
Randomized Post-optimization

for t-Restrictions

Charles J. Colbourn and Peyman Nayeri

School of Computing, Informatics, and Decision Systems Engineering Arizona State
University P.O. Box 878809, Tempe, Arizona 85287-8809

{colbourn,nayeri}@asu.edu

Dedicated to the memory of Rudolf Ahlswede

Abstract. Search, test, and measurement problems in sparse domains
often require the construction of arrays in which every t or fewer columns
satisfy a simply stated combinatorial condition. Such t-restriction prob-
lems often ask for the construction of an array satisfying the t-restriction
while having as few rows as possible. Combinatorial, algebraic, and
probabilistic methods have been brought to bear for specific t-restriction
problems; yet in most cases they do not succeed in constructing arrays
with a number of rows near the minimum, at least when the number of
columns is small. To address this, an algorithmic method is proposed
that, given an array satisfying a t-restriction, attempts to improve the
array by removing rows. The key idea is to determine the necessity of the
entry in each cell of the array in meeting the t-restriction, and repeat-
edly replacing unnecessary entries, with the goal of producing an entire
row of unnecessary entries. Such a row can then be deleted, improving
the array, and the process can be iterated. For certain t-restrictions, it is
shown that by determining conflict graphs, entries that are necessary can
nonetheless be changed without violating the t-restriction. This permits
a richer set of ways to improve the arrays. The efficacy of these methods
is demonstrated via computational results.

Keywords: covering array, hash family, frameproof code, disjunct
matrix.

1 Introduction

In combinatorial search, testing, and measurement problems, numerous problems
of the following type arise. An N×k array is defined. Let Δ be a finite alphabet
not containing �. For 1 ≤ i ≤ N , there is a finite alphabet Σi ⊆ Δ for which
the ith row contains only symbols in Σi ∪ {�}. (When Σ1 = · · · = ΣN = Σ,
the array is homogeneous, otherwise it is heterogeneous.) For 1 ≤ j ≤ k, there
is a finite alphabet Δj not containing � for which the jth column contains only
symbols in Δj∪{�}. (When Δ1 = · · · = Δk = Δ, the array is uniform, otherwise
it is nonuniform.) Without loss of generality, Σi ⊆ ∪k

j=1Δj and Δj ⊆ ∪N
i=1Σi.

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 597–608, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

598 C.J. Colbourn and P. Nayeri

If for some i, j with 1 ≤ i ≤ N and 1 ≤ j ≤ k, we have Σi ∩Δj = ∅, the (i, j)
cell is permitted only to contain �.

Within this framework, one considers restrictions on what must appear in
some row within every subset of t columns. Such ‘restriction’ problems are
considered in [3], but we use a somewhat more general definition here.

Let t be an integer, called the strength. A t-restriction is a list (P1, . . . ,Pτ) of
subsets ofΔt, called demands [3]. For every selection S = (i1, . . . , it) of t distinct
column indices, the set of possible t-tuples that could arise is Δi1 × · · · ×Δit .
Then the N × k array A = (aij) satisfies the t-restriction (P1, . . . ,Pτ) if and
only if for all t-tuples (x1, . . . , xt) of distinct column indices, and for 1 ≤ � ≤ τ ,
for each P� with P� ∩ (Δx1 × · · · ×Δxt) �= ∅, there exists an r with 1 ≤ r ≤ N
for which (ar,x1 , . . . , ar,xt) ∈ P�. The generality of the definition arises from the
flexibility in specifying t-restrictions.

We enumerate a few well-studied examples.

Disjunct Matrix [10]: The demand is {(δ1, . . . , δt) ∈ {0, 1}t : δ1 = · · · =
δt−1 = 0, δt = 1};

Frameproof Code [15]: The demand is {(δ1, . . . , δt) ∈ {0, 1}t : δ1 = · · · =
δt−1, δt �= δ1};

Covering Array [6]: Demands are all members of Δt;

Perfect Hash Family, PHF [18]: The demand is {(δ1, . . . , δt) ∈ Δt : δi �=
δj for i �= j};

For covering arrays, requiring only a subset S ⊆ Δt to be covered yields S-
quilting arrays [8]. For disjunct matrices (equivalently, superimposed codes or
cover-free families), numerous t-restriction problems arise in search theory [1,2].
For hash families when the t columns to be separated are partitioned into � classes
C1, . . . , C� of sizes w1, . . . , w� (with t =

