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Abstract. A general game player is a program that is able to play arbitrary games
well given only their rules. One of the main problems of general game playing
is the automatic construction of a good evaluation function for these games. Dis-
tance features are an important aspect of such an evaluation function, measuring,
e.g., the distance of a pawn towards the promotion rank in chess or the distance
between Pac-Man and the ghosts.

However, current distance features for General Game Playing are often based
on too specific detection patterns to be generally applicable, and they often apply
a uniform Manhattan distance regardless of the move patterns of the objects in-
volved. In addition, the existing distance features do not provide proven bounds
on the actual distances.

In this paper, we present a method to automatically construct distance heuris-
tics directly from the rules of an arbitrary game. The presented method is not
limited to specific game structures, such as Cartesian boards, but applicable to all
structures in a game. Constructing the distance heuristics from the game rules en-
sures that the construction does not depend on the size of the state space, but only
on the size of the game description which is exponentially smaller in general.
Furthermore, we prove that the constructed distance heuristics are admissible,
i.e., provide proven lower bounds on the actual distances.

We demonstrate the effectiveness of our approach by integrating the distance
heuristics in an evaluation function of a general game player and comparing the
performance with a state-of-the-art player.

Keywords: General game playing, Feature construction, Heuristic search.

1 Introduction

While in classical game playing, human experts encode their knowledge into features
and parameters of evaluation functions (e.g., weights), the goal of General Game Play-
ing is to develop programs that are able to autonomously derive a good evaluation func-
tion for a game given only the rules of the game. Because the games are unknown
beforehand, the main problem lies in the detection and construction of useful features
and heuristics for guiding search in the match.

One class of such features are distance features used in a variety of GGP agents
(e.g., [6,9,2,4]). The way of detecting and constructing features in current game playing
systems, however, suffers from a number of disadvantages:
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– Distance features require a prior recognition of board-like game elements. Current
approaches formulate hypotheses about which element of the game rules describes
a board and then either check these hypotheses in internal simulations of the game
(e.g., [6,9,4]) or try to prove them [10]. Both approaches are expensive and can
only detect boards if their description follows a certain syntactic pattern.

– Distance features are limited to Cartesian board-like structures, that is, n-dimen-
sional structures with totally ordered coordinates. Distances over general graphs
are not considered.

– Distances are calculated using a predefined metric on the boards. Consequently,
distance values obtained do not depend on the type of piece involved. For exam-
ple, using a predefined metric the distance of a rook, king and pawn from a2 to
c2 would appear equal while a human would identify the distance as 1, 2 and ∞
(unreachable), respectively.

In this paper we will present a more general approach for the construction of distance
features for general games. The underlying idea is to analyze the rules of game in order
to find dependencies between the fluents of the game, i.e., between the atomic prop-
erties of the game states. Based on these dependencies, we define a distance function
that computes an admissible estimate for the number of steps required to make a cer-
tain fluent true. This distance function can be used as a feature in search heuristics of
GGP agents. In contrast to previous approaches, our approach does not depend on syn-
tactic patterns and involves no internal simulation or detection of any predefined game
elements. Moreover, it is not limited to board-like structures but can be used for every
fluent of a game.

The remainder of this paper is structured as follows: In the next section we give
an introduction to the Game Description Language (GDL), which is used to describe
general games. In Section 3 we introduce the theoretical basis for this work, so called
fluent graphs, and show how to use them to derive distances from states to fluents. We
proceed in Section 4 by showing how fluent graphs can be constructed from a game
description and demonstrate their application in Section 5. We conduct experiments
in Section 6 to show the benefit and generality of our approach and discuss related
approaches in Section 7. Finally, we give an outlook on future work in Section 8 and
summarize in Section 9.

2 Preliminaries

The language used for describing the rules of general games is the Game Description
Language [7] (GDL). GDL is an extension of Datalog with functions, equality, some
syntactical restrictions to preserve finiteness, and some predefined keywords.

