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Abstract. In many real-world applications of knowledge representation and rea-
soning formalisms, one needs to cope with a number of spatial aspects in an
integrated and efficient way. In this paper, we focus our attention on the so-called
Rectangular Cardinal Direction calculus for qualitative spatial reasoning on car-
dinal relations between rectangles whose sides are parallel to the axes of a fixed
reference system. We show how to extend its convex tractable fragment with
metric constraints preserving tractability. The resulting formalism makes it pos-
sible to efficiently reason about spatial knowledge specified by one qualitative
constraint network and two metric networks (one for each spatial dimension).
In particular, it allows one to represent definite or imprecise knowledge on di-
rectional relations between rectangles and to derive additional information about
them, as well as to deal with metric constraints on the height/width of a rectangle
or on the vertical/horizontal distance between the sides of two rectangles. We be-
lieve that the formalism features a good combination of simplicity, efficiency, and
expressive power, making it adequate for spatial applications like, for instance,
web-document query processing and automatic layout generation.

Keywords: Qualitative spatial reasoning, Quantitative spatial reasoning, Cardi-
nal direction relations, Constraint satisfaction problems.

1 Introduction

Qualitative spatial representation and reasoning play an important role in various ar-
eas of computer science such as, for instance, geographic information systems, spatial
databases, document analysis, layout design, and image retrieval. Different aspects of
space, such as direction, topology, size, and distance, which must be dealt with in a
coherent way in many real-world applications, have been modeled by different formal
systems (see [5] for a survey). For practical reasons, a bidimensional space is com-
monly assumed, and spatial entities are represented by points, boxes, or polygons with
a variety of shapes, depending on the required level of detail.

Information about spatial configurations is usually specified by constraint networks
describing the allowed binary relations between pairs of spatial variables. The main
problem in qualitative spatial reasoning is to decide whether or not a given network
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has a solution, that is, to establish whether or not there exists an assignment of domain
values to variables that satisfies all constraints (consistency checking).

Cardinal relations are directional relations that allow one to specify how spatial ob-
jects are placed relative to each other either by making use of a fixed reference system,
e.g., to say that an object is to the “north” or “southwest” of another one in a geographic
space, or, alternatively, by exploiting directions as “above” or “below and left” in a lo-
cal space. The most expressive formalism with cardinal relations between plane regions
is the Cardinal Direction calculus (CD-calculus for short) [10,14,22]. The consistency
problem for the CD-calculus is NP-complete; moreover, in [12], it has been shown that
there exists no tractable fragment of it containing all basic constraints. Such a restriction
is a serious limitation when we have to deal with incomplete or indefinite information
in spatial applications.

A restricted version of the CD-calculus, called Rectangular Cardinal Direction cal-
culus (RCD-calculus), has been introduced in [19,18], where cardinal relations are de-
fined only between rectangles whose sides are parallel to the axes of the Euclidean
plane. Rectangles of this type (aka boxes) can be seen as minimum bounding rectangles
(MBRs) that enclose plane regions (the actual spatial objects). On the one hand, ap-
proximating regions by rectangles implies a loss of accuracy in the representation of the
relative direction between regions; on the other hand, reasoning tasks become more effi-
cient. The RCD-calculus has a strong connection with the Rectangle Algebra (RA) [2],
which can be viewed as a bidimensional extension of Interval Algebra (IA), the well-
known temporal formalism for dealing with qualitative binary relations between time
intervals [1]. A tractable fragment of the RCD-calculus, called convex RCD-calculus,
has been identified in [18]. It includes all basic relations and a large number of disjunc-
tive relations, making it possible to represent and reason about indefinite information
efficiently.

In this paper, we extend the convex RCD-calculus with metric constraints. Metric
constraints between points over a dense linear order have been dealt with by the Tem-
poral Constraint Satisfaction Problem formalism (TCSP) [7]. In such a formalism, one
can restrict the admissible values for the distance between a pair of points to a finite set
of ranges. If each constraint consists of one range only, we get a tractable fragment of
TCSP, called Simple Temporal Problem formalism (STP). In the following, we propose
a metric extension to the convex RCD-calculus that allows one to represent available
knowledge on directional relations between rectangles and to derive additional infor-
mation about them, as well as to deal with metric constraints on the height/width of a
rectangle or on the vertical/horizontal distance between rectangles. We will show that
the resulting formalism is expressive enough to capture various scenarios of practical
interest and still computationally affordable.

