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Preface

The Center for Interdisciplinary Research (ZiF) at the University of Bielefeld
hosted a cooperation group under the title “Search Methodologies”, from
October 1, 2010 to December 31, 2012. The main aim of the cooperation group
“Search Methodologies” was to gain a deep understanding of the fundamental
mathematical structures shared by different models of search encountered in
many fields of the hard sciences and the natural sciences. The starting point
was the discovery that certain mathematical structures and methodological ap-
proaches that we identify as typical of search problems are found in surprisingly
diverse scenarios and areas that are, a priori, considered not connected to the
field of combinatorial search.

One of our goals has been to create a common forum for theoreticians but
also practitioners for comparing different approaches to search problems and
different fields of application of search paradigms.

The ZiF cooperation group started in 2010 promoted and led by Rudolf
Ahlswede and Ferdinando Cicalese. The seeds of this project had been planted in
a preceding Dagstuhl seminar on “Search Methodologies”, organized by
R. Ahlswede, F. Cicalese, and U. Vaccaro, and held at the Leibniz Institut of
Dagstuhl July 5–10, 2009. In fact, the opening conference of the ZiF cooperation
group was named “Search Methodologies II”, held on October 25–29, 2010.

As clearly stated by Rudolf Ahlswede in the opening lecture of this conference,
the time was ripe for founding a comprehensive general theory of search.

Sadly, Rudi will not be able to see the full development of this plant he
has so much and devotedly contributed to. On December 18, 2010, suddenly and
unexpectedly, Rudolf Ahlswede passed away, but the project continued thanks to
the effort of Christian Deppe (who took over as co-organizer), Harout Aydinian,
and Vladimir Lebedev. This book is meant as a memorial and includes papers
dedicated to Rudolf Ahlswede and results of the cooperation group “Search
Methodologies”.

On July 25 and 26, 2011 a memorial symposium for Rudolf Ahlswede took
place at the ZiF at the University of Bielefeld. The symposium was organized
in close cooperation with Rudolf Ahlswede’s former students and partners of his
many research projects. About 100 participants came to Bielefeld to remember
the life and the work of Rudi, the great mathematician, the friend, the mentor,
the man.

“Search Methodologies III” was the closing event of the cooperation group.
The list of the four macro-topics of this workshop—theory of games and strate-
gic planning, combinatorial group testing and database mining, computational
biology and string matching, information coding and spreading and patrolling
on networks—provides a comprehensive picture of the vision Rudolf Ahlswede
had and put forward of a broad and systematic theory of search.



VIII Preface

This book includes 36 thoroughly refereed research papers dedicated to the
memory of Rudolf Ahlswede and the research areas in which he worked and that,
in several cases, he contributed to shape. One third of the papers originated
within the framework of the ZiF cooperation group “Search Methodologies”.
Furthermore three obituaries and several stories and anecdotes related to Rudolf
Ahlswede’s life are included.

We are deeply grateful to the members of the administration of the ZiF in
Bielefeld for their invaluable and always extremely kind and patient cooperation.

November 2012 Harout Aydinian
Ferdinando Cicalese

Christian Deppe
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Éva Czabarka
Imre Csiszár
Christian Deppe
Christian Donninger
Arkadii D’yachkov

Konrad Engel
Peter Erdős
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More than restoring
strings of symbols transmitted
means transfer today

What is information?

Cn bits in Shannon’s fundamental theorem
or log Cn bits in our Theory of Identification ?

Time is mature
for a general Theory of Search.

When we speak of General Theory of Information Transfer today
we mean it to include at its core

the theory of information transmission,
common randomness, identification and

its generalizations and applications,
but it goes far beyond it even outside communication theory

when we think about probabilistic algorithms with identification
as concepts of solution!

Close to the Shannon Island we can see
1.) Mathematical Statistics
2.) Communication Networks
3.) Computer Storage and Distributive Computing
4.) Memory Cells
Since those islands are close there is hope that they can be connected by dams.

There are various stimuli concerning the concepts of communication
and information from the sciences,

for instance from quantum theory in physics,
the theory of learning in psychology, theories in linguistics, etc

We live in a world vibrating with information
and in most cases we dont know
how the information is processed

or even what it is at the semantic and pragmatic levels.

It seems that the whole body of present day
Information Theory will undergo serious revisions

and some dramatic expansions.

Rudolf Ahlswede



1 Introduction

Above are some quotations directly taken from Rudolf Ahlswede’s talks, pre-
senting his scientific vision. This is probably the best way to start a volume
dedicated to his invaluable contribution to our community. The scientific arti-
cles included in this volume are organized according to a broad classification of
Ahlswede’s interests into three main areas: Information Theory, Combinatorics,
Search Theory. The boundaries of such classification are necessarily fuzzy and
many papers might well fit into two or all of such major areas, very much like
most of Ahlswede’s work.

The papers were thoroughly refereed; in the following they are referred to by
number, preceded by the letter B, to indicate the present book. We refer to two
other lists of publications. They are labelled A and I, where

A indicates the list of publications of Rudolf Ahlswede at the backmatter of
the book

I is used for papers mentioned in the introduction, in particular in these com-
ments

The volume is concluded by several obituaries and anecdotes about Rudolf
Ahlswede’s life written by friends and coauthors.

Papers related to Rudolf Ahlswede’s work

Here are some numerical facts about Rudolf Ahlswede’s prolific work, with a
classification of his 242 papers according to the main research area each paper
addresses:

area number of papers percentage
Information Theory 138 ∼ 57%
- probabilistic models 56 ∼ 23%
- combinatorial models, coding theory 29 ∼ 12%
- related to search 21 ∼ 8%
- flows in networks 8 ∼ 3%
- cryptography as dual 9 ∼ 3%
- statistics 7 ∼ 3%
- memories 5 ∼ 2%
- quantum theoretical 7 ∼ 3%

Mainly Combinatorial Structures 104 ∼ 43%
-combinatorial extremal problems 64 ∼ 26%
-combinatorial number theory 16 ∼ 7%
-inequalities (combinatorial - but also probabilistic,
number theoretic, analytical) 11 ∼ 5%
-computing and complexity
(esp. communication complexity) 13 ∼ 5%



XII Introduction

The complete list of Ahlswede’s publications can be found at the end of this
book. Here are listed the thirty papers with the highest number of citations
(source: Google Scholar, Oct. 2012):

[A155]
4529

[A12]
473

[A79]
437

[A18]
232

[A21]
215

[A122]
149

[A50]
142

[A161]
137

[A59]
130

[A30]
121

[A29]
106

[A36]
103

[A55]
101

[A131]
91

[A47]
89

[A51]
87

[A27]
72

[A23]
67

[A156]
53

[A31]
51

[A132]
49

[A32]
46

[A60]
45

[A99]
38

[A17]
38

[A53]
37

[A114]
36

[A63]
36

[A44]
35

[A65]
31

[A3]
30

In fact, Ahlswede’s h-index is 30, however, noticeably, the average number
of citations of these papers is 259. Most of the co-authored papers were written
with Ning Cai (49), Levon Khachatrian (45), Zhen Zhang (22), Harout Aydinian
(22), András Sárközy (9), Christian Deppe (9), Vladimir Blinovsky (8), Mark
Pinsker (8), Leonid Bassalygo (7), and Imre Csiszár (6). Altogether, Ahlswede
co-authored papers with more than 70 researchers from all over the world.

In the backmatter one can read more about the importance and the impact
of Rudolf Ahlswede’s work.

I Information Theory

One of the main research goals of Rudolf Ahlswede’s was the development of what
he defined as a general theory of information transfer (GTIT) [A220], which in-
cludes Shannon’s classical theory of transmission and his theory of identification
as special cases.

A step beyond Shannon’s celebrated theory of communication [I07], the foun-
dations for a theory of identification in the presence of noise were laid together
with Dueck and carried on by Verboven, van der Meulen, Zhang, Cai, Csiszár,
Han, Verdú, Steinberg, Anantharam, Venkataram, Wei, Csibi, Yeong, Yang,
Shamai, Merhav, Burnashev, Bassalygo, Narayan and many others.

To fix first ideas, the (classical) theory of information transmission is con-
cerned with the question of how many different messages we can transmit over
a noisy channel. Basically, in a (two-party) communication, the receiver tries
to answer the question “What is the actual message sent from the set M =
{1, . . . , M}?”

On the other hand in the theory of identification, the problem is about iden-
tifying rather than recognizing (or reconstructing) a message sent over a (noisy)
channel. In short, one tries to answer the question “Is the actual message sent i?”,
where i is some fixed member of the set of possible messages M = {1, 2, . . . , N}.

This change of perspective extends the frontiers of information theory in sev-
eral directions and has led to the discovery of new methods which are fruitful also
for the classical theory of transmission, for instance in studies of robustness, arbi-
trarily varying channels, optimal coding procedures in case of complete feedback,
novel approximation problems for output statistics and generation of common
randomness, a key issue in cryptology.

In this volume, some aspects of the theory of identification are studied in [B01]
by Christian Heup, one of Ahlswede’s PhD-students. This paper is devoted to
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the proof of bounds for the expected running time and worst- case running time
for identification process for sources.

[B02] introduces L-Identification as a generalization of identification
for sources, and the concept of identification entropy of second order as a lower
bound.

Shannon’s paper about two-way communication was the starting point of
multi-user information theory, an area in which Rudolf Ahlswede worked inten-
sively, particularly in collaboration with Ning Cai, who got his PhD under the
supervision of Ahlswede. Their life-long collaboration produced 49 papers alto-
gether. Ning Cai’s contribution to this volume is contained in the joint paper
[B03] with Binyue Liu. The article studies the following channel problem: two
senders would like to simultaneously transmit a message each to a receiver. This
is done in two steps. First, the message pair is transmitted to n relays. In the
second step, the n relays transmit an amplified version of what they received to
the receiver. The receiver does not receive anything in the first step. All chan-
nels are subject to additive Gaussian noise. The senders have individual power
constraints. For the relays two cases are considered. In the first case they have
a sum power constraint. In the second case they are subject to individual power
constraints. The problem treated in the paper is in each case to find the opti-
mal amplify-and-forward scheme, i.e. the powers at which the relays forward the
received signals to the receiver, and to find the corresponding rate region.

In the field of information technology starting around the year 2005, there
was much interest in and discussion of Rudolf Ahlswedes information theoreti-
cal approach to the development of future communication systems. Because of
this, Rudolf Ahlswede was often invited to information technology conferences
as the plenary speaker. He lively exchanged developments with many engineers
and this led him to attend research meetings at the TU Berlin and the Hein-
rich Hertz Institute, where he worked closely with Holger Boches group. The
following topics were discussed extensively in his lectures and in joint seminars:
information theoretic security, arbitrary varying classical and quantum chan-
nels, common randomness and de-randomization, resource theory for classical
and quantum channels, multiuser systems, new approaches for frequency usage,
and approaches to model channel uncertainty. Rudolf Ahlswede was also very
much interested in the practical aspects of communication systems, and the
resulting discussions led to many publications. This tradition of his close coop-
eration with communication engineers that had its beginnings in Berlin was to
have been continued with his appointment to the Institute of Advanced Study
at the TU München in 2011.

Moritz Wiese, one of Boche’s group, and Holger Boche considered a multi-
user model in [B04]. The multiple access channel with eavesdropper is considered
with two main variations: with common randomness (between the transmitters)
and with rate-limited conferencing. In addition, in the first variant, the senders
not only have their own message but also have to transmit a common one. It
comes to no surprise that the problem is complex, and the present authors don’t
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completely solve it. But they use some well-established bits of machinery and
quite some ingenuity to provide achievable regions.

This paper introduces us to another important research area to which Ah-
swede gave a significant contribution: cryptography. In this field, the article by
Igor Bjelaković, Holger Boche, and Jochen Sommerfeld [B05] presents several
results on AVCs and wiretapping: a lower bound on the random code secrecy
capacity for the average error criterion and the strong secrecy criterion in the
case where of the eavesdropper has the best channel; an upper bound on the
deterministic code secrecy capacity in the general case, which results in a multi-
letter expression for the secrecy capacity in the case of best channel for the
eavesdropper.

A third paper on cryptography is by Csiszár (joint work with Rudolf
Ahlswede). In [B06] the author shows new results on the so-called oblivious
transfer (OT) capacity in the honest-but-curious model. OT is a fundamental
concept in cryptography, see for example [I04]. The term has been used with
different meanings, including a simple transmission over a binary erasure chan-
nel. Here OT means “1-2 oblivious string transfer” [I04]: Alice has two length-k
binary strings K0 and K1 and Bob has a single bit Z as inputs; an OT pro-
tocol should let Bob learn KZ while Alice remains ignorant of Z and Bob of
KZ̄ (Z̄ = 1−Z). The Shannon-theoretic approach is used, thus ignorance means
negligible amount of information. In 1988 Rudolf Ahlswede received together
with Imre Csiszár the Best Paper Award of the IEEE Information Theory Soci-
ety for work in the area of the hypothesis testing.

Another major breakthrough brought by Rudolf Ahlswede to the area of in-
formation theory was the definition of network coding in [A155]. Network coding
is by now a generally accepted concept and has started a revolution in commu-
nication networks! We quote from page 58 of [I03] “On the Internet and other
shared networks, information currently gets relayed by routers – switches that
operate at nodes where signaling pathways, or links, intersect. The routers shunt
incoming messages to links heading toward the messages’ final destinations. But
if one wants efficiency, are routers the best devices for these intersections? Is
switching even the right operation to perform?

Until seven years ago, few thought to ask such questions. But then Rudolf
Ahlswede of the University of Bielefeld in Germany, along with Ning Cai, Shuo-
Yen Robert Li and Raymond W. Yeung, all then at the Chinese University of
Hong Kong, published groundbreaking work that introduced a new approach to
distributing information across shared networks. In this approach, called network
coding, routers are replaced by coders, which transmit evidence about messages
instead of sending the messages themselves. When receivers collect the evidence,
they deduce the original information from the assembled clues.

Although this method may sound counterintuitive, network coding, which is
still under study, has the potential to dramatically speed up and improve the
reliability of all manner of communications systems and may well spark the next
revolution in the field. Investigators are, of course, also exploring additional
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avenues for improving efficiency; as far as we know, though, those other ap-
proaches generally extend existing methods.”

In [B07] Anas Chaaban, Aydin Sezgin, and Daniela Tuninetti consider the
symmetric butterfly network (BFN) with a full-duplex relay operating in a bi-
directional fashion for feedback. This network is relevant for a variety of wireless
networks, including cellular systems dealing with cell-edge users. Upper bounds
on the capacity region of the general memoryless BFN with feedback are derived
based on cut-set and cooperation arguments and then specialized to the linear
deterministic BFN with really-source feedback.

In [B08] David Einstein and Lee Jones consider the case of a network with
given total flows into and out of each of the sink and source nodes. It is useful
to select uniformly at random an origin-destination (O-D) matrix for which the
total in and out flows at sinks and sources (column and row sums) match the
given data. The authors give an algorithm for small networks ( less than 16
nodes) for sampling such O-D matrices with exactly the uniform distribution
and apply it to traffic network analysis. This algorithm can also be used in the
statistical analysis of contingency tables.

Ahlswede and Jones were together in Göttingen from 1974 to 1975 and in
Bielefeld Summer semester 1991. They never published jointly. However they
together discovered and provided several information-theoretic counterexamples
for Imre Csiszár. In addition they found several very short original proofs of
probability theorems (published by others in the mid 1970’s) on partially ordered
sets. And for a brief period they claimed an extension of Christofides traveling
salesman inequality to the k-salesmen case (Daniel Kleitman even presented
their proof at the Vancouver International 1974 Congress.) Shortly thereafter
they discovered an error in the proof and showed with an example that the
extension was impossible. Both agreed not to publish the counterexample as
Ahlswede (at that time) believed that Science is better advanced with positive
not negative results.

In 1996 Ahlswede started to work intensively on Quantum Information The-
ory. He was the supervisor of Andreas Winter who is now one of the main experts
in the field. In the article [B09], Andreas Winter provides a survey of basic con-
cepts, and main results in identification over quantum channels. This quantum
counterpart of the classical channel identification was introduced in P. Löber’s
PhD thesis, under the supervision of Ahlswede. Andreas Winter’s paper also
includes a list of open problems in the area.

In [B10], Vladimir Blinovsky and Minglai Cai – the last student who started
his PhD under the supervision of Ahlswede – derive a lower bound on the capac-
ity of classical-quantum arbitrarily varying wiretap channel. The theory of the
classical-quantum arbitrarily varying channel was developed by Ahlswede and
Blinovsky. The complete characterization of the capacity of classical-quantum
arbitrarily varying channel was given in [A216]. For the corresponding wiretap
channel the situation is different. Only a lower bound is derived in the paper.
The technique for the proof combines ideas from the theory of arbitrarily vary-
ing channel with ideas from the theory of the wiretap channel. Furthermore the
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authors also determine the capacity of the classical quantum arbitrarily varying
wiretap channel with channel state information at the transmitter.

On quantum information theory, Rudolf Ahlswede had established a very
active collaboration with Holger Boche and his group (see also above). This
cooperation among the two groups still continues. Their contribution in [B11]
deals with compound as well as arbitrarily varying classical-quantum channel
models. The paper pulls together a whole set of previous results, improving them
and simplifying their proofs. Also, the connection between zero-error capacity
and certain arbitrarily varying channels is discussed.

At the crossroad of coding and information theory, the area of data compres-
sion is also represented in this volume. In [B12] Travis Gagie studies the power of
multiple read/write streams compared to the single stream case for compression,
constrained by polylog memory and passes is considered. The results provided
are: universal compression is possible with one stream and one pass; grammar
based compression cannot be achieved with one stream and, regarding streams,
entropy-only bounds are achievable iff two streams are available.

The article by Matthias Löwe in [B13] provides a review of the area of scenery
reconstruction, distinguishing sceneries and related topics. This article explains
in a simple manner several of the main mechanisms of the algorithms which have
been developed in this subfield. The author describes the model as an information
theretic channel model and ask the question “Can we transmit information over
such a channel at all?”.

Rudolf Ahlswede entertained a continuing and fruitfull collaboration with
Armenian reasearchers at the Institute for Informatics and Automation Prob-
lems in Yerevan from beginning of 90’s. Among his collaborators from this insti-
tute were Levon Khachatrian, Harout Aydinian, Evgueni Haroutunian and other
reasearchers from the group of Rom Varshamov. Also Ahlswede was the supervi-
sor of two PhD students, Marina Kyureghyan and Gohar Kyureghyan, from that
institute. During the ZiF project General Theory of Information Transfer and
Combinatorics (2001-2004) Ahlswede and Haroutunian investigated problems of
hypothesis testing for arbitrarily varying sources and problems of hypothesis
idendification. In [B14] Evgueni Haroutunian and Parandzem Hakobyan sur-
vey the investigations on optimal testing of multiple hypotheses, including the
results of Ahlswede and Haroutunian, concerning various multiobject models.
These studies show how useful are application of methods and techniques devel-
oped in Shannon Information Theory for solution of typical statistical problems.

II Combinatorics

When discussing Ahlswede and Combinatorics, we have to speak of his joint
work with Levon Khachatrian. In 1991 Khachatrian visited the University of
Bielefeld, as a guest of the Research Project SFB 343 (Diskrete Strukturen
in der Mathematik). In Bielefeld Khachatrian began a very fruitful collabora-
tion with Ahlswede, which continued for more than ten years, until the unex-
pected death of Khachatrian in early 2002. A series of deep results and solu-
tions of long standing problems have been settled by Ahlswede and Khachatrian
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during this period. Among them two famous problems of Erdős were solved,
the first one in number theory, the coprimality problem raised in 1962, and the
second, in extremal set theory, the intersection problem raised by Erdős, Ko,
and Rado in 1938. Combinatorial number theory was one of the favourite sub-
jects of Ahlswede and Khachatrian. In the mid 90’s Ahlswede and Khachatrian
started a close cooperation with the well-known number theorist András Sárközy
(the most frequent co-author of Erdős). A series of remarkable joint papers with
Khachatrian and Sárközy, on divisibility (primitivity) of sequences of integers,
have been written during this collaboration. Paper [B15] by Christian Mauduit
and András Sárközy is dedicated to the memory of Ahlswede and Khachatrian.

[B15] gives a comprehensive survey on the results regarding the f -complexity
of sequences. The notion of f -complexity (family-complexity) of sequences was
first introduced and studied by Ahlswede, Khachatrian, Mauduit, and Sárközy
in 2003. This quantitative measure of a property of families of sequences to
have “rich“ and “complex” structure plays an important role in cryptography.
During the last decade several new papers on f -complexity and related problems
have appeared. [B15] gives a nice overview of those results and related research
problems. In the last section of the paper the authors answer the question asked
by Csiszár and Gács, at the Ahlswede’s memorial conference (at the ZiF), about
the connection between f -complexity and VC-dimension.

In [B16] a shadow minimization problem under word-subword relation is con-
sidered for the restricted case. The authors give a complete solution to the prob-
lem. This problem was raised by Ahlswede, motivated by the study of capacity
error function for q-ary error-correcting codes with feedback, the subject on
which Rudolf Ahlswede, Christian Deppe, and Vladimir Lebedev were working
on in late 2010. Vladimir Lebedev cooperated with Ahlswede’s research group
during the last years visiting regularly the University of Bielefeld.

In [B17] Harout Aydinian, Éva Czabarka, and Läszló Székely introduce and
study k-dimensional M -part multifamilies which is a generalization of M -part
Sperner families studied in the literature. BLYM type inequalities for these fam-
ilies are obtained and connections with multitransversals and mixed orthogonal
arrays are established. The convex hull method is extended to k-dimensional
M -part multifamilies which in turn provides new results for Sperner families.
Harout Aydinian has worked for many years in the research group of Rudolf
Ahlswede. His joint projects with Ahlswede include topics on extremal combi-
natorics, coding theory, and communication networks. Ahlswede and Aydinian,
together with Khachatrian, introduced and studied a new type of extremal prob-
lems for finite sets: extremal problems under dimensional constraints. Many of
them are still open.

Rudolf Ahlswede had good relations with many of his co-authors and their
families. Thus, he kept good relations with David Daykin and his family, which
is told in the obituary [B41] by Jacky Daykin, the daughter of David Daykin.
David Daykin died in October 2010 and Rudolf Ahlswede gave a talk at his
memorial. One of the last results of David Daykin is [B18]. In this paper, the
authors revisit a well-known problem concerning the factorization of strings in
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a Lyndon-like manner. As the main result, they describe efficient sequential and
parallel algorithms for factoring of words over some general classes of factoriza-
tion families.

One of the last papers of Rudolf Ahlswede is related to a security problem
for databases. In [B19] Sergei Bezrukov, Uwe Leck, and Victor Piotrowski con-
sider an interesting combinatorial problem arising in the context of distributed
databases. For a given configuration T , defined as a set of faulty nodes in an
n-dimensional grid graph, the problem asks if (and how fast) is it possible to
recover the nodes in T , where an allowed step is to recover all nodes along a line
l, parallel to a coordinate axis, as long as l does not contain too many faulty
nodes. The authors obtained nontrivial bounds for the size of completely recov-
erable configurations, for the numbers of steps needed to recover a fixed node
or the full configuration. They also developed fast recovery algorithms for some
variants of the recovery problem. Sergey Bezrukov, a co-author of Ahlswede, was
a visiting researcher in Ahlswede’s group in the early 90’s.

In [B20] Carlos Hoppen, Yoshiharu Kohayakawa, and Hanno Lefmann look
for an extremal problem for simple hypergraphs with unique extremal configu-
ration but without stability: there are several almost optimal solutions with far
apart structures. This phenomenon is known for non- simple graphs, however
was not known for simple hypergraphs so far. The problem class studied in the
paper is as follows: fix a family of forbidden hypergraphs F and for a fixed hy-
pergraph H and integer k we are looking for all possible k-colorings such that
no monochromatic copy of any element of F is present. The problem is to find
the maximum of this number, over all choises of H . This problem is studied
in details for k = 4 and it is shown that the extremal family is unique while
the problem (of determining the maximum) is unstable. Hanno Lefmann was a
student and later a colleague of Rudolf Ahlswede at the University of Bielefeld.

The paper [B21] by Ulrich Tamm is devoted to the communication complex-
ity problems studied by Ahlswede and his co-authors. Ulrich Tamm was the
last postdoc of Rudolf Ahlswede who did his habilitation at the University of
Bielefeld. He was educated by Rudolf Ahlswede as an expert in communica-
tion complexity. Motivated by the communication complexity of the Hamming
distance, Ahlswede raised several challenging combinatorial extremal problems
(called Two Family Extremal Problems). Some of them are still open. In [B21]
first the author surveys some important results on communication complexity of
vector-valued and sum-type functions, for two-party model. In the second part
he shows that some of these results can be extended to a multiparty model for
vector-valued functions and the pairwise comparison scheme.

In [B22] Éva Czabarka, Matteo Marsili, and László Székely study the thresh-
old function to make almost sure that no two bins contain the same number of
balls, when n balls are put into k bins. Depending whether balls and bins are
distinguishable/non-distinguishable, there are four combinations. The authors
determined the threshold functions for all four scenarios. The non-distinguishable
ball problems are essentially equivalent to the Erdős-Lehner asymptotic formula
for the number of partitions of the integer n into k parts.
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In [B23] Elena Konstantinova gives a survey on two problems of Cayley graphs
on the symmetric group: the Star graphs and the Pancake graphs. The first
problem deals with the characterization of efficient dominating sets (or perfect
codes) and the second one on the cycle structure of these two families of graphs.
The main contribution of the author is the conclusion that this description covers
in fact all possible constructions of perfect codes in these families. Furthermore,
the author gives a structural description of small cycles (of lengths between six
and nine) in the Pancake graph.

III Search Theory

When the book [A243] by Rudolf Ahlswede was written in the late 70’s dur-
ing the preceding three decades theoretical and practical contributions classified
as “search” were made in Operation Research, Information Theory, Medicine,
Computer Science, Management Science, Optimisation Theory etc. Quite differ-
ent tasks were lumped together under the same name and time was not mature
to even try a unified theory. Instead, typical examples were treated and this is
reflected in the choice of the title.

However, this was at the start of the aim to develop a theory in the long run.
We quote “We want to use our concepts and classifications to make a contribution
to working out the essential, common points of the various search problems. By
contrasting the various search problems and the methods for their solution, we
hope finally to improve the exchange of information between scientists in the
various fields.”

This book was divided into several parts each one of them dealing with a
different class and model of search problems.

At the time of the cooperation group, the following canonical models of search
could be shown to encompass all of the different classes considered in the book:

Combinatorial Model Probabilistic Model
1. X set of objects. 1. (X , P ) search space.
2. T ⊂ P(X ) set of tests. 2. W set of stochastical matrices W : X → Y

as set of tests.

Familiar performance criteria are number of errors, error probability, costs,
search duration, complexity, ... and expectations thereof (see also [A195]). Non-
deterministic strategies are to be also considered.

Going through the fulminant work on search in the last years one notices
a great emphasis on optimisation. If one wants to find the maximum of an
integer-valued function one notices that this search problem is almost in the
canonical form, but not quite: One has to replace objects by sets of objects
(putting together functions with the same maximum value). After this slight
generalisation optimisation is covered by our model and the main issue is to
handle adaptiveness.

One of the main topics in the cooperation group was group testing. In com-
binatorial group testing, in an N -element set U , the search space, there is a
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special subset D (the set of defectives of positives, usually |D| � N) which we
want to discover by asking as few tests as possible. A test is any subset A of U
and has two possible outcomes: 0 if A ∩ D = ∅ and 1 otherwise. Adaptive and
non-adaptive strategies have been investigated and also both the cases where an
exact estimate or only an upper bound is provided on the size of the set D.

Threshold group testing is a generalization of the basic group testing model
introduced in [I02]. Let l and u be nonnegative integers with l < u, called the
lower and upper threshold, respectively. Suppose that a group test for A says
Yes if A contains at least u positives, and No if at most l positives are present.
If the number of positives in A is between l and u, the test can give an arbitrary
answer. We suppose that l and u are constant and previously known. The obvious
questions are: What can we figure out about D? How many tests and how much
computation are needed? Can we do better in special cases? We call g := u−l−1
the gap between the thresholds. The gap is 0 iff a sharp threshold separates Yes
and No, so that all answers are determined. Obviously, the classical case of group
testing is l = 0, u = 1.

Fig. 1. The photo shows Rudolf Ahlswede
discussing with Anna Voronina (PhD of
Arkadii D’yachkov) during the conference
Search Methodologies II, 2010

In [B24] Rudolf Ahlswede, Chris-
tian Deppe, and Vladimir Lebedev
consider non-adaptive threshold test-
ing together with another generaliza-
tion called majority group testing.
They generalize and improve several
earlier results by showing that appro-
priate codes are good test sets.

Christian Deppe was the last as-
sitant of Rudolf Ahlswede. After
Ahlswede received his emeritus sta-
tus, Deppe worked together with him
in several projects. Since 2011 he took
the guidance of the remaining projects
of Ahlswede. Together with Harout
Aydinian, Vladimir Blinovsky, Ning

Cai, Minglai Cai, Vladimir Lebedev, and Christian Wischmann he continues
the work in Bielefeld started by Rudolf Ahlswede. He is thankful for the support
of the Department of Mathematics in Bielefeld and for the help of Holger Boche
and Igor Bjelaković.

In [B25] Arkadii D’yachkov, Vyacheslav Rykov, Christian Deppe, and Vladimir
Lebedev study superimposed codes and their connections to two non-adaptive
group testing models introduced by Erlich et al. (2010) and threshold group
testing. The first part of this paper provides a survey on superimposed codes,
which are ubiquitously used for group testing strategies.

D’yachkov first met Ahlswede in 1971 in Tsahkadzor (Armenia) during the
Second International Information Theory Symposium, which was organized in
the USSR. Ahlswede invited D’yachkov several times to Bielefeld.
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In paper [B26] Rudolf Ahlswede and Harout Aydinian give a construction of
error-tolerant pooling designs, associated with finite projective spaces. A new
family of dz-disjunct inclusion matrices obtained from packings in finite projec-
tive spaces is presented. In particular, a family of disjunct matrices with near
optimal parameters is obtained.

In [B27] Dániel Gerbner, Balázs Kesegh, Dömötör Pálvölgyi, and Gabor
Wiener consider a new model of group testing where the set of defectives D
is assumed to be large, but we are only interested in finding at least m of them,
where m < |D|. In this model, a test asks if the proportion of the defective
elements in the subset tested is above a certain threshold. The paper gives lower
and upper estimates on the minimum number of tests (in the worst case) in
an adaptive algorithm, which are nearly sharp in different cases of the values
of the parameters. The first results were presented in the first workshop of the
cooperation group and motivated Ahlswede, Deppe, and Lebedev to work on it.
Their results on this model were already published in [A237].

In [B28] Hong-Bin Chen and Hung-Lin Fu consider the case where more than
one type of defectives are present in the search space and the result of a test
can be affected by the simultaneous presence of different types of defectives. The
authors provide lower and upper bounds on the total number of tests required,
the number of stages needed to perform all tests and the decoding complexity.
An asymptotically optimal 2-stage algorithm based on selectors is also given.

In [B29] a new variant of combinatorial group testing, called complete group
testing problem is introduced: the number of defectives among N items is un-
known and one tries to minimize the worst case number of tests needed if there
happen to be at most D defectives. However, the case of more than D defectives
is not excluded, and if more than D defectives are actually present, this must be
detected as well and reported. The author proves that the optimal algorithm for
the complete group testing problem needs exactly one additional test compared
to the optimal algorithm for the basic model.

In [B30] a survey of results on randomized post-optimization for t-restrictions
is given. These constructions can be used for many search problems, also for
group testing algorithms.

The theory of screening experimental design (SED) can be located in applied
mathematics in the border region of search and information theory ([I08]). It
comprises models of so-called discrete search problems with randomly disturbed
tests; these problems are equivalent to certain coding problems from information
theory. In particular coding theory for so-called multiple-access channels finds
application in practical problems here for the first time.

In many “processes” which are dependent on a large number of factors, it is
natural, that one assumes a small number of “meaningful” factors, which really
control the process, and considers the influence of the other factors as mere
“experiment errors”. Experiments to identify the meaningful factors are called
selecting experiments.

In the middle of the seventies Mikhail Maljutov published a series of papers
about special models that cleared up the connection to information theory ([I06],
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[I05]). In [B31] Mikhail Maljutov gives a survey of the known results in SED
focussing on the relations with the new flourishing area of compressed sensing.

Ahlswede was the first outstanding Western researcher to recognize the re-
sults of Maljutov. He endorsed its description in the Addendum to the Russian
translation of his book “Search Problems”. Ahlswede’s diploma student Jochen
Viemeister at Bielefeld University prepared a detailed survey 45 of results on
Maljutov’s results spanning around 200 pages in 1982.

Rudolf Ahlswede became interested in Combinatorics in the early seventies.
After a short visit in Budapest he invited Gyula Katona to Göttingen. Their 6
month long joint work in 1974 there resulted in two joint papers. This was the
beginning of Ahlswede’s long and bright journey in the field of Combinatorics.
They have not written any more joint papers, but they met many times in Biele-
feld and Budapest and their cooperation in Combinatorics and Search Theory
continued in a less intensive way as it can be traced in their publications.

In [B32] Gyula Katona and Krisztián Tichler consider an interesting combi-
natorial search problem with errors. In their model, the errors depend on the
target in the following sense: every permitted question specifies two sets of ele-
ments B and a A ⊂ B with |A| ≥ a, where a is a parameter of the problem. The
set A defines the border of reliability of the test, in the sense that if the object
to be found is in A, then the answer can be arbitrarily YES or NO. The authors
give optimal algorithms for the adaptive and for the non-adaptive case.

For the adaptive case, bounds on the size of the smallest size strategies had
been previously given by Ahlswede in [A220].

In [B33] Christian Deppe and Christian Wischmann consider the
1-dimensional cutting problem, a search/optimization problem consisting in min-
imizing the cost of sawing steel tubes to lengths requested by customers starting
from longer tubes. The solution given in this paper improves upon the previous
results of Gilmore and Gomory.

To find an (approximately) optimal choice of batches, the graph theoretical
problem of finding a minimal weighted partition for a weighted hypergraph is
used. This is done by interpreting the lengths requested by customers as vertices
and every possibility of combining customer’s lengths to a batch as an edge. The
weights of an edge correspond to the minimal cost which arise from combining
all nodes on the edge into one initial length.

The authors show both how to calculate the edge weights, i.e. the minimal
cost which arise from combining all nodes into one initial length by using Gilmore
and Gomory’s method, and how to faster calculate the (approximately) minimal
cost by using a heuristic method for the knapsack problem. Furthermore, they
derive a heuristic algorithm for the minimal weighted partition of a weighted
hypergraph.

Tree search is one of the central algorithms of any game playing program.
[B34] is an overview by Ingo Althöfer of the evolution of research on the topic
of game tree search. The paper provides a succinct overview of the topic of
game tree search, running all the way from Zermelo at the beginning of the 20th
century to the present day. For the specialist in the early history of game theory,
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it provides useful informations and an overview of the central approaches and
concepts in the development of computer-play of chess and Go.

Rudolf Ahlswede was Ingo Althöfer’s teacher at Bielefeld University from
1983 to 1993. In his Ackknowledgement he describes how happy he was about
the tolerant and unaffected research style of Rudolf Ahlswede. Ingo Althöfer in-
troduced several students to do computer supported mathematics. Among them
was Bernhard Balkenhol who initated a group working in data compression.
Furthermore together with Ahlswede and Khachatrian he formulated the 3/4-
conjecture for fix-free codes in 1996. This conjecture is still open and attracts a
lot of papers.

A fix-free code is a code, which is prefix-free and suffix-free, i.e. any codeword
of a fix-free code is neither a prefix, nor a suffix of another codeword. Fix-free
codes were first introduced by Schützenberger (1956) and Gilbert and Moore
(1959), where they were called never-self-synchronizing codes. [B35] establishes
a collection of results regarding fix-free codes, i.e., variable length binary code
where no codeword is either a prefix or a suffix of any other codeword. In par-
ticular the author shows that in any fix free code of Kraft sum 2/3 or less one of
the shorter words can be replaced by a large number of longer words preserving
both the fix free property and the Kraft sum. The author also presents some
new families of complete thin fix free codes.

In [A61] and [A64] Ahlswede, Ye, and Zhang started a new area of research
on creating order in sequence spaces with simple machines. On a very high level
it was to understand how much “order” can be created in a “system” under
constraints on the “knowledge about the system” and on the “actions which can
be performed in the system”. Rudolf Ahlswede was disappointed that this did
not receive much attention. He pointed this out also during his Shannon Lecture.

In [B36]a “multi-user version” is discussed. Here, the output sequence is no
longer a permutation of the input sequence, rather it is a permutation of a
selected subsequence of the input sequence. The word of multi-user may not be
precise for the problem studied, rather it is borrowed from multi-user information
theory. The model studies a case that the rate of input is higher than the rate of
output. Another major difference between this model and the original model is
the measurement of the “efficiency” for a particular organization method. It no
longer uses the entropy or cardinality of the output space, it uses the expected
value of the time of getting the first 0. Although the model is quite different, it
is an interesting mathematical model. Its solution is non-trivial and is related
to other interesting mathematical problems. Like for the original creating order
model, many variations of the model exist which are of interest.

Obituaries and Personal Memories

We refer to the prefaces of [I01] and [A246] for many biographical information
on Rudolf Ahswede. These books appeared on the occasion of Ahlswede’s 60th
and six years later on the occasion of Ahlswede’s ZiF Project “General Theory
of Information Transfer and Combinatorics”. In this part of the present volume
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we have collected obituaries written by Ahlswede’s family and friends, his super-
visor Konrad Jacobs, students and coauthors. We have also included some nice
anecdotes. Rudolf Ahlswede liked to tell jokes and laugh about himself and his
mischance. It was typical of him to interrupt a lecture to tell a funny story, a
habit which was very much appreciated by his students.

It is not very easy to translate into written form such anecdotes with their
emotional content, however we hope that these stories will help the reader to get
yet another glimpse on Rudi’s character and life.

November 2012 Ingo Althöfer, Harout Aydinian, Holger Boche,
Ning Cai, Ferdinando Cicalese, Christian Deppe,

Vladimir Lebedev, Ulrich Tamm
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Search Methodologies I

organized by Rudolf Ahlswede, Ferdinando Cicalese, and Ugo Vaccaro
Dagstuhl, 05.07.09–10.07.09

The main purpose of this seminar was to provide a common forum for researchers
interested in the mathematical, algorithmic, and practical aspects of the prob-
lem of efficient searching, as seen in its polymorphic incarnation in the areas
of computer science, communication, bioinformatics, information theory, and re-
lated fields of the applied sciences. We believe that only the on site collaboration
of a variety of established and young researchers engaged in different aspects of
search theory might provide the necessary humus for the identification of the ba-
sic search problems at the conceptual underpinnings of the new scientific issues
in the above mentioned areas.

Ingo Althöfer Monte Carlo Search in Trees and Game Trees
Harout Aydinian On Error-Tolerant Pooling Designs Based on

Vector Spaces
Charles Colbourn Locating an Interaction Fault
Peter Damaschke Competitive Group Testing and Learning

Hidden Vertex Covers with Minimum
Adaptivity

Christian Deppe Adaptive Coding Strategies and the Counting
of Sequences with Forbidden Pattern

Travis Gagie Minimax Trees in Linear Time with
Applications

Mordecai Golin A Generic Top-Down Dynamic-Programming
Approach to Prefix-Free Coding

Gyula O.H. Katona Finding at Least One Defective Element in
Two Rounds

Kingo Kobayashi Some Aspects of Finite State Channel related
to Hidden Markov Process

Evangelos Kranakis Memory/Time Tradeoffs for Rendezvous on a
Ring

Anthony J. Macula Covert Combinatorial DNA Taggant Signatures
for Authentication, Tracking and Trace-Back

Martin Milanic Competitive Evaluation of Threshold Functions
and Game Trees in the Priced Information
Model
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Olgica Milenkovic Iterative Algorithms for Low-Rank Matrix
Completion

Ely Porat The Beauty of Prime Numbers vs the Beauty
of the Random

Søren Riis Graph Entropy, Network Coding and Guessing
Games

Eberhard Triesch Searching for Defective Edges in Graphs and
Hypergraphs

Gábor Wiener Rounds in Combinatorial Search
Anatoly Zhigljavsky Existence Theorems for Search Problems with

Lies

The following researchers spoke in the problem session:

Rudolf Ahlswede, Ferdinando Cicalese, Gianluca De Marco, Vladimir
Lebedev, Ugo Vaccaro, and Sören Werth.



Search Methodologies II

organized by Rudolf Ahlswede and Ferdinando Cicalese
ZiF, Bielefeld, 25.10.10–29.10.10

This workshop was the opening event of the cooperation group “Search Method-
ologies” at the ZiF. We were interested in deepening our understanding of search
problems and we envision that some unifying principles might be disclosed. At
least we want to analyze methods and techniques of searching, simplify, compare
and/or merge them. One day was devoted to these activities.

The opening lecture by Rudolf Ahlswede explained that time seems to be
mature for a more systematic understanding with the goal to build general the-
ories of search. Harout Aydinian and Vladimir Lebedev helped as fellows in this
endeavor.

Harout Aydinian On Generic Erasure Correcting Sets and
Related Problems

Vladimir Blinovsky Solutions of Some Problems from Extremal
Combinatorics

Huilan Chang Identication and Classication Problems on
Pooling Designs for Inhibitor Complex
Models

Hong-Bin Chen Pooling Designs with Sensitive and Ecient
Decoding

Ferdinando Cicalese Superselectors: Efficient Constructions and
Applications

Éva Czabarka Full Transversals and Mixed Orthogonal Arrays
Peter Damaschke Randomized and Competitive Group Testing in

Stages
Annalisa De Bonis Combinatorial Group Testing for Corruption

Localizing Hashing
Christian Deppe Threshold and Majority Group Testing
Arkadii D’yachkov DNA Codes for Additive Stem Distance
Dániel Gerbner Search with Density Tests
Tobias Jacobs Searching in Trees
Sampath Kannan Sampling from Constrained Multivariate

Distributions
Gyula O. H. Katona Average Length in q-ary Search with Restricted

Sizes of Question Sets
Balázs Keszegh Path-Search in a Pyramid and Other Graphs
Kingo Kobayashi Some Structures of Tower of Hanoi with Four

Pegs
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Elena Konstantinova Search Problems on Cayley Graphs
Vladimir Lebedev Shadows Under the Word-Subword Relation
Ulf Lorenz Searching for Solutions of Hard Problems
Anthony J. Macula Combinatorial Method for Anomaly Detection
Martin Milanic Haplotype Inference and Graphs of Small

Separability
Ely Porat An Extension of List Disjunct Matrices

that can Correct Errors in Test Outcomes
K. Rüdiger Reischuk Searching for Hidden Information
Søren Riis A New Max-Flow Min-Cut Theorem for

Information Flows
Vyacheslav V. Rykov An Application of Superimposed Coding

Theory to the Multiple Access OR Channel
and Two-Stage Group Testing Algorithms

Christian Sohler Streaming Algorithms for the Analysis of
Massive Data Sets

László Székely M-part Sperner families
Olivier Teytaud Monte-Carlo Tree Search: a New Paradigm for

Computational Intelligence
Eberhard Triesch A Lower Bound for the Complexity of Mono-

tone Graph Properties
Anna N. Voronina DNA Codes for Non-Additive Stem Distance



Search Methodologies III

organized by Ferdinando Cicalese and Christian Deppe
ZiF, Bielefeld, 03.09.12–07.09.12

Search Methodologies III has been the last of three main events organized within
this cooperation group. In this final workshop, the programme included four ma-
jor topics: theory of games and strategic planning, combinatorial group testing
and database mining, computational biology and string matching, coding, infor-
mation spreading and patrolling on networks. Besides providing an opportunity
for the dissemination of recent results, beyond the border of the restricted com-
munity, we pursued cross-fertilization via several RUMP sessions, namely, special
open problems and discussion sessions where experts of diverse disciplines could
cooperate on the definition of new models, problems or solutions to open prob-
lems. Further there were two tutorial talks on communication complexity and
quantum computing.

Matthew Aldridge Adaptive Group Testing: a Channel Coding
Approach

Ingo Althöfer Strange Phenomena in Monte-Carlo Game Tree
Search

Harout Aydinian Quantum Error Correction: An Introduction
Vladimir Balakirsky Extracting Signicant Parameters from Noisy

Observations and Their Use for
Authentication

Bernhard Balkenhol Fuzzy Self-Learning Search
Michael Bodewig Completeness and Multiplication of Fix-Free

Codes Regarding Ahlswedes 3/4-Conjecture
Éva Czabarka k-Dimensional m-Part Sperner Families and

Mixed Orthogonal Arrays
Peter Damaschke On Optimal Strict Multistage Group Testing
Gianluca De Marco Computing Majority with Triple Queries
Andreas Dress Using Suffix Trees for Alignment-Free Sequence

Comparison and Phylogenetic Reconstruc-
tion

Arkadii D’yachkov Superimposed Codes and Non-Adaptive
Threshold Group Testing

Leszek A. Ga̧sieniec Communication-Less Agent Location Discovery
Dániel Gerbner Majority and Plurality Problems
Gyula O. H. Katona When the Lie Depends on the Target
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Evangelos Kranakis Boundary Patrolling by Mobile Agents
Vladimir Lebedev Group Testing with Two Defectives
Zsuzsanna Lipták Some Problems and Algorithms in

Non-Standard String Matching
Mikhail Malyutov On Connection with Compressed Sensing and

Some Other New Developments in the Search
Theory

Nikita Polyansky Random Coding Bounds on the Rate for
Non-Adaptive Threshold Group Testing

Ely Porat Efficient Signature Scheme for Network Coding
Rüdiger Reischuk The Smoothed Competitive Ratio of Online

Caching
Søren Riis Search Problems Related to Dispersion, Graph

Entropy and Guessing Games
Atri Rudra Group Testing and Coding Theory
Vyacheslav V. Rykov On Superimposed Codes and Designs
László Székely Some Constructions for the Diamond Problem
Ulrich Tamm Multiparty Communication Complexity of

Vector-Valued and Sum-Type Functions
Olivier Teytaud Search with Partial Information
Eberhard Triesch Upper and Lower Bounds for Competitive

Group Testing
Gábor Wiener On a Problem of Rényi and Katona



Symposium in Remembrance of

Rudolf Ahlswede

ZiF, Bielefeld, 25.07.11–26.07.11

Organizers:
Harout Aydinian Ingo Althöfer Ning Cai
Ferdinando Cicalese Christian Deppe Gunter Dueck
Ulrich Tamm Andreas Winter

On July 25 and 26 a memorial symposium for Rudolf Ahlswede took place in
the Center for Interdisciplinary Research (ZIF) at the University of Bielefeld.
The symposium was organized by the ZIF in close cooperation with Rudolf
Ahlswede’s former students and partners of his many research projects. About
100 participants came to Bielefeld to remember life and work of Rudolf Ahlswede
who had passed away suddenly and unexpectedly on December 18, 2010.

Outside the lecture hall there were a poster wall with pictures and perma-
nent video presentations from Rudolf Ahlswede’s Shannon lecture and from the
memorial session at the ITA in San Diego. At the conference dinner further videos
were presented by Vladimir Lebedev and Tatiana Dolgova about their last visit
in Polle and by Rüdiger Reischuk from the conference on Rudolf Ahlswede’s 60th
birthday.

Further participants include among others - just to mention the information
theorists - Arkadii D’yachkov, Peter Gács, Te Sun Han, Gerhard Kramer, Aydin
Sezgin, Faina Soloveeva, and Frans Willems.

Before the official start of the symposium, a warm-up lecture by Charles
Bennett on “Quantum information” already attracted a lot of interest.

The first day then was devoted to personal memories on Rudolf Ahlswede’s
life and academic career.

M. Egelhaaf Commemorative address as representatives of the ZiF
E. Emmrich Commemorative address as representative of

the Department of Mathematics of the University of
Bielefeld

A. Ahlswede and
B. Ahlswede-Loghin Joint life with Rudolf Ahlswede
K. Jacobs Rudolf Ahlswede’s time in Göttingen
E. van der Meulen R. Ahlswede 1970-74
J. Daykin R. Ahlwede’s cooperation with David Daykin
M. Maljutov R. Ahlswede and search theory
G. Dueck Rudolf Ahlswede 1975-1985
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I. Althöfer Rudolf Ahlswede 1985-1995
U. Tamm R. Ahlswede 1995-2000
G. Khachatrian R. Ahlswede’s cooperation with Levon Khachatrian
N. Cai My cooperation with R. Ahlswede
B. Balkenhol R. Ahlswede and the computer
K. Kobayashi R. Ahlswede’s cooperation with Japanese researchers
V. Blinovsky R. Ahlswede’s cooperation with Russian researchers
C. Deppe R. Ahlswede 2000-2010
A. Winter R. Ahlswede and quantum information theory
H. Aydinian My cooperation with R. Ahlswede
C. Heup The identification of the lucky-dog-entropy
F. Cicalese My projects with R. Ahlswede
H. Boche R. Ahlswede in Berlin

The second day of the symposium was devoted to scientific lectures on
Ahlswede’s fields of research.

I. Csiszár Common randomness in information theory
P. Narayan Common randomness and multiterminal secure computation
A. Winter Quantum channels and identification theory
A. Sárközy On the complexity of families of binary sequences and lattices
A. Orlitsky String reconstruction from substring compositions
R. Reischuk Stochastic search for locally clustered targets
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S. Riis Information flows and bottle necks in dynamic communication

networks
L. Tolhuizen A generalisation of the Gilbert-Varshamov bound and its

asymptotic evaluation
L. Székely Higher order extremal problems
S. Bezrukov Local-global principles in discrete extremal problems
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16 The Restricted Word Shadow Problem . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Rudolf Ahlswede and Vladimir Lebedev

17 Mixed Orthogonal Arrays, k-Dimensional M-Part Sperner
Multifamilies, and Full Multitransversals . . . . . . . . . . . . . . . . . . . . . . . . 371
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35 Multiplied Complete Fix-Free Codes and Shiftings Regarding the
3/4-Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 694

Michael Bodewig

36 Creating Order and Ballot Sequences . . . . . . . . . . . . . . . . . . . . . . . . . . . 711
Ulrich Tamm

Obituaries and Personal Memories

37 Abschied . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 725
Alexander Ahlswede

38 Rudi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 726
Beatrix Ahlswede Loghin

39 Gedenkworte für Rudolf Ahlswede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 730
Konrad Jacobs

40 In Memoriam Rudolf Ahlswede 1938 - 2010 . . . . . . . . . . . . . . . . . . . . . . 732
Imre Csiszár, Ning Cai, Kingo Kobayashi, and Ulrich Tamm

41 Rudolf Ahlswede 1938-2010 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 735
Christian Deppe



XL Table of Contents

42 Remembering Rudolf Ahlswede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 739
Vladimir Blinovsky

43 Rudi Ahlswede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 741
Jacqueline W. Daykin

44 The Happy Connection between Rudi and Japanese Researchers . . . 743
Kingo Kobayashi and Te Sun Han

45 From Information Theory to Extremal Combinatorics: My Joint
Works with Rudi Ahlswede . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 746

Zhen Zhang

46 Mr. Schimanski and the Pragmatic Dean . . . . . . . . . . . . . . . . . . . . . . . . 749
Ingo Althöfer
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Two New Results for Identification for Sources

Christian Heup

Universität Bielefeld, Fakultät für Mathematik,
Universitätsstraße 25, 33615 Bielefeld, Germany

christian.heup@gmail.com

Dedicated to the memory of Rudolf Ahlswede

Abstract. We provide two new results for identification for sources.
The first result is about block codes. In [Ahlswede and Cai, IEEE-IT,
52(9), 4198-4207, 2006] it is proven that the q-ary identification entropy
HI,q(P ) is a lower bound for the average number L(P, P ) of expected
checkings during the identification process. A necessary assumption for
this proof is that the uniform distribution minimizes the symmetric run-
ning time LC(P, P ) for binary block codes C = {0, 1}k. This assumption
is proved in Sect. 2 not only for binary block codes but for any q-ary
block code. The second result is about upper bounds for the worst-case
running time. In [Ahlswede, Balkenhol and Kleinewchter, LNCS, 4123,
51-61, 2006] the authors proved in Theorem 3 that L(P ) < 3 by an
inductive code construction. We discover an alteration of their scheme
which strengthens this upper bound significantly.

Keywords: identification, source coding.

1 Terminology

We consider a discrete source (U , P ), where U := {1, . . . , N} and P is a prob-
ability distribution on U , together with a q-ary code C on U . Additionally and
in contrast to classical source coding we also introduce the so-called user space
V , with |V| = |U|. Let f : V → U be a bijective mapping. We encode the users
v with the same code C as before. That is, we set cv = cf(v). Without loss of
generality we assume that V = U and f = idU .

The task of identification is to decide for any user v ∈ U and every output
u ∈ U whether or not v = u. To achieve this goal we compare step by step
the first, second, third etc. digit of cv with the corresponding digits of cu. This
process halts with a negative answer if a digit occurs which is different for cv
and cu. It halts with a positive answer if all digits coincide. The number of steps
until the process halts is called the identification running time for (u, v) ∈ U ×U
and is denoted by LC(u, v). Obviously, it holds that LC(u, v) = lcp(cu, cv) + 1,
where lcp(cu, cv) is the longest common prefix of the two codewords cu and cv.

The goal of this article is to analyze the expected length of the identification
running time, also called the average running time, for a given user v ∈ U

LC(P, v) =
∑
u∈U

PuLC(u, v) .

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 1–10, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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This can be done in different ways. In the first scenario we assume that also
user v is randomly chosen according to a probability distribution Q on U . We
are now interested in the expected average running time or shortly the expected
running time

LC(P,Q) =
∑
v∈U

Q({v})LC(P, v)

where we focus on the special case Q = P

LC(P, P ) =
∑
v∈U

pvLC(P, v) =
∑

(u,v)∈U2

pupvLC(u, v)

We call LC(P, P ) the symmetric running time for a given code C and show that
it is minimized by the uniform distribution if C is a saturated block code.

In the second scenario we are interested in the worst-case average running
time

LC(P ) = max
v∈U

LC(P, v) ,

which we shortly call the worst-case running time. We construct a specific code
whose running time yields an upper bound for the optimal worst-case running
time

L(P ) = min
C
LC(P ) .

2 On the Optimality of the Uniform Distribution for
Identification on Saturated Block Codes

A saturated q-ary block code of depth n is a code of size qn where all codewords
have length n. It is denoted by Cqn . In order to show that the uniform distribu-
tion is optimal for identification on those codes we modify any given probability
distribution step by step until we reach the uniform distribution without increas-
ing LCqn

(P, P ). It turns out that not only the uniform distribution is optimal.
In fact, all distributions P = (p1, . . . , pqn) are optimal with the property that
for all i ∈ {1, . . . , qn−1}

iq∑
u=(i−1)q+1

pu =
1

qn−1
.

This is due to the fact that the running time regarding v is the same for all u
whose codewords cu coincide with cv in all but the last digit. The individual
steps of modification and their monotone decreasing property are formalized in

Lemma 1. Let n ∈ IN, q ∈ IN≥2, k ∈ {0, . . . , n−1} and t ∈ {0, . . . , qn−k−1−1}.
Further, let P = (p1, . . . , pqn) and P̃ = (p̃1, . . . , p̃qn) be probability distributions
on {1, . . . , qn} with

P = (p1, . . . , ptqk+1 , r1, . . . , r1︸ ︷︷ ︸
qk

, r2, . . . , r2︸ ︷︷ ︸
qk

, . . . , rq, . . . , rq︸ ︷︷ ︸
qk

, p(t+1)qk+1+1, . . . , pqn)
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and

P̃ = (p1, . . . , ptqk+1 ,
1

q

q∑
i=1

ri, . . . ,
1

q

q∑
i=1

ri︸ ︷︷ ︸
qk+1

, p(t+1)qk+1+1, . . . , pqn) .

Then, it holds

LCqn
(P, P ) − LCqn

(P̃ , P̃ ) =
qk(qk − 1)

2(q − 1)

q∑
i,j=1

(ri − rj)
2 ≥ 0 .

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ {1, . . . , q}.

Proof. Without loss of generality we assume that t = 0, such that

P = (p1, . . . , pqn) = (r1, . . . , r1, r2, . . . , r2, . . . , rq, . . . , rq, pqk+1+1, . . . , pqn)

and

P̃ = (p̃1, . . . , p̃qn) = (
1

q

q∑
i=1

ri, . . . ,
1

q

q∑
i=1

ri, pqk+1+1, . . . , pqn) .

Also, we abbreviate Δ := LCqn
(P, P ) − LCqn

(P̃ , P̃ ), Lu,v := LCqn
(u, v) and

αu,v := (pupv − p̃up̃v)Lu,v so that we have

Δ =

qn∑
u,v=1

αu,v .

It is clear that Lu,v = Lv,u and hence αu,v = αv,u. Also, αu,v = 0 if both u and
v are in {qk+1 + 1, . . . , qn}. This yields

Δ =

qk+1∑
u,v=1

αu,v + 2

qk+1∑
u=1

qn∑
v=qk+1+1

αu,v .

Furthermore, for u ∈ {1, . . . , qk+1} and v ∈ {qk+1 + 1, . . . , qn} we have

i) pv = p̃v ,
ii) Lu,v = L1,v, which we denote by Lv, and

iii)
qk+1∑
u=1

pu =
qk+1∑
u=1

p̃u .

The above observations yield

qk+1∑
u=1

qn∑
v=qk+1+1

αu,v
i),ii)
=

qn∑
v=qk+1+1

pvLv

qk+1∑
u=1

(pu − p̃u)
iii)
= 0

and hence
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Δ =
qk+1∑
u,v=1

[
pupv − 1

q2

(
q∑
i=1

ri

)2
]
Lu,v

=
q∑

j,m=1

[
rjrm − 1

q2

(
q∑
i=1

ri

)2
]

jqk∑
u=(j−1)qk+1

mqk∑
v=(m−1)qk+1

Lu,v .

Here, the first equality follows from the definition of P̃ . The second equality
is due to the definition of P . We now take a look at Lu,v and see that for
u ∈ {(j − 1)qk + 1, . . . , jqk} and v ∈ {(m− 1)qk + 1, . . . ,mqk} we have

Lu,v =

⎧⎨⎩
n− k , if j �= m

n− k + LC
qk
(u, v) , if j = m ,

where Cqk is the code consisting for all u ∈ {1, . . . , qk} of the codewords c̊u which
we obtain by deleting the leading n−k digits of cu. With this and the additional

fact that
∑jqk

u,v=(j−1)qk+1 Lu,v is independent of the choice of j ∈ {1, . . . , q} we
get

Δ = (n− k)q2k
q∑

j,m=1

[
rjrm − 1

q2

(
q∑
i=1

ri

)2
]

+
q∑

j=1

[
r2j − 1

q2

(
q∑
i=1

ri

)2
]

qk∑
u,v=1

LC
qk
(u, v) .

Next we see that

q∑
j,m=1

⎡⎣rjrm − 1

q2

(
q∑
i=1

ri

)2
⎤⎦ =

q∑
j,m=1

rjrm −
(

q∑
i=1

ri

)2

= 0

so that

Δ =

q∑
j=1

⎡⎣r2j − 1

q2

(
q∑
i=1

ri

)2
⎤⎦ qk∑
u,v=1

LC
qk
(u, v) .

We now focus on the running times and see that

qk∑
u,v=1

LC
qk
(u, v) =

qk∑
v=1

k∑
l=1

l ·#{u ∈ {1, . . . , qk} | LC
qk
(u, v) = l} .

For l = 1, . . . , k−1 the codeword of each element in the above sets has to coincide
with c̊v in the first l − 1 digits. Those are qk−l+1 many. Furthermore, each one
of those codewords has to differ from c̊v in the l-th digit. These are q− 1 out of
q. We end up with (q − 1)qk−l elements. If l = k, also v itself is contained in
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the corresponding set. Again it is easy to see that this does not depend on the
choice of v ∈ {1, . . . , qk}. It follows that

qk∑
u,v=1

LC
qk
(u, v) = qk

[
k−1∑
l=1

l(q − 1)qk−l + kq

]
= qk

[
(q − 1)qk

k∑
l=1

lq−l + k

]
.

The partial sum behavior of the geometric series yields

k∑
l=1

lq−l =
qk+1 − (k + 1)q + k

qk(q − 1)2
=
q(qk − 1)− k(q − 1)

qk(q − 1)2
.

It follows that
qk∑

u,v=1

LC
qk
(u, v) =

q

q − 1
qk(qk − 1)

and thus

Δ =
q

q − 1
qk(qk − 1)

q∑
j=1

⎡⎣r2j − 1

q2

(
q∑
i=1

ri

)2
⎤⎦ .

Finally, since

q∑
j=1

⎡⎣r2j − 1

q2

(
q∑
i=1

ri

)2
⎤⎦ =

1

2q

q∑
i,j=1

(ri − rj)
2 ,

we obtain

Δ =
qk(qk − 1)

2(q − 1)

q∑
i,j=1

(ri − rj)
2 .

Obviously Δ ≥ 0 with equality if and only if either k = 0 or ri = rj for all
i, j ∈ {1, . . . , q}. �

Lemma 1 provides a way to transform any given distribution P step-by-step
to the uniform distribution without increasing the symmetric running time. In
the first step of the first round (t = 0, k = 0) we level out the probabilities
p1, . . . , pq. In the second step (t = 1, k = 0) we level out pq+1, . . . , p2q and so on
until the last block of probabilities pqn−q+1, . . . , pqn is leveled out in the last step
of the first round (t = qn−1 − 1, k = 0). Since k = 0 we have not changed the
symmetric identification running time. Furthermore, since within every block of
q subsequent elements the probabilities are now identical we have constructed a
probability distribution which enables us to apply Lemma 1 again.

In round 2 (k = 1) we level out all qn−1 blocks of q identical probabilities.
Lemma 1 guarantees that during these actions the symmetric identification run-
ning time does not increase. In fact, the only way it does not decrease but stays
the same is when probabilities within all subsequent blocks of q2 elements had
already been the same. Again we end up with a distribution which allows us to
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apply Lemma 1 in round three and so on. Finally, in the last round k = n − 1
we level out the q blocks of qn−1 identical probabilities and end up with the
uniform distribution. We have proven the following

Theorem 1. Let n ∈ IN and q ∈ IN≥2. Further, let C = Cqn . Then it holds for
all probability distributions P on {1, . . . , qn} that

LC(P̄ , P̄ ) ≤ LC(P, P ) ,

where P̄ denotes the uniform distribution on {1, . . . , qn}. The inequality holds
with equality if and only if it holds for all i ∈ {1, . . . , qn−1} that

iq∑
u=(i−1)q+1

pu =
1

qn−1
.

3 An Improved Upper Bound for the Worst-Case
Running Time for Binary Codes

In Sect. 4 of [2] the authors proved in Theorem 3 by an inductive code con-
struction that L(P ) < 3 in the case of binary codes (q = 2). They assumed that
without loss of generality p1 ≥ p2 ≥ · · · ≥ pN . In the first step U is partitioned
into U0 = {1, . . . , t} and U1 = {t + 1, . . . , N} such that

∑t
i=1 pi is as close as

possible to 1/2. Then, they inductively construct codes on U0 (resp. U1) and
prefix the codewords for all elements in U0 (resp. U1) by 0 (resp. 1). The proof
of the theorem is given by analyzing several cases. The upper bound is given by
the case where

∑t
i=1 pi < 1/2 and the user vmax which maximizes LC(P, v) is in

U1.
1

In order to optimize this worst case we take up to a certain number of addi-
tional outputs from U1 and put them into U0. As we will show this significantly
speeds up the identification process.

Lemma 2. We define Umax = {u ∈ U | cu,1 = cvmax,1} and pmax =
∑

u∈Umax
pu.

Further, let Pmax be a probability distribution on Umax defined for all u ∈ Umax

by

Pmax,u =
pu
pmax

and Cmax be the code on Umax which we obtain by deleting the leading bit of all
cu’s. Then, it holds that

LC(P ) ≤ 1 + pmax · LCmax(Pmax) .

1 vmax may not be unique, but if there are more than one, it does not matter which
one is chosen.
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Proof. We have

LC(P ) =
∑
u∈U

pu · LC(u, vmax)

= 1 +
∑

u∈Umax

pu · LCmax(u, vmax)

= 1 + pmax · LCmax(Pmax, vmax)

≤ 1 + pmax · LCmax(Pmax) .

The first equality is due to the definition of LC(P ). The second holds since
we have to check the first bit for all elements but the next bit only for those
which coincided with vmax during this check. The third equality holds because
of the definition of the average running time and the final inequality is a direct
consequence of the definition of both the average and the worst-case running
time. �

The above lemma provides the induction step for the proof of

Theorem 2. It holds for all probability distributions P on U that the worst-case
running time for binary identification is upper bounded by

L(P ) <
5

2
.

Proof. Without loss of generality we assume that p1 ≥ p2 ≥ · · · ≥ pN . For the
induction bases N = 1, 2 we have that L(P ) = 1 < 5/2 for all P . Now let N > 2
and we distinguish between the following cases.

Case 1: p1 ≥ 1
2

In this case we assign c1 = 0 and U1 = {2, . . . , N}. Inductively we construct a
code C′ = {c′u | u = 2, . . . , N} on U1 and we extend this code to a code on U by
setting cu = 1c′u for u ∈ U1.

It is clear that vmax �= 1 because in this case L(P ) would equal 1. This is
a contradiction since N > 2 and thereby we have more than one output whose
codeword begins with 1 and each of these outputs results in a running time
strictly greater than 1.

Thus, the maximum is assumed on the “right” side. This yields pmax ≤ 1/2.
Further, by Lemma 2 and the induction hypothesis we have that

LC(P ) < 1 +
1

2
· 5
2
=

9

4
<

5

2
.

Case 2: p1 <
1
2

In this case we choose t such that |1/2−
∑t

u=1 pu| is minimized. Now we distin-
guish again between two subcases.



8 C. Heup

Case 2.1: t = 1

In this case we set U0 = {1, 2} and U1 = {3, . . . , N}. Again by we inductively
construct C′ = {c′u | u = 3, . . . , N}. And we obtain C by setting c1 = 00, c2 = 01
and cu = 1c′u for u = 3, . . . , N .

If vmax ∈ U0, we have that pmax = p1 + p2 and Cmax = {0,1}. Again by
Lemma 2 we obtain

LC(P ) ≤ 1 + (p1 + p2)LCmax(Pmax) ≤ 2 <
5

2
.

Otherwise it follows from the definition of t that p1 + p2 > 1/2. By this we get
pmax < 1/2 and Cmax = C′. By induction and Lemma 2 this yields

LC(P ) < 1 +
1

2
· 5
2
=

9

4
<

5

2
.

Case 2.2: t ≥ 2

We now set U0 = {1, . . . , t} and U1 = {t+ 1, . . . , N} and construct inductively
codes C′ = {c′u | u = 1, . . . , t} and C′′ = {c′′u | u = t + 1, . . . , N}. We obtain a
code C on U by setting

cu =

⎧⎨⎩
0c′u for u = 1, . . . , t

1c′′u for u = t+ 1, . . . , N .

Case 2.2.1: vmax ∈ U0

It follows that pmax =
∑t

u=1 pu. If
∑t

u=1 pu ≤ 1/2, we get again by induction
and Lemma 2 that

LC(P ) < 1 +
1

2
· 5
2
=

9

4
<

5

2
.

In the case that
∑t

u=1 pu > 1/2 we have by the definition of t that

t∑
u=1

pu − 1

2
≤ 1

2
−

t−1∑
u=1

pu .

It follows
∑t

u=1 pu ≤ (pt + 1)/2. We also have pt ≤ pt−1 < 1/(2(t− 1)) because

otherwise
∑t−1

u=1 pu ≥ 1/2. This would be a contradiction to the definition of t.
This together implies

pmax =

t∑
u=1

pu <
1 + 2(t− 1)

4(t− 1)
. (1)

If t = 2, we obtain for the same reasons as in Case 2.1 that

LC(P ) <
5

2
.
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If t = 3, we get that Cmax = C′ = {c′1, c′2, c′3}, with c′1 = 0, c′2 = 10 and c′3 = 11.
Further, pmax = p1 + p2 + p3 and Pmax = (p1/pmax, p2/pmax, p3/pmax). Since
p1 ≥ p2 ≥ p3 it follows that

p2 + p3
pmax

≤ 2

3
.

This yields

LCmax(Pmax) = 1 +
p2 + p3
pmax

≤ 5

3
.

It now follows from Lemma 2 and (1) that

LC(P ) ≤ 1 +
5

3
pmax < 1 +

5

3
· 5
8
=

49

24
<

5

2
.

For t ≥ 4 the induction hypothesis and (1) yield

LC(P ) < 1 +
1 + 2(t− 1)

4(t− 1)
· 5
2
≤ 1 +

7

12
· 5
2
=

59

24
<

5

2
.

Case 2.2.2: vmax ∈ U1

We get that pmax =
∑N

u=t+1 pu. If
∑N

u=t+1 pu ≤ 1/2, we get like before

LC(P ) < 1 +
1

2
· 5
2
=

9

4
<

5

2
.

If
∑N

u=t+1 pu > 1/2, it follows that

t∑
u=1

pu ≥ 1

2
− 1

2
pt+1 .

Since pt+1 ≤
(∑t

u=1 pu

)
/t, we further obtain

t∑
u=1

pu ≥ t

2t+ 1
≥ 2

5
. (2)

Since pmax = 1−
∑t

u=1 pu, we finally get by induction and (2) that

LC(P ) < 1 +
3

5
· 5
2
=

5

2
.

�
The following corollary combines the lower bound from Theorem 2 in [1] and
the upper bound from above Theorem 2 as follows

Corollary 1. It holds for all probability distributions P on U that

2

(
1−

∑
u∈U

p2u

)
≤ L(P, P ) ≤ L(P ) <

5

2
,

where L(P, P ) = min
C
LC(P, P ).
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Abstract. In this article we generalize the concept of identification
for sources, which was introduced by Ahlswede, to the concept of L-
identification for sources. This means that we do not only consider a
discrete source but a discrete memoryless source (DMS) with L outputs.
The task of L-identification is now to check for any previously given
output whether it is part of the L outputs of the DMS. We establish
a counting lemma and use it to show that, if the source is uniformly
distributed, the L-identification symmetric running time asymptotically
equals the rational number

KL,q = −
L∑

l=1

(−1)l
(
L

l

)
ql

ql − 1
.

We then turn to general distributions and aim to establish a lower bound
for the symmetric 2-identification running time. In order to use the
above asymptotic result we first concatenate a given code sufficiently
many times and show that for 2-identification the uniform distribution
is optimal, thus yielding a first lower bound. This lower bound contains
the symmetric (1-)identification running time negatively signed so that
(1-)identification entropy cannot be applied immediately. However, using
the fact that the (1-)identification entropy is attained iff the probability
distribution consists only of q-powers, we can show that our lower bound
is in this case also exactly met for 2-identification. We then prove that
the obtained expression is in general a lower bound for the symmetric
2-identification running time and that it obeys fundamental properties
of entropy functions. Hence, the following expression is called the q-ary
identification entropy of second order

H2,q
ID (P ) = 2

q

q − 1

(
1−

∑
u∈U

p2u

)
− q2

q2 − 1

(
1−

∑
u∈U

p3u

)
.
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1 Introduction and Notations

We consider the discrete memoryless source (UL, PL), where U := {1, . . . , N}
and P is a probability distribution on U , its individual probabilities denoted by
pu. Then P

L is a probability distribution on UL induced by P and is defined by
PL
uL := pu1 · · · · ·puL for uL = (u1, . . . , uL). Together with this, C is a q-ary prefix

code on U . The codeword of user u ∈ U is denoted by cu = (cu,1, ..., cu,‖cu‖),

while cku = (cu,1, ..., cu,k) denotes the prefix of length k of this codeword. We
also introduce the so-called user space V and as in [7] without loss of generality
we assume that V = U .

In contrast to the classical identification task introduced in [2], the task of
L-identification is to decide for every user v ∈ U not only if it coincides with a
single output u ∈ U but whether for a given output tuple uL = (u1, .., uL) ∈ UL

there exists at least one l ∈ {1, . . . , L} such that v = ul. To achieve this
goal we compare step by step the first, second, third etc. q-bit of cv with
the corresponding q-bits of cu1 , ..., cuL . After each step i all ul with cul,i �= cv,i
are eliminated from the set of possible candidates. We continue with step i+ 1
comparing only those ul which still are candidates. If at some point during this
procedure the last possible candidate is eliminated, the L-identification process
stops with a negative answer. On the other hand, if there are still candidates left
after the comparison of the last q-bit of cv, the L-identification returns a positive
answer. The number of steps until the process halts is called the L-identification
running time for (uL, v) ∈ UL × U .

Algorithm LID in Fig. 1 accomplishes L-identification. As its input serve
the codewords cu1 , ..., cuL and cv and it returns the triple (A, s,S). Here, A is
a boolean variable which is “TRUE” if v is contained in uL and “FALSE” if
not. The second component s equals the number of steps until the algorithm
halted and the third component returns the set of positions of the output vector
uL which coincide with the user v. This means that if there exist one or more
components of uL which coincide with v, we also know their exact number and
positions. This is not a requirement to L-identification but an extra feature. It
follows from the fact that up to the last comparison of q-bits still all possible
candidates may not coincide with v.

Formally, we define the L-identification running time for given (uL, v) ∈ UL+1

and q-ary code C by

LL,qC (uL, v) = LID2(cu1 , ..., cuL , cv) ,

where LID2(cu1 , ..., cuL , cv) is the second component of the triple returned by al-
gorithm LID. We will analyze the expected length of the L-identification running
time, also called the average running time, for a given user v ∈ U

LL,qC (P, v) =
∑

uL∈UL

PuLLL,qC (uL, v) .
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LID {
S0 := {1, . . . , L};
for i from 0 to ‖cv‖ − 1 do {

if (∀ l ∈ Si : cul,i �= cv,i) then {
return (‘‘FALSE’’,i,∅);

}
else {
set Si+1 := {l ∈ Si : cul,i = cv,i};
if (i = ‖cv‖) then {
return (‘‘TRUE’’,‖cv‖,S‖cv‖);

}
}

}
}

Fig. 1. The L-identification algorithm

This can be done in different ways. The first is the worst-case scenario where
we are interested in the worst-case average running time, which we shortly call
the worst-case running time, and which is defined by

LL,qC (P ) = max
v∈U

LL,qC (P, v) .

Let us assume that also user v is chosen at random according to a probability
distribution Q on U . We are now interested in the expected average running time
or shortly the expected running time

LL,qC (P,Q) =
∑
v∈U

Q({v})LL,qC (P, v) (1)

and in particular in the optimal expected running time

LL,q(P,Q) = min
C

LL,qC (P,Q). (2)

A special case is Q = P so that (1) and (2) become

LL,qC (P, P ) =
∑
v∈U

pvLL,qC (P, v) =
∑

(uL,v)∈UL+1

PuLpvLL,qC (uL, v)

and

LL,q(P, P ) = min
C

LL,qC (P, P ) .

We call LL,qC (P, P ) the symmetric running time for a given code C and LL,q(P, P )
the optimal symmetric running time. All the above values also depend on N =
|U|. We do not state this fact explicitly since it is contained implicitly in both
P and C.
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2 L-Identification for Uniformly Distributed Sources

We first focus on the symmetric running time when P is the uniform distribution
and we will establish a formula for its asymptotic behavior when N = |U| tends
to infinity, namely that it asymptotically equals the rational number

KL,q = −
L∑
l=1

(−1)l
(
L

l

)
ql

ql − 1
.

2.1 A Detour to Balanced Huffman Codes

We assume familiarity with the concept of Huffman coding (e.g. see [8]) and shall
start by recalling the concept of balanced Huffman codes, which was introduced
in [2]. Let N = qn−1 + d, where 0 ≤ d ≤ (q − 1)qn−1 − 1. The q-ary Huffman
coding for the uniform distribution of size N yields a code where some codewords
have length n and the other codewords have length n − 1. More precisely, if
0 ≤ d < qn−1, then qn−1 − d codewords have length n − 1 and 2d codewords
have length n, while in the case qn−1 ≤ d ≤ (q − 1)qn−1 − 1 all codewords
have length n. It is well-known that for data compression all Huffman codes are
optimal. This, however, is not the case for identification.

In [2] it is shown (for q = 2) that for identification it is crucial which codewords
have length n or, in terms of code trees, where in the code tree these longer
codewords lie. Moreover, those Huffman codes have a shorter expected and
worst-case running time for which the longer codewords are distributed along
the code tree in such a way that for every inner node the difference between the
number of leaves of its left side and the number of leaves of its right side is at
most one. Huffman trees satisfying this property were called balanced.

Analogously, we say that a q-ary Huffman code is balanced if its corresponding
q-ary code tree H obeys the property that for every inner node the difference
between the number of leaves of each two of its branches is at most one. We
further denote by Hq,N the set of all q-ary balanced Huffman trees with N leaves
and the corresponding set of q-ary balanced Huffman codes of size N is denoted
by Cq,N . If N = qn, there exists a single balanced Huffman code, namely the
code Cqn where all codewords have length n. We denote the balanced Huffman
tree which corresponds to Cqn by Hqn . For every (inner or outer) node x of a
balanced Huffman tree H ∈ Hq,N we denote the set of all leaves of H which
have x as prefix by Hx. An easy consequence of the balancing property is the
following

Lemma 1. Let qn−1 < N ≤ qn, H ∈ Hq,N and x be a node of H, then it follows⌊
N

q‖x‖

⌋
≤ |Hx| ≤

⌈
N

q‖x‖

⌉
.

The inequality holds with equality for all x if and only if N = qn. Moreover, it
simplifies to

|Hx| = qn−‖x‖ .



L-Identification and the q-ary Identification Entropy 15

In identification what is relevant is not the length of a codeword but the length
of the maximal common prefix of two or more different codewords. This is why
a balanced Huffman code is better for identification than an unbalanced one.
It is easy to see by the pigeonhole principle that if we consider Huffman codes
with codewords of lengths n − 1 and n, a balanced Huffman code is optimal
for the worst-case running time and we will see in the proof of Theorem 1 that
the balancing property is also crucial for the symmetric running time of L-
identification.

The q-ary Shannon-Fano coding procedure [6] constructs codes where for every
inner node the difference between the sum of the normalized probabilities within
its individual branches is as close as possible to 1/q. It is an easy observation
that if we are dealing with uniform distributions, a code is a Shannon-Fano code
if and only if it is a balanced Huffman code.

2.2 Counting Leaves

Our goal is to analyze the asymptotic behavior of

LL,qC

(
(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)
=

1

NL+1

N∑
u1,...,uL,v=1

LL,qC (uL, v),

with C ∈ Cq,N . This will be done by applying a different counting method. The

above equation suggests to calculate LL,qC (uL, v) for all pairs (uL, v) individually.
Instead we merge all uL having the same running time regarding some v into
sets

RL,q
C (k, v) =

{
uL ∈ UL | LL,qC (uL, v) = k

}
for k ∈ {1, . . . , ‖cv‖}. Again, the dependency on N of the above defined sets is
contained implicitly within C. The above equation now becomes

LL,qC

(
(
1

N
, ...,

1

N
), (

1

N
, ...,

1

N
)

)
=

1

NL+1

N∑
v=1

‖cv‖∑
k=1

k|RL,q
C (k, v)|. (3)

In order to apply this equation we need to know upper and lower bounds on the
cardinalities of these sets. Corollary 1 below provides such bounds and exact
values for the case when N is a q-power. The base for this corollary is the
following

Lemma 2. Let qn−1 < N ≤ qn, C ∈ Cq,N , H ∈ Cq,N be its corresponding code
tree and v ∈ U . Then, it holds for k ∈ {1, . . . , ‖cv‖ − 1} that

|RL,q
C (k, v)| =

L∑
m=1

(
L

m

)
|Hck−1

v
\Hckv

|m
(
N − |Hck−1

v
|
)L−m

and

|RL,q
C (‖cv‖, v)| =

L∑
m=1

(
L

m

)
|H

c
‖cv‖−1
v

|m
(
N − |H

c
‖cv‖−1
v

|
)L−m

.
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Proof. In order to simplify notation we shall write R(k, v) for RL,q
C (k, v).

Case 1: k = 1
The L-identification algorithm terminates after the first step if and only if the
codewords of all components of uL differ already in the first q-bit from cv,1. This
gives us

R(1, v) =
{
uL ∈ UL | cui ∈ H\Hcv,1 ∀ i ∈ {1, . . . , L}

}
and thus

|R(1, v)| = |H\Hcv,1 |L = (N − |Hcv,1 |)L .

This coincides with the first equation of Lemma 2 since all summands vanish
except for m = L.

Case 2: k = 2, ..., ‖cv‖ − 1
The identification time of uL and v equals k if and only if ckui

�= ckv holds for all
i ∈ {1, . . . , L} and there exists at least one i ∈ {1, . . . , L} such that ck−1

ui
= ck−1

v .
This consideration yields

R(k, v) =
{
uL ∈ UL | ∃ i ∈ {1, . . . , L} with cui ∈ Hck−1

v
\Hckv

and cui �∈ Hckv
∀ i ∈ {1, . . . , L}

}
.

In order to count the elements we partition R(k, v) into L subsets Sk,1, ..., Sk,L,
where

Sk,m =
{
uL ∈ UL | ∃ i1, ..., im ∈ {1, . . . , L} with cui1

, ..., cuim
∈ Hck−1

v
\Hckv

and cui ∈ H\Hck−1
v

∀ i ∈ {1, . . . , L}\{i1, ..., im}
}
.

If we fix the positions i1, ..., im, we see that the number of possible vectors is

|Hck−1
v

\Hckv
|m(N − |Hck−1

v
|)L−m .

Since we have no restrictions for these positions, it follows that

|Sk,m| =
(
L

m

)
|Hck−1

v
\Hckv

|m
(
N − |Hck−1

v
|
)L−m

.

Altogether we obtain

|R(k, v)| = |
L⋃

m=1
Sk,m| =

L∑
m=1

|Sk,m|

=
L∑

m=1

(
L
m

)
|Hck−1

v
\Hckv

|m
(
N − |Hck−1

v
|
)L−m

.

Case 3: k = ‖cv‖
In this case also cv itself may be one of the components of uL. This yields

R(n, v) = {uL ∈ UL | ∃ i ∈ {1, . . . , L} with cui ∈ H
c
‖cv‖−1
v

} .

According to this we adjust the subsets Sn,1, ..., Sn,L, such that
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Sn,m = {uL ∈ UL | ∃ i1, ..., im ∈ {1, . . . , L} with cui1
, ..., cuim

∈ H
c
‖cv‖−1
v

and cui ∈ H\H
c
‖cv‖−1
v

∀ i ∈ {1, . . . , L}\{i1, ..., im}}.

Of course, these sets partition R(n, 1) and since

|Sn,m| =
(
L

m

)
|H

c
‖cv‖−1
v

|m(N − |H
c
‖cv‖−1
v

|)L−m ,

for all m ∈ {1, . . . , L}, we obtain the desired result for |R(n, v)|. �

If we combine Lemma 1 and Lemma 2, we obtain

Corollary 1. Let qn−1 < N ≤ qn, C ∈ Cq,N and v ∈ U . Then, it holds for
k ∈ {1, . . . , ‖cv‖ − 1} that

|RL,q
C (k, v)| ≤

L∑
m=1

(
L

m

)(⌈
N

qk−1

⌉
−

⌊
N

qk

⌋)m(
N −

⌊
N

qk−1

⌋)L−m

and

|RL,q
C (‖cv‖, v)| ≤

L∑
m=1

(
L

m

)⌈
N

q‖cv‖−1

⌉m(
N −

⌊
N

q‖cv‖−1

⌋)L−m
.

Additionally, we get lower bounds for k ∈ {1, . . . , ‖cv‖ − 1}

|RL,q
C (k, v)| ≥

L∑
m=1

(
L

m

)(⌊
N

qk−1

⌋
−

⌈
N

qk

⌉)m(
N −

⌈
N

qk−1

⌉)L−m

and

|RL,q
C (‖cv‖, v)| ≥

L∑
m=1

(
L

m

)⌊
N

q‖cv‖−1

⌋m(
N −

⌈
N

q‖cv‖−1

⌉)L−m
.

The above inequalities hold with equality for all v ∈ U if and only if N = qn.
Moreover, they simplify for all k ∈ {1, . . . , n− 1} to

|RL,q
C (k, v)| = qnL

L∑
m=1

(
L

m

)
q−km(q − 1)m(1− q−k+1)L−m

and

|RL,q
C (n, v)| =

L∑
m=1

(
L

m

)
qm(qn − q)L−m .
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2.3 The Asymptotic Theorem for Uniform Distributions

With the above estimates we are now ready to prove the asymptotic theorem
for uniform distributions. If we consider the uniform distribution and use a
balanced Huffman code for the encoding, the symmetric L-identification running
time asymptotically equals a rational number KL,q.

Theorem 1. Let L, n ∈ N, q ∈ N≥2, q
n−1 < N ≤ qn, C ∈ Cq,N and P be the

uniform distribution on [N ]. Then it holds that

lim
N→∞

LL,qC (P, P ) = KL,q = −
L∑
l=1

(−1)l
(
L

l

)
ql

ql − 1
.

Proof. Case 1: N = qn

It follows from Corollary 1 and (3) that

LL,qC (P, P ) = 1
qnL

[
n−1∑
k=1

kqnL
L∑

m=1

(
L
m

)
q−km(q − 1)m(1− q−k+1)L−m

+ n
L∑

m=1

(
L
m

)
qm(qn − q)L−m

]
.

It holds that

n

qnL

L∑
m=1

(
L

m

)
qm(qn − q)L−m =

L∑
m=1

(
L

m

)
nq−m(n−1)(1− q−n+1)L−m

n→∞→ 0

since nq−m(n−1) n→∞→ 0 and (1− q−n+1)L−m
n→∞→ 1. Thus, we get

lim
n→∞

LL,qC (P, P ) =
∞∑
k=1

k
L∑

m=1

(
L
m

)
q−km(q − 1)m(1− q−k+1)L−m

=
L∑

m=1

L−m∑
t=0

(−q)t
(
L
m

)(
L−m
t

)
(q − 1)m

∞∑
k=1

kq−k(m+t)

=
L∑

m=1

L−m∑
t=0

(−q)t
(
L
m

)(
L−m
t

)
(q − 1)m qm+t

(qm+t−1)2 .

(4)

The second equality follows from

(1− q−k+1)L−m =

L−m∑
t=0

(
L−m

t

)
(−q)tq−tk ,

while the last equality is a consequence of the geometric series. In the following
we set xm,t = (−q)t

(
L
m

)(
L−m
t

)
(q − 1)m as well as zl = ql/(ql − 1)2 and change

the order of summation. This yields
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lim
n→∞

LL,qC (P, P ) =
L∑

m=1

L−m∑
t=0

xm,tzm+t =
L∑
l=1

zl
l−1∑
t=0

xl−t,t

=
L∑
l=1

ql

(ql−1)2

l−1∑
t=0

(−q)t
(
L
l−t

)(
L−l+t

t

)
(q − 1)l−t

=
L∑
l=1

(
L
l

)
ql

(ql−1)2

l−1∑
t=0

(
l
t

)
(−q)t(q − 1)l−t

=
L∑
l=1

(
L
l

)
ql

(ql−1)2

(
(−1)l − (−q)l

)
= −

L∑
l=1

(−1)l
(
L
l

)
ql

ql−1
.

Case 2: qn−1 < N < qn

For this case we obtain

LL,qC (P, P )

≤ 1
NL+1

N∑
v=1

[
‖cv‖−1∑
k=1

k
L∑

m=1

(
L
m

) (

 N
qk−1 � − �N

qk

)m (

N − � N
qk−1 

)L−m]

+ 1
NL+1

N∑
v=1

[
‖cv‖

L∑
m=1

(
L
m

)

 N
q‖cv‖−1 �m(N − � N

q‖cv‖−1 )L−m
]

≤ 1
N

N∑
v=1

[
‖cv‖−1∑
k=1

k
L∑

m=1

(
L
m

)
(q−k+1 − q−k + 2

N )m(1− q−k+1 + 1
N )L−m

]

+ 1
N

N∑
v=1

[
‖cv‖

L∑
m=1

(
L
m

)
(q−‖cv‖+1 + 1

N )m(1− q−‖cv‖+1 + 1
N )L−m

]
.

(5)

The first inequality is obtained by the insertion of the upper bound in Corollary 1
into (3). 
N/qk� ≤ N/qk+1 and �N/qk ≥ N/qk−1 yield the second inequality.
We now divide this case into two subcases.

Case 2.1: 2qn−1 ≤ N < qn

In this case all codewords have length n. Hence, (5) reduces to

LL,qC (P, P ) ≤
n−1∑
k=1

k
L∑

m=1

(
L
m

)
(q−k+1 − q−k + 2

N )m(1− q−k+1 + 1
N )L−m

+ n
L∑

m=1

(
L
m

)
(q−n+1 + 1

N )m(1− q−n+1 + 1
N )L−m .

(6)
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As in the case N = qn the second summand goes to zero as N goes to infinity.
Thus, we only have to consider the first summand. In fact, we can reduce this
case to the previous one by applying the binomial theorem. We obtain

(
q−k(q − 1) +

2

N

)m

=
(
q−k(q − 1)

)m
+

m−1∑
t=0

(
m

t

)
(q−k(q − 1))t

(
2

N

)m−t

and(
1− q−k+1 +

1

N

)L−m
=

(
1− q−k+1

)L−m
+

L−m−1∑
s=0

(
L−m

s

)
(1− q−k+1)s

NL−m−s .

In the following we use

A =

m−1∑
t=0

(
m

t

)
(q−k(q − 1))t

(
2

N

)m−t

and

B =

L−m−1∑
s=0

(
L−m

s

)
(1− q−k+1)s

NL−m−s .

With this notation the right hand side of (6) asymptotically equals

n−1∑
k=1

k
L∑

m=1

(
L
m

) [(
q−k(q − 1)

)m (
1− q−k+1

)L−m
+

(
q−k(q − 1)

)m
B

+
(
1− q−k+1

)L−m
A+AB

]
.

(7)

If we focus on the second summand in the square brackets, we see that

n−1∑
k=1

k
L∑

m=1

(
L
m

) (
q−k(q − 1)

)m
B

=
L∑

m=1

L−m−1∑
s=0

(
L−m
s

)(
L
m

) (q−1)m

NL−m−s

n−1∑
k=1

kq−km
(
1− q−k+1

)L−m
=

L∑
m=1

L−m−1∑
s=0

L−m∑
r=0

(−1)r
(
L−m
r

)(
L−m
s

)(
L
m

) qr(q−1)m

NL−m−s

n−1∑
k=1

kq−k(m+r)

=
L∑

m=1

L−m−1∑
s=0

L−m∑
r=0

α(m, s, r) 1
NL−m−s

1
(qm+r−1)2

(
qm+r − (qm+r−1)n+qm+r

qn(m+r)

)
,

where α(m, s, r) = (−1)r
(
L−m
r

)(
L−m
s

)(
L
m

)
qr(q − 1)m. The last equality follows

from the partial sum behavior of the geometric series. This expression tends to
zero as N (resp. n ≈ logqN) goes to infinity because L −m − s ≥ 1. In the
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same way it can be shown that the third and the fourth summand of (7) also
tend to zero. Thus, we end up with exactly the same expression like (4). This
proves the upper bound for this case. By using the same arguments and the
lower estimates in Corollary 1 one can easily show the matching lower bound.

Case 2.2: qn−1 < N < 2qn−1

In this case N = qn−1 + d, with 0 < d < qn−1, and there exist exactly qn−1 − d
codewords of length n− 1 and 2d codewords of length n. Then, (5) becomes

LL,qC (P, P )

≤ qn−1−d
N

[
n−2∑
k=1

k
L∑

m=1

(
L
m

)
(q−k+1 − q−k + 2

N )m(1− q−k+1 + 1
N )L−m

+ (n− 1)
L∑

m=1

(
L
m

)
(q−n+2 + 1

N )m(1− q−n+2 + 1
N )L−m

]

+ 2d
N

[
n−1∑
k=1

k
L∑

m=1

(
L
m

)
(q−k+1 − q−k + 2

N )m(1 − q−k+1 + 1
N )L−m

+ n
L∑

m=1

(
L
m

)
(q−n+1 + 1

N )m(1 − q−n+1 + 1
N )L−m

]

=
n−2∑
k=1

k
L∑

m=1

(
L
m

)
(q−k+1 − q−k + 2

N )m(1− q−k+1 + 1
N )L−m

+ (qn−1−d)(n−1)
N

L∑
m=1

(
L
m

)
(q−n+2 + 1

N )m(1 − q−n+2 + 1
N )L−m

+ 2d(n−1)
N

L∑
m=1

(
L
m

)
(q−n+2 − q−n+1 + 2

N )m(1− q−n+2 + 1
N )L−m

+ 2dn
N

L∑
m=1

(
L
m

)
(q−n+1 + 1

N )m(1 − q−n+1 + 1
N )L−m .

For the same reason as in the preceding cases the last three summands tend
to zero as N → ∞ and since the first summand asymptotically equals the first
summand of (6), the upper bound also in this last case is settled. Omitting the
details we limit ourselves to remark that also in this case the matching lower
bound can be easily obtained by analogous arguments. �

3 2-Identification for General Distributions

We now focus on the case L = 2 and consider general distributions. Thus, we
consider the discrete memoryless source (U2, P 2), where U := {1, . . . , N} and
P is a probability distribution on U , its individual probabilities denoted by pu.
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Then, P 2 is a probability distribution on U2 induced by P and is defined by
P 2
u2 := pu1 · pu2 for u2 = (u1, u2). The task of 2-identification is to decide for

every v ∈ U whether for a given output pair (u1, u2) ∈ U2 either v = u1 or
v = u2. We establish the q-ary identification entropy of second order

H2,q
ID

(P ) = 2
q

q − 1

(
1−

∑
u∈U

p2u

)
− q2

q2 − 1

(
1−

∑
u∈U

p3u

)
and show that it obeys important desiderata for entropy functions. Furthermore,
we show that it serves as a lower bound for the optimal symmetric 2-identification
running time:

L2,q(P, P ) ≥ H2,q
ID

(P ) .

3.1 Concatenated Codes and Asymptotic Calculations

Let us focus on the case N = qn, P = (1/qn, ..., 1/qn) and C = Cqn , namely a
block code of length n with qn codewords. It is clear that Cqn can be constructed
by concatenating the minimal code Cq appropriately. Every q-ary comparison
which is done during 2-identification for u2 and v is itself an identification within
Cq. It is either a 1-identification if only one element of u2 still remains as possible
candidate or it is a 2-identification if both elements u1 and u2 are still left. The
running time of each of those “small” identifications within Cq always equals 1.
In fact, we have applied up to n “small” identifications within the code Cq in
order to perform the original 2-identification within Cqn .

Let now rt,l be the probability that after the t-th comparison there are still
l possible candidates left. We can now calculate 2-identification running time
within Cqn by

L2,q
Cqn

(
( 1
qn , ...,

1
qn ), (

1
qn , ...,

1
qn )

)
= 1 +

n∑
t=2

2∑
l=1

(
2
l

)
rt,lLl,qCq

(
(1q , ...,

1
q ), (

1
q , ...,

1
q )
)

= 1 + 2
n∑
t=2

rt,1 +
n∑
t=2

rt,2 .

Here, the binomial coefficient in the first equality occurs since in the case l = 1
either u1 or u2 is the leftover candidate. As stated before l-identification running
time within Cq always equals 1 which explains the second equality.

The above observations lead us to the attempt of doing the same for any given
source code C. Namely, to consider the discrete memoryless source ((Un)

2
, (Pn)2)

together with the concatenated code Cn and try to establish a connection be-
tween the 2-identification running time within Cn and the l-identification running
times within C, which we call the basic code. This relation is the content of

Lemma 3. Let (U , P ) be a discrete source and C be a q-ary prefix code with
q ∈ IN≥2. Further, let Cn be the concatenated code corresponding to C. It holds
that



L-Identification and the q-ary Identification Entropy 23

L2,q
Cn (Pn, Pn) = L2,q

C (P, P )

(
1 +

n−1∑
t=1

( ∑
u∈U

p3u

)t
)

+2L1,q
C (P, P )

(
n−1∑
t=1

( ∑
u∈U

p2u

)t

−
n−1∑
t=1

( ∑
u∈U

p3u

)t
)

.

Proof. It is clear that while we are in the first basic code we have to apply
2-identification and there are three possibilities of what might happen.

1. Both elements un1 and un2 do not coincide with vn.
The reason would be that their first components u1,1, u2,1 do not coincide
with v1. This stops the identification process.

2. Only one element, e.g. un1 , coincides with v
n.

This would be because u1,1 = v1 and u2,1 �= v1. Then, we continue with
applying (1-)identification in the next code.

3. Both elements coincide with vn.
In this case also in the next code 2-identification would have to be applied.

The main idea now is to exploit the fact that the symmetric 2-identification
running time is an expectation. Therefore we introduce Xt+1 as the random
variable which indicates how many components of (Un

1 , U
n
2 ) are still candidates

at step t. For all t ∈ {1, ..., n− 1} we define

Xt+1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 if U t

1 �= V t and U t
2 �= V t

1 if (U t
1 = V t and U t

2 �= V t) or (U t
1 �= V t and U t

2 = V t)

2 if U t
1 = U t

2 = V t

and we set X1 = 2. In order to calculate the corresponding probabilities we use
the facts that U1, U2 and V are independently identically distributed. With this
we get

Prob(Xt+1 = 2) = Prob(U t
1 = U t

2 = V t)

=
∑

ut∈Ut

p3ut =
∑

u1,...,ut∈U
(pu1 ...put)

3 =

( ∑
u∈U

p3u

)t

and

Prob(Xt+1 = 1) = 2Prob(U t
1 = V t and U t

2 �= V t) = 2
∑

ut∈Ut

p2ut(1− put)

= 2

[ ∑
u1,...,ut∈U

(pu1 ...put)
2 −

∑
u1,...,ut∈U

(pu1 ...put)
3

]

= 2

[( ∑
u∈U

p2u

)t

−
( ∑
u∈U

p3u

)t
]

.
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As stated before the symmetric 2-identification running time is an expectation.
Since for the first time step X1 = 2 and for all other time steps the case Xt = 0
leads to the termination of the identification process before time step t, we obtain

L2,q
Cn (Pn, Pn) =

n∑
t=1

E
[
LXt,q
C (P, P )

]
=

n−1∑
t=0

E
[
LXt+1,q
C (P, P )

]

= L2,q
C (P, P ) +

n−1∑
t=1

Prob(Xt+1 = 1)L1,q
C (P, P )

+
n−1∑
t=1

Prob(Xt+1 = 2)L2,q
C (P, P )

= L2,q
C (P, P )

(
1 +

n−1∑
t=1

( ∑
u∈U

p3u

)t
)

+2L1,q
C (P, P )

(
n−1∑
t=1

( ∑
u∈U

p2u

)t

−
n−1∑
t=1

( ∑
u∈U

p3u

)t
)

.

�

If we now establish the limit for n going to infinity and apply the geometric
series for k = 2, 3 we obtain

∞∑
t=1

(∑
u∈U

pku

)t

=
1

1−
∑

u∈U p
k
u

− 1

and thus,

lim
n→∞

L2,q
Cn (P

n, Pn) =
L2,q
C (P, P )

1−
∑
u∈U

p3u
+ 2

⎛⎝ 1

1−
∑
u∈U

p2u
− 1

1−
∑
u∈U

p3u

⎞⎠L1,q
C (P, P ) .

This proves

Corollary 2. Let (U , P ) be a discrete source and C be q-ary prefix code with
q ∈ IN≥2. It then holds that

L2,q
C (P, P ) = (1 −

∑
u∈U

p3u) lim
n→∞

L2,q
Cn (P

n, Pn)− 2

⎛⎜⎝1−
∑
u∈U

p3u

1−
∑
u∈U

p2u
− 1

⎞⎟⎠L1,q
C (P, P ) .

We try now to lower bound the expression limn→∞ L2,q
Cn (Pn, Pn). In Theorem

1 we have shown how L-identification and in particular 2-identification behaves
asymptotically on block codes if we consider the uniform distribution. To use
this result we have to show that for 2-identification uniform distribution is op-
timal for block codes. The following lemma provides a way for coming from
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any probability distribution to the uniform distribution without increasing the
symmetric identification running time. Its rather long and technical proof can
be found in the appendix. It is not necessary to follow it in order to understand
the remaining part of this paper. It suffices to note that it uses the same ideas
as Lemma 1 in [7].

Lemma 4. Let (U , P ) and (U , P̃ ) be two discrete sources with U = {1, . . . , qn},
for n ∈ IN and q ∈ IN≥2, and

P = (p1, ..., ptqk+1 , r1, ..., r1︸ ︷︷ ︸
qk

, r2, ..., r2︸ ︷︷ ︸
qk

, ..., rq, ..., rq︸ ︷︷ ︸
qk

, p(t+1)qk+1+1, ..., pqn)

and

P̃ = (p1, ..., ptqk+1 ,
1

q

q∑
i=1

ri, ...,
1

q

q∑
i=1

ri︸ ︷︷ ︸
qk+1

, p(t+1)qk+1+1, ..., pqn) .

Further, let k ∈ {0, ..., n− 1} and t ∈ {0, ..., qn−k−1 − 1}. It then holds that

L2,q
Cqn

(P, P )− L2,q
Cqn

(P̃ , P̃ ) ≥ 0 .

The inequality holds with equality if and only if either k = 0 or ri = rj for all
i, j ∈ {1, . . . , q}.

By applying Lemma 4 in the same iterative way as Lemma 1 in [7] we obtain

Corollary 3. Let (U , P ) be a discrete source with U = {1, . . . , qn} for some
n ∈ IN and q ∈ IN≥2. Further, let C = Cqn and T = TC. It then holds that

L2,q
C (P, P ) ≥ L2,q

C

(
(
1

qn
, ...,

1

qn
), (

1

qn
, ...,

1

qn
)

)
.

The inequality holds with equality if and only if P (Tx) = q−‖x‖ for all inner
nodes x ∈ N̊ (T ).

We now make a short detour to δ-typical sequences. These are defined e.g. in
[4] Definition 2.8 (p. 33). We will change some of the notation of this definition
in order to harmonize it with the notation used in this paper:

“For any distribution P on U , a sequence un ∈ Un is called P -typical with
constant δ if ∣∣∣∣ 1n < un|a > −pa

∣∣∣∣ ≤ δ (8)

for every a ∈ U and, in addition, no a ∈ U with pa = 0 occurs in un. The set of
such sequences will be denoted by T n

P,δ .”
Here, the value of < un|a > is the number of appearances of a as a component

of un. In words, a sequence un ∈ Un is called P -typical with constant δ if for
all a ∈ U the difference between the relative frequency of a in un and the actual
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probability of a with respect to P is at most δ. Lemma 2.12 in [4] and its
subsequent remark state that

Pn(T n
P,δ) ≥ 1− |U|

4nδ2
. (9)

Further, it follows from (8) for all un ∈ T n
P,δ that

Pn
un =

∏
a∈U

p<u
n|a>

a ≤
∏

a∈supp(P )

pn(pa−δ)a = 2
−n
(
H(P )+δ

∑
a∈supp(P )

log pa

)
. (10)

Here, H(P ) = −
∑

a∈supp(P ) pa log pa is Shannon’s classical entropy. In the

following we use MP = −
∑

a∈supp(P ) log pa. It holds that 0 ≤ MP < ∞ with

equality on the left hand side if and only if supp(P ) = 1. In our further analysis
we assume that supp(P ) > 1. It follows that for all ε > 0 exists δ > 0 such that
on the one hand it holds that

Pn((T n
P,δ)

c) ≤ |U|MP

4nε2
. (11)

On the other hand it holds for all un ∈ T n
P,δ that

Pn
un ≤ 2−n(H(P )−ε) . (12)

To see this choose δ = ε/MP and apply (9) and (10). Things are now settled to
prove

Lemma 5. Let (U , P ) be a discrete source with |supp(P )| > 1. For all ε > 0
and all q-ary prefix codes C over U there exist sequences αn(ε) = αn → 0 and
Kn(ε) = Kn → ∞ such that

L2,q
Cn (P

n, Pn) ≥ (1− αn)
3L2,q

C
qKn

(
(

1

qKn
, ...,

1

qKn
), (

1

qKn
, ...,

1

qKn
)

)
holds for all sufficiently large n.

Proof. The proof of this theorem follows the same guidelines as the proof of
Lemma 3 in [3]. However, we changed some of its steps in order to obtain a
more explanatory proof. We begin the proof without explicitly specifying Kn

and αn. This will be done later. We partition Un according to the given code
Cn into Un

1 = {un ∈ Un : ‖cun‖ ≤ Kn} and Un
2 = Un\Un

1 . Since Cn is a q-ary
prefix code, we have that

|Un
1 | ≤ qKn . (13)

For ε > 0 we choose δ = ε/MP and obtain

Pn(Un
1 ) = Pn(Un

1 ∩ T n
P,δ) + Pn(Un

1 ∩ (T n
P,δ)

c)

≤ | Un
1 ∩ T n

P,δ|2−n(H(P )−ε) + Pn((T n
P,δ)

c)

≤ qKn2−n(H(P )−ε) + |U|MP

4nε2 .
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The first inequality follows by (12). Equations (11) and (13) yield the second

inequality. We now set Kn =
⌊
n(H(P )−2ε)

log q

⌋
as well as αn = 2−nε + |U|MP

4nε2 and

obtain
Pn(Un

1 ) ≤ αn

and thus
Pn(Un

2 ) ≥ 1− αn . (14)

We will now construct a new source code by cutting all codewords in Un
2 back

to length Kn. Formally, we define the new source Ũ = Ũ1 ∪ Ũ2, where Ũ1 = Un
1

and Ũ2 is defined as follows. Let ∼= be an equivalence relation on Un
2 with

un ∼= vn :⇔ cKn
un = cKn

vn

and let E1, ..., Em be the equivalence classes. Further, we associate with every
equivalence class Ei the object ei and define Ũ2 = {e1, ..., em}. Moreover, we
define a probability distribution P̃ on Ũ by P̃ (un) = P (un) for all un ∈ Ũ1

and P̃ (ek) =
∑

un∈Ek
P (un) for k ∈ {1, . . . ,m}. Finally, we obtain a new code

C̃ : Ũ → Q∗ by c̃un = cun if un ∈ Ũ1 and c̃ek will be the common prefix of length
Kn of the objects in Ek. It follows that

L2,q
Cn (P

n, Pn) ≥ L2,q

C̃ (P̃ , P̃ ) . (15)

The next step is to focus only on the Ũ2-part of Ũ . Again we operate without
increasing the symmetric 2-identification running time since

L2,q

C̃ (P̃ , P̃ ) =
∑

ũ1,ũ2,ṽ∈Ũ
P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃ ((ũ1, ũ2), ṽ)

≥
∑

ũ1,ũ2,ṽ∈Ũ2

P̃ (ũ1)P̃ (ũ2)P̃ (ṽ)L2,q

C̃ ((ũ1, ũ2), ṽ)

=
m∑

i1,i2,j=1

P̃ (ei1)P̃ (ei2)P̃ (ej)L
2,q

C̃ ((ei1 , ei2), ej)

=

(
m∑
k=1

P̃ (ek)

)3 m∑
i1,i2,j=1

P̃2(ei1)P̃2(ei2)P̃2(ej)L2,q

C̃2
((ei1 , ei2), ej) .

Here, P̃2 is a probability distribution on Ũ2 defined for j ∈ {1, . . . ,m} by

P̃2(ej) = P̃ (ej)/
m∑
k=1

P̃ (ek) .

Further, C̃2 is the restriction of C̃ to Ũ2. Since

m∑
k=1

P̃ (ek) =

m∑
k=1

∑
un∈Ek

Pn(un) = Pn(Un
2 ) ,
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we obtain by (14) that

L2,q

C̃ (P̃ , P̃ ) ≥ (1− αn)
3L2,q

C̃2
(P̃2, P̃2) . (16)

Although C̃2 is a block code with codewords of length Kn it might not be satu-
rated. To achieve this property we extend Ũ2 to a set of cardinality qKn , assign
zero probabilities to the additional elements and use for them codewords from
QKn\C̃2. We now obey the conditions of Corollary 3 by which we obtain

L2,q

C̃2
(P̃2, P̃2) ≥ L2,q

C
qKn

((
1

qKn
, ...,

1

qKn
), (

1

qKn
, ...,

1

qKn
)) . (17)

Inequalities (15), (16) and (17) finally yield the statement of the lemma. �

By applying Theorem 1 and Lemma 5 to Corollary 2 we obtain

Corollary 4. Let (U , P ) be a discrete source with |supp(P )| > 1, q ∈ IN≥2 and
C be a q-ary prefix code. It then holds that

L2,q
C (P, P ) ≥ (1−

∑
u∈U

p3u)

(
2

q

q − 1
− q2

q2 − 1

)
−2

⎛⎜⎝1−
∑
u∈U

p3u

1−
∑
u∈U

p2u
− 1

⎞⎟⎠L1,q
C (P, P ) .

3.2 The q-ary Identification Entropy of Second Order

Unfortunately, in Corollary 4 the symmetric (1-)identification running time ap-
pears negatively signed so that we cannot immediately apply its lower bound
L1,q
C (P, P ) ≥ H1,q

ID (P ), which has been proven in [3]. In the same work, however,
it has been shown that this lower bound can be attained if P consists only of
q-powers. Using this fact we can prove the following important

Proposition 1. Let (U , P ) be a discrete source, where P consists only of q-
powers and C be a q-ary prefix code, where ‖cu‖ = − logq pu for all u ∈ U . It
then holds that

L2,q
C (P, P ) = 2

q

q − 1

(
1−

∑
u∈U

p2u

)
− q2

q2 − 1

(
1−

∑
u∈U

p3u

)
.

Proof. It is an immediate consequence from the condition ‖cu‖ = − logq pu for
all u ∈ U that

P (Tx) = q−‖x‖ (18)

holds for all x ∈ N (T ), where T = TC . We now introduce for all v ∈ U and
k = 1, ..., ‖cv‖ the set

R̄1,q
C (k, v) = R1,q

C (1, v) ∪̇ ... ∪̇ R1,q
C (k − 1, v) . (19)
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Proceeding as in the proof of Theorem 1 we obtain

LL,qC (P, P ) =
∑
v∈U

pv

‖cv‖∑
k=1

k
∑

(u1,u2)∈R2,q
C (k,v)

pu1pu2 .

In the following we use Sk,v =
∑

(u1,u2)∈R2,q
C (k,v) pu1pu2 . With the notation of

(19) it holds that

Sk,v = 2
∑

u1∈R1,q
C (k,v)

∑
u2∈R̄1,q

C (k,v)

pu1pu2 +
∑

u1,u2∈R1,q
C (k,v)

pu1pu2 .

The above equality holds because there are two cases to consider. The first
is that there exists one component for which (1-)identification against v takes
exactly k steps and the other yields a (1-)identification running time regarding
v of at most k− 1. In the second case both components have a (1-)identification
time regarding v of k.

Case 1: k = 1, ..., ‖cv‖ − 1

Here we have that R1,q
C (k, v) = T̄ck−1

v
\T̄ckv and R̄1,q

C (k, v) = U\T̄ck−1
v

. Together
with (18) this yields∑

u∈R1,q
C (k,v)

pu = P (Tck−1
v

)− P (Tckv ) = q−k+1 − q−k = q−k(q − 1)

and ∑
u∈R̄1,q

C (k,v)

pu = 1− P (Tck−1
v

) = 1− q−k+1 .

Thus,

Sk,v = 2q−k(q − 1)(1 − q−k+1) + q−2k(q − 1)2

= (1 − q−k)2 − (1 − q−k+1)2 .

Case 2: k = ‖cv‖

We have that R1,q
C (‖cv‖, v) = T̄

c
‖cv‖−1
v

and R̄1,q
C (‖cv‖, v) = U\T̄

c
‖cv‖−1
v

. Equation

(18) yields ∑
u∈R1,q

C (‖cv‖,v)

pu = P (T
c
‖cv‖−1
v

) = q−‖cv‖+1

and ∑
u∈R̄1,q

C (‖cv‖,v)

pu = 1− P (T
c
‖cv‖−1
v

) = 1− q−‖cv‖+1 .

Thus, we obtain

S‖cv‖,v = 2q−‖cv‖+1(1− q−‖cv‖+1) + q−2(‖cv‖−1) = 1− (1− q−‖cv‖+1)2 .
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Together, the above two cases yield

‖cv‖∑
k=1

kSk,v

=
‖cv‖−1∑
k=1

k
[
(1− q−k)2 − (1 − q−k+1)2

]
+ ‖cv‖

[
1− (1− q−‖cv‖+1)2

]

=
‖cv‖−1∑
k=1

k(1− q−k)2 + ‖cv‖ −
‖cv‖∑
k=1

k(1− q−k+1)2 .

If we take a look at the first sum plus ‖cv‖, we see that

‖cv‖−1∑
k=1

k(1− q−k)2 + ‖cv‖ =
‖cv‖−1∑
k=1

k(1− 2q−k + q−2k) + ‖cv‖

=
‖cv‖∑
k=1

k − 2
‖cv‖−1∑
k=1

kq−k +
‖cv‖−1∑
k=1

kq−2k .

Further, we obtain

‖cv‖∑
k=1

k(1− q−k+1)2 =
‖cv‖∑
k=1

k(1− 2q−k+1 + q−2k+2)

=
‖cv‖∑
k=1

k − 2
‖cv‖∑
k=1

kq−k+1 +
‖cv‖∑
k=1

kq−2k+2 .

Subtracting the second from the first result we get

‖cv‖∑
k=1

kSk,v = 2(q − 1)
‖cv‖∑
k=1

kq−k − (q2 − 1)
‖cv‖∑
k=1

kq−2k

+‖cv‖q−‖cv‖(2− q−‖cv‖)

= 2 q
q−1 (1 − pv)− 2‖cv‖pv − q2

q2−1 (1− p2v) + ‖cv‖p2v

+‖cv‖pv(2− pv)

= 2 q
q−1 (1 − pv)− q2

q2−1 (1− p2v) .

Here, the first equality follows from the previously calculated sums. The second
equality holds since by assumption q−‖cv‖ = pv for all v ∈ U and since we have
for j = 1, 2 that

‖cv‖∑
k=1

kq−jk = 1
(qj−1)2 [q

j − (qj(‖cv‖+ 1)− ‖cv‖)q−j‖cv‖]

= ql

(ql−1)2 (1− plv)−
‖cv‖
ql−1p

l
v .
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Finally the above calculations yield

LL,qC (P, P ) =
∑
v∈U

pv
‖cv‖∑
k=1

kSk,v

= 2 q
q−1

(
1−

∑
v∈U

p2v

)
− q2

q2−1

(
1−

∑
v∈U

p3v

)
.

�

This result encourages us in the belief that the right side of the equation in
Proposition 1 is in general a lower bound for 2-identification. As we will see in
Theorem 2 it obeys fundamental properties for entropy functions. We therefore
introduce

Definition 1. Let (U , P ) be a discrete source and q ∈ IN≥2. The q-ary identi-

fication entropy of second order H2,q
ID is then defined by

H2,q
ID (P ) := 2

q

q − 1

(
1−

∑
u∈U

p2u

)
− q2

q2 − 1

(
1−

∑
u∈U

p3u

)
.

Before we will show that this entropy function serves as a general lower bound for
the symmetric 2-identification running time we will first analyze its functional
properties. A list of desiderata for entropy functions can be found in [1], pp.
50. As we will now see our entropy function H2,q

ID obeys some important ones.
Those are stated in

Theorem 2. Let (U , P ) be a discrete source and q ∈ IN≥2. The following prop-

erties then hold for H2,q
ID (P ):

1. Symmetry:

H2,q
ID

(p1, ..., pN ) = H2,q
ID

(pπ(1), ..., pπ(N)) ,

where π is a permutation on {1, . . . , N}.
2. Expansibility:

H2,q
ID (p1, ..., pN ) = H2,q

ID (p1, ..., pN , 0) .

3. Decisiveness:

H2,q
ID (1, 0, ..., 0) = 0 .

4. Normalization:

H2,q
ID

(
1

q
, ...,

1

q

)
= 1 .

5. Bounds:

H2,q
ID

(1, 0, ..., 0) ≤ H2,q
ID

(P ) ≤ H2,q
ID

(
1

N
, ...,

1

N

)
.
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6. Additive Grouping Behavior:
For m ≤ N let U1,U2, ...,Um be a partition of U of non-empty sets, Q =
(Q1, ..., Qm) be the probability distribution on {1, . . . ,m} defined by

Qi :=
∑
u∈Ui

pu

and Pi be the probability distribution on Ui defined by

pi,u := pu/Qi

for all i ∈ {1, . . . ,m} and u ∈ Ui. It then holds that

H2,q
ID

(P ) = H2,q
ID

(Q) +

m∑
i=1

[
2Q2

i (1−Qi)H
1,q
ID

(Pi) +Q3
iH

2,q
ID

(Pi)
]
.

Proof. 1. Symmetry, 2. Expansibility, 3. Decisiveness, 4. Normalization:

Symmetry, expansibility and decisiveness follow directly from the definition of
H2,q

ID . Further, the normalization property follows from

H2,q
ID

(
1

q
, ...,

1

q

)
= 2

q

q − 1

(
1− 1

q

)
− q2

q2 − 1

(
1− 1

q2

)
= 1 .

5. Bounds:

Let f(p1, ..., pN−1) = H2,q
ID (p1, ..., pN−1, 1 −

∑N−1
i=1 pi). We will show that the

gradient ∇f(p1, ..., pN−1) = 0 if and only if (p1, ..., pN−1) = (1/N, ..., 1/N). For

that we set pN = 1−
∑N−1

i=1 pi and obtain that

δ

δpj
f(p1, ..., pN−1) = −4

q

q − 1
(pj − pN ) + 3

q2

q2 − 1
(p2j − p2N )

holds for all j ∈ {1, . . . , N − 1}. It follows directly that ∇f(1/N, ..., 1/N) = 0.
Assume now that for any P ′ �= (1/N, ..., 1/N) it holds that ∇f(P ′) = 0. It
follows that there exists j ∈ {1, . . . , N − 1} such that pj �= pN . If we now take
a look at δ

δpj
f(P ′), we see that

δ

δpj
f(P ′) = 0 ⇔ 3

q

q + 1
(pj + pN) = 4 .

This is a contradiction because q
q+1 (pj + pN) < 1. In order to ensure that

(1/N, ..., 1/N) is indeed a maximum we show that the Hessian is negative defi-
nite. In fact, we will obtain a stronger result namely that all second derivatives

δ2

δpkδpj
f(1/N, ..., 1/N) are strictly negative.

δ2

δpkδpj
f

(
1

N
, ...,

1

N

)
=

⎧⎪⎨⎪⎩
4 q
q−1 (

3q
N(q+1) − 2) if k = j

2 q
q−1 (

3q
N(q+1) − 2) if k �= j .
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From q ≥ 2 now follows that 3q
N(q+1) − 2 < 0 if N ≥ 2. And for N = 1 we are in

the trivial case, where H2,q
ID (1) = 0.

6. Additive Grouping Behavior:

We use
Si = 2Q2

i (1−Qi)H
1,q
ID

(Pi) +Q3
iH

2,q
ID

(Pi) ,

for all i ∈ {1, . . . ,m} and observe that

Si = 2Q2
i (1−Qi)

q
q−1 (1−

1
Q2

i

∑
u∈Ui

p2u)

+Q3
i

[
2 q
q−1 (1−

1
Q2

i

∑
u∈Ui

p2u)− q2

q2−1 (1 −
1
Q3

i

∑
u∈Ui

p3u)

]

= 2 q
q−1 (Q

2
i −

∑
u∈Ui

p2u)− q2

q2−1 (Q
3
i −

∑
u∈Ui

p3u) .

By summing the Si’s up we obtain

m∑
i=1

Si = 2
q

q − 1
(

m∑
i=1

Q2
i −

∑
u∈U

p2u)−
q2

q2 − 1
(

m∑
i=1

Q3
i −

∑
u∈U

p3u)

and thus

H2,q
ID (Q) +

m∑
i=1

Si = 2 q
q−1 (1 −

m∑
i=1

Q2
i )− q2

q2−1 (1−
m∑
i=1

Q3
i )

+2 q
q−1 (

m∑
i=1

Q2
i −

∑
u∈U

p2u)− q2

q2−1 (
m∑
i=1

Q3
i −

∑
u∈U

p3u)

= 2 q
q−1 (1 −

∑
u∈U

p2u)− q2

q2−1 (1−
∑
u∈U

p3u)

= H2,q
ID (P ) .

�

We will provide an inductive proof in order to show that H2,q
ID is a general

lower bound for the symmetric 2-identification running time. Therefore, we will
partition U into several smaller sets for which we can use the additive grouping
behavior of our entropy function. In order to link this to the 2-identification
process we also need a decomposition formula for the symmetric 2-identification
running time. It turns out that such a decomposition exists and that it mainly
behaves in the same way as the additive grouping behavior. We prove this
formula for general L ∈ IN in
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Lemma 6. Let (U , P ) be a discrete source, q ∈ IN≥2 and C be a q-ary prefix
code. Further, we define for all i ∈ {0, . . . , q − 1}:
1. Ui := {u ∈ U : cu,1 = i}

2. Qi :=
∑
u∈Ui

pu

3. Pi to be a probability distribution on Ui defined by

pi,u :=
pu
Qi

for all u ∈ Ui.

4. C(i) : Ui → Q∗ to be a code on Ui defined by

c(i)u := cu,2cu,3 . . . cu,‖cu‖

for all u ∈ Ui.
Then it holds that

LL,qC (P, P ) = 1 +
∑
i∈Q

2∑
l=1

(
L

l

)
Ql+1
i (1−Qi)

L−lLl,qC(i)(Pi, Pi) .

For L = 2 this becomes

L2,q
C (P, P ) = 1 +

∑
i∈Q

[
2Q2

i (1−Qi)L1,q

C(i)(Pi, Pi) +Q3
iL

2,q

C(i)(Pi, Pi)
]
.

Proof. First, we observe that

LL,qC (P, P ) =
∑

u2∈U2

∑
v∈U

P 2
u2pvLL,qC (u2, v)

=
∑
i∈Q

∑
v∈Ui

∑
u2∈U2

P 2
u2pvLL,qC (u2, v) .

Since LL,qC (u2, v) = LL,qC ((u1, ..., uL), v) = LL,qC ((uπ(1), ..., uπ(L)), v) for all per-
mutations π on {1, . . . , L}, we get for all i ∈ Q∑

v∈Ui

∑
u2∈U2

P 2
u2pvLL,qC (u2, v)

=
2∑
l=0

(
L
l

) ∑
v∈Ui

∑
u1,...,ul∈Ui

∑
ul+1,...,uL∈U\Ui

P 2
u2pvLL,qC (u2, v)

=
2∑
l=0

(
L
l

)
(1−Qi)

L−l ∑
u1,...,ul,v∈Ui

pu1 ...pul
pv(1 + Ll,qC(i)((u1, ..., ul), v))

= Qi

2∑
l=0

(
L
l

)
Ql
i(1 −Qi)

L−l +
2∑
l=1

(
L
l

)
(1 −Qi)

L−lQl+1
i Ll,qC(i)(Pi, Pi)

= Qi +
2∑
l=1

(
L
l

)
(1−Qi)

L−lQl+1
i Ll,qC(i)(Pi, Pi) .
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The second equality follows since LL,qC (u2, v) = 1 + Ll,qC(i)((u1, ..., ul), v) holds if
u1, ..., ul, v ∈ Ui and ul+1, ..., uL ∈ U\Ui. Adding this up for i ∈ Q we obtain the
desired result. �

As one can see there is a strong relation between the above decomposition for-
mula for 2-identification and the additive grouping behavior of the identification
entropy of second order. This fact can be used in the induction step of the proof
of the following theorem which expresses the role of the q-ary identification en-
tropy of second order as a general lower bound for 2-identification.

Theorem 3. Let (U , P ) be a discrete source, q ∈ IN≥2 and C be a q-ary prefix
code. It then holds that

L2,q
C (P, P ) ≥ H2,q

ID
(P ) ,

where equality is attained if and only if P consists only of q-powers, and C is a
prefix code, with ‖cu‖ = − logq pu for all u ∈ U .

Proof. In the following proof by induction we have to consider all the cases
N = 1, .., q as induction base for N . Since we have L2,q

C (P, P ) = 1 for N ≤ q, we

have to show that H2,q
ID (P ) ≤ 1. It follows by the expansibility property that we

only have to consider the case N = q. Further, the maximality of the uniform
distribution and the normalization property yield

H2,q
ID

(p1, ..., pq) ≤ H2,q
ID

(
1

q
, ...,

1

q

)
= 1 .

In order to apply the induction step we use the same notation as in Lemma 6.
That is, we partition U into sets Ui and set Q = (Q0, ..., Qq−1). The inequality
of Theorem 3 now follows directly since

L2,q
C (P, P ) = 1 +

∑
i∈Q

[
2Q2

i (1 −Qi)L1,q
C(i)(Pi, Pi) +Q3

iL
2,q
C(i)(Pi, Pi)

]
≥ H2,q

ID (Q) +
∑
i∈Q

[
2Q2

i (1 −Qi)H
1,q
ID (Pi) +Q3

iH
2,q
ID (Pi)

]
= H2,q

ID (P ) .

(20)

Here, the first equality follows from Lemma 6. The inequality is a consequence of
the induction step together with the normalization property and the established
bounds ofH2,q

ID . Finally, the additive grouping behavior of H2,q
ID yields the second

equality.
The fact that this lower bound is attained for every q-ary prefix code C for

which (18) holds has already been proven in Proposition 1. If instead the in-
equality of Theorem 3 holds with equality, then also the inequality of (20) is in
fact an equality and thus
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i) H2,q
ID (Q) = 1

ii) H1,q
ID (Pi) = L1,q

Ci
(Pi, Pi)

iii) H2,q
ID (Pi) = L2,q

Ci
(Pi, Pi).

We have seen in the proof of the bounds of the entropy function that the uni-
form distribution is the only point where the first derivative of the identification
entropy function equals zero and thus (1/q, ..., 1/q) is the only point for which
H2,q

ID (Q) = 1. Together with i) this means that we get

Qi =
1

q
(21)

for all i ∈ Q. The crucial part is now ii). For all i ∈ Q we obtain from (21) and
the definitions of Pi and C(i) (see Lemma 6) that we have for any u ∈ Ui that

pu = Qipi,u =
pi,u
q

(22)

and
‖cu‖ = ‖c(i)u ‖+ 1 . (23)

Moreover, Theorem 1 in [3] stated that for (1-)identification an equality be-
tween the running time and identification entropy is only attained if and only
if the probability distribution consists only of q-powers and the lengths of the
codewords equal the negative logarithm of the probability of their correspond-
ing elements. Thus it follows from ii) that all the pi,u’s are q-powers and that

‖c(i)u ‖ = − logq pi,u. Together with (22) and (23) we finally obtain that P consists
only of q-powers and that

‖cu‖ = − logq pi,u + 1 = − logq
pi,u
q

= − logq pu .

�
Since Theorem 3 applies to any prefix code C we immediately get

Corollary 5. Let (U , P ) be a discrete source and q ∈ IN≥2. It then holds that

L2,q(P, P ) ≥ H2,q
ID (P ) .
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Appendix

A The Proof of Lemma 4

Without loss of generality we assume that t = 0 such that for i ∈ {1, . . . , q}

p(i−1)qk+1 = p(i−1)qk+2 = ... = piqk = ri .

Also, we use for simplicity the abbreviations Lu1u2,v = L2,q
Cqn

((u1, u2), v) and

αu1u2,v = (pu1pu2pv − p̃u1 p̃u2 p̃v)Lu1u2,v. With this notation we obtain

LL,qCqn
(P, P ) − LL,qCqn

(P̃ , P̃ )

=
qn∑

u1,u2,v=1
αu1u2,v

=
qn∑
v=1

[
qk+1∑

u1,u2=1
αu1u2,v + 2

qk+1∑
u1=1

qn∑
u2=qk+1+1

αu1u2,v +
qn∑

u1,u2=qk+1+1

αu1u2,v

]

=
6∑
i=1

Ri ,

where the second equality comes from the fact that Lu1u2,v = Lu2u1,v and where

R1 =
qk+1∑

u1,u2,v=1
αu1u2,v R2 =

qk+1∑
u1,u2=1

qn∑
v=qk+1+1

αu1u2,v

R3 = 2
qk+1∑
u1,v=1

qn∑
u2=qk+1+1

αu1u2,v R4 = 2
qk+1∑
u1=1

qn∑
u2,v=qk+1+1

αu1u2,v

R5 =
qn∑

u1,u2=qk+1+1

qk+1∑
v=1

αu1u2,v R6 =
qn∑

u1,u2,v=qk+1+1

αu1u2,v .

As one might expect the above summands disappear, except for R1 and R3.
This is obvious for R6 since pu = p̃u for all u ∈ {qk+1 + 1, . . . , qn}. If u1, u2 ∈
{qk+1 + 1, . . . , qn}, we have on the one hand that Lu1u2,v = Lu1u2,1 for all
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v ∈ {1, . . . , qk+1}. We denote this by Lu1u2 . On the other hand pui = p̃ui for
i = 1, 2. This yields

R5 =
qn∑

u1,u2=qk+1+1

qk+1∑
v=1

Lu1u2pu1pu2

[
pv − 1

q

q∑
i=1

ri

]

=
qn∑

u1,u2=qk+1+1

Lu1u2pu1pu2

[
qk+1∑
v=1

pv − qk
q∑
i=1

ri

]
= 0 .

Here, the final equality follows from
∑qk+1

v=1 pv =
∑q

i=1 q
kri.

If u2, v ∈ {qk+1 + 1, . . . , qn} and u1 ∈ {1, . . . , qk+1}, we see that Lu1u2,v =
L1u2,v and pu2 = p̃u2 as well as pv = p̃v. Thus, proceeding as before we have
that R4 = 0. If u1, u2 ∈ {1, . . . , qk+1} and v ∈ {qk+1 +1, . . . , qn}, it follows that
Lu1u2,v = L11,v, which is denoted by Lv, and pv = p̃v. With this we get

R2 =
qk+1∑

u1,u2=1

qn∑
v=qk+1+1

Lvpv

[
pu1pu2 − 1

q2

(
q∑
i=1

ri

)2
]

=
qn∑

v=qk+1+1

Lvpv

[
qk+1∑

u1,u2=1
pu1pu2 − q2k

(
q∑
i=1

ri

)2
]
= 0 .

Here,
∑qk+1

u1,u2=1 pu1pu2 =
(∑q

i=1 q
kri

)2
yields the final equality. Altogether we

end up with
LL,qCqn

(P, P )− LL,qCqn
(P̃ , P̃ ) = R1 +R3 .

We begin with R3. Similar as before we get Lu1u2,v = Lu11,v, which we denote
by Lu1,v, and pu2 = p̃u2 if u1, v ∈ {1, . . . , qk+1} and u2 ∈ {qk+1+1, . . . , qn}. We
obtain

1
2R3 =

qk+1∑
u1,v=1

qn∑
u2=qk+1+1

Lu1,vpu2

[
pu1pv − 1

q2

(
q∑
i=1

ri

)2
]

=
qk+1∑
u1,v=1

Lu1,v

[
pu1pv − 1

q2

(
q∑
i=1

ri

)2
]

qn∑
u2=qk+1+1

pu2

= (1 − qk
q∑
i=1

ri)
qk+1∑
u,v=1

Lu,v

[
pupv − 1

q2

(
q∑
i=1

ri

)2
]

.

We set A =
∑qk+1

u,v=1 Lu,v

[
pupv − 1

q2 (
∑q

i=1 ri)
2
]
and separate the different areas

in which u and v can occur. We get

A =

q∑
s,t=1

sqk∑
u=(s−1)qk+1

tqk∑
v=(t−1)qk+1

Lu,v

⎡⎣rsrt − 1

q2

(
q∑
i=1

ri

)2
⎤⎦ .
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It holds for s, t ∈ {1, . . . , q}, u ∈ {(s − 1)qk + 1, . . . , sqk} and v ∈ {(t − 1)qk +
1, . . . , tqk} that

Lu,v =

⎧⎨⎩
n− k if s �= t

n− k + L1,q
C
qk
(u, v) if s = t .

Thus, the above equation becomes

A = (n− k)

[
q∑

s,t=1
q2krsrt − q2k

(
q∑
i=1

ri

)2
]

+
q∑

s=1

qk∑
u,v=1

L1,q
C
qk
(u, v)

[
r2s − 1

q2

(
q∑
i=1

ri

)2
]

= 1
2q

q∑
i,j=1

(ri − rj)
2

qk∑
u,v=1

L1,q
C
qk
(u, v) .

The second equation follows on the one hand from
∑q

s,t=1 rsrt = (
∑q

i=1 ri)
2
.

From this follows that the first summand is 0. On the other hand

q∑
s=1

r2s −
1

q

(
q∑
i=1

ri

)2

=
1

2q

q∑
i,j=1

(ri − rj)
2 .

By applying Corollary 1 we obtain

qk∑
u,v=1

L1,q
C
qk
(u, v) = qk

k∑
l=1

l|R1,q
C
qk
(qk, l, 1)|

= qk
[
k−1∑
l=1

lqk−l(q − 1) + kq

]

= qk
[
qk(q − 1)

k∑
l=1

lq−l + k

]

= qk
[
qk(q − 1) q(q

k−1)−k(q−1)
qk(q−1)2 + k

]
= q

q−1q
k(qk − 1) .

Putting all this together we get

R3 =
1

q − 1
qk(qk − 1)(1− qk

q∑
i=1

ri)

q∑
i,j=1

(ri − rj)
2 ≥ 0 .

This equals 0 if and only if either k = 0 or ri = rj for all i, j ∈ {1, . . . , q} or∑q
i=1 ri = q−k. The last condition is equivalent to pi = 0 for all i ∈ {qk+1 +

1, . . . , qn}.
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We now turn to R1. With the same notation as before we have

R1 =
qk+1∑

u1,u2,v=1
Lu1u2,v

[
pu1pu2pv − 1

q3

(
q∑
i=1

ri

)3
]

=
q∑

s1,s2,t=1

2∑
r=1

srq
k∑

ur=(sr−1)qk+1

tqk∑
v=(t−1)qk+1

Lu1u2,v

[
rs1rs2rt − 1

q3

(
q∑
i=1

ri

)3
]

=
q∑

s1,s2,t=1

[
rs1rs2rt − 1

q3

(
q∑
i=1

ri

)3
]

2∑
r=1

srq
k∑

ur=(sr−1)qk+1

tqk∑
v=(t−1)qk+1

Lu1u2,v .

For ur ∈ {(sr − 1)qk +1, . . . , srq
k} and v ∈ {(t− 1)qk +1, . . . , tqk} it holds that

Lu1u2,v =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n− k if s1 �= t and s2 �= t

n− k + L1,q
C
qk
(u1, v) if s1 = t and s2 �= t

n− k + L1,q
C
qk
(u2, v) if s1 �= t and s2 = t

n− k + L2,q
C
qk
((u1, u2), v) if s1 = s2 = t .

If we insert the above equations into R1, we get

R1 = (n− k)

[
q∑

s1,s2,t=1
q3krs1rs2rt − q3k

(
q∑
i=1

ri

)3
]

+
q∑

s1=1

q∑
s2=1,s2 
=s1

qk
qk∑

u1,v=1
L1,q
C
qk
(u1, v)

[
r2s1rs2 −

1
q3

(
q∑
i=1

ri

)3
]

+
q∑

s2=1

q∑
s1=1,s1 
=s2

qk
qk∑

u2,v=1
L1,q
C
qk
(u2, v)

[
rs1r

2
s2 −

1
q3

(
q∑
i=1

ri

)3
]

+
q∑

s=1

qk∑
u1,u2,v=1

L2,q
C
qk
((u1, u2), v)

[
r3s − 1

q3

(
q∑
i=1

ri

)3
]

= 2qk

[
q∑

s=1

q∑
t=1,t
=s

r2srt − q−1
q2

(
q∑
i=1

ri

)3
]

qk∑
u,v=1

L1,q
C
qk
(u, v)

+

[
q∑

s=1
r3s − 1

q2

(
q∑
i=1

ri

)3
]

qk∑
u1,u2,v=1

L2,q
C
qk
((u1, u2), v) .
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If all ri’s are zero, we obtain R1 = 0. We exclude this case and normalize the
probabilities r1, ..., rq by setting r̄i = ri/

∑q
j=1 rj for i ∈ {1, . . . , q}. This yields

R1 =

(
q∑
i=1

ri

)3
[
2qk

(∑
s

∑
t
=s

r̄2s r̄t − q−1
q2

)
qk∑

u,v=1
L1,q
C
qk
(u, v)

+

(∑
s
r̄3s − 1

q2

)
qk∑

u1,u2,v=1
L2,q
C
qk
((u1, u2), v)

]
.

We have already seen during the calculations of R3 that

qk∑
u,v=1

L1,q
C
qk
(u, v) =

q

q − 1
qk(qk − 1) .

By applying Corollary 1 we further get that

qk∑
u1,u2,v=1

L2,q
C
qk
((u1, u2), v) = qk

k∑
l=1

l|R2,q
C
qk
(qk, l, 1)|

= qk
[
k−1∑
l=1

lq2k
(
2q−l(q − 1)(1− q−l+1) + q−2l(q − 1)2

)]
+qkk

(
2q(qk − q) + q2

)
= qk

[
k∑
l=1

lq2k
(
2q−l(q − 1)(1− q−l+1) + q−2l(q − 1)2

)]
+qkk(2qk − 1)

= (q − 1)q3k
[
2

k∑
l=1

lq−l − (q + 1)
k∑
l=1

lq−2l

]
+kqk(2qk − 1)

= (q − 1)q3k
[
2 q(q

k−1)−k(q−1)
qk(q−1)2 − (q + 1) q

2(q2k−1)−k(q2−1)
q2k(q2−1)2

]
+kqk(2qk − 1)

= 2 q
q−1q

2k(qk − 1)− q2

q2−1q
k(q2k − 1)

= q
q−1q

k(qk − 1) (q+2)qk−q
q+1 .
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Applying this result we obtain

R1 =

(
q∑
i=1

ri

)3
q

q−1q
k(qk − 1)

[
2qk

(∑
s
r̄2s −

∑
s
r̄3s − q−1

q2

)

+ (q+2)qk−q
q+1

(∑
s
r̄3s − 1

q2

)]

= −
(

q∑
i=1

ri

)3
q

q−1q
k(qk − 1)

[
q

q+1 (q
k + 1)

∑
s
r̄3s − 2qk

∑
s
r̄2s

+ (2q+1)qk−1
q(q+1)

]
.

It remains to show that

q

q + 1
(qk + 1)

∑
s

r̄3s − 2qk
∑
s

r̄2s +
(2q + 1)qk − 1

q(q + 1)
≤ 0 .

The left hand side obviously equals 0 if r̄1 = ... = r̄q = 1/q, i.e. r1 = ... = rq.
Let us define f : Δq−1 → IR by

f(x1, ..., xq−1) = a1

⎡⎣q−1∑
s=1

x3s +

(
1−

q−1∑
s=1

xs

)3
⎤⎦−a2

⎡⎣q−1∑
s=1

x2s +

(
1−

q−1∑
s=1

xs

)2
⎤⎦ ,

where a1 = q(qk + 1)/(q + 1) and a2 = 2qk. We will show that (1/q, ..., 1/q) is
the only extremal point of f in Γq and that it is a local maximum. The first
partial derivative for j ∈ {1, . . . , q − 1} is

δ
δxj

f(x1, ..., xq−1) = 3a1

(
x2j − (1−

q−1∑
i=1

xi)
2

)
− 2a2

(
xj − (1−

q−1∑
i=1

xi)

)

=

(
xj − (1−

q−1∑
i=1

xi)

)[
3a1

(
xj + 1−

q−1∑
i=1

xi

)
− 2a2

]
.

It follows that the gradient ∇f = 0 if and only if either xj = 1−
∑q−1

i=1 xi for all

j ∈ {1, . . . , q−1}, which yields x1 = ... = xq−1 = 1/q, or 3a1(xj+1−
∑q−1

i=1 xi)−
2a2 = 0 for all j ∈ {1, . . . , q − 1}. Since

3a1(1−
q−1∑

i=1,i
=j
xi)− 2a2 ≤ 3

q

q + 1
(qk + 1)− 4qk < −qk + 3 ≤ 0 ,

the latter is impossible. We conclude that the only extremal point of f is
(1/q, .., 1/q). Further, the second partial derivatives are

δ2

δxkδxj
f(x1, ..., xq−1) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
6a1(1 −

q−1∑
i=1

xi)− 2a2 if k �= j

6a1(1 −
q−1∑

i=1,i
=j
xi)− 4a2 if k = j
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such that

δ2

δxkδxj
f

(
1

q
, ..,

1

q

)
=

⎧⎨⎩
6a1

q − 2a2 if k �= j

12a1

q − 4a2 if k = j .

Since (6a1/q) − 2a2 = [6(qk + 1)/(q + 1)] − 4qk ≤ −2(qk − 1) < 0, we see
that (1/q, .., 1/q) is a global maximum. With this we obtain that R1 ≥ 0, with
equality if and only if either k = 0 or ri = rj for all i, j ∈ {1, . . . , q}. Remember
that R3 ≥ 0. It equals zero if and only if either k = 0 or ri = rj for all

i, j ∈ {1, . . . , q} or pi = 0 for i ∈ {qk+1 + 1, . . . , qn}. Further, L2,q
Cqn

(P, P ) −
L2,q
Cqn

(P̃ , P̃ ) = R1 +R3. It follows that this difference is not negative. Moreover,

it equals 0 if and only if either k = 0 or ri = rj for all i, j ∈ {1, . . . , q}. This
concludes the proof. �
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Abstract. We study a two-hop multiple access channel (MAC), where
two source nodes communicate with the destination node via a set of
amplify-and-forward (AF) relays. To characterize the optimal rate re-
gion, we focus on deriving the boundary points of it, which is formulated
as a weighted sum rate maximization problem. In the first part, we
are concerned with the scenario that all relays are under a sum power
constraint. Although the optimal AF rate region for the case has been
obtained, we revisit the results by an alternative method. The first step
is to investigate the algebraic structures of the three SNR functions in the
rate set of the two-hop MAC with a specific AF scheme. Then an equiva-
lent optimization problem is established for deriving each boundary point
of the optimal rate region. From the geometric perspective, the problem
has a simple solution by optimizing a one-dimensional problem without
constraint. In the second part, the optimal rate region of a two-hop
MAC under the individual power constraints is discussed, which is still
an open problem. An algorithm is proposed to compute the maximum
individual and sum rates along with the corresponding AF schemes.

Keywords: multiple access channel, amplify-and-forward, achievable
rate region.

1 Introduction

Since the introduction of the amplify-and-forward (AF) relay scheme, it has
been studied in the context of cooperative communication [5,6,11,17]. It is an
interesting technique from the practical standpoint because the complexity and
cost of relaying, always an issue in designing cooperative networks, is minimal
for AF relay networks. Furthermore, as the simplest coding scheme, the optimal
AF rate can be viewed as a lower bound to the network capacity. In addition to
its simplicity, AF is known to be the optimal relay strategy in many interesting
cases [7,8,16].
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Finding the optimal performance of the AF relay scheme has recently received
tremendous attention from the research community. For a two-hop parallel relay
network, Marić and Yates [14] have found the optimal AF relay scheme in closed-
form along with the maximum achievable rate under the sum power constraint.
To generalize the result, Gomadam and Jafar [9] consider the case when the relay
nodes introduce the correlated Gaussian noises. With a similar approach, they
have found the optimal AF relay scheme for this scenario and have pointed out
the influence of the correlation between noises on the end-to-end performance.
In [15], Marić et al. have studied a multi-hop AF scheme for a layered relay
network under the individual power constraints in the high-SNR regime. An
asymptotical optimal multi-hop AF scheme is obtained with each relay node
amplifying the received signal to the maximum possible value. Later, Liu and
Cai [12] characterize an asymptotical behavior of another suboptimal multi-hop
AF scheme in the generalized high-SNR regime. In the proposed scheme, not all
the relays transmit with the maximum possible powers. The results have shown
that the achievable rate of the new scheme can approach the upper bound in
the generalized high-SNR regime. Recently, Agnihotri et al. [2] showed that by
optimizing the sum rate between the adjacent two layers, the optimal multi-hop
AF scheme for a layered relay network in general SNR regime can be obtained.
However, to derive the maximum sum rate itself is computational intractable.
Therefore, it is no surprising that the maximum achievable AF rate for general
unicast networks is still an open problem. Many works have focused on this issue
[1] and [13]. For a two-hop relay network with a single source-destination pair,
Agnihotri et al. [3] obtained the optimal AF scheme via an iterative algorithm.
The problem can also be solved by the approach proposed in this paper, but the
method is completely different from the one in [3]. Specifically, in each iteration
cycle of the algorithm [3], the solution should be updated via solving a sequence
of non-linear equations until the resulting AF scheme is feasible. However, in the
algebraic approach proposed in our paper, the solution candidates are obtained
via solving a system of linear equations. Furthermore, the approach [3] cannot
be directly extended to solve the problem considered in this paper.

Employing AF relay scheme in a multiuser scenario is also an interesting
topic in recent research community. The optimal AF rate region of a two-hop
multiple access channel (MAC) has been studied in [10]. With a specific AF
scheme, the two-hopMAC is equivalent to the conventional MAC, which has first
been studied in a celebrated work by Ahlswede [4]. Owing to his outstanding
contribution to the MAC capacity [4], the achievable rate set corresponding to a
specific AF scheme of the two-hop MAC can be directly obtained. Under a sum
power constraint, Jafar et al. [10] fully characterized the optimal rate region by
obtaining all the boundary points via solving a weighted sum rate maximization
problem. The Lagrange’s method is used in deriving the results, however, it
may be hard to explore the key insight of the problem. Moreover, the individual
power constraint case is not considered.
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Motivated by this work, we also study a two-hop MAC with AF relays either
under sum or individual power constraint. The main contributions are given as
follows.

In the first part, we revisit the optimal rate region of the two-hop MAC with
sum power constraint. It is first formulated as a weighted sum rate maximiza-
tion problem. We propose a novel technique to solve it, which is motivated by
our previous work [13]. The algebraic structure of the object function provides
an opportunity to simplify the form of the problem. The key step is to convert
the constraint optimization problem into an unconstraint one and the dimen-
sion of the problem is reduced from n to one. Then it can be easily solved. The
method also gives an intuitive interpretation of each AF scheme from the geo-
metric perspective. In particular, the maximum sum rate and individual rates
are obtained in closed-form. The other boundary points can be determined by
solving an equation numerically according to different cases.

In the second part, we study the AF rate region under individual power con-
straints. In our previous work [13], an outer bound has been obtained. In two
special scenarios, either the upper layer noise or the lower layer noise dominates
the total noises received at the destination node, we have proposed two mixed
AF schemes, with which two inner bounds are obtained. The results have shown
that each of the maximum sum rate and individual rates can achieve the outer
bound within half a bit. However, to the best of our knowledge, the optimal rate
region have not been fully characterized so far. We work progressively toward
this goal and provide an algorithm to compute the AF schemes achieving the
maximum sum and individual rates.

Notation: Scalars are denoted by lower-case letters, e.g., x, and bold-face lower-
case letters are used for vectors, e.g., x, and bold-face upper-case letters for
matrices, e.g., X. In addition, XT , X−1 and tr(X) denote the transpose, in-
verse and trace of X, respectively, and diag(x1, · · · , xn) denotes a block-diagonal
square matrix with x1, · · · , xn as the diagonal elements. ||x|| denotes the Eu-
clidean norm of a vector x. E [·] is the expectation operation. log(·) denotes the
logarithm in the base 2 and ln(·) denotes the natural logarithm.

2 Network Model

We study the optimal rate region of a wireless two-hop MAC with AF relays.
A two-source case is considered in the paper, which is depicted in Fig. 1. The
two source nodes S1 and S2 transmit the signals with fixed powers PS1 and PS2

respectively. Assume no direct path from the source nodes to the destination
node appears. So, the destination node D can only receive the signals from the
relays. With the help of n AF relays, the two sources communicate with the
destination. Each relay node works in a full duplex mode. It is also assumed that
each non-source node introduces an i.i.d. Gaussian noise with unit variance and
zero mean. In the scope of this paper, all channel gains are real-valued numbers
and remain constant during the transmission. Perfect channel state information
are known through the network. Furthermore, the channel gains between the
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1 2 n

1S

D

2S

Fig. 1. Two-source two-hop multiple access channel

relays and the destination and the channel gains between the source nodes and
the relays are supposed to be positive and non-negative respectively. Note that
if there is a channel gain between the relay and the destination node equal to
zero, it implies that the relay cannot transmit anything to the destination node.
So, we can omit this relay in the network. Therefore, the non-zero assumption is
without loss of generality in our system model. Note that the assumption of non-
negative channel gains is only used to simplify the discussion. The techniques
proposed below directly apply to the general case as well.

Denote by ak the amplitude of the transmitting signal at relay node k, k ∈
{1, · · · , n} Δ

= V , which is also a real-valued number. Thus relay node k retrans-
mits the received noisy signal with power a2k = Pk. a = [a1 · · ·ak · · · an]T is
referred to as a specific AF scheme. We consider two different assumptions on
the relay power constraint in the paper. In the first scenario, we assume that all
the relays are subject to a sum power constraint Psum, i.e.,∑

k∈V
a2k =

∑
k∈V

Pk ≤ Psum. (1)

It is equivalent to a power allocation scheme among relays. Therefore we do
not distinguish them in the sequel. In the second scenario, we assume that each
relay k is subject to an individual power constraint Pk,max, i.e.,

a2k ≤ Pk,max, k ∈ V . (2)

In this scenario, each relay selects the transmitting power individually. Due to
the channel assumption, we only consider the non-negative part of the amplitude
constraint according to the corresponding power constraint. The constraint may
be changed to the non-positive part if we get rid of the non-negative assumption.

The notation {a} is used to indicate all feasible AF schemes that are allowed
in both scenarios. With the superposition property of the wireless channel, the
received signal at each relay is the linear combination of the signals from the two
sources and the Gaussian noise. Therefore, the signal received at node k can be
expressed as

yk = hS1,kxS1 + hS2,kxS2 + zk, k ∈ V , (3)

where xSi , i = 1, 2, is the transmitting signal from source node Si, i = 1, 2,
hSi,k, i = 1, 2 denotes the channel gain from Si to relay k and zk denotes the
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Gaussian noise introduced by relay k. With a specific AF scheme a, the signal
received at the destination node can be expressed as,

yD =
∑
k∈V

γkak (hS1,kxS1 + hS2,kxS2 + zk) + zD

= aTΓ (h11xS1 + h12xS2 + z) + zD, (4)

where Γ = diag {γ1, · · · , γn}, γk = hk,D

√
1/(1 + h2S1,k

PS1 + h2S2,k
PS2) is a con-

stant related to the network settings, hk,D denotes the channel gain from the

relay node k to the destination node, h1i = [hSi,1, · · · , hSi,n]
T
, i = 1, 2, and

z = [z1, · · · , zn]T . From (4), the two-hop MAC can be considered as a con-
ventional Gaussian MAC with xS1,eq = aTΓh11xS1 , xS2,eq = aTΓh12xS2 , and
zeq = aTΓz + zD as the equivalent signals of the two source nodes and Gaus-
sian noise respectively. To distinguish them, we denote the two-hop MAC
with respect to the AF scheme a as MAC(a). As the well-known result of
the Gaussian MAC, the source nodes adopt Gaussian codebooks. The inde-
pendent random variables used to generate the codebooks are xS1 ∼ N [0, PS1 ]
and xS2 ∼ N [0, PS2 ]. The codebooks consist of

⌈
2nR1

⌉
and

⌈
2nR2

⌉
codewords of

length n respectively, and the decoding error probability tends to zero as n→ ∞.
The achievable rate set of MAC(a) is shown as follows.

R(a) =

{
(R1, R2) : R1 ≤ C

((
aTΓh11

)2
PS1

‖aTΓ‖2 + 1

)
, R2 ≤ C

((
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
,

R1 +R2 ≤ C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)}
(5)

For notation brevity, C(x) = 0.5 log (1 + x) is used to denote the Gaussian ca-
pacity formula with SNR x. The optimal rate region is then obtained as the
union of all rate regions and denoted by R({a}).

A commonly used method to characterize different rate-tuples on the bound-
ary of a multiuser capacity region is via solving a sequence of weighted sum rate
maximization problems, each for a different nonnegative rate weight vector of
two sources (see [13] and also [10]). That is to solve an optimization problem

max (μ1R1 + μ2R2) , μ1, μ2 ≥ 0, (6)

under the power constraint given by (1) or (2). It is clear that the rate pair
(R1, R2) ∈ R2

+ on the boundary of the union region must be on the boundary
of some rate region R(a) (5). Hence, the problem can be separated into several
subproblems. Without loss of generality, assume that μ1 and μ2 are normalized
in [0, 1], and that μ1 + μ2 = 1. Let μ = μ1, μ̄ = 1 − μ1. Therefore, the
maximization can be recast as maxμR1 + μ̄R2, μ ∈ [0, 1]. Given a specific AF
scheme a, it is easy to check that
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– case 1: when μ = 1/2, the rate pairs that maximize the sum rate in rate
set R (a) are the solutions of the optimization problem, which satisfy

R1(a) +R2(a) = C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
. (7)

– case 2: when μ = 1, the rate pairs that maximize the individual rate R1 in
rate set R (a) are the solutions of the optimization problem, which satisfy

R1(a) = C
((

aTΓh11

)2
PS1

‖aTΓ‖2 + 1

)
,

R2(a) ≤ C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
− C

((
aTΓh11

)2
PS1

‖aTΓ‖2 + 1

)
.

(8)

– case 3: when μ = 0, the rate pairs that maximize the individual rate R2 in
rate set R(a) are the solutions of the optimization problem, which satisfy

R1(a) ≤ C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
− C

((
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
,

R2(a) = C
((

aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
. (9)

– case 4: when μ ∈
(
0, 12

)
, the rate pair at the “upper-diagonal” corner point

of the pentagon region in rate set R (a) is the solution of the optimization
problem, i.e.,

R1(a) = C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
− C

((
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
,

R2(a) = C
((

aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
. (10)

– case 5: when μ ∈
(
1
2 , 1

)
, the rate pair at the llower-diagonalcorner point

of the pentagon region in rate set R (a) is the solution of the optimization
problem, i.e.,

R1(a) = C
((

aTΓh11

)2
PS1

‖aTΓ‖2 + 1

)
,

R2(a) = C
((

aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

‖aTΓ‖2 + 1

)
− C

((
aTΓh11

)2
PS1

‖aTΓ‖2 + 1

)
.

(11)
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Substituting the above results into the object function of (6) according to dif-
ferent μ, a set of subproblems are formulated, e.g., if μ = 1

2 , then the problem
is cast as max{a}

1
2 (R1(a) + R2(a)), where (R1(a), R2(a)) satisfies (7) and the

feasible region {a} are determined by the power constraint either (1) or (2). By
standard Lagrange’s method, the set of subproblems have been solved for the
sum power constraint scenario as given in [10]. However, it is observed that the
derivative operations make the problem complicated to be handled. For the in-
dividual constraints case, the issue has not been solved yet but an asymptotical
analysis can be found in [13]. In the rest of the paper, the focus is put on finding
an alternative method to solve the subproblems, which is based on the algebraic
structures of the object functions of them. With such method, the complicated
derivative operations as used in Lagrange’s method are avoided.

3 Optimal Rate Region of Two-Hop MAC via AF

In this section, we propose a novel technique to investigate the optimal rate
region of the two-hop MAC via AF scheme. The basic idea is as follows. We
first relax the original optimization problem by removing some of the constraints,
which makes the problem easy to be handled. Then a set of solutions for the
relaxed problem is found. Finally, it follows that there exists a specific solution
in the set satisfying all the constraints of the original problem. Therefore, the
optimal solution of the original problem is obtained.

3.1 Sum Power Constraint

Now let us come to the first topic, that is the relays of the two-hop MAC are
under a sum power constraint. The weighted sum maximization problem is given
as

max μR1(a) + μ̄R2(a)
s.t.

∑
k∈V

a2k ≤ Psum . (12)

We first claim that to obtain the optimal rate region, the power constraint
(1) should always take the equality. This can be proved as follows. For an
AF scheme a0 = [a01, · · · , a0n]T such that

∑
k∈V a

2
0k < Psum, it can be found

a constant c =
√
Psum/

∑
k∈V a

2
0k > 1 such that a = ca0 is a new scheme

with c2
∑

k∈V a
2
0k = Psum. From (5), it is easy to verify that R(a0) ⊂ R(a).

Therefore, the boundary points of the union region cannot be in the rate set
R(a0). Hence, we only consider the AF schemes with an equality constraint in
(1) in the sequel, i.e.,

∑
k∈V a

2
k = Psum. So, the optimization problem turns to

be
max μR1(a) + μ̄R2(a)
s.t.

∑
k∈V

a2k = Psum . (13)
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With a little abuse of notation, we define a rate set R(x) given as follows.

R(x) =

{
(R1, R2) : R1 ≤ C

(
xTd1d

T
1 xPS1

xTx

)
, R2 ≤ C

(
xTd2d

T
2 xPS2

xTx

)
,

R1 +R2 ≤ C
(
xTd1d

T
1 xPS1 + xTd2d

T
2 xPS2

xTx

)}
, (14)

where Λ = diag
{√

γ21 + 1
Psum

, · · · ,
√
γ2n + 1

Psum

}
, x = Λa, a ∈ Rn, and di =

Λ−1Γh1i, i = 1, 2. Similarly, the notation R({x}) is used to represent the union
of all sets.

We first claim thatR(a) = R(x). It is clear thatR({a}) ⊂ R({x}) since there
is no constraint on x in rate set (14). Then we need to show that R({x}) ⊂
R({a}) also holds. From (14), it follows that for any constant c �= 0, R(cx) =
R(x). Therefore, for any given x, we can always find an AF scheme a = c0Λ

−1x
where the constant c0 is chosen such that ‖a‖2 = Psum. Then, we can conclude
that R(a) = R(c0x) and thus R(a) = R(x). It suffices to show that R({x}) ⊂
R({a}) and thus R({a}) = R({x}). Consequently, the rate set R(a) can be
replaced by R(x).

It can be observed that the SNR functions in (14) are all in the form of
generalized Rayleigh quotient. With the algebraic properties of the generalized
Rayleigh quotient, the problem (13) can be easily solved. It should be pointed
out that the technique used below was first proposed in [14], including the lem-
mas. We find it very useful to obtain the desired results. To make the paper
self-contained, we provide the detailed procedures and give the proofs of the
lemmas in the appendices.

Lemma 1. To obtain the boundary points of R({x}) of the two-hop MAC with
AF relays, it is sufficient to take x in the linear subspace span {d1,d2}.

Proof. The proof is given in the appendix.

It has been proved that x and cx, c �= 0, correspond to the same rate set (14),
i.e., R(cx) = R(x). Therefore, we can always assume that x is a normalized
vector. By absorbing ‖d1‖2 and ‖d2‖2 into PS1 and PS2 respectively, it is as-
sumed without loss of generality, di, i = 1, 2 are normalized vectors as well. To
emphasize the differences, they are denoted by di0, i = 1, 2 and x0 respectively.
Moreover, the results for the case when di, i = 1, 2 are linearly dependent can
always be considered as an immediate consequence of those for the independent
case. Therefore, the independent assumption is given in the sequel. Choose an
orthonormal basis of linear space span{d1,d2}, denoted by (u1,u2), such that

x0 = cos θu1 + sin θu2, (15)

d10 = cosαu1 + sinαu2, (16)

d20 = cosβu1 + sinβu2, (17)
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where cos θ = xT0 u1, cosα = dT10u1 and cosβ = dT20u1. Since all the channel
gains are non-negative, it is clear that dT10d20 = cos(α − β) ≥ 0 and thus
|α − β| ≤ π

2 . So, it is convenient to choose (u1,u2) such that α, β ∈
[
0, π2

]
,

which simplifies the following discussion.
By substituting (15)-(17) into (14), the rate set R(x) can be recast as

{(R1, R2) : R1 ≤ C (φ1 (θ)) ,
R2 ≤ C (φ2 (θ)) , R1 +R2 ≤ C(φ (θ))} , (18)

where θ ∈ [−π, π], and

φ1 (θ) = PS1 cos
2 (θ − α) ,

φ2 (θ) = PS2 cos
2 (θ − β) ,

φ (θ) = PS1 cos
2 (θ − α) + PS2 cos

2 (θ − β) .

To emphasize the expression obtained in (18), later we use R (θ) to denote a
specific rate set and R ({θ}) to denote the union of them. Note that to fully
characterize R ({θ}), we can always consider α, β ∈

[
0, π2

]
without the assump-

tion that all the channel gains are non-negative. Intuitively, this can be inter-
preted that for any channel vector, we can always find one with all channel gains
non-negative such that the rate regions of them are equal. From the geometric
perspective, the reason is given as follows. If we drop the assumption, we may
have |α − β| > π

2 . But it can be observed from (18) that the rate region R (θ)
will not be changed if we rotate α (or β) by π and then redefine it as α (or β).
Then it follows that |α − β| ≤ π

2 . Further we can rotate α and β by an angle δ
simultaneously such that both α and β are in

[
0, π2

]
and keep the union of the

rate region R ({θ}) unchanged. So, to characterize the union rate region, the
assumption that all the channel gains are non-negative and thus α, β ∈

[
0, π2

]
is only given for simplification of the proof and is without loss of generality. So
far, we have reduced an n-dimensional constraint optimization problem (12) to
the following 1-dimensional one without constraint.

max
θ∈[−π,π]

(μR1(θ) + μ̄R2(θ)) . (19)

Furthermore, following the previous arguments, the optimal values of the two
problems (13) and (19) for each μ are identical. Moreover, we can reconstruct
an optimal solution for (13) from the optimal solution for (19). For example, if
θ∗(μ) is the optimal solution of (19), then the corresponding AF scheme is given
as a∗ = c0Λ

−1[u1 cos θ
∗(μ) + u2 sin θ

∗(μ)], where the parameters are given in
(14) and (15). Before solving the problem, we further investigate the relationship
between different rate sets and find an interesting result with which the scope
of θ to be considered is further narrowed. Assume, without loss of generality,
0 ≤ α ≤ β ≤ π/2.

Lemma 2. To obtain the boundary points of R ({θ}) of the two-hop MAC with
AF relays, it is sufficient to take θ ∈ [α, β].

Proof. The proof is given in the appendix.
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Then for a fixed μ, the boundary points of R ({θ}) can be derived by solving
the problem

max
θ∈[α,β]

(μR1(θ) + μ̄R2(θ)) , (20)

and the optimal solution is denoted by θ∗(μ). Then we work towards the ultimate
goal to solve the optimization problem. The results obtained in (7)-(11) can be
directly applied here by substituting the Gaussian capacities given in (18). The
rate pairs on the boundary which maximize the sum rate and the individual
rates of R ({θ}) are first obtained in closed-form. Then two equations will be
presented, whose solutions maximize μR1(θ) + μ̄R2(θ) for μ ∈

(
0, 12

)
and μ ∈(

1
2 , 1

)
respectively.

Let us start with the maximum sum rate of R ({θ}). The following theorem
is established.

Theorem 1. The maximum value of R1+R2 of R ({θ}) is given by C
(
φ
(
θ∗(12 )

))
,

where θ∗(12 ) is shown as follows.

θ∗(
1

2
) =

⎧⎪⎨⎪⎩
1

2
arctan (x) , x ≥ 0

1

2
arctan (π + x) , x < 0

(21)

where x =
PS1 sin 2α+ PS2 sin 2β

PS1 cos 2α+ PS2 cos 2β
.

Proof. From (18), for any θ, the maximum sum rate R1(θ) + R2(θ) is upper
bounded by C (φ (θ)). Since C(x) is a monotonically increasing function of x, to
obtain the maximum of C (φ (θ)) is to obtain the maximum of φ (θ). By setting
the derivative φ′ (θ) to zero, we have

φ′ (θ) = −PS1 sin 2 (θ − α)− PS2 sin 2 (θ − β) = 0. (22)

Then, it follows that the solution θopt of the above equation satisfies

tan 2θopt =
PS1 sin 2α+ PS2 sin 2β

PS1 cos 2α+ PS2 cos 2β
. (23)

Then we claim that the points that maximize the sum rate are on the boundary of
the union rate region. It is easy to see that maxθ∈[α,β]R1(θ)+R2(θ) and problem

(20) with μ = 1/2 has the same optimal solution. Therefore, θ∗(12 ) = θopt and
the rate pairs satisfying R1+R2 = C

(
φ
(
θ∗(12 )

))
in rate set R(θ∗(12 )) are on the

boundary of the union rate region as shown in case 1 (7) in section 2.
Then we complete the proof.

From (14) and (15), the AF scheme corresponding to θ∗(12 ) is shown as follows.

a(10) = c(10)Λ−1

(
u1 cos θ

∗
(
1

2

)
+ u2 sin θ

∗
(
1

2

))
, (24)

where the constant c(10) is chosen such that ‖a(10)‖2 = Psum.
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Actually, we have also found an alternative approach as observed in [13] to
obtain the maximum sum rate in terms of the amplification gains rather than
the parameters used in Theorem 1. From (14), the maximum SNR value of
the sum rate is equal to the maximum eigenvalue of the matrix d1d

T
1 PS1 +

d2d
T
2 PS2 . We first consider the case when d1 and d2 are linearly independent,

i.e., d1d
T
1 PS1+d2d

T
2 PS2 has two non-zero eigenvalues. By Sylvester theorem, the

matrix A = [d1,d2]
T [d1,d2]diag(PS1 ,PS2) has the same non-zero eigenvalues as

d1d
T
1 PS1 + d2d

T
2 PS2 , which are denoted by λ1 and λ2. Then by the property

of the eigenvalue, we have λ1 + λ2 = tr(A) and λ1λ2 = det(A). The maximum
eigenvalue can be easily solved and the maximum sum rate is given as follows.

C
(
θ∗

(
1

2

))
=

1

2
log

(
1 +

c2 +
√
c22 − 4c1
2

)
, (25)

where c1 = PS1PS2

[
‖d1‖2 ‖d2‖2 −

(
dT1 d2

)2]
and c2 =

(
‖d1‖2 PS1 + ‖d2‖2 PS2

)
.

Now, let us consider the case when d1 and d2 are linearly dependent. The
maximum SNR value of the sum rate can be easily obtained since there is
only one non-zero eigenvalue of A, denoted by λ. Therefore, λ = tr(A) =

‖d1‖2 PS1 + ‖d2‖2 PS2 . From (25), it is easy to see that when d1 and d2 are
linearly dependent, c1 = 0. So, we conclude that (25) can represent the result
for both the cases.

We find the maximum sum rate has exactly the same expression as in [10,
Theorem 5]. Then we consider the maximum individual rates of R ({θ}).

Theorem 2. The maximum value of individual rates Ri, i = 1, 2 of R ({θ}) are
given by C (φ1 (α)) and C (φ2 (β)).

Proof. For any θ, the maximum individual rates R1(θ) and R2(θ) are upper
bounded by C(φ1 (θ)) and C(φ2 (θ)) respectively. By setting the derivative φ′1 (θ)
to zero, we have

φ′1 (θ) = −PS1 sin 2 (θ − α) = 0. (26)

The solution of the above equation is θopt = α.
We observe that the problem of finding the maximum rate R1 is equivalent

to the maximization problem (20) with μ = 1. Therefore, θ∗(1) = α and the
maximum individual rate R1 = C (φ1 (α)). The rate pairs that satisfy (8) in rate
set R(θ∗(1)) are on the boundary of the optimal rate region as shown in case 2
in section 2.

Similarly, by setting the derivative φ′2 (θ) to zero, we have

φ′2 (θ) = −PS2 sin 2 (θ − β) = 0. (27)

The solution of the above equation is θopt = β.
We observe that the problem of finding the maximum rate R2 is equivalent

to the maximization problem (20) with μ = 0. Therefore, θ∗(0) = β and the
maximum individual rate R2 = C (φ2 (β)). The rate pairs that satisfy (9) in rate
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set R(θ∗(0)) are on the boundary of the optimal rate region as shown in case 3
in section 2.

Then we complete the proof.

From Theorem 2, the AF scheme corresponding to α is denoted by

a(11) = c(11)Λ−1 (u1 cosα+ u2 sinα)

= c(11)Λ−1d10, (28)

where the constant c(11) =

√
Psum

‖ Λ−1d10 ‖2 . To compare with the result obtained

in [16], we replace PS1 in (18) by PS1‖ d1 ‖2. Therefore, the corresponding
maximum rate of R1 can be explicitly expressed as follows.

C(φ1 (α)) =
1

2
log

(
1 + PsumPS1

n∑
k=1

h2S1,k
h2k,D

Psumh2k,D + h2S1,k
PS1 + h2S2,k

PS2 + 1

)
.

(29)

Similarly, from Theorem 2, the AF scheme corresponding to β is denoted by

a(12) = c(12)Λ−1 (u1 cosβ + u2 sinβ) ,

= c(12)Λ−1d20, (30)

where the constant c(12) =

√
Psum

‖ Λ−1d20 ‖2 . To compare with the result obtained

in [16], we replace PS2 in (18) by PS2‖ d2 ‖2. Therefore, the corresponding
maximum rate of R2 is given as follows.

C(φ2 (β)) =
1

2
log

(
1 + PsumPS2

n∑
k=1

h2S2,k
h2k,D

Psumh2k,D + h2S2,k
PS2 + h2S1,k

PS1 + 1

)
.

(31)
It is not surprising that the maximum individual rates given above are exactly
the same as the ones obtained in [10, Theorem 4].

Theorem 3. The weighted sum rate μR1(θ) + μ̄R2(θ) is maximized by θ∗(μ)
satisfying (32) for μ ∈

(
0, 12

)
, and is maximized by θ∗(μ) satisfying (33) for

μ ∈
(
1
2 , 1

)
.

μ
[
PS1PS2 sin 2 (β − θ) cos2 (θ − α) + PS1 sin 2 (θ − α)

(
1 + PS2 cos

2 (θ − β)
)]

= μ̄
[
PS1PS2 sin 2 (β − θ) cos2 (θ − α) + PS2 sin 2 (β − θ)

(
1 + PS2 cos

2 (θ − β)
)]

(32)

μ
[
PS1PS2 sin 2 (θ − α) cos2 (θ − β) + PS1 sin 2 (θ − α)

(
1 + PS1 cos

2 (θ − α)
)]

= μ̄
[
PS1PS2 sin 2 (θ − α) cos2 (θ − β) + PS2 sin 2 (β − θ)

(
1 + PS1 cos

2 (θ − α)
)]

(33)
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Proof. Since for μ ∈
(
0, 12

)
, the rate pair (R1, R2) on the boundary can be

determined by solving the problem maxμ (C (φ (θ))− C (φ2 (θ)))+ μ̄C (φ2 (θ)) as
shown in case 4 in section 2. By setting the derivative of the object function to
zero, we obtain (32). Then we argue that the function has a solution for each
μ ∈

(
0, 12

)
. Denote by

f (θ) =
PS1PS2 sin 2 (β − θ) cos2 (θ − α) + PS2 sin 2 (β − θ)

(
1 + PS2 cos

2 (θ − β)
)

PS1PS2 sin 2 (β − θ) cos2 (θ − α) + PS1 sin 2 (θ − α) (1 + PS2 cos
2 (θ − β))

,

(34)

where θ ∈
[
θ∗

(
1
2

)
, β

]
. We observe that f (θ) is continuous in

[
θ∗

(
1
2

)
, β

]
. By

(22), it follows that f
(
θ∗

(
1
2

))
= 1. It is easy to see that f (β) = 0. Fix a

μ ∈ [0, 1/2], then μ/μ̄ ∈ (0, 1). By mean value theorem, there exists a θ∗(μ) ∈[
θ∗

(
1
2

)
, β

]
such that f (θ∗(μ)) = μ/μ̄. Then θ∗(μ) is the solution corresponding

to μ.
By symmetry, the proof of the second part is exactly the same as the first

part.

In the proof of Theorem 3, the complicated derivative operations as observed in
[10, Appendix I] are avoided. It shows that with the help of the expression given
in (18) the equations (32) and (33) used to determine the optimal solutions are
easier to be established here. However, as the result obtained in [10, Theorem 3],
the optimal solution obtained above cannot be expressed in closed-form either.
So the results can only be compared via numerical results.