The following is a partial encoding of a Tic-Tac-Toe game in GDL. In this paper we
use Prolog syntax where words starting with upper-case letters stand for variables and
the remaining words are constants.
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1 role(xplayer). role(oplayer).
2

3 init(control(xplayer)).
4 init(cell(1,1,b)). init(cell(1,2,b)).init(cell(1,3,b)).
5 ...
6 init(cell(3,3,b)).
7

8 legal(P, mark(X,Y)) :- true(control(P)), true(cell(X,Y,b)).
9 legal(P, noop) :- role(P), not true(control(P)).

10

11 next(cell(X,Y,x)) :- does(xplayer, mark(X,Y)).
12 next(cell(X,Y,o)) :- does(oplayer, mark(X,Y)).
13 next(cell(X,Y,C)) :- true(cell(X,Y,C)), distinct(C, b).
14 next(cell(X,Y,b)) :- true(cell(X,Y,b)), does(P, mark(M,N)),
15 (distinct(X,M) ; distinct(Y,N)).
16

17 goal(xplayer, 100) :- line(x).
18 ...
19 terminal :- line(x) ; line(o) ; not open.
20

21 line(P) :-
22 true(cell(X,1,P)), true(cell(X,2,P)), true(cell(X,3,P)).
23 ...
24 open :- true(cell(X,Y,b)).

The first line declares the roles of the game. The unary predicate init defines the
properties that are true in the initial state. Lines 8-9 define the legal moves of the game
with the help of the keyword legal. For example, mark(X,Y) is a legal move for
role P if control(P) is true in the current state (i.e., it’s P’s turn) and the cell X,Y
is blank (cell(X,Y,b)). The rules for predicate next define the properties that hold
in the successor state, e.g., cell(M,N,x) holds if xplayer marked the cell M,N and
cell(M,N,b) does not change if some cell different from M,N was marked1. Lines 17
to 19 define the rewards of the players and the condition for terminal states. The rules
for both contain auxiliary predicates line(P) and open which encode the concept of
a line-of-three and the existence of a blank cell, respectively.

We will refer to the arguments of the GDL keywords init, true and next as flu-
ents. Fluents are the building blocks of states in GDL and will be in the center of our
analysis for distance features. In the above example, there are two different types of
fluents, control(X) with X ∈ {xplayer, oplayer} and cell(X, Y, Z) with X,
Y ∈ {1, 2, 3} and Z ∈ {b, x, o}.

In [11], we defined a formal semantics of a game described in GDL as a state transi-
tion system:

Definition 1 (Game). Let Σ be a set of ground terms and 2Σ denote the set of finite
subsets of Σ. A game over this set of ground terms Σ is a state transition system Γ =
(R, s0, T, l, u, g) over sets of states S ⊆ 2Σ and actions A ⊆ Σ with

1 The special predicate distinct(X,Y) holds if the terms X and Y are syntactically different.
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– R ⊆ Σ, a finite set of roles;
– s0 ∈ S, the initial state of the game;
– T ⊆ S, the set of terminal states;
– l : R×A× S, the legality relation;
– u : (R �→ A)× S → S, the transition or update function; and
– g : R× S �→ N, the reward or goal function.

This formal semantics is based on a set of ground terms Σ. This set is the set of all
ground terms over the signature of the game description. Hence, fluents, actions and
roles of the game are ground terms in Σ. States are finite sets of fluents, i.e., finite
subsets ofΣ. The connection between a game descriptionD and the gameΓ it describes
is established using the standard model of the logic programD. For example, the update
function u is defined as

u(A, s) = {f ∈ Σ : D ∪ strue ∪ Adoes |= next(f)}

where strue and Adoes are suitable encodings of the state s and the joint action A of
all players as a logic program. Thus, the successor state u(A, s) is the set of all ground
terms (fluents) f such that next(f) is entailed by the game description D together
with the state s and the joint move A. For a complete definition for all components of
the game Γ we refer to [11].

3 Fluent Graphs

Our goal is to obtain knowledge on how fluents evolve over time. We start by building
a fluent graph that contains all the fluents of a game as nodes. Then we add directed
edges (fi, f) if at least one of the predecessor fluents fi must hold in the current state
for the fluent f to hold in the successor state. Figure 1(a) shows a partial fluent graph
for Tic-Tac-Toe that relates the fluents cell(3,1,Z) for Z ∈ {b, x, o}.