The rest of the paper is organized as follows. In Section 2, we provide background
knowledge on qualitative calculi and we shortly recall Interval Algebra and Rectangle
Algebra. In Section 3, we introduce the RCD-calculus and its convex fragment. In Sec-
tion 4, we extend the convex RCD-calculus with metric features, and we devise a sound
and complete polynomial algorithm for consistency checking. In Section 5, we apply
the proposed formalism to a case study in the domain of web-document layout design.
Conclusions provide an assessment of the work and outline future research directions.
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2 Background

In this section, we briefly review basic notions on constraint networks and the main
calculi regarding qualitative relations on points, intervals and rectangles.

Temporal (resp., spatial) knowledge is commonly represented in a qualitative cal-
culus by means of a qualitative network consisting of a complete constraint-labeled
digraph N = (V,C), where V = {v1, . . . , vn} is a finite set of variables, interpreted
over an infinite domain D, and the labeled edges in C specify the constraints defin-
ing qualitative temporal (resp., spatial) configurations. An edge from vi to vj labeled
with R corresponds to the constraint vi Rvj , where R denotes a binary relation over
D which restricts the possible values for the pair of variables (vi, vj). The full set of
relations of the calculus is usually taken as the powerset 2B, where B is a finite set of
binary basic relations that forms a partition of D × D. Thus, a relation R ∈ 2B is of
the form R = {r1, . . . , rm}, where each ri is a basic relation, and R represents the
union of the basic relations it contains. If m = 1, we call R a basic relation; other-
wise (m > 1), we call it a disjunctive relation. A special case of disjunctive relation
is the universal relation, denoted by ‘?’, which contains all the basic relations. A basic
constraint vi{r}vj expresses definite knowledge about the values that the two vari-
ables vi, vj can take, while a disjunctive constraint vi{r1, . . . , rm}vj expresses indefi-
nite or imprecise knowledge about these values. In particular, the universal constraint
vi ? vj states that the relation between vi an vj is totally unknown. From a logical point
of view, a disjunctive constraint vi{r1, . . . , rm}vj can be viewed as the disjunction
vi {r1} vj ∨ . . . ∨ vi {rm} vj .

An instantiation of the constraints of a qualitative network N is a mapping ι repre-
senting an assignment of domain values to the variables of N . A constraint viRvj is
said to be satisfied by an instantiation ι if the pair (ι(vi), ι(vj)) belongs to the binary
relation represented by R. A consistent instantiation, or solution, of a network is an as-
signment of domain values to variables satisfying all the constraints. If such a solution
exists, then the network is consistent, otherwise it is inconsistent.

The main reasoning task in qualitative reasoning is consistency checking, which
amounts to deciding if a network is consistent. If all relations are considered, consis-
tency checking is usually NP-hard. Hence, finding subsets of 2B for which consistency
checking turns out to be polynomial (tractable subsets) is an important issue to address.
Another common task in qualitative reasoning is computing the unique minimal net-
work equivalent to a given one by determining, for each pair of variables, the strongest
relation (minimal relation) entailed by the constraints of the network. It can be easily
shown that each basic relation in a minimal network is feasible, i.e., it participates in
some solution of the network. To deal with these tasks, constraint propagation tech-
niques are usually exploited [25,23]. The most prominent method for constraint prop-
agation in qualitative temporal reasoning is the so-called path-consistency algorithm,
PC-algorithm for short [15]. Such an algorithm refines relations by successively apply-
ing the operation Rij ← Rij ∩ (Rik ◦ Rkj) for every triple of variables (vi, vk, vj),
until a stable network is reached, where Rij , Rik, Rkj are the relations constraining the
pair of variables (vi, vj), (vi, vk), (vk, vj), respectively (◦ stands for the composition of
relations). If the empty relation is obtained during the process, then the input network
is inconsistent; otherwise, we can conclude that the output network is path consistent,
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Fig. 1. Basic relations of the Interval Algebra

which does not necessarily imply that it is consistent. In some special cases, the PC-
algorithm can be used to decide the consistency of a qualitative network and to get the
minimal one.

2.1 Interval Algebra and Point Algebra

Allen’s Interval Algebra (IA) allows one to constrain the relative position of two time
intervals [1]. An interval I is usually interpreted as a closed interval over the rational
numbers [I−, I+], whose endpoints I− and I+ satisfy the relation I− < I+. Let Bia
be the set of the thirteen basic interval relations capturing all possible ways to order the
four endpoints of two intervals, usually denoted by the symbols b, o, d,m, s, f, e, bi, oi,
di,mi, si, and fi. The semantics of basic IA-relations is defined in terms of ordering
relations between the endpoints of the intervals, as shown in Figure 1. Notice that, given
a basic relation r between two intervals I and J , the inverse relation ri is defined by
simply exchanging the roles of I and J (see Figure 1). IA can be viewed as a constraint
algebra defined by the power set 2Bia and the operations of intersection, inverse (−1),
and composition (◦) of relations.

