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Abstract. The access to instruments that allow higher autonomy to people is in-
creasing and the scientific community is giving special attention on designing and 
developing such systems. Intelligent Wheelchairs (IW) are an example of how the 
knowledge on robotics and artificial intelligence may be applied to this field. IWs 
can have different interfaces and multimodal interfaces enabling several inputs 
such as head movements, joystick, facial expressions and voice commands. This 
paper describes the foundations for creating a simple procedure for extracting user 
profiles, which can be used to adequately select the best IW command mode for 
each user. The methodology consists on an interactive wizard composed by a flexi-
ble set of simple tasks presented to the user, and a method for extracting and ana-
lyzing the user’s execution of those tasks. The results showed that it is possible to 
extract simple user profiles, using the proposed method.  

Keywords: Classification, Patient, Intelligent Wheelchair, Knowledge Disco-
very. 

1 Introduction 

The population with physical disabilities has earned more relevance and has attracted 
the attention of international health care organizations, universities and companies 
interested in developing and adapting new products. The current tendency reflects the 
demand for an increase on health and rehabilitation services, in a way that senior and 
handicapped individuals might become more and more independent when performing 
quotidian tasks.  

Regardless the age, mobility is a fundamental characteristic for every human being. 
Children with disabilities are very often deprived of important opportunities and face 
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serious disadvantages compared to other children. Adults who lose their independent 
means of locomotion become less self-sufficient, raising a negative attitude towards 
themselves. The loss of mobility originates obstacles that reduce the personal and 
vocational objectives [1]. Therefore it is necessary to develop technologies that can 
aid this population group, in a way to assure the comfort and independence of the 
elderly and handicapped people. Wheelchairs are important locomotion devices for 
those individuals. There is a growing demand for safer and more comfortable wheel-
chairs, and therefore, a new Intelligent Wheelchair (IW) concept was introduced. 
However, most of the Intelligent Wheelchairs developed by distinct research laborato-
ries [1] have hardware and software architectures very specific for the used wheel-
chair model/developed project and are typically very difficult to configure in order for 
the user to start using them.  

The paper is organized as follows: Section 2 presents the state of art on intelligent 
wheelchairs and the IntellWheels project. Section 3 contains a description of the me-
thodology for automatically extracting the users’ profiles in order to give the best 
interface. The implementation of the system is presented in section 4 and the experi-
ments and results achieved are presented in section 5. Finally some conclusions and 
future work are described in the last section. 

2 Intelligent Wheelchairs 

In the last years several prototypes of Intelligent Wheelchairs have been developed 
and many scientific work has been published [2] [3] in this area. Simpson [1] provides 
a comprehensive review of IW projects with several descriptions of intelligent wheel-
chairs. The main characteristics of an IW are [2] [4]: autonomous navigation with 
safety, flexibility and obstacle avoidance capabilities; communication with others 
devices such automatic doors and other wheelchairs and interaction with the user 
using distinct types of devices such as joysticks, voice interaction, vision and other 
sensor based controls like pressure sensors. 

2.1 Intelligent Wheelchairs’ Projects 

The first project of an autonomous wheelchair for physical handicapped was proposed 
by Madarasz in 1986 [5]. It was planned as a wheelchair with a micro-computer, a 
digital camera and an ultra-sound scanner with the objective of developing a vehicle 
that could move around in populated environments without human intervention. Hoy-
er and Holper [6] presented a modular control architecture for an omni-directional 
wheelchair. The characteristics of NavChair [7], such as the capacity of following 
walls and avoid obstacles by deviation are described in [7-9]. Miller and Slak [10] 
[11] proposed the system Tin Man I with three operation modes: one individual  
driving a wheelchair with automatic obstacles deviation; moving through-out a  
track and moving to a point (x,y). This kind of chair evolved to Tin Man II which 
included advanced characteristics such as storing travel information, return to the 
starting point, follow walls, pass through doors and recharge battery. Wellman [12] 
proposed a hybrid wheelchair equipped with two extra legs in addition to its four 
wheels, to allow stair climbing and movement on rough terrain. FRIEND is a robot 
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The project research team considered the difficulty that some patients have while  
controlling a wheelchair using traditional input devices such as the traditional joys-
tick. Therefore, new ways of interaction between the wheelchair and the user have 
been integrated, creating a system of multiple entries based on a multimodal interface. 
The system allows users to choose which type of command best fits their needs,  
increasing the level of comfort and safety. 

A simulated environment was developed that models the intelligent wheelchair and 
its environment. In this environment it is possible to test in a safe manner the different 
ways of driving the intelligent wheelchair, since the behavior of the simulated intelli-
gent wheelchair is very identical to the behavior of the real intelligent wheelchair.  