(a) (b)

Fig. 1. Shown are two possible partial fluent graphs for Tic-Tac-Toe, where (a) captures the de-
pendencies between different markers on a cell while (b) fails to capture these dependencies

For cell (3,1) to be blank it had to be blank before. For a cell to contain an x (or an
o) in the successor state there are two possible preconditions. Either, it contained an x

(or o) before or it was blank.
Using this graph, we can conclude that, e.g., a transition from cell(3,1,b) to

cell(3,1,x) is possible within one step while a transition from cell(3,1,o) to
cell(3,1,x) is impossible.

To build on this information, we formally define a fluent graph as follows:
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Definition 2 (Fluent Graph). Let Γ be a game over ground terms Σ. A graph G =
(V,E) is called a fluent graph for Γ iff

– V = Σ ∪ {∅} and
– for all fluents f ∈ Σ, two valid states s and s′

(s′ is a successor of s) ∧ f ′ ∈ s′ (1)

⇒ (∃f)(f, f ′) ∈ E ∧ (f ∈ s ∪ {∅})

In this definition we add an additional node ∅ to the graph and allow ∅ to occur
as the source of edges. The reason is that there can be fluents in the game that do
not have any preconditions, for example the fluent g with the following next rule:
next(g) :- distinct(a,b). On the other hand, there might be fluents that cannot
occur in any state, because the body of the corresponding next rule is unsatisfiable, for
example: next(h) :- distinct(a,a). We distinguish between fluents that have
no precondition (such as g) and fluents that are unreachable (such as h) by connecting
the former to the node ∅ while unreachable fluents have no edge in the fluent graph.

Note that the definition covers only some of the necessary preconditions for flu-
ents, therefore fluent graphs are not unique as Figure 1(b) shows. We will address this
problem later.

We can now define a distance function Δ(s, f ′) between the current state s and a
state in which fluent f ′ holds as follows:

Definition 3 (Distance Function). Let ΔG(f, f
′) be the length of the shortest path

from node f to node f ′ in the fluent graph G or ∞ if there is no such path. Then we
define

Δ(f, f ′) def
=

{
0 f = f ′

ΔG(f, f
′) else

Δ(s, f ′) def
= min

f∈s∪{∅}
Δ(f, f ′)

That means, the distanceΔ(s, f ′) is 0 if and only if f ′ holds in s, otherwise it is compute
as the shortest path in the fluent graph from any fluent in s to f ′.

Intuitively, each edge (f, f ′) in the fluent graph corresponds to a state transition of
the game from a state in which f holds to a state in which f ′ holds. Thus, the length of
a path from f to f ′ in the fluent graph corresponds to the number of steps in the game
between a state containing f to a state containing f ′. Of course, the fluent graph is an
abstraction of the actual game: many preconditions for the state transitions are ignored.
As a consequence, the distance Δ(s, f ′) that we compute in this way is a lower bound
on the actual number of steps it takes to go from s to a state in which f ′ holds. Therefore
the distance Δ(s, f ′) is an admissible heuristic for reaching f ′ from a state s.

Theorem 1 (Admissible Distance). Let
– Γ = (R, s0, T, l, u, g) be a game with ground terms Σ and states S,
– s1 ∈ S be a state of Γ ,
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– f ∈ Σ be a fluent of Γ , and
– G = (V,E) be a fluent graph for Γ .

Furthermore, let s1 �→ s2 �→ . . . �→ sm+1 denote a legal sequence of states of Γ , that
is, for all i with 0 < i ≤ m there is a joint action Ai, such that:

si+1 = u(Ai, si) ∧ (∀r ∈ R)l(r, Ai(r), s)

If Δ(s1, f) = n, then there is no legal sequence of states s1 �→ . . . �→ sm+1 with
f ∈ sm+1 and m < n.

