
Multiparty Communication Complexity

of Vector–Valued and Sum–Type Functions

Ulrich Tamm

German Language Department of Business Informatics,
Marmara University, Istanbul, Turkey

tamm@ieee.org

Dedicated to the memory of Rudolf Ahlswede

Abstract. Rudolf Ahlswede’s work on communication complexity dealt
with functions defined on direct sums: vector–valued functions and sum–
type functions. He was interested in single–letter characterizations and
provided several lower bound techniques to this aim. In this paper we
shall review these lower bounds and extend them to the “number in
hand” multiparty model of communication complexity.

Keywords: communication complexity, direct sum functions, tensor
product.

1 Introduction

Sum-type functions fn and vector-valued functions fn are defined on the powers
Xn,Yn of the sets from the domain of some basic function f : X × Y → Z.
Elements of Xn and Yn are denoted as xn and yn, respectively. Hence, e. g.,
xn = (x1, . . . , xn) for some x1, . . . , xn ∈ X . With this notation

fn(xn, yn) =
(
f(x1, y1), . . . , f(xn, yn)

)
, fn(x

n, yn) =

n∑

i=1

f(xi, yi),

where it is required that the range Z is a subset of an additive group G.
Motivated by the communication complexity of the Hamming distance [8], in

a series of papers Rudolf Ahlswede ([1] - [7]) and his group in Bielefeld ([17]
- [20]) studied the communication complexity of sum–type and vector–valued
functions. The results are summarized in [21]. Rudolf Ahlswede was mainly in-
terested in a single–letter characterization basing the communication complexity
of fn and fn on the communication complexity of the function f . To this aim he
and his coauthors demonstrated that several lower bounds behave multiplicative-
ly. These results and also their applications yielding the exact communication
complexity for special functions as Hamming distance and set intersection are
presented in Section 2.

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 451–462, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



452 U. Tamm

A further line of research leading to direct sum methods in communica-
tion complexity goes back to the question if it is easier to solve communica-
tion problems simultaneously than separately, cf. [15], pp. 42 - 48. Recall
the definition of a vector-valued function fn((x1, . . . , xn), (y1, . . . , yn)) =
(f(x1, y1), . . . , f(xn, yn)). An obvious upper bound on the communication com-
plexity C(fn) is obtained by evaluating each component f(xi, yi) separately and
communicating the result for component i using the optimal protocol for f . Can
we do better by considering all components simultaneously? Ahlswede et al. [3],
[5] using data compression could show that for set intersection it is C(f) = 2
but C(fn) = �n · log2 3�.

The measure lim supn→∞
1
nC(fn) is also called amortized communication

complexity (see [13]). One of the main open problems in communication com-
plexity is the question if there can exist a significant gap between the communi-
cation complexity and the amortized communication complexity of a function.
Direct sum methods in communication complexity are also useful in the com-
parison of lower bound techniques and the study of their power. The famous
log-rank conjecture states that the gap between the rank lower bound and the
communication complexity cannot be too big.

The last problem was recently extended to the “number in hand” model of
multiparty communication complexity [12]. Yao’s model of communication com-
plexity can be generalized to several multiparty models depending on the infor-
mation accessible to each person. Most well studied is the “number on the
forehead” model in which each person knows all inputs but her own, for in-
stance [10]. The “number in hand” model, in which each person knows just her
own input, was not so popular in the beginning but later found an important
application in streaming [9]. The problem with “number in hand” is that a gen-
eralization of the lower bound techniques is rather difficult. The most powerful
lower bound in two-party communication complexity is the rank lower bound.
But the rank of a matrix is generalized by a tensor rank (3 and higher dimen-
sional matrices), which is not so easy to determine. Besides, the matrix rank is
multiplicative under the tensor product (very important for functions on direct
sums). This is no longer the case for higher dimensional tensors, cf. [11].

