
Combining Uniform and Heuristic Search: Solving
DSSSP with Restricted Knowledge of Graph Topology

Sandro Castronovo1, Björn Kunz1, and Christian Müller1,2

1 German Research Center for Artificial Intelligence (DFKI),
Campus D3.2, Saarbrücken, Germany

2 Action Line Intelligent Transportation Systems, EIT ICT Labs, Germany

Abstract. Shortest-path problems on graphs have been studied in depth in Arti-
ficial Intelligence and Computer Science. Search on dynamic graphs, i.e. graphs
that can change their layout while searching, receives plenty of attention today –
mostly in the planning domain. Approaches often assume global knowledge on
the dynamic graph, i.e. that topology and dynamic operations are known to the
algorithm. There exist use-cases however, where this assumption cannot be made.
In vehicular ad-hoc networks, for example, a vehicle is only able to recognize the
topology of the graph within wireless network transmission range. In this paper,
we propose a combined uniform and heuristic search algorithm, which maintains
shortest paths in highly dynamic graphs under the premise that graph operations
are not globally known.

1 Introduction

Shortest path problems on graphs have been thoroughly studied in Artificial Intelli-
gence and Computer Science literature. Single-source shortest path or all-pair shortest
path problems with positive edge weights can be solved using widely known algorithms,
such as Dijkstra [1] and A*. There are a large number of applications: modern naviga-
tion systems, for example, use implementations of these algorithms for route planning,
network protocols use them in order to route data packets from one physical location
to another and many planning systems in Artificial Intelligence use variants of these
algorithms.

The problem becomes significantly more challenging when we allow certain dy-
namic operations on the graph while searching, such as insertions or deletions of ver-
tices as well as changes of edge weights. This problem drew attention of research in
Artificial Intelligence and related Computer Science fields. Approaches by [2], [3], [4],
[5], [6], [7] among others assume global knowledge on the performed graph operations.
This means they are only applicable on graphs, for which the topology and all executed
operations are known at every point in time. [3], for example, assume that every ver-
tex stores its distance to a start vertex of a shortest path. They modify this information
on every graph operation and use the result for re-calculating. Work by [4] transfers
the problem into the domain of Learning Automata but also allows access to the entire
topology of the dynamic graph.

There exist applications, however, in which this knowledge can neither be assumed
nor derived. Consider a vehicular ad-hoc network, for example, where vertices are ve-
hicles, edges are wireless connections between two vehicles, the task is to send data

J. Filipe and A. Fred (Eds.): ICAART 2012, CCIS 358, pp. 173–187, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

174 S. Castronovo, B. Kunz, and C. Müller

from car A to car B, and B is not in A’s transmission range. While searching a path
to B, all of the operations above can occur in arbitrary order and number, because the
topology of the underlying graph is subject to fast deletion and insertions of vertices
and the algorithm has no information about these changes. Hence, we look at a ”fully
dynamic problem” (Dynamic Single Source Shortest Path Problem, or DSSSP). In our
example, the dynamic operations may even break the connection between vertices. Fur-
thermore, it is not efficient and sometimes even not feasible to visit every vertex after
a graph operation. Network bandwidth is considered a limited resource in vehicular
ad-hoc networks, which is also a reason why the cited algorithms are not applicable
here.

In this paper, we propose a combined uniform and heuristic search algorithm, which
is able to solve the single-source shortest path problem under unknown topology changes
in fully dynamic graphs. In order to do so we instantiate two graphs: The first, G =
(V,E), is static. We solve the single-source shortest path problem on G using Dijk-
stra’s algorithm. The second, G̃ = (Ṽ , Ẽ), is subject to the described graph operations.
We then exploit domain specific relations between the two graphs and approximate the
shortest path identified on G in G̃. Our algorithm only depends on local information
about graph operations in order to heuristically maintain or alter the initial path found
in G.

2 Related Work

[3] propose an incremental version of the popular A* algorithm based on a dynamic
gridworld. This world consists of cells which denote vertices. Edges are drawn between
neighboring cells. The algorithm continuously finds shortest paths between a start cell
sstart and a goal cell sgoal. Their approach is incremental since they reuse results from
previous searches. However, they assume global knowledge about the gridworld: The
algorithm holds data structures for the start distance of every cell as well as a list of
traversable and blocked cells. In our application domain this assumption cannot be
made.