Proof. We prove the theorem by contradiction. Assume thatΔ(s1, f) = n and there is a
legal sequence of states s1 �→ . . . �→ sm+1 with f ∈ sm+1 andm < n. By Definition 2,
for every two consecutive states si, si+1 of the sequence s1 �→ . . . �→ sm+1 and for
every fi+1 ∈ si+1 there is an edge (fi, fi+1) ∈ E such that fi ∈ si or fi = ∅.
Therefore, there is a path fj, . . . , fm, fm+1 in G with 1 ≤ j ≤ m and the following
properties:

– fi ∈ si for all i = j, ...,m+ 1,
– fm+1 = f , and
– either fj ∈ s1 (e.g., if j = 1) or fj = ∅.

Thus, the path fj , . . . , fm, fm+1 has a length of at most m.
Consequently, Δ(s1, f) ≤ m because fj ∈ s1 ∪ {∅} and fm+1 = f . However,

Δ(s1, f) ≤ m together with m < n contradictsΔ(s1, f) = n. ��

4 Constructing Fluent Graphs from Rules

We propose an algorithm to construct a fluent graph based on the rules of the game.
The transitions of a state s to its successor state s′ are encoded fluent-wise via the next
rules. Consequently, for each f ′ ∈ s′ there must be at least one rule with the head
next(f’). All fluents occurring in the body of these rules are possible sources for an
edge to f ′ in the fluent graph.

For each ground fluent f ′ of the game:

1. Construct a ground disjunctive normal form φ of next(f ′), i.e., a formula φ such
that next(f ′) ⊃ φ.

2. For every disjunct ψ in φ:
– Pick one literal true(f) from ψ or set f = ∅ if there is none.
– Add the edge (f, f ′) to the fluent graph.

Note, that we only select one literal from each disjunct in φ. Since, the distance function
Δ(s, f ′) obtained from the fluent graph is admissible, the goal is to construct a fluent
graph that increases the lengths of the shortest paths between the fluents as much as
possible. Therefore, the fluent graph should contain as few edges as possible. In general
the complete fluent graph (i.e., the graph where every fluent is connected to every other
fluent) is the least informative because the maximal distance obtained from this graph
is 1.
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The algorithm outline still leaves some open issues:

1. How do we construct a ground formula φ that is the disjunctive normal form of
next(f ′)?

2. Which literal true(f) do we select if there is more than one? Or, in other words,
which precondition f ′ of f do we select?

We will discuss both issues in the following sections.

4.1 Constructing a DNF of next(f ′)

A formula φ in DNF is a set of formulas {ψ1, . . . , ψn} connected by disjunctions such
that each formula ψi is a set of literals connected by conjunctions. We propose the
algorithm in Figure 1 to construct φ such that next(f ′) ⊃ φ.

Algorithm 1. Constructing a formula φ in DNF with next(f ′) ⊃ φ

Input: game description D, ground fluent f ′

Output: φ, such that next(f ′) ⊃ φ
1: φ := next(f ′)
2: finished := false
3: while ¬finished do
4: Replace every positive occurrence of does(r, a) in φ with legal(r, a).
5: Select a positive literal l from φ such that l �= true(t), l �= distinct(t1, t2) and l is

not a recursively defined predicate.
6: if there is no such literal then
7: finished := true
8: else
9: l̂ :=

∨

h:-b∈D,lσ=hσ

bσ

10: φ := φ{l/l̂}
11: end if
12: end while
13: Transform φ into disjunctive normal form, i.e., φ = ψ1 ∨ . . . ∨ ψn and each formula ψi is a

conjunction of literals.
14: for all ψi in φ do
15: Replace ψi in φ by a disjunction of all ground instances of ψi.
16: end for

The algorithm starts with φ = next(f ′). Then, it selects a positive literal l in φ
and unrolls this literal, that is, it replaces l with the bodies of all rules h:-b ∈ D
whose head h is unifiable with l with a most general unifier σ (lines 9, 10). The re-
placement is repeated until all predicates that are left are either of the form true(t),
distinct(t1, t2) or recursively defined. Recursively defined predicates are not un-
rolled to ensure termination of the algorithm. Finally, we transform φ into disjunctive
normal form and replace each disjunct ψi of φ by a disjunction of all of its ground
instances in order to get a ground formula φ.