So far, we have fully obtained the optimal rate region by characterizing all
the boundary points of it for a two-hop MAC under the sum power constraint.

3.2 Individual Power Constraints

Now let us come to another topic. Assume the relays of the two-hop MAC
are subject to individual power constraints. The problem of finding the opti-
mal rate region becomes even more complicated than it was by changing the
constraint. To the best of our knowledge, the optimal AF rate region has not
been fully characterized in general SNR regime so far. In this section, we make
progress towards this goal and give some interesting results. Let us start with
the weighted sum maximization problem given as follows.

max μR1(a) + μ̄R2(a)
s.t. 0 ≤ ak ≤

√
Pk,max, k ∈ V . (35)

It is clear that the rate pairs on the boundary of the optimal rate region are also
the boundary points of some rate set R(a). So we focus on deriving these points
and the corresponding AF schemes. It is first observed that in such AF schemes
at least one of the relays transmits the received noisy signal with the maximum
possible power. To prove this statement, consider a scheme a0 = [a01, · · · , a0n]T ,
where all the transmitting powers are strictly less than the corresponding upper
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bounds. Choose a constant c = min

{√
Pk,max

a0k
, k ∈ V

}
. It is clear that a = ca0

is also a feasible scheme. According to the assumption, it is clear that c > 1.
Consequently, the corresponding rate region R(a) given in (5) is strictly larger
than R(a0). Therefore, to obtain the optimal rate region for a two-hop MAC,
we only consider the AF schemes with ak =

√
Pk,max, k ∈ M, where M is a

nonempty subset of relay nodes V . Then given a μ, for each M, an optimization
problem can be formulated as follows.

max μR1(a) + μ̄R2(a)
s.t. ak =

√
Pk,max, k ∈ M

0 ≤ aj <
√
Pj,max, j ∈ V\M

. (36)

We first consider a trivial case when M = V . The feasible region of the cor-
responding optimization problem (36) only contains a single point. Therefore,
the resulting AF scheme is a fixed one with all the elements equal to their
corresponding upper bounds. Besides this one, there are altogether 2n − 2 opti-
mization problems for each μ, which have nontrivial solutions. Furthermore, the
optimal solution of (35) should be achieved at one of the solutions of the above
problems by the previous statement. For general μ, problem (36) is computa-
tional intractable. We put emphasis on several special cases, i.e., μ = 1, 0, and
1/2 in the sequel, which correspond to the maximum individual rates R1,max

and R2,max, and maximum sum rate of the optimal region respectively.
For each M, two sets are defined as follows.

A(1)
M =

{
a|a ∈ Rn, ak =

√
Pk,max, k ∈ M, 0 ≤ aj <

√
Pj,max, j ∈ V\M

}
, (37)

A(2)
M =

{
a|a ∈ Rn, ak =

√
Pk,max, k ∈ M

}
. (38)

It is easy to see that A(1)
M ⊂ A(2)

M .

Maximum Individual Rates. Let us start with the maximum individual
rates. The main idea we used to solve problem (35) with μ = 1 and 0 is described
as follows. A relaxed problem of (36) is first considered by relaxing the feasible

region from A(1)
M to A(2)

M . Then a set of solutions of the relaxed problem is
obtained corresponding to each M. Finally, we claim that the AF scheme that
maximizes the individual rate is in the solution set.

In [3], the optimal AF scheme for a two-hop relay network is obtained via
an algorithm. In each iteration cycle of the algorithm, the solution should be
updated via solving a sequence of non-linear equations until the resulting AF
scheme is feasible. However, the procedure may be exhausted when deriving
the first partial derivatives and solving the system of non-linear equations. We
propose a novel algebraic approach in the following lemma. By solving a system
of linear equations, each relaxed problem can be easily solved.
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Lemma 3. For a given M, the AF scheme in A(2)
M that maximizes the individual

rate Ri, i = 1, 2, is given as

a
(i)
M = c

(i)
M

(
Γ2 +G

(i)
M

)−1

Γh1i, i = 1, 2, (39)

where Γ = diag (γ1, · · · γn), h1i = [hSi,1, · · · , hSi,n]
T , and G

(i)
M =

diag {g1, · · · , gn}, where gk = g
(i)
k , k ∈ M given as follows, and gj = 0,

j ∈ V\M,

c
(i)
M =

1 +
∑
j∈M

γ2jPj,max∑
j∈M

γjhSi,j

√
Pj,max

,

g
(i)
k = c

(i)
M

γkhSi,k√
Pk,max

− γ2k, k ∈ M.

Proof. The SNR function of Ri, i = 1, 2 in (5) is first rewritten as

SNR(1) (a) =

(
aTΓh1i

)2
aTΓ2a+ 1

PSi . (40)

Then we define a matrix GM = diag {g1, · · · , gn}, such that gj = 0, j ∈ V\M
and

∑
k∈M

gkPk,max = 1. Then for each GM consider the SNR function given as

follows,

SNR
(2)
GM (a) =

(
aTΓh1i

)2
aT (Γ2 +GM)a

PSi . (41)

It follows that SNR(1) (a) = SNR
(2)
GM (a) for a ∈ A(2)

M . If Γ2 +GM is a positive

definite matrix, SNR
(2)
GM (a) is a generalized Rayleigh quotient. Therefore, it is

easy to obtain the global maximizers of it in Rn, which is denoted by

aGM = c
(
Γ2 +GM

)−1
Γh1i, c �= 0. (42)

Obviously, given a matrix GM, if for some constant c, there exists a specific

aGM ∈ A(2)
M , it should be the maximum point of SNR

(2)
GM (a) inA(2)

M . Combining

the observation that SNR(1) (a) = SNR
(2)
GM (a) for a ∈ A(2)

M , it should be the

maximum point of SNR(1) (a) in A(2)
M as well. To find such parameters, we

establish the following system of equations with respect to c and gk, k ∈ M.∑
k∈M

gkPk,max = 1, (43)

γkhSi,kc =
√
Pk,max

(
γ2k + gk

)
, k ∈ M. (44)
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The solution of the above linear equations is easy to derive which is given as
follows.

c
(i)
M =

1 +
∑
j∈M

γ2jPj,max∑
j∈M

γjhSi,j

√
Pj,max

, (45)

g
(i)
k = c

(i)
M

γkhSi,k√
Pk,max

− γ2k, k ∈ M, (46)

Since C(·) is a monotonically increasing function of the SNR value, the maximum

point of SNR(1) (a) in A(2)
M also maximizes Ri. From (42), (45), and (46),

the AF scheme in A(2)
M that achieves the maximum rate Ri is given by a

(i)
M =

c
(i)
M

(
Γ2 +G

(i)
M

)−1

Γh1i.

Then we complete the proof.

The set of the relaxed solutions can be derived via the above approach. Since
the discussion of the maximum individual rates are exactly the same, we do
not distinguish them in the sequel. We use the notation aM to represent the
relaxed solution and drop the subscript and superscript of all parameters used to

indicate the two sources. As it is only required that aM ∈ A(2)
M , some elements

in aM may violate the corresponding upper bounds given in A(1)
M . We define a

collection of nonempty subsets of V as

S0 =
{
M|aM ∈ A(1)

M ,M ⊂ V ,M �= Ø
}
. (47)

Consequently, only the relaxed solutions in {aM|M ∈ S0} are feasible AF
schemes with respect to the power constraint. Without considering the other
relaxed solutions, we doubt whether it will lead to a loss of optimality. Fortu-
nately, it is convenient to verify that the optimal solution of (35) can be found
in the set {aM|M ∈ S0} in the following lemma.

Lemma 4. Let a∗ be the AF scheme that achieves the maximum individual rate.
Then it should be the optimal solution of a relaxed optimization problem, i.e.,
a∗ ∈ {aM|M ∈ S0}.

Proof. As claimed before, if a∗ is the desired AF scheme, it should be in some

A(1)
M such that ak =

√
Pk,max, k ∈ M and 0 ≤ aj <

√
Pj,max, j ∈ V\M. It

is assumed without loss of generality that a∗ �= 0, since it leads to a global
minimum of the SNR function.

Case 1: Assume M ∈ S0 then aM ∈ A(1)
M . It is clear that we cannot find another

AF scheme in A(1)
M with a strictly larger SNR value.

Case 2: Assume M /∈ S0 then aM /∈ A(1)
M . Then we need to show that any

scheme in A(1)
M should not be the optimal one. Then it follows that we should

saturate an amplitude in V\M to its corresponding upper bound. By doing so
repetitively, case 2 can always reduced to case 1, i.e., for a larger subset M′,
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M ⊂ M′ such that aM′ ∈ A(1)
M′ . It implies that to obtain the optimal solution

in terms of maximum individual rate, we can omit the subset M /∈ S0 and thus
prove the lemma. The detailed procedure is given as follows.

Define a matrix

DM = diag

{√
γ21 + g1, · · · ,

√
γ2n + gn

}
, (48)

where gk, k ∈ M is obtained in (46) and gj = 0, j ∈ V\M. Then SNR
(2)
GM (a)

can be recast as

SNR
(3)
GM (x) =

xTvvTx

xTx
PS , (49)

where v = D−1
MΓh1 and x = DMa. Since it only has a variable substitution,

SNR
(2)
GM (a) = SNR

(3)
GM (x) when x = DMa. Denote by xM = DMaM. Let

span{xM} and span⊥{xM} represent the linear subspace spanned by xM and its
orthogonal space respectively. Then any x can be decomposed into span{xM}
and span⊥{xM}, that is,

x = cxM + x⊥
M, (50)

where x⊥
M ∈ span⊥{xM} and c = xTxM/‖xM‖ > 0. By Lemma 3, it follows

that span{xM} = span{v}. It can be verified that for each a ∈ A(1)
M , there exits

an a0 = δ(aM − a) + a ∈ A(1)
M for some sufficiently small positive δ. Denote by

x0 = DMa0. To compare the corresponding SNR values of a0 and a, we have

SNR(1) (a0)
(a)
= SNR

(2)
GM (a0) = SNR

(3)
GM (x0) =

xT0 vv
Tx0

xT0 x0
PS

=

[(
(1− δ) cxM + δxM + (1− δ)x⊥

M
)T

v
]2

‖(1− δ) cxM + δxM + (1− δ)x⊥
M‖2

PS

=

(
xTMv

)2
‖xM‖2 +

(
c+

δ

1− δ

)−2

‖x⊥
M‖2

PS

(b)

≥
(
xTMv

)2
‖xM‖2 + c−2‖x⊥

M‖2
PS

= SNR
(3)
GM (x) = SNR

(2)
GM (a)

(c)
= SNR(1) (a) , (51)

where (a) and (c) follow from that both a0 and a are in A(1)
M , and (b) follows from

the fact that c−2 ≥ (c +
δ

1− δ
)−2 and the equality holds only when x⊥

M = 0,

which implies that a = aM, yielding a contradiction to the assumption that

aM /∈ A(1)
M . It concludes that a should not be the AF scheme that achieves the

maximum value of the individual rate.
Then we complete the proof.
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It is observed that if M1 ⊂ M2, then by the definition (38), A(2)
M2

⊂ A(2)
M1

, and

thus SNR
(2)
GM1

(aM1) ≥ SNR
(2)
GM2

(aM2 ). Recall that the subsets of a finite set

form a partial order set with order ⊂, so-called the Boolean lattice. A mapping

can be established from the subset M to the SNR value SNR
(2)
GM(aM). The

function is monotonically decreasing with respect to the partial order. Combin-
ing the result obtained in Lemma 4, the maximum SNR value is achieved at
some minimal element in S0. So far, to find out the feasible AF scheme maxi-
mizing the individual rate for the two-hop MAC, an algorithm can be proposed
as follows. We use the notation Mi,j to denote the nonempty subsets with car-

dinality equal to i. Since there are altogether ni =

(
n
i

)
such subsets, j can

take values from 1 to ni.

Algorithm 1

1: Initialization: S = Ø, a∗ = 0.
2: for i = 1; i++; i ≤ n; do

3: j = 1, ni =

(
n
i

)
;

4: while j ≤ ni; do
5: if ∃ M0 ∈ S , s.t. M0 ⊂ Mi,j then
6: j = j + 1;
7: else
8: Compute aMi,j by the technique given in Lemma 3.

9: if aMi,j /∈ A(1)
Mi,j

then
10: j = j + 1;
11: else
12: Let S=S ∪ {Mi,j} and set a∗=aMi,j if SNR(1) (a∗) < SNR(1)(aMi,j );
13: j = j + 1;

Note that in Algorithm 1, the set S denotes the collection of minimal elements
in S0. Therefore, we only compute the relaxed solutions corresponding to the
subsets in S by the algorithm. Therefore, denote by

M∗ = argmax
M∈S

SNR(1)(aM), (52)

and the corresponding AF scheme is denoted by a∗. We conclude the result in
the following theorem.

Theorem 4. The AF scheme that maximizes the individual rate Ri, i = 1, 2
for the two-hop MAC with individual power constraints can be computed by Al-
gorithm 1 and the analytical solution is given as follows.

a∗ = c
(i)
M∗

(
Γ2 +G

(i)
M∗

)−1

Γh1i, i = 1, 2. (53)



62 B. Liu and N. Cai

Maximum Sum Rate. To obtain the maximum sum rate, the main idea is
quite similar to the one described above. That is, we first solve the relaxed
problem of (36) with μ = 1/2 in a similar way. Then after proving that the AF
scheme maximizing the sum rate is in the relaxed solution set, we propose an
algorithm to solve the problem (35). However, the procedure is more complicated
than the previous case.

The SNR function of the sum rate R1 + R2 is first recast as follows. With a
little abuse of notation, we still denote the SNR function by SNR(i) (·), i = 1,
2, and 3.

SNR(1) (a) =

(
aTΓh11

)2
PS1 +

(
aTΓh12

)2
PS2

aTΓ2a+ 1
. (54)

Assume h11 and h12 are linearly independent, otherwise the problem can be
solved by exactly the same approach that is used to solve the maximum individ-
ual rate problem. Given a subset M, define a diagonal matrix

DM = diag {d1, · · · , dn} , (55)

where dj = γj , j ∈ V\M, and dk �= 0, k ∈ M, such that∑
k∈M

(
d2k − γ2k

)
Pk,max = 1. (56)

Consider the following SNR function,

SNR
(2)
DM (a) =

aTΓ[h11,h12]diag {PS1 , PS2} [h11,h12]
TΓa

aTD2
Ma

=
‖[v1,v2]

TDMa‖2
‖DMa‖2 , (57)

where vi =
√
PSiD

−1
MΓh1i, i = 1, 2.

It is easy to see that SNR(1) (a) = SNR
(2)
DM (a) for a ∈ A(2)

M . Denote by

v = DMa. With the variable substitution, SNR
(2)
DM can be recast as follows.

SNR
(3)
DM (v) =

vT [v1,v2][v1,v2]
Tv

vTv
, (58)

which forms a Rayleigh quotient and thus the maximum value of SNR
(3)
DM is

achieved at the eigenvector vM corresponding to the maximum eigenvalue of
matrix [v1,v2][v1,v2]

T .

Lemma 5. For each M, the solution in A(2)
M that maximizes the sum rate is

given by aM = D−1
M (c1v1 + c2v2), where c1, c2 and dk, k ∈ M are given in

(61)-(63).
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Proof. By Lemma 1, it follows that vM is in the linear subspace span{v1,v2},
i.e., vM = c1v1 + c2v2, where c1 and c2 are chosen such that aM = D−1

M (c1v1+

c2v2) ∈ A(2)
M , which implies that

c1
γkhS1,k

√
PS1

d2k
+ c2

γkhS2,k

√
PS2

d2k
=

√
Pk,max, k ∈ M. (59)

Combining with (56), there are altogether |M|+1 linear equations with respect
to d2k, k ∈ M, c1 and c2. Furthermore, we observe that c1/c2 should be a
constant because adding the original point, the eigenvectors form a rank-1 linear
subspace. Denote by c0 the desired ratio of c1 and c2. Then, with this additional
condition, a system of equations is established as follows. For notation brevity,
assume without loss of generality, M = {1, · · · , |M|}.

Ax = b, (60)

where

A =

⎡⎢⎢⎢⎢⎢⎣
P1,max · · · P|M|,max 0 0

−
√
P1,max 0 γ1hS1,1

√
PS1 γ1hS2,1

√
PS2

. . .
...

...

0 −
√
P|M|,max γ|M|hS1,|M|

√
PS1 γ|M|hS2,|M|

√
PS2

0 · · · 0 1 −c0

⎤⎥⎥⎥⎥⎥⎦ ,

x =
[
d21, · · · , d2|M|, c1, c2

]T
and b =

[
1 +

∑
k∈M

γ2kPk,max, 0, · · · , 0
]T

.

Solving it, we have

d2k =

1+
∑

m∈M
γ2mPm,max√

Pk,max

×

γkhS2,k

√
PS2 + c0γkhS1,k

√
PS1√

PS2

∑
m∈M

γmhS2,m

√
Pm,max + c0

√
PS1

∑
m∈M

γmhS1,m

√
Pm,max

, k ∈ M, (61)

c1 =

c0(1 +
∑

m∈M
γ2mPm,max)√

PS2

∑
m∈M

γmhS2,m

√
Pm,max + c0

√
PS1

∑
m∈M

γmhS1,m

√
Pm,max

, (62)

c2 =

1 +
∑

m∈M
γ2mPm,max√

PS2

∑
m∈M

γmhS2,m

√
Pm,max + c0

√
PS1

∑
m∈M

γmhS1,m

√
Pm,max

. (63)

It is easy to see that if c0 ≥ 0 then d2k > 0, which implies that DM is positive
definite.
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Finally, we shall check whether there exists a non-negative c0, such that

[v1,v2][v1,v2]
TvM = λmaxvM, (64)

where λmax is the maximum eigenvalue of [v1,v2][v1,v2]
T . For any eigenvalue

λ of [v1,v2][v1,v2]
T , we have

[v1,v2][v1,v2]
Tv = λv, (65)

where v is the eigenvector corresponding to λ. Substituting v = c1v1 + c2v2

and c1/c2 = c0 into (65), we have(
c0v

T
1 v1 + vT1 v2 − c0λ

)
v1 +

(
c0v

T
1 v2 + vT2 v2 − λ

)
v2 = 0. (66)

As assumed that h11 and h12 are linearly independent, then it follows that v1

and v2 are linearly independent as well. So (66) holds only when both the
coefficients are equal to zero, which yields{

c0v
T
1 v1 + vT1 v2 − c0λ = 0

c0v
T
1 v2 + vT2 v2 − λ = 0

. (67)

Then c0 and λ can be expressed in terms of vi, i = 1, 2.⎧⎪⎪⎨⎪⎪⎩
c0 =

−b+
√
b2 + 4

2

λ =
‖v1‖2 + ‖v2‖2 +

√
(‖v1‖2 − ‖v2‖2)2 + 4

(
vT1 v2

)2
2

, (68)

and ⎧⎪⎪⎨⎪⎪⎩
c0 =

−b−
√
b2 + 4

2

λ =
‖v1‖2 + ‖v2‖2 −

√
(‖v1‖2 − ‖v2‖2)2 + 4

(
vT1 v2

)2
2

, (69)

where b =
vT2 v2 − vT1 v1

vT1 v2
.

From (68) and (69), it is clear that c0 = 1
2

(
−b+

√
b2 + 4

)
corresponds to the

maximum eigenvalue. Recall that the elements in v1 and v2 are also functions
of c0. We consider the following function of c0.

f (c0) = c0 −
−b+

√
b2 + 4

2
. (70)

It is easy to see that the solution of f (c0) = 0 is also the solution of (67) with
respect to c0. Consider the following two cases.

1). c0 = 0, f(0) < 0.
2). c0 → +∞, lim

c0→+∞
f (c0) → +∞, because from (61),
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lim
c0→+∞

d2k =

γkhS1,k

(
1 +

∑
m∈M

γ2mPm,max

)
√
Pk,max

∑
m∈M

γmhS1,m

√
Pm,max

, k ∈ M is a finite constant and

thus b.
Since f (c0) is a continuous function of c0. Then by the intermediate value

theorem, there exists a c∗0 > 0 such that f (c∗0) = 0 holds. Substituting it into
(61)-(63), we obtain the solution aM = D−1

M (c1v1 + c2v2) that maximizes the

sum rate in A(2)
M .

Then we complete the proof.

Again, we use the notation S0 to denote the collection of subsets of V as defined
in (47). Similarly, we shall prove that the AF scheme maximizing the sum rate
is in {aM|M ∈ S0}.

Lemma 6. Let a∗ be the AF scheme that achieves the maximum sum rate R1+
R2. Then it should be the optimal solution of a relaxed optimization problem,
i.e., a∗ ∈ {aM|M ∈ S0}.

Proof. The proof is similar to Lemma 4. If a∗ is the maximum point of the

SNR function of the sum rate, it should be in some set A(1)
M . Assume a∗ /∈

{aM|M ∈ S0}, then a∗ �= aM for all M ∈ S0. Then we can find another scheme

given as a0 = δ(aM−a∗)+a∗, where aM ∈ A(2)
M is the relaxed solution obtained

in Lemma 5. It is clear that if δ < 1 is a sufficiently small positive value, then

a0 ∈ A(1)
M . Denote by v∗ = DMa∗, v0 = DMa0, and vM = DMaM. We

decompose v∗ into span{vM} and span⊥{vM}, i.e., v∗ = cvM + v⊥
M, where

c > 0 and v⊥
M ∈ span⊥{vM}. Then we have the following result.

SNR(1) (a0)
(a)
= SNR

(2)
DM (a0) = SNR

(3)
DM (v0) =

vT0 [v1,v2] [v1,v2]
T
v0

vT0 v0

=

([
(c (1− δ) + δ)vM + (1− δ)v⊥

M
]T

[v1,v2]
)2

‖(c (1− δ) + δ)vM + (1− δ)v⊥
M‖2

=
λmax‖vM‖2 + c3‖ [v1,v2]

T
v⊥
M‖2

‖vM‖2 + c3‖v⊥
M‖2

(b)

≥ λmax‖vM‖2 + c−2‖ [v1,v2]
T
v⊥
M‖2

‖vM‖2 + c−2‖v⊥
M‖2

= SNR
(2)
DM (v∗) = SNR

(2)
DM (a∗)

(c)
= SNR(1) (a∗) , (71)

where c3 =

(
c+

δ

1− δ

)−2

, (a) and (c) follow from that both a0 and a∗ are

in A(1)
M , and (b) follows from c3 < c−2 and

‖ [v1,v2]
T
v⊥
M‖2

‖v⊥
M‖2

< λmax. Since
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v∗ �= vM, the equality cannot hold. It concludes that a∗ should not be the AF
scheme that maximizes the sum rate.

Then the proof is completed.

Since the same notations are used in the sum rate case, by Lemmas 5 and 6,
Algorithm 1 also applies to compute the AF scheme that maximizes the sum
rate of the two-hop MAC.

Discussion. We first discuss the complexity of the algorithm. Note that to
obtain the AF scheme that achieves the maximum individual or sum rate, the
computing step in Algorithm 1 may repeat 2n−2 times in the worst case. It seems
that the algorithm is infeasible for n too large in practice. Fortunately, in our
previous work [13, Theorem 6], we have derived a result which shows that there
exists a simple mixed-AF scheme consisting of three AF schemes that can achieve
the optimal rate region within half a bit with respect to sum and individual
rates. The condition under which the scheme works is that the upper layer noise
dominates the total noises received at the destination node [13, Definition 6]. It
is clear that in our system model, as the number of relays sufficiently large, the
condition can always be satisfied. Furthermore, it is generally the case that the
power of the upper layer noise increases as the number of relays becomes large.
So, we can first determine whether the dominative condition holds or not before
running the algorithm. Therefore, we conjecture that our algorithm combined
with the asymptotical optimal AF scheme obtained in [13, Theorem 6] is efficient
enough to obtain a good AF scheme from the practice perspective. However, to
obtain the other boundary points and the corresponding AF schemes is not such
straightforward.

Then we should point out that, the non-negative assumption of the channel
gains simplifies the discussion of the issue. It does not loose generality for the
maximum individual rate case. From (5), we can see that even if the channel gain
takes negative value, by properly choosing ak the elements in the summation in
the numerator of the SNR function can always have the same sign. However,
if we relax this assumption for the sum rate case, we find the problem becomes
much more complicated. For example, if hS1,1hS2,1 < 0, and hS1,khS2,k > 0,
k ∈ V\{1}, we cannot decide whether to choose a1 ∈ [0,

√
P1,max] or to choose

a1 ∈ [−
√
P1,max, 0]. It makes the problem intractable by the current approach.

4 Conclusion

In this paper, we have studied the optimal rate region of a two-hop MAC both
under the sum and individual power constraints. We obtain the results for the
sum power constraint and propose a novel technique to solve it. The new method
provides a geometric interpretation of the optimal AF rate region. However, for
the individual power constraints scenario, there are still several problems un-
solved. First, the algorithm may not be efficient enough to compute the exact
AF scheme that achieves maximum individual rate when n is too large from
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the practical perspective. Secondly, the general boundary points and the cor-
responding AF schemes are not found. Thirdly, if the non-negative assumption
of the channel gains is removed, the current approach is inadequate to solve the
maximum sum rate problem. To solve these problems is the goal of our future
work.
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ural Science Foundation of China (60832001 and 61271174).

References

1. Agnihotri, S., Jaggi, S., Chen, M.: Amplify-and-Forward in Wireless Relay Net-
works. In: Proc. IEEE Inf. Theory Workshop 2011, Paraty, Brazil, pp. 311–315
(2011)

2. Agnihotri, S., Jaggi, S., Chen, M.: Analog Network Coding in General SNR
Regime. In: IEEE Int. Symp. Inf. Theory 2012, Cambridge, MA, pp. 2052–2056
(2012)

3. Agnihotri, S., Jaggi, S., Chen, M.: Analog network coding in general SNR regime:
Performance of a greedy scheme. In: Proc. 2012 Int. Symp. NetCod, Cambridge,
MA, pp. 137–142 (2012)

4. Ahlswede, R.: Multi-way communication channels. In: Proc. 2nd. Int. Symp. Inf.
Theory, Tsahkadsor, Armenia, pp. 23–52 (1971)

5. Azarian, K., Gamal, H.E., Schniter, P.: On the Achievable Diversity-Multiplexing
Tradeoff in Half-Duplex Cooperative Channels. IEEE Trans. Inf. Theory 51(12),
4152–4172 (2005)

6. Borade, S., Zheng, L., Gallager, R.: Amplify-and-forward in wireless relay net-
works: Rate, diversity, and network size. IEEE Trans. Inf. Theory 53(10),
3302–3318 (2007)

7. Dana, A.F., Gowaikar, R., Hassibi, B., Effros, M., Medard, M.: Should we break a
wireless network into subnetworks? In: Allerton Conf. Commun., Contr. Comput.
(2003)

8. Gastpar, M., Vetterli, M.: On the capacity of large Gaussian relay networks. IEEE
Trans. Inf. Theory 51(3), 765–779 (2005)

9. Gomadam, K.S., Jafar, S.A.: The Effect of Noise Correlation in Amplify-and-
Forward Relay Networks. IEEE Trans. Inf. Theory 55(2), 731–745 (2009)

10. Jafar, S.A., Gomadam, K.S., Huang, C.: Duality and Rate Optimization for Mul-
tiple Access and Broadcast Channels with Amplify-and-Forward Relays. IEEE
Trans. Inf. Theory 53(10), 3350–3370 (2007)

11. Laneman, J.N., Tse, D.N.C., Wornell, G.W.: Cooperative diversity in wireless
networks: efficient protocols and outage behavior. IEEE Trans. Inf. Theory 50(12),
3062–3080 (2004)

12. Liu, B., Cai, N.: Analog Network Coding in the Generalized High-SNR Regime.
In: Proc. IEEE Int. Symp. Inf. Theory 2011, St. Pertersburg, Russia, pp. 74–78
(2011)

13. Liu, B., Cai, N.: Multi-hop Analog Network Coding: An Amplify-
and-forward Approach. Submitted to IEEE Trans. Inf. Theory (2012),
http://arxiv.org/abs/1203.4867

http://arxiv.org/abs/1203.4867


68 B. Liu and N. Cai
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Appendix

A Proof of Lemma 1

Proof. To prove the lemma, we justify the following proposition. To have each
rate set R(x), it is sufficient to take x in the linear subspace span {di, i = 1, 2}.
Then the lemma can be viewed as an direct corollary of such proposition.

On one hand, any n-dimensional vector x can be decomposed as

x = x1 + x2, (72)

where x1 ∈ span {di, i = 1, 2}, x2 ∈ span⊥ {di, i = 1, 2}, and thus xT1 x2 = 0.
On the other hand, span⊥ {di, i = 1, 2} is the solution space of the homogenous
linear equations [d1,d2]

Tx = 0. Therefore, it follows that dTi x2 = 0, i = 1, 2.
Given any AF scheme a such that ‖ a ‖2= Psum, we have x = Λa. Suppose

x /∈ span {di, i = 1, 2}, otherwise, there is nothing to prove. It can be found
another scheme a1 = cΛ−1x1, where c is chosen such that ‖ a1 ‖2= Psum. Then
from (14), it is clear that R(a) = R(x) ⊆ R(cx1) = R(a1), which implies that
the points in rate set R(x) cannot be on the boundary of R({x}).

Then we complete the proof.

B Proof of Lemma 2

Proof. The lemma can be proved by a consequence of careful calculation. Several
basic conditions are described first. In the previous section, all the channel gains
are assumed to be positive values, and the angles α and β are both in

[
0, π2

]
as shown in Fig. 2. Without loss of generality, assume 0 ≤ α ≤ β ≤ π

2 hence
0 ≤ β−α ≤ π

2 . Although θ can take all values in [−π, π] , it is easy to find that
xTd10 = cos2 (θ − α) = cos2 (θ − α± π) and the same argument applies to the
inner product between x and d20. This implies that the value of θ can be limited
to

[
−π

2 ,
π
2

]
. Then the proof can be completed by the following discussions.

– Case 1. When θ ∈
[
β, π2

]
,

xTd10 = cos2 (θ − α)
(a)

≤ cos2 (β − α) , (73)
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case 1: ,
2

case 2: ,

case 3: ,
2

case 4: ,
2 2

,
2
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2

se 5:

Fig. 2. Geometric Interpretation

where (a) follows by 0 ≤ β − α ≤ θ − α ≤ π
2 , and

xTd20 = cos2 (θ − β) ≤ cos2 (β − β) = 1. (74)

Therefore, by taking θ∗ = β, R(θ) ⊂ R(θ∗) holds for all θ ∈
[
β, π2

]
.

– Case 2. When θ ∈ [α, β], there is nothing to prove.
– Case 3. When θ ∈

[
β − π

2 , α
]
,

xTd10 = cos2 (θ − α) ≤ cos2 (α− α) = 1, (75)

and

xTd20 = cos2 (β − θ)
(a)

≤ cos2 (β − α) , (76)

where (a) follows by 0 ≤ β − α ≤ β − θ ≤ π
2 .

Therefore, by taking θ∗ = α, R(θ) ⊂ R(θ∗) holds for all θ ∈
[
β − π

2 , α
]
.

– Case 4. When θ ∈
[
α− π

2 , β − π
2

]
,

let δ = β − π
2 − θ ∈ [0, β − α] and θ′ = β − π

2 + δ ∈
[
β − π

2 , 2β − α− π
2

]
⊂[

β − π
2 , β

]
,

xTd20 = cos2 (β − θ) = cos2
(π
2
+ δ

)
= cos2

(π
2
− δ

)
= cos2 (β − θ′) (77)

1). If θ′ ≤ α, then

xTd10 = cos2 (α− θ) = cos2
(
α− β +

π

2
+ δ

)
(a)

≤ cos2
(
α− β +

π

2
− δ

)
= cos2 (α− θ′) , (78)

where (a) follows from 0 ≤ α − θ′ = α− β + π
2 − δ ≤ α− β + π

2 + δ =
α− θ ≤ π

2 .
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Therefore, in such case, for any θ there always exists a θ′ ∈
[
β − π

2 , α
]
that

R(θ) ⊂ R(θ′) holds. Hence from the result of case 3, by taking θ∗ = α,
R(θ) ⊂ R(θ∗) holds.
2). If α < θ′ ≤ β, then

xTd10 = cos2 (α− θ) = cos2
(
α− β +

π

2
+ δ

)
(a)

≤ cos2
(
β − α− π

2
+ δ

)
= cos2 (θ′ − α) , (79)

where (a) follows from 0 ≤ α − θ′ = α− β + π
2 − δ ≤ α− β + π

2 + δ =
α− θ ≤ π

2 .
Therefore, in such case, for any θ there always exists a θ′ ∈ [α, β] that

R(θ) ⊂ R(θ′) holds.
– Case 5. When θ ∈

[
−π

2 , α− π
2

]
,

xTd10 = cos2 (θ − α) = cos2 (θ − α+ π)

(a)

≤ cos2 (β − α) , (80)

where (a) follows from π
2 − β ≤ π

2 − α ≤ θ − α+ π ≤ π
2 , and

xTd20 = cos2 (θ − β) ≤ cos2 (β − β) = 1. (81)

Therefore, by taking θ∗ = β, R(θ) ⊂ R(θ∗) holds for all θ ∈
[
−π

2 , α− π
2

]
.

Then we complete the proof.
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Dedicated to the memory of Rudolf Ahlswede

Abstract. We show strongly secret achievable rate regions for two
different wiretap multiple-access channel coding problems. In the first
problem, each encoder has a private message and both together have a
common message to transmit. The encoders have entropy-limited access
to common randomness. If no common randomness is available, then the
achievable region derived here does not allow for the secret transmission
of a common message. The second coding problem assumes that the
encoders do not have a common message nor access to common random-
ness. However, they may have a conferencing link over which they may
iteratively exchange rate-limited information. This can be used to form a
common message and common randomness to reduce the second coding
problem to the first one. We give the example of a channel where the
achievable region equals zero without conferencing or common random-
ness and where conferencing establishes the possibility of secret message
transmission. Both coding problems describe practically relevant net-
works which need to be secured against eavesdropping attacks.

Keywords: wiretap multiple access channel, information-theoretic se-
curity, strong secrecy, common randomness.

1 Introduction

The wiretap Multiple-Access Channel (MAC) combines two areas where Rudolf
Ahlswede has made major contributions. In the area of multi-user information
theory, he [9] and Liao [25] independently gave one of the first complete charac-
terizations of the capacity region of a multi-user channel – the MAC with one
message per sender. Later, Dueck [18] proved the strong converse for the MAC
and Ahlswede [10] gave an elementary proof immediately afterwards. Slepian
and Wolf generalized the results from [9] and [25] to the case where the senders
additionally have a common message [32]. Willems used Slepian and Wolf’s
result to derive the capacity region of the MAC with conferencing encoders.
This is a MAC without common message, but the encoders can exchange rate-
limited information about their messages in an interactive conferencing protocol
[38, 39]. The results of Slepian and Wolf as well as Willems’ result were on-
ly recently generalized to general compound MACs with partial channel state
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information in [37], arbitrarily varying MACs with conferencing encoders were
treated in [36]. The latter paper made substantial use of techniques developed
by Ahlswede for single-sender arbitrarily varying channels in [1–3] and also of
his and Cai’s contribution to arbitrarily varying MACs [5].

The other area of Ahlswede’s interest which plays a role in this paper is se-
crecy and common randomness. Among other problems, he considered together
with Csiszár in [6, 7] how a secret key can be shared at distant terminals in
the presence of an eavesdropper. Work on secret key sharing aided by public
communication goes back to Maurer [28]. The first paper which exploits the
statistics of a discrete memoryless channel to establish secret communication is
due to Wyner [40]. He considers the wiretap channel, the simplest model of a
communication scenario where secrecy is relevant: a sender would like to trans-
mit a message to a receiver over a discrete memoryless channel and transmission
is overheard by a second receiver who should be kept ignorant of the message.
It was noted by Wyner that a secret key shared at both legitimate terminals
is not necessary to establish secret transmission – if the channel statistics are
taken into consideration, it is sufficient that the sender randomizes his inputs in
order to secure transmission.

Since Wyner discovered this fact, information-theoretic secrecy for message
transmission without a key shared between sender and legitimate receiver has
been generalized in various directions. The first paper on multi-user information-
theoretic security is due to Csiszár and Körner [15]. Here, the second receiver
only is a partial eavesdropper: there is a common message intended for both
receivers, but as in the original wiretap channel, an additional private message
intended for the first receiver must be kept secret from the second. We come to
multiple-access models below. An overview over the area is given in [24].

The original secrecy criterion used in [40] and [15] and in most of the sub-
sequent work until today has become known as the “weak secrecy criterion”.
Given a code, it measures the mutual information normalized by the code block-
length between the randomly chosen message and the eavesdropper’s output
corresponding to the application of the code and transmission over the chan-
nel. Maurer introduced the “strong secrecy criterion” in [29] by omitting the
normalization. The advantage of this criterion was revealed in [11]: it can be
given an operational meaning, i.e. one can specify the attacks it withstands. It
is possible to show that if transmission obeys the strong secrecy criterion, then
the eavesdropper’s average error tends to one for any decoder it might apply.
Translated into practical secrecy schemes, this means that no matter how large
the computing power of a possible eavesdropper might be, it will not succeed
in breaking the security of this scheme. For the weak criterion, there are still
only heuristic argumentations as to why it should be secret. Further secrecy
metrics are presented in [12], but without giving them an operational mean-
ing, strong secrecy remains the strongest of these metrics. To our knowledge,
there are three different approaches to establishing strong secrecy in a wiretap
channel so far [14, 17, 28]. In fact, the last of these approaches also applies to
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classical-quantum wiretap channels [17] and also was used to give an achievable
rate for the classical compound wiretap channel [11].

There exist many MAC models where secrecy is an issue. This may even be
the case when there is no eavesdropper, as each encoder might have access to
noisy observations of the other sender’s codeword but wants to protect its own
message from decoding at the other sender [19, 23, 27]. The case where the
encoders have access to generalized feedback but only keep their messages secret
from an external eavesdropper is considered in [33]. In the cognitive MAC, only
one encoder has a private message, and together, the encoders have a common
message. There are again two cases: In the case without an eavesdropper,
the encoder without a private message has access to the codeword sent by the
other encoder through a noisy channel and must be kept ignorant of the other
encoder’s private message [26]. In [31], the cognitive MAC without feedback
was investigated where the messages must be kept secret from an eavesdropper
and the encoders have unrestricted access to common randomness. All of these
papers use the weak secrecy criterion.

The first part of this article generalizes and strengthens the achievability result
from [20] where multi-letter characterizations of an achievable region and of an
outer bound on the capacity region of a MAC without common message and
with an external eavesdropper under the weak secrecy criterion are given. The
channel needs to satisfy certain relatively strong conditions for the bounds to
work. Extensions to the Gaussian case can be found in [20, 21, 34].

We consider two senders Alice1 and Alice2. Each has a private message and
together they have a common message. This message triple must be transmitted
to Bob over a discrete memoryless MAC in such a way that Eve who obtains a
version of the sent codewords through another discrete memoryless MAC cannot
decode the messages. We apply the strong secrecy criterion. In order to find
a code which satisfies this criterion, we use Devetak’s approach [17], which in
the quantum case builds on the Ahlswede-Winter lemma [8] and classically on a
Chernoff bound. It is similar to the approach taken in [13]. As the senders have
a common message and as the second part of the paper deals with the wiretap
MAC with conferencing encoders, we assume that the encoders have access to a
restricted amount of common randomness. Common randomness for encoding
has so far only been used in [31], but without setting any limitations on its
amount. Note that this use of common randomness in order to establish secrecy
differs from the use made in [6, 7]. We only obtain an achievable region. In this
achievable region it is not possible to transmit a common message if no common
randomness is available. Further it is notable that we use random coding and
have to apply time-sharing before derandomizing.

The wiretap MAC with common message and common randomness is also
needed in the second part of this paper about the wiretap MAC with confer-
encing encoders. Conferencing was introduced by Willems in [38, 39] and is an
iterative protocol for the senders of a MAC to exchange information about their
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messages. One assumes that the amount of information that is exchanged is
rate-limited because otherwise one would obtain a single-encoder wiretap MAC.
Willems already used the coding theorem for the MAC with common message to
deduce an achievable region for the conferencing MAC. The same can be done
for the wiretap MAC with conferencing encoders. More precisely, aside from the
senders’ private messages, there are no further messages to be transmitted, and
no common randomness is available. However, conferencing is used to produce
both a common message and common randomness, which allows the reduction.
A consequence of the fact that no common message can be transmitted by the
wiretap MAC with common message if there is no common randomness is that
one has to use conferencing to establish some common randomness if this is
supposed to enlarge the achievable region compared to what would be achievable
without conferencing. Again, this consequence presumes that the achievable
region equals the capacity region even though we cannot prove this.

Information-theoretic security has far-reaching practical consequences. As
digital communication replaces more and more of the classical paper-based ways
of communication even for the transmission of sensible data, the problem of se-
curing these data becomes increasingly important. Information-theoretic secrecy
provides an alternative to the traditional cryptographic approach which bases on
the assumption of limited computing power. However, as information-theoretic
security uses the imperfections of the channels to secure data, its models must
be sufficiently complex to describe realistic scenarios. Our article shows how
encoder cooperation can be utilized to secure data. The cooperation of base
stations in mobile networks is included in future wireless network standards,
and our work can be seen as a contribution to the theoretical analysis of how it
fares when it comes to security. But already Csiszár and Körner’s paper on the
broadcast channel with confidential messages shows how messages with differ-
ent secrecy requirements can be combined in one transmission. A more recent
example which also applies the strong secrecy criterion is given in [41].

Organization of the Paper: The next section introduces the general model
of a wiretap MAC and also presents the Willems conferencing protocol. Section
3 contains the two achievability theorems for the wiretap MAC with common
message and the wiretap MAC with conferencing encoders.

The common message theorem is treated in the rather long Section 4. First,
the regions we claim to be achievable are decomposed into regions whose achiev-
ability can be shown more easily. Following Devetak, it is shown that it is
sufficient to make Eve’s output probability given a message triple almost inde-
pendent of this triple in terms of variation distance. Then, in the mathematical
core of the paper, we derive lower bounds on the randomness necessary to achieve
strong secrecy using probabilistic concentration results. Here we also follow De-
vetak. Having derived these bounds, we finally find a realization of the random
codes which defines a good wiretap code.

Section 5 gives the proof of the achievability theorem for the wiretap MAC
with conferencing encoders. We again have to decompose the claimed regions
into regions whose achievability can be shown more easily. Then we can reduce
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the problem of achieving a certain rate pair with conferencing to the problem
of achieving a certain rate triple by the wiretap MAC with common message
more or less in the same way as done by Willems in the non-wiretap situation.
Finally, Section 6 shows that conferencing may help in situations where no secret
transmission is possible without and that for our approach it is necessary to do
the time-sharing within the random coding.

Notation: For sets {1, . . . ,M}, where M is a positive integer, we use the com-
binatorial shorthand [M ]. For a real number x we define [x]+ := max{x, 0}.

For any set X and subset A ⊂ X we write Ac := X \A. We let 1A : X → {0, 1}
be the indicator function of A which takes on the value 1 at x ∈ X if and only
if x ∈ A. Given a probability space (Ω,A,P) we write E for the expectation
corresponding to P and for A ∈ A and a real-valued random variable X we write
E[X ;A] := E[X1A].

The space of probability distributions on the finite set X is denoted by P(X ).
In particular, it contains for every x ∈ X the probability measure δx defined by
δx(x) = 1. The product of two probability distributions P and Q is denoted by
P ⊗ Q. A stochastic matrix with input alphabet X and output alphabet Z is
written as a mapping W : X → P(Z). The n-fold memoryless extension of a
channel W : X → P(Z) is denoted by W⊗n, so that for x = (x1, . . . , xn) ∈ Xn

and z = (z1, . . . , zn) ∈ Zn,

W⊗n(z|x) =
n∏
i=1

W (zi|xi).

We also define for P ∈ P(X ) and W : X → P(Z) the probability distribution
P ⊗W ∈ P(X × Z) by (P ⊗W )(x, z) = P (x)W (z|x).

Every measure μ on the finite set X can be identified with a unique function
μ : X → [0,∞]. Then for any subset A ⊂ X we have μ(A) =

∑
x∈A μ(x). On

the set of measures on X , we define the total variation distance by

‖μ1 − μ2‖ :=
∑
x∈X

|μ1(x) − μ2(x)|.

Given a random variable X living on X and a P ∈ P(X ), we mean by X ∼ P
that P is the distribution of X . Given a pair of random variables (X,Y ) taking
values in the finite set X ×y, we write PX ∈ P(X ) for the distribution of X and
PX|Y for the conditional distribution of X given Y . We also write T nX,δ ⊂ Xn

for the subset of δ-typical sequences with respect to X and T nX|Y,δ(y) ⊂ yn

for the subset of conditionally δ-typical sequences with respect to PX|Y given
y ∈ yn. Given a sequence x ∈ Xn and an x ∈ X , we let N(x|x) be the number
of coordinates of x equal to x.
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For random variables X,Y, Z we write H(X) for the entropy of X , H(X |Y )
for the conditional entropy of X given Y , I(X ∧ Y ) for the mutual information
of X and Y and I(X ∧ Y |Z) for the conditional mutual information of X and
Y given Z.

2 The Wiretap Multiple-Access Channel

The wiretap Multiple-Access Channel (MAC) is described by a stochastic matrix

W : X × Y → T × Z,

where X ,Y, T ,Z are finite sets. We write Wb and We for the marginal channels
to T and Z, so e.g.

Wb(t|x, y) :=
∑
z∈Z

W (t, z|x, y).

X and Y are the finite alphabets of Alice1 and Alice2, respectively. T is the finite
alphabet of the receiver called Bob and the outputs received by the eavesdropper
Eve are elements of the finite alphabet Z.

2.1 With Common Message

Let HC be a nonnegative real number. A wiretap MAC code with common mes-
sage and blocklength n satisfying the common randomness bound HC consists
of a stochastic matrix

G : [K0]× [K1]× [K2] → P(Xn × Yn)

and a decoding function

φ : T n → [K0]× [K1]× [K2].

G is required to have the form

G(x,y|k0, k1, k2) =
∑
j∈J

G0(j|k0)G1(x|k0, k1, j)G2(y|k0, k2, j),

where J is some finite set and

G0 : [K0] → P(J ),

G1 : [K0]× [K1]× J → P(X ),

G2 : [K0]× [K2]× J → P(Y).

Further, G0 has to satisfy that H(J |M0) ≤ nHC for M0 uniformly distributed
on [K0] and PJ|M0

= G0. [K0] is called the set of common messages, [K1] is the
set of Alice1’s private messages and [K2] the set of Alice2’s private messages.
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Let M0,M1,M2 be independent random variables uniformly distributed on
[K0], [K1] and [K2], respectively. Further, let Xn, Y n, T n, Zn be random vari-
ables such that for (x,y, t, z) ∈ Xn × Yn × T n ×Zn

PXnY n|M0M1M2
(x,y|k0, k1, k2) = G(x,y|k0, k1, k2),

PTnZn|XnY nM0M1M2
(t, z|x,y, k0, k1, k2) =W⊗n(t, z|x,y).

Then the average error of the code defined above equals

P[φ(T n) �= (M0,M1,M2)].

Definition 1. A rate pair (R0, R1, R2) ∈ R3
≥0 is achievable by the wiretap MAC

with common message under the common randomness bound HC ≥ 0 if for every
η > 0 and every ε ∈ (0, 1) and n large there exists a wiretap MAC code with
common message and blocklength n satisfying the common randomness bound
HC and

1

n
logKν ≥ Rν − η (ν = 0, 1, 2),

P[φ(T n) �= (M0,M1,M2)] ≤ ε,

I(Zn ∧M0M1M2) ≤ ε.

Remark 1. It was shown in [11] that no matter how Eve tries to decode the
messages from the Alices, the average error must tend to one. More precisely,
assume that a wiretap code with common message and blocklength n is given,
and assume that Eve has a decoding function

χ : Zn → [K0]× [K1]× [K2].

Then
P[χ(Zn) �= (M0,M1,M2)] ≥ 1− ε′

for some ε′ which tends to zero as ε tends to zero. If ε tends to zero exponentially
fast and K0,K1,K2 grow exponentially, then ε′ tends to zero at exponential
speed.

More generally assume that f : [K0] × [K1] × [K2] → [K ′] is a function
satisfying P[f(M0,M1,M2) = k′] = 1/K ′ for all k′ ∈ [K ′]. Then with the same
argument as in [11] one can show that for every function g : Zn → [K ′], one has
P[f(M) �= g(Zn)] ≥ 1 − 1/K ′ − ε′ for the same ε′ as above. That is, even for
K ′ = 2, blind guessing is the best way for Eve to estimate f(M). In particular,
no subset of the message random variables, like M0 or (M1,M2), can be reliably
decoded by Eve.

2.2 With Conferencing Encoders

In the wiretap MAC with conferencing encoders, Alice1 and Alice2 do not have
a common message nor common randomness. However before forming their
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codewords, they may exchange some information about their private messages
according to an iterative and randomized “conferencing” protocol whose deter-
ministic form was introduced by Willems [38, 39]. If the respective message sets
are [K1] and [K2], such a stochastic Willems conference can be described as
follows. Let finite sets J1 and J2 be given which can be written as products

Jν = Jν,1 × . . .× Jν,I (ν = 1, 2)

for some positive integer I which does not depend on ν. A Willems conferenc-
ing stochastic matrix c completely describing such a conference is determined
in an iterative manner via sequences of stochastic matrices c1,1, . . . , c1,I and
c2,1, . . . , c2,I . c1,i describes the probability distribution of what Alice1 tells
Alice2 in the i-th conferencing iteration given the knowledge accumulated so
far at Alice1. Thus in general, using the notation

ν̄ :=

{
1 if ν = 2,

2 if ν = 1,

these stochastic matrices satisfy for ν = 1, 2 and i = 2, . . . , I,

cν,1 : [Kν ] → P(Jν,1),
cν,i : [Kν ]× Jν̄,1 × . . .× Jν̄,i−1 → P(Jν,i).

The stochastic matrix c : [K1]× [K2] → P(J1 × J2) is obtained by setting

c(j1,1, . . . , j1,I , j2,1, . . . , j2,I |k1, k2)
:= c1,1(j1,1|k1) c2,1(j2,1|k2) · · ·

· · · c1,I(j1,I |k1, j2,1, . . . , j2,I−1) c2,I(j2,I |k2, j1,1, . . . , j1,I−1).

We denote the J1- and J2-marginals of this stochastic matrix by c1 and c2,
so c1(j1,1, . . . , j1,I |k1, k2) is obtained by summing over j2,1, . . . , j2,I and c2 is
obtained analogously.

Now we define a wiretap MAC code with conferencing encoders. It consists
of a Willems conferencing stochastic matrix c : [K1] × [K2] → P(J1 × J2) as
above together with encoding stochastic matrices

G1 : [K1]× J2 → Xn,

G2 : [K2]× J1 → Yn

and a decoding function

φ : T n → [K1]× [K2].

[K1] is the set of Alice1’s messages and [K2] is the set of Alice2’s messages. A
pair (k1, k2) ∈ [K1] × [K2] is encoded into the codeword pair (x,y) ∈ Xn × Yn

with probability ∑
(j1,j2)∈J1×J2

c(j1, j2|k1, k2)G1(x|k1, j2)G2(y|k2, j1). (1)



Strong Secrecy for Multiple Access Channels 79

In particular, conferencing generates common randomness. As both c1 and c2
may depend on both encoders’ messages, the codewords may as well depend on
both messages. Thus if conferencing were unrestricted, this would transform the
MAC into a single-user wiretap channel with input alphabet X × Y. However,
Willems introduces a restriction in terms of the blocklength of the code which is
used for transmission. For conferencing under conferencing capacities C1, C2 ≥
0, he requires that for a blocklength-n code, |J1| and |J2| satisfy

1

n
log|Jν | ≤ Cν (ν = 1, 2). (2)

We also impose this constraint and define a wiretap MAC code with conferencing
capacities C1, C2 ≥ 0 to be a wiretap MAC code with conferencing encoders
satisfying (2).

Let a wiretap MAC code with conferencing encoders be given and let M1,M2

be independent random variables uniformly distributed on [K1] and [K2], re-
spectively. Let Xn, Y n, T n, Zn be random variables such that conditional on
(M1,M2), the distribution of (Xn, Y n) is given by (1) and such that

PTnZn|XnY nM1M2
=W⊗n.

Then the average error of the code defined above equals

P[φ(T n) �= (M1,M2)].

Definition 2. A rate pair (R1, R2) ∈ R3
≥0 is achievable by the wiretap MAC

with conferencing encoders at conferencing capacities C1, C2 > 0 if for every
η > 0 and every ε ∈ (0, 1) and for n large there exists a wiretap MAC code with
conferencing capacities C1, C2 and blocklength n satisfying

1

n
logKν ≥ Rν − η (ν = 1, 2),

P[φ(T n) �= (M1,M2)] ≤ ε,

I(Zn ∧M1M2) ≤ ε.

Remark 2. Here again, as in Remark 1, the average decoding error for any
decoder Eve might apply tends to 1 if the security criterion is satisfied.

3 Coding Theorems

3.1 For the Wiretap MAC with Common Message

Let HC ≥ 0 be the common randomness bound. The rate region whose achiev-
ability we are about to claim in Theorem 1 can be written as the closure of
the convex hull of the union of certain rate sets which are parametrized by the
elements of a subset ΠHC of the set Π which is defined as follows. Π contains
all probability distributions p of random vectors (U, V1, V2, X, Y, T, Z) living on
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sets U × V1 × V2 × X × Y × T × Z, where U ,V1,V2 are finite subsets of the
integers and where p has the form

p = PU ⊗ PV1|U ⊗ PV2|U ⊗ PX|V1
⊗ PY |V2

⊗W.

Next we define ΠHC . There are four cases altogether, numbered Case 0 to Case
3. Case 0 corresponds to HC = 0 and if HC > 0, then ΠHC has the form ΠHC =

Π
(1)
HC

∪Π(2)
HC

∪Π(3)
HC

, and each of these subsets corresponds to one of these cases.
The one condition all cases have in common is that I(Z ∧ V1V2) ≤ I(T ∧ V1V2).
Case 0: If HC = 0 define the set Π0 as the set of those p ∈ Π where V1 and
V2 are independent of U (so we can omit U in this case and V1 and V2 are
independent) and where p satisfies the inequalities

I(Z ∧ V1) ≤ I(T ∧ V1|V2), (3)

I(Z ∧ V2) ≤ I(T ∧ V2|V1). (4)

For p ∈ Π0 define the setR(0)(p) to be the set of nonnegative triples (R0, R1, R2)
satisfying

R0 = 0,

R1 ≤ I(T ∧ V1|V2)− I(Z ∧ V1)− [I(Z ∧ V2|V1)− I(T ∧ V2|V1)]+,
R2 ≤ I(T ∧ V2|V1)− I(Z ∧ V2)− [I(Z ∧ V1|V2)− I(T ∧ V1|V2)]+,

R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

Case 1: Π
(1)
HC

is the set of those p ∈ Π which satisfy I(Z ∧ U) < HC and

I(Z ∧ V1|U) ≤ I(T ∧ V1|V2U), (5)

I(Z ∧ V2|U) ≤ I(T ∧ V2|V1U), (6)

I(Z ∧ V1V2|U) ≤ I(T ∧ V1|V2U) + I(T ∧ V2|V1U). (7)

Then we denote by R(1)(p) the set of nonnegative real triples (R0, R1, R2)
satisfying

R1 ≤ I(T ∧ V1|V2U)− I(Z ∧ V1|U)

− [I(Z ∧ V2|V1U)− I(T ∧ V2|V1U)]+,

R2 ≤ I(T ∧ V2|V1U)− I(Z ∧ V2|U)

− [I(Z ∧ V1|V2U)− I(T ∧ V1|V2U)]+,

R1 +R2 ≤ I(T ∧ V1V2|U)− I(Z ∧ V1V2|U),

R0 +R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

Case 2: The conditions for p to be contained in Π
(2)
HC

cannot be phrased as

simply as for Π
(1)
HC

. Generally, if p ∈ Π
(2)
HC

then

min{I(Z ∧ V1U), I(Z ∧ V2U)} < HC ≤ I(Z ∧ V1V2).
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This is sufficient if I(Z ∧ V1|V2U) = I(Z ∧ V2|V1U). If I(Z ∧ V1|V2U) > I(Z ∧
V2|V1U) then we additionally require that

α
(2)
0 := max

(
I(Z ∧ V1U)−HC

I(Z ∧ V1|V2U)− I(Z ∧ V2|V1U)
, 1− I(T ∧ V2|V1U)

I(Z ∧ V2|V1U)
, 0

)
≤ α

(2)
1 := min

(
I(T ∧ V1|V2U)

I(Z ∧ V1|V2U)
,
I(T ∧ V1V2|U)− I(Z ∧ V2|V1U)

I(Z ∧ V1|V2U)− I(Z ∧ V2|V1U)
, 1

)
whereas if I(Z ∧ V1|V2U) < I(Z ∧ V2|V1U) then we need

α
(2)
0 := max

(
1− I(T ∧ V2|V1U)

I(Z ∧ V2|V1U)
,
I(T ∧ V1V2|U)− I(Z ∧ V2|V1U)

I(Z ∧ V1|V2U)− I(Z ∧ V2|V1U)
, 0

)
≤ α

(2)
1 := min

(
HC − I(Z ∧ V1U)

I(Z ∧ V2|V1U)− I(Z ∧ V1|V2U)
,
I(T ∧ V1|V2U)

I(Z ∧ V1|V2U)
, 1

)
.

In the case of equality, i.e. if I(Z ∧ V1|V2U) = I(Z ∧ V2|V1U), we define R(2)(p)
as

R1 ≤ I(T ∧ V1|V2U),

R2 ≤ I(T ∧ V2|V1U),

R1 + R2 ≤ I(T ∧ V1V2|U)− I(Z ∧ V1|V2U),

R0 +R1 + R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

If I(Z ∧ V1|V2U) > I(Z ∧ V2|V1U), we define R(2)(p) by

R1 ≤ I(T ∧ V1|V2U)− α
(2)
0 I(Z ∧ V1|V2U),

R2 ≤ I(T ∧ V2|V1U)− (1− α
(2)
1 )I(Z ∧ V2|V1U),

R1 +R2 ≤ I(T ∧ V1V2|U)− α
(2)
0 I(Z ∧ V1|V2U) (8)

− (1 − α
(2)
0 )I(Z ∧ V2|V1U),

R1 +
I(Z ∧ V2|V1U)

I(Z ∧ V1|V2U)
R2 ≤ I(T ∧ V2|V1U) (9)

+

(
I(T ∧ V1|U)

I(Z ∧ V1|V2U)
− 1

)
I(Z ∧ V2|V1U),

R0 +R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

The bound (8) on R1 +R2 can be reformulated as

R1 +R2 ≤ I(T ∧ V1V2|U)− I(Z ∧ V1V2|U)

+min

{
HC − I(Z ∧ U), I(Z ∧ V1|U),

I(T ∧ V1|V2U)

(
I(Z ∧ V2|V1U)

I(Z ∧ V1|V2U)
− 1

)
+ I(Z ∧ V1|U)

}
,
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and if I(Z ∧ V2|V1U) > 0, we can give the weighted sum bound (9) the almost
symmetric form

R1

I(Z ∧ V1|V2U)
+

R2

I(Z ∧ V2|V1U)
≤ I(T ∧ V1|U)

I(Z ∧ V1|V2U)
+
I(T ∧ V2|V1U)

I(Z ∧ V2|V1U)
− 1.

For the case that I(Z∧V1|V2U) < I(Z∧V2|V1U), we defineR(2)(p) by exchanging
the roles of V1 and V2.

Case 3: We define Π
(3)
HC

to be the set of those p ∈ Π with I(Z ∧ V1V2) < HC

and for such a p let R(3)(p) equal

R1 ≤ I(T ∧ V1|V2U),

R2 ≤ I(T ∧ V2|V1U),

R1 +R2 ≤ I(T ∧ V1V2|U),

R0 +R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

Theorem 1. For the common randomness bound HC = 0, the wiretap MAC W
with common message achieves the set

closure

(
conv

( ⋃
p∈Π0

R(0)(p)

))
. (10)

If HC > 0, then the closure of the convex hull of the set⋃
p∈Π(1)

HC

R(1)(p) ∪
⋃

p∈Π(2)
HC

R(2)(p) ∪
⋃

p∈Π(3)
HC

R(3)(p)

is achievable.

Remark 3. Using the standard Carathéodory-Fenchel technique, one can show
that one may without loss of generality assume |U| ≤ |X ||Y| + 5. However, |V1|
and |V2| cannot be bounded in this way, as the application of the Carathéodory-
Fenchel theorem does not preserve the conditional independence of V1 and V2. Thus
a characterization of the above achievable region involving sets with upper-bounded
cardinality is currently not available. As it would be important for an efficient
calculation of the achievable region, it still requires further consideration.

Remark 4. If no common randomness is available, then no common message
can be transmitted.

Remark 5. We have R(1)(p) ⊂ R(2)(p) ⊂ R(3)(p). This can be seen directly
at the beginning of the proof in Subsection 4.1 where we decompose the regions
R(ν)(p) for ν = 1, 2 into a union of simpler regions.

In particular, if HC is larger than the capacity of the single-sender discrete
memoryless channel We with input alphabet X ×Y and output alphabet Z, then

Π
(3)
HC

= Π and the achievable set equals

closure

(
conv

( ⋃
p∈Π

R(3)(p)

))
.
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In this case the maximal sum rate equals

C := max
p∈Π

(
I(T ∧ V1V2)− I(Z ∧ V1V2)

)
. (11)

This equals the secrecy capacity of the single-sender wiretap channel when Alice1
and Alice2 together are considered as one single sender. In order to see this, we
have to show that for any pair (V ′

1 , V
′
2) of random variables on any Cartesian

product V1×V2 of finite sets one can find random variables (V1, V2, U) satisfying
PUV1V2 = PU⊗(PV1|U⊗PV2|U ) and PV1V2 = PV ′

1V
′
2
. Given such arbitrary (V ′

1 , V
′
2)

as above, just define U = V ′
1 and PV1|U = the identity on V1 and PV2|U = PV ′

2 |V ′
1
.

Then a simple calculation shows that the above conditions are satisfied. Thus
(11) equals the secrecy capacity of the single-sender wiretap channel with Alice1
and Alice2 combined into a single sender. The remaining conditions on R1 and
R2 formulated in the definition of R(3)(p) are not concerned with We, they are
required by the non-wiretap MAC coding theorem applied to Wb.

3.2 For the Wiretap MAC with Conferencing Encoders

For conferencing capacities C1, C2 > 0, the achievable rate region is parametrized
by the members of ΠC1+C2 . We have Cases 1-3 from the common message part.

Case 1: For p ∈ Π
(1)
C1+C2

we define R(1)(p, C1, C2) by

R1 ≤ I(T ∧ V1|V2U)− I(Z ∧ V1|U)

−[I(Z ∧ V2|V1U)− I(T ∧ V2|V1U)]+ + C1 − [I(Z ∧ U)− C2]+,

R2 ≤ I(T ∧ V2|V1U)− I(Z ∧ V2|U)

−[I(Z ∧ V1|V2U)− I(T ∧ V1|V2U)]+ + C2 − [I(Z ∧ U)− C1]+,

R1 +R2 ≤ min{I(T ∧ V1V2|U) + C1 + C2, I(T ∧ V1V2))} − I(Z ∧ V1V2)).

Case 2: For p ∈ Π(2)
C1+C2

, we set J
(α)
0 := αI(Z ∧V2U)+ (1−α)I(Z ∧ V1U). For

α ∈ [α
(2)
0 , α

(2)
1 ] define the set R(2)

α (p, C1, C2) by

R1 ≤ I(T ∧ V1|V2U)− αI(Z ∧ V1|V2U) + C1 − [J
(α)
0 − C2]+,

R2 ≤ I(T ∧ V2|V1U)− (1− α)I(Z ∧ V2|V1U) + C2 − [J
(α)
0 − C1]+,

R1 +R2 ≤ min{I(T ∧ V1V2|U) + C1 + C2, I(T ∧ V1V2)} − I(Z ∧ V1V2).

Then we set
R(2)(p, C1, C2) :=

⋃
α

(2)
0 ≤α≤α(2)

1

R(2)
α (p, C1, C2).

Case 3: For p ∈ Π
(3)
C1+C2

we define R(3)(p, C1, C2) by

R1 ≤ I(T ∧ V1|V2U) + C1 − [I(Z ∧ V1V2)− C2]+,

R2 ≤ I(T ∧ V2|V1U) + C2 − [I(Z ∧ V1V2)− C1]+,

R1 +R2 ≤ min{I(T ∧ V1V2|U) + C1 + C2, I(T ∧ V1V2)} − I(Z ∧ V1V2).
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Theorem 2. For the conferencing capacities C1, C2 > 0, the wiretap MAC W
with conferencing encoders achieves the closure of the convex hull of the set⋃

p∈Π(1)
HC

R(1)(p, C1, C2) ∪
⋃

p∈Π(2)
HC

R(2)(p, C1, C2) ∪
⋃

p∈Π(3)
HC

R(3)(p, C1, C2).

Remark 6. Remark 3 applies here, too.

Remark 7. The stochastic conferencing protocols employed to achieve the sets
in Theorem 2 are non-iterative. That means that the c we use in the proof have
the form

c(v1, v2|k1, k2) = c1(v1|k1)c2(v2|k2).
Remark 8. If C1 = C2 = 0, then the maximal rate set whose achievability
we can show is (10). Conferencing only enlarges this set in the presence of a
wiretapper if it is used to establish common randomness between the encoders.
At least this is true for the achievable region we can show, it cannot be verified
in general as long as one does not have a converse. The reason is that confer-
encing generates a common message shared by Alice1 and Alice2. As noted in
Remark 4, a common message can only be kept secret if common randomness is
available. As the Alices do not have common randomness a priori, this also has
to be generated by conferencing, so the Willems conferencing protocol has to be
stochastic.

Remark 9. With the coding method we apply, conferencing may enable secure
transmission if this is not possible without. That means that there are wiretap
MACs where the achievable region without conferencing as derived in Theorem
1 only contains the rate pair (0, 0) whereas it contains non-trivial rate pairs with
C1, C2 > 0. See Section 6 for an example.

Remark 10. If C1, C2 are sufficiently large, then the maximal achievable sum
rate equals the secrecy capacity C of the single-sender wiretap channel with input
alphabet X × Y and channel matrix W , see (11). In fact, this happens if

1) C1+C2 is strictly larger than the capacity of the single-sender discrete mem-
oryless channel We with input alphabet X × Y and output alphabet Z,

2) C1+C2 ≥ minp∈Π∗ I(T ∧U), where Π∗ contains those p ∈ Π which achieve
C.

Condition 1) is sufficient to guarantee that C is achievable by an element of

Π
(3)
C1+C2

which then equals Π, see Remark 5. In particular Π∗ is nonempty, and

2) ensures that the maximum over Π of the sum rate bounds from R(3)(p, C1, C2)
equals C.

4 Proof of Theorem 1

4.1 Elementary Rate Regions

For Cases 0, 1 and 2 we first show the achievability of certain rate regions whose
union or convex combination then yields the achievable regions claimed in the
theorem.
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For Case 0 and 1: We only consider Case 1, Case 0 is analogous. The
considerations hold for I(Z ∧ V1|U) < I(Z ∧ V1|V2U) which is equivalent to
I(Z ∧ V2|U) < I(Z ∧ V2|V1U). In the case of equality we can prove the achiev-
ability of R(p) directly. Define

α
(1)
0 :=

[
I(T ∧ V2|V1U)− I(Z ∧ V2|V1U)

I(Z ∧ V2|U)− I(Z ∧ V2|V1U)

]
+

,

α
(1)
1 := min

{
I(T ∧ V1|V2U)− I(Z ∧ V1|U)

I(Z ∧ V1|V2U)− I(Z ∧ V1|U)
, 1

}
.

Note that conditions (5)-(7) are equivalent to α
(1)
0 ≤ α

(1)
1 . For α ∈ [α

(1)
0 , α

(1)
1 ]

we define a rate region R(1)
α (p) by the bounds

R1 ≤ I(T ∧ V1|V2U)− αI(Z ∧ V1|V2U)− (1− α)I(Z ∧ V1|U),

R2 ≤ I(T ∧ V2|V1U)− αI(Z ∧ V2|U)− (1 − α)I(Z ∧ V2|V1U),

R1 +R2 ≤ I(T ∧ V1V2|U)− I(Z ∧ V1V2|U),

R0 +R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

Lemma 1. We have

R(1)(p) =
⋃

α
(1)
0 ≤α≤α(1)

1

R(1)
α (p).

Thus if R(1)
α (p) is an achievable rate region for every α ∈ [α

(1)
0 , α

(1)
1 ], then

R(1)(p) is achievable.

For the proof we use the following lemma which is proved in the appendix.

Lemma 2. Assume that a1, a2, b1, b2, c, d, r1, r2, r12, r012 are nonnegative reals
satisfying

a1 > b1, a2 < b2, a1 + a2 = b1 + b2 = c, r1 + r2 ≥ r12.

Let 0 ≤ α0 ≤ α1 ≤ 1. For every α ∈ [α0, α1], let a three-dimensional convex
subset Kα of R3

≥0 be defined by

R1 ≤ r1 − αa1 − (1− α)b1,

R2 ≤ r2 − αa2 − (1− α)b2,

R1 +R2 ≤ r12 − c,

R0 +R1 +R2 ≤ r012 − d

and assume that Kα �= ∅ for every α. Then⋃
α0≤α≤α1

Kα = K, (12)
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where K is defined by

R1 ≤ r1 − α0a1 − (1− α0)b1, (13)

R2 ≤ r2 − α1a2 − (1− α1)b2, (14)

R1 +R2 ≤ r12 − c, (15)

R0 +R1 +R2 ≤ r012 − d. (16)

Proof (Lemma 1). The proof is a direct application of Lemma 2 by setting

r1 = I(T ∧ V1|V2U), r2 = I(T ∧ V2|V1U),

r12 = I(T ∧ V1V2|U), r012 = I(T ∧ V1V2),
a1 = I(Z ∧ V1|V2U), a2 = I(Z ∧ V2|U),

b1 = I(Z ∧ V1|U), b2 = I(Z ∧ V2|V1U),

α0 = α
(1)
0 , α1 = α

(1)
1 .

We just need to show that the bounds (13) and (14) coincide with those from

the definition of R(1)(p). This is easy for the case α
(1)
0 = 0 because in that

case we have I(T ∧ V2|V1U) ≥ I(Z ∧ V2|V1U) and the positive part in the

bound on R1 in the definition of R(1)(p) vanishes. Similarly α
(1)
1 = 1 implies

I(T ∧ V1|V2U) ≥ I(Z ∧ V1|V2U) and the positive part in the bound on R2 in

the definition of R(1)(p) vanishes. Now assume that α
(1)
0 > 0. This assumption

implies I(Z ∧ V2|V1U) > I(T ∧ V2|V1U). Thus we obtain for the equivalent of
(13)

I(T ∧ V1|V2U)− I(Z ∧ V1|U)

− I(T ∧ V2|V1U)− I(Z ∧ V2|V1U)

I(Z ∧ V2|U)− I(Z ∧ V2|V1U)
(I(Z ∧ V1|V2U)− I(Z ∧ V1|U))

= I(T ∧ V1|V2U)− I(Z ∧ V1|U)

− I(T ∧ V2|V1U)− I(Z ∧ V2|V1U)

I(Z ∧ V2|U)− I(Z ∧ V2|V1U)
(I(Z ∧ V2|V1U)− I(Z ∧ V2|U))

= I(T ∧ V1|V2U) + I(T ∧ V2|V1U)− I(Z ∧ V1V2|U)

= I(T ∧ V1|V2U)− I(Z ∧ V1|U)− [I(Z ∧ V2|V1U)− I(T ∧ V2|V1U)]+.

If α
(1)
1 < 1, we obtain the analog for the bound on R2. This shows with Lemma

2 that R(1)(p) can be represented as the union of the sets R(1)
α (p) for α

(1)
0 ≤ α ≤

α
(1)
1 . �

For Case 2: Here we assume that I(Z ∧ V1|V2U) �= I(Z ∧ V2|V1U) which is
equivalent to I(Z ∧V1U) �= I(Z ∧V2U). In the case of equality, the achievability

of R(2)(p) can be shown directly. Define for α ∈ [α
(2)
0 , α

(2)
1 ] the rate set R(2)

α (p)
by the conditions
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R1 ≤ I(T ∧ V1|V2U)− αI(Z ∧ V1|V2U),

R2 ≤ I(T ∧ V2|V1U)− (1− α)I(Z ∧ V2|V1U),

R1 +R2 ≤ I(T ∧ V1V2|U)− αI(Z ∧ V1|V2U)− (1− α)I(Z ∧ V2|V1U),

R0 +R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).

Lemma 3. We have that

R(2)(p) =
⋃

α
(2)
0 ≤α≤α(2)

1

R(2)
α (p).

In particular, if R(2)
α (p) is achievable for every α ∈ [α

(2)
0 , α

(2)
1 ], then so is R(2)(p).

Remark 11. The similarity between the rate regions for Case 1 and Case 2 be-
comes clear in these decompositions. The description for Case 2 is more complex

because α
(2)
0 and α

(2)
1 are defined through three minima/maxima. This is due to

the fact that the sum αI(Z ∧ V1|V2U) + (1 − α)I(Z ∧ V2|V1U) is not constant

in α. Hence the conditions for α
(2)
0 ≤ α

(2)
1 cannot be reformulated into simple

conditions on the corresponding p.

One obtains Lemma 3 from the next lemma by making the following replace-
ments:

r1 = I(T ∧ V1|V2U), r2 = I(T ∧ V2|V1U),

r12 = I(T ∧ V1V2|U), r012 = I(T ∧ V1V2),
a = I(Z ∧ V1|V2U), b = I(Z ∧ V2|V1U),

c = I(Z ∧ V1V2),

α0 = α
(2)
0 , α1 = α

(2)
1 .

Lemma 4. Let r1, r2, r12, r012, a, b, c be nonnegative reals with max(r1, r2) ≤
r12 ≤ r1 + r2. Let α0, α1 ∈ [0, 1] be given such that for every α ∈ [α0, α1] the set
Kα defined by

R1 ≤ r1 − αa,

R2 ≤ r2 − (1 − α)b,

R1 +R2 ≤ r12 − αa− (1− α)b,

R0 +R1 +R2 ≤ r012 − c

is nonempty. If a ≤ b, the convex hull of the union of these sets is given by the
set K which is characterized by

0 ≤ R1 ≤ r1 − α0a, (17)

0 ≤ R2 ≤ r2 − (1 − α1)b, (18)

R1 +R2 ≤ r12 − α1a− (1− α1)b, (19)

bR1 + aR2 ≤ r12a+ r1(b− a)− ab, (20)

R0 +R1 +R2 ≤ r012 − c. (21)
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If a > b, the convex hull of the union of the sets Kα is given by analogous bounds
where a and b are exchanged in (20).

The proof of Lemma 4 can be found in the appendix.

4.2 How to Prove Secrecy

Proving secrecy using Chernoff-type concentration inequalities (see Subsection
4.3) is the core of Devetak’s approach to the wiretap channel [17]. Due to the
multi-user structure of the inputs of the wiretap MAC, we need several such
Chernoff-type inequalities basing on each other compared to the one used by
Devetak (actually an application of the Ahlswede-Winter lemma). However,
once these are established, the way of obtaining secrecy is exactly the same as
presented by Devetak. With the help of the inequalities one obtains a code with
stochastic encoding and a measure ϑ (not necessarily a probability measure!)
such that for all k0, k1, k2

‖PZn|M0=k0,M1=k1,M2=k2 − ϑ‖ ≤ ε

2
. (22)

Given this, we now derive an upper bound on I(Zn∧M0M1M2), where the ran-
dom triple (M0,M1,M2) is uniformly distributed on the possible input message
triples and Zn represents the output received by Eve. Observe that

I(Zn ∧M0M1M2)

=
1

K0K1K2

∑
k0,k1,k2

(H(Zn)−H(Zn|M0 = k0,M1 = k1,M2 = k2)). (23)

By [16, Lemma 2.7], every summand on the right-hand side is upper-bounded
by εk0k1k2 log(|Z|n/εk0k1k2) if

εk0k1k2 := ‖PZn − PZn|M0=k0,M1=k1,M2=k2‖ ≤ 1

2
.

But due to (22),

‖PZn − PZn|M0=k0,M1=k1,M2=k2‖
≤ ‖PZn − ϑ‖+ ‖ϑ− PZn|M0=k0,M1=k1,M2=k2‖

≤ 1

K0K1K2

∑
k̃0,k̃1,k̃2

‖PZn|M0=k̃0,M1=k̃1,M2=k̃2
− ϑ‖+ ε

2

≤ ε.

Thus if ε tends to zero exponentially in blocklength, then (23) is upper-bounded
by ε log(|Z|n/ε) which tends to zero in n.
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4.3 Probabilistic Bounds for Secrecy

In this subsection we define the random variables from which we will build a
stochastic wiretap code in Subsection 4.5. For this family of random variables
we prove several Chernoff-type estimates which will serve to find a code satisfying
(22). For Case 3, two such estimates are sufficient, Case 0 and 2 require three
and Case 1 requires four. Within each case, one deals with the joint typicality
of the inputs at Alice1 and Alice2, and the other estimates base on each other.
This is due to the complex structure of our family of random variables. Still, all
the cases are nothing but a generalization of Devetak’s approach taken in [17].
For each case, we first show the probabilistic bounds in one paragraph and then
in another paragraph how to achieve (22) from those bounds.

Let p = PU ⊗ PX|U ⊗ PY |U ⊗ W ∈ Π , i.e. p is the distribution of a ran-
dom vector (U,X, Y, T, Z). The auxiliary random variables V1 and V2 will be
introduced later in the usual way of prefixing a channel as a means of additional
randomization. Let δ > 0 and define for any n

Pn
U (u) :=

P⊗n
U (u)

P⊗n
U (T nU,δ)

(u ∈ T nU,δ),

Pn
X|U (x|u) :=

P⊗n
X|U (x|u)

P⊗n
X|U (T

n
X|U,δ(u)|u)

(x ∈ T nX|U,δ(u),u ∈ T nU,δ),

Pn
Y |U (y|u) :=

P⊗n
Y |U (y|u)

P⊗n
Y |U (T

n
Y |U,δ(u)|u)

(y ∈ T nY |U,δ(u),u ∈ T nU,δ).

Let L0, L1, L2 be positive integers. We define L0 independent families of ran-
dom variables (U l0 ,Fl0) as follows. U l0 is distributed according to Pn

U . We
let Fl0 := {X l0l1 , Y l0l2 : l1 ∈ [L1], l2 ∈ [L2]} be a set of random variables
which are independent given U l0 and which satisfy X l0l1 ∼ Pn

X|U ( · |U l0) and

Y l0l2 ∼ Pn
Y |U ( · |U l0). Finally we define

F :=
⋃

l0∈[L0]

(U l0 ,Fl0). (24)

Throughout the section, let a small ε > 0 be fixed. The core of the proofs of all
the lemmas of this subsection is the following Chernoff bound, see e.g. [4].

Lemma 5. Let b > 0 and 0 < ε < 1/2. For an independent sequence of random
variables Z1, . . . , ZL with values in [0, b] with μl := E[Xl] and with μ := 1

L

∑
l μl

one has

P

[
1

L

L∑
l=1

Zl > (1 + ε)μ

]
≤ exp

(
−L · ε2μ

2b ln 2

)
and

P

[
1

L

L∑
l=1

Zl < (1− ε)μ

]
≤ exp

(
−L · ε2μ

2b ln 2

)
.
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In order to obtain useful bounds in the following we collect here some well-known
estimates concerning typical sets, see e.g. [16, Lemma 17.8]. Let (A,B) be a
random pair on the finite Cartesian product A × B. Let ξ, ζ > 0. Then there
exists a c̃ = c̃(|A||B|) > 0 such that for sufficiently large n

P⊗n
B|A(T

n
B|A,ζ(a)

c|a) ≤ 2−nc̃ζ
2

. (25)

Further there is a τ = τ(PAB , ξ, ζ) with τ → 0 as ξ, ζ → 0 such that

P⊗n
A (a) ≤ 2−n(H(A)−τ) if a ∈ T nA,ξ, (26)

P⊗n
B|A(b|a) ≤ 2−n(H(B|A)−τ) if a ∈ T nA,ξ,b ∈ T nB|A,ζ(a), (27)

and that for n sufficiently large,

|T nA,ξ| ≤ 2n(H(A)+τ), (28)

|T nB|A,ζ(a)| ≤ 2n(H(B|A)+τ) if a ∈ T nA,ξ. (29)

We set
c := c̃(|U||X ||Y||Z|),

this is the minimal c̃ we will need in the following.

Bounds for Case 0 and 1: Let L0, L1, L2 be arbitrary. Due to their conditional
independence, the X l0l1 and Y l0l2 cannot be required to be jointly conditionally
typical given U l0 . However, the next lemma shows that most of them are jointly
conditionally typical with high probability.

Lemma 6. For (l0, l2) ∈ [L0]× [L2], let the event A
(1)
∗ (l0, l2) be defined by

A(1)
∗ (l0, l2) :=

{
|{l1 ∈ [L1] : X

l0l1 ∈ Tn
X|Y U,δ(Y

l0l2 , U l0)}| ≥ (1− ε)(1− 2 · 2−ncδ2)L1}.

Then

P[A
(1)
∗ (l0, l2)

c] ≤ exp

(
−L1 ·

ε2(1− 2 · 2−ncδ2)
2 ln 2

)
.

Proof. Let u ∈ T nU,δ and y ∈ T nY |U,δ(u). We first condition on the event {Y l0l2 =

y, U l0 = u}. Due to (25), we have

P[X11 /∈ T nX|Y U,δ(y,u)|Y l0l2 = y, U1 = u]

=
1

P⊗n
X|U (T

n
X|U,δ(u)|u)

∑
x∈Tn

X|U,δ
(u)\Tn

X|Y U,δ
(y,u)

P⊗n
X|U (x|u)

≤ 1

P⊗n
X|U (T

n
X|U,δ(u)|u)

∑
x/∈Tn

X|Y U,δ
(y,u)

P⊗n
X|Y U (x|y,u)

≤ 2−ncδ
2

1− 2−ncδ2
.
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In particular,

μ := P[X11 ∈ T nX|Y U,δ(y,u)|Y 11 = y, U1 = u] ≥ 1− 2 · 2−ncδ2 .

Therefore

P[A
(1)
∗ (l0, l2)

c|Y l0l2 = y, U l0 = u]

≤ P

[∑
l1

1Tn
X|Y U,δ

(y,u)(X
l0l1) ≤ (1 − ε)μL1

∣∣∣∣Y l0l2 = y, U l0 = u

]
,

which by Lemma 5 can be bounded by

exp

(
−L1 ·

ε2μ

2 ln 2

)
≤ exp

(
−L1 ·

ε2(1− 2 · 2−ncδ2)
2 ln 2

)
.

This completes the proof as this bound is independent of (y,u). �

Lemma 6 is not needed for a single sender. As we cannot guarantee the joint
conditional typicality of both senders’ inputs, we need to introduce an explicit

bound on the channel transition probabilities. This is done in the set E
(1)
1 .

Then we prove three lemmas each of which exploits one of the three types of
independence contained in F . Altogether these lemmas provide lower bounds on
L0, L1, L2 which if satisfied allow the construction of a wiretap code satisfying
(22). Let

E
(1)
1 (u,x,y) := {z ∈ T nZ|Y U,2|X |δ(y,u) :W

⊗n
e (z|x,y) ≤ 2−n(H(Z|XY )−f2(δ))},

where f2(δ) = τ(PUXY Z , 3δ, δ) (see (27)). Let

ϑ(1)uy(z) := E[W⊗n
e (z|X11,y)1

E
(1)
1 (u,X11,y)

(z)|U1 = u]

and for

F
(1)
1 (u,y) := {z ∈ T nZ|Y U,2|X |δ(y,u) : ϑ

(1)
uy(z) ≥ ε|T nZ|Y U,2|X |δ(y,u)|−1}

define

ϑ̂(1)uy := ϑ(1)uy · 1
F

(1)
1 (u,y)

, E
(1)
2 (u,x,y) := E

(1)
1 (u,x,y) ∩ F (1)

1 (u,y).

Lemma 7. For every z ∈ Zn and (l0, l2) ∈ [L0] × [L2], let A
(1)
1 (l0, l2, z) be the

event that

1

L1

∑
l1

W⊗n
e (z|X l0l1 , Y l0l2)1

E
(1)
2 (Ul0 ,Xl0l1 ,Y l0l2)

(z) ∈ [(1± ε)ϑ̂
(1)

Ul0Y l0l2
(z)].

Then

P[A
(1)
1 (l0, l2, z)

c] ≤ 2 exp

(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
for f1(δ) = τ(PUY Z , 2δ, 2|X |δ) and n sufficiently large.
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Proof. For u ∈ T nU,δ and y ∈ T nY |U,δ(u) we condition on the event {Y l0l2 =

y, U l0 = u}. The conditional expectation of the bounded conditionally i.i.d.
random variables

W⊗n
e (z|X l0l1 ,y)1

E
(1)
2 (u,Xl0l1 ,y)

(z) ≤ 2−n(H(Z|XY )−f2(δ)) (l1 ∈ [L1])

is ϑ̂
(1)
uy(z). We use Lemma 5, the definition of F

(1)
1 (u,y), and (29) to obtain for

n sufficiently large

P[A
(1)
1 (l0, l2, z)

c|Y l0l2 = y, U l0 = u]

≤ 2 exp

(
−L1 ·

ε2ϑ̂
(1)
uy(z)2n(H(Z|XY )−f2(δ))

2 ln 2

)

≤ 2 exp

(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
.

This bound is uniform in u and y, so the proof is complete. �
For the next lemma, define

ϑ(1)u (z) := E[W⊗n
e (z|X11, Y 11)1

E
(1)
2 (u,X11,Y 11)

(z)|U1 = u].

Further let

F
(1)
2 (u) := {z ∈ T nZ|U,3|Y||X |δ(u) : ϑ

(1)
u (z) ≥ ε|T nZ|U,3|Y||X |δ(u)|−1}

and

ϑ̂(1)u = ϑ(1)u · 1
F

(1)
2 (u)

, E
(1)
0 (u,x,y) := E

(1)
2 (u,x,y) ∩ F (1)

2 (u,y).

Lemma 8. For every z ∈ Zn and l0 ∈ [L0], let A
(1)
2 (l0, z) be the event

1

L1L2

∑
l1l2

W⊗n
e (z|X l0l1 , Y l0l2)1

E
(1)
0 (Ul0 ,Xl0l1 ,Y l0l2)

(z) ∈ [(1± 3ε)ϑ̂
(1)

Ul0
(z)].

Then for ε sufficiently small and n sufficiently large,

P[A
(1)
2 (l0, z)

c] ≤ 2|Y|n exp
(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
+ 2 exp

(
−L2 ·

ε32−n(I(Z∧Y |U)+f1(δ)+f4(δ))

4 ln 2

)
,

where f4(δ) = τ(PUZ , δ, 3|Y||X |δ).
Proof. Let u ∈ T nU,δ. We define the set Bu ⊂ (T nX|U,δ(u))

L1 as⋂
y∈Tn

Y |U,δ
(u)

{
(x1, . . . ,xL1) ∈ (T nX|U,δ(u))

L1 :

1

L1

∑
l1

W⊗n
e (z|xl0l1 ,y)1

E
(1)
0 (u,Xl0l1 ,y)

(z) ∈ [(1± ε)ϑ̂(1)uy(z)]
}
.
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One has

P[A
(1)
2 (l0, z)

c|U l0 = u]

≤ P
[
{(X l01, . . . , X l0L1) /∈ Bu}|U l0 = u

]
+

∑
(x1,...,xL1)∈Bu

P
[
A

(1)
2 (l0, z)

c|X l01 = x1, . . . , X l0L1 = xL1 , U l0 = u
]
·

· P[X l01 = x1, . . . , X l0L1 = xL1 |U l0 = u
]
.

From the proof of Lemma 7 it follows that

P
[{(Xl01, . . . , Xl0L1 ) /∈ Bu}|U l0 = u

] ≤ 2|Y|n exp

(
−L1 · ε

32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
,

(30)

which gives a bound independent of u. Now let (x1, . . . ,xL1) ∈ Bu. By (25)
and (27),

ϑ̂(1)uy(z) = E[W⊗n
e (z|X11,y)1

E
(1)
2 (u,X11,y)

(z)|U1 = u]

≤ E[W⊗n
e (z|X11,y)|U1 = u]

≤ 1

P⊗n
X|U (T

n
X|U,δ(u)|u)

(PZ|Y U )
⊗n(z|y,u)

≤ (1− 2−ncδ
2

)−12−n(H(Z|Y U)−f1(δ)).

Hence the random variables

W̃ (1)
uz (l0, l2) :=

1

L1

∑
l1

W⊗n
e (z|xl1 , Y l0l2)1

E
(1)
0 (u,xl1 ,Y l0l2)

(z) (l2 ∈ [L2]),

which are independent conditional on {U l0 = u}, are upper-bounded by

(1 + ε)

(1− 2−ncδ2)
· 2−n(H(Z|Y U)−f1(δ)).

For their conditional expectation we have

μl0l2 := E[W̃ (1)
uz (l0, l2)|U l0 = u] ∈ [(1±ε)E[ϑ̂(1)

uY l0l2
(z)|U1 = u]] = [(1±ε)ϑ̂(1)u (z)].

Thus their arithmetic mean μ̄ = (1/L2)
∑

l2
μl0l2 must also be contained in

[(1± ε)ϑ̂
(1)
u (z)]. Applying Lemma 5, we conclude

P
[
A

(1)
2 (l0, z)

c|X l01 = x1, . . . , X l0L1 = xL1 , U l0 = u
]

= P

[
1

L2

∑
l2

W̃ (1)
uz (l0, l2) /∈ [(1± 3ε)ϑ̂(1)u (z)]

∣∣∣∣U l0 = u

]
≤ P

[
1

L2

∑
l2

W̃ (1)
uz (l0, l2) /∈ [(1± ε)μ̄]

∣∣∣∣U l0 = u

]

≤ 2 exp

(
−L2 ·

ε2(1− 2−ncδ
2

)2n(H(Z|Y U)−f1(δ))(1 − ε)ϑ̂
(1)
u (z)

2(1 + ε) ln 2

)
.
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Due to the definition of F
(1)
2 (u) and to (29), this is smaller than

2 exp

(
−L2 ·

ε32−n(I(Z∧Y |U)+f1(δ)+f4(δ))

4 ln 2

)
(31)

if ε is sufficiently small and n is sufficiently large, giving a bound independent
of u and x1, . . . ,xL1 . Adding the bounds (30) and (31) concludes the proof. �

The next lemma is only needed in Case 1. Let A
(1)
2 (z) := A

(1)
2 (1, z) ∩ . . . ∩

A
(1)
2 (L0, z). For every z, we then define a new probability measure by P̂

(1)
z :=

P[·|A(1)
2 (z)]. With ϑ(1)(z) := Ê

(1)
z [ϑ̂

(1)
U1 (z)] define

F
(1)
0 := {z ∈ T nZ,4|Y||X ||U|δ : ϑ

(1)(z) ≥ |T nZ,4|Y||X ||U|δ|−1}

and ϑ̂(1) := ϑ(1) · 1
F

(1)
0

.

Lemma 9. Let z ∈ F (1)
0 and let A

(1)
0 (z) be the event that

1

L0L1L2

∑
l0,l1,l2

W⊗n
e (z|X l0l1 , Y l0l2)1

E
(1)
0 (Ul0 ,Xl0l1 ,Y l0l2 )

(z) ∈ [(1± 5ε)ϑ̂(1)(z)].

Then for f6(δ) = τ(PZ , 4|Y||X ||U|δ, δ), sufficiently small ε and n sufficiently
large,

P[A
(1)
0 (z)c]

≤ 2L0|Y|n exp
(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
+2L0 exp

(
−L2 ·

ε32−n(I(Z∧Y |U)+f1(δ)+f4(δ))

4 ln 2

)
+2 exp

(
−L0 ·

ε32−n(I(Z∧U)+f4(δ)+f6(δ))

4 ln 2

)
.

Proof. We have

P[A
(1)
0 (z)c] ≤ P̂(1)

z [A
(1)
0 (z)c] + P[A

(1)
2 (z)c]. (32)

By Lemma 8, for ε sufficiently small and n sufficiently large,

P[A
(1)
2 (z)c] ≤ 2L0|y|n exp

(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
+2L0 exp

(
−L2 ·

ε32−n(I(Z∧Y |U)+f1(δ)+f4(δ))

4 ln 2

)
.

(33)

In order to bound P̂
(1)
z [A

(1)
0 (z)c], note that the sets A

(1)
2 (1, z), . . . , A

(1)
2 (L0, z) are

independent with respect to P. Thus under P̂
(1)
z , the random variables

W̃ (1)
z (l0) :=

1

L1L2

∑
l1,l2

W⊗n
e (z|X l0l1 , Y l0l2)1

E
(1)
0 (Ul0 ,Xl0l1 ,Y l0l2)

(z) (l0 ∈ [L0])
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retain their independence and are upper-bounded by

(1 + 3ε) max
u∈Tn

U,δ

ϑ̂(1)u (z).

We can further bound this last term as follows: for u ∈ T nU,δ, applying (25) and
(27),

ϑ̂(1)u (z) = E[W⊗n
e (z|X11, Y 11)1

E
(1)
0 (u,X11,Y 11)

(z)|U1 = u]

≤ E[W⊗n
e (z|X11, Y 11)|U1 = u]

≤ 1

P⊗n
1 (T nX|U,δ(u)|u)P

⊗n
2 (T nY |U,δ(u)|u)

P⊗n
Z|U (z|u)

≤ (1− 2−nc1δ
2

)−22−n(H(Z|U)−f4(δ)).

Observing that Ê
(1)
z [W̃

(1)
z (1)] ∈ [(1±3ε)ϑ̂(1)(z)] and applying Lemma 5 and (29)

in the usual way yields

P̂(1)
z [A

(1)
0 (z)c] ≤ 2 exp

(
−L0 ·

ε2(1− 2−ncδ
2

)2 2n(H(Z|U)−f4(δ))(1− 3ε) ϑ̂(1)(z)

2(1 + 3ε) ln 2

)

≤ 2 exp

(
−L0 ·

ε32−n(I(Z∧U)+f4(δ)+f6(δ))

4 ln 2

)
if ε is sufficiently small and n sufficiently large. Inserting this and (33) in (32)
completes the proof. �

We finally note that results analogous to Lemma 6-9 hold where the roles of X

and Y are exchanged. We denote the corresponding events by A
(1)
∗ (l0, l2)

′ and

A
(1)
1 (l0, l2, z)

′, A
(1)
2 (l0, z)

′, A
(1)
0 (z)′.

Secrecy for Case 0 and 1: The following lemma links the above probabilistic
bounds to secrecy. In the next subsection, roughly speaking, we will associate
a family F to every message triple (k0, k1, k2). If L0, L1, L2 are large enough,
the bounds of Lemma 10 are satisfied for every such F with high probability.
Hence there is a joint realization of the F such that the statement of the lemma
is satisfied for every message triple. By an appropriate choice of random code
one then obtains (22).

Lemma 10. Denote by p(1) the bound on P[A
(1)
2 (l0, z)

c] derived in Lemma 8.
Let {ul0 ,xl0l1 ,yl0l2 : (l0, l1, l2) ∈ [L0]×[L1]×[L2]} be a realization of F satisfying
the conditions of

⋂
l0,l2

A
(1)
∗ (l0, l2), (34)
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⋂
l0,l2

⋂
z∈Zn

A
(1)
1 (l0, l2, z), (35)

⋂
l0

⋂
z∈Zn

A
(1)
2 (l0, z), (36)

⋂
z∈F (1)

0

A
(1)
0 (z). (37)

Then

‖ϑ̂(1) − 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)‖ ≤ 20ε+ 9 · 2−ncδ2 + L0|Z|np(1).

The same inequality is true if we require conditions (34′)-(37′) which contain the
primed equivalents of (34)-(37) defined at the end of the previous paragraph. If
L0 = 1, then (37) and (37′) do not have to hold.

We now prove the above lemma. We have

‖ϑ̂(1) − 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)‖

≤ ‖ϑ̂(1) − 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)1

E
(1)
0 (ul0 ,xl0l1 ,yl0l2 )

1
F

(1)
0

‖ (38)

+ ‖ 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)1

E
(1)
0 (ul0 ,xl0l1 ,yl0l2 )

(1− 1
F

(1)
0

)‖ (39)

+ ‖ 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)1

E
(1)
2 (ul0 ,xl0l1 ,yl0l2 )

(1− 1
F

(1)
2 (ul0)

)‖ (40)

+ ‖ 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)1

E
(1)
1 (ul0 ,xl0l1 ,yl0l2 )

(1− 1
F

(1)
1 (ul0 ,yl0l2 )

)‖

(41)

+ ‖ 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (·|xl0l1 ,yl0l2)(1 − 1

E
(1)
1 (ul0 ,xl0l1 ,yl0l2)

)‖. (42)

Due to (37), we know that (38) ≤ 5ε.
Next we consider (41). Due to (35) we have

(41)

≤ 1− 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (E

(1)
2 (ul0 ,xl0l1 ,yl0l2)|xl0l1 ,yl0l2)

≤ 1− 1− ε

L0L2

∑
l0,l2

ϑ̂
(1)

ul0yl0l2
(Zn)



Strong Secrecy for Multiple Access Channels 97

(we defined the general measure of a set in the notation section at the beginning

of the paper). The support of ϑ
(1)

ul0yl0l2
is contained in T nZ|Y U,2|X |δ(Y l0l2 ,ul0), so

by the definition of F
(1)
1 (ul0 ,yl0l2) we obtain

ϑ̂
(1)

ul0yl0l2
(Zn) ≥ ϑ

(1)

ul0yl0l2
(Zn)− ε. (43)

Lemma 11. If u ∈ T nU,δ and y ∈ T nY |U,δ(u), then

ϑ(1)uy(Zn) ≥ 1− 2 · 2−ncδ
2

.

Proof. First of all note that

ϑ(1)uy(Zn)

= E[W⊗n
e (E

(1)
1 (u, X11,y)|X11,y)|U1 = u]

≥ E[W⊗n
e (E

(1)
1 (u, X11,y)|X11,y);X11 ∈ T nX|Y U,δ(y,u)|U1 = u]. (44)

Now we claim that for x ∈ T nX|Y U,δ(y,u)

T nZ|YXU,δ(y,x,u) ⊂ T nZ|Y U,2|X |δ(y,u). (45)

To verify this, let (z, y, u) ∈ Z × y × U and z ∈ T nZ|YXU,δ(y,x,u). Then∣∣∣∣ 1nN(z, y, u|z,y,u)− PZ|Y U (z|y, u)
1

n
N(y, u|y,u)

∣∣∣∣
≤

∑
x

∣∣∣∣ 1nN(z, y, x, u|z,y,x,u)−W (z|x, y) 1
n
N(y, x, u|y,x,u)

∣∣∣∣
+

∑
x

W (z|x, y)
∣∣∣∣ 1nN(y, x, u|y,x,u) − PX|Y U (x|y, u)

1

n
N(y, u|y,u)

∣∣∣∣
≤ 2|X |δ.

This proves (45). Due to the choice of f2(δ) and to (27), we thus see that

T nZ|YXU,δ(y,x,u) is contained in E
(1)
1 (u,x,y) for x ∈ T nX|Y U,δ(y,u), and we

have that (44) is lower-bounded by

E[W⊗n
e (T nZ|YXU,δ(y, X

11,u)|X11,y);X11 ∈ T nX|Y U,δ(y,u)|U1 = u]. (46)

Further, as in the proof of Lemma 6 one sees that

P[X11 ∈ T nX|Y U,δ(y,u)|U1 = u] ≥ 1− 2−ncδ
2

1− 2−ncδ2
. (47)

Due to (47) and (25), we can lower-bound (46) for sufficiently large n by

(1− 2−ncδ
2

) ·
(
1− 2−ncδ

2

1− 2−ncδ2

)
≥ 1− 2 · 2−ncδ

2

,

which proves Lemma 11. �
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Using (43) and Lemma 11 we can conclude that

(41) ≤ 2(ε+ 2−ncδ
2

).

One starts similarly for (40). We have by (36)

(40) ≤ 1− 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (E

(1)
0 (ul0 ,xl0l1 ,yl0l2)|xl0l1 ,yl0l2)

≤ 1− (1 − 3ε)

L0

∑
l0

ϑ̂
(1)

ul0
(Zn).

As the support of ϑ
(1)

ul0
is contained in T nZ|U,3|Y||X |δ(u

l0), we can lower-bound

ϑ̂
(1)

ul0
(Zn) by ϑ

(1)

ul0
(Zn)− ε. Using (43) and Lemma 11, we have

ϑ
(1)

ul0
(Zn) = E[ϑ̂

(1)

ul0Y 11(Zn)|U1 = ul0 ] ≥ 1− 2 · 2−ncδ
2

− ε, (48)

so we conclude

(40) ≤ 5ε+ 2 · 2−ncδ2.

For (39), one has by (37)

(39) ≤ 1− 1

L0L1L2

∑
l0,l1,l2

W⊗n
e (E

(1)
0 (ul0 ,xl0l1 ,yl0l2) ∩ F (1)

0 |xl0l1 ,yl0l2)

≤ 1− (1− 5ε)ϑ̂(1)(F
(1)
0 ).

It remains to lower-bound ϑ̂(1)(F
(1)
0 ). Observe that the support of ϑ(1) is re-

stricted to T nZ,4|y||X ||U|δ, so due to the definition of F
(1)
0 , one has ϑ̂(1)(F

(1)
0 ) =

ϑ(1)(F
(1)
0 ) ≥ ϑ(1)(Zn)− ε. Further,

ϑ(1)(Zn) =
∑
z∈Zn

Ê(1)
z [ϑ̂

(1)
U1 (z)]

≥ E[ϑ
(1)
U1 (Zn)]−

∑
z∈Zn

P[A
(1)
2 (z)c]

= E[ϑ
(1)
U1 (Zn)]− L0|Z|np(1).

In (48), the integrand of E[ϑ
(1)
U1 (Zn)] was lower-bounded by 1 − 2 · 2−ncδ2 − ε.

We conclude

(39) ≤ 7ε+ 2 · 2−ncδ
2

+ L0|Z|np(1).
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Finally, we use condition (34) to bound (42). We have

(42) (49)

=
1

L0L1L2

∑
l0,l1,l2

W⊗n
e (E

(1)
1 (ul0 ,xl0l1 ,yl0l2)c|xl0l1 ,yl0l2)

=
1

L0L2

∑
l0,l2

(
1

L1

∑
l1:xl0l1∈Tn

X|Y U,δ
(yl0l2 ,ul0)

W⊗n
e (E

(1)
1 (ul0 ,xl0l1 ,yl0l2)c|xl0l1 ,yl0l2) (50)

+
1

L1

∑
l1:xl0l1 /∈Tn

X|Y U,δ
(yl0l2 ,ul0)

W⊗n
e (E

(1)
1 (ul0 ,xl0l1 ,yl0l2)c|xl0l1 ,yl0l2)

)
. (51)

For every (l0, l2), we use T nZ|YXU,δ(y,x,u) ⊂ E
(1)
1 (u,x,y) for (u,x,y) ∈ T nU,δ ×

T nY |U,δ(u) × T nX|Y U,δ(y,u) as shown in the proof of Lemma 11 to upper-bound

the term in (50) by 2−ncδ
2

. For (51), we know from assumption (34) that it is

at most 1− (1− ε)(1− 2 · 2−ncδ2). Thus

(42) ≤ 2−ncδ
2

+ (1− ε)(1− 2 · 2−ncδ2) ≤ ε+ 3 · 2−ncδ2 .

Collecting the bounds on (38)-(42), we obtain a total upper bound of

20ε+ 9 · 2−ncδ2 + L0|Z|np(1).

This finishes the proof of Lemma 10.

Bounds for Case 2: Now we specialize to the case that L2 = 1, but L0 and L1

arbitrary. This reduces the number of Chernoff-type estimates needed by one.
Lemma 7 carries over, Lemma 8 is not needed, but Lemma 9 changes. We write

Y l01 =: Y l0 . The definitions of E
(1)
1 (u,x,y), F

(1)
1 (u,y) and ϑ

(1)
uy carry over to

this case, we just call them E
(2)
1 (u,x,y), F

(2)
1 (u,y) and ϑ

(2)
uy . Further we define

E
(2)
0 (u,x,y) := E

(2)
1 (u,x,y) ∩ F (2)

1 (u,y).

For every l0, let A
(2)
1 (l0, z) := A

(1)
1 (l0, 1, z) and we set A

(2)
1 (z) := A

(2)
1 (1, z) ∩

. . . ∩ A(2)
1 (L0, z). We define for every z a new probability measure by P̂

(2)
z :=

P[·|A(2)
1 (z)]. Let

ϑ(2)(z) := Ê(2)
z [ϑ̂

(2)
U1Y 1(z)].

Further let
F

(2)
0 := {z ∈ T nZ,4|y||X ||U|δ : ϑ

(2)(z) ≥ ε|T nZ,δ|−1}
and

ϑ̂(2) = ϑ(2) · 1
F

(2)
0
.
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Lemma 12. Let z ∈ F (2)
0 . Let A

(2)
0 (z) be the event

1

L0L1

∑
l0,l1

W⊗n
e (z|X l0l1 , Y l0)1

E
(2)
0 (Ul0 ,Xl0l1 ,Y l0)

(z) ∈ [(1± 3ε)ϑ̂(2)(z)].

Then for ε sufficiently small and n sufficiently large,

P[A
(2)
0 (z)c] ≤ 2L0 exp

(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
+ 2 exp

(
−L0 ·

ε32−n(I(Z∧Y U)+f1(δ)+f6(δ))

4 ln 2

)
.

Proof. We have

P[A
(2)
0 (z)c] ≤ P̂(2)

z [A
(2)
0 (z)c] + P[A

(2)
1 (z)c]. (52)

By Lemma 7, we know that

P[A
(2)
1 (z)c] ≤ 2L0 exp

(
−L1 ·

ε32−n(I(Z∧X|Y U)+f1(δ)+f2(δ))

2 ln 2

)
. (53)

In order to bound P̂
(2)
z [A

(2)
0 (z)], note that the sets A

(2)
1 (1, z), . . . , A

(2)
1 (L0, z) are

independent with respect to P. Thus under P̂
(2)
z , the random variables

W̃ (2)
z (l0) :=

1

L1

∑
l1

W⊗n
e (z|X l0l1 , Y l0)1

E
(2)
0 (Ul0 ,Xl0l1 ,Y l0 )

(z) (l0 ∈ [L0])

retain their independence and are upper-bounded by

(1 + ε) max
u∈Tn

U,δ

max
y∈Tn

Y |U,δ
(u)
ϑ̂(2)uy(z).

We can further bound this last term as follows: for u ∈ T nU,δ and y ∈ T nY |U,δ(u)

one obtains by (25) and (27)

ϑ̂(2)uy(z) ≤ E[W⊗n
e (z|X11,y)|U l0 = u]

≤ 1

1− 2−ncδ2
P⊗n
Z|Y U (z|y,u)

≤ 1

1− 2−ncδ2
2−n(H(Z|Y U)−f1(δ)).

Observing that Ê
(2)
z [W̃

(2)
z (1)] ∈ [(1 ± ε)ϑ̂(2)(z)] and applying Lemma 5 in the

usual way yields

P̂(2)
z [A

(2)
0 (z)] ≤ 2 exp

(
−L0 ·

ε2(1− 2−ncδ
2

)2n(H(Z|Y U)−f1(δ))(1− ε)ϑ̂(2)(z)

2(1 + ε) ln 2

)

≤ 2 exp

(
−L0 ·

ε32−n(I(Z∧Y U)+f1(δ)+f6(δ))

4 ln 2

)
if ε is sufficiently small and n sufficiently large. Inserting this and (53) in (52)
completes the proof. �
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Again we note that a result analogous to Lemma 12 holds where the roles of

X and Y are exchanged. Setting A
(2)
∗ (l0) := A

(1)
∗ (l0, 1), we denote the events

corresponding to such an exchange by A
(2)
∗ (l0)

′ and A
(2)
1 (l0, z)

′, A
(2)
0 (z)′.

Secrecy for Case 2:

Lemma 13. Denote by p(2) the bound on P[A
(2)
1 (l0, z)

c] derived in Lemma 7.
Let {ul0 ,xl0l1 ,yl0 : (l0, l1, l2) ∈ [L0]× [L1]× [L2]} be a realization of F satisfying
the conditions of ⋂

l0

A
(2)
∗ (l0), (54)

⋂
l0

⋂
z∈Zn

A
(2)
1 (l0, z), (55)

⋂
z∈F (2)

0

A
(2)
0 (z). (56)

Then

‖ϑ̂(2) − 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)‖ ≤ 9ε+ 7 · 2−ncδ

2

+ L0|Z|np(2).

The same inequality is true if we require conditions (54′)-(56′) which contain the
primed equivalents of (54)-(56) defined at the end of the previous paragraph.

We now prove the above lemma. We have

‖ϑ̂(2) − 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)‖

≤ ‖ϑ̂(2) − 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)1

E
(2)
0 (ul0 ,xl0l1 ,yl0)

1
F

(2)
0

‖ (57)

+ ‖ 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)1

E
(2)
0 (ul0 ,xl0l1 ,yl0)

(1− 1
F

(2)
0

)‖ (58)

+ ‖ 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)1

E
(2)
1 (ul0 ,xl0l1 ,yl0)

(1− 1
F

(2)
1 (ul0 ,yl0)

)‖ (59)

+ ‖ 1

L0L1

∑
l0,l1

W⊗n
e (·|xl0l1 ,yl0)(1 − 1

E
(2)
1 (ul0 ,xl0l1 ,yl0)

)‖. (60)

Due to (56), we know that (57) ≤ ε.
Next we consider (59). Due to (55), we have

(59) ≤ 1− 1

L0L1

∑
l0,l1

W⊗n
e (E

(2)
0 (ul0 ,xl0l1 ,yl0 )|xl0l1 ,yl0)

≤ 1− 1− ε

L0

∑
l0

ϑ̂
(2)

ul0yl0
(Zn).
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As for Case 1, one lower-bounds ϑ̂
(2)

ul0yl0
(Zn) ≥ ϑ

(2)

ul0yl0
(Zn)−ε by 1−2·2−ncδ2−ε.

Thus we can conclude that

(59) ≤ 2(ε+ 2−ncδ
2

).

For (58), we have by (55)

(58) ≤ 1− 1

L0L1

∑
l0,l1

W⊗n
e (E

(2)
0 (ul0 ,xl0l1 ,yl0) ∩ F (2)

0 |xl0l1 ,yl0 )

≤ 1− (1− 3ε)ϑ̂(2)(F
(2)
0 ).

It remains to lower-bound ϑ̂(2)(F
(2)
0 ) ≥ ϑ(2)(Zn)− ε. As in the lower bound on

ϑ(1)(Zn) above, one obtains the bound

ϑ(2)(Zn) ≥ 1− 2 · 2−ncδ
2

− ε.

Thus we conclude
(58) ≤ 5ε+ 2 · 2−ncδ2.

Finally, we use condition (54) to bound (60). We have

(60) =
1

L0L1

∑
l0,l1

W⊗n
e (E

(2)
1 (ul0 ,xl0l1 ,yl0)|xl0l1 ,yl0)

=
1

L0

∑
l0

(
1

L1

∑
l1:xl0l1∈Tn

X|Y U,δ
(yl0 ,ul0)

W⊗n
e (E

(2)
1 (ul0 ,xl0l1 ,yl0)|xl0l1 ,yl0 ) (61)

+
1

L1

∑
l1:xl0l1 /∈Tn

X|Y U,δ
(yl0 ,ul0)

W⊗n
e (E

(2)
1 (ul0 ,xl0l1 ,yl0)|xl0l1 ,yl0)

)
. (62)

For every l0, the summand appearing in (61) can be upper-bounded by 2−ncδ
2

.

By assumption (54), (62) is upper-bounded by 1− (1− ε)(1− 2 · 2−ncδ2). Thus

(60) ≤ ε+ 3 · 2−ncδ2 .

Collecting the bounds for (57)-(60), we obtain a total upper bound of

9ε+ 7 · 2−ncδ2 + L0|Z|np(2).

This finishes the proof of Lemma 13.

Bounds for Case 3: Now we treat the case L1 = L2 = 1. Lemma 14 is the
analog of Lemma 6, the proofs are analogous.

Lemma 14. Let the event A
(3)
∗ be defined by

A
(3)
∗ :=

{
|{l0 ∈ [L0] : X

l0 ∈ T nX|Y U,δ(Y
l0 , U l0)}| ≥ (1 − ε)(1− 2 · 2−nc1δ

2

)L0}.

Then

P[(A
(3)
∗ )c] ≤ exp

(
−L0 ·

ε2(1 − 2 · 2−nc1δ2)
2 ln 2

)
.
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Let

E(3)(x,y) := {z ∈ T nZ,4|Y||X ||U|δ :W
⊗n
e (z|x,y) ≤ 2−n(H(Z|XY )−f2(δ))},

where f2(δ) = τ(PXY Z , 3δ, δ). Let

ϑ(3)(z) := E[W⊗n
e (z|X1, Y 1)1E1(X1,Y 1)(z)]

and for
F (3) := {z ∈ T nZ,4|Y||X ||U|δ : ϑ(z) ≥ ε|T nZ,δ|−1}

define the measure
ϑ̂(3) := ϑ̂(3) · 1F (3) .

Lemma 15. Let z ∈ F (3). Let A(3)(z) be the event that

1

L0

∑
l0

W⊗n
e (z|X l0 , Y l0)1E(3)(Xl0 ,Y l0)(z) ∈ [(1± ε)ϑ̂(3)(z)].

Then for f1(δ) = τ(PUY Z , 4|Y||X ||U|δ, δ),

P[A(3)(z)c] ≤ 2 exp

(
−L0 ·

ε32−n(I(Z∧XY )+f1(δ)+f2(δ))

2 ln 2

)
.

The proof of this lemma is analogous to that of Lemma 7.

Secrecy for Case 3:

Lemma 16. Let {(ul0 ,xl0 ,yl0)} be a realization of F satisfying the conditions
of

A
(3)
∗ , (63)⋂

z∈F (3)

A(3)(z). (64)

Then for sufficiently large n,

‖ϑ̂(3) − 1

L0

∑
l0

W⊗n
e (·|xl0 ,yl0)‖ ≤ 4ε+ 5 · 2−ncδ2 . (65)

We now prove the above lemma. We have

‖ϑ̂(3) − 1

L0

∑
l0

W⊗n
e (·|xl0 ,yl0 )‖

≤ ‖ϑ̂(3) − 1

L0

∑
l0

W⊗n
e (·|xl0 ,yl0)1E(3)(xl0 ,yl0)1F (3)‖ (66)

+ ‖ 1

L0

∑
l0

W⊗n
e (·|xl0 ,yl0)1E(3)(xl0 ,yl0)(1− 1F (3))‖ (67)

+ ‖ 1

L0

∑
l0

W⊗n
e (·|xl0 ,yl0)(1 − 1E(3)(xl0 ,yl0))‖. (68)
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Due to (64) we have (66) ≤ ε.
Next we bound (67). Again using (64),

(67) ≤ 1− 1

L0

∑
l0

W⊗n
e (E(3)(xl0 ,yl0 ) ∩ F (3)|xl0 ,yl0)

≤ 1− (1 − ε)ϑ̂(3)(F (3)). (69)

As in Case 1 and 2, ϑ̂(3)(F (3)) can be lower-bounded by 1− 2 · 2−ncδ2 − ε, so

(67) ≤ 1− (1− ε)(1− 2 · 2−ncδ2 − ε) ≤ 2(ε+ 2−ncδ
2

).

Finally, the third term (68) equals

1

L0

∑
l0

W⊗n
e (E(3)(xl0 ,yl0)c|xl0 ,yl0 )

=
1

L0

∑
l0:xl0∈TX|Y U,δ(y

l0 ,ul0)

W⊗n
e (E(3)(xl0 ,yl0)c|xl0 ,yl0) (70)

+
1

L0

∑
l0:xl0 /∈TX|Y U,δ(y

l0 ,ul0)

W⊗n
e (E(3)(xl0 ,yl0)c|xl0 ,yl0). (71)

and is lower-bounded by

(68) ≤ 2−ncδ
2

+ (1− ε)(1− 2 · 2−ncδ
2

) ≤ ε+ 3 · 2−ncδ
2

.

Combining the above bounds, we can conclude that

(66) + (67) + (68) ≤ 4ε+ 5 · 2−ncδ2 ,

which completes the proof of Lemma 16.

4.4 Random Coding for the Non-wiretap MAC with Common
Message

Assume we are given another family of random variables

F ′ :=
⋃

l0∈[L0]

(U l′0 ,F ′
l′0
)

with F ′
l′0
= {X l′0l

′
1 , Y l′0l

′
2 : l′1, l

′
2 ∈ [L′

1]×[L′
2]} for other positive integers L′

0, L
′
1, L

′
2

with blocklength n′ which is independent of F , but which has the same structure
as F and whose distribution is defined according to the same p as F . Define the
rate set R̃(p) by the bounds

R̃1 ≤ I(T ∧X |Y U),

R̃2 ≤ I(T ∧ Y |XU),

R̃1 + R̃2 ≤ I(T ∧XY |U),

R̃0 + R̃1 + R̃2 ≤ I(T ∧XY ).
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Assume that for some 0 < η < I∗ := min{Iν > 0 : ν = 1, 2, 3, 4} we have

n logL1 + n′ logL′
1

n+ n′ ≤ [I(T ∧X |Y U)− η ]+,

n logL2 + n′ logL′
2

n+ n′ ≤ [I(T ∧ Y |XU)− η ]+,

n log(L1L2) + n′ log(L′
1L

′
2)

n+ n′ ≤ [I(T ∧XY |U)− η ]+,

n log(L0L1L2) + n′ log(L′
0L

′
1L

′
2)

n+ n′ ≤ [I(T ∧XY )− η ]+.

Define a new family of random vectors

F ◦ F ′ := {Ũ l0l
′
0 , X̃ l0l

′
0l1l

′
1 , Ỹ l0l

′
0l2l

′
2}

by concatenating the corresponding elements of F and F ′, so e.g. Ũ l0l
′
0 =

(U l0 , U l′0) ∈ Un+n′
, X̃ l0l

′
0l1l

′
1 = (X l0l1 , X l′0l

′
1) ∈ Xn+n′

.

Lemma 17. For any δ, η > 0 there are ζ1, ζ2 = ζ1(η, δ), ζ2(η, δ) > 0 such that
the probability of the event AMAC that the family

{X̃ l0l
′
0l1l

′
1 , Ỹ l0l

′
0l2l

′
2 : (l0, l

′
0, l1, l

′
1, l2, l

′
2)}

is the codeword set of a deterministic MAC code with average error at most
exp(−(n+ n′)ζ1) is lower-bounded by 1− exp(−(n+ n′)ζ2). The same result is
true if it is formulated only for F or F ′ without concatenation.

Proof. The difference to standard random coding proofs is that the random
variables from F and F ′ are conditioned on typicality. Using the random sets

El0l
′
0l1l

′
1l2l

′
2 := {t ∈ T n : (Ũ l0l

′
0 , X̃ l0l

′
0l1l

′
1 , Ỹ l0l

′
0l2l

′
2 , t) ∈ T nUXY T,δ},

we define the decoding sets F l0l
′
0l1l

′
1l2l

′
2 by deciding for (l0, l

′
0, l1, l

′
1, l2, l

′
2) if the

output is contained in El0l
′
0l1l

′
1l2l

′
2 and if at the same time it is not contained in

any E l̃0 l̃
′
0 l̃1 l̃

′
1 l̃2 l̃

′
2 for a different message tuple (l̃0, l̃

′
0, l̃1, l̃

′
1, l̃2, l̃

′
2). This decoder is

known to be the right decoder in the case where the codewords have the standard
i.i.d. structure, i.e. for a family of random variables

{Û l0l
′
0 , X̂ l0l

′
0l1l

′
1 , Y l0l

′
0l2l

′
2}

where Û l0l
′
0 ∼ P

⊗(n+n′)
U and where conditional on Û l0l

′
0 , the X̂ l0l

′
0l1l

′
1 and Ŷ l0l

′
0l2l

′
2

are independent with X̂ l0l
′
0l1l

′
1 ∼ P

⊗(n+n′)
X|U and Ŷ l0l

′
0l2l

′
2 ∼ P

⊗(n+n′)
Y |U . It is easily

seen that

E[W⊗n((F l0l
′
0l1l

′
1l2l

′
2)c|X̃ l0l

′
0l1l

′
1 , Ỹ l0l

′
0l2l

′
2)]

≤ (1 − 2−ncδ
2

)3(1− 2−n
′cδ2)3E[W⊗n((F l0l

′
0l1l

′
1l2l

′
2)c|X̂ l0l

′
0l1l

′
1 , Ŷ l0l

′
0l2l

′
2)].

Then the standard random coding proof technique yields the result. The spe-
cialization for the case that only F or F ′ is treated is obvious. �
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4.5 Coding

In this subsection we show the achievability of the rate sets R(ν)(p) for ν =
0, 1, 2, 3 and appropriate p. For the cases where we showed that R(ν)(p) can be

written as the union over certain α of rate setsR(ν)
α (p), we show the achievability

of the latter for every α.
Throughout this section fix a common randomness bound HC ≥ 0. Let δ > 0

which will be specified later and n a blocklength which will have to be large
enough. Every p considered in this section has the form p = PU⊗(PX|U⊗PY |U )⊗
W . Without loss of generality we may assume that I(Z ∧ XY ) < I(T ∧XY ),
in particular, I(T ∧XY ) > 0. Letting

K0,K1,K2, L0, L1, L2, n, K ′
0,K

′
1,K

′
2, L

′
0, L

′
1, L

′
2, n

′ (72)

be arbitrary positive integers, we define two independent families G,G′ of random
vectors. G has the same form as F with the parameters L0, L1, L2 replaced by
K0L0,K1L1,K2L2. G′ is defined analogously with the parameters on the left-
hand side of (72) replaced by those on its right-hand side. Every choice of
(k0, k1, k2) induces a subfamily F of G which has the same parameters as the
F treated above, every subfamily of G′ corresponding to any (k′0, k

′
1, k

′
2) induces

an F ′ with parameters L′
0, L

′
1, L

′
2, n

′. Further recall the notation G ◦ G′ as the
family of concatenated words from G and G′.

Case 0 and 1: Let p ∈ Π0 or p ∈ Π
(1)
HC

. Note that α
(1)
0 ≤ α

(1)
1 if and only if

the vector (J
(α)
0 , J

(α)
1 , J

(α)
2 ) whose components are given by

J
(α)
0 = I(Z ∧ U),

J
(α)
1 = αI(Z ∧X |Y U) + (1− α)I(Z ∧X |U),

J
(α)
2 = αI(Z ∧ Y |U) + (1− α)I(Z ∧ Y |XU)

is contained in R̃(p). We first consider Case 1. Let a rate vector (R0, R1, R2)
with positive components be given such that (R̃0, R̃1, R̃2) := (R0, R1, R2) +

(J
(α)
0 , J

(α)
1 , J

(α)
2 ) ∈ R̃(p), which means that (R0, R1, R2) ∈ Rα(p). We now

define a wiretap code whose rates approximate (R0, R1, R2). If α = 0, we only
need G′, if α = 1, we only need G. Otherwise we do time-sharing in the following
way: choose for a small 0 < γ < min{α, 1 − α} blocklengths n and n′ with
n/(n + n′) ∈ (α − γ, α + γ). For some 0 < 2η < min{R0, R1, R2} and every
ν = 0, 1, 2 let

R̃ν − η ≤ log(KνLν) + log(K ′
νL

′
ν)

n+ n′ ≤ R̃ν −
η

2

(and this modifies accordingly for α ∈ {0, 1}). By Lemma 17 we know that

with probability exponentially close to 1, the random variables X̃
l0l

′
0l1l

′
1

k0k′
0k1k

′
1
and

Ỹ
l0l

′
0l2l

′
2

k0k′
0k2k

′
2
form the codewords of a code for the non-wiretap MAC given by Wb
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with an average error at most exp(−(n + n′)ζ1) for some ζ1 > 0. We denote
Bob’s corresponding random decoder by Φ. Now let

logL1 + logL′
1

n+ n′ ∈ J (α)
1 +

(
f1(δ) + (αf2(δ) + (1− α)f4(δ))

)
· [2, 3],

logL2 + logL′
2

n+ n′ ∈ J (α)
2 +

(
f1(δ) + (αf4(δ) + (1− α)f2(δ))

)
· [2, 3],

logL0 + logL′
0

n+ n′ ∈ J (α)
0 +

(
f4(δ) + f6(δ)

)
· [2, 3].

This is possible if 4(f1(δ) + f2(δ) + f4(δ)) ≤ min{η,HC − J
(α)
0 }. If additionally

ε is chosen according to

− 1

n
log ε =

1

4
min{4ζ1, f1(δ) + f2(δ) + f4(δ) + f6(δ)},

then for every (k0, k1, k2) ∈ [K0] × [K1] × [K2], the corresponding subfamily F
of G satisfies (34)-(37) with probability exponentially close to 1, and for every
(k′0, k

′
1, k

′
2) ∈ [K ′

0] × [K ′
1] × [K ′

2], the corresponding subfamily F ′ of G′ satisfies
(34′)-(37′) with probability exponentially close to 1. Thus we can choose a
realization of G◦G′ which has all these properties and use it to define a stochastic
wiretap code. We define independent encoders G and G′ by setting

G0(l0|k0) =
1

L0
, (k0 ∈ [K0], l0 ∈ [L0]),

G1(x|k0, k1, l0) =
1

L1

∑
l1

δ
x
l0l1
k0k1

(x), (x ∈ Xn, k1 ∈ [K1], k0 ∈ [K0], l0 ∈ [L0]),

G2(y|k0, k2, l0) =
1

L2

∑
l2

δ
y
l0l2
k0k2

(y), (y ∈ Yn, k2 ∈ [K2], k0 ∈ [K0], l0 ∈ [L0]),

and defining G′ analogously. G0 and G′
0 satisfy the common randomness con-

straint. We choose the decoder φ to be the realization of Φ corresponding to the
chosen realization of G ◦ G′. The average error of the stochastic encoding code
equals the average error of the deterministic MAC code for Wb determined by
the realization of G ◦ G′, in particular it is bounded by ε. Due to the choice of δ
the rates of this code satisfy

logKν + logK ′
ν

n+ n′ ≥ Rν − 2η (ν = 0, 1, 2, ).

Finally if we let Mν be uniformly distributed on [Kν ] and M ′
ν on [K ′

ν ], then
it follows from Lemma 10 and (22) together with the fact that ε is exponen-
tially small that the strong secrecy criterion is satisfied. Thus the rate triple
(R0, R1, R2) is achievable. So far, this excludes (R0, R1, R2) where one compo-
nent equals zero, but as δ and η may be arbitrarily close to 0 and the achievable
region ofW is closed by definition, we can conclude that the whole region Rα(p)
is achievable.
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For Case 0, everything goes through if one sets K0 = K ′
0 = L0 = L′

0 = 1 and

R0 = 0. The difference to Case 1 is that even if J
(α)
0 = 0, one needs a little

bit more common randomness than that in order to protect a common message,
as can be seen in the choice of L0 and L′

0 above. Thus the transmission of a
common message is impossible if common randomness is not available.

Case 2: Let p ∈ Π(2)
HC

. In this case we generally need both a G and a G′, where

G has L2 = 1 and G′ has L1 = 1. We define the vector (J
(α)
0 , J

(α)
1 , J

(α)
2 ) by

J
(α)
0 = αI(Z ∧ Y U) + (1− α)I(Z ∧XU),

J
(α)
1 = αI(Z ∧X |Y U),

J
(α)
2 = (1− α)I(Z ∧ Y |XU)

As it should always be clear which case we are treating, this should not lead to

confusion with case 1. Note that α
(2)
0 ≤ α ≤ α

(2)
1 if and only if (J

(α)
0 , J

(α)
1 , J

(α)
2 )

is contained in R̃(p) and satisfies J
(α)
0 < HC . Let a rate vector (R0, R1, R2) be

given whose ν-th component may only vanish if Lν = L′
ν = 1. Further we require

that (R̃0, R̃1, R̃2) = (R0, R1, R2)+ (J
(α)
0 , J

(α)
1 , J

(α)
2 ) is contained in R̃(p). If α =

0, we only need G′, if α = 1, we only need G. Otherwise, let 0 < γ < min{α, 1−α}
be small and let n and n′ be large enough such that n/(n+n′) ∈ (α− γ, α+ γ).
Further for some 0 < 2η < min{Rν : ν = 0, 1, 2, Rν > 0} let

[R̃ν − η]+ ≤ log(KνLν) + log(K ′
νL

′
ν)

n+ n′ ≤ [R̃ν −
η

2
]+,

and modify this accordingly for α ∈ {0, 1}. By Lemma 17 we know that

with probability exponentially close to 1, the random variables X̃
l0l

′
0l1l

′
1

k0k′
0k1k

′
1
and

Ỹ
l0l

′
0l2l

′
2

k0k′
0k2k

′
2
form the codewords of a code for the non-wiretap MAC given by Wb

with an average error at most exp(−(n+ n′)ζ1) for some ζ1 > 0. We denote the
corresponding random decoder by Φ. We define (j11 , j

2
1) = (j12 , j

2
2) = (1, 2) and

(j10 , j
2
0) = (1, 6). Then let for ν = 0, 1, 2

J (α)
ν + 2(fj1ν (δ) + fj2ν (δ)) ≤

logLν + logL′
ν

n+ n′ ≤ J (α)
ν + 3(fj1ν (δ) + fj2ν (δ)),

which is possible if 4(fj1ν (δ)+fj2ν (δ)) ≤ min{η,HC−J (α)
0 } for all ν. If additionally

ε is chosen according to

− 1

n
log ε =

1

4
min{4ζ1, f1(δ) + f2(δ), f1(δ) + f6(δ)},

then for every (k0, k1, k2) ∈ [K0] × [K1] × [K2], the corresponding subfamily F
of G satisfies (54)-(56) with probability exponentially close to 1, and for every
(k′0, k

′
1, k

′
2) ∈ [K ′

0] × [K ′
1] × [K ′

2], the corresponding subfamily F ′ of G′ satisfies
(54′)-(56′) with probability exponentially close to 1. Thus we can choose a
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realization of G ◦G′ which has all these properties plus those defining AMAC and
use it to define a stochastic wiretap code. We define independent encoders G
and G′ by setting

G0(l0|k0) =
1

L0
, (l0 ∈ [L0], k0 ∈ [K0]),

G1(x|k0, k1, l0) =
1

L1

∑
l1

δ
x
l0l1
k0k1

(x), (x ∈ Xn, k1 ∈ [K1], k0 ∈ [K0], l0 ∈ [L0]),

G2(y|k0, k2, l0) = δ
y
l0
k0k2

(y), (y ∈ Yn, k2 ∈ [K2], k0 ∈ [K0], l0 ∈ [L0]),

and defining G′ analogously. The decoder φ is the realization of Φ corresponding
to the chosen realization of G ◦ G′. G0 and G′

0 satisfy the common randomness
constraint. Due to the simple form of G and G′, the average error of the stochas-
tic encoding code equals the average error of the deterministic MAC code for
Wb determined by the realization of G ◦G′, in particular it is bounded by ε. Due
to the choice of δ, the rates of this code satisfy

logKν + logK ′
ν

n+ n′ ≥ Rν − 2η (ν = 0, 1, 2, ).

Finally if we let Mν be uniformly distributed on [Kν ] and M ′
ν on [K ′

ν ], then
it follows from Lemma 10 and (22) together with the fact that ε is exponen-
tially small that the strong secrecy criterion is satisfied. Thus the rate triple
(R0, R1, R2) is achievable. So far, this may exclude rate triples (R0, R1, R2)
where one component equals zero, but as δ and η may be arbitrarily close to 0
and the achievable region of W is closed by definition, we can conclude that the
whole region Rα(p) is achievable.

Case 3: In this case we only need G with L1 = L2 = 1. Let R0 > 0 and assume
that the rate vector (R̃0, R̃1, R̃2) := (R0 + I(Z ∧ XY ), R1, R2) is contained in
R̃(p). Further for some 0 < 2η < min{Rν : ν = 0, 1, 2, Rν > 0} let

[R̃ν − η]+ ≤ 1

n
log(KνLν) ≤ [R̃ν −

η

2
]+.

G satisfies AMAC with probability exponentially close to 1, so theX l0l1
k0k1

and Y l0l2
k0k2

form the codewords of a deterministic non-wiretap MAC code whose average
error for transmission over Wb is bounded by exp(−nζ1) for some ζ1 > 0. We
denote the corresponding random decoder by Φ. Now let

I(Z ∧XY ) + 2(f1(δ) + f2(δ)) ≤
1

n
logL0 ≤ I(Z ∧XY ) + 3(f1(δ) + f2(δ))

for δ so small that 4(f1(δ)+f2(δ)) ≤ min(η,HC −I(Z∧XY )) and choose ε such
that

− 1

n
log ε =

1

4
min{4ζ1, f1(δ) + f2(δ)}.
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Then for every (k0, k1, k2) the corresponding family F satisfies the conditions
(63) and (64) with probability exponentially close to 1. We choose a realization
{(ul0k0 ,x

l0
k0k1

,yl0k0k2)} which satisfies the conditions of (63) and (64) and which
determines a deterministic non-wiretap code for Wb with decoder φ. Now we
can define a wiretap code whose decoder is φ and whose stochastic encoder G is
given by

G0(l0|k0) =
1

L0
, (k0 ∈ [K0], l0 ∈ [L0]),

G1(x|k0, k1, l0) = δ
x
l0
k0k1

(x), (x ∈ Xn, k1 ∈ [K1], k0 ∈ [K0], l0 ∈ [L0]),

G2(y|k0, k2, l0) = δ
y
l0
k0k2

(y), (y ∈ Yn, k2 ∈ [K2], k0 ∈ [K0], l0 ∈ [L0]).

Note that G0 satisfies the common randomness constraint. Due to the uniform
distribution of G0, its average error is identical to that of the deterministic MAC
code determined by the xl0k0k1 and the yl0k0k2 , in particular, it is exponentially
small with rate at most ε. We have for ν = 0, 1, 2

1

n
logKν ≥ Rν − 2η.

due to the choice of δ. Finally if we let Mν be uniformly distributed on [Kν ],
then it follows from Lemma 16 and (22) together with the fact that ε is expo-
nentially small that the strong secrecy criterion is satisfied. Thus the rate triple
(R0, R1, R2), and hence R(p), is achievable.

4.6 Concluding Steps

We can reduce coding for a general p which is the distribution of a random vector
(U, V1, V2, X, Y, T, Z) to the case treated above by constructing a new wiretap
MAC as follows: its input alphabets are V1 and V2, its output alphabets still
are T and Z. The transition probability for inputs (v1, v2) and outputs (t, z) is
given by

W̃ (t, z|v1, v2) :=
∑

(x,y)∈X×y

W (t, z|x, y)PX|V1
(x|v1)PY |V2

(y|v2).

For this channel we do the same construction as above considering the joint
distribution of random variables (U, V1, V2, T, Z) which we denote by p̃. In this
way we also construct a wiretap code for the original channel W because the
additional randomness PV1V2|U can be integrated into the stochastic encoders G1

and G2. G0 remains unchanged, so the additional randomness in the encoders
does not increase the common randomness needed to do the encoding.

On the other hand, we need to show that the rate regions thus obtained are

those appearing in the statement of Theorem 1. As the sets Π0, Π
(1)
HC
, . . . , Π

(3)
HC

depend on the channel, we write Π0(W ), Π0(W̃ ), Π
(1)
HC

(W ), . . . , Π
(3)
HC

(W̃ ). Note

that p̃ is contained in Π0(W̃ ) or Π
(ν)
HC

(W̃ ) for some ν = 1, 2, 3 if and only if p is

contained in the corresponding Π0(W ) or Π
(ν)
HC

(W ). This immediately implies
that the rate regions also coincide.
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5 Proof of Theorem 2

5.1 Elementary Rate Regions

As for the wiretap MAC with common message we show that we can write the
claimed achievable regions as unions of simpler sets whose achievability will be
show in the next step.

For Case 1: Define

β
(1)
0 := [1− C2

I(Z ∧ U)
]+, β

(1)
1 := min{ C1

I(Z ∧ U)
, 1}.

We have β
(1)
0 ≤ β

(1)
1 because I(Z ∧ U) < C1 + C2.

Lemma 18. For β
(1)
0 ≤ β ≤ β

(1)
1 , let R(1)

β (p, C1, C2) be the set of those real
pairs (R1, R2) satisfying

R1 ≤ I(T ∧ V1|V2U)− I(Z ∧ V1|U)

− [I(Z ∧ V2|V1U)− I(T ∧ V2|V1U)]+ − βI(Z ∧ U) + C1,

R2 ≤ I(T ∧ V2|V1U)− I(Z ∧ V2|U)

− [I(Z ∧ V1|V2U)− I(T ∧ V1|V2U)]+ − (1− β)I(Z ∧ U) + C2,

R1 +R2 ≤ min
{
I(T ∧ V1V2|U)− I(Z ∧ V1V2|U)− I(Z ∧ U) + C1 + C2,

I(T ∧ V1V2)− I(Z ∧ V1V2)
}
.

Then
R(1)(p, C1, C2) =

⋃
β
(1)
0 ≤β≤β(1)

1

R(1)
β (p, C1, C2).

Thus it is sufficient to show the achievability of R(1)
β (p, C1, C2) for every β. For

the proof one uses Lemma 2.

For Case 2: Recall the vector (J
(α)
0 , J

(α)
1 , J

(α)
2 ) defined as in Case 2 from the

common message part. Define

β
(2,α)
0 := [1− C2

J
(α)
0

]+, β
(2,α)
1 := min{ C1

J
(α)
0

, 1}.

We show that every R(2)
α (p, C1, C2) can be represented as the union of sets

R(2)
α,β(p, C1, C2) for β

(2,α)
0 ≤ β ≤ β

(2,α)
1 . Define R(2)

α,β(p, C1, C2) by

R1 ≤ I(T ∧ V1|V2U)− αI(Z ∧ V1|V2U) + C1 − βJ
(α)
0 ,

R2 ≤ I(T ∧ V2|V1U)− (1− α)I(Z ∧ V2|V1U) + C2 − (1− β)J
(α)
0 ,

R1 +R2 ≤ I(T ∧ V1V2|U)− αI(Z ∧ V1|V2U)− (1− α)I(Z ∧ V2|V1U)

+ C1 + C2 − J
(α)
0 ,

R1 +R2 ≤ I(T ∧ V1V2)− I(Z ∧ V1V2).
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Lemma 19. We have for every α ∈ [α
(2)
0 , α

(2)
1 ]

R(2)
α (p, C1, C2) =

⋃
β
(2,α)
0 ≤β≤β(2,α)

1

R(2)
α,β(p, C1, C2).

This is seen immediately using Lemma 2.

For Case 3: Define

β
(1)
0 := [1− C2

I(Z ∧ V1V2)
]+, β

(1)
1 := min{ C1

I(Z ∧ V1V2)
, 1}.

We have β
(1)
0 ≤ β

(1)
1 because I(Z ∧ V1V2) < C1 + C2.

Lemma 20. For β
(3)
0 ≤ β ≤ β

(3)
1 , let R(3)

β (p, C1, C2) be the set of those real
pairs (R1, R2) satisfying

R1 ≤ I(T ∧ V1|V2U0) + C1 − βI(Z ∧ V1V2),
R2 ≤ I(T ∧ V2|V1U0) + C2 − (1 − β)I(Z ∧ V1V2),

R1 +R2 ≤ min
{
I(T ∧ V1V2|U) + C1 + C2 − I(Z ∧ V1V2),
I(T ∧ V1V2)− I(Z ∧ V1V2)

}
.

Then
R(1)(p, C1, C2) =

⋃
β
(1)
0 ≤β≤β(1)

1

R(1)
β (p, C1, C2).

Thus it is sufficient to show the achievability of R(3)
β (p, C1, C2) for every β. For

the proof one uses Lemma 2.

5.2 Coding

Let C1, C2 > 0 and let p ∈ ΠC1+C2 . Further let (R1, R2) ∈ R(p, C1, C2).

In Case 1 we then know that there is a β ∈ [β
(1)
0 , β

(1)
1 ] such that (R1, R2) ∈

R(1)
β (p, C1, C2), in Case 2 we have an α ∈ [α

(2)
0 , α

(2)
1 ] and a β ∈ [β

(2,α)
0 , β

(2,α)
1 ]

with (R1, R2) ∈ R(2)
α,β(p, C1, C2). For Case 3, there is a β ∈ [β

(3)
0 , β

(3)
1 ] with

(R1, R2) ∈ R(3)
β (p, C1, C2). Recall the notation

J
(α)
0 =

⎧⎪⎨⎪⎩
I(Z ∧ U) in Case 1,

αI(Z ∧ V2U) + (1− α)I(Z ∧ V1U) in Case 2,

I(Z ∧ V1V2) in Case 3.

We set

R̃
(1)
0 := R1 ∧ (C1 − βJ

(α)
0 ), R̃

(2)
0 := R2 ∧ (C2 − (1 − β)J

(α)
0 )
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and
R̃ν := Rν − R̃

(ν)
0 (ν = 1, 2).

Then setting

R̃0 := R̃
(1)
0 + R̃

(2)
0 ,

we conclude that

(R̃0, R̃1, R̃2) ∈

⎧⎪⎨⎪⎩
R(1)
β (p) in Case 1,

R(2)
α,β(p) in Case 2,

R(3)
β (p) in Case 3.

In particular, (R̃0, R̃1, R̃2) is achievable by the wiretap MAC W with common
message under the common randomness bound C1+C2. That means that for any
η, ε > 0 and for sufficiently large n, there is a common-message blocklength-n
code which has the form

G̃ : [K̃0]× [K̃1]× [K̃2] → P(Xn × yn),

φ : T n → [K̃0]× [K̃1]× [K̃2],

and the proof of Theorem 1 shows that we may assume that G̃ is given by

G̃(x,y|k̃0, k̃1, k̃2) =
1

L̃0

L̃0∑
l0=1

G̃1(x|k̃0, k̃1, l0)G̃2(y|k̃0, k̃2, l0)

for two stochastic matrices G̃1, G̃2. For L̃0 we have the bounds

J
(α)
0 +

η

4
≤ 1

n
log L̃0 ≤ J

(α)
0 +

η

2
.

Without loss of generality we may additionally assume that L̃
(1)
0 := L̃β0 and

L̃
(2)
0 := L̃

(1−β)
0 are integers. If 0 < 2η < min{R̃ν : ν = 0, 1, 2, R̃ν > 0}, the

codelength triple (K̃0, K̃1, K̃2) may be assumed to satisfy

[R̃ν − 2η]+ ≤ 1

n
log K̃ν ≤ [R̃ν − η]+, (ν = 0, 1, 2), (73)

and both the average error as well as I(M̃0M̃1M̃2 ∧ Zn) are upper-bounded by
ε, where (M̃0, M̃1, M̃2) is distributed uniformly on [K̃0]× [K̃1]× [K̃2] and Z

n is
Eve’s corresponding output random variable. The definitions imply that

1

n
log K̃0L̃0 ≤ C1 + C2.

We can find K̃ ′
0, K̃

(1)
0 , K̃

(2)
0 such that K̃ ′

0 = K̃
(1)
0 K̃

(2)
0 and K̃ ′

0 ≤ K̃0 and satisfying

[R̃
(ν)
0 − 2η]+ ≤ 1

n
log K̃

(ν)
0 ≤ [R̃

(ν)
0 − η

2
]+, (74)

[R̃0 − 2η]+ ≤ 1

n
log K̃ ′

0. (75)
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Thus one obtains a natural embedding

[K̃
(ν)
0 ]× [L

(ν)
0 ] ⊂ [�2nCν] (ν = 1, 2). (76)

We now construct a wiretap code with conferencing encoders. Let

Kν := K̃
(ν)
0 K̃ν (ν = 1, 2).

Thus every kν ∈ [Kν ] has the form (aν(kν), bν(kν)) with aν(kν) ∈ [K̃
(ν)
0 ] and

bν(kν) ∈ [K̃ν ]. We then define a stochastic one-shot Willems conferencing pro-
tocol

c1 : [K1] → P([�2nC1]), c2 : [K2] → P([�2nC2])

which is used to generate both a common message as well as common ran-
domness. Given a message kν ∈ [Kν ], Aliceν chooses an lν uniformly at ran-

dom from the set [L
(ν)
0 ] and then maps the pair (kν , lν) to (aν(kν), lν), so

cν(kν , lν) = (aν(kν), lν).
Next we define stochastic encoders G1, G2 as in the definition of a code with

conferencing encoders by setting

J := [�2nC1]× [�2nC2]

and, using the embedding (76),

G1(x|k1, j) = G̃1(x|(a1(k1), k(2)0 ), b1(k1), (l1, l2))

if j = ((a1(k1), l1), (k
(2)
0 , l2)) and letting G1(x|k1, j) be arbitrary else; G2 is

defined analogously. For decoding, one takes the decoder from the common
message code and lets it combine the messages it receives into elements of [K1]
and [K2]. By (73), the numbers K1 and K2 satisfy

1

n
logK1 ≥ R1 − 3η,

1

n
logK2 ≥ R2 − 3η.

Thus depending on the case we are in, every rate pair (R1, R2) contained in

R(1)
β (p, C1, C2) or R(2)

α,β(p, C1, C2) or R(3)
β (p, C1, C2) is achievable.

6 Discussion

6.1 Conferencing and Secret Transmission

This subsection is devoted to the comparison of the wiretap MAC without confer-
encing nor common randomness and the wiretap MAC if conferencing is allowed.
As our focus is on conferencing, we assume that common randomness can only
be established by conferencing. We show that there exists a wiretap MAC where
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the only rate pair contained in the region (10) achievable without conferencing
is (0, 0), whereas if conferencing is enabled with arbitrarily small C1, C2 > 0,
then the corresponding achievable region contains positive rates. Note that this
does not mean that there are cases where conferencing is necessary to establish
secret transmission as we do not have a converse. This restriction limits the use
of this discussion and should be kept in mind.

Our goal is to find multiple access channels Wb and We such that for every
Markov chain ((V1, V2), (X,Y ), (T, Z)) where PT |XY = Wb and PZ|XY = We

and where V1 and V2 are independent one has

I(T ∧ V1V2) ≤ I(Z ∧ V1V2). (77)

We noted in Remark 8 that (10) is the achievable region without conferencing
and it is easy to see that condition (77) is an equivalent condition for this region
to equal {(0, 0)}. Thus the only rate pair which is achievable according to our
above considerations is (R1, R2) = (0, 0). At the same time, there should be a
Markov chain (U, (X,Y ), (T, Z)) for the same pair of channels Wb and We such
that

I(T ∧XY ) > I(Z ∧XY ).

This would prove the existence of a rate pair (R1, R2) with positive components
for arbitrary C1, C2 > 0.

We recall one concept of comparison for single-sender discrete memoryless
channels (DMCs) introduced by Körner and Marton [22].

Definition 3. A DMC We : X → P(Z) is less noisy than a DMC Wb : X →
P(T ) if for every Markov chain (U,X, (T, Z)) with PT |X =Wb and PZ|X =We

one has
I(Z ∧ U) ≥ I(T ∧ U).

It was observed by van Dijk [35] that this is nothing but saying that the function

PX �→ I(Z ∧X)− I(T ∧X), PX ∈ P(X )

is concave. Now we generalize this to the MAC case to obtain an equivalent
condition for (77).

Lemma 21. (77) holds for every Markov chain ((V1, V2), (X,Y ), (T, Z)) with
independent V1, V2 and X independent of V2 and Y independent of V1 and
PT |XY =Wb and PZ|XY =We if and only if the function

(PX , PY ) �→ I(Z ∧XY )− I(T ∧XY ), X, Y independent r.v.s on X × Y

is concave in each of its components.

Proof. Let a Markov chain be given as required in the lemma. One has

I(Z ∧ V1V2)− I(T ∧ V1V2) (78)

=
(
I(Z ∧XY )− I(T ∧XY )

)
−

(
I(Z ∧XY |V1V2)− I(T ∧XY |V1V2)

)
.
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Now note that the rightmost bracket equals∑
v1

∑
v2

PV1(v1)PV2(v2)
(
I(Z ∧XY |V1 = v1, V2 = v2)− I(T ∧XY |V1 = v1, V2 = v2)

)
,

so it is clear that the nonnegativity of (78) is equivalent to the concavity in each
component of the function from the lemma statement. �
We now define the channels Wb and We which will provide the desired example.
Let N1, N2 be i.i.d. random variables uniformly distributed on {0, 1}. The input
alphabets are X = Y = {0, 1}. The output alphabet of Wb is GF (3) and the
output alphabet of We is {−2, . . . , 3}. The outputs t of Wb are given by

t = x+ y +N1,

those of We by
z = 2x− 2y +N2.

The intuition is that in We, one can exactly determine through the output
whether or not the inputs were equal and if they were unequal, which input was
0 and which was 1. For Wb, however, there are for every output at least two
input possibilities, so it is reasonable that an independent choice of the inputs
makes We better than Wb. However, if one may choose the inputs with some
correlation, one may choose the inputs to be equal. Then the output of We is
only noise, whereas one can still extract some information about the input from
Wb.

As the entries of the corresponding stochastic matrices of both channels are
only 1/2 or 0, the conditional output entropy is independent of the input dis-
tribution and equals 1. Further any pair of independent random variables on X
and Y is given by parameters q, r ∈ [0, 1] such that

P[X(q) = 0] = q, P[Y (r) = 0] = r.

Thus in order to determine whether (77) holds, it is enough to consider the
function H(Z(q,r))−H(T (q,r)) for T (q,r), Z(q,r) being the outputs ofWb and We,
respectively, corresponding to the pair (X(q), Y (r)). One has

fZ(q, r) := H(Z(q,r)) = −q(1− r) log(q(1 − r)/2)

−(qr + (1 − q)(1− r)) log((qr + (1− q)(1− r))/2)

−(1− q)r log((1 − q)r/2)

and

fT (q, r) := H(T (q,r))

= −1

2
(qr + (1 − q)(1− r)) log((qr + (1 − q)(1− r))/2)

−1

2
(qr + q(1 − r) + (1− q)r) log((qr + q(1− r) + (1− q)r)/2)

−1

2
(q(1− r) + (1− q)r + (1− q)(1 − r))·

· log((q(1 − r) + (1 − q)r + (1− q)(1 − r))/2).
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Both entropies are symmetric in q and r and continuous on [0, 1]2 and differen-
tiable on (0, 1)2, so by Lemma 21 it suffices to find the second derivatives in q
of both of them and to compare.

We have

∂fZ
∂q

(q, r) =− (1− r) log(q(1− r)/2)

− (2r − 1) log((qr + (1− q)(1 − r))/2)

+ r log((1 − q)r/2)

and

∂fT
∂q

(q, r) = −1

2
(2r − 1) log((qr + (1− q)(1 − r))/2)

−1

2
(1− r) log((qr + q(1 − r) + (1− q)r)/2)

+
r

2
log((q(1 − r) + (1− q)r + (1 − q)(1− r))/2).

Thus

∂2fZ
∂q2

(q, r) = −1− r

q
− (2r − 1)2

qr + (1− q)(1 − r)
− r

1− q

and

∂2fT
∂q2

(q, r) = − (2r − 1)2

2(qr + (1− q)(1 − r))

− (1− r)2

2(qr + q(1− r) + (1− q)r)

− r2

2(q(1− r) + (1− q)r + (1− q)(1 − r))
.

After some algebra, it turns out that for q, r ∈ (0, 1),

∂2fZ
∂q2

(q, r)− ∂2fT
∂q2

(q, r) = −1− r

2q
· q + 2r − qr

q + r − qr

− (2r − 1)2

2(qr + (1− q)(1 − r))

− r

2(1− q)
· 2− r − qr

1− qr

< 0.

Thus fZ − fT is concave and (77) is true for Wb,We.
Now we show that there exists an input distribution with I(T ∧ XY ) >

I(Z ∧XY ). Of course, X and Y cannot be independent any more in this case.
Every probability distribution p on {0, 1} induces a probability distribution p2

on {0, 1}2 via p2(x, x) = p(x). Let the pair (X,Y ) be distributed according
to p. It is immediate from the definition of We that I(Z ∧ XY ) = 0. On the
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other hand, PT can be described by the vector (1/2)(1, p(0), p(1)). Thus one
sees easily that this is maximized for p(0) = p(1) = 1/2, resulting in

I(T ∧XY ) =
1

2
.

p2 is identified as an element of Π by setting U = {0, 1}, PU = PX , and PX|U =
PY |U = δU . Note that I(Z ∧ U) = 0, so secret transmission is possible with
arbitrarily small conferencing capacities C1, C2 > 0.

6.2 Necessity of Time-Sharing in Random Coding

We show here that doing time-sharing during random coding is necessary for
our method to work. This only serves to justify the effort we had to make in
coding. We concentrate on Case 0 and 1. Then we have to show that it may

happen that α
(1)
0 > 0 or α

(1)
1 < 1. Let X = Y = T = Z = {0, 1} and let

Wb,We : {0, 1}2 → P({0, 1}) be defined by

Wb =

⎛⎜⎜⎝
0.6178 0.3822
0.0624 0.9376
0.9350 0.0650
0.2353 0.7647

⎞⎟⎟⎠ , We =

⎛⎜⎜⎝
0.0729 0.9271
0.7264 0.2736
0.3662 0.6338
0.4643 0.5357

⎞⎟⎟⎠ ,

where the output distribution for the input pair (x, y) is given in row number
2x + y for each matrix. With q = 0.6933 and r = 0.3151, let p = p(q) ⊗ p(r) ∈
P(X × Y) be the product measure with the marginals

p(q) = (q, 1− q), p(r) = (r, 1 − r).

Note that p ∈ Π0. One obtains the following entropies:

H(T |XY ) ≈ 0.5685, H(Z|XY ) ≈ 0.7851,

H(T |X) ≈ 0.8532, H(Z|X) ≈ 0.9952,

H(T |Y ) ≈ 0.6251, H(Z|Y ) ≈ 0.8442,

H(T ) ≈ 0.8866, H(Z) ≈ 0.9999.

Calculating with the above values returns

I(T ∧XY ) = 0.3181, I(Z ∧XY ) = 0.2147,

I(T ∧X |Y ) = 0.0566, I(Z ∧X |Y ) = 0.0590,

I(T ∧ Y |X) = 0.2847, I(Z ∧ Y |X) = 0.2101,

I(Z ∧X) = 0.0047,

I(Z ∧ Y ) = 0.1557.

Thus the conditions (3) and (4) are satisfied. If HC < min{I(Z ∧X |Y ), I(Z ∧
Y |X)} = 0.0590, then we can only show that R(0)(p) or R(1)(p) is achievable
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and might have to use time-sharing during random coding to do so. In fact, this
is necessary as

I(Z ∧X |Y ) > I(T ∧X |Y ),

whereas
I(Z ∧ Y |X) < I(T ∧ Y |X).

Hence α
(1)
0 > 0, but α

(1)
1 = 1. This example was found by a brute-force search

using the computer.
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[30] and [42] to our attention. They consider strong secrecy problems inmulti-user
settings with the help of resolvability theory. In particular, in [42], an achievable
region for the wiretap MAC without common message or conferencing is derived.
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access channel with confidential messages. In: Proc. Int. Symp. Inf. Theory, Seattle,
pp. 957–961 (2006)

28. Maurer, U.M.: Secret key agreement by public discussion from common informa-
tion. IEEE Trans. Inf. Theory 39(3), 733–742 (1993)

29. Maurer, U.M.: The strong secret key rate of discrete random triples. In: Blahut,
R. (ed.) Communication and Cryptography — Two Sides of One Tapestry, pp.
271–285. Kluwer Academic Publishers (1994)

30. Pierrot, A.J., Bloch, M.R.: Strongly secure communications over the two-way
wiretap channel. IEEE Trans. Inf. Forensics Secur. 6(3) (2011)

31. Simeone, O., Yener, A.: The cognitive multiple access wire-tap channel. In: Proc.
Conf. on Inf. Sciences and Systems (CISS), Baltimore, NJ (2009)

32. Slepian, D., Wolf, K.: A coding theorem for multiple access channels with corre-
lated sources. Bell Sytem Techn. J. 52(7), 1037–1076 (1973)
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Appendix

A Proof of Lemma 2

The direction “⊂” in (12) is obvious. For the other direction, let (R0, R1, R2) ∈
K. We may assume that for some 0 ≤ β ≤ 1,

R1 = r1 − β(α1a1 + (1− α1)b1)− (1− β)(α0a1 + (1 − α0)b1)

= r1 − (βα1 + (1− β)α0)a1 − (β(1 − α1) + (1− β)(1 − α0))b1

because the claim is obvious for R1 ≤ r1 − α1a1 − (1 − α1)b1. We show that
(R0, R1, R2) ∈ Kβα1+(1−β)α0

. The R1-bound is satisfied due to our assumption.
Further due to the bound on R1 +R2,

R2

≤ r12 − c− r1 + (βα1 + (1− β)α0)a1 + (β(1 − α1) + (1− β)(1 − α0))b1

≤ r2 − (βα1 + (1− β)α0)a2 − (β(1 − α1) + (1− β)(1 − α0))b2,

so R2 also satisfies the necessary upper bound. The sum constraints are inde-
pendent of α. Hence all upper bounds in the definition of Kβα1+(1−β)α0

are
satisfied, and Lemma 2 is proved.

B Proof of Lemma 4

For α ∈ [α0, α1], the set Kα is contained in the convex hull of Kα0 ∪ Kα1 . Thus
we only have to prove that K = conv(Kα0 ∪Kα1). Without loss of generality we
assume that b > a.

We first prove conv(Kα0 ∪ Kα1) ⊂ K. Let (R0, R1, R2) ∈ conv(Kα0 ∪ Kα1).

Using the convexity of Kα0 and Kα1 we infer that there is a (R
(0)
0 , R

(0)
1 , R

(0)
2 ) ∈

Kα0 and a (R
(1)
0 , R

(1)
1 , R

(1)
2 ) ∈ Kα1 and a β ∈ [0, 1] such that

(R0, R1, R2) = β(R
(0)
0 , R

(0)
1 , R

(0)
2 ) + (1− β)(R

(1)
0 R

(1)
1 , R

(1)
2 ).
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One sees immediately that (R0, R1, R2) satisfies the bounds (17)-(19) and (21).

It is sufficient to check that (20) is satisfied by the triples (R
(0)
0 , R

(0)
1 , R

(0)
2 ) and

(R
(1)
0 , R

(1)
1 , R

(1)
2 ). For (R

(0)
0 , R

(0)
1 , R

(0)
2 ) we assume that

R
(0)
1 = γ(r1 − α0a)

for some γ ∈ [0, 1]. After some calculations this yields

bR
(0)
1 + aR

(0)
2 ≤ (b− a)r1 + ar12 − ab− (1− γ)(b− a)(r1 − α0a)

≤ (b− a)r1 + ar12 − ab.

One proceeds analogously for (R
(1)
0 , R

(1)
1 , R

(1)
2 ).

Next we have to check that K ⊂ conv(Kα0 ∪ Kα1). It is sufficient to check
whether those points (R0, R1, R2) are contained in conv(Kα0 ∪Kα1) that satisfy
both (20) and one of (17)-(19) with equality. So assume that

bR1 + aR2 = r12a+ r1(b− a)− ab. (79)

First we also assume that

R1 +R2 = r12 − α0a− (1 − α1)b.

Then
R2 = r12 − α0a− (1− α1)b−R1

and using (79) we obtain

R1 = r1 −
α1b− α0a

b− a
a ≤ r1 − α1a.

For R2 this gives

R2 = r12 − r1 −
(
α0 +

α1b− α0a

b− a

)
a− (1− α1)b ≤ r2 − (1 − α1)b,

so (R1, R2) ∈ Kα1 .
Now we assume

R1 = r1 − α0a.

Then inserting this in (79) one obtains

R2 ≤ r2 − (1− α0)b,

so (R1, R2) ∈ Kα0 .
Finally for

R2 = r2 − (1− α1)b

we obtain
R1 ≤ r1 − α1a,

so (R1, R2) ∈ Kα1 . This proves the lemma.
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Abstract. In this work the arbitrarily varying wiretap channel AVWC
is studied. We derive a lower bound on the random code secrecy capac-
ity for the average error criterion and the strong secrecy criterion in the
case of a best channel to the eavesdropper by using Ahlswede’s robus-
tification technique for ordinary AVCs. We show that in the case of a
non-symmetrisable channel to the legitimate receiver the deterministic
code secrecy capacity equals the random code secrecy capacity, a result
similar to Ahlswede’s dichotomy result for ordinary AVCs. Using this we
can derive that the lower bound is also valid for the deterministic code
capacity of the AVWC. The proof of the dichotomy result is based on the
elimination technique introduced by Ahlswede for ordinary AVCs. We
further prove upper bounds on the deterministic code secrecy capacity in
the general case, which results in a multi-letter expression for the secrecy
capacity in the case of a best channel to the eavesdropper. Using tech-
niques of Ahlswede, developed to guarantee the validity of a reliability
criterion, the main contribution of this work is to integrate the strong
secrecy criterion into these techniques.

Keywords: arbitrarily varying wiretap channels, strong secrecy, classes
of attacks, jamming, active wiretapper.

1 Introduction

Models of communication systems taking into account both the requirement
of security against a potential eavesdropper and reliable information transmis-
sion to legitimate receivers which suffer from channel uncertainty, have received
much interest in current research. One of the simplest communication models
with channel uncertainty are compound channels, where the channel realisation
remains fixed during the whole transmission of a codeword. Compound wiretap
channels were the topic of previous work of the authors [7], [8] and for example
of [13], [9]. In the model of an arbitrarily varying wiretap channel AVWC the
channel state to both the legitimate receiver and the eavesdropper varies from
symbol to symbol in an unknown and arbitrary manner. Thus apart from eaves-
dropping the model takes into account an active adversarial jamming situation in
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which the jammer chooses the states at her/his will. Then reliable transmission
to the legitimate receiver must be guaranteed in the presence of the jammer.

In this paper we consider families of pairs of channels W = {(Wsn , Vsn) :
sn ∈ Sn} with common input alphabets and possibly different output alpha-
bets, where sn ∈ Sn denotes the state sequence during the transmission of a
codeword. The legitimate users are connected via Wsn and the eavesdropper
observes the output of Vsn . In our communication scenario the legitimate users
have no channel state information. We derive capacity results for the AVWC
W under the average error probability criterion and a strong secrecy criterion.
The investigation of the corresponding problem concerning the maximum error
criterion is left as a subject of future investigations. However, we should em-
phasize that there is no full capacity result for an ordinary (i.e. without secrecy
constraints) AVC for the maximum error criterion. Together with Wolfowitz in
[6] Ahlswede determined the capacity for AVCs with binary output alphabets
under this criterion. In [1] he showed that the general solution is connected to
Shannon’s zero error capacity problem [15].

Two fundamental techniques, called elimination and robustification technique
discovered by Ahlswede will play a crucial role in this paper. In [2] he developed
the elimination technique to derive the deterministic code capacity for AVCs
under the average error probability criterion, which is either zero or equals its
random code capacity, a result, which is called Ahlswede’s dichotomy for sin-
gle user AVCs. With the so-called robustification technique [3] in turn he could
link random codes for the AVC to deterministic codes for compound channels.
Further in the papers [4], [5] on common randomness in information theory
Ahlswede together with Csiszár studied, inter alia, problems of information the-
oretic security by considering a model which enables secret sharing of a random
key, in particular in the presence of a wiretapper. Because the arbitrarily vary-
ing wiretap channel AVWC combines both the wiretap channel and the AVC
it is not surprising that we can use the aforementioned techniques to derive ca-
pacity results for the AVWC. The actual challenge of our work was to integrate
the strong secrecy criterion in both the elimination and the robustification tech-
nique, approaches, both were developed to guarantee a reliability criterion. As
it was shown in [8], compared with weaker secrecy criteria, the strong secrecy
criterion ensures that the average error probability of every decoding strategy
of the eavesdropper in the limit tends to one.

In Section 3.2 we give a lower bound on the random code secrecy capaci-
ty in the special case of a “best” channel to the eavesdropper. The proof is
based on the robustification technique by Ahlswede [3] combined with results for
compound wiretap channels given by the authors in [8].

In Section 3.3 we use the elimination technique [2], which is composed of the
random code reduction and the elimination of randomness [10], to show that,
provided that the channel to the legitimate receiver is non-symmetrisable, the
deterministic code secrecy capacity equals the random code secrecy capacity and
to give a condition when it is greater than zero. Thus we establish a result for the
AVWC that is similar to that of Ahlswede’s dichotomy result for ordinary AVCs.
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As a consequence the above-mentioned lower bound on the random code secrecy
capacity can be achieved by a deterministic code under the same assumptions.

In Section 3.4 we give a single-letter upper bound on the deterministic code
secrecy capacity, which corresponds to the upper bound of the secrecy capacity
of a compound wiretap channel. Moreover, by establishing an multi-letter upper
bound on the secrecy capacity we can conclude to a multi-letter expression of
the secrecy capacity of the AVWC in the special case of a best channel to the
eavesdropper.

The lower bound on the secrecy capacity as well as other results were given
earlier in [14] for a weaker secrecy criterion, but the proof techniques for the
stronger secrecy criterion differ significantly, especially in the achievability part
for the random codes.

2 Arbitrarily Varying Wiretap Channels

2.1 Definitions

Let A,B,C be finite sets and consider a non-necessarily finite family of channels
Ws : A → P(B)1, where s ∈ S denotes the state of the channel. Now, given
sn = (s1, s2, . . . , sn) ∈ Sn we define the stochastic matrix

Wn(yn|xn, sn) :=
n∏
i=1

W (yi|xi, si) :=
n∏
i=1

Wsi(yi|xi) (1)

for all yn = (y1, . . . , yn) ∈ Bn and xn = (x1, . . . , xn) ∈ An. An arbitrari-
ly varying channel is then defined as the sequence {Wn}∞n=1 of the family of
channels Wn = {Wn(·|·, sn) : sn ∈ Sn}. Now let Wn represent the commu-
nication link to a legitimate receiver to which the transmitter wants to send a
private message, such that a possible second receiver should be kept as ignorant
of that message as possible. We call this receiver the eavesdropper, which ob-
serves the output of a second family of channels Vn = {V n(·|·, sn) : sn ∈ Sn}
with an analogue definition of V n(·|·, sn) as in (1) for Vs : A → P(C), s ∈ S.
Then we denote the set of the two families of channels with common input by
W = {(Wsn , Vsn) : s

n ∈ Sn} and call it the arbitrarily varying wiretap channel.
In addition, we assume that the state sequence sn is unknown to the legitimate
receiver, whereas the eavesdropper always knows which channel is in use.

A (n, Jn) code Cn for the arbitrarily varying wiretap channel W consists of
a stochastic encoder E : Jn → P(An) (a stochastic matrix) with a message set
Jn := {1, . . . , Jn} and a collection of mutually disjoint decoding sets {Dj ⊂ Bn :
j ∈ Jn}. The average error probability of a code Cn is given by

e(Cn) := max
sn∈Sn

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)Wn
sn(D

c
j |xn) . (2)

1 P(B) denotes the set of probability distributions on B.
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A correlated random (n, Jn, Γ, μ) code Cran
n for the arbitrarily varying wiretap

channel is given by a family of wiretap codes {Cn(γ)}γ∈Γ together with a random
experiment choosing γ according to a distribution μ on Γ . The mean average
error probability of a random (n.Jn, Γ, μ) code Cran

n is defined analogously to the
ordinary one but with respect to the random experiment choosing γ by

ē(Cran
n ) := max

sn∈Sn

1

Jn

Jn∑
j=1

∑
γ∈Γ

∑
xn∈An

Eγ(xn|j)Wn
sn((D

γ
j )
c|xn)μ(γ) .

Definition 1. A non-negative number RS is an achievable secrecy rate for the
AVWC W, if there is a sequence (Cn)n∈N of (n, Jn) codes such that

lim
n→∞

e(Cn) = 0 ,

lim inf
n→∞

1

n
log Jn ≥ RS ,

and

lim
n→∞

max
sn∈Sn

I(pJ ;V
n
sn) = 0 , (3)

where J is a uniformly distributed random variable taking values in Jn and
I(pJ ;V

n
sn) is the mutual information of J and the output variable Zn of the

eavesdropper’s channel V n
sn . The secrecy capacity then is given as the supremum

of all achievable secrecy rates RS and is denoted by CS(W).

Analogously we define the secrecy rates and the secrecy capacity for random
codes CS,ran(W), if we replace Cn by Cran

n in the above definition.

Definition 2. A non-negative number RS is an achievable secrecy rate for cor-
related random codes for the AVWC W, if there is a sequence (Cran

n )n∈N of
(n, Jn, Γ, μ) codes such that

lim
n→∞

ē(Cran
n ) = 0 ,

lim inf
n→∞

1

n
log Jn ≥ RS ,

and

lim
n→∞

max
sn∈Sn

∑
γ∈Γ

I(pJ , V
n
sn ; C(γ))μ(γ) = 0 , (4)

where I(pJ , V
n
sn ; C(γ)) is the mutual information according to the code C(γ), γ ∈

Γ chosen according to the distribution μ. The secrecy capacity then is given as
the supremum of all achievable secrecy rates RS and is denoted by CS,ran(W).
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3 Capacity Results

3.1 Preliminaries

In what follows we use the notation as well as some properties of typical and
conditionally typical sequences from [10]. For p ∈ P(A), W : A → P(B),
xn ∈ An, and δ > 0 we denote by T n

p,δ the set of typical sequences and by
T n
W,δ(x

n) the set of conditionally typical sequences given xn in the sense of [10].
The basic properties of these sets that are needed in the sequel are summarised

in the following three lemmata.

Lemma 1. Fixing δ > 0, for every p ∈ P(A) and W : A→ P(B) we have

p⊗n(T n
p,δ) ≥ 1− (n+ 1)|A|2−ncδ

2

W⊗n(T n
W,δ(x

n)|xn) ≥ 1− (n+ 1)|A||B|2−ncδ
2

for all xn ∈ An with c = 1/(2 ln2). In particular, there is n0 ∈ N such that for
each δ > 0 and p ∈ P(A), W : A→ P(B)

p⊗n(T n
p,δ) ≥ 1− 2−nc

′δ2

W⊗n(T n
W,δ(x

n)|xn) ≥ 1− 2−nc
′δ2

holds with c′ = c
2 .

Proof. Standard Bernstein-Sanov trick using the properties of types from [10]
and Pinsker’s inequality. The details can be found in [16] and references therein
for example. �

Recall that for p ∈ P(A) and W : A → P(B), pW ∈ P(B) denotes the output
distribution generated by p and W and that xn ∈ T n

p,δ and yn ∈ T n
W,δ(x

n) imply
that yn ∈ T n

pW,2|A|δ.

Lemma 2. Let xn ∈ T n
p,δ, then for V : A→ P(C)

|T n
pV,2|A|δ| ≤ α−1

V n(zn|xn) ≤ β for all zn ∈ T n
V,δ(x

n)

hold, where

α = 2−n(H(pV )+f1(δ)) (5)

β = 2−n(H(V |p)−f2(δ)) (6)

with universal f1(δ), f2(δ) > 0 satisfying limδ→∞ f1(δ) = 0 = limδ→∞ f2(δ).

Proof. Cf. [10].

The next lemma is a standard result from large deviation theory.
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Lemma 3. (Chernoff bounds) Let Z1, . . . , ZL be i.i.d. random variables with
values in [0, 1] and expectation EZi = μ, and 0 < ε < 1

2 . Then it follows that

Pr

{
1

L

L∑
i=1

Zi /∈ [(1± ε)μ]

}
≤ 2 exp

(
−L · ε

2μ

3

)
,

where [(1 ± ε)μ] denotes the interval [(1− ε)μ, (1 + ε)μ].