IA subsumes Point Algebra (PA) [25], a simpler qualitative calculus whose binary
relations specify the relative position of pairs of time points. PA binary relations are
<,>,= (basic) and ≤,≥, 	=, ? (disjunctive), plus the empty relation. The endpoint re-
lations defining a basic IA-relation (Figure 1) are basic relations of PA.

2.2 Rectangle Algebra

Rectangle Algebra (RA), proposed by Balbiani et al. (1998), is an extension of IA to
a bidimensional space. We assume here the domain of RA to consist of the set of ra-
tional rectangles whose sides are parallel to the axes of the Euclidean plane. To avoid
a notational overload, with a little abuse of notation, hereafter we will denote by a, b
both rectangles in the domain of RA and constraint (rectangle) variables. A rectangle
a is completely characterized by a pair of intervals (ax, ay), where ax and ay are the
projections of a onto the x- and y-axis, respectively. We call Bra the set of basic rela-
tions of RA, which is obtained by considering all possible pairs of basic IA-relations.
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Fig. 2. (a) An illustration of the RA-relation a{(o, bi)}b. The corresponding RCD-relation is
a {NW :N} b. (b) Cardinal tiles with respect to rectangle b.

Hence, a basic RA-relation r is denoted by a pair r = (t, t′) of basic IA-relations, rep-
resenting the set of pairs of rectangles (a, b) such that a (t, t′) b holds if and only if, by
definition, ax t bx and ay t

′ by hold. Given a basic RA-relation r = (t, t′), let t = πx(r)
and t′ = πy(r) be the x- and y-projection of r, respectively.

Example 1. Figure 2-(a) shows a spatial realization of a {(o, bi)} b. Note that πx(o, bi)=
o, πy(o, bi) = bi, ax overlaps bx, and ay is after by. The left endpoints of the intervals
assigned to ax and ay (1 and 5.9, respectively) and their right endpoints (4.6 and 8,
respectively) are the coordinates of the lower-left and upper-right vertices of the given
instantiation of a, respectively. The same for b. Thus, the values assigned to the end-
points of the projections of a and b represent an assignment for a and b that satisfies the
constraint a {(o, bi)} b.
In the case of an arbitrary RA-relation R ∈ 2Bra , the projections of R are defined as
follows:

πx(R) = {πx(r) | r ∈ R} πy(R) = {πy(r) | r ∈ R}.
Notice that, in general, πx(R) × πy(R) may be different from R or, equivalently, we
may have πx(R1) = πx(R2) and πy(R1) = πy(R2) for some R1 	= R2.

The mappings πx and πy can be generalized to RA-networks. We define the pro-
jections πx and πy of an RA-network N = (V,C) as the two IA-networks πx(N) =
(Vx, Cx) and πy(N) = (Vy , Cy), where Vx, Vy are the sets of interval variables corre-
sponding to the rectangle variables in V and the set of IA-constraints Cx (resp., Cy) is
obtained by replacing each relation Rij in C by πx(Rij) (resp., by πy(Rij)).

2.3 Convex Subalgebras

The consistency problem for both IA and RA is known to be NP-complete. Several
tractable fragments of both calculi have been identified in the literature. In this pa-
per, we focus our attention on convex tractable subsets of IA [24] and RA [2], which
consist of the set of convex IA-relations and convex RA-relations, respectively. Convex
relations are those relations that can be equivalently expressed as a set of convex PA-
constraints (all PA-relations except 	= are allowed) between the endpoints of interval
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Table 1. Translation of convex PA-constraints to STP-constraints via the toSTP mapping

Convex PA relation STP constraint
pi < pj pj − pi ∈ ]0,+∞[
pi ≤ pj pj − pi ∈ [0,+∞[
pi = pj pj − pi ∈ [0, 0]
pi > pj pj − pi ∈ ]−∞, 0[
pi ≥ pj pj − pi ∈ ]−∞, 0]
pi ? pj pj − pi ∈ ]−∞,+∞[

variables (convex IA-relations) or between the endpoints of the projections of rectan-
gle variables (convex RA-relations). It is worth to mention that a convex RA-relation
is equivalently characterized as an RA-relation which can be obtained as the Cartesian
product of two convex IA-relations. Both the consistency and the minimality problems
in the convex fragments of PA, IA, and RA can be solved in O(n3), where n is the
number of variables of the input network.

