The BoCHICA Framework for Model-Driven
Agent-Oriented Software Engineering

Stefan Warwas*

German Research Center for Artificial Intelligence (DFKI),
Stuhlsatzenhausweg 3, 66123 Saarbriicken, Germany
stefan.warwas@dfki.de

Abstract. Modeling real world agent-based systems is a complex endeavour. An
ideal domain specific agent modeling language would be tailored to a certain ap-
plication domain (e.g. agents in virtual worlds) as well as to the target execution
environment (e.g. a virtual reality platform). This includes the use of specialized
concepts of the application domain, software languages (e.g. query languages
for reasoning about an agent’s knowledge), as well as custom views and dia-
grams for designing the system. This paper presents a model-driven framework
for engineering multiagent systems, called BOCHICA. The framework is based
on a platform independent modeling language which covers the core concepts of
multiagent systems. In order to better close the gap between design and code,
BOCHICA can be extended through several extension interfaces for custom ap-
plication domains and execution environments. The framework is accompanied
by an iterative adaptation process to gradually incorporate conceptual extensions.
The approach has been evaluated at modeling agents in semantically-enriched
virtual worlds.

1 Introduction

The research field of Agent-oriented Software Engineering (AOSE) is concerned with
investigating how methods and algorithms developed in the wide area of Artificial In-
telligence (Al) can be used for engineering intelligent software agents in a systematic
way. AOSE should not be seen in isolation: As it gets increasingly applied in main
stream software engineering it is confronted (of course) with typical problems of to-
day’s software development such as (i) an increasing number of software frameworks,
programming languages, and execution platforms, (ii) shorter development cycles, and
(iii) heterogeneous and distributed IT environments. A key to tackle the rapidly growing
complexity in software development is abstraction. Higher-level software languages are
required to hide the complexity and focus on the design of IT systems. Model-driven
Software Development (MDSD) is driven by industry needs to deal with complex soft-
ware systems. The underlying idea of MDSD is to model the System Under Consid-
erations (SUC) on different levels of abstractions and use model transformations to
gradually refine them until concrete code can be generated. Several core aspects of
MDSD were standardized by the Object Management Group (OMG) as Model-driven
Architecture (MDA).

* This paper was partially founded by the Saarbriicken Graduate School for Computer Science.

J. Filipe and A. Fred (Eds.): ICAART 2012, CCIS 358, pp. 158-72] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

The BoCHICA Framework for Model-Driven AOSE 159

During the recent years, several approaches for modeling agent-based systems have
been proposed (e.g. [L]). Although the developed modeling languages are a step into
the right direction, they have problems with fulfilling a user’s need to efficiently model
a custom application domain. An ideal modeling language would contain, beside the
core concepts of Multiagent Systems (MAS), specific concepts, software languages,
graphical representations, etc. for a certain target environment. The better the modeling
language covers the target concepts, the less manual customizations are necessary at
code level. Moreover, it is desirable to extend the modeling language with new concepts
from Al and agent research (e.g. new ways of modeling interaction protocols). This
paper proposes a model-driven framework for engineering agent-based systems which
addresses the described problems. The framework, called BOCHIC, is based on a
Domain Specific Language (DSL) which covers the main concepts of MAS. It provides
several extension interfaces for integrating new concepts, AOSE methods, and 3rd party
software languages. The customizations allow the user to tailor the framework to his
needs without loosing the integration into a larger framework. The first part of this paper
provides background on AOSE (Section)), introduces the general idea of the BOCHICA
framework (Section[3)), and provides an overview of the extension interfaces (Sectionf).
The second part shows how to tailor the framework to the application domain of agents
in semantically-enhanced virtual worlds and presents the evaluation results (Section[3).
Finally, Section [6]discusses the related work and Section [7] concludes this paper.

2 Background

Raising the level of abstraction in software development was always an important driver
in computer science research. The level of abstraction of a software language can
be defined as the distance between the computer hardware and the concepts of that
language [2]]. Since the invention of computer systems, the level of abstraction was
steadily increased from opcodes, assembler languages, procedural languages, up to
object-oriented languages. The question that arises is how the next higher level of
abstraction looks like. According to [2], “The challenge for language engineers is
that the software languages that we need to create must be at a higher level of ab-
straction, a level we are not yet familiar with. They must be well designed, and soft-
ware developers must be able to intermix the use of multiple languages. Here too,
we are facing a new, unknown, and uncertain task.” In the agent community, AOSE
has been seen as a natural successor of OOSE for a long time. Several articles dis-
cuss why AOSE has not arrived yet in mainstream software engineering [3[][4][5].
Three of the identified main problems are (i) misunderstandings or wrong assumptions
by non-agent experts, (ii) agent-oriented standards and methods are not yet sufficient
for industry needs, (iii) lack of powerful tools. However, regarding the level of abstrac-
tion [3] concludes: “With concepts such as roles and responsibilities, agent-oriented
approaches to problem and system description are much closer to the ways in which
managers conceive of business domains than are traditional software engineering de-
scriptions.” This matches the requirements stated by Kleppe. Our research hypothesis is

! Bochica was a semi-god of the Muisca culture who brought them living skills and showed
them how to organize their lives.