The approach of [4] transfers the DSSSP problem into the domain of Learning Au-
tomata. They establish three components: The learning automaton (LA), which is in-
stantiated in every vertex, the random environment (RE) and a penalty/reward system.
RE changes edge weights using stochastic information and LA constantly interacts with
this environment by guessing whether or not a node belongs to the shortest path. The
LA constantly receives rewards or penalties depending on whether its guess was right
or not. Although the distribution of the weight changes by the RE are unknown to LA,
it is allowed to retrieve a snapshot of the whole graph and its current edge weights. Ba-
sically, this snapshot, Dijkstra’s algorithm and the received penalties/rewards are used
for shortest path computation. It is obvious that in our domain such a snapshot of the
whole graph is not available.

[7] propose fully dynamic algorithms for solving DSSSP by counting the vertices
affected by changes of the graph. When increasing the weight of an edge, the affected
vertices are those which change the distance from the start vertex. The algorithm marks
vertices according to their status after a graph operation; White marked vertices were

Combining Uniform and Heuristic Search 175

not affected by an operation. Neither the distance from the source nor the parent in
the shortest path tree changed. Red marked vertices increased their distance from the
source while the distance of the ones marked pink remained constant but it replaces
the old parent in the shortest path tree. Obviously, this approach also relies on global
knowledge about the graph topology and the operations on it.

[8] (SEET) and [9] (GRANELLI) are both routing protocols for vehicular ad-hoc net-
works. Both implementations have to solve the single-source shortest path problem in
dynamic graphs having no knowledge about its topology by the very nature of their
application domain. The approach by [8] is to employ two graphs: One fixed, one dy-
namic. There exists a connection between the two in a way such that the topology of the
fixed graph correlates with the dynamic one. By solving the SSSP on the fixed graph
they try to approximate this path in the dynamic one. We adopt this idea but also take
local information about graph operations into account allowing us to dynamically as-
sign lower weights to edges in the fixed graph for solving the SSSP. This allows our
algorithm to adapt the path on the static graph according to the locally known changes
in the dynamic one.

The key idea behind [9] is to estimate the topology of the dynamic graph by using
information about the neighboring vertices. More precisely they try to estimate the po-
sition of neighboring vehicles by using their respective velocity and direction vector.
Our approach also assumes certain knowledge, e.g. the route on the map a vehicle is
driving along, about the surrounding topology of a given vertex (see Section 3) thus
allowing us more accurate position information since we can also take the curvature of
a street into account by computing the position along it.

3 Shortest Path Computation under Unknown Global Graph
Operations

Let G = (V,E) be a weighted, directed graph, which is fixed, i.e., no insertions and
deletions are allowed. The topology of G is known to the algorithm. Furthermore,
G̃ = (Ṽ , Ẽ) denotes a fully dynamic graph. Ñ is a list containing all vertices, which
are reachable from a vertex ṽ ∈ G̃ with distance 1 (direct connection by one edge).
Only the vertices in Ñ are known to the algorithm. The remaining topology of G̃ is hid-
den: Neither the number of vertices is known nor the edges between them. In order to
give the reader a clear understanding of these notions, Figure 1 exemplifies these terms
when applied to the domain of vehicular ad-hoc networks: Our algorithm is running on
green Vehicle 1. Black points mark vertices v ∈ G, here: junctions. Connecting lines in
between mark edges e ∈ G (streets). All vehicles in light blue are located within trans-
mission range and thus are elements of list Ñ . Vehicles form vertices of dynamic graph
G̃. Dotted lines between them mark edges ẽ ∈ G̃, e.g. wireless connections. Note, that
there is no (direct) edge between vehicle 1 and black vehicles 6,7 and 8 since they are
out of transmission range.

We define a set of functions that can be queried by every vertex in G̃:

1. A function f̃ : Ṽ × T → E ×R
+ maps a vertex ṽ ∈ G̃ to exactly one edge e ∈ E.

Moreover, it generates a virtual edge between the vertex ṽ and the start vertex of

176 S. Castronovo, B. Kunz, and C. Müller

Fig. 1. Notations used throughout the paper on the example of vehicular ad-hoc networks

the assigned edge e and sets a weight depending on the specific application domain.
For example, we can interpret this as the distance vehicle ṽ travelled along a road
e. f̃ updates this mapping and weight in specific time intervals thus enabling the
algorithm to see a snapshot of the neighboring topology of G̃ at a point in time
t ∈ T . Hence, a request to f̃ requires a time t ∈ T . Note, that a vertex ṽ ∈ G̃
is only allowed to query vertices in Ñ , which contains direct neighbors within
transmission range. Furthermore, queries to future edge weights return null. Also
note, that the dynamic graph changes very quickly and f̃ only provides a snapshot
of the neighboring topology of G̃.