Vector-valued and sum-type functions can straightforwardly be extended to
functions in 3 and more arguments. In Section 3 we shall study the multipar-
ty communication complexity of several generalizations of the Hamming dis-
tance and set intersection, the two functions mainly discussed by Ahlswede and
his coauthors. Fortunately, a bound introduced by Ahlswede and Cai [3] via
the independence number can replace the rank lower bound in this case, such
that sharp lower bounds are still possible. This will be demonstrated with four
boolean functions in more than two arguments.

For sum–type functions the independence number is not an appropriate lower
bound. Since also the rank lower bound is not easily applicable, it hence remains
to study largest monochromatic rectangles. In Section 4 a generalization of
Ahlswede’s 4-word property is presented. This yields tight bounds on the size of
the largest monochromatic rectangles for some functions only if there is an even



Multiparty Communication Complexity 453

number of persons involved in the multiparty communication. For odd numbers
one dimension can not be included in the formula.

As an example that it may occur that three-party communication behaves
much like two-party communication the pairwise comparison of the inputs is
analyzed in Section 5.

2 Bounds on Communication Complexity

The notion of communication complexity was introduced by Yao in 1979 [22].
Since then it found many applications in Computer Science, for which we refer
to the books by Kushilevitz and Nisan [15] or by Hromkovic [14]. The commu-
nication complexity of a function f : X ×Y → Z (where X , Y, and Z are finite
sets), denoted as C(f), is the number of bits that two persons, P1 and P2, have
to exchange in order to compute the function value f(x, y), when initially P1

only knows x ∈ X and P2 only knows y ∈ Y. To this aim they follow a prede-
termined interactive protocol in which the set of messages a person is allowed
to send at each instance of time form a prefix code.

Upper bounds are usually obtained by special protocols. Often, the trivial
protocol, in which one person sends all the bits of his input and the other person
returns the result, is at least asymptotically optimal.

Lower bounds are expressed via the function matrixM(f) =
(
f(x, y)

)
x∈X ,y∈Y.

and the function value matrices Mz(f) = (axy)x∈X ,y∈Y for all z ∈ Z defined by

axy =

{
1 if f(x, y) = z
0 if f(x, y) �= z.

Yao [22] already showed that C(f) ≥ logD(f), where the decomposition num-
ber D(f) denotes the minimum size of a partition of X ×Y into monochromatic
rectangles, i. e., products A × B of pairs A ⊂ X , B ⊂ Y on which the function
is constant. The decomposition number usually is hard to determine, however,
further lower bounds can be derived from it. Immediately, we have

C(f) ≥
⌈

log
|X | · |Y|

Lmr
(
M(f)

)

⌉

, (1)

where Lmr
(
M(f)

)
denotes the size of the largest monochromatic rectangle in

the function matrix M(f).
In order to make induction proofs possible Ahlswede weakened the conditions

on the rectangles. He no longer required that the function is constant on the
rectangle A×B but that the so called 4-word- property has to be fulfilled, i. e.,
for all a, a′ ∈ A, b, b′ ∈ B

f(a, b)− f(a′, b)− f(a, b′) + f(a′, b′) = 0

Denoting by Lfw(f) the size of the largest rectangle, on which the 4-word-
property holds, we obtain

C(f) ≥
⌈
log

|X | · |Y|
Lfw(f)

⌉
. (2)



454 U. Tamm

A z–independent set
{
(x(1), y(1)), . . . , (x(N), y(N))

}
for the function value z in

M(f) is a set of pairs with f(x(i), y(i)) = z for all i = 1, . . . , N such that no
two members of the set are in the same monochromatic rectangle. Denoting the
size of a z–independent set by ind(Mz(f)) and Ind(f) =

∑
z∈Z ind(Mz(f)) we

obtain [3]

C(f) ≥ �log Ind(f)�. (3)

C(f) can also be lower bounded by the rank of the corresponding function ma-
trices

C(f) ≥ �log r(f)�, where r(f) =
∑

z∈Z
rankMz(f) (4)