160 S. Warwas

a)

CIM Requirements § Theory
- w [}
Analysis o) £
PIM 9 E Agent Core
) = DSL
o <
Design 9) J
. 6 Application Agent
PSM Implementation S |pomain Architecture

Fig. 1. a) depicts how BOCHICA relates to the abstraction layers defined by MDA (Computa-
tional Independent Models (CIM), Platform Independent Models (PIM), Platform Specific Mod-
els (PSM)). b) visualizes the idea behind the BOCHICA core DSL and 3rd party extensions.

that agent technology can embody concepts like goals, roles, and organizational struc-
tures in order to build modeling languages of the next higher level of abstraction.

3 Framework Overview

The role of BOCHICA in the overall software development process is to provide the
means for capturing the design decisions of a SUC and bridging the gap between de-
sign and code. Figure[T]a) depicts how the framework is aligned to the abstraction layers
defined by MDA. The agent-oriented modeling language underlying BOCHICA defines
the concepts which are available for modeling a SUC (see Figure[[Ib). So called base
transformations are responsible for mapping the concepts of the BOCHICA core DSL
to different agent platforms. In real world applications, an agent platform usually does
not exist in isolation. As an agent platform is integrated into a larger execution environ-
ment, the core DSL gets extended with additional concepts to address the features of
that execution environment. Moreover, a so called extension transformation defines ad-
ditional conceptual mappings for the new concepts which complement an existing base
transformation. The underlying idea is to reuse large parts of the existing infrastructure.
The separation into a core modeling language and 3rd party extensions prevents the core
DSL from getting cluttered with highly specialized concepts that are only relevant for a
small number of applications (and thus, would make the language unusable over time).
In the following, we provide a brief overview of the BOCHICA core DSL and introduce
an iterative adaptation process for integrating conceptual extensions into BOCHICA.

3.1 Core DSL

The BOCHICA core DSL is based on the Domain Specific Modeling Language for Mul-
tiagent Systems (DSML4MAS) [6]. DSML4MAS is a platform independent graphical
modeling language and covers the core aspects of MAS, such as agents and organi-
zations, interaction protocols, goals, behaviors, deployment aspects, etc. Its abstract
syntax is defined by the Platform Independent Metamodel for Agents (PIM4 AGENTS).
Object Constraint Language@ (OCL)-based constraints are used for validating

2 http://www.omg.org/spec/0OCL/2.0/PDF/

http://www.omg.org/spec/OCL/2.0/PDF/

The BoCHICA Framework for Model-Driven AOSE 161
@ Extension @ Modeling
BOCHICA

Evaluation
- Bottom-up
Requirements

@

Code Generation
- Base + Extension
Transformation

Agent Execution
Platform | Environment

- add business logic
- fix code (conceptual mismatch)

Fig. 2. This figure depicts the process for gradually adapting BOCHICA to a custom application
domain

PIM4 AGENTS models. Model validation on a platform independent level already pre-
vents many errors in early phases of a project. DSML4MAS inherently possesses three
different abstraction layers. The macroscopic layer defines the organizational structures
of the SUC in terms of abstract goals, roles, interactions, and organizations. The mi-
croscopic layer defines agent types, behavior templates, concrete goals, etc. The de-
ployment layer specifies concrete deployment configurations (e.g. agent instances and
resources). The platform, domain, and methodology independent nature of DSML4MAS
makes it the perfect language for building an extensible framework around it.

3.2 Iterative Adaptation

One of the main reasons in model-driven AOSE which causes design and code to di-
verge over time is that the modeling language is not expressive enough for capturing
all design decisions. This makes extensive manual code refinements necessary at the
platform level to address certain features of the target environment. To approach this
problem, we propose an iterative adaptation process to gradually tailor BOCHICA to
the needs of a custom application domain and execution environment (see Figure 2.
In the first iteration, the SUC is modeled using the core DSL of BOCHICA without any
conceptual extensions (step 1). An existing base transformation to a considered agent
platform is applied (step 2). In step (3), the engineer realizes that some concepts of the
execution environment cannot be addressed by the core DSL and/or the existing base
transformation. The mismatches are analysed in step (4) and so called bottom-up re-
quirements are collected. Finally, the new concepts and extension transformation are
introduced in step (5). The second iteration makes use of the made extensions so that
the gap between design and code is better closed. The adaptation process continues
until the framework fits the needs of the SUC. It is important to note that the idea of
the adaptation process is not to introduce arbitrary low-level concepts into BOCHICA.
The extensions should complement the core DSL where necessary so that the design
decisions can be captured. This task is not trivial and requires background on MDSD
as well as on the BOCHICA core DSL.