3 Methodology for Automatic Extraction of User 
Interfaces/Profiles 

The potential users of the Intelligent Wheelchair have particular characteristics and 
constraints. Therefore it is very important to adjust and adapt the way of driving the 
intelligent wheelchair to the specific patient. The data acquired when the users are 
performing a test drive using a multimodal interface and an intelligent wheelchair will 
allow improving the adaptability.  

This section presents the features and the global architecture developed of the In-
tellWheels Multimodal Interface. 

3.1 IntellWheels Multimodal Interface 

There are several publications in the literature of projects related to the issue of adapt-
ing and designing specific interfaces for individuals with severe physical disabilities 
[25-27]. Nevertheless, most of these projects present restricted solutions concerning 
the accessibility to the user to drive a particular wheelchair. It is common to find just 
one solution such as voice recognition, while other focus merely on facial expressions 
recognition [27]. Since the physical disability is very wide and specific to each indi-
vidual, it becomes important to provide the greatest possible number of recognition 
methods to try to cover the largest possible number of individuals with different  
characteristics. 

The IntellWheels Multimodal Interface offers five basic input devices: joystick, 
speech recognition, recognition of head movements and gestures, the use of a generic 
gamepad and facial expressions. In addition, IntellWheels project proposes an archi-
tecture that makes the interface extensible enabling the addition of new devices and 
recognition methods in an easy way. It also presents a flexible paradigm that allows 
the user to define the sequences of inputs to assign to each action, allowing for an 
easy and optimized configuration for each user. For example an action of following 
the right wall can be triggered by blinking the left eye followed by the expression 
“go”. 

Fig. 2 shows the IntellWheels Multimodal Interface where all the input devices are 
connected.  
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Fig. 2. IntellWheels Multimodal Interface 

3.2 Multimodal Data Gathering System 

Based on the IntellWheels prototype and using the real and simulated environments, 
this work is focused on devising appropriate data gathering and data analysis systems 
that enable the construction of patient and environment models using knowledge dis-
covery methodologies. The constructed models will be used together with a simple 
interface library in the context of an interface selector application that will also  
use knowledge discovery methodologies in order to select and configure the most 
appropriate multimodal interface for each patient in each specific situation. 

The multimodal data gathering system enables the collection of real-time input in-
formation from patients with distinct disabilities. The system also enables the collec-
tion of environmental information and more high-level information concerning the 
wheelchair localization and orientation, task in execution, among other information. 

Considering the concept of flexibility and multimodality of the IntellWheels 
project, the required data to collect from the platform may come from many sources: 
input devices, sensors (both real and virtual) and the Simulator. The Fig. 3 presents 
the software architecture.  

 

Fig. 3. IntellWheels’ software architecture 



 Patient Classification and Automatic Configuration of an Intelligent Wheelchair 273 

 

The control application can connect to both the real IW or the Simulator, gathering 
and processing data from their sensors. The control works as the server side regarding 
data communication with the Multimodal Interface. The Multimodal Interface, in turn, 
acts as the server side concerning the input devices connections, since the Multimodal 
Interface manages all the input devices.  

The data acquisition system is distributed among the Control application, the Mul-
timodal Interface and the input devices bridge applications. As such, one file with 
captured data is created by each application. 

Data Synchronization. In order to synchronize the files, a timestamp is attached to 
all information acquired. The information required for the synchronization concerns 
the IntellWheels platform uptime. For this reason and since the applications are not 
executed at the same time, a flow to set the same uptime for all applications was 
created: the Control application, the first one to be executed, sends its uptime to the 
Multimodal Interface, which in turn sends this value to all input devices’ bridge ap-
plications. Each application has a time delta variable which stores the difference be-
tween its own uptime and the Control’s uptime. The time delta variable is updated 
several times throughout the acquisition process. After a certain amount of inputs is 
received from the Multimodal Interface by the Control application, it again sends a 
message with its current uptime, which once more is distributed to all applications by 
the flow previously explained. 

Data File Format. To save the data, an extensible markup language (XML) type file 
format was chosen to be used because of its flexibility. 

