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Abstract. Upper and lower bounds to the oblivious transfer (OT) ca-
pacity of discrete memoryless channels and multiple sources are obtained,
for 1 of 2 strings OT with honest but curious participants. The upper
bounds hold also for one-string OT. The results provide the exact value
of OT capacity for a specified class of models, and the necessary and
sufficient condition of its positivity, in general.
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This paper is based on the ISIT-07 contribution [2]. The authors did intend to
write up a full version and devoted substantial amount of work to that project,
but abandoned it as other obligations delayed completion and the elapsed time
caused loss of novelty. Still, the second author considers it proper to publish
this paper in this volume, paying tribute to the memory of Rudolph Ahlswede.
The results in [2] are completed by some previously unpublished ones which
originated from the authors’ discussions during their work towards a full version
of [2].

1 Introduction

Oblivious transfer (OT) is a fundamental concept in cryptography, see for ex-
ample [9]. The term has been used with different meanings, including a simple
transmission over a binary erasure channel. In this paper, unless stated other-
wise, OT means “1 out of 2 oblivious string transfer” [9]. Two parties are in-
volved, commonly called Alice and Bob. Alice is initially given two binary strings
K0,K1 of length k, and Bob is given a single bit Z. An OT protocol performed
by Alice and Bob is supposed to let Bob learn KZ while he remains ignorant of
KZ (Z = 1 − Z) and Alice remains ignorant of Z. The Shannon-theoretic ap-
proach is used, thus ignorance means negligible amount of information. Formal
definitions are in Section 2.
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Throughout this paper, it is assumed that Alice and Bob may use the fol-
lowing resources for free: (i) unlimited computing power (ii) local randomness
provided by random experiments they may perform, independently of each oth-
er (iii) a noiseless public channel, available for unlimited communication in any
number of rounds. These free resources alone are not sufficient for OT. In this
paper, two kinds of models will be considered which involve an additional (non-
free) resource, either a discrete memoryless multiple source (DMMS) or a noisy
discrete memoryless channel (DMC).

A source model is determined by a DMMS with two component sources, i.e.,
a sequence of i.i.d. repetitions (Xi, Yi), i = 1, 2, . . . of a pair (X,Y ) of “generic”
random variables (RVs) taking values in finite sets X ,Y called source alphabets.
At the ith access to this DMMS, Alice observesXi and Bob Yi. A channel model
is determined by a DMC whose (finite) input and output alphabets are denoted
by X ,Y, and the conditional probability of Bob receiving y ∈ Y when Alice
sends x ∈ X is denoted by W (y|x). At the ith access to this DMC, Alice selects
an input Xi and Bob observes the corresponding output Yi. In either model,
the cost of one access to the DMMS resp. DMC is one unit. Thus the cost of
an OT protocol is the number of accesses to the DMMS resp. DMC.

The OT capacity COT of a DMMS or DMC is the limit as n → ∞ of 1/n
times the largest k for which OT is possible with cost n. This concept has
been introduced by Nascimento and Winter [11,12] who also proved COT > 0
under a natural condition. See also Imai et al. [7] who for the binary erasure
channel with erasure probability 1/2 proved COT = 1/2. For previous results
showing that a DMMS or DMC makes OT possible for any k (but not that k/n
may be bounded away from 0 while the conditions (1)-(3) below are satisfied)
see the references in [12]. A related concept of commitment capacity has been
introduced and characterized in [15].

In the literature of OT much of the effort is devoted to designing protocols
that prevent a malicious Alice from learning Bob’s bit Z or a malicious Bob from
obtaining information also about KZ . This issue is not entered here, we assume
following [11,12] that Alice and Bob are “honest but curious”. This means that
they honestly follow the protocol but do not discard any information they get
access to in the process, and may use all of it to infer what they are supposed
to remain ignorant about. Nevertheless, we will point out that a modification
of the basic protocol does provide some protection against cheating, while not
decreasing OT capacity.

2 Preliminaries

The basic notation of the book [6] is used, except that source and channel alpha-
bets are denoted by script rather than boldface capitals. In particular, log de-
notes logarithm to base 2, and a DMC with matrix W = {W (y|x), x ∈ X , y ∈ Y}
is referred to as DMC {W : X → Y} or just {W} . In order to define admissible
OT protocols for source and channel models, general two-party protocols are
described first.
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A noiseless protocol, assuming Alice and Bob have initial knowledge or view
U and V , is described as follows; here U and V are not necessarily independent
RVs. At the beginning of the protocol, both Alice and Bob perform a random ex-
periment to generate RVs M resp. N , where M , N and (U, V ) are independent.
Then Alice sends Bob over the noiseless public channel a message F1 which is a
function of U and M , and Bob returns Alice a message F2, a function of V , N
and F1. The formal role of the RVs M , N is to model possible randomization in
Alice’s choice of F1 and Bob’s choice of F2, as well as in their actions later on. In
following rounds (as many as desired) Alice and Bob alternatingly send messages
F3, F4, . . . , F2t which are functions of their instantenous views. In other words,
Fi is a function of U,M and {Fj , j < i} if i is odd, and of V,N and {Fj , j < i}
is i is even (here the messages Fj with j of the same parity as i are redundant).
At the end of the protocol, Alice’s view will be (U,M,F) and Bob’s (V,N,F),
where F = F1 . . . , F2t.

A noisy protocol with n accesses to the DMC {W} is described as follows.
Alice and Bob, whose initial views are represented by RVs U and V , start the
protocol by generating RVs M,N as above. Then Alice selects the DMC input
X1 as a function of U and M , and Bob observes the corresponding output
Y1. After this, in a first session of public communication, they may exchange
messages according to a noiseless protocol in which the role of their initial views
is played by (U,M) and (V,N, Y1), respectively; X1 need not be indicated as
part of Alice’s view for it is a function of (U,M). In this public communication
session, and in subsequent ones, Alice and Bob need not generate new RVs for
randomization, the originalM and N may be assumed to contain all randomness
needed for that purpose.

Next, DMC accesses and public communication sessions alternate. Denote
the total public communication in the first i sessions by F i. Before the i’th
access to the DMC, Alice’s view is (U,M,F i−1). She selects the DMC input
Xi as a function of that view, and Bob observes the corresponding output Yi.
Formally, on the condition that Xi = x, the RV Yi is conditionally independent
of U, V,M,N, Y i−1, F i−1, and its conditional distribution is W (·|x). Then, in
the i’th session of public communication, Alice and Bob perform a noiseless
protocol in which their original views are (U,M,F i−1) resp. (V,N, Y i, F i−1).
The protocol ends with the n’th public session, and Alice’s and Bob’s final
views are (U,M,F) and (V,N, Y n,F) where F = Fn. Alice’s knowledge of
Xn = X1, . . . , Xn need not be indicated for Xn is a function of (U,M,F).

Using the above general concepts, admissible protocols for cost-n oblivious
transfer of length-k messages, or briefly (n, k) protocols for OT, are described
as follows. Below, Xn = (X1, . . . , Xn) and Y n = (Y1, . . . .Yn) denote, in case of
source models, the source output sequences observed by Alice and Bob, and in
case of channel models, the sequences of DMC inputs and outputs selected by
Alice resp. observed by Bob.