2.4 Simple Temporal Problem

The Simple Temporal Problem (STP) formalism was introduced in [7] to process metric
information about time points. Formally, an STP is specified by a constraint network
S = (P,M), where P is a set of n point variables, whose values range over a dense
domain (which we assume to be Q), and M is a set of binary metric constraints over P .
A metric constraint Mij = [q, q′] (open and semi-open intervals can be used as well),
with q, q′ ∈ Q, on the distance between (the values of) pi, pj ∈ P states that pj − pi ∈
[q, q′], or, equivalently, that q ≤ pj − pi ≤ q′. Hence, the constraint Mij defines the set
of possible values for the distance pj−pi. In the constraint graph associated to S, Mij =
[q, q′] is represented by an edge from pi to pj labeled by the rational interval [q, q′].
Unary metric constraints restricting the domain of a point variable pi can be encoded
as binary constraints between pi and a special starting-point variable with a fixed value,
e.g., 0. The universal constraint is ]−∞,+∞[. The operations of composition (◦) and
inverse (−1) of metric constraints are computed by means of interval arithmetic, that
is, [q1, q2] ◦ [q3, q4] = [q1 + q3, q2 + q4] and [q1, q2]

−1
= [−q2,−q1]. Intersection of

constraints (intervals) is defined as usual.
Assuming such an interpretation of the operations of composition, inverse, and inter-

section, in [7] Dechter et al. show that any path-consistency algorithm can be exploited
to compute the minimal STP equivalent to a given one, if any (if an inconsistency is
detected, the algorithm returns an empty network). In the following, we will denote
such an algorithm by PCstp. Making use of such a result, in [16], Meiri proposes a
formalism to combine qualitative constraints between points and intervals with (possi-
bly disjunctive) metric constraints between points (as in TCSP). An easy special case
arises when only convex PA-constraints and STP-constraints are considered. Convex
PA-constraints can be encoded as STP-constraints by means of the toSTP translation
function described in Table 1. The following result can be found in [16].
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Theorem 1. Let N be a network with convex PA-constraints and STP-constraints. If N
is path-consistent, then N is also consistent and its metric constraints are minimal.

PCstp can thus be used to decide the consistency of a network N satisfying the
conditions of the above theorem. To this end, it suffices to encode PA-constraints into
equivalent STP-constraints.

3 Rectangular Cardinal Direction Calculus

The Rectangular Cardinal Direction calculus (RCD-calculus) [19,18] deals with cardi-
nal direction relations between rectangles. It can be viewed as a restricted version of
the CD-calculus over the domain of regular regions [10,14,22], which includes all rect-
angles aligned to the axes. The domain of the CD-calculus is the same as that of RA.
Let b be a reference rectangle. We denote by b−x and b+x (resp., b−y and b+y ) the left and
the right endpoint of the projection of b onto the x-axis (resp., y-axis), respectively. The
straight lines x = b−x , x = b+x , y = b−y , y = b+y divide the plane into nine tiles
τi(b), with 1 ≤ i ≤ 9, as shown in Figure 2-(b), where τi is a tile symbol from the
set TS = {B,S, SW,W,NW,N,NE,E, SE}, denoting the cardinal directions in the
Bounds of, to the South of, to the SouthWest of, to the West of, to the NorthWest of, to
the North of, to the NorthEast of, to the East of, and to the SouthEast of, respectively.

Definition 1. A basic rectangular cardinal relation (basic RCD-relation) is denoted by a
tile string τ1:τ2: . . . :τk, where τi ∈ TS, for 1 ≤ i ≤ k, such that a τ1:τ2: . . . :τk b holds
iff for all τi ∈ {τ1, τ2, . . . , τk}, a◦ ∩ τi(b) 	= ∅, and for all τi ∈ TS \ {τ1, τ2, . . . , τk},
a◦ ∩ τi(b) = ∅, where a◦ is the interior of a. A rectangular cardinal relation (RCD-
relation) is represented by a set R = {r1, . . . , rm}, where each ri is a basic RCD-
relation.

The set Brcd of basic RCD-relations consists of 36 elements (see Figure 3). Qualitative
networks with labels in 2Brcd , as well as the consistency problem for such networks,
are defined in the standard way.