162 S. Warwas

4 Framework Interfaces

In order to customize the BOCHICA framework it offers various interfaces which can
be extended through external Eclipse-based plug-ins. The remainder of this section pro-
vides an overview of those interfaces. Examples are provided by Section

4.1 Conceptual Extension

BOCHICA can be extended with new concepts for (i) introducing new ways of mod-
eling existing aspects (e.g. behaviors), (ii) introducing completely new aspects (e.g.
commitments), or (iii) specializations for a certain application domain or execution
environment. The extension is enabled by several interface concepts such as Agent,
Interaction, Resource, and Task that can be specialized by external plug-ins.
The benefit of extending our framework in opposite to creating a completely new ap-
proach is that large parts, which are common to most MAS, can be reused. The core
concepts evolve over time and will build a solid foundation for AOSE. One example
of how the BOCHICA framework can be extended is the approach for an alternative
(declarative) way of modeling interaction protocols presented in [7]]. The presented ap-
proach extended the Interaction concept and added custom diagrams. At the time
of the creation of the extension, BOCHICA was not available so that DSML4MAS had
to be extended directly. Now, BOCHICA provides interfaces for 3rd party developers for
extending it with new concepts without touching the core. At the same time, the exten-
sion is integrated into the overall framework. End users can choose which alternative to
apply. Technically, the extension mechanism is based on the Eclipse OSG# framework
and the Eclipse Modeling Framework (EMF) [8].

4.2 Data Model

Figure [depicts the data model interface of BOCHICA. The core of the data model
has been separated from BOCHICA and is based on the Ecore metamodel provided by
EMF [8]]. Ecore is used to model classes and their attributes and relations among each
other. The reuse of Ecore has several advantages: we get (i) graphical modeling support
(UML class diagram style) and (ii) import from UML, XML schema (including XML
de-/serialization) and existing Java code for free. Types defined in an Ecore-based data
model can be made available within BOCHICA by the concept EType. On top of the
Ecore metamodel, BOCHICA defines basic data structures such as Sequence, Set, or
HashMap. Moreover, the data model interface also provides access to internal types
such as Event and Goal. The internal types are required for accessing BOCHICA
model artifacts inside a plan (e.g. the parameters of a goal). The data model can be
extended by external plug-ins with specialized data structures. It is also possible to
introduce an alternative to the Ecore metamodel for defining data types. Technically,
the user defined data structures use the same extension interfaces as in Section4.1]

3 http://eclipse.org/equinox/

http://eclipse.org/equinox/

The BoCHICA Framework for Model-Driven AOSE 163

BOCHICA Metamodel

[= InternalType E(]—'U Event 1
import
(5 ExternalType '<]—| E ETypel >[Ecore]<_>®

[set [Sequence| | [} Bag
{ [|

Fig. 3. The BOCHICA data model interface

4.3 Language Interfaces

There exists a large number of software languages that are relevant for developing
agent-based systems such as (i) knowledge representation languages (e.g. OWL), (ii)
query languages (e.g. SPARQL), (iii) rule languages (e.g. SWRL, PROLOG), (iv) com-
munication languages (e.g. KIF, FIPA ACL), (v) programming languages (e.g. Java).
A software language is always developed with a certain purpose in mind. Thus, it de-
pends on the concrete use case which one to use. BOCHICA provides abstract language
interfaces which can be extended by external language plug-ins (see Figure H)). The
main concept is Expression. There exist several specialized expression types such
as BooleanExpressionand ContextCondition. The abstract expression types
are used throughout the framework. For example, an AchieveGoal has a target and
failure condition of type BooleanExpression and a Plan has a context condition
of type ContextCondition. External plug-ins can specialize the abstract expres-
sion types with concrete languages. We assume that an external language is also based
on Ecore. This is not a hard restriction since more and more software languages, such
as SPARQL or Java, are becoming available in public metamodel zoos (e.g. EMFText
concrete syntax zod, Atlantic metamodel ZO(E). We use a reflection-based approach for
parsing user defined expression strings into a language specific expression model (inter-
face concept EObject) and assign it to the Expression object’s object attribute
(see Figure M). This approach can be used (i) for checking the syntactical correctness
of an expression, (ii) for checking whether variable symbols inside the language model
are bound in the surrounding scope, and (iii) to process the expression models in model
transformations. The benefit of our approach is that technical details, such as the inte-
gration of the knowledge base and SPARQL into the concrete agent execution platform,
are hidden on the modeling level. At the same time, models can be tailored to a certain
target environment. Of course, the integration at the platform level has to be done at
some point (we discuss it later) but the agent engineer has an abstract view and can
concentrate on the design of the overall system.

4.4 Methodologies

During the recent years, several agent-oriented methodologies have been proposed [9].
Most of the developed approaches are supported by a graphical modeling language

4 http://www.emftext.org/
3 http://www.emn.fr/z-info/atlanmod/index.php/Atlantic

http://www.emftext.org/
http://www.emn.fr/z-info/atlanmod/index.php/Atlantic

164 S. Warwas

] EObject (21| object {H Expression [Initializer
(from ecore) | 1 | text:EString Expression
[ZIX) 1 targetCondition
[Context [BooleanExpression [* |/ AchieveGoal
Condition -
Q..1 . o
0..1 A ¢ 1Apre Ao..1pre failureCondition
context Cond Condition
Condition —% —
=] Plan | | | ControlFlow