2. A functionw : V ×Ṽ ×T → R
+ returns a weight of a virtually drawn edge between

a vertex in G̃ and a vertex in G. Only queries to elements in Ñ are allowed since
the knowledge in a vertex ṽ ∈ Ṽ is restricted to its direct neighbors. In contrast
to the virtual edge in f̃ for vehicular ad-hoc networks this gives us the euclidian
distance of a vehicle ṽ ∈ Ṽ to a crossing v ∈ V .

3. A function g̃ : Ṽ → List < E > maps every ṽ ∈ Ṽ to a sequence of edges
e1, ..., en ∈ E effectively describing the path of ṽ on G. In vehicular ad-hoc net-
works this maps to the most probable path of a vehicle.

After solving the SSSP on fixed graph G yielding shortest path P , the algorithm’s task
is now to approximate P in G̃ by making use of the information available from the
defined functions f̃ ,w and g̃. In the following, we denote the approximated shortest
path as P̃ . Note, that P is an array of vertices in G (in ascending order).

Our algorithm is divided into seven steps, which are summarized in Table 1. First,
we check if the destination vertex d̃ ∈ Ṽ is a direct neighbor, e.g. an element in Ñ . In
this case, no shortest path computation is necessary and the algorithm terminates after
adding ṽ to P̃ .

If the destination vertex is not contained in Ñ , we proceed with solving SSSP on G
using a modified Dijkstra: Our Dijkstra implementation takes the number of mappings
of all ṽ ∈ Ñ by g̃ to edges in G into account (as far this can be determined by the
vertices contained in Ñ and queries to g̃). It assigns lower weights on edges in G where

Combining Uniform and Heuristic Search 177

Table 1. High level steps and actions of the search algorithm

Step Action(s)

1 Check necessity of Single Source
Shortest Path computation

Check if a ṽ ∈ Ñ is a destination. Add
ṽ to P̃ and terminate if true or continue
otherwise

2 Solve single-source shortest path prob-
lem on G

Change weights of edges in G accord-
ing to number of mappings of vertices
∈ Ñ to edges ∈ G. Use Dijkstra’s Al-
gorithm to compute the shortest path
from source to destination

3 Update neighbor weights Calculate estimated weights ∀ṽ ∈ Ñ to
the start vertex of their mapped edges in
G

4 Calculate edge weights between v ∈ P
and ṽ ∈ Ñ

Prefer vertices with minimal edge
weight between virtually drawn edges
between vertices v ∈ P and vertices
ṽ ∈ Ñ . Weight the result with prede-
fined α

5 Calculate mappings of ṽ ∈ Ñ with with
edges in P

Prefer vertices whose mapping by f̃ is
close to edges in P over others. Weight
the result with predefined β

6 Calculate edge weights along P Prefer vertices in with larger sum
of edge weights on P before others.
Weight the result with predefined γ

7 Update P̃ Select a vertex ṽ ∈ Ñ according to
computed heuristics in steps 4 – 6 and
add it to P̃ or wait until next update
from f to Ñ if no vertex can be se-
lected. Repeat steps 1 – 7 until destina-
tion reached

density of mappings is higher. This is done before every vertex decision for P̃ to ac-
commodate fast topology changes within the graph.

We then estimate future edge weights of all vertices in Ñ to the start vertices of their
mapped edge in G. This is especially necessary at low update rates by f̃ to the vertices
in Ñ . Since our application domain are vehicular ad-hoc networks we have to consider
this fact. A car traveling by 36 m/s on a motorway covers a substantial amount of a car’s
transmission range between two position updates. Hence an update by f̃ could delete
an edge in G̃.

The following three steps are crucial for the algorithm since the decision on next
vertex for P̃ depends on them. Every vertex in Ñ gets assigned three heuristics within
the interval of [0, 1] where higher values denote higher priority in selecting the next
vertex for P̃ . The three heuristics are given in Table 1, rows 4 – 6.