∑�
i=1 wi) and we only require δi �= δj

when i and j are in different classes, we obtain a {w1, . . . , w�}-separating hash
family, {w1, . . . , w�}-SHF [12,16]. When on the t columns, the number of distinct
symbols that arise is at most m, we have m-strengthening hash families [7]. A
hash family that is {w1, . . . , ws}-separating for all {w1, . . . , ws} with

∑s
i=1 wi = t

is a (t, s)-distributing hash family, (t, s)-DHF [5]. An s-strengthening (t, s)-DHF
is a (t, s)-partitioning hash family, (t, s)-PaHF [5].

These examples only scratch the surface. Numerous problems in combinato-
rial search and group testing [2,10] and in combinatorial cryptography [3,15] fall
into this framework. Evidently, treating each such problem individually is prob-
lematic, and one wants general techniques to address the construction of arrays
for t-restrictions. One general technique, explored in many of these contexts, is
a recursive method using column replacement via hash families (e.g., [6]). But
these techniques rely on knowing solutions for few columns to produce solutions
for many.

Simple greedy or random algorithms produce solutions, but they cannot be
expected to minimize the number of rows. We propose a general technique here
to “post-optimize” an array, reducing its number of rows. We demonstrate that
the reduction obtained is worthwhile, and sometimes dramatic.

Randomized Post-optimization for t-Restrictions 599

2 Post-optimization

In [14], an heuristic method for reducing the number of rows in a covering array
is developed. It relies on the fact that certain entries of the array may not be
needed to ensure coverage. Such entries can be changed arbitrarily, with the
result that other entries that were previously required, are no longer needed.
The method exploits this to produce entire rows that are not needed. These can
be deleted, improving the size of the array, and the process can be repeated.
For covering arrays, the method has surprising success, and therefore we wish to
apply the technique more generally. Here we develop it for general t-restriction
problems.

2.1 Necessity Analysis

Consider an N × k array A on symbol set Δ ∪ {�} that meets the t-restriction
(P1, . . . ,Pτ). Evidently if A contains a row that consists entirely of � symbols,
this row is not used to meet any of the requirements, and can be removed. The
primary objective of our method is repeatedly to produce such an all-� row for
removal. To do this, we consider the necessity of each entry.

When one of the demands is met for columns (x1, . . . , xt) for a single row
of the array, the t entries in these columns in this row are strictly necessary to
meet the demand. One might hope that all entries of the array not determined
to be necessary in this way can be changed to �, since they are not “needed”.
However once one is changed to �, further entries may now become necessary.
Indeed determining the maximum number of entries that can be simultaneously
changed to � is NP-hard [14].

We therefore adopt a more useful notion of necessity. Let ρ be a permutation
of {1, . . . , N}, the row indices. For each demand and each tuple of t columns,
there is a first row (under ρ) in which this demand is met; the entries in the
t columns of this row are necessary. A single scan of the array now suffices
to determine all necessary entries. All others are unnecessary, and all can be
changed to � while ensuring that all demands are still met.

In determining necessity in this way, every demand must be checked in each
t-tuple of columns. This can often be accomplished by considering only a subset
of the t-tuples, as follows: Let π be a permutation of {1, . . . , t}. If there are two
demands Pa and Pb so that Pb = {(νπ1 , . . . , νπt) : (ν1, . . . , νt) ∈ Pa}, then we
can either (1) not check demand Pb if demand Pa is checked, or (2) not check
the t-tuple (xπ1 , . . . , xπt) of columns if (x1, . . . , xt) is checked. In practice this
reduces the effort to determine necessity for most cases of interest.