Note that in line 4, we replace every occurrence of does with legal to also include
the preconditions of the actions that are executed in φ. As a consequence the resulting
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formula φ is not equivalent to next(f ′). However, next(f ′) ⊃ φ, under the assump-
tion that only legal moves can be executed, i.e., does(r, a) ⊃ legal(r, a). This is
sufficient for constructing a fluent graph from φ.

Note, that we do not select negative literals for unrolling because the construction
of our fluent graph only requires positive preconditions for fluents. Still, the algorithm
could be easily adapted to also unroll negative literals at the cost of an increased size of
the created φ.

4.2 Selecting Preconditions for the Fluent Graph

If there are several literals of the form true(f) in a disjunct ψ of the formula φ con-
structed above, we have to select one of them as source of the edge in the fluent graph.
As already mentioned, the distance Δ(s, f) computed with the help of the fluent graph
is a lower bound on the actual number of steps needed. To obtain a good lower bound,
that is, one as large as possible, the paths between nodes in the fluent graph should be
as long as possible. Selecting the best fluent graph, i.e., the one which maximizes the
distances, is impossible since this depends on the states we encounter when playing the
game, and we do not know these states beforehand. In order to generate a fluent graph
that provides good distance estimates, we use several heuristics when we select literals
from disjuncts in the DNF of next(f ′):

First, we only add new edges if necessary. That means, whenever there is a literal
true(f) in a disjunct ψ such that the edge (f, f ′) already exists in the fluent graph,
we select this literal true(f). The rationale of this heuristic is that paths in the fluent
graph are longer on average if there are fewer connections between the nodes.

Second, we prefer a literal true(f) over true(g) if f is more similar to f ′ than g
is to f ′, that is sim(f, f ′) > sim(g, f ′).

We define the similarity sim(t, t′) recursively over ground terms t, t′:

sim(t, t′) def
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 t, t′ have arity 0 and t = t′∑

i sim(ti, t
′
i) t = f(t1, . . . , tn) and

t′ = f(t′1, . . . , t
′
n)

0 else

In human made game descriptions, similar fluents typically have strong connections.
For example, in Tic-Tac-Toe cell(3,1,x) is more related to cell(3,1,b) than to
cell(b,3,x). By using similar fluents when adding new edges to the fluent graph, we
have a better chance of finding the same fluent again in a different disjunct of φ. Thus
we maximize the chance of reusing edges.

5 Applying Distance Features

For using the distance function in our evaluation function, we define the normalized
distance δ(s, f).

δ(s, f)
def
=

Δ(s, f)

Δmax(f)
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The valueΔmax(f) represents the longest finite distanceΔG(g, f) from any fluent g to
f in G.

Thus the normalized distance δ(s, f) will be infinite if and only ifΔ(s, f) = ∞, i.e.,
there is no path from any fluent in s to f in the fluent graph. In all other cases it holds
that 0 ≤ δ(s, f) ≤ 1.

Note, that the construction of the fluent graph and computing the shortest paths be-
tween all fluents, i.e., the distance function ΔG, need only be done once for a game.
Thus, while construction of the fluent graph is more expensive for complex games, the
cost of computing the distance feature δ(s, f) (or Δ(s, f)) only depends (linearly) on
the size of the state s.

5.1 Using Distance Features in an Evaluation Function

To demonstrate the application of the distance measure presented, we use a simplified
version of the evaluation function of Fluxplayer [9] implemented in Prolog. It takes the
ground DNF of the goal rules as first argument, the current state as second argument
and returns the fuzzy evaluation of the DNF on that state as a result.

1 eval((D1; ...; Dn), S, R) :- !,
2 eval(D1, S, R1), ..., eval(Dn, S, Rn),
3 R is sum(R1, ..., Rn) - product(R1, ..., Rn).
4 eval((C1, ..., Cn), S, R) :- !,
5 eval(C1, S, R1), ..., eval(Cn, S, Rn),
6 R is product(R1, ..., Rn).
7 eval(not(P), S, R) :- !, eval(P, S, Rp), R is 1 - Rp.
8 eval(true(F), S, 0.9) :- occurs(F, S),!.
9 eval(true(F), S, 0.1).