Each heuristic is multiplied by a weight of α, β and γ respectively. The computations
of the three heuristics are described in detail below. The final step is to select a vertex

178 S. Castronovo, B. Kunz, and C. Müller

Algorithm 1. Estimate future edge weights

1: for all (ṽ ∈ Ñ) do
2: wt ← f̃(ṽ, t).w
3: wt−1 ← f̃(ṽ, tt−1).w
4: if (f̃(ṽ, t).e == f̃(ṽ, tt−1).e) then
5: Δw← wt − wt−1

6: west ← wt +Δw
7: else
8: wt−1 ← f̃(ṽ, tt−1).e.w − f̃(ṽ, tt−1).w
9: Δw← wt + wt−1

10: west ← wt +Δw
11: end if
12: if (west > f̃(ṽ, t).e.w) then
13: E ← g̃(ṽ)
14: for (i← 0; i < E.length− 1; i++) do
15: if (E[i] == f̃(ṽ, t).e) then
16: ṽ.e← E[i+ 1]
17: ṽ.w← west − E[i].w
18: end if
19: end for
20: else
21: ṽ.w← west

22: end if
23: end for

in Ñ for P̃ based on the heuristics computed in the steps before or restart the algorithm
on the vertex until we have have reached a vertex close to destination vertex d.

Estimating Future Weights. The procedure for estimating future weights is given in
Algorithm 1. Since f̃ updates Ñ only in specific intervals and the topology of G̃ changes
very quickly we try to estimate the topology of the neighboring vertices in G̃. The idea
is to query f̃ on the edge weights of all vertices contained in Ñ at time t and t− 1. We
then use the delta of the two weights and add it to the current weight of a vertex in Ñ .
We have to distinguish two cases here: (1) At time t and time tt−1 vertex ṽ maps to the
same edge in G, (2) At time t and time tt−1 vertex ṽ maps to different edge in G (line
4). This influences how Δw is calculated (lines 5 – 10).

If the estimated edge weight is larger than the weight of the currently assigned edge
of ṽ we do not only estimate the weight, we also set the future assigned edge of ṽ using
g̃.
We store the updated values directly in ṽ.

Heuristic 1: Edge Weights between v ∈ P and ṽ ∈ Ñ . Algorithm 2 shows how the
first heuristic is computed for selecting the next vertex for P̃ . The idea here is to use
w in order to identify the vertex ṽ ∈ Ñ with minimum weight to a vertex v ∈ P . It is
obvious to prefer these edges for P̃ since they come close to the initial found path P .

Combining Uniform and Heuristic Search 179

The code is executed for ∀ṽ ∈ Ñ from the previous step and computes ∀v ∈ P
the weight of an edge between a vertex ṽ ∈ G̃ to a vertex v ∈ G (line 4-7). We only
consider vertices up to a certain weight wmax. (lines 8-10). Heuristic 1 is then defined
as m1 = α ∗ (1− w

wmax
) (line 11). Remember, that higher values denote higher priority

in selecting the next vertex for P̃ . Heuristic 1 is optimizing the stability of the path P̃

Algorithm 2. Heuristic 1: Edge weights between v ∈ P and ṽ ∈ Ñ

1: for all (ṽ ∈ Ñ) do
2: w←∞
3: for all (v ∈ P) do
4: if (w(v, ṽ, t) < w) then
5: w← w(v, ṽ, t)
6: end if
7: if (w > wmax) then
8: w← wmax

9: end if
10: end for
11: ṽ.h1 ← α ∗ (1− w

wmax
)

12: end for

Algorithm 3. Heuristic 2: Mappings of ṽ ∈ Ñ with with edges in P

1: for all (ṽ ∈ Ñ) do
2: currentScore← 0
3: for (i← 0; i < P.size− 2; i++) do
4: p1 ← P [i]
5: p2 ← P [i+ 1]
6: if (edge(p1, p2) ∈ g̃(ṽ)) then
7: currentScore← currentScore+ ω
8: else
9: if (edge(p2, p1) ∈ g̃(ṽ)) then

10: currentScore← currentScore+ τ
11: end if
12: end if
13: end for
14: ṽ.h2 ← β ∗ (currentScore

scoremax
)

15: end for

since it prefers vertices ṽ ∈ Ṽ that are close to the path vertices in P . In vehicular
ad-hoc networks we can interpret this as preferring vehicles that are on street junctions
which form natural turning points in the street graph.

Heuristic 2: Mappings of ṽ ∈ Ñ with Edges in P . Heuristic 2 is computed as stated
in algorithm 3. As for heuristic 1, the code is executed ∀ṽ ∈ Ñ . It scores vertices in
Ñ higher whose mappings to edges in G matches more edges in P over others. Fur-
thermore, we take the direction of the edge into account: An exact match gets assigned
a score of ω. If the mapped edge of ṽ is the opposite of an edge in P we assign τ .