For the optimal random coding strategy of the AVWC we need the robustification
technique by Ahlswede [3] which is formulated as a further lemma. Therefore let
Σn be the group of permutations acting on (1, 2, . . . , n). Then every permutation
σ ∈ Σn induces a bijection π ∈ Πn defined by π : Sn → Sn with π(sn) =
(sσ(1), . . . , sσ(n)) for all sn = (s1, . . . , sn) ∈ Sn and Πn denotes the group of
these bijections.

Lemma 4. (Robustification technique) If a function f : Sn → [0, 1] satisfies∑
sn∈Sn

f(sn)q(s1) · . . . · q(sn) ≥ 1− γ (7)

for all q ∈ P0(n,S) and some γ ∈ [0, 1], then

1

n!

∑
π∈Πn

f(π(sn)) ≥ 1− 3 · (n+ 1)|S| · γ ∀sn ∈ Sn . (8)

Proof. The proof is given in [3].

To reduce the random code for the AVWC W to a deterministic code we need
the concept of symmetrisability, which was established for ordinary AVCs in the
following representation by [12], [11].

Definition 3. [11] An AVC is symmetrisable if for some channel U : A→ S∑
s∈S

W (y|x, s)U(s|x′) =
∑
s∈S

W (y|x′, s)U(s|x) (9)

for all x, x′ ∈ A, y ∈ B.

A new channel defined by (9) then would be symmetric with respect to all
x, x′ ∈ A. The authors of [11] proved the following theorem which is a con-
cretion of Ahlswede’s dichotomy result for single-user AVC, which states that
the deterministic code capacity C is either C = 0 or equals the random code
capacity.

Theorem 1. [11] C > 0 if and only if the AVC is non-symmetrisable. If C > 0,
then

C = max
p∈P(A)

min
W∈W̄

I(p,W ) (10)

Here the RHS gives the random code capacity and W̄ denotes the convex closure
of all channels Ws with s ∈ S, S finite or countable.
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3.2 Random Code Construction

First let us define the convex hull of the set of channels {Ws : s ∈ S} by the set
of channels {Wq : q ∈ P(S)}, where Wq is defined by

Wq(y|x) =
∑
s∈S

W (y|x, s)q(s), (11)

for all possible distributions q ∈ P(S). Accordingly we define Vq and its convex
hull {Vq : q ∈ P(S)}. Then we denote the convex closure of the set of channels

{(Ws, Vs) : s ∈ S} by W := {(Wq, Vq) : q ∈ P(S̃), S̃ ⊆ S, S̃ is finite}. Occa-
sionally, we restrict q to be from the set of all types P0(n, S) of state sequences
sn ∈ Sn.

Lemma 5. The secrecy capacity CS(W) of the arbitrarily varying wiretap chan-
nel AVWC W equals the secrecy capacity of the arbitrarily varying wiretap chan-
nel W.

Proof. The proof was given for an ordinary arbitrarily varying channel AVC
without secrecy criterion in [10] and for an AVWC under the weak secrecy cri-
terion in [14]. Let W̃1, . . . , W̃n be averaged channels as defined in (11) and a
channel Wn

q̃ : An → P(Bn) with q̃ =
∏n

i=1 qi, q̃ ∈ P(Sn), qi ∈ P(S) defined by

Wn
q̃ (y

n|xn) =
n∏
i=1

W̃i(yi|xi) =
n∏
i=1

Wqi (yi|xi) =
∑

sn∈Sn

Wn(yn|xn, sn)q̃(sn)

If we now use the same (n, Jn) code Cn defined by the same pair of encoder and
decoding sets as for the AVWC W the error probability for transmission of a
single codeword by the channel Wn

q̃ is given by∑
xn∈An

E(xn|j)Wn
q̃ (D

c
j |xn) =

∑
sn∈Sn

q̃(sn)
∑

xn∈An

E(xn|j)Wn
sn(D

c
j |xn)

and we can bound the average error probability by

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)Wn
q̃ (D

c
j |xn)

≤ max
sn∈Sn

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)Wn
sn(D

c
j |xn) = e(Cn) .

Otherwise, because W is a subset of W
n
, which is the closure of the set of chan-

nels (Wn
q̃ , V

n
q̃ ), the opposite inequality holds for the channelWn

q̃ that maximizes
the error probability. Because V n

q̃ is defined analogously to Wn
q̃ , we can define

for the (n, Jn) code

V̂ (zn|j) :=
∑

xn∈An

E(xn|j)V n
q̃ (zn|xn) (12)
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for all zn ∈ Cn, j ∈ Jn. Then

V̂ (zn|j) =
∑

sn∈Sn

q̃(sn)
∑

xn∈An

E(xn|j)V n
sn(z

n|xn) =
∑

sn∈Sn

q̃(sn)V̂ n
sn(z

n|j) (13)

and because of the convexity of the mutual information in the channel V̂ and
(13) it holds that

I(J, Zn
q̃ ) ≤

∑
sn∈Sn

q̃(sn)I(J ;Zn
sn) ≤ sup

sn
I(J, Zn

sn). (14)

Now because {V̂ n
sn(z

n|j) : sn ∈ Sn} is a subset of {V̂ (zn|j) : q̃ ∈ P(Sn)} we end
in

sup
q̃∈P(Sn)

I(J, Zn
q̃ ) = sup

sn
I(J, Zn

sn) .

�
Now we can proceed in the construction of the random code of the AVWC W.

Definition 4. We call a channel to the eavesdropper a best channel if there exist
a channel Vq∗ ∈ {Vq : q ∈ P(S)} such that all other channels from {Vq : q ∈
P(S)} are degraded versions of Vq∗ . If we denote the output of any channel Vq,
q ∈ P(S) by Zq it holds that

X → Zq∗ → Zq, ∀q ∈ P(S). (15)

Proposition 1. Provided that there exist a best channel to the eavesdropper, for
the random code secrecy capacity CS,ran(W) of the AVWC W it holds that

CS,ran(W) ≥ max
p∈P(A)

( min
q∈P(S)

I(p,Wq)− max
q∈P(S)

I(p, Vq)). (16)

Proof. The proof is based on Ahlswedes robustification technique [3] and is di-
vided in two parts:
step 1 ): The set

W := {(Wn
q , V

n
q ) : q ∈ P(S)}

corresponds to a compound wiretap channel indexed by the set of all possible
distributions q ∈ P(S) on the set of states S. First we show, that there exist a
deterministic code for the compound wiretap channel W that achieves the lower
bound on the random code secrecy capacity of the AVWC W given in (16).

In [8] it was shown that for a compound wiretap channel {(Wt, Vt) : t ∈ θ}
without channel state information at the legitimate receivers the secrecy capacity
is bounded from below by

CS,comp ≥ max
p∈P(A)

(min
t∈θ

I(p,Ws)−max
t∈θ

I(p, Vs)). (17)

In accordance with the proof of (17) in [8] we define a set of i.i.d. random
variables {Xjl}j∈[Jn],l∈[Ln] each according to the distribution p′ ∈ P(An) with

p′(xn) :=

{
p⊗n(xn)
p⊗n(T n

p,δ)
if xn ∈ T n

p,δ,

0 otherwise,
(18)
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for any p ∈ P(A), and where Jn and Ln are chosen as

Jn = �2n[infq∈P(S) I(p,Wq)−supq∈P(S) I(p,Vq)−τ ] (19)

Ln = �2n[supq∈P(S) I(p,Vq)+
τ
4 ] (20)

with τ > 0. Now we assume that there exist a best channel to the eavesdropper
Vq∗ in contrast to the proof in [8]. Hence by the definition of Vq∗ in (15) and
because the mutual Information I(p, V ) is convex in V and every member of
{Vq}q∈P(S) is a convex combination of the set {Vs}s∈S , it holds that

I(p, Vq∗) = sup
s
I(p, Vs) = sup

q∈P(S)

I(p, Vq) (21)

for all p ∈ P(A). Note that because of (21) for |S| < ∞ Vq∗ ∈ {Vs : s ∈ S},
which means that q∗ is a one-point distribution.

By the definition of the compound channelW the channels to the eavesdropper
are of the form

V n
q (zn|xn) :=

n∏
i=1

Vq(zi|xi) (22)

for all q ∈ P(S). Then following the same approach as in the proof in [8] we
define

Q̃q,xn(zn) = V n
q (zn|xn) · 1T n

Vq,δ(x
n)(z

n),

and
Θ′
q(z

n) =
∑

xn∈T n
p,δ

p′(xn)Q̃q,xn(zn). (23)

for all zn ∈ Cn. Now let B := {zn ∈ Cn : Θ′
q(z

n) ≥ εαq} where ε = 2−nc
′δ2 (cf.

Lemma 1) and αq is from (5) in Lemma 2 computed with respect to p and Vq.
By Lemma 2 the support of Θ′

q has cardinality ≤ α−1
q since for each xn ∈ T n

p,δ it
holds that T n

Vq,δ
(xn) ⊂ T n

pVq ,2|A|δ, which implies that
∑

zn∈B Θq(z
n) ≥ 1− 2ε, if

Θq(z
n) = Θ′

q(z
n) · 1B(z

n) and

Qq,xn(zn) = Q̃q,xn(zn) · 1B(z
n). (24)

Now it is obvious from (23) and the definition of the set B that for any zn ∈ B
Θq(z

n) = EQq,Xjl
(zn) ≥ εαq if E is the expectation value with respect to the

distribution p′. Let βq defined as in (6) with respect to Vq. For the random
variables β−1

q Qq,Xjl
(zn) define the event

ιj(q) =
⋂

zn∈Cn

{
1

Ln

Ln∑
l=1

Qq,Xjl
(zn) ∈ [(1 ± ε)Θq(z

n)]

}
, (25)

and keeping in mind that Θq(z
n) ≥ εαq for all zn ∈ B. Then it follows that for

all j ∈ [Jn] and for all s ∈ S

Pr{(ιj(q))c} ≤ 2|C|n exp
(
− Ln

2−n[I(p,Vq)+g(δ)]

3

)
(26)
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by Lemma 3, Lemma 2, and our choice ε = 2−nc
′δ2 with g(δ) := f1(δ) + f2(δ) +

3c′δ2. Making δ > 0 sufficiently small we have for all sufficiently large n ∈ N

Ln2
−n[I(p,Vq)+g(δ)] ≥ 2n

τ
8 .

Thus, for this choice of δ the RHS of (26) is double exponential in n uniformly in
q ∈ P(S) and can be made smaller than εJ−1

n for all j ∈ [Jn] and all sufficiently
large n ∈ N. I.e.

Pr{(ιj(q))c} ≤ εJ−1
n ∀q ∈ P(S) (27)

Now we will show that we can achieve reliable transmission to the legitimate
receiver governed by {(Wn

q : q ∈ P(S)} for all messages j ∈ [Jn] when ran-
domising over the index l ∈ Ln but without the need of decoding l ∈ [Ln]. To
this end define X = {Xjl}j∈[Jn],l∈[Ln] to be the set of random variables with
Xjl are i.i.d. according to p′ defined in (18). Define now the random decoder
{Dj(X )}j∈[Jn] ⊆ Bn analogously as in [8], [7]. Then it was shown by the au-
thors, that there exist a sequence of (n, Jn) codes for the compound wiretap
channel in the particular case without CSI with arbitrarily small mean average
error

EX (λ(q)n (X )) ≤ 2−na

for all q ∈ P(S) and sufficiently large n ∈ N. Additionally we define for each
q ∈ P(S)

ι0(q) = {λ(q)n (X )) ≤ 2−n
a
2 } (28)

and set

ι :=
⋂

q∈P0(n,S)

Jn⋂
j=0

ιj(q) (29)

Then with (27), (28) and applying the union bound we obtain

Pr{ιc} ≤ 2−nc

for a suitable positive constant c > 0 and all sufficiently large n ∈ N (Cf. [8]).
Hence, we have shown that there exist realisations {xjl} of {Xn

jl}j∈[Jn],l∈[Ln]

such that xjl ∈ ι for all j ∈ [Jn] and l ∈ [Ln]. Now following the same argumen-
tation as in [8], [7] we obtain that there is a sequence of (n, Jn) codes that for
all codewords {xjl} it follows by construction that

1

Jn

∑
j∈[Jn]

1

Ln

∑
l∈[Ln]

Wn
q (D

c
j |xjl) ≤ 2−na

′
(30)

is fulfilled for n ∈ N sufficiently large and for all q ∈ P(S) with a′ > 0. So we
have found a (n, Jn) code with average error probability upper bounded by (30).
Further, for the given code and a random variable J uniformly distributed on
the message set {1, . . . , Jn} it holds that

I(pJ ;V
n
q ) ≤ ε′ (31)
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uniformly in q ∈ P(S). Both (30) and (31) ensure that in the scenario of the
compound wiretap channel W the legitimate receiver can identify each message
j from the message set {1, . . . , Jn} with high probability, while at the same
time the eavesdropper receives almost no information about it. That is, that all
numbers RS with

RS ≤ inf
q∈P(S)

I(p,Wq)− sup
q∈P(S)

I(p, Vq) (32)

are achievable secrecy rates of the compound wiretap channel W .

step 2 ): Robustification: In the second step we derive from the deterministic
(n, Jn) code for the above mentioned compound wiretap channel W a (n, Jn)
random code Cran

n for the AVWC W, which achieves the same secrecy rates. We
note first that by (21) and (31)

max
sn∈Sn

I(pJ , Vsn) = I(pJ , V
n
q∗) ≤ ε′, (33)

which means, that, due to the assumption of a best channel to the eavesdropper,
the code achieving the secrecy rate for the best channel to the eavesdropper
fulfills the secrecy criterion for a channel with any state sequence sn ∈ Sn. Now,
as already mentioned we use the robustification technique (cf. Lemma 4) to
derive from the deterministic code CW = {xjl, Dj : j ∈ [Jn], l ∈ [Ln]} of the
compound wiretap channel W the random code for the AVWC W. Therefore,
for now let S to be finite. With (30) it holds that

1

Jn

∑
j∈[Jn]

1

Ln

∑
l∈[Ln]

∑
sn∈Sn

Wn(Dj |xjl, sn)q⊗n(sn) ≥ 1− 2−na
′

(34)

for all q⊗n =
∏n

i=1 q and in particular for all q ∈ P0(n, S). Now let π ∈ Πn be
the bijection on Sn induced by the permutation σ ∈ Σn. Since (7) is fulfilled
with

f(sn) =
1

Jn

∑
j∈[Jn]

1

Ln

∑
l∈[Ln]

Wn(Dj |xjl, sn) (35)

it follows from (8) that

1

n!

∑
π∈Πn

1

Jn

∑
j∈[Jn]

1

Ln

∑
l∈[Ln]

Wn(Dj |xjl, π(sn)) ≥ 1− (n+ 1)|S|2−na
′

(36)

for all sn ∈ Sn. Hence by defining Cπ := {π−1(xnjl), π
−1(Dj)} as a member

of a family of codes {Cπ}π∈Πn together with a random variable K distributed
according to μ as the uniform distribution on Πn, (36) is equivalent to

Eμ(λ̄n(CK ,Wn
sn)) ≤ (n+ 1)|S|2−na

′
=: λn (37)

with λ̄n(Cπ,Wn
sn) as the respective average error probability for K = π and it

holds for all sn ∈ Sn. Thus we have shown that

Cran
n := {(π−1(xjl), π

−1(Dj)) : j ∈ [Jn], l ∈ [Ln], π ∈ Πn, μ} (38)
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is a (n, Jn, Πn, μ) random code for the AVC channel Wn = {Wsn : sn ∈ Sn}
with the mean average error probability Eμ(λ̄n(CK ,Wn

sn)) upper bounded by λn
as in (37).

Now it is easily seen that

pC
π

JZn
q∗
(j, zn) =

1

Jn

1

Ln

Ln∑
l=1

V n
q∗(π

−1(zn)|π−1(xjl)) = pJZn
q∗ . (39)

Actually, it still holds that

pC
r

JZn
q∗
(j, zn) =

1

n!

∑
π∈Πn

pC
π

JZn
q∗
(j, zn) = pJZn

q∗ . (40)

With (39) and the representation of the mutual information by the information
divergence we obtain from (33)

Eμ(D(pC
K

JZn
q∗
||pJ ⊗ pC

K

Zn
q∗
)) =

1

n!

∑
π∈Πn

D(pC
π

JZn
q∗
||pJ ⊗ pC

π

Zn
q∗
)

=
1

n!

∑
π∈Πn

D(pJZn
q∗ ||pJ ⊗ pZn

q∗ ) = I(pJ , V
n
q∗) ≤ ε′ .

(41)

Thus we have constructed a random (n, Jn, Γ, μ) code Cran
n with mean average

error probability bounded for all sn ∈ Sn as in (37) and which fulfills the strong
secrecy criterion almost surely, provided that there exist a best channel to the
eavesdropper. By the construction of the random code it follows that the secrecy
rates given by (32) for the compound wiretap channel W achieved by the deter-
ministic code CW are achievable secrecy rates for the AVWC W with random
code Cran

n . That is, we have shown that all rates RS with

RS ≤ max
p∈P(A)

( min
q∈P(S)

I(p,Wq)− max
q∈P(S)

I(p, Vq)) . (42)

are achievable secrecy rates of the arbitrarily varying wiretap channel AVWC
with random code Cran

n . �

3.3 Deterministic Code Construction

Because the code Cπ that is used for the transmission of a single message is
subjected to a random selection, reliable transmission can only be guaranteed if
the outcome of the random experiment can be shared by both the transmitter
and the receiver. One way to inform the receiver about the code that is cho-
sen is to add a short prefix to the actual codeword. Provided that the number
of codes is small enough, the transmission of these additional prefixes causes
no essential loss in rate. In the following we use the elimination technique by
Ahlswede [2] which has introduced the above approach to derive deterministic
codes from random codes for determining capacity of arbitrarily varying chan-
nels. Temporarily we drop the requirement of a best channel to the eavesdropper
and state the following theorem.
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Theorem 2. 1. Assume that for the AVWC W it holds that CS,ran(W) > 0.
Then the secrecy capacity CS(W) equals its random code secrecy capacity
CS,ran(W),

CS(W) = CS,ran(W), (43)

if and only if the channel to the legitimate receiver is non-symmetrisable.
2. If CS,ran(W) = 0 it always holds that CS(W) = 0.

First, if the channel to the legitimate receiver is symmetrisable then the de-
terministic code capacity of the channel to the legitimate receiver equals zero
by Theorem 1 and no reliable transmission of messages is possible. Hence the
deterministic code secrecy capacity of the arbitrarily varying wiretap channel
also equals zero although the random code secrecy capacity could be greater
than zero. So we can restrict to the case in which the channel to the legitimate
receiver is non-symmetrisable. If CS(W) = CS,ran(W) > 0, then the channel
to the legitimate receiver must be nonsymmetrisable. For the other direction,
because the secrecy capacity of the AVWC W cannot be greater than the ran-
dom code secrecy capacity it suffices to show that C({Wsn}) > 0 implies that
CS(W) ≥ CS,ran(W). Here C({Wsn}) denotes the capacity of the arbitrarily
varying channels to the legitimate receiver without secrecy. The proof is given
in the two paragraphs Random code reduction and Elimination of randomness.

Random Code Reduction. We first reduce the random code Cran to a new
random code selecting only a small number of deterministic codes from the for-
mer, and averaging over this codes gives a new random code with a constant
small mean average error probability, which additionally fulfills the secrecy cri-
terion.

Lemma 6. (Random Code Reduction) Let C(Z) be a random code for the AVWC
W consisting of a family {C(γ)}γ∈Γ of wiretap codes where γ is chosen according
to the distribution μ of Z. Then let

ē(Cran
n ) = max

sn
Eμe(s

n|C(Z)) ≤ λn and, max
sn

EμI(pJ , Vsn ; C(Z)) ≤ ε′n .

(44)
Then for any ε and K satisfying

ε > 4max{λn, ε′n} and K >
2n log |A|

ε
(1 + n log |S|) (45)

there exist K deterministic codes Ci, i = 1, . . . ,K chosen from the random code
by random selection such that

1

K

K∑
i=1

e(sn|Ci) ≤ ε and
1

K

K∑
i=1

I(pJ , Vsn ; Ci) ≤ ε (46)

for all sn ∈ Sn.
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Proof. The proof is analogue to the proof of Lemma 6.8 [10], where a similar
assertion in terms of the maximal probability of error for single user AVCs with-
out secrecy criterion is established. Cf. also [2]. Let Z be the random variable
distributed according to μ on Γ for the (n, Jn, Γ, μ) random code. Now consider
K independent repetitions of the random experiment of code selections accord-
ing to μ and call the according random variables Zi, i ∈ {1, . . . ,K}. Then for
any sn ∈ Sn it holds that

Pr
{ 1

K

K∑
i=1

e(sn|C(Zi)) ≥ ε or
1

K

K∑
i=1

I(pJ , Vsn ; C(Zi)) ≥ ε
}

≤ Pr
{
exp

K∑
i=1

e(sn|C(Zi))

n log |A| ≥ exp
Kε

n log |A|

}
+Pr

{
exp

K∑
i=1

I(pJ , Vsn ; C(Zi))

n log |A| ≥ exp
Kε

n log |A|

}
,

and by Markov’s inequality

Pr
{ 1

K

K∑
i=1

e(sn|C(Zi)) ≥ ε or
1

K

K∑
i=1

I(pJ , Vsn ; C(Zi)) ≥ ε
}

≤ exp
(
− Kε

n log |A|

)
E exp

K∑
i=1

e(sn|C(Zi))

n log |A|

+exp
(
− Kε

n log |A|

)
E exp

K∑
i=1

I(pJ , Vsn ; C(Zi))

n log |A| .

Now because of the independency of the random variables Zi and because all Zi

are distributed as Z and we have exp t ≤ 1 + t, for 0 ≤ t ≤ 1 (exp to the base
2), we can give the following upper bounds

(
E exp

e(sn|C(Z))

n log |A|

)K
≤

(
1 + E

e(sn|C(Z))

n log |A|

)K
≤

(
1 +

λn
n log |A|

)K
(47)

and

(
E exp

I(pJ , Vsn ; C(Z))

n log |A|

)K
≤

(
1 + E

I(pJ , Vsn ; C(Z))

n log |A|

)K
≤

(
1 +

ε′n
n log |A|

)K
.

(48)
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Hence we obtain for any sn ∈ Sn

Pr
{ 1

K

K∑
i=1

e(sn|C(Zi)) ≥ ε or
1

K

K∑
i=1

I(pJ , Vsn ; C(Zi)) ≥ ε}

≤ exp
[
−K

( ε

n log |A|− log(1 +
λn

n log |A| )
)]

+ exp
[(

−K(
ε

n log |A| − log(1 +
ε′n

n log |A| )
)]

≤ 2 exp
[
−K

( ε

n log |A| − log(1 + max{ λn
n log |A| ,

ε′n
n log |A| })

)]
.

Then

Pr
{ 1

K

K∑
i=1

e(sn|C(Zi)) ≤ ε and
1

K

K∑
i=1

I(pJ , Vsn ; C(Zi)) ≤ ε, ∀sn ∈ Sn
}

≥ 1− 2|S|n exp
[
−K

( ε

n log |A| − log(1 + max{ λn
n log |A| ,

ε′n
n log |A| })

)]
,

(49)

which is strictly positive, if we choose

ε ≥ 2n log |A| log(1 + max{ λn
n log |A| ,

ε′n
n log |A| })

and

K ≥ 2 log |A|
ε

(n+ n2 log |S|) . (50)

Now because for 0 ≤ t ≤ 1 and log to the base 2 it holds that

t ≤ log(1 + t) ≤ 2t ,

we increase the lower bound for choosing ε if

ε ≥ 4max{λn, ε′n} .

and with (50) the assertion of (49) still holds. Hence, we have shown that there
exist K realisations Ci := C(Zi = γi), γi ∈ Γ , i ∈ {1, . . . ,K} of the random
code, which build a new reduced random code with uniform distribution on these
codes with mean average error probability and mean secrecy criterion fulfilled by
(46). �

Now, if we assume that the channel to the legitimate receiver is non-
symmetrisable, which means that C({Wsn}) > 0, and that there exist a random
code Cran

n that achieves the random code capacity CS,ran(W) > 0, then there
exist a sequence of random (n, Jn) codes with

lim
n→∞

max
sn∈Sn

1

Jn

Jn∑
j=1

∑
γ∈Γ

∑
xn∈An

Eγ(xn|j) ·Wn
sn((D

γ
j )
c|xn)μ(γ) = 0 ,
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lim inf
n→∞

1

n
log Jn → CS,ran(W) > 0,

and
lim
n→∞

max
sn∈Sn

∑
γ∈Γ

I(pJ ;V
n
sn ; C(γ))μ(γ) = 0. (51)

Then on account of the random code reduction lemma there exist a sequence of
random (n, Jn) codes consisting only of n3 deterministic codes (cf. (45)) chosen
from the former random code, and it holds for any ε > 0 and sufficiently large n
that

max
sn∈Sn

1

Jn

Jn∑
j=1

1

n3

n3∑
i=1

∑
xn∈An

Ei(xn|j)Wn
sn((D

i
j)
c|xn) ≤ ε (52)

and

max
sn∈Sn

1

n3

n3∑
i=1

I(pJ ;V
n
sn ; Ci) ≤ ε, (53)

where Ci = {(Ei
j , D

i
j), j ∈ Jn}, i = 1, . . . , n3, and Ei is the stochastic encoder of

the deterministic wiretap code. Then the reduced random code consists of the
family of codes {Ci}i∈{1,...,n3} together with the uniform distribution μ′(i) = 1

n3

for all i ∈ {1, . . . , n3}.

Elimination of Randomness. (Cf. Theorem 6.11 in [10])
Now if there exist a deterministic code and C({Wsn}) > 0 then there exist a
code

{xkni , Fi ⊂ Bkn : i = 1, . . . n3} (54)

where xkni is chosen according to an encoding function fi : {1, . . . , n3} → Akn

with kn
n → 0 as n→ ∞ with error probability

1

n3

n3∑
i=1

W kn(F c
i |xkni , skn) ≤ ε (55)

for any ε > 0 and sufficiently large n (cf. (52)) for all skn ∈ Skn . If we now
compose a new deterministic code for the AVWC W by prefixing the codewords
of each Ci

{fiEi
j , Fi ×Di

j : i = 1, . . . , n3, j ∈ [Jn]} =: C , (56)

the decoder is informed of which encoder Ei is in use for the actual message j if
he identifies the prefix correctly. Note that for the transmission of the prefix only
the reliability is of interest, because it contains no information about the message
j ∈ Jn to be sent. Now the new codewords has a length of kn + n, transmit a
message from {1, . . . , n3} × Jn, where the channel which is determined by the
state sequence skn+n ∈ Skn+n yields an average error probability of



Capacity Results for Arbitrarily Varying Wiretap Channels 139

λ̄n(C,W (kn+n)

skn+n ) ≤ 1

n3Jn

n3∑
i=1

∑
j∈[Jn]

(λi + λj(i))

≤ 1

n3

n3∑
i=1

λi +
1

n3

n3∑
i=1

en(s
n, Ci) ≤ 2ε.

(57)

Here, for each skn ∈ Skn λi means the error probability for transmitting i
from {1, . . . , n3} encoded in xkni by W kn

skn
followed by the transmission of j,

where the codeword is chosen according to the stochastic encoder Ei
j , over the

last n channel realisations determined by sn with error probability λj(i). This
construction is possible due to the memorylessness of the channel.

Now if we turn to the security part of the transmission problem it is easily
seen that

pC
JZkn+n

skn+n

(j, zkn+n) =
1

Jn

1

n3

n3∑
i=1

V kn
skn

(ẑkn |xkni )
∑
xn

Ei(xn|j)V n
sn(z

n|xn)

=
1

n3

n3∑
i=1

V kn
skn

(ẑkn |xkni ) · pCi

JZn
sn

,

(58)

where ẑkn are the first kn components of zkn+n. With (58) and the representation
of the mutual information by the information divergence we obtain that

D(pC
JZkn+n

skn+n

||pJ ⊗ pC
Zkn+n

skn+n

)

= D
( 1

n3

n3∑
i=1

V kn
skn

(ẑkn |xkni )pCi

JZn
sn

∥∥∥ 1

n3

n3∑
i=1

V kn
skn

(ẑkn |xkni )pJ ⊗ pCi

Zn
sn

)

≤ 1

n3

n3∑
i=1

D
(
V kn
skn

(ẑkn |xkni )pCi

JZn
sn

∥∥V kn
skn

(ẑkn |xkni )pJ ⊗ pCi

Zn
sn

)
=

1

n3

n3∑
i=1

D
(
pCi

JZn
sn

∥∥pJ ⊗ pCi

Zn
sn

)
=

1

n3

n3∑
i=1

I(pJ , V
n
sn ; Ci) ≤ ε

(59)

for all sn ∈ Sn and n ∈ N sufficiently large, where the first inequality follows
because for two probability distributions p, q the relative entropy D(p‖q) is a
convex function in the pair (p, q) and the last inequality follows by the random
code reduction lemma.

Because kn
n → 0 as n→ ∞

lim
n→∞

1

kn + n
log(n3Jn) = lim

n→∞
(
1

n
log Jn +

1

n
log(n3)) = lim

n→∞

1

n
log Jn , (60)

Cn is a deterministic (n, Jn) code which achieves the same rates as the random
code Cran

n and so the random code capacity CS,ran as given in (51), provided that
the channel to the legitimate receiver is non-symmetrisable.
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Thus, with {1, . . . , Jn} as the message set, Cn is a deterministic (n+ o(n), n3 ·
Jn) code with average error probability bounded for all skn+n ∈ Skn+n as in (57)
and which fulfills the strong secrecy criterion as in (59), and which achieves the
random code secrecy capacity CS,ran of the arbitrarily varying wiretap channels
AVWC W which implies that CS = CS,ran. This concludes the proof.

Note that in the case in which the channel to the legitimate receiver is non-
symmetrisable and we know that the deterministic code secrecy capacity CS(W)
equals zero we can conclude that the random code secrecy capacity CS,ran(W)
equals zero. As a consequence of the theorem we can state the following assertion.

Corollary 1. The deterministic code secrecy capacity of the arbitrarily varying
wiretap channel W, provided that there exists a best channel to the eavesdropper
and under the assumption that the channel to the legitimate receiver is non-
symmetrisable, is lower bounded by

CS(W) ≥ max
p∈P(A)

( min
q∈P(S)

I(p,Wq)− max
q∈P(S)

I(p, Vq)) .

Proof. Combine the assertions of Proposition 1 and Theorem 2. �

3.4 Upper Bound on the Capacity of the AVWC W and a
Multi-letter Coding Theorem

In this section we give an upper bound on the secrecy capacity of the AVWC
W which corresponds to the bound for the compound wiretap channel built by
the same family of channels. In addition we give the proof of the multi-letter
converse of the AVWC W.

Theorem 3. The secrecy capacity of the arbitrarily varying wiretap channel
AVWC W is upper bounded,

CS(W) ≤ min
q∈P(S)

max
U→X→(Y Z)q

(I(U, Yq)− I(U,Zq)) . (61)

Proof. By Lemma 5 the capacity of the AVWC W equals the capacity of the
AVWC W. Obviously, the set W = {(W⊗n

q , V ⊗n
q ) : q ∈ P(S)} which describes

a compound wiretap channel is a subset of W
n
= {(Wn

q̃ , V
n
q̃ ) : q̃ ∈ P(Sn), q̃ =∏n

i=1 qi}. Now, because we can upper bound the secrecy capacity of the AVWC

W by the secrecy capacity of the worst wiretap channel in the family W
n
, to-

gether with the foregoing we can upper bound it by the capacity of the worst
channel of the compound channel W . Hence,

CS(W) = CS(W) ≤ inf
q̃
CS((W

n
q̃ , V

n
q̃ ))

≤ inf
q
CS((W

n
q , V

n
q )) = inf

q
CS(Wq , Vq) ,

The minimum is attained because of the continuity of CS(Wq , Vq) on the compact
set W. �
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Remark 1. Consider the special case of an AVWC W = {(Wsn , Vrn) : sn ∈
Sn1 , r

n ∈ Sn2 }, where both the state of the main channel s ∈ S1 and the state of
the eavesdropper’s channel r ∈ S2 in every time step can be chosen independently.
In addition let us assume that there exist a channel Wq∗1 ∈ {Wq1 : q1 ∈ P(S1)},
which is a degraded version of all other channels from {Wq1 : q1 ∈ P(S1)},
and a best channel to the eavesdropper Vq∗2 from the set {Vq2 : q2 ∈ P(S2)} (cf.
Definition 4). Then in accordance with Section 3.5 of [8] the lower bound on the
secrecy capacity given in Corollary 1 matches the upper bound from Theorem 3.
Thus we can conclude that under the assumption, that the channel to legitimate
receiver is non-symmetrisable, the capacity of the AVWC W is given by

CS(W) = max
U→X→(Yq∗1 Zq∗2 )

(I(U, Yq∗1 )− I(U, Yq∗2 )) .

Now in addition to Theorem 3 we give a multi-letter formula of the upper bound
of the secrecy rates. Therefore we need the following lemma used in analogy to
Lemma 3.7 in [8].

Lemma 7. For the arbitrarily varying wiretap channel AVWC Wn the limit

lim
n→∞

1

n
max

U→Xn→(Y nZn)q̃
( inf
q̃∈P(Sn)

I(U, Y n
q̃ )− sup

q̃∈P(Sn)

I(U,Zn
q̃ ))

exists.

The proof is carried out in analogy to Lemma 3.7 in [8] and therefore omitted.

Theorem 4. The secrecy capacity of the arbitrarily varying wiretap channel
AVWC W is upper bounded by

CS(W) ≤ lim
n→∞

1

n
max

U→Xn→(Y nZn)q̃
( inf
q̃∈P(Sn)

I(U, Y n
q̃ )− sup

q̃∈P(Sn)

I(U,Zn
q̃ )) , (62)

where q̃ =
∏n

i=1 qi, qi ∈ P(S) and Y n
q̃ , Z

n
q̃ are the outputs of the channels Wn

q̃

and V n
q̃ respective.

Proof. Let (Cn)n∈N be any sequence of (n, Jn) codes such that with

sup
sn∈Sn

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)Wn
sn(D

c
j |xn) =: ε1,n and, sup

sn∈Sn

I(J, Zn
sn) =: ε2,n

it holds that limn→∞ ε1,n0 = and limn→∞ ε2,n, where J denotes the random
variable which is uniformly distributed on the message set Jn. Because of Lemma
5 we obtain that for the same sequences of (n, Jn) codes

lim
n→∞

sup
q̃∈P(Sn)

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)Wn
q̃ (D

c
j |xn) = lim

n→∞
ε1,n = 0 (63)
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and
lim
n→∞

sup
q̃∈P(Sn)

I(J, Zn
q̃ ) = lim

n→∞
ε2,n = 0 . (64)

Now let us denote another random variable by Ĵ with values in Jn determined
by the Markov chain J → Xn → Y n

q̃ → Ĵ , where the first transition is governed
by E, the second by Wn

q̃ , and the last by the decoding rule. Now the proof is
analogue to the proof of Proposition 3.8 in [8]. For any q̃ ∈ P(Sn) we have from
data processing and Fano’s inequality

(1− ε1,n) log Jn ≤ I(J, Y n
q̃ ) + 1.

We then use the validity of the secrecy criterion (64) to derive

(1 − ε1,n) log Jn ≤ I(J, Y n
q̃ )− sup

q̃
I(J, Zn

q̃ ) + ε2,n + 1

for any q̃ ∈ P(Sn). Since the LHS does not depend on q̃ we end in

(1− ε1,n) log Jn ≤ max
U→Xn→Y n

q̃ Zn
q̃

(inf
q̃
I(U, Y n

q̃ )− sup
q̃
I(U,Zn

q̃ )) + ε2,n + 1 .

Dividing by n ∈ N and taking lim concludes the proof. �

Now if we consider the set W = {(W⊗n
q , V ⊗n

q ) : q ∈ P(S)} as a subset of

W
n
= {(Wn

q̃ , V
n
q̃ ) : q̃ ∈ P(Sn), q̃ =

∏n
i=1 qi} and the same sequence (Cn)n∈N of

(n, Jn) codes for the AVWC W for which (63) and (64) holds, we can conclude
that

lim
n→∞

sup
q∈P(S)

1

Jn

Jn∑
j=1

∑
xn∈An

E(xn|j)W⊗n
q (Dc

j |xn) ≤ lim
n→∞

ε1,n (65)

and
lim
n→∞

sup
q∈P(S)

I(J, Zn
q ) ≤ lim

n→∞
ε2,n , (66)

with ε1,n and ε2,n as above. Then we can conclude with the same argumentation
as in the previous proof,

Corollary 2. The secrecy capacity of the arbitrarily varying wiretap channel
AVWC W is upper bounded by

CS(W) ≤ lim
n→∞

1

n
max

U→Xn→(Y nZn)q
( inf
q∈P(S)

I(U, Y n
q )− sup

q∈P(S)

I(U,Zn
q )) ,

where q ∈ P(S) and Y n
q , Z

n
q are the outputs of the channels W⊗n

q and V ⊗n
q

respective.

Now, using standard arguments concerning the use of the channels defined by
PYq|U = Wq · PX|U and PZq |U = Vq · PX|U instead of Wq and Vq and applying
the assertion of Corollary 1 to the n-fold product of channels Wq and Vq, we are
able to give the coding theorem for the multi-letter case of the AVWC with a
best channel to the eavesdropper.
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Theorem 5. Provided that there exist a best channel to the eavesdropper, the
multi-letter expression for the secrecy capacity CS(W) of the AVWC W is given
by

CS(W) = lim
n→∞

1

n
max

U→Xn→(Y nZn)q
( inf
q∈P(S)

I(U, Y n
q )− sup

q∈P(S)

I(U,Zn
q )) ,

if the channel to the legitimate receiver is non-symmetrisable, and is zero other-
wise.
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Abstract. Upper and lower bounds to the oblivious transfer (OT) ca-
pacity of discrete memoryless channels and multiple sources are obtained,
for 1 of 2 strings OT with honest but curious participants. The upper
bounds hold also for one-string OT. The results provide the exact value
of OT capacity for a specified class of models, and the necessary and
sufficient condition of its positivity, in general.
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This paper is based on the ISIT-07 contribution [2]. The authors did intend to
write up a full version and devoted substantial amount of work to that project,
but abandoned it as other obligations delayed completion and the elapsed time
caused loss of novelty. Still, the second author considers it proper to publish
this paper in this volume, paying tribute to the memory of Rudolph Ahlswede.
The results in [2] are completed by some previously unpublished ones which
originated from the authors’ discussions during their work towards a full version
of [2].

1 Introduction

Oblivious transfer (OT) is a fundamental concept in cryptography, see for ex-
ample [9]. The term has been used with different meanings, including a simple
transmission over a binary erasure channel. In this paper, unless stated other-
wise, OT means “1 out of 2 oblivious string transfer” [9]. Two parties are in-
volved, commonly called Alice and Bob. Alice is initially given two binary strings
K0,K1 of length k, and Bob is given a single bit Z. An OT protocol performed
by Alice and Bob is supposed to let Bob learn KZ while he remains ignorant of
KZ (Z = 1 − Z) and Alice remains ignorant of Z. The Shannon-theoretic ap-
proach is used, thus ignorance means negligible amount of information. Formal
definitions are in Section 2.
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Throughout this paper, it is assumed that Alice and Bob may use the fol-
lowing resources for free: (i) unlimited computing power (ii) local randomness
provided by random experiments they may perform, independently of each oth-
er (iii) a noiseless public channel, available for unlimited communication in any
number of rounds. These free resources alone are not sufficient for OT. In this
paper, two kinds of models will be considered which involve an additional (non-
free) resource, either a discrete memoryless multiple source (DMMS) or a noisy
discrete memoryless channel (DMC).

A source model is determined by a DMMS with two component sources, i.e.,
a sequence of i.i.d. repetitions (Xi, Yi), i = 1, 2, . . . of a pair (X,Y ) of “generic”
random variables (RVs) taking values in finite sets X ,Y called source alphabets.
At the ith access to this DMMS, Alice observesXi and Bob Yi. A channel model
is determined by a DMC whose (finite) input and output alphabets are denoted
by X ,Y, and the conditional probability of Bob receiving y ∈ Y when Alice
sends x ∈ X is denoted by W (y|x). At the ith access to this DMC, Alice selects
an input Xi and Bob observes the corresponding output Yi. In either model,
the cost of one access to the DMMS resp. DMC is one unit. Thus the cost of
an OT protocol is the number of accesses to the DMMS resp. DMC.

The OT capacity COT of a DMMS or DMC is the limit as n → ∞ of 1/n
times the largest k for which OT is possible with cost n. This concept has
been introduced by Nascimento and Winter [11,12] who also proved COT > 0
under a natural condition. See also Imai et al. [7] who for the binary erasure
channel with erasure probability 1/2 proved COT = 1/2. For previous results
showing that a DMMS or DMC makes OT possible for any k (but not that k/n
may be bounded away from 0 while the conditions (1)-(3) below are satisfied)
see the references in [12]. A related concept of commitment capacity has been
introduced and characterized in [15].

In the literature of OT much of the effort is devoted to designing protocols
that prevent a malicious Alice from learning Bob’s bit Z or a malicious Bob from
obtaining information also about KZ . This issue is not entered here, we assume
following [11,12] that Alice and Bob are “honest but curious”. This means that
they honestly follow the protocol but do not discard any information they get
access to in the process, and may use all of it to infer what they are supposed
to remain ignorant about. Nevertheless, we will point out that a modification
of the basic protocol does provide some protection against cheating, while not
decreasing OT capacity.

2 Preliminaries

The basic notation of the book [6] is used, except that source and channel alpha-
bets are denoted by script rather than boldface capitals. In particular, log de-
notes logarithm to base 2, and a DMC with matrixW = {W (y|x), x ∈ X , y ∈ Y}
is referred to as DMC {W : X → Y} or just {W} . In order to define admissible
OT protocols for source and channel models, general two-party protocols are
described first.
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A noiseless protocol, assuming Alice and Bob have initial knowledge or view
U and V , is described as follows; here U and V are not necessarily independent
RVs. At the beginning of the protocol, both Alice and Bob perform a random ex-
periment to generate RVs M resp. N , where M , N and (U, V ) are independent.
Then Alice sends Bob over the noiseless public channel a message F1 which is a
function of U and M , and Bob returns Alice a message F2, a function of V , N
and F1. The formal role of the RVs M , N is to model possible randomization in
Alice’s choice of F1 and Bob’s choice of F2, as well as in their actions later on. In
following rounds (as many as desired) Alice and Bob alternatingly send messages
F3, F4, . . . , F2t which are functions of their instantenous views. In other words,
Fi is a function of U,M and {Fj , j < i} if i is odd, and of V,N and {Fj , j < i}
is i is even (here the messages Fj with j of the same parity as i are redundant).
At the end of the protocol, Alice’s view will be (U,M,F) and Bob’s (V,N,F),
where F = F1 . . . , F2t.

A noisy protocol with n accesses to the DMC {W} is described as follows.
Alice and Bob, whose initial views are represented by RVs U and V , start the
protocol by generating RVs M,N as above. Then Alice selects the DMC input
X1 as a function of U and M , and Bob observes the corresponding output
Y1. After this, in a first session of public communication, they may exchange
messages according to a noiseless protocol in which the role of their initial views
is played by (U,M) and (V,N, Y1), respectively; X1 need not be indicated as
part of Alice’s view for it is a function of (U,M). In this public communication
session, and in subsequent ones, Alice and Bob need not generate new RVs for
randomization, the originalM and N may be assumed to contain all randomness
needed for that purpose.

Next, DMC accesses and public communication sessions alternate. Denote
the total public communication in the first i sessions by F i. Before the i’th
access to the DMC, Alice’s view is (U,M,F i−1). She selects the DMC input
Xi as a function of that view, and Bob observes the corresponding output Yi.
Formally, on the condition that Xi = x, the RV Yi is conditionally independent
of U, V,M,N, Y i−1, F i−1, and its conditional distribution is W (·|x). Then, in
the i’th session of public communication, Alice and Bob perform a noiseless
protocol in which their original views are (U,M,F i−1) resp. (V,N, Y i, F i−1).
The protocol ends with the n’th public session, and Alice’s and Bob’s final
views are (U,M,F) and (V,N, Y n,F) where F = Fn. Alice’s knowledge of
Xn = X1, . . . , Xn need not be indicated for Xn is a function of (U,M,F).

Using the above general concepts, admissible protocols for cost-n oblivious
transfer of length-k messages, or briefly (n, k) protocols for OT, are described
as follows. Below, Xn = (X1, . . . , Xn) and Y

n = (Y1, . . . .Yn) denote, in case of
source models, the source output sequences observed by Alice and Bob, and in
case of channel models, the sequences of DMC inputs and outputs selected by
Alice resp. observed by Bob.

In case of a source model, Alice and Bob may perform any noiseless protocol
in which their initial views are U = (K0,K1, X

n) and V = (Z, Y n). Here
K0 and K1, representing the two binary strings given to Alice, are uniformly
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distributed on {0, 1}k, the RV Z, representing the bit given to Bob, is uniformly
distributed on {0, 1}, and K0,K1, Z, (X

n, Y n) are mutually independent. In
case of a channel model, Alice and Bob may perform any noisy protocol with n
accesses to the DMC, in which their initial views are U = (K0,K1) and V = Z
with K0,K1, Z independent and uniformly distributed on {0, 1}k resp. {0, 1}.
In both cases, upon completing the protocol, Bob produces an estimate K̂Z of
KZ as a function of his view (Z,N, Y n,F).

Of course, such an (n, k) protocol is suitable for OT only if it meets the
goals stated in the Introduction. These are formalized, in the limit n → ∞,
by conditions (1)-(3) below in which the dependence on n of the RVs involved
is suppressed to keep the notation transparent. Condition (1) means that Bob
learns KZ with negligible probability of error. Conditions (2) and (3) mean that
Alice remains ignorant of Z and Bob of KZ , in the sense of obtaining negligible
amount of information about Z resp. KZ . In exceptional cases when these
conditions hold with equality rather than merely convergence to 0, one speaks
of perfect OT.

Definition 1. A positive number R is an achievable OT rate for a given DMMS
or DMC if for n→ ∞ there exist (n, k) protocols with k

n → R such that

Pr{K̂Z �= KZ} → 0 (1)

I(K0K1MXnF ∧ Z) → 0 (2)

I(ZNY nF ∧KZ) → 0. (3)

The OT capacity of a DMMS or DMC is the supremum of achievable OT rates,
or 0 if no R > 0 is achievable.

Note that since I(Z ∧KZ) = 0, condition (3) is equivalent to

I(NY nF ∧K1|Z = 0) → 0; I(NY nF ∧K0|Z = 1) → 0. (4)

Remark 1. An alternative definition of achievable OT rates reqiures exponen-
tially fast convergence to 0 in (1)-(3) as n→ ∞. Another alternative relaxes (3)
to 1

nI(ZNY
nF∧KZ) → 0. The results in this paper hold under either definition.

Note that Definition 1 admits arbitrarily complex protocols. This is necessary
for the generality of our upper bound to OT capacity (Theorem 1). On the other
hand, for our achievability results (lower bounds to OT capacity) rather simple
protocols will suffice. See also Remark 2.

Given any DMC {W : X → Y} and distribution P on X (referred to as an input
distribution), consider a DMMS with generic RVs X,Y whose joint distribution
is given by P (x)W (y|x). The OT capacity of this DMMS will be denoted by
COT(P,W ), while the OT capacity of the DMC {W} is denoted by COT(W ).

Lemma 1. For each DMC {W} and input distribution P

COT(W ) ≥ COT(P,W ).
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Proof. Let R be an achievable OT rate for the source model given by the DMMS
with generic RVs X,Y as above. Then (n, k) protocols achieving OT rate R for
the source model give rise to OT protocols for the channel model achieving the
same OT rate, simply as follows. In the first stage Alice selects i.i.d. repetitions
of X as DMC inputs X1, . . . , Xn, and Bob observes the corresponding outputs
Y1, . . . , Yn; in this stage the public channel is not used, thus the first n−1 public
sessions are empty. Upon completing this stage, Alice and Bob have views as
their initial views would be in the source model. Then they perform the given
source model protocol.

Remark 2. Lemma 1 may be applied to the DMC {W l : X l → Y l} defined by

W l(y1, . . . , yl|x1, . . . , xl) =
l∏

i=1

W (yi|xi),

whose OT capacity clearly equals lCOT(W ). This gives

COT(W ) ≥ 1

l
COT(P

(l),W l), for every distribution P (l) on X l.

In this paper, for channel models only protocols as in the proof of Lemma 1
will be used, in effect employing the DMC merely to emulate a DMMS (with
alphabets X , Y or X 2, Y2; we will not use l > 2). For DMCs with the property
that in Lemma 1 some input distribution P attains the equality, or at least
that 1

lCOT(P
(l),W l) → COT(W ) for suitable distributions P (l) on X l, the OT

capacity can be attained via source model emulating protocols. It remains open
whether every DMC has that property.

Let us briefly mention also a more general concept of OT, where Alice is initially
givenm stringsK0, . . . ,Km−1, and Bob may be interested in any subset {Kj, j ∈
J} of those, with index set J in a specified family J of subsets of {0, . . . ,m−1}.
Formally, Bob is given a RV Z with |J | possible values, and an OT protocol
is supposed to let him learn all Kj with index j in the set J ∈ J specified by
the value of Z, while keeping him ignorant of the remaining strings. At the
same time, Alice has to remain ignorant of Z, i.e., of which strings of her has
Bob chosen to learn. This general OT concept will not be addressed but its
simplest special case m = 1, J = {{0},∅} will. In that case, referred to below
as one-string OT, Alice is given only one string K0, and Bob one bit Z. He is
supposed to learn K0 if Z = 0 and remain ignorant of K0 if Z = 1, while Alice
should remain ignorant of Z.

The concepts of (n, k) protocol and OT capacity immediately extend to the
above general version of OT, and in particular to one-string OT. For the latter
case, the analogues of the conditions (1)-(3) in Definition 1 are

Pr{K̂0 �= K0|Z = 0} → 0 (5)

I(K0MXnF ∧ Z) → 0 (6)

I(NY nF ∧K0|Z = 1) → 0. (7)
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3 Statement of Results

Theorem 1. The OT capacity of a DMMS with generic RVs X,Y or of a DMC
{W} is bounded above by

min [I(X ∧ Y ), H(X |Y )] ,

respectively by the maximum of this expression for RVs X,Y connected by the
channel, i.e., satisfying PY |X =W . The same upper bounds hold for one-string
OT, as well.

A first example that the upper bound in Theorem 1 may be achievable is provided
by the binary erasure channel (BEC). A BEC with erasure probability 0 < p < 1
is a DMC with input alphabet {0, 1}, output alphabet {0, 1, 2}, and W (0|0) =
W (1|1) = 1 − p, W (2|0) = W (2|1) = p. It has been shown in [7] that a BEC
with erasure probability 1/2 has OT capacity 1/2.

Theorem 2. If {W} is a BEC with erasure probability p, and P is any distri-
bution on {0, 1}, then

COT(W ) = min(p, 1− p), COT(P,W ) = H(P )min(p, 1− p).

The next theorem addresses a larger class of channels than BECs.

Definition 2. A generalized erasure channel (GEC) is a DMC {W : X → Y}
such that for some nonempty Y1 ⊂ Y the probabilities W (y|x), y ∈ Y1 do not
depend on x ∈ X .

As outputs y ∈ Y1 carry no information about the input, they are interpreted
as erasures. The BEC is a special case with X = {0, 1}, Y = {0, 1, 2}, Y1 = {2}.
The erasure probabability of a GEC is p =

∑
y∈Y1

W (y|x) which does not depend
on x ∈ X .

Theorem 3. If {W : X → Y} is a GEC with erasure probability p, and P is
any distribution on X , then

COT(W ) = C(W ), COT(P,W ) = I(P,W ) if p ≥ 1/2

COT(W ) ≥ p

1− p
C(W ), COT(P,W ) ≥ p

1− p
I(P,W ) if p < 1/2.

Here C(W ) = maxP I(P,W ) is the Shannon capacity of the DMC {W} , and
I(P,W ) denotes the mutual information of RVs X,Y with joint distribution
given by P (x)W (y|x).

The proof technique of the lower bounds in Theorem 3 works beyond the
class of GECs. It provides lower bounds to OT capacity for the larger class of
DMCs that can be represented as a mixture of two channels with identical input
alphabet X and disjoint output alphabets Y0 and Y1, namely as

W (y|x) =
{
(1− p)W0(y|x), x ∈ X , y ∈ Y0

pW1(y|x), x ∈ X , y ∈ Y1.
(8)

Note that if the matrix W1 has identical rows then (8) gives a GEC.
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The following result is not contained in [2]. The auxiliary RV U in its second
assertion is unrelated to U appearing in the Preliminaries.

Theorem 4. For a DMC {W} of form (8) and any distribution P on X

COT(P,W ) ≥ [I(P,W0)− I(P,W1)]min(p, 1− p).

A possibly better bound is

COT(P,W ) ≥
[
I(U ∧ Y (0))− I(U ∧ Y (1))

]
min(p, 1− p),

where U is any RV and X,Y (0), Y (1) are RVs with PXY (j)(x, y) = P (x)Wj(y|x),
j = 0, 1, such that

U → X → (Y (0), Y (1)) is a Markov chain. (9)

Consequently, COT(W ) is bounded below by min(p, 1 − p) times the secrecy ca-
pacity of the wiretap channel with component channels W0,W1.

The model called wiretap channel with component channels W0,W1 has been
introduced by Wyner [17] assuming a special relationship between W0,W1 and
by Csiszár and Körner [5] for any W0,W1 with the same input alphabet. In this
model, Alice selects the inputs, Bob observes the W0-outputs and an eavesdrop-
per Eve theW1-outputs. The secrecy capacity is the supremum of rates at which
Alice can reliably send Bob messages in such a way that Eve remains ignorant
about them. According to [5], it equals the maximum of I(U∧Y (0))−I(U∧Y (1))
for RV’s satisfying (9), with X and Y (j) connected by the channel Wj , j = 0, 1.
Hence the second assertion of Theorem 4 implies the last one by Lemma 1.

Remark 3. In (8) the indices 0 and 1 can be exchanged if simultaneously p and
1− p are exchanged. Hence the bounds in Theorem 4 hold also with the reversed
order of W0 and W1.

Theorems 1 and 3 admit to give a necessary and sufficient condition for the
positivity of OT capacity.

Theorem 5. A DMC {W : X → Y} has positive OT capacity iff there exist
x′, x′′ in X such that the corresponding rows of the matrix W are not identical,
and W (y|x′)W (y|x′′) > 0 for some y ∈ Y. Further, COT(P,W ) > 0 for an input
distribution P iff x′, x′′ as above exist with P (x′)P (x′′) > 0.

Remark 4. A similar result appears in [11,12], but there a stronger condition
is claimed necessary and sufficient for COT(W ) > 0; it can be equivalently stated
by adding to the requirements on x′ and x′′ in Theorem 5 that neither of the
corresponding rows of W is a convex combination of other rows. That additional
requirement, however, is not necessary in the “honest but curious” framework,
see Example 3 for a counterexample and additional discussion. Nevertheless,
the proof of Theorem 5 uses an idea as [11,12], simplified by the availability of
Theorem 3.
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4 Proofs

Proof of Theorem 1. It suffices to prove the claimed bounds for one-string OT
capacity. Indeed, (n, k) protocols satisfying (1)-(3) trivially give rise to (n, k)
protocols for one-string OT satisfying (5)-(7), just letting the pair of RVs K1,M
in the former protocols play the role of M in the latter. Below, attention is
restricted to channel models since the proof for source models is similar but
simpler. In the proof, instead of condition (7) only its relaxation

I(NY nF ∧K0|Z = 1) = o(n) (10)

will be used, see Remark 1 after Definition 1.
Now, given a DMC {W : X → Y} , consider (n, k) protocols for one-string

OT that satisfy (5), (6) and (10). By Lemma 3 in Appendix A, the condition
(6) implies

H(K0|XnF, Z = 0)−H(K0|XnF, Z = 1) = o(n) (11)

as well as
H(K0|F, Z = 0)−H(K0|F, Z = 1) = o(n). (12)

Since H(K0|Z = 0) = H(K0|Z = 1) = k, equation (12) is equivalent to

I(K0 ∧ F|Z = 0) = I(K0 ∧F|Z = 1) + o(n)

and hence (10) implies
I(K0 ∧ F|Z = 0) = o(n). (13)

The conditions (5),(13) are similar to those defining a secret key for Alice and
Bob, with (weak sense) security from an eavesdropper who observes their public
communication F. If (5),(13) held without the conditioning on Z = 0 then K0

would be, by definition, such a secret key, see [10],[1]. Then by these references

k = H(K0) ≤
n∑
t=1

I(Xt ∧ Yt) + o(n) (14)

would hold. Actually, (14) holds also in the present case. Indeed, the condition-
ing on Z = 0 affects the mentioned result only by changing the terms I(Xt ∧Yt)
to I(Xt ∧Yt|Z = 0). This has a negligible effect if n is large, because (6) implies
that maxt I(Xt ∧ Z) → 0, and hence the conditional distribution of Xt on the
condition Z = 0 differs negligibly from the unconditional one, uniformly in t.

To derive another bound on k, we use that K0 and NY nZ are conditionally
independent given XnF. For a formal proof of this, see Lemma 6 in Appendix
B. It follows using (5) and Fano’s inequality that

H(K0|XnF, Z = 0) ≤ H(K0|NY nF, Z = 0) ≤ H(K0|K̂0, Z = 0) + o(n),

whence by (11) also
H(K0|XnF, Z = 1) = o(n). (15)
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Using (10) and (15) we obtain

k = H(K0|Z = 1) = H(K0|NY nF, Z = 1) + o(n)

≤ H(K0X
n|NY nF, Z = 1) + o(n) = H(Xn|NY nF, Z = 1) + o(n)

≤ H(Xn|Y n, Z = 1) + o(n) ≤
n∑
t=1

H(Xt|Yt, Z = 1) + o(n).

In the last sum, the conditioning on Z = 1 may be omitted with negligible effect
as before. Thus we have shown that

k ≤
n∑
t=1

H(Xt|Yt) + o(n). (16)

Finally, the sums in (14) and (16) may be written as nI(XT ∧ YT |T ) and
nH(XT |YT , T ), respectively, where T is a RV uniformly distributed on {1, . . . , n}
and independent of (Xn, Y n). The RVs XT and YT are connected by the channel
W and satisfy

I(XT ∧ YT |T ) ≤ I(XT ∧ YT ), H(XT |YT , T ) ≤ H(XT |YT ).

The proof of Theorem 1 is complete.

Proof of Theorem 2. If X and Y are RVs connected by a BEC with erasure
probability p then

H(X |Y = 0) = H(X |Y = 1) = 0, H(X |Y = 2) = H(X),

hence

H(X |Y ) = pH(X), I(X ∧ Y ) = H(X)−H(X |Y ) = (1 − p)H(X).

It follows by Theorem 1 that

COT(P,W ) ≤ H(P )min(p, 1− p), COT(W ) ≤ min(p, 1− p).

It remains to show that these upper bounds are achievable.
By Lemma 1, it suffices to show that each R < H(X)min(p, 1 − p) is an

achievable OT rate for the source model defined by a DMMS with generic RVs
X,Y as above. To this end, an OT protocol will be described for this source
model. It will involve only two messages sent over the public noiseless channel,
the first by Bob and the second by Alice; formally, Alice’s message F1 and Bob’s
message F4 will be empty.

Upon observing Y n = (Y1, . . . , Yn), Bob first determines two subsets G and B
of {1, . . . , n}, called the good and bad sets, both of size about nmin(p, 1− p). If
p ≥ 1/2 then Bob takes for G the set of all indices i with Yi �= 2, and he assigns
the indices i with Yi = 2 to B with probability (1− p)/p, independently of each
other. If p < 1/2 then Bob takes for B the set of all indices with Yi = 2, and he
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assigns the indices with Yi �= 2 to G with probability p/(1 − p), independently
of each other. Formally, in order to comply with the description of protocols
in Section 2, Bob may be assumed to use a RV N generated at the outset,
when he has to assign indices i to B or to G in a randomized manner. E.g.,
when p > 1/2, this N may consist of n independent bits, each equal to 0 with
probability (1− p)/p, and an index i with Yi = 2 is assigned to B if the i’th bit
of N is 0.

Bob’s next action is to send Alice a message telling her the sets G and B but
not which is which: he lets her learn two sets S0, S1 where S0 = G,S1 = B
if Z = 0, and S0 = B,S1 = G if Z = 1. Note that the pair of random sets
G,B is independent of Xn, the events {i ∈ G}, i = 1, . . . , n are independent and
have probability min(p, 1− p), and the same holds for the events {i ∈ B}. This
implies, in particular, that Bob’s message gives Alice no information about Z.

Consider first the case when X is uniformly distributed on {0, 1}. Suppose
Alice’s strings K0,K1 are of length

1 k = nr where r < min(p, 1−p) is arbitrarily
fixed. If |G| ≥ nr and |B| ≥ nr, which holds with probability going to 1
exponentially fast as n → ∞, let S′

0 and S′
1 denote the subsets of S0 resp.

S1 consisting of their first nr elements. Then Alice encrypts K0 and K1 with
the “keys” {Xi, i ∈ S′

0} resp. {Xi, i ∈ S′
1}, and sends Bob the “cryptograms”

Kj + {Xi, i ∈ S′
j}, j = 0, 1, where + means componentwise addition mod 2.

If |G| < nr or |B| < nr then she sends nothing. Except for the latter case of
negligible probability, Bob can decrypt KZ since SZ = G implies that he knows
{Xi, i ∈ S′

Z} = {Yi, i ∈ S′
Z}. On the other hand, Bob remains fully ignorant

of KZ , since the “key” {Xi, i ∈ S′
Z
} is uniformly distributed on {0, 1}nr and

SZ = B implies that Bob has 0 information about it. Note that this already
suffices for the proof of COT(W ) = min(p, 1− p).

If X is not uniformly distributed on {0, 1}, the strings {Xi, i ∈ S′
j}, j = 0, 1

are not directly suitable as encryption keys, they have to be transformed to
binary strings of length k < rn whose distribution is nearly uniform on {0, 1}k.
It is well-known that given any δ > 0, in the case of large n there exists a
mapping κ : {0, 1}n → {0, 1}k with k = n(H(X)− δ) such that k−H(κ(Xn)) is
exponentially small (in later proofs we will need a stronger result, Proposition 1).
Applying this replacing n by rn, there exists a mapping κ : {0, 1}nr → {0, 1}k
with k = nr(H(X) − δ) such that κj = κ({Xi, i ∈ S′

j}), j = 0, 1 are nearly
uniformly distributed, in the sense that their entropy differs from k only by an
exponentially small amount.

To complete the proof, assume Alice’s strings K0,K1 are of length k =
nr(H(X)− δ). She encrypts them by the keys κ0, κ1, and sends Bob the strings
Kj + κj , j = 0, 1. Again, Bob can decipher KZ , and he remains ignorant of KZ

in the sense that he has an exponentially small amount of information about
KZ , see, e.g. [6, Proposition 17.1].

Remark 5. The protocol in the above proof achieves more than required in Def-
inition 1: Eve’s amount of information about Z is not only asymptotically but

1 Here and later on, if a specified length of sequences is not an integer, the next integer
is meant.
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exactly 0, and in the case when X is uniformly distributed on {0, 1}, Bob’s in-
formation about KZ is also 0. The latter need not hold for the described protocol
when X is not uniformly distributed, but can be achieved also in that case by a
slightly modified protocol. As k−H(κj) equals the I-divergence of the distribution
of κj from the uniform distribution on {0, 1}k, its exponential smallness implies
that of the variation distance of these distributions. Hence Alice can generate
RVs κj uniformly distributed on {0, 1}k with Pr{κj �= κj} exponentially small,
j = 0, 1, and send Bob Kj+κj rather than Kj+κj, j = 0, 1. Then Bob can still
reconstruct KZ with exponentially small probability of error (an error occurring
when κZ �= κZ), and he has 0 information about KZ .

Proof of Theorem 3. Let {W} be a GEC. Then (8) holds with Y0 = Y \ Y1,
W0(y|x) = 1

1−pW (y|x) (y ∈ Y0) and with W1(y|x) (y ∈ Y1) not depending on
x ∈ X . Hence by Lemma 7 in Appendix B,

I(P,W ) = (1 − p)I(P,W0) . (17)

On account of Theorem 1, Lemma 1 and (17), it suffices to prove that if {W}
is a GEC then COT(P,W ) ≥ I(P,W0)min(p, 1 − p). This is a special case of
the first assertion of Theorem 4, and the proof of that more general result is not
really more difficult. Below we proceed directly with the latter.

The following basic proposition about generating a secret key will be used.

Proposition 1. ([10,1]) Let (Xi, Yi) i = 1, . . . , n and (X̃i, Ti) i = 1, . . . , n be
i.i.d. repetitions of pairs of RVs (X,Y ) resp. (X,T ). For any δ > 0 and n→ ∞
there exist functions κ and f on Xn, where the range of κ is {0, 1}k with

k = n(I(X ∧ Y )− I(X ∧ T )− δ) (18)

such that κ(Xn) is recoverable from f(Xn) and Y n with exponentially small
probability of error, and

k −H(κ(X̃n|f(X̃n), T n) → 0 exponentially fast. (19)

Such functions κ and f also exist with

k = n(I(U ∧ Y )− I(U ∧ T )− δ) , (20)

for any RV U satisfying the Markov condition U → X → (Y, T ).

Remark 6. In the usual setting, Alice and Bob have to generate a secret key
assuming Alice observes Xn, Bob observes Y n, only Alice is permitted to send
Bob a public message, and the key has to be concealed from Eve who observes
Alice’s message and has side information T n. This setting is formally less gen-
eral than that in Proposition 1, for it regards the sequences Xn and X̃n identical
rather than only identically distributed. Mathematically, however, this makes
no difference, and the stated form of Proposition 1 is more convenient for the
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purpose of this paper. Note that originally weak secrecy had been addressed, i.e.,
the difference in (19) was shown to be o(n) rather than to approach 0 (in [10]
for (18) and in [1] also for (20); in [1] the largest key rate k/n asymptotically
achievable with unidirectional public communication is also determined). Still,
the “strong” version with (19) is also well-known, see, e.g. [6, Theorem 17.21].

Proof of Theorem 4. Let {W : X → Y} with Y = Y0∪Y1 be a DMC of form (8),
and consider a DMMS with generic RVs X,Y whose joint distribution is given
by P (x)W (y|x), x ∈ X , y ∈ Y. To prove the claimed bounds on COT(P,W ),
protocols for the corresponding source model similar to those in the proof of
Theorem 2 will be used.

Upon observing Y n = (Y1, . . . , Yn), Bob first determines a “good set” G and
a “bad set” B as in the proof of Theorem 2, with the only modification that the
criteria Yi �= 2 resp. Yi = 2 are replaced by Yi ∈ Y0 resp. Yi ∈ Y1. As there,
the pair of random sets G,B is independent of Xn = (X1, . . . , Xn), the events
{i ∈ G}, i = 1, . . . , n have probability min(p, 1− p) and are independent of each
other and Xn, and the same holds also for the events {i ∈ B}. Then Bob sends
Alice a message telling her two sets S0, S1 where S0 = G,S1 = B if Z = 0, and
S0 = B,S1 = G if Z = 1. Thereby Alice receives 0 information about Z.

The i.i.d. pairs (Xi, Yi) are conditionally independent conditioned on the
value of Z and the sets S0, S1, moreover, those with i ∈ S0 as well as those
with i ∈ S1 are conditionally i.i.d. If i ∈ S0 resp. i ∈ S1, the conditional
distribution of (Xi, Yi) is given by P (x)W0(y|x) resp. P (x)W1(y|x) if Z = 0,
and by P (x)W1(y|x) resp. P (x)W0(y|x) if Z = 1. To verify this, suppose
first that Z = 0. Then i ∈ S0 means i ∈ G, which implies Yi ∈ Y0, and for
x ∈ X , y ∈ Y0 the conditional probability Pr{Xi = x, Yi = y|S0, S1, Z = 0} =
Pr{Xi = x, Yi = y|G,B} is equal to

Pr{Xi = x, Yi = y|i ∈ G} =
Pr{Xi = x, Yi = y, i ∈ G}

Pr{i ∈ G} = P (x)W0(y|x) ;

here the second equality holds because, by the construction of G, the probability
in the numerator is equal to P (x)W (y|x) if p ≥ 1/2 and to P (x)W (y|x) p

1−p if

p < 1/2, where W (y|x) = (1 − p)W0(y|x) by (8), while the probability in the
denominator equals min(p, 1 − p). For i ∈ S1 the calculation is similar. In the
case Z = 1 the roles of S0 and S1 are simply reversed.

The proof of the first assertion of Theorem 4 will be completed by showing
that, for any r < min(p, 1− p), if Alice’s strings K0,K1 have length

k = rn(I(P,W0)− I(P,W1)− δ)

then she, knowing S0, S1, can send Bob a message that enables him to recover
KZ while keeping him ignorant of KZ .

Apply the first assertion of Proposition 1 with rn in the role of n, taking
{P (x)W0(y|x), x ∈ X , y ∈ Y0} resp. {P (x)W1(y|x), x ∈ X , y ∈ Y1} for the joint
distribution of X,Y resp. X,T . Let f and κ denote the corresponding functions
on X rn where the range of κ is {0, 1}k with the above k, see (18). Supposing

|S0| ≥ rn, |S1| ≥ rn , (21)
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denote by S′
0 and S′

1 the sets of the first rn elements of S0 resp. S1. Let Alice
compute fj = f({Xi, i ∈ S′

j}) and κj = κ({Xi, i ∈ S′
j}), j = 0, 1, and send Bob

a message consisting of f0, f1 and the “cryptograms” K0 + κ0,K1 + κ1; if (21)
does not hold then she sends nothing.

Consider first the case Z = 0. Then, conditioned on Z and S0, S1 satisfy-
ing (21), the pairs (Xi, Yi), i ∈ S′

0 are conditionally i.i.d. with distribution
P (x)W0(y|x). Hence, due to the choice of the mappings f and κ, Bob can recover
κ0 from f0 and {Xi, i ∈ S′

0} with exponentially small (conditional) probability of
error, enabling him to recoverK0. As this always holds when (21) does, the prob-
ability of error in recovering K0 conditioned only on Z = 0 is also exponentially
small. Further, the pairs (Xi, Yi), i ∈ S′

1 are conditionally i.i.d. with distribution
P (x)W1(y|x). Hence the choice of κ and f implies that f1 and {Yi, i ∈ S′

1} give a
negligible amount of information about κ1; in turn, since κ1 is nearly uniformly
distributed, Bob’s amount of information about K1 provided by f1, {Yi, i ∈ S′

1}
and K1 + κ1 is also negligible: I(K1 ∧ f1,K1 + κ1, {Yi, i ∈ S′

1}|S0, S1, Z = 0)
is exponentially small. To formally verify that the last conditional mutual in-
formation coincides with that in the first condition in (4), assuming the RV N
has been generated and used by Bob as in the proof of Theorem 2, note that
the total communication is now F = (S0, S1, f0,K0 + κ0, f1,K1 + κ1), and K1

is independent of (N,S0, S1, Z). Hence

I(NY nF ∧K1|Z = 0) = I(Y n, f0,K0 + κ0, f1,K1 + κ1 ∧K1|N,S0, S1, Z = 0) .

Here, N in the condition may be omitted. It remains to show that

I({Yi, i /∈ S′
0}, f0,K0 + κ0 ∧K1|S0, S1, f1,K1 + κ1, Z = 0) = 0 .

This follows because (Xi, Yi), i = 1, . . . , n are conditionally independent given
S0, S1, Z = 0, and fj and κj are functions of Kj and {(Xi, Yi), i ∈ S′

j}, j = 0, 1.
In the case Z = 1 it follows similarly that Bob can recover K1 and he remains

ignorant of K0. This completes the proof of the first assertion of Theorem 4.
The second assertion follows in the same way, applying this time the second

assertion of Proposition 1. The third assertion follows from the second one as
noted in the passage following Theorem 4.

Remark 7. Another suitable protocol is obtained by modifying the choice of the
sets G and B as follows. According as p ≥ 1/2 or p < 1/2, let G resp. B
contain all indices i with Yi in Y0 resp. in Y1 as before, and let the other indices
i be assigned to G or B with probabilities (π, 1 − π). Here π is chosen to make
sure that Pr{i ∈ G} = Pr{i ∈ B} = 1/2, thus π equals 1 − 1/2p if p ≥ 1/2
and 1/2(1 − p) if p < 1/2. Consider first the case p ≥ 1/2. Then, by similar
calculation as in the proof of Theorem 4,

Pr{Xi = x, Yi = y|i ∈ G} =

{
2(1− p)P (x)W0(y|x), x ∈ X , y ∈ Y0

(2p− 1)P (x)W1(y|x), x ∈ X , y ∈ Y1 ,

Pr{Xi = x, Yi = y|i ∈ B} = P (x)W1(y|x), x ∈ X , y ∈ Y1 .
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It follows, in turn, that the conditional mutual information I(Xi ∧ Yi|G,B) is
equal to 2(1 − p)I(P,W0) + (2p − 1)I(P,W1) if i ∈ G (using Lemma 7) and
to I(P,W1) if i ∈ B. This implies via Proposition 1, again as in the proof of
Theorem 4, that with this modified protocol one can achieve OT rate

1/2 [2(1− p)I(P,W0) + (2p− 1)I(P,W1)− I(P,W1)] ,

the same as with the original protocol. In the case p < 1/2 the situation is
similar. It follows similarly that OT rates in the second assertion of Theorem 4
can also be achieved with protocols in which G and B are selected as above.

To the proof of Theorem 5 a simple fact is sent forward.

Lemma 2. If a DMC {W ′} is obtained from {W : X → Y} by restricting the
input alphabet X to a subset X ′ then COT(W

′) ≤ COT(W ).

The proof is obvious but depends on the “honest but curious” assumption. Were
Alice allowed to deviate from the agreed-upon protocol, a larger input alphabet
would give her more room for deviations undetectable for Bob and letting her
gain information about Bob’s bit Z; this might decrease OT capacity.

Proof of Theorem 5. (i) Necessity. Given a DMC {W : X → Y} , let X ′ be
a maximal subset of X such that the rows of the matrix W corresponding to
input symbols x′ ∈ X ′ are all distinct; let W ′ be the matrix that has these
distinct rows. Clearly COT(W ) = COT(W

′). If COT(W ) > 0 then COT(W
′) > 0

implies by Theorem 1 that the outputs of W ′ do not unambiguously determine
the inputs. In other words, for some y ∈ Y there exist x′ and x′′ in X ′ such
that W (y|x′)W (y|x′′) > 0; this proves necessity for channel models. For source
models the proof is similar, this time using that COT(P,W ) = COT(P

′,W ′)
where P ′(x′), x′ ∈ X ′ equals the sum of P (x) for all x ∈ X such that the rows
of W corresponding to x and x′ are equal.

(ii) Sufficiency. Let {W} be a DMC satisfying the conditions in Theorem 5.

Consider an auxiliary DMC {W̃}, restricting the input alphabet X × X of W 2

(see Remark 2) to the pairs (x′, x′′), (x′′, x′), where x′, x′′ as in Theorem 5 are

fixed. Formally, {W̃ : ((x′, x′′), (x′′, x′)) → Y × Y} is defined by

W̃ (y1, y2|x′, x′′) =W (y1|x′)W (y2|x′′), W̃ (y1, y2|x′′, x′) =W (y1|x′′)W (y2|x′).
(22)

This auxiliary DMC is a GEC, the role of Y1 in Definition 2 being played by the
subset {(y, y) : y ∈ Y} of Y × Y; hence Theorem 3 implies COT(W̃ ) > 0. On
account of Lemma 2, this proves the positivity of COT(W ) = 1

2COT(W
2).

Consider next a source model defined by a DMMS with generic RVs X,Y
whose joint distribution PXY (x, y) = P (x)W (y|x) satisfies the condition in The-
orem 5. Fixing x′, x′′ as there, for 2n i.i.d. repetitions of X , viz. X2n =
(X1, . . . , X2n) let J denote the set of indices i ∈ {1, . . . , n} for which (X2i−1, X2i)
equals either (x′, x′′) or (x′′, x′). The tuples {(X2i−1, X2i), (Y2i−1, Y2i), i ∈ J}
are conditionally i.i.d. given J , their (conditional) distribution is equal to PX̃Ỹ
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where PX̃ is the uniform distribution on {(x′, x′′), (x′′, x′)} and PỸ |X̃ equals W̃

in (22). Consider an auxiliary DMMS with generic RVs X̃, Ỹ as above. Since
Pr{i ∈ J} = 2P (x′)P (x′′), the size of J exceeds � = nP (x′)P (x′′) with prob-
ability approaching 1 exponentially fast as n → ∞. It follows that each (�, k)
protocol for the auxiliary DMMS gives rise to a (2n, k) protocol for the orig-
inal one: Alice tells Bob the set J in her first message, then Alice and Bob
perform the given (�, k) protocol using only the first � = nP (x′)P (x′′) tuples
(X2i−1, X2i), (Y2i−1, Y2i) with i ∈ J . Since the auxiliary DMMS has positive
OT capacity by Theorem 3, this completes the proof of Theorem 5.

5 Examples

Example 1 (Binary symmetric channel). A DMC {W : {0, 1} → {0, 1}}
is a binary symmetric channel (BSC) with crossover probability p �= 1/2 if
W (1|0) =W (0|1) = p. To obtain a lower bound to its OT capacity, consider as

in the proof of Theorem 5 an auxiliary channel {W̃ : {(0, 1), (1, 0)} → {0, 1}2},
see (22) with x′ = 0, x′′ = 1, i.e.,

W̃ (0, 1| 0, 1) = W̃ (1, 0|1, 0) = (1− p)2, W̃ (1, 0|0, 1) = W̃ (0, 1| 1, 0) = p2,

W̃ (0, 0| 0, 1) = W̃ (1, 1|0, 1) = W̃ (0, 0|1, 0) = W̃ (1, 1|1, 0) = p(1− p).

This {W̃} is a GEC with erasure probability p̃ = 2p(1 − p) < 1/2. The role of
the set Y1 in Definition 2 is played by {(0, 0), (1, 1)}, and that of {W0} in (8) is

played by a channel {W̃0} with input and output alphabets equal to {(0, 1), (1, 0)}
which is a BSC with crossover probability p2

1−p̃ = p2

p2+(1−p)2 .

By Theorem 3 and (17), COT(W̃ ) ≥ p̃
1−p̃C(W̃ ) = p̃C(W̃0). Finally, since

Lemma 2 implies COT(W̃ ) ≤ COT(W
2) = 2COT(W ), we obtain

COT(W ) ≥ 1

2
COT(W̃ ) ≥ 1

2
p̃C(W̃0) = p(1− p)

[
1− h

(
p2

p2 + (1 − p)2

)]
.

Example 2 (Z channel). A Z channel is a DMC {W : {0, 1} → {0, 1}} with
W (0|0) = 1, W (0|1) = p, W (1|1) = 1−p. To bound its OT capacity from below,

consider an auxiliary channel {W̃ : {(0, 1), (1, 0)} → {0, 1}2} as in Example 1,
where this time

W̃ (0, 1|0, 1) = W̃ (1, 0|1, 0) = 1− p, W̃ (1, 1|0, 1) = W̃ (1, 1|1, 0) = p,

and the other entries of the matrix W̃ are 0. This auxiliary channel is a BEC
with erasure probability p, hence COT(W̃ ) = min(p, 1 − p) by Theorem 2. It
follows that

COT(W ) ≥ 1

2
COT(W̃ ) =

1

2
min(p, 1− p) .
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Example 3. The DMC {W : {0, 1, 2} → {0, 1}} with

W (0|0) =W (1|1) = 1, W (0|2) = p, W (1|2) = 1− p

is, in a sense, a reversed BEC. By Lemma 2, its OT capacity is not smaller than
that of the Z channel in Example 2, hence COT(W ) ≥ 1

2 min(p, 1−p). Note that
while this channel satisfies the condition for COT(W ) > 0 in Theorem 5, it fails
to satisfy the stronger condition mentioned in Remark 4. Recall that in the proof
of Theorem 5 we have used the fact that the OT capacity of a DMC {W} is not
changed by a reduction of the input alphabet that keeps only the distinct rows of
W . In [11,12] the same is claimed for a further reduction that removes also those
rows of W which are convex combinations of others, but that claim is valid only
in a “malicious” setting. In the “honest but curious” setting the above DMC
is a counterexample, it has positive OT capacity but if the input symbol 2 were
removed, the OT capacity would become 0.

The lower bounds to OT capacity in the above examples are smaller than the
upper bound in Theorem 1, and the exact value of OT capacity remains an open
problem. The next example shows that the upper bound in Theorem 1 may be
tight even if the channel is not a GEC. The authors have found this example
unaware of the work of Wolf and Wullschleger [16] in which the channel below
plays a key role and, in particular, another simple (1, 1) protocol for perfect OT
of 1 bit is given.

Example 4. For X = Y = {0, 1, 2, 3}, let {W : X → Y} be a channel with
additive noise such that the RVs X,Y are connected by it if Y = X +N (mod 4)
for a RV N uniformly distributed on {0, 1}, independent of X. Theorem 1 gives
COT(W ) ≤ 1, and COT(P,W ) ≤ 1 if P is the uniform distribution on X . These
upper bounds are tight; indeed, the next (1, 1) protocol achieves perfect OT for
the source model with generic RVs X,Y as above and X uniformly distributed
on X . Now, Alice has two bits K0, K1, Bob one bit Z, independent of each other
and (X,Y ), and uniformly distributed; Alice observes X and Bob Y . First, let
Bob tell Alice the parity of Y +Z, sending her φ = 0 or φ = 1 according as Y +Z
is even or odd; this gives Alice no information about Z. Then Alice reports Bob
the mod2 sums K0 + iφ(X) and K1+ i1−φ(X) where i0 and i1 are the indicator
functions of the sets {1, 2} resp. {2, 3}. Note that Bob knowing Y also knows
either the bit i0(X) (if Y is even) or i1(X) (if Y is odd), but he is fully ignorant
of the other bit, in both cases. It follows that Bob can unambiguously determine
KZ but remains fully ignorant of KZ .

6 Discussion

Oblivious transfer has been approached from an information theoretic point
of view, addressing OT capacity for (discrete memoryless) source and channel
models, concentrating on 1 of 2 strings OT.

A general upper bound to OT capacity has been derived, with essential use
of inequalities for information measures, see Appendix A. Let us call attention
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to an improved bound on the difference of conditional entropies via variation
distance (Lemma 5), included for its own sake, though a weaker previous bound
would also suffice. A remarkable feature of our upper bound to OT capacity is its
validity for one-string OT, as well. It remains open whether this is a coincidence
caused by the weakness of our method, or perhaps the rate of one-string OT can
never exceed the optimal rate of 1 of 2 strings OT.

Our achievability results (lower bounds to OT capacity) rely on rather sim-
ple protocols, still they shed light on relationships of OT and other problems
of information theoretic security, such as secret key agreement using public dis-
cussion [10,1] and secure transmission over insecure channels [17,5]. It remains
open whether the OT capacity of channel models can always be attained via
source model emulating protocols, as in those cases when we were able to deter-
mine OT capacity. These cases are the binary erasure channels with any erasure
probability p, and generalized erasure channels (introduced here) with p ≥ 1/2.
An additional such channel appears in Example 4; it remains open whether this
is exceptional, or perhaps a member of another “good” class.

Throughout this paper, only models with “honest but curious” participants
are studied. Still, let us briefly address some issues arising in “malicious” set-
tings. In case of a BEC or GEC, with agreed-upon protocol as in the proofs of
Theorems 2 and 3, a malicious Alice has no opportunity to learn about Bobs
bit Z if he follows the protocol. In Examples 1-2, however, a malicious Alice
can well gain information about Z if she deviates from using DMC input pairs
(0, 1) and (1, 0) only. In Example 3, the malicious model admits no OT at all,
see [11,12]. Indeed, Eve may send instead of DMC input 2 always 0 or 1, with
probabilities (p, 1 − p); this cheating is undetectable to Bob, and reduces any
protocol, in effect, to one for a noiseless channel.

Even the BEC and GEC models are vulnerable to cheating by Bob, who
may gain illegitimate information by deviating from the agreed-upon protocol,
maliciously selecting the set B. Suppose p ≤ 1/2, when the protocol requires
Bob to take for B the set of indices i with Yi = 2 (or Yi ∈ Y1). He may instead
chose B as follows, not modifying the choice of G. If p ≤ 1/3, he may take B to
consist only of indices with Yi �= 2 (or Yi ∈ Y0), assigning each such index with
the same probability p/(1− p) to B as to G. If 1/3 < p < 1/2, Bob may assign
to B all indices with Yi �= 2 (or Yi ∈ Y0) not assigned to G, and assign to B the
remaining indices with probability (3p− 1)/p. If Bob uses this fake B in giving
Alice the sets S0, S1, she has no way to detect cheating; in case p ≤ 1/3 Bob will
learn both of Alice’s strings, and also when 1/3 < p < 1/2, he will get nonzero
information about KZ , in addition to learning KZ .

Note, however, that if p = 1/2 then the sets G and B provided by the agreed-
upon protocol are complements of each other, thus no deviation in selecting B is
possible without one in selecting G. This amounts to a kind of limited protection
against Bob’s cheating: while a malicious Bob can still gain information about
both of Alice’s strings, to do so he has to give up his goal of fully learningKZ (the
situation is similar if p > 1/2). Recall that protocols as in the proof of Theorem
4 can always be modified to protocols of equal power that use complementary
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sets G and B, see Remark 7. It is plausible that for a BEC or GEC, modified
protocols of this kind provide limited protection as above against Bob’s cheating
also when p < 1/2.

This issue is not pursued here any further, since by a recent result of Pinto
et al. [13] the OT capacity of a GEC, determined in this paper, is actually
achievable also in the “malicious” model. Another recent work, Ishai et al. [8],
regarded Alice’s pair of strings (K0,K1) as a sequence of k pairs (K0i,K1i), i =
1, . . . , k. Bob selects one component of each pair he wants to learn, this selection
is specified by a k-bit string Z = Z1, . . . , Zk. Then an (n, k) protocol is supposed
to let Bob learnKZ11, . . . ,KZkk and keep him ignorant of KZ11

, . . . ,KZkk
, while

Eve remains ignorant of Z. Ishai et al. show that this goal is achievable with k/n
bounded away from 0, see [8] for details. Finally, the reader’s attention is called
to recent works that address more general problems via similar techniques, and
also contain results relevant for OT capacity, as pointed out by an anonymous
referee. See Prabhakaran and Prabhakaran [14] and references there.
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Appendix A

Let U, V, Z denote RVs with values in finite sets U ,V ,Z. Suppose z1, z2 ∈ Z
with Pr{Z = z1} = p > 0, Pr{Z = z2} = q > 0.

Lemma 3

|H(U |V, Z = z1)−H(U |V, Z = z2)| ≤ 3

√
(p+ q) ln 2

2pq
I(UV ∧ Z) log |U|+ 1 .

Remark 8. It will be clear from the proof that the constant term +1 could be
replaced by a term that goes to 0 as I(UV ∧ Z) does, which may be relevant for
some purposes but not here.

The proof of Lemma 3 will rely on two auxiliary lemmas. The variation distance
of probability distributions P and Q on the same finite set, say S, is

|P −Q| =
∑
s∈S

|P (s)−Q(s)| .

Lemma 4. The variation distance of the conditional distributions of U on the
conditions Z = z1 resp. Z = z2 is bounded as

∣∣PU|Z=z1 − PU|Z=z2

∣∣ ≤ √
2(p+ q) ln 2

pq
I(U ∧ Z) .

Proof.

I(U ∧ Z) =
∑
z∈Z

Pr{Z = z}D(PU|Z=z‖PU )

≥ pD(PU|Z=z1‖PU ) + qD(PU|Z=z2‖PU )

≥
p|PU|Z=z1 − PU |2

2 ln 2
+
q|PU|Z=z2 − PU |2

2 ln 2
;

the last step is by Pinsker inequality. Since

|PU|Z=z1 − PU |+ |PU|Z=z2 − PU | ≥ |PU|Z=z1 − PU|Z=z2 | ,

it follows by the easily checked inequality pa2+ qb2 ≥ pq
p+q (a+ b)

2 that I(U ∧Z)
is further bounded below by

pq

2(p+ q) ln 2
|PU|Z=z1 − PU|Z=z2 |2 .
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Lemma 5. For RVs U1, U2 with values in U , and V1, V2 with values in V,

|H(U1|V1)−H(U2|V2)| ≤
[
1

2
|PU1V1 − PU2V2 |+ |PV1 − PV2 |

]
log |U|

+h

(
1

2
min [1, |PU1V1 − PU2V2 |+ |PV1 − PV2 |]

)
≤ 3

2
|PU1V1 − PU2V2 | log |U|+ h

(
min

[
1

2
, |PU1V1 − PU2V2 |

])
,

where h(t) = −t log t− (1 − t) log(1− t), 0 ≤ t ≤ 1.

Remark 9. The main feature of this lemma, for our purposes, is that it does
not involve the cardinality of V, only that of U . A previous bound of this kind
to the difference of conditional entropies, due to Alicki and Fannes [3], would
also suffice for the proof of Theorem 1. but we preferred to sharpen it to obtain
Lemma 3 in the stated form.

Proof. The following bound for the entropy difference of two distributions on U
will be used:

|H(P )−H(Q)| ≤ 1

2
|P −Q| log |U|+ h

(
1

2
|P −Q|

)
. (23)

This sharpening of a more familiar weaker bound is rather recent [4,18]. Let us
recall its simple proof: Let X and Y be RVs with PX = P , PY = Q such that
Pr{X �= Y } is smallest possible subject to these conditions, thus Pr{X �= Y } =
1
2 |P − Q|. Then, as H(P ) − H(Q) ≤ H(X |Y ) and H(Q) − H(P ) ≤ H(Y |X),
(23) follows from Fano’s inequality.

Now,

H(U1|V1)−H(U2|V2) =
∑
v∈V

[
PV1(v)H(PU1|V1=v)− PV2(v)H(PU2|V2=v)

]
≤

∑
v∈V

PV1(v)
[
H(PU1|V1=v)−H(PU2|V2=v)

]
+

∑
v:PV1 (v)>PV2 (v)

[PV1(v) − PV2(v)]H(PU2|V2=v) .

Bounding the first sum via (23), and the entropies in the second sum by log |U|,
this can be continued as

≤ 1

2

∑
v∈V

PV1(v)|PU1|V1=v − PU2|V2=v| log |U|

+
∑
v∈V

PV1(v)h

(
1

2
|PU1|V1=v − PU2|V2=v|

)
+

1

2
|PV1 − PV2 | log |U| .
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Let U3 be an auxiliary RV such that PU3V1(u, v) = PV1(v)PU2|V2=v(u). Then∑
v∈V

PV1(v)|PU1|V1=v − PU2|V2=v| = |PU1V1 − PU3V1 |

≤ |PU1V1 − PU2V2 |+ |PU3V1 − PU2V2 |
= |PU1V1 − PU2V2 |+ |PV1 − PV2 | ≤ 2|PU1V1 − PU2V2 | .

Using this, and that the concave function h(t) is increasing in [0, 1/2], and not-
ing that the above arguments hold also with the roles of (U1, V1) and (U2, V2)
interchanged, Lemma 5 follows.

Proof of Lemma 3. Apply Lemma 5 to RVs U1, V1 with joint distribution PU1V1 =
PUV |Z=z1 and U2, V2 with PU2V2 = PUV |Z=z2 , replacing the h() term by its upper
bound 1. This gives

|H(U |V, Z = z1)−H(U |V, Z = z2)| ≤
3

2
|PUV |Z=z1 − PUV |Z=z2 | log |U|+ 1 .

Combining this with Lemma 4 completes the proof of Lemma 3.

Appendix B

Lemma 6. With the notation in the proof of Theorem 1,

I(K0M ∧NY nZ|XnF) = 0 .

Proof. Recall that F = Fn where F t denotes the total public communication in
the first t sessions. For each 1 ≤ t ≤ n we have

I(K0M ∧NY tZ|XtF t) ≤ I(K0M ∧NY tZ|XtF t−1)

= I(K0M ∧NY t−1Z|XtF t−1) ≤ I(K0MXt ∧NY t−1Z|Xt−1F t−1)

= I(K0M ∧NY t−1Z|Xt−1F t−1) .

Here the first inequality holds by [6, Lemma 17.18] (or previous similar results
in [10,1]), the next equality holds because I(K0M ∧ Yt|XtF t−1NY t−1Z) = 0
due to the conditional independence of Yt given Xt from the other RVs, and the
last equality holds since Xt is a function of K0,M and F t−1. The lemma follows
since I(K0M ∧NY t−1Z|Xt−1F t−1) = 0 trivially holds for t = 1.

Lemma 7. For {W : X → Y0 ∪ Y1} as in (8), the identity

I(P,W ) = (1− p)I(p,W0) + pI(P,W1)

holds for each input distribution P .
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Proof. LetX and Y have joint distribution P (x)W (y|x). Define T = j if Y ∈ Yj ,
j = 0, 1, then PT = (1 − p, p) and T is independent of X . The claimed identity
follows since

I(P,W ) = I(X ∧ Y ) = I(X ∧ Y T ) = I(X ∧ Y |T ),

and for each x ∈ X and y ∈ Yj , j = 0, 1,

Pr{X = x, Y = y|T = j} =
Pr{X = x, Y = y}

Pr{T = j} = P (x)Wj(y|x) .
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Abstract. A symmetric butterfly network (BFN) with a full-duplex re-
lay operating in a bi-directional fashion for feedback is considered. This
network is relevant for a variety of wireless networks, including cellular
systems dealing with cell-edge users. Upper bounds on the capacity re-
gion of the general memoryless BFN with feedback are derived based
on cut-set and cooperation arguments and then specialized to the lin-
ear deterministic BFN with relay-source feedback. It is shown that the
upper bounds are achievable using combinations of the compute-forward
strategy and the classical decode-and-forward strategy, thus fully charac-
terizing the capacity region. It is shown that net rate gains are possible
in certain parameter regimes.

Keywords: butterfly network, interference relay channel with feedback,
capacity, inner bound, outer bound.

1 Introduction

Ahlswede [1] introduced the Interference Channel (IC) as an information theo-
retic model to capture scenarios where simultaneous transmission of dedicated
messages by multiple sources to their respective destination takes place on a
shared channel. Such a channel is important, for instance, in cellular networks
with cell edge users that suffer from interference caused by base stations in neigh-
boring cells. The phenomenon of interference is not limited to cellular networks
and occurs in many other networks such as ad-hoc wireless networks. In the
most extreme case, there might be no direct communication link between the
transmitting node and its intended receiver due to large obstructing objects. In
these cases simply increasing the power level at the transmitting base stations
will not resolve the problem. A possible solution is to use dedicated relay sta-
tions to enable communication among source-destination pairs. Such a network
was studied by Avestimehr et al. in [4] under the assumption that the relay
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nodes are half-duplex; their channel model is known as the butterfly network
(BFN) with a half-duplex relay.1 In [4] the authors exploited network coding
ideas in order to design transmission strategies that were shown to be optimal
for the linear deterministic approximation of the Gaussian noise BFN at high
SNR2 and to achieve capacity to within 1.95 bits per channel use at any finite
SNR. Note that the BFN is a special case of the interference relay channel (IRC)
[17,13,7] shown in Fig. 1 obtained by setting the direct links to zero. In this
paper, we consider a BFN in which the nodes are full-duplex and where a ded-
icated feedback channel exists from the relay to the sources. From a slightly
different perspective, the resulting setup can be considered as an IC utilizing a
bi-directional relay for interference management to achieve higher data rates.

1.1 Contributions

The main contribution of this paper is the characterization of the capacity region
of the full-duplex linear deterministic BFN with relay-source feedback.

First, we introduce the general memoryless IRC with Feedback (IRCF) where
each node is full-duplex and has both an input to and an output from the
channel. For such an IRCF, depicted in Fig. 2, we provide upper bounds on
the achievable rates based on the cut-set bound [9, Thm.15.10.1] and based on
an upper bound recently derived for the general cooperative IC [18]. We then
specialize these upper bounds to the linear deterministic BFN with relay-source
feedback depicted in Fig. 3 for which we provide a complete characterization of
the capacity region.

Our achievable strategies aim to establish cooperation among the source nodes
and the relay and to exploit the feedback from the relay to the source nodes.
The relay participates in the delivery of the messages, since clearly in the setup
of Fig. 3 communications is only possible via the relay. We develop transmission
strategies where both the relay-destination links and the feedback links are used
to deliver messages from the sources to the destination. We use the following
main ingredients:

– Decode-forward (DF): Each source sends a “D-signal” to be decoded and
forwarded by the relay using classical DF [8].

– Compute-forward (CF): Each source sends a “C-signal”. The relay de-
codes a function (in our specific case the sum) of the C-signals and forwards
it to the destinations. Since the processing at the relay does not involve
decoding each C-signal separately, but “computing” their sum, the strategy
is refered to as compute-forward [15]. This strategy is designed in such a
way that each destination can decode both the interfering C-signal and the
forwarded sum of C-signals. Backward decoding is used at the destinations

1 Note that the classical butterfly network with multicast message was used by
Ahlswede et al. in [2] to demonstrate the capabilities of network coding.

2 The deterministic approximation of a Gaussian noise network is a deterministic mod-
el where the Gaussian additive noises are neglected so as to focus on the interaction
of users’ signals [3].
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Fig. 1. The Interference Relay Channel (IRC)

Fig. 2. The general memoryless Interference Relay Channel with Feedback (IRCF)

Fig. 3. The linear deterministic butterfly network with relay-source feedback
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to recover the desired C-signal. A similar strategy was used in [7] for the
IRC, and a half-duplex variant was also used in [4] for the half-duplex BFN.

– Cooperative Neutralization (CN): Each source sends two “N-signals”: a
“present N-signal” and a “future N-signal”. The future N-signal is intended
for the relay only, which computes the sum of the future N-signals. The
relay then forwards this sum in the next channel use (note that the “future
N-signals” of the i-th channel use are “present N-signals” in channel use
i + 1). This strategy is designed as follows. The forwarded N-signal sum
from the relay and the interfering N-signal from the cross link interfere at the
destination in such a way that neutralizes interference (on the fly) leaving
the desired N-signal interference free. A similar strategy was used for the
interference channel with cooperation in [19] and for the half-duplex BFN
in [4].

– Feedback (F): Each source sends an “F-signal” to the relay. The two
sources and the relay operate on the F-signals as in the bi-directional relay
channel [16,12,5]. In a nutshell, the bi-directional relay channel is a setup
consisting of two nodes that want to establish two way communications via a
relay node, where each node is a transmitter and a receiver at the same time.
In the BFN with feedback, the relay-source feedback channels together with
the source-relay forward channels establish such bi-directional relay channel.
Therefore, as in the bi-directional relay channel, each source is able to obtain
the F-signal of the other source. Then, the sources use their cross link to
deliver the F-signal of the other source node to its respective destination.

Our general achievable strategy uses a combination of these techniques depend-
ing on the channel parameters. The following give a rational as of why certain
schemes should be used for a specific scenarios:

– If the source-relay channel is stronger than the source-destination (cross)
channel, then the sources can pass some future information to the relay
without the destinations noticing (below their noise floor). This future in-
formation is to be used in the next channel use for interference neutralization.
If the source-relay channel is weaker than the source-destination channel, the
CN strategy should be avoided since the transmission of future information
to the relay disturbs the destinations in this case.

– On the other hand, the F strategy is to be used when the source-destination
(cross) channel is stronger than the relay-destination channel. In this case,
the sources can send the signal acquired via feedback to the destinations,
which is received by the destination at a higher SNR than the relay signal.
This allows the destination to decode this signal, strip it, and then proceed
with decoding the relay signal. Otherwise, if the cross channel is weaker
than the relay-destination channel, then such transmission would disturb
the relay transmission and should be avoided.

– In the CF strategy, each destination has to decode two observations of the
C-signals in each channel use (the interfering C-signal and the sum of the C-
signals), whereas the relay has to decode only one observation (the C-signal
sum). Therefore, this scheme requires more levels at the destinations than
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at the relay. For this reason, the CF strategy is to be used by the relay if
the source-relay channel is weaker than either the relay-destination channel
or the source-destination (cross) channel (as in [7]).

– The DF strategy can be always used to achieve asymmetric rate points.

By using this intuition, we design achievable strategies for different parameter
regimes that meet the derived outer bounds for the linear deterministic BFN
with relay-source feedback, thus characterizing its capacity region completely.

1.2 Paper Organization

The general flow of the paper is as follows. We define the general memoryless
IRCF in Sect. 2 where we also provide upper bounds. The linear deterministic
BFN with relay-source feedback is defined in Sect. 3 and its upper bounds are
derived in Sect. 4. The coding strategies (DF, CF, CN, and F) that constitute
the basic building block of our achievable schemes are described in Sect. 5. The
capacity achieving scheme is described and analyzed in Sect. 6 and 7, for the two
regimes where relay-source feedback does not and does, respectively, increase the
capacity with respect to the non-feedback case. We discuss the net-gain due to
feedback in Sect. 8. Sect. 9 concludes the paper.

1.3 Notation

We use XN to denote the length-N sequence (X1, X2, . . . , XN ), (x)+ :=
max{0, x} for x ∈ IR, and 0� to denote the all-zero vector of length � ∈ IN.
For a vector x(i) given as

x(i) =

⎡⎢⎢⎢⎣
x[1](i)
x[2](i)

...

x[K](i)

⎤⎥⎥⎥⎦ ,
i denotes the time index, and x[k](i) is the k-th component of x(i), which can be
scalar or vector depending on the context. xT is the transpose of the vector x.

2 The Memoryless IRC with Relay-Source Feedback:
Channel Model and Outer Bounds

In Section 2.1 we introduce the memoryless IRC with general feedback even
though in the rest of the paper we will be analyzing the case of relay-source
feedback only. The reason for doing so is that the general feedback model allows
us to easily describe the proposed outer bounds for the relay-source feedback
model in Section 2.2.
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2.1 The Memoryless IRC with General Feedback

A memoryless IRC with general feedback is a five node network with a relay
(node 0), two sources (nodes 1 and 2), and two destinations (nodes 3 and 4)
sharing the same channel, as shown in Fig. 2. All nodes are full-duplex and
causal. Node j, j ∈ {1, 2}, has an independent message Mj ∈ {1, . . . , 2NRj},
where N ∈ IN is the code-length and Rj ∈ IR+ the rate in bits per channel
use, to be sent to node j + 2. The operations performed at each node can be
described in general as follows:

– Node 0 receives Y0 and sendsX0, where the i-th symbol ofXN
0 is constructed

from Y i−1
0 using an encoding function E0,i, i.e., X0,i = E0,i(Y i−1

0 ).
– Node 1 receives feedback information Y1 and sends X1, where X1,i is con-

structed from the message M1 and from Y i−1
1 using an encoding function

E1,i, i.e., X1,i = E1,i(M1, Y
i−1
1 ).

– Node 2 operates similarly to node 1, i.e., X2,i = E2,i(M2, Y
i−1
2 ).

– Node 3 receives Y3 and sends X3, where X3,i is constructed from Y i−1
3 using

an encoding function E3,i, i.e., X3,i = E3,i(Y i−1
3 ). After N channel uses,

node 3/destination 1 tries to obtain M1 from Y N
3 using a decoding function

D3, i.e., M̂1 = D3(Y
N
3 ). An error occurs if M1 �= M̂1.

– Node 4 operates similarly to node 3/destination 1, i.e., X4,i = E4,i(Y i−1
4 )

and M̂2 = D4(Y
N
4 ). An error occurs if M2 �= M̂2.

The channel has transition probability PY0,Y1,Y2,Y3,Y4|X0,X1,X2,X3,X4
and is as-

sumed to be memoryless, that is, for all i ∈ IN the following Markov chain holds

(W1,W2, X
i−1
0 , X i−1

1 , X i−1
2 , X i−1

3 , X i−1
4 , Y i−1

0 , Y i−1
1 , Y i−1

2 , Y i−1
3 , Y i−1

4 )

→ (X0,i, X1,i, X2,i, X3,i, X4,i) → (Y0,i, Y1,i, Y2,i, Y3,i, Y4,i).

We use the standard information theoretic definition of a code, probability of
error and achievable rates [9]. We aim to characterize the capacity defined
as the convex closure of the set of non-negative rate pairs (R1, R2) such that

maxj∈{1,2} IP[Mj �= M̂j] → 0 as N → ∞.
This model generalizes various well studied channel models. For instance,

it models the classical IC [6] (for Y1 = Y2 = Y0 = X0 = X3 = X4 = ∅),
the IC with cooperation [18] (for Y0 = X0 = ∅), the classical IRC [13,7] (for
Y1 = Y2 = X3 = X4 = ∅), etc.

2.2 Upper Bounds for the Memoryless IRC with Relay-Source
Feedback

The memoryless IRC with relay-source feedback is obtained from the model in
Section 2.1 by setting X3 = X4 = ∅. We next derive several upper bounds on
achievable rate pairs for the general memoryless IRC with relay-source feedback.
We note that the described techniques apply to the general IRCF and do not
require necessarily X3 = X4 = ∅. We start with the cut-set bound [9] and then
we adapt upper bounds for the general memoryless IC with cooperation given
in [18] to our channel model.



Butterfly Network with Feedback 173

Cut-Set Bounds: The cut-set bound [9] applied to a general network with
independent messages at each node states that an achievable rate vector must
satisfy

R(S → Sc) ≤ I(X(S);Y (Sc)|X(Sc)), (1)

for some joint distribution on the inputs, where S is a subset of the nodes in the
network, Sc is the complement of S, and R(S → Sc) indicates the sum of the
rates from the source nodes in S to the destination nodes in Sc.

For the IRCF, by using (1), the rate R1 can be bounded as

R1 ≤ I(X1;Y0, Y2, Y3|X0, X2) (2a)

R1 ≤ I(X1, X2;Y0, Y3|X0) (2b)

R1 ≤ I(X0, X1;Y2, Y3|X2) (2c)

R1 ≤ I(X0, X1, X2;Y3), (2d)

for some input distribution PX0,X1,X2 .
Similarly, we can bound R2 by replacing the subscripts 1, 2, and 3 with 2, 1,

and 4, respectively, in (2).
The sum-rate can be bounded as

R1 +R2 ≤ I(X1, X2;Y0, Y3, Y4|X0) (3a)

R1 +R2 ≤ I(X0, X1, X2;Y3, Y4), (3b)

for some input probability distribution PX0,X1,X2 .

Cooperation Upper Bounds: As mentioned earlier, the IC with general co-
operation is a special case of the IRCF obtained by setting Y0 = X0 = ∅. An
upper bound for the sum-capacity of the IC with general cooperation is [18]

R1 +R2 ≤ I(X1;Y3, Y2|Y4, X2, X3, X4) + I(X1, X2, X3;Y4|X4), (4a)

R1 +R2 ≤ I(X2;Y4, Y1|Y3, X1, X3, X4) + I(X1, X2, X4;Y3|X3). (4b)

for some PX1,X2,X3,X4 .
In the interference relay channel with feedback, if we let the relay perfectly

cooperate with one of the other nodes in the network, then the model again
reduces to an IC with general cooperation in which one of the nodes has an
enhanced input and output. Since cooperation cannot decrease capacity, any
outer bound for the IC with general cooperation is an upper bound to the ca-
pacity of the interference relay channel with feedback. In particular, if node j,
j ∈ {1, 2, 3, 4}, cooperates with the relay (node 0), then in (4) we replace Xj

with (Xj , X0) and Yj with (Yj , Y0). Moreover, since we do not consider feedback
from the destinations in this paper, we set X3 = X4 = ∅ after this substitution.
This yields the following upper bounds:
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1. Full cooperation between node 1 and node 0, giving an IC with bi-directional
cooperation between nodes 1 and 2 where node 1 sends (X1, X0) and receives
(Y1, Y0):

R1 +R2 ≤ I(X1, X0;Y3, Y2|Y4, X2) + I(X1, X0, X2;Y4), (5a)

R1 +R2 ≤ I(X2;Y4, Y1, Y0|Y3, X1, X0) + I(X1, X0, X2;Y3). (5b)

2. Full cooperation between node 2 and node 0, giving an IC with bi-directional
cooperation between nodes 1 and 2 where node 2 sends (X2, X0) and receives
(Y2, Y0):

R1 +R2 ≤ I(X1;Y3, Y2, Y0|Y4, X2, X0) + I(X1, X2, X0;Y4), (5c)

R1 +R2 ≤ I(X2, X0;Y4, Y1|Y3, X1) + I(X1, X2, X0;Y3). (5d)

3. Full cooperation between node 3 and node 0, giving an IC with uni-directional
cooperation between node 3 and 4 and with feedback from node 3 to nodes
1 and 2, where node 3 sends X0 and receives (Y3, Y0):

R1 +R2 ≤ I(X1;Y3, Y0, Y2|Y4, X2, X0) + I(X1, X2, X0;Y4), (5e)

R1 +R2 ≤ I(X2;Y4, Y1|Y3, Y0, X1, X0) + I(X1, X2;Y3, Y0|X0). (5f)

4. Finally, full cooperation between node 4 and node 0, giving an IC with uni-
directional cooperation between node 4 and 3 and with feedback from node
4 to nodes 1 and 2, where node 4 sends X0 and receives (Y4, Y0):

R1 +R2 ≤ I(X1;Y3, Y2|Y4, Y0, X2, X0) + I(X1, X2;Y4, Y0|X0), (5g)

R1 +R2 ≤ I(X2;Y4, Y0, Y1|Y3, X1, X0) + I(X1, X2, X0;Y3). (5h)

These upper bounds will be used next to upper bound the capacity region of
the butterfly network with relay-source feedback. As it turns out, these bounds
suffice to characterize the capacity of the symmetric linear deterministic butterfly
network.

3 The Linear Deterministic Butterfly Network with
Feedback

We consider here a special case for the IRC with relay-source feedback described
in the previous section, namely the linear deterministic channel that is by now
customarily used to approximate a Gaussian noise network at high SNR as orig-
inally proposed by [3].

We assume a dedicated out-of-band feedback channel between node 0 on one
side, and nodes 1 and 2 on the other side. For this reason, we write X0 as
(Xr, Xf) where Xr is the in-band relay signal to the destinations and Xf is
the out-of-band feedback signal to the sources. The input-output relations of
this linear deterministic IRCF with out-of-band feedback from the relay to the
sources is
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Y0 = Sq−n10X1 + Sq−n20X2, (6a)

Y1 = Sq−n01Xf , (6b)

Y2 = Sq−n02Xf , (6c)

Y3 = Sq−n13X1 + Sq−n23X2 + Sq−n03Xr, (6d)

Y4 = Sq−n14X1 + Sq−n24X2 + Sq−n04Xr, (6e)

where Y0 is the channel output at relay, Y1 and Y2 are the received feedback
signal at the sources, and Y3 and Y4 are the received signals at the destinations.
Here q := max{njk}, with njk ∈ IN for j ∈ {0, 1, 2} and k ∈ {0, 1, 2, 3, 4} and S
is the q × q shift matrix

S :=

⎡⎢⎢⎢⎣
0 0 0 . . .
1 0 0 . . .
0 1 0 . . .
...
...
...
. . .

⎤⎥⎥⎥⎦ .
All signals are binary vectors of length q and addition is the component-wise
addition over the binary field.

As the number of parameters in the general channel model in (6) is large,
we resort to a symmetric setup for simplicity of exposition. This simplification
reduces the number of parameters, and thus leads to complete analytical, clean,
and insightful capacity region characterization. In the symmetric scenario the
channel model in (6) has the following parameters

n13 = n24 = 0 (direct channel),

n14 = n23 = nc (cross channel),

n03 = n04 = nr (relay-destination channel),

n10 = n20 = ns (source-relay channel),

n01 = n02 = nf (feedback channel).

Thus, the symmetric linear deterministic BFN with feedback shown in Fig. 3
has the following input-output relationship

Y0 = Sq−ns
(
X1 +X2

)
, (7a)

Y1 = Sq−nfXf , (7b)

Y2 = Sq−nfXf , (7c)

Y3 = Sq−ncX2 + Sq−nrXr, (7d)

Y4 = Sq−ncX1 + Sq−nrXr. (7e)
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The main focus of the rest of the paper is to determine the capacity region of
the network described by (7). In the following section, we provide matching
upper and lower bounds for the linear deterministic BFN with feedback thereby
completely characterizing the capacity region.

4 Upper Bounds for the Linear Deterministic BFN with
Feedback

In this section we specialize the general bounds given in Section 2.2 to the linear
deterministic BFN described in Section 3. Our main result is as follows.

Theorem 1. The capacity region of the linear deterministic BFN with source-
relay feedback is contained in the set of rate pairs (R1, R2) such that

0 ≤ R1 ≤ min{ns, nr + nf ,max{nc, nr}} (8a)

0 ≤ R2 ≤ min{ns, nr + nf ,max{nc, nr}} (8b)

R1 +R2 ≤ max{nr, nc}+ nc (8c)

R1 +R2 ≤ max{nr, nc}+ (ns − nc)
+ (8d)

R1 +R2 ≤ ns + nc. (8e)

The details of the proof can be found in the Appendix.
An intuitive explanation of the single-rate bounds in Thm. 1 is as follows.
Since communications is only possible via the relay, source 1 can not send

more bits per channel use than the relay can receive; thus, we have the bound
R1 ≤ ns in (8a). Now assume that the channel to the relay is very strong (say of
infinite capacity); in this case, the rate achieved by a source can not exceed the
capacity of the outgoing channels from the relay, i.e., nr + nf in (8a). Finally,
the rate R1 can not exceed the amount of information that can be received
by node 3/destination 1, which is given by max{nc, nr}, and hence the bound
R1 ≤ max{nc, nr} in (8a). Similar reasoning holds for the bound in (8b).

Interestingly, the sum-rate bounds in (8c)-(8e) do not depend on the feedback
parameter nf . As we shall see in the following sections, given nr > nc, the
region in (8) is as for nf = 0, i.e., no gain from the availability of a dedicated
relay-source feedback channel. In this case, the relay-destination link is so strong
that the relay can help the destinations resolve their signals without the need of
source cooperation. On the other hand, when nr < nc, relaying can be improved
upon by source cooperation enabled by the presence of feedback; in this case,
we can have a ‘net-gain’ from feedback that is larger than the ‘cost’ of feedback.
We will expand on this idea after we proved the achievability of the outer bound
in Thm. 2.

5 Achievable Strategies

The main result of this section is as follows:
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Theorem 2. The outer bound region in Thm. 1 is achievable.

Before we prove the achievability of the outer bound in Thm. 1, we describe
the different coding strategies that we will use in the achievability proof. Each
strategy is discussed separately in the rest of this section. The proof of Thm. 2
is a careful combination of these strategies for different parameter regimes. The
actual proof of Thm. 2, due to its length, is split between Section 6 and Section 7.

5.1 Cooperative Interference Neutralization

We propose a signaling scheme which we call cooperative interference neutraliza-
tion, or CN for short. The main idea of CN is to allow the relay to know some
information about future source transmissions, in order to facilitate interference
neutralization. This is done as follows. Each source sends two N-signals in the
i-th channel use, which we call uj,n(i) and uj,n(i + 1), where j ∈ {1, 2} is the
source index, the subscript n is used to denote N-signals, and where i is the
channel use index. uj,n(i) is the N-signal to be decoded by the destination in
the i-th channel use, while uj,n(i + 1) is to be decoded in the next channel use
i + 1. Therefore, the source sends the present and the future N-signals. The
future one, uj,n(i + 1) is intended for the relay, and is not decoded at the des-
tinations. The relay attempts to decode u1,n(i + 1) ⊕ u2,n(i + 1) in the i-th
channel use. This sum is then sent in the next channel use i + 1, on the same
levels where u2,n(i+1) is observed at node 3/destination 1 (note that u2,n(i+1)
is interference from node 3/destination 1’s perspective), resulting in interference
neutralization since u1,n(i + 1) ⊕ u2,n(i + 1) ⊕ u2,n(i + 1) = u1,n(i + 1). This
allows node 3/destination 1 to decode its desired N-signal in channel use i+ 1.

In Fig. 4, as well as in similar figures in the following, the vertical bars rep-
resent bit vectors and the circles inside them represent bits. On the left we
represent the bits of the sources (node 1 on top and node 2 at the bottom)
and on the right the bits of the destinations (node 4/destination 2 on top and
node 3/destination 1 at the bottom); the relay is represented in the middle.
Lines connecting circles represent bit-pipes, and when a level (circle) receives 2
bit-pipes (lines), the modulo-2 sum of the bits is observed (valid at the relay
and the destinations). The in-band channel is drawn in black, while the out-of-
band feedback channel is drawn in red. When the red channel is not shown, this
means that either nf = 0 (no feedback channel to the sources) or the feedback
channel is not used.

An illustrative example for CN is given in Fig. 4. In Fig. 4 destination 1/node 3
receives on its the second level u2,n(i) ⊕ u1,n(i) ⊕ u2,n(i) = u1,n(i), that is,
thanks to CN, the signal u1,n(i) is received interference free. Similarly, destina-
tion 2/node 4 obtains u2,n(i) interference free. Note how the sources pass the
future N-signals to the relay without disturbing the destinations.

From Fig. 4 we remark that by using CN each source can send Rn bits per
channel use over Rn levels at the destination while using 2Rn levels at the relay.
Due to this fact, this strategy is preferable when ns is larger than nc.

To realize the CN strategy we use block Markov coding. Each source sends
N signals in N +1 channel uses. Starting with an initialization step, the sources
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send uj,n(1) in channel use i = 0 while the relay remains silent. Then, each source
sends both uj,n(i) and uj,n(i+1) in the i-th channel use for i = 1, . . . , N−1 while
the relay sends u1,n(i) ⊕ u2,n(i). Finally, in the N -th channel use, each source
sends uj,n(N) only and the relay sends u1,n(N) ⊕ u2,n(N). Each destination
decodes its desired N-signal starting from i = 1 till i = N . Thus, assuming that
uj,n is a binary vector of length Rn, each source is able to successfully deliver
NRn bits over the span of N + 1 channel uses. Hence, the rate per channel use
would be N

N+1Rn which approaches Rn for large N . This factor N
N+1 will be

ignored from now on, as we always choose N to be large.
A strategy similar to the CN strategy was also used in the interference channel

with generalized feedback in [19], where the sources exchanges bits below the
noise floor of the receivers, which are then used in the next slot to ‘zero force’
the interference. A half-duplex variant of this scheme was also used for the
half-duplex BFN in [4].

Fig. 4. A graphical illustration of the CN strategy. Due to interference neutralization,
node 3/destination 1 receives u2,n(i) ⊕ u1,n(i) ⊕ u2,n(i) = u1,n(i) interference free at
the second level. Similarly, node 4/destination 2 obtains u2,n(i). Using this strategy
in this setup, each source can send 1 bit per channel use. Note how the sources pass
the future N-signals to the relay without disturbing the destinations.

5.2 Compute-Forward

We use compute-forward at the relay [15] (CF) to deliver both source messages to
both destinations. The CF strategy works as follows (see Fig. 5 for an example).
Each source sends a signal uj,c(i) in the i-th channel use, i = 1, . . . , N and where
we use the subscript c to indicate C-signals. The relay decodes the function/sum
u1,c(i) ⊕ u2,c(i) in the i-th channel use and sends it in the next channel use on
a different level at the destinations. This process is repeated from i = 1 till
i = N + 1, where the sources are active in channel uses i = 1, . . . , N and the
relay is active in channel uses i = 2, . . . , N + 1.

Thus, node 3/destination 1 for instance receives u2,c(i) and u1,c(i−1)⊕u2,c(i−
1) in the i-th channel use, i = 2, . . . , N . In the first channel use, it only receives
u2,c(1) since the relay has no information to send in this channel use. In channel
use N + 1, it only receives u1,c(N) ⊕ u2,c(N) from the relay since the sources
do not send in this channel use. Decoding is performed backwards starting from
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i = N +1, where only the relay is active and thus u1,c(N)⊕u2,c(N) is decoded.
In the N -th channel use, destination 1 decodes u1,c(N − 1) ⊕ u2,c(N − 1) and
u2,c(N). Then, it adds the two observations of the signals with time index N ,
i.e., u1,c(N)⊕ u2,c(N) and u2,c(N) to obtain its desired signal u1,c(N). Similar
decoding is performed at node 4/destination 2. Decoding proceeds backwards
till i = 1 is reached. If the signals uj,c are binary vectors of length Rc, then
each source achieves Rc bits per channel use for large N using this strategy.
The signals sent using this strategy are “public”, in the sense of the Han and
Kobayashi’s achievable region for the classical IC [11], i.e., each destination
decode both C-signals from source 1 and 2.

An example of CF strategy is given in Fig. 5. Here node 3/destination 1
decodes u1,c(i− 1)⊕u2,c(i− 1) and u2,c(i) in the i-th channel use. By backward
decoding, it can add u1,c(i−1)⊕u2,c(i−1) (decoded in the i-th channel use) and
u2,c(i− 1) (decoded in channel use i− 1) to obtain its desired signal u1,c(i− 1).

Notice from Fig. 5 that the CF strategy allows the sources to send Rc bits
each while using Rc levels at the relay and 2Rc levels at the destinations. For this
reason, this strategy is preferable when the number of levels at the destinations
max{nc, nr} is larger than ns.

Fig. 5. A graphical illustration of the CF strategy. Node 3/destination 1 decodes
u1,c(i − 1) ⊕ u2,c(i − 1) and u2,c(i) in the i-th channel use. By backward decoding,
it can add u1,c(i − 1) ⊕ u2,c(i − 1) (decoded in the i-th channel use and u2,c(i − 1)
(decoded in channel use i − 1) to obtain its desired CP signal u1,c(i − 1). Using this
strategy in this setup, each source can send 1 bit per channel use.

5.3 Feedback

Symmetric: Here both sources use the same strategy. This strategy exploits
the feedback channel between the relay and the sources to establish cooperation
between the sources. It is similar to the scheme used in the linear deterministic
bi-directional relay channel in [14]. Each source j, j ∈ {1, 2}, sends a feedback
(F) signal uj,f(i) in the i-th channel use, where the subscript f is used to indicate
F-signals. The relay decodes the sum u1,f (i) ⊕ u2,f(i) in the i-th channel use
and feeds it back to the sources in channel use i+1. In channel use i+1, source
1 for instance decodes u1,f (i)⊕ u2,f(i) from the feedback channel, and extracts
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u2,f(i), having its own signal u1,f (i) as “side information”. Then, it sends this
information to destination 2 using its cross channel in channel use i + 2 (see
Fig. 6). A similar procedure is done at the second source.

Note that this scheme incurs a delay of 2 channel uses. Each source sends N
F-signals from the first channel use till channel use i = N . The relay feeds these
signals back in the channel uses i = 2, . . . , N+1. Finally, nodes 1 and 2 send the
F-signals to their respective destinations in the channel uses i = 3, . . . , N + 2.
If the F-signals uj,f are vectors of length Rf , then each source can successfully
deliver NRf bits in N + 2 channel uses. Thus the rate that each source can
achieve per channel use approaches Rf for large N .

An illustrative example for symmetric F strategy is shown in Fig. 6. The
sources send uj,f (i) to the relay in the i-th channel use, which decodes the sum
u1,f(i)⊕u1,f(i). In the same channel use, the relay feeds the signal u1,f(i− 1)⊕
u1,f(i−1) (decoded in channel use i−1) back to the sources. Nodes 1 and 2 use
this sum to extract u2,f(i− 1) and u1,f (i− 1), respectively. Nodes 1 and 2 also
send u2,f(i − 2) and u1,f (i − 2) (decoded in channel use i − 1), respectively, to
their respective destinations via the cross link in the i-th channel use. Nodes 3
and 4 decode u1,f (i − 2) and u2,f(i − 2), respectively, in channel use i. Note
that nodes 1 and 2 always send information to the relay which renders some
levels at the sources always occupied. Thus, the sources have to use other levels
for sending the F-signals to the respective destinations. In general, for each
F-signal, the symmetric F strategy uses 2 levels at the sources and 1 level for
feedback.

Notice from Fig. 6 that we have sent the F-signals on levels that could have
also been used by the relay to send the same amount of bits (using CN or CF). As
we shall see, this symmetric F strategy does not increase the capacity if nc ≤ nr.
The F strategy would increase the capacity if nc is larger than nr, in which case
the sources would send the F-signals to their respective destinations over levels
that are not accessible by the relay, thus not disturbing the relay transmission
while doing so.

Asymmetric: The symmetric F strategy achieves symmetric rates for the F-
signals, i.e., the rate achieved by source 1 is equal to that of source 2. We can
also use the F strategy in an asymmetric fashion as follows. Node 1 sends u1,f (i)
to the relay in the i-th channel use, the relay decodes this signal and feeds it
back to node 2 in channel use i + 1, which sends it to node 3/destination 1 in
the channel use i + 2 on the same level used by node 1. This causes the signals
u1,f(i) and u1,f (i − 2) to interfere at the relay. However, the relay can always
resolve this interference since it decoded u1,f(i − 2) in channel use i− 2. If the
vector u1,f (i) has length Rf , then this strategy achieves the rate point (Rf , 0).

An illustrative example for the asymmetric F strategy is given in Fig. 7 where
source 1 can send 1 bit per channel use to destination 1, achieving the rate
pair (1, 0). Note that the same rate pair can be achieved using the symmetric
F strategy (Fig. 6) by setting u2,f = 0. But this would be inefficient since it
consumes 2 levels at the relay for reception. The same rate pair can be achieved
using the asymmetric F strategy while using only 1 level at the relay as shown
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Fig. 6. A symmetric feedback strategy. Node 1 sends its own F-signal u1,f (i) to the
relay to be fed back to node 2 in the next channel use. At the same time, node 1 sends
node 2’s F-signal u2,f (i − 2), acquired via feedback, to node 4/destination 2. Node 2
performs similar operations. Notice the bi-directional relay channel formed by nodes 1
and 2 and the relay.

Fig. 7. An asymmetric feedback strategy. Node 1 sends the F-signal u1,f (i) to the
relay. The relay decodes this signal and feeds it back to node 2 in the next channel
use. Node 2 in its turn sends node 1’s F-signal u1,f (i − 2), acquired via feedback, to
node 3/destination 1.

in Fig. 7. This leaves one level at the relay unused, providing more flexibility to
combine the F strategy with other strategies. Since our aim is to characterize the
capacity region of the linear deterministic BFN with feedback, we are going to
need strategies which achieve asymmetric rates efficiently. Both the symmetric
and the asymmetric F strategies will be used in the sequel.

5.4 Decode-Forward

The last strategy we describe in this section is the decode-forward (DF). Al-
though this strategy is well known[8], we describe it here to draw the reader’s
attention to a convention we will adopt in the following. In classical DF, each
source sends a public signal uj,d(i) in the i-th channel use, i = 1, . . . , N and
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where the subscript d is used to denote D-signals, the relay decodes both u1,d(i)
and u2,d(i) in the i-th channel use, maps them to ur,d(i) which it forwards in
channel use i+ 1 (see Fig. 9).

For convenience, this operation is represented as follows (see Fig. 8). Let the
D-signal of source 1 in channel use i, u1,d(i), be a vector of length R1d + R2d

where the lower-most R2d positions of u1,d(i) are zeros. Similarly, let u2,d(i) be
of length R1d + R2d with zeros in the top-most R1d positions. Then, source 1
sends u1,d(i) and source 2 sends u2,d(i). The relay then decodes u1,d(i)⊕u2,d(i),
a process which is equivalent to decoding both u1,d(i) and u2,d(i) separately
due to the zero padding. The relay then forwards ur,d(i) = u1,d(i) ⊕ u2,d(i) in
channel use i+ 1 (see Fig. 9).

Fig. 8. A graphical illustration of the structure of the D-signals. Notice how u1,d

and u2,d are zero-padded. Notice also that decoding the sum u1,d ⊕ u2,d is equivalent
to decoding the D-signals separately. In the sequel, we will use these colored bars to
represent the D-signals.

The destinations start decoding from channel use N+1 where only the relay is
active, and they both decode ur,d(N), which allows them to obtain both u1,d(N)
and u2,d(N). Decoding proceeds backward to the N -th channel use. In the N -th
channel use, the destinations start by removing uj,d(N) from the received signal
(which they know from channel use N + 1). Then, they decode ur,d(N − 1) to
obtain u1,d(N − 1) and u2,d(N − 1). In this way, the destinations obtain their
desired D-signals, R1d bits from source 1 and R2f bits from source 2. Decoding
proceeds backwards till the first channel use is reached. Thus, source 1 and
source 2 achieve R1d and R2d bits per channel use, respectively, for large N .
Notice that the D-signals are public since they are decoded at both destinations.

5.5 Remark on the Use of the Different Strategies

At this point, a remark about the DF strategy as compared to the CN strategy
in Sect. 5.1 is in order. Due to backward decoding, the interference caused by
the D-signal, u1,d(i) at node 4/destination 2 for instance, is not harmful since
it can be removed as long as the decoding of the D-signals was successful in
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Fig. 9. A graphical illustration of the decode-forward strategy. Node 4/destination 2
starts be removing u1,d(i) (known from the decoding process in channel use i+1) from
its received signal. Then it decodes the D-signal with time index i − 1. Using this
strategy in this setup, each source can send 1 bit per channel use.

channel use i+1. This is the reason why the relay and the sources can send over
the same levels at the destinations (as in Fig. 9), in contrast to CN, CF, and
F where separate levels have to be allocated to the source and the relay signals.
We summarize this point by saying that the D-signals uj,d(i) (from the sources)
should be received ‘clean’ at the relay but not necessarily so at the destinations.
In fact, the D-signals arriving from the sources do not have to be received at all
at the destinations since they are decoded from the relay signal.

Now consider the N-signals where an opposite statement holds. Since the relay
decodes in a forward fashion, and since the sources send ‘present’ and ‘future’
N-signals, i.e., uj,n(i) and uj,n(i + 1) in the i-th channel use, then interference
from the uj,n(i) is not harmful at the relay. This is true since this interference
is known from the decoding in channel use i − 1 at the relay, and hence can be
removed. The ‘present’ N-signal is however important at the destinations, since
it is the signal that participates in interference neutralization. We summarize
this statement by saying that the ‘present’ N-signal must be received ‘clean’ at
the destinations but not necessarily so at the relay. Additionally, the ‘future’
N-signal must be received ‘clean’ at the relay, but does not have to be received at
all at the destinations.

Combining these properties, we can construct a hybrid scheme where both CN
and DF are used, and where the N-signals and the D-signals overlap at the relay
and the destinations in a not harmful way, as illustrated in Fig. 10. Here, node 1

allows its present N-signal u1,n(i) = [u
[1]T
1,n (i), u

[2]T
1,n (i)]T to overlap with the

D-signal u1,d(i). And thus these signals also overlap at the destination nodes.
Nevertheless, the relay is still able to decode the necessary information and
forward it to the destinations which can still recover their desired information.
This overlap allows a more efficient exploitation of the channel levels.

In the following sections, we develop capacity achieving schemes for the linear
deterministic BFN with feedback which are based on combinations of the four
strategies explained above.
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Fig. 10. A graphical illustration of the combination of DF and CN. The relay can
obtain u1,d(i) and u2,d(i) in the i-th channel use after removing u

[1]
1,n(i) ⊕ u

[1]
2,n(i) and

u
[2]
1,n(i) ⊕ u

[2]
2,n(i) which it has decoded in channel use i − 1. Thus, this interference

between the N-signal and the D-signals at the relay is not harmful. In the i-th channel
use, node 3/destination 1 starts by removing u2,d(i) (known from the decoding process
in channel use i+ 1) from its received signal. Then it decodes u1,d(i− 1), u2,d(i− 1),

u
[1]
1,n(i), and u

[2]
1,n(i). Using this strategy each source can send 3 bit per channel use

which achieves the sum-capacity upper bound (cf. Thm. 2).

6 Achievability for nc ≤ nr

In this section, we show that the outer bound region given in Thm. 1 is achievable
for the case nc ≤ nr. First, we notice that if nc ≤ nr, then the feedback channel
nf does not have a contribution to the upper bounds in Thm. 1, which reduces
to

0 ≤ R1 ≤ min{ns, nr}
0 ≤ R2 ≤ min{ns, nr}
R1 +R2 ≤ nr + nc

R1 +R2 ≤ nr + (ns − nc)
+

R1 +R2 ≤ ns + nc.

In this case feedback does not increase the capacity of the BFN with respect to
the non-feedback case. The outer bound can be achieved without exploiting the
feedback link nf , and thus without using the F strategy, as per the discussion
at the end of Sect. 4. Hence, in this section we only use the strategies that do
not exploit feedback, i.e., CF, CN, and DF.

6.1 Case ns ≤ min{nc, nr} = nc ≤ nr:

Lemma 1. In the linear deterministic BFN with feedback with ns ≤ nc ≤ nr
the following region is achievable
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0 ≤ R1 ≤ ns

0 ≤ R2 ≤ ns

R1 +R2 ≤ nr,

This achievable rate region coincides with the outer bound given in Thm. 1.
Thus, the achievability of this region characterizes the capacity region of the
linear deterministic BFN with feedback with ns ≤ nc ≤ nr.

The rest of this subsection is devoted for the proof of this Lemma. In this case
max{nc, nr} ≥ ns and thus we use the CF strategy according to the discussion
in Sect. 5.2. We also use DF for achieving asymmetric rate tuples. Moreover,
since ns ≤ nc we do not use the CN strategy following the discussion in Sect.
5.1.

Encoding: Let us construct x1(i) in the i-th channel use as follows

x1(i) =

⎡⎢⎢⎣
u1,c(i)
u1,d(i)

0nc−Rc−R1d−R2d

0q−nc

⎤⎥⎥⎦ .
The signal u1,d is a vector of length R1d + R2d with the lower R2d components
equal to zero as described in Sect. 5.4. Thus, it contains R1d information bits.
The signal u1,c is a vector of length Rc. We construct x2(i) similarly, with u2,d
and u2,c being (R1d+R2d)×1 and Rc×1 binary vectors, respectively, where the
first R1d components of u2,d are zeros. The rates of the C-signal of both sources
are chosen to be equal.

Relay Processing: In the i-th channel use, the relay observes the top-most ns
bits of x1(i)⊕ x2(i). Under the following condition

Rc +R1d +R2d ≤ ns, (9)

the relay is able to observe both u1,c(i)⊕ u2,c(i) and u1,d(i)⊕ u2,d(i) and hence
to decode them.

Since in this case nr ≥ nc, the relay can access levels at the destinations above
those that can be accessed by the sources. Then, the signal u1,c(i) ⊕ u2,c(i) to
be forwarded by the relay is split into two parts as follows

u1,c(i)⊕ u2,c(i) =

[
u
[1]
1,c(i)⊕ u

[1]
2,c(i)

u
[2]
1,c(i)⊕ u

[2]
2,c(i)

]
,

where the upper part of length R
[1]
c is sent such that it arrives on top of the

signals from the sources, and the lower part of length R
[2]
c is sent below, with

Rc = R
[1]
c + R

[2]
c . Fig. 11 shows the transmit signal of node 2 (x2(i)) and the
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relay (xr(i)) and received signal of node 3 (y3(i)). For clarity, from this point on
we drop the labels of signals that do not undergo any change from left to right
in this type of pictorial illustration. Thus, the relay forwards xr(i + 1) in the
next channel use where

xr(i+ 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
nr−nc−R[1]

c

u
[1]
1,c(i)⊕ u

[1]
2,c(i)

0Rc

u1,d(i)⊕ u2,d(i)

u
[2]
1,c(i)⊕ u

[2]
2,c(i)

0
nc−R[1]

c −2R
[2]
c −R1d−R2d

0q−nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

This construction requires

R[1]
c + 2R[2]

c +R1d +R2d ≤ nc, (10)

R[1]
c ≤ nr − nc. (11)

Decoding at the Destinations: Node 3/destination 1 waits until the end of
channel use N + 1 where only the relay is active, and it receives the top-most

nr bits of xr(N + 1). Then, it decodes u
[1]
1,c(N) ⊕ u

[1]
2,c(N), u

[2]
1,c(N) ⊕ u

[2]
2,c(N),

and u1,d(N) ⊕ u2,d(N). Similarly at the second receiver. At this point, both
receivers have obtained both D-signals u1,d(N) and u2,d(N) which they extract
from u1,d(N)⊕ u2,d(N) (recall our discussion in Sect. 5.4).

The destinations proceed to the N -th channel use. The received signal at
node 3/destination 1 can be written as (see Fig. 11 or 12)

y3(N) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−nr

0
nr−nc−R[1]

c

u
[1]
1,c(N − 1)⊕ u

[1]
2,c(N − 1)

u2,c(N)
u2,d(N)⊕ u1,d(N − 1)⊕ u2,d(N − 1)

u
[2]
1,c(N − 1)⊕ u

[2]
2,c(N − 1)

0
nc−R[1]

c −2R
[2]
c −R1d−R2d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Since node 3/destination 1 knows u2,d(N), it can remove it from the received
signal (see Fig. 12). Then it proceeds with decoding

u
[1]
1,c(N − 1)⊕ u

[1]
2,c(N − 1), u

[2]
1,c(N − 1)⊕ u

[2]
2,c(N − 1), u2,c(N),

and u1,d(N − 1)⊕ u2,d(N − 1)

Having u2,c(N) allows node 3/destination 1 to obtain u1,c(N) as u1,c(N) ⊕
u2,c(N)⊕u2,c(N) = u1,c(N). Additionally, node 3/destination 1 obtains u1,d(N−
1) which is a desired signals. Furthermore, u2,d(N−1) and u1,c(N−1)⊕u2,c(N−
1) are obtained which are used in the decoding process in channel use N − 1.
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Fig. 11. A graphical illustration of the transmit signal of node 2, i.e., x2(i), the
transmit signal of the relay, i.e., xr(i), and the received signal at node 3/destination 1,
i.e., y3(i), using the capacity achieving scheme of the linear deterministic BFN with
feedback with ns ≤ nc ≤ nr. The color legend is shown on top.

In this process, node 3/destination 1 was able to recover its C and its D-signals
comprising of Rc and R1d bits, respectively. Node 4 performs similar operations.
The receivers proceed backwards till channel use 1 is reached.

Achievable Region: The rates achieved by source 1 and 2 are R1 = Rc +R1d

and R2 = Rc + R2d, respectively. Collecting the rate constraints (9), (10), and

(11), we get the following constraints on the non-negative rates R
[1]
c , R

[2]
c , R1d,

and R2d:

R[1]
c +R[2]

c +R1d +R2d ≤ ns

R[1]
c + 2R[2]

c +R1d +R2d ≤ nc

R[1]
c ≤ nr − nc.

Using Fourier-Motzkin’s elimination [10, Appendix D] we get the following achiev-
able region

0 ≤ R1 ≤ ns

0 ≤ R2 ≤ ns

R1 +R2 ≤ nr,

which proves Lemma 1.

6.2 Case ns > min{nc, nr} or Equivalently nc ≤ min{ns, nr}:
Now we consider the case where nc ≤ min{ns, nr}, i.e., the cross channel is
weaker than both the source-relay channel and the relay-destination channel. As
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Fig. 12. The decoding steps at the destination. Due to backward decoding,
node 3/destination 1 knows u2,d(i) and u1,c(i)⊕ u2,c(i) when decoding y3(i) (decoded
in channel use i + 1). It starts by removing u2,d(i) from y3(i). Then it decodes the
C-signal sum u1,c(i−1)⊕u2,c(i−1), the C-signal interference u2,c(i), and the D-signals
u1,d(i− 1) and u2,d(i− 1). Finally, it uses the CF sum u1,c(i) ⊕ u2,c(i) and u2,c(i) to
extract u1,c(i).

we have mentioned earlier, if ns ≥ nc, then we can pass some future information
to the relay without the destinations noticing by using the CN strategy. Thus,
we use CN in addition to CF and DF. For this case, we have the following lemma.

Lemma 2. The rate region defined by the following rate constraints

0 ≤ R1 ≤ min{ns, nr}
0 ≤ R2 ≤ min{ns, nr}
R1 +R2 ≤ ns + nc

R1 +R2 ≤ nr + nc

R1 +R2 ≤ nr + ns − nc,

is achievable in the linear deterministic BFN with feedback with nc ≤
min{ns, nr}.
This region coincides with the outer bound given in Thm. 1. Thus, the scheme
which achieves this region achieves the capacity of the linear deterministic BFN
with feedback with nc ≤ min{ns, nr}. We provide this capacity achieving scheme
in the rest of this subsection.

Encoding: At time instant i, node 1 sends the following signal

x1(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nc−Rc−R1d−R2d−Rn

u1,c(i)
u1,d(i)[

u1,n(i)
0ns−nc−Rn

]
⊕

[
0ns−nc−R1d−R2d

u1,d(i)

]
u1,n(i + 1)

0q−ns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,
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where u1,n(i+1) is the future information passed to the relay. The signals u1,c,
u1,d, u1,n, and u1,d are vectors of length Rc, R1d + R2d, Rn, and R1d + R2d,
respectively. Notice that this construction requires that

Rc +R1d +R2d +Rn ≤ nc (12)

R1d +R2d ≤ ns − nc (13)

Rn ≤ ns − nc. (14)

Using this construction, there can be an overlap between u1,n(i) and u1,d(i) at
the relay and at the destinations (see Fig. 13). However, this overlap is not
harmful (similar to the one discussed in Sect. 5.4). The overlapping D-signal is
marked with an overline to distinguish it from u1,d which does not overlap with
any signal at the relay.

Fig. 13. A graphical illustration of the x2(i), xr(i), and y3(i) for the capacity achieving
scheme of the linear deterministic BFN with feedback with nc ≤ min{ns, nr}. Notice
the overlap of uj,d and uj,n.

A similar construction is employed by the second source. As we show next, this
construction allows us to achieve the capacity region of the linear deterministic
BFN with feedback in this case. The task now is to find the conditions that R1d,
R2d, R1d. R2d Rc, and Rn should satisfy in order to guarantee reliable decoding.
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Relay Processing: The received signal at the relay consists of the top ns bits
of x1(i)⊕ x2(i). Let us write y0(i) as follows

y0(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−ns

0nc−Rc−R1d−R2d−Rn

u1,c(i)⊕ u2,c(i)
u1,d(i)⊕ u2,d(i)[

u1,n(i)⊕ u2,n(i)
0ns−nc−Rn

]
⊕

[
0ns−nc−R1d−R2d

u1,d(i)⊕ u2,d(i)

]
u1,n(i + 1)⊕ u2,n(i+ 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Fig. 14. The relay receives the superposition of x1(i) and x2(i) in the i-th channel use.
First, it removes u2,n(i)⊕u1,n(i) which it knows from the decoding process in channel
use i− 1. Next, it decodes u1,n(i+ 1)⊕ u2,n(i+ 1), u1,c(i)⊕ u2,c(i), u1,d(i) ⊕ u2,d(i),
and u1,d(i)⊕ u2,d(i) which it forwards in channel use i+ 1 as shown in Fig. 13.

In the i-th channel use, the relay knows u1,n(i) ⊕ u2,n(i) from the decoding
process in the channel use i− 1. This allows it to remove u1,n(i)⊕ u2,n(i) from
y0(i) (see Fig. 14). Then, the relay can decode u1,c(i)⊕u2,c(i), u1,d(i)⊕u2,d(i),
u1,d(i)⊕ u2,d(i), and finally u1,n(i+ 1)⊕ u2,n(i+ 1). At the end of channel use
i, the relay constructs the following signal

xr(i+ 1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0nr−R1d−R2d−2Rc−R1d−R2d−Rn

u1,d(i)⊕ u2,d(i)
u1,c(i)⊕ u2,c(i)

0Rc

u1,d(i)⊕ u2,d(i)
u1,n(i + 1)⊕ u2,n(i+ 1)

0q−nr

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(15)

and sends it in channel use i+1. The constituent signals of xr(i+ 1) in (15) fit
in an interval of size nr if

R1d +R2d + 2Rc +R1d +R2d +Rn ≤ nr. (16)
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Decoding at the Destinations: In the following, consider the processing at
node 3/destination 1 (the processing at node 4/destination 2 follows similar
lines). Node 3/destination 1 will observe the top-most nc bits of x2(i) plus the
top-most nr bits of xr(i) (modulo-2) at the i-th channel use. That is, we can
write the received signal at node 3/destination 1 as

y3(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−nr

0nr−R1d−R2d−2Rc−R1d−R2d−Rn

u1,d(i− 1)⊕ u2,d(i− 1)
u1,c(i− 1)⊕ u2,c(i− 1)

u2,c(i)
u1,d(i− 1)⊕ u2,d(i− 1)⊕ u2,d(i)

u1,n(i)⊕ uu2,d(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
where we used uu2,d(i) to denote the top-most (nc−ns+R1d+R2d+Rn)

+ bits of
u2,d(i). Notice the effect of CN: node 3/destination 1 receives u1,n(i) interference
free (except the interference caused by the previously decoded uu2,d(i) which is
not harmful) on the lowest Rn levels.

Fig. 15. The decoding process at node 3/destination 1. First, the receiver removes
u2,d(i) and u2,d(i) from y3(i) which it knows from the decoding process in channel
use i+ 1 (backward decoding). Then, it decodes the signals u1,d(i− 1) ⊕ u2,d(i − 1),
u1,c(i − 1) ⊕ u2,c(i − 1), followed by u2,c(i), u1,d(i − 1) ⊕ u2,d(i − 1) and u1,n(i).
Notice how cooperative neutralization CN allows node 3/destination 1 to decode u1,n(i)
interference free. Finally, u1,c(i) is extracted from u2,c(i) and u1,c(i)⊕ u2,c(i) (known
from the decoding process in block i+ 1).

Decoding at the receivers proceeds backwards. As shown in Fig. 15, node 3/des-
tination 1 starts with removing uu2,d(i) and u2,d(i). Then, it decodes u1,d(i− 1),
u2,d(i − 1), u1,c(i− 1)⊕ u2,c(i − 1), u2,c(i), u1,d(i− 1), u2,d(i − 1), and u1,n(i).
Decoding then proceeds backwards till i = 1.
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Achievable Region: Collecting the rate constraints (12)-(14) and (16), we
conclude that the non-negative rates R1,d, R2,d, R1,d, R2,d, Rc, and Rn can be
achieved if they satisfy

Rc +R1d +R2d +Rn ≤ nc

R1d +R2d ≤ ns − nc

Rn ≤ ns − nc

R1d +R2d + 2Rc +R1d +R2d +Rn ≤ nr.

Using Fourier Motzkin’s elimination with R1 = R1d +R1d +Rc +Rn and R2 =
R2d +R2d +Rc +Rn, we can show that the following region is achievable

0 ≤ R1 ≤ min{ns, nr}
0 ≤ R2 ≤ min{ns, nr}
R1 +R2 ≤ ns + nc

R1 +R2 ≤ nr + nc

R1 +R2 ≤ nr + ns − nc,

which proves Lemma 2. At this point, we have finished the proof of the achiev-
ability of Thm. 2 for nc ≤ nr.

7 Achievability for nc > nr

In this section, we prove Thm. 2 for the BFN with nc > nr, which reduces to

R1 ≤ min{ns, nr + nf , nc}
R2 ≤ min{ns, nr + nf , nc}

R1 +R2 ≤ nc + [ns − nc]
+.

In this case, nf contributes to the outer bounds. If the region defined by these
upper bounds is achievable, then feedback has a positive impact on the BFN.
This is what we shall prove next. That is, we show that this region is in fact
achievable, and hence that relay-source feedback increases the capacity of the
network if nc > nr when compared to the case nf = 0.

We first show a toy example to explain the main ingredients of the achievable
scheme. Then, depending on the relation between ns and nc, we split the proof
of the achievability of Thm. 1 for nc > nr to two cases: max{nr, ns} < nc and
nr < nc ≤ ns.

7.1 A Toy Example: Feedback Enlarges the Capacity Region

Consider a linear deterministic BFN with feedback where (nc, ns, nr) = (2, 3, 1).
According to the upper bounds above, the capacity of this setup is outer bounded
by
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R1 ≤ 1

R2 ≤ 1

if nf = 0 (please refer to Fig. 16). This capacity region is achieved using CN as
shown in Fig. 17.

Now assume that this network has a feedback channel from the relay to the
sources with capacity nf = 1. The capacity in this case is outer bounded by

R1 ≤ 2

R2 ≤ 2

R1 +R2 ≤ 3

as shown in Fig. 16. In this case, the two sources can use the F strategy in
Sect. 5.3 to exchange messages among each other. Then, the sources can use
their cross channels nc to send some more bits and achieve higher rates. This
idea is illustrated and described in the caption of Fig. 18, where we show how to
achieve the corner point (2, 1) in Fig. 16. The other corner point can be achieved
similarly by swapping the roles of the sources. The corner points (2, 0) and (0, 2)
can be achieved by setting u2,n and u1,n to zero, respectively. The whole region
is achievable by time sharing between corner points, and hence this scheme is
optimal.

7.2 Case max{nr, ns} < nc

We start by stating the achievable region described in this subsection in the
following lemma.

Lemma 3. The rate region defined by the following inequalities

0 ≤ R1 ≤ min{ns, nr + nf}
0 ≤ R2 ≤ min{ns, nr + nf}
R1 +R2 ≤ nc,

is achievable in the linear deterministic BFN with feedback with max{nr, ns} <
nc.

Notice that this region matches the outer bound given in Thm. 1. Therefore, the
achievability of this region proves the achievability of Thm. 2 for max{nr, ns} <
nc. We prove this lemma in the rest of this subsection.

Since nc < nr the sources can use the upper nc−nr levels at the destinations
which are not accessible by the relay to send feedback information to the des-
tinations. Thus, in this case we use the F strategy. Since max{nc, nr} > ns in
this case, we also use the CF strategy following the intuition in Sect. 5.2. Fur-
thermore, we use DF to achieve asymmetric rate pairs. The capacity achieving
scheme is described next.
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Fig. 16. Capacity regions for the deterministic BFN with (nc, ns, nr) = (2, 3, 1).
Dotted line: without feedback (nf = 0); solid line: with feedback with nf = 1.

Fig. 17. The deterministic BFN with (nc, ns, nr) = (2, 3, 1) and nf = 0. The given
scheme achieves the corner point (1, 1) of the capacity region in Fig. 16.

Fig. 18. The deterministic BFN with (nc, ns, nr) = (2, 3, 1) with nf = 1. The sources
use the same scheme as in Fig. 17 to achieve 1 bit each, and source 1 uses feedback
to achieve one additional bit per channel use, thus enlarging the acievable region and
achieving the optimal corner point (2, 1) in Fig. 16. In the i-th channel use, node 1
sends u1,f (i) to the relay, the relay feeds back u1,f (i− 1), which it decoded in channel
use i− 1, and node 2 sends u1,f (i− 2) to node 3/destination 1.
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Encoding: In the i-th channel use, node 1 sends the following signal (as shown
in Fig. 19)

x1(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1,c(i)
u1,d(i)
u1,f (i)

u2,f(i − 2)
u1,f (i)

u2,f (i − 2)
0nc−Rc−R1d−R2d−R1f−R2f−2Rf

0q−nc

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (17)

Here, the signals u1,f is the signals used to establish the asymmetric F strategy,
which is a vector of length R1f . Similarly, u2,f(i − 2) is the F-signal of node 2
of length R2f , and is available at node 1 via feedback. The signal u1,f is the
signal used in the symmetric F strategy, and is a vector of length Rf . We use
both symmetric feedback and asymmetric feedback to achieve all points on the
closure of the region given in Lemma 3. The C-signal u1,c has length Rc, and
the D-signal u1,d has length R1d+R2d, containing information in the upper R1d

bits and zeros in the lower R2d bits as described in Sect. 5.4. Node 2 sends
a similar signal, with u2,d having zeros in the upper R1d positions, and with
u1,f(i) and u2,f(i − 2) replaced by u1,f (i − 2) and u2,f(i), respectively. The
given construction works if

Rc +R1d + R2d +R1f +R2f + 2Rf ≤ nc. (18)

Relay Processing: The relay observes the top-most ns bits of x1(i)⊕x2(i). We
want the relay to be able to observe u1,c(i)⊕ u2,c(i), u1,d(i)⊕ u2,d(i), u1,f(i)⊕
u1,f(i−2), u2,f(i−2)⊕u2,f (i), and u1,f (i)⊕u2,f (i). This is possible if we choose

Rc +R1d +R2d +R1f +R2f +Rf ≤ ns. (19)

Given this condition is satisfied, the relay starts by removing u1,f(i − 2) and
u2,f(i − 2) (known from past decoding) from y0(i) as shown in Fig. 20. Next,
it decodes the sum of the C-signals u1,c(i) ⊕ u2,c(i), the sum of the D-signals
u1,d(i)⊕ u2,d(i), the F-signals u1,f (i) and u2,f(i) and u1,f (i)⊕ u2,f(i). Then it
sends the following signal

xr(i + 1) =

⎡⎢⎢⎣
0nr−Rc−R1d−R2d

u1,d(i)⊕ u2,d(i)
u1,c(i)⊕ u2,c(i)

0q−nr

⎤⎥⎥⎦ ,
over the forward channel (relay-destination channel) in channel use i+1, which
requires

Rc +R1d +R2d ≤ nr. (20)
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Fig. 19. A graphical illustration of the transmit and received signal at node 2, i.e.,
x2(i) and y2(i), the relay signal xr(i), the feedback signal xf (i), and the received
signal at node 3/destination 1 y3(i), for the capacity achieving scheme of the linear
deterministic BFN with feedback with max{nr , ns} ≤ nc with nf > 0. Node 2 uses
the received feedback signals to extract u1,f (i − 1) and u1,f (i − 1) which it sends to
node 3/destination 1 in channel use i + 1. Node 3/destination 1 uses u1,c(i) ⊕ u2,c(i)
(decoded in time channel use i+ 1) and u2,c(i) to extract u1,c(i).

It also sends the feedback signal xf (i + 1) on the backward channel (feedback
channel), where

xf (i+ 1) =

⎡⎣u1,f(i)⊕ u2,f(i)
u1,f (i)⊕ u2,f (i)

0q−Rf

⎤⎦ ,
in channel use i + 1. The signal xf represents feedback to nodes 1 and 2. Note
that we feed back the signal u1,f ⊕u2,f (i) instead of separately sending u1,f and
u2,f(i). This allows a more efficient use of the feedback channel. If the vectors
u1,f and u2,f(i) have different lengths, the shorter is zero padded till they have
equal length.

The construction of the feedback signal xf (i + 1) requires

R1f +Rf ≤ nf (21)

R2f +Rf ≤ nf . (22)
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Fig. 20. The decoding process at the relay. In the i-th channel use, the relay starts
with removing the known signals u1,f (i−2) and u2,f (i−2) (which it decoded in channel
use i − 2). Then, it decodes u1,c(i) ⊕ u2,c(i), u1,d(i) ⊕ u2,d(i) and u1,f (i) ⊕ u2,f (i) as
well as u2,f (i) and u1,f (i). The F-signals are then sent back to the sources, and the
DF and C-signals to the destinations as illustrated in Fig. 19.

Processing Feedback at the Sources: Consider node 1 at time instant i+1.
Node 1 receives the feedback signal given by

y1(i+ 1) = Sq−nfxf (i + 1) =

⎡⎢⎢⎣
0q−nf

u1,f (i)⊕ u2,f (i)
u1,f (i)⊕ u2,f (i)

0nf−Rf

⎤⎥⎥⎦ .
Node 1 decodes u1,f(i) ⊕ u2,f(i) and u1,f (i) ⊕ u2,f (i). Since node 1 knows its
own F-signal u1,f (i), then it can extract u2,f(i) from this feedback information.
Similarly, it can extract u2,f (i). Therefore, in channel use i+2, node 1 knows the
F-signals of node 2 which are u2,f(i) and u2,f (i) which justifies the transmission
of u2,f(i−2) and u2,f (i−2) in x1(i) in (17). After processing this feedback, node 1
is able to send node 2’s F-signals to node 4/destination 2. A similar processing is
performed at node 2, which sends the F-signals of node 1 to node 3/destination 1.

Decoding at the Destinations: Assume that

2Rc + 2R1d + 2R2d +R1f +R2f + 2Rf ≤ nc. (23)

In this case, node 3/destination 1 for instance is able to observe all the signals
sent by node 2 and the relay. The received signal y3(i) is then
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y3(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−nc

u2,c(i)
u2,d(i)
u2,f(i)

u1,f(i− 2)
u2,f(i)

u1,f (i− 2)
0nc−2Rc−2R1d−2R2d−R1f−R2f−2Rf

u1,d(i − 1)⊕ u2,d(i− 1)
u1,c(i − 1)⊕ u2,c(i − 1)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Node 3/destination 1 decodes backwards starting with i = N + 2 where the
desired F-signals u1,f(N) and u1,f (N) are decoded. In channel use N + 1,
node 3/destination 1 decodes the desired F-signals u1,f(N − 1) and u1,f (N − 1),
in addition to its desired D-signal u1,d(N) (obtained from u1,d(N)⊕u2,d(N)) and
the C-signal sum u1,c(N) ⊕ u2,c(N). Next, in the N -th channel use, it decodes
u2,c(N), u1,f(N − 2), u1,f (N − 2), u1,d(N − 1), and u1,c(N − 1)⊕ u2,c(N − 1).
Then it adds u1,c(N)⊕u2,c(N) to u2,c(N) to obtain the desired C-signal u1,c(N).
Decoding proceeds backwards till channel use i = 1. Similar processing is per-
formed by node 4/destination 2. The number of bits recovered by node 3/des-
tination 1 is R1 = Rc + R1d + R1f + Rf , and similarly node 4/destination 2
obtains R2 = Rc +R2d +R2f +Rf .

Achievable Region: Collecting the bounds (18), (19), (20), (21), (22), and
(23), we see that a pair (R1, R2) with R1 = Rc + R1d + R1f + Rf and R2 =
Rc + R2d + R2f + Rf , where the rates Rc, R1d, R2d, R1f , R2f , Rf are non-
negative, is achievable if

Rc +R1d +R2d +R1f +R2f +Rf ≤ ns

Rc +R1d +R2d ≤ nr

R1f +Rf ≤ nf

R2f +Rf ≤ nf

2Rc + 2R1d + 2R2d +R1f +R2f + 2Rf ≤ nc.

Solving this set of linear inequalities using the Fourier Motzkin elimination, we
get the achievable region given by

0 ≤ R1 ≤ min{ns, nr + nf} (24)

0 ≤ R2 ≤ min{ns, nr + nf} (25)

R1 +R2 ≤ nc, (26)

which proves Lemma 3. This also proves Thm. 2 for the case max{nr, ns} < nc.
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7.3 Case nr < nc ≤ ns

In this case, the relay observes more bits than the destinations since ns ≥ nc.
Thus, the sources can exploit the additional ns−nc bits by using the CN strategy
of Sect. 5.1. Additionally, we use the F strategy for feedback, and the DF
strategy to achieve asymmetric rates. In the rest of this subsection, we prove
the following lemma.

Lemma 4. The region defined by

0 ≤ R1 ≤ min{nr + nf , nc}
0 ≤ R2 ≤ min{nr + nf , nc}
R1 +R2 ≤ ns,

is achievable in the linear deterministic BFN with feedback with nr < nc ≤ ns.

This lemma proves Thm. 2 for the given case since the achievable region of this
lemma matches the outer bound given in Thm. 1. Next, we describe the scheme
which achieves the region in Lemma 4. The transmit signals of node 2 and
the relay, and the received signals at node 2 and node 3/destination 1 for the
capacity achieving scheme are depicted graphically in Fig. 21.

Encoding: In this case, node 1 sends a D-signal vector u1,d(i) of length R1d +
R2d (zero padded as explained in Sect. 5.4), two N-signal vectors u1,n(i) and
u1,n(i + 1) of length Rn each, two F-signal vectors u1,f(i) (asymmetric) and
u1,f (i) (symmetric) of length R1f and Rf , respectively. Additionally, it sends
the F-signals of node 2 (acquired through feedback) u2,f(i − 2) and u2,f (i − 2)
of length R2f and Rf , respectively, as shown if Fig. 21.

Notice that out of these signals, two do not have to be observed at the desti-
nations, namely u1,n(i + 1) and u1,f (i). These two signals have to be decoded
at the relay to establish the F and the CN strategies. Thus, these signals can
be sent below the noise floor of the destinations, i.e., in the lower ns − nc levels
observed at the relay. Assume that these signals do not fit in this interval of
length ns − nc, i.e., Rn + Rf > ns − nc. In this case, a part of these signals is
sent below the noise floor, and a part above it. For this reason, we split these
signals to two parts:

u1,f (i) =

[
u
[1]
1,f (i)

u
[2]
1,f (i)

]
, u1,n(i) =

[
u
[1]
1,n(i)

u
[2]
1,n(i)

]
,

where u
[m]
1,f has length R

[m]

f and u
[m]
1,n has length R

[m]
n , m = 1, 2, such that R

[1]

f +

R
[2]

f = Rf and R
[1]
n + R

[2]
n = Rn (this split is not shown in Fig. 21 for clarity).

As a result, node 1 sends
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Fig. 21. The transmit signal and received signal of node 2, the transmit signals of the
relay, and the received signal of node 3/destination 1 for the capacity achieving scheme
of the linear deterministic BFN with feedback with nr < nc ≤ ns and nf > 0. Node 2
makes use of the feedback signals u1,f (i− 1)⊕ u2,f (i− 1) and u1,f (i− 1)⊕ u2,f (i− 1)
to extract u1,f (i− 1) and u1,f (i− 1) which are sent to node 3/destination 1 in channel
use i+1. Node 3/destination 1 decodes u1,f (i− 2), u1,f (i− 2), u1,d(i− 1), u2,d(i− 1),
and u1,n(i) in channel use i.

x1(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
nc−R1f−R2f−2R

[1]
f −R[2]

f −R1d−R2d−2R
[1]
n −R[2]

n

u1,f (i)
u2,f(i − 2)

u
[1]
2,f (i − 2)

u
[2]
2,f (i − 2)

u
[1]
1,f (i)

u
[1]
1,n(i + 1)
u1,d(i)

u
[1]
1,n(i)

u
[2]
1,n(i)

u
[2]
1,f (i)

u
[2]
1,n(i + 1)

0
ns−nc−R[2]

f −R[2]
n

0q−ns

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)
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The vectors u
[1]
1,f (i) and u

[1]
1,n(i + 1) are sent above u1,d(i), u

[1]
1,n(i), and u

[2]
1,n(i)

since that latter signals have to align with the signals sent from the relay (see
Sect. 5.1 and 5.3), where the relay can only access lower levels since nr < nc
in this case. The transmit signal of node 2, x2(i), is constructed similarly, by
replacing u1,f(i) and u2,f (i − 2) with u1,f (i − 2) and u2,f (i), respectively, and
replacing the user index of the other signals with 2. This construction requires

R1f +R2f + 2R
[1]

f +R
[2]

f +R1d +R2d + 2R[1]
n +R[2]

n ≤ nc (28)

R
[2]

f +R[2]
n ≤ ns − nc. (29)

Relay Processing: The relay receives the top-most ns bits of x1(i) ⊕ x2(i).
We write y0(i) as

y0(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−ns

0
nc−R1f−R2f−2R

[1]
f −R[2]

f −R1d−R2d−2R
[1]
n −R[2]

n

u1,f(i)⊕ u1,f(i − 2)
u2,f(i)⊕ u2,f(i − 2)

u
[1]
1,f (i− 2)⊕ u

[1]
2,f (i− 2)

u
[2]
1,f (i− 2)⊕ u

[2]
2,f (i− 2)

u
[1]
1,f (i)⊕ u

[1]
2,f (i)

u
[1]
1,n(i+ 1)⊕ u

[1]
2,f(i+ 1)

u1,d(i)⊕ u2,d(i)

u
[1]
1,n(i)⊕ u

[1]
2,f(i)

u
[2]
1,n(i)⊕ u

[2]
2,f(i)

u
[2]
1,f (i)⊕ u

[2]
2,f (i)

u
[2]
1,n(i+ 1)⊕ u

[2]
2,f(i+ 1)

0ns−R1f−R2f−2Rf−R1d−R2d−2Rn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The relay starts processing this signal by removing the past F-signals u1,f(i− 2)
and u2,f(i − 2) (decoded in channel use i − 2) from y0(i). Then it decodes the
remaining signals as shown in Fig. 22.

Then, the relay forwards

xr(i+ 1) =

⎡⎢⎢⎢⎢⎢⎣
0
nr−R1d−R2d−R[1]

n −R[2]
n

u1,d(i)⊕ u2,d(i)

u
[1]
1,n(i+ 1)⊕ u

[1]
2,f(i+ 1)

u
[2]
1,n(i+ 1)⊕ u

[2]
2,f(i+ 1)

0q−nr

⎤⎥⎥⎥⎥⎥⎦ ,

in channel use i+ 1. The given signals fit in the interval of length nr if

R1d +R2d +R[1]
n +R[2]

n ≤ nr. (30)
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Fig. 22. The processing steps at the relay. The relay starts by removing its past-
decoded signals. Then it decodes the signals u1,f (i), u2,f (i), u1,d(i)⊕u2,d(i), u1,f (i)⊕
u2,f (i), and u1,n(i+1)⊕u2,n(i+1) in channel use i. In channel use i+1, the decoded
F-signals are fed back to the sources, and the N-signal and D-signals are forwarded to
the destinations.

The relay also sends a feedback signal xf (i + 1) in channel use i + 1 to node 1
and node 2 on the backward channel, where

xf (i + 1) =

⎡⎢⎢⎢⎢⎢⎣
u1,f(i)⊕ u2,f(i)

u
[1]
1,f (i)⊕ u

[1]
2,f (i)

u
[2]
1,f (i)⊕ u

[2]
2,f (i)

0
nf−max{R1f ,R2f}−R

[1]
f −R[2]

f

0q−nf

⎤⎥⎥⎥⎥⎥⎦ .

For efficient use of the feedback channel, the relay adds the signals u1,f (i) and
u2,f(i) together, and feeds the sum back. If these signals do not have the same
length, the shorter is zero padded at the relay till both signals have the same
length. This construction requires

R1f +R
[1]

f +R
[2]

f ≤ nf (31)

R2f +R
[1]

f +R
[2]

f ≤ nf . (32)

Processing Feedback at the Sources: Consider node 1 at channel use i+1.
Node 1 receives the feedback signal

y1(i+ 1) =

⎡⎢⎢⎢⎢⎢⎣
0q−nf

u1,f (i)⊕ u2,f (i)

u
[1]
1,f (i)⊕ u

[1]
2,f (i)

u
[2]
1,f (i)⊕ u

[2]
2,f (i)

0
nf−max{R1f ,R2f}−R

[1]
f −R[2]

f

⎤⎥⎥⎥⎥⎥⎦ .
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Node 1 then subtracts its own F-signals from y1(i+1), and obtains the F-signals

of node 2, i.e., u2,f (i), u
[1]
2,f (i), and u

[2]
2,f(i). These signals are sent in channel use

i+ 2 as seen in (27).

Decoding at the Destinations: In the i-th channel use, node 3/destination 1
observes

y3(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0q−nc

0
nc−R1f−R2f−2R

[1]
f −R[2]

f −R1d−R2d−2R
[1]
n −R[2]

n

u1,f(i− 2)
u2,f(i)

u
[1]
1,f (i− 2)

u
[2]
1,f (i− 2)

u
[1]
2,f(i)

u
[1]
2,n(i+ 1)

u2,d(i)⊕ u1,d(i − 1)⊕ u2,d(i− 1)

u
[1]
1,n(i)

u
[2]
1,n(i)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Decoding at node 3/destination 1 is done in a backward fashion. In the i-th
channel use, it starts with removing the already known D-signal u2,d(i) (decoded
in channel use i+ 1). Then it proceeds with decoding each of

u1,f(i−2), u
[1]
1,f (i−2), u

[2]
1,f(i−2), u1,d(i−1), u2,d(i−1), u

[1]
1,n(i), u

[2]
1,n(i).

It recovers its desired signals for a total rate of R1 = R1f +R
[1]

f +R
[2]

f +R1d +

R
[1]
n + R

[2]
n . Similarly, node 4/destination 2 recovers R2 = R2f + R

[1]

f + R
[2]

f +

R2d +R
[1]
n +R

[2]
n bits per channel use.

Achievable Region: Collecting the bounds (28), (29), (30), (31), and (32) we
get

R1f +R2f + 2R
[1]

f +R
[2]

f +R1d +R2d + 2R[1]
n +R[2]

n ≤ nc

R
[2]

f +R[2]
n ≤ ns − nc

R1d +R2d +R[1]
n +R[2]

n ≤ nr

R1f +R
[1]

f +R
[2]

f ≤ nf

R2f +R
[1]

f +R
[2]

f ≤ nf ,

where the rates R1f , R2f , R
[1]

f , R
[2]

f , R1d, R2d, R
[1]
n , and R

[2]
n are non-negative.

Solving this set in linear inequalities using the Fourier Motzkin elimination with



204 A. Chaaban, A. Sezgin, and D. Tuninetti

R1 = R1f +R
[1]

f +R
[2]

f +R1d +R
[1]
n +R

[2]
n and R2 = R2f +R

[1]

f +R
[2]

f +R2d +

R
[1]
n +R

[2]
n yields the following achievable rate region

0 ≤ R1 ≤ min{nr + nf , nc} (33)

0 ≤ R2 ≤ min{nr + nf , nc} (34)

R1 +R2 ≤ ns, (35)

which proves Lemma 4. By the end of this section, we finish the proof of Thm. 2.

8 Net Feedback Gain

At this point, it is clear that relay-source feedback link can increases the capacity
of the BFN with respect to the non-feedback case. However, is this feedback
efficient? In other words, is there a net-gain when using feedback? In this
section, we discuss the net-gain attained by exploiting feedback and we answer
the question above in the affirmative.

First, let us define what we mean by net-gain. Let C0 be the sum-capacity
of a BFN without feedback (nf = 0), and let Cnf

be the sum-capacity with
feedback (nf �= 0), which is achieved by feeding back rf bits per channel use
through the feedback channel. Let η be defined as the ratio

η =
Cnf

− C0

rf
.

We say that we have a net-gain if the ratio of the sum-capacity increase to the
number of feedback bits is larger than 1, i.e., η > 1. Otherwise, if η ≤ 1, then
we have no net-gain because then Cnf

− C0 ≤ rf , i.e., the gain is less than the
number of bits sent over the feedback channel.

Note that if nc ≤ nr, then there is no feedback gain at all, since in this case,
the capacity region in Thm. 2 is the same as nf = 0.

Now, consider for sake of example the case nc > nf with a BFN with
(nc, ns, nr) = (6, 3, 1). The capacity region of this BFN without feedback is
shown in Fig. 23. The no-feedback sum-capacity of this network is C0 = 2
bits per channel use corresponding to the rate pair (R1, R2) = (1, 1). This
rate pair is achieved by using the CF strategy, where node 1 sends x1(i) =
[u1,c(i), 0T5 ]

T and node 2 sends x2(i) = [u2,c(i), 0T5 ]
T , and the relay sends

xr(i) = [u1,c(i − 1) ⊕ u2,c(i − 1), 05]
T . Now consider the case with nf = 1.

In this case, the sum-capacity is C1 = 4 bits per channel use corresponding to
the corner point of the capacity region (R1, R2) = (2, 2) as shown in Fig. 23.
To achieve this, the sources use the same CF strategy used for nf = 0, which
achieves R1 = R2 = 1 bit per channel use. Additionally each source sends a
feedback bit uj,f (i) to the other source via the relay using the symmetric F
strategy. This way, each source acquires the F-signal of the other source, which
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it forwards then to the respective destination. This F strategy requires feeding
back only rf = 1 bit, namely u1,f(i)⊕ u2,f(i). With this we have

η =
C1 − C0

rf
=

4− 2

1
= 2,

i.e., a net-gain: for each feedback bit, we gain 2 bits in the sum-capacity.

Fig. 23. The capacity region of the deterministic BFN with (nc, ns, nr) = (6, 3, 1)
with (nf = 1) and without (nf = 0) feedback

9 Summary

We have studied the butterfly network with relay-source feedback and examined
the benefit of feedback for this network. We have derived capacity upper bounds,
and proposed transmission schemes that exploit the feedback channel. The result
was a characterization of the capacity region of the network. While feedback
does not affect the capacity of the network in some cases, it does enlarge its
capacity region in other cases. Moreover, the proposed feedback scheme which
is based on bi-directional relaying is an efficient form of feedback, it provides a
net-gain in the regimes where feedback helps. It turns out that the increase in
the sum-capacity of the network is twice the number of feedback bits.
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Appendix

A Proof of Thm. 2

We set X0 = (Xr, Xf ) and use the output definition in (7) in the outer bounds
in Section 2.2.