Disjunctions are transformed to probabilistic sums, conjunctions to products, and true
statements are evaluated to values in the interval [0, 1], basically resembling a recursive
fuzzy logic evaluation using the product t-norm and the corresponding probabilistic
sum t-conorm. The state value increases with each conjunct and disjunct fulfilled.

We compare the evaluation to a second function that employs our relative distance
measure, encoded as predicate delta. We obtain the distance-based evaluation function
by substituting line 9 of the previous program by the following:

1 eval(true(F), S, R) :- delta(S, F, Dist), Dist =< 1, !,
2 R is 0.8*(1-Dist) + 0.1.
3 eval(true(F), S, 0).

Here, we evaluate a fluent that does not occur in the current state to a value in [0.1, 0.9]
and, in case the relative distance is infinite, to 0 since this means that the fluent cannot
hold anymore.

5.2 Tic-Tac-Toe

Although on first sight Tic-Tac-Toe contains no relevant distance information, we can
still take advantage of our distance function. Consider the two states as shown in Fig-
ure 2. In state s1 the first row consists of two cells marked with an x and a blank cell.
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Fig. 2. Two states of Tic-Tac-Toe. The first row is still open in state s1 but blocked in state s2.

In state s2 the first row contains two xs and one cell marked with an o. State s1 has a
higher state value than s2 for xplayer since in s1 xplayer has a threat of completing
a line in contrast to s2. The corresponding goal condition for xplayer completing the
first row is:

1 line(x) :- true(cell(1,1,x)),
2 true(cell(2,1,x)), true(cell(3,1,x)).

When evaluating the body of this condition using the above fuzzy evaluation, we see
that it cannot distinguish between s1 and s2 because both have two markers in place
and one missing for completing the line for xplayer, resulting in an evaluation R =
1 ∗ 1 ∗ 0.1 = 0.1

However, the distance-based function evaluates true(cell(3,1,b)) of s1 to 0.1
and true(cell(3,1,o)) of s2 to 0. Therefore, it can distinguish between both states,
returning R = 0.1 for S = s1 and R = 0 for S = s2.

5.3 Breakthrough

The second game is Breakthrough, again a two-player game played on a chessboard.
Like in chess, the first two ranks contain only white pieces and the last two only black
pieces. The pieces of the game are only pawns that move and capture in the same way
as pawns in chess, but without the initial double advance. Whoever reaches the opposite
side of the board first wins. 2 Figure 3 shows the initial position for Breakthrough. The
arrows indicate the possible moves, a pawn can make.

The goal condition for the player black states that black wins if there is a cell with
the coordinates X,1 and the content black, such that X is an index (a number from 1 to
8 according to the rules of index):

1 goal(black, 100) :- index(X),true(cellholds(X, 1, black)).

Grounding this rule yields

1 goal(black, 100) :- true(cellholds(1, 1, black) ;
2 ...; true(cellholds(8, 1, black)).

We omitted the index predicate since it is true for all 8 ground instances.

2 The complete rules for Breakthrough as well as Tic-Tac-Toe can be found under
http://ggpserver.general-game-playing.de/

http:// ggpserver.general-game-playing.de/
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The standard evaluation function cannot distinguish any of the states in which the
goal is not reached because true(cellholds(X, 1, black)) is false in all of these
states for any instance of X.

The distance-based evaluation function is able to construct a fluent graph as depicted
in Figure 4 for distance calculation.

Therefore evaluations of atoms of the form true(cellholds(X, Y, black))

have now 9 possible values (for distances 0 to 7 and ∞) instead of 2 (true and false).
Hence, states where black pawns are nearer to one of the cells (1,8), . . ., (8,8) are
preferred.

Fig. 3. Initial position in Breakthrough and the move options of a pawn

Fig. 4. A partial fluent graph for Breakthrough, role black
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Moreover, the fluent graph, and thus the distance function, reflect what could be
called “strategic positioning”: states with pawns on the side of the board are worth less
than those with pawns in the center. This is due to the fact that a pawn in the center may
reach more of the 8 possible destinations than a pawn on the side.

6 Evaluation

We first measure the generality and time requirements of our approach for 201 games
available at http://ggpserver.general-game-playing.de/.

Figure 5 shows the number of games grouped by the minimum time limit (in seconds)
required for successful fluent graph construction.