The header of the file contains the description of each type of data the application 
gathers. An example of an input data collected file can be seen next: 

<MMI_LOG> 
 <INPUTS> 
  <item> 
   <id> wiimote </id> 
   <label> VelX; VelY; VelZ; Button N;Battery Level %;Error 
</label> 
  </item> 
 </INPUTS> 
 <DATA> 
  <item> 
   <timestamp> 579.6243 </timestamp> 
   <input> wiimote </input> 
   <values> -10; -15; 0; ; 78; </values> 
  </item> 
 </DATA> 
</MMI_LOG> 

3.3 Data Gathering Process 

The sample of individuals includes patients with distinct disabilities (Thrombosis,  
Stroke, Cerebral Palsy, Parkinson, Alzheimer and Multiple Sclerosis, among others).  
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The data collecting process was divided into two parts. In each of the parts, the pa-
tients are asked to perform distinct inputs: 

• Perform obligatory inputs, including a complete set of a previously specified pro-
tocol: voice commands; facial expressions; head, arm and hand movements. The ob-
jective of this protocol is to make a profile of the users. 
• Perform free inputs, which enable the patient to perform some given tasks but 
using its own and completely free preferred process. 

The inputs are performed in distinct environmental conditions: noise and lighting 
variations; distinct pavement and wheelchair movements; tasks performed in parallel 
(such as maintaining a conversation). Tracing a user diagnostic can be very useful to 
adjust certain settings allowing for an optimized configuration and improved interac-
tion between the user and the multimodal interface. 

Accordingly, the Intellwheels Multimodal Interface contains a module capable of 
performing series of training sessions, composed of small tests for each input modali-
ty. These tests may consist, for example, of asking the user to press a certain sequence 
of buttons on the gamepad, or to move one of the gamepads' joysticks to a certain 
position. Another test may consist in asking the user to pronounce a set of voice 
commands, or to perform a specific head movement.  

The tests should be performed sequentially and should have an increasing difficul-
ty. Additionally, the tests should be reconfigurable and extensible. Finally, the tests 
sets and theirs results should be saved on a database, accessible by the Intellwheels 
Multimodal Interface. Therefore, the following user characteristics should be ex-
tracted and these characteristics can be separated in two different types: quantitative 
and qualitative. The quantitative measures consist of: the time taken to perform a full 
button sequence; the average time between pressing two buttons; the average time to 
place a gamepad analogical switch on a certain position; the average time to position 
the head on a certain position; the trust level of speech recognition; maximum ampli-
tude achieved with the gamepad analogical switches in different directions; maximum 
amplitude achieved with the head in different directions and number of errors made 
using the gamepad. Using the quantitative measures, the following qualitative meas-
ures should be estimated: user ability to use the gamepad buttons; user ability to per-
form head movements and user ability to pronounce voice commands. 

At the end of the training session, the tracked user information should be saved to 
an external database, containing the users' profile. The user profile can be used to 
improve security, by defining, for each user, a global trust level for each input modali-
ty. The trust level can be used to advice the user of which modality to use, at the crea-
tion of a new association. Also, it could be useful to activate confirmation events 
whenever a user requests a certain output action using an input level with a low trust 
level. 

Another functionality of the user´s profile is capturing the EEG signals using a 
brain computer interface [27] for using as input facial expressions and thoughts. 

The users will be asked to fill a complete questionnaire about the experiment and 
their preferences regarding each control method for each task in each environmental 
condition. 
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Also, a simple library of wheelchair interfaces is being developed together with an  
application that enables fast generation and configuration of these interfaces. The 
interface selection application will be based on the use of machine learning algo-
rithms that will use the available patient and environment models to select the most 
appropriate interfaces from the interface library. 

4 Implementation 

This section presents the implementation for the proposed User Profile feature. 
Firstly, it explains the approach followed to specify which test sets are going to be 
loaded by the module responsible for tracking the users’ profile. Secondly, we show 
the simple profiling methods that were implemented to create the future user classifi-
cation. Next, we will present how the extracted information was used to adjust certain 
settings of the interface. Finally, a demonstration of how the profile is stored to enable 
future use is also made. 

4.1 Definition of the Sets 

To perform the measures previously described, a simple XML grammar was defined. 
It implements four configurable distinct test types: sequences of gamepad buttons; 
voice commands; positions for both joysticks and positions for head.  

Example of XML containing user profile test set: 

<INTELLWHEELS_PROFILER> 
 <BINARY_JOYSTICK> 
  <item> 
   <sequence> joystick.1  
      joystick.2 </sequence> 
   <difficulty> easy </difficulty> 
  </item> 
 </BINARY_JOYSTICK> 
 <ANALOG_JOYSTICK> 
 (…) 
 <ANALOG_WIIMOTE> 
  <item> <x>100</x> <y>0</y></item> 
 </ANALOG_WIIMOTE> 
 <SPEECH> 
  <item> go forward </item> 
  <item> turn right </item> 
  <item> create new sequen </item> 
  <item> stop </item> 
 </SPEECH> 
</INTELLWHEELS_PROFILER> 

The proposed XML grammar makes it possible for an external operator to configure 
the test set that they find most appropriate for a specific context or user. When a user 
starts the training session, the four different types of tests are iterated. In order to  
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attain a consistent classification of the user, the defined grammar should be sufficient-
ly extensive. The test set specified on the XML file is iteratively presented to the user. 
It starts by asking the user to perform the gamepad button sequence as can be ob-
served in Fig. 4. 