180 S. Castronovo, B. Kunz, and C. Müller

If no match is detected, we assign a score of 0. Note, that we require ω > τ . The actual
values used for evaluation are given in table 2.

Scoremax is defined as
∑|P |−1

i=0 ω. Heuristic 2 is defined as β ∗ score
scoremax

, yielding
to a value in the range [0, 1] where larger values denote higher priority in selecting the
next vertex for P̃ . Finally, we assign the weight β and store heuristic h2 in ṽ (line 14).
Heuristic 2 is trying to optimize path stability by preferring ṽ ∈ Ṽ whose own path
alongG covers more of path P , the idea being that if ṽ cannot find next vertex for P̃ it at
least gets closer to the destination. In vehicular ad-hoc network terms we can interpret
this as preferring a vehicle that can carry the message closer to the destination in the
case when a more suitable vehicle cannot be found.

Algorithm 4. Heuristic 3: Edge weights along P

1: wP ← P.totalWeight
2: for all (ṽ ∈ Ñ) do
3: eṽ ← f̃(ṽ, t).e
4: w← 0
5: if (eṽ ∈ P) then
6: for (i← 0; i < P.size− 2; i++) do
7: if (eṽ == edge(P [i], P [i+ 1])) then
8: w← w + f̃(ṽ, t).w
9: break

10: else
11: w← w + edge(P [i], P [i+ 1]).w
12: end if
13: end for
14: else
15: leastWeight←∞
16: v ← nil
17: for (i← 0; i < P.size− 1; i++) do
18: if (w(P [i], ṽ, t) < leastWeight) then
19: leastWeight← w(P [i], ṽ, t)
20: v ← P [i]
21: end if
22: end for
23: for (i← 0; i < P.size− 2; i++) do
24: if (P [i] == v) then
25: break
26: else
27: w← w + edge(P [i], P [i+ 1]).w
28: end if
29: end for
30: end if
31: ṽ.h3 ← γ ∗ (w

wP
)

32: end for

Combining Uniform and Heuristic Search 181

Heuristic 3: Edge Weights along P . The pseudocode for the third heuristic is given in
Algorithm 4. It favors vertices in Ñ with larger sum of edge weights on P before others.
We first look at the current mapping of vertex ṽ ∈ Ñ to an edge in G and distinguish
two cases:

– P Contains the Current Mapping. We add up the weight of edges e ∈ P starting
from P [0] to the current mapping of ṽ (lines 5-13)

– P doesn’t Contain the Current Mapping. We add up the weight of every edge
e ∈ P until the vertex with the least weight from ṽ to a vertex v ∈ P (lines 15-30)

Like before, we calculate a heuristic in the interval (0,1) We multiply by a weight of
γ (line 31). Also here, larger values denote higher priority in selecting the next vertex
for P̃ . In contrast to heuristic 1 and 2 this heuristics tries to optimize progress towards
the destination by choosing the next vertex ṽ ∈ Ṽ that is furthest along P . In vehicular
ad-hoc networks this means choosing the vehicle furthest along the guiding path on the
street map.

Selecting the Next Vertex for P̃ . After calculating the heuristics described in the pre-
vious sections we can now select a vertex in Ñ for P̃ . Let H be the set containing the
sums of h1, h2, h3 ∀n ∈ Ñ . Then, the next vertex for P̃ is defined as the vertex with
the largest sum in H .

If the next vertex is P̃ [P̃ .length− 1] we re-calculate after the next update of f̃ .

4 Evaluation

We integrated our algorithm into the transportation layer of a network stack and per-
formed a simple point-to-point sending task in a simulator for evaluation of vehicular
ad-hoc network applications (V2X Simulation Runtime Infrastructure or short VSim-
RTI [10]). VSimRTI integrates and coordinates different simulators and constitutes a
middleware between the individual simulators. For realistic simulation we used the
wireless network simulator Jist/Swans [11] and the traffic simulation SUMO [12]. We
furthermore integrated the effect of buildings on wireless transmission into the simu-
lator. Two vehicles are only able to communicate if and only if there is a line of sight
between them. This serves as a lower bound on the connection between the vehicles in
the network simulator.

We compare the performance of our algorithm with SEET [8] and GRANELLI [9] in
terms of path discovery ratio (PDR) and path discovery time (PDT). The first metric
measures the ratio

PDR = SuccessfulShortestPathDiscoveries
TotalShortestPathSearches

and the second indicates time from beginning to end of shortest path search PDT =
tend − tstart.