Fig. 5. Number of Games grouped by the minimum time limit required for construction of the
fluent graph

We can see that the approach is able to find distance features in all but 5 games.
Construction is typically fast and takes a few seconds for the majority of games. There
are, however, 33 games that require at least 5 seconds for fluent graph construction
and 22 of these even more than 50 seconds. Our interpretation of the results is that the
approach is general, although time constraints may pose a problem in some cases and
should be addressed, e.g., using time-outs.

For evaluation of the playing strength we implemented our distance function and
equipped the agent system Fluxplayer [9] with it. We then set up this version of Flux-
player (“flux distance”) against its version without the new distance function
(“flux basic”). We used the version of Fluxplayer that came in 4th in the 2010 champi-
onship. Since flux basic is already endowed with a distance heuristic, the evaluation is
comparable to a competition setting of two competing heuristics using distance features.

We chose 19 games for comparison in which we conducted 100 matches on average.
Figure 6 shows the results.
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Fig. 6. Advantage in Win Rate of flux distance

The values indicate the difference in win rate, e.g., a value of +10 indicates that
flux distance won 55% of the games against flux basic winning 45%. Obviously the
proposed heuristics produces results comparable to the flux basic heuristics, with both
having advantages in some games. This has several reasons: Most importantly, our pro-
posed heuristic, in the way it is implemented now, is more expensive than the distance
estimation used in flux basic. Therefore the evaluation of a state takes longer and the
search tree can not be explored as deeply as with cheaper heuristics. This accounts
for three of the four underperforming games. For example in nim4, the flux basic dis-
tance estimation provides essentially the same results as our new approach, just much
cheaper. In chinesecheckers2 and knightthrough, the new distance function slows down
the search more than its better accuracy can compensate.

On the other hand, flux distance performs better in complicated games. There the
higher accuracy of the heuristics typically outweighs the disadvantage of the heuristics
being slower.

Interestingly the higher accuracy of the new distance heuristics is the reason for
flux distance losing in breakthrough suicide. The game is exactly the same as break-
through, however, the player to reach the other side of the board first does not win but
loses.

The heuristics of both flux basic and flux distance are not good for this game since
both are based the minimum number of moves necessary to reach the goal while the
optimal heuristic would depend on the maximum number of moves available to avoid
losing. However, since flux distance is more accurate, flux distance selects even worse
moves that flux basic. Specifically, flux distance tries to maximize (a much more ac-
curate) minimal distance to the other side of the board, thereby allowing the opponent
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to capture its advanced pawns. This behavior, however, results in a smaller maximal
number of moves until the game ends and forces to advance the few remaining pawns
quickly. Thus, the problem in this game is not the distance estimate but the fact that the
heuristic is not suitable for the game.

Finally, in some of the games no changes were found since both distance estimates
performed equally well. However, rather specific heuristics and analysis methods of
flux basic could be replaced by our new general approach. For example, the original
Fluxplayer contains a special method to detect when a fluent is unreachable, while this
information is automatically included in our distance estimate.

7 Related Work

Distance features are part of classical agent programming for games like chess and
checkers in order to measure, e.g., the distance of a pawn to the promotion rank. A more
general detection mechanism was first employed in Metagamer [8] where the features
“promote-distance” and “arrival-distance” represented a value indirectly proportional to
the distance of a piece to its arrival or promotion square. However, due to the restriction
on symmetric chess-like games, the features are still too specific for an application in
GGP.

Currently, a number of GGP agent systems apply distance features in different forms.
UTexas [6] identifies order relations syntactically and tries to find 2d-boards with co-
ordinates ordered by these relations. Properties of the content of these cells, such as
minimal/maximal x- and y-coordinates or pair-wise Manhattan distances are then as-
sumed as candidate features and may be used in the evaluation function. Fluxplayer [9]
generalizes the detection mechanism using semantic properties of order relations and
extends board recognition to arbitrarily defined n-dimensional boards.

Another approach is pursued by Cluneplayer [2] who tries to impose a symbol dis-
tance interpretation on expressions found in the game description. Symbol distances,
however, are again calculated using Manhattan distances on ordered arguments of board-
like fluents, eventually resulting in a similar distance estimate as UTexas and Flux-
player.