From the cut-set bound in (2a) we have

R1 ≤ I(X1;Y0, Y2, Y3|X0, X2)

= I(X1;Y0, Y2, Y3|Xr, Xf , X2)

= H(Y0, Y2, Y3|Xr, Xf , X2)−H(Y0, Y2, Y3|Xr, Xf , X2, X1)

= H(Sq−nsX1|Xr, Xf , X2)

≤ H(Sq−nsX1)

≤ ns,

Similarly, the cut-set bounds in (2c) and (2d) reduce to

R1 ≤ nr + nf ,

R1 ≤ max{nc, nr},

respectively. These bounds combined give (8a). Similarly, the bound in (8b) for
R2 follows by the symmetry in the network.

The sum-rate cut-set bound in (3b) becomes

R1 +R2 ≤ I(X0, X1, X2;Y3, Y4)

= I(Xr, Xf , X1, X2;Y3, Y4)

= H(Y3, Y4)

= H(Y3) +H(Y4|Y3),

which leads to

R1 +R2 ≤ max{nr, nc}+ nc. (36)

These are the neccessary cut-set upper bounds for our problem. The remaining
cut-set bounds are redundant given the cooperation bounds that we derive next,
and are thus omitted.

Next, we evaluate the cooperation bounds in (5). In the symmetric case,
bounds (5c), (5d), (5g), and (5h) are equivalent to bounds (5b), (5a), (5f),
and (5e), respectively. Notice also that due to symmetry, the bounds (5b) and
(5e) are similar. Thus, we need only to specialize the bounds (5a), (5b), and (5f)
to the linear deterministic BFN with feedback. It turns out that the bound (5a)
for the linear deterministic BFN with feedback is redundant given (36). Thus,
we omit its derivation.
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Next, we consider the bound in (5b), which yields

R1 +R2 ≤ I(X2;Y4, Y1, Y0|Y3, X1, X0) + I(X1, X0, X2;Y3)

= H(Y4, Y1, Y0|Y3, X1, Xr, Xf )−H(Y4, Y1, Y0|Y3, X1, Xr, Xf , X2)

+H(Y3)−H(Y3|X1, X0, X2)

= H(Sq−nsX2|Sq−ncX2, X1, Xr, Xf ) +H(Sq−ncX2 + Sq−nrXr)

≤ (ns − nc)
+ +max{nc, nr}.

Notice that this bound can be tighter than the sum-rate cut-set bound in (36)
and is equal to (8d).

Finally, the bound in (5f) becomes

R1 +R2 ≤ I(X2;Y4, Y1|Y3, Y0, X1, X0) + I(X1, X2;Y3, Y0|X0)

= H(Y4, Y1|Y3, Y0, X1, Xr, Xf )−H(Y4, Y1|Y3, Y0, X1, Xr, Xf , X2)

+H(Y3, Y0|Xr, Xf )−H(Y3, Y0|Xr, Xf , X1, X2)

= H(Sq−ncX2,S
q−nsX1 + Sq−nsX2|Xr, Xf )

≤ ns + nc.

This bound yields (8e).
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Abstract. Given a network and the total flows into and out of each of
the sink and source nodes, it is useful to select uniformly at random an
origin-destination (O-D) matrix for which the total in and out flows at
sinks and sources (column and row sums) matches the given data. We
give an algorithm for small networks (less than 16 nodes) for sampling
such O-D matrices with exactly the uniform distribution and apply it
to traffic network analysis. This algorithm also can be applied to com-
munication networks and used in the statistical analysis of contingency
tables.
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sampling, rejection method.

1 Introduction

For a traffic network or sub-network, only partial information concerning the
flow (in vehicles/min) is available. In many cases, noisy measurements of flow
on the links of the network allow only source and sink total out and in flows to be
fairly accurately estimated, but path flows from a given source to a given sink are
not accurately known. We assume here that each source is also a possible sink so
that the O-D matrix is square but that there are no loops from a source to itself
so that the matrix has zeros on the diagonal. Traffic planners desire a full O-D
matrix of flows from each source to each sink so that they may find equilibrium
and system optimal routes for travelers. Total cost may then be determined for
existing or planned networks or sub-networks. Knowledge of the O-D matrix
would then further allow traffic planners to minimize cost by optimizing over
signal settings.

Several approaches exist for network analysis under the O-D uncertainty. In
[Xie et al.(2010)] a maximum entropy estimate of the O-D matrix is derived
using available link flow measurements. In [Jones et al.(2012)] the unknown O-
D matrices are characterized by the discrete manifold of all non-negative integer
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valued matrices with row and column sums fixed corresponding to the given total
out and in flows. Probability distributions on the manifold are then proposed
based on additional data to represent the uncertainty of actual O-D values. Using
these distributions Bayesian and minimax strategies are developed for optimal
traffic signal controls.

The uniform distribution on the set of possible O-D tables plays an important
role in the analysis; as in [Jones et al.(2012)], one may require cost estimates
assuming a conditional discrete Gaussian distribution on the manifold. Uniform
generation of tables from the manifold can be used via the accept-reject method
to generate the conditional Gaussian and hence the cost estimate for use in
finding optimal controls.

We may also consider the uniform distribution as least informative on the
manifold and calculate, for fixed controls and fixed traveler routing, the p-
quantile cost for this distribution (that cost which exceeds exactly 100p% of
the costs under the uniform assumption). This criterion can then be optimized
appropriately. We estimate p-quantiles here for a simple network.

The problem of generating such matrices (allowing nonzero diagonals) is also
important in statistical analysis [Diaconis and Efron(1985)] for testing indepen-
dence of row-column effects after sampling two properties of individuals in a
population.

Jones et al [Jones et al.(2012)] have analyzed traffic systems by uniformly
generating origin destination tables given the flows into and out of each sink
and source node. The algorithm for generating such matrices is not specified in
the paper, and is given here.

There are a number of ways to generate origin destination matrices. We can
consider the polytope formed by the constraints (sums of flows in, sums of flows
out, zeros on the diagonal) and use the Hit and Run algorithm [Dyer et al.(1995)]
[Kannan et al.(1997)] [Lovasz and Simonovits(1993)]. Unfortunately, although
these algorithms seem to converge quickly, it is difficult to get precise estimates
of the mixing times.

The Sequential Importance Sampling (SIS) algorithm of [Chen et al.(2005)]
can also be used. It has been modified by Chen [Chen(2007)] for tables that
have zeros in specified locations. Unfortunately, it is known to behave badly in
certain situations [Bezáková et al.(2006)].

We modify the “ordinary” method of [Holmes and Jones(1996)] (described
below) to generate tables with exactly the uniform distribution where the diag-
onal elements must be zero. Consider I × J tables with column sums cj and
row sums ri. We usually arrange the row sums in increasing order to get max-
imum efficiency of the algorithm but this is not necessary for the algorithm to
work. We present the H-J algorithm for general I×J matrices and the modified
algorithm for I = J .

2 Exact Sampling

In the following rejection algorithms, we generate the tables by uniformly sam-
pling one row at a time, abandoning the attempt, and starting over from the
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first row if any of the column sums become too large. We start by restating the
rejection algorithms from [Holmes and Jones(1996)].

2.1 Ordinary Naive Rejection Algorithm

For the naive rejection algorithm, we generate rows uniformly constrained only
by the row sum. This is easy to do, but often inefficient as a single entry may
be larger than the column sum.

1. Choose the first row vector uniformly among all those with component sum
r1. Such vectors are generated from the uniform generation of 0-1 sequences
with r1 1s and J − 1 0s. (Vector components are the number of consecutive
1s before the first 0, after the first 0 and before the second 0, . . . after the
last 0. There are

(
r1+J−1
J−1

)
such sequences.)

2. Check that the jth entry does not exceed cj . If it does reject and restart at
1. Otherwise generate a second vector with component sum equal to r2 as
in step 1. Again check that, for each j, the sum of the jth entries of vectors
constructed do not exceed cj . If not reject and restart at 1.

3. Continue until I − 1 vectors have been generated without rejection. An Ith
vector can now be formed uniquely to yield an admissible table. The set of
such tables so generated are equally likely since the set of tables, formed by
generating I -1 vectors as above but without rejections, are equally likely so
are also the ones in the algorithm with no rejections occurring.

Modification for Tables with 0s on the Diagonal (I = J). To adapt
the naive algorithm to tables with zeros on the diagonal we proceed as above,
only generating the rows with zeros on the diagonal, until we reach the last
generated row (the (n− 1)st.) For the (n− 1)st row, we know the value of the
last element (as the last element of the last row is 0.) So we randomly sample
the last row with its last element fixed, and if the column sums are not violated
accept the result with probability proportional to the the number of rows with
the specified last entry and row sum divided by the maximum over all last enries
of the number of rows with specified last entry and row sum.

We perform the above steps except that the vectors have 0 on the diagonal
and a sum of ri for the remaining coordinates ( We now choose at random from
the

(
ri+J−2
J−2

)
sequences of J − 2 0s and ri 1s to generate them.) But we stop

after generating I − 2 vectors (instead of I − 1).
Assuming we have I−2 vectors without rejection, the possibilities are equally

likely (for the same reasons as before). We now have only one choice for the
values in the I − 1, I and I, I − 1 positions. We now generate a vector of
length J − 2 for the I − 1st row. However the number of possible vectors n(x) =(
rI−1−x+J−3

J−3

)
varies with x , the table value in position I − 1, J . We have

x < min{rI−1, cI}. So we accept the vector of length J − 2 with probability
proportional to n(x), p(x) = n(x)/maxn(y). This makes all of the accepted
values equally likely so far. Then we reject if column sums are not possible
and complete to the desired table and achieve the uniform distribution for the
accepted tables.
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2.2 Ordinary Revised Rejection Algorithm

We can, at the cost of some precomputation of polynomials, choose the rows
uniformly given that each entry is less than its column sum. This gives us the
revised algorithm.

Here the vectors generated at each step i are uniformly chosen from those
with component sum ri but with the additional condition that the kth com-
ponent bounded by ck. This is achieved in [Holmes and Jones(1996)] : Pre-
compute ϕjq = coefficient of zq in the polynomial (1 + z + · · · + zc1)(1 +
z + · · · + zc2) · · · (1 + z + · · · + zcj) for j = 1, 2, . . . , J − 1 and q =
0, 1, . . . , Nmax = maximum row sum among firstI − 1 rows. It is then demon-
strated in [Holmes and Jones(1996)] how, using these coefficients, to generate
uniformly J- dimensional vectors with component sum N < Nmax and compo-
nent k bounded by ck. We reproduce the method here so that our treatment is
self contained: To generate a J-dimensional nonnegative integer vector v with
component sum N , we initially define a probability function on the set

{0, 1, 2, . . . ,min{cJ , N}}

whose value at t is proportional to φJ−1
N−t and choose vJ at random from this

distribution, and then successively choose vJ−k from the distribution on

{0, 1, 2, . . . ,min{cJ−k, N − (vJ + · · ·+ vJ−k+1)}}

whose probability at t is proportional to

ϕJ−k−1
N−(vJ+···+vJ−k+1)−t.

For k = J − 1 choose v1 = N − (vJ + · · ·+ v2).

Modification of Revised Algorithm for Tables with 0s on the Diagonal
(I = J). Same as in naive case but we need more precomputing. For i =
1, . . . , I − 2 we need to compute coefficients iϕ

j
q of zq in∏

k=1,...,j k 
=i
(1 + z + · · ·+ zcj)

for j = 1, . . . , J − 1 for q = 0, 1, . . . , ri. Use Holmes-Jones generation for each
i as described above. This gets us the first I − 2 rows. For the I − 1st row we
need the coefficients ρjq of zq in∏

k=1,...,j

(1 + z + · · ·+ zck)

for j = 1, 2, . . . , I − 2 and q = 0, 1, . . . , rI−1. We now have n(x) = ρI−2
q for

q = rI−1 − x. This row is generated using Holmes-Jones (given above) with the
rjq . Acceptance is using the same method applied to the n(x) for this revised
case.
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2.3 Experiments

A number of experiments were performed by generating random matrices by
placing 10n(n− 1) items into an n× n matrix with zeros on the diagonal, com-
puting the row and column sums, and then generating random matrices with
those row and column sums.

The modified revised algorithm takes about 10-50 thousand tries to find a
10× 10 matrix, depending on the matrix. This is near the limit of practicality.
A 13× 13 matrix with row sums 121, 106, 124, 99, 140, 124, 120, 134, 122, 112,
102, 130, 126, and column sums 123, 114, 117, 106, 122, 136, 145, 111, 118, 128,
116, 112, 112 generates a suitable matrix about every million tries. A random
matrix failed to be generated for a 15× 15 matrix after 20 million tries.

So, for larger tables, modifications are necessary.

2.4 Splitting

Most of the failures occur when the matrix is almost completed, but we can
uniformly sample half a matrix with a small probability of failure (less than
0.5). We can use this idea for accelerating. The process is to uniformly sample
two “halves” of the (n − 1) × n matrix, and search for matches that allow the
last row to be filled.

1. Generate a set of k �n/2 × n matrices whose row sums match the first
�n/2 row sums of the original matrix and whose column sums are less than
or equal to the column sums of the original matrix.

2. Generate a set of k �(n− 1)/2×n matrices whose row sums match the row
sums of rows �n/2 + 1 to n − 1, and whose column sums are less than or
equal to the column sums of the original matrix.

3. Collect the pairs of matrices where the first �n/2 rows come from the first
set, and the second �(n − 1)/2 rows come from the second set, the sum
of both column sums are all less than or equal to the column sums of the
original matrix, and the column sum of the last column equals the column
sum of the last column of the original matrix because the cell in the last row
and last column is 0. Randomly choose one of the matching pairs.

The last step can be performed by first filtering the pairs so that the last column
sums match (as we know the last element of the last row is zero), and then using
a divide and conquer method on each column by excluding all pairs where the
column sum of each half matrix is greater than half of the column sum of the
corresponding column of the original matrix.

If we assume that all the time is spent in generating the candidate half matri-
ces (which is true to a first approximation) and that each of the k2 pairs of top
and bottom half matrices has an equal and independent probability of extend-
ing to a complete matrix (they are definitely not independent but they should be
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close enough), then we can treat the number of candidates generated as a Poisson
random variable where λ ∝ k2. Since we only use one candidate from each run,
the expected number of samples generated per unit work is proportional to

(1− e−θ
2

)

θ

where θ is proportional to k. By taking the derivative of this quantity, we find
that the maximum is achieved where θ is the positive root of ex

2 − 2x2− 1. This
gives us a probability of getting at least one canditate of 1 − e−θ

2 ≈ 0.71 for
each run. As the constant of proportionality between θ and k is unknown, we
choose k by trial and error, finding a value where the probability of choosing a
table is about 0.71. For a 15× 15 matrix with row and column sums about 150,
this means a value of k about 25000.

3 Experimental Results

As a simple proxy for a transportation network 12 nodes which are both sources
and sinks are arranged in a ring, with a central node that is neither a origin
or destination, and each node has a link to and from its adjacent node and the
central node. All traffic is assumed to take the shortest path as follows: travel
between adjacent nodes goes along the rim, and all other traffic uses the central
node. The cost of traversing a link was assumed to be the square of the flow along
the link (The actual cost functions in practical networks are more complicated
but this quadratic approximation should suffice to demonstrate the procedure of
obtaining p-quantile cost.) The trips per five minute interval originating from
the nodes are assumed to be 100, 130, 96, 117, 107, 124, 101, 107, 127, 85, 119,
and 107 and the trips per five minute interval destined for each node are assumed
to be 110, 99, 113, 92, 113, 109, 114, 110, 117, 123, 113, and 107. See figure 1.

Ten thousand uniformly distributed tables were generated (n = 10000), and
the mean cost was determined to be 210162± 141. Using ten thousand tables
generated by Sequential Importance Sampling [Chen(2007)] gives us the mean
cost of 208633± 1871. The standard deviation for the SIS sample is the sample
standard deviation divided by the square root of the effective sample size(ESS),
defined below. This comparison is not completely fair as sequential importance
sampling generates the 12 × 12 tables about 50 times as quickly as uniform
sampling. Using the Effective Sample Size rule of thumb

ESS =
n

1 + cv2

from [Liu(2008)] section 2.5.3, or [Chen et al.(2005)] section 2, we get a value of
cv2 = 131.2672 so the effective sample size of a million SIS samples is approxi-
mately 7560, slightly less than the 10000 uniform samples. From the ESS we can
estimate the variance of the estimate of our SIS sample by dividing the variance
of the sample by n

1+cv2 . Generating a million tables using sequential importance
sampling gives an estimate of 210076±177. We also estimated the 0.90 and 0.95
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quantiles. We can use order statistics to get a 95% confidence interval for the
quantiles with the uniform sample [Hogg et al.(2005)] section 5.2.2. This gives
us an estimate of 227429 for the 0.9 quantile with a 95% confidence interval
running from 226938 to 227763. The SIS estimate for the 0.9 quantile is 227250
which lies well inside the confidence interval. For the 0.95 quantile the estimate
was 232110 with a confidence interval that runs from 231532 to 232723, and the
SIS estimate was 231713.

So for 12 × 12 tables uniform sampling seems to perform slightly better
than Sequential Importance Sampling for the same amount of work without
suffering from the problems in detecting convergence that are discussed in
[Bezáková et al.(2006)]. A uniform sampling also makes the statistical analy-
sis much easier.

Code is available on request.
We have already mentioned how uniform generation of O-D tables is impor-

tant for generating O-D tables with conditional normal distributions so that
cost estimates may be calculated for determining optimal control strategies. It
would be interesting to obtain tight bounds on p-quantile costs under the condi-
tional normality assumptions of [Jones et al.(2012)] in terms of p-quantile costs
for the uniform distributions.This could yield both more efficient optimization
algorithms and more robust control strategies.
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Abstract. We review the development of the quantum version of Ahls-
wede and Dueck’s theory of identification via channels. As is often the
case in quantum probability, there is not just one but several quantiza-
tions: we know at least two different concepts of identification of classical
information via quantum channels, and three different identification ca-
pacities for quantum information.

In the present summary overview we concentrate on conceptual points
and open problems, referring the reader to the small set of original arti-
cles for details.

0 Quantum and Classical Channels

Our communication model is the quantum channel, also known as completely
positive and trace preserving (cptp) linear map between quantum systems,

N : L(A) −→ L(B).

Here, as in the rest of the paper, we assume that A, B, etc, are finite dimensional
(complex) Hilbert spaces and L(A) is the set of linear operators (matrices) over
A.

The cptp condition is necessary and sufficient for N mapping states on A,
i.e. density operators ρ ≥ 0 with Trρ = 1, whose set we denote as S(A), to
states on B, and the same for N⊗idC for arbitrary systems C. Thus, the
class of cptp maps is closed under composition, tensor products and taking
convex combinations. One of the most useful characterizations of cptp maps is
in terms of the Stinespring dilation [29]: namely, N is cptp if and only if there
exists an ancilla (environment) system E and an isometry V : A ↪→ B⊗E such
that N (ρ) = TrEV ρV

†. The isometry V is essentially unique, up to unitary
equivalence of E; hence it makes sense to define, for a chosen dilation V , the
complementary channel

N̂ : L(A) −→ L(E),

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 217–233, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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by N̂ (ρ) := TrBV ρV
†.

For a given channel N , we are interested in the asymptotic performance of
many iid copies, N⊗n. One can also consider more complicated channel models
(such as with feedback, or with pre-shared correlations), but here we will restrict
ourselves to the simple forward channel – see however [33] and [1].

Classical channels are of course transition probability kernels N : X → Y
(with finite input and output alphabets X and Y, respectively). Such a channel
may be identified with the cptp map

N : L(CX ) −→ L(CY)

ρ �−→
∑
xy

N(y|x)|y〉〈y|xρ|x〉〈x|y,

while a probability distribution P on X is identified with the state
∑

x P (x)|x〉〈x|.
Two special classes of channels we will have occasion to consider are the

following, either whose input or whose output is classical: A cq-channel N :
X −→ S(B) is a cptp map of the form

N (ξ) =
∑
x

〈x|ξ|x〉ρx,

with states ρx on B. A qc-channel M : S(A) −→ Y instead is given by a quan-
tum measurement, i.e. a positive operator values measure (POVM) (My)y∈Y
such that My ≥ 0 and

∑
yMy = 1l. The channel then has the form

M(ρ) =
∑
y

TrρMy|y〉〈y|.

We refer the reader to the excellent text [31] for more details on quantum and
classical channels, and the various transmission capacities associated with them,
including their history. Here we need only two, the classical and the quantum
capacity of a channel, C(N ) and Q(N ), respectively, defined as the maximum
rates of asymptotically faithful transmission of classical bits and qubits, respec-
tively, over many iid copies of the channel. They can be expressed as regular-
izations of entropic information quantities, based on the von Neumann entropy
S(ρ) = −Trρ log ρ of a quantum state ρ. They are given by the formulas

C(N ) = lim
n→∞

1

n
C(1)(N⊗n), with

C(1)(N ) = max
{px,ρx}

S

(∑
x

pxN (ρx)

)
−

∑
x

pxS
(
N (ρx)

)
,

(1)
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and

Q(N ) = lim
n→∞

1

n
Q(1)(N⊗n), with

Q(1)(N ) = max
ρ∈S(A)

S
(
N (ρ)

)
− S

(
N̂ (ρ)

)
,

(2)

both of which represent the culmination of concerted efforts of several researchers
in the 1990s and early 2000s (Holevo-Schumacher-Westmoreland and Schumach-
er & Lloyd-Shor-Devetak, respectively). The classical capacity generalizes Shan-
non’s channel capacity for classical channels N , for which C(N) = C(1)(N)
reduces to the famous formula in terms of the mutual information [28].

The structure of the rest of the paper is as follows: In Section 1 we present the
definitions for identification of classical information via quantum channels, after
Löber [25], generalizing the model of Ahlswede and Dueck [8,9]. In Section 2 we
move to identification of quantum information; Section 3 presents the recently
developed theoretical underpinning to prove capacity formulas for two of the
three quantum models. In Section 4 we show how the quantum identification
results imply new lower bounds on classical identification capacities, which we
illustrate with several examples, shedding new light also on Löber’s founding
work [25]. Finally, Section 5 is devoted to an outlook on open questions and
possible conjectures.

1 Classical Identification

Ahlswede and Dueck [8,9] introduced identification by noting that while Shan-
non’s theory of transmission presumes that the receiver wants to know everything
about the message, in reality he may be interested only in certain aspects of it.
In other words, the receiver may want to compute a function of the message.
The most extreme case is that of identification: for sent message m and an arbi-
trary message m′, the receiver would like to be able to answer the question “Is
m = m′?” as accurately as possible.

Definition 1 (Löber [25]). A classical identification code for the channel N
with error probability λ1 of first, and λ2 of second kind is a set {(ρi, Di) : i =
1, . . . , N} of states ρi on A and operators Di on B with 0 ≤ Di ≤ 1l, i.e. the
pair (Di, 1l−Di) forms a measurement, such that

∀i Tr
(
N (ρi)Di

)
≥ 1− λ1,

∀i �= j Tr
(
N (ρi)Dj

)
≤ λ2.

For the special case of memoryless channels N⊗n, we speak of an (n, λ1, λ2)-ID
code, and denote the largest size N of such a code N(n, λ1, λ2).

An identification code as above is called simultaneous if all the Di are coex-
istent: this means that there exists a positive operator valued measure (POVM)
(Et)

T
t=1 and pairwise disjoint sets Di ⊂ {1, . . . , T } such that Di =

∑
t∈Di

Et.
The largest size of a simultaneous (n, λ1, λ2)-ID code is denoted Nsim(n, λ1, λ2).
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Note that Nsim(n, λ1, λ2) = N(n, λ1, λ2) = ∞ if λ1 + λ2 ≥ 1, hence to avoid
this triviality one has to assume λ1 + λ2 < 1.

It is straightforward to verify that in the case of a classical channel, this definition
reduces to the famous one of Ahlswede and Dueck [8], in particular all codes are
without loss of generality automatically simultaneous. It was in fact Löber [25]
in his PhD thesis who noticed that in the quantum case we have to make a
choice – whether the receiver should be able to answer all or any one of the “Is
the message = m′?” questions. It was the original realization of Ahlswede and
Dueck [8] that N(n, λ1, λ2) grows doubly exponential in n, hence the following
definition of the (classical) identification capacity:

Definition 2. The (simultaneous) classical ID-capacity of a quantum channel
N is given by

CID(N ) = inf
λ>0

lim inf
n→∞

1

n
log logN(n, λ, λ),

Csim
ID (N ) = inf

λ>0
lim inf
n→∞

1

n
log logNsim(n, λ, λ),

respectively. We say that the strong converse holds for the identification capacity
if for all λ1 + λ2 < 1,

lim
n→∞

1

n
log logN(n, λ1, λ2) = CID(N ),

and similarly for Csim
ID .

Theorem 3 (Ahlswede/Dueck [8], Han/Verdú [18,19], Ahlswede [4]).
For a classical channel N and any λ1, λ2 > 0 with λ1 + λ2 < 1,

lim
n→∞

1

n
log logN(n, λ1, λ2) = C(N),

in particular, Csim
ID (N) = CID(N) = C(N). �

The direct part of the above theorem, due to Ahlswede and Dueck [8], can be
seen by concatenating a sufficiently good Shannon channel code with an identifi-
cation code for the ideal bit channel. For the latter, [8] contains a combinatorial

construction showing that by k-bit encodings, one can identify ≥ 2Ω(2k) mes-
sages. Using this, the direct part of the following result is immediate:

Theorem 4 (Löber [25], Ahlswede/Winter [10]). For quantum channel N ,

CID(N ) ≥ Csim
ID (N ) ≥ C(N ).

The simultaneous ID-capacity obeys a strong converse under the additional re-

striction that the signal states ρi are from a set that is the convex hull of ≤ 22
o(n)
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quantum states on An. I.e., denoting the maximum number of messages under
this constraint by N sim(n, λ1, λ2),

lim
n→∞

1

n
log logN sim(n, λ1, λ2) ≤ C(N ),

for λ1 + λ2 < 1. (For instance, the ρi could be restricted to be – approximately
– separable states.)

For cq-channels, the constraint is w.l.o.g. satisfied since there are only |X |n
classical input symbols, so for these channels the simultaneous ID-capacity obeys
a strong converse, with Csim

ID (N ) = C(N ) = C(1)(N ).
Indeed, in the case of cq-channels, the strong converse holds even without the

simultaneity constraint:

lim
n→∞

1

n
log logN(n, λ1, λ2) = C(N ) = C(1)(N ),

for λ1 + λ2 < 1. �

[To be precise, Löber’s results are in the framework of Han and Verdú [18,19], of
“arbitrary” sequences of channels and using information spectrum methods. As
we are focusing on the iid case here, we stated only a special case of his theorem.]

The last, non-simultaneous part of the Theorem is the main identification
result of [10], which was proved by developing a theory of tail bounds for
sums of random matrices, extending classical Hoeffding bounds, and inspired
by Ahlswede’s strong converse for the ID-capacity of classical channels [4]. The
simplest, and most useful, version is as follows.

Lemma 5 (Ahlswede/Winter [10]). For i.i.d. random variables Xi in d× d
Hermitian matrices and 0 ≤ Xi ≤ 1l, such that EXi = μ1l. Then, for μ ≤ α ≤ 1
and 0 ≤ α ≤ μ, respectively,

Pr

{
1

n

n∑
i=1

Xi �≤ α1l

}
≤ d e−nD(α‖μ),

Pr

{
1

n

n∑
i=1

Xi �≥ α1l

}
≤ d e−nD(α‖μ),

with the binary relative entropy D(α‖μ) = α ln α
μ + (1− α) ln 1−α

1−μ .

As a consequence, for all 0 ≤ ε ≤ 1
2 ,

Pr

{
1

n

n∑
i=1

Xi �∈ [(1− ε)μ1l, (1 = ε)μ1l]

}
≤ 2d e−

1
4nμε

2

.

using elementary estimates for the relative entropy. �

The power of this Lemma is in its giving explicit and simple tail bounds, useful
already for finite n and d, whereas general abstract large deviation theory –
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which applies, see [7] for a version in infinite dimension – often incurs complex
finite n behaviour, only yielding clear asymptotic statements. The proof of the
Lemma is simple, too: it requires generalizing the elementary Markov-Chebyshev
inequalities and the Bernstein trick from real random variables to matrices.
It has since found countless applications in quantum information theory and
beyond: The first proofs of some core results such as the quantum channel
capacity, remote state preparation or decoupling heavily relied on it, cf. [31],
as did the structurally simple proof of the Alon-Roichman theorem and matrix
versions of compressed sensing, cf. [30] and references therein. The latter also
presents far-reaching generalizations of the above bounds.

It is not known whether simultaneous and non-simultaneous ID-capacity coin-
cide or not for general quantum channels. In any case, going beyond simultaneity
seems to provide major freedom:

Example 6. Buhrman et al. [15] found that in the space of n qubits, whilst the
largest number of orthogonal pure state vectors is clearly the dimension of the
Hilbert space, 2n, there are N ≥ 2Ω(2n) pairwise almost orthogonal pure states,
i.e. |〈ψi|ψj〉| ≤ ε for i �= j.

They dubbed this “fingerprinting” because a verifier who gets a copy of each
|ψi〉 and |ψj〉 can efficiently determine whether i = j or not. In particular, the
set of these vectors forms a (non-simultaneous) ID-code, with ρi = Di = |ψi〉〈ψi|.

One can obtain a set of such vectors also by turning the probability distribu-
tions on n bits form [8] into superpositions – cf. [32] for details.

Fingerprinting ID-codes use quantum superpositions in a nontrivial way, albeit
the almost-orthogonality is somewhat analogous to the way the classical distri-
butions in [8] do not overlap too much. However, they only use pure states,
whereas the power of classical identification comes from randomization. Hence
it is natural to ask whether mixed states offer any improvement. As the clas-
sical capacity of a noiseless qubit channel is 1, the following result came as a
bit of a surprise. It was proved using powerful geometric measure concentration
techniques – cf. [21,11] for other applications in quantum information theory.

Theorem 7 (Winter [32]). For the noiseless qubit channel id2 = idC2 , and
0 < λ1, λ2, λ1 + λ2 < 1,

2Ω(22n) ≤ N(n, λ1, λ2) ≤ 2O(22n).

As a consequence, CID(id2) = 2 and the strong converse holds. If the encodings
are restricted to pure states, the capacity is only 1. �

[In [32] (Remark 13; the technical argument there has been elaborated in [17])
it was heuristically argued that one would expect Csim

ID (id2) to be 1 rather than
2.]

To appreciate why this result was so surprising, we need to go back to the
insights from the original identification papers [8,9]: It was understood that
what determines identification capacity of a communication system is its ability
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to establish common randomness (cf. [6]), as long as some sublinear amount
of actual communication is available. But the common randomness capacity
of a noiseless qubit channel is 1. However, a noiseless qubit channel can also
establish entanglement (ebits) at rate 1. And indeed, in [33,1] it was found
that k EPR pairs shared between sender and receiver, together with o(n) bits

of communication are sufficient to identify 2Ω(22k) messages. In this respect, it
may be interesting to draw attention to the following:

Proposition 8 (Winter [32]).Given an ID-code of rateC and common random-
ness of rate R, one can construct an ID-code of rate C + R − o(1) which uses the
signal states of the first code and correlations with the common randomness. �

In other words: Whatever your communication system, its identification capac-
ity is increased by 1 by each bit of common randomness. This was used in [32]
to derive a lower bound on the ID-capacity of a quantum channel: If N per-
mits simultaneous transmission of classical bits and qubits at rates C and Q,
respectively, then CID(N ) ≥ C+2Q. Thus the results of [16] become applicable,
where the Q-C capacity region was determined. As we saw above, this bound,
can be strictly larger than the classical capacity C(N ) of the channel, marking
a decisive departure from the behaviour of classical channels.

Beyond these bounds and a few special examples in [32], the ID-capacity
(simultaneous or not) of a general quantum channel remains elusive. However,
in Section 4 below we shall present a new lower bound.

2 How to Identify Quantum States?

So far the only quantum element in the discussion pertained to the channel
model. However, there is a natural way in which even the task of identification
can be extended from classical to quantum information. This has been promoted
in [32] and further in the more recent [22]. In the following, P(A) ⊂ S(A) denotes
the set of pure quantum states on a system A.

Definition 9 (Winter [32]). A quantum ID-code for the channel N with error
ε, for the Hilbert space K, is a pair of maps E : P(K) −→ S(A) and D :
P(K) −→ L(B) with 0 ≤ Dϕ ≤ 1l for all ϕ = |ϕ〉〈ϕ| ∈ P(K), such that for all
pure states/rank-one projectors ψ, ϕ ∈ P(K),∣∣Trψϕ− TrN

(
E(ψ)

)
Dϕ

∣∣ ≤ ε.

If the encoding E is cptp we speak of a blind code, in general and to contrast it
with the former, we call it visible.

For the case of an iid channel N⊗n, we denote the maximum dimension of a
blind (visible) quantum ID-code by M(n, ε) (Mv(n, ε)).

This notion can be motivated as follows: In quantum transmission, the objective
for the receiver is to recover the state ψ by means of a suitable decoding (cptp)

map D̃ : L(B) −→ L(K), with high accuracy. Of course then the receiver
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can perform any measurement on the decoded state, effectively simulating an
arbitrary measurement on the original input state, in the sense that for any
state ρ and POVM M = (Mi)i on K, there exists another POVM M ′ = (M ′

i)i
on B such that the measurement statistics of ρ under M is approximately that
of N (E(ρ)) under M ′. (M ′ can be written down directly via the adjoint D̃† :
L(K) −→ L(B) of the decoding map, which maps measurement POVMs on K

to POVMs on B: M ′
i = D̃†(Mi).) The converse is also true: If the receiver

can simulate sufficiently general measurements on the input state by suitable
measurements on the channel output, then he can actually decode the state by
a cptp map D̃ [26].

This allows us to relax the task of quantum information transmission to requir-
ing only that the receiver be able to simulate the statistics of certain restricted
measurements. In the case of quantum identification, these are (ϕ, 1l − ϕ) for
arbitrary rank-one projectors ϕ = |ϕ〉〈ϕ| ∈ P(K). They are the measurements
which allow the receiver to ask the (quantum) question: “Is the state equal to
ϕ or orthogonal to it?” Obviously, in quantum theory this question cannot be
answered with certainty, but for each test state it yields a characteristic distri-
bution. The quantum-ID task above is about reproducing this distribution.

Note that we can always concatenate a blind or visible quantum ID-code for
the Hilbert space K with a fingerprinting set of pure states in K, to obtain a
classical ID-code in the sense of Definition 1. This is because in fingerprinting
the encodings are pure states ψi and the tests precisely the POVMs (ψi, 1l−ψi).
Hence, as the cardinality of the fingerprinting set is exponential in the dimension
|K|, M(n, ε) and Mv(n, ε) can be at most exponential in n.

Definition 10. For a quantum channel N , the blind, respectively visible, quan-
tum ID-capacity is defined as

QID(N ) := inf
ε>0

lim inf
n→∞

1

n
logM(n, ε),

QID,v(N ) := inf
ε>0

lim inf
n→∞

1

n
logMv(n, ε).

If we leave out the qualifier, the quantum ID-capacity is by default the blind
variety.

Note that by definition and the above remark,

QID(N ) ≤ QID,v(N ) ≤ CID(N ). (3)

The first quantum ID-capacity that had been determined was for the ideal qubit
channel:

Theorem 11 (Winter [32]). For the noiseless channel idA on Hilbert space
A, there exists a (blind) quantum ID-code with error ε and encoding a space K
of dimension |K| ≥ C(ε)|A|2, for some universal function C(ε) > 0.

As a consequence, QID(id2) = QID,v(id2) = 2, twice the quantum transmission
capacity. �
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In view of this theorem, we gain at least 2 in capacity for each noiseless qubit we
use additionally to the given channel. This motivates the following definition.

Definition 12 (Hayden/Winter [22]). For a quantum channel N , the amor-
tized (blind/visible) quantum ID-capacity is defined as

Qam
ID (N ) := sup

k
QID(N⊗idk)− 2 log k,

Qam
ID,v(N ) := sup

k
QID,v(N⊗idk)− 2 log k,

respectively.

The blind quantum ID-capacities are among the best understood, thanks to
recently made conceptual progress, which we review in the next section. We will
then also ask the question how much amortization is required. This is formalized
in the usual way: Namely, for a rate Q ≤ Qam

ID (N ), we say that A is an achievable
amortization rate if there exist kn for all n, such that

lim inf
n→∞

1

n

(
QID(N⊗n⊗idkn)− 2 log kn

)
≥ Q and lim

n→∞

1

n
log kn ≤ A,

giving rise to an achievable quantum ID-rate/amortization region, viz. a tradeoff
between Q and A. Similarly of course for the visible variant.

3 Weak Decoupling Duality

The fundamental insight about quantum information transmission, which al-
lowed an understanding of the quantum capacity as we have it today, is the
decoupling principle: for a channel to permit (approximate) error correction it
is necessary and sufficient that it leaks (almost) no information to the environ-

ment in the sense that the complementary channel N̂ is close to constant. To
be precise, idA′⊗N̂ should map an entangled test state ΦA

′A to ≈ ΦA
′⊗σE ,

where the approximation is with respect to the trace norm on density operators.
In practice, to define capacities it is enough to demand this for the maximally
entangled test state between the code space and a reference system [27].

This condition is compactly expressed as saying that N̂ is ≈ [σE ] in the
so-called diamond norm, the completely bounded version of the naive super-
operator norm. Here, [σE ] denotes the constant channel mapping every input to
σE . Because of this connection to completely bounded norms, we call channels
with the above property completely forgetful or decoupling.

Indeed, it is well-known that this is a much stronger condition than N̂ (ρ) ≈ σE

for all input states ρ on A. Cf. [20] for some instances of this effect relevant to
quantum information processing. There, it is shown how to construct channels
that are only (approximately) forgetful (or weakly decoupling), but far from
completely forgetful.

To state the following conceptual points about blind(!) quantum ID-codes,
it is useful to fix an encoding cptp map E : L(K) −→ L(A) and to combine it
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with the noisy channel, N ′ = N ◦ E , for which we choose a Stinespring dilation
V : K ↪→ B⊗F . The quantum ID-code is now the entire input space K of
this effective new channel, together with the previously given operators Dϕ on
B. The next result states that just as quantum error correctability of N ′ is
equivalent to N̂ ′ being decoupling [27,24], quantum identification is essentially
equivalent to weak decoupling from the environment:

Theorem 13 (Hayden/Winter [22]). If K is a ε-quantum ID-code for the
channel N ′ with Stinespring dilation V : K ↪→ B⊗F , then the complementary
channel N̂ ′ is approximately forgetful:

∀|ϕ〉, |ψ〉 ∈ K
1

2

∥∥∥N̂ ′(ϕ) − N̂ ′(ψ)
∥∥∥
1
≤ δ := 7 4

√
ε.

Conversely, if N̂ ′ is approximately forgetful with error δ, then the trace-norm
geometry is approximately preserved by N ′:

∀|ϕ〉, |ψ〉 ∈ S 0 ≤
∥∥ϕ− ψ

∥∥
1
−

∥∥N ′(ϕ)−N ′(ψ)
∥∥
1
≤ ε := 4

√
2δ.

If, in addition, the nonzero eigenvalues of the environment’s states N̂ ′(ϕ) lie in
the interval [μ, λ] for all |ϕ〉 ∈ K, then one can construct an η-quantum ID-code
for N ′ (i.e. a set of operators Dϕ for all |ϕ〉 ∈ K as in Definition 9), with

η := 7δ1/8
√
λ/μ. �

Remark 14. While it would be desirable to eliminate the eigenvalue condition
at the end of the theorem, the condition is fairly natural in this context. If the
environment’s states N̂ ′(ϕ) are very close to a single state σF for all |ϕ〉 ∈ K,
then all the V |ϕ〉 are very close to being purifications of σF , meaning that they
differ from one another only by a unitary plus a small perturbation. If σF is the
maximally mixed state or close to it, then the assumption will be satisfied. In
the asymptotic iid setting we are looking at this turns to be the case.

This characterization of quantum ID-codes (albeit “only” blind ones) allows the
determination of capacities by a random coding argument, for which only the
weak decoupling has to be verified. The above duality theorem is not only the
basis for the direct but also for the converse part(s) of the following capacity
theorem.

Theorem 15 (Hayden/Winter [22]). For a quantum channel N , its (blind)
quantum ID-capacity is given by

QID(N ) = lim
n→∞

1

n
Q

(1)
ID (N⊗n), where

Q
(1)
ID (N ) = sup

|φ〉

{
I(A : B)ρ s.t. I(A〉B)ρ > 0

}
,

where |φ〉 is the purification of an input state to N , ρAB = (id⊗N )φ and I(A :
B)ρ = S(ρA) + S(ρB) − S(ρAB) is the mutual information, and I(A〉B)ρ =
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S(ρB) − S(ρAB) the coherent information (which already appeared in eq. (2)).
We declare the sup to be 0 if the set above is empty. In particular, QID(N ) = 0
if and only if Q(N ) = 0.

Furthermore, the amortized quantum ID-capacity equals

Qam
ID (N ) = sup

|φ〉
I(A : B)ρ = CE(N ),

the entanglement-assisted classical capacity of N [12]. �

Remark 16. Let us say that a channel N has “sufficiently low noise” if for an
input state |φ〉 maximizing I(A : B)ρ, ρ = (id⊗N )φ, it holds that I(A〉B)ρ > 0.
This is motivated by the fact that in this case the channel has positive quantum
capacity. Also, for any channel, N⊗idk has sufficiently low noise if k is chosen
large enough; likewise pN + (1− p)id if p > 0 is small enough.

In that case, the above tells us QID(N ) = Qam
ID (N ) = sup|φ〉 I(A : B)ρ, which

is an additive, single-letter formula.

This theorem also shows that amortized and non-amortized quantum ID-capacities
are different – indeed, any channel N with vanishing quantum capacity also has
QID(N ) = 0, whereas Qam

ID (N ) = 0 only for trivial channels. In particular this
implies that QID is not additive. In [22] it is in fact proven that certain channels
require a positive rate of amortization to attain or even to approximate Qam

ID .
The example analyzed there is the qubit erasure channel

Eq : L(C2) −→ L(C3)

ρ �−→ (1− q)ρ⊕ q|∗〉〈∗|,

which will serve us again in the following section. To be precise, for 0 ≤ q < 1
2 ,

the channel has sufficiently low noise and no amortization is required. For 1
2 ≤

q ≤ 1 instead, an amortized rate of at least 2q − 1 qubits per channel use are
necessary.

On the other hand, for all symmetric channels, i.e. those with E = B in the
Stinespring representation and N = Ñ , whereas quantum capacity and hence
QID are zero, only a vanishing rate of amortization is necessary to attain Qam

ID .
This is because they have I(A〉B)ρ = 0 for every input state, so arbitrarily little
is required to make the coherent information positive.

This includes qc-channels with rank-one POVM (My)y∈Y , and the noiseless
classical bit channel

id2 : ρ �−→
∑
b=0,1

|b〉〈b|ρ|b〉〈b|.

The latter implies that also cq-channels N only require a vanishing rate of amor-
tization to attainQam

ID (N ) = C(N ) = C(1)(N ): This is because we can use n! 1
copies ofN , with appropriate encoding and decoding, to simulate

(
C(N )−o(1)

)
n

almost noiseless classical bits. This also shows that the rate C(N ) is attainable
for all channels N as an amortized quantum ID-rate, with vanishing rate of
amortization.
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In fact, inspection of the proof of the direct part of Theorem 15 (Thm. 12
in [22]) reveals that for the noiseless classical channel id2, a constant amount of
amortization is enough, hence the same for all cq-channels, and also for certain
rank-one POVM qc-channels, namely those for which the outputs N (τ) and

Ñ (τ) for the maximally mixed input state τA are themselves maximally mixed.
Because then the typicality arguments in the proof, which deal with eigenvalue
fluctuations around the inverse exponential of the entropy, are unnecessary.

Remark 17. The previous observations show that the amortized quantum ID-
capacity of a cq-channel N (which equals its classical capacity) can be achieved
by visible, non-amortized codes:

QID,v(N ) = Qam
ID (N ) = C(N ) = C(1)(N ).

Indeed, choose a sequence of amortized quantum ID-codes for n uses of the
channel, with amortized noiseless communication of a system of dimension t =
o(logn). Then, whatever the code produces as the input state ω = E(ψ) to the
channel N⊗n⊗idt, the effect is the same if we first dephase the input to N⊗n as
the channel is cq, so w.l.o.g.

ω =
∑
xn

pxn |xn〉〈xn|⊗ωxn ,

with states ωxn ∈ S(Ct). The latter can be described classically to good approx-
imation using o(n) bits [21,32], which can be communicated by o(n) uses of the
channel (if we exclude the trivial case of zero capacity).

This then is the visible scheme: the encoding of state ψ is to sample from
the distribution pxn and sending |xn〉〈xn| through N⊗n, and to send a classical
description of ωxn via N⊗o(n). The receiver creates then ωxn in addition to
the other channel output, and otherwise uses the measurement Dϕ from the
amortized ID-code.

That the capacity cannot be larger than C(N ) follows from eq. (3) and Theo-
rem 4.

On the other hand, QID(N ) = 0 by Theorem 15, so we obtain a separation
between blind and visible quantum ID-capacity, a question left open in [32]. �

We close this section by pointing out that Qam
ID is one of only two fully under-

stood identification capacities so far: it has a single letter formula which can be
evaluated efficiently and it is additive. The other one is the classical ID-capacity
of a quantum channel with “coherent feedback” (meaning that in each use of the
channel, the environment of the Stinespring isometry ends up with the sender),
which we did not discuss here; the interested reader is referred to [33].

4 From QID to CID

As pointed out in Section 2, concatenating a quantum ID-code (blind or visible)
with the fingerprinting construction (Example 6), yields a classical ID-code of
asymptotically the same rate. Hence,
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CID(N ) ≥ QID,v(N ) ≥
{
QID(N ),

C(N ),

Cam
ID (N ) ≥ Qam

ID (N ) = CE(N ),

where the amortized classical ID-capacity is defined analogously to the quantum
variant.

Perhaps we do not find the amortized classical ID-capacity that interesting,
but at least we get lots of channels for which CID(N ) ≥ CE(N ), namely all
sufficiently low noise channels and of course all cq-channels. This bound improves
on the earlier best bound

CID(N ) ≥ max{C + 2Q : (Q,C) jointly achievable},

the right hand side of which is always ≤ CE(N ). For example for the erasure
channel Eq, the quantum-classical-capacity region is known [16] to be

conv
{
(0, 0), (0, 1− q),

(
(1− 2q)+, 0

)}
,

so the above maximization yields

CID(Eq) ≥
{
2− 4q for 0 ≤ q ≤ 1

3 ,

1− q for 1
3 ≤ q ≤ 1.

Our new bound instead is

CID(Eq) ≥
{
2− 2q for 0 ≤ q < 1

2 ,

1− q for 1
2 ≤ q ≤ 1,

which is strictly better in the interval [0, 12 ).

5 Conclusion and Open Questions

As it should have become clear from the above exposition, identification theory
in the quantum setting is an enormously fruitful area, much more so even than
the classical version, if only because we have at least five natural capacities.
And we did not yet even touch upon a general theory of information transfer
in quantum information, or rather how quantum information would fit into this
far-reaching vision [2,3], these aspects still awaiting development.

At the same time the subject of identification via quantum channels is wide
open, with most of the questions implied in the original papers [25,10,32] remain-
ing unsolved, despite significant progress over the last decade. In particular, it
turned out that the quantum identification task lent itself much more easily to
the currently available techniques, and that the recent progress satisfyingly shed
a fresh light on the older, and seemingly more elementary classical identification
task. The following seven broad open problems are recommended to the reader’s
attention.
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1. Surely the biggest open problem is to determine the classical ID-capacity
CID(N ) of a general quantum channel, and to study its properties, such as
additivity etc. Even obtaining non-trivial upper bounds would be a worthy
goal. Note that practically all transmission capacities of a channel are up-
per bounded by its entanglement-assisted capacity, by way of the Quantum
Reverse Shannon Theorem [12,13,14] through simulation of the channel by
noiseless communication and unlimited shared entanglement. This argument
is not available here since entanglement or even common randomness have
an impact on the ID-capacities.

In fact, the few cases for which CID is known are consistent with the idea
that it is always equal to the entanglement-assisted classical capacity of the
channel [32]. One might speculate that CID(N ) ≥ QID,v(N ) ≥ CE(N ) be
true for all channels, seeing that for sufficiently low noise we can prove it, and
that it is true for the amortized classical ID-capacity. The erasure channel Eq
discussed in Section 4 is already an excellent test case for this idea.

2. Is there a deeper, operational, reason why the amortized quantum ID-capacity
equals the entanglement-assisted classical(!) capacity of a channel? In the
derivation of [22] this comes out naturally as a result of the analysis, but
almost as an accident, and it seems difficult to connect it to [12]...

3. Is the simultaneous ID-capacity Csim
ID (N ) equal to the non-simultaneous ver-

sion CID(N )? I suspect that they are different, possibly even for the noiseless
qubit channel (see Theorem 7 and subsequent remarks). In such a case we
face another problem to determine Csim

ID (N ). When studying simultaneous
ID-codes, Löber’s technical condition in Theorem 4 deserves special atten-
tion, as it precludes using the entire input state space of the iid channels. A
very interesting case to study will be (rank-one POVM) qc-channels as there
any identification code is per se simultaneous. For these channels we know
the amortized quantum ID-capacity (it is the entanglement-assisted classical
capacity, which evaluates to log |A|), and that amortization rate 0 is suffi-
cient to achieve it, in some cases even a constant amount. In fact, it would
be interesting to know whether the visible quantum ID-capacity for these
channels is the same – cf. the case of cq-channels discussed in Remark 17
–; this would evidently prove CID(N ) ≥ log |A| for all these channels N ,
whereas it is known that the classical capacity C(N ) for many of them is
much smaller.

4. The role of amortization is extremely interesting: For the quantum ID-
capacity it makes for a quasi-superactivation effect, since a vanishing rate
of it (i.e. an arbitrary small rate of noiseless communication) can turn a ca-
pacity 0 channel into one of positive capacity. It is possible that vanishing
rate of amortization likewise has an impact on classical ID-capacities – see
the example of qc-channels discussed in the previous point.
Finally, in [22] only the non-triviality of amortization (and only for the
erasure channels) was proved. How to characterize the quantum ID-rate
vs. amortization rate tradeoff?

5. We have seen that the visible quantum ID-capacity can be larger than the
blind variant, indeed the former can be positive while the latter is 0 for
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cq-channels. Let us note that the distinction visible/blind can also be made
in the quantum transmission game, and there it is far from clear whether
there will be a difference in capacities, see [32].

6. We did not comment much on the role of shared correlations in the identifi-
cation game, indeed referring the reader to [32,33], where also the impact of
feedback is discussed. However, in Proposition 8 we saw that not only is the
classical ID-capacity of common randomness (in the presence of negligible
communication) equal to 1 per bit, but it increases the rate of any given
ID-code by 1 per bit. We also know that the classical ID-capacity of shared
entanglement is 2 per ebit, but it is open whether we can augment a given
ID-code with entanglement to increase its rate by 2 per ebit.

7. Finally: All the known upper bounds on classical ID-capacities are in fact
strong converses. Does the strong converse also hold for (visible, blind,
amortized, etc) quantum ID-capacities? This question seems to require new
techniques to be answered.

Acknowledgements. I have thought about identification in quantum informa-
tion theory for quite some time, going back all the way to the days of my PhD,
from which period date my hugely enjoyable mathematical interactions with
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Abstract. We derive a lower bound on the secrecy capacity of classical-
quantum arbitrarily varying wiretap channel for both the case with and
without channel state information at the transmitter.

Keywords: quantum channel, arbitrarily varying channel, wiretap
channel.

1 Introduction

The arbitrarily varying channel models transmission over a channel with an state
that can change over time. We may interpret it as a channel with an evil jammer.
The arbitrarily varying channel was first introduced by Blackwell, Breiman, and
Thomasian in [8]. The wiretap channel models communication with security. It
was first introduced by Wyner in [12]. We may interpret it as a channel with an
evil eavesdropper. The arbitrarily varying wiretap channel models transmission
with both a jammer and an eavesdropper. Its capacity has been determined by
Bjelaković, Boche, and Sommerfeld in [3].

A quantum channel is a channel which can transmit both classical and quan-
tum information. In this paper, we consider the capacity of quantum chan-
nels to carry classical information, or equivalently, the capacity of a classical
quantum channels. The classical capacity of quantum channels has been deter-
mined by Holevo in [9]. A classical-quantum channel with a jammer is called a
classical-quantum arbitrarily varying channel, its capacity has been determined
by Ahlswede and Blinovsky in [1]. Bjelaković, Boche, Janßen, and Nötzel gave an
alternative proof and a proof of the strong converse in [2]. A classical-quantum
channel with an eavesdropper is called a classical-quantum wiretap channel, its
capacity has been determined by Devetak in [7], and by N. Cai, Winter, and
Yeung in [5].
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A classical-quantum channel with both a jammer and an eavesdropper is called
a classical-quantum wiretap channel, it is defined as a pair of double indexed
finite set of density operators {(ρx,t, σx,t) : x ∈ X , t ∈ Θ} with common input
alphabet X connecting a sender with two receivers, one legal and one wiretapper,
where t is called a state of the channel pair. The legitimate receiver accesses
the output of the first channel ρx,t in the pair (ρx,t, σx,t), and the wiretapper
observes the output of the second part σx,t in the pair (ρx,t, σx,t), respectively,
when a state t, which varies from symbol to symbol in an arbitrary manner,
governs both the legitimate receiver’s channel and the wiretap channel. A code
for the channel conveys information to the legal receiver such that the wiretapper
knows nothing about the transmitted information. This is a generalization of
model of classical-quantum compound wiretap channels in [4] to the case when
the channel states are not stationary, but can change over the time.

We will be dealing with two communication scenarios. In the first one only
the transmitter is informed about the index t (channel state information, or
simply CSI, at the transmitter), while in the second, the legitimate users have
no information about that index at all (no CSI).

2 Definitions

Let X be a finite set (the set of code symbols). Let Θ := {1, · · · , T } be finite
set (the set of channel states). Denote the set of the (classical) messages by
{1, · · · , Jn}. Define the classical-quantum arbitrarily varying wiretap channel by
a pair of double indexed finite set of density operators {(ρx,t, σx,t) : x ∈ X , t ∈ Θ}
on Cd. Here the first family represents the communication link to the legitimate
receiver while the output of the latter is under control of the wiretapper.

One important notation in [1] is the symmetrizable classical-quantum arbi-
trarily varying channel. We say {ρx,t : x ∈ X , t ∈ Θ} is symmetrizable if there
exists a parameterized set of distributions {U(t|x) : x ∈ X} on Θ such that for
all x, x′ ∈ X the following equalities are valid:∑

t∈Θ
U(t|x)ρx′,t =

∑
t∈Θ

U(t|x′)ρx,t

For any probability distribution P ∈ P and positive δ denote T n
P,δ the δ-typical

set in sense of [6].
For a state ρ, the von Neumann entropy is defined as

S(ρ) := −tr(ρ log ρ) .

Let P be a probability distribution over a finite set J , and Φ := {ρ(x) : x ∈ J}
be a set of states labeled by elements of J . Then the Holevo χ quantity is defined
as

χ(P,Φ) := S

(∑
x∈J

P (x)ρ(x)

)
−

∑
x∈J

P (x)S (ρ(x)) .
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A (deterministic) quantum code C of cardinality Jn and length n is a set of
pairs {(cnj , Dj) : j = 1, · · ·Jn}, where cnj = (cj,1, cj,2, · · · , cj,n) ∈ Xn, and
{Dj : j = 1, · · ·Jn} is a collection of positive semi-definite operators which is

a resolution of the identity in (Cd)⊗n, i.e.
∑Jn

j=1Dj = id(Cd)⊗n .
A non-negative number R is an achievable secrecy rate for the classical-

quantum arbitrarily varying wiretap channel if for every ε > 0, δ > 0, ζ > 0 and
sufficiently large n there exist a code C = {(cnj , Dj) : j = 1, · · ·Jn} such that

log Jn
n

> R− δ ,

max
tn∈Θn

Pe(C, t
n) < ε ,

max
tn∈Θn

1

n
χ
(
W, {σcnj ,tn : j = 1, · · · , Jn}

)
< ζ ,

where W is an uniformly distributed random variable with values in {1, · · ·Jn}.
Here Pe(C, t

n) (the average probability of the decoding error of a deterministic
code C, when the state (sequence of states) of the classical-quantum arbitrarily
varying wiretap channels is tn = (t1, t2, · · · , tn)) is defined as follows

Pe(C, t
n) := 1− 1

Jn

Jn∑
j=1

tr(ρcnj ,tnDj) ,

where ρcnj ,tn := ρcj,1,t1 ⊗ ρcj,2,t2 ⊗ · · · ⊗ ρcj,n,tn .
A non-negative number R is an achievable secrecy rate for the classical-

quantum arbitrarily varying wiretap channel with channel state information
(CSI) at the transmitter if for every ε > 0, δ > 0, ζ > 0 and sufficiently
large n there exist for every tn a code Ctn = {(cnj,tn , Dj) : j = 1, · · ·Jn}, where
cnj,tn = (cj,1,tn , cj,2,tn , · · · , cj,n,tn) ∈ Xn, such that

log Jn
n

> R− δ ,

max
tn∈Θn

PCSI
e (Ctn , tn) < ε ,

max
tn∈Θn

1

n
χ
(
W, {σcn

j,tn
,tn : j = 1, · · · , Jn}

)
< ζ .

Here PCSI
e (Ctn , tn) is defined as follows:

PCSI
e (Ctn , tn) := 1− 1

Jn

Jn∑
j=1

tr(ρcn
j,tn

,tnDj) ,

where ρctnj ,tn := ρcn
j,tn

,t1 ⊗ ρcj,1,tn ,t2 ⊗ · · · ⊗ ρcj,n,tn ,tn .

One tool we will use is the random quantum code, which we will define now.

Let Λ =
(
Xn × B((Cd)⊗n)

)Jn
. A random quantum code ({Cγ : γ ∈ Λ}, G)
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consists of the family of sets of Jn pairs Cγ = {(cn,γj , Dγ
j ) : j = 1, · · · , Jn}γ∈Λ,

where cn,γj = (cn,γj,1 · · · cn,γj,n ) ∈ Xn and
∑Jn

j=1D
γ
j = id(Cd)⊗n , together with a

distribution G on Λ. The average probability of the decoding error is defined as
follows

Per := inf
G

max
tn∈Θn

∫
Λ

Pe(C
γ , tn)dG(γ) .

A non-negative number R is an achievable secrecy rate for the classical-quantum
arbitrarily varying wiretap channel under random quantum coding if for every
δ > 0, ζ > 0, and ε > 0, if n is sufficiently large, we can find a Jn such that

log Jn
n

> R− δ ,

Per < ε ,

max
tn∈Θn

max
γ∈Λ

1

n
χ
(
W, {σcn,γ

j ,tn : j = 1, · · · , Jn}
)
< ζ .

Denote Pn(xn) := P (x1)P (x2) · · ·P (xn). The following facts hold: (cf. [10])

Let X ′ be a finite set and for any x ∈ X ′, ςx be a density operator on Cd.
For any distribution P on X ′ and xn ∈ T n

P let ςxn := ςx1 ⊗ ςx2 ⊗ · · · ⊗ ςxn . Let∑
k lk|ek〉〈ek| be a spectral decomposition of Pς :=

∑
xn∈X ′n Pn(xn)ςxn , where

lk ∈ R+,
∑

k lk = 1. For α > 0 denote Gα := {k : 2−n[S(
∑

xn∈X′n Pn(xn)ςxn)−α] ≤
lk ≤ 2−n[S(

∑
xn∈X′n Pn(xn)ςxn)+α]}. Denote Πς,α :=

∑
k∈Gα

|ek〉〈ek|. Then Πς,α

commuting with Pς and satisfying

tr (PςΠPς,α) ≥ 1− d

4nα2
,

tr (Πρ,α) ≤ 2S(
∑

xn∈X′n P (xn)ςxn)+Kdα
√
n ,

ΠPς,α · Pς ·ΠPς,α ≤ 2−S(
∑

xn∈X′n P (xn)ςxn)+Kdα
√
nΠPς,α ,

tr
(
Pς ·ΠPς,α

√
a

)
≥ 1− ad

4nα2
,

where a := #X ′ and K is a positive constant.

Let
∑

k lxn,k|exn,j〉〈exn,k| be a spectral decomposition of ςxn , where lxn,k ∈
R+,

∑
k lxn,k = 1. For α > 0 denote Gxn,α := {k : 2−n[S(ςxn)−α] ≤ lxn,k ≤

2−n[S(ςxn)+α]}, and Πςxn ,α :=
∑

k∈Gxn,α
|exn,k〉〈exn,k|.

The subspace projector Πςxn ,α commutes with ςxn and satisfies:

tr (ςxnΠςxn ,α) ≥ 1− ad

4nα2
,

tr (Πςxn ,α) ≤ 2
∑

xn∈X′n P (xn)S(ςxn)+Kadα
√
n ,

Πςxn ,α · ςxn ·Πςxn ,α

≤ 2−
∑

xn∈X′n P (xn)S(ςxn)+Kadα
√
nΠςxn ,α ,

where K is a positive constant.
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3 Main Result

Theorem 1. Let W := {(ρx,t, σx,t) : x ∈ X , t ∈ Θ} be a classical-quantum
arbitrarily varying wiretap channel, if for all t ∈ Θ it holds: {ρx,t, x ∈ X} is not
symmetrizable, then the largest achievable secrecy rate, called secrecy capacity,
of W, is bounded as follow,

C(W) ≥ max
P∈P

(
min
Q∈Q

χ
(
P, {ρQx : x ∈ X}

)
− lim

n→∞
max

tn∈Θn

1

n
χ(Pn, {σxn,tn : xn ∈ Xn})

)
,

(1)

where P are distributions on X , Q are distributions on Θ, and
ρQx =

∑
t∈ΘQ(t)ρx,t for Q ∈ Q.

If {ρx,t,∈ X , t ∈ Θ} is not symmetrizable, then the secrecy capacity of W with
CSI at the transmitter is bounded as follow

CCSI(W) ≥ min
Q∈Q,tn∈Θn

max
P∈P

(
χ(P, {ρQx : x ∈ X})− lim

n→∞

1

n
χ(Pn, {σxn,tn : xn ∈ Xn})

)
.

(2)

Is {ρx,t, x ∈ X} symmetrizable for some t ∈ Θ, then we have:

C(W) = CCSI(W) = 0. (3)

Proof. At first, we are going to prove (1).

For P ∈ P denote ρP,Q :=
∑

x∈X P (x)ρ
Q
x . Let

Jn =
⌊
2nminQ χ(P,{ρQx :x∈X})−maxtn∈Θn χ(Pn,{σxn,tn :xn∈Xn}−2nη)

⌋
,

Ln =
⌊
2maxtn∈Θn χ(Pn,{σxn,tn :xn∈Xn}+nη)

⌋
,

where η is a positive constant.

Let P ′(xn) :=

{
Pn(xn)

Pn(T n
P,δ

)
if xn ∈ T n

P,δ

0 else
, and Xn :=

(
Xn

j,l

)
j∈{1,··· ,Jn},l∈{1,··· ,Ln} be

a family of random matrices such that their entries are i.i.d. according to P ′.

Fix P ∈ P . Denote Qn = (Q1, · · · , Qn) ∈ Q. Let ρP,Q
n

:= ρP,Q1 ⊗ ρP,Q2 ⊗
· · · ⊗ ρP,Qn , and

∑
jn λ

P,Qn

jn |eP,Q
n

jn 〉〈eP,Q
n

jn | be a spectral decomposition of ρP,Q
n

,

where λP,Q
n

jn ∈ R+,
∑

jn λ
P,Qn

jn = 1.

For δ > 0 denote Fδ,Qn := {jn : 2−
∑n

i=1H(ρP,Qi )−nδ ≤ λP,Q
n

jn ≤
2−
∑n

i=1 H(ρP,Qi )+nδ}, and ΠP,Qn

δ :=
∑

jn∈Fδ,Qn
|eP,Q

n

j 〉〈eP,Q
n

j |.
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For any xn ∈ Xn let ρQ
n

xn := ρQ1
x1

⊗ρQ2
x2

⊗· · ·⊗ρQn
xn

. Let
∑

jn λ
Qn

xn,jn |e
Qn

xn,jn〉〈e
Qn

xn,jn |
be a spectral decomposition of ρQ

n

xn , where λQ
n

xn,jn ∈ R+,
∑

jn λ
Qn

xn,jn = 1.

For δ > 0 denote Fxn,Qn,δ := {jn : 2−
∑n

i=1

∑
x∈X P (x)H(ρ

Qi
x )−nδ ≤ λQ

n

xn,j ≤
2−
∑n

i=1

∑
x∈X P (x)H(ρ

Qi
x )+nδ}, and ΠQn

xn,δ :=
∑

jn∈Fxn,Qn,δ
|eQ

n

xn,j〉〈e
Qn

xn,j |.

Our proof bases on the following two lemmas. The first lemma is due to Rudolf
Ahlswede and Vladimir Blinovsky, the second one (the Covering Lemma) is due
to Rudolf Ahlswede and Andreas Winter.

Lemma 1 (cf. [1]). Let {&x,t, x ∈ X , t ∈ Θ} be a classical-quantum arbitrarily
varying wiretap channel, defined in sense of [1], where X is the set of code
symbols and Θ is the set of states of the classical-quantum arbitrarily varying
wiretap channel.

For {cni : i = 1, · · · , N} ⊂ Xn and distribution Qn = (Q1, Q2, · · ·Qn) on Θn

define

DQn

i :=

⎛⎝ N∑
j=1

ΠP,Qn

δ ΠP,Qn

cn
j
,δ

ΠP,Qn

δ

⎞⎠−1/2

ΠP,Qn

δ ΠP,Qn

cn
i
,δ

ΠP,Qn

δ

⎛⎝ N∑
j=1

ΠP,Qn

δ ΠP,Qn

cn
j
,δ

ΠP,Qn

δ

⎞⎠−1/2

.

(4)

Define the the set of the quantum codes

C :=
{
CQn

= {(cni , DQn

i ) : i = 1, · · · , N} : cni ∈ Xn∀i, Qn is a distribution onΘn
}

,

(5)

If logN
n < minQ χ

(
P, {&Qx : x ∈ X}

)
− δ, where δ is a positive constant, and

assume {&x,t, x ∈ X , t ∈ Θ} is not symmetrizable. then following holds. For any
ε > 0, if n is large enough, then there exist a distribution G on C such that

max
tn∈Θn

∑
C∈C

Pe(C, t
n)G(C) < ε . (6)

Lemma 2 (Covering Lemma, cf. [10]). Suppose we are given a finite set Y,
an ensemble {σy : y ∈ Y} with probability distribution pY on Y. Suppose there
exist a total subspace projector Π and codeword subspace projectors {Πy}y∈Y ,
they project onto subspaces of the Hilbert space in which the states {σy} exist,
and these projectors and the ensemble satisfy the following conditions:

tr (σyΠ) ≥ 1− ε

tr (σyΠy) ≥ 1− ε

tr (Π) ≤ c

ΠyσyΠy ≤ 1

d
Πy
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Suppose that M ⊂ Y is a set of size |M| with elements {m}, C = {Cm}m∈M
is a random code where the codewords Cm are chosen according to the distribution
pY(y), and an ensemble {σCm : m ∈ M} with uniform distribution on M, then

Pr

⎧⎨
⎩
∥∥∥∥∥
∑
y∈Y

pY(y)σy − 1

|M|
∑

m∈M
σCm

∥∥∥∥∥
1

≤ ε + 4
√
ε+ 24 4

√
ε

⎫⎬
⎭ ≥ 1−2c exp

(
− ε3|M|d
2 log 2c

)
.

(7)

Let {Xn
j,l}j∈{1,··· ,Jn},l∈{1,··· ,Ln} be a family of random matrices such that the

entries are i.i.d. according to P ′n.

For every realization
(
xnj,l

)
j∈{1,··· ,Jn},l∈{1,··· ,Ln}

of
(
Xn
j,l

)
j∈{1,··· ,Jn},l∈{1,··· ,Ln}

and distribution Qn on Θn define

DQn

xn
j,l

:=

⎛⎝ Jn∑
j′=1

Ln∑
l′=1

ΠP,Qn

δ ΠP,Qn

xn
j′,l′ ,δ

ΠP,Qn

δ

⎞⎠−1/2

ΠP,Qn

δ ΠP,Qn

xn
j,l,δ

ΠP,Qn

δ

⎛⎝ Jn∑
j′=1

Ln∑
l′=1

ΠP,Qn

δ ΠP,Qn

xn
j′,l′ ,δ

ΠP,Qn

δ

⎞⎠−1/2

. (8)

Let
∑

k λ
tn

k |etnk 〉〈etnk | be a spectral decomposition of Pρtn :=
∑

xn∈Xn

Pn(xn)ρxn,tn We denote

Gtn

α := {k : 2−n[H(
∑

xn∈Xn Pn(xn)ρxn,tn )−α] ≤ λtn

k ≤ 2−n[H(
∑

xn∈Xn Pn(xn)ρxn,tn )+α]}

and Πρtn ,α :=
∑

k∈Gtn
α

|etnj 〉〈etnk |, where ρxn,tn := ρx1,t1 ⊗ · · · ⊗ ρxn,tn .

Let
∑

k λ
tn

xn,k|et
n

xn,k〉〈et
n

xn,k| be a spectral decomposition of ρxn,tn . Denote

Gtn

xn,α := {k : 2−n[H(ρxn,tn )−α] ≤ λt
n

xn,k ≤ 2−n[H(ρxn,tn )+α]}, and Πρxn,tn ,α :=∑
k∈Gtn

xn,α
|etnxn,k〉〈et

n

xn,k|.
Define

σxn,tn := ΠPρtn ,α
√
aΠρxn,tn ,α · σxn,tn ·Πρxn,tn ,αΠPρtn ,α

√
a . (9)

By

Lemma 3 (cf. [11]). Let ρ be a state and X be a positive operator with X ≤ id
(the identity matrix) and 1− tr(ρX) ≤ λ ≤ 1. Then

‖ρ−
√
Xρ

√
X‖1 ≤

√
8λ .
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and the fact that ΠPρtn ,α
√
a and Πρxn,tn ,α are both projection matrices, for any

tn and xn it holds:

‖σxn,tn − σxn,tn‖1 ≤
√

2(ad+ d)

nα2
,

Thus for any positive α and any positive η if n is large enough

‖σxn,tn − σxn,tn‖1 ≤ η . (10)

Since
tr

(
ΠPρtn ,α

√
a

)
≤ 2S(

∑
xn∈Xn Pn(xn)ρxn,tn ) ,

Πρxn,tn ,α · σxn,tn ·Πρxn,tn ,α ≤ 2−
∑

xn∈Xn Pn(xn)S(ρxn,tn )Πρxn,tn ,α ,

and

Ln ≥ 2χ(P
n,{σxn,tn :xn∈Xn}))+2nδ =

2
∑

xn Pn(xn)S(ρxn,tn )+nδ

2S(
∑

xn Pn(xn)ρxn,tn)−nδ
,

by applying covering lemma, for every tn and j′ ∈ {1, · · · , Jn} there is a positive
constant c′1 such that for any ν > 0,

Pr

⎧⎨⎩
∥∥∥∥∥∥ 1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

σXn
j,l
,tn − 1

Ln

Ln∑
l=1

σXn
j′ ,l,t

n

∥∥∥∥∥∥
1

< ν

⎫⎬⎭ ≥ 1− 2−ν
32nc′1 . (11)

Since |Θn| = O(2n), and Jn " 2ν
32nc′1 , there is a positive constant c1 such that

for any ν > 0,

Pr

⎧⎨⎩
∥∥∥∥∥∥ 1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

σXn
j,l

,tn −
1

Ln

Ln∑
l=1

σXn
j′ ,l,t

n

∥∥∥∥∥∥
1

< ν ∀j′ ∈ {1, · · · , Jn}∀tn ∈ Θn

⎫⎬⎭ ≥ 1−2−ν3nc1 .

(12)

Denote the set of all codes
{(
x,nj,l, D

Qn

xn
j,l

)
: j = 1, · · · , Jn, l = 1, · · · , Ln

}
, where

(xj,l)j=1,··· ,Jn,l=1,··· ,Ln are realizations of (Xj,l)j=1,··· ,Jn,l=1,··· ,Ln , such that∥∥∥∥∥∥ 1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

σxn
j,l
,tn − 1

Ln

Ln∑
l=1

σxn
j′,l,t

n

∥∥∥∥∥∥
1

< ν ∀j′ ∈ {1, · · · , Jn}∀tn ∈ Θn

by C′
ν .

Now we want to show the following alternative result to Lemma 1.

If n is large enough then for any any positive ν, there exist a distribution G
on C′

ν such that

max
tn∈Θn

∑
C∈C′

ν

Pe(C, t
n)G(C) < ε . (13)
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In [1], following inequality is shown. There is a positive constant c2 such that
for any positive ν

Pr

⎧⎨⎩1 −
1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

tr

(
DQn

i ρQ
n

Xn
j,l

)
≤ ν

⎫⎬⎭ ≥ 1 − JnLn · 2n[minQ(H(ρP,Q)−∑x P (x)H(ρ
Q
x ))−c2] ,

(14)

where c2 is some positive constant. Since

JnLn ≤ 2n[mintn∈Θn χ(P,{ρxn,tn :xn∈Xn})−η] ,

There is a positive constant c3 such that if n is large enough then

JnLn · 2n[minQ(H(ρP,Q)−
∑

x P (x)H(ρQx ))−c2] ≤ 2−nc3

Denote the set of all codes
{(
x,nj,l, D

Qn

xn
j,l

)
: j = 1, · · · , Jn, l = 1, · · · , Ln

}
such

that

1− 1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

tr
(
DQn

i ρQ
n

xn
j,l

)
≤ ν

by C′′
ν .

We have

Pr(C′
ν ∩ C′′

ν ) ≥ 1− 2−nνc1 − 2−nc3 ,

therefore if n is large enough, C′
ν∩C′′

ν is not empty. This means if is large enough,
then for any positive ν and for each set of distributions T n = (T1, · · ·Tn) on Θn,
there exists a CXTn ∈ C′

ν with a positive probability such that,∑
tn∈Θn

T n(tn)Pe(C
XTn , tn) ≤ ν ,

where T n(tn) = T1(t1)T2(t2) · · ·Tn(tn).
Let us denote the set of distributions on C′

ν by ΩC′
ν
. By applying the minimax

theorem for mixed strategies (cf. [1]), we have

max
Tn

min
G∈ΩC′

ν

∑
tn∈Θn,C∈C′

ν

Tn(tn)G(C)Pe(C, tn) = min
G∈ΩC′

ν

max
Tn

∑
tn∈Θn,C∈C′

ν

Tn(tn)G(C)Pe(C, tn) .

Therefore (13) holds.

Now we are going to use the derandomization technique in [1] to build a
deterministic code.

Consider now n2 independent and identically distributed random variables
Z1, Z2, · · · , Zn2 with values in C′

ν such that P (Zi = C) = G(C) for all C ∈ C′
ν
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and for all i ∈ {1, · · · , n2}. Then for given tn ∈ Θn

G

⎛⎝ n2∑
i=1

Pe(Zi, t
n) > λn2

⎞⎠ < e−λn
2

, (15)

where λ := log(ν · e2 + 1). If n is large enough then 1 − e−λn
2

is positive, this
means ⎧⎨⎩Czi is a realization of Zi :

n2∑
i=1

Pe(C
zi , tn) < λn2

⎫⎬⎭
is not the empty set, since G(∅) = 0 by the definition of distribution.

In [1], it is shown that if
{
Czi is a realization of Zi :

∑n2

i=1 Pe(C
zi , tn) < λn2

}
is not the empty set, there exist codes C1, C2, · · · , Cn2 ∈ C′

ν , where we denote

Ci =

{(
x
(i),n
j,l , DQn

x
(i),n
j,l

)
: j = 1, · · · , Jn, l = 1, · · · , Ln

}
for i ∈ {1, · · · , n2} with a positive probability such that

1

n2

n2∑
i=1

Pe(Ci, t
n) < λ . (16)

Following fact is trivial. There is a code
{
(c
μ(n)
i , Di) : i = 1, · · · , n2

}
of length

μ(n), where μ(n) = o(n) (this code does not need to be secure against the
wiretapper, i.e. we allow the wiretapper to have the full knowledge of i), such
that for any positive ϑ if n is large enough then

min
tn∈Θn

1

n2

n2∑
i=1

tr(ρ
c
μ(n)
i ,tn

Di) ≥ 1− ϑ .

By (16) we can construct a code of length μ(n) + n (cf. [1])

Cdet =

{(
c
μ(n)
i ⊗ x

(i),n
j,l , Di ⊗DQn

x
(i),n
j,l

)
: i = 1, · · · , n2, j = 1, · · · , Jn, l = 1, · · · , Ln

}
,

which is a juxtaposition of words of the code {(cμ(n)i , Di) : i = 1, · · · , n2} and

the words of code Ci = {(x(i),nj,l DQn

x
(i),n
j,l

) : j = 1, · · · , Jn, l = 1, · · · , Ln}, with

following feature. Cdet is a deterministic code with n2JnLn codewords such
that for any positive ε if n is large enough then

max
tn∈Θn

Pe(C
det, tn) < ε . (17)
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Furthermore, since C1, C2, · · · , Cn2 ∈ C′
ν , for all i ∈ {1, · · · , n2}, tn ∈ Θn, and

j′ ∈ {1, · · · , Jn} we have

‖ 1

Ln

Ln∑
l=1

σ
x
(i),n

j′,l ,tn
− 1

Ln

1

Jn

Ln∑
l=1

Jn∑
j=1

σ
x
(i),n
j,l ,tn

‖1 < 3η . (18)

Lemma 4 (Fannes inequality, cf. [11]). Let X and Y be two states in a
d-dimensional complex Hilbert space and ‖X−Y‖1 ≤ μ < 1

e , then

|S(X)− S(Y)| ≤ μ log d− μ logμ .

Let W be a random variable uniformly distributed on {1, · · · , Jn}, by Lemma
4, for all tn ∈ Θn and all i ∈ {1, · · · , n2}

χ

(
W, { 1

Ln

Ln∑
l=1

σ
x
(i),n
j,l

,tn
: j = 1 · · ·Jn}

)

= S

⎛⎝ 1

Jn

1

Ln

Jn∑
j=1

Ln∑
l=1

σ
x
(i),n
j,l ,tn

⎞⎠− 1

Jn

Jn∑
j=1

S

(
1

Ln

Ln∑
l=1

σ
x
(i),n
j,l ,tn

)

=
1

Jn

Jn∑
j′=1

⎡⎣S
⎛⎝ 1

Jn

1

Ln

Jn∑
j=1

Ln∑
l=1

σ
x
(i),n
j,l ,tn

⎞⎠− S

(
1

Ln

Ln∑
l=1

σ
x
(i),n

j′,l ,tn

)⎤⎦
≤ 3η log d− 3η log 3η .

Therefore for any ζ > 0 we can choose such η that for all i ∈ {1, · · · , n2} (i.e.
even when the wiretapper has the full knowledge of i), for all tn ∈ Θn,

χ

(
W,

{[
1

Ln

Ln∑
l=1

σ
x
(i),n
j,l

,tn

]
: j = 1 · · ·Jn

})
< ζ . (19)

By (17) and (19), we see that for any distribution P on X and any posi-
tive δ, we can find a (n, ε)-code with secrecy rate minQ χ

(
P, {ρQx : x ∈ X}

)
−

1
n maxtn∈Θn χ (Pn, {σxn,tn : xn ∈ Xn})− δ. Therefore (1) follows.

We are going to prove (2).

Fix P and let

Jn =
⌊
2minQ∈Q,tn∈Θn [nχ(P,{ρQx :x∈X})−χ(Pn,{σxn,tn :xn∈Xn})]−2nη

⌋
,

Ltn =
⌊
2χ(P,{σxn,tn :xn∈Xn})+nη⌋, where η is a positive constant. For any tn ∈ Θn

let X(tn) := {X(tn)
j,l }j∈{1,··· ,Jn},l∈{1,··· ,Ltn} be a family of random matrices whose

components are i.i.d. according to P ′.

For any realization (x
(tn)
j,l )j∈{1,··· ,Jn},l∈{1,··· ,Ltn} of (X

(tn)
j,l )j∈{1,··· ,Jn},l∈{1,··· ,Ltn}

and distribution Qn on Θn define
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DQn,tn

x
(tn)
j,l

:=

⎛⎝ Jn∑
j′=1

Ltn∑
l′=1

ΠP,Qn

δ ΠP,Qn

x
(tn)

j′,l′ ,δ
ΠP,Qn

δ

⎞⎠−1/2

·ΠP,Qn

δ ΠP,Qn

x
(tn)
j,l ,δ

ΠP,Qn

δ

·

⎛⎝ Jn∑
j′=1

Ltn∑
l′=1

ΠP,Qn

δ ΠP,Qn

x
(tn)

j′,l′ ,δ
ΠP,Qn

δ

⎞⎠−1/2

. (20)

Since Ltn ≥ 2χ(P
n,{σxn,tn :xn∈Xn})+2nδ = 2

∑
xn Pn(xn)S(ρxn,tn )+nδ

2
S(∑xn Pn(xn)ρxn,tn)−nδ

, by applying

covering lemma, there is a positive c′1 such that for any positive η we have:

Pr

⎧⎨
⎩
∥∥∥∥∥∥

1

Ltn

1

Jn

Ltn∑
l=1

Jn∑
j=1

σ
X

(tn)
j,l

,tn
− 1

Ltn

Ltn∑
l=1

σ
X

(tn)

j′,l ,tn

∥∥∥∥∥∥
1

< η ∀j′ ∈ {1, · · · , Jn}
⎫⎬
⎭ = 1−2−ν3c′′1

(21)

Denote all {(x(t
n)

j,l , D
Qn

x
(tn)
j,l

) : j = 1, · · · , Jn, l = 1, · · · , Ltn} such that

∥∥∥∥∥∥ 1

Ltn

1

Jn

Ltn∑
l=1

Jn∑
j=1

σ
x
(tn)
j,l ,tn

− 1

Ltn

Ltn∑
l=1

σ
x
(tn)

j′,l ,t
n

∥∥∥∥∥∥
1

< η∀j′ ∈ {1, · · · , Jn} ,

by Ctnν .

Since 1
n log(Jn · Ltn) ≤ minQ χ

(
P, {ρQx : x ∈ X}

)
− 2δ, ana-

logue to our proof for (1), if n is large enough then there are n2

codes

{
{(x(i),(t

n)
j,l , DQn

x
(i),(tn)
j,l

) : j = 1, · · · , Jn, l = 1, · · · , Ltn} : i = 1, · · · , n2

}
∈ Ctnν such that we can construct a code Cdet

tn which is a juxtaposition of words

of the code {(cμ(n)i , Di) : i = 1, · · · , n2}, defined as in our proof for (1) above,

and words of the code {(x(i),(t
n)

j,l , DQn

x
(i),(tn)
j,l

) : j = 1, · · · , Jn, l = 1, · · · , Ltn}, with
following property

Pe(C
det
tn , tn) < ε . (22)

and for all i ∈ {1, · · · , n2} and all j′ ∈ {1, · · · , Jn}:∥∥∥∥∥∥ 1

Ltn

Ltn∑
l=1

σ
x
(i),(tn)

j′ ,l ,tn
− 1

Jn

Jn∑
j=1

1

Ltn

Ltn∑
l=1

σ
x
(i),(tn)
j,l ,tn

∥∥∥∥∥∥
1

< 3η . (23)
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By Lemma 4, we have for all tn ∈ Θn and all i ∈ {1, · · · , n2}

χ

(
W ;

{[
1

Ltn

Ltn∑
l=1

σ
x
(i),(tn)
j,l ,tn

]
: j = 1, · · · , Jn

})
≤ 3η log d− 3η log 3η .

Therefore for any ζ > 0 we can choose such η that for all i ∈ {1, · · · , n2}, for all
tn ∈ Θn

χ

(
W,

{[
1

Ltn

Ltn∑
l=1

σ
x
(i),(tn)
j,l ,tn

]
: j = 1, · · · , Jn

})
< ζ . (24)

By (22) and (24), we see that for any distribution P on X
and any positive δ, we can find a (n, ε)-code with secrecy rate
minQ∈Q,tn∈Θn

[
χ(P, {ρQx : x ∈ X})− 1

nχ(P
n, {σxn,tn : xn ∈ Xn})

]
− δ. There-

fore (2) holds.

Is {ρx,t, x ∈ X} symmetrizable, then by [1], even in the case without wiretap-
per (we have only the arbitrarily varying channel {ρx,t : x ∈ X , t ∈ Θ} instead
of the pairs {(ρx,t, σx,t) : x ∈ X , t ∈ Θ}), the capacity is equal to 0. Since we
cannot exceed the secrecy capacity of the worst wiretap channel, (3) holds.
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Abstract. We consider compound as well as arbitrarily varying classical-
quantum channel models. For classical-quantum compound channels,
we give an elementary proof of the direct part of the coding theorem.
A weak converse under average error criterion to this statement is al-
so established. We use this result together with the robustification and
elimination technique developed by Ahlswede in order to give an alter-
native proof of the direct part of the coding theorem for a finite classical-
quantum arbitrarily varying channels with the criterion of success being
average error probability. Moreover we provide a proof of the strong
converse to the random coding capacity in this setting.

The notion of symmetrizability for the maximal error probability is
defined and it is shown to be both necessary and sufficient for the capac-
ity for message transmission with maximal error probability criterion to
equal zero.

Finally, it is shown that the connection between zero-error capacity
and certain arbitrarily varying channels is, just like in the case of quan-
tum channels, only partially valid for classical-quantum channels.

Keywords: arbitrarily varying classical-quantum channels, compound
classical-quantum channels, zero error capacity, Ahlswedes dichotomy,
weak converse, strong converse.

1 Introduction

Channel uncertainty is omnipresent and mostly unavoidable in real-world appli-
cations and one of the major technological challenges is the design of commu-
nication protocols that are robust against it. The incarnation of that challenge
on the theoretical side delivers a plethora of interesting structural and method-
ological problems for Information Theory. Despite these facts it happened only
recently that this range of problems received the necessary attention in Quan-
tum Information Theory and especially in Quantum Shannon Theory [7], [15],
[9], [11], [6]. In this paper we revisit two basic models for communication under
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channel uncertainty, the compound and arbitrarily varying channels with classi-
cal input and quantum output and give essentially self-contained derivations of
coding theorems for them. These results were originally obtained in [7] and [9].

The contributions of the paper and the difference to existing work are the fol-
lowing. First, in [9] a capacity result with strong converse for compound channels
with a classical input and quantum output (compound cq-channel for short) un-
der the maximum error criterion has been derived. However, the achievability
proof given there lacks transparency and does not show that good codes with
the uniformly bounded exponentially decreasing maximal error exist. Indeed, in
[9] it is merely shown that good codes exist with uniformly super-polynomially
decreasing maximal error probability. Here we prove that sharper result for the
average error criterion and, at the same time, give a significantly simpler proof
of the achievability part of the coding theorem based on a universal hypothesis
testing result which is a generalization of the technique developed by Hayashi
and Ogawa in [25]. The passage to the maximal error criterion can be carried
out via a standard argument which can be found in [9].

It is interesting to compare this result with related work of Hayashi [21] and
Datta and Hsieh [16]. The works [21] and [16] aim at showing the existence
of codes depending on the input distribution and a prescribed rate only and
achieving an exponential but channel dependent decay of error probability for
all cq-channels whose Holevo information is strictly larger than that prescribed
rate. The good codes in our approach depend on the input distribution and the
set of cq-channels generating the compound cq-channel. Additionally we obtain
a uniform exponential bound on error probabilities, a property that seems highly
desirable in case that the channel is unknown.

Moreover, we prove the weak converse to the coding theorem under average
error criterion by a reduction to the strong converse for the maximal error via a
lemma of Ahlswede and Wolfowitz from [2].

Second, once we have the achievability result for compound cq-channels we
can obtain the corresponding results for arbitrarily varying cq-channels (AVc-
qC) in a straight-forward fashion via Ahlswede’s powerful elimination [4] and
robustification [5] techniques. This way, we obtain an alternative approach to
the coding theorem for AVcqCs which was originally proven by Ahlswede and
Blinovsky in [7].

Finally, we show that a naive quantum analog of Ahlswede’s beautiful rela-
tion [3] between Shannon’s zero-error capacity [27] and the capacity of arbitrarily
varying channels subject to maximal error criterion does hold neither for AVc-
qCs when employing the maximal error criterion nor for the strong subspace
transmission over arbitrarily varying quantum channels. The latter communica-
tion scenario is widely acknowledged as a fully quantum counterpart to message
transmission subject to the maximal error criterion.

2 Notation and Conventions

All Hilbert spaces are assumed to have finite dimension and are over the field
C. The set of linear operators from H to H is denoted B(H). The adjoint of
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b ∈ B(H) is marked by a star and written b∗. The notation 〈·, ·〉HS is reserved
for the Hilbert-Schmidt inner product on B(H).

S(H) is the set of states, i.e. positive semi-definite operators with trace 1
acting on the Hilbert space H. Pure states are given by projections onto one-
dimensional subspaces. A vector x ∈ H of unit length spanning such a subspace
will therefore be referred to as a state vector, the corresponding state will be
written |x〉〈x|. For a finite set X the notation P(X) is reserved for the set of
probability distributions on X, and |X| denotes its cardinality. For any l ∈ N,
we define Xl := {(x1, . . . , xl) : xi ∈ S ∀i ∈ {1, . . . , l}}, we also write xl for the
elements of Xl. For any natural number N , we define [N ] to be the shortcut for
the set {1, ..., N}.

The set of classical-quantum channels (cq-channels) mapping a finite alphabet
X to a Hilbert space H is denoted CQ(X,H). Since CQ(X,H) is the set of
functions W : X → S(H). It is naturally equipped with the norm ‖ · ‖cq (which
is inherited from the usual one-norm ‖ · ‖1 on operators) and is defined by

‖W‖cq := max
x∈X

‖W (x)‖1 (W ∈ CQ(X,H)).

It is common, to embed the set P(X) of probability distributions into B(C|X|),
i.e. to fix an orthonormal basis {ex}x∈X in C|X| and assign to every p in P(X)
an element of B(C|X|) which is diagonal in this basis. For a channel W ∈
CQ(X,H) and a given input probability distribution p ∈ P(X) one defines the
corresponding state on C|X| ⊗H by

ρ :=
∑
x∈X

p(x)|ex〉〈ex| ⊗W (x). (1)

The set of measurements with N ∈ N different outcomes is written MN(H) :=

{(D1, . . . , DN ) :
∑N

i=1Di ≤ �H and Di ≥ 0 ∀i ∈ [N ]}. To every (D1, . . . , DN ) ∈
MN (H) there corresponds a unique operator defined by D0 := �H −

∑N
i=1Di.

The von Neumann entropy of a state ρ ∈ S(H) is given by

S(ρ) := −tr(ρ log ρ), (2)

where log(·) denotes the base two logarithm which is used throughout the paper
(accordingly, exp(·) is reserved for the base two exponential). For two states
ρ, σ ∈ S(H), the quantum relative entropy is defined by

D(ρ||σ) :=
{
tr(ρ log ρ− ρ log σ) if kerσ ⊆ ker ρ

+∞ else.
(3)

The Holevo information is for a given channel W ∈ CQ(X,H) and input prob-
ability distribution p ∈ P(X) defined by

χ(p,W ) := S(W )−
∑
x∈X

p(x)S(W (x)) =
∑
x∈X

p(x)D(W (x)||W ), (4)
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where W is defined by W :=
∑

x∈X p(x)W (x). This quantity is concave w.r.t.
the input probability distribution and convex w.r.t. the channel. Its concavity
property follows directly from the concavity of the von Neumann entropy, its
convexity in the channel is by joint convexity of the quantum relative entropy.
For an arbitrary set W ⊂ CQ(X,H) we denote its convex hull by conv(W) (for
the definition of the convex hull, [28] is a useful reference). In fact, for a set
W := {Ws}s∈S

conv(W) =

{
Wq ∈ CQ(X,H) :Wq =

∑
s∈S

q(s)Ws, q ∈ P(S), |supp(q)| <∞
}
,

(5)

because of Carathéodory’s Theorem.

3 Definitions

3.1 The Compound Classical-Quantum Channel

Let W ⊂ CQ(X,H). The memoryless compound cq-channel associated with
W is given by the family {W⊗l}l∈N,W∈W . With slight abuse of notation it
will be denoted W or, if necessary, ’the compound cq-channel W ’ for short. In
the remainder, using arbitrary index sets T , we will often write W = {Wt}t∈T
to enhance readability. Before we continue, let us put a brief remark in order
to explain why this subsection contains no definition of random codes (while
subsection 3.2 does):

Remark 1. We abstain from defining random codes for compound cq-channels,
the reason for this being that they do offer no increase in capacity. For the reader
interested in the topic, we briefly outline one way of arriving at this conclusion.

First, the capacity of compound channels, seen as a function from the power set
of the set of channels with given input and output systems to the reals, is continu-
ous (this can fact can be proven by an argument very similar to the one given for
compound quantum channels in Sect. 8 of [11] together with continuity of the single
channel classical capacity, cf. [23]). This allows for an arbitrarily good (speaking in
terms of their capacity) approximation of infinite compound cq-channels by finite
ones, so that we can restrict our discussion to finite compound cq-channels.

Second, given such a finite compound cq-channel {Wt}t∈T and a sequence of
random codes which achieve a given rate r with asymptotically vanishing average
error, we may simply use it for the memoryless cq-channel W := 1

|T |
∑

t∈T Wt.

Since the average error is a convex function of the channel, this implies the
existence of a sequence of deterministic codes at the same asymptotic rate with
vanishing average error for W .

Using affinity of the average error criterion once more, we see that the very
same sequence of deterministic codes also has vanishing average error for the cq-
compound channel {Wt}t∈T , only with a slightly slower convergence. As in the
definition of W , the assumption that |T | < ∞ holds is crucial at this point of the
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argument. This shows that random codes cannot have higher asymptotic rates than
deterministic ones, if one insists on asymptotically vanishing average error.

For the maximal error criterion, it is enough to note that both the random
and the deterministic capacity for transmission of messages over a compound
cq-channel using that criterion are upper bounded by the respective capacities for
the average error criterion.

Definition 1. An (l,Ml)-code for message transmission over a compound cq-
channel W ⊂ CQ(X,H) is a family (xlm, D

l
m)Ml

m=1, where x
l
1, . . . , x

l
Ml

∈ Xl and

(Dl
1, . . . , D

l
Ml

) ∈ MMl
(H⊗l).

Definition 2. For λ ∈ [0, 1), a non-negative number R is called a λ-achievable
rate for transmission of messages over the compound cq-channel W = {Wt}t∈T
using the average error criterion if there is a sequence {(ulm, Dl

m)Ml
m=1}l∈N of

(l,Ml)-codes with

lim inf
l→∞

1

l
logMl ≥ R and

lim
l→∞

sup
t∈T

1

Ml

Ml∑
m=1

tr(W⊗l
t (ulm)(�H⊗l −Dl

m)) ≤ λ.

Definition 3. For λ ∈ [0, 1), a non-negative number R is called a λ-achievable
rate for transmission of messages over the compound cq-channel W = {Wt}t∈T
using the maximal error criterion if there is a sequence {(ulm, Dl

m)Ml
m=1}l∈N of

(l,Ml)-codes with

lim inf
l→∞

1

l
logMl ≥ R and

lim
l→∞

sup
t∈T

max
m∈[Ml]

tr(W⊗l
t (ulm)(�H⊗l −Dl

m)) ≤ λ.

Definition 4. For λ ∈ [0, 1), the λ-capacity for message transmission using the
average error criterion of a compound cq-channel W is given by

CC(W , λ) := sup

⎧⎨⎩R :
R is a λ-achievable rate for
transmission of messages over W
using the average error probability criterion

⎫⎬⎭ . (6)

The number CC(W , 0) is called the weak capacity for message transmission
using the average error criterion of W and abbreviated CC(W).

Definition 5. For λ ∈ [0, 1), the λ-capacity for message transmission using the
maximal error criterion of a compound cq-channel W is given by

CC(W , λ) := sup

⎧⎨⎩R :
R is a λ-achievable rate for transmission
of messages over W
using the maximal error probability criterion

⎫⎬⎭ . (7)

The number CC(W , 0) is called the weak capacity for message transmission using
the maximal error criterion of W and abbreviated CC(W).
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3.2 The Arbitrarily Varying Classical-Quantum Channel

Let A ⊂ CQ(X,H). In the remainder we will write A = {As}s∈S, where S
denotes an index set, in order to enhance readability. We also set

Asl := ⊗l
i=1Asi . (8)

The arbitrarily varying classical-quantum channel associated with A is given by
the family {Asl}sl∈Sl,l∈N. Again, with slight abuse of notation it will be denoted
A or, if necessary, ’the AVcqC A’ for short.

In this work, we will always consider the set S to be finite. Generalizations
of our results to the case of arbitrary sets can be done by standard techniques
(see [6]). We will now define random codes and the random capacity emerging
from them. In order to do so, we have to clarify a few things.

A code for an AVcqC A will, for some choice of l, N ∈ N, be given by a
probability measure μl on the set ((Xl)N×MN(H⊗l), Σl), where Σl is a suitably
chosen sigma-algebra.

It has to be taken care that a function f defined by

((xl1, . . . , x
l
N ), (Dl

1, . . . , D
l
N)) �→ min

sl∈Sl

1

N

N∑
i=1

tr{Wsl(x
l
i)D

l
i}

is measurable w.r.t. Σl. Also, in order to define deterministic codes later, Σl

has to contain all the singleton sets. In the remainder, we shall assume that
such a choice is always made.

An explicit example of such a sigma-algebra is given by the Borel sigma-
algebra defined using the topology induced by the metric ((x,D), (x′, D′)) �→
(1− δ(x, x′)) + ‖D−D′‖2 where δ(x, x) = 1 ∀x ∈ X and equal to zero else, and
for sake of simplicity, we set l = N = 1. Finally, we note that the function f
mentioned above is continuous w.r.t. to that metric.

In the following definitions, let λ ∈ [0, 1).

Definition 6. An (l,Ml)-random code for message transmission over
A = {As}s∈S is a probability measure μl on ((X l)Ml ×MN (H⊗l), Σl). In order
to shorten our notation, we write elements of (X l)Ml ×MN(H⊗l) in the form
(xli, D

l
i)
Ml

i=1.

Definition 7. An (l,Ml)-deterministic code for message transmission over A =
{As}s∈S is given by a random code for message transmission over A with μl
assigning probability one to a singleton set.

Definition 8. A non-negative number R is called λ-achievable for transmission
of messages over the AVcqC A = {As}s∈S with random codes using the average
error criterion if there is a sequence (μl)l∈N of (l,Ml)-random codes such that
the following two lines are true:

lim inf
l→∞

1

l
logMl ≥ R (9)
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lim
l→∞

max
sl∈Sl

∫
1

Ml

Ml∑
i=1

tr
(
Asl(x

l
i)(�H⊗l −Dl

i)
)
dμl((u

l
i, D

l
i)
Ml
i=1) ≤ λ. (10)

Definition 9. A non-negative number R is called λ-achievable for transmission
of messages over the AVcqC A = {As}s∈S with deterministic codes using the
average error criterion if it is λ-achievable with random codes by a sequence
(μl)l∈N which are deterministic codes.

Definition 10. The λ-capacity for message transmission using random codes
and the average error criterion of an AVcqC A is given by

CA,r(A, λ) := sup

⎧⎨⎩R :
R is a λ-achievable rate for transmission of
messages over A with random codes
using the average error probability criterion

⎫⎬⎭ . (11)

The number CA,r(A, 0) is called the weak capacity for message transmission us-
ing random codes and the average error criterion of A and abbreviated CA,r(A).

Definition 11. The λ-capacity for message transmission using deterministic
codes and the average error criterion of an AVcqC A is given by

CA,d(A, λ) := sup

⎧⎨⎩R :
R is a λ-achievable rate for transmission of
messages over A with deterministic codes
using the average error probability criterion

⎫⎬⎭ . (12)

The number CA,d(A, 0) is called the weak capacity for message transmission
using deterministic codes and the average error criterion of A and abbreviated
CA,d(A).

Definition 12. A non-negative number R is called λ-achievable for transmis-
sion of messages over the AVcqC A = {As}s∈S with deterministic codes using
the maximal error probability criterion if there is a sequence of (l,Ml)-random
codes with each μl being a deterministic code such that the following two lines
are true:

lim inf
l→∞

1

l
logMl ≥ R (13)

lim
l→∞

max
sl∈Sl

max
i=1,...,Ml

∫
tr

(
Asl(x

l
i)(�H⊗l −Dl

i)
)
dμl((u

l
i, D

l
i)
Ml

i=1) ≤ λ. (14)

Definition 13. The λ-capacity for message transmission using deterministic
codes and the maximal error probability criterion of an AVcqC A is given by

CA,d(A, λ) := sup

⎧⎨⎩R :
R is a λ-achievable rate for transmission
of messages over A with deterministic codes
using the maximal error probability criterion

⎫⎬⎭ . (15)

The number CA,d(A, 0) is called the weak capacity for message transmission
using deterministic codes and the maximal error criterion of A and abbreviated
CA,d(A).
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The following definition will turn out to be useful to decide whether a given
AV cqC has nonzero capacity for transmission of messages using average error
criterion and deterministic codes.

Definition 14. Let A = {As}s∈S ⊂ CQ(X,H) be an AVcqC. If, for every
x, x′ ∈ X, we have

conv({As(x)}s∈S) ∩ conv({As(x
′)}s∈S) �= ∅, (16)

then A is called m-symmetrizable.

3.3 Zero-Error Capacity

Definition 15. An (l,Ml) zero-error code for a stationary memoryless
cq-channel defined by V ∈ CQ(X,H) is given by a family (xli, D

l
i)
Ml
i=1, where

xl1, . . . , x
l
Ml

∈ Xl and (Dl
1, . . . , D

l
Ml

) ∈ MMl
(H⊗l) satisfy tr(V ⊗l(xli)D

l
i) = 1 for

every i ∈ [Ml].

Definition 16. The zero-error capacity for message transmission over the cq-
channel V ∈ CQ(X,H) is given by

C0(V ) := lim
l→∞

1

l
logmax{Ml : ∃ (l,Ml) zero− error code for V }. (17)

4 Main Results

We now enlist the main results contained in this work. We will not state the
results obtained in Subsection 6.3. These evolve around the relation between
zero-error capacities and arbitrarily varying channels. They include both mes-
sage transmission and entanglement transmission. Rather than stating a positive
result, in this section we argue that certain straightforward quantum analogues
of results that are valid in the classical theory do not hold. As always, this is
a delicate task that involves much more than just embedding a commutative
subalgebra into a non-commutative one. We therefore encourage the reader to
consider this last subsection as something that should be read separately and in
one piece.

Our first result is the following.

Theorem 1 (cq Compound Coding Theorem). For every compound cq-
channel W ∈ CQ(X,H) it holds

CC(W) = max
p∈P(X)

inf
W∈W

χ(p,W ). (18)

In subsection 6.1, an analogue of the Ahlswede dichotomy from [4] for arbitrarily
varying classical-quantum channels will be derived. This statement has originally
been obtained by Ahlswede and Blinovsky in [7]. The precise mathematical
formulation reads as follows.
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Theorem 2 (Ahlswede-Dichotomy for AVcqCs). Let A = {As}s∈S ⊂
CQ(X,H) be an AVcqC. Then

1) CA,r(A) = CC(conv(A)) (19)

2) If CA,d(A) > 0, then CA,d(A) = CA,r(A). (20)

Also, this section contains the following statement, which asserts, that every
sequence of random codes whith error strictly smaller than 1 for all but finitely
many blocklenghts will not achieve rates higher than the rightmost term in (19).

Theorem 3 (Strong converse). Let A := {As}s∈S be an AVcqC. For every
λ ∈ [0, 1)

CA,r(A, λ) ≤ CC(conv(A)) (21)

holds.

Remark 2. The result can be gained for arbitrary (infinite) AVcqCs with only
trivial modifications of the proof given below.

In the next subsection 6.2, we show that the capacity for message transmission
over an AVcqC using deterministic codes and the maximal error probability
criterion is zero if and only if the AVcqC is m− symmetrizable.

This is an analog of [22, Theorem 1]. It can be formulated as follows.

Theorem 4. Let A = {As}s∈S ⊂ CQ(X,H) be an AVcqC. Then CA,d(A) is
equal to zero if and only if A is m-symmetrizable.

5 Compound cq-Channels

In this section, we consider compound cq-channels and give a rigourous proof
for the achievability part of the coding theorem under the average error criterion
together with a weak converse. The channel coding problem for compound cq-
channels was treated, restricted to achievability, by Datta and Hsieh [16] for a
certain class of compound channels, and Hayashi [21]. In our proof, we exploit
the close relationship between channel coding and hypothesis testing which was
utilized by Hayashi and Nagaoka [20] before. With focus set on the maximal error
criterion, the compound cq channel coding theorem was proven in [9] already
where also a strong converse theorem was proven for this setting.

For orientation of the reader we sketch the contents of this section. In Lemma
1 we reduce the problem of finding good channel codes for a finite compound
channel to the problem of finding good hypothesis tests for certain quantum
states generated by this channel. The existence of hypothesis tests with a per-
formance sufficient for our purposes is shown in Lemma 5. In order to establish
the coding theorem for arbitrary compound channels, we recall some approxi-
mation results in Lemma 6. With these preparations, we are able to prove the
direct part of the coding theorem. Additionally, we give a proof of the weak
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converse (for which we utilize the strong converse result for the maximal error
criterion given in [9] in Theorem 1). A strong converse for coding under the
average error criterion does not hold in general for compound cq-channels (for
further information, see Remark 4).

We consider a compound channel W := {Wt}t∈T ⊂ CQ(X,H) where T is a
finite index set. We fix an orthonormal basis {ex}x∈X in C|X|. For W and a
given input probability distribution p ∈ P(X) we define for every t ∈ T states

ρt :=
∑
x∈X

p(x)|ex〉〈ex| ⊗Wt(x), and σ̂t := p⊗ σt, (22)

on C|X| ⊗H, where p and σt are defined by

p :=
∑
x∈X

p(x)|ex〉〈ex|, and σt :=
∑
x∈X

p(x)Wt(x). (23)

With some abuse of notation, we use the letter p for the probability distribution
as well as for the according quantum state defined above. Moreover, we define
for every l ∈ N states

ρl :=
1

|T |
∑
t∈T

vlρ
⊗l
t v

∗
l (24)

τl :=
1

|T |
∑
t∈T

vlσ̂
⊗l
t v∗l = p⊗l ⊗ 1

|T |
∑
t∈T

σ⊗l
t (25)

where vl : (C|X| ⊗ H)⊗l → (C|X|)⊗l ⊗ H⊗l is the ismorphism permuting the
tensor factors. The next lemma is a variant of a result by Hayashi and Nagaoka
in [20], which states that good hypothesis tests imply good message transmission
codes for the average error criterion. Here it is formulated and proven for the
states ρl and τl.

Lemma 1. Let W := {Wt}t∈T ⊂ CQ(X,H) be a compound cq-channel with
|T | < ∞, p ∈ P(X), and l ∈ N. Let further ρl, τl be the states associated to
W,p as defined in (24) and (25). If for λ ∈ [0, 1], and a > 0 exists a projection
ql ∈ B((C|X|)⊗l ⊗H⊗l) which fulfills the conditions

1. tr(qlρl) ≥ 1− λ
2. tr(qlτl) ≤ 2−la,

then for any γ with a ≥ γ > 0 and Ml := �2l(a−γ) there is an (l,Ml)-code
(xlm, D

l
m)m∈[Ml] with

max
t∈T

1

Ml

Ml∑
m=1

tr(W⊗l
t (xlm)(�H⊗l −Dl

m)) ≤ |T |(2λ+ 4 · 2−lγ) (26)

The following operator inequality is a crucial ingredient in the proof of the lemma
above, it was given in a more general form by Hayashi and Nagaoka in [20].
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Lemma 2. Let a, b ∈ B(H) be operators on H with 0 ≤ a ≤ 1 and b ≥ 0. Then

�H − (a+ b)−
1
2 a(a+ b)−

1
2 ≤ 2(�H − a) + 4b, (27)

where (·)−1 denotes the generalized inverse.

Proof. See Lemma 2 in [20]. �

Proof (of Lemma 1). Let l ∈ N, ql a projection such that the assumptions of
the lemma are fulfilled, and γ a number with 0 < γ ≤ a. According to the
assumptions, ql takes the form

ql =
∑
xl∈Xl

|exl〉〈exl | ⊗ qxl , (28)

where qxl ∈ B(H⊗l) is a projection for every xl ∈ Xl. Set Ml := �2l(a−γ),
and let U1, ..., UMl

be i.i.d. random variables with values in Xl, each distributed
according to the l-fold product p⊗l of the given distribution p. We define a
random operator

Dm :=

(
Ml∑
n=1

qUn

)− 1
2

qUm

(
Ml∑
n=1

qUn

)− 1
2

(29)

for every m ∈ [Ml] (we omit the superscript l here), where again generalized
inverses are taken. The particular form of the decoding operators D1, ..., DMl

in
eq. (29) guarantees, that

Ml∑
m=1

Dm ≤ �H⊗l

holds for every outcome of U1, ..., UMl
, and therefore (Um, Dm)m∈[Ml] is a random

code of size Ml. The remaining task is to bound the expectation value of the
average error of this random code. We introduce an abbreviation for the average
of the channels in W by

W
l
(·) := 1

T

T∑
t=1

W⊗l
t (·).

The error probability of the random code is bounded as follows. By virtue of
Lemma 2,

�

[
tr

(
W

l
(Um)(�H⊗l −Dm)

)]
≤ 2 �

[
tr

(
W

l
(Um)(�H⊗l − qUm)

)]
+ 4 ·

∑
m∈[Ml]:
n
=m

�

[
tr

(
W

l
(Um)qUn

)]
(30)
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holds. The calculation of the expectation values on the r.h.s. of the above
equation is straightforward, we obtain for every m ∈ [Ml]

�[tr(W
l
(Um)(�H⊗l − qUm))] = tr(ρl(�H⊗l − ql)), (31)

and, for n �= m,

�

[
tr

(
W

l
(Um)qUn

)]
= tr(τlql). (32)

Together with the assumptions of the lemma, eqns. (31) and (32) imply

�

[
tr

(
1

|T |
∑
t∈T

W⊗l
t (Um)(�H⊗l −Dm)

)]
≤ 2λ+ 4 ·Ml · 2−la

≤ 2λ+ 4 · 2−lγ

Because this error measure is an affine function of the channel we conclude, that
there exists a cq-code (xlm, Dm)Ml

m=1 for W with average error bounded by

1

Ml

Ml∑
m=1

tr(W⊗l
t (xlm)(�H⊗l −Dm)) ≤ |T |(2λ+ 4 · 2−lγ) (33)

for every t ∈ T , which is what we aimed to prove. �

The next two lemmata contain facts which are important for later considerations.
The first lemma presents a bound on the cardinality of the spectrum of operators
on a tensor product space which are invariant under permutations of the tensor
factors. The group Sl of permutations on [l] is, on H⊗l, represented by defining
(with slight abuse of notation) for each σ ∈ Sl the unitary operator σ ∈ B(H⊗l)

σ(v1 ⊗ ...⊗ vl) := vσ−1(1) ⊗ ...⊗ vσ−1(l). (34)

for all product vectors v1 ⊗ ...⊗ vl ∈ Cl and linear extension to the whole space
C⊗l.

Lemma 3. Let Y ∈ B(H⊗l) (d := dimH ≥ 2) satisfy σY = Y σ for every
permutation σ ∈ Sl. Then

| spec(Y )| ≤ (l + 1)d
2

. (35)

Proof. It is clear that, under the action of Sl, H⊗l decomposes into a finite
direct sum H⊗l = ⊕M

i=1 ⊕mi

j=1 Hi,j , where the Hi,j are irreducible subspaces of
Sl, mi ∈ N their multiplicity and M ∈ N. Moreover, Hi,j # Hi,k f.a. i ∈ [M ],
j, k ∈ [mi] and to every such choice of indices there exists a linear operator
Qi,j,k : Hi,k �→ Hi,j such that σQi,j,k = Qi,j,kσ f.a. σ ∈ Sl.

Let us write Y =
∑

i,j Yi,m,j,n, where Yi,m,j,n : Hj,n �→ Hi,m. Then according
to Schur’s lemma, Yi,m,j,n = 0, (i �= j) and Yi,m,i,n = ci,m,nQi,m,n for all valid
choices of indices and unique complex numbers ci,m,n ∈ C.
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Thus, defining the self-adjoint operators Yi :=
∑mi

m,n=1 ci,m,nQi,m,n, we see
that

Y =

M∑
i=1

Yi (36)

holds. Obviously, Yi,m,i,m = �Hi,m . Thus, with an appropriate choice of bases
in every single one of the Hi,m and defining the matrices Ci by (Ci)mn := ci,m,n,

we can write a matrix representation Ỹi of Yi as Ỹi = Ci ⊗ �
C

dim(Hi,1) .
Clearly then, each of the Yi can have no more than mi different eigenvalues.

Since supp(Yi) ⊥ supp(Yj) (i �= j), we get

| spec(Y )| ≤
M∑
i=1

mi. (37)

Now, taking a look at [13], equation (1.22), we see that mi ≤ (l + 1)d
2/2 holds.

The number M is the number of different Young tableaux occuring in the repre-
sentation of Sl on H⊗l and obeys the boundM ≤ NT ([d]

l), where NT ([d]
l) is the

number of different types on [d]l, that itself obeys NT ([d]
l) ≤ (l + 1)d (Lemma

2.2 in [14]). For d ≥ 2 we thus have

| spec(Y )| ≤
M∑
i=1

mi ≤ (l + 1)d
2/2(l + 1)d ≤ (l + 1)d

2

. (38)

�

Lemma 5 provides the result which will, together with Lemma 1, imply the
existence of optimal codes for W . We give a proof which is based on an idea of
Ogawa and Hayashi which originally appeared in [25]. An important ingredience
of their proof is the operator inequality stated in the following lemma.

Lemma 4 ([19]). Let χ be a state on on a Hilbert space K, and M := {Pk}Kk=1 ⊂
B(K) be a collection of projections on K with

∑K
k=1 Pk = �K. Then the operator

inequality

χ ≤ K ·
K∑
k=1

PkχPk (39)

holds.

Lemma 5. For every δ > 0, finite compound cq-channel W := {Wt}t∈T ⊂
CQ(X,H) and p ∈ P(X) there exists a constant c̃, such that for every sufficiently
large l ∈ N there exists a projection ql,δ ∈ B((C|X|)⊗l ⊗H⊗l) which fulfills

1. tr(ql,δρl) ≥ 1− |T | · 2−lc̃, and
2. tr(ql,δτl) ≤ 2−l(a−δ)
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where ρl, τl are the states belonging to W , p according to (24) and (25), and a is
defined by a := mint∈[T ]D(ρt||p⊗ σt).

Proof. Let δ > 0 be fixed, for l ∈ N, we have ran(ρl) ⊆ ran(τl) := Hl, which
allows us to restrict ourselves to Hl, where τl is invertible. For every ε ∈ (0, 1),
we define a regularized version ρl,ε to ρl by

ρl,ε := (1− ε)ρl + ετl. (40)

These operators are invertible on Hl and approximate ρl, i.e.

‖ρl,ε − ρl‖1 ≤ 2ε. (41)

holds for every ε > 0. We also define an operator

ρl,ε :=
∑

λ∈spec(τl)\{0}
Eλρl,εEλ, (42)

which is the pinching of ρl,ε to the eigenspaces of τl (here Eλ is the projection
which projects onto the eigenspace belonging to the eigenvalue λ for every λ ∈
spec(τl)). This definition guarantees

τlρl,ε = ρl,ετl. (43)

With a as assumed in the lemma, we define the operator

Tε := ρl,ε − 2l(a−δ)τl (44)

with spectral decomposition

Tε =
∑

μ∈spec(Tε)

μPμ. (45)

The projection ql,δ onto the nonnegative part of Tε, defined by

ql,δ :=
∑

μ∈spec(Tε):μ≥0

Pμ. (46)

will now be shown to suffice the bounds stated in the lemma. Clearly, ql,δTεql,δ
is a positive semidefinite operator, therefore, with (44) the inequality

ql,δτlql,δ ≤ 2−l(a−δ)ql,δρl,εql,δ. (47)

is valid. Taking traces in (47) yields

tr(ql,δτl) ≤ 2−l(a−δ)tr(ql,δρl,ε) (48)

≤ 2−l(a−δ) (49)

which shows, that ql,δ fulfills the second bound in the lemma. We shall now
prove, that ql,δ for l large enough actually also suffices the first one. To this
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end we derive an upper bound on tr((� − ql,δ)ρl,ε) for any given ε > 0, which
implies (together with (41)) a bound on tr((�− ql,δ)ρl). In fact it is sufficient to
find an upper bound on tr((�− ql,δ)ρl,ε), which can be seen as follows. Because
ρl,ε and τl commute by construction (see eq. (43)), Tε and τl commute as well.
This in turn implies that ql,δ commutes with the operators E1, ..., E| spec(τl)| in
the spectral decomposition of τl which eventually ensures us, that

tr((�H⊗l − ql,δ)ρl,ε) = tr((�H⊗l − ql,δ)ρl,ε) (50)

holds. For an arbitrary but fixed number s ∈ [0, 1] we have

tr((�H⊗l − ql,δ)ρl,ε) = tr(ρ
(1−s)
l,ε ρsl,ε(�H⊗l − ql,δ)) (51)

≤ 2−ls(a−δ)tr(ρ
(1−s)
l,ε τsl (�H⊗l − ql,δ)) (52)

≤ 2−ls(a−δ)tr(ρ
(1−s)
l,ε τsl ). (53)

The inequality in (52) is justified by the following argument. Since ρε,l and τl
commute, they are both diagonal in the same orthonormal basis {gi}di=1, i.e.
they have spectral decompositions of the form

ρl,ε =
d∑
i=1

χi|gi〉〈gi|, and τl =
d∑
i=1

θi|gi〉〈gi|. (54)

Because ql,δ projects onto the eigenspaces corresponding to nonnegative eigen-
values of Tε, we have

�H⊗l − ql,δ =
∑
i∈N

|gi〉〈gi|, (55)

where the set N is defined by N := {i ∈ [d] : χi − 2l(a−δ)θi < 0}. It follows

χsi ≤ 2ls(a−δ)θsi (56)

for all i ∈ N and s ∈ [0, 1]. This in turn implies, via (43) and (54),

ρsl,ε(�H⊗l − ql,δ) ≤ 2ls(a−δ)τsl (�H⊗l − ql,δ), (57)

which shows (52). Combining eqns. (50) and (53) we obtain

tr((�H⊗l − ql,δ)ρl,ε) ≤ 2ls(a−δ)tr(ρ
(1−s)
l,ε τsl )

= 2ls(a−δ)tr(ρl,ετ
s
2

l ρ
−s
l,ε τ

s
2

l )

= 2ls(a−δ)tr(ρl,ετ
s
2

l ρ
−s
l,ε τ

s
2

l ). (58)

Here we used the fact, that ρl,ε and τl commute in the first equality. Eq. (58) is
justified, because the eigenprojections of τl wich appear in the definition of ρl,ε
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are absorbed by τ
1
2

l . We can further upper bound the above expressions in the
following way. Note, that

ρl,ε ≤ | spec(τl)|ρl,ε. (59)

holds by Lemma 4. Because −(·)−s is an operator monotone function for every
s ∈ [0, 1] (see e.g. [8]), (59) implies

ρ−sl,ε ≤ | spec(τl)|sρ−sl,ε .
Using the above relation, one obtains

tr(ρl,ετ
s
2

l ρ
−s
l,ε τ

s
2

l ) ≤ | spec(τl)|str(ρl,ετ
s
2 ρ−sl,ε τ

s
2

l ).

By combination with (58) this leads to

tr((�H⊗l − ql,δ)ρl,ε) ≤ | spec(τl)|s2ls(a−δ)tr(ρl,ετ
s
2 ρ−sl,ε τ

s
2

l ) (60)

≤ (l + 1)d
2

exp{l[(a− δ)s− 1
lψl,ε(s)]} (61)

= exp{l[(a− δ)s− 1
lψl,ε(s) + w(l)]}, (62)

where d := dimH. In (61), we used the definition

ψl,ε(s) := − log tr(ρl,ετ
s
2

l ρ
−s
l,ε τ

s
2

l ), (63)

in the last line we introduced the function w defined by w(l) := d2

l log(l+1) for

every l ∈ N. Notice, that we also used the bound | spec(τl)| ≤ (l + 1)d
2

on the
spectrum of τl which is justified by Lemma 3. In fact, by observation of (25),
it is easy to see, that for every σ in the tensor product representation of Sl on
H⊗l (see (34)),

(�⊗l
C|X| ⊗ σ)τl = τl(�

⊗l
C|X| ⊗ σ) (64)

holds. We will now show, that the argument of the exponential in (62) becomes
strictly negative for a suitable choice of s, sufficiently small ε and large enough
l. We define

fl,ε(s) := (a− δ)s− 1

l
ψl,ε(s). (65)

By the mean value theorem it suffices to show that f ′
l,ε(0) < 0 for small enough

ε > 0. For the derivative, we have

f ′
l,ε(0) = a− δ − 1

l
D(ρl,ε||τl). (66)

The relative entropy term in (66) can be lower bounded as follows. It holds

D(ρl,ε||τl) = −S(ρl,ε)− tr(ρl,ε log τl)

= −S(ρl,ε) + lS(p) + S

(
1

|T |
∑
t∈T

σ⊗l
t

)
(67)

≥ −S(ρl,ε) + lS(p) +
1

|T |
∑
t∈T

lS(σt). (68)
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Notice that the equality in (67) indeed holds, because the marginals on (C|X|)⊗l

and H⊗l of ρl and τl are equal and therefore equal to the marginals of ρl,ε by
definition for each ε ∈ (0, 1). The inequality in (68) is valid due to concavity of
the von Neumann entropy. Because (41) holds,

S(ρl,ε) ≤ S(ρl) + 2ε log
dim(Hl)

2ε

≤ S(ρl) + 2εl log
d

2ε
(69)

is valid for ε < 1
2e , since for two states ρ, σ ∈ S(H) with ‖ρ − σ‖1 ≤ ε ≤ 1

e ,
Fannes’ inequality [18],

|S(ρ)− S(σ)| ≤ ε log
dimH
ε

, (70)

is valid. Together with (69), (68) implies

D(ρl,ε||τl) ≥ −S(ρl)− 2εl log
d

2ε
+ lS(p) +

1

|T |
∑
t∈T

lS(σt)

≥ − 1

|T |
∑
t∈T

lS(ρt)− log |T | − 2εl log
d

2ε
+ lS(p) +

1

|T |
∑
t∈T

lS(σt)

(71)

=
l

|T |
∑
t∈T

D(ρt||p⊗ σt)− log |T | − 2εl log
d

2ε
. (72)

The inequality in (71) results from the fact, that the von Neumann entropy is
an almost convex function, i.e.

S(ρ) ≤
N∑
i=1

piS(ρi) + log(N) (73)

for any mixture ρ =
∑N

i=1 piρi of states. Inserting (72) in (66) gives

f ′
l,ε(0) ≤ min

t∈T
D(ρt||p⊗ σt)− δ − 1

|T |
∑
t∈T

D(ρt||p⊗ σt) + 2ε log
d

2ε
+

1

l
log |T |

< − δ
2
+

1

l
log |T |, (74)

provided that 0 < ε < ε0(δ) where ε0 is small enough to ensure 2ε log d
2ε <

δ
2 .

The mean value theorem shows that for s ∈ (0, 1]

fl,ε(s) = fl,ε(0) + f ′
l,ε(s

′) · s

holds for some s′ ∈ (0, s). Since fl,ε(0) = 0, (74) shows that we can guarantee

fl,ε(s) <

(
− δ
2
+

1

l
log |T |

)
s (75)
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for small enough s. By (62) and (75) we obtain for ε < ε0(δ) and l large enough
to make w(l) < δs

8 valid,

tr((�H⊗l − ql,δ)ρl,ε) ≤ exp{l[fl,ε(s) + w(l)]}

≤ exp

{
−l

(
δ

4
s− w(l)

)}
(76)

≤ |T | · exp{−l δ
8
s}.

Using (41), we have (with ε < ε0)

tr((�H⊗l − ql,δ)ρl) ≤ ‖ρl,ε − ρl‖1 + tr((�H⊗l − ql,δ)ρl,ε)

≤ 2ε+ |T | exp{−l δ
8
s}.

We can in fact, choose the parameter ε dependent on l in a way that (εl)
∞
l=1

decreases exponentially in l, which proves the second claim of the lemma. �

In order to prove the direct part of the coding theorem for general sets of channels
we have to approximate arbitrary sets of channels by finite ones. For α > 0, an
α-net in CQ(X,H) is a finite set Nα := {Wi}Nα

i=1 ⊂ CQ(X,H) with the property,
that for every channel W ∈ CQ(X,H) there exists an index i ∈ [Nα] such that

‖W −Wi‖cq < α (77)

holds. For a given set W ⊂ CQ(X,H) an α-net Nα in CQ(X,H) generates an

approximating set W̃α defined by

W̃α := {Wi ∈ Nα : Bcq(α,Wi) ∩W �= ∅}. (78)

where Bcq(α,A) denotes the α-ball with center A regarding the norm ‖ · ‖cq.
The above definition does not guarantee, that W̃α is a subset of W but each W̃α

clearly generates a set W2α ⊂ W of at most the same cardinality, such that for
every W ∈ W exists an index i ∈ [Nα] with

‖W −Wi‖cq < 2α. (79)

The next lemma states that we find good approximations of arbitrary compound
cq-channels among such sets as defined above. The proof can be given by minor
variations of the corresponding results in [9], [10], and we omit it here.

Lemma 6. Let W := {Wt}t∈T ⊂ CQ(X,H) and α ∈ (0, 1e ). There exists a set
Tα ⊆ T which fulfills the following conditions

1. |Tα| <
(
6
α

)2|X|d2
,

2. given any l ∈ N, to every t ∈ T one finds an index t′ ∈ Tα such that

‖W⊗l
t (xl)−W⊗l

t′ (xl)‖1 < 2lα. (80)

holds for every xl ∈ Xl. Moreover,
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3. for every p ∈ P(X),∣∣∣∣min
t′∈Tα

χ(p,Wt′)− inf
t∈T

χ(p,Wt)

∣∣∣∣ ≤ 2α log
d

2α
(81)

holds.

The following lemma is from [2] and will be used to establish the weak converse
in Theorem 1. It states that codes which have small average error probability
for a finite compound cq-channel contain subcodes with good maximal error
probability of not substantially smaller size.

Lemma 7 (cf. [2], Lemma 1). Let W : {Wt}t∈T ⊂ CQ(X,H) be a compound
channel with |T | <∞ and l ∈ N. If (uli, D

l
i)
Ml
i=1 is an (l,Ml)-code with

max
t∈T

1

Ml

Ml∑
i=1

tr(W⊗l
t (uli)(�H −Dl

i)) ≤ λ. (82)

Then there exists for every ε > 0 a subcode (ulij , D
l
ij )

Ml,ε

j=1 of size Ml,ε = � ε
1−εMl

with

max
t∈T

max
j∈[Ml,ε]

tr(W⊗l
t (ulij )(�H −Dl

ij )) ≤ |T |(λ+ ε) (83)

Finally, we have gathered all the prerequisites to prove Theorem 1:

Proof (of Theorem 1). The direct part (i.e. the assertion that the r.h.s. lower-
bounds the l.h.s. in (18)) is proven by combining Lemma 1 with Lemma 5. Let
p = argmaxp′∈P(X) inft∈T χ(p

′,Wt). We show that for any δ > 0,

inf
t∈T

χ(p,Wt)− δ (84)

is an achievable rate. We can restrict ourselves to the case, where inft∈T χ(p,Wt)
> δ > 0 holds, because otherwise the above statement is trivially fulfilled. The
above mentioned lemmata consider finite sets of channels, therefore we choose
an approximating set Wαl

(of cardinality Tαl
) according to Lemma 6 for every

l ∈ N, where we leave the sequence α1, α2, ... initially unspecified. For every
l ∈ N and t′ ∈ Tαl

, let ρt′ , σt′ be defined according to eq. (22) and (23), and
further define states

ρl :=
1

|Tαl
|

∑
t′∈Tαl

vlρ
⊗l
t′ v

∗
l (85)

and

τl := p⊗l ⊗ 1

|Tαl
|

∑
t′∈Tαl

σ⊗l
t′ . (86)
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For a given number η with 0 < η < al, Lemma 5 guarantees (for large enough l),
with a suitable constant c̃ > 0, the existence of a projection ql,η ∈ B((C|X|)⊗l ⊗
H⊗l) with

tr(ql,ηρl) ≥ 1− |Tαl
| · 2−lc̃ (87)

and

tr(ql,ητl) ≤ 2−l(al−η) (88)

where we defined al := mint′∈Tαl
D(ρt′ ||p ⊗ σt′ ). This by virtue of Lemma

1 implies for every γ > 0 such that η + γ < al the existence of a cq-code
(xlm, D

l
m)m∈[Ml] of size

Ml = �2l(al−η−γ) (89)

and average error bounded by

max
t′∈Tαl

1

Ml

Ml∑
m=1

tr(W⊗l
t′ (ulm)(�H⊗l −Dl

m)) ≤ 2|Tαl
|22−lc̃ + 4 · |Tαl

|2−lγ . (90)

Notice, that for other positive numbers γ, δ, trivial codes have Ml = 1 ≥
�2l(al−η−γ). Using (89) we obtain,

1

l
logMl ≥ min

t′∈Tαl

χ(p,Wt′)− η − γ (91)

≥ inf
t∈T

χ(p,Wt)− η − γ − 4αl log
d

2αl
, (92)

where the second inequality follows from Lemma 6. For the average error, it
holds,

sup
t∈T

1

Ml

∑
m∈[Ml]

tr
(
W⊗l

t (ulm)(�H⊗l −Dl
m)

)
(93)

≤ max
t′∈Tαl

1

Ml

∑
m∈[Ml]

tr
(
W⊗l

t′ (ulm)(�H⊗l −Dl
m)

)
+ 2lαl (94)

≤ 2|Tαl
|22−lc̃ + 4|Tαl

|2−lγ + 2lαl. (95)

The first of the above inequalities follows from Lemma 6, the second one is by
(90). Because we chose the approximating sets according to Lemma 6,

|Tαl
| ≤

(
6

αl

)2|X|d2

(96)

holds. In fact, if we specify αl to be αl := 2−lĉ for every l ∈ N, where ĉ

is a constant with 0 < ĉ < min
{

c̃
4|X|d2 ,

η
2|X|d2

}
, the r.h.s of (95) decreases



Arbitrarily Varying and Compound Classical-Quantum Channels 267

exponentially for l → ∞. If we additionally choose η and γ, small enough to
validate δ > η + γ + 2αl log

d
2αl

for sufficiently large l, the rate defined in (84)

is shown to be achievable by (95) and (92). Since δ was arbitrary, the direct
statement follows.

It remains to prove the converse statement. For the proof, we will construct
a good code for transmission under the maximal error criterion and invoke the
strong converse result given in [9] (see Remark 3). We show, that for any δ > 0,

CC(W) < max
p∈P(X)

inf
t∈T

χ(p,Wt) + δ. (97)

Let δ > 0 and assume that for some fixed l ∈ N, Cl := (ulm, D
l
m)Ml

m=1 is an
(l,Ml)-code with

sup
t∈T

1

Ml

Ml∑
m=1

tr(W⊗l
t (ulm)(�H⊗l −Dl

m)) ≤ λl. (98)

We always can find a finite subset T̂ ⊂ T such that∣∣∣∣ max
p∈P(X)

inf
t∈T

χ(p,Wt)− max
p∈P(X)

min
t∈T̂

χ(p,Wt)

∣∣∣∣ ≤ δ

2
(99)

holds (e.g. a set Tα as in Lemma 6 for suitable α). We set ε := 1
2|T̂ | . By virtue

of Lemma 7 we find a subcode (ulij , D
l
ij
)
Ml,ε

j=1 ⊆ Cl of Cl which has size

Ml,ε :=

⌊
ε

1− ε
Ml

⌋
(100)

and maximal error bounded by

max
t∈T̂

max
j∈Ml,ε

tr
(
W⊗l

t (ulij )(�H⊗l −Dl
ij )

)
≤ λl|T̂ |+

1

2
. (101)

(102)

If l is sufficiently large, the r.h.s. is strictly smaller than one. Therefore, by the
strong converse theorem for coding under the maximal error criterion (see [9],
Theorem 5.13), we have (with some constant K > 0)

1

l
logMl,ε ≤ max

p∈P(X)
min
t∈T̂

χ(p,Wt) +K
1√
l

(103)

≤ max
p∈P(X)

inf
t∈T

χ(p,Wt) +
δ

2
+K

1√
l
. (104)

The second line above follows from (99). On the other hand, by (100), we have

logMl ≤ logMl,ε + log

(
ε

2(1− ε)

)
. (105)
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Dividing both sides of (105) by l and combinig the result with (104) shows that
for sufficiently large l

1

l
logMl ≤ max

p∈P(X)
inf
t∈T

χ(p,Wt) +
δ

2
+K

1√
l
+

1

l
log

(
ε

2(1− ε)

)
(106)

≤ max
p∈P(X)

inf
t∈T

χ(p,Wt) + δ (107)

holds, which shows (97). Since δ was an arbitrary positive number, we are
done. �

Remark 3. While the achievability part for cq-compound channels regarding
the maximal error criterion given in [9] required technical effort, the strong con-
verse proof was rather uncomplicated. It was given there by a combination of
Wolfowitz’ proof technique for the strong converse in case of classical compound
channels and a lemma from [29].

Remark 4. We remark here, that a general strong converse does not hold for the
capacity of compound cq-channels if the average error is considered as criterion
for reliability of the message transmission. This can be seen by a counterexam-
ple given by Ahlswede in [1] (Example 1) regarding classical compound channels.
However, we will see in the proof of Theorem 3, that in certain situations (espe-
cially, where W is a convex set) a strong converse proof can be established.

As a corollary to the achievability part of Theorem 1 above, we immediately
obtain a direct coding theorem for the capacity of a finite cq-compound channel
under the maximal error criterion.

Corollary 1. For a finite compound cq-channel W := {Wt}t∈T ⊂ CQ(X,H)
we have

CC(W) ≥ max
p∈P(X)

min
t∈T

χ(p,Wt) (108)

Proof. For an arbitrary number δ > 0, we show, that

max
p∈P(X)

min
t∈T

χ(p,Wt)− δ (109)

is an achievable rate. Let {Cl}l∈N, Cl := (ulm, D
l
m)Ml

m=1∀l ∈ N, be a sequence of
(l,Ml)-codes with

lim inf
l→∞

1

l
logMl ≥ max

p∈P(X)
min
t∈T

χ(p,Wt)−
1

δ
. (110)

and

max
t∈T

1

Ml

Ml∑
m=1

tr
(
W⊗l

t (ulm)(�H⊗l −Dl
m)

)
≤ λl (111)
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for every l ∈ N, where liml→∞ λl = 0. Such codes exist by virtue of Theorem 1.
Because of Lemma 7, we find for each l ∈ N a subcode C̃l := (ulmi

, Dl
mi

)i∈[M̃l]
⊆

Cl of size M̃l := � εl
1−εlMl and maximal error

max
t∈T

max
i∈[M̃l]

tr
(
W⊗l

t (ulmi
)(�H⊗l −Dl

mi
)
)
≤ (λl + εl)|T |. (112)

with the sequence (εl)
∞
l=1 defined by εl := 2−l

δ
3 f.a. l ∈ N, it is clear that we find

a sequence of (l, M̃l)-subcodes {C̃l}l∈N, where C̃l := (ulmi
, Dl

mi
)M̃l
i=1 f.a. l ∈ N,

which fulfills

lim
l→∞

max
t∈T

max
i∈[M̃l]

tr
(
W⊗l

t (ulmi
)(�H⊗l −Dl

mi
)
)
= 0 (113)

and

lim inf
l→∞

1

l
log M̃l = lim inf

l→∞

1

l
logMl ≥ max

p∈P(X)
min
t∈T

χ(p,Wt)− δ. (114)

�

Remark 5. The above corollary, although proven here for finite sets, can be
extended to arbitrary compound sets by approximation arguments, as carried out
in [9]. Moreover, an inspection of the proofs in this section shows that the speed
of convergence of the errors remains exponential.

6 AVCQC

6.1 The Ahlswede-Dichotomy for AVcqCs

In this section, we prove Theorem 2 and Theorem 3. The proof of Theorem 2
is carried out via robustification of codes for a suitably chosen compound cq-
channel. More specifically, to a given AVcqC A we take a sequence of codes
for the compound channel W := conv(A) that operates close to the capacity
of W . Thanks to Theorem 1, we know that there exist codes for W that,
additionally, have an exponentially fast decrease of average error probability.
The robustification technique then produces a sequence of random codes for
A that have a discrete, but super-exponentially large support and, again, an
exponentially fast decrease of average error probability.

An intermediate result here is the (tight) lower bound on CA,r(A).
A variant of the elimination technique of [4] is proven that is adapted to AVc-

qCs and reduces the amount of randomness from super-exponential to polynomi-
al, while slowing down the speed of convergence of the average error probability
from exponential to polynomial at the same time.

Then, under the assumption that CA,d(A) > 0 holds, the sender can send
the required amount of subexponentially many messages in order to establish
sufficiently much common randomness. After that, sender and receiver simply
use the random code for A.
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We now start out on our predescribed way. The following Theorem 5 and
Lemma 8 will be put to good use, but are far from being new so we simply state
them without proof.

Let, for each l ∈ N, Perml denote the set of permutations acting on {1, . . . , l}.
Let us further suppose that we are given a finite set S. We use the natural action
of Perml on Sl given by σ : Sl → Sl, σ(sl)i := sσ−1(i).

Let T (l,S) denote the set of types on S induced by the elements of Sl, i.e.
the set of empirical distributions on S generated by sequences in Sl. Then
Ahlswede’s robustification can be stated as follows.

Theorem 5 (Robustification Technique, cf. Theorem 6 in [5])
Let S be a set with |S| <∞ and l ∈ N. If a function f : Sl → [0, 1] satisfies∑

sl∈Sl

f(sl)q(s1) · . . . · q(sl) ≥ 1− γ (115)

for all q ∈ T (l,S) and some γ ∈ [0, 1], then

1

l!

∑
σ∈Perml

f(σ(sl)) ≥ 1− (l + 1)|S| · γ ∀sl ∈ Sl. (116)

The original theorem can, together with its proof, be found in [5]. A proof of
Theorem 5 can be found in [6]. The following Lemma is borrowed from [4].

Lemma 8. Let K ∈ N and real numbers a1, . . . , aK , b1, . . . , bK ∈ [0, 1] be given.
Assume that

1

K

K∑
i=1

ai ≥ 1− ε and
1

K

K∑
i=1

bi ≥ 1− ε, (117)

hold. Then

1

K

K∑
i=1

aibi ≥ 1− 2ε. (118)

We now come to the promised application of the robustification technique to
AVcqCs.

Lemma 9. Let A = {As}s∈S be an AVcqC. For every η > 0 there is a sequence
of (l,Ml)-codes for the compound channel W := conv(A) and an l0 ∈ N such
that the following two statements are true.

lim inf
l→∞

1

l
logMl ≥ CC(W)− η (119)

min
sl∈Sl

1

l!

∑
σ∈Perml

1

Ml

Ml∑
i=1

tr(Asl(σ
−1(xli))σ

−1(Dl
i)) ≥ 1− (l+1)|S| · 2−lc ∀l ≥ l0

(120)
with a positive number c = c(|X|, dimH,A, η).
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Remark 6. The above result can be gained for arbitrary, non-finite sets S as
well. A central idea then is the approximation of conv(A) from the outside
by a convex polytope. Since CQ(X,H) is not a polytope itself (except for trivial
cases), an additional step consists of applying a depolarizing channel Np and ap-
proximate Np(conv(A)), a set which does not touch the boundary of CQ(X,H),
instead of conv(A).

This step can then be absorbed into the measurement operators, i.e. one uses
operators N ∗

p (D
l
i) instead of the original Dl

i (i = 1, . . . ,Ml).
A thorough application of this idea can be found in [6], where the robusti-

fication technique gets applied in the case of entanglement transmission over
arbitrarily varying quantum channels.

Proof. According to Lemma 1 there is a sequence of (l,Ml) codes for the com-
pound channel conv(A) = {Wq :Wq =

∑
s∈S q(s)As, q ∈ P(S)} fulfilling

lim inf
l→∞

1

l
logMl ≥ CC(conv(A))− η (121)

and

∃l0 ∈ N : inf
W∈conv(A)

1

Ml

Ml∑
i=1

tr(W⊗l(xli)D
l
i) ≥ 1− 2−lc ∀l ≥ l0. (122)

The idea is to apply Theorem 5. Let us, for the moment, fix an N % l ≥ l0 and
define a function fl : S

l → [0, 1] by

fl(s
l) :=

1

Ml

Ml∑
i=1

tr(Asl(x
l
i)D

l
i). (123)

Then for every q ∈ P(S) we have

∑
sl∈Sl

fl(s
l)

l∏
i=1

q(si) =
1

Ml

Ml∑
i=1

tr(W⊗l
q (xli)D

l
i) ≥ 1− 2−lc. (124)

It follows from Theorem 5, that

1− (l + 1)|S| · 2−lc ≤ 1

l!

∑
σ∈Perml

fl(σ(s
l)) (125)

=
1

l!

∑
σ∈Perml

1

Ml

Ml∑
i=1

tr(Asl(σ
−1(xli))σ

−1(Dl
i)) ∀sl ∈ Sl

(126)

holds, where

σ(B1 ⊗ . . .⊗Bl) := Bσ−1(1) ⊗ . . .⊗Bσ−1(l) ∀ B1, . . . , Bl ∈ B(H) (127)

defines, by linear extension, the usual representation of Perml on B(H)⊗l and
the action of Perml on Xl is analogous to that on Sl. �
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It is easily seen from the above Lemma 9 and Theorem 1, that the following
theorem holds.

Theorem 6. For every AVcqC A,

CA,r(A) ≥ CC(conv(A)) = max
p∈P(X)

inf
A∈conv(A)

χ(p,A). (128)

In the following we give a proof of the remaining inequality in (19). In fact, we
prove the stronger statement Theorem 3:

Proof (of Theorem 3:). We define W := conv(A). Since |S| is finite, this set
is compact. The function χ(·, ·) is a concave-convex function (see eq. (4)),
therefore by the Minimax Theorem,

max
p∈P(X)

min
W∈W

χ(p,W ) = min
W∈W

max
p∈P(X)

χ(p,W ) (129)

holds. Both sides of the equality are well defined, because we are dealing with a
compact set. Let an arbitrary Wq ∈ W be given by the formula

Wq =
∑
s∈S

q(s)As, (130)

where q ∈ P(X). Set, for every l ∈ N, q⊗l(sl) :=
∏l

i=1 q(si). Let λ ∈ [0, 1),
δ > 0 and (μl)l∈N be a sequence of (l,Ml)-random codes such that both

lim inf
l→∞

1

l
logMl = CA,r(A, λ) − δ (131)

and

lim inf
l→∞

min
sl∈Sl

1

Ml

Ml∑
i=1

tr(Asl(u
l
i)D

l
i)dμl((u

l
i, D

l
i)
Ml
i=1) ≥ 1− λ. (132)

For every l ∈ N it holds that∫ Ml∑
i=1

tr(W⊗l
q (uli)D

l
i) dμl((u

l
i, D

l
i)
Ml
i=1) (133)

=
∑
sl∈Sl

q⊗l(sl)

∫ Ml∑
i=1

tr(Asl(u
l
i)D

l
i) dμl((u

l
i, D

l
i)
Ml
i=1) (134)

≥ min
sl∈Sl

∫ Ml∑
i=1

tr(Asl (u
l
i)D

l
i) dμl((u

l
i, D

l
i)
Ml
i=1), (135)

which shows, that

lim inf
l→∞

∫
1

Ml

Ml∑
i=1

tr(W⊗l
q (uli)Dl

i) dμl((u
l
i, D

l
i)
Ml
i=1) ≥ 1− λ (136)
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holds. It follows the existence of a sequence (uli, D
l
i)l∈N of (l,Ml)-codes for the

discrete memoryless cq-channel Wq satisfying

lim inf
l→∞

1

l
logMl = CA,d(A, λ) − δ and (137)

lim inf
l→∞

1

Ml

Ml∑
i=1

tr(W⊗l
q (uli)D

l
i) ≥ 1− λ. (138)

By virtue of the strong converse theorem for single cq-DMCs given in [29] (also
to be found and independently obtained in [26]), for any λ ∈ [0, 1), δ > 0 it
follows

CA,r(A, λ) − δ = lim inf
l→∞

1

l
logMl (139)

≤ max
p∈P(X)

(p,Wq) (140)

and, since Wq ∈ W was arbitrary,

CA,r(A, λ)− δ ≤ min
W∈W

max
p∈P(X)

χ(p,W ) (141)

= max
p∈P(X)

min
W∈W

χ(p,W ). (142)

The equality in (142) holds by (129). Since δ was an arbitrary positive number,
we are done. �

The following lemma contains the essence of the derandomization procedure.

Lemma 10 (Random Code Reduction). Let A = {As}s∈S be an AVcqC,
l ∈ N, μl an (l,Ml) random code for A and 1 > εl ≥ 0 with

e(μl,A) := inf
sl∈Sl

∫
1

Ml

Ml∑
i=1

tr(Asl(x
l
i)D

l
i)dμl((x

l
i, D

l
i)
Ml

i=1) ≥ 1− εl. (143)

Let n,m ∈ R. Then if 4εl ≤ l−m and 2 log |S| < ln−m−1 there exist ln (l,Ml)-
deterministic codes (xl1,j , . . . , x

l
Ml,j

, Dl
1,j, . . . , D

l
Ml,j

) (1 ≤ j ≤ ln) for A such
that

1

ln

ln∑
j=1

1

Ml

Ml∑
i=1

tr(Asl(x
l
i,j)D

l
i,j) ≥ 1− l−m ∀sl ∈ Sl. (144)

Proof. Set ε := 2l−m. By the assumptions of the lemma we have

e(μl,A) := min
sl∈Sl

∫
1

Ml

Ml∑
i=1

tr(Asl(x
l
i)D

l
i)dμl((x

l
i, D

l
i)
Ml
i=1) ≥ 1− εl. (145)

For a fixed K ∈ N, consider K independent random variables Λi with values in
((Xl)Ml)×MMl

(H⊗l)) which are distributed according to μl.
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Define, for each sl ∈ Sl, the function psl : ((X
l)Ml)×MMl

(H⊗l)) → [0, 1],

(xl1, . . . , x
l
Ml
, Dl

1, . . . , D
l
Ml

) �→ 1
Ml

∑Ml

i=1 tr(Asl(x
n
i )D

l
i).

We get, by application of Markovs inequality, for every sl ∈ Sl:

P(1− 1

K

K∑
j=1

psl(Λj) ≥ ε/2) = P(2K−
∑K

j=1 psl (Λj) ≥ 2Kε/2) (146)

≤ 2−Kε/2E(2(K−
∑K

j=1 psl (Λj))). (147)

The Λi are independent and it holds 2t ≤ 1 + t for every t ∈ [0, 1] as well as
log(1 + εl) ≤ 2εl and so we get

P(1− 1

K

K∑
j=1

psl(Λj) ≥ ε/2) ≤ 2−Kε/2E(2K−
∑K

j=1 psl (Λj)) (148)

= 2−Kε/2E(2
∑K

j=1(1−psl (Λj))) (149)

= 2−Kε/2E(2(1−psl (Λ1)))K (150)

≤ 2−Kε/2E(1 + (1− psl(Λ1)))
K (151)

≤ 2−Kε/2(1 + εl)
K (152)

≤ 2−Kε/22Kε/4 (153)

= 2−Kε/4. (154)

Therefore,

P(
1

K

K∑
j=1

psl(Λj) ≥ 1− ε/2) ≥ 1− |S|l2−Kε/4. (155)

By assumption, 2 log |S| ≤ l(n−m−1) and thus the above probability is larger
than zero, so there exists a realization Λ1, . . . , Λln such that

1

ln

ln∑
i=1

1

Ml
tr(Wsl (x

l
i)D

l
i) ≥ 1− 1

lm
. (156)

�

Now we pass to the proof of Theorem 2. If CA,r(A) = 0 or CA,d(A) = 0 there is
nothing to prove. So, let CA,r(A) > 0 and CA,d(A) > 0. Then we know that, to
every l ∈ N, there exists a deterministic code for A that, for sake of simplicity,
is denoted by (xl1, . . . , x

l
l2 , D1, . . . , Dl2), such that

min
sl∈Sl

1

l2

l2∑
i=1

tr(Asl (x
l
i)D

l
i) ≥ 1− εl (157)

and εl ↘ 0. Also, by Lemma 9, to every ε > 0 there is a sequence (μm)m∈N

of random codes for transmission of messages over A using the average error
probability criterion and an m0 ∈ N such that



Arbitrarily Varying and Compound Classical-Quantum Channels 275

lim inf
m→∞

1

m
logMm ≥ CA,r(A)− ε (158)∫

1

Mm

Mm∑
j=1

tr(Asm(xmj )Dl
j)dμm((xm1 , . . . , x

m
Mm

, Dl
1, . . . , D

l
Mm

)) ≥ 1− 2−mc

(159)

for all m ≥ m0 with a suitably chosen (and possibly very small) c > 0. This
enables us to define the following sequence of codes: Out of the random code,
by application of Lemma 10 and for a suitably chosen m1 ≥ m0 such that the
preliminaries of Lemma 10 are fulfilled, we get for every m ≥ m1 a discrete
random code supported only on the set {(ym1,j , . . . , ymMm,j , E1,j , . . . , EMm,j)}m

2

j=1

such that

lim inf
m→∞

1

l
logMm ≥ CA,r(A) − ε (160)

1

m2

m2∑
j=1

1

Mm

Mm∑
i=1

tr(Asm(ymi,j)Ei,j) ≥ 1− 1

m
∀m ≥ m1. (161)

Now all we have to do is combine the two codes: For l,m ∈ N, define an (l +

m, 1
l2Mm

)-deterministic code with the doubly-indexed message set {i, j}l
2,Mm

i=1,j=1

by the following sequence:

((xli, y
m
ij ), D

l
i ⊗ Eij)

l2,Mm

i=1,j=1. (162)

For the average success probability, by Lemma 8 it then holds

min
(sl,sm)∈Sl+m

1

l2Mm

l2∑
i=1

Mm∑
j=1

tr(A(sl,sm)((x
l
i, y

m
ij ))D

l
i ⊗ Eij) ≥ 1− 2max{εl,

1

m
}.

(163)

Now let there be sequences (lt)t∈N and (mt)t∈N such that lt = o(l) and
lt + mt = t f.a. t ∈ N. Define a sequence of (t, 1

l2tMmt
)-deterministic codes

(x̂t1, . . . , x̂
t
l2tMmt

, D̂1, . . . , D̂l2t ,Mmt
) for A by applying, for each t ∈ N, the above

described procedure with m = mt and l = lt. Then

lim inf
t→∞

1

t
log l2tMmt ≥ R and (164)

lim
t→∞

min
st∈St

1

l2tMmt

l2tMmt∑
k=1

tr(Ast(x̂
t
k)D̂k) = 1. (165)
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6.2 M-Symmetrizability

In this section, we prove Theorem 4.

Proof. We adapt the strategy of [22], that has already been successful-
ly used in [6]. Assume A is m-symmetrizable. Let l ∈ N. Take
any al, bl ∈ Xl. Then there exist corresponding probability distributions
p(·|a1), . . . , p(·|al), p(·|b1), . . . , p(·|bl) ∈ P(S) such that the probability distri-

butions p(·|al), p(·|bl) ∈ P(Sl) defined by p(sl|al) :=
∏l

i=1 p(si|ai), p(sl|bl) :=∏l
i=1 p(si|bi) satisfy∑

sl∈Sl

p(sl|al)Asl(al) =
∑
sl∈Sl

p(sl|bl)Asl(bl) (166)

and thereby lead, for every two measurement operators Da, Db ≥ 0 satisfying
Da +Db ≤ �H⊗l , to the following inequality:∑

sl∈Sl

p(sl|al)tr(Asl (al)Da) =
∑
sl∈Sl

p(sl|bl)tr(Asl(bl)Da) (167)

≤
∑
sl∈Sl

p(sl|bl)tr(Asl(bl)(1H⊗l −Db)) (168)

= 1−
∑
sl∈Sl

p(sl|bl)tr(Asl(bl)Db). (169)

Let a sequence of (l,Ml) codes for message transmission over A us-
ing the maximal error probability criterion satisfying Ml ≥ 2 and
mini∈[Ml]minsl∈Sl tr(Asl(x

l
i)D

l
i) = 1−εl be given, where εl ↘ 0. Then from the

above inequality we get

1− εl ≤ 1− (1− εl) ⇔ εl ≥ 1/2. (170)

Therefore, CA,d(A) = 0 has to hold.
Now, assume that A is not m-symmetrizable. Then there are x, y ∈ X such

that

conv({As(x)}s∈S) ∩ conv({As(y)}s∈S) = ∅. (171)

The rest of the proof is identical to that in [6] with l̂ set to one. �

6.3 Relation to the Zero-Error Capacity

A remarkable feature of classical arbitrarily varying channels is their connec-
tion to the zero-error capacity of (classical) d.m.c.s, which was established by
Ahlswede in [3, Theorem 3].

We shall first give a reformulation of Ahlswede’s original result and then con-
sider two straightforward generalizations of it result, one for cq-channels, the
other for quantum channels. In both cases it is shown, that no such straightfor-
ward generalization is possible.
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Ahlswede’s Original Result. Ahlswede’s result can be formulated using the fol-
lowing notation. For two finite sets A,B, C(A,B) stands for the set of channels
from A to B, i.e. each element of W ∈ C(A,B) defines a set of output proba-
bility distributions {W (·|a)}a∈A. With slight abuse of notation, for each D ⊂ B
and a ∈ A, W (D|a) :=

∑
b∈DW (b|a). The (finite) set of extremal points of the

(convex) set C(A,B) will be written E(A,B).
For two channels W1,W2 ∈ C(A,B), their product W1 ⊗W2 ∈ C(A2,B2) is

defined through W1 ⊗W2(b
2|a2) :=W1(b1|a1)W2(b2|a2). An arbitrarily varying

channel (AVC) is, in this setting, defined through a setW = {Ws}s∈S ⊂ C(A,B)
(we assume S and, hence, |W|, to be finite). The different realizations of the
channel are written

Wsl :=Ws1 ⊗ . . .⊗Wsl (sl ∈ Sl) (172)

and, formally, the AVC W consists of the set {Wsl}sl∈Sl, l∈N.

An (l,Ml)-code for the AVC W is given by a set {ali}Ml

i=1 ⊂ Al called the

’codewords’ and a set {Dl
i}Ml
i=1 of subsets of Bl called the ’decoding sets’, that

satisfies Dl
i ∩Dl

j = ∅, i �= j.
A nonnegative number R ∈ R is called an achievable maximal-error rate for

the AVC W, if there exists a sequence of (l,Ml) codes for W such that both

lim inf
l→∞

1

l
logMl ≥ R and lim

l→∞
min
sl∈Sl

min
1≤i≤Ml

Wsl(D
l
i|xli) = 1. (173)

The (deterministic) maximal error capacity Cmax(W) of the AVC W is, as usu-
ally, defined as the supremum over all achievable maximal-error rates for W.

Much stronger requirements concerning the quality of codes can be made. An
(l,Ml)-code is said to have zero error for the AVC W, if for all 1 ≤ i ≤ Ml and
sl ∈ Sl the equality Wsl(D

l
i|xli) = 1 holds.

The zero error capacity C0(W) of the AVC W is defined as

C0(W) := lim
l→∞

max{1
l
logMl : ∃ (l,Ml)−code with zero error for W}. (174)

The above definitions carry over to single channels W ∈ C(A,B) by identifying
W with the set {W}.

In short form, the connection [3, Theorem 3] between the capacity of certain
arbitrarily varying channels and the zero-error capacity of stationary memoryless
channels can now be reformulated as follows:

Theorem 7. LetW ∈ C(A,B) have a decompositionW =
∑

s∈S q(s)Ws, where
{Ws}s∈S ⊂ E(A,B) and q(s) > 0 ∀s ∈ S. Then for the AVC W := {Ws}s∈S:

C0(W ) = Cmax(W). (175)

Conversely, for every AVC W = {Ws}s∈S ⊂ E(A,B) and every q ∈ P(S) with
q(s) > 0 ∀s ∈ S, equation (175) holds for the channel W :=

∑
s∈S q(s)Ws.
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Remark 7. Let us note at this point, that the original formulation of the theo-
rem did not make reference to extremal points of the set of channels, but rather
used the equivalent notion ”channels of 0− 1-type“.

Remark 8. By choosing W ∈ E(A,B), one gets the equality C0(W ) = Cmax

(W ). The quantity Cmax(W ) being well-known and easily computable, it may
seem that Theorem 7 solves Shannons’s zero-error problem. This is not the case,
as one can verify by looking at the famous pentagon channel that was introduced
in [27, Figure 2.]. The pentagon channel is far from being extremal. That its
zero-error capacity is positive [27] is due to the fact that it is not a member of
the relative interior riE(A,B).

Recently, in [6], this connection was investigated with a focus on entanglement
and strong subspace transmission over arbitrarily varying quantum channels.
The complete problem was left open, although partial results were obtained.

A No-Go Result for cq-Channels. We will show below that, even for message
transmission over AVcqCs, there is (in general) no equality between the capacity
C0(W ) of a channel W ∈ CQ(X,H) and any AVcqC A = {As}s∈S constructed
by choosing the set {As}s∈S to be a subset of the set of extremal points of
CQ(X,H) such that

W =
∑
s∈S

λ(s)As (176)

holds for a λ ∈ P(S). Observe that the requirement that each As (s ∈ S) be
extremal in CQ(X,H) is a natural analog of the decomposition into channels of
0− 1-type that is used in the second part of [3].

A first hint why the above statement is true can be gained by looking at the
method of proof used in [3], especially equation (22) there. The fact that the
decoding sets of a code for an arbitrarily varying channel as described in [3] have
to be mutually disjoint, together with the perfect distinguishability of different
non-equal outputs of the special channels that are used in the second part of
this paper, is at the heart of the argumentation.

The following lemma shows why, in our case, it is impossible to make a step
that is comparable to that from [3, equation (21)] to [3, equation (22)].

Lemma 11. Let A = {As}s∈S be an AVcqC with CA,d(A) > 0 and 0 < R <
CA,d(A). To every sequence of (l,Ml) codes satisfying lim inf l→∞

1
l logMl ≥ R

and liml→∞ mini∈[Ml] minsl∈Sl tr(Asl(x
l
i)D

l
i) = 1 there is another sequence of

(l,Ml) codes with modified decoding operators D̃l
i such that

1) lim inf
l→∞

1

l
logMl ≥ R (177)

2) lim
l→∞

min
i∈[Ml]

min
sl∈Sl

tr(Asl (x
l
i)D̃

l
i) = 1 (178)

3) ∀ i ∈ [Ml], l ∈ N, tr(Asl(x
l
i)D̃

l
i) < 1 (179)
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Proof. Just use, for some c > 0, the transformation D̃l
i := (1 − 2−lc)Dl

i +
2−lc 1

Ml
(�H⊗l −Dl

0). �

After this preliminary statement, we give an explicit example that shows where
the construction in equation (176) must fail.

Lemma 12. Let X = {1, 2} and H = C2. Let {e1, e2} be the standard basis of
H and ψ+ :=

√
1/2(e1 + e2). Define W ∈ CQ(X,H) by W (1) = |e1〉〈e1| and

W (2) = |ψ+〉〈ψ+|. Then the following hold.

1. W is extremal in CQ(X,H)
2. For every set {As}s∈S ⊂ CQ(X,H) and every λ ∈ P(S) such that (176)

holds, {As}s∈S = {W}.
3. C0(W ) = 0, but CA,d({W}) > 0.

Proof. 1) Let, for an x ∈ (0, 1) and W1,W2 ∈ CQ(X,H),

W = xW1 + (1− x)W2. (180)

Then, clearly,

|e1〉〈e1| = xW1(1) + (1 − x)W2(1) =⇒ W1(1) =W2(1) =W (1) (181)

and

|ψ+〉〈ψ+| = xW1(2) + (1− x)W2(2) =⇒ W1(2) =W2(2) =W (2),
(182)

so W =W1 =W2.
2) is equivalent to 1).
3) It holds tr{W (i)W (j)} > 1/2 (i, j ∈ X). Let l ∈ N. Assume there are
two codewords al, bl ∈ Xl and corresponding decoding operations C,D ≥ 0,
C +D ≤ �

⊗l
C2 , such that

tr{W⊗l(al)C} = tr{W⊗l(bl)D} = 1

(=⇒ tr{W⊗l(al)D} = tr{W⊗l(bl)C} = 0). (183)

Then we may add a third operator E := �
⊗l
C2 − C −D and it holds that

tr{W⊗l(al)E} = tr{W⊗l(bl)E} = 0. (184)

From equations (184) and (183) we deduce the following:

√
EW⊗l(al)

√
E =

√
EW⊗l(bl)

√
E

=
√
DW⊗l(al)

√
D =

√
CW⊗l(bl)

√
C = 0. (185)
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With these preparations at hand, we are led to the following chain of inequalities:

0 < tr{W⊗l(al)W⊗l(bl)} (186)

= tr{W⊗l(C +D + E)(al)W⊗l(bl)(C +D + E)} (187)

= 〈CW⊗l(al),W⊗l(bl)C〉HS + 〈CW⊗l(al),W⊗l(bl)D〉HS
+ 〈CW⊗l(al),W⊗l(bl)E〉HS + 〈DW⊗l(al),W⊗l(bl)C〉HS
+ 〈DW⊗l(al),W⊗l(bl)D〉HS + 〈DW⊗l(al),W⊗l(bl)E〉HS
+ 〈EW⊗l(al),W⊗l(bl)C〉HS + 〈EW⊗l(al),W⊗l(bl)D〉HS
+ 〈EW⊗l(al),W⊗l(bl)E〉HS (188)

= 0, (189)

as can be seen from a repeated application of the Cauchy-Schwarz-inequality
to every single one of the above terms and use of equation (185). Thus, by
contradiction, C0(W ) = 0 has to hold.

Now assume that the AVcqC {W} is m-symmetrizable. This is the case only if

W (1) =W (2) (190)

holds, which is clearly not the case. Thus, CA,d({W}) > 0. �

A No-Go Result for Quantum Channels. We now formulate a straightforward
analogue of Theorem 7 for quantum channels. To this end, let us introduce
some notation. We heavily rely on [6]. The set of completely positive and trace-
preserving maps from B(H) to B(K) (where bothH andK are finite-dimensional)
is denoted C(H,K). For a Hilbert space H, S(H) denotes the set of vectors of
unit lenght in it.

An arbitrarily varying quantum channel (AVQC) is defined by any set I =
{Ns}s∈S ⊂ C(H,K) and formally given by {Nsl}sl∈Sl,l∈N, where

Nsl := Ns1 ⊗ . . .⊗Nsl (sl ∈ Sl). (191)

Let I = {Ns}s∈S be an AVQC. An (l, kl)−strong subspace transmission code for
I is a pair (P l,Rl) ∈ C(Fl,H⊗l) × C(K⊗l,F ′

l ), where Fl, F ′
l are Hilbert spaces

and dimFl = kl, Fl ⊂ F ′
l .

Definition 17. A non-negative number R is said to be an achievable strong
subspace transmission rate for the AVQC I = {Ns}s∈S if there is a sequence of
(l, kl)−strong subspace transmission codes such that

1. lim inf l→∞
1
l log kl ≥ R and

2. liml→∞ infsl∈Sl minψ∈S(Fl)〈ψ,Rl ◦ Nsl ◦ P l(|ψ〉〈ψ|)ψ〉 = 1.

The random strong subspace transmission capacity As,random(I) of I is defined by

As,det(I) := sup

{
R :

R is an achievable strong subspace
transmission rate for I

}
. (192)
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Self-evidently, we will also need a notion of zero-error capacity:

Definition 18. An (l, k) zero-error quantum code (QC for short) (F ,P ,R) for
N ∈ C(H,K) consists of a Hilbert space F , P ∈ C(F ,H⊗l), R ∈ C(K⊗l,F) with
dimF = k such that

min
x∈F ,||x||=1

〈x,R ◦N⊗l ◦ P(|x〉〈x|)x〉 = 1. (193)

The zero-error quantum capacity Q0(N ) of N ∈ C(H,K) is now defined by

Q0(N ) := lim
l→∞

1

l
logmax{dimF : ∃(l, k) zero-error QC for N}. (194)

Conjecture 1. Let N ∈ C(H,K) have a decomposition N =
∑

s∈S q(s)Ns, where
each Ns is extremal in C(H,K) and q(s) > 0 ∀s ∈ S. Then for the AVQC
I := {Ns}s∈S:

Q0(N ) = As,det(I). (195)

Conversely, for every AVQC I = {Ns}s∈S with Ns being extremal for every
s ∈ S and every q ∈ P(S) with q(s) > 0 ∀s ∈ S, equation (195) holds for the
channel N :=

∑
s∈S q(s)Ns.

Remark 9. One could formulate weaker conjectures than the one above. A
crucial property of extremal classical channels that was used in the proof of The-
orem 7 was that Wsl(·|xli) is a dirac-measure for every codeword xli, if only
{Wsl}s∈S ⊂ E(A,B).

This property gets lost for the extremal points of C(H,K) (see the channels
that are used in the proof of Theorem 8), but could be regained by restriction to
channels consisting of only one single Kraus operator.

This conjecture leads us to the following theorem:

Theorem 8. Conjecture 1 is wrong.

Remark 10. As indicated in Remark 9, there could still be interesting con-
nections between (for example) the deterministic strong subspace transmission
capacity of AVQCs and the zero-error entanglement transmission of stationary
memoryless quantum channels.

Proof. Let H = K = C2. Let {e0, e1} be the standard basis of C2. Consider,
for a fixed but arbitrary x ∈ [0, 1] the channel Nx ∈ C(H,K) defined by Kraus
operators A1 :=

√
1− x2|e0〉〈e1| and A2 := |e0〉〈e0|+x|e1〉〈e1|. As was shown in

[30], this channel is extremal in C(H,K). It is also readily seen from the definition
of Kraus operators, that it approximates the identity channel idC2 ∈ C(H,K):

lim
x→1

‖Nx − idC2‖♦ = 0. (196)

Now, on the one hand, Nx being extremal implies span({A∗
iAj}2i,j=1) =M(C2)

for all x ∈ [0, 1) (where M(C2) denotes the set of complex 2 × 2 matrices) by
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[12, Theorem 5]. This carries over to the channels N⊗l
x for every l ∈ N: Let the

Kraus operators of N⊗l
x be denoted {Ail}il∈{1,2}l , then

span({A∗
ilAjl}il,jl∈{1,2}l) = {M : M is complex 2l × 2l−matrix}. (197)

On the other hand, it was observed e.g. in [17], that for two pure states
|φ〉〈φ|, |ψ〉〈ψ| ∈ S((C2)⊗l), the subspace spanned by them can be transmitted
with zero error only if

|ψ〉〈φ| ⊥ span({A∗
ilAjl}il,jl∈{1,2}l). (198)

This is in obvious contradiction to equation (197), therefore Q0(Nx) = 0 ∀x ∈
[0, 1).

On the other hand, from equation (196) and continuity of As,det(·) in the
specifying channel set ([6], though indeed only the continuity results of [23] that
were also crucial in the development of corresponding statements in [6] are really
needed here) we see that there is an X ∈ [0, 1) such that for all x ≥ X we have
As,det({Nx}) > 0. Letting x = X we obtain Q0(NX) = 0 and As,det({NX}) > 0,
so Q0(NX) �= As,det(NX) in contradiction to the statement of the conjecture. �
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10. Bjelaković, I., Boche, H., Nötzel, J.: Quantum capacity of a class of compound

channels. Phys. Rev. A 78, 042331 (2008)

 http://arxiv.org/abs/1010.0418


Arbitrarily Varying and Compound Classical-Quantum Channels 283
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Abstract. We study whether, when restricted to using polylogarithmic
memory and polylogarithmic passes, we can achieve qualitatively better
data compression with multiple read/write streams than we can with
only one. We first show how we can achieve universal compression using
only one pass over one stream. We then show that one stream is not
sufficient for us to achieve good grammar-based compression. Finally,
we show that two streams are necessary and sufficient for us to achieve
entropy-only bounds.

Keywords: data compression, online algorithms, external-memory
algorithms, read/write streams.

1 Introduction

Massive datasets seem to expand to fill the space available and, in situations
where they no longer fit in memory and must be stored on disk, we may need
new models and algorithms. Grohe and Schweikardt [21] introduced read/write
streams to model situations in which we want to process data using mainly
sequential accesses to one or more disks. As the name suggests, this model is
like the streaming model (see, e.g., [28]) but, as is reasonable with datasets stored
on disk, it allows us to make multiple passes over the data, change them and
even use multiple streams (i.e., disks). As Grohe and Schweikardt pointed out,
sequential disk accesses are much faster than random accesses — potentially
bypassing the von Neumann bottleneck — and using several disks in parallel
can greatly reduce the amount of memory and the number of accesses needed.
For example, when sorting, we need the product of the memory and accesses
to be at least linear when we use one disk [27,20] but only polylogarithmic
when we use two [9,21]. Similar bounds have been proven for a number of
other problems, such as checking set disjointness or equality; we refer readers to
Schweikardt’s survey [35] of upper and lower bounds with one or more read/write
streams, Heinrich and Schweikardt’s paper [23] relating read/write streams to
classic complexity theory, and Beame and Huynh’s paper [4] on the value of
multiple read/write streams for approximating frequency moments.
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Since sorting is an important operation in some of the most powerful data
compression algorithms, and compression is an important operation for reduc-
ing massive datasets to a more manageable size, we wondered whether extra
streams could also help us achieve better compression. In this paper we consider
the problem of compressing a string s of n characters over an alphabet of size
σ when we are restricted to using logO(1) n bits of memory and logO(1) n passes
over the data. Throughout, we write log to mean log2 unless otherwise stated.
In Section 2, we show how we can achieve universal compression using only one
pass over one stream. Our approach is to break the string into blocks and com-
press each block separately, similar to what is done in practice to compress large
files. Although this may not usually significantly worsen the compression itself,
it may stop us from then building a fast compressed index (see [29] for a survey)
unless we somehow combine the indexes for the blocks, and stop us clustering
by compression [11] (since concatenating files should not help us compress them
better if we then break them into pieces again). In Section 3 we use a vague-
ly automata-theoretic argument to show one stream is not sufficient for us to
achieve good grammar-based compression. Of course, by ‘good’ we mean here
something stronger than universal compression: we want to build a context-free
grammar that generates s and only s and whose size is nearly minimum. In
a paper with Gawrychowski [17] we showed that with constant memory and
logarithmic passes over a constant number of streams, we can build a gram-
mar whose size is at most quadratic in the minimum. Finally, in Section 4 we
show that two streams are necessary and sufficient for us to achieve entropy-only
bounds. Along the way, we show we need two streams to find strings’ periods
or compute the Burrows-Wheeler Transform. As far as we know, this is the first
paper on compression with read/write streams, and among the first papers on
compression in any streaming model; we hope the techniques we have used will
prove to be of independent interest.