In case of a source model, Alice and Bob may perform any noiseless protocol
in which their initial views are U = (K0,K1, X

n) and V = (Z, Y n). Here
K0 and K1, representing the two binary strings given to Alice, are uniformly
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distributed on {0, 1}k, the RV Z, representing the bit given to Bob, is uniformly
distributed on {0, 1}, and K0,K1, Z, (X

n, Y n) are mutually independent. In
case of a channel model, Alice and Bob may perform any noisy protocol with n
accesses to the DMC, in which their initial views are U = (K0,K1) and V = Z
with K0,K1, Z independent and uniformly distributed on {0, 1}k resp. {0, 1}.
In both cases, upon completing the protocol, Bob produces an estimate K̂Z of
KZ as a function of his view (Z,N, Y n,F).

Of course, such an (n, k) protocol is suitable for OT only if it meets the
goals stated in the Introduction. These are formalized, in the limit n → ∞,
by conditions (1)-(3) below in which the dependence on n of the RVs involved
is suppressed to keep the notation transparent. Condition (1) means that Bob
learns KZ with negligible probability of error. Conditions (2) and (3) mean that
Alice remains ignorant of Z and Bob of KZ , in the sense of obtaining negligible
amount of information about Z resp. KZ . In exceptional cases when these
conditions hold with equality rather than merely convergence to 0, one speaks
of perfect OT.

Definition 1. A positive number R is an achievable OT rate for a given DMMS
or DMC if for n → ∞ there exist (n, k) protocols with k

n → R such that

Pr{K̂Z �= KZ} → 0 (1)

I(K0K1MXnF ∧ Z) → 0 (2)

I(ZNY nF ∧KZ) → 0. (3)

The OT capacity of a DMMS or DMC is the supremum of achievable OT rates,
or 0 if no R > 0 is achievable.

Note that since I(Z ∧KZ) = 0, condition (3) is equivalent to

I(NY nF ∧K1|Z = 0) → 0; I(NY nF ∧K0|Z = 1) → 0. (4)

Remark 1. An alternative definition of achievable OT rates reqiures exponen-
tially fast convergence to 0 in (1)-(3) as n → ∞. Another alternative relaxes (3)
to 1

nI(ZNY nF∧KZ) → 0. The results in this paper hold under either definition.
Note that Definition 1 admits arbitrarily complex protocols. This is necessary
for the generality of our upper bound to OT capacity (Theorem 1). On the other
hand, for our achievability results (lower bounds to OT capacity) rather simple
protocols will suffice. See also Remark 2.

Given any DMC {W : X → Y} and distribution P on X (referred to as an input
distribution), consider a DMMS with generic RVs X,Y whose joint distribution
is given by P (x)W (y|x). The OT capacity of this DMMS will be denoted by
COT(P,W ), while the OT capacity of the DMC {W} is denoted by COT(W ).

Lemma 1. For each DMC {W} and input distribution P

COT(W ) ≥ COT(P,W ).
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Proof. Let R be an achievable OT rate for the source model given by the DMMS
with generic RVs X,Y as above. Then (n, k) protocols achieving OT rate R for
the source model give rise to OT protocols for the channel model achieving the
same OT rate, simply as follows. In the first stage Alice selects i.i.d. repetitions
of X as DMC inputs X1, . . . , Xn, and Bob observes the corresponding outputs
Y1, . . . , Yn; in this stage the public channel is not used, thus the first n−1 public
sessions are empty. Upon completing this stage, Alice and Bob have views as
their initial views would be in the source model. Then they perform the given
source model protocol.

Remark 2. Lemma 1 may be applied to the DMC {W l : X l → Y l} defined by

W l(y1, . . . , yl|x1, . . . , xl) =

l∏

i=1

W (yi|xi),

whose OT capacity clearly equals lCOT(W ). This gives

COT(W ) ≥ 1

l
COT(P

(l),W l), for every distribution P (l) on X l.

In this paper, for channel models only protocols as in the proof of Lemma 1
will be used, in effect employing the DMC merely to emulate a DMMS (with
alphabets X , Y or X 2, Y2; we will not use l > 2). For DMCs with the property
that in Lemma 1 some input distribution P attains the equality, or at least
that 1

lCOT(P
(l),W l) → COT(W ) for suitable distributions P (l) on X l, the OT

capacity can be attained via source model emulating protocols. It remains open
whether every DMC has that property.

Let us briefly mention also a more general concept of OT, where Alice is initially
givenm stringsK0, . . . ,Km−1, and Bob may be interested in any subset {Kj, j ∈
J} of those, with index set J in a specified family J of subsets of {0, . . . ,m−1}.
Formally, Bob is given a RV Z with |J | possible values, and an OT protocol
is supposed to let him learn all Kj with index j in the set J ∈ J specified by
the value of Z, while keeping him ignorant of the remaining strings. At the
same time, Alice has to remain ignorant of Z, i.e., of which strings of her has
Bob chosen to learn. This general OT concept will not be addressed but its
simplest special case m = 1, J = {{0},∅} will. In that case, referred to below
as one-string OT, Alice is given only one string K0, and Bob one bit Z. He is
supposed to learn K0 if Z = 0 and remain ignorant of K0 if Z = 1, while Alice
should remain ignorant of Z.

The concepts of (n, k) protocol and OT capacity immediately extend to the
above general version of OT, and in particular to one-string OT. For the latter
case, the analogues of the conditions (1)-(3) in Definition 1 are

Pr{K̂0 �= K0|Z = 0} → 0 (5)

I(K0MXnF ∧ Z) → 0 (6)

I(NY nF ∧K0|Z = 1) → 0. (7)



150 R. Ahlswede and I. Csiszár

3 Statement of Results

Theorem 1. The OT capacity of a DMMS with generic RVs X,Y or of a DMC
{W} is bounded above by

min [I(X ∧ Y ), H(X |Y )] ,

respectively by the maximum of this expression for RVs X,Y connected by the
channel, i.e., satisfying PY |X = W . The same upper bounds hold for one-string
OT, as well.

A first example that the upper bound in Theorem 1 may be achievable is provided
by the binary erasure channel (BEC). A BEC with erasure probability 0 < p < 1
is a DMC with input alphabet {0, 1}, output alphabet {0, 1, 2}, and W (0|0) =
W (1|1) = 1 − p, W (2|0) = W (2|1) = p. It has been shown in [7] that a BEC
with erasure probability 1/2 has OT capacity 1/2.

Theorem 2. If {W} is a BEC with erasure probability p, and P is any distri-
bution on {0, 1}, then

COT(W ) = min(p, 1− p), COT(P,W ) = H(P )min(p, 1− p).

The next theorem addresses a larger class of channels than BECs.

Definition 2. A generalized erasure channel (GEC) is a DMC {W : X → Y}
such that for some nonempty Y1 ⊂ Y the probabilities W (y|x), y ∈ Y1 do not
depend on x ∈ X .

As outputs y ∈ Y1 carry no information about the input, they are interpreted
as erasures. The BEC is a special case with X = {0, 1}, Y = {0, 1, 2}, Y1 = {2}.
The erasure probabability of a GEC is p =

∑
y∈Y1

W (y|x) which does not depend
on x ∈ X .