It can be shown that the function f has the same communication complexity
as the function g defined by g(x, y) = cf(x,y) for all x, y, when the number c
is chosen appropriately (c �= 0, |c| �= 1). So it is also possible to lower bound
C(f) by the rank of M(g) = exp(M(f), c) = (cf(x,y))x∈X ,y∈Y, the exponential
transform of the matrix M(f). This yields

C(f) ≥ �log rank exp(M(f), c)�. (5)

Central in the following arguments is the observation that the function matrices
of the vector-valued and sum-type functions can be expressed in terms of the
Kronecker product or tensor product, defined for two matrices A = (aij)i,j and
B = (bkl)k,l as A⊗B = (aij ·bkl)i,j,k,l. The n-fold Kronecker product of a matrix
is denoted as A⊗n. We have (cf. [3], [4], [17], [19])

M(z1,...,zn)(f
n) = Mz1(f)⊗Mz2(f)⊗ · · · ⊗Mzn(f) (6)

Mz(fn) =
∑

(z1,...,zn)
z1+···+zn=z

Mz1(f)⊗ · · · ⊗Mzn(f) (7)

exp
(
M(fn), c

)
=

[
exp

(
M(f), c

)]⊗n
(8)

It can be shown that the parameters in the bounds (2) - (5) behave multiplica-
tively, since the rank and hence also r(f) =

∑
z∈Z rankMz(f) are multiplicative

under the Kronecker product.

Theorem 1. ([3], [4]):

Lfw(fn) = n · Lfw(f) (9)

rank exp
(
M(fn), c

)
= (rank

[
exp

(
M(f), c

)]
)n (10)

r(fn) = r(f)n (11)

Ind(fn) ≥ Ind(f)n (12)



Multiparty Communication Complexity 455

Using these bounds Ahlswede et al. analyzed several sum – type functions espe-
cially the Hamming distance and set intersection defined by the basic function

matrices M(h) =

(
0 1
1 0

)
and M(si) =

(
0 0
0 1

)

For sum-type and vector–valued functions defined on more than two argu-
ments the corresponding function tensors (higher dimensional function matri-
ces) can again be described in terms of the tensor product, where A ⊗B is the
tensor obtained by multiplying each entry of A with each entry of B. This way,
the descriptions (6), (7), and (8) generalize. However, the tensor product now
is no longer multicplicative (cf. [11]), that means, rank(A ⊗ B) can be smaller
than rank(A) · rank(B). So, the rank lower bounds (10) and (11) can no longer
be applied. However, for vector–valued functions still (12) and for sum–type
functions (9) can be used.

3 Multiparty Communication Complexity of
Vector-Valued Functions

In this section we try to extend Rudolf Ahlswede’s methods to determine the
multi–party communication complexity of some functions defined on direct sums.
First is repeated the result for symmetric difference and the set intersection, since
we need it for the multiparty protocols below.

Theorem 2. ([3], [5]):

C(hn) = 2n, C(sin) = �log 3� (13)

Proof: For the symmetric difference hn, the trivial protocol requires �log 2n�+
�log 2n� = 2n bits of communication. With the rank lower bound (4) and (11)
this can be shown to be optimal, since

C(hn) ≥ log r(hn) = n · log r(h) = n · log(rankM0(h) + rankM1(h))

= n · log(rank
(
1 0
0 1

)
+ rank

(
0 1
1 0

)
) = n · log 4 = 2n

For set-intersection the rank lower bound yields

C(sin) ≥ �log r(sin)� = �n · log r(si)� = �n · log(rankM0(si) + rankM1(si))�

= �n · log(rank
(
1 1
1 0

)
+ rank

(
0 0
0 1

)
)� = �n · log 3�

In order to obtain the same upper bound, we shall modify the trivial protocol,
which would require 2n bits of transmission. Again, in the first round person P1