Fig. 4. Expression interface of BOCHICA

(see discussion in Section[6)). The focus of our approach was always on developing an
expressive platform independent agent modeling language that can be used for model-
driven development of agent-based systems and less on the methodology part. Since
both aspects are complementary, BOCHICA can be extended by AOSE method plug-
ins to support the software development process. In the same way as BOCHICA can
be extended with new agent concepts, methodology providers can contribute plug-ins
with new views and methodology concepts. For example, the Prometheus methodology
[LLO]] uses so called scenarios in the system specification phase to identify typical events,
actions, and goals of the SUC. In the architectural design phase, the collected entities
are grouped to roles and agents. A Prometheus plug-in for BOCHICA could extend it
with the missing concepts for modeling scenarios in the system specification phase
(since it is not covered by the core DSL). The architectural design phase could be based
on existing concepts of the core DSL. As interface, BOCHICA provides the concept
MethodArtifact. Instead of having a separate modeling language and tool for each
methodology, most of the methodologies could be integrated into one framework and
share a common core. This would join the efforts of the involved parties and would ease
the maintenance of the tool chain.

4.5 Transformations

Model transformations in MDSD are used to gradually refine a model of a SUC until
executable code is generated. We assume that there exist base transformations from
BOCHICA to agent execution platforms such as Jack or Jadex. As BOCHICA gets ex-
tended with new concepts, an existing base transformation is no longer complete re-
garding the covered concepts. Thus, an extension transformation is required which
extends an existing base transformation for the new concepts (if the target platform
shall be enabled for the extension). We see three possibilities how this can be achieved.
Some model transformation languages (e.g. QVTH) allow to write a new transforma-
tion which inherits from an existing one. Thus, an existing mapping rule can be over-
loaded by a new and extended one. Other transformation languages like XPand] use an
aspect-orientated approach for hooking into an existing transformation and extend-
ing it. A further possibility is to chain transformations, where the first one is a base

®http://www.omg.org/spec/OVT/1.0/
7 http://www.eclipse.org/modeling/m2t/

http://www.omg.org/spec/QVT/1.0/
http://www.eclipse.org/modeling/m2t/

The BoCHICA Framework for Model-Driven AOSE 165

transformation and the succeeding one supplements the result of the proceeding one.
Thus, an external plug-in for BOCHICA usually consists of (i) conceptual extensions and
(ii) an extension transformation for the required target environment (assuming that the
base transformation already exists). Maintaining the tool chain is one of the main prob-
lems in MDSD. Reusing existing model transformations reduces development costs and
time and increases code quality by using well established design patterns.

4.6 Custom Views and Tools

Views are used in graphical modeling languages to visualize the relations of model
artifacts of a certain sub-aspect of a system. BOCHICA provides standard views for
agent types and organizational structures, protocols, goal hierarchies, deployment con-
figurations, etc. 3rd party developers can use the extension interface for customizing
BOCHICA to a certain application domain or introduce new ways of viewing exist-
ing aspects. Views can also help to adapt the development environment to certain user
groups. Technically, diagrams and tools can be plugged into the framework by using
the extension point mechanism of the Eclipse OSGi framework and GMH.

5 Evaluation

This section evaluates the BOCHICA framework in a complex real world case study.
As of today, intelligent behavior of avatars in virtual worlds is usually simulated by
triggered script sequences which create the illusion of intelligent behavior for the user.
However, the flexibility of those avatars is, due to their static nature, very limited. In the
research project Intelligent Simulated Realities (ISReal) our research group developed a
simulation platform based on semantic web technology for bringing intelligent behavior
into virtual worlds [[L1]. The basic idea of ISReal was to use semantic web technology
to extend purely geometric objects with ontological information (OWL-based; e.g. con-
cept door links two rooms and can be open or closed) and specify their functionality by
semantic service descriptions (OWL-S-based; e.g. open and close door services), called
object services. Intelligent agents perceive this information, store it in their knowledge
base, and use it for reasoning and planning. An object service is grounded in a service
implementation which invokes according animations or simulation modules. The plat-
form consists of various simulation components which can be distributed in a network.
Before we discuss the BOCHICA extensions for developing intelligent ISReal avatars,
we introduce the main components of the ISReal platform.

Global Semantic Environment. The Global Semantic Environment (GSE) maintains
the global ontological facts of the virtual world. It is responsible for (i) executing ob-
ject services (e.g. checking the pre-condition and invoking the service grounding), (ii)
updating facts (e.g. when a door gets closed), and (iii) handling queries (e.g. SPARQL).

Agent Environment. The ISReal agent environment defines interfaces for connect-
ing 3rd party agent execution platforms to the ISReal platform (we currently use Jack,

8 http://www.eclipse.org/gmf

http://www.eclipse.org/gmf

166 S. Warwas

Jadex, and the Xaitment] game Al engine). Every ISReal agent is equipped with a Lo-
cal Semantic Environment (LSE) which is an agent’s local knowledge base. The LSE
stores the perceived information and enables the agent to reason about it. Moreover, the
LSE is equipped with an Al planner.

Graphics Environment. The user interface of the ISReal platform is realized by a
XML3D-enabled standard web browser. The 3D scene graph is part of the browser’s
Document Object Model (DOM) and can be manipulated using Java Script. It also con-
tains RDFdl-based semantic annotations of the 3D-objects such as the concept URI, the
object URI, and the semantic object service URIs. Moreover, we extended the browser
with an agent sensor which allows agents to perceive the annotated 3D objects.