Theorem 3. If {W : X → Y} is a GEC with erasure probability p, and P is
any distribution on X , then

COT(W ) = C(W ), COT(P,W ) = I(P,W ) if p ≥ 1/2

COT(W ) ≥ p

1− p
C(W ), COT(P,W ) ≥ p

1− p
I(P,W ) if p < 1/2.

Here C(W ) = maxP I(P,W ) is the Shannon capacity of the DMC {W} , and
I(P,W ) denotes the mutual information of RVs X,Y with joint distribution
given by P (x)W (y|x).

The proof technique of the lower bounds in Theorem 3 works beyond the
class of GECs. It provides lower bounds to OT capacity for the larger class of
DMCs that can be represented as a mixture of two channels with identical input
alphabet X and disjoint output alphabets Y0 and Y1, namely as

W (y|x) =
{
(1− p)W0(y|x), x ∈ X , y ∈ Y0

pW1(y|x), x ∈ X , y ∈ Y1.
(8)

Note that if the matrix W1 has identical rows then (8) gives a GEC.
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The following result is not contained in [2]. The auxiliary RV U in its second
assertion is unrelated to U appearing in the Preliminaries.

Theorem 4. For a DMC {W} of form (8) and any distribution P on X
COT(P,W ) ≥ [I(P,W0)− I(P,W1)]min(p, 1− p).

A possibly better bound is

COT(P,W ) ≥
[
I(U ∧ Y (0))− I(U ∧ Y (1))

]
min(p, 1− p),

where U is any RV and X,Y (0), Y (1) are RVs with PXY (j)(x, y) = P (x)Wj(y|x),
j = 0, 1, such that

U → X → (Y (0), Y (1)) is a Markov chain. (9)

Consequently, COT(W ) is bounded below by min(p, 1 − p) times the secrecy ca-
pacity of the wiretap channel with component channels W0,W1.

The model called wiretap channel with component channels W0,W1 has been
introduced by Wyner [17] assuming a special relationship between W0,W1 and
by Csiszár and Körner [5] for any W0,W1 with the same input alphabet. In this
model, Alice selects the inputs, Bob observes the W0-outputs and an eavesdrop-
per Eve the W1-outputs. The secrecy capacity is the supremum of rates at which
Alice can reliably send Bob messages in such a way that Eve remains ignorant
about them. According to [5], it equals the maximum of I(U∧Y (0))−I(U∧Y (1))
for RV’s satisfying (9), with X and Y (j) connected by the channel Wj , j = 0, 1.
Hence the second assertion of Theorem 4 implies the last one by Lemma 1.

Remark 3. In (8) the indices 0 and 1 can be exchanged if simultaneously p and
1− p are exchanged. Hence the bounds in Theorem 4 hold also with the reversed
order of W0 and W1.

Theorems 1 and 3 admit to give a necessary and sufficient condition for the
positivity of OT capacity.

Theorem 5. A DMC {W : X → Y} has positive OT capacity iff there exist
x′, x′′ in X such that the corresponding rows of the matrix W are not identical,
and W (y|x′)W (y|x′′) > 0 for some y ∈ Y. Further, COT(P,W ) > 0 for an input
distribution P iff x′, x′′ as above exist with P (x′)P (x′′) > 0.

Remark 4. A similar result appears in [11,12], but there a stronger condition
is claimed necessary and sufficient for COT(W ) > 0; it can be equivalently stated
by adding to the requirements on x′ and x′′ in Theorem 5 that neither of the
corresponding rows of W is a convex combination of other rows. That additional
requirement, however, is not necessary in the “honest but curious” framework,
see Example 3 for a counterexample and additional discussion. Nevertheless,
the proof of Theorem 5 uses an idea as [11,12], simplified by the availability of
Theorem 3.
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4 Proofs

Proof of Theorem 1. It suffices to prove the claimed bounds for one-string OT
capacity. Indeed, (n, k) protocols satisfying (1)-(3) trivially give rise to (n, k)
protocols for one-string OT satisfying (5)-(7), just letting the pair of RVs K1,M
in the former protocols play the role of M in the latter. Below, attention is
restricted to channel models since the proof for source models is similar but
simpler. In the proof, instead of condition (7) only its relaxation

I(NY nF ∧K0|Z = 1) = o(n) (10)

will be used, see Remark 1 after Definition 1.
Now, given a DMC {W : X → Y} , consider (n, k) protocols for one-string

OT that satisfy (5), (6) and (10). By Lemma 3 in Appendix A, the condition
(6) implies

H(K0|XnF, Z = 0)−H(K0|XnF, Z = 1) = o(n) (11)

as well as
H(K0|F, Z = 0)−H(K0|F, Z = 1) = o(n). (12)

Since H(K0|Z = 0) = H(K0|Z = 1) = k, equation (12) is equivalent to

I(K0 ∧ F|Z = 0) = I(K0 ∧F|Z = 1) + o(n)

and hence (10) implies
I(K0 ∧ F|Z = 0) = o(n). (13)

The conditions (5),(13) are similar to those defining a secret key for Alice and
Bob, with (weak sense) security from an eavesdropper who observes their public
communication F. If (5),(13) held without the conditioning on Z = 0 then K0

would be, by definition, such a secret key, see [10],[1]. Then by these references

k = H(K0) ≤
n∑

t=1

I(Xt ∧ Yt) + o(n) (14)

would hold. Actually, (14) holds also in the present case. Indeed, the condition-
ing on Z = 0 affects the mentioned result only by changing the terms I(Xt ∧Yt)
to I(Xt ∧Yt|Z = 0). This has a negligible effect if n is large, because (6) implies
that maxt I(Xt ∧ Z) → 0, and hence the conditional distribution of Xt on the
condition Z = 0 differs negligibly from the unconditional one, uniformly in t.

To derive another bound on k, we use that K0 and NY nZ are conditionally
independent given XnF. For a formal proof of this, see Lemma 6 in Appendix
B. It follows using (5) and Fano’s inequality that

H(K0|XnF, Z = 0) ≤ H(K0|NY nF, Z = 0) ≤ H(K0|K̂0, Z = 0) + o(n),

whence by (11) also
H(K0|XnF, Z = 1) = o(n). (15)
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Using (10) and (15) we obtain

k = H(K0|Z = 1) = H(K0|NY nF, Z = 1) + o(n)

≤ H(K0X
n|NY nF, Z = 1) + o(n) = H(Xn|NY nF, Z = 1) + o(n)

≤ H(Xn|Y n, Z = 1) + o(n) ≤
n∑

t=1

H(Xt|Yt, Z = 1) + o(n).

In the last sum, the conditioning on Z = 1 may be omitted with negligible effect
as before. Thus we have shown that

k ≤
n∑

t=1

H(Xt|Yt) + o(n). (16)

Finally, the sums in (14) and (16) may be written as nI(XT ∧ YT |T ) and
nH(XT |YT , T ), respectively, where T is a RV uniformly distributed on {1, . . . , n}
and independent of (Xn, Y n). The RVs XT and YT are connected by the channel
W and satisfy

I(XT ∧ YT |T ) ≤ I(XT ∧ YT ), H(XT |YT , T ) ≤ H(XT |YT ).

The proof of Theorem 1 is complete.

