in
a monotone bubble will reach the upper bound.
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Proof. First, the mean asset values that has been overtaken by the price will not exceed
the price again from the proof of Lemma 2.

Second, any bi-strategist i with vi(t) > p(t) will take a buying action in the Hp + 1
steps from Lemma 1. Since vi(t+ 1)− vi(t) = a(p− 1)/(u+ a) < 0, the mean asset
value decreases. Thus, the rising price will eventually reach the greatest mean asset
value in the set of contrarians.

Third, since all the bi-strategists increase the selling strategies, they will take selling
actions in Hp + 1 steps. After that, A/N < 0 holds and the price falls down. �	
From Lemma 3, the following theorem is straightforward.

Theorem 2. In AG, as long as more than half population are bi-strategists, the mono-
tone bubble will terminate. �	

4 Simulation

Here we present simulation results by using the basic constants in Table 1 2.

Table 1. Basic constants

Symbol Meaning Value

N Number of agents 501
S Number of strategies 4
m Memory size 4
Hp Score memory 4
T Number of steps 5000
— Initial agent’s money 10000
— Initial agent’s assets 100
r Investment rate 0.01

Our first question with respect to ExAG is :

1. What values are suitable for the constant λ and the threshold K in ExAG ?

Our next question with respect to AG is :

2. How does the inequality of wealth distribution vary in AG ?

Then, our further questions with respect to several games are as follows.

3. How widely do the Pareto indices of games differ from practical data ?
4. How widely do the skewness / kurtosis of games differ from practical data ?
5. How widely do the volatilities differ in several games ?
6. How widely do the volatility autocorrelations differ from practical data ?

For the first issue, Figure 3 shows the patterns of price behavior for three kinds of λ
values. From the definition of the direct action probability (see (11)), the smaller the λ

2 We repeated the experiments up to 30 times and obtained averaged results.
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Fig. 3. Price behavior for varying λ in ExAG

becomes, the fewer the number of direct actions occur. Thus, the ratio of trend-followers
is high for λ = 0.0001 and that of contrarians is high for λ = 0.01.

In addition, Figure 4 shows the skewness and the kurtosis for varying the constant λ,
where the skewness (α3) and the kurtosis (α4) are defined as

α3 =

N∑

i=1

(xi − x)3

Nσ3
and α4 =

N∑

i=1

(xi − x)4

Nσ4
,

respectively, for time series variable xi and its average x. If the skewness is negative
(respectively, positive), the left (respectively, right) tail of a distribution is longer. A
high kurtosis distribution has a sharper peak and longer, fatter tails, while a low kurtosis
distribution has a more rounded peak and shorter, thinner tails. In other words, the more
the patterns of price fluctuation occur, the smaller the kurtosis becomes. Thus, if λ is
small and the reversal movements of contrarians are rare, the kurtosis becomes large.
On the other hand, if we vary K− with keeping K+ = 500, the kurtosis is distributed
as shown in Figure 5, where a regression curve is depicted.

From the observation above, we set λ = 0.001, K− = 50 and K+ = 500 in what
follows.

Fig. 4. Skewness / kurtosis vs λ in ExAG Fig. 5. Kurtosis vs K− in ExAG
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Fig. 6. Influence on Gini coefficient in AG

For the second issue, we present our results in Figure 6. The Gini coefficient is
used as a measure of inequality of wealth distribution. Given a set of N agents’ wealth
(X1, X2, . . . , XN), the Gini coefficient G is defined as

G =
1

2N2X

N∑

i=1

N∑

j=1

|Xi −Xj |,

where X =
∑N

i=1 Xi/N . If G = 0, the wealth is completely even. If G is close to 1,
an agent has a monopoly on the wealth.

Figure 6(a) shows that the influence of memory size on the Gini coefficient. It means
that the smaller the memory size is, the wider the inequality of wealth becomes. If the
memory size is small, some successful agents earn much money and the others not. So
their mean asset values are widely distributed in the long run. Thus, the Gini coefficient
tends to be large.

Figure 6(b) shows that the influence of investment rate on the Gini coefficient. It
means that the larger the investment rate is, the wider the inequality of wealth becomes.
If the investment rate is large, the successful agents earn much money and the others
not. So their mean asset values are widely distributed in the long run. Thus, the Gini
coefficient tends to be large.

For the third issue, Figure 7 shows the price decreasing change distribution for sev-
eral games and NYSE, where NYSE is the Dow-Jones industrial average 20,545 data
(1928 /10/1 — 2010/7/26) in New York Stock Exchange. That is, the normalized de-
creasing change of price |R| = |ΔPrice/σ| and its distribution is compared. The straight
lines represent the Pareto indices. At a glance, the curves of ExAG and AG resemble
that of NYSE, which means their distributions are likewise. The Pareto index of ExAG
is also not far from that of NYSE.

For the fourth issue, we obtained the following results. Both ExAG and AG have
better values of skewness and kurtosis than MG does as shown in Tables 2 and 3,
where “stdev.” and “95% int.” mean standard deviation and 95% confidence interval,
respectively.
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Fig. 7. Pareto indices for several games and NYSE

Table 2. Skewness

method ExAG AG MG NYSE

average 0.098 0.39 -0.32 3.725
stdev. 1.82 1.03 1.86 —

95% int. [-0.58,0.77] [0.007,0.77] [-1.02,0.37] —

Table 3. Kurtosis

method ExAG AG MG NYSE

average 42.3 72.9 148 18.92
stdev. 61.6 96.3 231 —

95% int. [21.3,67.3] [36.9,109] [62.2,235] —

For the fifth issue, we present our results in Figure 8. The volatility is defined as the
standard deviation of the number of excess demand. The figure shows that the volatility
of AG is lower than other games for every memory size. This means the memory size
does not have a great impact on the price formation in AG.

For the sixth issue, the autocorrelation function C(τ) is defined as

C(τ) =
〈A(t)A(t + τ)〉

〈A(t)2〉 ,

where τ is a time lag. The value of C(τ) becomes 1 (respectively, -1) if there is a
positive (respectively, negative) correlation between A(t) and A(t + τ). As shown in
Figure 9, only MG has the alternating, strong positive/negative correlation for every
time lag. Other games, AG and ExAG, have weak correlations which reduce as the time
lag grows. The practical data, NYSE, has a negative correlation only when the time lag
is τ = 1. Since the excess demand in NYSE is unknown, we assume the number of
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Fig. 8. Volatility (N = 51 ∼ 5119, S = 4, m = 9)

Fig. 9. Autocorrelation of volatility

agents is equal to N = 501 and estimate A(t) from the equation (7). Notice that ExAG
has the same (negative) correlation as NYSE when τ = 1, while AG has the positive
correlation.

5 Conclusions

In this paper, we proposed an asset value game and an extended asset value game. The
AG is a simple variant of MG such that the only difference is their payoff functions.
Though the AG captures a good feature of an agent’s behavior, there is a time lag be-
tween the rapid change of a price and the adjustment of an agent’s behavior. So we
consider the ExAG, an improvement of AG, by using parameters which contain some
probabilistic behavior. The ExAG has two parameters by which the balance of trend-
followers and contrarians can be controlled. We examined several values for the param-
eters and then fixed to specified values. We obtained several experimental results which
reveals some characteristics of ExAG. The advantages of ExAG are twofold. First, we
can restrict a drastic movement of price in AG by tuning the parameters. Second, we
can reduce the time lag generated by recovering score losses in AG.

Our future work includes investigating the influence of market intervention, an in-
depth analysis of the AG, and other applications of the games.
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