3.1 RCD-Calculus and Rectangle Algebra

The relationships between the RCD-calculus and the Rectangle Algebra have been sys-
tematically investigated by Navarrete et al. in [18]. Consider, for instance, the RCD-
constraint a {NW :N} b. A possible instantiation of such a constraint is depicted in
Figure 2-(a). The same pair of rectangles can be viewed as an instance of the RA-
constraint a {(o, bi)} b as well. However, there exists another possible instantiation of
the constraint a {NW :N} b that satisfies the RA-constraint a {(o,mi)} b. In general,
for a given RCD-relation there exist more than one corresponding RA-relations, while
for a given RA-relation there exists exactly one corresponding RCD-relation. This is
due to the fact that RCD-relations are coarser than RA-relations. As an example, the
RCD-calculus does not allow one to precisely state that two given rectangles are exter-
nally connected or strictly disconnected, or to constrain their sides to be (or to be not)
vertically (resp., horizontally) aligned. As a general rule, given an RCD-relation, we
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Fig. 3. Translation from basic RCD-relations to RA-relations via the toRA mapping

can always determine the strongest RA-relation it implies. As an example, the strongest
RA-relation implied by NW :N is {fi, o}× {mi, bi}. Notice that such an RA-relation,
which is entailed by a basic RCD-relation, is not a basic RA-relation.

The weaker expressive power of the RCD-calculus with respect to RA is not nec-
essarily a problem. As an example, if we are interested in pure cardinal information
only, the expressiveness of RCD-relations suffices. Moreover, the constraint language
of the RCD-calculus is closer to the natural language than the one of the RA. For
example, stating that “rectangle a lies partly to the northwest and partly to the north
of b” (a {NW :N} b) is much more natural than stating that “the x-projection of a
is overlapping or finished by the x-projection of b, and the y-projection of b is . . . ”
(a{fi, o} × {mi, bi}b).

Figure 3 describes a translation function, called toRA, to map a basic RCD-relation
into the strongest entailed RA-relation. This mapping can be extended to translate ar-
bitrary relations, constraints, and networks of the RCD-calculus to their RA counter-
parts, preserving consistency. More precisely, given a disjunctive relation R, toRA(R)
is obtained as the union of the translation of the basic relations in R, while, given an
RCD-network N = (V,C), the corresponding RA-network toRA(N) is obtained by
replacing each relation Rij in C by toRA(Rij). As the following theorem states, to
decide the consistency of an RCD-network N , one can compute toRA(N) and then
apply to it any algorithm for deciding the consistency of RA-networks [18].

Theorem 2. An RCD-network N is consistent if and only if toRA(N) is consistent.

3.2 The Convex Fragment of the RCD-Calculus

In [18], the authors show that the consistency problem for the RCD-calculus is NP-
complete and they identify a large tractable subset of RCD-relations. Such a fragment,
called convex RCD-calculus, consists of all and only the RCD-relations R whose trans-
lation toRA(R) is a convex RA-relation. It is possible to show that there exist 400
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convex RCD-relations. As we already pointed out, the convex subclasses of IA, PA, and
RA are tractable. By exploiting the connection between these subclasses and the convex
RCD-calculus, an O(n2) algorithm for consistency checking of convex RCD-networks
has been proposed in [18]. In particular, it benefits from the following result about RA,
stated in [2].

Theorem 3. Let N be a convex RA-network. N is consistent if and only if its projec-
tions πx(N) and πy(N) are consistent.

4 Convex-Metric RCD-Calculus

In this section, we propose a tractable metric extension of the convex RCD-calculus,
called convex-metric RCD-calculus (cmRCD-calculus) to represent and to reason about
both qualitative cardinal constraints between rectangles and metric constraints on the
distance between the endpoints of their projections. The main tool we use to deal with
metric information in the cmRCD-calculus is STP. More precisely, we use STP to elab-
orate information on the endpoints of MBR projections onto the Cartesian axes.

Integrating the convex RCD-calculus with STP makes it possible to express both
directional constraints and metric constraints in a uniform framework. As an exam-
ple, the resulting formalism allows one to constrain the position of a rectangle in the
plane and to impose minimum and/or maximum values to the width/height of a given
rectangle, or on the vertical/horizontal distances between the sides of two rectangles.
Obviously, RCD-constraints and STP-constraints are not totally independent, that is,
RCD-constraints entail some metric constraints and vice versa.

Example 2. Let a and b be two rectangles. We can use the metric constraint 0 ≤
a+x − a−x ≤ 7 to state that the maximum width of a is 7 and, similarly, we can ex-
ploit the metric constraint 2 ≤ a+y − a−y to state that the minimum height of a is 2
(leaving the maximum height unbounded). We can also express distance constraints
between the boundaries of a and b. We can constrain the horizontal distance between
the right side of a and the left side of b to be at least 3 by means of the constraint
3 ≤ b−x − a+x , and the vertical distance between the upper side of a and the bottom
side of b to be greater than or equal to 0 by means of the constraint 0 ≤ b−y − a+y .
The two constraints together entail the basic RCD constraint a {SW}b. Finally, some
metric constraints can be entailed by RCD ones. For instance, the convex relation
a {NW,N,NE,NW :N,NW :N :NE,N :NE} b implies that 0 ≤ a−y − b+y .