Proof of Theorem 2. If X and Y are RVs connected by a BEC with erasure
probability p then

H(X |Y = 0) = H(X |Y = 1) = 0, H(X |Y = 2) = H(X),

hence

H(X |Y ) = pH(X), I(X ∧ Y ) = H(X)−H(X |Y ) = (1 − p)H(X).

It follows by Theorem 1 that

COT(P,W ) ≤ H(P )min(p, 1− p), COT(W ) ≤ min(p, 1− p).

It remains to show that these upper bounds are achievable.
By Lemma 1, it suffices to show that each R < H(X)min(p, 1 − p) is an

achievable OT rate for the source model defined by a DMMS with generic RVs
X,Y as above. To this end, an OT protocol will be described for this source
model. It will involve only two messages sent over the public noiseless channel,
the first by Bob and the second by Alice; formally, Alice’s message F1 and Bob’s
message F4 will be empty.

Upon observing Y n = (Y1, . . . , Yn), Bob first determines two subsets G and B
of {1, . . . , n}, called the good and bad sets, both of size about nmin(p, 1− p). If
p ≥ 1/2 then Bob takes for G the set of all indices i with Yi �= 2, and he assigns
the indices i with Yi = 2 to B with probability (1− p)/p, independently of each
other. If p < 1/2 then Bob takes for B the set of all indices with Yi = 2, and he
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assigns the indices with Yi �= 2 to G with probability p/(1 − p), independently
of each other. Formally, in order to comply with the description of protocols
in Section 2, Bob may be assumed to use a RV N generated at the outset,
when he has to assign indices i to B or to G in a randomized manner. E.g.,
when p > 1/2, this N may consist of n independent bits, each equal to 0 with
probability (1− p)/p, and an index i with Yi = 2 is assigned to B if the i’th bit
of N is 0.

Bob’s next action is to send Alice a message telling her the sets G and B but
not which is which: he lets her learn two sets S0, S1 where S0 = G,S1 = B
if Z = 0, and S0 = B,S1 = G if Z = 1. Note that the pair of random sets
G,B is independent of Xn, the events {i ∈ G}, i = 1, . . . , n are independent and
have probability min(p, 1− p), and the same holds for the events {i ∈ B}. This
implies, in particular, that Bob’s message gives Alice no information about Z.

Consider first the case when X is uniformly distributed on {0, 1}. Suppose
Alice’s strings K0,K1 are of length

1 k = nr where r < min(p, 1−p) is arbitrarily
fixed. If |G| ≥ nr and |B| ≥ nr, which holds with probability going to 1
exponentially fast as n → ∞, let S′

0 and S′
1 denote the subsets of S0 resp.

S1 consisting of their first nr elements. Then Alice encrypts K0 and K1 with
the “keys” {Xi, i ∈ S′

0} resp. {Xi, i ∈ S′
1}, and sends Bob the “cryptograms”

Kj + {Xi, i ∈ S′
j}, j = 0, 1, where + means componentwise addition mod 2.

If |G| < nr or |B| < nr then she sends nothing. Except for the latter case of
negligible probability, Bob can decrypt KZ since SZ = G implies that he knows
{Xi, i ∈ S′

Z} = {Yi, i ∈ S′
Z}. On the other hand, Bob remains fully ignorant

of KZ , since the “key” {Xi, i ∈ S′
Z
} is uniformly distributed on {0, 1}nr and

SZ = B implies that Bob has 0 information about it. Note that this already
suffices for the proof of COT(W ) = min(p, 1− p).

If X is not uniformly distributed on {0, 1}, the strings {Xi, i ∈ S′
j}, j = 0, 1

are not directly suitable as encryption keys, they have to be transformed to
binary strings of length k < rn whose distribution is nearly uniform on {0, 1}k.
It is well-known that given any δ > 0, in the case of large n there exists a
mapping κ : {0, 1}n → {0, 1}k with k = n(H(X)− δ) such that k−H(κ(Xn)) is
exponentially small (in later proofs we will need a stronger result, Proposition 1).
Applying this replacing n by rn, there exists a mapping κ : {0, 1}nr → {0, 1}k
with k = nr(H(X) − δ) such that κj = κ({Xi, i ∈ S′

j}), j = 0, 1 are nearly
uniformly distributed, in the sense that their entropy differs from k only by an
exponentially small amount.

To complete the proof, assume Alice’s strings K0,K1 are of length k =
nr(H(X)− δ). She encrypts them by the keys κ0, κ1, and sends Bob the strings
Kj + κj , j = 0, 1. Again, Bob can decipher KZ , and he remains ignorant of KZ

in the sense that he has an exponentially small amount of information about
KZ , see, e.g. [6, Proposition 17.1].

Remark 5. The protocol in the above proof achieves more than required in Def-
inition 1: Eve’s amount of information about Z is not only asymptotically but

1 Here and later on, if a specified length of sequences is not an integer, the next integer
is meant.
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exactly 0, and in the case when X is uniformly distributed on {0, 1}, Bob’s in-
formation about KZ is also 0. The latter need not hold for the described protocol
when X is not uniformly distributed, but can be achieved also in that case by a
slightly modified protocol. As k−H(κj) equals the I-divergence of the distribution
of κj from the uniform distribution on {0, 1}k, its exponential smallness implies
that of the variation distance of these distributions. Hence Alice can generate
RVs κj uniformly distributed on {0, 1}k with Pr{κj �= κj} exponentially small,
j = 0, 1, and send Bob Kj +κj rather than Kj +κj, j = 0, 1. Then Bob can still
reconstruct KZ with exponentially small probability of error (an error occurring
when κZ �= κZ), and he has 0 information about KZ .

Proof of Theorem 3. Let {W} be a GEC. Then (8) holds with Y0 = Y \ Y1,
W0(y|x) = 1

1−pW (y|x) (y ∈ Y0) and with W1(y|x) (y ∈ Y1) not depending on
x ∈ X . Hence by Lemma 7 in Appendix B,

I(P,W ) = (1 − p)I(P,W0) . (17)

On account of Theorem 1, Lemma 1 and (17), it suffices to prove that if {W}
is a GEC then COT(P,W ) ≥ I(P,W0)min(p, 1 − p). This is a special case of
the first assertion of Theorem 4, and the proof of that more general result is not
really more difficult. Below we proceed directly with the latter.

The following basic proposition about generating a secret key will be used.

Proposition 1. ([10,1]) Let (Xi, Yi) i = 1, . . . , n and (X̃i, Ti) i = 1, . . . , n be
i.i.d. repetitions of pairs of RVs (X,Y ) resp. (X,T ). For any δ > 0 and n → ∞
there exist functions κ and f on Xn, where the range of κ is {0, 1}k with

k = n(I(X ∧ Y )− I(X ∧ T )− δ) (18)

such that κ(Xn) is recoverable from f(Xn) and Y n with exponentially small
probability of error, and

k −H(κ(X̃n|f(X̃n), T n) → 0 exponentially fast. (19)

Such functions κ and f also exist with

k = n(I(U ∧ Y )− I(U ∧ T )− δ) , (20)

for any RV U satisfying the Markov condition U → X → (Y, T ).