encodes his input xn ∈ {0, 1}n. P2 then knows both values and hence is able to



456 U. Tamm

compute the result sin(xn, yn), which is returned to P1. However, in knowledge
of xn the set of possible function values is reduced to the set S(xn) = {yn : yn ⊂
xn}. Hence, only �logS(xn)� bits have to be reserved for the transmission of
sin(xn, yn) such that P1 can assign longer messages to elements with few subsets.
So, in contrast to the trivial protocol, the messages {φ1(x

n) : xn ∈ {0, 1}n}
are now of variable length. Since the prefix property has to be guaranteed,
Kraft’s inequality for prefix codes yields a condition, from which the upper
bound can be derived. Specifically, we require that to each xn there corresponds
a message φ1(x

n) of (variable) length l(xn) such that for all xn ∈ {0, 1}n the sum
l(xn) + �logS(xn)� takes a fixed value, L say. Kraft’s inequality states that a
prefix code exists, if

∑
xn 2−l(xn) ≤ 1. This is equivalent to

∑
xn 2�logS(xn)	 ≤ 2L.

With the choice L = �log 3n� Kraft’s inequality holds.
The functions in more than 2 arguments below are canonical extensions of

the symmetric difference (r and s below) and the set intersection function (basic
functions t and u). Namely, the basic functions defined on the product {0, 1}×
{0, 1} × · · · × {0, 1} are the following boolean functions:

1) r(x1, x2, . . . , xk) = x1 + x2 + · · ·+ xk mod 2

2) s(x1, x2, . . . , xk) =

{
1 , x1 = x2 = · · · = xk

0 , else

3) t(x1, x2, . . . , xk) =

{
1 , x1 = x2 = · · · = xk = 1
0 , else

4) u(x1, x2 . . . , xk) =

{
1 if at least half of the inputs xi = 1
0 else

The big problem is that for more than 2 parties communicating the rank lower
bound loses much of its power. The function matrices are now replaced by tensors
(i.e. , higher dimensional matrices). The rank of a matrix can be extended to
tensors, but it is not so easy to determine any more. The most efficient methods
to determine the rank of a matrix - eigenvalues and diagonalization of matrices
- cannot be applied any more. As for matrices, the rank of a tensor can be
combinatorially expressed as the minimal number of rank 1 tensors whose sum
is the tensor, the rank of which has to be determined. Unfortunately, this tensor
rank does not behave multiplicatively under the tensor product. This means
that the rank lower bound for sum–type and vector–valued functions can not be
easily applied any more.

As an alternative the independence number may be considered for vector–
valued functions. Following the argumentation by Ahlswede and Cai in [3], as
for functions in two arguments Ind(fn) ≥ Ind(f)n also holds for vector–valued
functions in k > 2 arguments, such that we have the lower bound C(fn) ≥
n · log Ind(f). In general, the independence number is, of course, very difficult
to determine, but for basic functions over small alphabets it may yield sharp
bounds, as in the following theorem.



Multiparty Communication Complexity 457

Theorem 3.
C(rn) = k · n

�n · log(k + 2)� ≤ C(sn) ≤ �n · (2 log k) + k − 3�

�n · log(k + 1)� ≤ C(tn) ≤ �n · log(k + 1)�+ k − 2

C(un) = �n · log 6� for k = 3.

Proof: Obviously, no two of the 2k entries of the function tensor of r can be
contained in a monochromatic rectangle such that the independence number
Ind(r) = 2k. Hence C(rn) ≥ log Ind(r)n = log 2kn = k · n, which is also the
complexity of the trivial protocol, in which all k persons transmit all their inputs.

Next, let us consider the vector–valued function tn(xn
1 , x

n
2 , . . . x

n
k ), which gives

the intersection of the k sets represented by the binary strings xn
1 , . . . , x

n
k . The

function tensor of the basic function t contains exactly one entry 1 namely for
x1 = x2 = · · · = xk = 1, i.e., the all–1 vector of length k . All other entries are
0. The k neighbours of the all–1 vector, i.e. all (x1, . . . , xk) with exactly one
xi = 0 and all other xj = 1 obviously must be contained in different monochro-
matic rectangles. Since also the all-1 vector must be contained in a separate
monochromatic rectangle, the independence number Ind(t) = k + 1 and hence
C(tn) ≥ �n log Ind(t)� = �n log(k + 1)�.