If we allow one to combine arbitrary RCD-constraints with metric constraints, then
checking the consistency of the resulting set of constraints turns out to be an NP-
complete problem (the consistency problem for RCD-networks is already NP-complete).
To preserve tractability, the cmRCD-calculus combines convex RCD-constraints with
STP-constraints. Constraint networks in the cmRCD-calculus (cmRCD-networks) are
defined as follows. Given a convex RCD-network Nc = (V,C), we denote the sets of
interval variables belonging to the projections πx(toRA(Nc)) and πy(toRA(Nc)) by
Vx and Vy , respectively. Moreover, we denote by P (Vx) and P (Vy) the sets of point
variables representing the endpoints of the interval variables in Vx and Vy , respectively.
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Definition 2. A cmRCD-network is an integrated qualitative and metric constraint net-
work N consisting of three sub-networks (Nc,Sx,Sy), where Nc = (V,C) is a convex
RCD-network, and Sx =

(
P (Vx),Mx

)
and Sy =

(
P (Vy),My

)
are two STPs.

Algorithm 4.1. The algorithm con-cmRCD

Require: a cmRCD-network N = (Nc,Sx,Sy)
1: Nr ← toRA(Nc);
2: Nx ← πx(Nr), Ny ← πy(Nr);
3: NP

x ← toPA(Nx), NP
y ← toPA(Ny);

4: xSTP ← intersect(toSTP (NP
x ), Sx);

5: ySTP ← intersect(toSTP (NP
y ),Sy);

6: if xSTP or ySTP is empty, then return ‘inconsistent’;
7: xSTPmin ← PCstp(xSTP );
8: ySTPmin ← PCstp(ySTP );
9: If xSTPmin or ySTPmin is empty, then return ‘inconsistent’; otherwise, return ‘consis-

tent’.

The cmRCD-calculus subsumes both the convex RCD-calculus and the STP formalism.
Moreover, it generalizes the convex fragment of the RA, since convex RA-relations are
expressible as convex PA-relations, which can be encoded into an STP.

In the following, we describe an algorithm, called con-cmRCD, to solve the con-
sistency problem for cmRCD-networks, that runs in O(n3). As a matter of fact, a sim-
ilar combination of qualitative and quantitative networks is provided by preconvex-
augmented rectangle networks. An O(n5) algorithm for checking the consistency of
these networks, that subsume cmRCD-networks, is given in [6]. We exploit the trade-off
between expressiveness and complexity to obtain a more efficient consistency checking
algorithm for cmRCD-networks.

As a preliminary step, we extend the translation mapping toSTP of Table 1 to en-
code a convex PA-network NP into an STP S by replacing each relation R in the
network NP by toSTP (R). First, con-cmRCD applies the mapping toRA to the in-
put convex RCD-network Nc to get the corresponding convex RA-network Nr. Then,
it computes the projections Nx and Ny of Nr. Next, it applies the mapping toPA to
translate the convex IA-networks Nx and Ny into two equivalent PA-networks NP

x

and NP
y with convex relations between points variables representing the projections

of the intervals in Nx and Ny. Thereafter, making use of such an encoding of con-
vex RCD-relations as PA-relations, it looks for possible inconsistencies between these
constraints and the STP-constraints on the same variables given in Sx and Sy that can
be detected at this stage. To this end, it translates the PA-network NP

x (resp., NP
y )

into an STP-network by applying the extended function toSTP , and then it uses the
function intersect to compute the “intersection” between toSTP (NP

x ) and Sx (resp.,
toSTP (NP

y ) and Sy). This function simply intersects the constraints associated with
the same pairs of variables in the two STPs. If an interval intersection produces an empty
interval, then intersect returns an empty network, and we can conclude that N is incon-
sistent. Otherwise, we apply the path-consistency algorithm to the two STPs computed
at lines 4 and 5 independently. The following theorem proves that con-cmRCD is
sound and complete.
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Theorem 4. Given a cmRCD-networkN = (Nc,Sx, Sy), the algorithm con-cmRCD
returns ‘consistent’ if and only if N is consistent.