2 Universal Compression

An algorithm is called universal with respect to a class of sources if, when a string
is drawn from any of those sources, the algorithm’s redundancy per character
approaches 0 with probability 1 as the length of the string grows. One class
that is often considered, and which we consider in this section, is that of FSMX
sources [31]. A kth-order FSMX source is a finite-state source in which the
current state is determined by at most the preceding k characters emitted. Since
the kth-order empirical entropy Hk(s) of s is the minimum self-information per
character of s with respect to a kth-order Markov source (see [34]), an algorithm
is universal with respect to FSMX sources if it stores any string s in nHk(s)+o(n)
bits for any fixed σ and k. The kth-order empirical entropy of s is also our
expected uncertainty about a randomly-chosen character of s when given the k
preceding characters. Specifically,

Hk(s) =

{
(1/n)

∑
a occ(a, s) log

n
occ(a,s) if k = 0,

(1/n)
∑

|w|=k |ws|H0(ws) otherwise,
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where occ(a, s) is the number of times character a occurs in s, and ws is the
concatenation of those characters immediately following occurrences of k-tuple
w in s.

In a previous paper [19] we showed how to modify the well-known LZ77
compression algorithm [36] to use sublinear memory while still storing s in
nHk(s) + O(n log logn/ logn) bits for any fixed σ and k. Our algorithm us-
es nearly linear memory and so does not fit into the model we consider in this
paper, but we mention it here because it fits into some other streaming models
(see, e.g., [28]) and, as far as we know, was the first compression algorithm to do
so. In the same paper we proved several lower bounds using ideas that eventually
led to our lower bounds in Sections 3 and 4 of this paper.

Theorem 1 (Gagie and Manzini, 2007). We can achieve universal com-
pression using one pass over one stream and O

(
n/ log2 n

)
bits of memory.

To achieve universal compression with only polylogarithmic memory, we use an
algorithm due to Gupta, Grossi and Vitter [22]. Although they designed it for
the RAM model, we can easily turn it into a streaming algorithm by processing
s in small blocks and compressing each block separately.

Theorem 2 (Gupta, Grossi and Vitter, 2008). In the RAM model, we can
store any string s in nHk(s) + O

(
σk logn

)
bits, for all k simultaneously, using

O(n) time.

Corollary 1. We can achieve universal compression using one pass over one
stream and O

(
log1+ε n

)
bits of memory.

Proof. We process s in blocks of logε n characters, as follows: we read each block
into memory, apply Theorem 2 to it, output the result, empty the memory, and
move on to the next block. (If n is not given in advance, we increase the block
size as we read more characters.) Since Gupta, Grossi and Vitter’s algorithm
uses O(n) time in the RAM model, it uses O(n logn) bits of memory and we
use O

(
log1+ε n

)
bits of memory. If the blocks are s1, . . . , sb, then we store all of

them in a total of

b∑
i=1

(
|si|Hk(si) +O

(
σk log logn

))
≤ nHk(s) +O

(
σkn log log n/ logε n

)
bits for all k simultaneously. Therefore, for any fixed σ and k, we store s in
nHk(s) + o(n) bits. �

A bound of nHk(s) +O
(
σkn log logn/ logε n

)
bits is not very meaningful when

k is not fixed and grows as fast as log logn, because the second term is ω(n).
Notice, however, that Gupta et al.’s bound of nHk(s) +O

(
σk logn

)
bits is also

not very meaningful when k ≥ logn, for the same reason. As we will see in
Section 4, it is possible for s to be fairly incompressible but still to haveHk(s) = 0
for k ≥ logn. It follows that, although we can prove bounds that hold for all
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X7 → X6X5

X6 → X5X4

X5 → X4X3

X4 → X3X2

X3 → X2X1

X2 → a

X1 → b

Fig. 1. An context-free grammar (left) generating Fibonacci word abaababaabaab, and
the corresponding parse tree (right)

k simultaneously, those bounds cannot guarantee good compression in terms of
Hk(s) when k ≥ logn.

By using larger blocks — and, thus, more memory — we can reduce the
O
(
σkn log logn/ logε n

)
redundancy term in our analysis, allowing k to grow

faster than log logn while still having a meaningful bound. Specifically, if we
process s in blocks of c characters, then we use O(c logn) bits of memory and
achieve a redundancy term of O

(
σkn log c / c

)
, allowing k to grow nearly as fast

as logσ c while still having a meaningful bound.

Corollary 2. We can achieve universal compression with any redundancy term
in σkn/ logO(1) n, using one pass over one stream and polylogarithmic memory.

We will show later, in Theorem 15, that the tradeoff described above is nearly
optimal: if we use m bits of memory and p passes over one stream and our
redundancy term is O

(
σkr

)
, then mpr = Ω(n/f(n)) for any function f that

increases without bound. It is not clear to us, however, whether we can modify
Corollary 1 to take advantage of multiple passes. That is, with multiple passes
over one stream, can we achieve better bounds on the memory and redundancy
than we can with one pass?

3 Grammar-Based Compression

Charikar et al. [8] and Rytter [33] independently showed how to build a nearly
minimal context-free grammar APPROX that generates s and only s. Specifically,
their algorithms yield grammars that are an O(logn) factor larger than the
smallest such grammar OPT, which has size Ω(logn) bits. Figure 1 shows a
context-free grammar generating only the Fibonacci word abaababaabaab.

Theorem 3 (Charikar et al., 2005; Rytter, 2003). In the RAM model, we
can approximate the smallest grammar with |APPROX| = O

(
|OPT|2

)
using O(n)

time.
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In this section we prove that, if we use only one stream, then in general our ap-
proximation must be superpolynomially larger than the smallest grammar. Our
idea is to show that periodic strings whose periods are asymptotically slightly
larger than the product of the memory and passes, can be encoded as small
grammars but, in general, cannot be compressed well by algorithms that use
only one stream. The period of s is the length � ≤ n of the shortest string t such
that s = t�n/��t′, where t′ is a proper prefix of t and t�n/��t′ means t repeated
�n/� times followed by t′. We call t the repeated substring of s. Our argument
is based on the following two lemmas.

Lemma 1. If s has period �, then the size of the smallest grammar for that
string is

O(� logσ + logn log logn)

bits.

Proof. Let t and t′ be as described above. We can encode a unary string X�n/��

as a grammar G1 with O(logn) productions of total size O(logn log log n) bits.
We can also encode t and t′ as grammars G2 and G3 with O(�) productions of
total size O(� logσ) bits. Suppose S1, S2 and S3 are the start symbols of G1, G2

and G3, respectively. By combining those grammars and adding the productions
S0 → S1S3 and X → S2, we obtain a grammar with O(�+ logn) productions of
total size O(� log σ + logn log logn) bits that maps S0 to s. �

Lemma 2. Consider a lossless compression algorithm that uses only one stream,
and a machine performing that algorithm. We can uniquely recover any substring
from

– its length;
– for each pass, the machine’s memory configurations when it reaches and

leaves the part of the stream that initially holds that substring;
– all the output the machine produces while over that part.

Proof. Let t be the substring and assume, for the sake of a contradiction, that
there exists another substring t′ with the same length that takes the machine
between the same configurations while producing the same output. Then we can
substitute t′ for t in s without changing the machine’s complete output, contrary
to our specification that the compression be lossless. �

Lemma 2 implies that, for any substring, the size of the output the machine
produces while over the part of the stream that initially holds that substring, plus
twice the product of the memory and passes (i.e., the number of bits needed to
store the memory configurations), must be at least that substring’s Kolmogorov
complexity (i.e., the length of the shortest program that generates it). Therefore,
if a substring is not compressible by more than a constant factor (as is the case
for most strings) and is asymptotically larger than the product of the memory
and passes, then the size of the output for that substring must be at least
proportional to the substring’s length. In other words, the algorithm cannot take
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full advantage of similarities between substrings to achieve better compression.
In particular, if s is periodic with a period that is asymptotically slightly larger
than the product of the memory and passes, and s’s repeated substring is not
compressible by more than a constant factor, then the algorithm’s complete
output must be Ω(n) bits. By Lemma 1, however, the size of the smallest
grammar that generates s and only s is bounded in terms of the period.

Theorem 4. With one stream, we cannot approximate the smallest grammar
with

|APPROX| ≤ |OPT|O(1).

Proof. Suppose an algorithm uses only one stream, m bits of memory and p
passes to compress s, with mp = logO(1) n, and consider a machine perform-
ing that algorithm. Furthermore, suppose s is binary and periodic with period
mp logn and its repeated substring t is not compressible by more than a con-
stant factor. Lemma 2 implies that the machine’s output while over a part
of the stream that initially holds a copy of t, must be Ω(mp logn − mp) =
Ω(mp logn). Therefore, the machine’s complete output must be Ω(n) bits.
By Lemma 1, however, the size of the smallest grammar that generates s and
only s is O(mp log n + logn log logn) ⊂ logO(1) n bits. Since n = logω(1) n,
the algorithm’s complete output is superpolynomially larger than the smallest
grammar. �

As an aside, we note that a symmetric argument shows that, with only one
stream, in general we cannot decode a string encoded as a small grammar. To
see why, instead of considering a part of the stream that initially holds a copy
of the repeated substring t, consider a part that is initially blank and eventually
holds a copy of t. (Since s is periodic and thus very compressible, its encoding
takes up only a fraction of the space it eventually occupies when decompressed;
without loss of generality, we can assume the rest is blank.) An argument similar
to the proof of Lemma 2 shows we can compute t from the machine’s memory
configurations when it reaches and leaves that part, so the product of the memory
and passes must again be greater than or equal to t’s complexity.

Theorem 5. With one stream, we cannot decompress strings encoded as small
grammars.

Theorem 4 also has the following corollary, which may be of independent interest.

Corollary 3. With one stream, we cannot find strings’ periods.

Proof. Consider the proof of Theorem 4. Notice that, if we could find s’s period,
then we could store s in logO(1) n bits by writing n and one copy of its repeated
substring t. It follows that we cannot find strings’ periods. �

Corollary 3 may at first seem to contradict work by Ergün, Muthukrishnan
and Sahinalp [12], who gave streaming algorithms for determining approximate
periodicity. Whereas we are concerned with strings which are truly periodic,
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however, they were concerned with strings in which the copies of the repeated
substring can differ to some extent. To see why this is an important difference,
consider the simple case of checking whether s has period n/2 (i.e., whether or
not it is a square). Suppose we know the two halves of s are either identical
or differ in exactly one position, and we want to determine whether s truly
has period n/2; then we must compare each corresponding pair of characters
and, by a crossing-sequences argument (see, e.g., [27] for details of a similar
argument), this takes Ω(n/m) passes. Now suppose we care only whether the
two halves of s match only in nearly all positions; then we need compare only a
few randomly-chosen pairs to decide correctly with high probability.

Theorem 6. With one stream, we cannot even check strings’ periods.

In the conference version of this paper [16] we left as an open problem proving
whether or not multiple streams are useful for grammar-based compression. As
we noted in the introduction, in a subsequent paper with Gawrychowski [17]
we showed that with constant memory and logarithmic passes over a constant
number of streams, we can approximate the smallest grammar with |APPROX| =
O
(
|OPT|2

)
, answering our question affirmatively.

4 Entropy-Only Bounds

Kosaraju and Manzini [25] pointed out that proving an algorithm universal does
not necessarily tell us much about how it behaves on low-entropy strings. In
other words, showing that an algorithm encodes s in nHk(s)+o(n) bits is not very
informative when nHk(s) = o(n). For example, although the well-known LZ78
compression algorithm [37] is universal, |LZ78(1n)| = Ω(

√
n) while nH0(1

n) =
0. To analyze how algorithms perform on low-entropy strings, we would like
to get rid of the o(n) term and prove bounds that depend only on nHk(s).
Unfortunately, this is impossible since, as the example above shows, even nH0(s)
can be 0 for arbitrarily long strings.

It is not hard to show that only unary strings have H0(s) = 0. For k ≥ 1,
recall that Hk(s) = (1/n)

∑
|w|=k |ws|H0(ws). Therefore, Hk(s) = 0 if and only

if each distinct k-tuple w in s is always followed by the same distinct character.
This is because, if a w is always followed by the same distinct character, then
ws is unary, H0(ws) = 0 and w contributes nothing to the sum in the formula.
Manzini [26] defined the kth-order modified empirical entropy H∗

k (s) such that
each context w contributes at least �log |ws|+ 1 to the sum. Because modified
empirical entropy is more complicated than empirical entropy — e.g., it allows
for variable-length contexts — we refer readers to Manzini’s paper for the full
definition. In our proofs in this paper, we use only the fact that

nHk(s) ≤ nH∗
k (s) ≤ nHk(s) +O

(
σk logn

)
.

Manzini showed that, for some algorithms and all k simultaneously, it is possible
to bound the encoding’s length in terms of only nH∗

k(s) and a constant gk that
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depends only on σ and k; he called such bounds ‘entropy-only’. In particular, he
showed that an algorithm based on the Burrows-Wheeler Transform (BWT) [7]
stores any string s in at most (5+ε)nH∗

k (s)+logn+gk bits for all k simultaneously
(since nH∗

k (s) ≥ log(n− k), we could remove the logn term by adding 1 to the
coefficient 5 + ε).

Theorem 7 (Manzini, 2001). Using the BWT, move-to-front coding, run-
length coding and arithmetic coding, we can achieve an entropy-only bound.

The BWT sorts the characters in a string into the lexicographical order of the
suffixes that immediately follow them. When using the BWT for compression,
it is customary to append a special character $ that is lexicographically less
than any in the alphabet. For a more thorough description of the BWT, we
again refer readers to Manzini’s paper. In this section we first show how we can
compute and invert the BWT with two streams and, thus, achieve entropy-only
bounds. We then show that we cannot achieve entropy-only bounds with only
one stream. In other words, two streams are necessary and sufficient for us to
achieve entropy-only bounds.

One of the most common ways to compute the BWT is by building a suffix
array. In his PhD thesis, Ruhl introduced the StreamSort model [32,2], which
is similar to the read/write streams model with one stream, except that it has
an extra primitive that sorts the stream in one pass. Among other things, he
showed how to build a suffix array efficiently in this model.

Theorem 8 (Ruhl, 2003). In the StreamSort model, we can build a suffix
array using O(logn) bits of memory and O(logn) passes.

Corollary 4. With two streams, we can compute the BWT using O(logn) bits
of memory and O

(
log2 n

)
passes.

Proof. We can compute the BWT in the StreamSort model by appending $
to s, building a suffix array, and replacing each value i in the array by the
(i − 1)st character in s (replacing either 0 or 1 by $, depending on where we
start counting). This takes O(logn) bits of memory and O(logn) passes. Since
we can sort with two streams using O(logn) bits memory and O(logn) passes
(see, e.g., [35]), it follows that we can compute the BWT using O(logn) bits of
memory and O

(
log2 n

)
passes. �

We note as an aside that, once we have the suffix array for a periodic string, we
can easily find its period. To see why, suppose s has period �, and consider the
suffix u of s that starts in position �+ 1. The longest common prefix of s and u
has length n− �, which is maximum; if another suffix v shared a longer common
prefix with s, then s would have period n − |v| < �. It follows that, if the first
position in the suffix array contains i, then the (�+ 1)st position contains i− 1
(assuming s terminates with $, so u is lexicographically less than s). With two
streams we can easily find the position �+ 1 that contains i− 1 and then check
that s is indeed periodic with period �.
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Corollary 5. With two streams, we can compute a string’s period using O(logn)
bits and O

(
log2 n

)
passes.

Now suppose we are given a permutation π on n+1 elements as a list π(1), . . . ,
π(n + 1), and asked to rank it, i.e., to compute the list π0(1), . . . , πn(1), where
π0(1) = 1 and πi(1) = π(πi−1(1)) for i ≥ 1. This problem is a special case
of list ranking (see, e.g., [3]) and has a surprisingly long history. For example,
Knuth [24, Solution 24] described an algorithm, which he attributed to Hardy, for
ranking a permutation with two tapes. More recently, Bird and Mu [5] showed
how to invert the BWT by ranking a permutation. Therefore, reinterpreting
Hardy’s result in terms of the read/write streams model gives us the following
bounds.

Theorem 9 (Hardy, c. 1967). With two streams, we can rank a permutation
using O(logn) bits of memory and O

(
log2 n

)
passes.

Corollary 6. With two streams, we can invert the BWT using O(logn) bits of
memory and O

(
log2 n

)
passes.

Proof. The BWT has the property that, if a character is the ith in BWT(s), then
its successor in s is the lexicographically ith in BWT(s) (breaking ties by order of
appearance). Therefore, we can invert the BWT by replacing each character by
its lexicographic rank, ranking the resulting permutation, replacing each value
i by the ith character of BWT(s), and rotating the string until $ is at the end.
This takes O(logn) memory and O

(
log2 n

)
passes. �

Since we can compute and invert move-to-front, run-length and arithmetic cod-
ing using O(logn) bits of memory andO(1) passes over one stream, by combining
Theorem 7 and Corollaries 4 and 6 we obtain the following theorem.

Theorem 10. With two streams, we can achieve an entropy-only bound using
O(logn) bits of memory and O

(
log2 n

)
passes.

It follows from Theorem 10 and a result by Hernich and Schweikardt [23] that we
can achieve an entropy-only bound using O(1) bits of memory, O

(
log3 n

)
passes

and four streams. It follows from their theorem below that, with more streams,
we can even reduce the number of passes to O(logn).

Theorem 11 (Hernich and Schweikardt, 2008). If we can solve a problem
with logarithmic work space, then we can solve it using O(1) bits of memory and
O(logn) passes over O(1) streams.

Corollary 7. With O(1) streams, we can achieve an entropy-only bound using
O(1) bits of memory and O(logn) passes.

Proof. To compute the ith character of BWT(s), we find the ith lexicographically
largest suffix. To find this suffix, we loop through all the suffixes and, for each,
count how many other suffixes are lexicographically less. Comparing two suffixes
character by character takes O

(
n2

)
time, so we use a total of O

(
n4

)
time; it
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does not matter now how much time we use, however, just that we need only a
constant number of O(logn)-bit counters. Since we can compute the BWT with
logarithmic work space, it follows from Theorem 11 that we can compute it —
and thereby achieve an entropy-only bound — with O(1) bits of memory and
O(logn) passes over O(1) streams. �

Although we have not been able to prove an Ω(log n) lower bound on the number
of passes needed to achieve an entropy-only bound with O(1) streams, we have
been able to prove such a bound for computing the BWT. Our idea is to reduce
sorting to the BWT, since Grohe and Schweikardt [21] showed we cannot sort
n numbers with o(log n) passes over O(1) streams. It is trivial, of course, to
reduce sorting to the BWT if the alphabet is large enough — e.g., linear in n —
but our reduction is to the more reasonable problem of computing the BWT of
a ternary string.

Theorem 12. With O(1) streams, we cannot compute the BWT using o(log n)
passes, even for ternary strings.

Proof. Suppose we are given a sequence of n numbers x1, . . . , xn, each of 2 logn
bits. Grohe and Schweikardt showed we cannot generally sort such a sequence us-
ing o(log n) passes overO(1) tapes. We now use o(log n) passes to turn x1, . . . , xn
into a ternary string s such that, by calculating BWT(s), we sort x1, . . . , xn. It
follows from this reduction that we cannot compute the BWT using o(log n)
passes, either.

With one pass, O(log n) bits of memory and two tapes, for 1 ≤ i ≤ n and
1 ≤ j ≤ 2 logn, we replace the jth bit xi[j] of xi by xi[j] 2 xi i j, writing 2 as a
single character, xi in 2 logn bits, i in logn bits and j in log logn + 1 bits; the
resulting string s is of length 2n logn(3 logn+log log n+2). The only characters
followed by 2s in s are the bits at the beginning of replacement phrases, so the
last 2n logn characters of BWT(s) are the bits of x1, . . . , xn; moreover, since the
lexicographic order of equal-length binary strings is the same as their numeric
order, the xi[j] bits will be arranged by the xi values, with ties broken by the
i values (so if xi = xi′ with i < i′, then every xi[j] comes before every xi′ [j

′])
and further ties broken by the j values; therefore, the last 2n logn bits of the
transformed string are x1, . . . , xn in sorted order. �

To show we need at least two streams to achieve entropy-only bounds, we use
De Bruijn cycles in a proof much like the one for Theorem 4. We used De
Bruijn cycles in a similar way in a previous paper [15] to prove a lower bound
on redundancy. A σ-ary De Bruijn cycle of order k is a cyclic sequence in
which every possible k-tuple appears exactly once. For example, Figure 2 shows
binary De Bruijn cycles of orders 3 and 4. Our argument this time is based on
Lemma 2 and the results below about De Bruijn cycles. We note as a historical
aside that Theorem 13 was first proven for the binary case in 1894 by Flye
Sainte-Marie [14], but his result was later forgotten; De Bruijn [6] gave a similar
proof for that case in 1946, then in 1951 he and Van Aardenne-Ehrenfest [1]
proved the general version we state here.
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0 0
1 0
0 1
1 1

1 0 0 0 0 1
1 0
1 0
1 0 1 0 1 1

Fig. 2. Examples of binary De Bruijn cycles of orders 3 and 4

Lemma 3. If s ∈ d∗ for some binary σ-ary De Bruijn cycle d of order k, then
nH∗

k (s) = O
(
σk logn

)
.

Proof. By definition, each distinct k-tuple is always followed by the same distinct
character; therefore, nHk(s) = 0 and nH∗

k(s) = O
(
σk logn

)
. �

Theorem 13 (Van Aardenne-Ehrenfest and De Bruijn, 1951). There are(
σ!σ

k−1

/σk
)
σ-ary De Bruijn cycles of order k.

Corollary 8. We cannot store most kth-order De Bruijn cycles in o(σk log σ)
bits.

Proof. By Stirling’s Formula, log
(
σ!σ

k−1

/σk
)
= Θ(σk log σ). �

Since there are σk possible k-tuples, kth-order De Bruijn cycles have length
σk, so Corollary 8 means that we cannot compress most De Bruijn cycles by
more than a constant factor. Therefore, we can prove a lower bound similar to
Theorem 4 by supposing that s’s repeated substring is a De Bruijn cycle, then
using Lemma 3 instead of Lemma 1.

Theorem 14. With one stream, we cannot achieve an entropy-only bound.

Proof. As in the proof of Theorem 4, suppose an algorithm uses only one stream,
m bits of memory and p passes to compress s, with mp = logO(1) n, and consider
a machine performing that algorithm. This time, however, suppose s is binary
and periodic with period mpf(n), where f(n) = O(logn) is a function that
increases without bound; furthermore, suppose s’s repeated substring t is a kth-
order De Bruijn cycle, k = log(mpf(n)), that is not compressible by more than
a constant factor. Lemma 2 implies that the machine’s output while over a
part of the stream that initially holds a copy of t, must be Ω(mpf(n)−mp) =
Ω(mpf(n)). Therefore, the machine’s complete output must be Ω(n) bits. By

Lemma 3, however, nH∗
k (s) = O

(
2k logn

)
= O(mpf(n) logn) ⊂ logO(1) n. �

Recall that in Section 2 we asserted the following claim, which we are now ready
to prove.

Theorem 15. If we use m bits of memory and p passes over one stream and
achieve universal compression with an O

(
σkr

)
redundancy term, for all k si-

multaneously, then mpr = Ω(n/f(n)) for any function f that increases without
bound.
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Proof. Consider the proof of Theorem 14: nHk(s) = 0 but we must output Ω(n)
bits, so r = Ω(n/σk) = Ω(n/(mpf(n))). �
Notice Theorem 14 also implies a lower bound for computing the BWT: if we
could compute the BWT with one stream then, since we can compute move-to-
front, run-length and arithmetic coding using O(logn) bits of memory and O(1)
passes over one stream, we could thus achieve an entropy-only bound with one
stream, contradicting Theorem 14.

Corollary 9. With one stream, we cannot compute the BWT.

5 Recent and Future Work

In the conference version of this paper [16] we closed with a brief discussion of
three entropy-only bounds that we proved with Manzini [18]. Our first bound
was an improved analysis of the BWT followed by move-to-front, run-length and
arithmetic coding (which lowered the coefficient from 5 + ε to 4.4 + ε), but our
other bounds (one of which had a coefficient of 2.69 + ε) were analyses of the
BWT followed by algorithms which we were not sure could be implemented with
O(1) streams. We now realize that, since both of these other algorithms can be
computed with logarithmic work space, it follows from Theorem 11 that they
can indeed be computed with O(1) streams.

After having proven that we cannot compute the BWT with one stream,
we promptly started working with Ferragina and Manzini on a practical algo-
rithm [13] that does exactly that. However, that algorithm does not fit into the
streaming models we have considered in this paper; in particular, the product of
the internal memory and passes there is O(n logn) bits, but we use only n bits of
workspace on the disk. The existence of a practical algorithm for computing the
BWT in external memory raises the question of whether we can query BWT-
based compressed indexes quickly in external memory. Chien et al. [10] proved
lower bounds for indexed pattern matching in the external-memory model, but
that model does not distinguish between sequential and random access to blocks.
The read/write-streams model is also inappropriate for analyzing the complex-
ity of this task, since we can trivially use only one pass over one stream if we
leave the text uncompressed and scan it all with a classic sequential pattern-
matching algorithm. Orlandi and Venturini [30] recently showed how we can
store a sample of the BWT that lets us estimate what parts of the full BWT
we need to read in order to answer a query. If we modify their data structure
slightly, we can make it recursive; i.e., with a smaller sample we can estimate
what parts of the sample we need to read in order to estimate what parts of the
full BWT we need to read. Suppose we store on disk a set of samples whose sizes
increase exponentially, finishing with the BWT itself. We use each sample in
turn to estimate what parts of the next sample we need to read, then read them
into internal memory using only one pass over the next sample. This increases
the size of the whole index only slightly and lets us answer queries by reading
few blocks and in the order they appear on disk. We are currently working to
optimize and implement this idea.
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Abstract. We review results on scenery reconstruction obtained over
the past decade and place the problem into the context of information
retrieval, when the message is damaged by a special form of a reading
error.

Keywords: scenery reconstruction, random walk, random scenery, ran-
dom environment.

1 Introduction

The following question has its roots in ergodic theory, in particular in the so
called T−T−1-problem solved by Kalikow [8]. It is nowadays, however considered
a problem on the interface of probability theory, statistics, combinatorics, and
information theory, that is interesting in its own rights.

To phrase it, let us put the problem into the context of information theory.
Let us assume an infinitely long message over an m-ary alphabet is sent via
an information channel. However, the receiver is not able to read the message
directly, but only a corrupted version, where the reading head jumps to the
left and to the right in some random fashion. This, of course, constitutes an
extreme form of noise and the question for the general communication model for
one sender in [1]: “How many messages can we transmit over a noisy channel?”
must now be turned into: “Can we transmit information over such a channel at
all?”

This seems to be even more problematic as we fix the error rate to be zero,
i.e. we want to identify the original message correctly with probability one.

To put the model in a more mathematical framework, letm ≥ 2. The alphabet
is then given by the set {0, . . . ,m− 1} and the (doubly infinite) message will be
denoted by

ξ : Z → {0, . . . ,m− 1}.

Later we will also discuss the case of “higher dimensional” messages ξ : Zd →
{0, . . . ,m − 1}, these we will most often call sceneries and their letters will
be called colors. The second ingredient one needs is a discrete time-stochastic

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 298–312, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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process, which for the time being we choose to be symmetric nearest neighbor
random walk S = (Sn) on Z, i.e. S0 = 0 and

P (Sn = z ± 1|Sn−1 = z) =
1

2
for all z ∈ Z, and n ∈ N.

The difficulty of the present problem originates from the fact that neither the
message (or scenery) ξ, nor the realization of the random walk path is known
to the receiver. The only thing he does know is what the reader head produces,
the observations, the so called record (or, since in the context of scenery recon-
struction, the letter of the alphabet are referred to as colors, the color record)

χ := (χn)n∈N := (ξ(Sn))n∈N.

From here the problem splits into three different questions:

1. Can we distinguish two given messages ξ and η by their record, i.e. is there
a test, working correctly with probability one, that tells whether we have
red the corrupted version of ξ or of η?

2. Are there messages, where this does not work, i.e. messages that cannot be
told apart form their record?

3. Can we even reconstruct the message ξ from the record χ with probability
one?

In the next section of this little survey we will concentrate on the first two
of these questions. The third problem will be addressed in its easiest form in
the third section. Extensions of this problem in dimension one will be given
in Section 4. Section 5 eventually contains some results on higher dimensional
versions of the problem. As a matter of fact, only dimension d = 2 seems to be
understood in some aspects, while results for d ≥ 3 are very sparse and we can
only formulate some guidelines for future research.

2 The Distinction Problem

To discuss the question, whether two messages can be distinguished by their
record (almost surely), let us make precise what we mean by distinguishing two
messages.

To this end for two messages ξ and η let us consider the measures Ql
ξ and

Ql
η induced by the records (ξn)n≥l and (ηn)n≥l. We will say that we are able to

distinguish ξ from η, if, for each l, Ql
ξ and Ql

η are orthogonal, i.e., if for each l
there are measurable sets N = Nl, with

Ql
ξ(N) = 0 and Ql

η(N
c) = 0.
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Note that we impose this condition for each l to avoid trivial cases, where e.g.
the origin has a different letter for ξ and η. Moreover, this has the advantage
that it turns the event “χ and η are indistinguishable” into a tail event, which
by the 0-1-law has either probability 0 or 1.

We start with an almost trivial observation that has been the basis for a
conjecture, that resisted a proof or disproof for more than a decade: Since
already in the first step, we do not whether Sn jumps to the right or to the
left, we are not able to distinguish two messages that differ only up to reflection
symmetry. Moreover, by the above condition also sceneries that differ from each
other by a shift of Z can not be told apart. This motivates

Definition 1. Two messages ξ and η are called equivalent (ξ ∼ η), if there is
a ∈ Z and s ∈ {−1,+1} such that

ξ(a+ sz) = η(z) for all z ∈ Z.

In dimension d ≥ 2 two messages or sceneries ξ and η are called equivalent, if
there is a ∈ Zd and a linear map M : Zd → Zd with | det(M)| = 1 such that

ξ(a+Mz) = η(z) for all z ∈ Zd.

The above discussion shows that equivalent messages or sceneries cannot be
distinguished (which, however, is only a partial answer to Question 2 in the
introduction). Den Hollander and Keane [9] conjectured that the converse is
also true: If two messages are indistinguishable, then they are also equivalent.

This conjecture is supported by two very strong results that show that many
non-equivalent messages can actually be distinguished. The term “many” in this
statement is most often characterized probabilistically. To this end we will often
choose a message at random. This means (if not stated otherwise), that we have
an a priori measure ρ̂ on the letters {0, . . . ,m− 1} charging every letter and we
select a message ξ according to the product measure

ρ(ξ) =
∏
z∈Z

ρ̂(ξz).

With these definitions Benjamini and Kesten were able to prove:

Theorem 1 (Benjamini and Kesten [3]). For an alphabet of two letters, i.e.
m = 2, every fixed message ξ can be distinguished from ρ-every message η.

It should be remarked that the above theorem is true under more general as-
sumptions. First of all, m = 2 is no restriction - as a matter of fact, the more
letters one has, the easier is it to distinguish messages. On a heuristic level, this
is easily explained: The larger m, the more characteristic is a letter for a vertex,
and the more information do we gain, when we read it. In the extreme case
m = ∞ every letter would be characteristic of its location in a huge part of the
scenery.

Secondly, Benjamini and Kesten show the same result in dimension 2 (see [3]).
Finally, as Kesten points out in [11], also the condition that (Sn) is a nearest
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neighbor random walk may be relaxed. In fact, jumps may be permitted, if the
expectation of the increments of the random walk is zero (to ensure recurrence
of the random process) and the jump size is bounded.

If the dimension is larger than d = 2, the task of distinguishing two sceneries,
becomes increasingly difficult, since simple random walk is no longer recurrent
for d ≥ 3 and there is a positive fraction of points we do not even see. However,
as Benjamini and Kesten show, this can be compensated by a larger number of
colors.

Theorem 2 (Benjamini and Kesten [3]). For ever fixed d ≥ 3 there is a
number of colors m0(d), such that for all m ≥ m0(d) every fixed m-color scenery
ξ can be distinguished from ρ-every m-color scenery η.

It is conjectured, that this results is wrong for a “small” number of colors, but
to prove this and to show, how small “small” really is, remains one of the major
challenges in this area.

We refrain from giving proofs for the above theorems. They rely on a careful
analysis of the statistics of the record read by the random walk (this is nowadays
known in great detail, see e.g. [5]). With its help, an even stronger result can
be shown: Even a single defect in a random message can be detected in d = 1,
if there are enough letters:

Theorem 3 (Kesten [10]). In dimension d = 1 assume that the alphabet has
m ≥ 5 letters. Then for ρ-almost every ξ and every z0 ∈ Z the message ξ can
be distinguished from ξ′, where

ξ′(z)

{
= ξ(z) z �= z0
�= ξ(z0) z = z0

This gives strong evidence that the above mentioned conjecture of den Hollander
and Keane could be correct. However, as a consequence of the following result
by Lindenstrauss, it cannot be true.

Theorem 4 (Lindenstrauss [14]). In dimension d = 1 and with m = 2 colors
there is a uncountable set of pairwise indistinguishable sceneries.

As for every fixed scenery ξ there is obviously only a countable number of equiv-
alent sceneries, Lindenstrauss’es theorem refutes den Hollander’s and Keane’s
conjecture.

3 Reconstruction of Random Messages

Lindenstrauss’es result shows that to even reconstruct a random scenery can be
a difficult, if not impossible task, as sceneries that cannot be distinguished from
a non-equivalent scenery, cannot be reconstructed (up to equivalence). On the
other hand, after a moment of reflection, one realizes that the set of sceneries
that cannot be reconstructed may be uncountable (as Lindenstrauss showed),
yet be of measure 0.
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The first observation when considering the reconstruction of a randomly mixed
up message is, that, since distinction is only possible up to equivalence, we can, of
course also only reconstruct messages up to equivalence. However, it is amazing
that this is possible in many situations:

Theorem 5 (see Matzinger [21], [19], [20], and Löwe/Matzinger [18]).
Let d = 1 and 2 ≤ m ≤ ∞. Then, either if the letters are taken to be i.i.d.
and m ≥ 2 (see [21], [19], [20]), or, if the letters are correlated, m ≥ 3, and
an additional technical assumption is fulfilled (see [18] for details), there is a
measurable function

A : {0, . . . ,m− 1}N → {0, . . . ,m− 1}Z

from the observations to the messages, such that for almost all ξ it holds

P(A(χ) ∼ ξ) = 1.

(Here P is a probability measure on the set of random walks).

Remark 1. Note that Theorem 5 also improves the number of colors in Theorem
3 to m = 2.

These theorems have a variety of proofs depending on the assumptions. However,
the core ideas are similar and we present them in a situation that admits for a
“proof from the book”.

Sketch of the Proof: We will start by assuming that there are two special
letters A,B /∈ {0, . . . ,m − 1} that only exist once in the message. Moreover,
assume we know that the locations of these special letter x1 and x2 are L steps
apart from each other and that we only need to reconstruct the message between
these locations.

Then we would wait, until we see an A in the observations and we would
know that the reading head is at position x1. When we read a B afterwards,
we know that we are in x2. Even more: If we read the letter B exactly L steps
after having read the letter A, we know that the reading head must have moved
from x1 to x2 directly. In such a direct crossing it has read exactly the desired
message between A and B (see Figure 1).

A 0 1 1 1 0 1 B

Fig. 1. A direct crossing between two special colors
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The random walk is, of course not obliged to walk from x1 to x2 directly.
However, this event has positive probability 2−L. Moreover, symmetric, simple
random walk is recurrent in Z, i.e. we will see the point x0 infinitely often and
will have infinitely many chances to walk to x1 in a straight fashion. By Borel-
Cantelli then with probability one, we will sooner or later see such a straight
walk and we are done.

Moreover, the assumption that we know the distance of the special letters is
not essential. Indeed, by the very same argument as above, the shortest crossing
between an A and a successive B stems form a shortest crossing of the reader
head from position A to position B.

The major problem in the above arguments is, of course, the assumption that
we have these special letters A and B, which we do not (and in fact we would
need infinitely many of them, as eventually we want to reconstruct the entire
message). In a nutshell: The art of message or scenery reconstruction is to find
a substitute for these special letters.

We will here give an idea, that was used by Matzinger in [19] and by Matzinger
and Löwe in [18]. It requires that m ≥ 3. Take the m-regular unrooted tree Tm
and take an arbitrary vertex in Tm and call it the origin o. Label the vertices V
of Tm now in such a way with

φ : V → {0, . . . ,m− 1},
that φ(o) = ξ(S0) and for each letter each vertex has a neighbor carrying this
letter (of course, there is more than one such labeling, which one we take is
unessential). In such a labeled tree the message ξ corresponds to a nearest
neighbor path R̃ : Z → V , by R̃(0) = o and φ(R̃(z)) = ξ(z) for all z ∈ Z. If
knew R̃, we would indeed know ξ up to equivalence: We could arbitrarily choose
one vertex on R̃ put the letters in one direction successively on Z+ and in the
other direction on Z−.

However, we do not know R̃ but just R = R̃ ◦ S, i.e. the nearest neighbor
random walk on the path R induced by the observations. The key observation is
now that R walks on the nearest neighbor path R̃ and this will help to reconstruct
R̃ and thus ξ.

To this end we fix two vertices v and w in R. Since they also lie on R̃, there are
x1, x2 ∈ Z such that φ(v) = ξ(x1) and even R̃(x1) = v as well as φ(w) = ξ(x2)
and R̃(x2) = w. In order to learn the message between x1 and x2 it would thus
suffice to explore the labels of the tree between v and w by R. There are two
major obstacles: It is conceivable that R moves back and forth between v and
w and there are two possible reasons: The message may repeat itself between
x1 and x2, e.g. by having a pattern like 0101, or the random walk Sn jumps
back and forth. To distinguish between these two cases, we recall the trick we
have met in the situation with the two special letters. Since random walk in
dimension one is recurrent, we will see the vertices x1 and x2 infinitely often.
Each time we see one of them, we have a positive probability to walk directly
to the other point, inducing a straight walk of R from v to w or from w to v.
Thus, with probability one, we will see such a shortest crossing and the shortest
crossing of R between v and w corresponds to a part of the message.
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There is, however, a second difficulty. The vertices v and w may correspond
to more than one stretch in the message (e.g. to x1 and x2 and to y1 and y2). In
this case there could be various shortest crossing between v and w corresponding
to different parts of the original message. In the worst case, they would be e.g. of
the same length, but with a different sequence of letters between v and w. Then
the algorithm would return a non-unique piece of the message, i.e. it would not
return anything. This may indeed happen for certain v and w. However, if we
take v and w further and further apart from each other, the probability for this
to happen decreases to zero. Indeed: if for two sequences (vn) and (wn) in the
image of R with

dist(vn, wn) → ∞,

for all n the letters between vn and wn always correspond to two different parts
of the scenery, then there are points in R̃ that are visited infinitely often. This is
however not possible with probability one, since the random path R̃ is transient.

�

This argument does, of course, not work for m = 2 letters, since the resulting R
is recurrent. A result for m = 2 can obtained, by using monochromatic blocks
as markers or special characters (see [21], [20]). We will come back to a similar
argument in the next Section.

4 Extensions in Dimension One

The argument in the proof in the previous section was in this way first given in
[18]. It leads to

Theorem 6 (Löwe/Matzinger [18]). Let m ≥ 3. If the random path R̃ is
transient, almost every message can be reconstructed up to equivalence.

This extension is interesting, since also allows for messages with correlated letters
(and seems to be the only result in this direction).

Apart from this generalization, there are two natural directions, in which
one would extend the result of Theorem 5. The first follows Kesten’s remark
that distinguishing two messages is also possible, if the random walk is not
symmetric nearest neighbor random walk. An obvious question is, whether also
reconstruction of a message works under the weaker assumptions. The following
answer was given in a joint paper with Matzinger and Merkl.

To formulate it, let μ be a probability measure over Z supported over a finite
set M := suppμ ⊆ Z and let S = (S(k))k∈N be a random walk on Z starting
in the origin and with independent increments having the distribution μ. We
assume that E[S(1)] = 0; thus S is recurrent. Furthermore we assume that
suppμ has the greatest common divisor 1, thus S can reach every z ∈ Z with
positive probability. Eventually we assume that the message ξ = (ξ(j))j∈Z

consists of i.i.d. random variables, independent of S, uniformly distributed over
{0, . . . ,m− 1}. Then the following theorem holds
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Theorem 7 (Löwe/Matzinger/Merkl, see [16]). If m > |M|, then there
exists a measurable map A : CN → CZ such that

P [A(χ) ∼ ξ] = 1. (1)

From a point of view of information theory the condition m > |M| is very
satisfactory. It basically states the the information one obtains by reading a
letter is larger than the loss of information from not knowing where the random
walk jumps. However, it should be emphasized that a similar result can be
obtained with an alphabet consisting of two letters, only (see [12]).

One idea of the proof of Theorem 7 is, to use blocks that consist of the
same letter (“monochromatic islands”) as markers, i.e. as a replacement for
the missing special characters. Monochromatic islands of arbitrary size exist in
the message. Moreover they can be detected from the observations quite faithful-
ly, since on a monochromatic island of size n the random walk typically produces
order n2 observations of the same letter, while this exponentially unlikely, if the
monochromatic island is much smaller. On the other hand, these islands are
typical of the region, where they are. Indeed, if we have a monochromatic island
of some color (letter), the next monochromatic island of the same size and color
is in average exponentially (in the size of the island) far away, since produc-
ing such an island is exponentially unlikely. Hence for a long time, we can be
pretty sure, that if, we see a long observation of one letter, we are on a certain
monochromatic island.

This can be used to implement the second main idea of the proof, namely to
again collect shortest crossings between monochromatic islands. However, they
will in general not be unique. If the maximum step size of S is L, then we
will collect L shortest crossings, and a major part of the work is to handle the
combinatorics of these shortest crossings and to play some sort of jigsaw puzzle
to get them in the right order. For more details, the reader is referred to [16].

A second natural generalization of the result in the previous section concerns
the question of reading with errors. This inspired among others by the Rényi-
Berlekamp-Ulam game which is a classical model for the problem of determining
the minimum number of queries to find an unknown member in a finite set when
answers may be erroneous (see e.g. [2] or [26]) and by the random coin tossing
games considered in [6], which will be briefly discussed in the next section. Hence
the question is: Can we still reconstruct a random message, if it is not only mixed
up (again by a random walk, possibly with jumps, as in Theorem 7, but if there
is also a percentage of letters which are not read correctly. Building on the
techniques developed in [16], Matzinger and Rolles were able to show:

Theorem 8 (Matzinger/Rolles [23]). Under the assumptions of Theorem 7
there exists a δ0 > 0 and a measurable map A : CN → CZ such that for all δ < δ0,
if each letter is read correctly with probability 1 − δ (independently of all other
reading errors),

P [A(χ) ∼ ξ] = 1. (2)

For a generalization of this theorem we refer the reader to [7].
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5 Extension to Several Dimensions

So far we have omitted another natural generalization of the message reconstruc-
tion problem, i.e. the question whether reconstruction is also possible in higher
dimensions. We will first address the question in d = 2 and then talk about pos-
sible extensions. In this section we will also call our messages “sceneries”, since
this naming seems more appropriate in view of the high dimensional character
of the messages.

At first glance one might get the impression that there is hardly any difference
between d = 1 and d = 2. In fact, simple random walk in one dimension is
recurrent as is simple random walk in dimension d = 2. However, there are
some important differences. The first is only of technical nature: In dimension
one we have often used the idea, that a straight walk from a vertex x1 to a
vertex x2 is one that reads a piece of scenery directly. However, in d = 2 there
are many possible shortest crossings from a vertex x1 to a vertex x2, if these
are not in a line and the corresponding jigsaw is much more complex than (the
already complex) one for random walks with jumps.

The second obstacle is however, much more fundamental: In dimension d = 1
the local time of the origin, i.e. the number of visits by time n, is of order√
n, while in d = 2 it is of logarithmic order, only. This is important, since the

major problem in scenery reconstruction is to determine, where the random walk
actually is, to be able to use the information we obtain from the color record. We
have seen, that we can extract knowledge about the current location by markers
(that serve as substitute for special letters/colors). These markers however, are
only reliable in a finite time horizon, as we have seen in the sketch of the proof
of Theorem 7. As the same piece of scenery will be repeated also elsewhere in
the scenery with probability one, reading a marker is only a good indicator of
a certain region, if the random walk (with high probability) has not reached
the next area where the marker occurs. We have seen that we can construct
markers that are typical of a region of exponential length. In dimension one
we will therefore return to this marker exponentially often, before it becomes
unreliable.

In dimension two, this is dramatically different. Here we will only see the
marker polynomially often, and therefore will only be able to collect polynomially
many observations about the neighborhood of the marker (and thus extend our
knowledge of the scenery), before we cannot trust it anymore.

This may have also been the basis of a conjecture of Harry Kesten, who
suspected that scenery reconstruction is possible in dimension d = 1, but may
be impossible in dimension d = 2.

A similar phenomenon is observed in random coin tossing. Here we attach
coins to the vertices of an infinite graph (in our case this graph will always be Z
or Z2). All the coins are fair, but the coin in the origin may have a bias. So for
each time n ∈ N and all z ∈ Z or z ∈ Z2, resp., we have independent random
variables Xz

n, with P(Xz
n = ±1) = 1

2 for all n and z �= 0, while

P(X0
n = 1) = θ.
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Moreover, there is nearest neighbor random walk S = (Sn) on Z or Z2, resp.,
which again is not directly observable. The observations we have are the coin
tosses seen along a random walk path, i.e. (ζn) = (XSn

n ). The question now
is: Can we detect, whether θ = 1

2? The surprising answer given by Harris and
Keane [6] is:

Theorem 9 (Harris/Keane [6]). If d = 1, there exists θ0 < 1, such that,
if θ ≥ θ0, there is a test, that works with probability 1 correctly, showing that
θ �= 1

2 .
Such a test does not exist in dimension d = 2.

Furthermore, Levin, Pemantle, and Peres were able to show that not only di-
mension (or, more precisely the question, whether the renewal probabilities are
square summable) plays an important role, but also the size of the bias has an
influence of the result: Indeed, if θ is smaller than some value θc >

1
2 , the dis-

tributions P(ζn)
θ and P(ζn)

1
2

are mutually absolutely continuous, implying that a

bias of size θ cannot be detected almost surely (see [13]).
Hence it does not seem unlikely, that Kesten’s conjecture is true. However, in

[17] we were able to prove that reconstruction is possible, given we have enough
colors. More precisely:

Theorem 10 (Löwe/Matzinger [17]). Assume that d = 2 and the scenery
ξ consists of i.i.d. random variables that are uniformly distributed over the set
{0, . . . ,m − 1}. Then there exists m0 ∈ N such that if m ≥ m0, there exists a
measurable function

A : {0, . . . ,m− 1}N → {0, . . . ,m− 1}Z2

such that

P (A(χ) ∼ ξ) = 1. (3)

Given the arguments above, this result is, of course, satisfactory. In view of the
information theoretic argument given in the previous section one could conjec-
ture that m0 = 5 could be a good bound for m0, since then in every step again,
we would gain more information by the new color we read than we loose by not
knowing where the random walk jumps. In the proof of Theorem 10 we did not
give a numerical value for m0. However, if one follows the arguments given there
one arrives at a bound for m0 of the order of 10n, where n is a large two-digits
number. Hence there is obviously space for improvement.

The proof of Theorem 10 follows some basic ideas that seem worth mentioning.
First of all, we show that we do not need to give a perfect algorithm, i.e. one

that reconstructs the scenery correctly with probability 1, a good one, i.e. one
reconstructing the unknown scenery correctly with probability larger than 1

2 , is
sufficient. Indeed, if we are given such a good algorithm, we can apply it to
(χn)n≥0, then to (χn)n≥1, to (χn)n≥2, and so on. Since the algorithm is good,
by the ergodic theorem the majority of the reconstructions will be equivalent to
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the actual scenery and we just return as output one element of this equivalence
class.

The actual reconstruction algorithm works inductively. More precisely, we
start reconstructing the scenery in a discrete ball Br0 of size r0 and then show,
how the knowledge of the scenery inside Br helps to reconstruct on Br+1.

For the beginning of the induction we need the large number of colors. To this
fix a small ε > 0 and r0 large enough that Br0 contains sufficiently many words,
i.e. sequences of letters that can be read horizontally in the scenery, of length
logn (this is a technical condition, that can be found in [17], for the purpose of
this illustration we should simply imagine r0 to be large enough). Since simple
random walk in d = 2 is recurrent, we will see every point in Br0 infinitely often
with probability one. Hence, there is a time T0 after which simple random walk
has crossed every path of length 2 inside Br0 with probability larger than 1− ε.
Now we take m0 so large, that all different vertices we have seen by time T0 have
different colors with probability 1− ε. If this is the case, each vertex in Br0 has
its own unique color and we can indeed reconstruct the scenery inside Br0 .

To understand this, see that we can reconstruct three basic schemes. The first
is the origin with its nearest neighbors. Indeed, we know the color of the origin
and as we have crossed all edges between the origin and a neighboring point, we
also know the colors of the neighbors of the origin. Even more, we know which
of these colors are opposite to each other, and which are not, since for the colors
of opposite points there is only one way to reach one from the other in two steps
(and this way passes the origin), while for points that are not opposite, there
are two ways. But this this knowledge suffices to reconstruct the scenery in the
origin and its four neighbors up to symmetries of Z2, i.e. up to equivalence.

Next, knowing the colors of three vertices of a square, we can also find the
color of the fourth vertex. So, if in Figure 2 we know the color of the vertices
1,2, and 3, we also know the vertex of color 4, since it is the only color adjacent
to the colors of 1 and 3 and different from the color of vertex 2.

Fig. 2. The colors of a square
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With this tool at our disposal we are able to extend the knowledge of the
scenery in the origin and its four neighbors to the knowledge of the scenery on
the square of side length 2, centered in the origin. Indeed, the four missing colors
can be identified as the missing color in a square of side length one.

Eventually, there is a third scheme on which we can reconstruct the scenery
and this is the 4-star (see Figure 3).

Fig. 3. The colors of 4-star

If there we know the color of the vertex 1 in the center as well as the colors of
vertices 2,3, and 4, we will also be able to detect the color of vertex 5, as it is the
only color adjacent to the color of 1, but different from the color of vertices 2,3
and 4. This allows to extend the knowledge of the scenery to four more vertices.

Alternating the reconstruction on a square and a 4-star, we are eventually able
to reconstruct the scenery on the entire ball Br0 . This completes the beginning
of the induction.

For the induction step r �→ r+1, we use the knowledge of Br to find markers
that tell that we are close to the part of the scenery we already know. To this
end we build the collection of all words, i.e. subsequent colors of length c log r
(for an appropriate constant c) that can be read horizontally when we are in Br.
If we read enough of such words, we take this as an indicator, that we are inside
Br. This indicator is reliable roughly for a time interval of length er

2

, since
the next ball of radius r in which the colors resemble those of Br is roughly
distance er

2

apart. It can be shown (using precise estimates on the local time of
two-dimensional random walk as in [4] and the computation of the maximal disc
covered by random walk in two dimensions up to time t as in [25]) that within
this time window we return sufficiently often to the origin and whenever we are
inside Br, we have sufficiently many walks to the boundary. These walks can be
followed closely, since we know the scenery inside Br. We extend the walks by
one step. This first new color then is the color of a boundary point. For a more
technical explanation the reader is referred to [17] or [15].

It should be mentioned that Theorem 10 up to now is the only higher-
dimensional result on scenery reconstruction in a strict sense.

In dimensions d ≥ 3 of course, we cannot expect to obtain scenery reconstruc-
tion for symmetric, simple random walk, as random walk in these dimensions in
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no longer recurrent, and, in particular, we do not even see all the vertices. A
possible setup in which the reconstruction problem makes sense also in higher
dimensions was recently presented by Pachon and Popov in [24]. As underlying
random process they take supercritical branching random walk. To be more
precise, they consider random walkers, that in each step either branch into two
walkers or do nothing. After that all the walkers perform a usual random walk
step. This process is recurrent for all d, i.e. each point in Zd is seen by the entire
process infinitely often, even though every single random walk path is transient.
The color record in this setup is given by all the observation of all the walkers
together with the information which of the walkers has read them.

Under these assumptions Pachon and Popov prove in [24] a mild form of
scenery reconstruction. Namely they show that with probability 1 a random
two-color scenery can be reconstructed, if not only the current color can observed
by each walker, but also an entire block (of a certain size) of scenery around each
of the walkers. This result may not seem to be too surprising, yet the technique
of the authors adds a new element to the know scenery reconstruction methods.
They identify so-called “good” blocks, i.e. blocks where the scenery is sufficiently
diverse that is can be reconstructed locally, and then they prove that these good
blocks percolate.

In the same spirit Pachon, Popov, and Matzinger ([22]) are able to drop the
assumption that each walker sees a block of the scenery and replace it by a
lager number of colors, namely 2d. This result shows that improvement over the
results in [24] is possible.

On the other hand, one can hardly avoid the impression, that with an expo-
nentially growing number of walkers and a block of scenery around each of the
walkers’ positions that can be observed, one has a certain amount of information
overkill. It is certainly conceivable that there is space for improvements: First,
one should be able to reconstruct with the direct observations, only, i.e. without
entire blocks of scenery that are observed. Secondly, one should be able to limit
the number of walkers in such a way, that the process is still recurrent. These
are subjects for future research.

Another direction which is currently being investigated is a combination of
random walk in random scenery with the very popular subject of random walk
in random environment (see e.g. [27] for a short survey). Here challenging
problems and interesting phenomena can be expected.

Acknowledgement. The authors thanks tow anonymous referees for a very
careful reading of the text.
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Abstract. We survey a series of investigations of optimal testing of
multiple hypotheses concerning various multiobject models.

These studies are a prominent instance of application of methods and
techniques developed in Shannon information theory for solution of typ-
ical statistical problems.
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1 Introduction

“One can conceive of Information Theory in the broad sense as covering the the-
ory of Gaining, Transferring, and Storing Information, where the first is usually
called Statistics.”[2].

Shannon information theory and mathematical statistics interaction revealed
to be effective. This interplay is mutually fruitful, in some works results of
probability theory and statistics were obtained with application of information-
theoretical methods and there are studies where statistical results provide ground
for new findings in information theory [13], [15], [17]–[20], [36], [40], [51], [56],
[59]–[61].

This paper can serve an illustration of application of information-theoretical
methods in statistics: on one hand this is analogy in problem formulation and
on the other hand this is employment of technical tools of proof, specifically of
the method of types [16], [18].

It is often necessary in statistical research to make decisions regarding the
nature and parameters of stochastic model, in particular, the probability distri-
bution of the object. Decisions can be made on the basis of results of observations
of the object. The vector of results is called a sample. The correspondence be-
tween samples and hypotheses can be designed based on some selected criterion.
The procedure of statistical hypotheses detection is called test.

The classical problem of statistical hypothesis testing refers to two hypotheses.
Based on data samples a statistician makes decision on which of the two proposed
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hypotheses must be accepted. Many mathematical investigations, some of which
have also applied significance, were implemented in this direction [52].

The need of testing of more than two hypotheses in many scientific and applied
fields has essentially increased recently. As an instance microarray analysis could
be mentioned [23].

The decisions can be erroneous due to randomness of the sample. The test
is considered as good if the probabilities of the errors in given conditions are as
small as possible.

Frequently the problem is solved for the case of a tests sequence, where the
probabilities of error decrease exponentially as 2−NE, the number of observa-
tions N tends to the infinity. We call the exponent of error probability E the
reliability. In case of two hypotheses, when there is a trad off between the reli-
abilities corresponding to two possible error probabilities, it is an accepted way
to fix the value of one of the reliabilities and try to make the tests sequence
get the greatest value of the remaining reliability. Such a test is called logarith-
mically asymptotically optimal (LAO). Such optimal tests were considered first
by Hoeffding [50], examined later by Csiszár and Longo [19], Tusnady [59], [60]
(he called such test series exponentially rate optimal (ERO)), Longo and Sgarro
[54]. The term LAO for testing of two hypotheses was proposed by Birge [11].
Amongst papers on testing, associated with information theory, we can also note
works of Blahut [12], Natarajan [56], Gutman [26], Anantharam [8], Tuncel [58],
Fu and Shen [24], Han [27], Westover [63] and of many others. Some objectives in
this direction were first suggested in original introductory article by Dobrushin,
Pinsker and Shirjaev [22].

The problem has common features with the issue studied in the information
theory on interrelation between the rate R of the code and the exponent E of the
error probability. In information theory the relation E(R) according to Shan-
non is called the reliability function, also rate-reliability function, while R(E) is
named the E-capacity, or the reliability-rate function, as it was introduced by
Haroutunian [29], [35], [45].

The concept of simultaneous investigation of some number of objects of the
same type, evidently, was first formulated by Ahlswede and Haroutunian [6]
for reliable testing of distributions of multiple items. Of course frequently a
statistician can test independent objects separately, but for dependent objects
the simultaneous testing is necessary. Therefor investigation must be started
from the first simpler case. Combined examination of common properties of
many similar objects may be attractive and effective in plenty of other statistical
situations.

The organization of this paper is as follows. We start with the definitions and
notations in the next section. In section 3 we introduce the problem of multihy-
potheses testing concerning one object. In section 4 we consider the reliability
approach to multihypotheses testing for many independent and dependent ob-
jects. Section 5 is dedicated to the problem of statistical identification under
condition of optimality. Section 6 is devoted to description of characteristics of
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LAO hypotheses testing with permission of rejection of decision for the model
consisting of one and of more independent objects.

2 Definitions and Notations

We denote finite sets by script capitals. The cardinality of a set X is denoted as
|X |. Random variables (RVs), which take values in finite sets X , S are denoted
by X , S. Probability distributions (PDs) are denoted by Q, P , G, V , W , Q oV
(V and W will be used for conditional PDs and notation Q oV for joint PD).

Let PD of RV X , characterizing an object, be Q
�

={Q(x), x ∈ X}, and condi-

tional PD of RV X be V
�

={V (x|s), x ∈ X , s ∈ S} for given value of state s of
the object.

The Shannon entropy HQ(X) of RV X with PD Q is:

HQ(X)
�

=−
∑
x∈X

Q(x) logQ(x).

The conditional entropyHP,V (X | S) of RVX for given RV S with corresponding
PDs is:

HP,V (X | S)
�

=−
∑

x∈X ,s∈S
P (s)V (x|s) log V (x|s).

The divergence (Kullback-Leibler information, or “distance”) of PDs Q and G
on X is:

D(Q||G)
�

=
∑
x∈X

Q(x) log
Q(x)

G(x)
,

and conditional divergence of the PD P oV ={P (s)V (x|s), x ∈ X , s ∈ S} and
PD P oW ={P (s)W (x|s), x ∈ X , s ∈ S} is:

D(P ◦ V ||P ◦W ) = D(V ||W |P )
�

=
∑
x,s

P (s)V (x|s) log V (x|s)
W (x|s) .

For our investigations we use the method of types, one of the important technical
tools in Shannon theory [18,16]. The type Qx of a vector x = (x1, ..., xN ) ∈ XN

is a PD (the empirical distribution)

Qx =

{
Qx(x) =

N(x|x)
N

, x ∈ X
}
,

where N(x|x) is the number of repetitions of symbol x in vector x.
The joint type of vectors x ∈ XN and s = (s1, s2, ..., sN ) ∈ SN is the PD

Ps,x =

{
N(s, x|s,x)

N
, x ∈ X , s ∈ S

}
,
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where N(s, x|s,x) is the number of occurrences of symbols pair (s, x) in the pair
of vectors (x, s). The conditional type of x for given s is a conditional PD

Vx|s = {Vx|s(x|s), x ∈ X , s ∈ S},

defined by the relation N(s, x|s,x) = N(s|s)Vx|s(x|s) for all x ∈ X , s ∈ S.
We denote by QN (X ) the set of all types of vectors in XN for given N , by

PN(S) – the set of all types of vectors s in SN and by VN (X|s) – the set of
all possible conditional types of vectors x in XN for given s ∈ SN . The set
of vectors x of type Q is denoted by T N

Q (X) and the family of vectors x of

conditional type V for given s ∈ SN of type P by T N
P,V (X | s). The set of all

possible PDs Q on X and PDs P on S is denoted, correspondingly, by Q(X)
and P(S).

We need the following frequently used inequalities [18]:

| QN(X ) |≤ (N + 1)|X |, (1)

| VN (X|s) |≤ (N + 1)|S||X |, (2)

for any type Q ∈ QN(X )

(N + 1)−|X | exp{NHQ(X)} ≤| T N
Q (X) |≤ exp{NHQ(X)}, (3)

and for any type P ∈ PN (S) and V ∈ VN (X|s)

(N + 1)−|S||X | exp{NHP,V (X |S)} ≤| T N
P,V (X | s) |≤ exp{NHP,V (X |S)}. (4)

3 LAO Testing of Multiple Hypotheses for One Object

Generalization of results on two hypotheses noted in above. The problem of
optimal testing of multiple hypotheses was proposed by Dobrushin [21], and was
investigated in [30] – [34]. The problem of multiple hypotheses LAO testing for
a discrete stationary Markov source of observations was solved by Haroutunian
[31] – [33].

Here for clearness we expose the results on multiple hypotheses LAO testing
for the case of the most simple invariant object.

Let X be a finite set of values RVX . M possible PDs Gm = {Gm(x), x ∈ X},
m = 1,M , of RV X characterizing the object are known. The statistician must
detect one among M alternative hypotheses Gm, using sample x = (x1, ..., xN )
of results of N independent observations of the object.

The procedure of decision making is a non-randomized test ϕN (x), it can
be defined by division of the sample space XN on M disjoint subsets AN

m =
{x : ϕN (x) = m}, m = 1,M . The set AN

m consists of all samples x for which
the hypothesis Gm must be adopted. We study the probabilities αl|m(ϕN ) of
the erroneous acceptance of hypothesis Gl provided that Gm is true

αl|m(ϕN )
�

=GN
m(ANl ), l,m = 1,M, m �= l. (5)
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The probability to reject the hypothesis Gm, when it is true, is also considered

αm|m(ϕN )
�

=
∑
l 
=m

αl|m(ϕN )

= GN
m(AN

m)

= (1−GN
m(AN

m)). (6)

A quadratic matrix of M2 error probabilities {αl|m(ϕN ), m = 1,M, l = 1,M}
is the power of the tests.

Error probability exponents of the infinite sequence ϕ of tests, which we call
reliabilities, are defined as follows:

El|m(ϕ)
�

= lim
N→∞

inf

{
− 1

N
logαl|m(ϕN )

}
, m, l = 1,M. (7)

We see from (6) and (7) that

Em|m(ϕ) = min
l 
=m

El|m(ϕ), m = 1,M. (8)

The matrix

E(ϕ) =

⎛⎜⎜⎜⎜⎝
E1|1 . . . El|1 . . . EM|1
. . . . . . . . . . . . . . . . . . . . .
E1|m . . . El|m . . . EM|m,
. . . . . . . . . . . . . . . . . . . . .
E1|M . . . El|M . . . EM|M

⎞⎟⎟⎟⎟⎠
called the reliabilities matrix of the tests sequence ϕ is the object of our inves-
tigation.

We name a sequence ϕ∗ of tests is LAO if for given positive values of M − 1
diagonal elements of matrix E(ϕ∗) E1|1, E2|2, ..., EM−1|M−1, the procedure
provides maximal values for all other elements of it.

Now we form the LAO test by constructing decision sets noted R(N)
m . Given

strictly positive numbers Em|m, m = 1,M − 1, we define the following regions:

Rm

�

={Q : D(Q||Gm) ≤ Em|m}, m = 1,M − 1, (9)

RM

�

={Q : D(Q||Gm) > Em|m, m = 1,M − 1}, (10)

R(N)
m

�

=Rm

⋂
QN (X ), m = 1,M, (11)

and corresponding values:

E∗
m|m = E∗

m|m(Em|m)
�

=Em|m, m = 1,M − 1, (12)
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E∗
m|l = E∗

m|l(Em|m)
�

= inf
Q∈Rm

D(Q||Gl), l = 1,M, m �= l, m = 1,M − 1,

(13)

E∗
M|m = E∗

M|m(E1|1, E2|2, ..., EM−1|M−1)
�

= inf
P∈RM

D(Q||Gm), m = 1,M − 1,

(14)

E∗
M|M = E∗

M|M (E1|1, E2|2, ..., EM−1|M−1)
�

= min
m:m=1,M−1

E∗
M|m. (15)

Theorem 3.1 [34]. If for the described model all conditional PDs Gm, m =
1,M , are different in the sense that, D(Gl||Gm) > 0, l �= m, and the positive
numbers E1|1, E2|2, ..., EM−1|M−1 are such that the following M−1 inequalities,
called compatibility conditions, hold

E1|1 < min
m=2,M

D(Gm||G1),
(16)

Em|m < min

[
min

l=1,m−1
E∗
l|m(El|l), min

l=m+1,L
D(Gl||Gm)

]
, m = 2,M − 1,

then there exists a LAO sequence ϕ∗ of tests, the reliabilities matrix of which
E(ϕ∗) = {E∗

m|l} is defined in (12)–(15) and all elements of it are positive.

When one of inequalities (16) is violated, then at least one element of matrix
E(ϕ∗) is equal to 0.

The proof of Theorem 3.1 given in to the Appendix.
It is worth to formulate the following useful property of reliabilities matrix of

the LAO test.

Remark 3.1 [40]. The diagonal elements of the reliabilities matrix of the LAO
test in each row are equal only to the element of the last column:

E∗
m|m = E∗

M|m, and E∗
m|m < E∗

l|m, l = 1,M − 1, l �= m, m = 1,M. (17)

That is the elements of the last column are equal to the diagonal elements of the
same row and due to (8) are minimal in this row. Consequently the first M − 1
elements of the last column also can be used as given parameters for construction
of a LAO test.

4 The Reliability Approach to Multihypotheses Testing
for Many Objects

In [6] Ahlswede and Haroutunian proposed a new aspect of the statistical theory
– investigation of models with many objects. This work developed the ideas of
papers on Information theory [1], [5], of papers on many hypotheses testing [30]-
[34] and of book [9], devoted to research of sequential procedures solving decision
problems such as ranking and identification. The problem of hypotheses testing
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for the model consisting of two independent and of two strictly dependent objects
(when they cannot admit the same distribution) with two possible hypothetical
distributions were solved in [6]. In [40] specific characteristics of the model
consisting of K(≥ 2) objects each independently of others following one of given
M(≥ 2) probability distributions were explored. In [49] the model composed
of stochastically related objects was investigated. The result concerning two
independent Markov chains is presented in [37]. In this section we expose these
results.

4.1 Multihypotheses LAO Testing for Many Independent Objects

Let us now consider the model with three independent similar objects. For
brevity we solve the problem for three objects, the generalization of the problem
for K independent objects will be discussed hereafter along the text.

Let X1, X2 and X3 be independent RVs taking values in the same finite set X ,
each of them with one of M hypothetical PDs Gm = {Gm(x), x ∈ X}. These
RVs are the characteristics of the objects. The random vector (X1, X2, X3)
assumes values (x1, x2, x3) ∈ X 3.

Let (x1,x2,x3)
�

= ((x11, x
2
1, x

3
1), ... , (x

1
n, x

2
n, x

3
n), ... , (x

1
N , x

2
N , x

3
N )), xkn ∈ X , k =

1, 3, n = 1, N, be a vector of results of N independent observations of the family
(X1, X2, X3). The test has to determine unknown PDs of the objects on the base
of observed data. The detection for each object should be made from the same
set of hypotheses: Gm, m = 1,M . We call this procedure the compound test
for three objects and denote it by ΦN , it can be composed of three individual
tests ϕ1

N , ϕ2
N , ϕ3

N for each of the three objects. The test ϕiN , i = 1, 3, is a
division of the space XN into M disjoint subsets Ai

m, m = 1,M . The set Ai
m,

m = 1,M , contains all vectors xi for which the hypothesis Gm is adopted. Hence
test ΦN is realised by division of the space XN × XN × XN into M3 subsets
Am1,m2,m3 = A1

m1
× A2

m2
× A3

m3
, mi = 1,M , i = 1, 3. We denote the infinite

sequence of compound tests by Φ. When we have K independent objects the
test Φ is composed of tests ϕ1, ϕ2, ... , ϕK .

The probability of the falsity of acceptance of hypotheses triple (Gl1 , Gl2 , Gl3)
by the test ΦN provided that the triple of hypotheses (Gm1 , Gm2 , Gm3) is true,
where (m1,m2,m3) �= (l1, l2, l3), mi, li = 1,M , i = 1, 3, is:

αl1,l2,l3|m1,m2,m3
(ΦN )

�

= GN
m1

◦GN
m2

◦GN
m3

(
AN
l1,l2,l3

)
�

= GN
m1

(
AN
l1

)
·GN

m2

(
AN
l2

)
·GN

m3

(
AN
l3

)
=

∑
x1∈AN

l1

GN
m1

(x1)
∑

x2∈AN
l2

GN
m2

(x2)
∑

x3∈AN
l3

GN
m3

(x3).

The probability to reject a true triple of hypotheses (Gm1 , Gm2 , Gm3) by analogy
with (6) is defined as follows:

αm1,m2,m3|m1,m2,m3
(ΦN )

�

=
∑

(l1,l2,l3) 
=(m1,m2,m3)

αl1,l2,l3|m1,m2,m3
(ΦN ). (18)
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We study corresponding reliabilities El1,l2,l3|m1,m2,m3
(Φ) of the sequence of tests

Φ,

El1,l2,l3|m1,m2,m3
(Φ)

�

= lim
N→∞

inf

{
− 1

N
logαl1,l2,l3|m1,m2,m3

(ΦN )

}
,

mi, li = 1,M, i = 1, 3. (19)

Definitions (18) and (19) imply (compare with (8)) that

Em1,m2,m3|m1,m2,m3
(Φ) = min

(l1,l2,l3) 
=(m1,m2,m3)
El1,l2,l3|m1,m2,m3

(Φ). (20)

Our aim is to analyze the reliabilities matrix E(Φ∗) = {El1,l2,l3|m1,m2,m3
(Φ∗)} of

LAO test sequence Φ∗ for three objects. We call the test sequence LAO for the
model with many objects if for given positive values of certain part of elements of
reliabilities matrix the procedure provides maximal values for all other elements
of it.

Let us denote by E(ϕi) the reliabilities matrices of the sequences of tests ϕi,
i = 1, 3. The following Lemma is a generalization of Lemma from [6].

Lemma 4.1. If elements El|m(ϕi), m, l = 1,M , i = 1, 3, are strictly positive,

then the following equalities hold for E(Φ), Φ = (ϕ1, ϕ2, ϕ3), li,mi = 1,M :

El1,l2,l3|m1,m2,m3
(Φ) =

∑
i=1,3: mi 
=li

Eli|mi
(ϕi), (21)

The proof of Lemma 4.1 is given in Appendix.
Now we shall show how we can construct the LAO test from the set of com-

pound tests when 3(M − 1) strictly positive elements of the reliabilities matrix
EM,M,M|m,M,M , EM,M,M|M,m,M and EM,M,M|M,M,m, m = 1,M − 1, are prelim-
inarily given.

The following subset of tests:

D = {Φ : Em|m(ϕi) > 0, m = 1,M, i = 1, 3}

is distinguished by the property that when Φ ∈ D the elements
EM,M,M|m,M,M (Φ), EM,M,M|M,m,M (Φ) and EM,M,M|M,M,m(Φ), m = 1,M − 1,
of the reliabilities matrix are strictly positive.

Indeed, because Em|m(ϕi) > 0, m = 1,M , i = 1, 3, then in view of (8)
EM|m(ϕi) are also strictly positive. From equality (21) we obtain that the noted

elements are strictly positive for Φ ∈ D and m = 1,M − 1

EM,M,M|m,M,M (Φ) = EM|m(ϕ1), (22)

EM,M,M|M,m,M (Φ) = EM|m(ϕ2), (23)

EM,M,M|M,M,m(Φ) = EM|m(ϕ3). (24)
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For given positive elements

EM,M,M|m,M,M , EM,M,M|M,m,M , EM,M,M|M,M,m, m = 1,M − 1,

define the following family of decision sets of PDs:

R(i)
m

�

=
{
Q : D(Q||Gm) ≤ EM,M,M|m1,m2,m3

, mi = m, mj =M, i �= j, j = 1, 3
}

m = 1,M − 1, i = 1, 3, (25)

R(i)
M

�

={Q : D(Q||Gm) > EM,M,M|m1,m2,m3
, mi = m, mj =M, i �= j, j = 1, 3,

m = 1,M − 1}, i = 1, 3. (26)

Define also the elements of the reliability matrix of the compound LAO test for
three objects:

E∗
M,M,M|m,M,M

�

= EM,M,M|m,M,M ,

E∗
M,M,M|M,m,M

�

= EM,M,M|M,m,M , (27)

E∗
M,M,M|M,M,m

�

= EM,M,M|M,M,m,

E∗
l1,l2,l3|m1,m2,m3

�

= inf
Q∈R(i)

li

D(Q||Gmi),

i = 1, 3, mk = lk, mi �= li, i �= k, k ∈ [[1, 2, 3]− i], (28)

E∗
m1,m2,m3|l1,l2,m3

�

=
∑
i
=k

inf
Q∈R(i)

li

D(Q||Gmi),

mk = lk, mi �= li, k = 1, 3, i ∈ [[1, 2, 3]− k], (29)

E∗
l1,l2,l3|m1,m2,m3

�

=

3∑
i=1

inf
Q∈R(i)

li

D(Q||Gmi), mi �= li, i = 1, 3. (30)

The following theorem is a generalization and improvement of the corresponding
theorem proved in [6] for the case K = 2, M = 2.

Theorem 4.1 [40]. For considered model with three objects, if all distributions
Gm, m = 1,M , are different, (and equivalently D(Gl||Gm) > 0, l �= m, l,m =
1,M), then the following statements are valid:

a) when given strictly positive elements EM,M,M|m,M,M , EM,M,M|M,m,M and

EM,M,M|M,M,m, m = 1,M − 1, meet the following conditions

max(EM,M,M|1,M,M , EM,M,M|M,1,M , EM,M,M|M,M,1)
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< min
l=2,M

D(Gl||G1), (31)

and for m = 2,M − 1,

EM,M,M|m,M,M < min

[
min

l=1,m−1
E∗
l,m,m|m,m,m, min

l=m+1,M
D(Gl||Gm)

]
, (32)

EM,M,M|M,m,M < min

[
min

l=1,m−1
E∗
m,l,m|m,m,m, min

l=m+1,M
D(Gl||Gm)

]
, (33)

EM,M,M|M,M,m < min

[
min

l=1,m−1
E∗
m,m,l|m,m,m, min

l=m+1,M
D(Gl||Gm)

]
, (34)

then there exists a LAO test sequence Φ∗ ∈ D, the reliability matrix of which
E(Φ∗) is defined in (27)–(30) and all elements of it are positive,

b) if even one of the inequalities (31)–(34) is violated, then there exists at
least one element of the matrix E(Φ∗) equal to 0.

For the proof of Theorem 4.1 see Appendix.
When we consider the model with K independent objects the generalization

of Lemma 4.1 will take the following form.

Lemma 4.2. If elements Eli|mi
(ϕi), mi, li = 1,M , i = 1,K, are strictly posi-

tive, then the following equalities hold for Φ = (ϕ1, ϕ2, ..., ϕK):

El1,l2,...,lK|m1,m2,...,mK
(Φ) =

∑
i=1,K: mi 
=li

Eli|mi
(ϕi).

For given K(M − 1) strictly positive elements EM,M,...,M|m,M,...,M ,

EM,M,...,M|M,m,...,M , .... , EM,...,M,M,|M,M...,m,m = 1,M − 1, forK independent
objects we can find the LAO test Φ∗ in a way similar to the case of three
independent objects.

Comment 4.1. The idea to renumber K-distributions from 1 to MK and con-
sider them as PDs of one complex object offers an alternative way of testing for
models withK objects. We can giveMK−1 diagonal elements of the correspond-
ing large matrix E(Φ) and apply Theorem 3.2 concerning one composite object.
In this direct algorithm the number of the preliminarily given elements of the
matrix E(Φ) would be greater (becauseMK−1 > K(M−1),M ≥ 2,K ≥ 2) but
the procedure of calculations would be longer than in our algorithm presented
above in this section. Advantages of our approach to the problem is optimality
in calculations and the possibility to define the LAO tests for each of the sepa-
rate objects. The approach with renumbering of K-vectors of hypotheses does
not have the last opportunity. At the same time in the case of direct algorithm
there is opportunity for the investigator to preliminarily given greater number
of elements of the matrix E(Φ). In applications one of two approaches may be
used in conformity with preferences of the investigator.
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Example. Some illustrations of outlined results given calculations for an
example concerning two objects. The set X = {0, 1} contains two ele-
ments and the following PDs are given on X : G1 = {0, 10; 0, 90}, G2 =
{0, 85; 0, 15}, G3 = {0, 23; 0, 77}. As it follows from relations (27)–(30), sev-
eral elements of the reliability matrix are functions of one of given elements,
there are also elements which are functions of two, or three given elements.
For example, in Fig. 1 and Fig. 2 the results of calculations of functions
E1,2|2,1(E3,3|1,3, E3,3|3,2) and E1,2|2,2(E3,3|1,3) are presented. For these distribu-
tions we have min(D(G2||G1), D(G3||G1)) ≈ 2, 2 and min(E2,2|2,1, D(G3||G2)) ≈
1, 4. We see that, when the inequalities (31) or (34) are violated, E1,2|2,1 = 0
and E1,2|2,2 = 0.

Fig. 1.

Fig. 2.

4.2 Multihypotheses LAO Testing for Two Dependent Objects

We consider characteristics of procedures of LAO testing of probability distribu-
tions of two related (stochastically, statistically and strictly dependent) objects.
We use these terms for different kinds of dependence of two objects.
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Let X1 and X2 be RVs taking values in the same finite set X and Q(X ) be
the space of all possible distributions on X .

Let (x1,x2) = ((x11, x
2
1), (x

1
2, x

2
2), ...(x

1
N , x

2
N )) be a sequence of results of N

independent observations of the pair of objects.
First we consider the model, which consists of two stochastically related ob-

jects. We name so the following more general dependence. There are given M1

PDs
Gm1 = {Gm1(x

1), x1 ∈ X}, m1 = 1,M1.

The first object is characterized by RV X1 which has one of these M1 possible
PDs, the second object is dependent on the first and is characterized by RV X2

which can have one of M1 ×M2 conditional PDs

Gm2|m1
= {Gm2|m1

(x2|x1), x1, x2 ∈ X}, m1 = 1,M1, m2 = 1,M2.

The joint PD of the pair of objects is

Gm1,m2 = Gm1 ◦Gm2|m1
= {Gm1,m2(x

1, x2), x1, x2 ∈ X},

where

Gm1,m2(x
1, x2) = Gm1(x

1)Gm2|m1
(x2|x1), m1 = 1,M1, m2 = 1,M2.

The probability GN
m1,m2

(x1,x2) of N -vector (x1,x2) is the following product:

GN
m1,m2

(x1,x2)
�

= GN
m1

(x1)G
N
m2|m1

(x2|x1)

�

=

N∏
n=1

Gm1(x
1
n)Gm2|m1

(x2n|x1n),

with GN
m1

(x1) =
N∏
n=1

Gm1(x
1
n), G

N
m2m1

(x2|x1) =
N∏
n=1

Gm2|m1
(x2n|x1n).

In somewhat particular case, when X1 and X2 are related statistically [46],
[62], the second object depends on the index of PD of the first object but
does not depend on value x1 taken by the first object. The second object
is characterized by RV X2 which can have one of M1 × M2 conditional PDs
Gm2|m1

= {Gm2|m1
(x2), x2 ∈ X}, m1 = 1,M1, m2 = 1,M2.

In the third case of the strict dependence, which is a special case of statistical
dependence, the objects X1 and X2 can have only different distributions from
the same given family of M PDs G1, G2, ..., GM .

Discussed in Comment 4.1 the direct approach to LAO testing of PDs for two
related objects, consisting in consideration of the pair of objects as one composite
object and then in use of Theorem 3.1, is applicable for the third cases [47]. But
now we consider another approach.

Let us remark that test ΦN can be composed of a pair of tests ϕN1 and ϕN2
for the separate objects: ΦN = (ϕN1 , ϕ

N
2 ). Denote by ϕ1, ϕ2 and Φ the infinite

sequences of tests for the first, the second and the pair of objects, respectively.
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Let X1 and X2 be related stochastically. For the object characterized by X1

the non-randomized test ϕ1
N (x1) can be determined by partition of the sample

space XN on M1 disjoint subsets AN
l1

= {x1 : ϕ1
N (x1) = l1}, l1 = 1,M1, i.e. the

set AN
l1

consists of vectors x1 for which the PD Gl1 is adopted. The probability
αl1|m1

(ϕ1
N ) of the erroneous acceptance of PD Gl1 provided that Gm1 is true,

l1,m1 = 1,M1, m1 �= l1, is defined by the set AN
l1

αl1|m1
(ϕ1

N )
�

=GN
m1

(AN
l1 ).

We define the probability to reject Gm1 , when it is true, as follows

αm1|m1
(ϕ1

N )
�

=
∑

l1:l1 
=m1

αl1|m1
(ϕ1

N ) = GN
m1

(AN
m1

). (35)

The corresponding error probability exponents are:

El1|m1
(ϕ1)

�

= lim
N→∞

inf

{
− 1

N
logαl1|m1

(ϕ1
N )

}
, m1, l1 = 1,M1. (36)

It follows from (35) and (36) that

Em1|m1
(ϕ1) = min

l1:l1 
=m1

El1|m1
(ϕ1), l1,m1 = 1,M1.

For construction of the LAO test we assume given strictly positive numbers
Em1|m1

, m = 1,M1 − 1 and define regions Rl1 , l = 1,M1 as in (9)–(10).
For the second object characterized by RV X2 depending on X1 the non-

randomized test ϕ2
N (x2,x1, l1), based on vectors (x1,x2) and on the index of

the hypothesis l1 adopted for X1, can be given for each l1 and x1 by division of
the sample space XN on M2 disjoint subsets

AN
l2|l1(x1)

�

={x2 : ϕN2 (x2,x1, l1) = l2}, l1 = 1,M1, l2 = 1,M2. (37)

Let

AN
l1,l2

�

={(x1,x2) : x1 ∈ ANl1 , x2 ∈ AN
l2|l1(x1)}. (38)

The probabilities of the erroneous acceptance for (l1, l2) �= (m1,m2) are

αl1,l2|m1,m2

�

=GN
m1,m2

(AN
l1,l2).

The corresponding reliabilities are denoted El1,l2|m1,m2
and are defined as in

(19).
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We can upper estimate the probabilities of the erroneous acceptance for
(l1, l2) �= (m1,m2)

GN
m1,m2

(AN
l1,l2) =

∑
(x1,x2)∈AN

l1,l2

GN
m1

(x1)G
N
m2|m1

(x2|x1)

=
∑

x1∈AN
l1

GN
m1

(x1)G
N
m2|m1

(AN
l2|l1(x1)|x1)

≤ max
x1∈AN

l1

GN
m2|m1

(AN
l2|l1(x1)|x1)

∑
x1∈AN

l1

GN
m1

(x1)

= GN
m1

(AN
l1 ) max

x1∈AN
l1

GN
m2|m1

(AN
l2|l1(x1)|x1).

These upper estimates of αl1,l2|m1,m2
(ΦN ) for each (l1, l2) �= (m1,m2) we denote

by

βl1,l2|m1,m2
(ΦN )

�

=GN
m1

(AN
l1
) max
x1∈AN

l1

GN
m2|m1

(AN
l2|l1(x1)|x1).

Consequently we can deduce that for l1,m1 = 1,M1, l2,m2 = 1,M2, new pa-
rameters

Fl1,l2|m1,m2
(Φ)

�

= lim
N→∞

inf{− 1

N
log βNl1,l2|m1,m2

(ΦN )},

are lower estimates for reliabilities El1,l2|m1,m2
(Φ).We can introduce for l1,m1 =

1,M1, l2,m2 = 1,M2, m2 �= l2,

βl2|l1,m1,m2
(ϕ2

N )
�

= max
x1∈AN

l1

GN
m2|m1

(AN
l2|l1(x1)|x1),

and also consider

βm2|l1,m1,m2
(ϕ2

N )
�

= max
x1∈AN

l1

GN
m2|m1

(AN
m2|l1(x1)|x1)

=
∑
l2 
=m2

βl2|l1,m1,m2
(ϕ2

N ). (39)

The corresponding estimates of the reliabilities of test ϕ2
N are the following

Fl2|l1,m1,m2
(ϕ2)

�

= lim
N→∞

inf

{
− 1

N
log βl2|l1,m1,m2

(ϕ2
N )

}
,

l1,m1 = 1,M1, l2,m2 = 1,M2, m2 �= l2. (40)

It is clear from (39) and (40) that for every l1,m1 = 1,M1, l2,m2 = 1,M2

Fm2|l1,m1,m2
(ϕ2) = min

l2:l2 
=m2

Fl2|l1,m1,m2
(ϕ2). (41)
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For given positive numbers Fl2|l1,m1,l2 , l2 = 1,M2 − 1, Q ∈ Rl1 and each pair

l1,m1 = 1,M1 let us define the following regions and values:

Rl2|l1(Q)
�

={V : D(V ||Gl2|l1 |Q) ≤ Fl2|l1,m1,l2}, l2 = 1,M2 − 1, (42)

RM2|l1(Q)
�

=
{
V : D(V ||Gl2|l1 |Q) > Fl2|l1,m1,l2 , l2 = 1,M2 − 1

}
, (43)

F ∗
l2|l1,m1,l2

(Fl2|l1,m1,l2)
�

= Fl2|l1,m1,l2 , l2 = 1,M2 − 1, (44)

F ∗
l2|l1,m1,m2

(Fl2|l1,m1,l2)
�

= inf
Q∈Rl1

inf
V ∈Rl2|l1 (Q)

D(V ||Gm2|m1
|Q),

m2 = 1,M2, ,m2 �= l2, l2 = 1,M2 − 1, (45)

F ∗
M2|l1,m1,m2

(F1|l1,m1,1, ..., FM2−1|l1,m1,M2−1)
�

= inf
Q∈Rl1

inf
V ∈RM2|l1(Q)

D(V ||Gm2|m1
|Q),

m2 = 1,M2 − 1, (46)

F ∗
M2|l1,m1,M2

(F1|l1,m1,1, ..., FM2−1|l1,m1,M2−1)
�

= min
l2=1,M2−1

F ∗
l2|l1,m1,M2

. (47)

We denote by F(ϕ2) the matrix of lower estimates for elements of matrix E(ϕ2).

Theorem 4.2 [49]. If for given m1, l1 = 1,M1, all conditional PDs Gl2|l1 ,

l2 = 1,M2, are different in the sense that D(Gl2|l1 ||Gm2|m1
|Q) > 0, for all

Q ∈ Rl1 , l2 �= m2, m2 = 1,M2, when the strictly positive numbers F1|l1,m1,1,
F2|l1,m1,2,...,FM2−1|l1,m1,M2−1 are such that the following compatibility condi-
tions hold

F1|l1,m1,1 < min
l2=2,M2

inf
Q∈Rl1

D(Gl2|l1 ||G1|m1
|Q), (48)

Fm2|l1,m1,m2
< min

(
min

l2=m2+1,M2

inf
Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q),

min
l2=1,m2−1

F ∗
l2|l1,m1,m2

(Fl2|l1,m1,l2)

)
, m2 = 1,M2 − 1, (49)

then there exists a sequence of tests ϕ2,∗, such that the lower estimates are defined
in (4.29)– (4.32) are strictly positive.

Inequalities (48), (49) are necessary for existence of the test sequence with
matrix F(ϕ2,∗) of positive lower estimates having given elements Fl2|l1,m1,l2 , l2 =

1,M2 − 1 in diagonal.

Let us define the following subsets of Q(X ) for given strictly positive elements
EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1:
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Rl1

�

= {Q : D(Q||Gl1) ≤ EM1,l2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

RM1

�

= {Q : D(Q||Gl1) > EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1},

and for given strictly positive elements Fl1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1

and each Q ∈ Rl1 , l1 = 1,M1, the following regions of condition PDs V :

Rl2|l1(Q)
�

= {V : D(V ||Gl2|l1 |Q) ≤ Fl1,M2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

RM2|l1(Q)
�

= {V : D(V ||Gl2|l1 |Q) > Fl1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1}.

Assume also that

F ∗
l1,M2|l1,l2

�

= Fl1,M2|l1,l2 , (50)

E∗
M1,l2|l1,l2

�

= EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1, (51)

E∗
l1,l2|m1,l2

�

= inf
Q:Q∈Rl1

D(Q||Gm1), m1 �= l1, (52)

F ∗
l1,l2|l1,m2

�

= inf
Q∈Rl1

inf
V :V ∈Rl2/l1

(Q)
D(V ||Gm2/m1

|Q), m2 �= l2, (53)

F ∗
l1,l2|m1,m2

�

= F ∗
m1,l2|m1,m2

+ E∗
l1,m2|m1,m2

, mi �= li, i = 1, 2, (54)

F ∗
m1,m2|m1,m2

�

= min
(l1,l2) 
=(m1,m2)

F ∗
l1,l2|m1,m2

. (55)

Theorem 4.3 [46]. If all PDs Gm1 , m1 = 1,M1, are different, that is
D(Gl1 ||Gm1) > 0, l1 �= m1, l1,m1 = 1,M1, and all conditional PDs Gl2|l1 ,

l2 = 1,M2, are also different for all l1 = 1,M1, in the sense that
D(Gl2|l1 ||Gm2|m1

|Q) > 0, l2 �= m2, then the following statements are valid.
When given strictly positive elements EM1,l2|m1,l2 and Fl1,M2|l1,m2

, m1 =

1,M1 − 1, m2 = 1,M2 − 1, meet the following conditions

EM1,l2|1,l2 < min
l1=2,M1

D(Gl1 ||G1), (56)

Fl1,M2|l1,1 < min
l2=2,M2

inf
Q∈Rl1

D(Gl2|l1 ||G1|m1
|Q), (57)

EM1,l2|m1,l2 < min[ min
l1=1,m1−1

E∗
l1,l2|m1,l2

, min
l1=m1+1,M1

D(Gl1 ||Gm1)],

m1 = 2,M1 − 1, (58)

Fl1,M2|l1,m2
< min[ min

l2=1,m2−1
F ∗
l1,l2|l1,m2

, min
l2=m2+1,M2

inf
Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q)],

m2 = 2,M2 − 1, (59)
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then there exists a LAO test sequence Φ∗, the matrix of lower estimates of which

F(Φ∗) = {Fl1,l2|m1,m2
(Φ∗)}

is defined in (50)-(55) and all elements of it are positive.
When even one of the inequalities (56)-(59) is violated, then at least one

element of the lower estimate matrix F(Φ∗) is equal to 0.

When X1 and X2 are related statistically [46], [62] we will have instead
of (39), (40) AN

l2|l1 = {x2 : ϕN2 (x2, l1) = l2}, l1 = 1,M1, l2 = 1,M2, and

AN
l1,l2

�

={(x1,x2) : x1 ∈ AN
l1
, x2 ∈ AN

l2|l1(x1)}. In that case we have error
probabilities

GN
m1,m2

(AN
l1,l2)

�

=
∑

(x1,x2)∈AN
l1,l2

GN
m1

(x1)G
N
m2|m1

(x2)

=
∑

x1∈AN
l1

GN
m1

(x1)
∑

x2∈AN
l2|l1

GN
m2|m1

(x2)

= GN
m2|m1

(AN
l2|l1)Gm1(AN

l1 ), (l1, l2) �= (m1,m2).

For the second object the conditional probabilities of the erroneous acceptance
of PD Gl2|l1 provided that Gm2|m1

is true, for l1,m1 = 1,M1, l2,m2 = 1,M2,
are the following

αNl2|l1,m1,m2
(ϕ2

N )
�

=GN
m2|m1

(AN
l2|l1), l2 �= m2.

The probability to reject Gm2|m1
, when it is true is denoted as follows

αNm2|l1,m1,m2
(ϕ2

N )
�

=GN
m2|m1

(Am2|l1) =
∑
l2 
=m2

αNl2|l1,m1,m2
(ϕ2

N ).

Thus in the conditions and in the results of Theorems 4.2 and 4.3 we will have
just divergences
D(Gl2|l1 ||Gm2|m1

), instead of conditional divergences inf
Q∈Rl1

D(Gl2|l1 ||Gm2|m1
|Q),

inf
Q∈Rl1

D(V ||Gm2|m1
|Q) D(V ||Gm2|m1

) and El2|l1,m1,m2
(Φ), El1,l2|m1,m2

(Φ),

l1,m1 = 1,M1, l2,m2 = 1,M2 will be in place of Fl2|l1,m1,m2
(Φ), Fl1,l2|m1,m2

(Φ),

l1,m1 = 1,M1, l2,m2 = 1,M2. And in that case regions defined in (42), (43)
will be changed as follows:

Rl2|l1

�

= {V : D(V ||Gl2|l1) ≤ El2|l1,m1,l2}, l2 = 1,M2 − 1,

RM2|l1

�

= {V : D(V ||Gl2|l1) > El2|l1,m1,l2 , l2 = 1,M2 − 1},
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In case of two statistically dependent objects the corresponding regions will be

Rl1

�

= {Q : D(Q||Gl1) ≤ EM1,l2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

Rl2|l1

�

= {V : D(V ||Gl2|l1) ≤ El1,M2|l1,l2}, l1 = 1,M1 − 1, l2 = 1,M2 − 1,

RM1

�

= {Q : D(Q||Gl1) > EM1,l2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1},

RM2|l1

�

= {V : D(V ||Gl2|l1) > El1,M2|l1,l2 , l1 = 1,M1 − 1, l2 = 1,M2 − 1}.

So in this case the matrix of reliabilities
E(Φ∗) = {E∗l1,l2|m1,m2

, l1,m1 = 1,M1, l2,m2 = 1,M2}, will have the following
elements:

E∗
l1,M2|l1,l2

�

= El1,M2|l1,l2 ,

E∗
M1,l2|l1,l2

�

= EM1,l2|l1,l2 ,

l1 = 1,M1 − 1, l2 = 1, L2 − 1,

E∗
l1,l2|m1,l2

�

= inf
Q:Q∈Rl1

D(Q||Gm1), m1 �= l1,

E∗
l1,l2|l1,m2

�

= inf
V :V ∈Rl2|l1

D(V ||Gm2|m1
), m2 �= l2,

E∗
l1,l2|m1,m2

�

= E∗
m1,l2|m1,m2

+ E∗
l1,m2|m1,m2

, mi �= li, i = 1, 2,

E∗
m1,m2|m1,m2

�

= min
(l1,l2) 
=(m1,m2)

E∗
l1,l2|m1,m2

.

Theorem 4.4. [46] If all PDs Gm1 , m1 = 1,M1, are different, that is
D(Gl1 ||Gm1) > 0, l1 �= m1, l1,m1 = 1,M1, and all conditional PDs Gl2|l1 , l2 =

1,M2, are also different for all l1 = 1,M1, in the sense that D(Gl2|l1 ||Gm2|m1
) >

0, l2 �= m2, then the following statements are valid.
When given strictly positive elements EM1,l2|l1,l2 and El1,M2|l1,l2 ,

l1 = 1,M1 − 1, l2 = 1,M2 − 1, meet the following compatibility conditions

EM1,l2|1,l2 < min
l1=2,M1

D(Gl1 ||G1),

El1,M2|l1,1 < min
l2=2,M2

D(Gl2|l1 ||G1|m1
),

EM1,l2|m1,l2 < min

[
min

l1=1,m1−1
E∗
l1,l2|m1,l2

, min
l1=m1+1,M1

D(Gl1 ||Gm1)

]
,

m1 = 2,M1 − 1,

El1,M2|l1,m2
< min

[
min

l2=1,m2−1
E∗
l1,l2|l1,m2

, min
l2=m2+1,M2

D(Gl2|l1 ||Gm2|m1
)

]
,

m2 = 2,M2 − 1,

then there exists a LAO test sequence Φ∗, the matrix of which E(Φ∗) is stated
above and all elements of it are positive.
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When even one of the compatibility conditions is violated, then at least one
element of the matrix E(Φ∗) is equal to 0.

5 Identification of Distribution for One and for Many
Objects

In [9] Bechhofer, Kiefer, and Sobel presented investigations on sequential multiple-
decision procedures. This book concerns principally with a particular class of
problems referred to as ranking problems. Chapter 10 of the book by Ahlswede
and Wegener [7] is devoted to statistical identification and ranking. Problems
of distribution identification and distributions ranking for one object applying
the concept of optimality developed in [11], [50], [30]–[33] were solved in [6]. In
papers [41], [48], [49] and [55] identification problems for models composed with
two independent, or strictly dependent objects were investigated.

In [6], [41], [49] and [55] models considered in [9] and [7] and variations of these
models inspired by the pioneering paper by Ahlswede and Dueck [5], applying
the concept of optimality developed in [11], [30]–[33], [50], were studied.

First we formulate the concept of the identification for one object, which was
considered in [6]. There are known M ≥ 2 possible PDs, related with the object
in consideration. Identification gives the answer to the question whether r-th
PD occured, or not. This answer can be given on the base of a sample x by a
test ϕ∗

N (x). More precisely, identification can be considered as an answer to the
question: is the result l of testing algorithm equal to r (that is l = r), or not
(that is l �= r).

There are two types of error probabilities of identification for each r = 1,M :
αl 
=r|m=r(ϕN ) the probability to accept l different from r, when r is in reality,
and the probability αl=r|m 
=r(ϕN ) that r is accepted by test ϕN , when r is not
correct.

The probability αl 
=r|m=r(ϕN ) coincides with the error probability of testing
αr|r(ϕN ) (see (6)) which is equal to

∑
l:l 
=r

αl|r(ϕN ). The corresponding reliability

El 
=r|m=r(ϕ) is equal to Er|r(ϕ) which satisfies the equality (8).
And what is the reliability approach to identification? It is necessary to

determine the dependence of optimal reliabilityE∗
l=r|m 
=r upon given E∗

l 
=r|m=r =

E∗
r|r, which can be assigned a value satisfying conditions analogical to (16).

The result from paper [6] is:

Theorem 5.1. In the case of distinct hypothetical PDs G1, G2, ..., GM , for a

given sample x we define its type Q, and when Q ∈ R(N)
l (see (9)–(11)) we

accept the hypothesis l. Under condition that the a priori probabilities of all M
hypotheses are positive the reliability of such identification El=r|m 
=r for given
El 
=r|m=r = Er|r is the following:

El=r|m 
=r(Er|r) = min
m:m 
=r

inf
Q:D(Q‖Gr)≤Er|r

D(Q‖Gm), r = 1,M.
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We can accept the supposition of positivity of a priori probabilities of all hy-
potheses with no loss of generality, because the hypothesis which is known to
have probability 0, that is impossible, must not be included in the studied family.

Now let us consider the model consisting of two independent objects. Let
hypothetical characteristics of objects X1 and X2 be independent RVs taking
values in the same finite set X with one of M PDs. Identification means
that the statistician has to answer the question whether the pair of distri-
butions (r1, r2) occurred or not. Now the procedure of testing for two ob-
jects can be used. Let us study two types of error probabilities for each pair

(r1, r2), r1, r2 = 1,M . We denote by α
(N)
(l1,l2) 
=(r1,r2)|(m1,m2)=(r1,r2)

the proba-

bility, that pair (r1, r2) is true, but it is rejected. Note that this probability

is equal to αr1,r2|r1,r2(ΦN ). Let α
(N)
(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2)

be the probability

that (r1, r2) is identified, when it is not correct. The corresponding reliabilities
are E(l1,l2) 
=(r1,r2)|(m1,m2)=(r1,r2) = Er1,r2|r1,r2 and E(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2).
Our aim is to determine the dependence of E(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2) on given
Er1,r2|r1,r2(ΦN ).

Let us define for each r, r = 1,M , the following expression:

A(r) = min

[
min

l=1,r−1
D(Gl||Gr), min

l=r+1,M
D(Gl||Gr)

]
.

Theorem 5.2 [41]. For the model consisting of two independent objects if the
distributions Gm, m = 1,M , are different and the given strictly positive number
Er1,r2|r1,r2 satisfy condition

Er1,r2|r1,r2 < min [A(r1), A(r2)] ,

then the reliability E(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2) is defined as follows:

E(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2)

(
Er1,r2|r1,r2

)
= min

m1 
=r1,m2 
=r2

[
Em1|r1(Er1,r2|r1,r2), Em2|r2(Er1,r2|r1,r2)

]
,

where Em1|r1(Er1,r2|r1,r2) and Em2|r2(Er1,r2|r1,r2) are determined by (13).

Now we will present the lower estimates of the reliabilities for LAO identi-
fication for the dependent object which can be then applied for deducing the
lower estimates of the reliabilities for LAO identification of two related ob-
jects. There exist two error probabilities for each r2 = 1,M2: the probability
αl2 
=r2|l1,m1,m2=r2(ϕ

2
N ) to accept l2 different from r2, when r2 is in reality, and

the probability αl2=r2|l1,m1,m2 
=r2(ϕ
2
N ) that r2 is accepted, when it is not correct.

The upper estimate βl2 
=r2|l1,m1,m2=r2(ϕ
2
N ) for αl2 
=r2|l1,m1,m2=r2(ϕ

2
N ) is al-

ready known, it coincides with βr2|l1,m1,r2(ϕ
2
N ) which is equal to∑

l2:l2 
=r2
βl2|l1,m1,r2(ϕ

2
N ). The corresponding Fl2 
=r2|l1,m1,m2=r2(ϕ

2) is equal to

Fr2|l1,m1,r2(ϕ
2), which satisfies the equality (20).
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We determine the optimal dependence of F ∗
l2=r2|l1,m1,m2 
=r2 upon given

F ∗
l2 
=r2|l1,m1,m2=r2

.

Theorem 5.3 [49]. In case of distinct PDs G1|l1 , G2|l1 , ..., GM2|l1 , under con-
dition that a priori probabilities of all M2 hypotheses are strictly positive, for
each r2 = 1,M2 the estimate of Fl2=r2|l1,m1,m2 
=r2 for given Fl2 
=r2|l1,m1,m2=r2 =
Fr2|l1,m1,r2 is the following:

Fl2=r2|l1,m1,m2 
=r2(Fr2|l1,m1,r2) =

min
m2:m2 
=r2

inf
Q∈Rl1

inf
V :D(V ‖Gr2|l1 |Q)≤Fr2|l1,m1,r2

D(V ‖Gm2|m1
|Q).

The result of the reliability approach to the problem of identification of the
probability distributions for two related objects is the following.

Theorem 5.4. If the distributions Gm1 and Gm2|m1
, m1 = 1,M1, m2 = 1,M2,

are different and the given strictly positive number Fr1,r2|r1,r2 satisfies the con-
dition

Er1|r1 < min

[
min

l=1,r1−1
D(Gr1 ||Gl1), min

l1=r1+1,M1

D(Gl1 ||Gr1)

]
,

Fr2|l1,m1,r2 < min

[
inf

Q∈Rl1

min
l2=1,r2−1

D(Gr2|m1
||Gl2|l1 |Q),

inf
Q∈Rl1

min
l2=r2+1,M2

D(Gl2|l1 ||Gr2|m1
|Q)

]
,

then the lower estimate F(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2) of the reliability
E(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2) can be calculated as follows

F(l1,l2)=(r1,r2)|(m1,m2) 
=(r1,r2)

(
Fr1,r2|r1,r2

)
= min

m1 
=r1,m2 
=r2

[
Er1|m1

(Fr1,r2|r1,r2), Fr2|l1,m1,m2
(Fr1,r2|r1,r2)

]
,

where Er1|m1
(Fr1,r2|r1,r2) and Fr2|l1,m1,m2

(Fr1,r2|r1,r2) are determined respective-
ly by (13) and (45).

The particular case, when X1 and X2 are related statistically, was studied in
[46], [62].

6 Multihypotheses Testing for Arbitrarily Varying Source
and for Cases With Possibility of Decision Rejection

This section is devoted to description of characteristics of LAO hypotheses test-
ing with permission of decision rejection for the model consisting of one or more
objects. In subsection 6.1 we consider multiple statistical hypotheses testing with
possibility of rejecting to make choice between hypotheses concerning distribu-
tion of a discrete arbitrarily varying source. The multiple hypotheses testing
problem with possibility of rejection of decision for arbitrarily varying object
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with side information and for the model of two or more independent objects was
examined by Haroutunian, Hakobyan and Yessayan [43], [44]. These works were
induced by the paper of Nikulin [57] concerning two hypotheses testing with
refusal to take decision. An asymptotically optimal classification with rejection
of decision was considered by Gutman [26].

6.1 Many Hypothesis Testing with Rejection of Decision by
Informed Statistician for Arbitrarily Varying Source

“A broad class of statistical problems arises in the framework of hypothesis
testing in the spirit of identification for different kinds of sources, with complete
or partial side information or without it”[2].

The problem concerning arbitrarily varying sources solved in [39] was induced
by the ideas of the paper of Ahlswede [1]. Fu and Shen [24] explored the case
of two hypotheses testing when side information is absent. The case of two
hypotheses with side information about states was considered in [3]. In [38]
Haroutunian and Grigoryan generalized results from [24], [31]–[33] for multihy-
potheses LAO testing by a non-informed statistician for an arbitrarily varying
Markov source. In the same way as in [24] and [54] from result on LAO testing,
the rate-reliability and the reliability-rate functions for arbitrarily varying source
with side information were obtained in [39].

The arbitrarily varying source is a generalized model of the discrete memo-
ryless source. In the first one, the source outputs distributions depends on the
source state. The latter varies within a finite set from one time instant to the
next in an arbitrary manner.

Let X be a finite set of values of RV X , and S be an alphabet of states of
the object. M possible conditional PDs of the characteristic X of the object
depending on values s of states, are given:

Wm

�

={Wm(x|s), x ∈ X , s ∈ S}, m = 1,M, |S| ≥ 1,

but it is not known which of these alternative hypothesesWm, m = 1,M , is real
PD of the object. The statistician must select one among M hypotheses, or he
can withdraw any judgement. It is possible, for instance, when it is supposed that
real PD is not in the family ofM given PDs. An answer must be given using the

sample x
�

=(x1, x2, ...xN ) and the vector of states of the object s
�

=(s1, s2, ..., sN),
sn ∈ S, n = 1, N .

The procedure of decision making is a non-randomized test ϕN (x, s), it can be
defined by division of the sample space XN for each s on M +1 disjoint subsets
AN
m(s) = {x : ϕN (x, s) = m}, m = 1,M + 1. The set AN

l (s), l = 1,M , consists
of vectors x for which the hypothesis Wl is adopted, and AN

M+1(s) includes
vectors for which the statistician refuses to give a certain answer.

We study the probabilities of the erroneous acceptance of hypothesis Wl pro-
vided that Wm is true

αl|m(ϕN )
�

= max
s∈SN

WN
m

(
AN
l (s)|s

)
, m, l = 1,M, m �= l. (60)
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When decision is declined, but the hypothesis Wm is true, we consider the fol-
lowing probability of error:

αM+1|m(ϕN )
�

= max
s∈SN

WN
m

(
AN
M+1(s)|s

)
.

If the hypothesis Wm is true, but it is not accepted, or equivalently while the
statistician accepted one of hypotheses Wl, l = 1,M , l �= m, or refused to make
decision, then the probability of error is the following:

αm|m(ϕN )
�

=
∑
l: l 
=m

αl|m(ϕN ) = max
s∈SN

WN
m

(
AN
m(s)|s

)
, m = 1,M. (61)

Corresponding reliabilities are defined similarly to (6):

El|m(ϕ)
�

= lim
N→∞

inf

{
− 1

N
logαl|m(ϕN )

}
, m = 1,M, l = 1,M + 1. (62)

It also follows that for every test ϕ

Em|m(ϕ) = min
l=1,M+1, l 
=m

El|m(ϕ), m = 1,M. (63)

The matrix

E(ϕ) =

⎛⎜⎜⎜⎜⎝
E1|1 . . . El|1 . . . EM|1, EM+1|1

. . . . . . . . . . . . . . . . . . . . .
E1|m . . . El|m . . . EM|m, EM+1|m

. . . . . . . . . . . . . . . . . . . . .
E1|M . . . El|M . . . EM|M EM+1|M

⎞⎟⎟⎟⎟⎠
is the reliabilities matrix of the tests sequence ϕ for the described model.

We call the test LAO for this model if for given positive values of certain M
elements of the matrix E(ϕ) the procedure provides maximal values for other
elements of it.

For construction of the LAO test positive elements E1|1, ..., EM|M are sup-
posed to be given preliminarily. The optimal dependence of error exponents
was determined in [43]. This result can be easily generalized for the case of an
arbitrarily varying Markov source.

6.2 Multiple Hypotheses LAO Testing with Rejection of Decision
for Many Independent Objects

For brevity we consider the problem for two objects, the generalization of the
problem for K independent objects will be discussed along the text.

Let X1 and X2 be independent RVs taking values in the same finite set X
with one ofM PDs Gm ∈ P(X ), m = 1,M . These RVs are the characteristics of
corresponding independent objects. The random vector (X1, X2) assumes values

(x1, x2) ∈ X × X . Let (x1,x2)
�

=
(
(x11, x

2
1), ..., (x

1
n, x

2
n), ..., (x

1
N , x

2
N )

)
, xkn ∈ X ,
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k = 1, 2, n = 1, N , be a vector of results of N independent observations of the
pair of RVs (X1, X2). On the base of observed data the test has to determine
unknown PDs of the objects or withdraw any judgement. The selection for each
object should be made from the same set of hypotheses: Gm, m = 1,M . We
call this procedure the compound test for two objects and denote it by ΦN , it
can be composed of two individual tests ϕ1

N , ϕ2
N for corresponding objects. The

test ϕiN , i = 1, 2, can be defined by division of the space XN into M +1 disjoint
subsets Ai

m, m = 1,M + 1. The set Ai
m, m = 1,M contains all vectors xi for

which the hypothesis Gm is adopted and Ai
M+1 includes all vectors for which the

test refuses to take a certain answer. Hence ΦN is division of the space XN×XN

into (M + 1)2 subsets Am1,m2 = A1
m1

×A2
m2

, mi = 1,M + 1. We again denote
the infinite sequences of tests by Φ, ϕ1, ϕ2.

Let αl1,l2|m1,m2
(ΦN ) be the probability of the erroneous acceptance of the pair

of hypotheses (Gl1 , Gl2) by the test ΦN provided that the pair of hypotheses
(Gm1 , Gm2) is true, where (m1,m2) �= (l1, l2), mi = 1,M , li = 1,M , i = 1, 2:

αl1,l2|m1,m2
(ΦN ) = Gm1 ◦Gm2 (Al1,l2)

= GN
m1

(Al1) ·GN
m2

(Al2).

When the pair of hypotheses (Gm1 , Gm2), m1,m2 = 1,M is true, but we decline
the decision the corresponding probabilities of errors are:

αM+1,M+1|m1,m2
(ΦN ) = Gm1 ◦Gm2(AM+1,M+1)

= GN
m1

(A1
M+1) ·GN

m2
(A2

M+1).

or
αM+1,l2|m1,m2

(ΦN ) = GN
m1

(A1
M+1) ·GN

m2
(A2

l2 )

or
αl1,M+1|m1,m2

(ΦN ) = GN
m1

(A1
l1) ·G

N
m2

(A2
M+1).

If the pair of hypotheses (Gm1 , Gm2) is true, but it is not accepted, or equiva-
lently while the statistician accepted one of hypotheses (Gl1 , Gl2), or refused to
make decision, then the probability of error is the following:

αm1,m2|m1,m2
(ΦN ) =

∑
(l1,l2) 
=(m1,m2)

αl1,l2|m1,m2
(ΦN ), (64)

li = 1,M + 1, mi = 1,M, i = 1, 2.

We study reliabilities El1,l2|m1,m2
(Φ) of the sequence of tests Φ,

El1,l2|m1,m2
(Φ)

�

= lim
N→∞

inf

{
− 1

N
logαl1,l2|m1,m2

(ΦN )

}
, (65)

mi,= 1,M, li = 1,M + 1, i = 1, 2.

Definitions (64) and (65) imply that

Em1,m2|m1,m2
(Φ) = min

(l1,l2) 
=(m1,m2)
El1,l2|m1,m2

(Φ). (66)
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We can erect the LAO test from the set of compound tests when 2M strictly
positive elements of the reliability matrix EM+1,m|m,m and Em,M+1|m,m, m =

1,M , are preliminarily given (see [43]).

Remark 6.1. It is necessary to note that the problem of reliabilities investiga-
tion for LAO testing of many hypotheses with possibility of rejection of decision
for the model consisting of two or more independent objects can not be solved
by the direct method of renumbering.

7 Conclusion and Open Problems

In this paper, we described solutions of a part of possible problems concerning
algorithms of distributions optimal testing for certain classes of one, or multiple
objects. For the same models PD optimal identification is discussed again in the
spirit of error probability exponents optimal dependence.

These investigations can be continued in plenty directions. “Paper [6] is a
start” [2].

Some problems formulated in [6] and [45], particularly, concerning the remote
statistical inference formulated by Berger [10], examined in part by Ahlwede and
Csiszár [4] and Han and Amari [28] still remain open.

All our results concern with discrete distributions, but it is necessary to study
many objects with general distributions as in [27]. For multiple objects multi-
stage [42] and sequential testing [14] can be also considered. Problems for many
objects are present in statistics with fuzzy data [25], Bayesian detection of mul-
tiple hypotheses [53] and geometric interpretations of tests [63].

Acknowledgments. The authors are grateful to the referees for their helpful
comments.
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dinian, H., Blinovsky, V., Deppe, C., Mashurian, H. (eds.) Information Transfer
and Combinatorics. LNCS, vol. 4123, pp. 553–571. Springer, Heidelberg (2006)

7. Ahlswede, R., Wegener, I.: Search Problems. Wiley, New York (1987)

8. Anantharam, V.: A large deviations approach to error exponent in source coding
and hypotheses testing. IEEE Trans. on Inf. Theory 36(4), 938–943 (1990)

9. Bechhofer, R., Kiefer, J., Sobel, M.: Sequential identification and ranking proce-
dures. The University of Chicago Press, Chicago (1968)

10. Berger, T.: Decentralized estimation and decision theory. Presented at IEEE Seven
Springs Workshop on Information Theory, Mt. Kisco, NY (1979)
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Appendix

Proof of Theorem 3.1. Probability GN
m(x) for x ∈ T N

Q (X) can be presented as
follows:

GN
m(x) =

N∏
n=1

Gm(xn)

=
∏
x

Gm(x)N(x|x)

=
∏
x

Gm(x)NQ(x)

= exp

{
N

∑
x

(
−Q(x) log

Q(x)

Gm(x)
+Q(x) logQ(x)

)}
= exp {−N [D(Q ‖ Gm) +HQ(X)]}. (67)

Let us consider the sequence of tests ϕ∗
N (x) defined by the sets

B(N)
m

�

=
⋃

Q∈R(N)
m

T N
Q (X), m = 1,M. (68)

Each x is in one and only one of B(N)
m , that is

B(N)
l

⋂
B(N)
m = ∅, l �= m, and

M⋃
m=1

B(N)
m = XN .

Indeed, for l = 1,M − 2, m = 2,M − 1, for each l < m let us consider arbitrary

x ∈ B(N)
l . It follows from (9) and (11) that there exists type Q ∈ QN (X )

such that D(Q||Gl) ≤ El|l and x ∈ T N
Q (X). From (13) and (16) we have

Em|m < E∗
l|m(El|l) < D(Q||Gm). From the definition of B(N)

m we see that

x /∈ B(N)
m . Definitions (11), (14) and (16) show also that

B(N)
M

⋂
B(N)
m = ∅, m = 1,M − 1.

Now, let us remark that for m = 1,M − 1, using (1), (3), (5)–(7) and (67) we

can estimate α
(N)
m|m(ϕ∗) as follows:
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αm|m(ϕ∗
N ) = GN

m

(
B(N)
m

)
= GN

m

⎛⎝ ⋃
Q:D(Q||Gm)>Em|m

T N
Q (X)

⎞⎠
≤ (N + 1)|X | sup

Q:D(Q||Gm)>Em|m
Gm(T N

Q (X))

≤ (N + 1)|X | sup
Q:D(Q||Gm)>Em|m

exp{−ND(Q||Gm)}

≤ exp

{
−N [ inf

Q:D(Q||Gm)>Em|m
D(Q||Gm)− oN (1)]}

}
≤ exp

{
−N [Em|m − oN (1)]

}
,

where oN (1) → 0 with N → ∞.
For l = 1,M − 1, m = 1,M , l �= m, using (1), (3), (5)–(7) and (67), we can

obtain similar estimates:

αl|m(ϕ∗
N ) = GN

m

(
B(N)
l

)
= GN

m

⎛⎝ ⋃
Q :D(Q||Gl)≤El|l

T N
Q (X)

⎞⎠
≤ (N + 1)|X | sup

Q:D(Q||Gm)≤El|l
GN
m

(
T N
Q (X)

)
≤ (N + 1)|X | sup

Q:D(Q||Gm)≤El|l
exp{−ND(Q||Gm)}

= exp

{
−N

(
inf

Q:D(Q||Gm)≤El|l
D(Q||Gm)− oN (1)

)}
. (69)

Now let us prove the inverse inequality:

αl|m(ϕ∗
N ) = GN

m

(
B(N)
l

)
= GN

m

⎛⎝ ⋃
Q:D(Q||Gl)≤El|l

T N
Q (X)

⎞⎠
≥ sup

Q:D(Q||Gl)≤El|l
GN
m (TQ(X))

≥ (N + 1)−|X | sup
Q:D(Q||Gl)≤El|l

exp {−ND (Q||Gm)}

= exp

{
−N

(
inf

Q:D(Q||Gl)≤El|l
D(Q||Gm) + oN (1)

)}
. (70)
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Taking into account (69), (70) and the continuity of the functional D(Q||Gl) we
obtain that

lim
N→∞

{
−N−1 logαl|m(ϕ∗

N )
}

exists and in correspondence with (13) equals to E∗
l|m. Thus El|m(ϕ∗) = E∗

l|m,

m = 1,M , l = 1,M − 1, l �= m. Similarly we can obtain upper and lower
bounds for αM|m(ϕ∗

N ), m = 1,M . Applying the same reasoning we get that the
reliability EM|m(ϕ∗) = E∗

M|m. By the definition (8) EM|M (ϕ∗) = E∗
M|M . The

proof of the first part of the theorem will be accomplished if we demonstrate
that the sequence of tests ϕ∗ is LAO, that is for given E1|1, ..., EM−1|M−1 and

every sequence of tests ϕ for all l,m ∈ 1,M , El|m(ϕ) ≤ E∗
l|m.

Let us consider any other sequence ϕ∗∗ of tests which is defined by the sets

D(N)
1 , ...,D(N)

M ( D(N)
i

⋂
D(N)
j = ∅, i, j = 1,M , i �= j), such that

El|m(ϕ∗∗) ≥ E∗
l|m, m, l = 1,M. (71)

a) Let us examine the sets D
(N)
m

⋂
B(N)
m , m = 1,M − 1. This intersection

cannot be empty, because in that case

αm|m(ϕ∗∗
N ) = GN

m

(
D(N)

m

)
≥ GN

m

(
B(N)
m

)
≥ exp{−N(Em|m + oN (1))}.

Let us show that
b) D(N)

l

⋂
B(N)
m = ∅, m, l = 1,M − 1, m �= l.

Suppose the contrary. If there exists Q such that D(Q||Gm) ≤ Em|m and

1. T N
Q (X) ⊆ D(N)

l , then

αl|m(ϕ∗∗
N ) = GN

m

(
D(N)
l

)
> GN

m

(
T N
Q (X)

)
≥ exp{−N(Em|m + oN (1))}.

2. ∅ �= D(N)
l

⋂
T N
Q (X) �= T N

Q (X), we also obtain that

αl|m(ϕ∗∗
N ) = GN

m

(
D(N)
l

)
> GN

m

(
D(N)
l

)⋂
T N
Q (X)

≥ exp{−N(Em|m + oN (1))}.

Thus it follows that El|m(ϕ∗∗) ≤ Em|m, which in turn according to (8) provides
that El|m(ϕ∗∗) = Em|m. From condition (16) it follows that Em|m < E∗

l|m , for

all l = 1,m− 1, hence El|m(ϕ∗∗) < E∗
l|m for all l = 1,m− 1, which contradicts

to (71).
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c) D(N)
M

⋂
B(N)
m = ∅, m = 1,M − 1.

If there exists Q such that D(Q||Gm) ≤ Em|m and T N
Q (X) ⊆ D(N)

M(
or ∅ �= D(N)

l

⋂
T N
Q (X) �= T N

Q (X)
)
, then

αM|m(ϕ∗∗
N ) = GN

m

(
D(N)
M

)
> GN

m

(
T N
Q (X)

)
≥ exp{−N(Em|m + oN (1))}.

Thus it follows that EM|m(ϕ∗∗) ≤ Em|m ⇐⇒ EM|m(ϕ∗∗) = Em|m. By the
definition (8) and conditions (16) for the optimal exponent E∗

M|m the following

inequalities Em|m ≤ E∗
M|m is true. Hence EM|m(ϕ∗∗) ≤ E∗

M|m, which contra-

dicts to (71).

According to D
(N)
i

⋂
D(N)
j = ∅, B

(N)
i

⋂
B(N)
j = ∅, i �= j, i, j = 1,M and a),

b), c) we obtain that D(N)
m = B

(N)
m , m = 1,M

The proof of the second part of the Theorem 3.1 is simple. If one of the
conditions (16) is violated, then from (13)– (15) it follows that at least one of
the elements Em|l is equal to 0. For example, let in (16) the m-th condition
be violated. It means that Em|m ≥ min

l=m+1,M
D(Gl||Gm), then there exists l∗ ∈

m+ 1,M such that Em|m ≥ D(G∗
l ||Gm). From latter and (13) we obtain that

E∗
m|l = 0.
The theorem is proved.

Proof of Lemma 4.1. It follows from the independence of the objects that

αl1,l2,l3|m1,m2,m3
(ΦN ) =

3∏
i=1

αli|mi
(ϕiN ), if mi �= li, (72)

αl1,l2,l3|m1,m2,m3
(ΦN ) =

(
1− αlk|mk

(ϕkN )
) ∏
i∈[[1,2,3]−k]

αli|mi
(ϕiN ),

mk = lk, mi �= li, k = 1, 3, i �= k, (73)

αl1,l2,l3|m1,m2,m3
(ΦN ) = αli|mi

(ϕiN )
∏

k∈[[1,2,3]−i]

(
1− αlk|mk

(ϕiN )
)
,

mk = lk, mi �= li, i = 1, 3. (74)

Remark that here we consider also the probabilities of right (not erroneous)
decisions. Because El|m(ϕi) are strictly positive then the error probability
αl|m(ϕiN ) tends to zero, when N −→ ∞. According to this fact we have

lim
N→∞

inf

{
− 1

N
log

(
1− αl|m(ϕiN )

)}
= lim

N→∞
inf

αl|m
(
ϕiN

)
N

log
(
1− αl|m(ϕiN )

)
−αl|m(ϕiN )

= 0. (75)
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From definitions (19), equalities (72)–(74), applying (75) we obtain relations
(21).

The Lemma is proved.

Proof of Theorem 4.1. The test Φ∗ = (ϕ1,∗, ϕ2,∗, ϕ3,∗), where ϕi,∗, i = 1, 3 are
LAO tests of objects Xi, belongs to the set D. Our aim is to prove that such Φ∗

is a compound LAO test. Conditions (31)–(34) imply that inequalities analogous
to (16) hold simultaneously for tests for three separate objects.

Let the test Φ ∈ D be such that EM,M,M|m,M,M (Φ) = EM,M,M|m,M,M

EM,M,M|M,m,M (Φ) = EM,M,M|M,m,M , and EM,M,M|m,M,M (Φ) =

EM,M,M|M,M,m, m = 1,M − 1.
Taking into account (22)–(24) we can see that conditions (31)–(34) for every

m = 1,M − 1 may be replaced by the following inequalities:

EM|m(ϕi) < min

[
min

l=1,m−1
inf

Q:D(Q||Gm)≤EM|m(ϕi)
D(Q||Gl), min

l=m+1,M
D(Gl||Gm)

]
.

(76)
According to Remark 3.1 for LAO test ϕi,∗, i = 1, 3, we obtain that (76)

meets conditions (16) of Theorem 3.1 for each test Φ ∈ D, Em|m(ϕi) > 0,
i = 1, 3, hence it follows from (7) that Em|l(ϕ

i) are also strictly positive. Thus
for a test Φ ∈ D conditions of Lemma 4.1 are fulfilled and the elements of the
reliability matrix E(Φ) coincide with elements of matrix E(ϕi), i = 1, 3, or sums
of them. Then from definition of LAO test it follows that El|m(ϕi) ≤ El|m(ϕi,∗),
then El1,l2,l3|m1,m2,m3

(Φ) ≤ El1,l2,l3|m1,m2,m3
(Φ∗). Consequently Φ∗ is a LAO

test and El1,l2,l3|m1,m2,m3
(Φ∗) verifies (27)–(30).

b) When even one of the inequalities (31)–(34) is violated, then at least one of
inequalities (76) is violated. Then from Theorem 3.2 one of elements Em|l(ϕ

i,∗)
is equal to zero. Suppose E3|2(ϕ

1,∗) = 0, then the element E3,m,l|2,m,l(Φ
∗) =

E3|2(ϕ
1,∗) = 0.

The Theorem is proved.
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Abstract. In 2003 Ahlswede, Khachatrian, Mauduit and Sárközy intro-
duced the notion of family complexity of binary sequences, and in 2006
Ahlswede, Mauduit and Sárközy extended this definition to sequences of
k symbols. Since that several further related papers have been published
on this subject. In this paper our main goal is to present a survey of all
these papers. We will also answer a question of Csiszár and Gách on the
connection of family complexity and VC-dimension.
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1 Introduction

In 2003 Ahlswede, Khachatrian, Mauduit and Sárközy [2] introduced and studied
the notion of family complexity (or briefly f -complexity) of families of binary
sequences. In [3] Ahlswede, Mauduit and Sárközy extended the notion of family
complexity to sequences of k symbols. Levon Khachatrian had died before [2]
appeared and in 2010 Rudolf Ahlswede also died. The two authors of [2] still
alive, Christian Mauduit and András Sárközy dedicate this paper to the memory
of Rudy and Levon.

In Sections 1 and 2 we will recall the definitions and results presented in [2],
resp. [3]. In Sections 3, 4, 5, 6, 7 we will survey the related papers written
since that. Finally in Section 8 we will study a related problem which was
raised by Péter Gách and Imre Csiszár during the July 2011 Ahlswede memorial
conference. They asked the following questions: What is the connection between
family complexity and VC-dimension? Are they not related or even equivalent?
The last section will be devoted to the discussion of this problem.
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2 The Notion and Basic Properties of the Family
Complexity of Binary Sequences

Mauduit and Sárközy [18] introduced the following measures of pseudorandom-
ness of binary sequences

EN = (e1, e2, . . . , eN) ∈ {−1,+1}N :

The well-distribution measure of EN is defined as

W (EN ) = max
a,b,t

∣∣∣∣t−1∑
j=0

ea+jb

∣∣∣∣ (1)

where the maximum is taken over all a, b, t such that a, b, t ∈ N and 1 ≤ a ≤
a+ (t− 1)b ≤ N , while the correlation measure of order k of EN is defined as

Ck(EN ) = max
M,D

∣∣∣∣ M∑
n=1

en+d1 en+d2 . . . en+dk

∣∣∣∣
where the maximum is taken over all D = (d1, . . . , dk) andM such that 0 ≤ d1 <
· · · < dk ≤ N −M . The combined (well-distribution-correlation) pseudorandom
measure of order k was also introduced:

Qk(EN ) = max
b,t,D

∣∣∣∣ t∑
j=0

ejb+d1 . . . ejb+dk

∣∣∣∣ (2)

where the maximum is taken over all b, t and D = (d1, . . . , dk) such that all the
subscripts jb + d� belong to {1, 2, . . . , N}. (Note that Q1(EN ) = W (EN ) and
clearly Ck(EN ) ≤ Qk(EN ).) Then the sequence EN is considered as a “good”
pseudorandom sequence if both measuresW (EN ) and Ck(EN ) (at least for small
k) are “small” in terms of N . (This terminology is justified by the fact that for a
truly random sequence EN ∈ {−1,+1}N both W (EN ) and, for fixed k, Ck(EN )
are around N1/2 with near 1 probability.)

In [18] it was also shown that the Legendre symbol forms a “good” pseudo-

random sequence. More precisely, if p is an odd prime, N = p − 1, en =
(
n
p

)
for n = 1, 2, . . . , N and EN = (e1, e2, . . . , eN ), then we have

W (EN ) " N1/2 logN and Ck(EN ) " kN1/2 logN .

Later many other “good” pseudorandom binary sequences have been constructed
by different authors. However, in many applications, e.g., in cryptography it is
not enough to construct a “few” good sequences; instead, one needs large families
of them.

Goubin, Mauduit and Sárközy [10] constructed the first large family of binary
sequences with strong pseudorandom properties. They proved:
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Theorem 1. If p is a prime number, f(x) ∈ Fp[x] (Fp being the field of the
modulo p residue classes) has degree k (> 0) and no multiple zero in Fp (= the
algebraic closure of Fp), and the binary sequence Ep = (e1, . . . , ep) is defined by

en =

{(
f(n)
p

)
for (f(n), p) = 1

+1 for p | f(n),
(3)

then we have
W (Ep) < 10kp1/2 log p.

Moreover, assume that for � ∈ N one of the following assumptions holds:
(i) � = 2;
(ii) � < p, and 2 is a primitive root modulo p;
(iii) (4k)� < p.
Then we also have

C�(Ep) < 10k�p1/2 log p.

(The crucial tool in the proof was Weil’s theorem [23].)
Since that many further constructions have been given for large families of

binary sequences with strong pseudorandom properties. However, in many ap-
plications it is not enough to know that our family F of “good” binary sequences
is large; it can be much more important to know that F has a “rich”, “complex”
structure. Thus in [2] Ahlswede, Khachatrian, Mauduit and Sárközy introduced
a quantitative measure of a property of families of binary sequences which plays
an especially important role in cryptography:

Definition 1. The family complexity or briefly f -complexity Γ (F) of a family
F of binary sequences EN ∈ {−1,+1}N is defined as the greatest integer j so
that for any specification

ei1 = ε1, . . . , eij = εj (0 < i1 < · · · < ij ≤ N)

there is at least one EN = (e1, . . . , eN ) ∈ F which satisfies it. The f -complexity
of F is denoted by Γ (F). (If there is no j ∈ N with the property above then we
set Γ (F) = 0.)

It is explained in [2] why is it important to know in cryptography that a family
of binary sequences is of large complexity.

It follows easily from Definition 1 that

2Γ (F) ≤ |F|

whence

Γ (F ) ≤ log |F|
log 2

. (4)

In [2] we also showed that a variant of the family of the binary sequences studied
in Theorem 1 also has large f -complexity:
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Theorem 2. Let p be a prime number, and K ∈ N, L ∈ N,

(4K)L < p.

Consider all the polynomials f(x) ∈ Fp[x] with the properties that

0 < deg f(x) ≤ K

(where deg f(x) denotes the degree of f(x)) and f(x) has no multiple zero in Fp.
For each of these polynomials f(x), consider the binary sequence Ep = Ep(f) =
(e1, . . . , ep) ∈ {−1,+1}p defined by (3), and let F denote the family of all the
binary sequences obtained in this way. Then for all Ep ∈ F we have

W (Ep) < 10Kp1/2 log p

and
C�(Ep) < 10KLp1/2 log p for all � ∈ N, 1 ≤ � ≤ L.

Moreover, we have
Γ (F) ≥ K. (5)

We derived this theorem from Theorem 1 by using Lagrange interpolation.
It is easy to see that the family F defined in Theorem 2 satisfies

|F| ≤ (1 + o(1))pK+1 . (6)

It follows from (4) and (6) that

Γ (F) ≤ (1 + o(1))
K log p

log 2
. (7)

Observe that this upper bound for Γ (F) is greater than the lower bound in
(5) by only a factor c log p, so that the lower bound (5) in Theorem 2 is nearly
optimal.

In [2] we also studied the cardinality of a smallest family achieving a prescribed
f -complexity. Among others we proved (by using Ahlswede’s covering lemma
[1]):

Theorem 3. The cardinality S(N,K) of a smallest family F ∈ {−1,+1}N with
f -complexity Γ (F) = K satisfies

2K ≤ S(N,K) ≤ 2K log

((
N

K

)
2K

)
≤ 2KK logN (for K ≥ 4).

3 The Family Complexity of Families of Sequences of k
Symbols

In [19] Mauduit and Sárközy extended the study of pseudorandomness from
binary sequences to sequences of k symbols (“letters”). First they extended the
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definitions of the measures of pseudorandomness described in Section 2 to this
more general situation. It is not at all trivial how to do this extension and,
indeed, in [19] we introduced two different ways of extension which are nearly
equivalent. Here we will present only one of them which is more suitable for our
purpose.

Let k ∈ N, k ≥ 2, and let A = {a1, a2, . . . , ak} be a finite set (“alphabet”)
of k symbols (“letters”) and consider a sequence EN = (e1, e2, . . . , eN ) ∈ AN of
these symbols. Write

x(EN , a,M, u, v) =
∣∣{j : 0 ≤ j ≤M − 1, eu+jv = a}

∣∣
and forW =

(
ai1 , . . . , ai�

)
∈ A� and D = (d1, . . . , d�) with non-negative integers

d1 < · · · < d�,

g(EN ,W,M,D) =
∣∣∣{n : 1 ≤ n ≤M,

(
en+d1 , . . . , en+d�

)
= W

}∣∣∣.
Then the f -well-distribution (“f” for “frequency”) measure of EN is defined as

δ(EN ) = max
a,M,u,v

∣∣∣∣x(EN , a,M, u, v)− M

k

∣∣∣∣
where the maximum is taken over all a ∈ A and u, v,M with u+(M − 1)v ≤ N ,
while the f -correlation measure of order � of EN is defined by

γ�(EN ) = max
W,M,D

∣∣∣∣g(EN ,W,M,D)− M

k�

∣∣∣∣
where the maximum is taken over all W ∈ A�, and D = (d1, . . . , d�) and M
such that M + d� ≤ N .

We showed in [19] that in the special case k = 2, A = {−1,+1} the f -
measures δ(EN ), γ�(EN ) are between two constant multiples of the binary mea-
sures W (EN ), resp. C�(EN ), so that, indeed, the f -measures can be considered
as extensions of the binary measures.

In [19] we also constructed a k symbol sequence with strong pseudorandom
properties by using (multiplicative) characters. (This construction is the gen-
eralization of the Legendre symbol construction presented in [18] in the special
case k = 2.)

In [3] Ahlswede, Khachatrian, Mauduit and Sárközy showed that if k is a
prime number then this construction can be extended to a large family of k
symbol sequences possessing strong pseudorandom properties, i.e., they proved
the analog of Theorem 1 in this case. (The case of composite k is more difficult, it
would need further work and ideas to cover this case.) They proved the following
result:

Theorem 4. Assume that k, p are prime numbers, k | p− 1, χ is a (multiplica-
tive) character modulo p of order k, H ∈ N, H < p. Consider all the polynomials
f(x) ∈ Fp[x] with the properties that

0 < deg f(x) ≤ H
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and in Fp the multiplicity of each zero of f(x) is less than k. For each of these
polynomials f(x) define the sequence Ep = Ep(f) = (e1, . . . , ep) on the k letter
alphabet of the k-th (complex) roots of unity by

en =

{
χ(f(n)) for (f(n), p) = 1

+1 for p | f(n).

Then we have

δ(Ep) < 11Hp1/2 log p.

Moreover, if � ∈ N and
(i) either

(4H)� < p

(ii) or k is a primitive root modulo p and � < p,
then also

γ�(Ep) < 10�Hkp1/2 log p

holds.

Next in [3] we extended the notion of family complexity to the k symbol case:

Definition 2. If A is a set of k symbols, N, t ∈ N, (ε1, ε2, . . . , εt) ∈ At,
i1, i2, . . . , it are positive integers with 1 ≤ i1 < · · · < it ≤ N , and we consider
sequences EN = (e1, . . . , eN) ∈ AN with

ei1 = ε1, . . . , eit = εt (8)

then
(
ei1 , . . . , eit ; ε1, . . . , εt

)
is said to be a specification of EN of length t or a

t-specification of EN .

Definition 3. The f -complexity of a family F of sequences EN ∈ AN of k
symbols is defined as the greatest integer t so that for any t-specification there
is at least one EN ∈ F which satisfies it. The f -complexity of F is denoted by
Γk(F). (If there is no t ∈ N with the property above then we set Γk(F) = 0.)

We proved in [3] that the family F of the polynomials f described in Theorem 4
is also of large f -complexity:

Theorem 5. Assume that all the conditions in Theorem 4 hold, consider all
the polynomials f satisfying the conditions in the theorem, and let F denote the
family of the sequences Ep(f) assigned to these polynomials. Then we also have

Γk(F) ≥ H.

Finally, in [3] we also studied the cardinality of a smallest family achieving a
prescribed f -complexity.
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4 A Result of Gyarmati

In [12] Gyarmati improved on Theorem 2 considerably. By combining elementary
algebra and Weil’s theorem in a very ingenious way, she proved:

Theorem 6. Let p ≥ 3 be a prime. Consider all polynomials f(x) such that

0 ≤ deg f(x) ≤ K

and f(x) has no multiple zero in Fp. For each of these polynomials f(x), consider
the binary sequence Ep = Ep(f) = (e1, e2, . . . , ep) ∈ {−1,+1}p defined by (3),
and let F denote the family of all binary sequences obtained in this way. Then

Γ (F) ≥ K

2 log 2
log p−O

(
K log(K log p)

)
. (9)

This tightens the gap between the lower and upper bounds in (4) and (6): it
follows from (6) and (9) that

K

2 log 2
log p−O

(
K log(K log p)

)
≤ Γ (F) ≤ (1 + o(1))

K log p

log 2

where the lower and upper bounds for Γ (F) differ only by a factor 1
2 + o(1).

5 Two Further Results on the Family Complexity of
Families of Binary Sequences

In [11] Gyarmati studied the following construction: Let p be an odd prime, g be
a fixed primitive root modulo p, and let ind n denote the base g index of nmodulo
p, i.e., define ind n by 1 ≤ ind n ≤ p− 1 and n ≡ gind n (mod p). Let f(x) ∈
Fp[x], and define the binary sequence Ep−1 = Ep−1(f) = (e1, e2, . . . , ep−1) by

en =

{
+1 if 1 ≤ ind f(n) ≤ (p− 1)/2
−1 if (p+ 1)/2 ≤ ind f(n) ≤ p− 1 or p | f(n). (10)

She showed that if the polynomial f(x) satisfies certain assumptions then the
binary sequence Ep−1 = Ep−1(f) associated with it possesses certain strong
pseudorandom properties. Moreover, she showed:

Theorem 7. Consider all polynomials f(x) ∈ Fp[x] with 0 < deg f(x) ≤ K.
For each of these polynomials f(x) consider the binary sequence Ep(f) defined
by (10), and let F denote the family of all the binary sequences obtained in this
way. Then we have

Γ (F) > K.

In [8] Folláth gave a construction by using finite fields of characteristic 2:
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Theorem 8. Let Fq be a finite field of characteristic 2 such that its multiplica-
tive group is of prime order (so that q is of form q = 2k and q − 1 = 2k − 1
is a Mersenne prime). Let χ be a non-principal additive character and α be a
primitive element of Fq, let f(x) ∈ Fq[x] be of odd degree d ≥ log q, and for i < d
let the coefficient of the term xi in f(x) be 0 if and only if i is even. Define the
binary sequence Eq−1 = Eq−1(f) = (e1, e2, . . . , eq−1) ∈ {−1,+1}q−1 by

en = χ(f(dn)) (for n = 1, 2, . . . , q − 1). (11)

Then we have
Qk(Eq−1) ≤ 9dq1/2 log q

(where Qk is defined by (2)).

Thus under the assumptions of the theorem the binary sequence Eq−1(f) pos-
sesses strong pseudorandom properties. In [9] Folláth also studied families of
binary sequences defined in this way. He introduced the following definition:

Definition 4. A polynomial f(x) ∈ Fq[x] of the form f(x) =
∑d

i=0 aix
2i+1 is

said to be a comb polynomial.

He proved:

Theorem 9. Consider all the comb polynomials f(x) ∈ Fq[x] of degree at most
d, and for each of these polynomials define the binary sequence Eq−1(f) =
(e1, e2, . . . , eq−1) by (11). Denote the family of all these binary sequences Eq−1(f)
by F . Then we have

Γ (F) ≥
[
d+ 1

2

]
.

6 Families of Subsets of the Integers Not Exceeding N

In [6] Dartyge and Sárközy introduced and studied the notion of pseudoran-
domness of subsets of integers not exceeding N . They defined the measures of
pseudorandomness of subsets R ⊂ {1, 2, . . . , N} in the following way:

Define the binary sequence

EN = EN (R) = (e1, e2, . . . , eN ) ∈
{
1− |R|

N
,−|R|

N

}N

by

en =

{
1− |R|

N for n ∈ R,
− |R|

N for n /∈ R
(n = 1, 2, . . . , N).

Then the well-distribution measure of R is defined as

W (R, N) = max
a,b,t

|
t−1∑
j=0

ea+jb|
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where the maximum is taken over all a, b, t ∈ N such that 1 ≤ a ≤ a+(t−1)b ≤ N ,
and for k ∈ N, k ≥ 2 the correlation measure of order k of R is defined as

Ck(R, N) = max
M,D

|
M∑
n=1

en+d1en+d2 · · · en+dk |

where the maximum is taken over all M ∈ N and D = (d1, d2, . . . , dk) ∈ Zk such
that 0 ≤ d1 < d2 · · · < dk ≤ N −M . The subset R is considered as a “good”
pseudorandom subset of {1, 2, . . . , N} if both W (R, N) and Ck(R, N) (at least
for “small” k) are “small” in terms of N . In [6] constructions were given for
subsets with strong pseudorandom properties in terms of these measures.

In [7] Dartyge, Mosaki and Sárközy constructed large families of subsets with
strong pseudorandom properties, and they also introduced and studied the no-
tion of family complexity in this situation:

Definition 5. Let F be a family of subsets of {1, 2, . . . , N}. Then the family
complexity Γ (F) of F is defined the greatest k ∈ N such that for every A ⊂
{1, 2, . . . , N} with |A| = k and every subset B of A there is an R ∈ F such that
R∩A = B (in other words, for every A ⊂ {1, 2, . . . , N} with |A| = k and every
partition A = B ∪ C, B ∩ C = ∅ of A there is an R ∈ F such that B ⊂ R and

C ⊂ R def
= {1, 2, . . . , N} \ R).

They proved that if p is an odd prime, f(x) ∈ Fp[x] is of degree d ≥ 2, r ∈ Z,
s ∈ N, s < p/2 and R = R(f) ⊂ {1, 2, . . . , p} is defined by

n ∈ R if there is h ∈ {r, r + 1, . . . , r + s− 1} with f(n) ≡ h (mod p)

and

n /∈ R otherwise,

then the subsetR(f) (of {1, 2, . . . , p}) possesses strong pseudorandom properties
in terms of measures defined above. Moreover, for all the polynomials f(x) ∈
Fp[x] with 2 ≤ d = deg f(x) ≤ D, consider the subset R(f) ⊂ {1, 2, . . . , p}
and let FD denote the family of these subsets R(f). They estimated the family
complexity of FD:

Theorem 10. The family complexity of this family FD of subsets of {1, 2, . . . , p}
satisfies the inequality

min(p,D + 1) ≤ Γ (FD) ≤ min

(
p, (D + 1)

log p

log 2

)
.

Dartyge, Mosaki and Sárközy also studied the following construction: let p be
an odd prime, d ∈ N, d < p, r ∈ Z, s ∈ N, s < p, A ⊂ Fp, |A| = d and
f(x) =

∏
a∈A(x− a). Define R′ = R′(f) ⊂ {1, 2, . . . , p} by

n ∈ R′ if (f(n), p) = 1 and there is h ∈ {r, r + 1, . . . , r + s− 1}
with hf(n) ≡ 1 (mod p)

and

n /∈ R′ otherwise.
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They proved that these subsets R′(f) ⊂ {1, 2, . . . , p} possess strong pseudoran-
dom properties in terms of the measures introduced above, and conjectured that
the family of the subsetsR′(f) assigned to the polynomials f of the above form is
of large family complexity. They presented computational evidences supporting
this conjecture but could not prove it. They also proved that a slightly modified
form of the construction (which uses polynomials of less special form) is also of
large complexity:

Theorem 11. Assume that p is a prime, D ∈ N, D ≥ 2, S ⊂ Fp and

D ≤ |S|(p− |S|)
p

.

Write R(f,S) = {1 ≤ n ≤ p : there is h ∈ S with f(n) ≡ h (mod p)}, and
define the family F(D,S) by

F(D,S) = {R(f,S) : f(x) ∈ Fp[x], deg f(x) ≤ D, f(x) has no multiple zero} .

Then we have

Γ (F(D,S)) ≥ D + 1.

(It is also shown that the subsets belonging to this modified family still possess
reasonably good pseudorandom properties, although not as strong ones as the
subsets belonging to the original family.)

7 The Family Complexity of Families of Binary Lattices

In [17] Hubert, Mauduit and Sárközy extended the theory of pseudorandomness
to n dimensions. They introduced the following definitions:

Denote by InN the set of n-dimensional vectors whose coordinates are integers
between 0 and N − 1:

InN =
{
x = (x1, . . . , xn) : xi ∈ {0, 1, . . . , N − 1}

}
.

This set is called an n-dimensional N -lattice or briefly an N -lattice. In [15]
the definition was extended to more general lattices in the following way: Let
u1,u2, . . . ,un be n linearly independent n-dimensional vectors over the field of
the real numbers such that the i-th coordinate of ui is a positive integer and
the other coordinates of ui are 0, so that ui is of the form (0, . . . , 0, zi, 0, . . . , 0)
(with zi ∈ N). Let t1, t2, . . . , tn be integers with 0 ≤ t1, t2, . . . , tn < N . Then we
call the set

Bn
N =

{
x = x1u1 + · · ·+ xnun : xi ∈ N ∪ {0}, 0 ≤ xi|ui| ≤ ti(< N)

for i = 1, . . . , n
}

an n-dimensional box N -lattice or briefly a box N -lattice.
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In [17] the definition of binary sequences was extended to more dimensions
by considering functions of type

η(x) : InN → {−1,+1}.

If x = (x1, . . . , xn) so that η(x) = η
(
(x1, . . . , xn)

)
then we may simplify the

notation slightly by writing η(x) = η(x1, . . . , xn). Such a function can be visu-
alized as the lattice points of the N -lattice replaced by +1 and −1 thus they are
called binary N -lattices.

In [17] Hubert, Mauduit and Sárközy introduced the following measures of
pseudorandomness of binary lattices (here we present the definition in the same
slightly modified form as in [15]). Consider the binary lattice η : InN → {−1,+1}.
Then define the pseudorandom measure of order k of η by

Qk(η) = max
B,d1,...,dk

∣∣∣∣∑
x∈B

η(x+ d1) . . . η(x+ dk)

∣∣∣∣
where the maximum is taken over all distinct d1, . . . ,dk ∈ InN and all box N -
lattices B such that B+d1, . . . , B+dk ⊆ InN . Note that in the one-dimensional
special case Qk(η) is the same as the combined pseudorandom measure (2) for
every k and, in particular, Q1(η) is the well-distribution measure W in (1).

Then η is said to have strong pseudorandom properties if for fixed n and k and
“large” N the measure Qk(η) is “small” (much smaller than the trivial upper
bound Nn). Indeed, it was shown in [17] that for a truly random binary lattice
defined on InN and for fixed k the measure Qk(η) is “small”: it is less than Nn/2

multiplied by a logarithmic factor.
Several constructions have been given for large families of binary lattices

with strong pseudorandom properties. The notion of family complexity was also
extended to the n-dimensional case [13]:

Let F be a family of binary lattices η : InN → {−1,+1}, let j ≤ Nn, let
x1,x2, . . . ,xj be j distinct vectors from InN , and let (ε1, ε2, . . . , εj) ∈ {−1,+1}j.
If we consider binary lattices η : InN → {−1,+1} with

η(x1) = ε1, η(x2) = ε2, . . . , η(xj) = εj , (12)

then

Definition 6. (12) is said to be a specification of length j of η.

Definition 7. The family complexity or f -complexity of a family F of binary
lattices η : InN → {−1,+1}, denoted by Γ (F), is defined as the greatest integer
j so that for any specification (12) of length j there is at least one η ∈ F which
satisfies it.

Then it is easy to see that again (4) holds.
So far two constructions have been given for large families of binary lat-

tices with strong pseudorandom properties so that their family is also of large
f -complexity. The first one is the n-dimensional analog of the construction
in Theorem 2. More precisely, first Mauduit and Sárközy [20] proved the n-
dimensional analog of Theorem 1:
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Theorem 12. Assume that q = pn is the power of an odd prime, f(x) ∈ Fq[x]
has degree � with 0 < � < p, and f(x) has no multiple zero in Fq. Denote
the quadratic character of Fq by γ (setting also γ(0) = 0). Consider the linear
vector space formed by the elements of Fq over Fp, and let v1, . . . , vn be a basis
of this vector space (i.e., assume that v1, v2, . . . , vn are linearly independent over
Fp). Define the n-dimensional binary p-lattice η : Inp → {−1,+1} by

η(x) = η
(
(x1, . . . , xn)

)
=

{
γ
(
f(x1v1 + · · ·+ xnvn)

)
for f(x1v1 + · · ·+ xnvn) �= 0

+1 for f(x1v1 + · · ·+ xnvn) = 0.

(13)

Assume also k ∈ N and
4n(k+�) < p. (14)

Then we have
Qk(η) < k�

(
q1/2(1 + log p)n + 2

)
. (15)

(Indeed, this is a combination of Theorems 1 and 2 in [20].)
Now define p, q, n as above, and set

L =
1

2 log 4

log p

n
. (16)

Let FL denote the family of the binary lattices η assigned to the monic polyno-
mials f satisfying the conditions in Theorem 12 with

0 < deg f = � < L. (17)

Then for every k with
k < L (18)

(14) holds, thus by Theorem 12 all these lattices η satisfy (15) for every k sat-
isfying (18), so that all these lattices η possess strong pseudorandom properties
in this sense.

We proved in [13] that this family FL is also of large complexity and, indeed,
this is so far any number K with 0 < K < p in place of the number L defined
by (16):

Theorem 13. Assume that q = pn is the power of an odd prime, let

0 < K < p,

and consider all the polynomials f(x) ∈ Fq[x] such that

0 < deg f < K

and f(x) has no multiple zero in Fq. To each of these polynomials f assign the
binary lattice η defined by (13) as described in Theorem 12, and let FK denote
the family of these binary lattices. Then we have

Γ (FK) >
K − 1

2 log 2
log q − cK log(K log q). (19)
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We proved this theorem by adapting Gyarmati’s method used in the one-
dimensional case in [12].

Note that the number of polynomials f ∈ Fq[x] with deg f < K is clearly at
most qK+1, thus we have

|FK | ≤
∣∣{f : f ∈ Fq[x], deg f < K}

∣∣ ≤ qK+1 .

It follows from (2) that

Γ (FK) ≤ log |FK |
log 2

≤ (K + 1) log q

log 2

so that the lower bound (19) is best possible apart from a constant factor at
most.

In [14] Gyarmati, Mauduit and Sárközy studied another large family of binary
lattices with strong pseudorandom properties. First we proved the analog of
Theorem 13 for this construction, i.e., we showed that the construction generates
binary lattices of strong pseudorandom properties.

Let q = pn be the power of an odd prime. We will consider the field Fq of
order q, its prime field of order p will be denoted by Fp (and we will identify Fp
with the field of the modulo p residue classes, and we write i for the residue class
≡ i(mod p)). Fix a basis v1, v2, . . . , vn of the linear vector space formed by Fq
over Fp (i.e., v1, v2, . . . , vn are linearly independent over Fp). Let ϕ : Inp → Fq
be the mapping defined so that for x = (x1, . . . , xn) ∈ Inp we have

ϕ(x) = ϕ
(
(x1, . . . , xn)

)
= x1v1 + · · ·+ xnvn ∈ Fq ;

clearly, this is a bijection. Define the boxes B1, B2, . . . , Bn by

B1 =

{ n∑
i=1

uivi : 0 ≤ u1 ≤ p− 3

2
, u2, . . . , un ∈ Fp

}
,

Bj =

{ n∑
i=1

uivi : u1 = · · · = uj=1 =
p−1

2
, 0 ≤ uj ≤

p−3

2
, uj+1, . . . , un ∈ Fp

}
and write

B =

n⋃
j=1

Bj .

Let f(z) = Fq[z] be a non-constant polynomial, and define the binary lattice
η : Inp → {−1,+1} by

η(x) = ηf (x) =

{
+1 if f(ϕ(x)) ∈ B
−1 if f(ϕ(x)) /∈ B.

(20)

Theorem 14. Let k, � ∈ N with

2 ≤ � < p (21)
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and
2 ≤ k ≤ �− 1, (22)

let f(z) ∈ Fq[z] be of degree �, and define η by (20). Then we have

Qk(EN ) < 2k�nkq1/2(log p+ 2)n+k .

Unfortunately, it is known that a rather strong upper bound for k of type (22)
is necessary, i.e., the correlation of large order can be large.

Our next goal in [14] was to construct, by using (20), a large family of n-
dimensional binary p-lattices η each of them having strong pseudorandom prop-
erties, more precisely, we wanted Qk(η) to be “small” for every η belonging to
the family and every k ∈ N less than a certain parameterK ∈ N. By Theorem 14
the lattice η = ηf in (20) satisfies this requirement if conditions (21) and (22)
in Theorem 14 hold with � = deg f < p and K in place of k+1: K ≤ � < p. On
the other hand, if � = deg f increases, then the computational complexity of the
construction also increases, thus we have to keep � = deg f possibly small. To
balance these two requirements, we took polynomials of degree exactly K, i.e.,
we considered the family

Gk =
{
η : η = ηf is of form (19) with f ∈ Fq[x], deg f = K

}
.

Note that the coefficients of f can be chosen in (q − 1)qK ways so that

|Gk| = (q − 1)qK . (23)

The next goal was to define a subfamily HK of GK which is just slightly smaller
than GK , and which is of high family complexity (it follows from Hk ⊆ Gk that
Γ (Hk) ≤ Γ (Gk) so that then Gk is also of high complexity). Then, indeed,
both the lattices belonging to the family HK and the family itself are of strong
pseudorandom properties.

Define S+ and S− as the set of the polynomials of the following form:

S+ =
{
xK + x2g(x) + x+ 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0

}
,

S− =
{
xK + x2g(x)− x− 1 : g(x) ∈ Fq[x], deg g(x) ≤ K − 3 or g(x) ≡ 0

}
,

and let
S = S+ ∪ S−

and
HK =

{
η : η = ηf with some f ∈ S

}
.

Then clearly
|S| = |S+|+ |S−| = 2qK−2,

and one can also show that

|HK | = |S| = 2qK−2 (24)

which is, indeed, just slightly smaller than |Gk| in (23).
By adapting the interpolation method used in [2] we proved that HK is of

high complexity:
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Theorem 15. Define q = pn, S and HK as above, and assume that K ∈ N is
such that

3 < K < p.

Then we have

Γ (HK) ≥ K − 2. (25)

Note that by (4) and (24)

Γ (HK) ≤ log |HK |
log 2

=
log 2 + (K − 2) log q

log 2
<

2

log 2
(K − 2) log q

so that our lower bound (25) is worse than the best possible one by at most a
factor c log q.

8 The Connection between Family Complexity and
VC-Dimension

In this section our goal is to answer the questions of Csiszár and Gách presented
at the end of the introduction.

The notion of VC-dimension originates from a paper of Vapnik and Chervo-
nenkis [22]. Alon and Spencer [4, p. 243] formulate its definition in the following
way:

Definition 8. “A range space S is a pair (X,R), where X is a (finite or infi-
nite) set and R is a (finite or infinite) family of subsets of X. The members of
X are called points and those of R are called ranges. If A is a subset of X then
PR(A) = {r ∩ A : r ∈ R} is the projection of R on A. In case this projection
contains all subsets of A we say that A is shattered. The Vapnik–Chervonenkis
dimension (or VC-dimension) of S, denoted by VC(S), is the maximum cardi-
nality of a shattered subset of X. If there are arbitrarily large shattered subsets
then VC(S) = ∞.”

(See also [5, p. 86–96], [16] and [21].)
In order to compare the family complexity (of binary sequences) with the

VC-dimension first we have to “translate” Definition 1 into the language used in
Definition 8. Let N ∈ N, let X = {x1, x2, . . . , xN} be a set with |X | = N , let F
be a family of binary sequences EN = (e1, e2, . . . , eN ) ∈ {−1,+1}N , and define
the mapping ϕ : F → {A : A ⊂ X} by

ϕ(EN ) = ϕ
(
(e1, e2, . . . , en)

)
= {xi : 1 ≤ i ≤ n, ei = +1}.

Write R = R(F) = {ϕ(EN ) : EN ∈ F}, and consider the range space S =
S(F) = (X,R). Using the terminology and notation above we may redefine the
notion of family complexity in the following way:
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Definition 9. The family complexity Γ (F) of a family F of binary sequences
EN ∈ {−1,+1}N is defined as the greatest positive integer k such that every
subset A of X with |A| ≤ k is shattered in S(F). (If there is no positive integer
k with this property, i.e., X has a one-element subset {xi} which is not shattered
or, in other words, no r ∈ R(F) contains it, then we set Γ (F) = 0.)

This definition can be extended to any range space S = (X,R).

Definition 10. The family complexity ΓS of a finite range space S = (X,R)
is defined as the greatest positive integer k such that every subset A of X with
|A| ≤ k is shattered.

This is the definition of family complexity to be compared with the definition of
the VC-dimension in Definition 8.

Since every subset of X of cardinality ΓS is shattered while VC(S) is the
cardinality of the maximal shattered subset of X thus clearly:

Proposition 1. For any finite range space S we have

ΓS ≤ VC(S). (26)

One may have equality in (26):

Example 1. Let k,N ∈ N, 1 ≤ k ≤ N , |X | = N , R = {A : A ⊂ X, |A| ≤ k}
and S = (X,R). Then clearly we have

ΓS = VC(S) = k. (27)

(Note that this is not the only case when equality holds in (26). If k,N,X,R
are defined as in Example 1 and B is any subset of X with |B| = k + 2 then
writing R′ = R ∪B and S = (X,R′), again (27) holds.)

On the other hand, VC(S) can be much greater than ΓS :

Example 2. Let N ∈ N, |X | = N , X = {x1, x2, . . . , xN}, R =
{
B : B ⊂

{x1, x2, . . . , xN−1}
}
and S = (X,R). Then no B ⊂ R contains xN and {x1, x2,

. . . , xN−1} is shattered, thus we have

ΓS = 0, VC(S) = N − 1.

(We note that the difference between VC(S) and ΓS is maximal in this case. If
VC(S) = N , then (27) holds with k = N .)

Examples 1 and 2 can be generalized:

Proposition 2. Let k ∈ N ∪ {0}, �,N ∈ N, k ≤ � < N , |X | = N , X =
{x1, x2, . . . , xN}, U = {A : A ⊂ X, |A| ≤ k}, V =

{
B : B ⊂ {x1, x2, . . . , x�}

}
,

R = U ∪ V and S = (X,R). Then we have

ΓS = k, VC(S) = �. (28)
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(We leave the proof to the reader.) (26) and (28) answer the question of Csiszár
and Gách completely: writing Γs = k, V C(S) = � we always have k ≤ � and, on
the other hand, for every pair k ≤ �(< N) there is an S satisfying (28).

Finally, we conclude by asking a few related questions:

Problem 1. Let N ∈ N be large, |X | = N , let R be a truly random family of
subsets of X (i.e., the subsets of X are chosen independently and with probability
1
2), and let S = (X,R). What can one say about the expected value of ΓS and
VC(S)? How much greater is VC(S) than ΓS? Is it true that VC(S)−ΓS → +∞
as N → +∞?
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Abstract. Recently we introduced and studied the shadow minimiza-
tion problem under word-subword relation. In this paper we consider
this problem for the restricted case and give optimal solution.
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1 Introduction

In [2], [3] the minimal shadow problem for the word-subword relation was in-
troduced. The shadow problem for words has not been studied before, whereas
its analogs for sets ([8], [5], [6], [7]), sequences ([1]), and vector spaces for finite
fields ([4]) are well-known.

For an alphabet X = {0, 1, · · · , q − 1} we consider the set X k of words xk =
x1x2 · · ·xk of length k. A word xn is an n-subword of yk if there exist ai and
bk−n−i such that yk = aixnbk−n−i, where i ∈ {0, 1, · · · , k − n}.

Definition 1. [3] The shadow of yk is the set of all its n-subword:

shadk,n(y
k) = {xn : xnis an n-subword of yk} (1)

and for any subset A ⊂ X k we define its shadow

shadk,n(A) =
⋃
ak∈A

shadk,n(a
k). (2)

In [3] we studied the problem of finding optimal or at least asymptotically opti-
mal lower bounds on the cardinality of N -sets A ⊂ X k, that is the function

�
k,n

(q,N) = min{|shadk,n(A)| : A ⊂ X k, |A| = N}. (3)
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Theorem 1. [3] For integers N = ql+v+ql+v−1(l−v)(q−1) and k = l+m+v >
2l ≥ 2v, where v = k − n, we have

1

qv
N ≤

�
k,n

(q,N) ≤ 1

qv

(
1 +

v

l− v + 1

)
N. (4)

In this paper we are interested in the restricted word shadow problem.
Let us denote by X k

w the set of words ak ∈ X k of weight (the number of
nonzero symbols) wt(ak) = w.

We consider first the binary case, so X = {0, 1}.

Definition 2. For integers k,n,w,N with 1 ≤ w ≤ n < k and 1 ≤ N ≤
(
k
w

)
we

define

S(k, n, w,N) = min{|shadwk,n(A)| : A ⊂ X k
w, |A| = N} (5)

where

shadwk,n(A) =
⋃
ak∈A

shadwk,n(a
k) (6)

and

shadwk,n(y
k) = {xn : xn ∈ Xn

w is an n-subword of yk} (7)

When k, n and w are specified we also use sometimes S(N) for S(k, n, w,N).
In this paper we solve the restricted word shadow minimization problem,

namely, we determine the function S(k, n, w,N) for all parameters. We also
observe that our result can be easily generalized to arbitrary alphabet size.

2 The Restricted Word Shadow Problem

Let a = a1a2 · · ·am ∈ Xm and b = b1b2 · · · bn ∈ Xn then we denote by ab = c =
c1c2 · · · cm+n ∈ Xm+n with

c1 = a1, · · · , cm = am, cm+1 = b1, · · · , cm+n = bn.

For a subset A ⊂ Xn we denote by AB = {ab : a ∈ A, b ∈ B}.
It turns out to be very convenient to introduce the sets

A(ε, δ) = εX k−2
w−ε−δδ for ε, δ ∈ X = {0, 1}. (8)

So words in A(ε, δ) are from X k
w, start with ε, end with δ, and between these

two letters have a word of length k − 2 and weigth w − ε− δ.



366 R. Ahlswede and V. Lebedev

Thus we have the partition

X k
w =

⋃
ε,δ∈X

A(ε, δ), where |A(ε, δ)| =
(

k − 2

w − ε− δ

)
, (9)

or explicitly

|A(1, 1)| =
(
k − 2

w − 2

)
, |A(1, 0)| = |A(0, 1)| =

(
k − 2

w − 1

)
, |A(0, 0)| =

(
k − 2

w

)
.

Consider the following partition of X k
w

X k
w =

⋃
s

Js (10)

where

J1 = A(1, 1), J2 = A(1, 10) ∪ A(01, 1), J3 = A(1, 100) ∪ A(01, 10) ∪ A(001, 1),

and so on.
Thus, for Js+1 we have

Js+1 =

s⋃
i=0

A(0i1, 10s−i).

Finally, for the last partition class Jk−w=1 we have

Jk−w+1 =

k−w⋃
i=0

A(0i1, 10k−w−i).

In other words, we have the following partition classes:

1 b 1 (11)

1 b 1 0
0 1 b 1

(12)

1 b 1 0 0
0 1 b 1 0
0 0 1 b 1

(13)

for any b from X k−2
w−2, X k−3

w−2 and X k−4
w−2 respectively.

We continue this procedure and for any b from X k−c−1
w−2 we take

s⋃
i=0

0i1b10s−i. (14)
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For example if s = 4 then we take

1 b 1 0 0 0 0
0 1 b 1 0 0 0
0 0 1 b 1 0 0
0 0 0 1 b 1 0
0 0 0 0 1 b 1

(15)

The last partition class is given by

k−w⋃
i=0

0i1w0k−w−i. (16)

2.1 Case n = k − 1

Note that for the case n = k − 1 the shadow of A ⊂ X k
w can be de-

fined as shadw(A) = shadwL(A) ∪ shadwR(A) where shadwL(A) = {a2a3 · · ·ak :
wt(a2 · · ·ak) = w} and shadR(A) = {a1a3 · · ·ak−1 : w(a1a3 · · ·ak−1) = w}.

In this case we have a nice graph illustration for our partition.
Consider a graph G = (V,E) associated with this word-subword relation:

the vertex set V is X k
w. Two vertices ak and bk form an edge (ak, bk) ∈ E if

and only if shadwk,k−1(a
k) ∩ shadwk,k−1(b

k) �= ∅. Note that there is one to one

correspondence between edges in E and elements from X k−1
w .

It follows from the partition described above that the graph G consists of(
k−2
w−2

)
isolated vertices P0,

(
k−3
w−2

)
paths of length 1: P1,

(
k−4
w−2

)
paths of length

2: P2 and so on.

Given integer 1 ≤ N ≤
(
n
w

)
the restricted word shadow problem for the case

n = k− 1 is equivalent to the problem of finding N vertices of the graph G that
are incident with minimal number of edges.

We order all vertices of the graph G in the following way. We start with ver-
tices from P0 in arbitrary order. Then we consider set P1 from the first partition
class in arbitrary order and order vertices from P1 in compliance with (12): (first
1b10 and then 01b1). Then we do the same with sets P2, P3, . . . , Pk−w+1. We
take sets from (s + 1)-th partition class in arbitrary order and for the set Ps
order vertices from Ps in compliance with (14).

It is not hard to see now that the first N vertices, in the described ordering,
have minimum number of edges incident with them. This clearly gives us an
optimal solution to the problem.

Hence for N ≤
(
k−2
w−2

)
we have S(k, k − 1, w,N) = 0 and for

(
k−2
w−2

)
< N

≤
(
k−2
w−2

)
+ 2

(
k−3
w−2

)
we have for z ∈ N

S(k, k − 1, w,N) =

{
z , if N = 2z +

(
k−2
w−2

)
z + 1 , if N = 2z + 1 +

(
k−2
w−2

)
.

Now easy calculation gives us the following numerical formulation of our result.



368 R. Ahlswede and V. Lebedev

Theorem 2. For

(
k − 2

w − 2

)
+ . . .+(c−1)

(
k − c

w − 2

)
≤ N ≤

(
k − 2

w − 2

)
+ . . . (c−1)

(
k − c

w − 2

)
+c

(
k − c− 1

w − 2

)

we have

Sc := S(

(
k − 2

w − 2

)
+ . . .+ (c− 1)

(
k − c

w − 2

)
) =

(
k − 3

w − 2

)
+ . . .+ (c− 2)

(
k − c

w − 2

)
and

S(k, k−1, w,N) =

{
Sc + (c− 1)z , if N = cz +

(
k−2
w−2

)
+ . . .+ (c− 1)

(
k−c
w−2

)
Sc + (c− 1)z +m , if N = cz +m+

(
k−2
w−2

)
+ . . .+ (c− 1)

(
k−c
w−2

)
where m = 1, 2, . . . , c− 1 and c = 2, 3, . . . , k − w + 1.

2.2 General Case: w ≤ n ≤ k − 1

For general case we have that

shadwk,nJs+1(k) = Js−v+1(n) (17)

where v = k − n.
Thus the described above ordering of X k

w also gives us an optimal solution to
the problem in this general case. The set of first N vectors from X k

w has the
minimal possible restricted shadow and so we have

Theorem 3. For N ≤
(
k−2
w−2

)
+ . . .+ v

(
k−v−1
w−2

)
we have S(N) = 0 and for

(
k − 2

w − 2

)
+ . . .+(c−1)

(
k − c

w − 2

)
≤ N ≤

(
k − 2

w − 2

)
+ . . . (c−1)

(
k − c

w − 2

)
+c

(
k − c− 1

w − 2

)

we have

Sc = S(

(
k − 2

w − 2

)
+. . .+(c−1)

(
k − c

w − 2

)
) =

(
k − 2− v

w − 2

)
+. . .+(c−v−1)

(
k − c

w − 2

)
and

S(k, n,w,N) =

{
Sc + (c− 1)z , if N = cz +

(
k−2
w−2

)
+ . . .+ (c− 1)

(
k−c
w−2

)
Sc + (c− 1)z +m , if N = cz +m+

(
k−2
w−2

)
+ . . .+ (c− 1)

(
k−c
w−2

)
where m = 1, 2, . . . , c− 1, v = k −m and c = 2, 3, . . . , k − w + 1.
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Remark 1. We note that our result can be easily extended to the q-ary case
X = {0, 1, . . . , q − 1}. Consider only the case n = k − 1.

For integers k, w,N ∈ N with 1 ≤ w ≤ k and 1 ≤ N ≤
(
k
w

)
we define

Sq(N) = min{|shadw(A)| : A ⊂ X k
w, |A| = N}.

The proof goes along the same lines as the proof of Theorem 2. We just replace
a symbol 1 in (11)-(16) to any nonzero symbol from X . So we have

Theorem 4. For

(q − 1)w
(
k − 2

w − 2

)
+ . . .+ (c− 1)(q − 1)w

(
k − c

w − 2

)
< N ≤

≤ (q − 1)w
(
k − 2

w − 2

)
+ . . . (c− 1)(q − 1)w

(
k − c

w − 2

)
+ c(q − 1)w

(
k − c− 1

w − 2

)
we have

Sq(γ) = (q − 1)w
(
k − 3

w − 2

)
+ . . .+ (c− 2)(q − 1)w

(
k − c

w − 2

)
,

where

γ := (q − 1)w
(
k − 2

w − 2

)
+ . . .+ (c− 1)(q − 1)w

(
k − c

w − 2

)
and

Sq(N) =

{
Sq(γ) + (c− 1)z , if N = cz + γ
Sq(γ) + (c− 1)z +m , if N = cz +m+ γ,

where m = 1, 2, . . . , c− 1 and c = 2, 3, . . . , k − w + 1.
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1 Notations

We will use [n] = {1, 2, . . . , n} and [n]� = {0, 1, . . . , n − 1}, and let
(
X
�

)
denote

the family of all �-element subsets of the set X .
We will talk about multisets, where every element appears with some positive

integer multiplicity. We will use the notation �·� to emphasize that we talk about
a multiset. If A is a multiset, then the support set supp(A) of A is the simple
set containing all elements of A. We denote the multiplicity of an object x in a
multiset A by #[x,A]. Clearly, x /∈ A iff #[x,A] = 0.

If P (·) is a proposition and kC are non-negative integers, then the notation�CkC : P (C)� stands for the multiset we obtain by taking all objects C with mul-
tiplicity kC that satisfy P (·). Clearly, if A is a multiset, then �C#[C,A] : P (C)�
will only contain elements of A. If P (·) is a Boolean polynomial on � sets and
kC1,...,C�

are non-negative integers, then �CkC1,...,Ck : C = P (C1, . . . , C�)� de-
notes the multiset where every C appears with multiplicity

∑
(C1,...,C�)

kC1,...,C�

where the sum is taken over all different �-tuples (C1, . . . , C�) for which C =
P (C1, . . . , C�).

For a multiset A, the size or cardinality of A is |A| =
∑

x∈A#[x,A].
We use * to denote disjoint unions of multisets; if A and B are multisets, then

A*B denotes the multiset obtained by #[x,A*B] = #[x,A]+#[x,B]. Clearly,
if A and B are disjoint (simple) sets, then * is the usual (disjoint) union.

For multisets A and B, A∪B denotes the multiset obtained by #[x,A∪B] =
max(#[x,A],#[x,B]).

For multisets A and B, A∩B denotes the multiset obtained by #[x,A∩B] =
min(#[x,A],#[x,B]).