An intelligent ISReal avatar consists of (i) the geometrical shape (body) and ani-
mations, (ii) a perception component, (iii) semantic annotations, and (iv) an agent that
processes the perceived information and controls the body. Artifacts such as the ge-
ometrical shape, animations, or ontologies are developed using specialized 3rd party
tools. We decided to base the development environment for ISReal agents on BOCHICA
and use Jadex as the target agent platform. This has several advantages: (i) BOCHICA
already provides the core concepts, diagrams, etc. for modeling agent systems, (ii) we
can reuse the existing base transformation to Jadex, (iii) we only need to customize the
missing aspects of BOCHICA for creating an individual development environment for
agents in semantic virtual worlds, and (iv) it enables the reuse of existing model arti-
facts (e.g. interaction protocols). Figure[3l depicts the big picture of how we think that
intelligent agents for the ISReal platform should be developed. For a detailed introduc-
tion to the ISReal platform we refer to [[11]. The remainder of this section discusses the
extensions of the BOCHICA framework for developing ISReal agents.

5.1 Conceptual Extension

Figure [6 depicts some of the conceptual extensions for ISReal. The upper row shows
interface concepts of BOCHICA. The OMSConfig concept is the root of a metamodel
which is used in the ISReal platform for configuring the LSE with concrete ontolo-
gies, object services, etc. The imported OMSConfig concept of the ISReal platform
is reused by the extension plug-in. The bottom row depicts the actual conceptual ex-
tensions. The ISRealAgent specializes the concept Agent and has an URI which
defines an agent’s ontological type, an ISRealRaySensor (resolution, update rate), a
LSE, and a (not visualized) reference to an existing graphical avatar (the agent’s body).
Some concepts of BOCHICA change their technical meaning when they are transformed
to the ISReal platform. For example, ISReal agents use their plans to orchestrate object
services. BOCHICA already provides support for orchestrating web services by plans.
Since ISReal object services are very similar to web services, the existing concepts can
be reused without modification. Figure [7] depicts a simple plan that is triggered by the
MoveNearGoal and invokes the MoveNearService with the according parame-
ters. The MoveNearService is used for in-room navigation (no path finding across

http://www.xaitment .com/
10 http://www.xml3d.org
1 http://www.w3.org/TR/xhtml-rdfa-primer/

http://www.xaitment.com/
http://www.xml3d.org
http://www.w3.org/TR/xhtml-rdfa-primer/

=

-

AOSE Methods

-

The BoCHICA Framework for Model-Driven AOSE

Macroscopic

g% e

Role)
Organization
v ®
[} : :

Plans

| | Iﬁi‘t‘:roscépic :-': |

Ontologies
7

Triple Store

Object
Services
O

* Roles

« Abstract Goals (G)
« Interactions
« Organizations

« Concrete Goals (G)
« Agent Types

« Behaviors

« Collaborations

« Capabilities

* Instances
« Configurations
* Resources

4 1SR Vi Lomdd Sconm: Smartractory

167

=

=

S|OPOJ\ UOISUS)XT ulewoq pue wioye|d

Global Semantic Environment

Agent Execution Platform

Graphics Environment

Fig. 5. The bottom layer depicts the components of the ISReal platform. The upper central part
shows the inherent degrees of abstraction of BOCHICA. The left an right hand side represent the
interfaces for extending the framework.

E Sensor 2] EI Agent (@] E KnowledgeBase [2]
(from environment) [< (from agent) (from informationmodel)
- 0.*
Sensor 4 knowledgebase omsConfig
[1sRealRaysensor?] [I1sRealagent 2] H Localse @1 =] omscenfig [2]
(from isreal) (from isreal) (from isreal) > (from omsconfig)

Fig. 6. A part of the ISReal extension of BOCHICA

G MoveNearGoal
EString

- object :

Target Condition
(BooleanExpression) \r

PREFIX spatial:

PREFIX spatial:
<.../spatial_ontology.owl#>
ASK { $self
spatial:isNearAt $object .}

smartfactory.agent

SPARQL Precondition:
http://www.dfki.de/isreal/spatial_ontology.owl#>

ASK {$self spatial:isLocatedIn $room .
$object spatial:isLocatedIn $room .}

[@ trigger : AG <MoveNearGoal>] [Q self : EString]

ws Palette 3

N

= gotoService (sync)
. URL: http:/fwww.dfki.de/isreal/mo...

p: MoveNearService
fimeout = 10s

[T colf = EGtrinn = dc,

13

-@

A ControlFlow |=
A Infnrmatinn...‘,,,
@ Knowledge

(= Basic Task <

=2 Send

e w

Fig.7. Agent-based orchestration of ISReal object services (behavior diagram)

168 S. Warwas

rooms). The plan’s precondition checks whether the target object is located in the same
room. The ISReal model transformation generates code for invoking an ISReal object
service instead of code for invoking an ordinary web service (see Section 3.3).