A protocol that almost achieves this lower bound is again obtained by assign-
ing an appropriate prefix code to the messages in the trivial protocol. As for
the set intersection function sin in two arguments, again Person 1 can assign
longer messages to inputs with few 1s. The other persons then can determine
the exact value following an optimal protocol for set intersection of k − 1 sets.
For k = 2 we already know that �n · log 3� bits are optimal. So, for k = 3, Person
1 transmits l(x) bits, say for an input x. Since the total number of bits trans-
mitted should be a fixed value L, say, L = l(x)+f(x), where f(x) is the number
of bits the other persons should still transmit to agree on the result. In order
to guarantee the existence of a prefix code, Kraft’s inequality

∑
x 2

−l(x) ≤ 1
must hold. This is equivalent to

∑
x 2

−(L−f(x)) ≤ 1 or
∑

x 2
f(x) ≤ 2L. Now

if Person 1 has an input x = x1 with exactly i many 1’s then by the proto-
col for si we know already that f(x) = �i · log 3� bits are enough to determine
the set intersection of the remaining two sets by persons 2 and 3. So, Kraft’s
inequality reduces to

∑
i

(
n
i

)
2�i log 3	 ≤ 2L. This can be assured by the choice

L = �n log 4�+ 1. Analogously, for k > 3 we inductively obtain from Kraft’s in-
equality

∑
i

(
n
i

)
2�i·log(k)	+k−3 ≤ 2L, which is fulfilled for L = �n·log(k+1)�+k−2.

For the function sn the first person can send all the n bits of her input x1. In
knowledge of this the other k− 1 persons have to determine for each component
either the function t or 1−t. Hence, their task is to evaluate a function equivalent
to set intersection tn on k−1 arguments, which can be done with �n·log k�+k−3
bits of communication by the previous considerations. However, there is a gap
to the lower bound, since a maximal independent set only has size k + 2 - the



458 U. Tamm

two 1’s (for x1 = x2 = · · · = xk = 0 or 1, respectively) plus the k 0’s adjacent
(at Hamming distance 1 to the all-one or all-zero vector) to one of these 1’s.

The same protocol as for sn can be used for un in the case of k = 3 inputs.
Again after Person 1 has transmitted all the bits of its input in each component
the function t or 1 − t must be computed, which can be done with �n · log 3�
bits of communication. Here, the situation is better than for the function s,
since we can find an independent set of size 6 in the function tensor of the
basic function u: the three 1’s u(1, 1, 0) = u(1, 0, 1) = u(0, 1, 1) = 1 and the
three 0’s u(0, 0, 1) = u(0, 1, 0) = u(1, 0, 0) = 0 must be contained in different
monochromatic rectangles, such that C(un) ≥ �n log Ind(u)� = �n · log 6�, which
is exactly the complexity of the protocol described above.

Remarks

1) Unfortunately, for k > 3, the function un is not so nicely analyzable.

2) The lower bound for the function sn is not so easy to improve as already the
case k = 3 demonstrates. Here �n log 5� ≤ C(f) ≤ �n log 6�. However, there is a
decomposition of the function tensor of s into just 5 monochromatic rectangles:
{0} × {0} × {0} and {1} × {1} × {1} for the two 1s and {0} × {1} × {0, 1},
{1} × {0, 1} × {0} as well as {0, 1} × {0} × {1} for the 0s.