2.2 Generic Post-optimization

We may be very lucky, and find that after marking unnecessary entries, we have
an entire row of � entries. But this should not be expected. Following ideas
from the special case of covering arrays [14], we employ two observations. Let A
be an N × k array that satisfies the t-restriction (P1, . . . ,Pτ). First, reordering

600 C.J. Colbourn and P. Nayeri

the rows of A results in an array that still satisfies the t-restriction (provided,
of course, that the specifications of the row alphabets are permuted in the same
manner as are the rows). And secondly, an entry of � in row r and column c can
be replaced by any symbol in Σr ∩Δc, and the resulting array still satisfies the
t-restriction.

input : t-restriction with demands P1, . . . ,Pτ ,
N × k array A satisfying the t-restriction,
ITERATION LIMIT – number of iterations to be performed,
LOCAL LIMIT – number of iterations allowed with no row removal

output: M × k array C satisfying the t-restriction with M ≤ N

ρ ←− identity C ←− A noImprovementCounter ←− 0
maxUnnecessaryElements←− 0 for i← 1 ITERATION LIMIT do

Locate necessary and unnecessary entries in C using row order ρ Change all
unnecessary entries to � currentMax←− maximum number of �s in a row of
C if currentMax > maxUnnecessaryElements then

maxUnnecessaryElements ←− currentMax
noImprovementCounter←− 0

else
add 1 to noImprovementCounter

endif
if C contains any rows consisting entirely of �s then

Remove all such rows from C, adjusting N and
ρ maxUnnecessaryElements←− 0 Nominate a row of array C and adjust
ρ to make this row the last

endif
for every � at position (r, c) in C with r �= ρ(N) do

if C(ρ(N), c) ∈ Δc ∩Σr then
C(r, c)←− C(ρ(N), c)

else
C(r, c)←− random value in Δc ∩Σr

endif
endfor
if noImprovementCounter ≥ LOCAL LIMIT then

Choose permutation ρ of {1, . . . , N} at random
noImprovementCounter←− 0

else
Choose ρ at random, without changing ρ(N)

endif
endfor

Algorithm 1. A generic post-optimization algorithm for k-restriction problems

These form the basis of a remarkably simple algorithm for post-optimization.
We repeatedly change � entries to entries in Δ, implicitly reorder the rows of
the array, mark unnecessary entries, and delete any rows that now contain only
�. A more precise version is shown in Figure 1.

Randomized Post-optimization for t-Restrictions 601

Because progress occurs when a row is eliminated, a worthwhile intermediate
goal is to attempt to make a row with as many � entries as we can. However,
row reordering could result in a row with many � entries having none in the
next iteration. Therefore the algorithm nominates one row, retained at the end
of the row order, in which it repeatedly attempts to increase the number of �s.
By so doing, the method may become trapped in a local optimum, where no
further � entries are formed in the nominated row. For this reason, a means to
escape such local optima by requiring progress is included; when progress has
apparently stalled, a complete row reordering is done, resulting in a new row
becoming nominated.

We report computational results for Algorithm 1 in §4. Prior to doing so, we
examine an interesting variant of the method.

3 Post-optimization with Conflict Graphs

In Algorithm 1, every entry is deemed to be either necessary or unnecessary.
Consider the first 3× 5 array on Δ = {0, 1, 2} in Figure 1; this array is a {1, 2}-
SHF . Every entry is strictly necessary. But the entry in the (3,4) position can
nonetheless be changed, from 1 to 0, forming a second array that also satisfies
the demand.

2 1 1 0 1
0 2 1 1 0
1 1 2 1 0

2 1 1 0 1
0 2 1 1 0
1 1 2 0 0

Fig. 1. {1, 2}-SHFs

Once changed, there is a possibility that an unnecessary entry appears, and
progress can be made. Next we explore transformations that permit the re-
placement of entries while still satisfying the t-restriction, for a certain type of
t-restriction.

3.1 Conflict Graphs

A demand P� is totally symmetric if, for every permutation π of the symbols
in Δ, (π(δ1), . . . , π(δt)) ∈ P� if and only if (δ1, . . . , δt) ∈ P�. We consider now
only those t-restrictions with totally symmetric demands P1, . . . ,Pτ . When the
demands are all totally symmetric, the symbols within any row can be permuted
arbitrarily while still satisfying the t-restriction. A new row produced in this
manner handles neither more nor fewer of the demands. We are interested in
modifying the row to handle all of the demands that it currently does, but
possibly to handle more. To do this, we develop conflict graphs, focussing on
SHFs. Roughly speaking, edges indicate a requirement for columns to contain
different symbols; we make this precise now.