5.2 Language Extension

In order to make rational decisions, it is essential for agents to reason about the per-
ceived information. The interface to a knowledge base is usually defined by a query
language. As ISReal agents are based on semantic web technology, we decided to use
SPARQL queries to access the LSE. Two of the application scenarios are (i) to use
SPARQL-Ask queries to define the target condition of achieve goals and (ii) to specify
the context condition of plans with SPARQL-Select queries. As explained in Section
.3l BocHICA defines language interface concepts such as BooleanExpression
that are used throughout the framework. We reused an Ecore-based SPARQL DSL
which is provided by the EMFText concrete syntax zoo to extend BOCHICA (see Section
HB3). The BooleanExpression was extended with SPARQL-Ask and the
ContextCondition with SPARQL-Select. We also reused the automatically gener-
ated parser of EMFText for parsing SPARQL text queries into SPARQL models that are
plugged into the BOCHICA extension slot. Figure[Zldepicts an example AchieveGoal
for walking to an object. The target condition i sNearAt (self, object) is val-
idated in the agent’s LSE. The predicate is perceived by the agent through its sensor
after it has been computed by the graphics environment and the GSE.

a ISReal Agent Modeling Environment b

BOCHICA H ISReal HDataModel\ «AROUND template::invokews2code FOR pim4agents::InvokeWS»

t wsUri = "«this.serviceEndPoint»#«this.operationName»";

wsBindings= new BindinglListImpl();

«FOREACH this.incomingParameters AS i-»
wsBindings.addPair("«this.serviceEndPoint»#«i.name»",
«resolveknowledgeValueExpression(i.value.trim(), i, this)»);

«ENDFOREACH-»

Conf. Models]

Behavior

‘ Jadex PSM ‘ "SRea| PSM‘ 0SInvocation w = new OSInvocation((ISRealAgent) this
o o N | — .getBeliefbase().getBelief("isrealAgent").getFact(), wsUri,
wsBindings, (long) «this.timeout * 1000»);
‘ ’ ‘ ‘ ‘ this.waitForExternalCondition(w);
wsRes = w.getResult(Q);

[[smva] v [vmva] [S5 | cnmsnin

ISReal Agent Execution Platform (Jadex)

Fig. 8. a) depicts an overview of the transformation architecture and b) an example mapping rule
in XPand

5.3 Transformations

A Jadex application consists of XML-based configuration files for applications, agents,
and capabilities. Behaviors are encoded in Java-based plans. The base transformation
from BOCHICA to Jadex consists of the four modules Application, BDI, Interaction, and
Behavior (see Figure|g|a). The first three modules map concepts from BOCHICA to the
Jadex Platform Specific Metamodel (PSM) (green arrows) using QVT model-to-model
transformations. The generated Jadex model is automatically serialized to valid Jadex
XML files by EMF. We decided not to create a separate Jadex metamodel for plans.
This decision was made due to experiences with previous transformations to Jack and

The BoCHICA Framework for Model-Driven AOSE 169

\d] smartfactory.isreal_agent_diagram 3 =0

’ * | 5% Palette

o ch © SmartFactory Cy =

uses A Link

) — ¥
rovides
uses R\ uses p P PfocessEnquiry (& Agent
P EvaluateResponsesPlan erpareEnquiriesRlan
— 4 Agent
& Movement P Bian
4+ |SRealSensor [50 x 20] : 30m5] provides —

‘ & Capability
\ \ provides | /\uses O DomainRole
- P scerian

<

LocalSE

o2 4 . 4 = 4 4 Sensor
LSE /I LSE } LSE { B
/ b / : / N + GlobalSE

/ 4 Platform Config
PharmacylSE 4 Pharmacy WorkerlSE & Worker SupervisorlSE 4 Supervisor

T .
permittedTo \ permittedTo permittedTo
i

Fig. 9. The customized ISReal agent diagram

Jade (to avoid overhead and simplify extensions). The model-to-text transformation is
done using XPand. The separation of the transformation into modules leverages exten-
sibility and eases maintenance. As explained in Section the data model is based
on Ecore and we rely on the capability of EMF to automatically serialize types to Java
code (white arrow). Since we want to focus on the overall approach, the details of the
transformations and the Jadex PSM will not be discussed in this paper. The blue parts
in Figure [§] depict (i) the ISReal extension of BOCHICA, (ii) the ISReal extension to
the Jadex QVT and XPand base transformations, (iii) the generation of configuration
files for the ISReal agent component, and (iv) an additional ISReal library that enables
Jadex for the ISReal platform. The ISReal library implements the interfaces of the IS-
Real agent environment for passing incoming perception events and user queries to
the agents running in the Jadex platform. Moreover, it includes Jadex into the start-up
procedure of the distributed ISReal platform and provides an ISReal capability which
makes a Jadex agent to an ISReal agent. For example, it equips an agent with a LSE.
Figure [§] b) depicts a XPand-based aspect-oriented mapping rule which replaces the
original mapping rule of the Jadex base transformation for invoking a standard web
service by the invocation of an ISReal object service. The first part sets the variable
bindings of the object service and the second part does the actual invocation through a
helper class provided by the ISReal library.