Remark 6. In the usual setting, Alice and Bob have to generate a secret key
assuming Alice observes Xn, Bob observes Y n, only Alice is permitted to send
Bob a public message, and the key has to be concealed from Eve who observes
Alice’s message and has side information T n. This setting is formally less gen-
eral than that in Proposition 1, for it regards the sequences Xn and X̃n identical
rather than only identically distributed. Mathematically, however, this makes
no difference, and the stated form of Proposition 1 is more convenient for the
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purpose of this paper. Note that originally weak secrecy had been addressed, i.e.,
the difference in (19) was shown to be o(n) rather than to approach 0 (in [10]
for (18) and in [1] also for (20); in [1] the largest key rate k/n asymptotically
achievable with unidirectional public communication is also determined). Still,
the “strong” version with (19) is also well-known, see, e.g. [6, Theorem 17.21].

Proof of Theorem 4. Let {W : X → Y} with Y = Y0∪Y1 be a DMC of form (8),
and consider a DMMS with generic RVs X,Y whose joint distribution is given
by P (x)W (y|x), x ∈ X , y ∈ Y. To prove the claimed bounds on COT(P,W ),
protocols for the corresponding source model similar to those in the proof of
Theorem 2 will be used.

Upon observing Y n = (Y1, . . . , Yn), Bob first determines a “good set” G and
a “bad set” B as in the proof of Theorem 2, with the only modification that the
criteria Yi �= 2 resp. Yi = 2 are replaced by Yi ∈ Y0 resp. Yi ∈ Y1. As there,
the pair of random sets G,B is independent of Xn = (X1, . . . , Xn), the events
{i ∈ G}, i = 1, . . . , n have probability min(p, 1− p) and are independent of each
other and Xn, and the same holds also for the events {i ∈ B}. Then Bob sends
Alice a message telling her two sets S0, S1 where S0 = G,S1 = B if Z = 0, and
S0 = B,S1 = G if Z = 1. Thereby Alice receives 0 information about Z.

The i.i.d. pairs (Xi, Yi) are conditionally independent conditioned on the
value of Z and the sets S0, S1, moreover, those with i ∈ S0 as well as those
with i ∈ S1 are conditionally i.i.d. If i ∈ S0 resp. i ∈ S1, the conditional
distribution of (Xi, Yi) is given by P (x)W0(y|x) resp. P (x)W1(y|x) if Z = 0,
and by P (x)W1(y|x) resp. P (x)W0(y|x) if Z = 1. To verify this, suppose
first that Z = 0. Then i ∈ S0 means i ∈ G, which implies Yi ∈ Y0, and for
x ∈ X , y ∈ Y0 the conditional probability Pr{Xi = x, Yi = y|S0, S1, Z = 0} =
Pr{Xi = x, Yi = y|G,B} is equal to

Pr{Xi = x, Yi = y|i ∈ G} =
Pr{Xi = x, Yi = y, i ∈ G}

Pr{i ∈ G} = P (x)W0(y|x) ;

here the second equality holds because, by the construction of G, the probability
in the numerator is equal to P (x)W (y|x) if p ≥ 1/2 and to P (x)W (y|x) p

1−p if

p < 1/2, where W (y|x) = (1 − p)W0(y|x) by (8), while the probability in the
denominator equals min(p, 1 − p). For i ∈ S1 the calculation is similar. In the
case Z = 1 the roles of S0 and S1 are simply reversed.

The proof of the first assertion of Theorem 4 will be completed by showing
that, for any r < min(p, 1− p), if Alice’s strings K0,K1 have length

k = rn(I(P,W0)− I(P,W1)− δ)

then she, knowing S0, S1, can send Bob a message that enables him to recover
KZ while keeping him ignorant of KZ .

Apply the first assertion of Proposition 1 with rn in the role of n, taking
{P (x)W0(y|x), x ∈ X , y ∈ Y0} resp. {P (x)W1(y|x), x ∈ X , y ∈ Y1} for the joint
distribution of X,Y resp. X,T . Let f and κ denote the corresponding functions
on X rn where the range of κ is {0, 1}k with the above k, see (18). Supposing

|S0| ≥ rn, |S1| ≥ rn , (21)
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denote by S′
0 and S′

1 the sets of the first rn elements of S0 resp. S1. Let Alice
compute fj = f({Xi, i ∈ S′

j}) and κj = κ({Xi, i ∈ S′
j}), j = 0, 1, and send Bob

a message consisting of f0, f1 and the “cryptograms” K0 + κ0,K1 + κ1; if (21)
does not hold then she sends nothing.

Consider first the case Z = 0. Then, conditioned on Z and S0, S1 satisfy-
ing (21), the pairs (Xi, Yi), i ∈ S′

0 are conditionally i.i.d. with distribution
P (x)W0(y|x). Hence, due to the choice of the mappings f and κ, Bob can recover
κ0 from f0 and {Xi, i ∈ S′

0} with exponentially small (conditional) probability of
error, enabling him to recoverK0. As this always holds when (21) does, the prob-
ability of error in recovering K0 conditioned only on Z = 0 is also exponentially
small. Further, the pairs (Xi, Yi), i ∈ S′

1 are conditionally i.i.d. with distribution
P (x)W1(y|x). Hence the choice of κ and f implies that f1 and {Yi, i ∈ S′

1} give a
negligible amount of information about κ1; in turn, since κ1 is nearly uniformly
distributed, Bob’s amount of information about K1 provided by f1, {Yi, i ∈ S′

1}
and K1 + κ1 is also negligible: I(K1 ∧ f1,K1 + κ1, {Yi, i ∈ S′

1}|S0, S1, Z = 0)
is exponentially small. To formally verify that the last conditional mutual in-
formation coincides with that in the first condition in (4), assuming the RV N
has been generated and used by Bob as in the proof of Theorem 2, note that
the total communication is now F = (S0, S1, f0,K0 + κ0, f1,K1 + κ1), and K1

is independent of (N,S0, S1, Z). Hence

I(NY nF ∧K1|Z = 0) = I(Y n, f0,K0 + κ0, f1,K1 + κ1 ∧K1|N,S0, S1, Z = 0) .

Here, N in the condition may be omitted. It remains to show that

I({Yi, i /∈ S′
0}, f0,K0 + κ0 ∧K1|S0, S1, f1,K1 + κ1, Z = 0) = 0 .

This follows because (Xi, Yi), i = 1, . . . , n are conditionally independent given
S0, S1, Z = 0, and fj and κj are functions of Kj and {(Xi, Yi), i ∈ S′

j}, j = 0, 1.
In the case Z = 1 it follows similarly that Bob can recover K1 and he remains

ignorant of K0. This completes the proof of the first assertion of Theorem 4.
The second assertion follows in the same way, applying this time the second

assertion of Proposition 1. The third assertion follows from the second one as
noted in the passage following Theorem 4.

Remark 7. Another suitable protocol is obtained by modifying the choice of the
sets G and B as follows. According as p ≥ 1/2 or p < 1/2, let G resp. B
contain all indices i with Yi in Y0 resp. in Y1 as before, and let the other indices
i be assigned to G or B with probabilities (π, 1 − π). Here π is chosen to make
sure that Pr{i ∈ G} = Pr{i ∈ B} = 1/2, thus π equals 1 − 1/2p if p ≥ 1/2
and 1/2(1 − p) if p < 1/2. Consider first the case p ≥ 1/2. Then, by similar
calculation as in the proof of Theorem 4,

Pr{Xi = x, Yi = y|i ∈ G} =

{
2(1− p)P (x)W0(y|x), x ∈ X , y ∈ Y0

(2p− 1)P (x)W1(y|x), x ∈ X , y ∈ Y1 ,

Pr{Xi = x, Yi = y|i ∈ B} = P (x)W1(y|x), x ∈ X , y ∈ Y1 .