4.1 Implementation of f̃ , w and g̃

Remember that graph G = (V,E) is represented by the underlying city map. Junctions
are vertices v ∈ V , road segments denote edges e ∈ E. G̃ = (Ṽ , Ẽ) is spanned by the

182 S. Castronovo, B. Kunz, and C. Müller

Fig. 2. Fixed graphs used for parameter optimization and evaluation. Left: Random generated,
used for parameter optimization (1200m x 1200m). Right: Graph generated based on an existing
road network of the city of Heidelberg, Germany used for evaluation (1200m x 1200m).

Table 2. Values of the various weights used during the evaluation. The three on the left side
denote the weights for the different heuristics while the two on the right were used for score
computation of Heuristic 2 (see Algorithm 3).

Heuristic Weight Heuristic 2 score
weight value score value

α 0.5 ω 2

β 0.3 τ 1

γ 0.2

vehicular ad-hoc network. Vehicles are represented by ṽ ∈ Ṽ , edges ẽ ∈ Ẽ are consid-
ered as wireless connection between two vehicles. The abstract defined functions f̃ , w
and g̃ of Section 3 are then implemented as follows: Given a time t, f̃ assigns vehicles
to specific road segments. Weight is calculated out of the distance to the beginning of
the assigned road segment. In our application domain, f̃ is responsible for controlling
and updating positions of vehicles therefore realizing vehicle movements over time.
Function w returns the distance between a vehicle in transmission range and a junction
of the city map. The vehicles further include the road segments which they have passed
as well as their most probable path in their position updates. This realizes function g̃.

4.2 Scenario

Evaluation was done in a scenario where every vehicle starts one shortest path com-
putation to a given car, e.g. the center of the underlying city map. The destination car
remained stationary while all others were driving a route on the map.

We optimized weights for heuristics 1 – 3 introduced in Section 3 on a randomly
generated map shown in Figure 2 (left). Weights and values for ω and τ , which were
found to be optimal for our algorithm, are given in Table 2. We optimized for high PDR.

After optimization, evaluation was done on a map generated out of an existing city
environment (Heidelberg, Germany, Figure 2, right). Evaluation runtime was 120 sec-
onds where we started shortest path computation after 20 seconds simulation time.
This ensured a fair distribution of vehicles on the map. n vehicles per second were
placed on the map by the simulator and removed after they completed their route where

Combining Uniform and Heuristic Search 183

Fig. 3. Voronoi diagrams visualizing PDR and PDT. Dots mark nodes in which path computation
started, color denotes average time until shortest path completed in the enclosed region. Left:
GRANELLI (n = 4), fast but unreliable; middle: SEET (n = 4), slower but more reliable than
GRANELLI due to taking correlation of G̃ and G into account; right: Our approach, n = 4,
taking correlation between G̃ and G as well as local information on dynamic graph operations
into account outperforms GRANELLI and SEET.

n ∈ {1, 2, 3, 4}. For n = 1 this resulted in 120 path computations. We repeated every
run three times for every n and algorithm. This means 120 ∗ 3 = 360 path computa-
tions for n = 1 in total per algorithm and 720, 1080, 1440 for n = 2, 3, 4 respectively
resulting in a total of 3600 path searches per algorithm.

4.3 Results and Analysis

Results in Figure 4 and Figure 5 show that our approach outperforms SEET and
GRANELLI in means of PDR. As expected, PDR increases with increasing traffic den-
sity. SEET obviously benefits from the available information about the underlying city
map (the static graph G). GRANELLI lacks this kind of information which results in a

0

0,23

0,45

0,68

0,90

120 240 360 480

GRANELLI
SEET
Our approach

Fig. 4. Path Discovery Ratio (PDR) results for all three algorithms. X-Axis gives the number
of path searches, y-axis gives the percentage of successful path searches. As expected, PDR
increases with a larger number of cars on the evaluation scenario.

184 S. Castronovo, B. Kunz, and C. Müller

0

1500

3000

4500

6000

120 240 360 480

GRANELLI
SEET
Our approach

Fig. 5. Path Discovery Time (PDT) for all three algorithms. X-Axis gives the number of path
searches, y-axis gives the time in ms. GRANELLI does not reschedule when no suitable successor
vertex for the shortest path can be found. By increasing the number of vertices in the graph, PDT
gets lower for SEET and our approach.