602 C.J. Colbourn and P. Nayeri

Let A be an N × k array, a {w1, . . . , ws}-SHF with t =
∑s

i=1 wi. Let zj =
∑j

i=1 wi. Then the demand to be satisfied is {(δ1, . . . , δt) ∈ Δt : δa �= δb or zj <
a, b ≤ zj+1 for j ∈ {0, . . . , s−1}}. We construct a collection of graphsG1, . . . , GN ,
one for each row, as follows. Each Gi contains k vertices, representing the col-
umn indices {1, . . . , k}. As before, for every t-tuple of columns, we determine the
first row in which the demand is met. Suppose that the demand is first met for
columns (x1, . . . , xt) in row r. For row r to continue to meet this demand, it must
be the case that the symbols (σ1, . . . , σt) satisfy σa �= σb except possibly when
zj < a, b ≤ zj+1 for j ∈ {0, . . . , s − 1}. To represent this, we place an edge in
Gr between vertices xa and xb for all 1 ≤ a, b ≤ t, except when zj < a, b ≤
zj+1 for j ∈ {0, . . . , s− 1}. Once all t-tuples of columns are processed in this way,
the graphs G1, . . . , GN are the conflict graphs of array A for this demand. When
the t-restriction consists of multiple (separating) demands, each can be processed
in the sameway, possibly adding further edges to the conflict graphs; this results in
conflict graphs for the entire t-restriction. To connect with our earlier discussion,
when vertex c is isolated (is incident on no edges) in Gr, this is precisely the same
as saying that the (r, c) entry of A is unnecessary.

Interpret row r of A as a vertex colouring of Gr in |Σr| colours, where the
entry arc is treated as a colour of vertex c in Gr. This is a proper colouring.
More importantly, suppose that we form any proper colouring of Gr; this can be
interpreted as a row – and this row must meet all of the demands met for the first
by the original row. When the new colouring is not simply a permutation of the
original one, the new row may meet more demands than does the original! Each
conflict graph can be assigned a new proper colouring independently, producing
a new array of the same size satisfying the t-restriction. Thus, even when no
unnecessary entries arise, we can transform the array – and perhaps form un-
necessary entries. Extending the post-optimization process to incorporate these
recolouring transformations, while still nominating a row in which to maximize
the number of � entries, opens a further avenue to seek improvements. Before
pursuing this further, we consider a small extension.

As developed thus far, conflict graphs are suitable for SHFs with multiple sepa-
ration requirements, and therefore for PHFs and DHFs as well. For strengthening
and partitioning hash families, however, we encounter a difficulty. It is not the
case that any recolouring of the conflict graphs will serve. Indeed in these situ-
ations, the demand requires not only that a certain separation be accomplished,
but also that not too many symbols (colours) are used in the separation; just
recolouring the conflict graph properly does not ensure the latter. PaHFs ad-
mit an easy modification to the conflict graphs. When a demand is met in
columns (x1, . . . , xt) in row r, this demand can only be met if vertices xi and
xj receive different colours when arxi �= arxj , and receive the same colour when
arxi = arxj . Then in forming the conflict graphs, whenever we find that xi and
xj must receive the same colour in Gr, we identify (coalesce) xi and xj into a
single vertex, ensuring that they receive the same colour. (This can be effectively
implemented using the disjoint set forest method [9].) Any recolouring of the
(coalesced) conflict graphs continues to meet all demands.

Randomized Post-optimization for t-Restrictions 603

One could also accommodate more general strengthening requirements in this
approach, by adding vertices to the conflict graph to ensure that when a demand
is met, not too many different colours are assigned to the corresponding columns.
However, this appears to increase the size of the conflict graphs exponentially,
so we do not pursue it here. Instead we focus on SHFs and PaHFs.

3.2 Recolouring Conflict Graphs

Vertex colouring is NP-complete [11]. However, our interest is in finding a colour-
ing of a graph Gr in |Σr| colours, when Gr is known to be |Σr|-colourable. Sim-
ply permuting the colours changes nothing. We want a non-trivial recolouring,
a proper colouring that is not simply a permutation of the original. Unfortu-
nately, deciding the existence of a non-trivial recolouring is also NP-complete.
To see this, one can use the fact that deciding whether a 3-SAT formula has a
second satisfying assignment, given one satisfying assignment, is NP-complete
[19]. Then using the well-known reduction from 3-SAT to vertex colouring [11],
one finds that deciding the existence of a non-trivial vertex recolouring is also
NP-complete.