158 R. Ahlswede and I. Csiszár

It follows, in turn, that the conditional mutual information I(Xi ∧ Yi|G,B) is
equal to 2(1 − p)I(P,W0) + (2p − 1)I(P,W1) if i ∈ G (using Lemma 7) and
to I(P,W1) if i ∈ B. This implies via Proposition 1, again as in the proof of
Theorem 4, that with this modified protocol one can achieve OT rate

1/2 [2(1− p)I(P,W0) + (2p− 1)I(P,W1)− I(P,W1)] ,

the same as with the original protocol. In the case p < 1/2 the situation is
similar. It follows similarly that OT rates in the second assertion of Theorem 4
can also be achieved with protocols in which G and B are selected as above.

To the proof of Theorem 5 a simple fact is sent forward.

Lemma 2. If a DMC {W ′} is obtained from {W : X → Y} by restricting the
input alphabet X to a subset X ′ then COT(W

′) ≤ COT(W ).

The proof is obvious but depends on the “honest but curious” assumption. Were
Alice allowed to deviate from the agreed-upon protocol, a larger input alphabet
would give her more room for deviations undetectable for Bob and letting her
gain information about Bob’s bit Z; this might decrease OT capacity.

Proof of Theorem 5. (i) Necessity. Given a DMC {W : X → Y} , let X ′ be
a maximal subset of X such that the rows of the matrix W corresponding to
input symbols x′ ∈ X ′ are all distinct; let W ′ be the matrix that has these
distinct rows. Clearly COT(W ) = COT(W

′). If COT(W ) > 0 then COT(W
′) > 0

implies by Theorem 1 that the outputs of W ′ do not unambiguously determine
the inputs. In other words, for some y ∈ Y there exist x′ and x′′ in X ′ such
that W (y|x′)W (y|x′′) > 0; this proves necessity for channel models. For source
models the proof is similar, this time using that COT(P,W ) = COT(P

′,W ′)
where P ′(x′), x′ ∈ X ′ equals the sum of P (x) for all x ∈ X such that the rows
of W corresponding to x and x′ are equal.

(ii) Sufficiency. Let {W} be a DMC satisfying the conditions in Theorem 5.

Consider an auxiliary DMC {W̃}, restricting the input alphabet X × X of W 2

(see Remark 2) to the pairs (x′, x′′), (x′′, x′), where x′, x′′ as in Theorem 5 are

fixed. Formally, {W̃ : ((x′, x′′), (x′′, x′)) → Y × Y} is defined by

W̃ (y1, y2|x′, x′′) = W (y1|x′)W (y2|x′′), W̃ (y1, y2|x′′, x′) = W (y1|x′′)W (y2|x′).
(22)

This auxiliary DMC is a GEC, the role of Y1 in Definition 2 being played by the
subset {(y, y) : y ∈ Y} of Y × Y; hence Theorem 3 implies COT(W̃ ) > 0. On
account of Lemma 2, this proves the positivity of COT(W ) = 1

2COT(W
2).

Consider next a source model defined by a DMMS with generic RVs X,Y
whose joint distribution PXY (x, y) = P (x)W (y|x) satisfies the condition in The-
orem 5. Fixing x′, x′′ as there, for 2n i.i.d. repetitions of X , viz. X2n =
(X1, . . . , X2n) let J denote the set of indices i ∈ {1, . . . , n} for which (X2i−1, X2i)
equals either (x′, x′′) or (x′′, x′). The tuples {(X2i−1, X2i), (Y2i−1, Y2i), i ∈ J}
are conditionally i.i.d. given J , their (conditional) distribution is equal to PX̃Ỹ
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where PX̃ is the uniform distribution on {(x′, x′′), (x′′, x′)} and PỸ |X̃ equals W̃

in (22). Consider an auxiliary DMMS with generic RVs X̃, Ỹ as above. Since
Pr{i ∈ J} = 2P (x′)P (x′′), the size of J exceeds � = nP (x′)P (x′′) with prob-
ability approaching 1 exponentially fast as n → ∞. It follows that each (�, k)
protocol for the auxiliary DMMS gives rise to a (2n, k) protocol for the orig-
inal one: Alice tells Bob the set J in her first message, then Alice and Bob
perform the given (�, k) protocol using only the first � = nP (x′)P (x′′) tuples
(X2i−1, X2i), (Y2i−1, Y2i) with i ∈ J . Since the auxiliary DMMS has positive
OT capacity by Theorem 3, this completes the proof of Theorem 5.

5 Examples

Example 1 (Binary symmetric channel). A DMC {W : {0, 1} → {0, 1}}
is a binary symmetric channel (BSC) with crossover probability p �= 1/2 if
W (1|0) = W (0|1) = p. To obtain a lower bound to its OT capacity, consider as

in the proof of Theorem 5 an auxiliary channel {W̃ : {(0, 1), (1, 0)} → {0, 1}2},
see (22) with x′ = 0, x′′ = 1, i.e.,

W̃ (0, 1| 0, 1) = W̃ (1, 0|1, 0) = (1− p)2, W̃ (1, 0|0, 1) = W̃ (0, 1| 1, 0) = p2,

W̃ (0, 0| 0, 1) = W̃ (1, 1|0, 1) = W̃ (0, 0|1, 0) = W̃ (1, 1|1, 0) = p(1− p).

This {W̃} is a GEC with erasure probability p̃ = 2p(1 − p) < 1/2. The role of
the set Y1 in Definition 2 is played by {(0, 0), (1, 1)}, and that of {W0} in (8) is

played by a channel {W̃0} with input and output alphabets equal to {(0, 1), (1, 0)}
which is a BSC with crossover probability p2

1−p̃ = p2

p2+(1−p)2 .

By Theorem 3 and (17), COT(W̃ ) ≥ p̃
1−p̃C(W̃ ) = p̃C(W̃0). Finally, since

Lemma 2 implies COT(W̃ ) ≤ COT(W
2) = 2COT(W ), we obtain

COT(W ) ≥ 1

2
COT(W̃ ) ≥ 1

2
p̃C(W̃0) = p(1− p)

[
1− h

(
p2

p2 + (1 − p)2

)]
.