For multisets A and B, A \ B denotes the multiset obtained by #[x,A \ B] =
max(0,#[x,A]−#[x,B]).

A multiset B of subsets of X is a multichain of length |B|, if the elements of
B are pairwise comparable (i.e. the different elements of B form a chain in the
usual sense, and elements may occur with higher multiplicity then 1).

A multiset B is called an antichain if it is a simple set forming an antichain.
Antichains are always simple sets.

Finally, if F is a multiset and k(F ) is a real-valued function on supp(F), then
we use the notation ∑

F∈F
k(F ) :=

∑
F∈supp(F)

k(F ) ·#[F,F ].
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2 Definitions: k-Dimensional Multitransversals and
Mixed Orthogonal Arrays

Let us be given 1 ≤ n1, . . . , nM , an integer k ∈ [M ], and set for the rest of

the paper πM =
∏M

i=1[ni]
�. For each P ∈

(
[M ]
k

)
let us be given an integer LP

such that 1 ≤ LP . A multiset T with supp(T ) ⊆ πM is called a k-dimensional

multitransversal1 on πM with these parameters if for every P ∈
(
[M ]
k

)
, fixing

bj ∈ [nj ]
� arbitrarily for every j ∈ [M ] \ P , we have that∣∣∣�(i1, . . . , iM )#[(i1,...,iM ),T ] : ij = bj for all j ∈ [M ] \ P

�∣∣∣ ≤ LP . (1)

If we want to emphasize that T is a set and not a multiset (i.e. every element of T
has multiplicity 1), then we call it a k-dimensional transversal or a k-dimensional
simple transversal.

It is easy to see that if T is a k-dimensional multitransversal, then we have
the inequalities

∀P ∈
(
[M ]

k

)
|T | ≤ LP

∏
j /∈P

nj . (2)

A k-dimensional multitransversal is called full, if equality holds for at least one
inequality set by a P ∈

(
[M ]
k

)
. It is clear from the definitions that equality in one

inequality (i.e. having a full transversal) implies equalities in all inequalities iff

1

LP

∏
j∈P

nj does not depend on the choice of P. (3)

The k-dimensional multitransversals above have intimate connection to mixed
orthogonal arrays. Consider sets Si of ni symbols (i = 1, . . . ,M) and consider
an N ×M matrix T , whose ith column draws its elements from the set Si. This
matrix is called a mixed (or asymmetrical) orthogonal array or MOA (the notion
of orthogonal array with variable numbers of symbols is also used), of strength d,
constraint M and index set L, if for any choice of d different columns j1, . . . , jd
each sequence (aj1 , . . . , ajd) ∈ Sj1 × · · · × Sjd appears exactly λ(j1, . . . , jd) ∈ L

times after deleting the other M − d columns. In the case of equal symbol set
sizes (and therefore constant λ) we have the classical definition of orthogonal
arrays. A (mixed) orthogonal array is simple, if the matrix T has no repeated
rows. The following proposition easily follows from the definitions.

Proposition 1. If the parameters n1, . . . , nM , {LP : P ∈
(
[M ]
k

)
} satisfy the con-

dition (3), then any full k-dimensional multitransversal is a MOA with symbol
sets Si = [ni]

�, of constraint M , strength M − k, and index set L = {LP : P ∈(
[M ]
k

)
}, with λ(j1, . . . , jM−k) = L[M ]\{j1,...,jM−k}. Furthermore, if the transversal

is simple, then so is the MOA.

1 This concept is different from the transversal design in [14] even for the simple
transversals.
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Moreover, if a MOA T is given with symbol sets Si, (where ni = |Si|), of
constraint M , strength d, with an index set L, then T corresponds to a full
(M − d)-dimensional multitransversal with parameters ni and LP = λ([M ] \P ).
Furthermore, if T is simple, then so is the corresponding multitransversal.

Orthogonal arrays were introduced by Rao [18,19], the terminology was intro-
duced by Bush [5,6]. Cheng [7] seems to be the first author to consider MOAs.
MOAs are widely used in planning experiments. Known mixed orthogonal ar-
rays of practical size are available on the web [15]. The standard reference work
for (mixed) orthogonal arrays is the monograph of Hedayat, Sloane and Stufken
[14]. Constructions for MOAs usually use finite fields and few MOAs of strength
> 2 are known.

An alternative formulation to k-dimensional (simple) transversals is the fol-

lowing: a set of length M codewords from πM , such that for every P ∈
(
[M ]
k

)
set

of character positions, if the characters are prescribed in any way for the i /∈ P
character positions, at most LP of our codewords show all the prescribed values.
In particular, if LP is identically 1, then a k-dimensional transversal is a code
of minimum Hamming distance k + 1 (see [20]).

Also, k-dimensional transversals are packing arrays and their complements
are covering arrays (for the definitions, see [14]).

3 k-Dimensional M -Part Sperner Multifamilies

Let us be given an underlying set X of cardinality n (often just X = [n]), and
a fixed partition X1, . . . , XM of X with |Xi| = mi. Set ni = mi + 1 (this
convention will be used throughout the paper from now on).

Assume that Ci is a (simple) chain in the subset lattice of Xi, for i ∈ P , where
P ⊆ [M ]. We define the product of these chains as

∏
i∈P

Ci =

{⊎
i∈P

Ai : Ai ∈ Ci

}
.

Let us be given for every P ∈
(
[M ]
k

)
a positive integer LP .

We call a multifamily of subsets of X , F , a k-dimensional M -part Sperner
multifamily with parameters {LP : P ∈

(
[M ]
k

)
}, if for all P ∈

(
[M ]
k

)
, for all

(simple) chains Cj in Xj (j ∈ P ) and for all fixed sets Di ⊆ Xi (i /∈ P ) we have
that∣∣∣∣∣∣

�
�F#[F,F ] :

(
F ∩

⊎
j∈P

Xj

)
∈

∏
j∈P

Cj , ∀i ∈ [M ] \ P Xi ∩ F = Di

	


∣∣∣∣∣∣ ≤ LP . (4)

A k-dimensional M -part Sperner family or a simple k-dimensional M -part
Sperner family F is a Sperner multifamily where #[F,F ] ∈ {0, 1}. For
simple families, for dimension k = 1 we get back the concept of M -part
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(m1, . . . ,mM ;L1, . . . , LM )-Sperner families from [1], and restricting further with
M = 1, we get back the concept of the classical L-Sperner families.

The profile vector of a subset F of X is the M -dimensional vector

(|F ∩X1|, . . . , |F ∩Xj|, . . . , |F ∩XM |) ∈ πM .

The profile array P(F) = (pi1,...,iM )(i1,...,iM )∈πM
of a multifamily F of subsets of

X is anM -dimensional array, whose entries count with multiplicity the elements
of F with a given profile vector:

pi1,i2,...,iM =
∣∣∣�F#[F,F ] : ∀j |F ∩Xj| = ij

� ∣∣∣. (5)

A multifamily F of subsets of X is called homogeneous, if the profile vector of
a set determines the multiplicity of the set in F , i.e. for each (i1, . . . , iM ) ∈ πM
there is a nonnegative integer ri1,...,iM such that if the profile vector of F is
(i1, . . . , iM ) then #[F,F ] = ri1,...,iM . In a homogeneous multifamily F , we have

that pi1,i2,...,iM = ri1,...,iM
M∏
j=1

(
mj

ij

)
. For simple families, ri1,...,iM ∈ {0, 1}, and

this concept of homogeneity simplifies to the usual concept.
Given a homogeneous k-dimensional M -part Sperner multifamily F with

parameters {LP : P ∈
(
[M ]
k

)
}, we observe that the multiset containing each

(i1, . . . , iM ) with multiplicity ri1,...,iM is a k-dimensional multitransversal with
these parameters, and every k-dimensional multitransversal comes from a ho-
mogeneous k-dimensional M -part Sperner multifamily. The multifamily is a
(simple) family precisely when the corresponding multitransversal is in fact a
simple transversal.

The following sections contain results on k-dimensional M -part Sperner fam-
ilies. Using the proper definitions, some of these results can be extended from
k-dimensional M -part Sperner multifamilies on

∏M
j=1[mi] to k-dimensional M -

part Sperner families on product of ranked posets with the strong normalized
matching property.

In the spirit of [3], the definitions above can easily be extended to products
of ranked posets Xi with rank function Ri, where where ni is the number of
ranks in Xi (the elements of Xi have rank 0, 1, . . . , ni − 1), and we denote the
number of elements of rank j in Xi by N

j
i . W A multifamily F with supp(F) ⊆∏M

j=1Xj is a k-dimensionalM -part Sperner family on
∏M

j=1Xj with parameters

LP : P ∈
(
[M ]
k

)
, if for every P ∈

(
[M ]
k

)
, every chain Cj in Xj and every element

Di ∈ Xi we have that∣∣∣�F#[F,F ] : F = (F1, . . . , FM ), ∀j ∈ P Fj ∈ Cj , ∀i /∈ P Fi = Di

�∣∣∣ ≤ LP .

The profile vector of (F1, . . . , FM ) ∈
∏M

j=1Xj is the M -dimensional vector

(R1(F1), R2(F2), . . . , RM (FM )) ∈ πM .

The profile array P(F) = (pi1,...,iM )(i1,...,iM )∈πM
of a multifamily F of subsets of∏M

j=1Xj is an M -dimensional array, whose entries count with multiplicity the
elements of F with a given profile vector:
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pi1,i2,...,iM =
∣∣∣�F#[F,F ] : F = (F1, . . . , FM ), ∀j Rj(Fj) = ij

� ∣∣∣.
As before, a multifamily F of subsets of X is called homogeneous, if the pro-
file vector of a set determines the multiplicity of the set in F ; and in a ho-
mogeneous family we have nonnegative integers ri1,...,iM such that pi1,...,iM =

ri1,...,iM
∏M

j=1N
ij
j

Note that using these definitions the results of Section 4 extend mutatis mu-
tandis to multifamilies of products of ranked posets Xi, if we replace

(
mj

ij

)
with

N
ij
j in the equations, and assume that each Xi has the strong normalized match-

ing property.

4 New Sperner Type Results

In Sections 4, 5 and 7 we do not break the narrative with lengthy proofs and
leave those to Sections 8, 9 and 10. We start with the following:

Theorem 1. [BLYM inequalities] Given a k-dimensional M -part Sperner mul-

tifamily F with parameters {LP : P ∈
(
[M ]
k

)
}, the following inequalities hold:

∀P ∈
(
[M ]

k

) ∑
(i1,...,iM )∈πM

pi1,...,iM
M∏
j=1

(
mj

ij

) ≤ LP∏
j∈P

nj

M∏
j=1

nj . (6)

For simple families, the special case of this theorem for k = 1 was found by
Aydinian, Czabarka, P. L. Erdős, and Székely in [1], Theorem 6.1. The special
case for M = 1 was first in print in [11], and the special case L = M = 1 is the
Bollobás–Lubell–Meshalkin–Yamamoto (BLYM) inequality [4,16,17,22]. Note
that the single classical BLYM inequality has been substituted by a family of
inequalities. Cases of equality can be characterized as follows:

Theorem 2. Given integers 1 = k ≤ M or 2 ≤ k ≤ M − 1, let F be a k-
dimensional M -part Sperner multifamily with parameters {LP : P ∈

(
[M ]
k

)
}

satisfying all inequalities in (6) with equality. Then the following are true:

(i) F is homogeneous;
(ii) LP∏

j∈P nj
does not depend on the choice of P ;

(iii) the k-dimensional multitransversal corresponding to F is a MOA with sym-
bol sets Si = [ni]

�, of constraint M , strength M − k, and index set L =

{LP : P ∈
(
[M ]
k

)
}, with λ(j1, . . . , jM−k) = L[M ]−{j1,...,jM−k}.

Any MOA, as described in (iii) is a k-dimensional multitransversal on πM with

parameters {LP : P ∈
(
[M ]
k

)
}, and it corresponds to the profile array of a ho-

mogeneous k-dimensional M -part Sperner multifamily F with parameters {LP :

P ∈
(
[M ]
k

)
} on a partitioned (m1 + . . . + mM )-element underlying set, which

satisfies all inequalities in (6) with equality.
Under this correspondence, simple k-dimensonal M -part Sperner families cor-

respond to simple MOAs.
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Note that the last sentence is obvious and part (ii) follows directly from the
conditions of the theorem.

The special case of this theorem for k = 1 and for simple families and simple
transversals was found in [1], Theorem 6.2 but failed to mention (iii). Note also
that (iii) turns trivial for M = k = 1, as the array in question has a single
column. Conclusion (i) for the special case L = k =M = 1 restricted to simple
families is known as the strict Sperner theorem, already known to Sperner [21];
for M = 1, L > 1, it was discovered by Paul Erdős [9]. However, Theorem 2
does not hold for k =M ≥ 2, as the following example shows.

Example 1. Let k = M ≥ 2 and L[M ] = 1 with |Xi| = mi for i ∈ [M ],
and assume mM ≥ 2. For integers r, s with 1 ≤ r ≤ mM − 1 and 2 ≤ s ≤
min

(
n1, . . . , nM−1,

(
mM

r

))
, consider a partition

(
XM

r

)
= B1*. . .*Bs; and for each

j ∈ [M − 1], fix an s-element set {i(j)1 , . . . , i
(j)
s } ⊆ [nj ]

�. Define a k-dimensional
k-part Sperner family F as follows:

F =

s⊎
�=1

⎛⎝⎛⎝M−1∏
j=1

(
Xj

i
(j)
�

)⎞⎠× B�

⎞⎠ .

This F is not homogeneous (e.g. the number of elements in F with profile vector

(i
(1)
1 , i

(2)
1 , . . . , i

(M−1)
1 , r) is |B1| ·

∏M−1
j=1

( nj

i
(j)
1

)
, and, as 0 < |B1| <

(
nM

r

)
, this is not

a multiple of
(
nM

r

)
·
∏M−1

j=1

( nj

i
(j)
1

)
). However,

∑
(i1,...,iM )∈πM

pi1,...,iM
M∏
j=1

(
mj

ij

) =

s∑
�=1

|B�|
M−1∏
j=1

(mj

i
(j)
�

)
(
mM

r

)M−1∏
j=1

(mj

i
(j)
�

) =

s∑
�=1

|B�|(
mM

r

) = 1 = L[M ],

therefore F still satisfies (6) with (a single) equality.

The above example can be easily extended to L[M ] > 1. Although we did not
characterize cases of equality in (6) for k =M , in the case L[M ] = 1 we are able
to give a necessary condition for an M–dimensional M -part Sperner family to
satisfy equality in (6).

Theorem 3. Let F ′ be a k-dimensional M -part Sperner family with k =M and
L[M ] = 1, satisfying the equality

∑
E∈F ′

1
k∏
i=1

(
mi

|E∩Xi|
) = 1. (7)

Then for each i ∈ [M ], the trace F ′
Xi

:= {F ∩ Xi : F ∈ F ′} of F ′ on Xi is a

union of full levels of 2Xi .
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For the proof of Theorem 2 we need to prove a special case that is also a straight-
forward generalization of the BLYM for 1-part L-Sperner families, as stated
below.

Lemma 1. Let F be a multifamily of subsets of [n] containing no multichain of
length L+ 1. Then we have ∑

F∈F

1(
n
|F |

) ≤ L, (8)

with equality if and only if F is homogeneous.

Proof. The inequality part follows from Theorem 1, k = M = 1. Suppose now
we have equality in (8). We claim then that F can be partitioned into L or
less antichains. (In fact, this is the multiset analogue of the well-known dual
version of Dilworth’s Theorem.) We now mimic the inductive proof that works
for simple families. For L = 1, F has to be a simple family and the claim is
exactly the strict Sperner Theorem. Let L > 1 and assume that the statement
is true for all 1 ≤ L′ < L. Consider the (simple) set F1 of maximal elements in
F (note that the multiplicity of each element in F1 is one by definition). Then
F2 := F \ F1 contains no multichain of length L. Thus we have∑

F∈F1

1(
n
|F |

) ≤ 1 and
∑
F∈F2

1(
n
|F |

) ≤ L− 1. (9)

But we also have

L =
∑
F∈F

1(
n
|F |

) =
∑
F∈F1

1(
n
|F |

) +
∑
F∈F2

1(
n
|F |

) ,
therefore equality holds in both inequalities at (9), and by the induction hypoth-
esis both F1 and F2 are homogeneous. The lemma follows. �

5 Convex Hull of Profile Matrices of M -Part
Multifamilies

The vertices of the convex hull of profile matrices of different kind of families were
described by P. L. Erdős, Frankl, and Katona [10], facilitating the optimization
of linear functions of the entries of profile matrices of members of the family in
question. P. L. Erdős and Katona [12] adapted the method for M -part Sperner
families, and recently Aydinian, Czabarka, P. L. Erdős, and Székely adapted
it for 1-dimensional M -part (m1, . . . ,mM ;L1, . . . , LM ) Sperner families. The
purpose of this section is to generalize these results for k-dimensional M -part
Sperner multifamilies, and even further.

Let X = X1*X2*· · ·*XM be a partition of the n-element underlying set X,
where |Xi| = mi ≥ 1 and m1+ . . .+mM = n. Let F be a multifamily of subsets
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of X . The profile array P(F) := (pi1,...,iM )(i1,...,iM )∈πM
can be identified with a

point or its location vector in the Euclidean space RN , where N =
∏M

j=1 ni.

Let α ⊆ RN be a finite point set. Let 〈α〉 denote the convex hull of the point
set, and ε(α) = ε(〈α〉) its extreme points. It is well-known that 〈α〉 is equal to
the set of all convex linear combinations of its extreme points.

Let A be a family of multifamilies of subsets of X . Let μ(A) denote the set
of all profile-matrices of the multifamilies in A, i.e.

μ(A) = {P(F) : F ∈ A}.

Then the extreme points ε(μ(A)) are integer vectors and they are profile matrices
of multifamilies from A.

In [12], P. L. Erdős and G.O.H. Katona developed a general method to de-
termine the extreme points ε(μ(A)) for families of simple families. We adapt
their results to a more general setting. Let I be a multiset with supp(I) ⊆ πM .
Let T (I) denote the M -dimensional array, in which the entry ti1,...,iM (I) =
#[(i1, . . . , iM ), I] . Furthermore, let S(I) be the M -dimensional array, in which
Si1,...,iM (I) = ti1,...,iM (I)

(
m1

i1

)
· · ·

(
mM

iM

)
. Recall that a multifamily of subsets of

an M -partitioned underlying set is called homogeneous, if for any set, the sizes
of its intersections with the partition classes already determine the (possibly 0)
multiplicity with which the set belongs to the multifamily. It is easy to see that
a homogeneous multifamily F on X has P(F) = S(I) for a certain multiset I
with supp(I) ⊆ πM .

We say that L is a product-permutation of X , if the ordered n-tuple L =
(x1, . . . , xn) is a permutation of X = X1 * X2 * · · · * XM such that Xj =
{xi : i = m1 + · · ·+mj−1 + 1, . . . ,m1 + · · ·+mj} i.e. is L is a juxtaposition
of permutations of X1, X2,. . . ,XM , in this order. Furthermore, we say that a
subset H ⊆ X is initial with respect to L, if for all j = 1, 2, . . . ,M we have

H ∩Xj =
{
xm1+···+mj−1+1, . . . , xm1+···+mj−1+|H∩Xj |

}
,

i.e. H ∩Xj is an initial segment in the permutation of Xj . For a multifamily H
on X , define H(L) = �H#[H,H] : H is initial with respect to L�. Similarly, for
an A family of multifamilies on X , let A(L) := {H(L) : H ∈ A}.

Lemma 2 (cf. [12] Lemma 3.1). Suppose that for a finite family A of M -part
multifamilies the set μ(A(L)) does not depend on the choice of L. Then

μ(A) ⊆
〈{
S(I) : supp(I) ⊆ πM and T (I) ∈ μ(A(L))

}〉
(10)

holds.

The next theorem follows easily from this lemma:

Theorem 4 (cf. [12] Theorem 3.2). Suppose that a finite family A ofM -part
multifamilies satisfies the following two conditions:

the set μ(A(L)) does not depend on L, and (11)
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for all I with supp(I) ⊆ πM , T (I) ∈ μ(A(L)) implies S(I) ∈ μ(A). (12)

Then

ε(μ(A)) = ε

({
S(I) : supp(I) ⊆ πM , T (I) ∈ μ(A(L))

})
. (13)

Consequently, among the maximum size elements of A, there are homogeneous
ones, and the profile matrices of maximum size elements of A are convex linear
combinations of the profile matrices of homogeneous maximum size elements.

Proof. The identity

〈μ(A)〉 =
〈{
S(I) : supp(I) ⊆ πM with T (I) ∈ μ(A(L))

}〉
follows from (10) and (12). If two convex sets are equal, then so are their extreme
points. �

For any finite set Γ , a Γ -multiplicity constraint MΓ is

MΓ = {(Aγ ≥ 0, {αγ(i1,...,iM ) ≥ 0 : (i1, . . . , iM ) ∈ πM}) : γ ∈ Γ}.

We say that a multiset F with supp(F) ⊆ X satisfies the Γ -multiplicity con-
straint MΓ , if

∀γ ∈ Γ
∑

(i1,...,iM )∈πM

αγi1,...,iM ·max{#[F,F ] : ∀j ∈ [M ] |F ∩Xj | = ij} ≤ Aγ .

Analogously, a multiset I with supp(I) ⊆ πM satisfies the Γ -multiplicity con-
straint MΓ , if

∀γ ∈ Γ
∑

(i1,...,iM )∈πM

αγi1,...,iM ·#[(i1, . . . , iM ), I] ≤ Aγ .

It is easy to see that simple families can be characterized by the following con-
dition: For all (i1, . . . , iM ) ∈ πM , max{#[F,F ] : ∀j |F ∩Xj | = ij} ≤ 1. This in
turn can be written in the form of a Γ -multiplicity constraint by Γ = πM , Aγ =
1, αγλ = δγ,λ using the Kronecker δ notation.

Theorem 5. To the family A of k-dimensional M -part Sperner multifamilies
with parameters LP for P ∈

(
[M ]
k

)
satisfying a fixed Γ -multiplicity constraint

MΓ , Theorem 4 applies. In other words, all extreme points of μ(A) come from
homogeneous multifamilies.

This theorem implies the results of [12] and [1] on the convex hull with one
exception: there not just all extreme points came from homogeneous families,
but all homogeneous families provided extreme points. This is not the case,
however, for multifamilies, but characterizing which homogeneous families are
extreme is hopeless. For simple families, however, we can characterize these
extreme points.
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We say that an I k-dimensional M -part multitransversal on πM with Γ -
multiplicity constraint MΓ is lexicographically maximal (LEM), if the support
set supp(I) has an ordering j1, j2, . . . , js, such that for every I� k-dimensional
M -part multitransversal on πM with Γ -multiplicity constraintMΓ , the following
holds:
(i) If j1 ∈ supp(I�), then #[j1, I] ≥ #[j1, I

�], and
(ii) for every 1 ≤ � ≤ s−1, if {j1, j2, . . . , j�} ⊆ supp(I�) and #[jh, I] = #[jh, I

�]
for h = 1, 2, . . . , �, then #[j�+1, I] ≥ #[j�+1, I

�].

Lemma 3. For a family A of k-dimensional M -part Sperner multifamilies with
parameters LP for P ∈

(
[M ]
k

)
satisfying a Γ -multiplicity constraint MΓ , the

profile matrices S(I), of LEM k-dimensional multitransversals I with supp(I) ⊆
πM that satisfy the same Γ -multiplicity constraint, are extreme points of μ(A).

For simple k-dimensionalM -part Sperner families F , i.e. when the Γ -multiplicity
constraint MΓ includes the conditions max{#[F,F ] : ∀j |F ∩Xj | = ij} ≤ 1 for
all (i1, . . . , iM ) ∈ πM , every I k-dimensional M -part Sperner multitransversal

with parameters LP for P ∈
(
[M ]
k

)
satisfying a Γ -multiplicity constraint MΓ has

the LEM property. This finally derives the convex hull results of [1] and [12]
from our results. Note, however, that the Γ -multiplicity constraint provides new
results even for the classical M = 1 case. For completeness, we state explicitly
our result for simple families.

Theorem 6. The extreme points of the convex hull of profile matrices of all
k-dimensional M -part simple Sperner families with a Γ -multiplicity constraint
MΓ are exactly the profile matrices of the homogeneous families corresponding
to k-dimensional M -part simple transversals with the same Γ -multiplicity con-
straint MΓ . Therefore, among the maximum size k-dimensional M -part Sperner
families with a Γ -multiplicity constraint, there are homogeneous ones.

6 Applications of the Convex Hull Method

Although the previous section reduces the problem of finding the maximum size
of such families to a “number” problem from a “set” problem, however, we assert
that the problem is still “combinatorial” due to the complexity of transversals:

Problem 1. For a (t1, . . . , tM ) ∈ πM , set the weightW (t1, . . . , tM ) =
∏M

i=1

(
mi

ti

)
.

Find a set of codewords C ⊆ πM with the largest possible sum of weights, such
that for every P ∈

(
[M ]
k

)
set of character positions, if the characters are pre-

scribed in any way for the i /∈ P character positions, at most LP from C show
all the prescribed values.

In view of Theorem 6, Problem 1 is equivalent to finding maximum size k-
dimensional M -part simple Sperner families. Recall that this problem is not
solved even for the case L = 1, k = 1,M ≥ 3 (see [1] for a survey of results).
Note also that there are examples in [1] without a full 1-dimensional transversal
defining a maximum size homogeneous family, unlike in the case M = 2, L = 1.
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Our results allow us to prove that certain maximum size families must always
be homogeneous.

Theorem 7. Let 1 ≤ k < M or k = M = 1. If every maximum size homoge-
neous k-dimensional M -part Sperner family (alternatively: Sperner multifamily)
satisfies inequality (6) with equality, then every maximum size k-dimensional M -
part Sperner family (Sperner multifamily) is homogeneous.

Proof. Fix a P ∈
(
[M ]
k

)
and let C = LP

∏
j /∈P nj . By the assumptions, the value

of C is independent of P . Let F be a maximum size family/multifamily with pro-
file array P(F) = (p(i1,...,iM )). Let G1, . . . ,Gs be an enumeration of all maximum
size homogeneous families/multifamilies, and let I1, . . . , Is be theM -dimensional

transversals/multitransversals on πM for which P(Gj) := (p
(j)
(i1,...,iM )) = S(Ij).

By the assumptions for each j ∈ [s] we have

∑
(i1,...,iM )∈πM

p
(j)
(i1...,iM )∏M
�=1

(
m�

i�

) = C.

By Theorems 5 and 6 we have λj ≥ 0 such that
∑

j λj = 1 and P(F) =∑s
j=1 λjP(Gj). Therefore

∑
(i1,...,iM )∈πM

p(i1...,iM )∏M
�=1

(
m�

i�

) =
∑

(i1,...,iM )∈πM

s∑
j=1

λjp
(j)
(i1...,iM )∏M

�=1

(
m�

i�

)
=

s∑
j=1

⎛⎝λj ∑
(i1,...,iM )∈πM

p
(j)
(i1...,iM )∏M
�=1

(
m�

i�

)
⎞⎠

= C

s∑
j=1

λj = C,

and F is homogeneous by Theorem 2. �

We state some simple results for the case when all parameters LP = 1.

Theorem 8. Consider the (simple) M -part families such that for all E,F ∈ F ,
if E �= F then there is a j ∈ [M ] such that E∩Xj �= F ∩Xj. If F has maximum
size among these families, then

|F| =
M∏
i=1

(
mi

�mi/2

)
. (14)

Moreover, F is a maximum size homogeneous family precisely when P(F) =
S((�1, . . . , �M )) where for each i ∈ [M ], �i ∈ {�mi/2, 
mi/2�}. In particular,
when all mi are even, the maximum size family is unique and homogeneous.
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Proof. A family G satisfies the conditions precisely when the family is a M -
dimensional M -part Sperner family with L = 1. By Theorem 6, there are
homogeneous families among such maximum size families. So let F be a homo-
geneous maximum size family. Then P(F) = S(I) for some I ⊆ πM . It follows

from the conditions that |I| = 1, so I = {(i1, . . . , iM )} and |F| =
∏M

j=1

(
mj

ij

)
.

(14) follows, moreover the homogeneous maximum size families are precisely the
ones listed in the theorem.

Since by Theorem 6 the profile array P(F) is the convex combination of the
profile matrices of maximum size families, it follows that for mi even the maxi-
mum size family is unique. �

Note that it is easy to create a nonhomogeneous maximum size family when at
least one of the mi is odd along the lines of Example 1.

For the next result we will use the following, which follows easily by induction
on K.

Lemma 4. Let K,M be positive integers and for each i ∈ [K] and j ∈ [M ] let
aij be nonnegative reals such that a1j ≥ a2j ≥ · · · ≥ aK,j and SK denotes the
set of permutations on [K]. Then

max{
K∑
�=1

M∏
j=1

aπj(�),j : ∀j ∈ [M ] πj ∈ SK} =

K∑
�=1

M∏
j=1

a�j.

�

Theorem 9. Assume that mM = minmi and consider the (M−1)-dimensional
M -part Sperner families with parameters L[M ]\{i} = 1 : i ∈ [M ]. If F is of
maximum size amongst these families, then

|F| =
mM∑
i=0

M∏
j=1

(
mj


mj

2 �+ (−1)i
 i2�

)
.

Moreover, if F is a maximum size homogeneous family, then P(F) = S(I) for
some I = {(bi1, . . . , biM ) : i ∈ [nM ]�} where for each fixed j ∈ [M ] the bij are
nM different integers from [nj ]

� such that
(
mj

bij

)
=

( mj

�mj
2 �+(−1)i� i

2 �

)
.

If in addition m1 = . . . = mM , then all maximum size families are homoge-
neous.

Proof. Theorem 6 implies that amongst the maximum size families there are
homogeneous ones. Let F be a (not necessarily maximum size) homogeneous
(M − 1)-dimensional M -part Sperner family with all parameters 1, and let I
be the transversal for which P(F) = S(I). Then if i = (i1, . . . , iM ) and i′ =
(i′1, . . . , i

′
M ) are elements of I such that for some � ∈ [M ] i� = i′�, we must have

that i = i′. Therefore there is a K ≤ nM such that I = {(bi1, . . . , biM ) : i ∈
[K]�} where for each fixed j ∈ [M ] the bij are nM different integers from [nj ]

�
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and |F| =
∑K

�=1

∏M
j=1

(
mj

b�j

)
. The statement about maximum size homogeneous

families follows from Lemma 4 and the fact that(
mj


mj

2 �+ (−1)0
 0
2�

)
≥

(
mj


mj

2 �+ (−1)1
 1
2�

)
≥ · · · ≥

(
mj


mj

2 �+ (−1)mj
mj

2 �

)
.

The rest follows from Theorem 7. �

7 New k-Dimensional Transversals and Mixed
Orthogonal Arrays

Aydinian, Czabarka, Engel, P. L. Erdős, and Székely [2] ran into MOAs as they
faced the problem of constructing 1-dimensional full transversals for M > 2.
Using the indicator function of the k-dimensional transversal in (1) instead of
the transversal itself, it is easy to see that the existence of “fractional full k-
dimensional transversal” is trivial. Therefore the construction problem of full
k-dimensional transversals is a problem of integer programming. For M = 2,
such construction was found [13] using matching theory, which does not apply
for M > 2. [2] observed Proposition 1 for k = 1 (the property “simple” was
assumed tacitly) and constructed 1-dimensional full transversals for any param-
eter set, and infinitely many MOAs with constraintM and strengthM −1. The
key element of the construction was the elementary Lemma 5, which only uses
properties of the fractional part 〈x〉 = x−�x function of a real number x. This
lemma will be heavily used again in this paper.

Lemma 5. [Engel’s Lemma.] Let n be a positive integer, μ, α, β be real numbers
such that 0 < μ and 0 ≤ β ≤ 1− μ. Then∣∣∣∣{i ∈ [n]� :

〈
α+

i

n

〉
∈ [β, β + μ)}

}∣∣∣∣ ∈ {�μn, 
μn�}.

All our constructions for full k-dimensional transversals and simple MOAs are
based on the following construction.

Construction 1. For n1, . . . , nM positive integers, 0 < μ ≤ 1 real, and 0 ≤
β ≤ 1− μ, define

C(n1, . . . , nM ;β, μ) :=

⎧⎨⎩(i1, . . . , iM ) ∈ πM :

〈
M∑
j=1

ij
nj

〉
∈ [β, β + μ)

⎫⎬⎭ . (15)

For the case k = 1, [2] showed that for any i ∈ [M ], any Li ∈ [ni], any 0 < μ ≤
min{Li

ni
: i ∈ [M ]}, any 0 ≤ β ≤ 1−μ, the construction in (15) is a 1-dimensional

transversal for the given parameters, moreover, if μ = min{Li

ni
: i ∈ [M ]}, then

this 1-dimensional transversal is full.
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The following facts are almost immediate from the construction:

Proposition 2. Let n1, . . . , nM be positive integers, k ∈ [M ], and {LP : P ∈(
[M ]
k

)
} be given such that 1 ≤ LP ≤

∏
i∈P ni are integers. If there is a 0 < μ0 ≤ 1

such that for each 0 ≤ β ≤ 1− μ0 the construction C(n1, . . . , nM ;β, μ0) is a full
k-dimensional transversal with these LP parameters, then

(i) C(n1, . . . , nM ;β, μ) is a k-dimensional transversal with these parameters
for every 0 < μ < μ0 and 0 ≤ β ≤ 1− μ.

(ii) πM can be partitioned into 
 1
μ0
� k-dimensional transversals with these pa-

rameters, and � 1
μ0
 of these are full.

(iii) With α = min
{

LP∏
i∈P ni

: P ∈
(
[M ]
k

)}
, we have � 1

α ≤
1
μ0

≤ 
 1
α�. In partic-

ular, if 1
α is an integer, all k-dimensional transversals in the partition in

(ii) are full.

Proof. (i) follows from the fact that for every β, μ in (i), exists a 0 ≤ β′ ≤ 1−μ0,
such that [β, β + μ) ⊆ [β′, β′ + μ0). (Here we did not use the fullness in the
hypothesis.) For (ii), we use the fact that [0, 1) can be partitioned into 
 1

μ0
�

half-open intervals, � 1
μ0
 of which have length μ0. Finally, (iii) follows from (2)

and (ii). �

We arrived at the following generalization of Engel’s lemma (Lemma 5):

Lemma 6. Let n1, . . . , nk be positive integers, N = lcm(n1, . . . , nk),

K =
∏k

i=1 nk and � = K
N . If α, β, μ are real numbers with 0 < μ < 1 and

0 ≤ β ≤ 1− μ, then∣∣∣∣∣∣
⎧⎨⎩(i1, . . . , ik) ∈ πM :

〈
α+

k∑
j=1

ij
nj

〉
∈ [β, β + μ)

⎫⎬⎭
∣∣∣∣∣∣ ∈ {��μN, �
μN�} .

The proof of Lemma 6 is postponed to Section 10. Based on Lemma 6, the
following theorem gives a sufficient criterion to use (15) to construct full k-
dimensional transversals. For k = 1 it gives back the construction in [2].

We set a generic notation here for the rest of this section and Section 10. Let
us be given n1, . . . , nM ≥ 1 integers, a k ∈ [M ], and for every P ∈

(
[M ]
k

)
let

the integer LP be given such that 1 ≤ LP ≤
∏

i∈P ni. For every P ∈
(
[M ]
k

)
, set

KP =
∏

i∈P ni, NP = lcm{ni : i ∈ P}, and �P = KP

NP
.

Theorem 10. Assume that a μ > 0 is given such that

∀ P ∈
(
[M ]

k

)
�P 
μNP � ≤ LP . (16)

Then for any 0 ≤ β ≤ 1− μ, C(n1, . . . , nM ;β, μ) is a k-dimensional transversal
with the given parameters LP . Moreover, if μ = min

P∈([M]
k )

LP

KP
, then it is a full

transversal.
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Note that condition (16) easily implies that μ ≤ min
P∈([M]

k )
LP

KP
. The proof of

Theorem 10 is also postponed to Section 10.

Corollary 1. If the ni numbers are pairwise relatively prime, then for μ =
min

P∈([M]
k )

LP

KP
and for any 0 ≤ β ≤ 1 − μ, C(n1, . . . , nM ;β, μ) is a full k-

dimensional transversal with these parameters.

Proof. It is enough to check that (16) holds in Theorem 10 for this μ. Let

P ∈
(
[M ]
k

)
. From the fact that the ni numbers are relatively prime, it follows

that KP = NP and �P = 1. Therefore �P 
μNP � ≤ 
LP

NP
·NP � = LP . �

Corollary 1 ensures that we have a full k-dimensional transversal for all k ∈ [M ]

and all allowed settings of {LP : P ∈
(
[M ]
k

)
} whenever n1, . . . , nM are relatively

prime. Unfortunately, this does not allow us to chose parameters that give
MOAs, i.e. for values of LP such that KP

LP
is constant. We can still use the

construction in (15) to find such transversal, but we need to put more restrictions
on the possible values of the LP .

Corollary 2. Assume that there is a constant 0 < μ ≤ 1 such that for each
P ∈

(
[M ]
k

)
, μNP is an integer and LP = μKP . Then, for every 0 ≤ β ≤ 1 − μ,

C(n1, . . . , nM ;β, μ) is a full k-dimensional transversal, and provides a simple
MOA of strength M − k.

Proof. The condition on μ gives �P 
μNP � = �PμNP = μKP = LP and μ =
minP

LP

KP
; the statement follows from Theorem 10. �

While the conditions of the theorem may at first glance seem restrictive, we
can easily satisfy them. For a given k ∈ [M ] we chose a sequence of integers

j1, j2, . . . , jM , and set ni =
∏i

v=1 jv. Set q as one of the divisors of nk and
μ = 1

q . It is clear that this choice of μ satisfies the conditions of Theorem 2,

since for each P ∈
(
[M ]
k

)
we have that NP = lcm{ni : i ∈ P} = nmaxP . By the

choice of the ni’s and the fact that k ≤ maxP , nk divides NP . Since μnk is an
integer, so is μNP . Thus, for each P ∈

(
[M ]
k

)
if we chose LP = μKP , then the

construction gives a simple MOA with the given parameters.
We also give two “generic” constructions to create new full k-dimensional

multitransversals and MOAs from already known ones, under some numerical
conditions: “linear combination”, and “tensor product”. The correctness of
these constructions is straightforward from the definitions.

Proposition 3. [Linear Combination for Transversals.]

(i) Let j ∈ Z+ and for each � ∈ [j] let T� be a k-dimensional multitransversal

on πM with parameters L
(�)
P : P ∈

(
[M ]
k

)
. Assume that for all � ∈ [j] positive

reals α� are given such that for all (i1, . . . , iM ) ∈ πM the quantity
∑j

�=1 α� ·
#[(i1, . . . , iM ), T�] is an integer, and let

T � = �(i1, . . . , iM )
∑j

�=1 α�·#[(i1,...,iM ),T�] : (i1, . . . , iM ) ∈ πM �.



Mixed Orthogonal Arrays, k-Dimensional M -Part Sperner Multifamilies 387

Then T � is a k-dimensional multitransversal on πM with parameters L�P :=

�
∑j

�=1 α�L
(�)
P  : P ∈

(
[M ]
k

)
.

(ii) Assume further that each T� above is a full multitransversal and there is a

common A ∈
(
[M ]
k

)
on which all T � simultaneously meet the bound, i.e.

∀� ∈ [j] L�A
∏
j /∈A

nj = min
P∈([M]

k )

⎛⎝L(�)
P

∏
j /∈P

nj

⎞⎠ .

Then T � is a full multitransversal as well. �
Since the condition is true when the α� are all integers, this means in particular
that if T1 and T2 are both k-dimensional multitransversals, then so is T1 * T2.
Proposition 4. [Linear Combination for MOAs.] Let j ∈ Z+ and for each
� ∈ [j] let T� be a full k-dimensional multitransversal on πM with parameters

L
(�)
P : P ∈

(
[M ]
k

)
such that L�P ·

∏
j /∈P nj is independent of P (i.e. T� is a MOA).

Let nonzero reals α� be given for all � ∈ [j] such that for all (i1, . . . , iM ) ∈ πM
the quantity

∑j
�=1 α� ·#[(i1, . . . , iM ), T�] is a non-negative integer, and let T � =∑j

�=1 α�T� be defined as

T � = �(i1, . . . , iM )
∑j

�=1 α�·#[(i1,...,iM ),T�] : (i1, . . . , iM ) ∈ πM �.
Then T � is a full k-dimensional multitransversal on πM with parameters L�P =∑j

�=1 α�L
(�)
P : P ∈

(
[M ]
k

)
, moreover, L�P

∏
j /∈P nj is independent of P (with other

words, T � is a MOA). �
In Proposition 4, chose j = 2, and MOAs T1 and T2 such that #[i, T2] ≥ #[i, T1]
for all i ∈ πM . Then setting α� = (−1)� for � ∈ [2] satisfies the conditions of

Proposition 3 and T � =
∑2

�=1 α�T� = T2 \ T1; this type of linear combination
is exactly the relative complementation on MOAs. Accordingly, if a MOA con-
tains another one with the same strength as a subarray, erasing the rows of the
subarray results in a new MOA.

Proposition 3 allows us to use the construction in (15) to build simple MOAs
different from the ones in (15).

Corollary 3. Let n1, . . . , nM , and 0 < μ < 1 be given such that they satisfy the
conditions of Corollary 2. For a fixed positive integer Q, and for each i ∈ [2Q+1]
let βi be given such that 0 ≤ β1 < β2 < · · · < β2Q+1 < β1 + μ ≤ 1 and
β2Q+1 ≤ 1− μ. Define I ⊆ [0, 1) by

I =

(
Q⋃
�=1

[
β2�−1, β2�

))
∪
[
β2�+1, β1 + μ

)
∪
(

Q⋃
�=1

[
β2� + μ, β2�+1 + μ

))
.

Then the following is a k-dimensional transversal on πM with parameters LP =
μ
∏

q∈P nq and provides a simple MOA of strength M − k:

T =

{
(i1, . . . , iM ) ∈ πM :

〈
M∑
r=1

ir
mr

〉
∈ I

}
.
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Proof. For � ∈ [2Q + 1] let T� = C(n1, . . . , nM ;β�, μ). By Corollary 2, each
T� is a full k-dimensional transversal on πM with parameters LP = μ

∏
j∈P nj

satisfying the conditions of Proposition 3. Also, using α� = (−1)�+1 we obtain

that T =
∑2Q+1

�=1 α�T�. The statement follows from Proposition 3 and the fact

that
∑2Q+1

�=1 α� = 1. �

Proposition 5. [Tensor product.]

(i) Let T1 and T2 be k-dimensional multitransversals on
∏M

j=1[n
(1)
j ]� and∏M

j=1[n
(2)
j ]� with parameters L

(1)
P and L

(2)
P (P ∈

(
[M ]
k

)
), respectively. Then

T =
�
(a1n

(2)
1 + b1, . . . , aMn

(2)
M + bM )#[(a1,...,aM ),T1]·#[(b1,...,bM ),T2]

�

is a k-dimensional multitransversal on
∏M

j=1[n
(1)
j n

(2)
j ]� with parameters LP =

L
(1)
P L

(2)
P .

(ii) Assume that T1 and T2 above are full multitransversals, and assume that

there exists an A ∈
(
[M ]
k

)
, in which both meet the bound set by A, i.e. for

i ∈ {1, 2} we have

L
(i)
A

∏
j /∈A

n
(i)
j = min

P∈([M]
k )

⎛⎝L(i)
P

∏
j /∈P

n
(i)
j

⎞⎠ .

Then T is a full multitransversal as well. �

Condition (ii) holds, in particular, if (3) holds for both T1 and T2, therefore
the tensor product of MOAs of the same constraint and the same strength is a
MOA of the same constraint and the same strength, using in the ith column of
T the Cartesian product of the symbol sets of the i-th columns of T1 and T2
with appropriate multiplicities.

8 Proofs of the Sperner Type Results

In the proofs of this section we will frequently make use of the following structure.
Let F be a multifamily on

⊎
i∈[M ]Xi. Fix a D ⊆ [M ] and let F ⊆ X \

⊎
i∈DXi.

We define

F(F ;D) =

�
�(E \ F )#[E,F ] : E ∩

⊎
i∈[M ]\D

Xi = F

	

 .

The following lemma is clear from the definitions.

Lemma 7. Let F be a k-dimensional M -part Sperner multifamily with param-
eters LP : P ∈

(
M
k

)
. Fix k ≤ N ≤M , a D ∈

(
[M ]
N

)
and let F ⊆ X \

⊎
i∈DXi.
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(i) F(F ;D) is a k-dimensional N -part Sperner multifamily on
⊎
i∈D Xi with

parameters LP : P ∈
(
D
k

)
.

(ii) If F is a simple family, so is F(F ;D). �

Proof of Theorem 1: First assume M = k, and call our multifamily F ′ instead
of F . For each i ∈ [M ], there are mi! (simple) chains of maximum size (i.e. of
length ni) in Xi. We count the number of ordered (k+1)-tuples in the following
multiset in two ways:

�
�(E,C1, . . . ,Ck)

#[E,F ′] : E ∈
∏
i∈[M ]

Ci, where Ci is a chain of size ni in Xi

	

 .

Since each chain product
∏M

i=1 Ci contains at most L[M ] sets from F ′ by defini-
tion, the number of such (k + 1)-tuples is at most L[M ]

∏
i∈[M ]mi!. Since each

E ∈ F ′ can be extended to precisely
∏

i∈[M ] |E ∩ Xi|!(mi − |E ∩ Xi|)! chain
products with each chain being maximum size, we have that∑

E∈F ′

∏
i∈[M ]

|E ∩Xi|!(mi − |E ∩Xi|)! ≤ L[M ]

∏
i∈[M ]

mi!

from which the claimed inequality follows in the form∑
E∈F ′

1∏
i∈[M ]

(
mi

|E∩Xi|
) ≤ L[M ].

Now assume M > k and take an arbitrary P ∈
(
[M ]
k

)
to prove the theorem for

our multifamily F . Take an F ⊆ X \
⋃
i∈P Xi, and assume fi = |F ∩ Xi| for

i /∈ P . By Lemma 7, F(F ;P ) is a k-dimensional k-part Sperner multifamily
with parameter LP , and therefore, using Theorem 1 we get∑

E∈F(F ;P )

1∏
i∈P

(
mi

|E∩Xi|
) ≤ LP . (17)

From this we can write for any fixed sequence fi (i /∈ P ):∑
F :F⊆X\⋃i∈P Xi
|F∩Xi|=fi,i/∈P

∑
E∈F(F ;P )

1∏
i∈P

(
mi

|E∩Xi|
) ∏
i/∈P

(
mi

fi

) ≤ LP .

Finally, summing up the previous inequality for fi = 0, 1, . . . ,mi, for all i /∈ P ,
we obtain the theorem. �

To prove Theorem 3, we first need the following definitions: Let F be an non-
empty M -part multifamily on X , and let j ∈ [M ]. We define highj(F) and
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lowj(F) as the largest and smallest levels in Xj that the trace FXj in Xj inter-
sects. With other words,

highj(F) = max

{
q ∈ [nj]

� : FXj ∩
(
Xj

q

)
�= ∅

}
,

lowj(F) = min

{
q ∈ [nj ]

� : FXj ∩
(
Xj

q

)
�= ∅

}
.

First, we will need the following:

Lemma 8. Let M > 1, j ∈ [M − 1] and let F ′ be an M -dimensional M -part
Sperner family with highj(F ′) > lowj(F ′) that satisfies (7), and let E0 ∈ F ′

XM

be fixed. Then there is an M -dimensional M -part Sperner family F that also
satisfies (7) such that for all i ∈ [M ] \ {j} we have FXi ⊆ F ′

Xi
, E0 ∈ FXM and

highj(F)− lowj(F) = highj(F ′)− lowj(F ′)− 1.

Proof. Let t = highj(F ′) and B = {B1, . . . , Bs} = F ′
Xj

∩
(
Xj

t

)
. For i ∈ [s] let

Ei = {E ∈ F ′ : E ∩Xj = Bi} and E = ∪si=1Ei. Given A ⊆ Xj , we define

w(A) =
∑

E∈F ′:E∩Xj=A

1∏
i:i
=j

(
mi

|E∩Xj |
) .

We also assume (w.l.o.g.) that w(B1) ≥ . . . ≥ w(Bs); we will use wi := w(Bi).
Using this notation we can rewrite (7) as∑

A⊆Xj

w(A)(mj

|A|
) = 1,

or equivalently
s∑
i=1

wi(
mj

t

) + δ = 1; δ :=
∑

A∈F ′
Xj

\B

w(A)(mj

|A|
) . (18)

Recall the following well-known fact (see e.g. [8]) that for every t ∈ [n] and a

subset A ⊆
(
[n]
t

)
we have

|∂(A)|(
n
t−1

) ≥ |A|(
n
t

) , (19)

where ∂(A), called the lower shadow of A, is defined as ∂(A) = {E ∈
(
[n]
t−1

)
: E �

F for some F ∈ A}. Moreover, equality in (19) holds if and only if A =
(
[n]
t

)
.

A similar inequality holds for the upper shadow ∂(A) of A defined as ∂(A) =

{E ∈
(
[n]
t+1

)
: E � F for some F ∈ A}, that is | ∂(A)|/

(
n
t+1

)
≥ |A|/

(
n
t

)
(with

equality if and only if A =
(
[n]
t

)
).

Let us denote Bi = {B1, . . . , Bi}; i = 1, . . . , s (thus Bi � Bi+1 and Bs = B).
We define then the following partition of ∂(B) = B′

1 ∪ . . . ∪ B′
s:

B′
1 = ∂(B1), B

′
i = ∂(Bi) \ ∂(Bi−1); i = 2, . . . , s.
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Then, in view of (19), we have∑i
�=1 |B′

�|(
mj

t−1

) =
|∂(Bi)|(
mj

t−1

) ≥ |Bi|(
mj

t

) =
i(
mj

t

) ; i = 1, . . . , s, (20)

with strict inequality if s <
(
mj

t

)
.

Recall that A is an M -dimensional M -part Sperner family with parameter
L[M ] = 1 precisely when for all A,B ∈ A with A �= B there is an � ∈ [M ] such
that A ∩X� and B ∩X� are incomparable by the subset relation.

For ease of description, let us represent each family Ei, defined above, by the
direct product Ei = {Bi} × Hi, where Hi = F ′(Bi; [M ] \ {j}) is an (M − 1)-
dimensional (M − 1)-part Sperner family in the partition set

⊎
i∈[M ]\{j}Xi.

We now construct a new family E� from E as follows. We replace each Ei by
E�i := B′

i ×Hi; i = 1, . . . , s and define E� = ∪si=1E�i . Observe now that for each
A� ∈ E�i there is an A ∈ Ei such that A� ∩X� = A∩X� for all � ∈ [M ] \ {j} and
A� ∩Xj � A∩Xj . This implies that E� ∩F ′ = ∅, since F ′ is anM -dimensional
M -part Sperner family with parameter L[M ] = 1.

Moreover, it is not hard to see that F� := (F ′ \ E) ∪ E� is an M -dimensional
M -part Sperner family with parameter L�[M ] = 1. If we have that A,B are

different elements of F ′ \ E , then the required property follows from the fact
that A,B are both elements of F ′. If A�, B� are different elements of E�, then
either A� ∩ Xj and B� ∩ Xj are both incomparable, or A�, B� ∈ Ei for some
i, in which case the corresponding sets A,B ∈ Ei ⊆ F ′ agree with A�, B� on
X \Xj and A

� ∩Xj = B� ∩Xj = Bi, from which the required property follows.
Finally, take A� ∈ E�i for some i and B ∈ F ′ \ E , and let A ∈ Ei ⊆ F ′ be the
corresponding set. If A∩Xj and B∩Xj are comparable, then from the fact that
t was the largest level of F ′

Xj
we get that B ∩ Xj ⊆ A� ∩ Xj � Bi = A ∩ Xj ;

and from the fact that A,B are both elements of F ′ and A \Xj = A� \Xj the
required property follows.

Therefore F� is an M -dimensional M -part Sperner family with parameter 1.
Thus, for F� the following inequality must hold:∑

E∈F

1
M∏
i=1

(
mi

|E∩Xi|
) =

s∑
i=1

|B′
i| · wi(
mj

t−1

) + δ ≤ 1. (21)

On the other hand, (20) together with w1 ≥ . . . ≥ ws ≥ 0 =: ws+1 implies that

s∑
�=1

|B′
�| · w�(
mj

t−1

) =

s∑
i=1

i∑
�=1

|B′
�| · (wi − wi+1)(

mj

t−1

) ≥
s∑

i=1

i · (wi − wi+1)(
mj

t

) =

s∑
i=1

wi(
mj

t

) .
(22)

In fact, the latter means that B =
(
Xj

t

)
, otherwise we have strict inequality in

(22) a contradiction with (21), in view of (18). Thus, for the new family F� we
have ∑

E∈F

1
M∏
i=1

(
mi

|E∩Xi|
) = 1.
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Moreover, highj(F�) = highj(F ′)− 1 and lowj(F�) = lowj(F ′), so highj(F�)−
lowj(F�) = highj(F ′)− lowj(F ′)− 1. In addition, for all � ∈ [M ] \ {j} we have
E�X�

⊆ EX�
, therefore F�

X�
⊆ F ′

X�
. Therefore, if E0 ∈ (F ′ \ E)XM , i.e. the trace

of F ′ \ E in XM contains E0, then setting F := F� will give the required family.
If E0 /∈ (F ′ \ E)XM , then, since F ′

XM
\ EXM ⊆ (F ′ \ E)XM and E0 ∈ F ′

XM

we must have that E0 ∈ EXM . Similar to the described “pushing down” trans-
formation in F ′ we can apply “pushing up” transformation with respect to the
smallest level D in F ′

Xj
, replacing it by its upper shadow ∂(D) to obtain the new

family F . Since D �= B, we now have E ⊆ F , therefore E0 ∈ FXM . All other
required conditions follow as before. �
Proof of Theorem 3: Let F ′ be an M -dimensional M -part Sperner family with
parameter 1 satisfying (7). Without loss of generality assume, contrary to the
statement of the theorem, that the trace F ′

XM
of F ′ in XM contains an incom-

plete level, i.e. there is a yM ∈ [nM ]� such that for G = F ′ ∩
(
XM

yM

)
we have that

∅ � G �
(
XM

yM

)
. Fix an E0 ∈ G.

Let F (0) := F ′. We will define a sequence F (1), . . . ,F (M−1) ofM -dimensional
M -part Sperner families such that for each � ∈ [M − 1] the following hold:

(i) Equality (7) holds for F (�), with other words∑
E∈F(�)

1
M∏
i=1

(
mi

|E∩Xi|
) = 1. (23)

(ii) There is a y� ∈ [n�]
� such that F (�)

X�
⊆

(
X�

y�

)
, with other words the trace of

F (�) in X� consist of a single (not necessarily full) level.

(iii) For each i ∈ [M ] \ {�}, F (�)
Xi

⊆ F (�−1)
Xi

.

(vi) E0 ∈ F (�)
XM

.

Once this sequence is defined, it follows that for all j ∈ [M − 1] we have that

F (M−1)
Xj

⊆
(
Xj

yj

)
, also E0 ∈

(
F (M−1)
XM

∩
(
XM

yM

))
⊆ G �

(
XM

yM

)
, therefore the trace

of F (M−1) in XM contains an incomplete level.
Also, for all F ∈ X\XM we must have that F (M−1)(F ; {M}) is a 1-dimensional

1-part Sperner family with parameter 1, therefore it satisfies (8) with the pa-
rameter set to 1. In view of these facts, using (23) for � =M − 1 we get that

1 =
∑

E∈F(M−1)

1
M∏
i=1

(
mi

|E∩Xi|
)

=
1

M−1∏
i=1

(
mi

ti

) ∑
F⊆X\XM

⎛⎝ ∑
E∈F(M−1)(F ;{M})

1(
mM

|E∩XM |
)
⎞⎠

≤ 1
M−1∏
i=1

(
mi

ti

) ∑
F⊆X\XM

1 = 1.
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This implies that for all F ⊆ X \ XM , inequality (8) holds with equality for
F (M−1)(F, {M}), so by Lemma 1 we get that F (M−1)(F, {M}) is a full level.
Since

F (M−1)
XM

=
⋃

F⊆X\XM

F (M−1)(F, {M}),

this implies that F (M−1)
XM

must consist of full levels only, a contradiction.

Note that F (0) is defined, it satisfies (7), and it does not need to satisfy any
other conditions. All that remains to show is that F (�) can be defined for each
� ∈ [M − 1] such that it satisfies the conditions (i)–(iv).

To this end, assume that j ∈ [M − 1] and F (j−1) is already given satisfying
all required conditions. Let Q = highj(F (j−1)) − lowj(F (j−1)). If Q = 0, then

F (j−1)
Xj

consists of a single, not necessarily full, level, and we set F (j) = F (j−1);

(i)–(iv) are clearly satisfied.
If Q > 0, then let K(0) = F (j−1). By Lemma 8 we can define a sequence

K(1), . . . ,K(Q) ofM -dimensionalM -part Sperner families with parameter 1 such
that for all � ∈ [Q] the following hold:

(a) K(�) satisfies (7).

(b) For all i ∈ [M ] \ {j} we have K(�)
Xi

⊆ K(�−1)
Xi

.

(c) E0 ∈ K(�)
XM

.

(d) highj(K(�)− lowj(K(�)) = highj(K(�−1))− lowj(K(�−1))− 1.

It follows that highj(K(Q)) = lowj(K(Q)) and we set F (j) = K(Q); (i)–(iv) are
clearly satisfied. �

It only remains to prove Theorem 2. We will start with a series of lemmata. The
first lemma states for multifamilies what Theorem 6.2 in [1] stated for simple
families:

Lemma 9. Let 1 ≤ M and F be a 1-dimensional M -part Sperner multifamily
with parameters L{i} for i ∈ [M ] satisfying (6) with equalities, i.e.

∀i ∈ [M ]
∑

(i1,...,iM )∈πM

pi1,...,iM
M∏
j=1

(
mj

ij

) =
L{i}
ni

M∏
j=1

nj. (24)

Then F is homogeneous.

Proof. For M = 1 the statement is proved in Lemma 1. Let M ≥ 2 and take an
arbitrary F ∈ F . We set Fi = F ∩ Xi and Gi = F \ Fi. By Lemma 7 that for
each j ∈ [M ], F(Gj ; {j}) is a (1-dimensional 1-part) Sperner multifamily with
parameter L{j}. From the proof of Theorem 1 and (24) we get that equality
must hold in (17), i.e. ∑

E∈F(Gj;{j})

1(
mi

|E∩Xi|
) = L{j},
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which by Lemma 1 implies that F(Gj ; {j}) is homogeneous. In particular this
means that for all A ∈ F and for all j ∈ [M ] if B is a set such that |A ∩
Xj | = |B ∩ Xj| and for all i ∈ [M ] \ {j} we have A ∩ Xi = B ∩ Xi, then
#[A,F ] = #[B,F ]. If A,B are sets with the same profile vector, we define the
sequence A = Y0, Y1, . . . , YM = B by Yi = (Yi−1 \Xi)* (B ∩Xi) for all i ∈ [M ].
It follows that #[Yi−1,F ] = #[Yi,F ], and so #[A,F ] = #[B,F ]. Thus F is
homogeneous. �

Lemma 10. Let 1 ≤ k and let F be a k-dimensional (k+1)-part Sperner multi-
family with parameters L[k+1]\{i} for i ∈ [k + 1] satisfying (6) with equality, i.e.

∀i ∈ [k + 1]
∑

(i1,...,ik+1)∈πk+1

pi1,...,ik+1

k+1∏
j=1

(
mj

ij

) = L[k+1]\{i}ni. (25)

Then F is homogeneous.

Proof. The proof is by induction on k. For k = 1, it is proved in Lemma 9. By
Lemma 7 we have that for each j ∈ [M ] and each F ⊆ Xj , F(F ; [k + 1] \ {j})
is a k-dimensional k-part Sperner multifamily with parameter L[k+1]\{j}. From
the proof of Theorem 1 and (25) we get that equality must hold in (17), i.e.∑

E∈F(F ;[k+1]\{j})

1∏
i:i
=j

(
mi

|E∩Xi|
) = L[k+1]\{j}. (26)

Fixing a maximal chain F0 � F1 � · · · � Fmj in Xj , we get that F ′ =⊎mj

q=0 F(Fq; [k + 1] \ {j}) is a (k − 1)-dimensional k-part Sperner multifamily
with parameters L′

[k+1]\{j,�} := L[k+1]\{�} : � ∈ [k + 1] \ {j}, moreover, using

(26) for each F = Fq we get that

∑
E∈F ′

1∏
i:i
=j

(
mi

|E∩Xi|
) =

mj∑
q=0

⎛⎜⎝ ∑
E∈F(Fq;[k+1]\{j})

1∏
i:i
=j

(
mi

|E∩Xi|
)
⎞⎟⎠ = njL[k+1]\{j}.

By (25) we have that L[k+1]\{j}nj = L[k+1]\{�}n� = L′
[k+1]\{j,�}n�, therefore F ′

is homogeneous by the induction hypothesis. In particular this means that for
all A ∈ F for all j ∈ [M ] if B is a set such that |A ∩ Xj | = |B ∩ Xj | and for
all i ∈ [M ] \ {j} we have A ∩ Xi = B ∩Xi, then the #[A,F ] = #[B,F ]. This
implies, as in the proof of Lemma 9, that F is homogeneous. �

Lemma 11. Let 2 ≤ k ≤ M − 1 and let F be a k-dimensional M -part Sperner
multifamily with parameters LP for P ∈

(
[M ]
k

)
satisfying (6) with equalities.

Then F is homogeneous.

Proof. The proof is essentially the same as the proof of Lemma 10. IfM = k+1,
we are done by Lemma 10. If M > k + 1, by Lemma 7 we get that for each
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D ∈
(
[M ]
k+1

)
and F ⊆ X\

⊎
i∈DXi, F(F ;D) is a k-dimensional (k+1)-part Sperner

multifamily with parameters LP : P ∈
(
D
k

)
. Fix an F ⊆ X \

⊎
i∈D Xi, and set

F ′ = F(F ;D). For any j ∈ D and G ⊆ Xj we have that F ′(G;D \ {j}) =
F(F *G;D \ {j}) and F ′(G;D \ {j}) is a k-dimensional k-part Sperner family
with parameter LD\{j}. From the proof of Theorem 1 and the fact that for F the
inequality (6) holds with equality we get that equality must hold for all j ∈ D
and all G ⊆ Xj for F ′(G;D \ {j}) in (17), i.e.∑

E∈F ′(G;D\{j})

1∏
�∈[M ]\(D∪{j})

(
m�

|E∩X�|
) = LD\{j}. (27)

Fixing a maximal chain G0 � G1 � · · · � Gmj in Xj we get that F� =⊎mj

i=0 F ′(Gi;D \ {j}) is a (k − 1)-dimensional k-part Sperner multifamily with

parameters L�P := LP∪{j} : P � ∈
(
D\{j}
k−1

)
, moreover, using (27) for each Gi

we get that

∑
E∈F

1∏
�∈D\{j}

(
m�

|E∩X�|
) =

mj∑
i=1

⎛⎜⎝ ∑
E∈F(Gi;D\{j})

1∏
�∈D\{j}

(
m�

|E∩X�|
)
⎞⎟⎠ = LD\{j}nj .

Fix any P � ∈
(
D\{j}
k−1

)
. Then P � = D \ {i, j} for some i ∈ D \ {j}, and from the

conditions of the theorem we get that

L�Pni = LP∪{j}ni = LD\{i})ni = LD\{j}nj ,

therefore F� is homogeneous by the induction hypothesis. This means that if
A ∈ F and B is a set with the same profile vector as A, and A ∩ Xi = B ∩Xi

for at least M − k − 1 ≥ 1 values of i, then #[A,F ] = #[B,F ]. As before, we
get that F is homogeneous. �

Proof of Theorem 2: Lemmata 9, 10 and 11 together prove part (i), and, as
remarked earlier, part (ii) follows from the conditions.
(iii): By part (i), equality in (6) implies homogeneity, i.e. that for any (i1, . . . , iM )
∈ πM there is a positive integer ri1,...,iM such that every set in F that has profile
vector (i1, . . . , iM ) appears with multiplicity ri1,...,iM , and also equality in (17).

Equality in (17) means that for any chain product C :=
∏M

i=1 Ci where Ci is

a maximal chain in Xi, any given P ∈
(
[M ]
k

)
and any subset F ⊆ X \ ∪i∈PXi,

each subproduct
∏

j∈P Cj of maximal chains is covered exactly LP times by the
elements of F(F ;P ), that is∣∣∣∣∣∣

�
�E#[E,F(F ;P )] : E ∈

∏
j∈P

Cj

	


∣∣∣∣∣∣ = LP . (28)
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For a given chain product C =
∏

i∈[M ] Ci of maximum-size chains Ci in Xi, we
define

F [C] =
�
F#[F,F ] : F ∈ C

�
.

Each F ∈ F [C] is uniquely determined from its profile vector (f1, . . . , fM ). Let
TC denote the multiset of all profile vectors of the sets in F [C], where each profile
vector appears with the multiplicity of its corresponding set in F [C]. Since F is
homogeneous, TC does not depend on the choice of C.

We can describe now property (28) of F [C] in terms of its profile vectors as

follows: for each subset {i1 < . . . < iM−k} ∈
(

[M ]
M−k

)
, and each (M − k)-tuple of

coordinate values (fi1 , . . . , fiM−k
) ∈

∏M−k
j=1 [nij ]

� the set of vectors in TC where
the ij-th coordinate is fij for j ∈ [M −k] has size LM\{i1,...,iM−k}. Let T denote
the transversal corresponding to the homogeneous multifamily F . Then clearly
T = TC for every product of maximal chains C =

∏M
i=1 Ci.

We infer now that the k-dimensional multitransversal T is a simple MOA
with symbol sets Si = {0, 1, 2 . . . ,mi}, of constraint M , strength M − k, and

index set L = {LP : P ∈
(
[M ]
k

)
}, with λ(j1, . . . , jM−k) = L[M ]\{j1,...,jM−k}. This

completes the proof of part (iii).
It is also clear that any MOA with the parameters described above is a k-

dimensional multitransversal corresponding to a homogeneous k-dimensionalM -
part Sperner multifamily F with parameters {LP : P ∈

(
[M ]
k

)
} on a partitioned

(m1 + . . .+mM )-element underlying set, where the multiplicity of each element
in F ∈ F is the same as the multiplicity of its profile vector (f1, . . . , fM ) in the
multitransversal, which satisfies equality in (6). �

9 Proofs of the Convex Hull Results

Proof of Lemma 2: It will suffice to show that for every multifamily H ∈ A,
there are non-negative coefficients λ(I) for every I with supp(I) ⊆ πM and
T (I) ∈ μ(A(L)), such that

∑
I λ(I) = 1 and∑
I

λ(I)S(I) = P(H). (29)

To this end, fix an H ∈ A and for all H ⊆ X let HH = �H#[H,H]�, with other
words HH has H with the same multiplicity as H, and it has no other elements.
Consider the sum ∑

(L,H)

P(HH)
M∏
j=1

(mj !)

(30)

for all ordered pairs (L, H), where L is a product-permutation, H ⊆ X , and H
is initial with respect to the product-permutation L. We evaluate (30) in two
ways. The first way is:
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∑
(L,H)

P(HH)
M∏
j=1

(mj !)

=
∑
L

1
M∏
j=1

(mj !)

⎛⎝ ∑
H⊆X:

H is initial for L

P(HH)

⎞⎠
=

∑
L

P(H(L))
M∏
j=1

(mj !)

. (31)

Observe that P(H(L)) ∈ μ(A(L)), and therefore for every L there is a unique I
such that T (I) = P(H(L)). Collecting the identical terms in the right side of
(31), ∑

L

P(H(L))
M∏
j=1

(mj !)

=
∑

T (I)∈μ(A(L))

λ(I)T (I), (32)

where λ(I) is the proportion of the
∏M

j=1(mj !) product-permutations such that
P(H(L)) = T (I), thus

∑
T (I)∈μ(A(L)) λ(I) = 1. Consider a fixed set H with

profile vector (i1, i2, . . . , iM ). There are exactly
∏M

j=1(ij ! · (mj − ij)!) product-
chains to which H is initial. Using this, we also get:∑

(L,H)

P(HH)
M∏
j=1

(mj !)

=
∑

H:H⊆X

∑
L:

H is initial for L

P(HH)
M∏
j=1

(mj !)

=
∑

H:H⊆X

M∏
j=1

(ij ! · (mj − ij)!)

M∏
j=1

(mj !)

· P(HH) (33)

=
∑

H:H⊆X

P(HH)
M∏
j=1

(
mj

ij

) =

(
pi1,...,iM (H)(
m1

i1

)
· · ·

(
mM

iM

))
(i1,...,iM )∈πM

. (34)

Combining (30), (31), (32), (33), and (34), we obtain(
pi1,...,iM (H)(
m1

i1

)
· · ·

(
mM

iM

))
(i1,...,iM )∈πM

=
∑

T (I)∈μ(A(L))

λ(I)T (I),

which implies for all (i1, . . . , iM ) ∈ πM that

pi1,...,iM (H) =
∑

T (I)∈μ(A(L))

⎛⎝λ(I)
⎛⎝ M∏
j=1

(
mj

ij

)⎞⎠ ti1,...,iM (I)

⎞⎠ .

This proves (29). �
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Proof of Theorem 5: First observe that μ(A(L)) does not depend on L, so (11)
holds. Next we have to show (12), i.e. we have to show that if T (I) ∈ μ(A(L))
for some I with supp(I) ⊆ πM and all product-permutation L, then S(I) ∈ μ(A).

Assume I satisfies supp(I) ⊆ πM and T (I) ∈ μ(A(L)) for all product-
permutation L. Then for each product-permutation L there is an HL ∈ A

such that T (I) = P(HL(L)). Since HL, and therefore HL(L) as well, satisfies
MΓ , we must have that I satisfies MΓ . Let FS(I) be the homogeneous multi-
family that realizes the profile array S(I), then for all (i1, . . . , iM ) ∈ πM we have
max{#[F,FS(I)] : ∀j |F∩Xj | = ij} = #[(i1, . . . , iM ), I], consequently, FS(I) sat-
isfies MΓ . Thus S(I) /∈ μ(A) implies that the homogeneous multifamily FS(I) is

not a k-dimensional M -part multifamily with parameters LP : P ∈
(
[M ]
k

)
. This

means that there is a P0 ∈
(
[M ]
k

)
, sets Di for all i /∈ P0 and chains Cj for all

j ∈ P0 such that

∣∣∣∣∣∣
�
�F#[F,FS(I)] :

(
F ∩

⊎
j∈P0

Xj

)
∈

∏
j∈P0

Cj , ∀i ∈ [M ] \ P0 Xi ∩ F = Di

	


∣∣∣∣∣∣ > LP0 .

(35)
Take now a product-permutation L0 in which all setsDi (i /∈ P0) and all elements
of the chains Cj (j ∈ P0) are initial with respect to L0. Since P(FS(I)(L0)) =
T (I) we can rewrite (35) as ∑

(i1,...,iM )∈πM :

∀j /∈P0 ij=|Dj|

ti1,...,iM (I) > LP0 . (36)

As T (I) = P(HL0(L0)), (36) gives that the following is larger than LP0∣∣∣∣∣∣
�
�F#[F,HL0

(L0)] :
(
F ∩

⊎
j∈P0

Xj

)
∈

∏
j∈P0

Cj , ∀i ∈ [M ] \ P0 Xi ∩ F = Di

	


∣∣∣∣∣∣ .
(37)

However, from HL0 ∈ A we get that HL0 , and consequently HL0(L0) must be

k-dimensional M -part Sperner multifamilies with parameters LP : P ∈
(
[M ]
k

)
,

contradicting that the quantity in (37) is larger than LP0 . �

Proof of Lemma 3: Let A be family of k-dimensional M -part Sperner multifam-
ilies that satisfy a Γ -multiplicity contraints MΓ , and let I be a k-dimensional
multitransversal on πM with the same parameters LP satisfying the same Γ -
multiplicity constraint MΓ . Let L be a fixed product-permutation, for each
(i1, . . . , iM ) ∈ I let H(i1,...,iM ) be the (unique) initial set with respect to L with
profile vector (i1, . . . , iM ) and let

HL = �Hti1,...,iM
(I)

(i1,...,iM ) �.
It follows that HL(L) = HL, P(HL) = T (I), and from the properties of I we
have that HL ∈ A. Therefore we get that T (I) ∈ μ(A(L)). By Theorem 4, the



Mixed Orthogonal Arrays, k-Dimensional M -Part Sperner Multifamilies 399

vector S(I) is present in the set on the right hand side of (13), whose extreme
points agree with those of μ(A), and by Theorem 5, S(I) ∈ μ(A). All that
remains to be shown is that if S(I) =

∑
T (Iu)∈μ(A(L)) λ(Iu)S(Iu) with λ(Iu) ≥ 0

and
∑

T (Iu)∈μ(A(L)) λ(Iu) = 1, then I is among the Iu’s, and all others come

with a zero coefficient. S(I) =
∑

T (Iu)∈μ(A(L)) λ(Iu)S(Iu) means that for all

(i1, . . . , iM ) ∈ πM we have

ti1,...,iM (I)

M∏
j=1

(
mj

ij

)
=

∑
T (Iu)∈μ(A(L))

λ(Iu)ti1,...,iM (Iu)

M∏
j=1

(
mj

ij

)
,

which implies that

T (I) =
∑

T (Iu)∈μ(A(L))

λ(Iu)T (Iu).

Let the ordering supp(I) = {j1, j2, . . . , js} show that I has the LEM prop-
erty. Then for all u, Tj1

(I) ≥ Tj1
(Iu), and as the coefficients sum to 1, for

all u, Tj1(I) = Tj1(Iu). This argument repeats to j2, . . . , js. Hence for all u,
supp(I) ⊆ supp(Iu). If supp(I) is a proper subset of supp(Iu), then we must
have λ(Iu) = 0. Therefore for all the Iu that have λ(Iu) �= 0 we must have
supp(Iu) = supp(I), and consequently Iu = I. �

10 Proofs for the Results on Transversals

We start with two lemmata.

Lemma 12. Let n1, n2 be positive integers, and set � = gcd(n1, n2), mi =
ni

�
and N = lcm(n1, n2) = n1n2

� . For every j ∈ [N ]�, there are exactly � vectors

(a1, a2) ∈ π2, such that
〈
a1

n1
+ a2

n2

〉
= j

N .

Proof. Since m1,m2 are relatively prime, for any integer j ∈ [N ]� we have
integers z1, z2 such that z1m2 + z2m1 = j, therefore z1

n1
+ z2

n2
= j

N . Taking
ai ∈ [ni]

� such that ai ≡ zi mod ni we obtain that the required vectors (a1, a2)
exist for any j. It is also clear that for any (a1, a2) ∈ π2 there is some j ∈ [N ]�

such that
〈
a1

n1
+ a2

n2

〉
= j

N .

So we define for any j ∈ [N ]�

Dj =

{
(a1, a2) ∈ π2 :

〈
a1
n1

+
a2
n2

〉
=

j

N

}
.

Fix j ∈ [N ]� and (x1, x2) ∈ Dj . For any (y1, y2) ∈ π2 we have that (y1, y2) ∈ Dj

iff y1−x1

n1
+ y2−x2

n2
is an integer.

The Dj are nonempty and partition π2. If for each j, j′ ∈ [N ]�, there is an
injection from Dj to Dj′ , then |Dj | = |Dj′ |, and consequently |Dj | = n1n2

N = �,
which proves our statement. So we will construct such an injection.
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Let j, j′ ∈ [N ]�. Fix an (a1, a2) ∈ Dj and a (b1, b2) ∈ Dj′ . We define the map
φ : Dj → π2 by φ(c1, c2) = (d1, d2) ∈ π2 iff di ≡ ci + (bi − ai) mod ni. Clearly,
the map is a well-defined injection, moreover, φ(a1, a2) = (b1, b2).

Assume that (d1, d2) ∈ φ(Dj). Then (d1, d2) = φ(c1, c2) for some (c1, c2) ∈ Dj ,

and di − bi ≡ ci − ai mod ni. Thus
(
d1−b1
ni

+ d2−b2
n2

)
−

(
c1−a1

n1
+ c2−a2

n2

)
is an

integer. Since (c1, c2) ∈ Dj , this implies d1−b1
ni

+ d2−b2
n2

is also an integer, with
other words (d1, d2) ∈ Dj′ . Therefore φ(Dj) ⊆ Dj′ . �
Lemma 13. Let n1, n2, . . . , nk be given, and set K =

∏k
j=1 nj, N = lcm

(n1, . . . , nk) and � = K
N . For each j ∈ [N ]� we have that there are exactly �

vectors (a1, . . . , ak) ∈ πk such that〈
k∑
i=1

ai
ni

〉
=

j

N
.

Proof. We prove the statement by induction on k. The statement is clearly true
for k = 1 (when N = n1 and � = 1); and it was proved in Lemma 12 for k = 2.
So assume that k > 2 and we know the statement already for all 1 ≤ k′ ≤ k− 1.

It is clear that for any (a1, . . . , ak) ∈ πk we have precisely one j ∈ [N ]�

such that
〈∑k

i=1
ai

ni

〉
= j

N . Let K1 =
∏k−1

j=1 nj , N1 = lcm(n1, . . . , nk−1) and

�1 = K1

N1
, and �2 = gcd(N1, nk). Then K = K1nk, N = lcm(N1, nk) and

� = K1nk

lcm(N1,nk)
= K1

N1
· N1nk

lcm(N1,nk)
= �1�2.

Fix a j ∈ [N ]�. Note that for integers ai,
〈∑k−1

i=1
ai

ni

〉
∈ { j

′

n : j′ ∈ [N1]
�}, and

for real numbers c, d we have 〈〈c〉+ 〈d〉〉 = 〈c+ d〉. By Lemma 12, there are pre-

cisely �2 pairs (b, ak) ∈ [N1]
�×[nk]

� such that
〈

b
N1

+ ak

nk

〉
= j

N . By the induction

hypothesis for each b ∈ [N1] there are precisely �1 values (a1, . . . , ak−1) ∈ πk−1

such that
〈∑k−1

j=1
aj

nj

〉
=

〈
b
N1

〉
. Since �1�2 = �, the statement follows. �

Proof to Lemma 6: By Lemma 13 the statement is equivalent with∣∣∣∣{j ∈ [N ]� :

〈
α+

j

N

〉
∈ [β, β + μ)}

}∣∣∣∣ ∈ {
μN�, �μN}

which follows from Lemma 5. �
Proof of Theorem 10: Assume that μ satisfies condition (16) and 0 ≤ β ≤ 1−μ.
Fix P ∈

(
[M ]
k

)
and for each j /∈ P fix a bj ∈ [nj ]. Then Condition (1) follows

from Lemma 6 using α =
∑

j /∈P
bj
nj
; thus C(n1, . . . , nM ;β, μ) is a k-dimensional

transversal with the given parameters LP .

Assume now further that for P0 ∈
(
[M ]
k

)
we have that μ =

LP0

KP0
(as this is

equivalent with μ = minP
LP

KP
). Then we have that

LP0 ≥ dP0
μNP0� = dP0

⌈
LP0

dP0

⌉
≥ LP0 ,

which implies that μNP0 is an integer, i.e. by Lemma 6 our transversal is full. �
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Abstract. In this paper we describe algorithms for factoring words over
sets of strings known as circ-UMFFs, generalizations of the well-known
Lyndon words based on lexorder, whose properties were first studied in
1958 by Chen, Fox and Lyndon. In 1983 Duval designed an elegant
linear-time sequential (RAM) Lyndon factorization algorithm; a corre-
sponding parallel (PRAM) algorithm was described in 1994 by Daykin,
Iliopoulos and Smyth. In 2003 Daykin and Daykin introduced various
circ-UMFFs, including one based on V -words and V -ordering; in 2011
linear string comparison and sequential factorization algorithms based
on V -order were given by Daykin, Daykin and Smyth. Here we first de-
scribe generic RAM and PRAM algorithms for factoring a word over any
circ-UMFF; then we show how to customize these generic algorithms to
yield optimal parallel Lyndon-like V -word factorization.

Keywords: circ-UMFF, complexity, factor, generic, lexicographic or-
der, Lyndon word, optimal, parallel algorithm, PRAM, RAM, sequential
algorithm, V -order, V -word.

1 Introduction

In this paper we design and analyze sequential and parallel algorithms for factor-
ing strings over particular sets of strings known as circ-UMFFs, a generalization
of the Lyndon words L. We introduce a generic algorithmic framework for com-
puting factorizations applicable to any circ-UMFF. The input to an algorithm
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is a string x and a “factorization family” W , and the result is the factorization
of x over W .

A factorization family W is an infinite set of strings (equivalently words) into
which any string on the same alphabet can be factored. If all such factorizations
are unique, the set is called a Unique Maximal Factorization Family (UMFF)
[DD03], and if moreover W contains exactly one rotation of every primitive
string, then it is called a circ-UMFF [DD08]. In this paper we study factoriza-
tions over circ-UMFFs.

We characterize a circ-UMFF as an infinite set W of strings on a given alpha-
bet Σ, |Σ| ≥ 2, that is closed, according to specified rules, under the reciprocal
operations of concatenation and factorization. In particular,

∗ λ ∈ Σ =⇒ λ ∈ W ;
∗ (concatenation) u,v �= u ∈ W =⇒ exactly one of uv,vu ∈ W ;
∗ (factorization) w ∈ W and |w| > 1 =⇒ there exist u,v �= u ∈ W such that
uv = w.

The study of circ-UMFFs originated with Lyndon words [CFL58, L83], which
became prominent in stringology due to their combinatorial richness and the
many applications of Lyndon decomposition (factorization) [S03]. Lyndon
words have a deep connection with de Bruijn sequences [dB46]; infinite Lyn-
don words have been considered in [SMDS94, BMP07]. Their versatility is ex-
pressed by the wide range of applications of the Lyndon factorization, includ-
ing: musicology [C04], algorithms for digital geometry [BLPR09], cryptanalysis
[P05], the Burrows-Wheeler transform related to bioinformatics and compres-
sion [CDP05, GS09, K09], and string matching [CP91, BGM11]; for applica-
tions of Lyndon words related to free Lie algebras, see [R93]. Both sequential
[Du83, D11] and CRCW parallel RAM algorithms [DIS94] have been proposed
for computing the Lyndon factorization of a string. Like the Lyndon words L,
the elements of a circ-UMFF W are totally ordered, and also share the proper-
ty that the maximal factorization of any string over W yields factors that are
monotone non-increasing (in W-order) [DD08, DDS09]. Thus circ-UMFFs can
be described in terms of dictionaries [DDS09], leading to possible applications to
searching and sorting problems on words, as shown for Lyndon words in [Du83].

Various classes and properties of circ-UMFFs have recently been identified
[DD03, DD08, DDS09]. This paper confirms the suggestion made in [DDS09]
that the parallel Lyndon factorization algorithm of [DIS94] can be extended
generically to string factorization over general circ-UMFFs. The extension turns
out to be straightforward, since the theoretical results for Lyndon words given in
[DIS94], on which the parallel algorithm is based, can be proved also in the more
general context of circ-UMFFs, as we show in Section 2. Thus in Section 4, rather
than repeat all the details of the algorithm, we confine ourselves to providing an
overview that explains the main steps. At the same time we correct a conceptual
error in [DIS94]: the use of a “cut-point” rather than a concatenation point
(“concat-point”) as introduced here to guide the merged factorization of uv,
given the individual factorizations of u and v. Furthermore, a generic sequential
factorization algorithm for circ-UMFFs is given in Section 3.
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The existence of a generic algorithmic framework paves the way for developing
efficient algorithms honed to specific factorization families as they arise. In par-
ticular, we consider the V -word circ-UMFF, studied combinatorially in [DD03]
and for sequential algorithms in [DDS11, DDS12]. V -words are analogous struc-
tures to Lyndon words, and interestingly, similar applications are emerging:
V -words have arisen naturally in music analysis [CT03]; they also provide a
variant of the classic lexicographic Burrows-Wheeler transform [DS12]. In Sec-
tion 5 we customize the generic parallel algorithm of Section 4 for this particular
circ-UMFF, resulting in a new optimal V -word PRAM algorithm.

The PRAM [J92] has had a revival of interest since, due to advances in fabri-
cating and programming these architectures, it is no longer considered an unre-
alistic model. The PRAM paradigm has featured as the underlying architecture
in commercial products: see for example [N08]. And PRAM algorithmics are
also being developed for chip technologies in order to support desktop super-
computing targeted at modern multicore processors [V08].

2 Unique Maximal Factorization Families

We begin with a summary of relevant UMFF theory from [DDS09], and then
extend some results on Lyndon words [L83] to circ-UMFFs. We use standard
terminology and notation from combinatorics on words: alphabet Σ, Σ∗, Σ+,
border, concatenate, period, repetition, and so on (see [S03]). All examples
based on the alphabet Σ of lower-case letters use the standard English-language
order a < b < · · · < z.

A string w is a factor of a string x[1..n] if and only if w = x[i..j] for 1 ≤ i ≤
j ≤ n. Note that a factor is nonempty. If x = w1w2 · · ·wk, 1 ≤ k ≤ n, then
w1w2 · · ·wk is said to be a factorization of x; if every factor wj , 1 ≤ j ≤ k,
belongs to a set W , then the factorization is denoted FW(x).

Definition 1. A subset W ⊆ Σ+ is a factorization family (FF) if and only
if for every nonempty string x on Σ there exists a factorization FW(x).

For some string x and some FF W , suppose x = w1w2 · · ·wk, where wj ∈
W for every 1 ≤ j ≤ k. For some 1 ≤ k′ ≤ k, write x = uwk′v, where
u = w1w2 · · ·wk′−1 (empty if k′ = 1) and v = wk′+1wk′+2 · · ·wk (empty if
k′ = k). Suppose that there does not exist a suffix u′ of u nor a prefix v′ of
v such that u′wk′v′ �= wk′ and u′wk′v′ ∈ W ; then wk′ is said to be a max
factor of x. If every factor wk′ is max, then the factorization FW(x) is itself
said to be max. Observe that a max factorization must be unique: there exists
no other max factorization of x that uses only elements of W .

Definition 2. Let W be an FF on an alphabet Σ. Then W is a unique max-
imal factorization family (UMFF) if and only if there exists a max factor-
ization FW(x) for every string x ∈ Σ+.

We will assume throughout, that when factoring over an UMFF, the factorization
is chosen to be the one which is maximal.
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Lemma 1. (The xyz Lemma [DD03]) An FF W is an UMFF if and only if
whenever xy,yz ∈ W for some nonempty y, then xyz ∈ W.

Corollary 1. ([DDS09]) Suppose x = u1u2 · · ·um and W is an UMFF, where
for every 1 ≤ j ≤ m, uj ∈ W. Then we can write the max factorization
FW(x) = w1w2 · · ·wk, where

w1 = uj0+1 · · ·uj1 ,w2 = uj1+1 · · ·uj2 , . . . ,wk = ujk−1+1 · · ·ujk ,

0 = j0 < j1 < j2 < · · · < jk−1 < jk = m.

This corollary generalizes Theorem 2.2 in [DIS94] and will be applied in the
parallel algorithms of Sections 4 and 5 to factor the concatenation of a pair of
previously factored substrings. See also Lemmas 7 and 8.

Definition 3. An UMFF W over Σ+ is a circ-UMFF if and only if it contains
exactly one rotation of every primitive string x ∈ Σ+.

Definition 4. If a circ-UMFF W contains strings u, v and uv, we write u <W
v (called W-order).

Theorem 1. ([DD08]) Let W be a circ-UMFF.
(1) If u ∈ W then u is border-free (no period less than |u|).
(2) If u,v ∈ W and u �= v then uv is primitive (not a repetition).
(3) If u,v ∈ W and u �= v then uv ∈ W or vu ∈ W (but not both).
(4) If u,v,uv ∈ W then u <W v and <W is a total order of W.
(5) If w ∈ W and |w| ≥ 2 then there exist u,v ∈ W with w = uv.

Taken together with Definition 4, Theorem 1(4) extends to all circ-UMFFs the
classical result [Du83], given as Theorem 2.1 in [DIS94], that for u,v ∈ L,
uv ∈ L ⇐⇒ u <L v.

The algorithms developed here relate to the following classes of circ-UMFFs
introduced in [DDS09]:

Definition 5. A circ-UMFF W is said to be Type Flight Deck if and only if
w[1..n] ∈ W implies w[1] ≤W w[i] for every i ∈ 2..n.

For example, the Lyndon word circ-UMFF, based on lexicographic order (lex-
order), is Type Flight Deck, as is also the V -order circ-UMFF discussed in
Section 5.

Definition 6. A circ-UMFF W is said to be Type Acrobat if and only if it
contains elements uv1, w and uv2, nonempty u not a prefix of w, such that

uv1 <W w <W uv2.

Types Flight Deck and Acrobat are not necessarily incompatible. However, if
the prefix u in Definition 6 is in fact a single letter λ, then since by Theorem 1(4)
both λv1w andwλv2 are elements ofW , and since either λ <W w[1] orw[1] <W
λ, it follows from Definition 5 that W cannot be Type Flight Deck.

The following lemma, trivially true for Lyndon words L, will be applied in
procedure Contest in Section 4.
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Lemma 2. Let W be a Flight Deck circ-UMFF and suppose u ∈ W, where
u[1] = λ. If for some v = v[1..m], λ <W v[i] for every i ∈ 1..m, then uv ∈ W.

Proof. Suppose that uv is a repetition. Since λ does not occur in v, it follows
that u must have period less than |u|, contradicting Theorem 1(1).

Assume therefore that uv is primitive. Then, according to Definition 3, some
rotation of uv is in W . Since W is Type Flight Deck the chosen rotation must
start with λ. If λ occurs only once in uv, then the rotation is uv. Otherwise,
write u = λy1λy2 · · ·λyt for t ≥ 2, where yi ∈ Σ∗ for 1 ≤ i ≤ t − 1, and
yt ∈ Σ+. Now let r = λyi · · ·λytvλy1 · · ·λyi−1 be a rotation of uv starting
with λ. If r ∈ W , then applying Lemma 1 to r and u implies that the word
λyi · · ·λytvλy1 · · ·λyi−1λyi · · ·λyt with border λyi · · ·λyt belongs toW , again
contradicting Theorem 1(1). We conclude that uv ∈ W . �

Concatenation properties of circ-UMFFs will be used when extending existing
factors in the algorithms (see Lemmas 7 and 8):

Lemma 3. ([DD08]) Suppose that w is an element of a circ-UMFF W. If
u1,u2, . . . ,uk1 are all the proper prefixes of w in increasing order of length that
belong to W, and if v1,v2, . . . ,vk2 are all the proper suffixes of w in decreasing
order of length that belong to W, then

u1 <W u2 <W · · · <W uk1 <W w <W v1 <W v2 <W · · · <W vk2 .

Lemma 4. ([DD08]) Let W be a circ-UMFF. If u1,u2, ...,um ∈ W, u1 <W
u2 <W · · · <W um, m ≥ 2, and if k1, k2, . . . , km are positive integers, then

u1
k1u2

k2 · · ·um
km ∈ W .

The following result generalizes the Lyndon factorization theorem [CFL58] to
circ-UMFFs, and together with Corollary 1 is relevant to the algorithms of Sec-
tions 3, 4 & 5.

Theorem 2. ([DDS09]) Let W be a circ-UMFF and let x = u1u2 · · ·um, with
each uj ∈ W. Then FW (x) = u1u2 · · ·um if and only if u1 ≥W u2 ≥W · · · ≥W
um.

The following two results, useful algorithmically, give conditions under which
different sections of a string can be factored independently — as we shall see,
the generic parallel algorithm starts by factoring “blocks” of the input string.
The first lemma corresponds to Theorem 2.5 for Lyndon words in [DIS94].

Lemma 5. Suppose x = uwv = u1u2 · · ·umwv1v2 · · · vm′ , with w an ele-
ment of a circ-UMFF W, and FW(u) = u1u2 · · ·um, FW (v) = v1v2 · · ·vm′ .
Then FW (x) = FW(u)wFW (v) if and only if these conditions all hold:
(1) no nonempty suffix s of u and nonempty prefix w′ of w such that sw′ ∈ W;
(2) no nonempty prefix p of v and nonempty suffix w′′ of w such that w′′p ∈ W;
(3) no such swp ∈ W.

Proof. Repeated applications of Lemma 1 and Corollary 1. �



Generic Algorithms for Factoring Strings 407

The next lemma shows that if u <W v, then u is less in W-order than any right
extension of v that is also in W ; this is a property related to the operation of
procedure Right-Extension, described in Section 4.

Lemma 6. ([DDS09]) Suppose u ∈ W and v ∈ W, where W is a circ-UMFF.
If u <W v, then for every string w such that vw ∈ W, u <W vw.

Like Lemmas 5 and 6, the following definitions pertain to the final factorization
of FW (uv) over W , given factorizations FW(u) and FW (v):

Definition 7. Suppose FW(u) = u1u2 · · ·us, FW (v) = v1v2 · · ·vt.
(1) j is the cut-point of FW(uv) if and only if it is the greatest integer in 1..t
such that vj >W us (j = 0 if us ≥W v1 ≥W v2 ≥W · · · ≥W vt).
(2) k is the concat-point of FW (uv) if and only if it is the greatest integer in
1..t such that usv1v2 · · ·vk ∈ W (k = 0 if usv1 �∈ W).

Since usv1 �∈ W ⇐⇒ us ≥W v1, we see that cut-point j = 0 and concat-point
k = 0 describe the same condition and must be equal. On the other hand, k > 0
is not necessarily the same as j > 0, as shown by the following simple examples:

Example 1. Let W be the Lyndon circ-UMFF, and consider u = a, v = cab.
The Lyndon factorizations of u and v, respectively, are FW (u) = u1 = a (hence
s = 1), FW(v) = v1v2 = (c)(ab) (hence t = 2). We seek FW(uv). Since
v2 = ab > a = u1, we see that the cut-point j = 2; on the other hand, since
ac ∈ W while acab �∈ W, the concat-point k = 1. Using the concat-point k, we
can conclude that the Lyndon factorization of uv = acab is (ac)(ab).

Example 2. Similarly if FW(u) = u1 = a, FW (v) = v1v2 = (b)(ab), we again
find j = 2, k = 1, and the Lyndon factorization FW (uv) = (ab)(ab).

In [DIS94] (procedure Contest, line 9) the cut-point was used to guide the compu-
tation of FW (uv) for Lyndon decomposition, thus leading, as these two examples
show, to incorrect results in some cases. In the remainder of this section we show
that in fact the concat-point can be used to compute FW (uv) correctly, not just
in the Lyndon case, but for any circ-UMFF factorization.

The first result generalizes Theorem 2.2 in [DIS94] from Lyndon words to
circ-UMFFs, at the same time replacing cut-point by concat-point; although
this theorem is just a special case of Corollary 1, we include it because the proof
illustrates the algorithmic use of right and left extensions of factors in order to
form FW(uv).

Theorem 3. Suppose W is a circ-UMFF, FW(u) = u1u2 · · ·us, FW (v) =
v1v2 · · ·vt, s ≥ 1, t ≥ 1. Then for some i ∈ 0..s and concat-point k ∈ 0..t,

FW (uv) = u1u2 · · ·uiwvk+1vk+2 · · ·vt,

where w = ui+1 · · ·usv1v2 · · ·vk.
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Proof. If us ≥W v1 (i = s, k = 0), it follows immediately from Theorem 2
that FW(uv) = u1u2 · · ·usv1v2 · · ·vt, with w = ε, the empty string. Assume
therefore that us <W v1, and note from Corollary 1 that substrings of factors
do not need to be considered.

(1) Right Extension. We determine the concat-point k ∈ 1..t such that w′ =
usv1 · · ·vk ∈ W and w′ ≥W vk+1 ≥W · · · ≥W vt. For k < t, by the definition
of concat-point we have w′vk+1 /∈ W , so that FW (usv) = w′vk+1 · · ·vt. For
k = t, FW(usv) = w′.
(2) Left Extension. We may suppose FW (u) = u1u2 · · ·us−hu

h
s for some h ∈

1..s. From Lemma 4, uh
sv1 · · ·vk ∈ W . If h = s (that is, i = s − h = 0),

w = us
1v1 · · ·vk and FW (uv) = wvk+1 · · ·vt. Otherwise, by Corollary 1, find

the least i ∈ 0..s− h such that w = ui+1 · · ·us−hu
h
sv1v2 · · ·vk ∈ W . �

We give two examples to show that the extensions of Theorem 3 are nontrivial
for circ-UMFFs of both types Flight Deck and Acrobat.

Example 3. For the Lyndon circ-UMFF L, consider u,v such that FL(u) =
u1u2u3u4 = (c)(bc)(bc)(b) and FL(v) = v1v2v3 = (c)(c)(a). Extending right,
we find that v4u1u2 = bcc ∈ L, but not v4u1u2u3 = bcca, so that the concat-
point k = 2. Extending left, we see that v2v3v4u1u2 = bcbcbcc ∈ L, but not
cbcbcbcc. Thus w = bcbcbcc and FL(uv) = (c)w(a).

For the second example, we introduce the co-Lyndon circ-UMFF L̂ [DDS09],
where u ∈ L̂ if and only if the reversed string u is a Lyndon word, and u <L̂ v

if and only if u > v in lexorder. L̂ is type Acrobat.

Example 4. For the co-Lyndon circ-UMFF L̂, suppose

FL̂(u) = pika >L̂ goose >L̂ owl ≥L̂ owl,

FL̂(v) = gorilla. Extending right, since owl <L̂ gorilla, u4v1 = owlgorilla
and the concat-point k = 1. Extending left, we find (owl)2 <L̂ gorilla, then
goose <L̂ (owl)2gorilla. But since pika >L̂ goose(owl)

2gorilla, we complete the
left extension with w = gooseowlowlgorilla and FL̂(uv) = (pika)w.

In both of these examples, both right extension and left extension are somehow
uniform over a range; that is, if some longest substring belongs to W , then so do
a range of its prefixes/suffixes. The following two lemmas make this idea more
precise, and provide justification for the novel use of binary search in the parallel
algorithm of Section 4 for factoring over circ-UMFFs.

Lemma 7. Suppose W is a circ-UMFF with u,v1,v2, . . . ,vt ∈ W, t ≥ 1.
Let v = v1v2 · · ·vt, w = uv and suppose further that FW(v) = v1v2 · · ·vt,
FW(w) = w. Then uv1v2 · · ·vi ∈ W for every i ∈ 1..t− 1.

Proof. Recall from Theorem 2 that FW(v) = v1v2 · · ·vt if and only if v1 ≥W
v2 ≥W · · · ≥W vt. Since FW(w) = w it follows from Lemma 3 that u <W
w <W vt, and so, since vt ≤W v1, that u1 = uv1 ∈ W (Definition 4 and
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Theorem 1(4)). But sincew = u1v2 · · ·vt ∈ W , it follows, again from Theorem 2
and Lemma 3, that u1 <W v2, hence u2 = u1v2 ∈ W . Continuing in this way,
we conclude that ut−1 = uv1v2 · · ·vt−1 ∈ W . This completes the proof. �

Lemma 8. Suppose W is a circ-UMFF with u1,u2, . . . ,us,v ∈ W, s ≥ 1.
Let u = u1u2 · · ·us, w = uv and suppose further that FW (u) = u1u2 · · ·us,
FW(w) = w. Then uiui+1 · · ·usv ∈ W for every i ∈ 2..s.

Proof. By Theorem 2, u1 ≥W u2 ≥W · · · ≥W us. Since FW(uv) = w, it
follows from Lemma 3 that u1 <W w <W v, and so, since us ≤W u1, that
v1 = usv ∈ W (Definition 4 and Theorem 1(4)). By Theorem 2 and Lemma 3
again, u1 <W w <W v1, and therefore, since us−1 ≤W u1, we conclude that
v2 = us−1v1 ∈ W . Continuing in this way, we find vs−1 = u2u3 · · ·usv ∈
W . �

3 Generic Sequential Algorithm

The generic parallel algorithm for factorization with respect to circ-UMFFs out-
lined in Section 4 depends for its execution on parallel invocations of a sequen-
tial factorization algorithm. Thus in Figure 1 we give pseudocode for Algorithm
DDIS that in O(n3) time computes the sequential factorization FW(x) of a giv-
en string x = x[1..n] in terms of a known circ-UMFF W . This timing depends

— Algorithm DDIS
i←1
while i ≤ n do

j←i; k←i; β[j]←0; jmax←i

while j ≤ n do
if IN-W(x, β, i, j) then

jmax←j; j←j+1; jlen←j−i
while x[j] = x[k] do

β[j]←β[j−1]+1; j←j+1; k←k+1
jfreq←�(k−i)/jlen� ; k←i

else
j←j+1

— Border computation.
b←β[j−1]+1
while b > 1 and x[j] �= x[i+ b− 1] do

b←β[b−1]+1
if x[j] = x[i+ b− 1] then β[j]←b else β[j]←0

output jmax
for j′←1 to jfreq do

jmax←jmax+jlen; output jmax
i←jmax+1

Fig. 1. Given a string x and a circ-UMFF W, output FW (x)
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upon being able to identify in O(j− i) time whether or not the current substring
x[i..j] of x is an element of W (the Boolean function IN-W , described below in
Figure 2).

Algorithm DDIS performs a left-to-right scan of x, at each position i identify-
ing the largest integer j = jmax such that x[i..j] ∈ W . This is done by scanning
all positions j ∈ i..n. For each candidate value of jmax found, the correspond-
ing length jlen of the factor is computed, and in addition the maximum number
jfreq of repeating occurrences of the factor is counted. For each range i..n in
x the border array β[i..n] is incrementally computed to facilitate determining
whether or not the current substring x[i..j] ∈ W (Theorem 1(1)).

function IN-W(x, β, i, j)
— A single letter always belongs to the UMFF.

if j = i then
INC←TRUE; return TRUE

— Apply Lemma 3.
elsif INC and x[j−1] <W x[j] then

return TRUE

else
INC←FALSE

— Apply Theorem 1(1) and Lemma 3.
if β[j] > 0 or x[j] <W x[i] then

return FALSE

— Apply rules specific to the circ-UMFF W.
else return BELONGS(W,x[i..j])

Fig. 2. Determine whether or not x[i..j] ∈ W

The Boolean function IN-W (Figure 2) tries first to apply rules that apply
to all circ-UMFFs, each of them implemented in constant time per position
j. These rules may involve letter comparisons that without loss of generality
are decided using the order of the underlying alphabet. In case these rules are
insufficient to determine whether or not x[i..j] ∈ W , rules specific to the current
circ-UMFF must be applied, that we suppose require a total of O(j − i) time.

For examples of customizing and optimizing this generic algorithm, we have
Duval’s well known linear Lyndon factorization algorithm [Du83] (an alternative
exposition of this algorithm is given in [S03], pages 158–166), and the linear-time
V -word factorization algorithm of Section 5.

4 Generic Parallel Algorithm

In this section we give an overview of the CRCW parallel RAM factorization
algorithm over a circ-UMFF W . As explained earlier, the structure of this al-
gorithm mirrors closely that of the corresponding Lyndon algorithm described
in [DIS94]. The reason for this is that the theoretical results on which the algo-
rithm’s correctness and complexity is based hold also in this more general case;
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specifically, Corollary 1 (along with Theorem 3) and Theorems 1 and 2, Lem-
mas 3, 6 and 7–8, and in the case of a Flight Deck circ-UMFF Lemma 2. Since
much of the pseudocode is virtually identical to that of the Lyndon algorithm,
we explain here the main ideas and modifications and refer the reader to [DIS94]
for fuller details.

The algorithm forms a binary comparison tree T. The input string x is par-
titioned into consecutive substrings (blocks) that form the leaves of T, each of
which is factored. At each level of T , factors in pairwise adjacent siblings are
concatenated using W-order wherever possible so as to achieve maximal factors
(as in Definition 2). The computation iterates from the leaves upwards towards
the root, where finally we have the required unique factorization of x.

The algorithm consists of the following five main procedures, the first two
executed in parallel, the others sequential:

Initialization. Partition the input string into 
n/ logn� blocks, each of length

logn�; factor each block based on W-order using a sequential algorithm
(see Section 3) executed in parallel.

Contest between Two Substrings. A parallel computation moving upwards
in T that compares factors in adjacent siblings in T.

Right-Extension of a Factor. Search T recursively downwards to locate the
blocks whose factorizations need to be recalculated. The method depends on
finding the concat-point by binary search: deals primarily with the righthand
of a pair of substrings.

Left-Extension of a Factor. Similarly search T to locate the block which
needs to be refactored: deals primarily with the lefthand of a pair of sub-
strings.

Final-Extension of a Factor. Recompute the factorization of a substring us-
ing binary search to achieve a left/right concatenation.

Embedded in the procedures Contest, Right-Extension, Left-Extension and Final-
Extension is a procedure String Comparison (depending on implementation)
that determines the W-order (Definition 4) of two strings (for example, lexorder
in the case of the Lyndon factorization).

4.1 Initialization

Given a string x = x[1..n], we compute FW (x) in parallel by partitioning x into
k = 
n/ logn� adjacent blocks Xi, i = 1, 2, . . . , k, each of length 
logn�. For
simplicity of presentation assume WLOG that k is a power of 2 (achievable by
appropriate padding of the string).

Assign a processor pi to each block Xi, 1 ≤ i ≤ k. Processor pi computes
FW(Xi) using a sequential factorization algorithm for W — either an efficient
algorithm for the given circ-UMFF is supplied (as in Duval’s algorithm for Lyn-
don decomposition [Du83], or [D11]), or if no such algorithm for W is known, the
generic sequential algorithm of Section 3 can be used. These sequential factor-
izations are computed in parallel for all blocks. The sequential algorithm applied
to a block Xi yields the start (and end) positions in Xi of all of its maximal
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factors over W . The initialization therefore requires 
n/ logn� processors and
time O(S(log n)), where S(logn) is the worst-case sequential time complexity
for a single block (S(log n) = log n for Lyndon decomposition).

Let ai be the start position in x of the rightmost occurrence in block Xi of
the least factor of FW(Xi). Each ai can be determined in constant time as a
byproduct of the sequential factorization algorithm executed for block Xi.

4.2 Data Structures

The data structures used are similar to those described in [DIS94] (though we
replace the integer array FA of [DIS94] by a bit array):

∗ The blocks Xi are the leaves of the full binary tree T . T is the basic data
structure of the procedure Contest described below and underlies the pro-
cessor allocation technique.

∗ A bit array FA = FA[1..n] specifies the start positions and end positions
of factors of x that are output at any stage of the computation. Thus any
factor can be described using only constant space. Suppose that a provisional
factorization F ′

W (x) = w1w2 · · ·wm has been computed, where

w1 = x[1..k1], w2 = x[k1+1..k2], . . . ,wm = x[km−1+1..km].

The start and end positions (kt+1, kt+1) of wt are specified as follows:

FA[j] =

{
1 if j = kt + 1,
0 otherwise;

where 0 ≤ t ≤ m − 1, k0 = 0, km = n. A sequence of pointers next links
adjacent factors: for FA[j] = 1, next(j) = j′, where j′ is the least position
greater than j such that FA[j′] = 1 (j′ = n+1 if no such position exists); the
end position of the factor beginning at j is j′ − 1. The array is initialized by
the parallel execution of Initialization, whereby processor pi sets the bits in
the ith “block” in FA corresponding to FW(Xi).

∗ Various data structures may be used for String Comparison u <W v re-
quired in the parallel procedure Contest and the sequential procedures Right-
Extension, Left-Extension and Final-Extension. In [DIS94] the Four Rus-
sians technique [IS92] is proposed to compare strings of length n on a bound-
ed alphabet in O(1) time, while for an unbounded alphabet the parallel con-
struction of a merged suffix tree using the CRCW PRAM model [IS92] is
proposed that can be constructed in O(log n log logn) time using O(n/ log n)
processors; using this tree, sequential comparison requires O(log logn) time.
It is because the CRCW PRAM model may be required in particular cases
such as [DIS94] that we have proposed its usage here; otherwise the EREW
model would suffice. For V -order (see Section 5), the use of a doubly-linked
list [DDS11] allows string comparison in time proportional to string length.
Otherwise the methodology and data structures of function IN-W can be
used.
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4.3 Contest between Factorizations of Adjacent Blocks

This procedure depends on the monotonicity of factors in a factorization (The-
orem 1(4), Lemma 3, Theorem 2), as well as on the fact that they cannot be
subdivided (Corollary 1).

Processing starts at the leaves by comparing the adjacent blocks in parallel:
for i = 1, 3, . . . , k−1, each last word wi starting at ai in Xi stages a contest with
the corresponding last word wi+1 starting at ai+1 in Xi+1. The result of each
contest is the starting position ai′ of the last factor in the factorization of the
doubled substring of size 2
logn�, along with the updated array FA. At each
subsequent stage the adjacent doubled blocks are similarly refactored. At the
root — that is, at stage 
logn� — we have computed the required factorization
FW(x). Note that only at the leaves are substrings of size 
logn� for all blocks
Xi stored; at internal tree nodes, only the index ai of the rightmost factor of
the associated substring is stored.

Figure 3 gives a corrected version of the corresponding procedure in [DIS94],
while generalizing to circ-UMFFs along with introducing a Flight Deck condition.
Note that wr(s, t) denotes the substring of x which starts at index ar and has
length at−as (the rightmost factor in a block starting at index ai is simply wi).

procedure Contest (FW(Xi), ai ∀i)

Input: FW(block Xi) and ai for 1 ≤ i ≤ �n/log n� specified by the array FA.
Output: the factorization FW(x) given in the array FA.

begin
repeat

forall distinct pairs of siblings ai, aj with i < j pardo
if wi ≥W wj then

aj becomes the parent node; (Lemma 3)
Right-Ext (wi(i, j), aj); (Lemma 7, Theorem 2)
elsif W is a Flight Deck circ-UMFF and
wi[1] <W wj [1] then

ai becomes the parent node; (Lemma 2)
next(FA[ai]) := next(FA[aj]);
end(FA[ai]) := end(FA[aj ]);

else Right-Ext (wi(i, end(FA[aj ]) + 1), end(FA[aj ]) + 1);
odpar
when all computations are complete move up to the next level
of the tree;

until the root is reached
end

Fig. 3. The contest between factorizations of adjacent blocks

The following example shows the necessity of extending to the rightmost factor
of the right substring in Contest. Note that even though the Lyndon words are
Type Flight Deck, nevertheless the condition of Lemma 2 is not satisfied.
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Example 5. Let L be the Lyndon circ-UMFF. Suppose FL(u) = u1 = ab; and
FL(v) = v1 ≥L v2, where v1 = b and v2 = ac. Then ab <L b and since
abb <L ac we must extend again to the right to achieve the final factorization,
namely FL(uv) = abbac.

4.4 Right-Extension

Given FW (u) = u1 ≥W · · · ≥W us and FW (v) = v1 ≥W · · · ≥W vt we perform
a “right-extension” from us to the factors of FW(v). Note that we extend
right repeatedly across a factorization as compared to a factor as in Lemma 6.
As in [DIS94], procedure Right-Extension (Right-Ext) is a recursive sequential
algorithm based on the divide and conquer technique, as suggested by Theorem
3.

4.5 Left-Extension

Left-Extension is a recursive sequential procedure which possibly modifies the
factorization associated with the lefthand of a pair of sibling tree nodes. Simi-
lar to Right-Extension it applies divide and conquer to travel down the binary
comparison tree T to locate a leaf. Right-Extension may have concatenated the
smallest factor (in W-order) in the left substring with a sequence of the largest
factors in the right substring. Hence Left-Extension must locate the leftmost
factor in the left substring satisfying the conditions of Theorem 3.

4.6 Final-Extension

This corresponds to the procedure of the same name in [DIS94], but imple-
mented here with binary search. It is invoked at leaf level where the size of a
block is 
logn�. For right concatenation, the procedure begins at position ai
marking the rightmost factor wi in the lefthand string L, then applies bina-
ry search up to position aj in the righthand string R to determine the unique
concat-point k such that wiv1v2 · · ·vk ∈ W and wiv1v2 · · ·vkvk+1 /∈ W , as in
Theorem 3 and Lemma 7. The output is the updated factorization defined by
FA over the range ai..aj − 1. Left concatenation analogously starts with the
possibly extended wi and applies binary search leftwards to determine the left-
most position in L that can be the start point of the factor, as in Theorem 3 and
Lemma 8. Since binary search requires logarithmic time, the time complexity is
O
(
log(
logn�)INW(logn)

)
, where INW denotes the time required by function

IN-W .

4.7 Correctness and Complexity

Correctness follows from Theorems 1, 2, 3, and Corollary 1, along with Lemmas
3, 7, 8 applied to the analogue of the algorithm given in [DIS94].



Generic Algorithms for Factoring Strings 415

The worst-case time of the parallel algorithm depends on:

– the cost of initialization (parallel sequential algorithms applied to blocks):
O(S(log n)).

– the time required to refactor a pair of factorizations using 
n/ logn� proces-
sors:

O
(

logn�INW(log n)
n/ logn�

)
= O(nINW (logn)).

So, for example, applying linear sequential Lyndon decomposition, the complex-
ity of the Lyndon CRCW PRAM algorithm for bounded alphabets in [DIS94] is
O(log n), and since the number of processors is 
n/log n�, the cost is O(n) and
optimal.

5 Parallel Lyndon-Like V -Order Factorization

In this section we show how to customize the generic parallel algorithm of Section
4 so as to factor strings over the V -order circ-UMFF V into maximal V -words
([DaD96], [DD03], [DDS11], [DDS12]). First we define these terms, and then
explain the algorithmics.

Let u = u1u2...un be a string over a totally ordered alphabet Σ. Define h ∈
1..n by h = 1 if u1 ≤ u2 ≤ · · · ≤ un; otherwise, by the unique value h such that
uh−1 > uh ≤ uh+1 ≤ uh+2 ≤ ... ≤ un. Let u∗ = u1u2...uh−1uh+1...un, where
the star * indicates deletion of the “V” letter uh. Write us∗ for (...(u∗)∗...)∗

with s ≥ 0 stars 1. Let μu = max{u1, u2, ..., un}, say μu = g, and let k = νu
be the number of occurrences of g in u. Then the sequence u,u∗,u2∗, ... ends
gk, ..., g2, g1, g0 = ε. In the star tree each string u over Σ labels a vertex, and
there is a directed edge from u to u∗, with ε as the root.

Definition 8. We define V -order ≺ between distinct strings u,v. First v ≺ u
if v is in the path u,u∗,u2∗, ..., ε. If u,v are not in a path, there exist smallest
s, t such that u(s+1)∗ = v(t+1)∗. Put c = us∗ and d = vt∗; then c �= d but
|c| = |d| = m say. Let j be the greatest i in 1 ≤ i ≤ m such that c[i] �= d[i]. If
c[j] < d[j] in Σ then u ≺ v. Clearly ≺ is a total order.

We introduce a natural analogue of Lyndon words, derived from V -order, known
as V -words, which like Lyndon words are of Type Flight Deck (Definition 5);
we denote the set of V -words as the circ-UMFF V .

Definition 9. ([DD03]) A string w over Σ is a V -word if it is the unique
minimum in V -order ≺ among the set of rotations of w.

A fundamental operation in the algorithm is procedure String Comparison for
determining concatenation (Definition 4). In [DDS11] we apply the technique of
“longest matching suffix” using a doubly linked list to compute this comparison
in linear time.

1 Note that this star operator, as defined in [DaD96], [DD03], [DDS11] and [DDS12],
is distinct from the Kleene star operator.
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Corresponding to Section 4.1, the initialization process of the parallel algo-
rithm first partitions the input string into consecutive blocks; each block is then
sequentially factored using a linear V -word factorization algorithm (procedure
VF(x) in [DDS11]), and the maximum positions ai are computed — all with
cost O(log n).

— Parallel Lyndon-Like V -order Factorization Algorithm

Initialization (Apply procedure VF(x) to each block in parallel)
begin

repeat
forall distinct pairs of sibling strings

((u1 ≥V u2 ≥V ... ≥V ui), (v1 ≥V v2 ≥V ... ≥V vj))
pardo
ui

′ := Right-Extension(ui,v1 ≥V v2 ≥V ... ≥V vj); (Corollary 1)
Left-Extension(u1 ≥V u2 ≥V ... ≥V ui−1,ui

′ ) (Theorem 2)
until the root is reached

end

Fig. 4. Compute the factorization of x[1..n] into V -words in parallel

As the parallel algorithm progresses up the comparison tree T (Figure 4), a
processor is assigned to a distinct pair of sibling nodes each containing point-
ers to the least factors in factored substrings, (u1 ≥V u2 ≥V · · · ≥V ui) and
(v1 ≥V v2 ≥V · · · ≥V vj), ai and aj , say. Procedure Right-Extension ap-
plies binary search (Lemma 7) to find the concat-point k, 1 ≤ k ≤ j, where
uiv1v2 · · · vk ∈ V and uiv1v2 · · · vk ≥V vk+1 ≥V · · · ≥V vj . Procedure
Left-Extension (Lemma 8) then checks the left sibling node for any further con-
catenation resulting in u1 ≥V u2 ≥V · · · ≥W ui′′−1 ≥ ui′′ · · ·uiv1v2 · · ·vk ≥V
· · · ≥V vj .

This progression up the tree is achieved by applying Corollary 1, which we will
demonstrate for the circ-UMFF V and m = 2. Suppose the strings u,v ∈ V , so
that they have V -form: u = fx1fx2...fxj and v = gy1gy2...gyk (every letter
in xi, yj is less than f, g respectively) and they satisfy lex-extension ≺LEX

(lexorder of substrings, which are compared using V -order) [DD03], [DDS11].
If u = v then to factor uv maximally, with the least number of factors, yields
u ≥V v, for otherwise we get a bordered word. If u <V v then, applying
Definition 4 and Theorem 1(3), the factorization is the string (uv), and note
here that the letters f, g satisfy f , g and, if they are distinct, f <V g. Consider
the case u >V v. Since uv /∈ V , therefore by Theorem 1(3), vu ∈ V and hence
f - g, f ≥V g. If f ≺ g, f >V g, then from their V -form, the factorization of
uv is u >V v. So assume f = g, and w = x1x2...xjy1y2...yk is not Lyndon
under ≺LEX . Hence some distinct rotation r of w satisfies r ≺LEX w. Clearly
r cannot start with x1. Further, r cannot start with xs �= x1 for otherwise u
is not a V -word satisfying the Lyndon condition. Similarly r cannot start with
yt �= y1 for otherwise v is not a V -word. Finally, r cannot start with a proper
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suffix of any substring xp or yq, for otherwise we get a bordered word from
Lemma 1. Hence r starts with y1 and so the factorization of uv is (u)(v).

Theorem 2 together with Lemmas 3 and 7 can be applied to binary search for
the concat-point at the final level of recursion as follows. Suppose that ui ≥V vj ,
then by Lemma 3, uiv1v2...vj /∈ V . We then subdivide the v factors giving a
potential concat-point k, ui <V vk, and then test whether uiv1v2...vk ∈ V ; if
not, continue subdividing. Similarly Lemma 8 can then be applied with binary
search to extend leftwards and complete the refactoring.

The time required is the cost of initialization, again O(log n), plus the worst-
case cost of refactoring a pair of strings using O(n/ logn) processors: bina-
ry search for concat-points (O(log n)) and V -order factorization of leaves (also
O(log n)). Thus, like Lyndon factorization, the cost is an optimal O(n).

6 Future Research

In this paper we have extended parallel factorization from Lyndon words to the
more general class of circ-UMFFs. In particular, we have used this algorithmic
technique to implement PRAM factorization based on V -order. We believe it
would be of interest to customize our sequential and parallel generic algorithms
to other Binary, Flight Deck and Acrobat classes of circ-UMFFs (see [DD03,
DDS09]). We conclude by conjecturing that the set “W(acaab)” is a new ternary
Flight Deck circ-UMFF, called “W(acaab)” since it contains acaab, and is defined
by starting with the words: W = {a <W b <W c, a <W ab, a <W ac, ..., ac <W
ab, ac <W aab, ...} (see ([DD08], Section 5 for the construction of a circ-UMFF).
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Abstract. We present an approach for data encoding and recovery of
lost information in a distributed database system. The dependencies
between the informational redundancy of the database and its recovery
rate are investigated, and fast recovery algorithms are developed.

Keywords: database, iterative code, RAID.

1 Introduction

We consider the graph-theoretical model of a distributed database system by
which we mean a graphG whose vertices correspond to the nodes of the database
where the information is stored (e.g. computer disk drives or computing centers).
These nodes are interconnected by a network modeled by the edges of G. Each
node of the database can be in one of two states: healthy or faulty. If a node is
in the healthy state, one has full access to the data stored in it. Otherwise, no
data stored in that node is accessible. We investigate the possibility to recover
this data by using the data stored in some other nodes.

One of the simplest ways to improve the database reliability is frequently
used in practice: duplication of the data stored in each node in other nodes.
This provides the fastest recovery rate in terms of the number of other node
accesses, as one just needs to read the data from some node mirroring the faulty
one. However, this approach noticeably increases the database’s informational
redundancy, since if s nodes could fail simultaneously, then it is necessary to
duplicate s times the data stored in each node of the network.

The main goal of our research is to decrease the redundancy of the database
system by decreasing the recovery rate while keeping it within acceptable limits.
We distinguish two recovery modes: online and offline. The online recovery
starts after every data request to a faulty node. The main goal is to complete
the request as soon as possible by recovering just the queried node data and not
taking care of recovering the other faulty nodes (if any). In contrast to that,
the offline maintenance mode is scheduled at regular intervals (e.g., when the
database access rate is low), and its goal is the fastest data recovery for all faulty
nodes (if any).
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To be more specific, we assume that the database network is represented by
an n-dimensional k × k × · · · × k grid R. A similar architecture is used, for
example, in the RAID technology. Our approach is based on a coding theory
technique and assigning symbols of some large alphabet to the nodes. Thus,
we consider the data stored in the system as a word of length kn over this
alphabet. Furthermore, we assume that the information is encoded using n-
dimensional iterative codes [2], whose every inner code is capable to recover up
to t ≤ k erasures. We only deal with combinatorial aspects of the data recovery
problem specified below and do not address the encoding/decoding of data and
its technical implementation. Without loss of generality, we assume that in the
online mode the goal is to recover the node corresponding to the origin of R.

Definition 1. A collection T of faulty points of R is called a configuration.

Each configuration corresponds to the set of erasures in the code word.

Definition 2. The process of recovery of the erasures in a code word of any
inner code is called a decoding step. After every decoding step the initial con-
figuration T is transformed into a smaller one T ′ ⊂ T by deleting from T all
points belonging to some line � (i.e., the collection of all points of R that agree
in n− 1 coordinates) provided that |� ∩ T | ≤ t.

We assume that every decoding step takes the same time.

Definition 3. The configuration T is called t-decodable (or simply decodable
if it is clear from the context what t is) if for any point f ∈ T there exists a
sequence of decoding steps s1, . . . , sr, (which is called the decoding scheme)
resulting in a configuration T ′ with f �∈ T ′. The minimum number r of steps
required to remove f from T is called the complexity of T with respect to
f . If f=(0,. . . ,0), then r is simply called the complexity of T and denoted by
L(T ).

We call a subset D ⊆ T a deadlock if for any line � of R the condition D∩� �= ∅

implies |D ∩ �| > t. Clearly, no point of of a deadlock D can be eliminated
in a decoding step. Obviously, every non-decodable configuration T contains
a deadlock. Let D(T ) denote the (inclusion-)maximal deadlock of T for non-
decodable T . Note thatD(T ) unique. Indeed, if there are two maximal deadlocks
D1 and D2, then the set D′ = D1 ∪D2 is a deadlock, too. This contradicts the
maximality of D1 and D2 unless D1 = D2.

For the rest of the paper we assume that n = 2. We will refer to the horizontal
and vertical lines of R also as rows and columns, respectively.

Let F (m, k, t) = max(L(T )), where the maximum is taken over all t-decodable
configurations T ⊆ R of size m. In other words, F equals the minimum number
of decoding steps needed in the worst case to recover the origin in a decodable
configuration of size m. In practice, this is proportional to the recovery time,
provided that the access time is the same for each node of R.

It may appear more natural to define F (m, k, t) as the maximum of L(T )
over all configurations that allow the recovery of the origin (instead of being
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completely decodable). Note that this is equivalent to the given definition which
follows by the observation that if T is non-decodable but allows the recovery of
the origin, then L(T ) = L(T \D(T )).

2 Preliminary Results

Theorem 1. Every configuration of size m is decodable if and only if m ≤
(t+ 1)2 − 1.

Proof. The bound is necessary, since if T is a (t+1)× (t+1) subgrid of R, then
no decoding step can be applied.

The sufficiency of the condition follows from the fact that for any configuration
T of size m < (t+1)2, there exists a line � such that 0 < |�∩ T | ≤ t. Indeed, by
changing the order of rows and columns of T , without loss of generality we can
assume that T ⊆ Q, where Q = [0, a1)× [0, a2) for some a1, a2 with 0 < ai ≤ k
for i = 1, 2, and every line of Q contains some point of T . If every line in Q
contains at least t+ 1 points of T then ai ≥ t+ 1 for i = 1, 2, so |T | ≥ (t+ 1)2.

Hence, we can perform a decoding step along the line � and get a decodable
subconfiguration of T of smaller size. The rest of the proof can done by induction
on m. �

Note that Theorem 1 can easily be extended to n ≥ 2, where the inequality
becomes m ≤ (t+ 1)n − 1.

Lemma 1. If T is a t-decodable configuration, then it is possible to remove all
points from T in at most 2k − t decoding steps.

Proof. Let T be t-decodable. Consider in some decoding sequence for T the
situation when for the (k − t)-th time a row has been chosen. (If that situation
never occurs, then we are done because T is completely decoded in less than
k− t horizontal and at most k vertical steps.) After this, on any column at most
t points of T remain which can be decoded by choosing columns only. That is,
T can be decoded by choosing k − t rows and at most k columns. �

As an immediate consequence we obtain a sharp upper bound for the size of a
t-decodable configuration.

Theorem 2. If T is a t-decodable configuration, then |T | ≤ k2 − (k − t)2.

Proof. Let T be a t-decodable configuration. As in every decoding step at most
t points can be removed from T , Lemma 1 implies

|T | ≤ (2k − t)t = k2 − (k − t)2. �

The bound in Theorem 2 is tight, and it is attained for the configuration obtained
from R by deleting a (k − t)× (k − t) subgrid.

By Theorem 1, every configuration of size m ≤ (t+ 1)2 − 1 is decodable. For
(t + 1)2 ≤ m ≤ k2 − (k − t)2 some configurations of that size m are decodable,
and some are not. For m exceeding the threshold stated in Theorem 2, no
configuration is decodable.
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Theorem 3. If 2t ≤ m ≤ k2 − (k − t)2, then

F (m, k, t) ≥ min

{⌈
m− 1

2

⌉
− t+ 2, k − t+ 1

}
.

Proof. It is straightforward to verify that for every initial segment of length
m ≤ k2 − (k − t)2 of the following numbering of points its complexity matches
the given lower bound.

First we number the points on the axes in alternating order, that is,

(0, 0), (0, 1), (1, 0), (0, 2), (2, 0), . . . , (0, k − 1), (k − 1, 0).

Then we proceed in similar fashion with the remaining points in the first row
and in the first column and number them alternating between the row and the
column. In general, after numbering all points of the l-th row and l-th column
we proceed with numbering the remaining points of the (l + 1)-st row and the
(l + 1)-st column in alternating order. �

Let T be any configuration of m faulty nodes. Denote by L(T, t) the minimum
number of decoding steps to delete the origin from T by using the inner codes
capable of correcting up to t errors. Let L(m, t) = max|T |=m L(T, t). In other
terms, L(m, t) = F (m,∞, t).

Theorem 4. L(m, 1) = �m−1
2 + 1.

Proof. Let T be a 1-decodable configuration of maximum complexity for its
size. We convert T into a configuration of the same size and with no smaller
complexity, all whose points are on the axes.

Assume that the last step in some optimal decoding scheme for T was applied
along the y-axis, and denote

A = {(x, 0) ∈ T },
B = {(0, y) ∈ T },
C = {(x, y)

∣∣ y > 0 and (x, 0) ∈ A}.

We first show that C ∩ T = ∅. Indeed, assume z ∈ C ∩ T . If z was not deleted
from T in our decoding scheme, we can obviously put it on the y-axis without
decreasing the complexity. Otherwise, since the column through z contains two
points of T , it can only be removed from T by applying a decoding scheme along
the row through z. For t = 1 the only reason to apply a row decoding step
through z is to be able to apply a column decoding step through z afterwards in
order to remove some point of A. But since the last decoding step was applied
along the y-axis, one or both decoding steps involving z could be skipped and
we would get a decoding scheme for T requiring fewer steps.

Therefore, no decoding step was performed along the columns passing through
the points of A. In other words, no point from the x-axis is removed. Further
note that the decoding steps could be rearranged so that the removal of the
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points of B is done during the very last decoding steps. Denote by D the set of
points in T which were removed in decoding steps before the first point of B is
removed. One has

L(T ) = L(m, 1) = |B|+ |D|.

Since T could be also decoded by applying the decoding steps along the columns
through the points of A, this scheme should not require fewer steps than the
optimal one. In other terms,

|B|+ |D| ≤ |A|.

Hence, if we place the points ofD on the y-axis, the resulting configuration would
have complexity |B|+ |D| and could be decoded by applying the decoding steps
along the rows only. If there are some other points of T outside the axes, we
put them all on the x-axis. The resulting configuration has all its points on axes
and is of complexity L(m, 1). It is easily seen that among such configurations
the one that has �m−1

2  points on the x-axis (excluding the origin) and 
m−1
2 �

points on the y-axis has maximum complexity. �

3 The Absolute Complexity of a Configuration

Definition 4. The absolute complexity A(T ) of a configuration T is the min-
imum number of decoding steps necessary to delete all points of T .

Let G(m, k, t) = maxA(T ), where the maximum is taken over all t-decodable
configurations T of size m in R. The next statement explores the function
G(m, k, t) .

Lemma 2. If m < k2 − (k − t)2 then

G(m, k, t) ≤ G(m+ 1, k, t) ≤ G(m, k, t) + 1.

Proof. To prove the first inequality, consider a configuration T of size m and
absolute complexity G(m, k, t), where m < k2 − (k − t)2. If at every decoding
step of some decoding scheme exactly t points are removed from T , the inequality
is obvious. Assume that at some decoding step less than t points are removed
from T and consider a decoding scheme in which such a step occurs as early as
possible. Let q be that decoding step number, and assume it is performed along
some column C of R. We show that there exists a point x ∈ R \T such that the
configuration T ′ = T ∪ {x} is decodable.

Let B be the set of points removed at step q, and let y ∈ C \ B. Note that
|B| < t. If a decoding step along the row through y was not performed before
step q, then y �∈ T and adding it to T leads to a decodable configuration of the
same absolute complexity. Otherwise, k − t + 1 decoding steps were performed
prior to step q along the rows through the points in C\B. Consider the decoding
step number q − 1. We can assume that it is performed along a row through
some point y ∈ C \ B. Then swapping steps q and q − 1, we get a decoding



424 S.L. Bezrukov, U. Leck, and V.P. Piotrowski

scheme where the first decoding step that removes less than t points from T is
performed along the row through y. By a similar argument, among the steps
preceding the q-th there must be k − t + 1 along columns (including C). In
other words, during the first q− 2 steps the decoding was performed along some
k− t rows and some k− t columns, and 2t(k− t) points are removed from T (so
q = 2(k−t)+2). Hence, after the first q−2 decoding steps the remaining part T ′′

of T is a subset of the intersection of some t rows and t columns of R, implying
|T ′′| ≤ t2. None of these rows and columns was used in a previous decoding
step. Thus, if |T ′′| < t2 we can add a point to T ′′ leaving it decodable. Finally,
if |T ′′| = t2, then m = |T | = |T ′′|+ 2t(k − t) = k2 − (k − t)2, a contradiction.

Therefore, the absolute complexity z of T ′ = T ∪ {x} satisfies z ≤ G(m +
1, k, t). Obviously, deleting a point from T ′ leads to a configuration of no larger
absolute complexity. Let us delete x from T ′ and obtain T . Hence,

G(m, k, t) ≤ z ≤ G(m+ 1, k, t).

To show the second inequality from the statement, let T be a decodable config-
uration of size m+1 and absolute complexity G(m+1, k, t). After one decoding
step one obtains a decodable configuration of size m′ ≤ m. Using the first
inequality from the statement, one has

G(m+ 1, k, t) ≤ 1 +G(m′, k, t) ≤ 1 +G(m, k, t),

which completes the proof. �

Let m(l, k, t) denote the minimum cardinality of a decodable configuration of
complexity l in R. Note that m(l, k, t) is well-defined by Lemma 2 for 1 ≤ l ≤
maxA(T ), where the maximum is taken over all t-decodable configurations T in
R. For fixed k, t we abbreviate m(l, k, t) by m(l).

According to the next lemma, the largest l for which m(l) is defined is 2k− t.

Lemma 3. maxA(T ) = 2k−t, where the maximum is taken over all t-decodable
configurations T in R.

Proof. Note that A(T ) ≤ 2k − t follows immediately from Lemma 1.
Finally, T = {(i, j) : 0 ≤ i, j ≤ k − 1, min{i, j} ≤ t − 1} is a decodable

configuration of size k2 − (k − t)2 = (2k − t)t. As any decoding step removes at
most t points, T can not be completely decoded in less than 2k − t steps. �

In what follows, m(l) will be determined completely.
Obviously, m(l) = l for l ≤ k, and an extremal configuration consists of l

points placed on a diagonal of R. The next step is to evaluate m(k + 1).

Theorem 5

m(k + 1) =

{
2t+ k − 1, if 1 ≤ t ≤ k/2,
2t+ k, if k/2 < t < k.
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Proof. Let T be a decodable configuration with A(T ) = k+1 and |T | = m(k+1).
Then at least one column of R intersects T in at least t+1 points, since otherwise
a trivial column-by-column decoding leads to A(T ) ≤ k. Similarly, at least one
row of R intersects T in at least t+1 points. Without loss of generality, we can
assume that each of the coordinate axes contains at least t + 1 points from T .
If there are x+ t points from T on the horizontal axis for some x ≥ 1, and y+ t
points from T on the vertical axis for some y ≥ 1, then at least x+y+1 decoding
steps are needed just to delete these points from T . In each of the remaining
k + 1− (x+ y + 1) = k − x− y steps at least one point is removed from T , so

|T | ≥ (x+ t) + (y + t)− 1 + k − x− y = 2t+ k − 1.

This bound it tight for t ≤ k/2, since the configuration

{(i, 0)
∣∣ i = 0, 1, . . . , 2t− 1} ∪ {(0, j)

∣∣ j = 0, 1, . . . , k − 1}

is of size 2t+ k − 1 and has absolute complexity k + 1.
Assume that t > k/2 and that T is a configuration of size 2t + k − 1 and

absolute complexity k+1. Without loss of generality, we can again assume that
both axes intersect T in at least t + 1 points. There exists an algorithm for
decoding T which removes the points from each axis as soon as only t points are
left on the axis. Since the number of decoding steps is at least k+ 1 and in two
of those steps t points are removed, exactly one point must be removed in every
other step, and the total number of steps must be exactly k + 1. This implies
that there is no line L with 2 ≤ |T ∩ L| ≤ t because otherwise we could remove
the points from L ∩ T in the very first decoding step.

Assume that there is a column V different from the axis and such that |T ∩
V | ≥ t + 1. Since t > k/2 there must be a row H different from the axis
and such that |T ∩ H | ≥ 2. Hence, |T ∩ H | ≥ t + 1, so for the part T ′ ⊆ T
consisting of the intersections of T with H , V and the coordinate axis, one has
2t+ k − 1 = |T | ≥ |T ′| ≥ 4t. This contradicts t > k/2.

Consequently, every column different from the axis contains at most one point
of T . This implies 2k − 1 ≥ |T | = 2t+ k − 1, contradicting t > k/2.

Finally, m(k + 1) = 2t + k for t > k/2 follows by the observation that the
configuration

{(i, 0)
∣∣ i = 0, 1, . . . , t} ∪ {(j, 0)

∣∣ j = 0, 1, . . . , t} ∪ {(h, h)
∣∣ h = 0, 1, ..., k − 1}

has size 2t+ k and absolute complexity k + 1. �

Lemma 4. If l < 2k − t, then m(l) < m(l + 1).

Proof. Assume the contrary,m(l+1) ≤ m(l). Let T be a decodable configuration
of complexity l + 1 such that |T | ≤ m(l). Our assumption implies that such
configuration exists. Let T ′ be obtained from T by making the first step in
a decoding of T that uses A(T ) steps. Then |T ′| < |T | ≤ m(l) and A(T ′) =
A(T )− 1 = l. This contradicts the definition of m(l). �
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Corollary 1. If k < l ≤ 2k − 2t+ 1 and 2 ≤ t ≤ k/2, then m(l) = l + 2t− 2.

Proof. Theorem 5 and Lemma 4 imply that for l = k + 1 + s one has m(l) ≥
m(k+1)+s = 2t+k−1+s = l+2t−2. The matching upper bound is attained
for the following configuration:

{(0, 0), (1, 0), . . . , (2t+ s− 1, 0)} ∪ {(0, 0), (0, 1), . . . , (0, 2t+ s− 1)} ∪
{(2t+ s, 2t+ s), (2t+ s+ 1, 2t+ s+ 1), . . . , (k − 1, k − 1)}.

This configuration is of cardinality l+2t−2 and complexity l. The construction
works as long as 2t+ s ≤ k, which is equivalent to l ≤ 2k − 2t+ 1. �

In the next theorem we establish general lower and upper bounds for the mini-
mum size of a configuration of the maximum absolute complexity 2k − t.

Theorem 6. 2k+ t− 1 ≤ m(2k− t) ≤ 2k+(t+1)2− 4 holds for any 1 ≤ t < k.

Proof. For the upper bound, the following configuration can be used:

· · ·

...

k − t− 2

k − t− 2

t− 1

(t+ 2) × (t+ 2)

kernel

Fig. 1. A construction for the upper bound of m(2k − t, k, t)

The kernel consists of all points of the (t+2)×(t+2) corner subgrid excluding
the diagonal points {(i, t+1− i)

∣∣ i = 0, 1, . . . , t− 1} and the points {(j, 0)
∣∣ j =

t, t+1} of the bottom line. Hence, every column of the kernel has t+1 points, the
bottom row has t points, the next row has t+ 2 points, and all other rows have
t+1 points. The size of this configuration is (t+2)(t+1)+(t−1)+2(k−t−2) =
2k + (t+ 1)2 − 4.
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The only way to decode the kernel is to start with its bottom line, for which
k−t−2 rightmost points on the horizontal axis must be deleted first. For this, in
turn, we have to delete all the points of the last column, for which (k− t−2)+1
steps are needed. After this the kernel can be decoded in t + 4 steps. This
implies that the absolute complexity of the configuration is 2k − t.

To prove the lower bound, we proceed by induction on k. If k = t + 1, then
m(2k − t) = m(k + 1) which is equal to 2t+ k = 2k + t− 1 by Theorem 5.

Assume that k ≥ t + 2 and that m(2(k − 1) − t, k − 1, t) ≥ 2k + t − 3. Let
T be a configuration of size m(2k − t) and absolute complexity 2k − t in the
k × k grid R. If every row of R intersects T in at least t + 1 points, then
|T | = m(2k − t) ≥ k(t + 1) ≥ 2k + t − 1, and we are done. That is, we can
assume that there is a row r that intersects T in at most t points. For symmetry,
we can also assume that there is a column c with |c ∩ T | ≤ t. Let T ′ be the
configuration (in a (k − 1) × (k − 1) grid) obtained from T by removing the
points on r and c. As A(T ) = 2k − t and A(T ′) ≤ 2(k − 1) − t, it follows that
A(T ′) = 2(k − 1)− t and that there are at least two points of T in r ∪ c. Using
the induction hypothesis, we obtain

m(2k − t) = |T | ≥ |T ′|+ 2 ≥ m(2(k − 1)− t, k − 1, t) + 2 ≥ 2k − t− 1. �

In the case when t = 2 the maximum complexity of a decodable configuration
is 2k − 2. According to the previous results, we know the function m(l) for
l ≤ 2k − 2t + 1 = 2k − 3. Consequently, the only remaining case for t = 2 is
the value of m(2k − 2). By Theorem 6, we know that if t = 2, then 2k + 1 ≤
m(2k − 2) ≤ 2k + 5. The exact values for all k are given in Theorem 7.

Theorem 7

m(2k − 2, k, 2) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
7, if k = 3
10, if k = 4
14, if k = 5
16, if k = 6
2k + 5, if k ≥ 7.

Proof. It is an easy exercise to show that the absolute complexities of the con-
figurations shown in Figure 2 are the same as in the statement, thus establishing
an upper bound for m(2k − 2, k, 2) when 3 ≤ k ≤ 7. Furthermore, the upper
bound of 2k+ 5 for k ≥ 7 follows from Theorem 6. So, we concentrate on lower
bounds.

The value for k = 3 follows from Theorem 5 or Theorem 6.
To prove the theorem for larger k, we first make a general observation. Let T

be a minimum-size configuration of absolute complexity 2k − t in a k × k grid.
The pigeonhole principle, together with the already established upper bound for
|T |, implies that there is a row r that contains at most 2 points from T . If there
is an empty column, then making the first decoding step along r results in a
decodable configuration in a (k − 1) × (k − 1)-grid. Then the complexity of T
does not exceed 2(k − 1) − t + 1 = 2k − t − 1, contradicting the choice of T .
Hence, without loss of generality we can assume that every column of the grid
has a non-empty intersection with T .
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k = 3, m = 7 k = 4, m = 10 k = 5, m = 14

k = 6, m = 16 k = 7, m = 19

Fig. 2. Minimum-size configurations of complexity 2k − 2 for k = 3, 4, 5, 6, 7

Next, we consider the case k = 4. It is sufficient to show that every decodable
configuration of size 9 can be decoded in 5 steps. If the first two decoding steps
can be applied to some row and some column and result in the removal of at
at least 3 points from T , then we end up with a configuration of size at most 6
in a 3 × 3 grid which can be decoded in 3 steps. Hence, T can be decoded in 5
steps. By this, without loss of generality we can assume that no row or column
of the grid contains exactly 2 points of T . Let ci be the size of the intersection
of the i-th column of the grid with T . Clearly, c1+ c2+ c3+ c4 = 9, and without
loss of generality, we can assume c1 ≥ c2 ≥ c3 ≥ c4. Taking into account that
ci ∈ {1, 3, 4} for i = 1, 2, 3, 4, it turns out that the only choice for (c1, c2, c3, c4)
is (4, 3, 1, 1). It follows some row of the grid contains exactly 2 points from T ,
and we are done.

The cases k = 5 and k = 7 can be handled similarly, although there are more
subcases to consider.

In the proof of the lower bound in Theorem 6 we presented an argument that
shows that m(2k − 2, k, 2) ≥ m(2(k − 1) − 2, k − 1, 2) for k ≥ 4. By this, the
claim for k = 6 is implied by the result for k = 5, and the claim for k ≥ 7 follows
by straight forward induction on k, for which k = 7 serves as the base case. �



On Data Recovery in Distributed Databases 429

4 Complexity of Data Recovery

Here we deal with the complexity aspects of the data recovery problem. The
following lemma plays a central role in our analysis.

Lemma 5. Let T ⊆ R be a configuration. Assume there exists a line � of R
such that 0 < |T ∩ �| ≤ t, and let T ′ = T \ (T ∩ �). Then T is decodable if and
only if T ′ is decodable.

Proof. Indeed, if T is decodable, then so it is T ′ since T ′ ⊂ T . In fact, the
decoding scheme for T can be applied to decode T ′. On the other hand, if T ′ is
decodable, then T can be decoded by decoding along � in the first step and then
applying the decoding scheme for T ′. �

By Lemma 5, if T is decodable, then we can convert T into the empty set using
feasible decoding steps in any order.

Recall from introduction that D(T ) denotes the (inclusion-)maximal deadlock
of a non-decodable configuration T .

Lemma 6. If T , �, and T ′ are as in Lemma 5, then D(T ) = D(T ′).

Proof. If T is decodable, then Lemma 5 implies D(T ) = D(T ′) = ∅. Assume
that T is not decodable. Since T ′ ⊆ T we have D(T ′) ⊆ D(T ). Assume there is
some p ∈ D(T ) \ D(T ′). This means that some line �′ intersecting D(T ) after
deleting all points on � intersects D(T ) in less points than before. But this is
impossible as no point on � belongs to D(T ). �

By Lemma 6, the deadlock D(T ) consists precisely of those points that cannot
be deleted from T in decoding steps. Thus, we get a polynomial time algorithm
for constructing D(T ) by applying decoding steps in any order, and this way
shrinking T down to D(T ). As a corollary, we get solutions to the following
Problems 1 and 2 in polynomial time.

PROBLEM 1.
Instance: A list of faulty nodes T ⊆ R, k, t, and a point p ∈ T .
Question: Is it possible to recover the contents of the node p?
For this, we just need to check whether p ∈ D(T ).

PROBLEM 2.
Instance: A set T ⊆ R of faulty nodes, k, and t.
Question: Is it possible to recover the data from all faulty nodes?
For this, we just need to check whether D = ∅.

PROBLEM 3.
Instance: A list T ⊆ R of faulty nodes and an integer s.
Question: Is there a decoding scheme of complexity at most s?
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Proposition 1. Problem 3 is NP-complete.

Proof. The statement follows directly from the NP -completeness of the problem
considered in [1]. �

PROBLEM 4.
Instance: A list T ⊆ R of faulty nodes, a node p ∈ T , and integer an s.
Question: Is there a decoding scheme of complexity at most s to restore the
content of node p?

Theorem 8. Problem 4 is NP-complete.

Proof. Obviously, the problem is in NP . We reduce the Exact-3-Cover Prob-
lem, which is known to be NP-complete [3], to our problem. Given an instance
{X1, . . . , Xr} of 3-subsets of U = {1, . . . , 3m}, for i ∈ U denote di = |{j

∣∣
i ∈ Xj}|. We construct an instance of our problem for t = max{maxi di, 3}.
Consider the set T of faulty nodes defined as follows

T = A ∪B ∪ C ∪D ∪ E,

where

A = {(i, 0)
∣∣ i = 0, . . . 3m+ t− 1},

B =

r⋃
i=1

(Xi × i),

C =

3m⋃
i=1

{(i, r + j)
∣∣ j = 1, . . . , t− di},

D = {(0, r + j)
∣∣ j = 1, . . . , t+ 1},

E = {(i, j)
∣∣ 3m+ 1 ≤ i ≤ 3m+ t+ 1, r + 1 ≤ j ≤ r + t+ 1}.

Obviously, construction can be accomplished in polynomial time. We show that
for the selected t the node (0, 0) can be restored in 4m + 1 decoding steps iff
there exists an exact cover X = {Xi1 , . . . , Xim} of U .

Indeed, assuming the existence of the exact cover, let us apply m decoding
steps through the rows y = ij , j = 1, . . . ,m. Now every column x = i for
i = 1, . . . , 3m contains exactly t faulty nodes, and they can be restored in the
next 3m steps. After those decoding steps the number of faulty nodes on the
x-axis becomes t and the origin can be restored right away.

On the other hand, assume the node (0, 0) can be restored in 4m+ 1 steps.
Note that no decoding step can be applied for a row or column through the
set D ∪ E, since every such row/column contains at least t + 1 faulty nodes.
In particular, we cannot restore the nodes of C by using the row decodings.
Therefore, the only way to restore the origin is to apply a decoding step along
the x-axis. This can be only done after restoring the nodes (i, 0) for i = 1, . . . , 3m
by using the decodings via the columns through the set C, which requires 3m
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steps. But for this every such column must have at most t faulty nodes, which
could be only established in the remaining m steps by applying the decodings
via the rows through the set B, namely via the rows corresponding to the exact
cover of U . �
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tion from Exact-3-Cover in the proof of Theorem 8.
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2 Instituto de Matemática e Estat́ıstica, Universidade de São Paulo, Rua do Matão,

1010, 05508-090 São Paulo, Brazil
yoshi@ime.usp.br

3 Fakultät für Informatik, Technische Universität Chemnitz, Straße der Nationen 62,
D-09107 Chemnitz, Germany

Lefmann@Informatik.TU-Chemnitz.de

Dedicated to the memory of Rudolf Ahlswede

Abstract. There is a variety of problems in extremal combinatorics
for which there is a unique configuration achieving the optimum value.
Moreover, as the size of the problem grows, configurations that “almost
achieve” the optimal value can be shown to be “almost equal” to the
extremal configuration. This phenomenon, known as stability, has been
formalized by Simonovits [A Method for Solving Extremal Problems in
Graph Theory, Stability Problems, Theory of Graphs (Proc. Colloq., Ti-
hany, 1966), 279–319] in the context of graphs, but has since been con-
sidered for several combinatorial structures. In this work, we describe
a hypergraph extremal problem with an unusual combinatorial feature,
namely, while the problem is unstable, it has a unique optimal solution
up to isomorphism. To the best of our knowledge, this is the first such
example in the context of (simple) hypergraphs.

More precisely, for fixed positive integers r and � with 1 ≤ � < r, and
given an r-uniform hypergraph H , let κ(H, 4, �) denote the number of
4-colorings of the set of hyperedges of H for which any two hyperedges
in the same color class intersect in at least � elements. Consider the
function KC(n, r, 4, �) = maxH∈Hn,r κ(H, 4, �), where the maximum runs
over the family Hn,r of all r-uniform hypergraphs on n vertices. We
show that, for n large, there is a unique n-vertex hypergraph H for
which κ(H, 4, �) = KC(n, r, 4, �), despite the fact that the problem of
determining KC(n, r, 4, �) is unstable for every fixed r > � ≥ 2.
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1 Introduction

In this work, we study combinatorial problems of the following type. Given a
class C of combinatorial objects and a real function f on C, we wish to maximize
f over the elements of C. The following is a common feature of a large number
of problems of this type. The function being optimized admits a unique optimal
solution; moreover, every solution that “almost” achieves the optimal value must
also be structurally “close” to the optimal solution. This phenomenon is called
stability and, in a combinatorial perspective, has been first formally introduced
for graphs by Simonovits [18].

Definition 1. Let f be a function on finite graphs that is invariant under iso-
morphism and let Pf (n) be the problem of maximizing f over the class of all
n-vertex graphs. The problem Pf (n) is said to be stable if, for every ε > 0,
there exist a positive integer n0 and a constant δ > 0 for which the following
holds. Let G be a graph on n ≥ n0 vertices such that f(H) − f(G) < δf(H),
where H is an n-vertex graph that maximizes f . Then there is a graph H ′ that
is isomorphic to H with the property that H ′ and G differ in at most εn2 edges.

One of the first problems studied under the lens of stability is the Turán problem,
which, for a fixed graph F , asks for the maximum number ex(n, F ) of edges in
an F -free n-vertex graph, which is also known as the Turán number of F . In his
original work [18], Simonovits proved, among other more general results, that,
for complete graphs K�, the problem of determining ex(n,K�) is stable. More
precisely, he has shown the following.

Theorem 1. For any ε > 0 and � ≥ 3 there exist δ > 0 and n0 such that the
following holds for any n ≥ n0. If G = (V,E) is an n-vertex graph with no copy
of the complete graph K� and with at least (1 − δ) ex(n,K�) edges, then there
exists a partition V = V1 ∪ . . . ∪ V�−1 of the vertex set V such that the number
of edges with both endpoints in the same partition class is at most εn2.

Theorem 1 has been obtained independently by Erdős [5] (for a recent, stream-
lined proof, see Füredi [9]). Stability has also been observed for Turán numbers
of several other forbidden graphs and hypergraphs, such as color critical graphs
and the 3-uniform Fano plane (see Füredi and Simonovits [11], and Keevash
and Sudakov [16]). Moreover, it has been considered for other graph and hyper-
graph problems (see, for instance, Füredi [10], Simonovits [19] and Keevash [14],
and the references therein), as well as for combinatorial structures such as lin-
ear spaces (see Blokhuis, Brouwer, Szőnyi, and Weiner [2]), finite geometries
(see Szőnyi and Weiner [20]) and set systems (see Keevash and Mubayi [15]).

On the other hand, it is known that, if multiple edges are allowed, then there
exist graphs F for which there are classes of F -free graphs on n vertices that
are almost extremal, but which are structurally far apart. For example, Brown
and Simonovits [4] have studied the case where the forbidden graph F is a
triangle with exactly one double edge, and where maximality was considered with
respect to all n-vertex graphs for which every edge appears at most twice. They



434 C. Hoppen, Y. Kohayakawa, and H. Lefmann

showed in [4] that there is a single extremal n-vertex graph, namely the graph

T
(2)
2 (n) obtained by doubling the edges of the n-vertex bipartite Turán graph,

the balanced complete bipartite graph on n vertices. The graph T
(2)
2 (n) has

2
n/2��n/2 edges. However, the (simple) complete graph Kn, with (n2 − n)/2
edges, is within o(n2) of the extremal value, even though Ω(n2) edges must be

modified to turn it into a copy of T
(2)
2 (n).

We consider r-uniform hypergraphs, where a hypergraph H = (V,E) is given
by its vertex set V , typically V = [n] = {1, . . . , n}, and its set E of hyperedges,
whose elements are subsets of the vertex set. A hypergraph H = (V,E) is
said to be r-uniform if each hyperedge e ∈ E has cardinality r. As before, for
a fixed r-uniform hypergraph F and a positive integer n, the Turán number
ex(n, F ) is defined as the maximum number of hyperedges in an n-vertex, r-
uniform hypergraph not containing any copy of F . Hypergraphs H = (V,E) on
n vertices with ex(n, F ) hyperedges that do not contain a copy of F are called
F -extremal.

Concerning forbidden hypergraphs, a well-known problem raised by Turán [21]

is to determine ex
(
n,K

(3)
4

)
, where K

(3)
4 is the complete 3-uniform hypergraph

on four vertices. The best known lower bound is ex
(
n,K

(3)
4

)
≥ 5

9

(
n
3

)
and there

are exponentially many constructions achieving this [3,7,8,17]. Thus, if one could

show that ex
(
n,K

(3)
4

)
=

(
5
9 + o(1)

) (
n
3

)
holds, instability would occur here and

there might even be several extremal configurations.
The main contribution of this paper is the statement of a natural problem that

is provably unstable, but which has a unique optimal solution up to isomorphism.
To the best of our knowledge, the problem that we consider here is the first such
example in the context of simple hypergraphs, that is, of hypergraphs for which
multiple hyperedges are not allowed. To be precise, for a fixed family F of
r-uniform hypergraphs, an r-uniform host hypergraph H and an integer k, we
investigate the number ck,F (H) of k-colorings of the set of hyperedges of H with
no monochromatic copy of any F ∈ F . Then, for every positive integer n, we
may consider the function

ck,F (n) = max
H∈Hn,r

ck,F (H),

the largest number of k-colorings ofH with no monochromatic copy of any F ∈ F
among all hypergraphs H in the class Hn,r of r-uniform n-vertex hypergraphs.
For instance, if H is a graph and F only contains the single path of length two,
then each color class has to be a matching and ck,F (H) is the number of proper
k-edge colorings of H . The number ck,F (n) would be the largest number of
distinct proper k-edge colorings of an n-vertex graph.

Here, we follow our work in [13] and we forbid pairs of hyperedges of the
same color that share fewer than � vertices, thus forcing every color class to
be �-intersecting. Formally, for fixed integers � and r with 1 ≤ � < r and
i ∈ {0, . . . , � − 1}, let Fr,i be the r-uniform hypergraph on 2r − i vertices with
two hyperedges sharing exactly i vertices, and let Fr,� = {Fr,i : i = 0, . . . , �− 1}.
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Let κ(H, k, �) denote the number of k-colorings of the set of hyperedges of a
hypergraph H with no monochromatic copy of any F ∈ Fr,�, thus κ(H, k, �) =
ck,Fr,�

(H). These Fr,�-avoiding colorings with k colors are called (k, �)-Kneser
colorings. Let KC(n, r, k, �) = max{κ(H, k, �) : H ∈ Hn,r}, where Hn,r is the
family of all r-uniform hyperpergraphs on n vertices; and hence KC(n, r, k, �) =
ck,Fr,�

(n). In other words, the quantity κ(H, k, �) is the number of (k, �)-Kneser
colorings of a hypergraph H , while KC(n, r, k, �) is the largest number of (k, �)-
Kneser colorings amongst all r-uniform n-vertex hypergraphs. Our main concern
is to determine which n-vertex r-uniform hypergraphs H maximize κ(H, k, �).
The hypergraphs H that satisfy κ(H, k, �) = KC(n, r, k, �) are called (r, k, �)-
extremal hypergraphs.

Observe that, as every color class in a (k, �)-Kneser coloring does not contain
two sets that share fewer than � vertices, this problem is related to the classical
Erdős-Ko-Rado Theorem [6] and its generalizations (see Ahlswede and Khacha-
trian [1]). Recall that, for n large, up to isomorphism, the unique extremal
hypergraph for ex (n,Fr,�) is the hypergraph on [n] whose hyperedges are all the
r-element subsets of [n] containing a fixed �-element set. Since this hypergraph
has exactly

(
n−�
r−�

)
hyperedges and every k-coloring of its hyperedges trivially

satisfies the required property, we have

KC(n, r, k, �) ≥ k(
n−�
r−�). (1)

We have shown in [13] that equality holds in (1) if and only if k ∈ {2, 3},
and, for k ≥ 4, we have determined structural properties of (r, k, �)-extremal
hypergraphs. Central in our arguments is the notion of an �-cover.

Definition 2. For a positive integer �, an �-cover of a hypergraph H is a set C of
�-subsets of vertices of H such that every hyperedge of H contains an element of
C. A minimum �-cover of a hypergraph H is an �-cover of minimum cardinality.

Note that this definition coincides with the definition of a vertex cover of a graph
or hypergraph when � = 1.

Definition 3. Fix integers n, r ≥ 2 and 1 ≤ � < r. Let C be a collection of
�-subsets of an n-element set V . The (C, r)-complete hypergraph HC,r(n) is
the r-uniform hypergraph on V that contains as hyperedges all the r-sets of V
containing some member of C.

In the theorem below, the family Hr,4,�(n) consists of all n-vertex r-uniform
hypergraphs H = HC,r(n) for C = {t1, t2}, where the distinct sets t1 and t2 are
�-subsets of the vertex set.

Theorem 2. [13] Let 1 ≤ � < r be fixed integers. For every ε > 0, there is
n0 > 0 such that, for any n > n0 and every hypergraph H ∈ Hr,4,�(n),

κ(H, 4, �) ≥ (1− ε)KC(n, r, 4, �).

Conversely, there exist n1 > 0 and ε0 > 0 such that, if n > n1 and H is an n-
vertex r-uniform hypergraph satisfying κ(H, 4, �) ≥ (1− ε0) ·KC(n, r, 4, �), then
H ∈ Hr,4,�(n).
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Theorem 2 may be naturally interpreted in terms of stability, which in our
framework may be formalized as follows. Here, for two sets A and B, we write
A

�
B for their symmetric difference (A \B) ∪ (B \A).

Definition 4. Let r, k and � be fixed. The problem Pn,r,k,� of determining
KC(n, r, k, �) is stable if, for every ε > 0, there exist δ > 0 and n0 > 0 such
that the following is satisfied. Let H∗ be an (r, k, �)-extremal hypergraph on
[n], where n ≥ n0, and let H be an r-uniform hypergraph on [n] satisfying
κ(H, k, �) > (1 − δ)KC(n, r, k, �). Then |E(H)

�
E(H ′)| < ε|E(H ′)| for some

hypergraph H ′ that is isomorphic to H∗.

With this definition, Theorem 2 implies that Pn,r,4,� is unstable for every r >
� ≥ 2, as the values of κ(H, 4, �) are asymptotically equal for hypergraphs H in
Hr,4,�(n), but two hypergraphs in this class for which the cover elements have
different intersection sizes are far from being isomorphic. We remark that, in the
case � = 1, the problem Pn,r,4,� has been proven to be stable in [13]. An (r, 4, 1)-
extremal hypergraph on n vertices is given by a (C, r)-complete hypergraph on n
vertices with vertex coverC = {{v}, {w}} for distinct vertices v and w; moreover,
if n is large enough, this extremal hypergraph is unique up to isomorphism.

We may now state the main result of this paper. Despite the instability of
Pn,r,4,�, we show that, for every � ≥ 2 and k = 4 colors, the problem Pn,r,4,� has
a unique solution up to isomorphism, namely the set of hypergraphs in Hr,4,�(n)
for which the two elements in the �-cover have intersection of size �− 1.

Theorem 3. Let r > � ≥ 2 be integers. Then, there exists n0 such that, for
all n ≥ n0, the extremal hypergraph for the problem Pn,r,4,� is the hypergraph
HC,r(n) with C = {t1, t2}, where t1 and t2 are �-sets with |t1 ∩ t2| = �− 1.

The remainder of this paper is structured as follows. In Section 2, we introduce
the main tools for proving Theorem 3. The proof of Theorem 3 is the subject of
Section 3, while Section 4 is devoted to final remarks and open problems. Along
the way, we give a new self-contained proof of Theorem 2, which, despite not
being significantly different from the work in [13], takes advantage of simplified
calculations for the case of k = 4 colors.

2 Preliminaries

The objective of this section is to introduce most of the ingredients that will
be used to prove Theorem 3. Although it is not crucial for our result, we shall
provide a proof of Theorem 2 for completeness. The arguments here are remi-
niscent of the ones in the proof of Theorem 1.7 in [13], which deals with a more
general case, but calculations are less involved owing to the restriction to the
case of k = 4 colors. In this simplification, we incorporate some of the ideas
used for proving Theorem 1.2 in [12], which addresses a similar problem in the
context of graphs.

We concentrate on the proof of the second statement of Theorem 2, namely
that every n-vertex r-uniform hypergraph H satisfying κ(H, 4, �) ≥ (1 − ε0) ·
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KC(n, r, 4, �) lies in Hr,4,�(n). To this end, we show that the largest number
of (4, �)-Kneser colorings of H is achieved when the size of a minimum �-cover
C = {t1, . . . , tc} is equal to two, i.e., c = 2, and that the number of (4, �)-Kneser
colorings is substantially smaller when this is not the case. To conclude this,
we shall prove that the bulk of the (4, �)-Kneser colorings of a (4, �)-extremal
hypergraph consists of colorings such that every color appears ‘many’ times and
that, when this happens, the coloring must be ‘star-like’, in the sense that,
for every given color σ, there must be a cover element ti contained in all the
hyperedges colored σ. As a consequence of this fact, we deduce that extremal
hypergraphs are (C, r)-complete, that is, they contain all possible hyperedges
covered by �-sets in C. In particular, a hypergraph of this type must lie in
Hr,4,�(n).

In the remainder of this section, we follow this plan to reach the desired
conclusion. First, we show that, for r and � fixed, a (4, �)-Kneser colorable
hypergraph has a small �-cover.

Lemma 1. Let r and � be positive integers with � < r, and let H = (V,E) be an
r-uniform (4, �)-colorable hypergraph. Then H has an �-cover C = {t1, . . . , tc}
with cardinality c ≤ 4r� and with |

⋃c
i=1 ti| ≤ 4r.

Proof. The (4, �)-Kneser colorability of H ensures that there cannot be
more than four hyperedges that pairwise intersect in fewer than � vertices.
Hence there is a set S ⊆ E of at most four hyperedges such that every hy-
peredge of H is �-intersecting with some element of S. In particular, the set
C = {t : t ⊂ e ∈ S, |t| = �} is an �-cover of H with cardinality |C| ≤ 4

(
r
�

)
≤ 4r�

and
∣∣⋃

s∈S s
∣∣ ≤ 4r. �

Proof of Theorem 2. Let C = {t1, . . . , tc} be a minimum �-cover in the hy-
pergraph H . Let VC =

⋃c
i=1 ti be the set of vertices of H that appear in C,

where |VC | ≤ 4r by Lemma 1. The set E of hyperedges of H will be split into
E = E′ ∪ F , where e ∈ E is assigned to E′ if |e ∩ VC | = � and it is assigned to
F if |e ∩ VC | > �. Since each element of F has intersection at least (�+ 1) with
VC , we have that the size of F is bounded above by

|F | ≤
(
|VC |
�+ 1

)(
n− �− 1

r − �− 1

)
≤

(
4r

�+ 1

)(
n− �− 1

r − �− 1

)
, (2)

which, for n large, is smaller than the largest possible size of E′, namely(|VC |
�

)(
n−|VC |
r−�

)
. As a consequence, the contribution of the (4, �)-Kneser color-

ings of F is negligible, and we will focus on the structure of the colorings of
H ′ = H \ F .

Let E′
i ⊆ E′ be the set of hyperedges of H ′ containing the cover element

ti ∈ C. Clearly, any (4, �)-Kneser coloring of H is the combination of a (4, �)-
Kneser coloring of H ′ = H \ F with a coloring of the hyperedges in F with at
most four colors. We know by (2) that there are at most

4|F | ≤ 4(
4r
�+1)(

n−�−1
r−�−1), (3)
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colorings of the latter type, thus we now concentrate on (4, �)-Kneser colorings
of H ′.

Fix a (4, �)-Kneser coloring Δ of H ′. For each �-set ti ∈ C and each color
σ ∈ {1, . . . , 4}, we say that σ is substantial for ti with respect to Δ if the number
of hyperedges in E′

i that have color σ is larger than

L = (r − �)

(
n− �− 1

r − �− 1

)
. (4)

We call a color σ influential if it is substantial for some cover element.
Our first auxiliary result shows that, if σ is substantial for ti ∈ C, then all

hyperedges with color σ must contain ti. Hence, given a color σ, there is at most
one cover element for which it is substantial, so that the subgraph of H ′ induced
by σ is a “star” centered at the cover element ti.

Lemma 2. Let Δ be a (4, �)-Kneser coloring of H. If the color σ is substantial
for a cover element ti and e is a hyperedge of H ′ with color σ, then ti ⊆ e.

Proof. Let E′
i,σ be the set of all hyperedges in E′

i ⊆ E′, which contain the cover
element ti. Suppose for a contradiction that a hyperedge e ∈ E′ has color σ, but
ti �⊆ e, and let ti′ be an element in the �-cover C contained in e. By definition,
the number of hyperedges h in E′

i,σ, whose intersection with e has size at least
�, is at most

U =

(
r − �

�− |ti ∩ ti′ |

)(
n− 2�+ |ti ∩ ti′ |
r − (�+ |ti \ ti′ |)

)
,

since any such hyperedge h must contain at least �− |ti ∩ ti′ | elements of e \ ti′ .
Taking the maximum over all possible sizes |ti ∩ ti′ |, we have, for n sufficiently
large,

U ≤ max
0≤m≤�−1

(
r − �

�−m

)(
n− 2�+m

r − 2�+m

)
= L.

This contradicts the hypothesis that σ is substantial for ti. �

Lemma 3. There exists 0 < γ < 1, and there exists n0 such that the following
holds for n ≥ n0. Let H be an n-vertex and r-uniform hypergraph and let C be
the class of (4, �)-Kneser colorings of H for which at least one of the colors is
not influential. Then

|C| ≤ 4(1−γ)(
n−�
r−�).

Proof. Consider the set C of all (4, �)-Kneser colorings of H for which a color σ
is not influential. Note that, in this case, σ may appear at most L times in each
set E′

i, so that the number of ways of coloring the hyperedges of H ′ with color
σ is bounded above by

∑
(a1,...,ac)

(
c∏

i=1

((
n−|VC |
r−�

)
ai

))
,
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where the sum is such that each ai ranges from 0 to L. With (4) and c ≤ 4r� by
Lemma 1, for n sufficiently large, an upper bound on this value is given by

∑
(a1,...,ac)

(
n

r − �

)∑c
i=1 ai

=

(
L∑
p=0

(
n

r − �

)p
)c

≤ 2c ·
(

n

r − �

)Lc

≤ 2c+Lcr log2 n ≤ 24r
�+4r� r2

n−� (
n−�
r−�) log2 n

≤ 25
r�+2

n−� (
n−�
r−�) log2 n.

In particular, if we have j ≤ 4 colors that are not influential, the number of ways
of assigning these colors to the hyperedges of H ′ is bounded above by

25j
r�+2

n−� (
n−�
r−�) log2 n ≤ 2

20r�+2

n−� (n−�
r−�) log2 n. (5)

Now, suppose that we have j ≤ 3 colors to assign to the hyperedges in H ′ that
contain some �-set in C with no restriction on the number of colors used. As
these hyperedges are �-intersecting, they may be colored in at most j(

n−�
r−�) ways.

Analogously, if we assign j1 colors to the hyperedges that contain cover element
t1, and j2 to the hyperedges that contain cover element t2, where |t1∪t2| = �+m,
m ≥ 1, and (j1 + j2) colors to the hyperedges that contain (t1 ∪ t2), the number
of possible colorings of the hyperedges is at most

j1
(n−�
r−�) · j2(

n−�
r−�) · (j1 + j2)

(n−�−m
r−�−m). (6)

Note that, by summing over all possible distributions of the colors, for n large

this is smaller than 3(
n−�
r−�) whenever j1+j2 ≤ 3. This includes with Lemma 2 the

case, where we assign one color to each cover element t1, t2, t3, giving at most
six colorings. Now, we may easily derive an upper bound on the cardinality of C
based on the following facts: (i) there is at least one color that is not influential;
(ii) no color can be substantial for two or more cover elements; (iii) the number
of ways of assigning noninfluential colors is small.

Combining equations (3), (5), and (6) we have

|C| ≤ 4(
4r
�+1)(

n−�−1
r−�−1) · 2 20r�+2

n−� (n−�
r−�) · 3(

n−�
r−�) ≤ 4(1−γ)(

n−�
r−�),

where the last inequality holds for every fixed γ < 1− 1/ log3 4, if n ≥ n0(γ, r, �)
is sufficiently large. �

As a consequence of this result, we may show that, for a hypergraph to have
many (4, �)-Kneser colorings, the number of hyperedges covered by each cover
element cannot be too small. As it turns out, we shall see later that (r, 4, �)-
extremal hypergraphs are (C, r)-complete with respect to their minimum covers
C (see Lemma 6).

Lemma 4. Let H be an r-uniform n-vertex hypergraph with minimum �-cover
C, where n is sufficiently large, and let H ′ and Ei be defined as above. If
κ(H, 4, �) = KC(n, r, 4, �), then, for every cover element ti, we have |E′

i| > 4L.
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Proof. Recall from inequality (1) the easy lower bound on KC(n, r, 4, �) based
on a maximum family of mutually �-intersecting r-subsets of [n], namely

KC(n, r, 4, �) ≥ 4(
n−�
r−�).

LetH be an r-uniform n-vertex hypergraph with minimum �-coverC = {t1, . . . , tc}
and, for a contradiction, assume without loss of generality that |E′

c| ≤ 4L. By
equation (3), we know that

κ(H, 4, �) ≤ 4(
4r
�+1)(

n−�−1
r−�−1) · κ(H ′, 4, �),

so that we concentrate on κ(H ′, 4, �).
Let C1 be the family of (4, �)-Kneser colorings of H ′ for which there is a

color that is substantial for tc, and let C2 contain the remaining (4, �)-Kneser
colorings of H ′, so that κ(H ′, 4, �) = |C1| + |C2|. We shall bound the number of
(4, �)-Kneser colorings in each of these two families separately.