Although not explained in detail, Ogre [4] also employs two features that measure
the distance from the initial position and the distance to a target position. Again, Ogre
relies on syntactic detection of order relations and seems to employ a board centered
metrics, ignoring the piece type.

All of these approaches rely on the identification of certain fixed structures in the
game (such as game boards) but can not be used for fluents that do not belong to such a
structure. Furthermore, they make assumptions about the distances on these structures
(usually Manhattan distance) that are not necessarily connected to the game dynamics,
e.g., how different pieces move on a board.

In domain independent planning, distance heuristics are used successfully, e.g., in
HSP [1] and FF [3]. The heuristics h(s) used in these systems is an approximation of
the plan length of a solution in a relaxed problem, where negative effects of actions are
ignored. This heuristics is known as delete list relaxation. While on first glance this may
seems very similar to our approach, several differences exist:
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– The underlying languages, GDL for general game playing and PDDL for planning,
are different. A translation of GDL to PDDL is expensive in many games [5]. Thus,
directly applying planning systems is not often not feasible.

– The delete list relaxation considers all (positive) preconditions of a fluent, while we
only use one precondition. This enables us to precompute the distance between the
fluents of a game.

– While goal conditions of most planning problems are simple conjunctions, goals
in the general games can be very complex (e.g., checkmate in chess). Additionally,
the plan length is usually not a good heuristics, given that only the own actions and
not those of the opponents can be controlled. Thus, distance estimates in GGP are
usually not used as the only heuristics but only as a feature in a more complex eval-
uation function. As a consequence, computing distance features must be relatively
cheap.

– Computing the plan length of the relaxed planning problem is NP-hard, and even
the approximations used in HSP or FF that are not NP-hard require to search the
state space of the relaxed problem. On the other hand, computing distance estimates
with our solution is relatively cheap. The distances ΔG(f, g) between all fluents f
and g in the fluent graph can be precomputed once for a game. Then, computing
the distance Δ(s, f ′) (see Definition 3) is linear in the size of the state s, i.e., linear
in the number of fluents in the state.

8 Future Work

One problem of the approach is its computational cost for constructing the fluent graph,
that may prevent an application of our distance features for narrow time constraints.

One way to reduce the time needed for construction is a reduction of the size of φ via
a more selective expansion of predicates (line 5) in Algorithm 1. Developing heuristics
for this step is one of the goals for future research.

In addition, we are working on a way to construct fluent graphs from non-ground
representations of the preconditions of a fluent to skip the grounding step. For example,
the partial fluent graph in Figure 1(a) is identical to the fluent graphs for the other 8
cells of the Tic-Tac-Toe board. The fluent graphs for all 9 cells are obtained from the
same rules for next(cell(X,Y,_), just with different instances of the variables X and
Y. By not instantiating X and Y, the generated DNF is exponentially smaller while still
containing the same information.

The quality of the distance estimates depends mainly on the selection of precondi-
tions. At the moment, the heuristics we use for this selection are intuitive but have no
thorough theoretic or empiric foundation. In future, we want to investigate how these
heuristics can be improved.

Furthermore, we intend to enhance the approach to use fluent graphs for generaliza-
tions of other types of features, such as, piece mobility and strategic positions.

9 Summary

We have presented a general method of deriving distance estimates in General Game
Playing. To obtain such a distance estimate, we introduced fluent graphs, proposed an
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algorithm to construct them from the game rules and demonstrated the transformation
from fluent graph distance to a distance feature.

Unlike previous distance estimations, our approach does not rely on syntactic pat-
terns or internal simulations. Moreover, it preserves piece-dependent move patterns and
produces an admissible distance heuristic.

We showed on an example how these distance features can be used in a state evalu-
ation function. We gave two examples on how distance estimates can improve the state
evaluation and evaluated our distance against Fluxplayer in its most recent version.

Certain shortcomings should be addressed to improve the efficiency of fluent graph
construction and the quality of the obtained distance function. Despite these shortcom-
ings, we found that a state evaluation function using the new distance estimates can
compete with a state-of-the-art system.
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