Example 2 (Z channel). A Z channel is a DMC {W : {0, 1} → {0, 1}} with
W (0|0) = 1, W (0|1) = p, W (1|1) = 1−p. To bound its OT capacity from below,

consider an auxiliary channel {W̃ : {(0, 1), (1, 0)} → {0, 1}2} as in Example 1,
where this time

W̃ (0, 1|0, 1) = W̃ (1, 0|1, 0) = 1− p, W̃ (1, 1|0, 1) = W̃ (1, 1|1, 0) = p,

and the other entries of the matrix W̃ are 0. This auxiliary channel is a BEC
with erasure probability p, hence COT(W̃ ) = min(p, 1 − p) by Theorem 2. It
follows that

COT(W ) ≥ 1

2
COT(W̃ ) =

1

2
min(p, 1− p) .
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Example 3. The DMC {W : {0, 1, 2} → {0, 1}} with

W (0|0) = W (1|1) = 1, W (0|2) = p, W (1|2) = 1− p

is, in a sense, a reversed BEC. By Lemma 2, its OT capacity is not smaller than
that of the Z channel in Example 2, hence COT(W ) ≥ 1

2 min(p, 1−p). Note that
while this channel satisfies the condition for COT(W ) > 0 in Theorem 5, it fails
to satisfy the stronger condition mentioned in Remark 4. Recall that in the proof
of Theorem 5 we have used the fact that the OT capacity of a DMC {W} is not
changed by a reduction of the input alphabet that keeps only the distinct rows of
W . In [11,12] the same is claimed for a further reduction that removes also those
rows of W which are convex combinations of others, but that claim is valid only
in a “malicious” setting. In the “honest but curious” setting the above DMC
is a counterexample, it has positive OT capacity but if the input symbol 2 were
removed, the OT capacity would become 0.

The lower bounds to OT capacity in the above examples are smaller than the
upper bound in Theorem 1, and the exact value of OT capacity remains an open
problem. The next example shows that the upper bound in Theorem 1 may be
tight even if the channel is not a GEC. The authors have found this example
unaware of the work of Wolf and Wullschleger [16] in which the channel below
plays a key role and, in particular, another simple (1, 1) protocol for perfect OT
of 1 bit is given.

Example 4. For X = Y = {0, 1, 2, 3}, let {W : X → Y} be a channel with
additive noise such that the RVs X,Y are connected by it if Y = X +N (mod 4)
for a RV N uniformly distributed on {0, 1}, independent of X. Theorem 1 gives
COT(W ) ≤ 1, and COT(P,W ) ≤ 1 if P is the uniform distribution on X . These
upper bounds are tight; indeed, the next (1, 1) protocol achieves perfect OT for
the source model with generic RVs X,Y as above and X uniformly distributed
on X . Now, Alice has two bits K0, K1, Bob one bit Z, independent of each other
and (X,Y ), and uniformly distributed; Alice observes X and Bob Y . First, let
Bob tell Alice the parity of Y +Z, sending her φ = 0 or φ = 1 according as Y +Z
is even or odd; this gives Alice no information about Z. Then Alice reports Bob
the mod2 sums K0 + iφ(X) and K1+ i1−φ(X) where i0 and i1 are the indicator
functions of the sets {1, 2} resp. {2, 3}. Note that Bob knowing Y also knows
either the bit i0(X) (if Y is even) or i1(X) (if Y is odd), but he is fully ignorant
of the other bit, in both cases. It follows that Bob can unambiguously determine
KZ but remains fully ignorant of KZ .

6 Discussion

Oblivious transfer has been approached from an information theoretic point
of view, addressing OT capacity for (discrete memoryless) source and channel
models, concentrating on 1 of 2 strings OT.

A general upper bound to OT capacity has been derived, with essential use
of inequalities for information measures, see Appendix A. Let us call attention
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to an improved bound on the difference of conditional entropies via variation
distance (Lemma 5), included for its own sake, though a weaker previous bound
would also suffice. A remarkable feature of our upper bound to OT capacity is its
validity for one-string OT, as well. It remains open whether this is a coincidence
caused by the weakness of our method, or perhaps the rate of one-string OT can
never exceed the optimal rate of 1 of 2 strings OT.

Our achievability results (lower bounds to OT capacity) rely on rather sim-
ple protocols, still they shed light on relationships of OT and other problems
of information theoretic security, such as secret key agreement using public dis-
cussion [10,1] and secure transmission over insecure channels [17,5]. It remains
open whether the OT capacity of channel models can always be attained via
source model emulating protocols, as in those cases when we were able to deter-
mine OT capacity. These cases are the binary erasure channels with any erasure
probability p, and generalized erasure channels (introduced here) with p ≥ 1/2.
An additional such channel appears in Example 4; it remains open whether this
is exceptional, or perhaps a member of another “good” class.

Throughout this paper, only models with “honest but curious” participants
are studied. Still, let us briefly address some issues arising in “malicious” set-
tings. In case of a BEC or GEC, with agreed-upon protocol as in the proofs of
Theorems 2 and 3, a malicious Alice has no opportunity to learn about Bobs
bit Z if he follows the protocol. In Examples 1-2, however, a malicious Alice
can well gain information about Z if she deviates from using DMC input pairs
(0, 1) and (1, 0) only. In Example 3, the malicious model admits no OT at all,
see [11,12]. Indeed, Eve may send instead of DMC input 2 always 0 or 1, with
probabilities (p, 1 − p); this cheating is undetectable to Bob, and reduces any
protocol, in effect, to one for a noiseless channel.

Even the BEC and GEC models are vulnerable to cheating by Bob, who
may gain illegitimate information by deviating from the agreed-upon protocol,
maliciously selecting the set B. Suppose p ≤ 1/2, when the protocol requires
Bob to take for B the set of indices i with Yi = 2 (or Yi ∈ Y1). He may instead
chose B as follows, not modifying the choice of G. If p ≤ 1/3, he may take B to
consist only of indices with Yi �= 2 (or Yi ∈ Y0), assigning each such index with
the same probability p/(1− p) to B as to G. If 1/3 < p < 1/2, Bob may assign
to B all indices with Yi �= 2 (or Yi ∈ Y0) not assigned to G, and assign to B the
remaining indices with probability (3p− 1)/p. If Bob uses this fake B in giving
Alice the sets S0, S1, she has no way to detect cheating; in case p ≤ 1/3 Bob will
learn both of Alice’s strings, and also when 1/3 < p < 1/2, he will get nonzero
information about KZ , in addition to learning KZ .

Note, however, that if p = 1/2 then the sets G and B provided by the agreed-
upon protocol are complements of each other, thus no deviation in selecting B is
possible without one in selecting G. This amounts to a kind of limited protection
against Bob’s cheating: while a malicious Bob can still gain information about
both of Alice’s strings, to do so he has to give up his goal of fully learningKZ (the
situation is similar if p > 1/2). Recall that protocols as in the proof of Theorem
4 can always be modified to protocols of equal power that use complementary



162 R. Ahlswede and I. Csiszár

sets G and B, see Remark 7. It is plausible that for a BEC or GEC, modified
protocols of this kind provide limited protection as above against Bob’s cheating
also when p < 1/2.

This issue is not pursued here any further, since by a recent result of Pinto
et al. [13] the OT capacity of a GEC, determined in this paper, is actually
achievable also in the “malicious” model. Another recent work, Ishai et al. [8],
regarded Alice’s pair of strings (K0,K1) as a sequence of k pairs (K0i,K1i), i =
1, . . . , k. Bob selects one component of each pair he wants to learn, this selection
is specified by a k-bit string Z = Z1, . . . , Zk. Then an (n, k) protocol is supposed
to let Bob learn KZ11, . . . ,KZkk and keep him ignorant of KZ11

, . . . ,KZkk
, while

Eve remains ignorant of Z. Ishai et al. show that this goal is achievable with k/n
bounded away from 0, see [8] for details. Finally, the reader’s attention is called
to recent works that address more general problems via similar techniques, and
also contain results relevant for OT capacity, as pointed out by an anonymous
referee. See Prabhakaran and Prabhakaran [14] and references there.
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Appendix A

Let U, V, Z denote RVs with values in finite sets U ,V ,Z. Suppose z1, z2 ∈ Z
with Pr{Z = z1} = p > 0, Pr{Z = z2} = q > 0.