With this complexity in mind, we do not make a concerted effort to find
non-trivial recolourings for the conflict graphs. Rather we use a simple greedy
approach. For each Gr, collapse multiple edges (if present) and sort the vertices
in nonincreasing order by degree, breaking ties at random. Now process the
vertices in this order, assigning each in turn a colour chosen at random from
those not already assigned to one of its neighbours. If none is available for
some vertex, no colouring is produced. We repeat this process until either a
colouring is produced, or a limit on the number of attempts is reached. When a
colouring is found, its colours are interpreted as symbols to replace row r. When
no colouring is found, the row is left unchanged.

Adding this recolouring method to the generic post-optimization strategy pro-
duces a variant, recolouring post-optimization.

4 Computational Results

A specialization of generic post-optimization has been surprisingly successful at
improving covering arrays [13,14]. Here we focus on applications to hash families,
but remind the reader that there is a wide variety of t-restriction problems in
which the methods could be employed. We always treat homogeneous, uniform
hash families with N rows, k columns, v symbols, and a restriction of strength
t. C++ implementations of both generic and recolouring post-optimization were
tested using an 8-core Intel Xeon processor clocked at 2.66GHz with 4MB of
cache, bus speed 1.33GHz, and 16GB of memory. Testing proceeds by first gen-
erating an array one row at a time, choosing rows at random, until all demands
are met. Post-optimization is then applied to improve the solution, if possible.
Except when noted, post-optimization was executed for one minute on a single
core.

604 C.J. Colbourn and P. Nayeri

Perfect hash families have been very extensively studied (for example, [18]
and references therein). For strengths t ∈ {5, 6}, v = t, and k ≤ 25, generic
post-optimization of random arrays rarely produces arrays that are competitive
with the best known sizes; this should be expected, given the computational
effort invested [4,18]. What is surprising is that recolouring post-optimization
not only recreates many of the best known results, but constructs a 10×10 PHF
with t = v = 5, shown in Figure 2. This improves on the previous best known
13× 10 and 11× 9 PHFs [17].

We expect the most useful applications to arise for t-restriction problems
that have not been extensively researched before. In producing a {w1, . . . , ws}-
SHF, one could naturally use a PHF of strength t =

∑s
i=1 wi, provided that the

number of symbols is at least t. We therefore compare cases for {2, 2, 1}-, {4, 1}-
, and {3, 2}-SHFs, with the best known results for PHFs [17]. Table 1 gives a
selection of results from generic post-optimization. Columns headed by ‘G’ are
from generic post-optimization, those headed ‘I’ are sizes of the initial random
array, and the one headed ‘B’ is the best known result from [17].

Naturally as v is decreased, the number of rows generally increases, as one
would expect. Because of the randomness of post-optimization, it can happen
that a solution with fewer rows is found even when k is increased of v is decreased;

Table 1. Generic post-optimization for SHFs

{1, 1, 1, 1, 1} {2, 2, 1} {4, 1} {3, 2}
v → 5 5 5 5 5 4 4 3 3 5 4 3 2 5 4 3 2
k ↓ B G I G I G I G I G G G G G G G G

5 1 1 9 1 7 6 18 15 80 3 3 3 5 4 5 6 10
6 3 3 28 3 24 7 40 15 99 3 3 5 6 5 5 10 15
7 6 6 49 6 24 7 58 28 212 3 4 5 7 7 7 11 15
8 8 8 73 8 42 12 75 28 236 4 6 7 8 7 9 13 22
9 11 12 107 13 45 22 98 28 371 4 6 9 9 7 11 16 27
10 13 15 109 13 41 22 92 28 417 5 7 9 10 8 11 18 31
11 16 20 125 17 55 33 118 75 338 7 7 12 20 12 14 21 35
12 21 25 141 19 59 36 112 84 385 7 9 13 21 11 16 23 39
13 26 30 138 22 71 43 127 98 502 8 9 14 13 12 16 25 43
14 32 36 166 25 71 47 136 108 454 8 10 17 22 12 17 26 45
15 35 40 165 27 71 50 135 126 453 10 12 18 23 14 18 29 49
16 39 45 181 28 74 54 147 138 542 9 12 18 24 15 20 30 52
17 44 50 185 32 79 57 146 150 513 10 13 19 25 16 20 33 55
18 49 56 200 33 77 62 156 164 469 11 14 22 24 16 22 33 59
19 53 61 217 35 78 67 158 177 526 11 14 22 26 17 23 34 62
20 57 64 263 37 78 71 163 188 442 11 15 24 27 18 23 35 64
21 61 70 244 39 95 75 151 204 471 12 15 25 27 18 25 38 66
22 64 75 254 42 77 82 168 220 484 13 16 25 29 19 25 39 69
23 68 81 244 44 84 83 179 233 618 12 17 27 28 20 27 40 73
24 71 84 294 44 98 86 213 233 606 13 17 27 28 21 27 41 77
25 74 90 248 50 88 92 187 247 670 14 18 28 31 22 29 43 78