 

Fig. 4. User profiler gamepad and voice tests 

When the user ends the first component of the user profiler module, the navigation 
assistant asks the user to pronounce the voice commands stored in the XML. Also, the 
quantitative results for the gamepad buttons test are presented.  

The last part of the user profiler test is shown in Fig. 5. The user is invited to place 
the gamepad’s joystick into certain positions. A similar approach is used for the head 
movements test. 

 

 

Fig. 5. User profiler joystick test 
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To define the user proficiency in using the gamepad buttons, a simple method was 
implemented. Each sequence defined on the grammar should have an associated diffi-
culty level (easy, medium or hard). The difficulty type of a sequence may be related 
to its size, and to the physical distance between the buttons on the gamepad. Since the 
layout of a generic gamepad may change depending on the model, defining whether 
or not a sequence is of easy, medium or difficulty level is left to the operator. 

When the user completes the gamepad sequences training part, an error rate is cal-
culated for each of the difficulty levels. If these rates are higher than a minimum  
acceptable configurable value, the user classification in this item is immediately  
defined. This classification is then used to turn on the security feature, which is cha-
racterized by a confirmation event performed by the navigation assistant. For a 
grammar with 5 sequences of difficulty type easy, the maximum number of accepted 
errors would be 1. If the user fails more than one sequence, the confirmation event is 
triggered for any input sequence, of any difficulty type, and the gamepad training 
session is terminated. If the error rate for the easy type is less than 20% (=1/5) the 
training with the sub-set composed by the sequences of medium difficulty is initiated. 
At the end, a similar method is applied. If the error rate for the medium level is higher 
than 30%, the confirmation is triggered for the medium and hard levels of difficulty, 
and the training session is terminated. Finally, if the user makes it to the last level of 
difficulty, the training for the hard sequences sub-set is started. If the error rate is 
higher than 50%, the confirmation event is triggered only for sequences with a hard 
difficulty level. The best scenario takes place when the user is able to surpass the 
maximum accepted error rates for all the difficulty levels. In this situation, the con-
firmation event is turned off, and an output request is immediately triggered for any 
kind of input sequence composed only by gamepad buttons. 

Defining the ideal maximum acceptable error rates is not easy. With this in mind, 
we made it possible to also configure these values in the XML grammar.  

The joystick phase of the training session can be used to calculate the maximum 
amplitude achieved by the user. This value can then be used to parameterize the max-
imum speed value. Imagining a user who can only push the joystick to 50% of its 
maximum amplitude, the speed can be calculated by multiplying the axis value by 
two. This feature was not implemented. However, all the background preparation to 
implement it was set for future work. 

The speech component of the training session was used to define the recognition 
trust level for each of the voice commands. The trust level is a percentage value re-
trieved by the speech recognition engine. This value is used to set the minimum rec-
ognition level for the recognition module.  

Finally, the head movement phase of the training session has a similar purpose to 
the joystick's phase. Additionally, the maximum amplitude for each direction can be 
used to determine the range that will trigger each one of the leaning inputs of the head 
gestures recognition.  

An extension of this profiling is related to the facial expressions and thoughts. A 
brain computer interface (BCI) was incorporated which can recognize the facial  
expressions and thoughts. However several patients suffering of cerebral palsy for 
example, are not able to produce all the facial expressions. For that reason it is also 
implemented a component in the profiling for testing the facial expressions (and even 
the thoughts) and where all the brain activity is recorded using the 14 sensors in the 
BCI for posterior analysis.  
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In general, the achieved results show the good performance of the individuals us-
ing gamepad and voice commands. The behaviour with head movements reflects 
more asymmetry and heterogeneous results, since several moderate and severe out-
liers exist in the time results. The time consumed to perform the sequences confirmed 
the complexity of the tasks as can be seen in Fig. 7. In terms of average time between 
buttons (Fig. 7) it is interesting to notice the results for the last sequence. Although it 
is more complex and longer it has a positive asymmetry distribution. This probably 
reveals that training may improve the user’s performance. 

In terms of errors, the third sequence presents a higher result with at least one fail. 
The last sequence presented a case where 12 errors were committed. 