4 Largest Monochromatic Rectangles for Multiparty
Sum–Type Functions and a Generalization of
Ahlswede’s 4-Word Property

In order to be able to inductively determine the size of monochromatic rectangles
Ahlswede and his coauthors[2], [6] introduced the weaker 4-word property It is
no longer required that the function is constant on the rectangle A×B but that
for all a, a′ ∈ A, b, b′ ∈ B

f(a, b)− f(a′, b)− f(a, b′) + f(a′, b′) = 0

This 4-word property behaves multiplicatively for sum-type functions in the
sense that if the 4-word property holds on a rectangle A × B for the basic
function f then it also holds on the rectangle An×Bn for the sum–type function
fn. Indeed, if M(f,R, n) is the size of the largest rectangle with the 4-word
property in fn it can be shown that M(f,R, n) = M(f,R, 1)n. This often allows
to determine exactly the size of the largest monochromatic rectangle for sum–
type functions and hence bound the communication complexity from below.

In my PhD thesis [17] following a question posed by Rudolf Ahlswede an
extension of the 4-word property to functions in more than 2 arguments was
derived. Actually, this is just the 4-word property applied to the two-dimensional
projections of higher dimensional rectangles. For instance, for a basic function
f : X1 × X2 × X3 × X4 → R in 4 arguments this yields an 8-word property,
namely:



Multiparty Communication Complexity 459

A rectangle (A,B,C,D) with A ⊂ X1, B ⊂ X2, C ⊂ X3, D ⊂ X4 fulfills the
8-word property if for all a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C and d, d′ ∈ D it holds

f(a, b, c∗, d∗)− f(a′, b, c∗, d∗)− f(a, b′, c∗, d∗) + f(a′, b′, c∗, d∗) = 0

for c∗ ∈ {c, c′} and d∗ ∈ {d, d′} and

f(a∗, b∗, c, d)− f(a∗, b∗, c′, d)− f(a∗, b∗, c, d′) + f(a∗, b∗, c′, d′) = 0

for a∗ ∈ {a, a′} and b∗ ∈ {b, b′}.
This can be straightforwardly generalized to a 2t-word property for func-

tions in an even number t of arguments. The proof follows the lines of the one
in [6]. Again, the 2t-word property is multiplicative in the above sense that
M(f,R, n) = M(f,R, 1)n for the sum-type function fn.

Unfortunately, these rectangles usually become too large in order to prove
asymptotically tight lower bounds for the communication complexity of sum–
type functions in more than two arguments. However, for some very natural
functions the size of the largest monochromatic rectangles can be determined.
Let discuss sum-type functions with the basic boolean functions f : {0, 1}n ×
{0, 1}n × {0, 1}n × {0, 1}n → {0, 1} from the previous section.

1) r(x, y, z, w) = x+ y+ z+w mod 2. Then for n = 2m rn takes the constant
value m on the rectangle A × B × C ×D with A = {00, 11}m, B = C = D =
{01, 10}m. Hence, the size of the largest monochromatic rectangle of the sum-
type function rn is at least 22n. On the other hand, obviously {01, } × {0} ×
{0} × {0} is a maximal 8-word set (of size 2) for the basic function r, such
that the maximal 8-word set for rn can have size at most 22n. Hence the above
configuration yields the largest monochromatic rectangle.

2) s(x, y, z, w) =

{
1 , x = y = z = w
0 ,else

. Here sn takes the constant value 0

on the rectangle {0}n × {1}n × {0, 1}n × {0, 1}n. This yields a monochromatic
rectangle of size 4n. On the other hand, with the largest 8-word set {01, } ×
{0}×{0, 1}×{0} for the basic function s it can be shown that there is no larger
monochromatic rectangle.

It would be interesting to find an analogue for the 4-word property also for
sum–type functions with an odd number of arguments. For instance we con-
jecture the monochromatic rectangles in the function matrices of the sum–type
function fn in the following three examples for basic functions f : {0, 1}×{0, 1}×
{0, 1} → {0, 1} in three arguments to be optimal, but there is no suitable lower
bound, so far.

1’) r(x, y, z) = x+ y + z mod 2. For n = 2m the sum–type function rn takes
the constant value m on the rectangle {01, 10}m×{01, 10}m×{01, 10}m, hence

the largest monochromatic rectangle has size at least 2
3
2n.

2’) s(x, y, z) =

{
1 , x = y = z
0 ,else

.