Randomized Post-optimization for t-Restrictions 605

2 3 4 3 0 4 1 0 2 1
0 1 1 3 4 2 2 4 3 0
1 4 2 0 3 0 3 4 2 1
1 1 2 3 3 4 0 4 2 0
2 4 4 1 1 2 0 3 0 3
1 1 4 3 4 0 0 2 2 3
2 1 0 3 2 0 4 1 4 3
4 3 0 2 4 1 3 1 2 0
4 2 0 3 0 3 2 1 4 1
2 4 1 4 3 2 3 0 0 1

4 4 1 4 0 3 2 4 5 1 0
5 0 5 1 3 2 0 2 2 3 4
5 4 3 1 2 3 3 0 2 3 0
3 1 4 0 4 0 2 5 3 5 1
4 1 0 0 4 3 5 2 5 1 3
3 0 0 2 2 5 2 2 4 1 1
0 1 5 4 0 1 0 5 3 3 2
5 2 1 4 0 3 3 5 2 0 4
5 2 3 5 0 0 1 4 3 5 1

Fig. 2. A 10× 10 PHF with t = v = 5, and a 9× 11 (6, 2)-DHF with v = 6

for example, a 13× 13 {4, 1}-SHF with v = 3 was found, having fewer rows than
the 21 × 12 solution with v = 3 and the 14 × 13 solution with v = 4. Here
one could treat the 13 × 13 solution as having v = 4, or delete a column to
obtain a 13× 12 solution with v = 3. We have not recorded such implications in
the tabulation, so as to focus on the results of post-optimization. Recolouring
post-optimization can often improve these results, sometimes substantially: The
247×25 {2, 2, 1}-SHFwith v = 3 improves to a 213×25 solution, a 13% reduction
in the number of rows.

Restrictions with more than one demand can also be treated. Suppose, for
example, that we want an array that is {4, 1}- and {3, 2}-separating with k = 25
and v = 5. Rather than using the 74 × 25 PHF, we could combine the 14 × 25
{4, 1}-SHF and the 22× 25 {3, 2}-SHF to produce a 36× 25 solution. Better yet,
generic post-optimization using the two demands simultaneously yields a 22×25
solution in one minute. Similarly, a 49× 25 array that is {2, 2, 1}-, {4, 1}-, and
{3, 2}-SHF with v = 5 was found, which unexpectedly has fewer rows than the
50× 25 {2, 2, 1}-SHF in Table 1.

Distributing hash families impose a number of separation demands simulta-
neously. Table 2 show results for (6, s)-DHFs with s ∈ {2, 3, 6}. The case when
s = 6 is the PHF, and the known result from [17] is reported. The remaining
values are from post-optimization. When v = 6, both generic and recolouring
post-optimization typically produce solutions with fewer rows than the PHF. No-
tably, recolouring post-optimization often yields a much smaller result than does
generic post-optimization, supporting the belief that conflict graph recolouring
can avoid many of the local optima encountered in the generic method. Because
these cases have strength t = 6, when k = 20 we are examining 27,907,200 6-
tuples of columns to check demands. Hence one might expect that our standard
one minute limit on computation time does not permit many iterations! Indeed
permitting five minutes rather than one improves the 116× 20 (6, 3)-DHF with
v = 6 to an 88× 20 solution.

Recolouring post-optimization also improves a 15× 11 (6, 2)-DHF with v = 6
to a 9 × 11 solution, shown in Figure 2, and it improves a 36 × 20 (6, 2)-DHF
with v = 6 to a 24× 20 solution. In the interests of conserving space, we do not
provide a complete list.