Fig. 6. Context of this work: Embedded in a framework for developing novel V2X enabled appli-
cations

lower PDR. As our approach also takes local information about graph operations in G̃
(the vehicular ad-hoc network) into account, it scores higher PDR than both SEET and
GRANELLI. The results are statistically significant (p < .001 according to a χ2test).

However, by means of PDT, GRANELLI is superior to SEET and our approach. Both,
SEET and our approach re-schedule path searching in a vertex when no suitable succes-
sor vertex could be identified for the shortest path (see Section 3). GRANELLI’s behav-
ior in such a situation is to greedily select a next vertex out of the neighboring vertices
and do no re-scheduling at all. This also justifies low PDR for GRANELLI. Interestingly,

Combining Uniform and Heuristic Search 185

PDT increases for GRANELLI but decreases for both SEET and our approach when
there are more vehicles on the graph. In this case both, SEET and our approach have an
increased number of vertices available for choosing the next vertex for the shortest path
and the probability of finding a suitable one also increases since re-computing time for
heuristics is lower than the re-scheduling interval PDT decreases in this case. Because
our approach considers local information about graph operations it supersedes SEET by
means of PDT over time which results in a lower number of re-schedules.

Figure 3 depicts voronoi visualizations for all three algorithms after a run with n = 4.
Black dots mark starting positions for shortest path computation. Enclosing colored
areas denote PDT to the centre of the map for an individual path in ms (more red areas
mark higher PDT). After a threshold of 15000 ms path computation was stopped and
marked as failed. One clearly recognizes short PDT of GRANELLI but low PDR: Paths
are found quickly or not at all. Re-scheduling in cases when no successor vertex for the
shortest path can be identified results in stepwise PDTs. Results of our approach reflect
high PDR even for large path lengths due to exploiting local information on dynamic
graph operations.

5 Conclusions

In this paper, we developed a combined uniform and heuristic search algorithm for
maintaining shortest paths in fully dynamic graphs. While other approaches assume
global knowledge on performed graph operations, we argued that there exist use cases
where this information is not available. Our approach shows that in those cases the algo-
rithms’ performance can greatly benefit from considering domain specific knowledge.
In our example, we instantiated two graphs: A static and dynamic one. We exploited do-
main specific relations between these graphs in order to heuristically maintain a shortest
path in a dynamic graph. The used heuristics are also tailored to the domain.

We applied our approach to vehicular ad-hoc networks and integrated it into the
transportation layer of a network stack to use it for routing data packets between two
vehicles. Evaluation was performed against two other routing algorithm of this domain.
Due to re-scheduling when no neighboring vertex could be identified during shortest
path search, the approach of GRANELLI is superior to our implementation in means of
PDT. However, our approach outperformed SEET and GRANELLI in means of PDR.

6 Future Work

The algorithm presented in this work is able to maintain shortest paths on highly dy-
namic graphs. The goal of this paper was to solve DSSSP without global knowledge
of graph topology. We therefore made the assumption that the goal vertex is given to
the algorithm. In the future we plan to omit this assumption and enhance the algorithm
presented here in a way that the actual search for the goal vertex is part of the task.
Moreover, we want to discover the “least weighted circuit” between start and goal ver-
tex. This additional constraints are significantly more challenging than DSSSP since
topology is constantly changing. Most likely, the path back to the start vertex is not

186 S. Castronovo, B. Kunz, and C. Müller

equal to the path on the forward run. We are currently tackling this problem by exploit-
ing swarm intelligence: Successful discovered “Trails” are stored and updated in each
vertex visited during shortest path computation. Another search will then be able to
reuse information from previous successful attempts.

While we believe our algorithm is generic, we will integrate our algorithm into a
larger system for developing and evaluating novel V2X applications (see Figure 6). This
work is part of the network layer in Figure 6. Current network protocols are intended
to broadcast (mostly) safety related information as quickly as possible over the ad-hoc
network. When the driver or the system requests information available somewhere in
the network, the task gets more challenging. This addresses questions on how to find
the relevant information in a highly dynamic ad-hoc network and how to route back
information once it is found. It also addresses dissemination and caching of information
within the ad-hoc network. We approach these challenges by transferring them to graph
theory and use results from this field of research as well as from the target domain
in order to combine successful approaches from both resulting in a more performant
system.

Large scale field tests for testing and evaluating V2X technology and its applications
are expensive and potentially dangerous. This is why a lot of research in the past has
focused on the simulation of the underlying network communication in order to test spe-
cific use-cases in the lab before they get integrated into real cars. To simulate a use-case,
like a local danger warning for example, it requires more than one simulator: Network
simulation, traffic simulation and environment simulation have to be coordinated. This
work is done in simulation layer as depicted in Figure 6.