460 U. Tamm

On {0}n × {1}n × {0, 1}n sn takes the constant value 0. Hence, the size of
the largest monochromatic rectangle in the function matrix of sn is at least 2n.
Another configuration achieving this bound with constant value m for n = 4m
is {0000, 1111}m × {0011, 1100}m× {0101, 0110, 1001, 1010}m.

3’) u(x, y, z) = 1 iff at least two of the arguments are 1 (and 0 else). Again for
n = 2m un takes the constant value m on the rectangle {01, 10}m×{01, 10}m×
{01, 10}m, which means that the size of the largest monochromatic rectangle is

at least 2
3
2n.

5 Communication Complexity of Pairwise Comparison

Let there be k persons P1, P2, . . . , Pk each holding a binary string xi ∈ {0, 1}n
(i = 1, . . . , k). Their task is to pairwisely compare their strings in the “number in
hand” model with a minimum amount of data exchange. So we have to determine
the communication complexity C(f) of the function f : {0, 1}n × . . . {0, 1}n →
{0, 1}(k

2 ) where f(x1, . . . xk) = (f(i,j)(xi, xj))i<j∈{1,...,k} with f(i,j)(xi, xj) = 1
iff xi = xj (and 0 iff xi �= xj).

A lower bound is obviously C(f) ≥ �k
2 �n+1, since f automatically compares

the two strings obtained by concatenating the first �k
2 � and the next �k

2� inputs
in the two - party comunication model. Here the trivial protocol is optimal for
the equality function.

Theorem 4. limn→∞ 1
nC(f) = �k

2�
Proof: With the following “divide and conquer” protocol it can be shown that
this lower bound is asympotically optimal. This is somehow surprising, since
for odd k one might expect some additional communication. This is, however,
negligible - only a

√
n term:

For k = 2 Person 1 transmits her complete string and Person 2 returns the
result.

For k ≥ 3 Person 1 transmits the first �√n� bits of her input. The other per-
sons then send a 0 if their inputs coincide on these �√n� bits or a 1, respectively,
if this is not the case. If all other persons have sent a 0, then Person 1 transmits
the next �√n� bits of her input and the other persons respond in the same way.
After Person 1 has transmitted, say, t�√n� bits for the first time some of the
other persons, say k − i of them, will answer with a 1. Their k − i inputs then
have to be compared on n − (t − 1)�√n� bits, the other i inputs have to be
compared on n− t�√n� bits.

Let M(k, n) be the number of bits transmitted during this protocol in the
worst case. Then

M(k, n) ≤
{

k
2n+ ak , k even
k−1
2 n+ bk

√
n+ ck , k odd

for certain numbers ak, bk, ck only depending on the number of partys k and not
on n. With this, the asymptotic statement of the theorem is immediate.



Multiparty Communication Complexity 461

The above formula forM(k, n) can be proven by induction. ObviouslyM(2, n)
= n+1. Further, M(3, n) ≤ n+3�√n�+1. To see this, assume that after Person
1 has sent t�√n� bits for the first time the other Persons do not reply with 0
both. So at least one of their inputs does not coincide with x1 on the last �√n�
bits transmitted. If only one person, Person 3 say, sent a 1, it is clear that x3

is different from x1 and x2, which then have to be compared on the remaining
t− �√n� bits.

If both persons replied with 1, then x1 is different from x2 and x3, which then
still have to be compared on n− (t − 1)�√n� bits. This is obviously the worst
case and here still M(2, n− (t− 1)�√n�+ 1) further bits must be exchanged to
obtain the result. Hence

M(3, n) ≤ t�√n�+2t+n−(t−1)�√n�+1 = n+�√n�+2t+1 ≤ n+3�√n�+1.
For k ≥ 4 the above protocol yields the recursion

M(k, n) ≤ max
t

max
i=1,...,k

t�√n�+(k− 1)t+M(i, n− t�√n�)+M(k− i, n− (t− 1)�√n�).
from which the numbers ak, bk, and ck can be recursively calculated with

several case investigations (k, i even or odd).