We start with colorings in C1. Consider the hypergraph Ĥ obtained by delet-
ing all the hyperedges of H ′ that contain tc. Given a coloring Δ in C1, consider
the coloring Δ̂ of Ĥ obtained by ignoring the colors of the deleted hyperedges.
Let Ĉ1 be the set of all (4, �)-Kneser colorings of Ĥ obtained in this way. If σ is
substantial for tc with respect to Δ, then it cannot be substantial for any other
cover elements in C, and hence σ cannot be influential with respect to Δ̂. In
particular, if we apply Lemma 3 to Ĥ with some 0 < γ < 1, we deduce that

|Ĉ1| ≤ 4(1−γ)(
n−�
r−�)

for n ≥ n1. Moreover, each coloring of Ĉ1 corresponds to at most 44L colorings
of C1. In particular, for n sufficiently large, we have

|C1| ≤ 44L · |Ĉ1| ≤ 4

(
4r2

n−�+(1−γ)
)
(n−�
r−�) ≤ 4(1−γ/2)(

n−�
r−�). (7)

Now, let Δ be a coloring in C2 and let σ be the color of an edge whose single
�-subset in C is tc. Since σ is not substantial for cover element tc, Lemma 2
implies that σ cannot be influential with respect to Δ, so that, by applying
Lemma 3 to H ′ with the same value of γ, we have

|C2| ≤ 4(1−γ)(
n−�
r−�)

for n ≥ n2. As a consequence, with (7) for n sufficiently large, we have

κ(H ′, 4, �) = |C1|+ |C2| ≤ 4(1−γ/2)(
n−�
r−�) + 4(1−γ)(

n−�
r−�) ≤ 4(1−γ/3)(

n−�
r−�),

from which we deduce that

κ(H, 4, �) ≤ 4(
4r
�+1)(

n−�−1
r−�−1) · κ(H ′, 4, �) ≤ 4(1−γ/4)(

n−�
r−�) < 4(

n−�
r−�),

hence |E′
i| > 4L for i = 1, . . . , c. �
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We shall now prove that, for (r, 4, �)-extremal hypergraphs, the size of a mini-
mum �-cover is at most two. This will be improved in Lemma 7, where we show
that it must be equal to two.

Lemma 5. Let H be an r-uniform n-vertex hypergraph with minimum �-cover
C, where n is sufficiently large. If κ(H, 4, �) = KC(n, r, 4, �), then |C| ∈ {1, 2}.

Proof. Let H be a r-uniform n-vertex hypergraph with minimum �-cover C =
{t1, . . . , tc} where c ≥ 3. By Lemma 4, we may suppose that the sets E′

i associat-
ed with the cover elements ti satisfy |E′

i| > 4L. In particular, by the pigeonhole
principle, for every (4, �)-Kneser coloring of H and every cover element ti, there
must be a color that is substantial for ti. As every color may be substantial for
at most one cover element, we have c ≤ 4.

Note that, in the case c = 4, this implies that every (4, �)-Kneser coloring is
such that E′

i is monochromatic, so that, with (3), we have

κ(H, 4, �) ≤ 4(
4r
�+1)(

n−�−1
r−�−1) · 4! < 4(

n−�
r−�)

for large n. Analogously, if c = 3, three of the colors are needed for each of
the three sets E′

i, while the fourth color is either not influential or is used to
color the edges of some E′

i. For the first class we may use Lemma 3 with some
0 < γ < 1 while the second can be bounded directly. We have

κ(H, 4, �) ≤ 4(1−γ)(
n−�
r−�) + 4(

4r
�+1)(

n−�−1
r−�−1) · 3 · 4!

2!
· 2(

n−�
r−�) < 4(

n−�
r−�)

for n sufficiently large, thus c ≤ 2, which concludes the proof. �

Remark 1. The proof of Lemma 5 actually shows more. Indeed, it implies that,
for some 0 < γ < 1, there is n0 with the following property. If H is an r-uniform
n-vertex hypergraph with minimum �-cover C of size |C| ≥ 3, where n ≥ n0, then

κ(H, k, �) < 4(1−γ)(
n−�
r−�). (8)

Lemma 6. Let H = (V,E) be an r-uniform n-vertex hypergraph with minimum
�-cover C satisfying κ(H, 4, �) = KC(n, r, 4, �). Then there exists n0, such that
for every integer n ≥ n0 the hypergraph H is (C, r)-complete, i.e., every r-subset
of V containing some cover element t ∈ C is a hyperedge of H.

Proof. By Lemma 5 we may suppose thatH = (V,E) is an r-uniform hypergraph
with minimum �-cover C, where |C| ∈ {1, 2}. Note that the result is immediate
if |C| = 1, as in this case every 4-coloring of the hyperedges ofH is �-intersecting,
so that

κ(H, 4, �) = 4|E| ≤ 4(
n−�
r−�),

with equality only if |E| =
(
n−�
r−�

)
, that is, only if H is (C, r)-complete.

Now, let C = {t1, t2}, and for a contradiction, assume that H is not (C, r)-
complete. By Lemma 4, we may assume that every element in C covers more
than 4L hyperedges not covered by any other element of C. With the assumption
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that the hypergraphH is not (C, r)-complete, let e be an r-subset of V containing
ti ∈ C that is not a hyperedge of H , and define E′

i as before. Let Δ be a (4, �)-
Kneser coloring of H . By the pigeonhole principle, at least one of the colors,
say σ, appears more than L times in E′

i. By Lemma 2, we know that all the
hyperedges assigned color σ by Δ must contain cover element ti, so that Δ may
be extended to a (4, �)-Kneser coloring of H ∪ {e} by assigning color σ to e.

Furthermore, there is at least one (4, �)-Kneser coloring of H using exact-
ly two colors, namely the one that assigns color 1 to all hyperedges contain-
ing t1 and color 2 to all remaining hyperedges. In this case, we have at least
three options to color e, one using a color already used, and two using a new
color. As a consequence, the hypergraph H ∪ {e} has more (4, �)-Kneser col-
orings than H , establishing that such an r-uniform hypergraph H cannot be
(r, 4, �)-extremal. �

Remark 2. The proof of Lemma 6 may be easily adapted to show that κ(H, 4, �) ≤
2
3 KC(n, r, 4, �) if H is not complete. Indeed, we can show this directly with mul-
tiplicative constant 1/4 in the case when the minimum �-cover has size one. In
the case when the minimum �-cover C has size two, we may easily show that
the bulk of the colorings of the (C, r)-complete hypergraph are the colorings for
which each cover element has two substantial colors. In other words, when the
graph H in the proof of Lemma 6 is almost complete, most colorings can be ex-
tended in two different ways when the new edge e is included. Actually, since the
remaining colorings are “rare”, the multiplicative constant 1/2 could be replaced
by (1/2 + ε) for every ε > 0.

By the work done so far, we already know that, for n sufficiently large, an
(r, 4, �)-extremal hypergraph H∗ on n vertices is of the form HC,r(n), for some
set C of �-subsets of [n], where |C| ∈ {1, 2}. We want to show that two is the
correct size of C.

Lemma 7. Let C1, C2 be sets of �-subsets of [n] such that |C1| = 1 and |C2| = 2.
Then, for n sufficiently large, we have κ(HC2,r(n), 4, �) ≥ 5 · κ(HC1,r(n), 4, �).

Proof. Let C1 = {t1} be the minimum �-cover of H1 = HC1,r(n). We may
view H2 = HC2,r(n) as the hypergraph obtained from H1 by the addition of all
hyperedges containing t2 for some �-set of [n] that is distinct from t1.

Let C1 and C2 denote the sets of (4, �)-Kneser colorings of H1 and H2 for which
every color is influential. By Lemma 3, we have

|C1| ≤ κ(H1, 4, �) ≤ |C1|+ 4(1−γ)(
n−�
r−�)

|C2| ≤ κ(H1, 4, �) ≤ |C2|+ 4(1−γ)(
n−�
r−�).

Since we know that |C1| ! 4(1−γ)(
n−�
r−�) for n sufficiently large, we shall obtain

our result if we show that |C2| ≥ 6|C1|. To this end, we consider the following
mapping φ : C1 → C2, for which the image of Δ1 under φ is a coloring Δ2 with
colors 1 and 2 substantial for t1 and colors 3 and 4 substantial for t2. The
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hyperedges that contain t1 ∪ t2 have the same color with respect to Δ1 and
Δ2. A hyperedge e containing t1, but not containing t2, receives color 1 if it
has color 1 or 3 with respect to Δ1, otherwise it is assigned color 2. On the
other hand, a hyperedge e containing t2, but not containing t1, receives color 3
if (e\ t2)∪ t1 has color 2 or 3 with respect to Δ1, otherwise it is assigned color 4.
It is immediate from this definition that edges with the same color with respect
to Δ2 are �-intersecting.

The crucial fact about this construction is that the color of e that was origi-
nally assigned by Δ1 is uniquely determined by the colors of e and (e\ t1)∪ t2 in
Δ2. The injectivity of φ is an easy consequence of this fact, and hence |C1| ≤ |C2|.
Now, note that we may interchange the roles of the colors in the above mapping,
that is, instead of 1 and 2, any two colors could be assigned to the hyperedges
containing t1 and the remaining two colors could be used for hyperedges con-
taining t2. Since all the colors are substantial for t1 with respect to the colorings
in C1, the colorings created with these new mappings are all distinct from the
colorings created through the original mapping. By the argument above we get
|C2| ≥ 6|C1|, which is the desired inequality and concludes the proof. �

If we combine the last result with Remarks 1 and 2, we see that there exist
ε0 > 0 and an integer n1 such that κ(H, 4, �) ≤ (1− ε0) ·KC(n, r, 4, �), whenever
H �∈ Hr,4,�(n) and n ≥ n1. To conclude the proof of Theorem 2, we still need to
prove that, given ε > 0, every hypergraph Hr,4,�(n) is within ε ·KC(n, r, 4, �) of
being maximum. This will be an easy consequence of the precise calculations in
the following section.

3 Main Result

In this section, we shall prove the main result in our work, namely Theorem 3,
which is restated below. To this end, we need to count the number of (4, �)-
Kneser colorings of a hypergraph H ∈ Hr,4,�(n) with high accuracy. The follow-
ing class of colorings turns out to be instrumental in accomplishing this task.

Definition 5. Let H = (V,E) be a hypergraph with �-cover C = {t1, . . . , tc}.
A star coloring of H is a Kneser coloring such that, for every color σ, all the
hyperedges of H with color σ contain some fixed element ti = ti(σ) of the �-
cover C. A Kneser coloring of H that is not a star coloring is called a non-star
coloring.

Theorem 4. Let r > � ≥ 2 be integers. Then, there exists n0, such that for all
n ≥ n0, the extremal hypergraph for the problem Pn,r,4,� is the (C, r)-complete
hypergraph HC,r(n) where C = {t1, t2} is an �-cover such that |t1 ∩ t2| = �− 1.

Proof. Let H∗ = (V,E) be a complete, r-uniform hypergraph on n vertices with
�-cover C = {t1, t2} where |t1 ∩ t2| = y ≤ � − 1. Our proof consists of two
main steps. We first show that the number of star colorings of H∗ is maximum
when y = � − 1. In the second step, we find an upper bound on the number of
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non-star colorings of H∗, which allows us to show that the gap on the number of
star colorings cannot be bridged through non-star colorings, so that κ(H∗, 4, �)
is indeed maximum when y = �− 1.

To compute the number of star colorings, observe that we may either assign
two colors to each cover element, or three colors to one cover element and one
color to the other. Let E∗

1 = {e ∈ E : t1 ⊂ e, t2 �⊂ e} and E∗
2 = {e ∈ E : t1 �⊂

e, t2 ⊂ e} be the sets of hyperedges containing exactly one of the cover elements.
We begin with the case where two colors are assigned to each cover element,

which can be done in
(
4
2

)
ways. We first assume that y ≥ 2�− r, which implies

that there exist hyperedges in H∗ containing t1 ∪ t2, namely
(
n−2�+y
r−2�+y

)
of them.

Once the colors have been fixed, the number of distinct colorings of the hyper-

edges that contain t1 ∪ t2 is 4(
n−2�+y
r−2�+y). Also, we may color the hyperedges in E∗

1

in 2(
n−�
r−�)−(

n−2�+y
r−2�+y) ways (the same holds for hyperedges in E∗

2 ). Note that, in
this argument, the colorings for which both E∗

1 and E∗
2 are monochromatic are

counted exactly twice, so that we need to substract the term
(
4
2

)
· 2 · 4(

n−2�+y
r−2�+y).

This amounts to

(
4

2

)
· 22((

n−�
r−�)−(

n−2�+y
r−2�+y))4(

n−2�+y
r−2�+y) −

(
4

2

)
· 2 · 4(

n−2�+y
r−2�+y) (9)

distinct colorings. In the case when y < 2� − r, that is, in the case when
|t1 ∪ t2| > r and no hyperedge contains both cover elements, the same formula
holds observing that

(
n−2�+y
r−2�+y

)
= 0.

We now consider the colorings for which three colors are assigned either to
E∗

1 or to E∗
2 . The number of ways of assigning the colors is 2

(
4
3

)
, and we need to

count the number of 3-colorings of the r-sets in E∗
1 (or in E∗

2 ) for which all three
colors are used, as the other colorings have already been counted in the case
where two colors were assigned to each cover element. By inclusion-exclusion,
we see that there are

2 ·
(
4

3

)
·
(
3(

n−�
r−�)−(

n−2�+y
r−2�+y) − 3 · 2(

n−�
r−�)−(

n−2�+y
r−2�+y) + 3

)
· 4(

n−2�+y
r−2�+y) (10)

such colorings. Again, this formula holds for all values of y, but it does not
depend on y if y < 2�− r (as

(
n−2�+y
r−2�+y

)
= 0).

Combining equations (9) and (10), we deduce that the number S(y) of star
colorings of H∗ is given by



An Unstable Hypergraph Problem 445

S(y) =

(
4

2

)
· 22((

n−�
r−�)−(

n−2�+y
r−2�+y))4(

n−2�+y
r−2�+y) −

(
4

2

)
· 2 · 4(

n−2�+y
r−2�+y) + (11)

+2 ·
(
4

3

)
·
(
3(

n−�
r−�)−(

n−2�+y
r−2�+y) − 3 · 2(

n−�
r−�)−(

n−2�+y
r−2�+y) + 3

)
· 4(

n−2�+y
r−2�+y)

= 6 · 4(
n−�
r−�) + 8 · 3(

n−�
r−�)

(
4

3

)(n−2�+y
r−2�+y)

(12)

×
(
1− 3

(
2

3

)(n−�
r−�)−(

n−2�+y
r−2�+y)

+ 3

(
1

3

)(n−�
r−�)−(

n−2�+y
r−2�+y)

− 3 · 3(
n−2�+y
r−2�+y)

2 · 3(
n−�
r−�)

)
.

We know that y ≤ �−1 and that the last three terms within the brackets in (12)
have a nonpositive sum and each tends to 0 as n increases. We conclude that,
for n sufficiently large,

6 · 4(
n−�
r−�) + 7 · 3(

n−�
r−�)

(
4

3

)(n−2�+y
r−2�+y)

≤ S(y) ≤ 6 · 4(
n−�
r−�) + 8 · 3(

n−�
r−�)

(
4

3

)(n−2�+y
r−2�+y)

. (13)

Hence, for large n, we have S(y − 1) ≤ S(y) for every y, with equality only if(
n−2�+y
r−2�+y

)
= 0, that is, only if there are no hyperedges containg t1 ∪ t2 when

|t1 ∩ t2| = y. Observe that, for y = �− 1, we have r − 2�+ y = r − �− 1 ≥ 0, so
that

(
n−2�+y
r−2�+y

)
≥ 1 in this case. Therefore S(y) is maximum for y = �− 1.

We now show that, if |t1 ∩ t2| < � − 1, then H∗ is not (r, 4, �)-extremal. To
this end, we find an upper bound on the number of non-star colorings of H∗.
For such a coloring Δ, there exists at least one pair (a, b) of r-sets a, b ∈ E of
the same color such that |a ∩ b| ≥ � with t1 ⊂ a and t2 ⊂ b, but t1 ∪ t2 �⊆ a and
t1 ∪ t2 �⊆ b. Let |a ∩ (t2 \ t1)| = q and |b ∩ (t1 \ t2)| = p, where we may assume
p ≤ q by symmetry. Thus

p+ y ≤ �− 1 and q + y ≤ �− 1. (14)

Let

F1(b) = {e ∈ E | t1 ⊂ e, t2 �⊂ e,Δ(e) = Δ(b)} (15)

F2(a) = {e ∈ E | t2 ⊂ e, t1 �⊂ e,Δ(e) = Δ(a)}. (16)

Lemma 7 There exists a constant C > 0 and a positive integer n0 such that,
for all n ≥ n0, we have

|F1(b)| ≤ C · nr−2�+p+y and |F2(a)| ≤ C · nr−2�+q+y. (17)

Notice that r ≥ 2�− p− y and r ≥ 2�− q− y. Indeed, since a and b intersect
in at least � elements, we must have |(a \ t1) ∩ (b \ t1)| ≥ � − (p + y), hence a
must contain at least �+ (�− (p+ y)) = 2�− p− y elements, which implies that
r ≥ 2�− p− y. Similarly we obtain r ≥ 2�− q − y.
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Proof. Given r-sets a and b, there is a constant C > 0 such that

|F1(b)| ≤
(
r − p− y

�− (p+ y)

)(
n− (2�− p− y)

r − (2�− p− y)

)
≤ C · nr−2�+p+y,

as, ignoring overcounting, we can choose �−(p+y) elements from the set b\t1 in(
r−p−y
�−(p+y)

)
ways, and the remaining r−(2�−p−y) elements in at most

(n−(2�−p−y)
r−(2�−p−y)

)
ways. Similarly, the second inequality follows, namely

|F2(a)| ≤
(
r − q − y

�− (q + y)

)(
n− (2�− q − y)

r − (2�− q − y)

)
≤ C · nr−2�+q+y.

�

With the r-sets a and b fixed, subfamilies G1 ⊆ F1(b) and G2 ⊆ F2(a) may be
assigned the same color as a and b, provided that |a′∩b′| ≥ � for all r-sets a′ ∈ G1

and b′ ∈ G2.

The r-sets a and b may be chosen in at most
(
n−�
r−�

)2 ≤ n2r−2� ways, the

subfamilies G1 and G2 may be fixed in at most 2|F1(b)|+|F2(a)| ways and their
color may be chosen in four ways. As p ≤ q, for n large, with Lemma 7 we
deduce that the total number of choices is at most

4n2r−2� · 2|F1(b)|+|F2(a)| ≤ 4n2r−2� · 2Cn
r−2�+p+y+Cnr−2�+q+y

≤ 4n2r−2� · 22Cnr−2�+q+y

. (18)

Having fixed the color of a and b and all r-sets in G1 ∪G2, we may use this color
only for r-sets covering t1 ∪ t2, which appear if r ≥ 2� − y. We may finish the
coloring in two ways.

On the one hand, we may use the remaining three colors for a star coloring
of the set of uncolored hyperedges. This can be done in at most

2

(
3

2

)
· 2(

n−�
r−�)−(

n−2�+y
r−2�+y) · 4(

n−2�+y
r−2�+y) = 6 · 2(

n−�
r−�)+(

n−2�+y
r−2�+y) (19)

ways; hence, with (18) and (19), for n sufficiently large, the number of such
non-star colorings is at most

24n2r−2� · 22Cnr−2�+q+y · 2(
n−�
r−�)+(

n−2�+y
r−2�+y). (20)

On the other hand, assume that there exists another pair (a1, b1) �= (a, b) of
r-sets a1, b1 ∈ E with |a1 ∩ b1| ≥ � and t1 ⊂ a1, and t2 ⊂ b1, but t1 ∪ t2 �⊆ a1
and t1 ∪ t2 �⊆ b1, and with |a1 ∩ (t2 \ t1)| = q′ and |b1 ∩ (t1 \ t2)| = p′, say p′ ≤ q′,
where Δ(a1) = Δ(b1) �= Δ(a). Let the families F1(b1) and F2(a1) be defined as
in (15) and (16). As above, r-sets in subfamilies G′

1 ⊆ F1(b1) and G′
2 ⊆ F2(a1)

may be assigned the same color as a1 and b1, provided that |a′ ∩ b′| ≥ � for all
r-sets a′ ∈ G′

1 and b′ ∈ G′
2. The pair (a1, b1) may be chosen in at most n2r−2�
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ways. Again by Lemma 7 with p′ ≤ q′, for n sufficiently large, we have that, for
some constant C′ > 0,

2|F1(b1)|+|F2(a1)| ≤ 2C
′nr−2�+p′+y+C′nr−2�+q′+y

≤ 22C
′nr−2�+q′+y

. (21)

Combining this with (18) and (21) gives us, for n sufficiently large, at most

4n2r−2� · 22Cn
r−2�+q+y

· 3 · 2 · n2r−2� · 22C
′nr−2�+q′+y

· 4(
r−2�+y
r−2�+y)

= 24n4r−4� · 22Cnr−2�+q+y+2C′nr−2�+q′+y · 4(
r−2�+y
r−2�+y) (22)

such non-star colorings, since the two colors not used so far can be taken for
those remaining hyperedges not covering t1 ∪ t2 in at most two ways. Indeed, if
we use one of the two remaining colors for another pair (a2, b2) of r-sets that is
distinct from the pairs (a, b) and (a1, b1), where t1 ∪ t2 �⊆ a2 and t1 ∪ t2 �⊆ b2,
then by Lemma 7 with (14), for some constant C∗ > 0 this color can be used
for at most C∗nr−�−1 many r-sets containing t1 but not t2, or t2 but not t1,
respectively. However, this leaves at least

(
n−�
r−�

)
− C∗nr−�−1 uncolored r-sets

containing t1 or t2, but not t1 ∪ t2, which cannot be colored properly with a
single color.

Hence, combining (20) and (22) with the inequalities q + y ≤ � − 1 and
q′ + y ≤ � − 1 given in (14), we have that, for some constant C′′ > 0, the total
number of non-star colorings of H∗ is bounded above by

24n2r−2� · 2(
n−�
r−�)+(

n−2�+y
r−2�+y) · 22Cnr−2�+q+y

+24n4r−4� · 22Cnr−2�+q+y+2C′nr−2�+q′+y · 4(
r−2�+y
r−2�+y)

≤ 24 · 2C′′nr−�−1
(
n2r−2� · 2(

n−�
r−�)+(

n−�−1
r−�−1) + n4r−4� · 4(

r−�−1
r−�−1)

)
. (23)

For fixed p and q (respectively p′ and q′) the number of possibilities for choosing
the intersections |a∩(t2\t1)| = q and |b∩(t1\t2)| = p as well as |a1∩(t2\t1)| = q′

and |b1 ∩ (t1 \ t2)| = p′ is bounded from above by a constant, which affects the
upper bound (23) by at most a constant factor.

The non-star colorings are not enough to bridge the gap between S(�−1) and
S(�− 2), as by (13) we have

S(�− 1)− S(�− 2) ≥ 7 · 3(
n−�−1
r−� ) · 4(

n−�−1
r−�−1) − 8 · 3(

n−�
r−�) ·

(
4

3

)(n−�−2
r−�−2)

= 3(
n−�−1
r−� ) · 4(

n−�−2
r−�−2)

(
7 · 4(

n−�−2
r−�−1) − 8 · 3(

n−�−2
r−�−1)

)
.

Since 7 · 4(
n−�−2
r−�−1) − 8 · 3(

n−�−2
r−�−1) ≥ 1 for r > � and n sufficiently large, we have

S(�− 1)− S(�− 2) ≥ 3(
n−�−1
r−� ) · 4(

n−�−2
r−�−2),

which is much larger than the upper bound in (23).
Therefore, the number of (4, �)-Kneser colorings of H∗ is maximized for y =

�− 1, which finishes the proof of Theorem 3. �
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To conclude this section, we argue that the proof of Theorem 3 implies the
missing part of the proof of Theorem 2. Recall that we have shown in Section 2
that there exist ε0 > 0 and an integer n1 such that κ(H, 4, �) ≤ (1 − ε0) ·
KC(n, r, 4, �), whenever H �∈ Hr,4,�(n). However, we did not show that, given
ε > 0, every hypergraph Hr,4,�(n) is within ε ·KC(n, r, 4, �) of being maximum.
Now, let H ∈ Hr,4,�(n). The (4, �)-Kneser colorings of H may be split into star
colorings and non-star colorings, and we know from the proof of Theorem 3 that
the number of non-star colorings is very small in comparison with the number of
star colorings (this would also be a consequence of Lemma 3, as all (4, �)-Kneser
colorings for which all colors are influential must be star colorings). Moreover,
the formula (13) for S(y) shows that, regardless of the value of y, the number of

star colorings of H is given by 6 · 4(
n−�
r−�) + o

(
4(

n−�
r−�)

)
, which leads to the desired

conclusion.

4 Final Remarks and Open Problems

In this paper, we havedescribed an extremal problem for hypergraphs that, in spite
of being provably unstable, has a unique optimal solution. Even though we have
concentrated on the problem Pn,r,k,� in the case when k = 4 and r > � ≥ 2, there
is a full characterization of the stability of this problem for general r, k and �.

Theorem 5. [13] Let k ≥ 2 and r > � be positive integers.

(i) If k ∈ {2, 3}, then Pn,r,k,� is stable.
(ii) If k = 4, then Pn,r,k,� is stable if and only if � = 1.
(iii) If k ≥ 5, then Pn,r,k,� is stable if and only if r ≥ 2�− 1.

In the current paper, we were able to carry out the calculations for the case k = 4
and � > 1, and we have determined the unique optimal configuration. For other
values of k, r and �, and n large, the unique (r, k, �)-extremal hypergraphs on
n vertices are known for all instances for which the problem is stable, while the
family of hypergraphs that are asymptotically optimal has been found for every
instance such that the problem is unstable (see [13]). For a better description
of the situation, let Hn,r,k,� be the (C, r)-complete r-uniform hypergraph on n
vertices with minimum �-cover C of size 
k/3�, where distinct �-sets in C have
empty intersection. This hypergraph plays an important role, as it is the unique
(r, k, �)-extremal hypergraph for the problem Pn,r,k,� whenever n is sufficiently
large and the problem is stable. Furthermore, even when the problem is unstable,
it has been proved in [13] that the hypergraph Hn,r,k,� is asymptotically optimal.
On the other hand, Theorem 3 implies that Hn,r,k,� is not optimal in the case
k = 4. This behavior is not accidental, and it is possible to show that, for
n sufficiently large, the hypergraph Hn,r,k,� is never (r, k, �)-extremal when the
problem Pn,r,k,� is unstable. To prove this, one may show that a (C, r)-complete
hypergraph with minimum �-cover C of size 
k/3� for which every two cover
elements have intersection of size 2�−r−1 has more (k, �)-colorings than Hn,r,k,�.
As a matter of fact, we conjecture that the pairwise intersections of the cover
elements should be as large as possible to achieve maximality.
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Conjecture 1. If k ≥ 5, r and � are positive integers with � < r < 2�, then a
hypergraph H = HC,r(n) such that

κ(H, k, �) = KC(n, r, k, �)

must satisfy |C| = c(k) = 
k/3� and |ti ∩ tj | = 2� − r − 1 for every distinct
ti, tj ∈ C.

As it turns out, even if Conjecture 1 is true in general, there may be several
configurations of �-sets in C whose pairwise intersections have size 2� − r − 1.
In particular, this conjecture would be a first step in establishing that, for suf-
ficiently large n, there is always a unique optimal configuration for the problem
Pn,r,k,�.

Acknowledgements. We thank Miklós Simonovits for valuable comments and
for directing us to related literature.
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4. Brown, W.G., Simonovits, M.: Extremal multigraph and digraph problems. Paul
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11. Füredi, Z., Simonovits, M.: Triple systems not containing a Fano configuration.
Combin. Probab. Comput. 14(4), 467–484 (2005)

12. Hoppen, C., Kohayakawa, Y., Lefmann, H.: Edge colourings of graphs avoid-
ing monochromatic matchings of a given size. Combin. Probab. Comput. 21(1-2),
203–218 (2012)



450 C. Hoppen, Y. Kohayakawa, and H. Lefmann

13. Hoppen, C., Kohayakawa, Y., Lefmann, H.: Hypergraphs with many Kneser col-
orings. European Journal of Combinatorics 33(5), 816–843 (2012)

14. Keevash, P.: Hypergraph Turán problems, Surveys in combinatorics 2011. Lon-
don Math. Soc. Lecture Note Ser., vol. 392, pp. 83–140. Cambridge Univ. Press,
Cambridge (2011)

15. Keevash, P., Mubayi, D.: Set systems without a simplex or a cluster. Combinator-
ica 30(2), 175–200 (2010)

16. Keevash, P., Sudakov, B.: The Turán number of the Fano plane. Combinatori-
ca 25(5), 561–574 (2005)

17. Kostochka, A.V.: A class of constructions for Turán’s (3,4)-problem. Combinator-
ica 2(2), 187–192 (1982)

18. Simonovits, M.: A method for solving extremal problems in graph theory, sta-
bility problems. In: Theory of Graphs, Proc. Colloq., Tihany, 1966, pp. 279–319.
Academic Press, New York (1968)

19. Simonovits, M.: Some of my favorite Erdős theorems and related results, theories.
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Abstract. Rudolf Ahlswede’s work on communication complexity dealt
with functions defined on direct sums: vector–valued functions and sum–
type functions. He was interested in single–letter characterizations and
provided several lower bound techniques to this aim. In this paper we
shall review these lower bounds and extend them to the “number in
hand” multiparty model of communication complexity.

Keywords: communication complexity, direct sum functions, tensor
product.

1 Introduction

Sum-type functions fn and vector-valued functions fn are defined on the powers
Xn,Yn of the sets from the domain of some basic function f : X × Y → Z.
Elements of Xn and Yn are denoted as xn and yn, respectively. Hence, e. g.,
xn = (x1, . . . , xn) for some x1, . . . , xn ∈ X . With this notation

fn(xn, yn) =
(
f(x1, y1), . . . , f(xn, yn)

)
, fn(x

n, yn) =

n∑
i=1

f(xi, yi),

where it is required that the range Z is a subset of an additive group G.
Motivated by the communication complexity of the Hamming distance [8], in

a series of papers Rudolf Ahlswede ([1] - [7]) and his group in Bielefeld ([17]
- [20]) studied the communication complexity of sum–type and vector–valued
functions. The results are summarized in [21]. Rudolf Ahlswede was mainly in-
terested in a single–letter characterization basing the communication complexity
of fn and fn on the communication complexity of the function f . To this aim he
and his coauthors demonstrated that several lower bounds behave multiplicative-
ly. These results and also their applications yielding the exact communication
complexity for special functions as Hamming distance and set intersection are
presented in Section 2.

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 451–462, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A further line of research leading to direct sum methods in communica-
tion complexity goes back to the question if it is easier to solve communica-
tion problems simultaneously than separately, cf. [15], pp. 42 - 48. Recall
the definition of a vector-valued function fn((x1, . . . , xn), (y1, . . . , yn)) =
(f(x1, y1), . . . , f(xn, yn)). An obvious upper bound on the communication com-
plexity C(fn) is obtained by evaluating each component f(xi, yi) separately and
communicating the result for component i using the optimal protocol for f . Can
we do better by considering all components simultaneously? Ahlswede et al. [3],
[5] using data compression could show that for set intersection it is C(f) = 2
but C(fn) = 
n · log2 3�.

The measure lim supn→∞
1
nC(f

n) is also called amortized communication
complexity (see [13]). One of the main open problems in communication com-
plexity is the question if there can exist a significant gap between the communi-
cation complexity and the amortized communication complexity of a function.
Direct sum methods in communication complexity are also useful in the com-
parison of lower bound techniques and the study of their power. The famous
log-rank conjecture states that the gap between the rank lower bound and the
communication complexity cannot be too big.

The last problem was recently extended to the “number in hand” model of
multiparty communication complexity [12]. Yao’s model of communication com-
plexity can be generalized to several multiparty models depending on the infor-
mation accessible to each person. Most well studied is the “number on the
forehead” model in which each person knows all inputs but her own, for in-
stance [10]. The “number in hand” model, in which each person knows just her
own input, was not so popular in the beginning but later found an important
application in streaming [9]. The problem with “number in hand” is that a gen-
eralization of the lower bound techniques is rather difficult. The most powerful
lower bound in two-party communication complexity is the rank lower bound.
But the rank of a matrix is generalized by a tensor rank (3 and higher dimen-
sional matrices), which is not so easy to determine. Besides, the matrix rank is
multiplicative under the tensor product (very important for functions on direct
sums). This is no longer the case for higher dimensional tensors, cf. [11].

Vector-valued and sum-type functions can straightforwardly be extended to
functions in 3 and more arguments. In Section 3 we shall study the multipar-
ty communication complexity of several generalizations of the Hamming dis-
tance and set intersection, the two functions mainly discussed by Ahlswede and
his coauthors. Fortunately, a bound introduced by Ahlswede and Cai [3] via
the independence number can replace the rank lower bound in this case, such
that sharp lower bounds are still possible. This will be demonstrated with four
boolean functions in more than two arguments.

For sum–type functions the independence number is not an appropriate lower
bound. Since also the rank lower bound is not easily applicable, it hence remains
to study largest monochromatic rectangles. In Section 4 a generalization of
Ahlswede’s 4-word property is presented. This yields tight bounds on the size of
the largest monochromatic rectangles for some functions only if there is an even
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number of persons involved in the multiparty communication. For odd numbers
one dimension can not be included in the formula.

As an example that it may occur that three-party communication behaves
much like two-party communication the pairwise comparison of the inputs is
analyzed in Section 5.

2 Bounds on Communication Complexity

The notion of communication complexity was introduced by Yao in 1979 [22].
Since then it found many applications in Computer Science, for which we refer
to the books by Kushilevitz and Nisan [15] or by Hromkovic [14]. The commu-
nication complexity of a function f : X ×Y → Z (where X , Y, and Z are finite
sets), denoted as C(f), is the number of bits that two persons, P1 and P2, have
to exchange in order to compute the function value f(x, y), when initially P1

only knows x ∈ X and P2 only knows y ∈ Y. To this aim they follow a prede-
termined interactive protocol in which the set of messages a person is allowed
to send at each instance of time form a prefix code.

Upper bounds are usually obtained by special protocols. Often, the trivial
protocol, in which one person sends all the bits of his input and the other person
returns the result, is at least asymptotically optimal.

Lower bounds are expressed via the function matrixM(f) =
(
f(x, y)

)
x∈X ,y∈Y.

and the function value matrices Mz(f) = (axy)x∈X ,y∈Y for all z ∈ Z defined by

axy =

{
1 if f(x, y) = z
0 if f(x, y) �= z.

Yao [22] already showed that C(f) ≥ logD(f), where the decomposition num-
ber D(f) denotes the minimum size of a partition of X ×Y into monochromatic
rectangles, i. e., products A × B of pairs A ⊂ X , B ⊂ Y on which the function
is constant. The decomposition number usually is hard to determine, however,
further lower bounds can be derived from it. Immediately, we have

C(f) ≥
⌈
log

|X | · |Y|
Lmr

(
M(f)

)⌉ , (1)

where Lmr
(
M(f)

)
denotes the size of the largest monochromatic rectangle in

the function matrix M(f).
In order to make induction proofs possible Ahlswede weakened the conditions

on the rectangles. He no longer required that the function is constant on the
rectangle A×B but that the so called 4-word- property has to be fulfilled, i. e.,
for all a, a′ ∈ A, b, b′ ∈ B

f(a, b)− f(a′, b)− f(a, b′) + f(a′, b′) = 0

Denoting by Lfw(f) the size of the largest rectangle, on which the 4-word-
property holds, we obtain

C(f) ≥
⌈
log

|X | · |Y|
Lfw(f)

⌉
. (2)
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A z–independent set
{
(x(1), y(1)), . . . , (x(N), y(N))

}
for the function value z in

M(f) is a set of pairs with f(x(i), y(i)) = z for all i = 1, . . . , N such that no
two members of the set are in the same monochromatic rectangle. Denoting the
size of a z–independent set by ind(Mz(f)) and Ind(f) =

∑
z∈Z ind(Mz(f)) we

obtain [3]

C(f) ≥ 
log Ind(f)�. (3)

C(f) can also be lower bounded by the rank of the corresponding function ma-
trices

C(f) ≥ 
log r(f)�, where r(f) =
∑
z∈Z

rankMz(f) (4)

It can be shown that the function f has the same communication complexity
as the function g defined by g(x, y) = cf(x,y) for all x, y, when the number c
is chosen appropriately (c �= 0, |c| �= 1). So it is also possible to lower bound
C(f) by the rank of M(g) = exp(M(f), c) = (cf(x,y))x∈X ,y∈Y, the exponential
transform of the matrix M(f). This yields

C(f) ≥ 
log rank exp(M(f), c)�. (5)

Central in the following arguments is the observation that the function matrices
of the vector-valued and sum-type functions can be expressed in terms of the
Kronecker product or tensor product, defined for two matrices A = (aij)i,j and
B = (bkl)k,l as A⊗B = (aij ·bkl)i,j,k,l. The n-fold Kronecker product of a matrix
is denoted as A⊗n. We have (cf. [3], [4], [17], [19])

M(z1,...,zn)(f
n) =Mz1(f)⊗Mz2(f)⊗ · · · ⊗Mzn(f) (6)

Mz(fn) =
∑

(z1,...,zn)
z1+···+zn=z

Mz1(f)⊗ · · · ⊗Mzn(f) (7)

exp
(
M(fn), c

)
=

[
exp

(
M(f), c

)]⊗n
(8)

It can be shown that the parameters in the bounds (2) - (5) behave multiplica-
tively, since the rank and hence also r(f) =

∑
z∈Z rankMz(f) are multiplicative

under the Kronecker product.

Theorem 1. ([3], [4]):

Lfw(fn) = n · Lfw(f) (9)

rank exp
(
M(fn), c

)
= (rank

[
exp

(
M(f), c

)]
)n (10)

r(fn) = r(f)n (11)

Ind(fn) ≥ Ind(f)n (12)
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Using these bounds Ahlswede et al. analyzed several sum – type functions espe-
cially the Hamming distance and set intersection defined by the basic function

matrices M(h) =

(
0 1
1 0

)
and M(si) =

(
0 0
0 1

)
For sum-type and vector–valued functions defined on more than two argu-

ments the corresponding function tensors (higher dimensional function matri-
ces) can again be described in terms of the tensor product, where A ⊗B is the
tensor obtained by multiplying each entry of A with each entry of B. This way,
the descriptions (6), (7), and (8) generalize. However, the tensor product now
is no longer multicplicative (cf. [11]), that means, rank(A ⊗ B) can be smaller
than rank(A) · rank(B). So, the rank lower bounds (10) and (11) can no longer
be applied. However, for vector–valued functions still (12) and for sum–type
functions (9) can be used.

3 Multiparty Communication Complexity of
Vector-Valued Functions

In this section we try to extend Rudolf Ahlswede’s methods to determine the
multi–party communication complexity of some functions defined on direct sums.
First is repeated the result for symmetric difference and the set intersection, since
we need it for the multiparty protocols below.

Theorem 2. ([3], [5]):

C(hn) = 2n, C(sin) = 
log 3� (13)

Proof: For the symmetric difference hn, the trivial protocol requires 
log 2n�+

log 2n� = 2n bits of communication. With the rank lower bound (4) and (11)
this can be shown to be optimal, since

C(hn) ≥ log r(hn) = n · log r(h) = n · log(rankM0(h) + rankM1(h))

= n · log(rank
(
1 0
0 1

)
+ rank

(
0 1
1 0

)
) = n · log 4 = 2n

For set-intersection the rank lower bound yields

C(sin) ≥ 
log r(sin)� = 
n · log r(si)� = 
n · log(rankM0(si) + rankM1(si))�

= 
n · log(rank
(
1 1
1 0

)
+ rank

(
0 0
0 1

)
)� = 
n · log 3�

In order to obtain the same upper bound, we shall modify the trivial protocol,
which would require 2n bits of transmission. Again, in the first round person P1

encodes his input xn ∈ {0, 1}n. P2 then knows both values and hence is able to
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compute the result sin(xn, yn), which is returned to P1. However, in knowledge
of xn the set of possible function values is reduced to the set S(xn) = {yn : yn ⊂
xn}. Hence, only 
logS(xn)� bits have to be reserved for the transmission of
sin(xn, yn) such that P1 can assign longer messages to elements with few subsets.
So, in contrast to the trivial protocol, the messages {φ1(xn) : xn ∈ {0, 1}n}
are now of variable length. Since the prefix property has to be guaranteed,
Kraft’s inequality for prefix codes yields a condition, from which the upper
bound can be derived. Specifically, we require that to each xn there corresponds
a message φ1(x

n) of (variable) length l(xn) such that for all xn ∈ {0, 1}n the sum
l(xn) + 
logS(xn)� takes a fixed value, L say. Kraft’s inequality states that a
prefix code exists, if

∑
xn 2−l(x

n) ≤ 1. This is equivalent to
∑

xn 2�logS(x
n)� ≤ 2L.

With the choice L = 
log 3n� Kraft’s inequality holds.
The functions in more than 2 arguments below are canonical extensions of

the symmetric difference (r and s below) and the set intersection function (basic
functions t and u). Namely, the basic functions defined on the product {0, 1}×
{0, 1} × · · · × {0, 1} are the following boolean functions:

1) r(x1, x2, . . . , xk) = x1 + x2 + · · ·+ xk mod 2

2) s(x1, x2, . . . , xk) =

{
1 , x1 = x2 = · · · = xk
0 , else

3) t(x1, x2, . . . , xk) =

{
1 , x1 = x2 = · · · = xk = 1
0 , else

4) u(x1, x2 . . . , xk) =

{
1 if at least half of the inputs xi = 1
0 else

The big problem is that for more than 2 parties communicating the rank lower
bound loses much of its power. The function matrices are now replaced by tensors
(i.e. , higher dimensional matrices). The rank of a matrix can be extended to
tensors, but it is not so easy to determine any more. The most efficient methods
to determine the rank of a matrix - eigenvalues and diagonalization of matrices
- cannot be applied any more. As for matrices, the rank of a tensor can be
combinatorially expressed as the minimal number of rank 1 tensors whose sum
is the tensor, the rank of which has to be determined. Unfortunately, this tensor
rank does not behave multiplicatively under the tensor product. This means
that the rank lower bound for sum–type and vector–valued functions can not be
easily applied any more.

As an alternative the independence number may be considered for vector–
valued functions. Following the argumentation by Ahlswede and Cai in [3], as
for functions in two arguments Ind(fn) ≥ Ind(f)n also holds for vector–valued
functions in k > 2 arguments, such that we have the lower bound C(fn) ≥
n · log Ind(f). In general, the independence number is, of course, very difficult
to determine, but for basic functions over small alphabets it may yield sharp
bounds, as in the following theorem.
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Theorem 3.
C(rn) = k · n


n · log(k + 2)� ≤ C(sn) ≤ 
n · (2 log k) + k − 3�


n · log(k + 1)� ≤ C(tn) ≤ 
n · log(k + 1)�+ k − 2

C(un) = 
n · log 6� for k = 3.

Proof: Obviously, no two of the 2k entries of the function tensor of r can be
contained in a monochromatic rectangle such that the independence number
Ind(r) = 2k. Hence C(rn) ≥ log Ind(r)n = log 2kn = k · n, which is also the
complexity of the trivial protocol, in which all k persons transmit all their inputs.

Next, let us consider the vector–valued function tn(xn1 , x
n
2 , . . . x

n
k ), which gives

the intersection of the k sets represented by the binary strings xn1 , . . . , x
n
k . The

function tensor of the basic function t contains exactly one entry 1 namely for
x1 = x2 = · · · = xk = 1, i.e., the all–1 vector of length k . All other entries are
0. The k neighbours of the all–1 vector, i.e. all (x1, . . . , xk) with exactly one
xi = 0 and all other xj = 1 obviously must be contained in different monochro-
matic rectangles. Since also the all-1 vector must be contained in a separate
monochromatic rectangle, the independence number Ind(t) = k + 1 and hence
C(tn) ≥ 
n log Ind(t)� = 
n log(k + 1)�.

A protocol that almost achieves this lower bound is again obtained by assign-
ing an appropriate prefix code to the messages in the trivial protocol. As for
the set intersection function sin in two arguments, again Person 1 can assign
longer messages to inputs with few 1s. The other persons then can determine
the exact value following an optimal protocol for set intersection of k − 1 sets.
For k = 2 we already know that 
n · log 3� bits are optimal. So, for k = 3, Person
1 transmits l(x) bits, say for an input x. Since the total number of bits trans-
mitted should be a fixed value L, say, L = l(x)+f(x), where f(x) is the number
of bits the other persons should still transmit to agree on the result. In order
to guarantee the existence of a prefix code, Kraft’s inequality

∑
x 2

−l(x) ≤ 1
must hold. This is equivalent to

∑
x 2

−(L−f(x)) ≤ 1 or
∑

x 2
f(x) ≤ 2L. Now

if Person 1 has an input x = x1 with exactly i many 1’s then by the proto-
col for si we know already that f(x) = 
i · log 3� bits are enough to determine
the set intersection of the remaining two sets by persons 2 and 3. So, Kraft’s
inequality reduces to

∑
i

(
n
i

)
2�i log 3� ≤ 2L. This can be assured by the choice

L = 
n log 4�+ 1. Analogously, for k > 3 we inductively obtain from Kraft’s in-
equality

∑
i

(
n
i

)
2�i·log(k)�+k−3 ≤ 2L, which is fulfilled for L = 
n·log(k+1)�+k−2.

For the function sn the first person can send all the n bits of her input x1. In
knowledge of this the other k− 1 persons have to determine for each component
either the function t or 1−t. Hence, their task is to evaluate a function equivalent
to set intersection tn on k−1 arguments, which can be done with 
n·log k�+k−3
bits of communication by the previous considerations. However, there is a gap
to the lower bound, since a maximal independent set only has size k + 2 - the
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two 1’s (for x1 = x2 = · · · = xk = 0 or 1, respectively) plus the k 0’s adjacent
(at Hamming distance 1 to the all-one or all-zero vector) to one of these 1’s.

The same protocol as for sn can be used for un in the case of k = 3 inputs.
Again after Person 1 has transmitted all the bits of its input in each component
the function t or 1 − t must be computed, which can be done with 
n · log 3�
bits of communication. Here, the situation is better than for the function s,
since we can find an independent set of size 6 in the function tensor of the
basic function u: the three 1’s u(1, 1, 0) = u(1, 0, 1) = u(0, 1, 1) = 1 and the
three 0’s u(0, 0, 1) = u(0, 1, 0) = u(1, 0, 0) = 0 must be contained in different
monochromatic rectangles, such that C(un) ≥ 
n log Ind(u)� = 
n · log 6�, which
is exactly the complexity of the protocol described above.

Remarks

1) Unfortunately, for k > 3, the function un is not so nicely analyzable.

2) The lower bound for the function sn is not so easy to improve as already the
case k = 3 demonstrates. Here 
n log 5� ≤ C(f) ≤ 
n log 6�. However, there is a
decomposition of the function tensor of s into just 5 monochromatic rectangles:
{0} × {0} × {0} and {1} × {1} × {1} for the two 1s and {0} × {1} × {0, 1},
{1} × {0, 1} × {0} as well as {0, 1} × {0} × {1} for the 0s.

4 Largest Monochromatic Rectangles for Multiparty
Sum–Type Functions and a Generalization of
Ahlswede’s 4-Word Property

In order to be able to inductively determine the size of monochromatic rectangles
Ahlswede and his coauthors[2], [6] introduced the weaker 4-word property It is
no longer required that the function is constant on the rectangle A×B but that
for all a, a′ ∈ A, b, b′ ∈ B

f(a, b)− f(a′, b)− f(a, b′) + f(a′, b′) = 0

This 4-word property behaves multiplicatively for sum-type functions in the
sense that if the 4-word property holds on a rectangle A × B for the basic
function f then it also holds on the rectangle An×Bn for the sum–type function
fn. Indeed, if M(f,R, n) is the size of the largest rectangle with the 4-word
property in fn it can be shown thatM(f,R, n) =M(f,R, 1)n. This often allows
to determine exactly the size of the largest monochromatic rectangle for sum–
type functions and hence bound the communication complexity from below.

In my PhD thesis [17] following a question posed by Rudolf Ahlswede an
extension of the 4-word property to functions in more than 2 arguments was
derived. Actually, this is just the 4-word property applied to the two-dimensional
projections of higher dimensional rectangles. For instance, for a basic function
f : X1 × X2 × X3 × X4 → R in 4 arguments this yields an 8-word property,
namely:
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A rectangle (A,B,C,D) with A ⊂ X1, B ⊂ X2, C ⊂ X3, D ⊂ X4 fulfills the
8-word property if for all a, a′ ∈ A, b, b′ ∈ B, c, c′ ∈ C and d, d′ ∈ D it holds

f(a, b, c∗, d∗)− f(a′, b, c∗, d∗)− f(a, b′, c∗, d∗) + f(a′, b′, c∗, d∗) = 0

for c∗ ∈ {c, c′} and d∗ ∈ {d, d′} and

f(a∗, b∗, c, d)− f(a∗, b∗, c
′, d)− f(a∗, b∗, c, d

′) + f(a∗, b∗, c
′, d′) = 0

for a∗ ∈ {a, a′} and b∗ ∈ {b, b′}.
This can be straightforwardly generalized to a 2t-word property for func-

tions in an even number t of arguments. The proof follows the lines of the one
in [6]. Again, the 2t-word property is multiplicative in the above sense that
M(f,R, n) =M(f,R, 1)n for the sum-type function fn.

Unfortunately, these rectangles usually become too large in order to prove
asymptotically tight lower bounds for the communication complexity of sum–
type functions in more than two arguments. However, for some very natural
functions the size of the largest monochromatic rectangles can be determined.
Let discuss sum-type functions with the basic boolean functions f : {0, 1}n ×
{0, 1}n × {0, 1}n × {0, 1}n → {0, 1} from the previous section.

1) r(x, y, z, w) = x+ y+ z+w mod 2. Then for n = 2m rn takes the constant
value m on the rectangle A × B × C ×D with A = {00, 11}m, B = C = D =
{01, 10}m. Hence, the size of the largest monochromatic rectangle of the sum-
type function rn is at least 22n. On the other hand, obviously {01, } × {0} ×
{0} × {0} is a maximal 8-word set (of size 2) for the basic function r, such
that the maximal 8-word set for rn can have size at most 22n. Hence the above
configuration yields the largest monochromatic rectangle.

2) s(x, y, z, w) =

{
1 , x = y = z = w
0 ,else

. Here sn takes the constant value 0

on the rectangle {0}n × {1}n × {0, 1}n × {0, 1}n. This yields a monochromatic
rectangle of size 4n. On the other hand, with the largest 8-word set {01, } ×
{0}×{0, 1}×{0} for the basic function s it can be shown that there is no larger
monochromatic rectangle.

It would be interesting to find an analogue for the 4-word property also for
sum–type functions with an odd number of arguments. For instance we con-
jecture the monochromatic rectangles in the function matrices of the sum–type
function fn in the following three examples for basic functions f : {0, 1}×{0, 1}×
{0, 1} → {0, 1} in three arguments to be optimal, but there is no suitable lower
bound, so far.

1’) r(x, y, z) = x+ y + z mod 2. For n = 2m the sum–type function rn takes
the constant value m on the rectangle {01, 10}m×{01, 10}m×{01, 10}m, hence
the largest monochromatic rectangle has size at least 2

3
2n.

2’) s(x, y, z) =

{
1 , x = y = z
0 ,else

.
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On {0}n × {1}n × {0, 1}n sn takes the constant value 0. Hence, the size of
the largest monochromatic rectangle in the function matrix of sn is at least 2n.
Another configuration achieving this bound with constant value m for n = 4m
is {0000, 1111}m× {0011, 1100}m× {0101, 0110, 1001, 1010}m.

3’) u(x, y, z) = 1 iff at least two of the arguments are 1 (and 0 else). Again for
n = 2m un takes the constant value m on the rectangle {01, 10}m×{01, 10}m×
{01, 10}m, which means that the size of the largest monochromatic rectangle is

at least 2
3
2n.

5 Communication Complexity of Pairwise Comparison

Let there be k persons P1, P2, . . . , Pk each holding a binary string xi ∈ {0, 1}n
(i = 1, . . . , k). Their task is to pairwisely compare their strings in the “number in
hand” model with a minimum amount of data exchange. So we have to determine
the communication complexity C(f) of the function f : {0, 1}n × . . . {0, 1}n →
{0, 1}(k

2 ) where f(x1, . . . xk) = (f(i,j)(xi, xj))i<j∈{1,...,k} with f(i,j)(xi, xj) = 1
iff xi = xj (and 0 iff xi �= xj).

A lower bound is obviously C(f) ≥ �k2 n+1, since f automatically compares

the two strings obtained by concatenating the first �k2  and the next �k2 inputs
in the two - party comunication model. Here the trivial protocol is optimal for
the equality function.

Theorem 4. limn→∞
1
nC(f) = �k2

Proof: With the following “divide and conquer” protocol it can be shown that
this lower bound is asympotically optimal. This is somehow surprising, since
for odd k one might expect some additional communication. This is, however,
negligible - only a

√
n term:

For k = 2 Person 1 transmits her complete string and Person 2 returns the
result.

For k ≥ 3 Person 1 transmits the first 

√
n� bits of her input. The other per-

sons then send a 0 if their inputs coincide on these 

√
n� bits or a 1, respectively,

if this is not the case. If all other persons have sent a 0, then Person 1 transmits
the next 


√
n� bits of her input and the other persons respond in the same way.

After Person 1 has transmitted, say, t

√
n� bits for the first time some of the

other persons, say k − i of them, will answer with a 1. Their k − i inputs then
have to be compared on n − (t − 1)


√
n� bits, the other i inputs have to be

compared on n− t
√n� bits.
Let M(k, n) be the number of bits transmitted during this protocol in the

worst case. Then

M(k, n) ≤
{

k
2n+ ak , k even
k−1
2 n+ bk

√
n+ ck , k odd

for certain numbers ak, bk, ck only depending on the number of partys k and not
on n. With this, the asymptotic statement of the theorem is immediate.
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The above formula forM(k, n) can be proven by induction. ObviouslyM(2, n)
= n+1. Further,M(3, n) ≤ n+3


√
n�+1. To see this, assume that after Person

1 has sent t

√
n� bits for the first time the other Persons do not reply with 0

both. So at least one of their inputs does not coincide with x1 on the last 
√n�
bits transmitted. If only one person, Person 3 say, sent a 1, it is clear that x3
is different from x1 and x2, which then have to be compared on the remaining
t− 


√
n� bits.

If both persons replied with 1, then x1 is different from x2 and x3, which then
still have to be compared on n− (t − 1)
√n� bits. This is obviously the worst
case and here still M(2, n− (t− 1)


√
n�+ 1) further bits must be exchanged to

obtain the result. Hence
M(3, n) ≤ t
√n�+2t+n−(t−1)
√n�+1 = n+
√n�+2t+1 ≤ n+3
√n�+1.
For k ≥ 4 the above protocol yields the recursion

M(k, n) ≤ max
t

max
i=1,...,k

t�
√
n�+(k− 1)t+M(i, n− t�

√
n�)+M(k− i, n− (t− 1)�

√
n�).

from which the numbers ak, bk, and ck can be recursively calculated with
several case investigations (k, i even or odd).
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Abstract. We study four problems: put n distinguishable/non-
distinguishable balls into k non-empty distinguishable/non-
distinguishable boxes randomly. What is the threshold function
k = k(n) to make almost sure that no two boxes contain the same
number of balls? The non-distinguishable ball problems are very close
to the Erdős–Lehner asymptotic formula for the number of partitions of
the integer n into k parts with k = o(n1/3). The problem is motivated
by the statistics of an experiment, where we only can tell whether
outcomes are identical or different.
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1 Motivation

Consider a generic experiment where the state of a complex system is probed
with repeated experiments providing outcome sequence x1, x2, . . . , xn. The ex-
perimenter can tell only whether two outcomes are identical or different. So each
outcome can be thought of as a sample of i.i.d. draws from an unknown proba-
bility distribution over a discrete space. The order of outcomes carry no valuable
information for us. We want to understand this process under the condition that
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k different outcomes are observed out of n experiments. As an example, think of
a botanist collecting specimen of flowers in a yet unexplored forest. In order to
classify observations into species, all that is needed is an objective criterion to
decide whether two specimens belong to the same species or not. More generally,
think of unsupervised data clustering of a series of observations.

In the extreme situation where k = n and all outcomes are observed only
once, the classification is not very informative. At the other extreme, when all
the outcomes belong to the same class, the experimenter will think he/she has
discovered some interesting regularity. In general, the information that a set of
n repeated experiments yields, is the size mi of each class (or cluster), i.e. the

numbers mi := |{� : x� = i}| (with
∑k

i=1mi = n), as the relative frequency
of the observations is what allows to make comparative statements. We expect
that when the number k of classes is large there will be several classes of the
same size, i.e. that will not be discriminated by the experiment, whereas when
k is small each class will have a different size1.

This is clearly a problem that can be rephrased in terms of distributions of balls
(outcomes) into boxes (classes). We consider, in particular, the null hypothesis of
random placement of balls into boxes. In this framework, the question we ask is
what is the critical number of boxes kc(n) such that for k " kc we expect to find
that all boxes i contain a different number mi of balls whereas for k ! kc boxes
with the same number of balls will exist with high probability.

2 Introduction

Recall the surjective version (no boxes are empty) of the twelvefold way of
counting [10] p.41: putting n distinguishable/non-distinguishable balls into k
non-empty distinguishable/non-distinguishable boxes correspond to four basic
problems in combinatorial enumeration according to Table 1. Our concern in
all four type of problems is the threshold function n = n(k) that makes almost
sure that no two boxes contain the same number of balls for a randomly and
uniformly selected ball placement. Although studying all distinct parts is a top-
ical issue for integer partitions [2] and compositions [6], it is hard to find any
corresponding results for surjections and set partitions except [8]. Our results
regarding the threshold functions are summed up in Table 1 in parentheses. We
have to investigate only three problems, since every k-partition of an n-element
set corresponds to exactly k! surjections from [n] to [k]—namely those surjec-
tions, whose inverse image partition is the k-partition in question. (Also, the
threshold function is the same for compositions and partitions, although the
number of compositions corresponding to a partition may vary from 1 to k!.)

1 This observation can be made precise in information theoretic terms. The label X of
one outcome, taken at random from the sample, is a random variable whose entropy
H [X] quantifies its information content. The size mX of the class containing X,
clearly has a smaller entropy H [m] ≤ H [X], by the data processing inequality [3].
When k is small, we expect that H [X] = H [m] whereas when k is large, H [X] >
H [m].
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Therefore the threshold function for set partitions is the same as the threshold
function for surjections.

Our proofs use the first and the second moment method, the second moment
method in the form (due to Chung and Erdős, see [11] p.76) below. For events
A1, A2, ..., AN , the following inequality holds:

P

(
N⋃
i=1

Ai

)
≥

(∑N
i=1 P (Ai)

)2

∑N
i=1 P (Ai) + 2

∑
1≤i<j≤N P (Ai ∩ Aj)

. (1)

We always will assume

n ≥
(
k + 1

2

)
>
k2

2
, (2)

otherwise the parts clearly cannot have distinct sizes. We did not even attempt
to obtain a limiting distribution f(c) when n is c times the threshold function—
though such an estimate should be possible to obtain. Although there are deep
asymptotic results on random functions and set partitions based on generating
functions (e.g. see Sachkov [9]), we do not see how to apply generating functions
for our threshold problems. Our results corroborate some formulae of Knessl and
Kessler [7], who used techniques from applied mathematics to obtain heuristics
for partition asymptotics from basic partition recursions.

Table 1. Threshold functions for distinct parts for the four surjective cases in the
twelvefold way of counting

k non-empty boxes
distinguishable non-distinguishable

n balls
distinguishable surjections (n = k5) set partitions (n = k5)

non-distinguishable integer compositions (n = k3) integer partitions (n = k3)

3 Threshold Function for Integer Compositions

Recall that the number of compositions of the integer n into k positive parts is
C(n, k) =

(
n−1
k−1

)
. Let Aij(t) denote the event that the i

th and jth parts are equal
t in a random composition of n into k positive parts. Using the first moment
method, it is easy to see that

P (∃ equal parts) = P

(⋃
i<j

⋃
t

Aij(t)

)
≤

∑
i<j

∑
t

P (Aij(t)) =

(
k

2

)∑
t≥1

C(n− 2t, k − 2)

C(n, k)

=

(
k

2

)∑
t≥1

(
n−2t−1

k−3

)
(
n−1
k−1

) ≤
(
k

2

)(
n−2
k−2

)
(
n−1
k−1

) = o(1),

as n/k3 → ∞. We make an elementary claim here that we use several times and
leave its proof to the Reader.
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Claim 1. Assume that we have an infinite list of finite sequences of non-negative
numbers, a1(n), a2(n), ..., aN(n)(n) for n = 1, 2, ..., such that none of the se-
quences is identically zero. Assume that the number of increasing and decreasing

intervals of these finite sequences is bounded, and that maxi ai(n) = o
(∑

i ai(n)
)

as n→ ∞. Then, for any fized k, as n→ ∞. we have∑
i:k|i

ai(n) =
(1

k
+ o(1)

)∑
i

ai(n).

Using the claim we can get a more precise estimate∑
t≥1

(
n− 2t− 1

k − 3

)
=

1 + o(1)

2

(
n− 2

k − 2

)
. (3)

Next we use (1) and (3) to show that P (∃ equal parts) → 1 as n/k3 → 0. The
numerator of (1) is the square of∑

i<j

∑
t

P (Aij(t)) =

(
k

2

)∑
t≥1

(
n−2t−1
k−3

)(
n−1
k−1

) = (1 + o(1))
k3

4n
(4)

that grows to infinity. Therefore we can neglect the same term without square
in the denominator of (1). A second negligible term in the denominator arises
if i < j and u < v make only 3 distinct indices (note that they must occur with
the same t). The corresponding sum of the probabilities is estimated by

k

(
k − 1

2

)∑
t≥1

C(n− 3t, k − 3)

C(n, k) ≤ k3

2

∑
t≥1

(
n−3t−1

k−4

)
(
n−1
k−1

) <
k3

2

(
n−3
k−3

)
(
n−1
k−1

) <
k5

n2
= o

((k3

n

)2
)
.

(5)

A third negligible term in the denominator arises if all four indices are distinct,
but the four corresponding parts are all the same:(

k

4

)∑
t≥1

C(n− 4t, k − 4)

C(n, k) .

This can be estimated by O(k7/n3) like the estimate in (5), and is similarly
negligible. The significant term in the denominator is(

k

2

)(
k − 2

2

)∑
�≥1

∑
t≥1,t
=�

C(n− 2�− 2t, k − 4)

C(n, k) (6)

corresponding to the cases analysis when 2-2 parts are the same. This term will
not change asymptotically when we add the t = � cases to the summation. So
(6) is asymptotically equal to (using Claim 1 again)

k4

4

∑
�≥1

∑
t≥1

(
n−2�−2t−1

k−5

)(
n−1
k−1

) ∼ k4

8

∑
�≥1

(
n−2�−2
k−4

)(
n−1
k−1

) ∼ k4

16

(
n−3
k−3

)(
n−1
k−1

) ∼ k6

16n2
. (7)
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We conclude that the numerator in (1) is asymptotically equal to its denominator
(7), proving that P (∃ equal parts) → 1 as n/k3 → 0.

4 Erdős–Lehner and the Threshold Function for Integer
Partitions

Let D(n, k) denote the number of compositions of n into k distinct positive
terms. In the previous section we proved

lim
n/k3→0

D(n, k)

C(n, k) = 1 and (8)

lim
n/k3→∞

D(n, k)

C(n, k) = 0. (9)

Let p(n, k) denote the number of partitions of n into k positive terms and q(n, k)
denote the number of partitions of n into k distinct positive terms. For 1 ≤ x1 ≤
x2 ≤ ... ≤ xk, the well-known bijection x1 + x2 + ... + xk → (x1) + (x2 + 1) +
(x3 + 2) + ...+ (xk + k − 1) shows that q(n, k) = p

(
n−

(
k
2

)
, k

)
.

A theorem of Erdős and Lehner ([4], see also in [2]) asserts that for k =
o(n1/3), the following asymptotic formula holds:

p(n, k) ∼ 1

k!
C(n, k) = 1

k!

(
n− 1

k − 1

)
. (10)

Gupta’s proof to Erdős–Lehner ([5], see also in [2]) obtains

1

k!
C(n, k) ≤ p(n, k) = q

(
n+

(
k

2

)
, k

)
≤ 1

k!
C
(
n+

(
k

2

)
, k

)
(11)

from the asymptotic equality of(
n− 1

k − 1

)
∼

(
n+

(
k
2

)
− 1

k − 1

)
, (12)

the leftmost and rightmost terms in (11), under the assumption k = o(n1/3).
To get the n = k3 threshold function for integer partitions, we first show that

for n/k3 → 0,

k!q(n, k) = D(n, k),

D(n, k) = o(C(n, k)), from (9),

and C(n, k) ≤ k!p(n, k).

To do the case n/k3 → ∞, i.e. k = o(n1/3), we use Erdős–Lehner twice and also
(12):

q(n, k) = p

(
n−

(
k

2

)
, k

)
∼ 1

k!

(
n−

(
k
2

)
− 1

k − 1

)
∼ 1

k!

(
n− 1

k − 1

)
∼ p(n, k).
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5 Threshold Function for Surjections

Let F (n, k) denote the number of [n] → [k] surjections. It is well-known from
the Bonferroni inequalities that kn − n(k − 1)n ≤ F (n, k) ≤ kn and hence
for n >> k log k, F (n, k) = (1 + o(1))kn uniformly. Take an f : [n] → [k]
random surjection. Let Aij(t) denote the event that for 1 ≤ i < j ≤ k we have

|f−1(i)| = |f−1(j)| = t. Observe that P (Aij(t)) =
∑

t≥1

(
n
2t

)(
2t
t

)F (n−2t,k−2)
F (n,k) and

recall
(
2t
t

)
∼ 22t√

πt
. Observe2 that

P (∃i < j: |f−1(i)| = |f−1(j)|) = P

(⋃
i<j

⋃
t

Aij(t)

)
≤

∑
i<j

∑
t

P (Aij(t))

∼
(
k

2

)∑
t≥1

(
n

2t

)(
2t

t

)
(k − 2)n−2t

kn
(13)

∼
(
k

2

)(
1− 2

k

)n∑
t≥1

(
n

2t

)(
2

k − 2

)2t
1√
πt

.

Let b(n, i) denote the term
(
n
i

)
pi(1 − p)n−i from the binomial distribution with

p = 1− 2
k . It is easy to see that the core summation in (13) is

∑
t≥1

(
n

2t

)(
2

k − 2

)2t
1√
πt

=

(
1− 2

k

)−n∑
t≥1

b(n, 2t)√
πt

.

Observe that for this binomial distribution μ = np = 2n
k and σ <

√
np =

√
2n
k .

Recall from [1] the large deviation inequality for sums of independent Bernoulli
random variables:

P

(
|Y − μ| > εμ

)
< 2ecεμ,

where cε = min{ln(εε(1 + ε)(1+ε)), ε2/2}. We select ε = 1
lnn , with which for

sufficiently large n, cε = ε2/2 = 1
2 ln2 n

. Set A = (1 − ε)μ and B = (1 +
ε)μ. As [A,B] includes the range where the normal convergence takes place,∑

A≤t≤B b(n, t) ∼ 1. By Claim 1,
∑

A≤2t≤B b(n, 2t) ∼ 1/2. Also, if A ≤ t ≤ B,

then t ∼ 2n
k . By the large deviation inequality above and k <

√
n from (2), we

obtain ∑
t≥1

t/∈[A,B]

b(n, t) = o

(√
k

2n

∑
A≤t≤B

b(n, t)

)
,

2 Note that for large t (i.e. n − 2t = O(k ln k)) the approximation for P (Aij(t)) is
not accurate. The same problem occurs for small t (t = O(1)), because of the
estimate of

(
2t
t

)
. The corresponding terms, however, are negligible both in the sum

of probabilities and in (13).
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and combining with Claim 1 we obtain

∑
t≥1

t/∈[A,B]

b(n, t) = o

(√
k

2n

∑
A≤2t≤B

b(n, 2t)

)
.

Putting together these arguments:

∑
t≥1

b(n, 2t)√
πt

∼
√

k

2πn

∑
A≤2t≤B

b(n, 2t) ∼
√

k

2πn

∑
t≥1

b(n, 2t) ∼ 1

2

√
k

2πn

∑
t≥1

b(n, t) ∼ 1

2

√
k

2πn
.

We obtain asymptotic formula for the upper bound with∑
i<j

∑
t

P (Aij(t)) = (1 + o(1))
k2

4

√
k

2nπ
(14)

which goes to zero as n/k5 → ∞.
Next we use (1) and (14) to show that P (∃i < j: |f−1(i)| = |f−1(j)|) → 1

as n/k5 → 0. The numerator of (1) is the square of (14) that grows to infinity.
Therefore we can neglect the same term without square in the denominator of
(1).

A second negligible term in the denominator arises if i < j and u < v make
only 3 distinct indices (note that they must occur with the same t). The corre-
sponding sum of the probabilities is estimated by

k

(
k − 1

2

)∑
t≥1

(
n

3t

)
(3t)!

(t!)3
F (n− 3t, k − 3)

F (n, k)
≤ k3

∑
t≥1

(
n

3t

)
(3t/e)3t

√
6πt

(t/e)3t(
√
2πt)3

(k − 3)n−3t

kn

≤ k3
∑
t≥1

(
n

3t

)(
3

k − 3

)3t √
3

2πt

(k − 3)n

kn
. (15)

We have from the Binomial Theorem
∑

t

(
n
t

)(
3

k−3

)t
=

(
1 + 3

k−3

)n
. Working

with every third term in a binomial distribution with p = 3
k like we worked

above with every second, one obtains the upper bound for (15)

O

(
k4

n

)
= o

((∑
i<j

∑
t

P (Aij(t))
)2

)
,

using (14) as n/k5 → 0.
A third negligible term in the denominator arises if i < j and u < v are

4 distinct indices, but the corresponding parts (set sizes) are all equal. The
corresponding term is(

k

4

)∑
t≥1

(
n

4t

)
(4t)!

(t!)4
F (n− 4t, k − 4)

F (n, k)
.
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This is easily estimated by O(k11/2/n3/2) like the estimate in (15), and is sim-
ilarly negligible compared to (14) as n/k5 → 0. The significant term in the
denominator is(

k

2

)(
k − 2

2

)∑
�≥1

∑
t≥1,t
=�

(
n

2�

)(
2�

�

)(
n− 2�

2t

)(
2t

t

)
F (n− 2�− 2t, k − 4)

F (n, k)
(16)

corresponding to the cases when for 4 distinct indices 2-2 parts (set sizes) are
the same. The siginificant term will not change asymptotically when we add the
t = � cases to the summation.

We do not repeat below arguments about the binomial distribution which we
went through before. So (16) is asymptotically equal to

k4

4

∑
�≥1

(
n

2�

)
4�√
�π

∑
t≥1

(
n− 2�

2t

)
4t√
tπ

(k − 4)n−2�−2t

kn
(17)

∼ k4

4

∑
�≥1

(
n

2�

)
4�√
�π

(k − 4)n−2�

kn

∑
t≥1

(
n− 2�

2t

)(
2

k − 4

)2t
1√
tπ

(18)

∼ k4

4

∑
�≥1

(
n

2�

)
4�√
�π

(k − 4)n−2�

kn
· 1
2

(
1 +

2

k − 4

)n−2�√
k − 2

2π(n− 2�)
(19)

∼ k4

8π

(
1− 2

k

)n∑
�≥1

(
n

2�

)(
2

k − 2

)2�√
k − 2

2�(n− 2�)
(20)

∼ k4

8π

(
1− 2

k

)n

·1
2

(
1 +

2

k − 2

)n√
k − 2

4n
k (n− 4nk )

∼ k5

32πn
(21)

We conclude that the numerator in (1), which is (14) squared in our setting, is
asymptotically equal to its denominator (17), proving that P (∃i < j: |f−1(i)| =
|f−1(j)|) → 1 as n/k5 → 0.

References

1. Alon, N., Spencer, J.H.: The Probabilistic Method, 2nd edn. John Wiley and Sons,
New York (2000)

2. Andrews, G.E.: The Theory of Partitions. Cambridge University Press (1998), see
also Encyclopedia of Mathematics and Its Applications, vol. 2. Addison-Wesley
(1976)

3. Cover, T.M., Thomas, J.A.: Elements of Information Theory. John Wiley & Sons
(2006)
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Dedicated to the memory of Rudolf Ahlswede

Abstract. In this paper we give a report on some results for the Star
and Pancake graphs obtained after the conference “Search Methodolo-
gies” which was held in October, 2010. The graphs are defined as
Cayley graphs on the symmetric group with the generating sets of all
prefix–transpositions and prefix–reversals, correspondingly. They are al-
so known as the Star and Pancake networks in computer science. In this
paper we give the full characterization of perfect codes for these graphs.
We also investigate a cycle structure of the Pancake graph and present an
explicit description of small cycles as well as their number in the graph.

Keywords: Cayley graph, Pancake graph, Star graph, Star network,
Pancake network, cycle embedding, efficient dominating set, perfect code.

1 Introduction

I was one of participants of the conference “Search Methodologies” which was
held in the frame of the ZiF Project “Search Methodologies” in October, 2010.
It was the last time when I met with Rudi Ahlswede. He wrote in a short
description of the project:

In the three decades which passed since 1979 there has been an explo-
sion of developments in search for instance in Computer Science, Image
Reconstruction, Machine Learning, Information Theory, and Operations
Research.

And one more quote:

A search structure is defined by a space of objects searched for and a
space of tests (questions). In specifying a search problem performance
criteria have to be chosen. Furthermore we distinguish combinatorial
and probabilistic models.

As my main research interests are Cayley graphs and investigations of their
structural properties, I gave a talk concerning search combinatorial problems on

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 472–487, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Cayley graphs. So, the space of objects is given by Cayley graphs and the space
of questions is given by combinatorial problems. In this paper I would like to
give a report on some problems which were announced at that time as open but
now they are solved. This is my report to Rudi.

2 Main Definitions, Main Problems

We consider Cayley graphs defined as follows. Let G be a group, and S ⊂ G
be a set of generators (a generating set) such that e �∈ S and S = S−1. Then
in the Cayley graph Cay(G,S) = (V,E) vertices correspond to the elements of
the group, i.e. V = G, and edges correspond to the action of the generators, i.e.
E = {{g, gs} : g ∈ G, s ∈ S}. Cayley graphs are connected |S|–regular vertex–
transitive graphs. In a Cayley graph Cay(G,S) the diameter is the maximum,
over g ∈ G, of the length of a shortest expression for g as a product of generators.

There are many well–known open combinatorial problems on Cayley graphs
such as the diameter problem (the problem of searching the diameter); the hamil-
tonian problem (the problem of searching the hamiltonian cycle); the problem
of searching perfect codes, etc. There are no answers in a general case, and
moreover sometimes it is difficult to solve a problem even for a specific class of
graphs. For example, the problem of determining the diameter of the so–called
Pancake graphs, posed in [DW75] is still open.1

The Pancake graph Pn = Cay(Symn, PR), n � 2, is the Cayley graph on
the symmetric group Symn of permutations π = [π1π2 . . . πn], where πi = π(i),
1 � i � n, with the generating set PR = {ri ∈ Symn : 2 � i � n} of all prefix–
reversals ri reversing the order of any substring [1, i], 2 � i � n, of a permutation
π when multiplied on the right, i.e. [π1 . . . πiπi+1 . . . πn]ri = [πi . . . π1πi+1 . . . πn].
It is a connected vertex–transitive (n−1)-regular graph of order n!. The distance
d = d(π, τ) between two vertices π and τ in Pn is defined as the least number of
prefix–reversals transforming π into τ , i.e. πri1ri2 . . . rid = τ , and the diameter
is diam(Pn) = max{d(π, τ) : π, τ ∈ Symn}.

Some upper and lower bounds on the diameter of the Pancake graph as well
as its exact values for 2 � n � 19 are known [GP79, HS97, AKSK06, C11]. One
of the main difficulties in solving this problem is a complicated cycle structure
of the graph, which dramatically affects to the vertex distributions in the metric
spheres Si = {π ∈ Sym : d(I, π) = i} of radius 1 � i � diam(Pn) centered at
the identity permutation I = [1 . . . n]. It is known [KF95, STC06], that all cycles
of length l, where 6 � l � n!, can be embedded in Pn, n � 3, but there are no
cycles of length 3, 4, and 5. Moreover, as it will be shown below, each of vertices

1 During my talk I have also mentioned about Rubik’s cube for which the diameter
of its Cayley graph was unknown. However, at the end of my talk Prof. Martin
Milanič has found the information in Google that this problem was solved recently!
While it had been known since 1995, that 20 was a lower bound on the diameter,
it was proved in 2010 by Tomas Rokicki, Herbert Kociemba, Morley Davidson, and
John Dethridge through extensive computer calculations that this bound is a sharp
upper bound. (see http://tomas.rokicki.com/)
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of Pn belongs to exactly one 6–cycle. From this, one can immediately obtain
that |S1| = n− 1, |S2| = (n− 1)(n− 2), |S3| = (n− 1)(n− 2)2 − 1. However, to
get |Si| for 4 � i � diam(Pn) we need to know an explicit description of cycles.
This problem was open some time ago. Now some results for small cycles are
obtained and they will be presented in Section 4.

Another problem which was open for the Pancake graph as well as for the Star
graph came from coding theory. First let us give the definition of Star graphs
and then to describe the problem.

The Star graph Sn = Cay(Symn, PT ), n � 2, is the Cayley graph on the
symmetric group Symn of permutations π = [π1π2 . . . πn], where πi = π(i),
1 � i � n, with the generating set PT = {ti ∈ Symn : 2 � i � n} of all
prefix–transpositions ti transposing the 1st and ith elements, 2 � i � n, of a
permutation π when multiplied on the right, i.e. [π1π2 . . . πi−1πiπi+1 . . . πn]ti =
[πiπ2 . . . πi−1π1πi+1 . . . πn]. It is a connected vertex–transitive (n − 1)–regular

graph of order n! and diameter diam(Sn) = � 3(n−1)
2  [AK89]. This graph is

hamiltonian; the set of all its even cycles was obtained in [JLD91].
The Star and Pancake graphs have a hierarchical structure such that for any

n � 3 a graph Γn ∈ {Sn, Pn} consists of n copies Γn−1(i) = (V i, Ei), 1 � i � n,
where the vertex set is presented by permutations with the fixed last element:

V i = {[π1 . . . πn−1i], where πk ∈ {1, . . . , n}\{i} : 1 � k � n− 1}, (1)

with |V i| = (n− 1)!, and the edge set is presented by the set:

Ei = {{[π1 . . . πn−1i], [π1 . . . πn−1i]gj}, where gj ∈ {tj , rj} : 2 � j � n− 1},

with |Ei| = (n−1)!(n−2)
2 . There are (n−2)! external edges between any two copies

Γn−1(i), Γn−1(j), i �= j. These edges are defined by the generating element gn.
The generating elements gj , 2 � j � n−1, define internal edges within all copies
Γn−1(i), 1 � i � n. The copies Γn−1(i) are also called (n− 1)–copies.

In [DS03] it was shown the existence of perfect codes, or efficient dominating
sets, in Cayley graphs on symmetric groups having a hierarchical structure.
In particular, the Star and Pancake graphs should have perfect codes. The
structure of these perfect codes was described but the full characterization of
all such codes was not obtained. At the first time the characterization of all
perfect codes in the Pancake graph was presented in 2010 [K10]. Recently it was
shown that the same result could be applied to the Star graph [KS12]. In this
paper we prove that there are exactly n efficient dominating sets of cardinality
(n − 1)! in Γn, n � 3. Moreover, we describe all these sets in the next Section
and investigate their distance properties.

3 Efficient Dominating Sets in the Star and Pancake
Graphs

Let us give additional definitions. An independent set is a set of vertices in a
graph, no two of which are adjacent. An independent set D of vertices in a
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graph Γ is an efficient dominating set (or perfect code [DS03]) if each vertex not
in D is adjacent to exactly one vertex in D. The domination number γ(Γ ) in a
graph Γ is the number of vertices in the smallest dominating set for Γ where a
dominating set D is a set of vertices such that every vertex not in D is adjacent
to at least one vertex in D. It is obvious, that efficient dominating sets are the
smallest sets among all dominating sets.

It was shown in [AK96] that the cardinality of the minimal dominating sets
in the Star graph is equal to (n− 1)!. In [Q06] minimal efficient dominating sets
were used in broadcasting algorithms for multiple messages on the n-dimensional
Star and Pancake networks (graphs). These networks have been considered in
computer science as models for interconnection networks [AK89, LJD93] such
that processors are labeled by permutations of length n, and two processors
are connected when the label of one is obtained from the other by a prefix–
transposition or a prefix–reversal.

As above, we put Γn ∈ {Sn, Pn} and gi ∈ {ti, ri}, 2 � i � n, and define sets:

Dk = {[k π2 . . . πn], πj ∈ {1, . . . , n}\{k} : 2 � j � n}, 1 � k � n, (2)

consisting of all permutations with the fixed first element. These sets have the
following evident properties.

Property 1. |Dk| = (n− 1)! for any 1 � k � n.
Property 2. |Dk1

⋂
Dk2 | = 0, k1 �= k2, moreover any vertex from Dk1 is

adjacent to exactly one vertex from Dk2 .
Property 3.

⋃n
k=1Dk = V (Γn).

Property 4. Dk is independent for any 1 � k � n.

The last property follows from the definitions of the graphs since any generating
element gi, 2 � i � n, transposes the 1st and ith elements of a permutation when
multiplied on the right. Hence, any two permutations from Dk, 1 � k � n, are
not adjacent which means that the set is independent.

The open neighborhood N(A) of a set A ⊆ V (Γ ) in a graph Γ = (V,E) is
defined as the subset of vertices in V (Γ ) \ A adjacent to some vertex in A,
namely:

N(A) = {v ∈ V (Γ ) \A | {v, u} ∈ E(Γ ) for all u ∈ A}.
In particular, the sets (1) and (2) have the following properties.

Property 5. N(V k) = Dk for any 1 � k � n.

The distance d(v, u) between vertices v, u ∈ V (Γn) is defined as the minimum
number of generating elements transforming v in u. If X is an efficient domi-
nating set in Γn then the following property holds.

Property 6. d(u, v) � 3 for any u, v ∈ X .

This is true because d(u, v) �= 1 since X is independent and d(u, v) �= 2 since X
is efficient dominating. Let us also define the following sets:

Di
k = {[k π2 . . . πn−1 i], πj ∈ {1, . . . , n}\{k, i} : 2 � j � n}, (3)
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where 1 � k �= i � n, consisting of all permutations with the first and the last
fixed elements. There are n (n−1) such sets in Γn, n � 3, of cardinality (n−2)!.
There is the following evident connection between sets (2) and (3).

Property 7. Dk =
⋃n
i=1,i
=kD

i
k for any 1 � k � n.

The following property is also held for vertices of the set (3).

Property 8. Any vertex from Di
k is adjacent to exactly one vertex from Dk

i

and exactly to one vertex from Di
j for any j �= i, k.

The main theorem of this Section is formulated as follows.

Theorem 1. There are only n efficient dominating sets in Γn given by (2).

Proof. First of all let us show that the sets given by (2) are efficient dominating
sets. It was proved in more generality in [DS03]. Since Γn, n � 3, is (n − 1)–
regular, hence any vertex from some dominating set X dominates itself and
n − 1 adjacent vertices, so |X | � n!

n = (n − 1)!. By Property 1, sets (2) have
the smallest cardinality (n − 1)! , and by Property 4 they are independent. To
prove that Dk are the efficient dominating sets, we have to show that for any
k = 1, . . . , n any vertex π = [π1 . . . πn] �∈ Dk is adjacent to exactly one vertex
from Dk, i.e. there is the only vertex π∗ ∈ Dk such that {π, π∗} ∈ E(Γn).
Indeed, since π �∈ Dk, hence π1 �= k, and there exists the only πi = k for some
2 � i � n. Then by multiplying π on a generating element gi on the right we
have π∗ with the first element k, i.e. π∗ ∈ Dk. So {π, π∗} ∈ E(Γn) and such
a vertex π∗ ∈ Dk is the only one for a vertex π �∈ Dk, 1 � k � n. Thus, the
sets (2) are efficient dominating sets in Γn, n � 3.

Now we prove that there are no other efficient dominating sets in Γn, n � 3.
Let X be an efficient dominating set. Since the sets Dk, 1 � k � n, partition the
whole symmetric group, hence X

⋂
Dk �= ∅. We choose such a k and conclude

that X = Dk. Since Dk =
⋃n
i=1,i
=kD

i
k by Property 7 for any 1 � k � n, then it

is sufficient to prove that X i
k = Di

k for any 1 � i �= k � n, where X i
k = X

⋂
Di
k.

There are two cases: (a) X i
k = Di

k; (b) X
i
k ⊂ Di

k.

(a) By Property 8, Dk
i = N(Di

k)
⋂
V k and V k \Dk

i = N(N(Di
k))

⋂
V k, where

V k is defined by (1). Since Di
k ⊆ X , and by Property 6 we have d(u, v) � 3

for any two vertices u, v ∈ X , then Dk
i

⋂
X = ∅ and (V k \Dk

i )
⋂
X = ∅, i.e.

X
⋂
V k = ∅. Moreover, by Property 5 we have N(V k) = Dk for any 1 � k � n

and any vertex in V k is adjacent to exactly one vertex in Dk, hence Dk ⊆ X .
Since |Dk| = |X | = (n− 1)!, then finally we have X = Dk.

(b) In this case our goal is to show that if we assume that there is an efficient
dominating set X i

k ⊂ Di
k, 1 � i �= k � n, then it should be empty, i.e. we have

to show that |X i
k| = 0 in this case. To prove this we consider the following sets:

Ak = N(X i
k)

⋂
V k, Ak ⊂ Dk

i ; (4)
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Ai = N(Xk
i )

⋂
V i, Ai ⊂ Di

k; (5)

Bi = N(Ci)
⋂
V i

⋂
X, Bi ⊂ V i \Di

k; (6)

Bk = N(Ck)
⋂
V k

⋂
X, Bk ⊂ V k \Dk

i , (7)

where Ci = Di
k \ (X i

k

⋃
Ai), and Ck = Dk

i \ (Xk
i

⋃
Ak). A schematic representa-

tion of the sets (4)–(7) is given on Figure 1 where one–to–one correspondences
between sets are shown by arrows. The correspondence means that any vertex
from one set is adjacent to exactly one vertex from another set. From the defi-
nition of the open neighborhood and by Property 8 it follows that the following
pairs have this correspondence: Ak and X i

k, A
i and Xk

i , B
i and Ci, Bk and Ck,

which means that |Ak| = |X i
k|, |Ai| = |Xk

i |, |Bi| = |Ci|, |Bk| = |Ck|. Moreover,
since |Ci| = |Di

k|−(|X i
k|+ |Ai|) and |Ck| = |Dk

i |−(|Xk
i |+ |Ak|) then |Ci| = |Ck|,

and hence |Bi| = |Bk|.
Now we show that sets V k

⋂
X andBk

⋃
Xk
i are the same. Indeed, Bk

⋃
Xk
i ⊆

V k
⋂
X by (7). On the other hand, since X is an efficient dominating set, then

from Property 6 we have |(V k
⋂
X)

⋂
N(Ak)| = 0 and |(V k

⋂
X)

⋂
N(Xk

i )| = 0,
so

((V k
⋂
X) \Xk

i ) ⊂ N(Ck)
⋂
V k,

that means V k
⋂
X ⊆ (N(Ck)

⋂
V k

⋂
X)

⋃
Xk
i = Bk

⋃
Xk
i . Thus, the sets are

the same, and hence |V k
⋂
X | = |Bk

⋃
Xk
i |.

We also show that V i
⋂
X = Bi

⋃
X i
k, since we have Bi

⋃
X i
k ⊆ V i

⋂
X

by (6), and we have |(V i
⋂
X)

⋂
N(Ai)| = 0 and |(V i

⋂
X)

⋂
N(X i

k)| = 0 by
Property 6, so

((V i
⋂
X) \X i

k) ⊂ N(Ci)
⋂
V i,

that means V i
⋂
X ⊆ (N(Ci)

⋂
V i

⋂
X)

⋃
X i
k = Bi

⋃
X i
k. Thus, the sets are

the same, and hence |V i
⋂
X | = |Bi

⋃
X i
k|.

In a general case, for any b �= i, k any vertex from
⋃
a 
=i,kD

a
b either belongs

to
⋃
a 
=i,k(X

⋂
V a), or it is adjacent to exactly one vertex of this set. Indeed,

for any a �= i, k, there are two cases: 1) Xa
b = Da

b ; 2) X
a
b ⊂ Da

b . In the first
case, Da

b belongs to
⋃
a 
=i,k(X

⋂
V a). In the second case, Da

b = Xa
b

⋃
Aa

⋃
Ca,

i.e. for any vertex x ∈ Da
b there are three possibilities:

1) x ∈ Xa
b ⊂

⋃
a 
=i,k(X

⋂
V a);

2) x ∈ Aa, hence x is adjacent to exactly one vertex from Xb
a ⊂

⋃
a 
=i,k(X

⋂
V a);

3) x ∈ Ca, hence x is adjacent to exactly one vertex from Ba ⊂
⋃
a 
=i,k(X

⋂
V a).

On the other hand, the same arguments could be applied to any vertex from⋃
a 
=i,k(X

⋂
V a): either it belongs to the set

⋃
a 
=i,kD

a
b , or it is adjacent to the

only vertex from this set. This means that the cardinalities of these sets should
be the same:

|
⋃
a 
=i,k

Da
b | = |

⋃
a 
=i,k

(X
⋂
V a)| = |X | − |X

⋂
V k| − |X

⋂
V i| =
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Fig. 1. A schematic representation of the sets

= (n− 1)!− |X
⋂
V k| − |X

⋂
V i| = (n− 1)!− (|Xk

i |+ |Bk|)− (|X i
k|+ |Bi|) =

= (n−1)!−((n−2)!−|Xk
i |)−((n−2)!−|X i

k|) = (n−1)!−2(n−2)!+ |Xk
i |+ |X i

k|.
On the other hand, we have:

|
⋃
a 
=i,k

Da
b | = |Db| − |Dk

b | − |Di
b| = (n− 1)!− 2(n− 2)!.

Thus, |X i
k| = 0 that contradicts to our assumption that |X i

k| is a non–empty set
and this completes the proof. �

One of the referees of the manuscript suggested that “the proof might be quite
shorter ”. I do believe that this is true but no one could find it yet.

Corollary 1. γ(Γn) = (n− 1)!, n � 3.

We finish this Section by giving the distance characterization for vertices of a
given efficient dominating set in the Star and Pancake graphs. Let πd be a
permutation being at the distance d from a permutation π in Γn.

3.1 Distances in the Efficient Dominating Sets of the Star Graph

In the Star graph Sn the distance between vertices of a given efficient dominating
set is obtained as follows. Let π ∈ Sn and let

πd−1 = π tj ti1 ti2 . . . tid−2
�∈ Dk, (8)

where 2 � j, is � n, and j �= i1, is �= is+1 for any 1 � s < d − 2. We define ps,
0 � s � d− 1, such that p0 = p1 = j, and for any s � 2 the following holds:

ps =

{
is, is−1 = j,
j, is−1 �= j.

(9)
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Lemma 1. In the Star graph Sn, n � 3, for any π ∈ Dk, 1 � k � n, and for
any 3 � d � diam(Sn) there exists πd ∈ Dk presented as follows:

πd = πd−1 tpd−1
, (10)

where πd−1 corresponds (8) and pd−1 is defined by (9).

Proof. Let π1 = π tj . There are two cases. If is �= j for any s, 2 � s � d − 1,
then π∗ = π1 ti1 ti2 . . . tis with π∗

j = k. Hence, π∗ tps ∈ Dk, where ps = j. If

is = j for some s, then π∗ = π1 ti1 ti2 . . . tis ∈ Dk, π
∗∗ = π∗ tis+1 with π∗∗

is+1
= k.

Thus, π∗∗ tps ∈ Dk, where ps = is+1. �

3.2 Distances in the Efficient Dominating Sets of the Pancake
Graph

Now we consider distances between vertices of a given efficient dominating set
in the Pancake graph Pn. Let π ∈ Dk, 1 � k � n, and let

πd−1 = π rj ri1 ri2 . . . rid−2
�∈ Dk, (11)

where 2 � j, is � n, j �= i1 and is �= is+1 for any 1 � s < d − 2. We define
qs, 0 � s � d− 2, by the following recurrent way. We put

q0 = j, q1 =

{
i1 − j + 1, if i1 > j,
j, if i1 < j.

(12)

and for any 2 � s < d− 2 define

qs =

{
is − qs−1 + 1, if is > qs−1,
qs−1, if is < qs−1.

(13)

Then we have the following result.

Theorem 2. In the Pancake graph Pn, n � 3, for any π ∈ Dk, 1 � k � n, and
any 3 � d � diam(Pn) there exists πd ∈ Dk such that

πd = πd−1 rqd−2
, (14)

where πd−1 is defined by (11) and qd−2 is defined by (13),(14), moreover

qd−2 =

{
j, if is < j for any 1 � s � d− 2 in (12), (13),
q, if j < i1 < i2 . . . < id−2 in (12), (13).

(15)

where

q =

{∑�(d−2)/2�
p=0 i2p+1 −

∑�(d−2)/2�
p=1 i2p − j + 1, if d is odd,∑(d−2)/2

p=1 i2p −
∑(d−2)/2−1

p=0 i2p+1 + j, if d is even.
(16)
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Proof. By Property 6 any two vertices from Dk, 1 � k � n, are at the distance
at least three from each other. Indeed, let π = [k π2 . . . πn] ∈ Dk. Vertices at
the distance one from π don’t belong to Dk since they are presented as follows:

π1 = π rj = [πj πj−1 . . . π2 k πj+1 . . . πn], π
1
j = k, 2 � j � n.

Vertices at the distance two from π also don’t belong to Dk since they have one
of the following representations:

π2 = π1 ri1 = [πj−i1+1 . . . πj πj−i1 . . . π2 k πj+1 . . . πn], (17)

where π2
j = k, 2 � i1 < j � n, or

π2 = π1 ri1 = [πi1 . . . πj+1 k π2 . . . πj πi1+1 . . . πn], (18)

where π2
i1−j+1 = k, 2 � j < i1 � n. Permutations (17),(18) are at the distance

one from permutations belonging Dk since multiplying them on rj and ri1−j+1,
correspondingly, on the right we obtain permutations with the first element k.
Thus, for any π, τ ∈ Dk, 1 � k � n, we have d(π, τ) � 3.

On the other hand, multiplying these permutations on ri2 , where i2 �= j and
i2 �= i1 − j+1, on the right we obtain permutations π3 = π2 ri2 �∈ Dk such that

1) π3
j = k, if i2 < j in (17); 3) π3

i1−j+1 = k, if i2 < i1 − j + 1 in (18);

2) π3
i2−j+1 = k, if i2 > j in (17); 4) π3

i2−i1+j = k, if i2 > i1 − j + 1 in (18),

where i2 − i1 + j = i2 − (i1 − j + 1) + 1. Since positions of element k in π3

are known, so all permutations π4 ∈ Dk are obtained by multiplying on the
corresponding prefix–reversals rj , ri2−j+1, ri1−j+1, ri2−i1+j on the right. Let us
note that π3 = π2 ri2 �∈ Dk are presented by (11), and π4 ∈ Dk are obtained
by multiplying on prefix–reversals defined by (12),(13) on the right. Taking
into account the same arguments, we obtain a permutation πd = πd−1 rqd−2

∈
Dk, where 3 � d � diam(Pn) for any given π ∈ Dk. Moreover, if is < j,
1 � s � d − 2, then the position of element k in πs doesn’t change when πs

is multiplied on ris on the right, hence qd−2 = j in (13). In the case when
j < i1 < i2 . . . < id−2, the position of element k is changed every time when πs

is multiplied on ris on the right, hence by (12),(13) the value qd−2 will be defined
as id−2 − (id−3 − . . .− (i1 − j + 1) + . . .+ 1) + 1) for some given d. Moreover,
if d is even then all even values is in the expression above will be positive while
all odd values will be negative, and vice versa, if d is odd then all even values is
will be negative while all odd will be positive. Thus, we have qd−2 = q, where q
is defined by (16). �

4 Small Cycles of the Pancake Graph

In this Section we present results on the full characterization of cycles of length
6, 7, 8 and 9 in the Pancake graph. To describe cycles the following cycle
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representation via a product of generating elements was used in [KM10]. A
cycle of length l is also called an l–cycle. A sequence of prefix–reversals Cl =
ri0 . . . ril−1

, where 2 � ij � n and ij �= ij+1 ((j +1)mod l) for any 0 � j � l− 1,
such that πri0 . . . ril−1

= π, where π ∈ Symn, is called a form of l–cycle. Any
l–cycle can be represented by 2 l its forms (not necessarily distinct) with respect
to a vertex and a direction. The canonical form Cl of an l–cycle is called a form
with a lexicographically maximal sequence of indices i0 . . . il−1. Two cycles in a
graph are independent if they do not have any vertex in common.

The main results of this Section are presented by the following theorems.

Theorem 3. [KM10] The Pancake graph Pn, n � 3, has n!
6 independent 6–

cycles of the canonical form

C6 = r3r2r3r2r3r2. (19)

Moreover, each of vertices of Pn belongs to exactly one 6–cycle.

Theorem 4. [KM10] The Pancake graph Pn, n � 4, has n!(n − 3) distinct 7–
cycles of the canonical form

C7 = rkrk−1rkrk−1rk−2rkr2, (20)

where 4 � k � n. Moreover, each of vertices of Pn belongs to 7(n− 3) distinct
7–cycles and there are n!

8 � N7 � n!
7 independent 7–cycles.

As one can see, the descriptions of 6–cycles and 7–cycles are not so complicated.
However, the situation is changed dramatically for 8–cycles and 9–cycles.

Theorem 5. [KM12] Each of vertices of the Pancake graph Pn, n � 4, belongs

to N8 = n3+12n2−103n+176
2 distinct 8–cycles of the following canonical forms:

C1
8 = rkrjrirjrkrk−j+irirk−j+i, 2 � i < j � k − 1, 4 � k � n;

C2
8 = rkrk−1r2rk−1rkr2r3r2, 4 � k � n;

C3
8 = rkrk−irk−1rirkrk−irk−1ri, 2 � i � k − 2, 4 � k � n;

C4
8 = rkrk−i+1rkrirkrk−irk−1ri−1, 3 � i � k − 2, 5 � k � n;

C5
8 = rkrk−1ri−1rkrk−i+1rk−irkri, 3 � i � k − 2, 5 � k � n;

C6
8 = rkrk−1rkrk−irk−i−1rkriri+1, 2 � i � k − 3, 5 � k � n;

C7
8 = rkrk−j+1rkrirkrk−j+1rkri, 2 � i < j � k − 1, 4 � k � n;

C8
8 = r4r3r4r3r4r3r4r3.

Moreover, there are n!(n3+12n2−103n+176)
16 distinct 8–cycles and n!

8 independent
8–cycles in the Pancake graph.

Theorem 6. [KM11] Each of vertices of the Pancake graph Pn, n � 4, belongs

to N9 = 8n3−45n2+61n−12
2 distinct 9–cycles of the following canonical forms:
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C1
9 = rkrk−1rirk−1rkriri−1ri+1r2, 3 � i � k − 2, 5 � k � n;

C2
9 = r2rk−i+2rkri−2ri−1riri−1rkrk−i+2, 4 � i � k − 1, 5 � k � n;

C3
9 = rkrk−irk−1rk−j+i−1rk−jrkrj−i+1rjri, 2 � i < j � k − 2, 5 � k � n;

C4
9 = rkrk−1riri−1rk−1rkriri+1r2, 3 � i � k − 2, 5 � k � n;

C5
9 = rkrk−1rk−2rk−1rk−2rkr3rkrk−2, 4 � k � n;

C6
9 = rkrk−1rk−2rirkr2rkrirk−1, 2 � i � k − 3, 5 � k � n;

C7
9 = rkrk−j+irkrjrirkrk−jrk−irj−i, 2 � i � j − 2, i+ 2 � j � k − 2, 6 � k � n;

C8
9 = rkrk−j+irk−jrkrjrirkrk−irj−i, 2 � i � j − 2, i+ 2 � j � k − 2, 6 � k � n;

C9
9 = rkrk−j+irk−j+1rkrjrirkrk−i+1rj−i+1, 2 � i < j � k − 1, 4 � k � n;

C10
9 = rkrk−1rkrk−1rkrk−1rk−3rkr3, 5 � k � n.

Moreover, there are n!(8n3−45n2+61n−12)
18 distinct 9–cycles in the Pancake graph.

Proofs of these results are based on the hierarchical structure of the Pancake
graph. Below we give proofs for Theorem 3 and Theorem 4. To present them
we need some new definitions and notations.

A segment [πi . . . πj ] of a permutation π = [π1 . . . πi . . . πj . . . πn] consists of
all elements entered into between πi and πj inclusive. Any permutation can be
written as a sequence of singleton and multiple segments which are presented by
{i, j, k} and {α, β, γ}, respectively. For example, π = [iπ2π3π4jπ6π7π8k] can be
presented as π = [iαjβk] where α = [π2π3π4], β = [π6π7π8]. If α is the inversion
of a segment α then α = α. Let us denote the number of elements in a segment
α as |α|. We also put π = πrn and τ = τrn.

Lemma 2. [KM10] Let two distinct permutations π and τ belong to the same
(n − 1)–copy of Pn, n � 3, and let d(π, τ) � 2, then π, τ belong to distinct
(n− 1)–copies of the graph.

Proof. Let π, τ ∈ Pn−1(i), 1 � i � n. If d(π, τ) = 1 and if we put π = [jαkβi]
then τ = [kαjβi] where j �= k �= i. So, π = [iβkαj] and τ = [iβjαk], which
means that π, τ belong to distinct copies Pn−1(j) and Pn−1(k). If d(π, τ) = 2
then there is a permutation ω in Pn−1(i) adjacent to π and τ . Permutations π
and τ are obtained from ω by multiplying on different (not equal to rn) prefix–
reversals on the right. Thereby, the first elements of π and τ should be different
hence π = π rn and τ = τ rn should be different, i.e. they belong to the distinct
(n− 1)–copies of Pn. �

4.1 6–Cycles of the Pancake Graph

In this section we present the proof of Theorem 3.

Proof. If n = 3 then P3
∼= C6 and there is the only 6–cycle presented as [123]

r2→
[213]

r3→ [312]
r2→ [132]

r3→ [231]
r2→ [321]

r3→ [123] for which the canonical form is
C6 = r3r2r3r2r3r2.

Let us show that there are no other forms of 6–cycles in Pn, n � 4. First of all,
we prove that a 6–cycle doesn’t appear on vertices of two distinct (n−1)–copies.
Indeed, if π, τ ∈ Pn−1(i) and π, τ ∈ Pn−1(j) then d(π, τ) �= 1 and d(π, τ) �= 2
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by Lemma 2, and hence d(π, τ) � 3. Suppose that there is a 6–cycle containing
vertices π, τ, π, τ . So if d(π, τ) = 3 then π, τ are adjacent in Pn−1(j) and by
Lemma 2 vertices π = πrn, τ = τrn belong to distinct (n − 1)–copies but this
is not true since π, τ ∈ Pn−1(i). If d(π, τ) = 4 then π = τ but this is not
possible since π �= τ . Thus, a 6–cycle doesn’t appear on vertices of two distinct
(n− 1)–copies.

Now let us prove that a 6–cycle doesn’t appear on vertices of three distinct
(n−1)–copies. Let π, τ ∈ Pn−1(i), π �= τ such that d(π, τ) � 2 then by Lemma 2
vertices π, τ belong to distinct (n− 1)–copies. We consider two cases.

If d(π, τ) = 1 then vertices π, τ, π, τ might be belong to a 6–cycle if and only
if d(π, τ ) = 3. Show that this is not true. Let π = [jαkβi] then τ = [kαjβi]
and π = [iβkαj] ∈ Pn−1(j), τ = [iβjαk] ∈ Pn−1(k). The shortest path starting
at π and belonging to Pn−1(k) should contain vertices ω = [kβiαj] and ω =
[jαiβk] ∈ Pn−1(k), i.e. d(π, ω) = 2. It is evident that there is no a prefix–
reversal transforming ω into τ , i.e. d(ω, τ) �= 1, and hence d(π, τ ) �= 3.

If d(π, τ) = 2 then vertices π, τ, π, τ might be belong to a 6–cycle if and only
if d(π, τ ) = 2. However this is not possible since by Lemma 2 vertices π = πrn
and τ = τrn belong to distinct (n − 1)–copies. Thus, a 6–cycle doesn’t appear
on vertices of three distinct (n− 1)–copies.

It is also evident that a 6–cycle doesn’t appear on vertices of four and more
distinct (n− 1)–copies since there should be at least four external edges as well
as at least one edge in each of (n− 1)–copies so we have a 8–cycle.

Thus, there is the only canonical form, namely r3r2r3r2r3r2, to describe 6–
cycles in Pn, n � 3. These cycles are independent for n � 4 since prefix–reversals
ri, 4 � i � n, define external edges for 6–cycles which means that each of vertices
of Pn belongs to exactly one 6–cycle. �

4.2 7–Cycles of the Pancake Graph

In this section we give the proof of Theorem 4.

Proof. We prove Theorem 4 by the induction on the dimension k of the Pancake
graph Pk when k � 4. If k = 3 then there are no 7–cycles in P3

∼= C6.
If k = 4 then Theorem says that each of vertices of P4 belongs to 7 distinct 7–

cycles. Since Pn is a vertex–transitive graph then it is enough to check this fact
for any its vertex. In particular, all 7–cycles containing the identity permutation
[1234] are presented in the Table 1. They could be found easily by considering
vertex distributions of P4 in metric spheres centered at the identity permutation
I = [1234]. The canonical form for all cycles presented in Table 1 is C6 =
r4r3r4r3r2r4r2 that corresponds to (20) when k = 4.

Now we assume that Theorem is hold for k = n− 1 and prove that it is hold
also for k = n using the hierarchical structure of Pn.

By the induction assumption, any vertex of any (n − 1)–copy belongs to
7((n − 1) − 3) = 7(n − 4) distinct 7–cycles of this copy. However, besides 7–
cycles belonging to the same (n− 1)–copy there may also be 7–cycles belonging
to distinct (n− 1)–copies of the graph. The following three cases are possible.
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Table 1. 7–cycles in P4 containing the identity permutation [1234]

? vertex description prefix–reversal description

1 [1234]-[4321]-[2341]-[1432]-[3412]-[4312]-[2134] r4r3r4r3r2r4r2
2 [1234]-[3214]-[4123]-[2143]-[1243]-[3421]-[4321] r3r4r3r2r4r2r4
3 [1234]-[4321]-[2341]-[3241]-[1423]-[4123]-[3214] r4r3r2r4r2r4r3
4 [1234]-[3214]-[2314]-[4132]-[1432]-[2341]-[4321] r3r2r4r2r4r3r4
5 [1234]-[2134]-[4312]-[3412]-[2143]-[4123]-[3214] r2r4r2r4r3r4r3
6 [1234]-[4321]-[3421]-[1243]-[4213]-[3124]-[2134] r4r2r4r3r4r3r2
7 [1234]-[2134]-[4312]-[1342]-[2431]-[3421]-[4321] r2r4r3r4r3r2r4

πn2

πn1
πn3

πj1

πj2

πi2

πi1

Pn−1(j)

Pn−1(i)

Pn−1(n)

ri
rj

rn−j+irn−j+1

rn

rn

rn

Fig. 2. Case 2 of the proof of Theorem 4

Case 1. Suppose that a sought 7–cycle C∗
7 is formed on vertices from two

copies Pn−1(i) and Pn−1(j), 1 � i �= j � n, such that either two vertices of C∗
7

belong to Pn−1(i) and other five vertices belong to Pn−1(j), or three vertices of
C∗

7 belong to Pn−1(i) and other four vertices belong to a copy Pn−1(j). In the
both cases we have d(π, τ) � 2 for any vertices π, τ ∈ Pn−1(i) belonging to C∗

7 .
Then by Lemma 2 vertices π, τ belong to distinct (n−1)–copies that contradicts
to our assumption. Therefore, a 7–cycle does not occur in this case.

Case 2. Suppose that a sought 7–cycle C∗
7 is formed on vertices from three

distinct (n − 1)–copies such that two vertices πi1 , πi2 belong to Pn−1(i), two
vertices πj1 , πj2 belong to Pn−1(j), the other three vertices πn1 , πn2 , πn3 belong
to Pn−1(n), where 1 � i < j � n (see Figure 2).

Let us describe a sought cycle. Since Pn is a vertex–transitive graph then
there is no loss of generality in taking πn2 = In = [αiβjγn], where |α| = i − 1,
|β| = j− i−1, |γ| = n− j−1. By Lemma 2 vertices πn1 and πn3 are adjacent to
vertices from distinct (n − 1)–copies Pn−1(i) and Pn−1(j), hence these vertices
are presented as follows:
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πn1 = πn2ri = [iαβjγn], where πn1

j = j,

πn3 = πn2rj = [jβiαγn], where πn3

j−i+1 = i.

Their adjacent vertices in copies Pn−1(i) and Pn−1(j) are presented as follows:

πi1 = πn1rn = [nγjβαi], where πi1n−j+1 = j,

πj1 = πn3rn = [nγαiβj], where πj1n−j+i = i.

A vertex πi2 should be adjacent to the vertex πi1 and to one of vertices, say πj2 ,
from the copy Pn−1(j):

πi2 = πi1rn−j+1 = [jγnβαi], where πi21 = j.

On the other hand, a vertex πj2 should be adjacent to the vertex πj1 . Moreover,
since it is also adjacent to πi2 hence πj2 has the following view:

πj2 = πj1rn−j+i = [iαγnβj], where πj21 = i.

By our assumption, the vertices πi2 and πj2 are incident to the same external
edge which means that a permutation π∗ = πi2rn = [iαβnγj] should coincide
with the permutation πj2 . This is possible only in the case when segments β
and γ are empty, i.e. |β| = j − i − 1 = 0 and |γ| = n − j − 1 = 0. From this
we have j = n− 1 and i = j − 1 = n− 2, and a 7–cycle is presented as follows:

πi1
r2→ πi2

rn→ πj2
rn−1−→ πj1

rn→ πn3
rn−1−→ πn2

rn−2−→ πn1
rn→ πi1 . Its canonical form

C7 = rnrn−1rnrn−1rn−2rnr2 coincide with (20) when k = n.
Case 3. Suppose that a sought 7–cycle is formed on vertices from four or

more (n− 1)–copies. It follows from the hierarchical structure of the graph that
any its vertex is incident to the only external edge. So any 7–cycle in this graph
should contain at least two vertices of the same (n−1)–copy and hence a 7–cycle
does not occur in this assumption.

Thus, the only canonical form rnrn−1rnrn−1rn−2rnr2 representing seven cy-
cles of the length 7 and containing vertices from three distinct (n− 1)–copies of
the graph Pn is found. It is evident that any vertex of Pn belongs to all these
cycles. By the induction assumption, any vertex of any (n− 1)–copy belongs to
7(n− 4) distinct 7–cycles from this copy. Therefore, any vertex of Pn belongs to
7(n−4)+7 = 7(n−3) distinct 7–cycles of the canonical form (20) that completes
the proof on the main fact of Theorem 4.

Since each of vertices belongs to 7(n − 3) distinct 7–cycles and there are n!
vertices in Pn, hence there are n!7(n−3) cycles of length 7. However, each cycle
was enumerated seven times, so totally there are 7(n− 3) distinct 7–cycles.

It is also easy to show that there are three independent 7–cycles in P4. For
example, the following three 7–cycles are independent in P4:

C1
7 = [1234]− [2134]− [4312]− [1342]− [2431]− [3421]− [4321],

C2
7 = [3241]− [2341]− [1432]− [3412]− [2143]− [4123]− [1423],

C3
7 = [4213]− [2413]− [3142]− [4132]− [2314]− [1324]− [3124].
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It follows from the hierarchical structure of Pn, n � 4, that there are n!
24 copies

of P4 and each of them has exactly three independent 7–cycles. So, totally there
are at least n!

8 independent 7–cycles that gives the lower bound. The upper
bound is obtained in assumption that each of vertices of Pn, n � 7, belongs to
exactly one 7–cycle. �

We omit the proof of Theorems 4 and 5 since it takes almost 30 pages to present
them together. The following idea was used in proofs.

Since P3
∼= C6 and due to the hierarchical structure, P4 has four copies of

P3, each of which obviously cannot contain 8– or 9–cycles. However, P4 has 8–
and 9–cycles consisting of paths within copies of P3 as well as external edges
between these copies. In general, any 8– or 9–cycle of Pn, n � 4, must consist
of paths within subgraphs that are isomorphic to Pk−1 for some 4 � k � n,
joined by external edges between these subgraphs. Hence, all 8– and 9–cycles
of Pn, n � 4, could be found recursively by considering 8– or 9–cycles within
each Pk, 4 � k � n, consisting of vertices from some copies of Pk−1. Among
all paths belonging to 8– and 9–cycles within subgraphs that are isomorphic to
Pk−1 for some 4 � k � n, paths of length three between vertices of a given form
are the most important cases. So, some results concerning paths of length three
between vertices of a given form are also used in proofs.
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Abstract. We consider two generalizations of group testing: threshold
group testing (introduced by Damaschke [11]) and majority group testing
(a further generalization, including threshold group testing and a model
introduced by Lebedev [20]).

We show that each separating code gives a nonadaptive strategy for
threshold group testing for some parameters. This is a generalization of
a result in [4] on “guessing secrets”, introduced in [9].

We introduce threshold codes and show that each threshold code gives
a nonadaptive strategy for threshold group testing. Threshold codes in-
clude also the construction of [6]. In contrast to [8], where the number of
defectives is bounded, we consider the case when the number of defectives
are known. We show that we can improve the rate in this case.

We consider majority group testing if the number of defective ele-
ments is unknown but bounded (otherwise it reduces to threshold group
testing). We show that cover-free codes and separating codes give strate-
gies for majority group testing. We give a lower bound for the rate of
majority group testing.

Keywords: group testing, pooling, threshold group testing, separating
codes, cover-free codes.

1 Introduction

Group testing is of interest for many applications like in molecular biology. For
an overview of results and applications we refer to the books [13] and [14].

The classical group testing problem is to find the unknown subset D of all
defective elements in the set [N ] = {1, 2, . . . , N}. We consider the case if the
cardinality of |D| = D is known.

For a test set S ⊂ [N ] a test tS is the function tS : 2[N ] → {0, 1} defined by

tS(D) =

{
0 , if |S ∩ D| = 0
1 , otherwise.
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We call a binary n×N matrix X = (mij)1≤i≤n,1≤j≤N a nonadaptive group test-
ing strategy, where the rowmi = (mi1,mi2, . . . ,miN ) of the matrix represent the
ith test set Si = {j : mij = 1}. The testresult is a map t : {(mij)1≤i≤n,1≤j≤N :
mij ∈ {0, 1}} × [N ] → {vn ∈ {0, 1}n} with t(X,D) = (t1, . . . , tn), where
ti = tSi(D). A strategy is called successful, if we can uniquely determine D.
This means for all D1,D2 ⊂ [N ] with |D1| = |D2| = D

t(X,D1) �= t(X,D2).

We remind the reader of the concepts of adaptive and nonadaptive strategies.
Strategies are called adaptive if the results of the first k − 1 tests determine

the kth test. Strategies in which we choose all tests independently are called
nonadaptive. We consider here only nonadaptive strategies.

In the present paper we study two generalizations of group testing which are
quite natural.

In threshold group testing the integers 0 ≤ l < u are given and a test tS
is the function tS : 2[N ] → {0, 1, {0, 1}}, defined by

tS(D) =

⎧⎪⎪⎨⎪⎪⎩
0 , if |S ∩ D| ≤ l
1 , if |S ∩ D| ≥ u
{0, 1} , otherwise

(meaning that the result can be arbitrarily 0 or 1).

We call g = u − l − 1 the gap. In threshold group testing it is not possible
to find the set D of all defective elements if g = u − l − 1 > 0 (see [11]). It
is only possible to find P ⊂ [N ] with |P\D| ≤ g and |D\P| ≤ g. Therefore a
nonadaptive strategy X = (mij)1≤i≤n,1≤j≤N is called a successful nonadaptive
threshold strategy, if for all D1,D2 ⊂ [N ] with |D1\D2| > g, |D2\D1| > g, and
|D1| = |D2| = D

t(X,D1) �= t(X,D2).

In [8] a stronger definition of successful strategies is used and do not include all
successful strategies in our sense, but with this idea the author got relations to
known designs. A good survey of all known results in threshold group testing is
given in [12].

In this paper all logarithms have the basis 2. In [11] a strategy for threshold
group testing without gap with O(u2+D logN) tests was given. In [5] a strategy
with O(D logN) tests was given. In [2] a very easy strategy withD log(N−D+1)
tests and a strategy with (u− 1)
log(N −D+ 1)�+ 
log

(
N−u+1
D−u+1

)
�+D− u+ 1

were given.
In majority group testing there are two functions f1, f2 : {0, 1, . . . , N} →

R+ which put weights on the number D = |D| ∈ {0, 1, . . . , N} of defective
elements and f1(D) < f2(D) ∀D ∈ [0, 1, . . . , N ].

They describe the structure of tests tS : 2[N ] → {0, 1, {0, 1}} as follows

tS(D) =

⎧⎪⎪⎨⎪⎪⎩
0 , if |S ∩ D| ≤ f1(D)
1 , if |S ∩ D| ≥ f2(D)
{0, 1} , otherwise

(meaning that the result can be arbitrarily 0 or 1).
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We use the name majority group testing because first the case f1 = D
2 − 1 and

f2 = D
2 +1 was considered in [20] (see below). Clearly majority group testing is

a generalization of threshold group testing. We get threshold group testing as a
special case by setting f1(D) = l and f2(D) = u. Furthermore the models are
equivalent if the number D of defectives is known. In majority group testing, in
particular also for threshold group testing if g �= 0, it is not possible to find the
set D of all defective elements. We can find a family of subsets F ⊂ 2[N ], which
contains D. This set depends on f1 and f2, on D, and on the strategy used.
In this case we call a strategy successful, if we can find an F with the smallest
possible size in the worst case.

Another model is when f1 and f2 depend on S instead of D, where the gapless
model is regarded in the paper [17].

A special case of majority group testing was introduced by Lebedev [20] as
follows

tS(D) =

⎧⎨⎩
0 , if |S ∩ D| < D

2

1 , if |S ∩ D| > D
2

{0, 1} , if |S ∩ D| = D
2 .

It was shown in [20] that a (w,w) separating code gives a successful nonadaptive
strategy if it is assumed that D is odd and that D < 2w. (See Section 5 for
other special cases studied in [20]).

In [4] it was shown that for guessing secrets (that means l = 0 and u = D for
threshold group testing) a (D,D) separating code gives a successful nonadaptive
strategy. We generalize the guessing secret case in Section 2 and prove that for
threshold group testing a (u,D−l) separating code gives a successful nonadaptive
strategy if D = u+ l. This improves the result of [6] for this special case, because
the authors use a (u,D− l) cover-free code for the strategy, which has a smaller
rate than a separating code. We improve this by a new concept in the next
section.

In Section 3 we introduce threshold codes and show that these codes give
nonadaptive strategies for threshold group testing, if the number of defectives are
known. Furthermore we give an upper bound for the rate of this construction.

In Section 4 we consider majority group testing for f1(D) = 
Dk � − 1 and

f2(D) = �Dk  + 1 where 2 ≤ k ∈ N. We first give conditions for a successful
nonadaptive strategy. Then we give a lower bound for its rate. Again we find
relations to separating codes and cover-free codes.

We assume that D ≥ u, because otherwise all answers are arbirary and it is
not possible to identify a defective element.

Finally, in the appendix we compare threshold codes with the construction
introduced in [6] and give bounds for special cases.
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2 Nonadaptive Threshold Group Testing Using
Separating Codes

It is obvious that it is not possible to identify a defective element if D ≤ u− 1.
In [11] it is shown that if D ≥ u we can find a set P such that

|D\P| ≤ g and |P\D| ≤ g (1)

or more general we can find a family F of subsets of [N ] with

D ∈ F and ∀P ,P ′ ∈ F : |P ′\P| ≤ g and |P\P ′| ≤ g. (2)

It is shown in [11] that all answers given for a strategy can be the same for
all sets in the family F as for the set D of defective elements. Thus we cannot
distinguish these sets.

We consider here the case where the number D of defectives is known.

Definition 1. nTh(N, l, u,D) is the minimal number of tests of a nonadaptive
strategy for threshold group testing with lower bound l and upper bound u (see
the definition in the introduction) to find a family F which fulfills (2), if there
are D defective elements. RTh = RTh(l, u,D) = supN

logN
nTh(N,l,u,D) denotes the

maximal achievable rate of a nonadaptive strategy for threshold group testing for
given D, u, l.

Definition 2. An n×N matrix X = (mij)1≤i≤n,1≤j≤N is called a (w, r) sepa-
rating code of size n×N , if for any pair of subsets I, J ⊂ [N ] such that |I| = w,
|J | = r, and I∩J = ∅, there exists a row index k ∈ [n] such that mki = 1 ∀i ∈ I
and mkj = 0 ∀j ∈ J or vice versa.

By nS(N,w, r) we denote the minimal number of rows of a (w, r) separating
code with N columns and by RS the corresponding maximal achievable rate.
The following theorem is not an immediate following of the result of [6], but it
should be possible to prove this with their methods (using hypergraphs). We
will give another proof.

Theorem 1. Let D = u+ l, then nTh(N, l, u,D) ≤ nS(N, u,D − l).

Proof. The unknown set D of defective elements are chosen by an adversary.
Let (mij) i=1,...,n

j=1,...,N
be a (u,D − l) separating code of size n×N .

We use the n rows as test sets (written in binary representation) for our
strategy and show that we can find a family F of sets such that (2) is fulfilled.

Let F0 = {A1,A2, . . . ,A(ND)
} be the family of all D-element subsets of

{1, 2, . . . , N}.
First consider A1 and search for the set Ai with the smallest index i > 1,

such that |A1\Ai| > g = u− l − 1.
Now we compare these two sets.
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Case 1: u− l ≤ |A1\Ai| < u.
Set I = (A1\Ai) ∪ B, where B ⊂ Ai ∩ A1, such that |I| = u
and set J ⊂ Ai\B, such that |J | = D − l. This is possible because |B| ≤ l.

Case 2: |A1\Ai| ≥ u.
Set I ⊂ A1\Ai such that |I| = u and set J ⊂ Ai, such that |J | = D − l.

There exists a row (a test set S), because of the properties of separating codes,
such that I ⊂ S (mki = 1) and J �⊂ S (mkj = 0) or vice versa, where S is the
subset which corresponds to the row.

Case (I ⊂ S and J �⊂ S): If the result is 1 then we continue our strategy with
the family F1 = F0\{Ai}. Otherwise we continue with the family F1 = F0\{A1}.

Case (I �⊂ S and J ⊂ S): If the result is 1 then we continue our strategy with
the family F1 = F0\{A1}. Otherwise we continue with the family F1 = F0\{Ai}.

If A1 ∈ F1 we search again for the set with the smallest index i > 1, such that
|A1\Ai| > g = u− l − 1, if such a set exists.

Otherwise we continue with A2. We stop at step s if there are no sets A and
B in the family F such that |A\B| > g and |B\A| > g. The remaining family Fs
has the claimed properties:

We did not exclude the set D which contains all defective elements from F0

for the following reason. If we compare D and A and the result of our test is 1,
we remove A, because more than u elements of D are in the test set. If the result
is 0 we also remove A, because then less than l elements are in the test set S.
Therefore our remaining family Fs contains the set with all defective elements
and for Fs (2) holds. �

Note that in the proof the exact order in which we compare the sets is irrelevant.
The following is an upper bound for nS (the authors use the terminology

(N, u)-universal sets, which are (u, u)-separating codes).

Theorem [22]. nS(N, u, u) ≤ u22u logN .

In conjunction with our Theorem 1 this implies (this was shown in [4] for l = 0
only)

Corollary 1. If D = u+ l, then nTh(N, l, u,D) ≤ u2u logN and RTh ≥ 1
u22u .

By random choice of a separating code (see [10]) we get a lower bound for RS

and thus we get from Theorem 1

Corollary 2. If D = u+ l, then

RTh ≥ RS ≥ − log(1 − 2−(2u−1))

2u− 1
. (3)
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Sketch of the Proof of [10]. Let n,N be positive integers and X =
(mij)1≤i≤n,1≤j≤N an n × N matrix. We say that a column cj is (w, r)-bad
if there exists a pair of sets S, T ∈ [N ] with |S| = w, |T | = r, S ∩ T = ∅, and
j ∈ |S| for which there is no row rk such that that mki = 1 ∀i ∈ I and mkj = 0
∀j ∈ J or vice versa. Otherwise the column is called (w, r)-good.

Consider now a random (mij)1≤i≤n,1≤j≤N an n × N matrix, where the ele-
ments are independently identically distributed random variables (P (mik = 1) =
p and P (mik = 0) = 1− p). Therefore

P (cj is bad ) ≤
(

N − 1

w + r − 1

)(
w + r − 1

w

)
(1− (pr(1− p)w + pw(1− p)w))n (4)

We set n = 
 1+log(( N−1
w+r−1)(

w+r−1
w ))

− log(1−(pr(1−p)w+pw(1−p)w))�, then the right hand-side of (4) does

not exceed 1
2 . Thus, there exists a matrix with N

2 (w, r)-good columns. Taking
the rate we will get the result. �

It is also possible to consider this model with errors. Therefore we need the
following definition.

Definition 3. An n×N matrix (mij)1≤i≤n,1≤j≤N is called a (w, r; z) separating
code of size n×N , if for any pair of subsets I, J ⊂ [N ] such that |I| = w, |J | = r,
and I ∩ J = ∅, there exist z row indices k ∈ [n] such that mki = 1 ∀i ∈ I and
mkj = 0 ∀j ∈ J or vice versa.

By nS(N,w, r; z) we denote the minimal number of rows of a (w, r; z) separating
code with N columns and by RS the corresponding maximal achievable rate.
Obviously, nS(N,w, r; 1) = nS(N,w, r).
nTh(N, l, u,D, e) denotes the minimal number of tests of a nonadaptive strat-

egy for threshold group testing with lower bound l and upper bound u to find
a family F which fulfills (2), if there are D defective elements and there are at
most e falsy answers.

Theorem 2. Let D = u+ l, then nTh(N, l, u,D, e) ≤ nS(N, u,D − l; 2e+ 1).

Sketch of the Proof: We modify the algorithm of the proof of Theorem 1 as
follows. At the step, where we know that there exists a row (a test set S), we will
find now 2e+ 1 rows. Instead of having one result, we have now 2e+ 1 results.
We continue now our algorithm in dependence of the result of the majority. In
this way the algorithm can correct e errors. �

3 A General Lower Bound for the Rate for Nonadaptive
Threshold Group Testing

In the previous section we got a lower bound for the rate for threshold group
testing if D = u+ l.



494 R. Ahlswede, C. Deppe, and V. Lebedev

Definition 4. An n× N matrix (mij)1≤i≤n,1≤j≤N is called a (w, r) cover-free
code of size n × N , if for any pair of subsets I,J ⊂ [N ] such that |I| = w,
|J | = r, and I ∩ J = ∅, there exists a row index k ∈ [n] such that mki = 1
∀i ∈ I and mkj = 0 ∀j ∈ J .

Please notice that the only difference in the definition of a (w, r) cover-free code
of size n×N and a (w, r) separating code of size n×N is the vice versa at the
end. Therefore every cover-free code is also a separating code.
nc(N,w, r) denotes the minimal number of rows among all (w, r) cover-free

codes with N columns.
Threshold group testing without gap is a special case of the complex group

testing model, which was introduced in [26]. In complex group testing we have a
set of N elements and a family P of defective subsets of this set. The test gives
a positive result, if it includes all elements of a defecive subset. The goal is to
find all defective subsets.

Let D be the set of defective elements in threshold group testing with the
upper bound u and the lower bound l. If we choose P =

(D
u

)
then threshold

group testing without gap and complex group testing are the same. Therefore
the bounds for complex group testing in [16] can be used for threshold group
testing without gap. For u = 3 it is the same bound as in [6].

In [6] it is shown that every (u,D′−l) cover-free code is a nonadaptive strategy
for threshold group testing, if D is unknown but bounded by D′. This implies

Theorem [6]. n′
Th(N, l, u,D

′) ≤ nc(N, u,D
′ − l), where n′

Th denotes the mini-
mal number of tests of a nonadaptive strategy for threshold group testing with
lower bound l, upper bound u, and D bounded by D′.

Applying a bound for cover-free codes it is shown in [6] that

n′
Th(N, l, u,D

′) ≤
(
u+D′ − l

D′ − l

)D′−l(
u+D′ − l

u

)u

·(
1 + (u+D′ − l) log

(
N

u+D′ − l
+ 1

))
.

For the rate this gives

RTh ≥

((
D′−l

D′−l+u

)D′−l (
u

D′−l+u

)u)
D′ − l + u

. (5)

The best known lower bound for the rate of cover-free codes is given in [15] (see
also [24], [25] for constructions of cover-free codes) by

Rc ≥
− log

(
1−

(
D′−l

D′−l+u

)D′−l (
u

D′−l+u

)u)
D′ − l + u− 1

. (6)
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One gets this lower bound for the rate by random choice of a (u,D′−l) cover-free
code (see Sketch of proof of Corollary 2).

We consider the case when D is known and derive another lower bound for
the rate for threshold group testing. Let (mij)1≤i≤n,1≤j≤N be an n×N matrix.
We denote by ri = (mi1, . . . ,miN ) the ith row and by cj = (m1j , . . .mnj) the
jth column.

Definition 5. We call an n × N matrix a (D, u, l)-threshold code, if for all
A,B ⊂ {1, 2, . . . , N}, |A| = |B| = D, and |A\B| ≥ u − l there exists an i ∈
{1, 2, . . . , n} such that

(
∑

a∈Amia ≥ u and
∑

b∈Bmib ≤ l)
or

(
∑

a∈Amia ≤ l and
∑

b∈Bmib ≥ u).
(7)

We call the rows of the matrix tests and the columns codewords.

In the previous section we have shown how to get a nonadaptive group testing
strategy in case D = u+ l by an (u,D− l) separating code. A (D, u, l) threshold
code is defined in such a way that it gives a nonadaptive strategy for threshold
group testing for every u, l,D. Therefore we get the following

Lemma 1. Every (D, u, l) threshold code gives a nonadaptive strategy for thresh-
old group testing if the number D of defectives is known.

Sketch of the Proof. We take an (D, u, l) threshold code of size n × N and
give a strategy for a threshold group testing with N elements, D defectives, and
thresholds u, l. The n rows are test sets. Like in the proof of Theorem 1 we start
with A1 of the family F0 = {A1,A2, . . . ,A(ND)

}. We do the same procedure like

in the proof of Theorem 1 to end with a family Fs which fulfill the properties of
a solution of threshold group testing.�

Now we want to find a lower bound for the rate R = logN
n of a (D, u, l)

threshold code. First we calculate the rate for codes with a weaker condition
(7’), that is if (7) holds only for all A and B with |A ∩ B| = z for some z fixed.

Given an integer N , what is the minimal number (of rows) n such that a
threshold code of size n×N fulfills this weaker condition?

We say that the jth column cj of the threshold code is bad if there exists
a pair of sets A,B ⊂ {1, 2, . . . , N} with |A| = |B| = D and for which (7’) is
not true for any row. Otherwise we call cj good. Consider a random matrix
(Xij)1≤i≤n,1≤j≤N where the Xij ’s are independent identically distributed ran-
dom variables. We choose P (Xij = 1) = p and P (Xij = 0) = q.

Let A,B ⊂ [N ] with |A∩B| = D− u+ l. Then every test (row) of a (D, u, l)-
threshold code contains exactly l 1s inside of the positions corresponding to
|A ∩ B|. If there are less, then in the first set we cannot have more than u
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1s, and if there are more then in the second set we will have more than l 1s.
Therefore in this case

P (cj is bad ∧ |A ∩ B| = D − u+ l) =

(
D

D−u+l
)(

N−1
D+u−l−1

)
·
(
D+u−l−1

D

)
·
(
1− 2

(
D−u+l

l

)
plqD−upu−lqu−l

)n
.

(8)

If we assign

n = n∗ = −
log

((
N−1

D+u−l−1

)(
D+u−l−1

D

))
log

(
1− 2

(
D−u+l

l

)
puqD−l

) + 1

then the right-hand side of (8) does not exceed 1
2 and the average number of

bad columns does not exceed N
2 . Thus there exists a matrix which has at least

N
2 good columns. By using R ≥ limN→∞

log N
2

n∗
we get

R ≥
− log

(
1− 2

(
D−u+l

l

)
puqD−l

)
D + u− l− 1

. (9)

We want to consider the general case. We say that cj is bad if there exists a pair
of sets A,B ⊂ {1, 2, . . . , N} with |A| = |B| = D and for which (7) is not true for
any row. Clearly

P (cj is bad) =
D−u+l∑
k=0

P (cj is bad ∧ |A ∩ B| = k). (10)

If |A ∩ B| = k we get

P (cj is bad ∧ |A ∩ B| = k) =
(
D
k

)
·
(

N−1
2D−k−1

)
·
(
2D−k−1

D

)
·(

1− 2(
∑min{k,l}

j=0

(
k
j

)
pjqk−j(

∑D−k
i=u−j

(
D−k
i

)
piqD−k−i)(

∑l−j
t=0

(
D−k
t

)
ptqD−k−t))

)n
.

(11)
Now we need an upper bound

P (cj is bad) ≤ (D− u+ l+ 1) max
k∈{0,1,...,D−u+l}

P (cj is bad∧ |A ∩ B| = k). (12)

We calculate for each k the rate like for k = D−u+ l. The factor (D−u+ l+1)
in (12) does not change the rate. Therefore the minimal of these rates gives a
bound for the rate in the general case.

Hence we get

Theorem 3. Let 0 ≤ l < u ≤ D be given, then

RTh ≥ RT = max
0≤p≤1

min
0≤k≤D−u+l

(13)

− log(1− 2(
∑min{k,l}

j=0

(
k
j

)
pjqk−j(

∑D−k
i=u−j

(
D−k

i

)
pkqD−k−i)(

∑l−j
t=0

(
D−k

t

)
ptqD−k−t)))

2D − k − 1
.
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Like for separating codes we can generalize threshold codes to threshold codes
with errors. We will now compare our new construction with the one already
known.

4 Majority Group Testing

We remind the reader of the definition of majority group testing in Section 1.
This is a generalization of the model considered in [20].
We consider f1(D) = 
Dk � − 1 and f2(D) = �Dk + 1 and write f(D) = D

k .

tS(D) =

⎧⎨⎩0 , if |S ∩ D| < D
k = f(D)

1 , if |S ∩ D| > D
k = f(D)

{0, 1} , otherwise.

If D is known this problem can be reduced to threshold group testing:

1. For D mod k ≡ 0 we set l = D
k − 1 and u = D

k + 1. Therefore we get

a strategy by a (Dk + 1, k−1
k D + 1) cover-free code, by a (D2 + 1, D2 + 1)

separating code for k = 2, or by a (D, Dk + 1, k−1
k D + 1) threshold code.

2. ForD mod k ≡ s with 0 < s < k we set l = D−s
k and u = D+k−s

k . Therefore

we get a strategy by a (D+k−s
k , (k−1)D+s

k ) cover-free code, by a (D+1
2 , D+1

2 )

separating code for k = 2, or by a (D, D+k−s
k , (k−1)D+s

k ) threshold code.

Now we will consider the case when D is bounded by some D′ < N . The number
of tests depends on D′.

First we consider the case k = 2.
It is clear that as in threshold group testing it is not always possible to de-

termine the set of defectives.

Definition 6. We say that two sets A,B are indistinguishable if for any strat-
egy (or equivalently if for asking all sets) it may happen that the answers are all
the same (i.e. the adversary can answer this way). By a solution we mean a
family F of sets that contains D and any pair of set F1 and F2 are indistinguish-
able. We call such an F also completely indistinguishable.

A successful strategy is a strategy which finds a solution.

The next theorem gives conditions for a solution.

Theorem 4. Let D ⊂ [N ] be the set of defectives and f(D) = D
2 . We can

determine a solution F such that for all sets P1,P ∈ F with |P1| ≥ |P| the
following holds

1. If P ⊂ P1 and P is even then

|P1\P| ≤ 2. (14)
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2. If P ⊂ P1 and P is odd then

|P1\P| ≤ 1. (15)

3. If |P\P1| = 1 and P is even then

|P1\P| ≤ 1. (16)

Proof. First we show that there exists a strategy, such that we get a family F

which satisfies (14), (15), and (16). We can immediately throw out all sets of

size bigger then D′. So we consider the family F0 = ∪D′
j=0

(
[N ]
j

)
of all possible sets

of defectives. If there are two sets in F0 which do not fulfill (14), (15), and (16)
we show that there exists a test such that one will be removed and we show that
the set of defectives will not be removed. Let w = |P1\P|.

1. Let P ⊂ P1 and |P| = 2a.
It is enough to have a test set S which includes exactly a− 1 elements of P
(thus does not include other a+1 elements of P) and exactly 3+
(w−3)/2�
elements of P1\P . If the result of this test is “1” we continue with F1 =
F0\P , otherwise we continue with F1 = F0\{P1}. Now we have to show that
we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2 = a and the result is “0”.

If P1 = D then |S ∩ D| = a + 2 + 
(w − 3)/2� > D
2 = a + w

2 , because
|P1\P| = w ≥ 3 by assumption and the result is “1”.

Now for the case |P1\P| = 2 (thus |P1| = 2a+ 2): If |S ∩ P1| > |P1|/2 then
|S ∩ P1| ≥ a+ 2 and so |S ∩ P| ≥ a.
If |S ∩ P1| < |P1|/2 then |S ∩ P1| ≤ a and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.

2. Let P ⊂ P1 and |P| = 2a+ 1.
It is enough to have a test set S which includes exactly a elements of P and
exactly 2 + 
(w − 2)/2� elements of P1\P . If the result of this test is “1”
we continue with F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}.
Now we have to show that we will not remove D.
If P = D then |S ∩ D| = a < D

2 = a+ 1
2 and the result is “0”.

If P1 = D then |S ∩ D| = a+ 2+ 
w−2
2 � > D

2 = a+ w+1
2 , because |P1\P| =

w ≥ 2 by assumption and the result is “1”.
For the case |P1\P| = 1 (thus |P1| = 2a + 2): If |S ∩ P1| > |P1|/2 then
|S ∩ P1| ≥ a+ 2 and so |S ∩ P| ≥ a+ 1.
If |S ∩ P1| < |P1|/2 then |S ∩ P1| ≤ a and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.

3. Let P �⊂ P1, |P\P1| = 1, and |P| = 2a.
It is enough to have a test set S which includes exactly a − 1 elements of
P ∩ P1, includes exactly 2 + 
(w − 2)/2� elements of P1\P and does not
include the element from P\P1. If the result of this test is “1” we continue
with F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
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If P = D then |S ∩ D| = a− 1 < D
2 = a and the result is “0”.

If P1 = D then |S ∩ D| = a− 1 + 2 + 
(w − 2)/2� > D
2 = a+ w−1

2 , because
|P1\P| = w ≥ 2 by assumption and the result is “1”.
For the case |P1\P| = 1 (thus |P1| = 2a): If |S∩P1| > |P1|/2 then |S∩P1| ≥
a+ 1 and so |S ∩ P| ≥ a.
If |S ∩ P1| < |P1|/2 then |S ∩ P1| ≤ a− 1 and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.

4. Let P �⊂ P1, |P\P1| = 1, and |P| = 2a+ 1.
It is enough to have a test set S which includes exactly a elements of P∩P1,
includes exactly 1 + 
(w − 1)/2� elements of P1\P and not includes the
element from P\P1. If the result of this test is “1” we continue with F1 =
F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have to show
that we will not remove D.
If P = D then |S ∩ D| = a < D

2 = a+ 1
2 and the result is “0”.

If P1 = D then |S ∩ D| = a + 1 + 
(w − 1)/2� > D
2 = a + w

2 , because
|P1\P| = w ≥ 1 by assumption and the result is “1”.

5. Let P �⊂ P1, |P\P1| > 1, and |P| = 2a.

(a) |P ∩ P1| = l ≥ a− 1.
It is enough to have a test set S which includes exactly a − 1 elements
of P ∩ P1, no other elements of P and includes exactly �|P1|/2 − a+ 2
elements of P1\P . If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2 = a and the result is “0”.

If P1 = D then |S ∩ D| = �|P1|/2+ 1 > D
2 and the result is “1”.

(b) |P ∩ P1| = l < a− 1.
It is enough to have a test set S which includes all elements of P ∩ P1,
a − 1 − |P ∩ P1| elements of P , and includes exactly �|P1|/2 − a + 2
elements of P1\P . If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a− 1 < D

2 = a and the result is “0”.

If P1 = D then |S ∩ D| = �|P1|/2+ 1 > D
2 and the result is “1”.

6. Let P �⊂ P1, |P\P1| > 1, and |P| = 2a+ 1.

(a) |P ∩ P1| = l ≥ a.
It is enough to have a test set S which includes exactly a elements of
P ∩ P1, no other elements of P and includes exactly �|P1|/2 − a + 1
elements of P\P1. If the result of this test is “1” we continue with
F1 = F0\{P}, otherwise we continue with F1 = F0\{P1}. Now we have
to show that we will not remove D.
If P = D then |S ∩ D| = a < D

2 = a+ 1
2 and the result is “0”.

If P1 = D then |S ∩ D| = �|P1|/2+ 1 > D
2 and the result is “1”.

(b) |P ∩ P1| = l < a.
It is enough to have a test set S which includes all elements of P ∩ P1,
a−|P∩P1| elements of P , and includes exactly �|P1|/2−a+1 elements
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of P1\P . If the result of this test is “1” we continue with F1 = F0\{P},
otherwise we continue with F1 = F0\{P1}. Now we have to show that
we will not remove D.
If P = D then |S ∩ D| = a < D

2 = a+ 1
2 and the result is “0”.

If P1 = D then |S ∩ D| = �|P1|/2+ 1 > D
2 and the result is “1”.

In all cases it is not always possible to distinguish the sets of possible
solutions. �

Remarks

1. In the corresponding matrix of a strategy for majority group testing with
f(D) = D

2 it is possible to exchange the zeros and the ones.
2. The proof of Theorem 4 shows that for a successful strategy we have to have

for all disjoint pairs J , I ⊂ [N ] with the size
⌊
D′
2

⌋
+ 1 two test sets such

that the elements of J are contained in one test set and no element of I is
contained in the other test set or vice versa. This is exactly a separating
code and therefore we have the following

Theorem 5. Let f(D) = D
2 and D be bounded by D′, which is known, then a

(
⌊
D′
2

⌋
+ 1,

⌊
D′
2

⌋
+ 1) separating code gives a nonadaptive strategy for majority

group testing.

Now let us consider the case k > 2.
As before we have conditions for a solution. They are given by the following

Theorem 6. Let D ⊂ [N ] be the set of defectives and f(D) = D
k . We can

determine a solution F such that for all sets P1,P ∈ F with |P1| ≥ |P| = ak + s
(s = 0 or s = k − 1) the following holds

1. If P ⊂ P1 and s = 0 or s = k − 1 then

|P1\P| ≤ 1. (17)

2. If |P\P1| = 1 and s = 0 then

|P1\P| ≤ 1. (18)

Proof.

1. Let P ⊂ P1 and |P| = ak + s.

(a) s = 0:

For the case |P1\P| = 1 (thus |P1| = ak + 1): If |S ∩ P1| > |P1|/k then
|S ∩ P1| ≥ a+ 1 and so |S ∩ P| ≥ a.
If |S ∩ P1| < |P1|/k then |S ∩ P1| ≤ a and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.
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(b) s = k − 1:
For the case |P1\P| = 1 (thus |P1| = (a+1)k): If |S ∩P1| > |P1|/k then
|S ∩ P1| ≥ a+ 2 and so |S ∩ P| ≥ a+ 1.
If |S ∩ P1| < |P1|/k then |S ∩ P1| ≤ a and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.

2. Let P �⊂ P1, |P\P1| = 1, and s = 0.
For the case |P1\P| = 1 we have |P | = ak and |P1| = ak:
If |S ∩ P1| > |P1|/k then |S ∩ P1| ≥ a+ 1 and so |S ∩ P| ≥ a.
If |S ∩ P1| < |P1|/k then |S ∩ P1| ≤ a− 1 and so |S ∩ P| ≤ a.
Thus sets P and P1 are indistinguishable.

The proof that there exists a strategy, such that we get a family F which fulfills
(17) and (18) follows the same ideas as the proof of Theorem 4. We immediately
throw out all sets of size bigger then D′. Then we consider the family F0 =
∪D′
j=0

(
[N ]
j

)
of all possible sets of defectives. If there are two sets in F0 which do

not fulfill (17) and (18) we show that there exists a test such that one will be
removed and we show that the set of defectives will not be removed.

It is enough to have a test set S which includes �|P1|/k+ 1 elements of P1

and less then |P1|/k elements of P . We first include to S elements from P1\P
and then from P ∩ P1. Then we do not include to S elements from P\P1 and
then from P ∩ P1. For others elements from [N ] it is not important the set S
includes them or not. We always have that if P = D then the result is “0” and
if P1 = D then the result is “1”.

The analysis of different cases like in Theorem 4 shows that it is possible to
constract this set S. �

The proof of Theorem 6 shows that every (
⌊
D′
k

⌋
+ 1, D′ −

⌈
D′
k

⌉
+ 1) cover-free

code gives a strategy and thus the following.

Theorem 7. Let f(D) = D
k and D be bounded by D′, which is known, then a

(
⌊
D′
k

⌋
+1, D′ −

⌈
D′
k

⌉
+1) cover-free code is a nonadaptive strategy for majority

group testing.
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Appendix

In this appendix we will compare threshold codes with the construction of [6]
and give bounds for the rate of threshold codes in dependence of Rc. First we
consider a threshold group testing with the thresholds u and l without error and
D defectives elements. In [6] it is shown that a cover-free code is a successful
strategy.

The bound for the rate of cover-free codes is derived in the same way as we
did for threshold codes. Recall that the best known bound for the rate, using
cover-free codes is

RTh ≥ Rc =

− log

(
1−

(
D−l

D−l+u

)D−l (
u

D−l+u

)u)
D − l+ u− 1

. (19)

It holds − log(1− x) > x if x > 0. Thus we want to compare

RTh ≥ BTh = max
0≤p≤1

min
0≤k≤D−u+l

(20)

2(
∑min{k,l}

j=0

(
k
j

)
pjqk−j(

∑D−k
i=u−j

(
D−k
i

)
piqD−k−i)(

∑l−j
t=0

(
D−k
t

)
ptqD−k−t)))

2D − k − 1

and

Rc ≥ Bc =

(
D−l

D−l+u

)D−l (
u

D−l+u

)u
D − l + u− 1

. (21)

Note first that, since u ≥ l + 1, for all 0 ≤ k ≤ D − u+ l

FT =
2

2D − k − 1
≥ 2

2D − 1
≥ Fc =

1

D − l + u− 1
≥ 1

D
. (22)

We have FT

Fc
> 1, for instance for u = l + 1 and k = D − 1 FT

Fc
= 2, or λ = 0,

μ = 1, and therefore κ = 0, as it occurs in the result of [4].
We start with our analysis for u = l, that is in relative quantities

λ =
l

D
, μ =

u

D
, κ =

k

D
, (23)

and for the probabilities in (21)

u

D − l + u
=

μ

1− λ+ μ
= μ = p, 1− μ = q. (24)

We begin first with the entropy description of the lower bounds for u = l+1

Bc = Fcμ
μD(1− μ)1−μD = Fc2

−h(μ)D, (25)
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BTh ≥ FT min
0≤k≤D−u+l

min{k,l}∑
j=0

(
k

j

)
pjqk−j · (26)

(
D−k∑
i=u−j

(
D − k

i

)
piqD−k−i) ·

(

l−j∑
t=0

(
D − k

t

)
ptqD−k−t).

For u = l + 1 we have

BTh(l) ≥ FT min
0≤k≤l

k∑
j=0

(
k

j

)
μj(1− μ)k−j

(1 − E(D, u, l, n))E(D, u, l, n),

where E(D, u, l, n) =
∑l−j

t=0

(
D−k
t

)
μt(1− μ)k−j and μ = u

n .

Argument. We choose the optimal j for all sums (max. entropy principle). If
j∗ = μk = λκD, then (

k

j∗

)
μj

∗
(1− μ)k−j

∗ ≥ 1

k + 1
≥ 1

D
(27)

(
D − k

u− j∗

)
μu−j

∗
(1− μ)D−k−u+j∗ ≥ 1

D − k + 1
≥ 1

D(
D − k

l − j∗

)
μl−j

∗
(1− μ)D−k−l+j∗ ≥ 1

D − k + 1
≥ 1

D
.

Consequently

BTh(l)

Bc
≥ FT
Fc

2h(μ)D−o(D). (28)

Therefore we have

Theorem 8. In the case without gap, that is u = l + 1, it holds

BTh ≥ Bc2
h(u

n )D−o(D). (29)

We write now
BTh ≤ FT min

0≤k≤D−u+l
E1E2E3

with E1 =
∑min{k,l}

j=0

(
k
j

)
pjqk−j , E2(j) =

∑D−k
i=u−j

(
D−k
i

)
piqD−k−i,

and E3(j) =
∑l−j

t=0

(
D−k
t

)
ptqD−k−t.
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To approximate E1 for all k observe first that we need

j(κ) ≤ κpD and j(κ) ≤ λD. (30)

Let κ ≤ 1− μ+ λ and

p = p(μ, λ) =
λ

1− μ+ λ
(31)

then for j = λ
1−μ+λκD the inequalities in (30) hold.

Lemma 2. 1. λ ≤ p(μ, λ) ≤ μ.
2. p(μ, λ) ≤ μ+λ

2 for μ ≤ 1
2 .

3. The inequality
√
λμ ≤ p(μ, λ) does not always hold.

Proof.

1. Since μ ≥ λ, 1− μ+ λ ≤ 1 and λ ≤ p(μ, λ) then

λ = (1− μ+ λ)p(μ, λ) ≤ (1 + (λ− μ))μ

or equivalently
λ− μ ≤ (λ− μ)μ,

which holds, because 0 ≤ μ ≤ 1 and λ− μ is negative.
2. The inequality is equivalent to

λ ≤ μ+ λ

2
− μ2 − λ2

2
(32)

or to
λ− λ2 ≤ μ− μ2,

which holds, because λ ≤ μ ≤ 1
2 and thus

λ(1 − λ) ≤ μ(1− μ).

3. Counterexample: μ = 1
2 and λ = 1

4 .

It remains to estimate E2 and E3 from below

E2 =

D−k∑
i=u−j(κ)

(
D − k

i

)
piqD−k−i,

where u− j(κ) = (μ− λ
1−μ+λκ)D.

E2 ≥
(

(1 − κ)D

(μ− pκ)D

)
p(μ−pκ)D(1− p)(1−μ−(1−p)κ)D

E2 ≥ 2D(1−κ)[h(μ−pκ
1−κ )+μ−pκ

1−κ log p+ 1−μ−(1−p)κ
1−κ log(1−p)].
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We set

f(κ, μ, λ, p) = h(
μ− pκ

1− κ
) +

μ− pκ

1− κ
log p+

1− μ− (1− p)κ

1− κ
log(1− p)]

and want to find minκ f(κ, μ, λ, p). Let r =
μ−pκ
1−κ , then we have

−r log r − (1− r) log(1− r) + r log p+ (1− r) log 1− p

= r log
p

r
+ (1− r) log

1− p

1− r
= −D((r, 1− r)||(p, 1 − p)),

where D((r, 1 − r)||(p, 1 − p)) is called information divergence. For E3 we have

E3 =

l−j(κ)∑
t=0

(
D − k

t

)
ptqD−k−t,

where l − j(κ) = (λ− pκ)D. Therefore

E3 ≥ 2D(1−κ)[h(λ−pκ
1−κ )+λ−pκ

1−κ log p+ 1−κ−λ+pκ)
1−κ log(1−p)].

We set

b(κ, μ, λ, p) = h(
λ− pκ

1− κ
) +

λ− pκ

1− κ
log p+

1− κ− λ+ pκ

1− κ
log(1 − p)]

and want to find minκ b(κ, μ, λ, p). Let s =
λ−pκ
1−κ , then we have

−s log s− (1 − s) log(1− s) + s log p+ (1− s) log
1− p

1 − s

= s log
p

s
+ (1− s) log

1− p

1− s
= −D((s, 1− s)||(p, 1− p)).

It follows

Proposition 1.

BTh → FT 2
(−D((r,1−r)||(p,1−p))−D((s,1−s)||(p,(1−p)))(1−κ),

if n→ ∞.

Therefore we compare

−D((r, 1−r)||(p, 1−p))−D((s, 1−s)||(p, (1−p)))(1−κ) with −max(h(λ), h(μ)).

We need some basic calculation for the bound on Bc.
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Lemma 3. Denote P = P (λ, μ) = μ
1−λ+μ , then

Bc/Fc =

(
u

D − l+ u

)u(
D − l

D − l + u

)D−l
= 2−h(P )(1−λ+μ)D.

Proof. We have (
μ

1− λ+ μ

)μD (
1− λ

1− λ+ μ

)(1−λ)D

= PPD(1−λ+μ)(1− P )(1−P )D(1−λ+μ)

= 2−h(P )(1−λ+μ)D.

We note that 1− λ+ μ > 1.
So far P = μ

1−λ+μ and we have

h(P )(1− λ+ μ) > h(μ) > h(λ).

Now we want to show that

h(P )(1− λ+ μ) > max
κ

(1− κ)(D((r, 1 − r)||(p, 1 − p) +D((s, 1− s)||(p, 1− p))

with P = μ
1−λ+μ , r =

μ−pκ
1−κ , s = λ−pκ

1−κ , and p = λ
1−μ+λ .

We consider the special case D = u+ l. Then we have 1 = μ+λ, 0 ≤ κ ≤ 2λ,
P = 1

2 , and p =
1
2 .

For μ = λ we have

h(P )(1− λ+ μ) = 2μ > 0 = (1− κ)2D((
1

2
,
1

2
)||(1

2
,
1

2
)).

For λ < μ we have r = 2μ−κ
2−2κ and s = 2λ−κ

2−2κ .

We have to show that for 0 ≤ κ ≤ λ

2μ > max
κ

−(1−κ)(D((
2μ− κ

2 − 2κ
, 1−2μ− κ

2− 2κ
)||(1

2
,
1

2
)+D((

2λ− κ

2 − 2κ
, 1−2λ− κ

2− 2κ
)||(1

2
,
1

2
)).

This is equivalent to (because λ = 1− μ)

2 ≤ h(
2μ− κ

2− 2κ
) + h(

2(1− μ)− κ

2− 2κ
) +

2μ

1− κ
(33)

2 ≤ h(
2μ− κ

2− 2κ
) + h(1− 2μ− κ

2− 2κ
) +

2μ

1− κ

2 ≤ 2h(1− 2μ− κ

2− 2κ
) +

2μ

1− κ

1− 2μ

2− 2κ
≤ h(1− 2μ− κ

2− 2κ
). (34)
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(33) is true for μ > 1− κ. For μ ≤ 1− κ it holds 1
2 ≤ 2μ−κ

2−2κ ≤ 1. Therefore

1− 2μ− κ

2 − 2κ
≤ h(1− 2μ− κ

2− 2κ
)

and (34) holds.
For κ = 0 and μ = 1, that means λ = 0, the two terms are the same. In

general we get

Theorem 9. Let 1 = μ+ λ and λ ≤ μ, then

BTh ≥ 22λBc.

The goal of this appendix was to compare BTh and Bc. It is clear that BTh ≥ Bc

because every (D, u, l) threshold code of size n×N is also a (u,D− l) cover-free
code of size n×N . The quotient of the rates depends on u and l. We were only
able to give bounds of the quotient in special cases.
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so-called multiple-access channels (MAC) [6] finds application in practical prob-
lems here. There are also applications of the theory for instance in engineering,
electronics, medicine, and biology. Many examples of practical search problems
serve to illustrate the mathematical models. We will elaborate on some models
especially important for the practice. Furthermore we turn our attention to the
information theoretical aspects of the theory; in particular we distinctly empha-
size the connection of this theory to MAC. This connection is very useful for the
obtaining of important results, which are of coding theoretical interest as well.

In many “processes” which are dependent on a large number of factors, it is
natural, that one assumes a small number of “significant” factors, which real-
ly control the process, and considers the influence of the other factors as mere
“experiment errors”. Experiments to identify the significant factors are called
screening experiments. A typical problem from DSE theory is the following.
Among t factors there are p “significant”, which need to be identified. By tests
which examine arbitrary subsets of the factors, it can be determined whether
significant factors appear in it or not. Now one tries to perform these experi-
ments as economical as possible; a basal criterion at this is: how many tests are
at least necessary to identify all significant factors in the most unfavorable case?
Often the test outcomes are not determined uniquely; outer influences or human
error lead to distortions that can be modeled mathematically by random noise.
It can also be, that the significant factors cannot be determined with certainty.
For this, “strategies” that identify the desired objects correctly with “high prob-
ability” are examined. Obviously this model corresponds to the general group
testing model. The t factors correspond to the elements and the p significant
factors correspond to defects. Hence the paper by Dorfman [9] can be seen as a
pioneering work of the DSE theory.

A great directing influence on the theory had the cycle of examinations of
applications of information theory in statistics by A. Rényi in the sixties. Of
these papers the titles about mathematical search problems have an immediate
reference to our topic (see [40]). Even though a very simplified model (search for
one significant factor) was treated, many of Rényi’s methods and notations could
be adopted to DSE theory. Rényi also introduced so-called random strategies,
where the tests are chosen independently by a probability distribution. Such
strategies that, as we will see, are analogous to so-called random codes in in-
formation theory [41], make existence statements for nearly optimal “regular”
strategies possible. They are used almost exceptionless in DSE theory, since a
construction of optimal strategies in most cases is very difficult and yet unsolved.
In the middle of the seventies Maljutov published a series of papers about special
models that cleared up the connection to information theory ([35], [36], [37]).

The aim of our paper is to present the principal combinatorial results for
the symmetric search model1. In Section 2, we give a brief survey of necessary

1 We don’t discuss here the general noisy symmetric model of non-adaptive search
designs which can be described using the terminology of MAC [6]. An interested
reader is referred to [11]. The information theory problems for non-symmetric search
model are considered in [37].
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definitions and bounds on the rate of superimposed codes which are the base for
studying of non-adaptive group testing models.

In Section 3, we introduce the concept of non-adaptive group testing designs
arising from the potentialities of compressed genotyping models in molecular
biology and establish a universal upper bound on their rate. The universal
bound is prescribed by D’yachkov-Rykov [17] recurrent upper bound on the rate
of classical superimposed codes.

In Section 4, we remind our constructions of superimposed codes based on
shortened RS-codes. These constructions are presented in papers [15]-[13], where
we essentially extended optimal and suboptimal constructions of classical super-
imposed codes suggested in [28]. Note that we included in [15]-[14] the detailed
tables with parameters of the best known superimposed codes. We don’t men-
tion other authors because, unfortunately, we don’t know any papers containing
relevant results, i.e., the similar or improved tables of parameters. Any extension
of our tables is the important open problem.

In Section 5, the threshold group testing model is discussed. We apply the
conventional terminology of superimposed code theory to refine the description
of a new lower bound on the rate of threshold designs recently obtained in [4].

1.1 Notations, Definitions and Relevant Issues

Let [n] be the set of integers from 1 to n and the symbol � denote definitional
equalities. For integers N ≥ 2 and t ≥ 2, symbols Ωj ⊂ [N ], j = 1, 2, . . . , t,
denote subsets of [N ]. Subsets Ωj , j ∈ [t], are identified with binary columns

x(j) � (x1(j), x2(j), . . . , xN (j)) in which

xi(j) �
{
1 if i ∈ Ωj ,
0 if i �∈ Ωj , i ∈ [N ].

An incidence matrix X � ‖xi(j)‖, i ∈ [N ], j ∈ [t], is called a code with t
codewords (columns) x(1),x(2), . . . ,x(t) of length N corresponding to a family
of subsets Ω1, Ω2, . . . , Ωt.

Let P ⊂ [t] be an arbitrary fixed subset of [t] and |P | be its size, i.e.,

P �
{
p1, p2, . . . , p|P |

}
⊂ [t], 1 ≤ p1 < p2 < · · · < p|P | ≤ t.

Denote by P(t,≤ s) (P(t,= s)) the collection of all
∑s

i=0

(
t
i

) ((
t
s

))
subsets P of

size |P | ≤ s (|P | = s). LetN ≥ 2 be an integer andA = {A1, A1, . . . , AN}, Ai ⊂
[t], i ∈ [N ], be a fixed family of subsets of [t]. Subsets Ai are identified with
binary rows xi � (xi(1), xi(2), . . . , xi(t)) in which

xi(j) �
{
1 if j ∈ Ai,
0 if j �∈ Ai, i ∈ [N ], j ∈ [t].

We will identify the family A with its incidence matrix (code) X = ‖xi(j)‖,
i ∈ [N ], j ∈ [t].
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In the theory of group testing [25] (designing screening experiments [11]) the
given, in advance, family A = {A1, A1, . . . , AN} is interpreted as a non-adaptive
search design consisting of N group tests (experiments) Ai, i ∈ [N ]. An experi-
menter wants to construct group tests Ai, i ∈ [N ], to carry out the corresponding
experiments and then to identify an unknown subset P ⊂ [t] with the help of
test outcomes provided that P ⊂ P(t,≤ s) or P ⊂ P(t,= s), where s" t. If for
each test Ai, i ∈ [N ], its outcome depends only on the size of intersection

|P ∩ Ai| =
|P |∑
m=1

xi(pm), i ∈ [N ],

then we will say that a symmetric model [11] of non-adaptive search design is
considered.

2 Superimposed (z, u)-Codes

In this section we give a brief survey of necessary definitions and bounds on
the rate of superimposed codes which are the base for studying of non-adaptive
group testing models.

Let z and u be positive integers such that z + u ≤ t.

Definition 1. [13] A family of subsets Ω1, Ω2, . . . , Ωt, where Ωj ⊆ [N ], j ∈
[t], is called an (z, u)–cover-free family if for any two non-intersecting subsets
Z, U ⊂ [t], Z∩U = ∅, such that |Z| = z, |U | = u, the following condition holds:⋂

j∈U
Ωj �⊆

⋃
j∈Z

Ωj .

An incidence matrix X = ‖xi(j)‖, i ∈ [N ], j ∈ [t], corresponding to (z, u)–
cover-free family is called a superimposed (z, u)-code.

The following evident necessary and sufficient condition for Definition 1 takes
place.

Proposition 1. [13] Any binary (N×t)-matrix X is a superimposed (z, u)-code
if and only if for any two subsets Z, U ⊂ [t], such that |Z| = z, |U | = u and
Z ∩ U = ∅ the matrix X contains a row xi = (xi(1), xi(2) . . . , xi(t), for which

xi(j) = 1 for all j ∈ U, xi(j) = 0 for all j ∈ Z.

Let t(N, z, u) be the maximal possible size of superimposed (z, u)-codes. For
fixed 1 ≤ u < z, define a rate of (z, u)-codes:

R(z, u) � lim
N→∞

log2 t(N, z, u)

N
.

For the classical case u = 1, superimposed (z, 1)–codes and their applications
were introduced by W.H Kautz, R.C. Singleton in [28]. Further, these codes
along with new applications were investigated in [17]-[11]. The best known
upper and lower bounds on the rate R(z, 1) can be found in [17],[21] and [13] .
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2.1 Recurrent Upper Bounds on R(z, 1) and R(z, u)

Let h(α) � −α log2 α − (1 − α) log2(1 − α), 0 < α < 1, be the binary entropy.
To formulate an upper bound on the rate R(z, 1), z ≥ 1, we introduce the func-
tion [17]

fz(α) � h(α/z)− αh(1/z), z = 1, 2, . . . ,

of argument α, 0 < α < 1.

Theorem 1. [17]-[18] (Recurrent upper bound on R(z, 1)). If z = 1, 2, . . . , then
the rate R(z, 1) ≤ R(z, 1), where

R(1, 1) = R(1, 1) = 1, R(2, 1) � max
0<α<1

f2(α) = 0.321928 (1)

and sequence R(z, 1), z = 3, 4, . . . , is defined as the unique solution of recurrent
equation

R(z, 1) = fz

(
1− R(z, 1)

R(z − 1, 1)

)
. (2)

Up to now the recurrent sequence R(z, 1), z = 1, 2, . . . , defined by (1)-(2) and
called a recurrent upper bound has been the best known upper bound on the rate
R(z, 1). The reciprocal values of R(z, 1) taken from [18], are given in Table 1.

Table 1.

z 1/R(z, 1) z 1/R(z, 1) z 1/R(z, 1) z 1/R(z, 1)

2 3.1063 6 12.0482 10 24.5837 14 40.3950
3 5.0180 7 14.8578 11 28.2402 15 44.8306
4 7.1196 8 17.8876 12 32.0966 16 49.4536
5 9.4660 9 21.1313 13 36.1493 17 54.2612

Applying Theorem 1 and the corresponding calculus arguments, we proved

Theorem 2. [17]-[18] (Non-recurrent upper bound on R(z, 1)) For any z ≥ 2,
the rate R(z, 1) satisfies inequality

R(z, 1) ≤ 2 log2[e(z + 1)/2]

z2
, z = 2, 3, . . . ,

which leads to the asymptotic inequality

R(z, 1) ≤ 2 log2 z

z2
(1 + o(1)), z → ∞.

Theorem 3. [31] (Recurrent inequality for R(z, u))
If z ≥ u ≥ 2, then for any i ∈ [z − 1] and j ∈ [u− 1], the rate

R(z, u) ≤ R(z − i, u− j)

R(z − i, u− j) + (i+j)i+j

ii·jj
. (3)
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Recurrent inequality (3) and the known numerical values of recurrent upper
bound R(z, 1), z = 1, 2, . . . , defined by (1)-(2), give numerical values of the best
known upper bound R(z, u) on the rate R(z, u), z ≥ u ≥ 2. An asymptotic
consequence from the given upper bound is presented by

Theorem 4. [24] If z → ∞ and u ≥ 2 is fixed, then

R(z, u) ≤ R(z, u) ≤ (u + 1)u+1

2 eu−1
· log2 z
zu+1

· (1 + o(1)).

2.2 Random Coding Lower Bounds on R(z, u) and R(z, 1)

Theorem 5. [13] A random coding lower bound on the rate R(z, u) has the
form:

R(z, u) ≥ R(z, u) � −(z + u− 1)−1 log2

(
1− zz uu

(z + u)z+u

)
, 2 ≤ u < z.

If u ≥ 2 is fixed and z → ∞, then the asymptotic form of the given lower bound
is

R(z, u) ≥ R(z, u) =
e−u · uu · log2 e

zu+1
· (1 + o(1)).

If u = 1, then the best known random coding lower bound on the rate R(z, 1) is
given by

Theorem 6. [16] For any z = 1, 2, . . . , the rate R(z, 1) ≥ R(z, 1) � A(z)
z ,

where

A(z) � max
0<α<1, 0<Q<1

{
−(1−Q) log(1− αz) + z

(
Q log

α

Q
+ (1−Q) log

1− α

1−Q

)}
.

If z → ∞, then the rate

R(z, 1) ≥ R(z, 1) =
1

z2 log e
(1 + o(1)) =

0.693

z2
(1 + o(1)).

In the first and second rows of Table 2, we give values of R(s, 1) < 1/s, s =
2, 3 . . . , 8, along with the corresponding values of R(s, 1) < 1/s, s = 2, 3 . . . , 8,
taken from Table 1.

Table 2.

s 2 3 4 5 6 7 8

R̃1 (≤ s) = R(s, 1) .182 .079 .044 .028 .019 .014 .011

R̃1 (≤ s) = R(s, 1) .3219 .1993 .1405 .1056 .0830 .0673 .0559

R̃2 (≤ s) = R(s− 1, 2) - .0321 .0127 .0068 .0037 .0024 .0015

R̃2 (≤ s) = R(s− 1, 2) - .1610 .0745 .0455 .0287 .0204 .0146

R̃3 (≤ s) = R(s− 2, 3) - - .0127 .0046 .0020 .0010 .0001

R̃3 (≤ s) = R(s− 2, 3) - - .0745 .0387 .0183 .0109 .0067

R
(
F 1
0 ,= s

)
.302 .142 .082 .053 .037 .027 .021
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3
(
F l,≤ s

)
–Designs,

(
F l,= s

)
–Designs and Dl

s–Codes

In this section we introduce the concept of non-adaptive group testing designs
arising from the potentialities of compressed genotyping models in molecular
biology and establish a universal upper bound on their rate. The universal bound
is prescribed by our recurrent upper bound on the rate of classical superimposed
codes. Using notations of Section 1, we give

Definition 2. Let l, 1 ≤ l < s < t be integers and F l = F l(n), n = 0, 1, . . . , l,
be an arbitrary fixed function of integer argument n = 0, 1, . . . , l such that for
any n = 0, 1, . . . , l − 1, its value F l(n) �= F l(l). Define the vector

y	(P,A) �
(
y	
1, y

	
2, . . . , y

	
N

)
, y	

i �
{
F 	(n) if |P ∩Ai| = n, n = 0, 1, . . . , �− 1,
F 	(�) if |P ∩Ai| ≥ �, i ∈ [N ].

or

y	(P,X) �
(
y	
1, y

	
2, . . . , y

	
N

)
, y	

i �

⎧⎪⎪⎨
⎪⎪⎩

F 	(n) if
|P |∑
m=1

xi(pm) = n, n = 0, 1, . . . , �− 1,

F 	(�) if
|P |∑
m=1

xi(pm) ≥ �, i ∈ [N ].

A code X of length N and size t is called an
(
F l,≤ s

)
–design, (

(
F l,= s

)
–design),

1 ≤ l < s < t, for group testing model if yl(P,X) �= yl(P ′, X) for any

P �= P ′, P ∈ P(t,≤ s), P ′ ∈ P(t,≤ s)
(
P ∈ P(t,= s), P ′ ∈ P(t,= s)

)
.

Remark 1.
(
F l,≤ s

)
–design and

(
F l,= s

)
–design are examples, which can

be interpreted as compressed genotyping [27] models in molecular biology.

Remark 2. In [26], a special
(
F l,≤ s

)
–design is considered. The authors

introduce the ranges (0 � r0 < r1 < r2 < · · · < rk � p) and set

F �(r0 + 1) = . . . = F �(r1) = 1

F �(r1 + 1) = . . . = F �(r2) = 2

... = . . . =
...

F �(rk−1 + 1) = . . . = F �(rk) = k

This model can be viewed as an adder model followed by a quantizer.

Let 1 ≤ l < s < t be integers. For any set S ⊂ [t] of size |S| = s, we denote by(S
l

)
the collection of all

(
s
l

)
l–subsets of the set S.

Definition 3. [19] A family of subsets Ω1, Ω2, . . . , Ωt is called an Dl
s–family if

for any S ⊂ [t], |S| = s, and any j �∈ S

Ωj �⊆
⋃
(Sl )

{
l⋂

k=1

Ωjk

}
,
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where (
S
l

)
� {(j1, j2, . . . , jl) : ji ∈ S, j1 < j2 < · · · < jl} .

An incidence matrix X = ‖xi(j)‖, i ∈ [N ], j ∈ [t], corresponding to Dl
s– family

is called a superimposed Dl
s-code (briefly, Dl

s-code).

One can easily check the following

Proposition 2. Any binary (N × t)-matrix X is a Dl
s–code, 1 ≤ l < s < t,

if and only if for any collection of s + 1 integers j1, j2, . . . , js, js+1, jk �= jm,
jk ∈ [t], there exists i ∈ [N ] such that

xi(js+1) = 1,

s∑
k=1

xi(jk) ≤ l − 1.

For l = 1 and s = 2, 3 . . . , the definition of D1
s-code coincides with the definition

of superimposed (s, 1)-code. In addition, if 1 ≤ l < s− 1, then any Dl
s-code is a

Dl+1
s -code.

Remark 3. For s > l ≥ 2, Dl
s-codes were suggested in [19] for the study of

some communication systems with random multiple access.

3.1 Universal Upper Bound for
(
F l,≤ s

)
–Designs

Let t
(
N,Dl

s

)
, t

(
N,F l,≤ s

)
and t

(
N,F l,= s

)
be the maximal size of superim-

posed Dl
s–codes,

(
F l,≤ s

)
–designs and

(
F l,= s

)
–designs. For fixed 1 ≤ l < s,

define the corresponding rates:

R
(
Dl
s

)
� lim

N→∞

log2 t
(
N,Dl

s

)
N

, 1 ≤ l < s,

R
(
F l,≤ s

)
� lim

N→∞

log2 t
(
N,F l,≤ s

)
N

, R
(
F l,= s

)
� lim

N→∞

log2 t
(
N,F l,= s

)
N

.