V2X technology itself constitutes enormous potential for another kind of use-case
beyond todays approach. Up to now, information in V2X projects is primarily “pushed”
from sender to receiver in order to disseminate messages and warnings over the ad-hoc
network. The driver remains more or less passive in this process. Value-added services
like parking or urban information are not based on V2V in today’s paradigm. These use-
cases rely on mobile connections (UMTS). Other interactive applications like enabling
voice chat between cars on the basis of V2X are actually not a novel approach, but only a
different technical realization of an established use-case (communication between truck
drivers). Providing V2X technology to the drivers could, however, largely increase the
acceptance and open a wide range of additional use-cases. Here, many questions also
remain unaddressed so far. What applications are possible with this technology being
available to the driver? Which of them are accepted by and useful for drivers? What is
the applications effect on safety? The usage of which modalities is suitable in a specific
driving context? The answer could be different depending on the current traffic situation
(stationary vs. moving vehicle).

The framework layer in Figure 6 serves as a basis for addressing the human factor is-
sues discussed above that are related to V2X applications. At the same time, it considers
the specific limitations and requirements of the V2X technology. Using this platform,
traditional and novel applications for V2X technology will be developed and evaluated.
Novel in the sense, that we open the V2X technology to the user. This will go beyond
established “Push-Applications” and introduce a paradigm shift to “Pull-Applications”.

Combining Uniform and Heuristic Search 187

References

1. Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Mathe-
matik 1, 269–271 (1959)

2. Nannicini, G., Liberti, L.: Shortest paths on dynamic graphs (2008)
3. Koenig, S., Likhachev, M., Furcy, D.: Lifelong planning A*. Artif. Intell. 155, 93–146 (2004)
4. Misra, S., Oommen, B.J.: Stochastic Learning Automata-Based Dynamic Algorithms for the

Single Source Shortest Path Problem. In: Orchard, B., Yang, C., Ali, M. (eds.) IEA/AIE
2004. LNCS (LNAI), vol. 3029, pp. 239–248. Springer, Heidelberg (2004)

5. Cicerone, S., Stefano, G.D., Frigioni, D., Nanni, U.: A fully dynamic algorithm for dis-
tributed shortest paths. Theoretical Computer Science 297, 1–3 (2003)

6. Demetrescu, C., Italiano, G.F.: A new approach to dynamic all pairs shortest paths. In: Pro-
ceedings of the Thirty-fifth Annual ACM Symposium on Theory of Computing, STOC 2003,
pp. 159–166. ACM, New York (2003)

7. Frigioni, D., Spaccamela, A.M., Nanni, U.: Fully dynamic algorithms for maintaining short-
est path trees. Algorithms 34, 251–281 (2000)

8. Seet, B.-C., Liu, G., Lee, B.-S., Foh, C.-H., Wong, K.-J., Lee, K.-K.: A-STAR: A Mobile Ad
Hoc Routing Strategy for Metropolis Vehicular Communications. In: Mitrou, N.M., Kon-
tovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS,
vol. 3042, pp. 989–999. Springer, Heidelberg (2004)

9. Granelli, F., Boato, G., Kliazovich, D., Vernazza, G.: Enhanced gpsr routing in multi-hop
vehicular communications through movement awareness. IEEE Communications Letters 11,
781–783 (2007)

10. Naumann, N., Schiinemann, B., Radusch, I.: Vsimrti - simulation runtime infrastructure for
v2x communication scenarios. In: Proceedings of the 16th World Congress and Exhibition
on Intelligent Transport Systems and Services (2009)

11. Barr, R., Haas, Z.J., van Renesse, R.: Jist: An efficient approach to simulation using virtual
machines. Software Practice & Experience 35, 539–576 (2005)

12. Krajzewicz, D., Hertkorn, G., Rössel, C., Wagner, P.: Sumo (simulation of urban mobility);
an open-source traffic simulation. In: Proceedings of the 4th Middle East Symposium on
Simulation and Modelling (2002)

	Combining Uniform and Heuristic Search: Solving DSSSP with Restricted Knowledge of Graph Topology
	Introduction
	Related Work
	Shortest Path Computation under Unknown Global Graph Operations
	Evaluation
	Implementation of "707Ef, w and "707Eg
	Scenario
	Results and Analysis

	Conclusions
	Future Work
	References