606 C.J. Colbourn and P. Nayeri

Table 2. Generic and recolouring post-optimization on (t, s)-DHFs

Known Generic Recolouring
(6, 6) (6, 2) (6, 3) (6, 3)

k ↓ v → 6 6 5 4 3 2 6 5 4 3 6 5 4 3

6 1 1 7 12 15 31 10 17 31 90 1 16 28 89
7 4 8 8 11 20 42 11 17 39 113 4 16 37 101
8 8 7 15 18 27 50 17 25 54 177 10 22 48 175
9 13 9 13 20 32 57 16 31 64 224 16 29 63 223
10 18 11 16 24 39 72 21 38 83 291 20 37 81 278
11 24 15 19 26 43 84 26 46 99 352 25 44 95 340
12 27 15 21 30 49 96 34 94 150 563 30 53 113 403
13 39 19 24 32 55 110 37 66 140 516 36 61 133 473
14 53 20 26 39 62 123 44 81 162 590 40 72 150 539
15 64 25 29 43 69 136 55 93 185 676 47 83 173 615
16 77 26 32 45 72 151 63 113 211 765 52 90 190 685
17 86 29 35 47 81 164 71 112 236 853 64 101 214 769
18 94 30 39 53 89 182 87 130 273 1021 70 112 233 832
19 106 32 46 58 94 196 101 148 300 1021 74 127 256 914
20 120 36 53 63 104 213 116 158 321 1121 75 136 282 984

Table 3. Post-optimization on (t, s)-PaHFs. Columns labelled R are recolouring, the
rest generic.

(4, 2)- (5, 2)- (5, 4)- (6, 5)- (7, 6)-

k ↓ v → 4 3 2 2R 5 4 3 2 5 5R 4 6 5 7 6

5 10 10 10 10 15 15 15 15 10 10 10
6 12 12 10 10 15 24 15 16 16 15 18 15 15
7 12 12 11 11 21 20 21 20 24 23 25 23 31 21 21
8 14 11 12 11 29 29 29 28 29 28 21 41 55 38 45
9 14 15 15 11 36 35 35 35 33 33 46 53 80 66 98
10 17 11 16 11 43 40 39 39 43 42 56 74 100 112 162
11 17 16 17 17 47 45 44 44 49 48 70 93 196 220 271
12 19 18 18 17 50 49 49 46 61 55 81 122 187 313 388
13 22 21 19 19 54 54 53 52 66 64 91 152 242 573 580
14 22 21 21 20 56 57 56 54 73 70 106 177 283 909 1047
15 23 22 21 20 61 62 61 58 80 76 118 209 345
16 24 24 23 21 68 63 62 61
17 26 25 23 22 69 70 68 64
18 26 25 24 23 75 73 70 69
19 27 26 25 24 88 80 75 72
20 30 28 25 25 92 81 80 74
21 29 29 26 26 129 103 85 80
22 29 30 27 27 157 127 99 82
23 32 30 28 28 119 126 96 83
24 34 33 29 28 208 150 105 86
25 35 33 30 29 258 159 123 89

Randomized Post-optimization for t-Restrictions 607

Table 3 reports on the results of post-optimization on randomly generated
PaHFs; there is no known result with which to compare. Examining the (4, 2)-
and (5, 2)-PaHFs, it is striking that allowing more symbols often yields a larger
number of rows; yet it is clear that one can simply not use the extra symbols, and
so an array on fewer symbols remains a solution on more. The behaviour is an
artifact of the random selection process for the initial array. Indeed when more
symbols are provided, the chance increases that, while columns are separated, too
many symbols are used to do so. This could be overcome by using a better greedy
method to make the initial array, for example the methods in [7]. This does not
occur in every case examined. For (6, 5)- and (7, 6)-PaHFs, better results are
obtained with more symbols permitted. In these cases, in a separation

(
t
2

) − 1
pairs must have different values, but only one pair requires the same. Hence
selecting rows uniformly at random yields a better initial solution in these cases.

Recolouring post-optimization (in the two columns marked R in Table 3)
yields improvements beyond those obtained by generic post-optimization. Co-
alescing vertices in the conflict graphs appears to have lessened the benefit of
recolouring; nonetheless it is striking that improvements remain possible.