5.4 1ISReal View

The technical details explained so far are (in the ideal case) not visible to the end user.
He is guided by a methodology and uses graphical diagrams to design a MAS for a
certain use case. The graphical front end abstracts from technical details such as (i) the
integration of Jadex into the ISReal platform, (ii) the invocation of ISReal object ser-
vices in Jadex, or (iii) the evaluation of SPARQL queries in the LSE. Figure [depicts
the ISReal agent diagram which contains, in addition to the standard BOCHICA agent
diagram artifacts, the ISReal sensor and the LSE. Placing an ISReal agent implies, com-
pared to a plain agent, the generation of an ISReal agent component which integrates

170 S. Warwas

a) BOCHICA |ISReal Extension |b) Java | XML | Total
Concepts 124 8 + 1 Language Generated | 4907 | 1630 | 6537
Mapping 207 22 Custom 750 0 750
Rules
Mapping 4145 726
Rules LOC

Fig. 10. Table a) compares the BOCHICA core DSL and the Jadex base transformation with the
ISReal-specific extensions. b) compares the generated code for the SmartFactory case study to
the manually written Lines of Code (LOC).

into the ISReal platform, the LSE, sensor interfaces, different service execution seman-
tics, etc.

The ISReal-enabled BOCHICA framework has been evaluated in a virtual production
line scenario. For this purpose, a virtual representation of the DFKI SmartFactory{E
was semantically annotated. The SmartFactory is a real existing machine of the DFKI
to evaluate technology for the factory of the future. The BOCHICA ISReal extension has
been used to model agents that perform typical workflows such as handling new orders
and fixing problems as they occur. Figure[@ldepicts an overview of the modeled ISReal
agents. The current model encompasses basic navigation and object interaction (e.g.
for operating the machine). In order to estimate the effort for the ISReal customization,
Figure [0 depicts two tables. Table a) compares (i) the number of concepts, (ii) the
number of transformation rules, and (iii) the Lines of Code (LOC) of the model trans-
formation between BOCHICA and the ISReal extension. Table b) compares the gener-
ated code with the manually written code for the SmartFactory scenario. The manual
code mainly implements business logic (e.g. computing the shortest path between two
objects). The ISReal extension required around 10% new concepts and mapping rules.
The result is a modeling environment which addresses the needs of one specific ap-
plication domain. BOCHICA is especially suited for large and medium size application
domains and target environments with many end-users (e.g. the ISReal platform) where
customizations pay off. Small applications can be realized with the functionality pro-
vided by the core modeling language and the base transformations (similar to existing
approaches). Probably the biggest obstacle of the approach is the required additional
knowledge of the BOCHICA core DSL and MDSD.

6 Related Work

During the recent years, several agent-oriented modeling languages have been pro-
posed. The majority of the modeling languages were created in order to support a
certain agent methodology [1] [9]. One problem of existing methodology-oriented mod-
eling approaches that we see is that they do not clearly distinguish between (i) the agent
platform, (ii) the methodology, and (iii) the modeling language. Two indicators which
support our perception are (i) the development of the modeling languages is not de-
coupled from the methodologies and (ii) none of the languages has an own name (only
the tools have names). However, we think the development of modeling languages is

2Hhttp: //smartfactory.dfki.uni-kl.de/de/

http://smartfactory.dfki.uni-kl.de/de/

The BoCHICA Framework for Model-Driven AOSE 171

orthogonal to the development of agent methodologies and tools. Of course, a method-
ology can (and most likely will) have certain requirements to a modeling language
(e.g. own methodology artifacts and views). For this purpose, BOCHICA can be ex-
tended with methodology artifacts. However, the core of the agent modeling language is
independent of a certain methodology. Unfortunately, the majority of the developed
modeling tools are only partially based on standardized technology for model-driven de-
velopment which hampers the benefits of MDSD. For example, the Prometheus Design
Tool] (Prometheus methodology) has no explicit underlying metamodel. Others like
AgentTool 11 (O-MaSE), INGENIAS Development Kif'J (INGENIAS), Taom4d{
(Tropos) are only partially based on MDSD (e.g. proprietary or non-MDA-based model
transformations). To the best of our knowledge, the mentioned approaches do not con-
sider extensibility as presented by this paper. Beside the methodology-based modeling
languages, there exist also approaches for extending the Unified Modeling Language
(UML) with agent concepts (e.g. Object Management Group’s (OMG) Agent Meta-
model and Proﬁl (AMP) or FIPA Agent UMLLY). Those approaches promise to reuse
the ecosystem built around UML - including the large user group. However, modeling
agents is fundamentally different from modeling objects. Agents possess an internal
cognitive model and require different methods and design patterns. Moreover, our ex-
periences in AMP showed that it is hard to extend UML since the underlying Meta
Object Facility (MOF) metamodel is complex and extensions of existing elements have
many not desired and non-obvious implications. Thus, we are sceptical that extend-
ing UML in its current form suffices the needs of AOSE. UML, which is a general
purpose modeling language, offers two extension mechanisms: (i) heavy weight meta-
model extensions and (ii) light weight profiles. Metamodel extensions of UML underlie
the standardization process of OMG and are not for the normal end user. Profile-based
extensions can be created by end users and allow a limited customization. An alternative
to our approach would be the creation of a platform specific modeling language (e.g.
for the ISReal-enabled Jadex platform). This would mean to reinvent many things that
are already part of BOCHICA. In [12] two platform specific modeling languages for the
agent platforms SEAGENT [13] and Jadex were presented. The possibility to customize
the language if the agent platform (e.g. Jadex) is integrated into a larger platform is not
discussed.