Proof. We basically follow the steps of the algorithm. By Theorem 2, Nc is consistent
if and only if Nr is consistent, and, by Theorem 3, Nr is consistent if and only if Nx and
Ny are consistent (they can be checked independently). Next, Nx and Ny are consistent
if and only if NP

x and NP
y are consistent, since there is no loss in information in the

translations [24]. The consistency of NP
x and NP

y can be checked by computing the
corresponding STPs and by applying PCstp. However, we cannot apply PCstp directly
to the STPs toSTP (NP

x ) and toSTP (NP
x ) since the metric constraints of Sx and Sy

must be taken into account. Hence, we computexSTP = intersect(toSTP (NP
x ), Sx)

and ySTP = intersect(toSTP (NP
x ), Sy). If one of them returns an empty network,

then N is inconsistent. Otherwise, we independently apply PCstp to xSTP and ySTP .
By Theorem 1, if one of the two applications of PCstp returns an empty network, then
N is inconsistent; otherwise, the path-consistent STPs xSTPmin and ySTPmin are
consistent (and minimal), and thus N is consistent. ��
Theorem 5. The complexity of the algorithm con-cmRCD is O(n3), where n is the
number of variables of the input network.

Proof. The translation via toRA, the generation of a projection of a network, the trans-
formation of an IA-network into an RA-network via toPA, and the last two encodings
via toSTP require O(n2) steps, since there are O(n2) constraints and each constraint
can be translated in constant time. The function toPA introduces two variables for each
interval variable, so xSTP and ySTP have O(n) variables each. Finally, PCstp runs
in O(n3) time, so the overall complexity is O(n3) time (for further details about the
complexity of achieving path-consistency for combined networks see [16]). ��
Once we have computed the path-consistent STPs xSTPmin and ySTPmin with algo-
rithm con-cmRCD, we can build a solution to the cmRCD-network N by computing
a solution for the points in xSTPmin and ySTPmin, since the assignment for point
variables defines a consistent assignment for rectangle variables (see Example 1). To
this end, the O(n3) algorithm STP-SOLUTION, by Gerevini and Cristani [9], can be
used.

5 A Case Study for the cmRCD-Calculus

Given its distinctive features, the cmRCD-calculus is well-suited for all application
areas where minimal bounding rectangles can be successfully exploited. This is the
case, for instance, with spatial databases [10,21], information extraction from formatted
documents [8,20], and 2D-layout design [3,4,17]. We would also like to mention the
application of convex RCD-calculus (the qualitative fragment of cmRCD-calculus) to
the problem querying and extracting data from web documents reported in [20]. We
believe that, in view of its well-balanced combination of efficiency and expressiveness,
cmRCD-calculus can be naturally and successfully applied to this class of problems as
well.
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Fig. 4. Graph representation of part of the xSTP and ySTP of Example 3. For the sake of
readability, constraints involving h in the ySTP and the universal constraint are omitted.

In this section, we focus our attention on an application of the cmRCD-calculus to
the automatic web page layout generation, inspired by a work by Borning et al. [4].
On the one hand, current web authoring tools do not allow home page designers to
specify how the document should change in response to viewer’s needs; on the other
hand, web browsers do not really allow their users to express their requirements about
the layout, except for those about the dimension of the font and few other features. The
work by Borning et al. aims at allowing both the designer and the viewer to specify the
positioning of the document elements by means of linear equalities and inequalities over
their minimum bounding boxes, in such a way that the layout of the web page becomes
the result of a negotiation between them (designer and viewer). In the following, we
show how to apply cmRCD-calculus to allow the user (author or viewer) to specify
both cardinal and metric constraints on the layout elements. Notice that, in doing that,
we reduce the expressive power of Borning et al.’s proposal; nevertheless, the problem
they consider is in fact an optimization problem, which is solved by means of a linear-
programming algorithm that has an exponential worst-case time complexity.

Example 3. Let us consider a Facebook-like social network, that allows the user to
personalize the contents of his/her home page by making use of directional constraints.
We can assume each element the user can add to be represented by a MBR, or box,
whose sides are parallel to the axes of the reference system centered at the lower left
vertex of the home page. As an example, we may have a box containing information
about his/her (gender, birthday, etc.), a box containing his/her profile picture, and so
on. In addition, it makes sense to assume that the system requires all user pages to
share some common presentation features like, for instance, the system logo and some
general presentation directives.

In this scenario, we can imagine that a user enters the following requirements to
some design tool that interacts with the layout designer (user’s specifications are given
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in terms of directions such as “right” or “inside”, which are far more natural for a local
space than their equivalent cardinal directions “to the East of” or “in the bounds of”):

1. my cover picture c has to lie on the top of the home page h, that is, the vertical
distance between the top sides of c and h must be 0, and the dimension of c is
1024× 400 px;

2. the box n containing my full name has to lie inside c;
3. the box i containing my personal information has to be somewhere below c, no

matter what its horizontal position is (in terms of cardinal relations, this require-
ment should be understood as “somewhere between the south west and the south
east zone of c”);

4. the box a containing the cover pictures of my photo albums has to lie to the right of
i, no matter what its vertical position is; in addition, the vertical distance between
the top sides of a and i must be 0;

5. the box p containing my profile picture has to lie inside c, and the horizontal dis-
tance between the left sides of of p and c must be 0; in addition, n has to be to the
right of p, with the restriction that the vertical distance between the top sides of p
and n must be 0;

6. I want to see the 5 most recent stories from my friends in a box s, which has to
lie below the previous elements, no matter what its horizontal position is, and the
horizontal distance between the left sides of s and c must be 0.