5 Conclusion

Arrays for t-restrictions permeate many different applications. General tools to
construct them include greedy methods and random methods, but both appear
to yield arrays with an unnecessarily large number of rows. Naturally more
sophisticated methods can typically be devised for a specific t-restriction, but
requires careful analysis of the specifics of the restriction. Therefore we have
developed a general technique, focussing first on unnecessary entries and then
on changeable entries, to eliminate rows repeatedly. Even with modest invest-
ments of computation time, and even starting with poor input arrays, these
post-optimization methods yield useful arrays. We anticipate that their main
value is in improving solutions found by methods other than simple random tech-
niques, as has been the case with covering arrays. However, the real strength of
the methods is their ability to deal with arbitrary t-restriction problems. Ap-
plications beyond the realms of hash families and covering arrays appear well
worth further research.

Acknowledgements. Thanks to Daniel Horsley and Violet Syrotiuk for helpful
discussions about this research.

References

1. Ahlswede, R., Deppe, C., Lebedev, V.: Threshold and Majority Group Testing. In:
Aydinian, H., Cicalese, F., Deppe, C. (eds.) Ahlswede Festschrift. LNCS, vol. 7777,
pp. 488–508. Springer, Heidelberg (2013)

2. Ahlswede, R., Wegener, I.: Search Problems. Wiley Interscience (1987)
3. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-

restrictions. ACM Transactions on Algorithms 2, 153–177 (2006)

608 C.J. Colbourn and P. Nayeri

4. Colbourn, C.J.: Constructing perfect hash families using a greedy algorithm. In:
Li, Y., Zhang, S., Ling, S., Wang, H., Xing, C., Niederreiter, H. (eds.) Coding and
Cryptology, pp. 109–118. World Scientific, Singapore (2008)

5. Colbourn, C.J.: Distributing hash families and covering arrays. J. Combin. Inf.
Syst. Sci. 34, 113–126 (2009)

6. Colbourn, C.J.: Covering arrays and hash families, Information Security and Re-
lated Combinatorics. In: NATO Peace and Information Security, pp. 99–136. IOS
Press (2011)

7. Colbourn, C.J., Horsley, D., Syrotiuk, V.R.: Strengthening hash families and com-
pressive sensing. Journal of Discrete Algorithms 16, 170–186 (2012)

8. Colbourn, C.J., Zhou, J.: Improving two recursive constructions for covering ar-
rays. Journal of Statistical Theory and Practice 6, 30–47 (2012)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

10. Du, D.-Z., Hwang, F.K.: Combinatorial group testing and its applications, 2nd
edn. World Scientific Publishing Co. Inc., River Edge (2000)

11. Karp, R.M., Miller, R.E., Thatcher, J.W.: Reducibility among combinatorial prob-
lems. Journal of Symbolic Logic 40(4), 618–619 (1975)

12. Liu, L., Shen, H.: Explicit constructions of separating hash families from algebraic
curves over finite fields. Designs, Codes and Cryptography 41, 221–233 (2006)

13. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized Postoptimization of Cov-
ering Arrays. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS,
vol. 5874, pp. 408–419. Springer, Heidelberg (2009)

14. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of cover-
ing arrays. European Journal of Combinatorics 34, 91–103 (2013)

15. Stinson, D.R., Van Trung, T., Wei, R.: Secure frameproof codes, key distribu-
tion patterns, group testing algorithms and related structures. J. Statist. Plann.
Infer. 86, 595–617 (2000)

16. Stinson, D.R., Zaverucha, G.M.: Some improved bounds for secure frameproof
codes and related separating hash families. IEEE Transactions on Information
Theory, 2508–2514 (2008)

17. Walker II, R.A.: Phftables, http://www.phftables.com (accessed March 10, 2012)
18. Walker II, R.A., Colbourn, C.J.: Perfect hash families: Constructions and exis-

tence. Journal of Mathematical Cryptology 1, 125–150 (2007)
19. Yato, T., Seta, T.: Complexity and completeness of finding another solution and

its application to puzzles. IEICE - Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E86-A(5), 1052–1060 (2003)

http://www.phftables.com

	Randomized Post-optimizationfor t-Restrictions
	Introduction
	Post-optimization
	Necessity Analysis
	Generic Post-optimization

	Post-optimization with Conflict Graphs
	Conflict Graphs
	Recolouring Conflict Graphs

	Computational Results
	Conclusion
	References