Table 1. Contingency table with the errors of sequences using gamepad 

 Number of Errors 
Seq 0 1 2 3 4 5 6 12 

1 30 1 2 0 0 0 0 0 
2 31 2 0 0 0 0 0 0 
3 20 7 3 1 1 0 1 0 
4 27 1 1 1 0 2 0 1 

Table 2 presents several descriptive statistics, such as central tendency (mean, me-
dian) and dispersion (standard deviation, minimum and maximum), for the trust level 
of speech recognition. 

Table 2. Descriptive Statistics for the trust level of speech recognition 

Sentence Mean Median S. Dev Min Max 

“Go Forward” 95.36 95.50 0.51 93.9 95.9 
“Go Back” 94.37 95.00 2.44 82.2 95.9 

“Turn Right” 95.31 95.40 0.42 94.4 95.9 
“Turn Left” 94.76 95.20 1.42 88.4 95.8 
“Left Spin” 93.69 94.90 2.88 83.1 95.8 

“Right Spin” 94.82 95.00 1.25 89.7 97.2 
“Stop” 92.67 94.30 3.85 82.2 95.8 

Total Sentences 94.43 94.99 1.08 92.24 95.93 

The speech recognition has very good results. In fact, the minimum of minimums 
was 82.2 for the sentences “Go Back” and “Stop”. The expression “Go Forward” has 
the highest mean and median. The sentence “Stop” is more heterogeneous since it has 
the higher standard deviation (3.85). 

The paired samples t test was applied with a significance level of 0.05 to compare 
the means of time using joystick and head movements. The null hypothesis was estab-
lished: the means of time to perform the target tasks with joystick and head move-
ments were equal. The alternative hypothesis is: the means of time to perform  
the target tasks with joystick and head movements were different. The achieved pow-
er was of 0.80 with an effect size of 0.5. Table 3 contains the p values of the paired 
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sample t tests and the 95% confidence interval of the difference. Observing the results 
for the positions Down and Northwest, it is valid to claim there are statistical evi-
dences to affirm that the mean of time with joystick and head movements is different. 
This reveals the different performance by using in the same experience the joystick 
and the head movements. 

Table 3. Confidence intervals of the difference and p values 

 
95% Confidence Interval of 

the difference 
 

Move the red dot to: Lower Upper P value 
Right -2.29 0.67 0.273 
Up -1.38 0.08 0.080 

Down -9.67 -1.87 0.005* 
Northeast -2.89 0.66 0.211 
Northwest -2.74 -0.17 0.028* 
Southeast -6.26 1.00 0.150 

Northeast - Northwest - 
Southeast 

-5.32 0.37 0.085 

Clustering analysis is a technique that can be used to obtain the information about 
similar groups. In the future, this can be used to extract characteristics for classifica-
tion and users’ profiling. 

The results obtained by hierarchical clustering, using the nearest neighbour method 
and squared Euclidean distance, show the similar performance of subjects except one 
individual. In this case, using the R-square criteria, the number of necessary clusters 
to achieve 80% of the total variability retain by the clusters is 12. Since the sample of 
volunteers was from the same population, this kind of conclusions are very natural. So 
the next step will consist in obtain information about handicapped people. In fact, if 
the clusters of subjects could be defined then it should be interesting to work with 
supervised classification in which the best command mode would be the class. 

6 Conclusions and Future Work 

Although many Intelligent Wheelchair prototypes are being developed in several re-
search projects around the world, the adaptation of user interfaces to each specific patient 
is an often neglected research topic. Typically, the interfaces are very rigid and adapted to 
a single user or user group. The Intellwheels project is aiming at developing a new con-
cept of Intelligent Wheelchair controlled using high-level commands processed by a 
multimodal interface. However, in order to fully control the wheelchair, users must have 
a wheelchair interface adapted to their characteristics. In order to collect the characteris-
tics of individuals it is important to have variables that can produce a user profile. The 
first stage must be a statistical analysis to extract knowledge of user and the surrounding.  
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The second stage must be a supervised classification to use Machine Learning algorithms 
in order to construct a model for automatic classification of new cases. 

This paper mainly refers to the proposal of a set of tasks for extracting the required 
information for generating user profiles. A preliminary study has been done with sev-
eral voluntaries, enabling to test the proposed methodology before going to the field 
and acquiring information with disabled individuals. In fact, this will be the next step 
of future work. The test set presented in this paper will be tested by a group of dis-
abled individuals, and the results of both experiments will be compared to check if the 
performances of both populations are similar. Also, in order to collect feedback re-
garding the system usability, disabled users will be invited to drive the wheelchair in a 
number of real and simulated scenarios. 
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