References

1. Ahlswede, R.: On code pairs with specified Hamming distances. Colloquia Math.
Soc. J. Bolyai 52, 9–47 (1988)

2. Ahlswede, R., Mörs, M.: Inequalities for code pairs. European J. Combinatorics 9,
175–188 (1988)

3. Ahlswede, R., Cai, N.: On communication complexity of vector-valued functions.
IEEE Trans. Inf. Theory 40(6), 2062–2067 (1994)

4. Ahlswede, R., Cai, N.: 2-Way communication complexity of sum-type functions
for one processor to be informed. Probl. Inf. Transmission 30(1), 1–10 (1994)

5. Ahlswede, R., Cai, N., Tamm, U.: Communication complexity in lattices. Appl.
Math. Letters 6(6), 53–58 (1993)

6. Ahlswede, R., Cai, N., Zhang, Z.: A general 4–word–inequality with consequences
for 2–Way communication complexity. Advances in Applied Mathematics 10, 75–94
(1989)

7. Ahlswede, R., Zhang, Z.: Code pairs with specified parity of the Hamming dis-
tances. Discr. Math. 188, 1–11 (1998)

8. Ahlswede, R., El Gamal, A., Pang, K.F.: A two–family extremal problem in Ham-
ming space. Discr. Math. 49, 1–5 (1984)

9. Alon, N., Matias, M., Szegedy, M.: The space complexity of approximating the
frequency moments. J. Comput. Syst. Sci. 58(1), 137–147 (1999)

10. Babai, L., Frankl, P., Simon, J.: Complexity classes in communication complexity
theory. In: Proc. IEEE FOCS, pp. 337–347 (1986)

11. Chen, L., Chitambar, E., Duan, R., Ji, Z., Winter, A.: Tensor rank and stochastic
entaglement catalysis for multipartite pure states. Physical Review Letters 105
(2010)

12. Draisma, J., Kushilevitz, E., Weinreb, E.: Partition arguments in multiparty com-
munication complexity. Theoretical Computer Science 412, 2611–2622 (2011)

13. Feder, T., Kushilevitz, E., Naor, M., Nisan, N.: Amortized communication
complexity. SIAM J. Comp. 24(4), 736–750 (1995)



462 U. Tamm

14. Hromkovic, J.: Communication Complexity and Parallel Computing. Springer
(1997)

15. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University
Press (1997)

16. Nisan, N., Wigderson, A.: On rank vs communication complexity. Combinatori-
ca 15(4), 557–566 (1995)

17. Tamm, U.: Communication complexity of sum-Type functions. PhD thesis, Biele-
feld (1991)

18. Tamm, U.: Still another rank determination of set intersection matrices with an
application in communication complexity. Appl. Math. Letters 7, 39–44 (1994)

19. Tamm, U.: Communication complexity of sum - type functions invariant under
translation. Inform. and Computation 116(2), 162–173 (1995)

20. Tamm, U.: Deterministic communication complexity of set intersection. Discr.
Appl. Math. 61, 271–283 (1995)

21. Tamm, U.: Communication complexity of functions on direct sums. In: Althöfer, I.,
Cai, N., Dueck, G., Khachatrian, L., Pinsker, M., Sárközy, A.,Wegener, I., Zhang, Z.
(eds.) Numbers, Information and Complexity, pp. 589–602. Kluwer (2000)

22. Yao, A.C.: Some complexity questions related to distributive computing. In: Proc.
ACM STOC, pp. 209–213 (1979)


	Multiparty Communication Complexityof Vector–Valued and Sum–Type Functions
	Introduction
	Bounds on Communication Complexity
	Multiparty Communication Complexity of Vector-Valued Functions
	Largest Monochromatic Rectangles for Multiparty Sum–Type Functions and a Generalization of Ahlswede's 4-Word Property
	Communication Complexity of Pairwise Comparison
	References