7 Conclusions

In this paper, we presented a novel model-driven framework for AOSE which inte-
grates the experiences we gained during the recent years with modeling MAS. The
BoCHICA framework goes beyond the state of the art in AOSE as it is not created for
a certain execution platform, methodology, or application domain. Instead, it is based

13http://www.cs.rmit.edu.au/agents/pdt/
“Mhttp://agenttool.cis.ksu.edu/
15http://ingenias.sourceforge.net/
http://selab. fbk.eu/taom/

" http://www.omg.org/cgi-bin/doc?ad/08-09-05.pdf
18http://www.auml.org/

http://www.cs.rmit.edu.au/agents/pdt/
http://agenttool.cis.ksu.edu/
http://ingenias.sourceforge.net/
http://selab.fbk.eu/taom/
http://www.omg.org/cgi-bin/doc?ad/08-09-05.pdf
http://www.auml.org/

172 S. Warwas

on a platform independent agent core DSL and provides generic extension interfaces
for integrating results from agent research as well as for customizing it regarding user-
specific application domains, AOSE methods, and target platforms. Section 3 provided
an overview of BOCHICA and presented an iterative adaptation process for integrating
conceptual extensions. The framework interfaces were introduced in Sectionl We eval-
uated BOCHICA at the application domain of agents in semantically-enhanced virtual
worlds. Our experience showed that around 10% of new concepts and mapping rules
were necessary to create a development environment which enables efficient modeling
of ISReal agents. We see our approach as a contribution to the unification of the diverse
field of agent-oriented modeling and to bridge agent research and concrete software de-
velopment. In the future, we want to integrate existing agent methodologies and work
on collaborative modeling of agent-based systems.

References

1. Henderson-Sellers, B., et al.: Agent-Oriented Methodologies. IGI Global (2005)

2. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages Using
Metamodels. Addison-Wesley Longman, Amsterdam (2008)

3. Belecheanu, R.A., et al.: Commercial applications of agents: Lessons, experiences and
challenges. In: 5th Int. Joint Conf. on Autonomous Agents and Multi-Agent Systems, pp.
1549-1555 (2006)

4. Jennings, N.R., Wooldridge, M.: Agent-Oriented Software Engineering. Artificial Intelli-
gence 117, 277-296 (2000)

5. McKean, J., et al.: Technology diffusion: analysing the diffusion of agent technologies. Au-
tonomous Agents and Multi-Agent Systems 17, 372-396 (2008)

6. Hahn, C., et al.: A platform-independent metamodel for multiagent systems. Autonomous
Agents and Multi-Agent Systems 18, 239-266 (2009)

7. Leén-Soto, E.: A Model-Driven Approach for Executing Modular Interaction Protocols Us-
ing BDI-Agents. In: Fischer, K., Miiller, J.P., Levy, R. (eds.) ATOP 2009 and ATOP 2010.
LNBIP, vol. 98, pp. 10-34. Springer, Heidelberg (2012)

8. Steinberg, D., et al.: EMF: Eclipse Modeling Framework, 2nd revised edn. Addison-Wesley
(2008)

9. Sterling, L., et al.: The Art of Agent-Oriented Modeling. The MIT Press (2009)

10. Padgham, L., et al.: Developing Intelligent Agent Systems: A Practical Guide. John Wiley &
Sons (2004)

11. Kapahnke, P., Liedtke, P., Nesbigall, S., Warwas, S., Klusch, M.: ISReal: An Open Platform
for Semantic-Based 3D Simulations in the 3D Internet. In: Patel-Schneider, P.F., Pan, Y.,
Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, 1., Glimm, B. (eds.) ISWC 2010, Part II.
LNCS, vol. 6497, pp. 161-176. Springer, Heidelberg (2010)

12. Kardas, G., Ekinci, E.E., Afsar, B., Dikenelli, O., Topaloglu, N.Y.: Modeling Tools for Plat-
form Specific Design of Multi-Agent Systems. In: Braubach, L., van der Hoek, W., Petta, P.,
Pokahr, A. (eds.) MATES 2009. LNCS, vol. 5774, pp. 202-207. Springer, Heidelberg (2009)

13. Dikenelli, O.: SEAGENT MAS platform development environment. In: Proc. of the 7th Int.
Joint Conf. on Autonomous Agents and Multiagent Systems: Demo Papers, AAMAS 2008,
pp- 1671-1672. IFAAMAS (2008)

	The BOCHICA Framework for Model-Driven Agent-Oriented Software Engineering
	Introduction
	Background
	Framework Overview
	Core DSL
	Iterative Adaptation

	Framework Interfaces
	Conceptual Extension
	Data Model
	Language Interfaces
	Methodologies
	Transformations
	Custom Views and Tools

	Evaluation
	Conceptual Extension
	Language Extension
	Transformations
	ISReal View

	Related Work
	Conclusions
	References