Lemma 3

|H(U |V, Z = z1)−H(U |V, Z = z2)| ≤ 3

√
(p+ q) ln 2

2pq
I(UV ∧ Z) log |U|+ 1 .

Remark 8. It will be clear from the proof that the constant term +1 could be
replaced by a term that goes to 0 as I(UV ∧ Z) does, which may be relevant for
some purposes but not here.

The proof of Lemma 3 will rely on two auxiliary lemmas. The variation distance
of probability distributions P and Q on the same finite set, say S, is

|P −Q| =
∑

s∈S
|P (s)−Q(s)| .

Lemma 4. The variation distance of the conditional distributions of U on the
conditions Z = z1 resp. Z = z2 is bounded as

∣∣PU|Z=z1 − PU|Z=z2

∣∣ ≤
√

2(p+ q) ln 2

pq
I(U ∧ Z) .

Proof.

I(U ∧ Z) =
∑

z∈Z
Pr{Z = z}D(PU|Z=z‖PU )

≥ pD(PU|Z=z1‖PU ) + qD(PU|Z=z2‖PU )

≥ p|PU|Z=z1 − PU |2
2 ln 2

+
q|PU|Z=z2 − PU |2

2 ln 2
;

the last step is by Pinsker inequality. Since

|PU|Z=z1 − PU |+ |PU|Z=z2 − PU | ≥ |PU|Z=z1 − PU|Z=z2 | ,

it follows by the easily checked inequality pa2+ qb2 ≥ pq
p+q (a+ b)2 that I(U ∧Z)

is further bounded below by

pq

2(p+ q) ln 2
|PU|Z=z1 − PU|Z=z2 |2 .
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Lemma 5. For RVs U1, U2 with values in U , and V1, V2 with values in V,

|H(U1|V1)−H(U2|V2)| ≤
[
1

2
|PU1V1 − PU2V2 |+ |PV1 − PV2 |

]
log |U|

+h

(
1

2
min [1, |PU1V1 − PU2V2 |+ |PV1 − PV2 |]

)

≤ 3

2
|PU1V1 − PU2V2 | log |U|+ h

(
min

[
1

2
, |PU1V1 − PU2V2 |

])
,

where h(t) = −t log t− (1 − t) log(1− t), 0 ≤ t ≤ 1.

Remark 9. The main feature of this lemma, for our purposes, is that it does
not involve the cardinality of V, only that of U . A previous bound of this kind
to the difference of conditional entropies, due to Alicki and Fannes [3], would
also suffice for the proof of Theorem 1. but we preferred to sharpen it to obtain
Lemma 3 in the stated form.

Proof. The following bound for the entropy difference of two distributions on U
will be used:

|H(P )−H(Q)| ≤ 1

2
|P −Q| log |U|+ h

(
1

2
|P −Q|

)
. (23)

This sharpening of a more familiar weaker bound is rather recent [4,18]. Let us
recall its simple proof: Let X and Y be RVs with PX = P , PY = Q such that
Pr{X �= Y } is smallest possible subject to these conditions, thus Pr{X �= Y } =
1
2 |P − Q|. Then, as H(P ) − H(Q) ≤ H(X |Y ) and H(Q) − H(P ) ≤ H(Y |X),
(23) follows from Fano’s inequality.

Now,

H(U1|V1)−H(U2|V2) =
∑

v∈V

[
PV1(v)H(PU1|V1=v)− PV2(v)H(PU2|V2=v)

]

≤
∑

v∈V
PV1(v)

[
H(PU1|V1=v)−H(PU2|V2=v)

]

+
∑

v:PV1 (v)>PV2 (v)

[PV1(v) − PV2(v)]H(PU2|V2=v) .

Bounding the first sum via (23), and the entropies in the second sum by log |U|,
this can be continued as

≤ 1

2

∑

v∈V
PV1(v)|PU1|V1=v − PU2|V2=v| log |U|

+
∑

v∈V
PV1(v)h

(
1

2
|PU1|V1=v − PU2|V2=v|

)
+

1

2
|PV1 − PV2 | log |U| .
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Let U3 be an auxiliary RV such that PU3V1(u, v) = PV1(v)PU2|V2=v(u). Then

∑

v∈V
PV1(v)|PU1|V1=v − PU2|V2=v| = |PU1V1 − PU3V1 |

≤ |PU1V1 − PU2V2 |+ |PU3V1 − PU2V2 |
= |PU1V1 − PU2V2 |+ |PV1 − PV2 | ≤ 2|PU1V1 − PU2V2 | .

Using this, and that the concave function h(t) is increasing in [0, 1/2], and not-
ing that the above arguments hold also with the roles of (U1, V1) and (U2, V2)
interchanged, Lemma 5 follows.

Proof of Lemma 3. Apply Lemma 5 to RVs U1, V1 with joint distribution PU1V1 =
PUV |Z=z1 and U2, V2 with PU2V2 = PUV |Z=z2 , replacing the h() term by its upper
bound 1. This gives

|H(U |V, Z = z1)−H(U |V, Z = z2)| ≤ 3

2
|PUV |Z=z1 − PUV |Z=z2 | log |U|+ 1 .

Combining this with Lemma 4 completes the proof of Lemma 3.

Appendix B

Lemma 6. With the notation in the proof of Theorem 1,

I(K0M ∧NY nZ|XnF) = 0 .

Proof. Recall that F = Fn where F t denotes the total public communication in
the first t sessions. For each 1 ≤ t ≤ n we have

I(K0M ∧NY tZ|XtF t) ≤ I(K0M ∧NY tZ|XtF t−1)

= I(K0M ∧NY t−1Z|XtF t−1) ≤ I(K0MXt ∧NY t−1Z|Xt−1F t−1)

= I(K0M ∧NY t−1Z|Xt−1F t−1) .

Here the first inequality holds by [6, Lemma 17.18] (or previous similar results
in [10,1]), the next equality holds because I(K0M ∧ Yt|XtF t−1NY t−1Z) = 0
due to the conditional independence of Yt given Xt from the other RVs, and the
last equality holds since Xt is a function of K0,M and F t−1. The lemma follows
since I(K0M ∧NY t−1Z|Xt−1F t−1) = 0 trivially holds for t = 1.

Lemma 7. For {W : X → Y0 ∪ Y1} as in (8), the identity

I(P,W ) = (1− p)I(p,W0) + pI(P,W1)

holds for each input distribution P .
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Proof. LetX and Y have joint distribution P (x)W (y|x). Define T = j if Y ∈ Yj ,
j = 0, 1, then PT = (1 − p, p) and T is independent of X . The claimed identity
follows since

I(P,W ) = I(X ∧ Y ) = I(X ∧ Y T ) = I(X ∧ Y |T ),

and for each x ∈ X and y ∈ Yj , j = 0, 1,

Pr{X = x, Y = y|T = j} =
Pr{X = x, Y = y}

Pr{T = j} = P (x)Wj(y|x) .
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