Besides these user constraints, we can imagine that the system imposes the following
additional constraints:

7. somewhere at the bottom of the home page, there must be a logo l, whose dimension
is 200× 100 px;

8. the width of the home page cannot exceed 1024 px.

When the contents of all boxes are retrieved from the database server, the system pro-
vides lower and upper bounds to the size of the boxes, so that the layout manager has
more chances to fit the contents on the basis of user preferences. In particular, we can
assume that the following conditions hold:

9. n’s width can vary from 600 to 700 px, while n’s height can vary from 150 to 200
px;

10. i’s width can vary from 400 to 450 px, while i’s height can vary from 450 to 550
px;

11. s’s width can vary from 700 to 850 px, while s’s height can vary from 1024 to 1200
px;

12. a is 600× 400 px;
13. p is 400× 400 px.

A particular choice for the size of a box is automatically compensated by increas-
ing/decreasing the font size.
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Fig. 5. A solution to the cmRCD-network for Example 3.

When the system has to deliver the web page, it must find a solution to a
cmRCD-network consisting of the following qualitative constraints (that encode the
above qualitative requirements):

1. Implicit: “boxes must be inside the homepage”:
cB h, nB h, i B h, aB h, l B h, pB h, sB h

2. nB c;
3. i {SW,S, SW :S, SW :S:SE, S:SE, SE} c;
4. a {NE,E,NE:E,NE:E:SE,E:SE, SE} i;
5. pB c, nE p;
6. for each box b ∈ {c, n, i, a, p}, s {SW,S, SW :S, SW :S:SE, S:SE, SE} b;
7. for each box b, l {SW,S, SW :S, SW :S:SE, S:SE, SE} b;

and of the following metric constraints (that encode the above metric requirements):

1. h+
y − c+y = 0, c+y − c−y = 400, c+x − c−x = 1024;

2. a+y − i+y = 0;
3. p+y − n+

y = 0, p−x − c−x = 0;
4. s−x − c−x = 0;
5. l+x − l−x = 200, l+y − l−y = 100;
6. 0 < h+

x − h−
x ≤ 1024;

7. 600 ≤ n+
x − n−

x ≤ 700, 150 ≤ n+
y − n−

y ≤ 200;
8. 400 ≤ i+x − i−x ≤ 450, 450 ≤ i+y − i−y ≤ 550;
9. 700 ≤ s+x − s−x ≤ 850, 1024 ≤ s+y − s−y ≤ 1200;

10. a+x − a−x = 600, a+y − a−y = 400;
11. p+x − p−x = 400, p+y − p−y = 400.

Meaningful portions of the constraint networks xSTP and ySTP , generated by steps 4
and 5 of the algorithm con-cmRCD, respectively, are depicted in Figure 4. A possible
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solution to the network, that is, a possible layout of the user home page, is given in
Figure 5. It is worth pointing out that the picture shows the minimum feasible values
for point variables, and thus it immediately follows that the minimum dimension of h
is 1024× 1974 px.

6 Conclusions

In this paper, we have proposed a quite expressive, but tractable, metric extension of
RCD-calculus, that integrates convex RCD-constraints and STP-constraints. The result-
ing cmRCD-calculus allows one to constrain the position of a rectangle in the plane, its
width/height, and the vertical/horizontal distance between the sides of two rectangles,
as well as to represent cardinal relations between rectangles. We have developed an
O(n3) consistency-checking algorithm for such a calculus, and we have shown how a
spatial realization of a cmRCD-network can be built.

As for future work, we plan to extend the cmRCD-calculus with topological relations
to improve its expressiveness (similar results can be found in [11,13]). Moreover, since
the problem of identifying maximal tractable subsets of RCD is still open, it makes
sense to search for tractable classes strictly including the convex fragment. Finally, we
are interested in developing heuristics and algorithms to check consistency and to find
a solution in the cases of non-convex RCD-relations or disjunctive metric constraints.
Since in these cases both problems turn out to be intractable, an empirical evaluation of
the solutions is necessary to check scalability.
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