Obviously, for any 1 ≤ � < s, the following inequalities hold:

t
(
N,F �,≤ s

)
≤ t

(
N,F �,= s

)
, R

(
F �,≤ s

)
≤ R

(
F �,= s

)
≤ log2(�+ 1)

s
.

(4)

Proposition 3. [19]
If 1 ≤ l < s− 1, then any

(
F l,≤ s

)
–design is a superimposed Dl

s−1–code, i.e.,

t
(
N,F l,≤ s

)
≤ t

(
N,Dl

s−1

)
, R

(
F l,≤ s

)
≤ R

(
Dl
s−1

)
, 1 ≤ l < s− 1.

Proof. By contradiction. If a code X = ‖xi(j)‖, i ∈ [N ], j ∈ [t] doesn’t
satisfy the definition of Dl

s−1–code, then in virtue of Proposition 1, there exists
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a collection of s integers j1, j2, . . . , js−1, js, jk �= jm, jk ∈ [t], such that for
any i ∈ [N ],

xi(js) = 1 =⇒
s−1∑
k=1

xi(jk) ≥ l.

Hence, for (s − 1)-subset P � {j1, j2, . . . , js−1} ⊂ [t] and s-subset P ′ � {j1, j2,
. . . , js−1, js} ⊂ [t], the vector yl(P,X) = yl(P ′, X). This contradicts to the
definition of

(
F l,≤ s

)
–design.

Theorem 7. (De Bonis, Vaccaro [8]) For any 1 ≤ l < s, the rate R
(
Dl
s

)
of

superimposed Dl
s–codes satisfies inequality

R
(
Dl
s

)
≤ R

(⌊s
l

⌋
, 1

)
,

where R(z, 1), z ≥ 1, is the rate of classical superimposed (z, 1)-codes.

Proposition 3 and Theorem 7 lead to inequalities:

R
(
F �,≤ s

)
≤ R

(
D�
s−1

)
≤ R

(⌊
s− 1

�

⌋
, 1

)
≤ R

(⌊
s− 1

�

⌋
, 1

)
, 1 ≤ � ≤ s,

(5)
where R(z, 1) is the recurrent upper bound on the rate R(z, 1) presented by
Theorem 1. For instance, if (l = 3, s = 10) or (l = 3, s = 13), then Table 2 shows
that

R(3, 1) = .199 < .200 = 2/10 or R(4, 1) = .140 < .154 = 2/13,

i.e., for l = 3 and s = 3k + 1, k = 3, 4, . . . , bound (5) improves the trivial
bound (4).

From inequalities (4)-(5), it follows

Proposition 4. (Universal upper bound). For any
(
F l,≤ s

)
–design, the rate

R
(
F l,≤ s

)
≤ min

{
log2(l + 1)

s
, R

(⌊
s− 1

l

⌋
, 1

)}
, 1 ≤ l < s,

and the asymptotic inequality

R
(
F l,≤ s

)
≤ 2l2 log2 s

s2
(1 + o(1)), l = 1, 2, . . . , s→ ∞,

holds.

4 Constructions of Superimposed (z, u)-Codes and
Dl

s–Codes

4.1 Superimposed (s, 1)-Codes and Dl
s–Codes Based on

Shortened Reed-Solomon Codes

Let Q be the set of all primes or prime powers ≥ 2, i.e.,

Q � {2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 37, . . .}.
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Let q ∈ Q and 2 ≤ k ≤ q + 1 be fixed integers for which there exists the q-
ary Reed-Solomon code (RS-code) B of size qk, length (q+1) and the Hamming
distance d = q−k+2 = (q+1)−(k−1) [34]. We will identify the code B with an(
(q + 1)× qk

)
–matrix whose columns, (i.e., (q+1)-sequences from the alphabet

{0, 1, 2, . . . , q − 1}) are the codewords of B. Therefore, the maximal possible
number of positions (rows) where its two codewords (columns) can coincide,
called a coincidence of code B, is equal to k − 1.

Fix an arbitrary integer r = 0, 1, 2, . . . , k − 1 and introduce the shortened
RS-code B̃ of size t = qk−r, length n = q + 1 − r that has the same Hamming
distance d = q−k+2. Code B̃ is obtained by the shortening of the subcode of B
which contains 0′s in the first r positions (rows) of B. Obviously, the coincidence
of B̃ is equal to

λ � n− d = (q + 1− r) − d = q + 1− r − (q − k + 2) = k − r − 1. (6)

Consider the following standard transformation of the q-ary code B̃. Each sym-
bol of the q-ary alphabet {0, 1, 2, . . . , q− 1} is substituted for the corresponding
binary column of the length q and weight 1, namely:

0 ⇔ (1, 0, 0, . . . , 0)︸ ︷︷ ︸
q

, 1 ⇔ (0, 1, 0, . . . , 0)︸ ︷︷ ︸
q

, . . . q − 1 ⇔ (0, 0, 0, . . . , 1)︸ ︷︷ ︸
q

.

As a result we have a binary constant-weight code X of size t, length N and
weight w, where

t = qk−r = qλ+1, N = n · q = (q + 1− r)q, w = n = q + 1− r. (7)

From Propositions 1-2 and (6), it follows

Proposition 5. Let integers 1 ≤ � < s satisfy inequalities

s[(k − 1)− r] ≤ � (q + 1− r) − 1, 2 ≤ k ≤ q + 1, 0 ≤ r ≤ k − 1. (8)

Then the binary constant-weight code X with parameters (7) is a D�
s–code if

2 ≤ � < s, or X is a superimposed (s, 1)-code if � = 1.

For l = 1, the detailed tables with parameters of the best known superimposed
(s, 1)-codes (or D1

s–codes) based on Proposition 5 are presented in [15]-[14].
Table 3 gives an example of such table. In Table 3, we mark by the boldface
type two triples of superimposed code parameters known from [28]. The rest
triples of superimposed code parameters from Table 3 can be found in [15]-[14].

For the general case of superimposed (z, u)-codes, 2 ≤ u < z, the construction
similar to Proposition 5 was developed in [13]. Another significant constructions
of superimposed (z, u)-codes, 2 ≤ u < z, were suggested in [29]-[30]. Table 4
gives parameters of the best known superimposed (z, u)-codes if u = 2, 3 and
z = 2, 3, . . .9.
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4.2 Examples of Dl
s–Codes

Example 1. If q = 5, then for the pair (l = 2, s = 3), inequalities (8) are
fulfilled with k = 5 and r = 2. Therefore, the construction of Proposition 4
yields a binary constant-weight D2

3–code X with parameters

t = qk−r = 53 = 125, N = n·q = (q+1−r)q = 4·5 = 20, w = n = q+1−r = 4.
(9)

Parameters (9) give the following lower bound on the maximal size: t
(
20,D2

3

)
≥

125.

Example 2. If q = 7, then for the pair (l = 2, s = 4), inequalities (8) are
fulfilled with k = 6 and r = 3. Therefore, the construction of Proposition 4
yields a binary constant-weight D2

4–code X with parameters

t = qk−r = 73 = 343, N = n·q = (q+1−r)q = 5·7 = 35, w = n = q+1−r = 5.
(10)

Parameters (10) give the following lower bound on the maximal size: t
(
35,D2

4

)
≥

343.

Example 3. If q = 8, then for two pairs of integers (l = 2, s = 6) and (l =
3, s = 10), inequalities (8) are fulfilled with k = 5 and r = 2. Therefore, the
construction of Proposition 4 yields a binary constant-weight D2

6–code X and a
binary constant-weight D3

10–code X with parameters

t = qk−r = 83 = 512, N = n·q = (q+1−r)q = 7·8 = 56, w = n = q+1−r = 7.
(11)

Parameters (11) give the following lower bounds on the maximal size t
(
N,Dl

s

)
of Dl

s–codes:
t
(
56,D2

6

)
≥ 512, t

(
56,D3

10

)
≥ 512.

For comparison, if (u = 1, z = 6) and N = 56, then the best known low-
er bound on the size of optimal superimposed (6, 1)-codes, calculated in [15],
is t(56, 6, 1) ≥ 64. In addition, this example shows that for l = 3, the parameter
s = 10 of D3

10–code X can exceed the corresponding code weight w = 7.

4.3 Parameters of Constant-Weight superimposed (s, 1)-Codes
2 ≤ s ≤ 8, of Weight w, Length N , Size t = qλ+1,
2m ≤ t < 2m+1, 5 ≤ m ≤ 30, Based on the q-ary Shortened
Reed-Solomon Codes

Table 3 also contains numerical values of the rate for several obtained codes,
namely: the values of fraction m

N , m = 12, 20, 25, 29. The comparison with

lower R(s, 1) and upper R(s, 1) bounds from Table 2 (their values are included
in Table 3 as well) yields the following conclusions:
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Table 3.

s 2 3 4 5 6 7 8
R(s, 1) .182 .079 .044 .028 .019 .014 .011

R(s, 1) .322 .199 .140 .106 .083 .067 .056
m q, λ, N q, λ, N q, λ, N q, λ, N q, λ, N q, λ, N q, λ, N
5 − 7, 1, 28 7, 1, 35 7, 1, 42 7, 1, 49 − −
6 4, 2, 20 8, 1, 32 8, 1, 40 8, 1, 48 8, 1, 56 9, 1, 72 11, 1, 99
7 − − 13, 1, 65 13, 1, 78 13, 1, 91 13, 1, 104 13, 1, 117
8 7, 2, 35 7, 2, 49 − 16, 1, 96 16, 1, 112 16, 1, 128 16, 1, 144
9 8, 2, 40 8, 2, 56 8, 2, 72 − 23, 1, 161 23, 1, 184 23, 1, 207
10 − 11, 2, 77 11, 2, 99 11, 2, 121 − − −
11 7, 3, 49 − 13, 2, 117 13, 2, 143 13, 2, 169 − −
12 8, 3, 56 9, 3, 90 16, 2, 144 16, 2, 176 16, 2, 208 16, 2, 240 16, 2, 272
12
N .214 .133 .083 .068 .058 .050 .044
13 − 11, 3, 110 − 23, 2, 253 23, 2, 299 23, 2, 345 23, 2, 391
14 − 13, 3, 130 13, 3, 169 − 27, 2, 351 27, 2, 405 27, 2, 459
15 8, 4, 72 − − − − 32, 2, 480 32, 2, 544
16 − 16, 3, 160 16, 3, 208 16, 3, 256 19, 3, 361 − −
17 11, 4, 99 − − − − − −
18 13, 4, 117 13, 4, 169 − 23, 3, 368 23, 3, 437 23, 3, 506 25, 3, 625
19 − − − 27, 3, 432 27, 3, 513 27, 3, 594 27, 3, 675
20 11, 5, 121 16, 4, 208 16, 4, 272 − 32, 3, 608 32, 3, 704 32, 3, 800
20
N .165 .096 .074 - .034 .028 .025
21 − − 19, 4, 323 − − − 41, 3, 1025
22 13, 5, 143 − 23, 4, 391 23, 4, 483 − − −
23 − − 25, 4, 425 25, 4, 525 25, 4, 625 − −
24 − 16, 5, 256 − 27, 4, 609 29, 4, 725 29, 4, 841 −
25 13, 6, 169 19, 5, 304 − − 32, 4, 800 32, 4, 928 32, 4, 1056
25
N .148 .082 - - .031 .027 .024
26 − − − − 37, 4, 925 37, 4, 1073 37, 4, 1221
27 − − 23, 5, 483 − − 43, 4, 1247 43, 4, 1419
28 16, 6, 208 − 27, 5, 702 25, 5, 650 − − 49, 4, 1617
29 − 19, 6, 361 29, 5, 609 29, 5, 754 31, 5, 961 − −
29
N − .080 .048 .038 .030 − −
30 − − − 32, 5, 832 32, 5, 992 − −

– if s = 2 and m ≤ 15, then the values m
N exceed the random coding rate

R(2, 1) = .182;
– if s ≥ 3 and m ≤ 30, then the values m

N exceed the random coding rate
R(s, 1).
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4.4 Size t and Length N of Superimposed (z, u)-Codes, u = 2, 3
and z = 2, 3, . . . 9

Table 4.

(2,2) (3,2) (4,2) (5,2) (6,2) (7,2) (8,2) (9,2)
t, N t, N t, N t, N t, N t, N t, N t, N
8, 14 7, 21 11, 55 11, 55 20, 190 26, 260 16, 120 38, 703
9, 18 8, 28 13, 65 16, 120 25, 210 50, 350 32, 496 82, 738
10, 20 10, 30 17, 68 26, 130 49, 294 64, 448 65, 520 120, 1090
12, 22 16, 42 22, 77 48, 246 63, 385 80, 568 81, 648 166, 1562
16, 26 21, 56 25, 100 62, 330 79, 497 118, 882 119, 981 250, 2531
18, 30 24, 76 47, 205 78, 434 117, 792 164, 1308 165, 1430 282, 2933
22, 34 49, 147 64, 252 121, 605 169, 1014 256, 1800 256, 2040 361, 3249
24, 37 − − − − − − −
32, 43 (3,3) (4,3) (5,3) (6,3) (7,3) (8,3) (9,3)
40, 50 t, N t, N t, N t, N t, N t, N t, N
48, 59 7, 35 12, 220 16, 560 17, 680 19, 969 20, 1140 22, 1540
56, 65 8, 54 13, 253 19, 612 20, 816 21, 1071 21, 1330 23, 1771
64, 68 11, 66 23, 253 25, 700 26, 910 27, 1170 22, 1386 45, 14190
80, 76 16, 112 24, 532 31, 3951 32, 4683 52, 11313 53, 12757 54, 14352
112, 96 22, 176 169, 3289 50, 8830 51, 10008 529, 25740 729, 73125 729, 81900
128, 100 23, 399 − 256, 8960 361, 15504 − − −
144, 109 121, 660 − − − − − −
512, 126 − − − − − − −

5 Threshold Group Testing Model

5.1 Superimposed (z, u)-Codes and
(
Fw
0 ,≤ s

)
-Designs

Let w be an integer with 1 ≤ w < s. Let the function Fw � Fw
0 = Fw

0 (n) takes
binary values, namely:

Fw
0 (n) �

{
0 if n = 0, 1, . . . , w − 1,
1 if n = w.

If w ≥ 2, then the given particular case is called a threshold group testing mod-
el [7]. For the non-adaptive threshold group testing model which is the principal
model for applications [27], a refined form of Definition 2 can be written as
follows.

Definition 4. Let w, 1 ≤ w < s < t be integers. For code X = ‖xi(k)‖, k ∈ [t],
i ∈ [N ], and a subset P ∈ P(t,≤ s), define the i-th outcome of non-adaptive
threshold group testing

ywi (P,X) �

⎧⎨⎩
0 if

∑
k∈P

xi(k) ≤ w − 1,

1 if
∑
k∈P

xi(k) ≥ w, i ∈ [N ].
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A code X is called a (Fw
0 ,≤ s)-design, ((Fw

0 ,= s)-design) if for any P �= P ′,
P, P ′ ∈ P(t,≤ s) \P(t,≤ w− 1) (P ∈ P(t,= s), P ′ ∈ P(t,= s)), there exists an
index i ∈ [N ], where ywi (P,X) �= ywi (P ′, X).

An important connection between (Fw
0 ,≤ s)-designs and superimposed (s−w+

1, w)–codes is described by

Proposition 6. ([3], [33]) If 1 ≤ w < s, then any superimposed (s−w+1, w)–
code is a (Fw

0 ,≤ s)-design, i.e.

t (N, s− w + 1, w) ≤ t (N,Fw
0 ,≤ s) , R(s− w + 1, w) ≤ R (Fw

0 ,≤ s) .

The lower bound of Theorem 5 and Propositions 6 lead to the following lower
bound on the rate of (Fw

0 ,≤ s)–designs.

Proposition 7. (Random coding bound) For any 1 ≤ w < s, the rate

R (Fw
0 ,≤ s) ≥ R(s−w+1, w) ≥ −1

s
log2

[
1− (s− w + 1)s−w+1 · ww

(s+ 1)s+1

]
, 1 ≤ w < s.

(12)

If w ≥ 1 is fixed and s→ ∞, then the asymptotic form of the given lower bound
is

R (Fw
0 ,≤ s) ≥ e−w · ww · log2 e

sw+1
· (1 + o(1)). (13)

5.2 Bounds on the Rate of
(
F 1
0 ,≤ s

)
and

(
F 1
0 ,= s

)
-Designs

If w = 1 and s ≥ 2, then the universal upper bound of Proposition 4 lead to the
inequalities :

R
(
F 1
0 ,≤ s

)
≤ min{1/s ; R(s− 1, 1)}, s = 2, 3, . . . ,

where R(z, 1), z = 1, 2, . . . , is the recurrent upper bound from Theorem 1.
Hence, the asymptotic upper bound

R
(
F 1
0 ,≤ s

)
≤ R(s− 1, 1) =

2 · log2 s
s2

· (1 + o(1)), s→ ∞,

holds.
The best known asymptotic random coding lower bounds on R

(
F 1
0 ,≤ s

)
and

R
(
F 1
0 ,= s

)
along with the best known upper bound on R

(
F 1
0 ,= s

)
can be

found in [21]-[16] (see, also [11]). These bounds have the form: These bounds
have the form:

R
(
F 1
0 ,≤ s

)
≥ R(s, 1) =

1

s2 · log2 e
· (1 + o(1)) =

0.693

s2
· (1 + o(1)), s→ ∞,

(14)
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R
(
F 1
0 ,= s

)
≥ R

(
F 1
0 ,= s

)
=

2

s2 · log2 e
·(1+o(1)) = 1.386

s2
·(1+o(1)), s→ ∞,

(15)

R
(
F 1
0 ,= s

)
≤ R

(
F 1
0 ,= s

)
=

4 · log2 s
s2

· (1 + o(1)), s→ ∞. (16)

Notice that R(s, 1) is defined in Theorem 6 and numerical values of R
(
F 1
0 ,= s

)
,

s = 2, 3, . . . , 8, are given in Table 2. For the particular case w = 1, bound (14)
is better than the lower bound (13) of Proposition 7.

In addition, applying the corresponding non-asymptotic results [11], one can
calculate numerical values of upper bound (16), i.e., R

(
F 1
0 ,= s

)
, s ≥ 1, which

lead to the inequality: R
(
F 1
0 ,= s

)
< 1/s if s ≥ 11. For s = 2, the nontrivial

inequality R
(
F 1
0 ,= 2

)
< 0.4998 < 1/2 was proved in [5]. For 3 ≤ s ≤ 10, the

inequality R
(
F 1
0 ,= s

)
< 1/s can be considered as our conjecture.

5.3 Lower Bound on the Rate of
(
Fw
0 ,≤ s

)
–Designs

For (Fw
0 ,≤ s)–designs, w ≥ 2, the lower bound (12) of Proposition 7 can be im-

proved [4]. An improvement is obtained with the help of the following auxiliary
concepts.

Definition 5. [4] Let w, 1 ≤ w < s < t/2 be integers. For code X = ‖xi(k)‖,
k ∈ [t], i ∈ [N ], and a subset P ∈ P(t,≤ s), define the i-th outcome of non-
adaptive threshold group testing

ywi (P,X) �

⎧⎨⎩
0 if

∑
k∈P

xi(k) ≤ w − 1,

1 if
∑
k∈P

xi(k) ≥ w, i ∈ [N ].

A code X is called a threshold (w,≤ s)–design of length N and size t if for any
P �= P ′ with

|P | ≥ |P ′| P, P ′ ∈ P(t,≤ s) \ P(t,≤ w − 1)

there exists an index i ∈ [N ], where the i-th outcome of non-adaptive threshold
group testing is

ywi (P,X) = 1 and ywi (P ′, X) = 0.

Let tw(N,≤ s) denote the maximal possible size of threshold (w,≤ s)–designs.
For fixed 1 ≤ w < s, define the corresponding rate:

Rw (≤ s) � lim
N→∞

log2 tw(N,≤ s)

N
.

Obviously, any threshold (w,≤ s)–designs is a (Fw
0 ,≤ s)–design and the rate

R (Fw
0 ,≤ s) ≥ Rw (≤ s), 1 ≤ w < s. (17)
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Definition 6. [4] Let w, 1 ≤ w < s < t/2 be integers. A binary (N × t)-matrix
X is called a superimposed Mw

s -code (briefly, Mw
s -code) if for any two non-

intersecting subsets Z, U ∈ P(t,≤ s), Z ∩ U = ∅, such that w ≤ |U | ≤ s,
|Z| ≤ |U | and for any element j ∈ U , the matrix X contains a row xi =
(xi(1), xi(2) . . . , xi(t) ), i ∈ [N ], for which

xi(j) = 1,
∑
k∈U

xi(k) = w and xi(k) = 0 for all k ∈ Z.

Let t (N,Mw
s ) denote the maximal size of Mw

s –codes. For fixed 1 ≤ w < s,
introduce

R (Mw
s ) � lim

N→∞

log2 t (N,Mw
s )

N
, 1 ≤ w < s.

called a rate of Mw
s –codes. The evident connection between Mw

s –codes and
superimposed (2s− w, 1)-codes is given by

Proposition 8. [4] 1. Let 2 ≤ s < t/2. If w = 1, then any M1
s–code X

of size t is a superimposed (2s − 1, 1)-code and, vice versa, any superimposed
(2s− 1, 1)-code X of size t is a M1

s–code, i.e., the rate R
(
M1

s

)
= R(2s− 1, 1).

2. If 2 ≤ w < s < t/2, then any Mw
s -code X of size t is a superimposed

(2s− w, 1)-code, i.e., the rate R (Mw
s ) ≤ R(2s− w, 1).

Proposition 9. [4] If 1 ≤ w < s < t/2, then any Mw
s -code X of size t is a

threshold (w,≤ s)–design, i.e. the rate R (Mw
s ) ≤ Rw (≤ s).

Proof of Proposition 9. Let X = ‖xi(k)‖, k ∈ [t], i ∈ [N ], be an arbitrary
Mw

s -code. Consider arbitrary subsets: P, P ′ ∈ P(t,≤ s), P �= P ′, and such that

|P | ≥ |P ′|, P, P ′ ∈ P(t,≤ s) \ P(t,≤ w − 1), w ≤ |P | ≤ s, w ≤ |P ′| ≤ |P |.

Fix an arbitrary j ∈ P \ P ′, j /∈ P ′ and define non-intersecting subsets U � P

and Z � P ′ \ P . We have

w ≤ |U | ≤ s, j ∈ U, U ∩ Z = ∅, Z ⊂ P ′, P ′ \ Z ⊂ U, |Z| ≤ |P ′| ≤ |P | = |U |.

Definition 6 of Mw
s -code implies that there exists an index i ∈ [N ] such that⎛⎝ ∑

k∈U
xi(k) = w,

∑
k∈Z

xi(k) = 0, xi(j) = 1,
∑

k∈P ′\Z
xi(k) ≤ w − 1

⎞⎠ ⇒

⇒
( ∑

k∈P
xi(k) = w,

∑
k∈P ′

xi(k) ≤ w − 1

)
⇒ ( yi(P,X) = 1, yi(P

′, X) = 0 ) ,

i.e., code X is a threshold (w,≤ s)–design.
Proposition 9 is proved.
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We say that a column is Mw
s − bad if the above property not hold. If β �

Pr{xi(k) = 1} and 1 − β � Pr{xi(k) = 0}, then one can check that for any
j ∈ [t], the probability

Pr {x(j) is Mw
s − bad } ≤

s∑
u=w

u∑
z=0

(
t− 1

u+ z − 1

)(
u+ z − 1

u− 1

)
×

×
[
1−

(
u− 1

w − 1

)
βw (1− β)u+z−w

]N
.

The given inequality leads to the following random coding lower bound on the
rate of Mw

s -codes:

Proposition 10. For any β, 0 < β < 1, the rate R (Mw
s ) satisfies inequality

R (Mw
s ) ≥ min

w≤u≤s; 0≤z≤u

⎧⎨
⎩

− log2

[
1−

(
u−1
w−1

)
βw (1− β)u+z−w

]
u+ z − 1

⎫⎬
⎭ ≥ min

w≤u≤s
Lw(β, u),

where

Lw(β, u) �

⎧⎨⎩− log2

[
1−

(
u−1
w−1

)
βw (1 − β)2u−w

]
2u− 1

⎫⎬⎭ , w ≤ u ≤ s, 0 < β < 1.

(18)

From (17) and Propositions 9-10 it follows a lower bound on the rate of (Fw
0 ,≤ s)-

designs :

R (Fw
0 ,≤ s) ≥ R (Fw

0 ,≤ s) � max
0<β<1

min
w≤u≤s

Lw(β, u) =

= max
0<β<1

min
w≤u≤s

⎧⎨⎩− log2

[
1−

(
u−1
w−1

)
βw (1− β)2u−w

]
2u− 1

⎫⎬⎭ , 1 ≤ w < s. (19)

The calculation of numerical values for lower bound (19) is an open problem.

Theorem 8. For fixed w = 2, . . . and s → ∞, the lower bound R (Fw
0 ,≤ s)

defined by (18)− (19) has the form :

R (Fw
0 ,≤ s) =

1

s2
· 3(w − 2)w(ln 2)w log2 e

(w − 1)!22w−1
· (1 + o(1)). (20)

Proof of Theorem 8
Consider the following partition of the interval w ≤ u ≤ s:

s

2m
< u ≤ s

2m−1
,
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where m = 1, 2, . . . , log2 s/w.
Define a random code as follows: for each m we consider Nm by t submatrix

with probabilities
Pr{xi(k) = 1} � βm and Pr{xi(k) = 0} � 1− βm.
For fixed m, define the corresponding rate:

Rm � lim
N→∞

log2 tw(Nm,≤ s)

Nm
.

We have N =
∑
Nm so R−1 =

∑
R−1
m .

Let us now w ≥ 2 is fixed and s→ ∞.
Consider u = xz where 1/2 ≤ x ≤ 1 and take β = w

γz .
We want to find the minimum of

xw−1zw−1(w)w log2 e

2xz(w − 1)!γwzwe2xw/γ
.

The function y(x) = xw−2

e2wx/γ has maximum at x = (w−2)γ
2w and y(1) = e−

2w
γ ,

y(1/2) = e−
w
γ 22−w. So for γ = w

(w−2) ln 2 it gives minimum andmin1/2≤x≤1y(x) =

y(1) = y(1/2) = 1
22w−4 .

From this follows that for the parameters βm = (w−2)·2m−1 ln 2
s for m =

1, 2, . . . log(s/w)
we have

Rm =
22m−2

s2
· (w − 2)w(ln 2)w log2 e

(w − 1)!22w−3
· (1 + o(1));

So the sum
∑
R−1
m is equal to

(w − 1)!22w−3

(w − 2)w(ln 2)w log2 e

M∑
m=1

s2

22m−2
= s2

4(w − 1)!22w−3

3(w − 2)w(ln 2)w log2 e
· (1 + o(1)).

Thus we have

R =
1

s2
· 3(w − 2)w(ln 2)w log2 e

(w − 1)!22w−1
· (1 + o(1)).

Theorem 8 is proved.

5.4 Another Threshold Design Model

Theorem 8 improves the asymptotic bound from Proposition 7. In this section
we slightly change the definition of a threshold design and show that the results
are different.

Let w, 1 ≤ w < s < t/2, be integers. For a comparison of Definitions 4
and 5 , introduce
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Definition 5̃. A code X is called a threshold (w,≤ s)–design, of length N and
size t if for any P �= P ′ with

P \ P ′ �= ∅, P, P ′ ∈ P(t,≤ s) \ P(t,≤ w − 1),

there exists an index i ∈ [N ], where the i-th outcome of non-adaptive threshold
group testing is

ywi (P,X) = 1 and ywi (P ′, X) = 0.

Let t̃w(N,≤ s), be the maximal size of threshold (w,≤ s)–designs. For fixed
1 ≤ w < s, define the corresponding rate

R̃w (≤ s) � lim
N→∞

log2 t̃w(N,≤ s)

N
.

The following important property is given by

Proposition 11. If 1 ≤ w < s < t/2, then (1) any superimposed (s−w+1, w)–
code X of size t is a threshold (w,≤ s)–design and, vice versa, (2) any threshold
(w,≤ s)–design X of size t is a superimposed (s − w + 1, w)–code, i.e., the

rate R̃w (≤ s) = R(s− w + 1, w).

Evidently, any threshold (w,≤ s)–design is a threshold (w,≤ s)–design. There-
fore, in virtue of Proposition 11, the rate

R̃w (≤ s) = R(s− w + 1, w) ≤ Rw (≤ s) ≤ R (Fw
0 ,≤ s) .

Denote by R(z, u), 1 ≤ u ≤ z, the lower bound on R(z, u) formulated in Theo-
rems 5 and 6. Let R(z, u) be the upper bound on R(z, u) given by Theorem 3.
For parameters w = 1, 2, 3 and s = w+1, w+2, . . . , 8, numerical values of lower

bound R̃w (≤ s) � R(s−w+1, w) and upper bound R̃w (≤ s) � R(s−w+1, w)

on the rate R̃w (≤ s) = R(s− w + 1, w) are presented in Table 2.

Proof of Proposition 11. (1) Let X = ‖xi(k)‖, k ∈ [t], i ∈ [N ], be a
superimposed (s−w+1, w)–code. Consider arbitrary subsets: P, P ′ ∈ P(t,≤ s),
P �= P ′, and such that

P \ P ′ �= ∅, P, P ′ ∈ P(t,≤ s) \ P(t,≤ w − 1), w ≤ |P | ≤ s, w ≤ |P ′| ≤ s.

Fix an arbitrary subset U ⊂ P such that |U | = w, and U \ P ′ �= ∅. Note that
the size of intersection |P ′ ∩ U | ≤ w − 1.

Consider the set P ′ \ (P ′ ∩ U). Introduce a set Z, Z ⊂ [t], of size |Z| =
s− (w − 1), where the intersection Z ∩ U = ∅, as follows.

1. If |P ′ \ (P ′ ∩U)| ≥ s− (w− 1), then we choose the set Z, Z ⊆ P ′ \ (P ′ ∩U),
Z ∩ U = ∅, as an arbitrary fixed subset of size |Z| = s − (w − 1). Let a
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row i, i ∈ [N ] corresponds to the pair (U,Z) in Definition 1 of superimposed
(s− w + 1, w)–code X . One can easily see that∑
k∈P

xi(k) ≥
∑
k∈U

xi(k) = w,
∑
k∈P ′

xi(k) ≤ |P ′|−|Z| ≤ s−[s−(w−1)] = w−1.

Hence, ( yi(P,X) = 1, yi(P
′, X) = 0 ).

2. If |P ′ \ (P ′ ∩U)| < s− (w− 1), then we choose the set Z, Z ⊃ P ′ \ (P ′ ∩U),
as an arbitrary fixed superset of size |Z| = s− (w − 1). Let a row i, i ∈ [N ]
corresponds to the pair (U,Z) in Definition 1 of superimposed (s−w+1, w)–
code X . One can easily see that∑

k∈P
xi(k) ≥

∑
k∈U

xi(k) = w,
∑
k∈P ′

xi(k) = |P ′ ∩ U | ≤ w − 1.

Hence, ( yi(P,X) = 1, yi(P
′, X) = 0 ).

Arguments 1. and 2. imply that code X is a threshold (w,≤ s)–design. There-
fore, the statement (1) of Proposition 11 is proved.

(2) Let X = ‖xi(k)‖, k ∈ [t], i ∈ [N ], be a threshold (w,≤ s)–design.
Consider two arbitrary non-intersecting sets U and Z, where

U ⊂ [t], |U | = w, Z ⊂ [t], |Z| = s− (w − 1), U ∩ Z = ∅,

and fix an element j ∈ U . Introduce subsets P, P ′ ∈ P(t,≤ s) \ P(t,≤ w− 1) as
follows:

P � U, P ′ � (U\j)∪Z, P\P ′ �= ∅, |P | = w, |P ′| = (w−1)+s−(w−1) = s.

Definition 5̃ of threshold (w,≤ s)–design means that there exists an index i ∈
[N ] such that

( yi(P,X) = 1, yi(P
′, X) = 0 ) ⇒

( ∑
k∈P

xi(k) ≥ w,
∑
k∈P ′

xi(k) ≤ w − 1

)
⇒

⇒

⎛⎝ ∑
k∈U

xi(k) ≥ w,
∑

k∈U\j
xi(k) +

∑
k∈Z

xi(k) ≤ w − 1

⎞⎠ ⇒

⇒ xi(k) = 1, k ∈ U, |U | = w; xi(k) = 0, k ∈ Z, |Z| = s− (w − 1).

Hence, code X is a superimposed (s − w + 1, w)-code, i.e., statement (2) is
established.

Proposition 11 is proved.
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5.5 Improved Bounds for (Fw,= s)–Designs with Gap

In threshold group testing [7], numbers 0 ≤ l < s are given and a test tA is the
function tA : 2[t] → {0, 1, {0, 1}}, defined by

tA(P ) =

⎧⎪⎪⎨⎪⎪⎩
0 , if |P ∩A| ≤ l
1 , if |P ∩A| ≥ w
{0, 1} , otherwise

(meaning that the result can be arbitrary 0 or1).

It is not possible to find the set P exactly if the gap g � w − l− 1 > 0. We can
find a set P ′ such that |P\P ′| ≤ g.

In this Section we present the results of [1] where the authors considered the
case g > 0 provided that the number of defectives is known, i.e., |P | = s.

Definition 7. Let l, w, 0 ≤ l < w < s < t be integers. For code X = ‖xi(k)‖,
k ∈ [t], i ∈ [N ], and a subset P ∈ P(t,≤ s), define the i-th outcome of non-
adaptive threshold group testing

ywi (P,X) �

⎧⎨⎩
0 if

∑
k∈P

xi(k) ≤ l,

1 if
∑
k∈P

xi(k) ≥ w, i ∈ [N ].

Let g = w − l + 1, a code X is called a
(
Fw
g ,≤ s

)
-design, (

(
Fw
g ,= s

)
-design) of

length N and size t if for any P, P ′ ∈ P(t,= s) with |P\P ′| > g, there exists
an index i ∈ [N ], where ywi (P,X) �= ywi (P ′, X).

Definition 8. Let z and u be positive integers such that z + u ≤ t. A family
of subsets Ω1, Ω2, . . . , Ωt, where Ωj ⊆ [N ], j ∈ [t], is called an (z, u)–separating
family if for any two non-intersecting subsets Z, U ⊂ [t], Z ∩ U = ∅, such that
|Z| = z, |U | = u, the following condition holds:⋂

j∈U
Ωj �⊆

⋃
j∈Z

Ωj or
⋂
j∈Z

Ωj �⊆
⋃
j∈U

Ωj

An incidence matrix X = ‖xi(j)‖, i ∈ [N ], j ∈ [t], corresponding to (z, u)–
separating family is called a separating (z, u)-code.

The following evident necessary and sufficient condition for Definition 8 takes
place.

Remark 4. Any binary (N × t)-matrix X is a separating (z, u)-code if and
only if for any two subsets Z, U ⊂ [t], such that |Z| = z, |U | = u and Z∩U = ∅
the matrix X contains a row xi = (xi(1), xi(2) . . . , xi(t), for which

(xi(j) = 1 ∀j ∈ U, xi(j) = 0 ∀j ∈ Z) or (xi(j) = 0 ∀j ∈ U, xi(j) = 1 ∀j ∈ Z)

Let t̂(N, z, u) be the maximal possible size of separating (z, u)-codes. For fixed
1 ≤ u < z, define a rate of separating (z, u)-codes:

R̂(z, u) � lim
N→∞

log2 t̂(N, z, u)

N
.
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Proposition 12. ([1]) If s = w + l, then any separating (s − l, w)–code is a(
Fw
g ,= s

)
-design, i.e.

t (N, s− l, w) ≤ t (N,Fw
0 ,= s) , R(s− w + 1, w) ≤ R (Fw

0 ,= s) .

In [1] the authors also consider the case s �= w + l. They introduce threshold
codes.

Definition 9. We call an N × t matrix M = ‖mij‖ a (p, w, l)-threshold code, if
for all A,B ⊂ [t], |A| = |B| = p, and |A\B| ≥ w− l there exists an i ∈ [N ] such
that

(
∑

a∈Amia ≥ w and
∑

b∈Bmib ≤ l)
or

(
∑

a∈Amia ≤ l and
∑

b∈Bmib ≥ w).

Proposition 13. ([1]) If 1 ≤ w < s, then any (p, w, l)–threshold code is a(
Fw
g ,= s

)
-design

6 Concluding Remarks

In this Section, we would like to distinguish the principal achievements for the
theory of non-adaptive group testing models and superimposed codes obtained
in the last decade.

1. In 2003, Vladimir Lebedev [31] proved Theorem 3 which established a re-
current inequality for the rate R(z, u) of superimposed (z, u)-codes. This
inequality and the best known numerical values [17,13] of upper bound on
the rate R(z, 1) gave the best known numerical values of upper bound on
the rate R(z, u), z ≥ u ≥ 2.

2. In 2004, Vladimir Lebedev and Hyun Kim [30] presented the best known
and optimal constructions (see, Table 4) of superimposed (z, u)-codes, z ≥
u ≥ 2.

3. In 2004, Annalisa De Bonis and Ugo Vaccaro [8] proved Theorem 7 which
established an upper bound on the rate of superimposed Dw

s -codes via the
rate R(z, 1) of superimposed (z, 1)-codes. The result leads to the universal
upper bound (Proposition 4) on the rate of group testing designs motivated
by compressed genotyping models in molecular biology.

4. In 2010, Mahdi Cheraghchi [4] introduced the concepts of threshold (w,≤
s)–designs and superimposed Mw

s -codes and proved Proposition 9 which ac-
tually established an improved lower bound (19) on the rate of non-adaptive
threshold group testing model.

Acknowledgements. All authors are grateful to Professor Rudolf Ahlswede
for his lifetime friendship and encouragement. He wrote in 1979 the first book
on search theory in German ([2]), describing the connection between several
areas. The extensive literature is presented in such a way that the reader can
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quickly understand the range of questions and obtain a survey of them which is
as comprehensive as possible. In 1982 the Russian edition was published by MIR.
It includes also a supplement, Information-theory Methods in Search Problems,
which was written by Maljutov. The English edition, published in 1987, includes
also a section “Further reading”, where articles and books are mentioned which
inform the researcher about new developments and results which seem to carry
the seed for further discoveries.
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Abstract. In this paper a new class of error-tolerant pooling designs as-
sociated with finite vector spaces is presented. We construct dz-disjunct
inclusion matrices using packings in finite projective spaces. For certain
parameters our construction gives better performance than previously
known ones. In particular, the construction gives a family of disjunct
matrices with near optimal parameters.

Keywords: group testing, nonadaptive algorithm, pooling designs,
dz−disjunct matrix.

1 Introduction

Combinatorial group testing has various practical applications [4], [5]. In the
classical group testing model we have a set [n] = {1, . . . , n} of n items containing
at most d defective items. The basic problem of group testing is to identify the
set of all defective items with a small number of group tests. Each group test,
also called a pool, is a subset of items. It is assumed that there is a testing
mechanism that for each subset A ⊂ [n] gives one of two possible outcomes :
negative or positive. The outcome is positive if A contains at least one defective
and is negative otherwise.

A group testing algorithm is called nonadaptive if all tests are specified with-
out knowledge of the outcomes of other tests. Traditionally, a nonadaptive group
testing algorithm is called a pooling design. Pooling designs have many applica-
tions in molecular biology, such as DNA screening, nonunique probe selection,
gene detection, etc. (see [1], [5], [7], [8]).

A pooling design is associated with a (0, 1)− inclusion matrix M = (mij),
where the rows are indexed by tests A1, . . . , At ⊂ [n], the columns are indexed
by items 1, . . . , n, and mij = 1 if and only if j ∈ Ai. The major tool used for
construction of pooling designs are d−disjunct matrices. LetM be a binary t×n
matrix where the columns C1, . . . , Cn are viewed as subsets of [t] = {1, . . . , t}
represented by their characteristic vectors. Then M is called d–disjunct if no
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column is contained in the union of d others. The notion of d−disjunctness
was introduced by Kautz and Singleton [15]. They proved that a d–disjunct
matrix M can identify up to d defective items. d−disjunct matrices are also
known as d−cover free families studied in extremal set theory [3]. The maximal
d for which M is d–disjunct is called the degree of disjunctness and is denoted
by dmax. Note that d–disjunctness of a pooling design is a sufficient, but not
a necessary condition for identification of d defectives. However a d−disjunct
pooling design has an advantage of a very simple decoding. Removing from the
set of items all items in negative pools we get all defectives (see [5] for details).

A pooling design is called error-tolerant if it can detect/correct some errors
in test outcomes. Biological experiments are known to be unreliable (see [5]),
which, in fact, is a practical motivation for constructing efficient error-tolerant
pooling designs. For error correction in tests the notion of a dz–disjunct matrix
was introduced in [1], [18]. A d−disjunct matrix is called dz–disjunct if for any
d+1 of its columns Ci1 , . . . , Cid+1

we have |Ci1 \ (Ci2 ∪ . . .∪Cid+1
)| ≥ z. In fact,

the d1−disjunctness is simply the d−disjunctness. A dz–disjunct matrix can
detect z−1 errors and correct � z−1

2  errors (see e.g. [8] or [5]). Constructions of
dz−disjunct matrices are given by many authors (see [1], [7], [8], [10], [18], [19]).

Most known constructions of dz−disjunct matrices arematrices with a constant
columnweight. LetM be a binary t×nmatrixwith a constant columnweightk and
let s be the maximum size of intersection (number of common ones) between two
different columns. Kautz and Singleton [15] observed that then M is d–disjunct
with d = �k−1

s . Moreover, for integers 0 ≤ s < k < t the maximum number
n(d, t, k) for which there exists such a disjunct matrix is upper bounded by

n(d, t, k) ≤
(

t

s+ 1

)
/

(
k

s+ 1

)
. (1)

Note that the columns ofM considered as the family F of k–subsets of [t] (called
blocks) form an (s+1, k, t)–packing, that is each (s+1)–subset of [t] is contained
in at most one block of F . Note also that equality in (1.1) is attained if and
only if F is an (s + 1, k, t)–Steiner system (each (s+ 1)−subset is contained in
precisely one block).

Thus, packing designs can be used for construction of d–disjunct matrices.
However, not much is known about explicit constructions of (s+1, k, t)–packings
in general (even for s ≥ 3). Several other constructions (see [9, Ch.3]) of disjunct
matrices are also based on combinatorial structures or error correcting codes. We
note that (s+1, k, t)–packings can also be described in terms of error-correcting
codes in the Johnson graph J(n, k) (also called constant weight codes) with
minimum distance dJ = k − s. It seems natural to try other distance regular
graphs, for construction of d–disjunct matrices, using the idea of packings.

In this paper we construct new error-tolerant pooling designs associated with
finite vector spaces. In Section 2 we briefly review some known constructions
of disjunct matrices based on partial orders and determine the degree of dis-
junctness for the construction proposed by Ngo and Du [19]. Our main results
are stated and proved in Section 3. We present a construction of dz–disjunct
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matrices based on packings in finite projective spaces. For certain parameters
the construction gives better performance than previously known ones.

2 dz–Disjunct Matrices from Partial Orders

In [17] Macula proposed a simple direct construction of d−disjunct matrices
based on containment relation in finite sets. Given integers 1 ≤ d < k < m, let
M = (mij) be an

(
m
d

)
×

(
m
k

)
matrix where the rows are indexed by elements of(

[m]
d

)
, the columns are indexed by the elements of

(
[m]
k

)
, and mij = 1 if we have

containment relation between the subsets corresponding to the ith row and the
jth column, otherwise mij = 0. Note that each column has weight

(
k
d

)
and

each row has weight
(
m−d
k−d

)
. Macula showed that M is a d–disjunct matrix and

dmax = d.
Similar constructions, using different posets, were given by several authors (see

[5] Ch.4). Ngo and Du [19] extended Macula’s construction to some geometric
structures. In particular they considered the following construction of a d−disjunct
matrix Mq(m, d, k) associated with finite vector spaces. Let GF (q)m be the m–
dimensional vector space over GF (q). The set of all subspaces of GF (q)m, called
projective space, is denoted by Pq(m). Recall that Pq(m) ordered by containment
is known as the poset of linear spaces (or linear lattice). Given an integer 0 ≤ k ≤
m, the set of all k-dimensional subspaces (k–spaces for short) of GF (q)m is called
a Grassmannian and denoted by Gq(m, k). Thus, we have

⋃
0≤k≤mGq(m, k) =

Pq(m). A graph associated with Gq(m, k) is called the Grassmann graph, when
two vertices (elements of Gq(m, k)) V and U are adjacent iff dim(V ∩U) = k− 1.
It is known that the size of the Grassmannian |Gq(m, k)| is determined by the q-ary
Gaussian coefficient

[
m
k

]
q
; k = 0, 1, . . . ,m (

[
m
0

]
q
:= 1),

|Gq(m, k)| =
[m
k

]
q
=

(qm − 1)(qm−1 − 1) · · · (qm−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
. (2)

For integers 1 ≤ r < k < m, the
[
m
r

]
q
×

[
m
k

]
q
incidence matrix Mq(m, r, k) =

(mij) is defined as follows. The rows and the columns are indexed by the el-
ements of Gq(m, r) and Gq(m, k) (given in a fixed ordering), respectively, and
mij = 1 if we have containment relation, otherwise mij = 0. Note that each col-

umn of Mq(m, r, k) has weight
[
k
r

]
q
and each row has weight

[
m−r
k−r

]
q
. Ngo and

Du [19] showed that Mq(m, r, k) is an r–disjunct matrix. However D’yachkov
et al. [8] observed that the degree of disjunctness of Mq(m, r, k) can be much
bigger than r. Moreover, the construction can in general tolerate many errors.

Theorem DHMVW [8]

For k − r ≥ 2 and d < q(qk−1−1)
qk−r−1

, the matrix Mq(m, r, k) is d
z–disjunct with

z ≥
[
k

r

]
q

− d

[
k − 1

r

]
q

+ (d− 1)

[
k − 2

r

]
q

. (3)

The bound is tight for d ≤ q + 1.
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Note that the maximum number d in (3) for which z > 0 is d = q(qk−1−1)
qk−r−1 . Thus,

the theorem tells us that dmax ≥ q(qk−1−1)
qk−r−1

. In fact, we determine dmax for every

Mq(m, r, k).

Theorem 1. For integers 1 ≤ r < k < m, the degree of disjunctness of
Mq(m, r, k) equals

dmax =
q(qr − 1)

q − 1
. (4)

Proof. Let V ∈ Gq(m, k). We wish to determine the minimum size of a set of k–
spaces which cover (contain) all r–spaces of V . Suppose U1, . . . , Up ∈ Gq(m, k)
is a minimal covering of the r–spaces of V . Without loss of generality, we
may assume that dim(Ui ∩ V ) = k − 1 for i = 1, . . . , p. Therefore, W1 =
U1 ∩ V, . . . ,Wp = Up ∩ V can be viewed as a set of hyperplanes of Pq(k) that
cover all r–spaces of Pq(k). Let now Ai ∈ Pq(k) be the orthogonal space of Wi;
i = 1, . . . , p. Thus, A = {A1, . . . , Ap} is a set of one dimensional subspaces, that
is points, in Pq(k). By the principle of duality, every (k − r)–space of Pq(k)
contains an element of A. To complete the proof we use the following result.

Theorem BB [2]. Let A ⊂ GF (q)m \ {0} have a non-empty intersection with
every (k− r)–space of Pq(k). Then |A| ≥ (qr+1− 1)/(q− 1), with equality if and
only if A consists of (qr+1 − 1)/(q − 1) points of an (r + 1)–space of Pq(k).

It is clear now that dmax = (qr+1 − 1)/(q − 1)− 1. �

3 The Construction

Our construction of a disjunct matrix M is based on packings in Pq(m). For
integers 0 ≤ s < k < m, a subset C ⊂ G(m, k) (with the elements called blocks)
is called an [s+1, k,m]q–packing if each (s+1)–space of Pq(m) is contained in at
most one block of C. This clearly means that dim(V ∩U) ≤ s for every distinct
pair V, U ∈ C. C is called an [s+1, k,m]q–Steiner structure if each (s+1)–space
of Pq(m) is contained in precisely one block of C. Let N(m, k, s) denote the
maximum size of an [s+ 1, k,m]q–packing. Note that in case k = s+ 1 we have
a trivial [k, k,m]q–packing and N(m, k, k) =

[
m
k

]
q
. An equivalent definition of

an [s+1, k,m]q–packing can be given in terms of the subspace distance dS(V, U)
defined (in general for any V, U ∈ Pq(m)) by dS(V, U) = dimV + dimU −
2 dim(V ∩ U). Then clearly dS(V, U) ≥ 2(k − s) for every pair of elements
V, U ∈ C. The following simple observation is an analogue of (1.1) for projective
spaces. LetM be the incidence matrix of an [s+1, k,m]q–packing C with s ≥ 1,
that is the t × n matrix where the rows (resp. columns) are indexed by the
points of Pq(m) (resp. by the blocks of C) given in a fixed ordering. Thus,
t = (qm− 1)/(q− 1), n = |C| and each column ofM has weight (qk− 1)/(q− 1).
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Lemma 1. (i) For d ≤ 
 q
k−1
qs−1 � − 1, the matrix M is dz–disjunct with z =

qk−1−d(qs−1)
q−1 .

(ii) The number of columns

n ≤ N(m, k, s) ≤
[

m

s+ 1

]
q

/

[
k

s+ 1

]
q

(5)

with both equalities if and only if C is an [s+ 1, k,m]q–Steiner structure.

Proof. (i) By the definition of an [s + 1, k,m]q–packing, each (s + 1)–space is
contained in at most one k–space of C. Therefore, any two columns in M have
at most (qs − 1)/(q − 1) common ones. Hence, a column in M can be covered

by at most 
 q
k−1
qs−1 � other columns. This clearly means that dmax = 
 q

k−1
qs−1 �− 1 ≥

qk−s. It is also clear that for d ≤ dmax we have a dz-disjunct matrix with

z ≥ qk−1−d(qs−1)
q−1 .

(ii) Since the number of (s+1)–spaces contained in a k–space is
[

k
s+1

]
q
, we have

the following simple packing bound N(m, k, s) ≤
[

m
s+1

]
q
/
[

k
s+1

]
q
. The equality

in (5) is attained iff we have a partition of all (s + 1)–spaces by the blocks
of C. �

A challenging problem is to find Steiner structures in Pq(n). Note that no
nontrivial Steiner structures, except for the case s = 0 (partition of GF (q)m by
k–spaces) are known.

Theorem KK [16]. Given integers 0 ≤ s < k ≤ 1
2m and prime power q, there

exists an explicit construction of an [s+ 1, k,m]q–packing C(m, k, s) with

|C(m, k, s)| = q(s+1)(m−k). (6)

The construction of such packings is based on Gabidulin codes [13]. The explicit
description (in terms of subspace codes) is given in [16]. For completeness we
describe here this construction, in terms of [s + 1, k,m]q–packings. Let Fk×rq

denote the set of all k×r matrices overGF (q). ForX,Y ∈ Fk×rq the rank distance
between X and Y is defined as dR(X,Y ) = rank(X − Y ). The rank-distance is
a metric and codes in metric space (Fk×rq , dR) are called rank-metric codes. It is

known [13] that for a rank-metric code C ⊆ Fk×rq with minimum distance dR(C)
one has the Singleton bound logq |C| ≤ min{k(r− dR(C) + 1), r(k− dR(C) + 1)}.
Codes attaining this bound are called maximum-rank-distance codes (MRD).
An important class of MDR codes are Gabidulin codes [13], which exist for all
parameters k, r and dR ≤ min{k, r}. The construction of an [s+1, k,m]q–packing

from an MRD code is as follows. Consider the space F
k×(m−k)
q and let m ≥ 2k.

Then for any integer 0 ≤ s ≤ k−1 there exists a Gabidulin code CG ⊂ F
k×(m−k)
q

of minimum distance dR = k − s and size q(s+1)(m−k). To each matrix A ∈ CG
we put into correspondence the matrix [Ik|A] ∈ Fk×mq (Ik is the k × k identity
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matrix). We define now the set of k–spaces C(m, k, s)q = {rowspace([Ik|A]) :
A ∈ CG}. It can easily be observed now that dim(V ∩ U) ≤ s for all pairs
V, U ∈ C(m, k, s)q. This means that C(m, k, s)q is an [s+ 1, k,m]q–packing with
|C(m, k, s)q| = |CG| = q(s+1)(m−k). Similarly is described the [s + 1, k,m]q–
packing C(m, k, s)q for k < m < 2k. Note however, that for our purposes it is
sufficient to consider the case m ≥ 2k.

The following is a useful estimate for the Gaussian coefficients (see e.g. [16]).

Lemma 2. For integers 1 ≤ k < m we have

q(m−k)k <
[m
k

]
q
< α(q) · q(m−k)k, (7)

where α(2) = 4 and α(q) = q
q−2 for q ≥ 3.

Lemma 2, applied to our upper bound (5), gives: N(n, k, s) < α(q) ·q(s+1)(m−k) .
The latter implies that the packing C(m, k, s)q is nearly optimal, that is

|C(m, k, s)q| >
1

α(q)
N(n, k, s)q.

Here actually limα(q) = 1, as q → ∞, yields asymptotic optimality.
Let P (m, k, s)q denote the incidence matrix of C(m, k, s)q. We summarize our

findings in

Theorem 2. Given integers 0 < s + 1 < k ≤ 1
2m and a prime power q, we

have
(i) P (m, k, s)q is a d–disjunct t × n matrix with d = qk−s, t = qm−1

q−1 , n =

q(s+1)(m−k).
(ii) In case k = s+ 1 (trivial packing) we have d = q, t = qm−1

q−1 , n =
[
m
k

]
q
.

(ii) For any d ≤ qk−s, the matrix P (m, k, s)q is dz–disjunct with

z = qk−1−d(qs−1)
q−1 .

Next we wish to know how good our construction is. Let t(d, n) denote the min-
imum number of rows for a d–disjunct matrix with n columns. In the literature
known are the bounds asymptotic in n:

Ω(
d2 logn

log d
) ≤ t(d, n) ≤ O(d2 logn) (8)

(log is always of base 2). The lower bound is proved in [9], [20], [12]. For
the upper bound see [10], [14]. Constructions of good disjunct matrices (also
referred to as superimposed codes) are given in D’yachkov et al [6], [7], where
also the detailed tables with parameters of the best known superimposed codes
are presented.

In fact, currently the best upper and lower bounds are due to D’yachkov and
Rykov [9] and D’yachkov et al [10]. In particular, when d → ∞ these bounds
are:

d2

2 log d
(1 + o(1)) logn ≤ t(d, n) ≤ d2 log e(1 + o(1)) log n.
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Let us take now in our construction q = 2, m = 2k. Then we have d = 2k−s, t =
22k − 1, n = 2(s+1)k and hence

t <
22k logn

(s+ 1)k
<

22s

s+ 1
· d

2 logn

log d
.

Corollary 1. Given integer s ≥ 1, our construction gives a class of d–disjunct
t × n matrices with parameters d = 2k−s, t = 22k, n = 2(s+1)k attaining the
lower bound in (8).

As an example, let us compare our construction with the construction in Ngo
and Du [19], described in Section 2. The construction in [19] has parameters

d = q(qr−1)
q−1 (Theorem 2), t =

[
m
r

]
q
> q(m−r)r, n =

[
m
k

]
q
< α(q)q(m−k)k

(Lemma 2). Without loss of generality we may assume that 1 ≤ r < k ≤ m/2.
We now fix some d and t (thus r and m are also fixed).

For the parameters in our construction we use the notation n0, k0, t0, d0. Both
constructions are considered over GF (q) and also we take k0 = k. Thus, for
k > s + 1 we have d0 = qk−s, t0 = (qm0 − 1)/(q − 1), n0 = q(s+1)(m0−k). Note
that the case k = s + 1 (trivial packing) and m0 = m corresponds to the case
r = 1. Consider now the case r ≥ 2

Case k − r ≥ 2: We put s = k − r − 1 and m0 = (m− r)r. Then we have

d0 = qr+1, t0 = (q(m−r)r − 1)/(q − 1), and n0 = q(k−r)(mr−r2−k).

It is easy to check that d0 > d, t0 < t. We claim now that except for the
case r = 2, k = 4 we have n0 > n, or equivalently, (m − r)(mr − r2 − k) >
(m − k)k + logq α(q). Easy calculation shows that the latter is equivalent to
(m − r)(kr − r2 − k) > logq α(q) (where m − r > 2 and logq α(q) < 2). Hence
it is enough to show that kr − r2 − k ≥ 1. The latter inequality holds if k ≥

 r2+1
r−1 �=r + 2 for r ≥ 3 (resp. if k ≥ 5 for r = 2). Thus, it remains to consider

the

Subcase r = 2, k = 4: We take m0 = 2m− 3 and thus t0 = (q2m−3− 1)/(q− 1).
It is easy to check now that t0 = (q2m−3− 1)/(q− 1) <

[
m
2

]
q
= (qm− 1)(qm−1−

1)/(q2 − 1)(q − 1). Observe also that n0 = q2(2m−7) > α(q) · q(m−4)4 > n.

Case k − r = 1: In this case we take s = k − r = 1 and m0 = (m − r)r. Then
we note that the actual value of d0 in our construction (see Lemma 1)

d0 ≥ qk − 1

q − 1
− 1 =

qr+1 − 1

q − 1
− 1 = d. Note now that n = q2(mr−r2−k) =

q2(mk−m−k2+k−1) > n. Thus, for each triple (d, t, n) we have a better triple
(d0, t0, n0) (more defectives, less tests, and more items), moreover, in case
r ≥ 2 we have n0(d, t) ! n(d, t) as m→ ∞.

Note on the other hand that the construction of Ngo and Du [19] has better
performance than the construction of Macula [17] (this can easily be shown). As
a measure of performance of a d-disjunct t × n matrix, in general one can take
the ratio (log n)/t.

Let us also compare our construction with another construction in [11], where
the authors explore a novel use of �–packings to construct d-disjunct matrices.
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The construction is based on the known Steiner system S(3, q + 1, qr + 1) (for
any prime power q and integer r ≥ 2) and has the following parameters:

d =
(
q+1
2

)
− 1, t =

(
qr+1

2

)
− 1, n =

(
qr+1
3

)(
q+1
3

) =
(q2r − 1)qr−1

q2 − 1
.

Note that in order to get a nontrivial construction one has to take r ≥ 4. We
fix now some q and t, that is d and r are also fixed.

In our construction we have: d0 = qk−s, t0 = (qm − 1)/(q − 1), and n0 =
q(s+1)(m−k). We put k = s+ 2 = r − 1 and m = 2r − 1. Then we have d0 = q2,
t0 = (q2r−1 − 1)/(q − 1), n0 = q(r−2)r. Observe now that d0 > d, t0 < t, n0 ≥ n
for r > 4.

In case r = 4 we take k = s + 2 = 4,m0 = 8. Thus, d0 = q2, t0 = (q8 −
1)/(q − 1), n0 = q12. Correspondingly we have d =

(
q+1
2

)
− 1, t = (q4 + 1)q4/2,

and n = (q8 − 1)q3/(q2 − 1). Note now that again we have d0 > d, t0 < t, and
n0 > n. Thus, for every triple (d, t, n) (in Construction [11]) we have a better
triple (d0, t0, n0), moreover n0(d, t) ! n(d, t) as r → ∞.
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Abstract. In this paper we study a new, generalized version of the well-
known group testing problem. In the classical model of group testing we
are given n objects, some of which are considered to be defective. We
can test certain subsets of the objects whether they contain at least one
defective element. The goal is usually to find all defectives using as few
tests as possible. In our model the presence of defective elements in a
test set Q can be recognized if and only if their number is large enough
compared to the size of Q. More precisely for a test Q the answer is yes
if and only if there are at least α|Q| defective elements in Q for some
fixed α.

Keywords: group testing, search, query.

1 Introduction

The concept of group testing was developed in the middle of the previous century.
Dorfman, a Swiss physician intended to test blood samples of millions of soldiers
during World War II in order to find those who were infected by syphilis. His
key idea was to test more blood samples at the same time and learn whether at
least one of them are infected [4]. Some fifteen years later Rényi developed a
theory of search in order to find which electrical part of his car went wrong. In
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his model – contrary to Dorfman’s one – not all of the subsets of the possible
defectives (electric parts) could be tested [7].

Group testing has now a wide variety of applications in areas like DNA screen-
ing, mobile networks, software and hardware testing.

In the classical model we have an underlying set [n] = {1, . . . , n} and we
suppose that there may be some defective elements in this set. We can test all
subsets of [n] whether they contain at least one defective element. The goal is to
find all defectives using as few tests as possible. One can easily see that in this
generality the best solution is to test every set of size 1. Usually we have some
additional information like the exact number of defectives (or some bounds on
this number) and it is also frequent that we do not have to find all defectives
just some of them or even just to tell something about them.

In the case when we have to find a single defective it is well-known that the
information theoretic lower bound is sharp: the number of questions needed in
the worst case is 
logn�, which can be achieved by binary search. All logarithms
appearing in the paper are binary.

Another well-known version of the problem is when the maximum size of a
test is bounded. (Motivated by the idea that too large tests are not supposed to
be reliable, because a small number of defectives may not be recognized there).
This version can be solved easily in the adaptive case, but is much more difficult
in the non-adaptive case. This latter version was first posed by Rényi. Katona
[6] gave an algorithm to find the exact solution to Rényi’s problem and he also
proved the best known lower bound on the number of queries needed. The best
known upper bound is due to Wegener [8].

In this paper we assume that the presence of defective elements in a test set
Q can be recognized if and only if their number is large enough compared to the
size of Q. More precisely for a test Q ⊆ [n] the answer is yes if and only if there
are at least α|Q| defective elements in Q. Our goal is to find at least m defective
elements using tests of this kind.

Definition 1. Let g(n, k, α,m) be the least number of questions needed in this
setting, i.e. to find m defective elements in an underlying set of size n which
contains at least k defective elements, where the answer is yes for a question
Q ⊆ [n] if there are at least α|Q| defective elements in Q, and no otherwise.

We suppose throughout the whole paper that 1 ≤ m ≤ k and 0 < α < 1. Let
a = � 1

α, that is, a is the largest size of a set where the answer no has the usual
meaning, namely that there are no defective elements in the set. It is obvious
that if a set of size greater than k/α is asked then the answer is automatically
no, so we will suppose that question sets has size at most k/α.

It is worth mentioning that a similar idea appears in a paper by Damaschke
[2] and a follow-up paper by De Bonis, Gargano, and Vaccaro [3]. Since their
motivation is to study the concentration of liquids, their model deals with many
specific properties arising in this special case and they are interested in the
number of merging operations or the number of tubes needed in addition to the
number of tests.
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If k = m = 1, then the problem is basically the same as the usual setting
with the additional property that the question sets can have size at most a: this
is the above mentioned problem of Rényi. As we have mentioned, finding the
optimal non-adaptive algorithm, or even just good bounds is really hard even in
this simplest case of our model, thus in this paper we deal only with adaptive
algorithms.

In the next section we give some upper and lower bounds as well as some
conjectures depending on the choices of n, k, α, and m. In the third section
we prove our main theorem, which gives a general lower and a general upper
bound, differing only by a constant depending only on k. In the fourth section
we consider some related questions and open problems.

2 Upper and Lower Bounds

First of all it is worth examining how binary search, the most basic algorithm
of search theory works in our setting. It is easy to see that it does not work
in general, not even for m = 1. If (say) k = 2 and α = 0.1, then question
sets have at most 20 elements (recall that we supposed that there are no queries
containing more than k/α elements, since they give no information at all, because
the answer for them is always no), thus if n is big, we cannot perform a binary
search.

However, if k ≥ nα, then binary search can be used.

Theorem 1. If α ≤ k/n, then g(n, k, α,m) ≤ 
logn�+ c, where c depends only
on α and m, moreover if m = 1, then c = 0.

Proof. We show that binary search can be used to find m defectives. That is,
first we ask a set F of size �n/2 and then the underlying set is substituted by
F if the answer is yes and by F if the answer is no. We iterate this process
until the size of the underlying set is at most 2m/α. Now we check that the
condition α ≤ k/n remains true after each step. Let n′ = �n/2 be the size
of the new underlying set and k′ be the number of defectives there. If the
answer was yes, then k′ ≥ αn′, thus α ≤ k′/n′. If the answer was no, then
there are at least k − 
αn′� + 1 defectives in the new underlying set, that is
k′ ≥ k − 
αn′�+ 1 ≥ αn− 
αn′�+ 1 ≥ αn′, thus α ≤ k′/n′ again.

Now if m = 1 we simply continue the binary search until we find a defective
element, altogether using at most 
logn� questions.

If m > 1, then we can find m defectives in the last underlying set using at
most

c := max
n′≤2m/α

g(n′,m, α,m)

further queries.
(Notice that since the size of the last underlying set is greater than m/α, it

contains at least m defectives.) This number c does not depend on k, just on α
and m and it is obvious that we used at most 
logn�+ c queries altogether. �
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This theorem has an easy, yet very important corollary. If the answer for a
question A is yes, then there are at least α|A| defective elements in A. If α|A| ≥
m, then we can find m of these defectives using g(|A|, α|A|, α,m) ≤ log |A| + c
questions, where c depends only on α and m. Basically it means that whenever
we obtain a yes answer, we can finish the algorithm quickly.

The proof of Theorem 1 is based on the fact that if the ratio of the defective
elements k/n is at least α, then this condition always remains true during binary
search. If k/n < α, then this trick does not work, however if the difference
between k/n and α is small, a similar result can be proved for m = 1. Recall
that a = �1/α.

Theorem 2. If k ≥ n
a − �log n

a  − 1 and k ≥ 1, then g(n, k, α, 1) ≤ 
logn�+ 1.

The proof of the theorem is based on the following lemmas.

Lemma 1. Let t ≥ 0 be an integer. Then g(2ta, 2t − t, α, 1) ≤ t+ 
log a�.

Proof. We use induction on t. For t = 0 and t = 1 the proposition is true, since
we can perform a binary search on a or 2a elements (by asking sets of size at
most a we learn whether they contain a defective element). Suppose now that
the proposition holds for t, we have to prove it for t + 1. That is, we have
an underlying set of size 2t+1a containing at least 2t+1 − t − 1 defectives. Our
first query is a set A of size 2ta. If the answer is yes , then we can continue
with binary search. If the answer is no, then there are less than α2ta ≤ 2t

defectives in A, therefore there are at least 2t+1 − t − 1 − 2t + 1 = 2t − t
defectives in A. By the induction hypothesis g(2ta, 2t − t, α, 1) ≤ t + 
log a�,
thus g(2t+1a, 2t+1 − t − 1, α, 1) ≤ t + 1 + 
log a� follows, finishing the proof of
the lemma. �

Lemma 2. Let t ≥ 2 be an integer. Then g(2ta, 2t− t−1, α, 1) ≤ t+
log a�+1.

Proof. Let us start with asking three disjoint sets, each of cardinality 2t−2a. If
the answer to any of these is yes, then we can continue with binary search, using
t − 2 + 
log a� additional questions. If all three answers are no, then there are
at least 2t− t− 1− 3(2t−2 − 1) = 2t−2 − (t− 2) defectives among the remaining
2t−2a elements, hence we can apply Lemma 1. �

Proof (of Theorem 2). Let us suppose n > 2a (otherwise binary search works)
and let t = �log n

a , r = n− 2ta. We have an underlying set of size n = 2ta+ r
containing at least n

a − �log n
a  − 1 defectives. If r = 0, then by Lemma 2 we

are done. Otherwise let the first query A contain r elements. A positive answer
allows us to find a defective element by binary search on A using altogether at
most 
logn�+1 questions (actually, at most 
logn� questions, because r ≤ n/2).
If the answer is negative then the new underlying set contains 2ta elements, of
which more than n

a−�log n
a −αr−1 = 2t+r/a−αr−�log n

a −1 ≥ 2t−�log n
a −1

are defective. Since �log n
a  = t, the number of defectives is at least 2t − t, thus

by Lemma 1 we need at most t+
log a� more queries to find a defective element,
thus altogether we used at most t+1+ 
loga� ≤ 
logn�+1 queries, from which
the theorem follows. �
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One might think that binary search is the best algorithm to find one defective
if it can be used (i.e. for k ≥ nα). A counterexample for k really big is easy to
give: if k = n then we do not need any queries and for m = 1, k = n− 1 we need
just one query. It is somewhat more surprising that g(n, αn, α, 1) ≥ 
logn� is
not necessarily true.

For example, the case n = 10, k = 4, α = 0.4,m = 1 can be solved using 3
queries: first we ask a set A of size 4. If the answer is yes, we can perform a
binary search on A, if the answer is no then there are at least 3 defectives among
the remaining 6 elements and now we ask a set B of size 2. If the answer is yes
then we perform a binary search on B, otherwise there are at least 3 defectives
among the remaining 4 elements, so one query (of size 1) is sufficient to find a
defective. However, a somewhat weaker lower bound can be proved:

Theorem 3. g(n, k, α,m) ≥ 
log(n− k + 1)�.

We prove the stronger statement that even if one can use any kind of yes-no
questions, still at least 
log(n − k + 1)� questions are needed. This is a slight
generalization of the information theoretic lower bound.

Theorem 4. To find one of k defective elements from a set of size n, one needs

log(n− k + 1)� yes-no questions in the worst case and this is sharp.

Proof. Suppose there is an algorithm that uses at most q questions. The number
of sequences of answers obtained is at most 2q, thus the number of different
elements selected by the algorithm as the output is also at most 2q. This means
that n− 2q ≤ k− 1, otherwise it would be possible that all k defective elements
are among those ones that were not selected. Thus q ≥ 
log(n− k+1)� indeed.

Sharpness follows easily from the simple algorithm that puts k − 1 elements
aside and runs a binary search on the rest. �

This theorem has been independently proved in [1]. Theorem 3 is an immediate
consequence of Theorem 4, but this is not true for the sharpness of the result.
However, Theorem 3 is also sharp: if α ≤ 2

n−k+1 , then we can run a binary
search on any n− k + 1 of the elements to find a defective.

We have seen in Theorem 1 that if n ≤ k/α, then binary search works (with
some additional constant number of questions if m > 1). On the other hand, if
n goes to infinity (with k and α fixed), then the best algorithm is linear.

Theorem 5. For any k, α, m

n

a
+ c1 ≤ g(n, k, α,m) ≤ n

a
+ c2,

where c1 and c2 depend only on k, α, and m.

Proof. Upper bound: first we partition the underlying set into �na  a-element
sets and possibly one additional set of less than a elements. We ask each of these
sets (at most �na + 1 questions). Then we choose m sets for which we obtained
a yes answer (or if there are less than m such sets, then we choose all of them).
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We ask every element one by one in these sets (at most ma questions). One can
easily see that we find at least m defective elements, using at most �na +ma+1
questions.

Lower bound: We use a simple adversary’s strategy: suppose all the answers
are no and there are m elements identified as defectives. Let us denote the
family of sets that were asked by F . It is obvious that those sets of F that have
size at most a contain no defective elements. Suppose there are i such sets. We
use induction on i. There are n′ ≥ n − ia elements not contained in these sets
and we should prove that at least n

a +c1−i ≤
n′
a +c1 other questions are needed.

Hence by the induction it is enough to prove the case i = 0.
Suppose i = 0. If there is a set A of size k + 1, such that |A ∩ F | ≤ 1 for all

F ∈ F , then any k-element subset of |A| can be the set of the defective elements.
In this case any element can be non-defective, a contradiction. Thus for every
set A of size k + 1 there exists a set F ∈ F , such that |A ∩ F | ≥ 2.

Let b = � kα. We know that every set of F has size at most b. Then a given

F ∈ F intersects at most
∑k+1

j=2

(
b
j

)(
n−b

k+1−j
)
(k + 1)-element sets in at least two

points. This number is O(nk−1), and there are Ω(nk+1) sets of size k+1, hence
|F| = Ω(n2) is needed.

It follows easily that there is an n0, such that if n > n0, then |F| ≥ n
a . Now

let c1 = −n0/a. If n > n0 then |F| ≥ n
a ≥ n

a + c1, while if n ≤ n0 then
|F| ≥ 0 ≥ n

a + c1, thus the number of queries is at least n
a + c1, finishing the

proof. �

Remark. The theorem easily follows from Theorem 7, it is included here because
of the much simpler proof.

It is easy to give a better upper bound for m = 1.

Theorem 6. Suppose k + log k + 1 ≤ 
na �. Then

g(n, k, α, 1) ≤
⌈n
a

⌉
− k + 
log a�.

Proof. First we ask a set X of size ka. If the answer is yes, then we can find
a defective element in 
log ka� steps by Theorem 1. In this case the number of
questions used is at most 1+
log ka� = 1+
log k+log a� ≤ 1+
log k�+
log a� ≤

na � − k + 
log a�, where the last inequality follows from the condition of the
theorem.

If the answer is no, then we know that there are at most k − 1 defectives in
X , so we have at least one defective in X . Continue the algorithm by asking
disjoint subsets of X of size a, until the answer is yes or we have at most 2a
elements not yet asked. In these cases using at most 
log 2a� questions we can
easily find a defective element, thus the total number of questions used is at
most 1+ 
n−ka−2a

a �+ 
log 2a� = 1+ 
na �−k−2+ 
loga�+1 = 
na �−k+ 
loga�,
finishing the proof. �

Note that if the condition of Theorem 6 does not hold (that is, k + log k + 1 >

na �), then k ≥ n

a − �log n
a  − 1, hence 
logn� + 1 questions are enough by

Theorem 2.
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The exact values of g(n, k, α,m) are hard to find, even for m = 1. The
algorithm used in the proof of Theorem 6 seems to be optimal for m = 1 if
k+log k+1 ≤ 
na �. However, counterexamples with 1/α not an integer are easy
to find (consider i.e. n = 24, k = 2, α = 2

11 ).

Conjecture 1. If 1
α is an integer and k + log k + 1 ≤ 
na �, then the algorithm

used in the proof of Theorem 6 is optimal for m = 1.

It is easy to see that Conjecture 1 is true for k = 1. For other values of k it
would follow from the next, more general conjecture.

Conjecture 2. If 1
α is an integer, then g(n, k, α, 1) ≤ g(n, k + 1, α, 1) + 1.

Obviously, Conjecture 2 also fails if 1/α is not an integer. One can see for
example that g(24, 1, 2/11, 1) = 7 and g(24, 2, 2/11, 1) = 5.

3 The Main Theorem

In this section we prove a lower and an upper bound differing only by a con-
stant depending only on k. For the lower bound we need the following simple
generalization of the information theoretic lower bound.

Proposition 1. Suppose we are given p sets A1, . . . , Ap of size at least n, each
one containing at least one defective and an additional set A0 of arbitrary size
containing no defectives. Let m ≤ p. Then the number of questions needed to
find at least m defectives is at least 
m logn�.

Proof. Suppose that we are given the additional information that every set Ai
(i ≥ 1) contains exactly one defective element. Now we use the information
theoretic lower bound: there are

∏p
i=1 |Ai| possibilities for the distribution of the

defective elements at the beginning, and at most
∏p−m

i=1 |Aji | at the end (suppose
we have found defective elements in every set Ai except in Aj1 , . . . , Ajp−m), thus
if we used l queries, then 2l ≥ nm, from which the proposition follows. �

Now we formulate the main theorem of the paper.

Theorem 7. For any k, α, m

n

a
+m log a− c1(k) ≤ g(n, k, α,m) ≤ n

a
+m log a+ c2(k),

where c1(k) and c2(k) depend only on k.

Proof. First we give an algorithm that uses at most n
a +m log a+ c2(k) queries,

proving the upper bound. In the first part of the procedure we ask disjoint sets
A1, A2, . . . , Ar of size a until either there were m yes answers or there are no
more elements left. In this way we ask at most 
na � questions.

Suppose we obtained yes answers for the sets A1, A2, . . . Am1 and no answers
for the sets Am1+1, . . . , Ar. If m1 ≥ m, then in the second part of the procedure
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we use binary search in the sets A1, A2, . . . , Am in order to find one defective
element in each of them. For this we need m
log a� more questions.

If m1 < m, then first we use binary search in the sets A1, A2, . . . , Am1 in
order to find defective elements a1 ∈ A1, a2 ∈ A2, . . . , am1 ∈ Am1 . Then we
iterate the whole process using S1 = ∪m1

i=1Ai \ {ai} as an underlying set, that
is we ask disjoint sets B1, B2, . . . , Bt of size a until either we obtain m − m1

yes answers or there are no more elements left. Suppose we obtained yes
answers for the sets B1, B2, . . . Bm2 and no answers for the sets Am2+1, . . . , At.
Ifm2 ≥ m−m1, then in the second part of the procedure we use binary search in
the sets B1, B2, . . . , Bm−m1 in order to find one defective element in each of them,
while if m2 < m−m1, then first we use binary search in the sets B1, B2, . . . , Bm2

in order to find defective elements b1 ∈ B1, b2 ∈ B2, . . . , bm2 ∈ Am2 and continue
the process using S2 = ∪m2

i=1Bi \ {bi} as an underlying set, and so on, until we
find m = m1 + m2 + . . . +mj defective elements. Note that mi ≥ 1, ∀i ≤ j,
since k ≥ m. We have two types of queries: queries of size a and queries of size
less than a (used in the binary searches). The number of questions of size a is
at most 
na � in the first part and at most m1 +m2 + . . .+mj−1 < m ≤ k in the
second part. The total number of queries of size less than a is at most m
log a�,
thus the total number of queries is at most 
na �+m
log a�+k, proving the upper
bound.

To prove the lower bound we need the following purely set-theoretic lemma.

Lemma 3. Let k, l, a be arbitrary positive integers and β > 1. Let now H be
a set system on an underlying set S of size c(k, l, β) · a = kβ(2kl − 1)a, such
that every set of H has size at most βa and every element of S is contained in
at most l sets of H. Then we can select k disjoint subsets of S (called heaps)
K1,K2, . . . ,Kk of size βa, such that every set of H intersects at most one heap.

Proof. Let us partition the underlying set into k heaps of size βa(2kl − 1) in an
arbitrary way. Now we execute the following procedure at most kl − 1 times,
eventually obtaining k heaps satisfying the required conditions. In each iteration
we make sure that the members of a subfamily H′ of H will intersect at most
one heap at the end.

In each iteration we do the following. We build the subfamily H′ ⊆ H by
starting from the empty subfamily and adding an arbitrary set of H to our
subfamily until there exists a heap Ki such that |Ki ∩ ∪H∈H′H | ≥ |Ki|/2, that
is Ki is at least half covered by H′. We call Ki the selected heap. If the half
of several heaps gets covered in the same step, then we select one where the
difference of the number of covered elements and the half of the size of the heap
is maximum.

Now we keep the covered part of the selected heap and keep the uncovered
part of the other heaps and throw away the other elements. We also throw away
the sets of the subfamily H′ from our family H, as we already made sure that
the members of H′ will not intersect more than one heap at the end. In this way
we obtain smaller heaps but we only have to deal with the family H \H′.

We prove by induction that after s iterations all heaps have size at least
βa(2kl−s − 1). This trivially holds for s = 0. By the induction hypothesis, the
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heaps had size at least βa(2kl−s+1−1) before the sth iteration step. After the sth
step the new size of the selected heap K is at least |K|/2 ≥ βa(2kl−s+1− 1)/2 ≥
βa(2kl−s − 1). Now we turn our attention to the unselected heaps. Suppose
the set we added last to H′ is the set I. Clearly, |Kj ∩ ∪H∈H′\{I}H | ≤ |Kj |/2
for all j. Let K be the selected heap and Ki be an arbitrary unselected heap.
Now by the choice of K we have |Ki ∩ ∪H∈H′H | ≤ |Ki|/2 + |I|/2, otherwise
|Ki∩∪H∈H′H |+ |K∩∪H∈H′H | > |Ki|/2+ |K|/2+ |I|, which is impossible, since
|Ki∩∪H∈H′H |+ |K∩∪H∈H′H | = |((Ki∪K)∩∪H∈H′\{I}H)∪ ((Ki∪K)∩I)| ≤
|Ki|/2 + |K|/2 + |I|.

Now since |I| ≤ βa, the new size of the unselected heap Ki is |K ′
i| = |Ki \

∪H∈H′H | ≥ |Ki|/2−βa/2 ≥ βa(2kl−s+1−1)/2−βa/2 ≥ βa(2kl−s−1), finishing
the proof by induction.

Now in each iteration we delete a family that covers the selected heap, thus
any heap can be selected at most l times, since every element is contained in at
most l sets. After kl − 1 iterations the size of an arbitrary heap will be still at
least βa. Furthermore, all but one heaps were selected exactly l times, thus any
remaining set of H can only intersect the last heap. That is, heaps at this point
satisfy the required condition for all sets of H.

If we can iterate the process at most kl− 2 times, then after the last possible
iteration more than half of any heap is not covered by the union of the remaining
sets. Deleting the covered elements from each heap we obtain heaps of size at
least βa that satisfy the condition. �

Now we are in a position to prove the lower bound of Theorem 7. We use
the adversary method, i.e. we give a strategy to the adversary that forces the
questioner to ask at least n

a + m log a − c1(k) questions to find m defective
elements.

Recall that all questions have size at most �k/α and now the adversary gives
the additional information that there are exactly k defective elements.

During the procedure, the adversary maintains weights on the elements. At
the beginning all elements have weight 0. Let us denote the set of the possible
defective elements by S′. At the beginning S′ = S. At each question A the
strategy determines the answer and also adds appropriate weights to the elements
of A. If a question A is of size at most a = �1/α, then the answer is no and
weight 1 is given to all elements of A. If |A| > a, the answer is still no and weight
a/�k/α is given to the elements of A. Thus after some r questions the sum of
the weights is at most ra. If an element reaches weight 1, then the adversary says
that it is not defective, and the element is deleted from S′. The adversary does
that until there are still ca elements in S′ but in the next step S′ would become
smaller than this threshold (the exact value of c will be determined later). Up
to this point the number of elements thrown away is at least n − ca − �k/α,
thus the number of queries is at least n

a − c− �k/α/a ≥ n
a − c− k.

Let the set system F consist of the sets that were asked up to this point and
let F ′ = {F ∩ S′ | F ∈ F , |F | > a}.

The following observations are easy to check.
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Lemma 4

– |S′| ≥ ca.
– Every set F ∈ F ′ has size at most �k/α ≤ k(a+ 1) ≤ 2ka
– Every element of S′ is contained in at most �k/α/a ≤ k(1+ 1/a) ≤ 2k sets

of F ′.
– Every k-set that intersects each F ∈ F ′ in at most one element is a possible

set of defective elements.

Now let l := 2k, β := 2k, and c := c(k, l, β) = kβ(2kl − 1) = 2k2(22k
2 − 1).

By the observations above, we can apply Lemma 3 with H = F ′. The lemma
guarantees the existence of heaps K1,K2, . . . ,Kk of size βa ≥ a, such that every
transversal of the Ki’s is a possible k-set of defective elements. Now by applying
Proposition 1 with Ai = Ki and A0 = S \ S′, we obtain that the questioner
needs to ask at least 
m log a� more queries to find m defective elements.

Altogether the questioner had to use at least n
a −c−k+m log a queries, which

proves the lower bound, since the number c depends only on k (the constant in
the theorem is c1(k) = c+ k). �

The constant in the lower bound is quite large, by a more careful analysis one
might obtain a better one. For example, we could redefine the weights, such
that we give weight a/|A| to the elements of A, thus still distributing weight at
most a per asked set.

It is also worth observing that if 1/α is an integer, then we can use Lemma 3
with l = β = k, instead of l = β = 2k. This way one can prove stronger results
for small values of k and m if 1/α is an integer. We demonstrate it for k = 2 in
the next section. The following claim is easy to check.

Claim 1. Let H be a set system on an underlying set S of size 3a, consisting
of disjoint sets of size at most 2a. Then we can select 2 disjoint subsets of S
(called heaps) K1,K2 of size at least a, such that every set of H intersects at
most one heap.

4 The Case k = 2, m = 1

In this section we determine the exact value g(n, 2, α, 1). Let δ = �2{ 1
α}, where

{x} denotes the fractional part of x.
Consider the following algorithmW, where n denotes the number of remaining

elements:
If n ≤ 2�log a�+1, we ask a question of size �n/2 ≤ a, then depending on the

answer we continue in the part that contains at least one defective element, and
find that with binary search.

If 2�log a� + 2 ≤ n ≤ 2�log a�+1 + 1, then we ask a question of size 2�log a� + 1
(this falls between a and 2a+ 1). If the answer is yes, we put an element aside
and continue with the remaining elements of the set we asked, otherwise we
continue with the elements not in the set we asked. This way independent of
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whether we got a yes or no answer, we have at most 2�log a� elements with at
least one defective, hence we can apply binary search.

If 2�log a�+1 + 2 ≤ n ≤ 3a + δ + 2�log a�, then first we ask a question of size
2a + δ. If the answer is yes, we put an element aside and continue with the
remaining elements of the set we asked, otherwise we continue with the elements
not in the set we asked. This way independent of whether we got a yes or no
answer, we have at most 2�log a� + a elements with at least one defective. We
continue with a set of size a, and after that we can finish with binary search.

If n ≥ 3a+ δ + 2�log a� + 1, then we ask a question of size a. If the answer is
no, we proceed as above. If the answer is yes, we can find a defective element
with at most 
log a� further questions.

Counting the number of questions used in each case, we can conclude.

Claim 2. If n ≤ 3a + δ + 2�log a�, then algorithm W takes only 
log(n − 1)�
questions, thus according to Theorem 4 it is optimal.

In fact a stronger statement is true. Note that the following theorem does not
contradict to Conjecture 1, as the algorithm mentioned there uses the same
number of steps as algorithm W in case k = 2, 1/α is an integer and 
n/a� ≥ 4.

Theorem 8. Algorithm W is optimal for any n.

Proof. We prove a slightly stronger statement, that algorithm W is optimal
even among those algorithms that have access to an unlimited number of extra
non-defective elements. This is crucial as we use induction on the number of
elements, n.

It is easy to check that the answer for a set that is greater than 2a + δ is
always no, while if both defective elements are in a set of size 2a+ δ, then the
answer is yes. We say that a question is small if its size is at most a, and big if
its size is between a+ 1 and 2a+ δ. Note that small questions test if there is at
least one defective element in the set, while big questions test if both defective
elements are in the set. Suppose by contradiction that there exists an algorithm
Z that is better than W, i.e. there is a set of elements for which Z is faster
than W. Denote by n the size of the smallest such set and by z(n) the number
of steps in algorithm Z. We will establish through a series of claims that such
an n cannot exist. It already follows from Claim 2 that n has to be at least
3a+ δ + 2�log a� + 1.

Note that for n = 3a+ δ+2�log a� algorithm W uses 
log(n− 1)� = 
log(2a+
δ − 1)�+ 1 questions. An important tool is the following lemma.

Lemma 5. If n ≥ 3a+ δ + 2�log a� +1, then algorithm Z has to start with a big
question. Moreover, it can ask a small question among the first z(n)−
log(2a+
δ − 1)� questions only if one of the previous answers was yes.

Proof. First we prove that algorithm Z has to start with a big question. Suppose
it starts with a small question. We show that in case the answer is no, it cannot
be faster than algorithm W. In this case after the first answer there are at least
n − a (and at most n − 1) elements which can be defective, and an unlimited
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number of non-defective elements, including those which are elements of the first
question. By induction algorithm W is optimal in this case, and one can easily
see that it cannot be faster if there are more elements, hence algorithm Z cannot
be faster than algorithm W on n− a elements plus one more question. On the
other hand algorithm W clearly uses this many questions (as it starts with a
question of size a), hence it cannot be slower than algorithm Z.

Similarly, to prove the moreover part, suppose that the first z(n)− 
log(2a+
δ − 1)� answers are no and one of these questions, A is small. Let us delete
every element of A. By induction algorithm W is optimal on the remaining
at least n − a elements, hence similarly to the previous case, algorithm Z uses
more questions than algorithm W on n − a elements, hence cannot be faster
than algorithm W. More precisely, we can define algorithm W’, which starts
with asking A, and after that proceeds as algorithm W. One can easily see that
algorithm W’ cannot be slower than algorithm Z or faster than algorithm W. �

Note that a yes answer would mean that 
log(2a + δ − 1)� further questions
would be enough to find a defective with binary search, hence in the worst
case, (when the most steps are needed) no such answer occurs among the first
z(n) − 
log(2a + δ − 1)� questions anyway. Now we can finish the proof of the
theorem with the following claim.

Claim 3. If n > 3a+ δ + 2�log a�, then algorithm W is optimal.

Proof. If not, then the smallest n for which W is not optimal must be of the form
2a+ δ + 2�log a� + za+ 1, where z ≥ 1 integer. (This follows from the fact that
the number of required questions is monotone in n if we allow the algorithm
to have access to an unlimited number of extra non-defective elements.) By
contradiction, suppose that algorithm Z uses only 
log(2a+δ−1)�+z questions.
Suppose the answer to the first z questions are no. Then by to Lemma 5, these
questions are big. Suppose that the z + 1st answer is also no. We distinguish
two cases depending on the size of the z +1st question A. In both cases we will
use reasoning similar to the one in Theorem 5.

Case 1. The z + 1st question is small. After the answer there are 
log(2a +
δ − 1)� − 1 questions left, so depending on the answers given to them, any
deterministic algorithm can choose at most 2�log(2a+δ−1)�−1 elements. Hence
algorithm Z gives us after the z+1st answer a set B of at most 2�log(2a+δ−1)�−1

elements, which contains a defective.
Before starting the algorithm, all the

(
n
2

)
pairs are possible candidates to be

the set of defective elements. However, after the z + 1st question (knowing the
algorithm) the only candidates are those which intersect B. The z+1st question
shows at most a non-defective elements, but all the pairs which intersect neither
A nor B have to be excluded by the first z questions. Thus

(
n−|A|−|B|

2

)
≥(

2a+δ+2�log a�+za+1−a−2�log(2a+δ−1)�−1

2

)
≥

(
(z+1)a+δ+1

2

)
pairs should be excluded,

but z questions can exclude at most z
(
2a+δ

2

)
pairs, which is less if z ≥ 1.
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Case 2. The z + 1st question is big. After it we have 
log(2a + δ − 1)� − 1
questions left, so depending on the answers given to them, any deterministic
algorithm can choose at most 2�log(2a+δ−1)�−1 elements. This means that we
have to exclude with the first z + 1 questions at least(

2a+ δ + 2�log a� + za+ 1− 2�log(2a+δ−1)�−1

2

)
≥

(
(z + 2)a+ δ + 1

2

)
pairs. But they can exclude at most (z + 1)

(
2a+δ

2

)
pairs, which is less if

z ≥ 1. �

This finishes the proof of the theorem. �

5 Open Problems

It is quite natural to think that g(n, k, α,m) is increasing in n but we did not
manage to prove that. The monotonicity in k and m is obvious from the defi-
nition. On the other hand, we could have defined g(n, k, α,m) as the smallest
number of questions needed to find m defectives assuming there are exactly k
defectives (instead of at least k defectives) among the n elements, in which case
the monotonicity in k is far from trivial. We conjecture that this definition gives
the same function as the original one.

It might seem strange to look for monotonicity in α, but we have seen that for
m = 1 we can reach the information theoretic lower bound (which is 
log(n−k+
1)� in this setting) for α ≤ 2/(n− k + 1). All the theorems from Section 2 also
suggest that the smaller α is, the faster the best algorithm is even for general
m. Basically in case of a no answer it is better if α is small, and in case of a
yes answer the size of α does not matter very much, since the process can be
finished fast. However, we could only prove Theorem 7 concerning this matter.

Another interesting question is if we can choose α. If m = 1 then we should
choose α ≤ 1/(n− k+1), and as we have mentioned in the previous paragraph,
we believe that a small enough α is the best choice.

Another possibility would be if we were allowed to choose a new α for every
question. Again, we believe that the best solution is to choose the same, small
enough α every time. This would obviously imply the previous conjecture.

Finally, a more general model to study is the following. We are given two
parameters, α ≥ β. If at least an α fraction of the set is defective, then the
answer is yes, if at most a β fraction, then it is no, while in between the answer
is arbitrary. With these parameters, this paper studied the case α = β. This
model is somewhat similar to the threshold testing model of [2], where instead
of ratios α and β they have fixed values a and b as thresholds.
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Abstract. Group testing is a frequently used tool to identify an un-
known set of defective (positive) elements out of a large collection of
elements by testing subsets (pools) for the presence of defectives. Vari-
ous models have been studied in the literature. The most studied case
concerns only two types (defective and non-defective) of elements in the
given collection. This paper studies a novel and natural generalization of
group testing, where more than one type of defectives are allowed with an
additional assumption that certain obscuring phenomena occur among
different types of defectives. This paper proposes some algorithms for
this problem, trying to optimize different measures of performance: the
total number of tests required, the number of stages needed to perform
all tests and the decoding complexity.

Keywords: pooling design, group testing, selectors.

1 Introduction

The classical group testing problem is described as follows: Given a set N of n
items consisting of two types of items, a set P of positive items with |P| ≤ d and
the others being negative items, the goal is to identify P in an efficient manner
by using group tests. A test (pool) can be applied to any subset of items in
N with two possible outcomes: a negative outcome indicates that there is no
positive in the test while a positive outcome indicates that at least one positive
is in the test. The concept of group testing originated from the application of
blood testing during World War II. Afterwards, it has been also found applica-
tions in molecular biology, including screening clone libraries [3], sequencing by
hybridization [31], yeast one-hybrid screens [36], and recently, the mapping of
protein-protein interactions [37]. Additionally, group testing has proved relevant
in other fields such as multiple access communication [4], image compression [27]
and more recently data gathering in sensor networks [28]. For general references,
readers may refer to the books [18,19].
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Due to a diversity of its applications, there has been many models that
were proposed and studied in the literature. For example, the inhibitor mod-
el [5,6,8,26] where the presence of an inhibitor can somehow cancel the effect
of positive elements, the complex model [1,2,10,12,35] where positive reactions
are caused by certain sets of elements rather than a single one of elements, the
threshold model [9,15,11,17] where two thresholds are given for the conditions
of positive reactions and negative reactions to occur, the interference model
[7,16,20] where two or more positive elements appearing in a pool can inter-
fere with each other so that the positive reaction cannot be detected, and more
others.

In this paper we study a generalization of group testing as follows. Con-
sider a set N of n items which is known to contain s types of positive items
P1, P2, · · · , Ps, where |Pi| ≤ pi, and the others being negative items. The task is
to classify all items in N with as few tests as possible. For a test Q ⊆ N , define

IQ ≡ {i : Q ∩ Pi �= ∅}.

Then the outcome of a test Q will be given according to the following rules:

– If IQ = {i}, then the response will be “i-positive”.
– If IQ = ∅, then the response will be “negative”.
– If |IQ| ≥ 2, then the response can be either “negative” or be “i-positive” for

some i ∈ IQ (not knowing which i).

For example, given a test Q with IQ = {1, 3, 4}, the outcome of the test Q can
be any and exactly (but not knowing which) one of the four cases: negative,
1-positive, 3-positive and 4-positive. We refer to this problem as the Multiple
Mutually-Obscuring Positives (MMOP) problem. Obviously, for the case s = 1,
the MMOP problem is exactly the same as the classical group testing. For the
case s = 2, it is coincident to the coin-weighing problem with test-type device
(such as a spring balancer or electronic scale) where, given a set of coins and
some of them are counterfeit (too heavy or too light), the task is not only to
identify all counterfeit coins but also to make them classified as heavy or light.
Notably, the MMOP problem is not a generalization of the “mutually-obscuring
problem” discussed in [7,16,20].

In this paper, we provide a unified technique to deal with the MMOP problem
for general s. In the next section, we propose an efficient nonadaptive algorithm,
i.e., all tests are set up in advance and thus can be performed simultaneously
without any information of outcomes of other tests. In particular, the proposed
algorithm can be decoded in polynomial time. Section 3 provides a 2-stage al-
gorithm for this problem. Instrumental to the result is based on a combinatorial
structure, (k,m, n)-selector, first introduced by De Bonis, Ga̧sieniec and Vac-
caro [6] in the context of designing efficient trivial 2-stage pooling strategies on
the classic pooling design problem. We propose a new point of view for the
mentioned selectors. This enables us to construct the combinatorial tool eas-
ily. Probabilistic constructions are provided and numerical results show that
our constructions are slightly better than the currently best known result by De
Bonis et al. [6].
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2 Nonadaptive Algorithms

In order to present our results, we now introduce some notations and defini-
tions. Note that n and pi’s are given in advance and we assume

∑s
i=1 pi " n.

Throughout this paper, a pooling design is represented by a 0-1 matrixM where
columns are the set of objects, rows are the set of tests, and cell (i, j) = 1 sig-
nifies that the j-th object is in the i-th test and (i, j) = 0 for otherwise. For
convenience, a column (row) can be treated as the set of row (column) indices
where the column (row) has a 1, respectively. For any two columns C and C′,
we denote C ∪ C′ as the boolean sum of C and C′. We say that a set X of
columns appears (or is contained) in a row if all columns in X have a 1-entry
in the row. A pool is called an i-positive pool if its outcome is i-positive, and
a non-i-positive pool if it is not i-positive. For a column C, denote by ti(C)
the number of i-positive pools in which column C appears. Likewise, denote by
t̄i(C) the number of non-i-positive pools in which column C appears.

Consider a fixed family T = {T1, T2, · · · , Tt} with Ti ⊆ N , 1 ≤ i ≤ t. Let Ri,
1 ≤ i ≤ s, be arbitrary disjoint subsets of N and let J = ∪si=1Ri. We define the
syndrome vector of J in T by φT (J) = (φ1(J), φ2(J), · · · , φt(J)), where

φj(J) = {i : Tj ∩Ri �= ∅}.

For any two distinct J0 and J1, we say their syndromes φT (J0) and φT (J1) are
different, denoted by φT (J0) �∼ φT (J1), if and only if there exists some j ∈ [t]
and i ∈ {0, 1} such that φj(J1−i) = {k} for some k ∈ [s] and k �∈ φj(Ji). Denote
by φT (J0) ∼ φT (J1) if they are coincident (not different).

Definition 1. Let T = {T1, T2, · · · , Tt} with Ti ⊆ N , 1 ≤ i ≤ t. We say the
family T is MMOP-separable if

φT (J0) �∼ φT (J1)

for any two distinct J0, J1 ⊆ N with J0 = ∪si=1R
0
i and J1 = ∪si=1R

1
i , where R

�
i ’s,

� ∈ {0, 1}, are disjoint subsets of N and |R�
i | ≤ pi for 1 ≤ i ≤ s.

Lemma 1. MMOP-separability is a sufficient and necessary condition for the
MMOP problem.

Proof. The lemma follows by definition immediately. �
We first present a lower bound on the number of tests required for any non-

adaptive algorithms for the MMOP model. This lower bound is obtained by
establishing a connection to disjunct matrices (equivalently, superimposed codes
or cover-free families).

Definition 2. [30] A binary matrix is called d-disjunct if for any d+1 columns
C0, C1, · · · , Cd, ∣∣∣∣C0 \

d⋃
i=1

Ci

∣∣∣∣ ≥ 1.



560 H.-B. Chen and H.-L. Fu

It is well-known [21] that disjunct matrices of size t× n have a lower bound t =
Ω(d2 logn/ log d) and an upper bound t = O(d2 log n). The literature contains
many studies (see [19] and references therein) on the construction of disjunct
matrices (sometimes called superimposed codes and cover-free families). One of
the most common approaches is to control the number of intersections of any
two columns to guarantee the disjunctness property. For recognition, we refer
disjunct matrices with this particular structure as “w/λ-disjunct”.

Definition 3. [30] A binary matrix is w/λ-disjunct if the following properties
both hold: (1) every column has more than w 1-entries; (2) any two distinct
columns intersect at no more than λ rows.

It is easy to see that an w/λ-disjunct matrix is �wλ -disjunct and so has the lower
bound Ω(d2 logn/ log d) on the number of rows where d = �wλ . Previous results
[21,22,29,13,14,32] have also shown that this particular structure can achieve
the best known upper bound O(d2 logn) on the number of rows for d-disjunct
matrices.

For short, let d =
∑s

i=1 pi in the rest of the paper. Note that asymptotic
results presented in the paper are under the assumption that d is constant and
n approaches to infinity.

Theorem 1. Let N be a set of n items which is known to contain s types
of positive items P1, P2, · · · , Ps, where |Pi| ≤ pi, and the others being nega-
tive items. Then any nonadaptive algorithm for the MMOP problem requires
Ω(d2 logn/ log d) tests to classify all positive items.

Proof. To prove this theorem, it suffices to show that MMOP-separable implies
(d − 1)-disjunct. Then, by Lemma 1 and the well-known lower bound for dis-
junct matrices, we get the desired bound. Suppose to the contrary that there
exists a family T = {T1, T2, · · · , Tt} of subset of N and its corresponding matrix
M is not a (d − 1)-disjunct matrix of size t × n. Then there exist d columns

C0, C1, · · · , Cd−1 in M such that |C0 \
d−1⋃
j=1

Ci| = 0. That means for every row

Ti where C0 appears there exists some j ∈ {1, 2, · · · , d − 1} such that Cj al-
so appears in the row Ti. Consider the two subsets J0 = {C1, · · · , Cd−1} and
J1 = {C0, C1, · · · , Cd−1}. Then, obviously, J0 and J1 are distinct but their syn-
dromes φT (J0) and φT (J1) are not different, i.e., there does not exist j ∈ [t] and
i ∈ {0, 1} such that φj(J1−i) = {k} for some k ∈ [s] and k �∈ φj(Ji). Thus, by
Lemma 1, the (d− 1)-disjunctness is a necessary condition for any nonadaptive
strategy and the bound follows immediately. �

Next, we propose a nonadaptive algorithm for the considered problem. In par-
ticular, our algorithm can be decoded in polynomial time to recover all positives
from outcomes.

Theorem 2. Let N be a set of n items which is known to contain s types of
positive items P1, P2, · · · , Ps, where |Pi| ≤ pi, and the others being negative
items. A (w/λ)-disjunct matrix of n columns with w/λ > d can solve the MMOP
problem using O(d2 log n) tests and O(d2n logn) time.
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Proof. Let M be a (w/λ)-disjunct matrix of n columns with w/λ > d and use
it as the pooling design. Consider an arbitrary Pi for some i and let Ri be an
element in Pi. Observe that Ri appears in a non-i-positive pool only when the
pool contains another item Rj ∈ Pj for some j �= i. Since M is a (w/λ)-disjunct
matrix, we have that t. ī(Ri) ≤ λ

∑
k 
=i

pk. For an item C �∈ Pi, C appears in an i-

positive pool only when the pool contains some items of Pi. Hence, we conclude
that t̄i(C) ≥ w − λpi since M is (w/λ)-disjunct.

By the above discussion along with the condition w/λ > d, we have that

t̄i(Ri) ≤ λ
∑
k 
=i

pk < w − λpi ≤ t̄i(C)

for any Ri ∈ Pi and C �∈ Pi. Thus, we can separate all items in Pi from those
not in Pi through counting t̄i(C) for each C ∈ N . Since Pi is chosen arbitrarily,
all items in N can be classified in a similar way.

For the decoding issue, our algorithm only needs to compute t̄i(C) for each
item C in N . This can be done easily by going through each entry in the column
C once. Hence, the decoding complexity is at most O(d2n logn) time. �

The following is the pseudo code of our decoding algorithm.

Algorithm 1 CLASSIFICATION

1: Use a (w/λ)-disjunct matrix with w/λ >
∑s

i=1 pi as a pooling design.
2: Pi ← ∅, for 1 ≤ i ≤ s.
3: for each item C ∈ N do
4: if tī(C) ≤ λ

∑
j �=i

pj for some i then

5: Pi ← Pi ∪ {C}
6: Return Pi for 1 ≤ i ≤ s.

3 A 2-Stage Algorithm

Theorem 1 shows that any nonadaptive algorithm for the MMOP problem re-
quires Ω(d2 logn/ log d) tests. However, the information-theoretic lower bound
for algorithms without any constraint on the number of stages reduces down
to logs+1

(
n
d

)
= Θ(d log(n/d)/ log(s + 1)). This section shall provide a 2-stage

algorithm for the MMOP problem that uses O(d log(n/d)) tests.

Definition 4. [6] Given integers k,m and n with 1 ≤ m ≤ k ≤ n, we say that
a binary t × n matrix M is a (k,m, n)-selector if any submatrix of M subject
to k out of n arbitrary columns contains at least m distinct rows of the identity
matrix Ik.
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The integer t is called the size of the (k,m, n)-selector. Denote by ts(k,m, n)
the minimum size of a (k,m, n)-selector. De Bonis, Ga̧sieniec and Vaccaro [6]
suggested a way to construct a (k,m, n)-selector by searching for a vertex cover
on a properly defined hypergraph and derived the following result, which is the
best known asymptotical bound.

Theorem 3. [6] For any integers k,m, n with 1 ≤ m ≤ k < n,

ts(k,m, n) <
ek2

k −m+ 1
ln(n/k) +

ek(2k − 1)

k −m+ 1
,

where e is the base of natural logarithm.

By definition, we have the following result immediately.

Lemma 2. A (k,m, n)-selector is a (k − i,m − i, n)-selector for any integer i
with 1 ≤ i ≤ m− 1.

Theorem 4. For all integers n and k with n ≥ k ≥ 2d, there exists a two-
stage group testing algorithm for the MMOP problem that classifies all types of
positives, and uses at most ts(k, 2d− 1, n) + k − d tests.

Proof. Our algorithm works as follows. In the first stage, we test the pools
associated with rows of a (k, 2d− 1, n)-selector M satisfying n ≥ k ≥ 2d to find
a set D′ of at most k−d suspicious candidates. In the second stage, all suspicious
candidates are tested individually and simultaneously so as to classify all types
of positives. To complete the proof, it suffices to show that after the first stage
we can determine such a set D′ that contains all positives with |D′| ≤ k − d.

Let D be the set of actual positive items and let J be the set of the column
indices associated with the set D. Suppose that there are exactly y pairwise
distinct sets J1, J2, · · · , Jy of suspicious candidates and each of whose syndrome
vectors agrees with the set D of all positives. Notice that |Ji| ≤ d for all i, and
obviously J ∈ {J1, J2, · · · , Jy}. If |

⋃y
i=1 Ji| ≤ k − d as desired, then we are

done. If |
⋃y
i=1 Ji| ≥ k− d+1, then there must exist an integer � with 2 ≤ � ≤ y

satisfying

k − d+ 1 ≤ |
�⋃

i=1

Ji| ≤ k

because of |Ji| ≤ d and k ≥ 2d. Let |
⋃�
i=1 Ji| = q. Since 2d − 1 − (k −

q) ≥ d, by Lemma 2, M is also a (q, d, n)-selector. Subject to the q columns

associated with the set
⋃�
i=1 Ji, the submatrix of M contains at least d distinct

rows of the identity matrix Iq. That means at least d suspicious candidates that
appear separately and individually in some rows without any other suspicious
candidates of

⋃�
i=1 Ji. For the coincidence of the syndromes of J1, J2, · · · , J�,

each of these d or more suspicious candidates must belong to every Ji for 1 ≤
i ≤ �, a contradiction to the assumption that Ji’s are pairwise distinct sets with
|Ji| ≤ d for each i. Hence, we can determine a set D′ =

⋃y
i=1 Ji of cardinality

at most k − d, as desired. �
By Theorem 4 with k = 4d− 2 and Theorem 3, we have the following result.
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Corollary 1. There exists a two-stage group testing algorithm for the MMOP
problem that classifies all types of positives, and uses at most O(d log(n/d)) tests.

Note that for the particular case s = 1 (indeed the classic group testing problem)
this result can be found in [22,23,24,25].

3.1 Improved Upper Bounds on the Size of (k,m, n)-Selectors

In this subsection, we exploit three different probabilistic methods to derive
upper bounds on the size of (k,m, n)-selectors and present numerical results of
these bounds and that in [6] for comparison. The three probabilistic methods
can also be found in several studies [14,12,21,22,33,34] on different combinatorial
structures.

Definition 5. A matrix [mij ] is strongly (d, r)-disjunct if for any two disjoint
sets C1 and C2 of columns with |C1| = d and |C2| = r, there exists a row k and a
column c ∈ C2 such that mkc = 1 and mkj = 0 for all j ∈ C1 ∪ C2 \ {c}.

Theorem 5. A (k,m, n)-selector is the same as a strongly (m− 1, k −m+ 1)-
disjunct matrix of n columns.

Proof. Suppose that M is a (k,m, n)-selector. For any two disjoint sets C1 and
C2 of columns with |C1| = m − 1 and |C2| = k −m + 1, the submatrix MC1∪C2

subject to C1 ∪ C2 must contain m distinct rows of an identity matrix Ik, by the
definition of (k,m, n)-selectors. Therefore, there exists at least one row i and a
column c ∈ C2 (by pigeonhole principle) such that mic = 1 and mij = 0 for all
j ∈ C1 ∪ C2 \ {c}, as desired.

Suppose thatM is a strongly (m−1, k−m+1)-disjunct matrix of n columns.
For any fixed set K of k columns, we want to find m distinct rows of the
identity matrix Ik in MK. Partition arbitrarily K into two disjoint sets C1 =
{c1,1, c1,2, · · · , c1,m−1} and C2 = K \ C1 with |C1| = m− 1 and |C2| = k −m+ 1,
then we can find a row i1 and a column c2,1 ∈ C2, such that mi1c2,1 = 1 and
mi1j = 0 for all j ∈ C1∪C2\{c2,1} sinceM is strongly (m−1, k−m+1)-disjunct.
Exchanging the column c1,1 with c2,1 such that C1 = {c2,1, c1,2, · · · , c1,m−1} and
C2 = K \ C1, similarly we can find another row i2 and a column c2,2 ∈ C2 sat-
isfying the desired property, as in row i1. Notice that the column c2,2 chosen
from C2 must be different from the column c2,1 which is in the updated C1.
Keep doing this process until c1,j’s are all removed to C2, we then obtain a set
{i1, i2, · · · , im} of m distinct rows of the identity matrix Ik in MK. Hence M is
a (k,m, n)-selector. �

Next, we derive upper bounds by probabilistic methods on the minimum
number of rows of strongly (d, r)-disjunct matrices, and consequently on the
minimum size of selectors. Construct a t1×2n 0−1 matrix M where each entry
is defined to be 1 with probability p and 0 with probability 1 − p. We say that
a column cj is unsatisfied if there exists two disjoint sets C1 and C2 of columns
with cj ∈ C1 ∪ C2, |C1| = d and |C2| = r such that Definition 5 is not true for
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any row. Then, given a fixed column cj, the probability of the event that cj is
unsatisfied is

P (cj is unsatisfied) =
(

2n−1
d+r−1

)(
d+r
d

) [
1− rp(1− p)d+r−1

]t1
. (1)

By simple technique of calculus, we take p = 1
d+r to minimize Equation (1) and

obtain

P (cj is unsatisfied) =
(

2n−1
d+r−1

)(
d+r
d

) [
1− r

d+r · (
d+r−1
d+r )d+r−1

]t1
. (2)

Setting

t1 =
ln(

(
2n−1
d+r−1

)(
d+r
d

)
)

− ln(1− r
d+r · (

d+r−1
d+r )d+r−1)

+ ln 2, (3)

the right-hand side of (2) is less than 1/2, which implies that the expected value
of the total number of unsatisfied columns in the matrix M does not exceed n.
Hence, there must exist a matrix which is strongly (d, r)-disjunct and of size
t1 × n.

Secondly, we construct a random t2 × n 0 − 1 matrix M where each entry is
defined to be 1 with probability 1

d+r and 0 with probability 1− 1
d+r . Let C1 and

C2 be two disjoint sets of columns with |C1| = d and |C2| = r. Similarly, we say
that the pair (C1,C2) is unsatisfied if this pair does not satisfy the requirement
of Definition 5. Then the probability of the event that (C1,C2) is unsatisfied is

P ((C1,C2) is unsatisfied) =
[
1− r

d+r · (
d+r−1
d+r )d+r−1

]t2
. (4)

Hence the expected value of the total number of unsatisfied pairs in the matrix
M is

E[unsatisfied pairs] =

(
n

d+ r

)(
d+ r

d

)[
1− r

d+ r
· (d+ r − 1

d+ r
)d+r−1

]t2
. (5)

Setting

t2 =
ln(

(
n
d+r

)(
d+r
d

)
)

− ln(1− r
d+r · (

d+r−1
d+r )d+r−1)

, (6)

the right-hand side of Equation (5) is less than 1, which implies that the proba-
bility of the existence of a strongly (d, r)-disjunct matrix of size t2×n is greater
than 0. Thus, there exists a strongly (d, r)-disjunct matrix of size t2 × n.
Remark: The above argument can be further extended to a high probability ver-

sion. Given 0 < ε < 1, if we require t.2 =
ln(( n

d+r)(
d+r
d ))−ln ε

− ln(1− r
d+r ·(

d+r−1
d+r )d+r−1)

, then Equation

(5) is less than ε, which implies the desired probability is greater than 1 − ε.
This means that a strongly (d, r)-disjunct matrix can be efficiently constructed
with probability as high as desired.

Thirdly, we will apply the Lovász Local Lemma to derive an upper bound
on the number of rows of a strongly (d, r)-disjunct matrix. The Lovász Local
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Lemma first proved by Erdős and Lovász is a powerful tool to prove the existence
of combinatorial structures satisfying a prescribed collection of criteria. Here is
the lemma in a symmetric form.

Lemma 3. Let A1, A2, · · · , AN be events in an arbitrary probability space with
P (Ai) ≤ p for all 1 ≤ i ≤ N . Suppose that each event is mutually independent
of all the other events except for at most μ of them. If ep(μ+ 1) ≤ 1, then

P

(
N⋂
i=1

Ai

)
> 0,

where e denotes the base of natural logarithms.

Let M = (mij) be a random t3 × n 0 − 1 matrix with P (mij = 1) = 1
d+r ,

P (mij = 0) = 1 − 1
d+r , and the entries mij are mutually pairwise independent.

For any two disjoint sets C1 and C2 of columns with |C1| = d and |C2| = r, let
AC1,C2 be the event that (C1,C2) is unsatisfied. Obviously,

P. (AC1,C2) =

[
1− r

d+ r
· (d+ r − 1

d+ r
)d+r−1

]t3
and

μ+ 1 =

[(
n

d+ r

)(
d+ r

d

)
−

(
n− d− r

d+ r

)(
d+ r

d

)]
.

Setting

t3 =
ln

[(
n

d+r

)(
d+r
d

)
−

(
n−d−r
d+r

)(
d+r
d

)]
+ 1

− ln(1− r
d+r · (

d+r−1
d+r )d+r−1)

, (7)

we have ep(μ+ 1) ≤ 1, and thus by Lemma 3 the desired probability is greater
than 0. Consequently, there exists a strongly (d, r)-disjunct matrix of size t3×n.

Remark: the purpose of the subsection is to exploit three known methods
to derive upper bounds on the length of selectors and to compare the obtained
bounds with the one by De Bonis et al. which is the best known result in
general cases. Although the obtained results are not as strong as we like (they
are asymptotically same), from another point of view, following a conventional
analysis in the survey [23], the rate limt→∞

log n
t derived from the t1 bound can

be shown the best one among all the other ones.
The comparison in the following is based on their original forms, not simplified

forms (asymptotic forms). The motivation is in calling awareness to the existence
of better results and the alternative constructions (randomness approach).

We now present numerical results of the bounds proposed in this section and
that of De Bonis et al. [6] with some parameters. For the sake of fairness, the
bound of De Bonis et al. we use for comparison is the original form

ts =

(
n
n/k

)
(k −m+ 1)

(
n−k
n/k−1

) [
ln

((
k − 1

k −m

)(
n/k

1

)(
n− n/k

k − 1

))
+ 1

]
,
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where k = d+r and m = d+1 in our setting of strongly (d, r)-disjunct matrices,
in the proof in [6, Theorem 1]. The following tables present some numerical
results to compare the bounds for some specific parameters. The numerical
results show that our constructions are slightly better than the currently best
known result by De Bonis et al. [6], at least for the considered parameters.

Table 1 lists the number t of rows obtained by the proposed methods for the
case of n = 300 and d = 3. As shown, setting r an integer close to d seems to
be the best choice to get a small number of required tests.

Table 1. The number of rows needed for fixed parameters n = 300 and d = 3

n d r t1 t2 t3 ts
300 3 1 175 188 171 186
300 3 2 142 145 137 153
300 3 3 138 136 131 148
300 3 4 140 136 132 150
300 3 5 145 138 136 155
300 3 6 152 142 141 161

Table 2 lists the number of rows required for some small parameters by setting
r = d. Given a fixed n, the t2 bound is the best bound for large d, while the t3
bound is the best for small d except for the case d = 1. Notice that the bounds
t2 and t3 always yield better results than the ts bound by De Bonis et al.

Table 2. The number of rows required for the r = d case

n d r t1 t2 t3 ts min .

300 1 1 27 40 28 44 t1
300 2 2 84 90 82 98 t3
300 6 6 283 258 259 278 t2
300 7 7 327 295 297 316 t2

1000 1 1 31 48 32 54 t1
1000 2 2 99 111 98 122 t3
1000 5 5 287 276 270 302 t3
1000 12 12 666 603 604 657 t2
1000 13 13 716 646 647 702 t2
1000 20 20 1047 926 930 1001 t2
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Abstract. In the (d, n) group testing problem n items have to be iden-
tified as either good or defective and the number of defective items is
known to be d. A test on an arbitrary group (subset) of items re-
veals either that all items in the group are good or that at least one
of the items is defective, but not how many or which items are de-
fective. We present a new algorithm which in the worst case needs
less than 0.255d + 1

2
log d + 5.5 tests more than the information lower

bound
⌈
log

(
n
d

)⌉
for n

d
≥ 2. For n

d
≥ 38, the difference decreases to less

than 0.187d + 1
2
log d + 5.5 tests. For d ≥ 10, this is a considerable im-

provement over the d − 1 additional tests given for the best previously
known algorithm by Hwang. We conjecture that the behaviour for large
n and d of the difference is optimal for n

d
≤ 4. This implies that the

1
2
− log 32

27
= 0.255 tests per defective given in the bound above are the

best possible.

Keywords: group testing, nested algorithms, competitive analysis.

1 Introduction

Group testing is a class of search problems, in which we typically have a set of
n items, each of which is either good or defective. A test on an arbitrary group
(subset) of items reveals either that all items in the group are good or that at
least one of the items is defective, but not how many or which items are defective.
The aim is to identify all items as either good or defective using as few tests as
possible. We focus on the sequential case, in which the results of preceding tests
may be used to determine the next test group, and the combinatorial (worst case)
group testing problem, in which the aim is to minimize the maximum number
of tests required.

Let log x always denote log2 x.
In combinatorial group testing, it is typically assumed that there are exactly

d defectives among the n items, and we try to minimize the worst case number of
tests. This is called the (d, n) group testing problem. As there are

(
n
d

)
possible

sets of defectives and in t tests at most 2t cases can be differentiated, at least⌈
log

(
n
d

)⌉
tests are needed. This is called the information lower bound. The best
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upper bound known in the literature was proven by Hwang [7] for his generalized
binary splitting algorithm, which tests groups of size 2a where the choice of the
integer a depends on the proportion of defectives among the not yet identified
items; whenever a test result is positive, a defective is identified by repeatedly
halving the contaminated group. The number of tests needed by the algorithm
exceeds the information lower bound at most by d − 1. The generalized binary
splitting algorithm belongs to the nested class, in which if a group of at least
two items is known to contain a defective, a subset of this group is tested next.

In practical applications the exact number of defectives is hardly ever known.
This is addressed by the strict group testing problem. The number of defectives
among n items is unknown and we try to minimize the worst case number of
tests needed if there happen to be at most d defectives. This is similar to the
generalized (d, n) group testing problem, in which it is known that there are at
most d defectives, with the crucial difference that the case of more than d defec-
tives is not excluded but has to be detected as well. This avoids the unfortunate
property of the (d, n) and generalized (d, n) group testing problems that algo-
rithms designed for these problems typically miss defectives or may even report
good items as defective if more than d items happen to be defective in a practical
application. I proved in [1, section 2.2] that the optimal algorithm for the strict
group testing problem needs exactly one additional test compared to the opti-
mal algorithm for the (d, n) problem. As the proof is constructive, it provides
explicit instructions to transform algorithms between these two problems.

For the case that nothing is known about the number of defectives, Du and
Hwang [4] formulated the competitive group testing problem. A competitive
algorithm requires for every number of items n and number of defectives d at
most a fixed multiple, called competitive ratio, of the number of tests used by
the optimal algorithm for the (d, n) group testing problem plus a constant. The
lowest competitive ratio achieved so far is 1.5 + ε, for which Schlaghoff and
Triesch [10] gave competitive algorithms for all positive ε.

Many variations of these group testing problems and numerous applications
in a wide range of fields have been examined in the literature. Du and Hwang
[3] give a comprehensive overview of the combinatorial side of group testing in
their book as of the year 2000.

In this paper we introduce a new algorithm for combinatorial group testing
from my doctoral thesis [1]. We define the split and overlap algorithm for the
strict group testing problem, but it can easily be adapted to the (d, n) or gen-
eralized (d, n) group testing problems by simply omitting all tests that become
predictable due to the additional information about the number of defectives.
In the beginning, the initial test group size m is chosen depending on the ratio
n
d . The algorithm then repeatedly tests groups of size m and whenever a test
result is positive at least one defective is identified in the contaminated group
of size m by splitting it repeatedly, similarly to nested algorithms. However,
unlike in nested algorithms, complex subalgorithms involving overlapping test
groups are used on contaminated groups of certain sizes. These subalgorithms
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make it possible to deal efficiently with arbitrary test group sizes m, not just
with powers of two, as in Hwang’s generalized binary splitting algorithm.

The following estimates for the number of tests required by the split and over-
lap algorithm all refer to its application to the (d, n) group testing problem. We
demonstrate that for the initial test group sizem, the algorithm needs at most 1

m
tests for each good item and a constant number of tests per defective identified
plus 4 tests. This is less than 0.255d+ 1

2 log d+ 5.5 tests above the information
lower bound

⌈
log

(
n
d

)⌉
for n

d ≥ 2. For n
d ≥ 38, the difference decreases to less than

0.187d+ 1
2 log d+ 5.5 tests. For d ≥ 10, this is a considerable improvement over

the d− 1 tests given by Hwang [7] for his generalized binary splitting algorithm.
We conjecture that the behaviour for large n and d of the difference between the
number of tests required by the split and overlap algorithm and the information
lower bound is optimal for n

d ≤ 4. This implies that the 1
2 − log 32

27 = 0.255
tests per defective given in the bound above are the best possible. Interestingly,
leaving the nested class and using overlapping test groups seems to yield much
bigger gains in combinatorial than in probabilistic group testing.

We build up the split and overlap algorithm modularly. After basic defini-
tions, a nested subalgorithm, and a brief overview over the split and overlap
algorithm, we introduce new efficient subalgorithms and a general method of
scaling up arbitrary subalgorithms by powers of two. Using these as building
blocks, we construct algorithms that repeatedly test groups of the same size and
always follow the same procedure if a group is found to be contaminated. The
split and overlap algorithm then works by choosing the best of these algorithms
depending on n

d . At each stage, estimates of the maximum number of tests used
are provided, and finally an estimate for the whole algorithm is given.

2 The Group Testing Model

Consider a set I of n items each being either good or defective. The state of
the items can be determined only by testing subsets of I. A test can yield a
negative result, indicating that all tested items are good, or a positive result,
indicating that the group is contaminated, that is, at least one of the tested
items is defective. We call an item free if there is no information about the
item, i.e., it is not known to be either good or defective and does not belong to
a contaminated group. All tests are considered to be error-free.

We consider the strict group testing problem: The number of defectives is un-
known and an algorithm must identify all items as good or defective. Denote by
LA(d, n) the maximum number of tests needed by the algorithm A in those cases
in which there are at most d defectives. This implies that A detects in at most
LA(d, n) tests if there are more than d defectives. Let L(d, n) = minA LA(d, n)
denote the worst case number of tests of a minimax algorithm.

Denote by MA(d, n) the number of tests needed by A for the classical (d, n)
group testing problem in which there are known to be at most d defectives. Let
M(d, n) = minAMA(d, n) denote the worst case number of tests of a minimax
algorithm for the (d, n) group testing problem.
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3 Nested Algorithms

In the nested class introduced by Sobel and Groll [11], if a group with at least
two items is known to be contaminated, then the next test has to be performed
on a subset of this group.

Chang, Hwang, and Weng [2] gave the following binary splitting algorithm to
identify one defective in a contaminated group L of l ≥ 2 items.

Subalgorithm Bl

Let k = max
(
l− 2�log l�−1, 2�log l�−2

)
.

Test a group K ⊂ L of size k.
If the result is positive,

apply Bk to K,
else

apply Bl−k to L \K.

B1 identifies a defective without any further tests. If l is a power of 2, the
algorithm Bl repeatedly halves the size of the contaminated group.

Lemma 1. The subalgorithm Bl identifies a defective in at most 
log l� tests.
If 
log l� tests are actually used, then at least 2�log l�− l good items are identified
as well.

The proof of Lemma 1 is by induction and is detailed in [2].
Hwang [7] gave the following generalized binary splitting algorithm for the

(d, n) group testing problem.

Algorithm G

Denote by I the set of n items containing d defectives. Always remove items
from I when they are identified as good or defective.

While d ≥ 1:
If |I| ≤ 2d− 2, test all items in I individually and then stop.

Let k =
⌊
log |I|−d+1

d

⌋
.

Test a group of size 2k.
If the result is positive,

apply B2k to the contaminated group and set d := d− 1.

Du and Hwang [3, Section 2.4] proved that the generalized binary splitting algo-
rithm G exceeds the information lower bound by at most d− 1 tests for d ≥ 2.
Interestingly, the application of a much more general result for hypergraphs by
Triesch [12] to complete hypergraphs of rank d yields the same upper bound. The
corresponding algorithm also belongs to the nested class, but differs considerably
from Hwang’s generalized binary splitting algorithm.

Du and Hwang [3, Section 2.5] gave a set of recursive equations that describe
the number of tests required by a minimax nested algorithm and a procedure
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to find such an algorithm based on computing the solution to these equations.
This algorithm repeatedly tests a group of some size l depending on the actual
values of n and d and applies Bl if the group is found to be contaminated.
Unfortunately, no estimate of the number of tests needed by this minimax nested
algorithm is provided.

4 Overview of the Split and Overlap Algorithm

At the start of the split and overlap algorithm, we choose the initial test group
size m depending only on the ratio n

d of all items to the defectives.
If we do not know any contaminated group, we always test a group of m

items as long as there are enough free items left. If the test result is negative,
we test the next group of m items. Otherwise, if the result is positive, we
proceed to identify at least one defective in the group of m items. As the nested
algorithms in the last section, we always test subsets of the current contaminated
group. However, contaminated groups of certain sizes are dealt with by special
subalgorithms, which are more efficient due to the use of overlapping test groups.
Some of these subalgorithms identify at least two or three defectives starting with
as many disjoint contaminated groups of the same size l. For these subalgorithms
we collect the required number of contaminated groups of size l by setting them
aside as they occur. After identifying at least one defective or setting aside a
contaminated group of size l we continue by testing the next group of the same
size m as before.

When there are not enough free items left to repeat this procedure, we use
binary splitting till the end in a way specified in Section 8.

We show in Section 9 that the algorithm with initial test group sizem requires
at most 1

m tests for the identification of each good item and a constant number
of tests to identify each defective plus 5 tests.

5 Overlapping Subalgorithms

We can represent a subalgorithm as a binary tree in the following way. Each test
is represented by a node that has two subtrees for the cases of a negative and
positive test result, respectively. By convention, we always depict the negative
test result on the left and the positive test result on the right side. The root
corresponds to the start of the subalgorithm, when there are one or more con-
taminated groups of size l. Each leaf marks the end of the subalgorithm, when
at least one defective has been identified and only contaminated groups of size l
may be left.

At each node we display the part of the information test hypergraph that is
relevant to the subalgorithm and specifically omit edges containing just a single
item. Additional edges that are disjoint to the displayed edges can be omitted
safely, as they do not interfere with the others as long as no items from them are
included in the test group. The next test group is always indicated by a dashed
line.
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Fig. 1. The subalgorithms O2
3 ,O

3
3 , and O6

6

The number of good items identified in the case of a negative test result,
which always coincides with the size of the test group, is displayed above the
connection to the left child. An item identified as defective is indicated by the
letter ’d’ above the connection to the corresponding child.

A zero on a leaf of the binary tree indicates that no contaminated group
containing at least two items is left. Subtrees identical to subalgorithms already
shown are represented by the name of the corresponding subalgorithm instead
of the contaminated group; for example, B2 indicates that an edge containing
two items is left of which one is tested next. Several subalgorithms separated
by commas indicate that the corresponding edges are dealt with independently
one after the other. A contaminated group that is left over is represented by a
number indicating its size.

Items from a contaminated group that become free again are reused for fur-
ther tests whenever possible to reduce the number of free items required by the
subalgorithms.
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Fig. 2. The subalgorithm O3
4

The nested algorithms in Section 3 use subalgorithm B3 on contaminated
groups of three items, that is, they first test a single item from the group. In
the worst case, B3 identifies one defective and one good item in two tests. The
subalgorithms O2

3 and O3
3 depicted in Figure 1 improve on this by first testing

a group of size two respectively three that contains exactly one of the three
items in the original contaminated group. If one of the first two test results is
negative, O2

3 and O3
3 identify one defective in two tests, like B3, but at least

two respectively three good items instead of one. Otherwise, in the case of
two consecutive positive test results, they need four respectively five tests, but
identify two defectives instead of one. In addition to the contaminated group
of size three, O2

3 requires one and O3
3 requires two free items. The technique to

derive O6
6 in Figure 1 from O3

3 is explained in Section 7.
On a contaminated group of four items, nested algorithms always use subalgo-

rithm B4, that is, they halve the group two times. In the worst case, B4 identifies
one defective and no good items in two tests. The algorithm that always tests
a group of four items and then uses B4 if the test result is positive needs three
tests for the identification of each defective. Surprisingly, we can do better than
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this. The subalgorithm O3
4 depicted in Figure 2 starts by testing a group of size

three that contains exactly one of the four items in the original contaminated
group. It typically needs more tests than B4 to identify a defective, but more
than compensates for this by identifying good items as well. In addition to the
contaminated group of size four, O3

4 requires up to ten free items.
If a subalgorithm is used in an algorithm with the initial test group size m,

the identification of each good item needs 1
m tests. The preceding subalgorithms

improve on B3 and B4 only by identifying more good items. They are therefore
best for small m. To construct subalgorithms on a contaminated group of size
l that are good for large m, we have to reduce the number of tests needed to
identify a defective. As we have to distinguish at least the l cases in which
exactly one of the items in the group of size l is defective, we need at least

log l� tests, which is already achieved by subalgorithm Bl. To do better, we
simultaneously identify at least one defective in each of k contaminated groups
of size l. This requires at least

⌈
log lk

⌉
tests in the worst case, that is, 1

k 
k log l�
tests per defective.

The subalgorithm O3,3,3 depicted in Figure 3 needs five tests to identify three
defectives in three contaminated groups of size three. The 1 2

3 tests per defective
compare favourably with the two tests needed by B3, O

2
3 , and O

3
3 . Additionally,

O3,3,3 identifies at least one good item. If all five test results are positive, then
no good items can be identified, and the subalgorithm identifies two defectives
in one of the groups of size three and leaves the other two groups unchanged.

It would be even better to use eight tests to identify five defectives in five
contaminated groups of size three, yielding 1 3

5 tests per defective. This would
require the 35 = 243 cases in which each of the five groups contains exactly one
defective to be split by the first test in such a way that neither after a positive
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nor a negative test result more than 27 = 128 cases remain, which cannot be
accomplished by a group test.

Similarly to O3,3,3, the subalgorithm O5,5,5 depicted in Figure 4 starts with
three contaminated groups of size five and typically identifies three defectives
and at least two good items in seven tests. The 2 1

3 tests per defective are much
better than the three tests required by B5. Alternatively, O5,5,5 may identify
three defectives and at least one good item in nine tests while leaving one of the
original groups of size five unchanged. All other possibilities are not relevant for
the worst case, as we show in the next section.

The subalgorithm O11,11 depicted in Figure 5 needs seven tests to identify
two defectives and at least four good items in two contaminated groups of eleven
items. Again, the 3 1

2 tests per defective are less than the four tests required by
B11. Alternatively, the subalgorithm may identify two defectives and at least six
good items in nine tests while leaving one of the original groups of size eleven
unchanged, whereas all other possibilities turn out not to be relevant for the
worst case. If the results of the first five tests are positive and of the sixth test
negative, only three of the items in the two groups of size eleven are not contained
in any contaminated group, but subalgorithm O6

6 needs four free items. To avoid
requiring the existence of another free item, O6

6 reuses an item already identified
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as good in the next test, which may reduce the number of good items identified
by one but does not affect the worst case behaviour of O11,11.

6 Cost Estimate of Subalgorithms

In the binary tree representation, each sequence of test results in the subalgo-
rithm corresponds to a path from the root to a leaf. We denote the set of all
these paths by T . From now on, we refer to paths from the root to a leaf simply
as paths.

For the path P ∈ T denote by dP the number of defectives and by gP the
number of good items identified along the path; denote by tP the number of
tests needed; denote by sP the number of contaminated sets of size l present
in the root of the tree but not in the leaf at the end of the path, that is, the
number of groups of size l used up to identify defectives. Let ḡP = gP

dP
, t̄P = tP

dP
,

and s̄P = sP
dP

denote the corresponding values per identified defective.
In the following, we assume that the main algorithm always tests a group of

size m if no contaminated groups are known and that all contaminated groups
of size l required by the subalgorithm are obtained along the same path in the
algorithm. Denote by tm,l the number of tests needed on this path until a
contaminated group of size l is known including the first test on m items with
positive result and denote by gm,l the number of good items identified in the
process. If we assign a cost of 1

m tests to the identification of each good item,
then cm,l = tm,l − gm,l

m describes the cost to get a contaminated group of size l.
If the tests follow the path P inside the subalgorithm, then dP defectives are

identified using sP tm,l+ tP tests while identifying sP gm,l+gP good items. Then
we get f

(
cm,l,

1
m

)
, the worst case cost to identify a defective, by taking the

maximum over all paths in the subalgorithm.

f
(
cm,l,

1
m

)
= max

P∈T

1

dP

(
sP tm,l + tP − sP gm,l

m
− gP
m

)
= max

P∈T
s̄P cm,l + t̄P − ḡP

m

= max
P∈T

fP
(
cm,l,

1
m

)
.

Here, let
fP (x, y) = t̄P + s̄Px− ḡP y

be the cost to identify a defective if path P is followed in the subalgorithm where
x = cm,l and y = 1

m are determined by the main algorithm. This can be depicted
as a plane in R3. Then f(x, y) is the maximum over the planes of every path in
the subalgorithm. As m ≥ l and cm,l ≥ 1 always hold, we are interested only in
the domain Dl =

{
(x, y)|1 ≤ x, 0 ≤ y ≤ 1

l

}
.

The following lemma gives the conditions under which the plane belonging to
the path Q ∈ T is below the plane of the path P ∈ T on the whole domain Dl.

Lemma 2. fP (x, y) ≥ fQ(x, y) on Dl if and only if s̄P ≥ s̄Q and s̄P + t̄P ≥
s̄Q + t̄Q and s̄P + t̄P − ḡP

l ≥ s̄Q + t̄Q − ḡQ
l .
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Table 1. Worst case costs of subalgorithms

path P s̄P t̄P ḡP path Q s̄Q t̄Q ḡQ

B2k 1. . . 1 1 k 0

O2
3 01 1 2 2 1111 1

2
2 0

O3
3 01 1 2 3 11011 1

2
2 1
2

1
2

O3,3,3 11110 1 1 2
3

1
3

11111 1
2

2 1
2
0

O3
4 001 1 3 5 110110001 1

3
3 2

O5,5,5 1011111 1 2 1
3

2
3

111111110 2
3

3 1
3

O11,11 1101101 1 3 1
2
2 111111011 1

2
4 1
2
3

Proof. s̄P + t̄P ≥ s̄Q+ t̄Q is equivalent to fP (1, 0) ≥ fQ(1, 0), and s̄P + t̄P − ḡP
l ≥

s̄Q + t̄Q − ḡQ
l is equivalent to fP (1,

1
l ) ≥ fQ(1,

1
l ), whereas s̄P and s̄Q are the

gradients of fP (x, y) and fQ(x, y) in x-direction. Therefore the conditions on
the right side are clearly sufficient. Conversely, s̄P ≥ s̄Q is necessary, as else
fP (x, y) ≥ fQ(x, y) would be violated for x sufficiently large, whereas the other
conditions are obviously necessary.

We call W ⊂ T a worst case set of paths if on the whole domain Dl

max
P∈W

fP (x, y) = max
P∈T

fP (x, y) ,

that is, W shows the same worst case behaviour as T . We represent a path by
the sequence of the test results with 0 standing for a negative and 1 for a positive
test result. Table 1 lists paths constituting a worst case set for all subalgorithms
presented in the last section and for B2k with k ≥ 1 together with the parameters
of their planes. This is shown in the following Lemma.

Lemma 3. For each subalgorithm the paths given in Table 1 constitute a worst
case set.

Proof. For each subalgorithm, the application of Lemma 2 shows that the planes
of all other paths are below one of the listed paths on the whole domain. There is
only one exception in subalgorithm O5,5,5. Denote by R the path 11111111101.
Then s̄R = 3

4 , t̄R = 2 3
4 , and ḡR = 1

4 . With y ≤ 1
5 follows fP (x, y) ≥ fR (x, y)

for x ≥ 2 and fQ (x, y) ≥ fR (x, y) for x ≤ 2. Hence, the plane of R is below the
maximum of the planes of P and Q from Table 1 on the whole domain D5.

7 Scaling Up Subalgorithms

We can get subalgorithms for further test sizes by scaling up known subalgo-
rithms. To do this, we choose a subalgorithm and k ≥ 1. In all group tests we
substitute 2k items for each item. Thus, the size of all test groups and the overlap
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with existing contaminated groups is multiplied by 2k. Whenever the original
subalgorithm identifies a defective, the scaled up version uses B2k to identify a
defective in the corresponding group of 2k items using k tests. If we scale up a
subalgorithm on contaminated groups of size l, say Xl, we get a subalgorithm on
contaminated groups of size 2kl, which we denote by Xl×B2k . For example, the
binary tree representation of O6

6 = O3
3×B2 is depicted in Figure 1. If P is a path

in Xl, we denote by P ×B2k the path in Xl ×B2k represented by the sequence
of test results from P with k positive results inserted for each occurrence of B2k

in Xl ×B2k . Note that (Xl ×B2k)×B2j = Xl × (B2k ×B2j ) = Xl ×B2k+j .
The following lemma describes the worst case behaviour of Xl ×B2k .

Lemma 4. Let W be a worst case set of paths in the subalgorithm Xl. Then

W ×B2k = {P ×B2k |P ∈W}

is a worst case set of paths in Xl ×B2k . For each path P in Xl the plane of the
path P ′ = P ×B2k is determined by s̄P ′ = s̄P , t̄P ′ = t̄P + k, and ḡP ′ = 2kḡP .

Proof. Along the path P ′ = P × B2k one defective is identified by the last test
of each B2k that occurs in Xl × B2k exactly where Xl identifies a defective.
Hence dP ′ = dP . The transition from P to P ′ does not change the number of
contaminated groups of size l and 2kl respectively that are present at the start
and remain at the end of the path. Thus s̄P ′ = sP ′

dP ′ = sP
dP

= s̄P . The path P ′

contains k additional tests per identified defective compared to P . Therefore
t̄P ′ =

tP ′
dP ′ = tP+kdP

dP
= t̄P + k. Good items are identified by tests with negative

results only, whose test group sizes are all multiplied by 2k in the transition
from P to P ′. The additional tests in P ′ all yield positive test results. Hence

ḡP ′ = gP ′
dP ′ = 2kgP

dP
= 2kḡP .

Together, this leads to

fP ′(x, y) = t̄P ′ + s̄P ′x− ḡP ′y

= t̄P + k + s̄Px− 2kḡP y

= fP (x, 2
ky) + k.

In this, (x, y) ∈ D2kl if and only if (x, 2ky) ∈ Dl. Denote by T and T ′ the set of
all paths in Xl and Xl ×B2k , respectively. Then for all (x, y) ∈ D2kl

max
P ′∈W×B

2k

fP ′(x, y) = max
P∈W

fP (x, 2
ky) + k

= max
P∈T

fP (x, 2
ky) + k

= max
P ′∈T×B

2k

fP ′(x, y)

= max
P ′∈T ′

fP ′(x, y).

The last equality is due to the fact that negative instead of positive test results
in a B2k yield additional good items without changing anything else. Therefore,
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the cost of a path that contains such negative test results is always lower than
the cost of the path from T × B2k whose test results in the B2k are always
positive. Hence W × B2k is a worst case set.

This method of scaling up Xl is superior to repeatedly halving groups of size 2kl
and applying Xl to the resulting groups of size l, because it requires the same
number of tests but additionally scales up the number of good items identified.

It is possible to scale up a subalgorithm by multiples other than powers of
two by using some other subalgorithm instead of B2k in the construction above.
However, this seems to result in comparatively less efficient algorithms.

We indicate the scaling up of one of the subalgorithms introduced in the
last section by multiplying all its indices by the scaling factor, for instance,
O10,10,10 = O5,5,5 ×B2 and O12

12 = O3
3 ×B4.

8 Fixed Size Algorithms

We can combine subalgorithms in the following way. Assume that a contami-
nated group M of size m is known. Then we test a subset L ⊂M of size l < m.
If the test result is positive, we continue with subalgorithm Xl on L. If the test
result is negative, we have identified l good items and proceed with subalgorithm
Ym−l on M \ L. We denote this splitting of a contaminated group of size m by
Sm (Xl, Ym−l). By nesting these splittings we can build procedures for any start
size m. If a subalgorithm, for instance, O3,3,3, requires more than one group of
size l, then the contaminated groups of size l are put aside until enough groups
have been collected to execute the subalgorithm.

We denote by Am an algorithm based on the best procedure with initial test
group size m constructed in this way. Table 2 lists the procedures of Am for
selected initial test group sizes m with m ≤ 80. The choice of these particular
values for m is explained in Section 10. Procedures for m ≥ 80 can be obtained
by scaling up the procedures from Table 2 with 40 ≤ m < 80 in the same way as
the subalgorithms in the last section. Then the procedure of A2km = Am ×B2k

with k ≥ 1 has the same structure as the procedure of Am with all test sizes
multiplied by 2k and each subalgorithm Xl substituted by Xl ×B2k .

A procedure can be represented as a binary tree. The root of the tree cor-
responds to the start, when no contaminated groups are known. At each node
the size of the only contaminated group is given. Each leaf, except the one
after a negative result in the first test, corresponds to the situation in which
one contaminated group of some size l is known and is marked by the name of
a subalgorithm that works on contaminated groups of size l. The binary tree
representations of the procedures of A40, A77, and A80 are shown in Figures 6
and 7.

We denote the set of all paths from the root to a leaf by T , excluding the
path that consists of one negative test result. For the path Q ∈ T we denote by
tQ the length of the path, that is, the number of tests performed, and by gQ the
number of good items identified in the process. Furthermore we use the notation
defined in Section 6. Let W (Q) denote the worst case set of the subalgorithm
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0 40
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8
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B16

Fig. 6. The procedures of A40 and A80

at the leaf of path Q that is based on Table 1 and Lemmas 3 and 4. We define
the worst case cost cm to identify a defective by

cm = max
Q∈T

max
P∈W (Q)

fP
(
tQ − gQ

m , 1
m

)
= max

Q∈T
max

P∈W (Q)
s̄P

(
tQ − gQ

m

)
+ t̄P − ḡP

m .

The values of cm are listed in Table 2 for m ≤ 80. The values of cm for m ≥ 80
can be obtained by the following Lemma.

Lemma 5. For m ≥ 40 and k ≥ 1,

c2km = cm + k.

Proof. Denote by Q and Q′ paths in the binary tree representations of the proce-
dures of Am and A2km = Am×B2k respectively that describe the same sequence
of test results. Then tQ′ = tQ and gQ′ = 2kgQ. For P ∈W (Q) and P ′ = P×B2k

Lemma 4 provides s̄P ′ = s̄P , t̄P ′ = t̄P+k, and ḡP ′ = 2kḡP . Together, this results
in fP ′

(
tQ′ − gQ′

2km
, 1
2km

)
= fP

(
tQ − gQ

m , 1
m

)
+ k. Substitution in the definition of

c2km proves the lemma.

We denote the maximum number of free items required by the procedure of Am
by nm. In most procedures in Table 2, the free items required by a subalgorithm
like O3

3 can be drawn from items that belong to the m items of the initial test
group but have become free again. This is not affected by scaling up a procedure.
Therefore, in general nm = m. The only exceptions are A3 and A4, for which
n3 = 4 and n4 = 14 according to the description of O2

3 and O3
4 in Section 5.

When less than nm free items are left, the procedure of Am cannot be executed
any more. Therefore, we continue by testing groups of size lm and using Blm to
identify a defective in the case of a positive test result where lm is the largest
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Fig. 7. The procedure of A77

integer such that the cost of identifying a defective is at most cm, that is, not
greater than for the procedure of Am. This leads to the definition

lm = max(2�cm�−1, 2�cm�−1 − 
(
cm� − cm)m�).

The values of lm for m ≤ 80 are listed in Table 2. As lm < m for m > 2, the
cost of identifying a good item is greater with this method than by using the
procedure of Am.

In the following, we give a description of the fixed size split and overlap algo-
rithm Am where m can be any value for which a procedure is given in Table 2
or one of the values greater than or equal 40 from Table 2 multiplied by a power
of two.

Algorithm Am

Denote by I the set of n items. Always remove items from I when they are
identified as good or defective. Denote by C a collection of contaminated groups
that is initially empty.

Part 1

While I contains at least nm free items,
test a group M of m free items.
If the result is positive,

continue the procedure on M .
If the final subalgorithm requires k ≥ 2 contaminated groups of size l,

add the contaminated group of size l to C.
If C contains k groups of size l,

apply the subalgorithm and remove the k groups from C.
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Table 2. The fixed size algorithms Am for m ≤ 80

m cm nm lm procedure of Am

1 1 1 1 B1

2 2 2 2 B2

3 2 1
2

4 2 O2
3

4 2 5
6

14 3 O3
4

7 3 4
7

7 5 S7(O
3
3 , B4)

12 4 1
3

12 8 S12(O5,5,5, S7(O
3
3 , B4))

15 4 28
45

15 10 S15(O
6
6 , S9(B4, O5,5,5))

19 5 19 16 S19(B8, S11(O5,5,5, O6,6,6))

24 5 1
3

24 16 S24(O10,10,10 , S14(O
6
6 , B8))

30 5 28
45

30 20 S30(O
12
12 , S18(B8, O10,10,10))

40 6 1
40

40 32 S40(S17(B8, S9(B4, O5,5,5)), S23(O11,11, O12,12,12))

47 6 25
94

47 32 S47(S20(S9(B4, O5,5,5), O11,11),
S27(O12,12,12 , S15(S7(O

3
3 , B4), B8)))

49 6 16
49

49 32 S49(S21(O10,10,10 , O11,11), S28(O
12
12 , B16))

54 6 25
54

54 35 S54(S23(O11,11, O12,12,12),
S31(S14(O

6
6 , B8), S17(B8, S9(B4, O5,5,5))))

62 6 41
62

62 43 S62(S25(O12,12,12 , S13(O6,6,6, S7(O
3
3 , B4))),

S37(B16, S21(O10,10,10 , O11,11)))

77 6 75
77

77 62 S77(S32(S15(S7(O
3
3 , B4), B8), S17(B8, S9(B4, O5,5,5))),

S45(S21(O10,10,10 , O11,11), O24,24,24))

80 7 1
40

80 64 S80(S34(B16, S18(B8, O10,10,10)), S46(O22,22, O24,24,24))

Part 2

For each group L from C,
apply B|L| to L and remove L from C.

Part 3

While |I| ≥ 1,
test a group of size l = min(lm, |I|).
If the result is positive,

apply Bl to the contaminated group.

Part 1 is the main part of the algorithm, in which the procedure is applied
repeatedly as long as enough free items are left. In Part 2, the contaminated
groups left over from Part 1 are used up by identifying a defective in each group.
Finally, Part 3 is just a simple nested algorithm to identify the small number of
remaining items as good or defective.

The fixed size algorithm Am does not use any knowledge about the number
of defectives d.
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9 Cost Estimate of Fixed Size Algorithms

The following theorem gives a bound for the number of tests needed by the fixed
size algorithm Am to solve the strict group testing problem.

Theorem 1. LAm(d, n) < cmd+
1
m(n− d) + 5.

This means that Am needs a constant number of tests for the identification of
each defective item, 1

m tests for each good item, and at most 5 tests due to
restrictions near the end, when the number of unidentified items becomes small.

We derive an algorithm A′
m for the (d, n) group testing problem from Am

by simply omitting all tests whose result can be deduced in advance from the
knowledge that there are exactly d defectives. [1, Lemma 2.4] states that A′

m

always needs at least one test less than Am, leading to the following corollary of
Theorem 1.

Corollary 1. MA′
m
(d, n) < cmd+

1
m (n− d) + 4.

For the proof of Theorem 1, we fix an arbitrary path S from the root to a leaf
in the binary tree representation of the fixed size algorithm Am. Denote by
S1, S2, and S3 the subpaths of this path that fall into Part 1, 2, and 3 of Am,
respectively. Let tSi be the length of Si, and dSi and gSi the number of defective
and good items identified along Si. Denote by C1 the content of C at the end
of Part 1 of Am, that is, the collection of contaminated groups left over from
Part 1.

An inspection of the procedures listed in Table 2 reveals that each subalgo-
rithm used in the procedure of Am that requires at least two groups of size l
occurs only once in the procedure. Therefore there is exactly one path Q leading
to this subalgorithm in the procedure. We denote by cm,l = tQ − gQ

m the cost to
obtain a contaminated group of size l for this subalgorithm.

Lemmas 6, 7, and 8 estimate the number of tests needed in S1, S2, and S3.
Their proofs are all based on the partition of the path S at the points at which
no contaminated groups except those in C are known. In Part 1 of Am, each
execution of the procedure of Am forms a subpath in this partition except that
each subalgorithm requiring at least two contaminated groups forms a separate
subpath. In Part 2, each execution of a Bl is a subpath of the partition. In Part
3, each subpath is either a single test with negative result or a test with positive
result together with the following execution of Bl. On each subpath in this
partition the number of tests is estimated using the number of identified defective
and good items and the cost of contaminated groups added to or removed from
C.

Lemma 6. tS1 ≤ cmdS1 +
1
mgS1 +

∑
L∈C1

cm,|L|.

Proof. It suffices to show for all subpaths R in the partition of S1 that

cmdR + 1
mgR + kRcm,l ≥ tR
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where kR denotes the number of contaminated groups of size l that are added
to C minus the number that are removed from C along the subpath R. The
estimations of the subpaths follow the description of the fixed size algorithm
Am.

If the first test result in the procedure is negative, m good items and no
defectives are identified in one test. Since 0 + m

m = 1, the above inequality is
satisfied.

The rest of the proof treats the case that the first test result in the procedure is
positive. Denote by Q the path in the binary tree representation of the procedure
that corresponds to the test results.

If the subalgorithm at the end of path Q requires only one contaminated
group, it is executed immediately. Denote by P the path followed in the subal-
gorithm, along which the contaminated group is always used up. Then sP = 1,
and dP defectives and gQ+gP good items are identified using tQ+ tP tests. This
leads to the estimation

cmdP +
gQ + gP

m
≥

(
s̄P

(
tQ − gQ

m

)
+ t̄P − ḡP

m

)
dP +

gQ + gP
m

= sP

(
tQ − gQ

m

)
+ tP − gP

m
+
gQ + gP

m
= tQ + tP .

In this, the inequality cm ≥ s̄P
(
tQ − gQ

m

)
+ t̄P − ḡP

m follows from the definition
of cm in the last section.

On the other hand, if the subalgorithm at the end of path Q requires k ≥ 2
contaminated groups of size l, the contaminated group of size l obtained along
Q is added to the collection C of contaminated groups. Then gQ good items and
no defectives are identified using tQ tests. Inserting the definition cm,l = tQ− gQ

m
yields 0 +

gQ
m + cm,l = tQ.

If k contaminated groups of size l are present after this, the subalgorithm is
executed. Denote by P the path followed in the subalgorithm and by Q the path
by which all k contaminated groups have been obtained. Then dP defectives and
gP good items are identified using tP tests, while sP contaminated groups of size
l are used up. This leads to the estimation

cmdP +
gP
m

− sP cm,l ≥
(
s̄P

(
tQ − gQ

m

)
+ t̄P − ḡP

m

)
dP

+
gP
m

− sP

(
tQ − gQ

m

)
= tP .

This process is repeated as long as enough free items are available. The addition
of the inequalities for all subpaths in the partition of S1 yields the statement of
the lemma.

Lemma 7. tS2 < cmdS2 +
1
mgS2 −

∑
L∈C1

cm,|L| + 3.25.
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Proof. For L ∈ C1 with l = |L| denote by R the subpath of S2 that contains
exactly the tests in Bl on L. By Lemma 1 Bl needs at most 
log l� tests, in
which case at least 2�log l� − l good items are identified as well. All other cases

lead to a lower overall cost, hence tR − gR
m ≤ 
log l� − 2�log l�−l

m . In all cases,
exactly one defective is identified and the contaminated group L of size l is used
up.

Let

am,l = min

(
0, 
log l� − 2�log l� − l

m
+ cm,l − cm

)
denote the maximum additional cost incurred by identifying one defective using
Bl on a contaminated group of size l instead of following the procedure of Am.
Summation over all L ∈ C1 yields

tS2 − cmdS2 − 1
mgS2 +

∑
L∈C1

cm,|L| ≤
∑
L∈C1

am,|L|.

It remains to show
∑
L∈C1

am,|L| < 3.25.

Contaminated groups of size l can appear in C1 if and only if the procedure
of Am contains a path leading to a subalgorithm that processes k ≥ 2 groups of
size l. Then C1 can contain up to k − 1 groups of size l, as k groups would have
been eliminated in Part 1 of Am by the application of the subalgorithm. For
instance, the procedure of A77 depicted in Figure 7 uses subalgorithms O5,5,5,
O10,10,10, O11,11, and O24,24,24, resulting in the estimation∑

L∈C1

a77,|L| ≤ 2a77,5 + 2a77,10 + a77,11 + 2a77,24

= 2 · 7
11 + 2 · 41

77 + 32
77 + 2 · 18

77

= 3 17
77

< 3.25.

A similar estimation shows
∑
L∈C1

am,|L| < 3.25 for eachm listed in Table 2. These

estimations extend to all scaled up algorithms: For m ≥ 40 and k ≥ 1, Lemma 5
states c2km = cm + k, whereas the beginning of its proof shows c2km,2kl = cm,l.
Inserting in the definition of am,l leads to a2km,2kl = am,l.

Lemma 8. tS3 ≤ cmdS3 +
1
mgS3 + 1.75.

Proof. If the test on a group of size l = min(lm, |I|) yields a positive result,
denote by R the subpath of S3 that contains this test and the tests belonging
to the following execution of Bl. The estimation of the overall cost of R is the
same as at the beginning of the proof of Lemma 7 plus one for the first test.
Together with l ≤ lm this results in



An Efficient Algorithm for Combinatorial Group Testing 589

tR − gR
m

≤ 
log l�+ 1− 2�log l� − l

m

≤ 
log lm�+ 1− 2�log lm� − lm
m

= max

(
�cm − 1 + 1− 2�cm�−1 − 2�cm�−1

m
,


cm� − 1 + 1− 2�cm�−1 − 2�cm�−1 + 
(
cm� − cm)m�
m

)
≤ max

(
�cm , 
cm� − (
cm� − cm)m

m

)
≤ cm.

On the other hand, denote by R the set of all subpaths of S3 that consist of a
single test of a group of size l = min(lm, |I|) with negative result. All but the
last of the tests in R are on groups of size lm, as for |I| < lm all remaining items
are tested and identified as good. Denote by I1 and I2 the items remaining in

I at the end of Part 1 and 2, respectively. Then |R| ≤ |I2|
lm

≤ |I1|
lm

. The set I1
contains less than nm free items and the items in the groups in C1. Therefore

|I1| < nm +
∑
L∈C1

|L| ≤
{
3lm for m �= 4
5lm for m = 4.

It can easily be checked that the last inequality holds for all m in Table 2, which
extends to m ≥ 80 because for k ≥ 1

l2km = max
(
2�cm+k�−1, 2�cm+k�−1 −

⌈
(
cm + k� − (cm + k)) 2km

⌉)
= max

(
2k2�cm�−1, 2k2�cm�−1 −

⌈
2k (
cm� − cm)m

⌉)
≥ 2klm.

The inequality lm > 5
8m can be checked in the same way.

Together this yields |R| ≤ 3 for m �= 4 and |R| ≤ 5 for m = 4, leading to

∑
R∈R

tR − gR
m

≤
{
3− 2lm+1

m < 1.75 for m �= 4

5− 4·3+1
4 = 1.75 for m = 4.

Adding the estimation from above for all subpaths of S3 beginning with a positive
test result yields the statement of the lemma.

Proof. [Proof of Theorem 1]For each path S of Am that identifies d defectives
in n items the addition of the inequalities of Lemmas 6, 7, and 8 yields

tS < cmd+
1
m (n− d) + 5.

Maximizing over all paths yields the theorem.
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An analysis of the arguments above for a path that achieves equality in Lemma
6 shows that LAm(d, n) > cmd+

1
m (n− d)− 1 for n

d ≥ m. For sufficiently small
n
d , some algorithms Am need fewer tests than this in the worst case, as there are
not enough good items to follow a path achieving equality in Lemma 6. However,
in the main algorithm A in the next section Am is used only for n

d ≥ m.
A possible modification of Part 2 of the fixed size algorithm Am is to use

subalgorithms that require multiple contaminated groups not necessarily of the
same size to identify several defectives together. This leads to a lower constant
in Lemma 7 and therefore in Theorem 1. However, this does not improve cm.

10 Main Algorithm

We suppose d > 0 and denote by r = n
d the initial ratio of all items to defective

items. To find the best fixed size algorithm for a given ratio r, we compare the
number of tests needed by different algorithms in the worst case. The difference
between the upper bounds from Theorem 1 for LAm′ (d, n) and LAm(d, n) with
m �= m′ is

(cm′ − cm) d+
(

1
m′ − 1

m

)
(n− d) = d

(
cm′ − cm − m′ −m

mm′ (r − 1)

)
.

Let

rm,m′ =
mm′

m′ −m
(cm′ − cm) + 1

denote the value of r for which the above expression is zero, that is, the upper
bounds for LAm′ (d, n) and LAm(d, n) are equal.

For r ≥ m the difference between LAm(d, n) and the upper bound from The-
orem 1 is less than 6. Thus, if we suppose m′ > m, then for each r ≥ m there
exists d0(r) such that for all d ≥ d0(r) and n = rd

LAm(d, n) < LAm′ (d, n) for r < rm,m′ and

LAm(d, n) > LAm′ (d, n) for r > rm,m′ .

Therefore we can describe the range of ratios r for which Am is best by

rmin
m = max

m′<m
rm′,m and

rmax
m = min

m′>m
rm,m′ ,

except rmin
1 = 0. There is always some m′ > m with rmax

m = rmin
m′ . For m ≤ 80,

the values rmin
m and rmax

m can be found in Table 3 together with α and ᾱ, which
are defined in the next section. Form ≥ 40 and k ≥ 1, substituting c2km = cm+k
from Lemma 5 leads to r2km,2km′ − 1 = 2k (rm,m′ − 1). Thus

rmin
2km − 1 = 2k

(
rmin
m − 1

)
for m ≥ 47, and

rmax
2km − 1 = 2k (rmax

m − 1) for m ≥ 40.
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Table 3. Ranges of Am in the main algorithm A for m ≤ 80

m cm
rmin
m

rmax
m

α(r) ᾱ(r)

1 1

2 2
3 0.246 0.558

3 2 1
2

4 0.255 0.473

4 2 5
6

5 0.224 0.391

7 3 4
7

7 8
9

0.229 0.329

12 4 1
3

13 4
5

0.225 0.280

15 4 28
45

18 1
3

0.179 0.220

19 5
27 11

12
0.198 0.224

24 5 1
3

31 2
5

0.208 0.232

m cm
rmin
m

rmax
m

α(r) ᾱ(r)

24 5 1
3

30 5 28
45

35 2
3

0.199 0.220

40 6 1
40

49 1
3

0.181 0.196

47 6 25
94

65 5
7

0.174 0.185

49 6 16
49

70 3
4

0.173 0.184

54 6 25
54

73 1
5

0.174 0.184

62 6 41
62

84 0.174 0.183

77 6 75
77

100 8
15

0.180 0.187

80 7 1
40

105 2
3

0.175 0.181

This leads to the following split and overlap algorithm A for the strict group
testing problem that always uses the best fixed size algorithm Am for the actual
ratio r. We refer to A in the following as the main algorithm to highlight the
difference to the fixed size algorithm Am.

Algorithm A

If d = 0,
test the group of all items.
If the result is negative, then stop, else set d := 1.

Let r = n
d .

Choose m satisfying rmin
m < r ≤ rmax

m .
Execute Am.

In the main algorithm A the initial test group size m, which is used if no con-
taminated group is known, remains constant even if the ratio of good to defective
unidentified items changes during the execution. In contrast, the generalized bina-
ry splitting algorithmG from Hwang presented in Section 3 adapts the test group
size to the ratio of remaining good to defective items. Surprisingly, this does not
seem to be necessary to obtain a good algorithm for the worst case scenario.

The list of fixed size algorithms Am in Tables 2 and 3 is the result of a
computation in the advanced functional programming language Haskell that
searches for the best algorithms for each m ≥ 1 using all subalgorithms and
techniques introduced in this chapter, that is, those with the lowest cost cm for
identifying a defective. Then the above definitions can be extended to all m ≥ 1,
and the algorithms listed in Tables 2 and 3 are just those with rmin

m < rmax
m . For

example, A5 with the procedure S5(B2, O
3
3) and A6 with the procedure O4

6 are
made redundant by A4 and A7. It is possible to continue this process for m > 80
instead of scaling up algorithms for smaller m, but this yields only minor further
improvements.
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11 Cost Estimate of Main Algorithm

The minimum number of tests needed for the (d, n) group testing problem is
known only for the trivial casesM(0, n) =M(n, n) = 0 and for a large proportion
of defectives, that is, a low ratio r = n

d of all items to defectives. Presume
0 < d < n. For r ≤ 21

8 = 2.625, Du and Hwang [5] showed M(d, n) = n − 1,
which can be reached by testing all items individually. Leu, Lin, and Weng [8]
extended this to r ≤ 43

16 = 2.687 . . . for d ≥ 193, Riccio and Colbourn [9] to
r < log 3

2
3 = 2.709 . . . for sufficiently large d depending on r. All these results

are based on a Lemma by Hu, Hwang, and Wang [6], who also conjectured
M(d, n) = n − 1 for r ≤ 3 and proved M(d, n) < n − 1 for r > 3. The latter
is achieved by a variant of the fixed size algorithm A2 omitting all predictable
tests, as shown by Du and Hwang [3, Section 3.5]. However, the proof of the
conjecture remains elusive and calls for a different approach.

These results transfer to the strict group testing problem by [1, Theorem 2.1],
which states L(d, n) = L(d, n) + 1 for 0 ≤ d < n. For d = n, all items have to
be tested individually, thus L(n, n) = n.

The main algorithm A is optimal in all these cases: Applied to the strict
group testing problem, it performs only one test on the group of all defectives
for d = 0 and tests all items individually for r ≤ 3.

The only general lower bound that is known for the (d, n) group testing prob-
lem is the information lower bound

⌈
log

(
n
d

)⌉
. Therefore we compare the number

of tests needed by A with log
(
n
d

)
. First we prove some lemmas.

Lemma 9. For x > 0, (
x+ 1

x

)x

≤ e ≤
(
x+ 1

x

)x+1

.

This can be shown easily using Taylor’s Formula.

Lemma 10. For 0 < d ≤ n
2 ,

log

(
n

d

)
> d log

(
r

(
r

r − 1

)r−1
)

− 1

2
log d− 1.5.

The Lemma can be shown using Stirling’s Formula, for a detailed proof see [1,
section 3.9].

It can be shown by similar estimates that the difference between the two sides
of the inequality in Lemma 10 is less than one.

We denote by

αm(r) = cm +
r − 1

m
− log

(
r

(
r

r − 1

)r−1
)

the average number of tests per defective by which the fixed size algorithm Am
exceeds the information lower bound for large d, which we call the loss per
defective. Similarly,
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Fig. 8. The loss per defective α(r)

α(r) = min
m

αm(r)

denotes the loss per defective of the main algorithm A. Figure 8 shows a graph
of α(r) and αm(r).

In addition, let

ᾱ(r) = min
m

(
cm +

r − 1

m

)
− log ((r − 1)e)

denote the upper bound of the loss per defective of all scaled up versions of the
fixed size algorithm used for the ratio r, as shown by the following Lemma.

Lemma 11. For r ≥ rmin
47 and k ≥ 1,

α(2k(r − 1) + 1) ≤ ᾱ(r).

Proof. Choose m ≥ 47 satisfying rmin
m < r ≤ rmax

m . From the last section
follows rmin

2km < 2k(r − 1) + 1 ≤ rmax
2km. Inserting in the definition of αm(r) using
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r
(

r
r−1

)r−1

= (r − 1)
(

r
r−1

)r
then yields

α(2k(r − 1) + 1) = α2km(2k(r − 1) + 1)

= c2km +
2k(r − 1)

2km

− log

⎛⎝2k(r − 1)

(
2k(r − 1) + 1

2k(r − 1)

)2k(r−1)+1
⎞⎠ .

The application of Lemma 5, which states c2km = cm + k, and Lemma 9 with
x = 2k(r − 1) results in

α(2k(r − 1) + 1) ≤ cm + k +
r − 1

m
− log

(
2k(r − 1)e

)
= ᾱ(r).

The following theorem gives an upper bound for the loss per defective α(r).

Theorem 2. α(r) ≤ 1
2 − log 32

27 < 0.255 for r ≥ 2 and

α(r) < 0.187 for r ≥ 38.

Proof. αm(r) is convex, as α
′′
m(r) = log e

r(r−1) > 0 for r > 1. Therefore α(r) is

convex between rmin
m and rmax

m for all m, implying

α(r) ≤ max
(
α(rmin

m ), α(rmax
m )

)
for rmin

m ≤ r ≤ rmax
m .

For m ≤ 80 Table 3 lists α(rmin
m ), whereas for 47 ≤ m ≤ 80 and k ≥ 1 by Lemma

11 α(rmin
2km) ≤ ᾱ(rmin

m ), which is also listed in Table 3. Since rmax
m = rmin

m′ for
some m′ > m, this extends to α(rmax

m ).
This leads to α(r) ≤ α(4) = 1

2 − log 32
27 . Together with α(38) < 0.185 follows

α(r) < 0.187 for r ≥ 38.

The bounds for α(r) given in Theorem 2 are shown in Figure 8 as a dashed
line.

A simple calculation shows that αm(r) assumes its minimum at 1

2
1
m −1

+ 1.

The lowest minimum value of αm(r) with m ≥ 2 is the minimum of α(r) for
r ≥ 2:

min
r≥2

α(r) = α15(22.1) < 0.154.

Now we can estimate the difference between the number of tests required by the
split and overlap algorithm A for the strict group testing problem and log

(
n
d

)
.

Theorem 3. For 0 < d ≤ n
2 ,

LA(d, n)− log

(
n

d

)
< α (r) d+

1

2
log d+ 6.5.
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Proof. Assume that the main algorithm A chooses the fixed size algorithm Am
with the initial test group size m. Applying Theorem 1 and Lemma 10 yields

LA(d, n)− log

(
n

d

)
= LAm(d, n)− log

(
n

d

)
< cmd+

1
m(n− d) + 5

− d log

(
r

(
r

r − 1

)r−1
)

+
1

2
log d+ 1.5

= αm(r)d +
1

2
log d+ 6.5

= α (r) d+
1

2
log d+ 6.5.

As with the fixed size algorithm Am in Section 9, we can derive from A an
algorithm A′ for the (d, n) group testing problem by simply omitting all tests
that become predictable due to the knowledge that there are exactly d defectives.
From [1, Lemma 2.4] then follows MA′(d, n) ≤ LA(d, n) − 1, leading to the
following corollary of Theorem 3.

Corollary 2. For 0 < d ≤ n
2 ,

MA′(d, n)− log

(
n

d

)
< α (r) d+

1

2
log d+ 5.5.

For d ≥ 10, this is considerably better than the d−1 additional tests for Hwang’s
generalized binary splitting algorithm G presented in Section 3.

The difference between the two sides of the inequalities in Theorem 3 and
Corollary 2 is less than 7, as the corresponding differences in Theorem 1 and
Lemma 10, which are used in the proof of Theorem 3, are less than 6 and 1,
respectively. This leads to the following corollary.

Corollary 3. For r ≥ 2,

lim
n,d→∞

n
d→r

1

d

(
MA′(d, n)− log

(
n

d

))
= α(r).

For small r the necessity of integral test sizes significantly restricts the choice of
good algorithms, motivating the following conjecture.

Conjecture 1. For 2 ≤ r ≤ 4,

lim
n,d→∞

n
d →r

1

d

(
M(d, n)− log

(
n

d

))
= α(r).

This implies that the number of tests per defective needed by A2 and A3 is
optimal and that there exists no fixed size algorithm with initial test group size
4 requiring less than 2 3

4 tests per defective. Furthermore, the conjecture implies
that the general upper bound 1

2 − log 32
27 for α(r) given in Theorem 2 is the best

possible for any group testing algorithm.
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Abstract. Search, test, and measurement problems in sparse domains
often require the construction of arrays in which every t or fewer columns
satisfy a simply stated combinatorial condition. Such t-restriction prob-
lems often ask for the construction of an array satisfying the t-restriction
while having as few rows as possible. Combinatorial, algebraic, and
probabilistic methods have been brought to bear for specific t-restriction
problems; yet in most cases they do not succeed in constructing arrays
with a number of rows near the minimum, at least when the number of
columns is small. To address this, an algorithmic method is proposed
that, given an array satisfying a t-restriction, attempts to improve the
array by removing rows. The key idea is to determine the necessity of the
entry in each cell of the array in meeting the t-restriction, and repeat-
edly replacing unnecessary entries, with the goal of producing an entire
row of unnecessary entries. Such a row can then be deleted, improving
the array, and the process can be iterated. For certain t-restrictions, it is
shown that by determining conflict graphs, entries that are necessary can
nonetheless be changed without violating the t-restriction. This permits
a richer set of ways to improve the arrays. The efficacy of these methods
is demonstrated via computational results.

Keywords: covering array, hash family, frameproof code, disjunct
matrix.

1 Introduction

In combinatorial search, testing, and measurement problems, numerous problems
of the following type arise. An N×k array is defined. Let Δ be a finite alphabet
not containing '. For 1 ≤ i ≤ N , there is a finite alphabet Σi ⊆ Δ for which
the ith row contains only symbols in Σi ∪ {'}. (When Σ1 = · · · = ΣN = Σ,
the array is homogeneous, otherwise it is heterogeneous.) For 1 ≤ j ≤ k, there
is a finite alphabet Δj not containing ' for which the jth column contains only
symbols in Δj∪{'}. (When Δ1 = · · · = Δk = Δ, the array is uniform, otherwise
it is nonuniform.) Without loss of generality, Σi ⊆ ∪kj=1Δj and Δj ⊆ ∪Ni=1Σi.
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If for some i, j with 1 ≤ i ≤ N and 1 ≤ j ≤ k, we have Σi ∩Δj = ∅, the (i, j)
cell is permitted only to contain '.

Within this framework, one considers restrictions on what must appear in
some row within every subset of t columns. Such ‘restriction’ problems are
considered in [3], but we use a somewhat more general definition here.

Let t be an integer, called the strength. A t-restriction is a list (P1, . . . ,Pτ ) of
subsets ofΔt, called demands [3]. For every selection S = (i1, . . . , it) of t distinct
column indices, the set of possible t-tuples that could arise is Δi1 × · · · ×Δit .
Then the N × k array A = (aij) satisfies the t-restriction (P1, . . . ,Pτ ) if and
only if for all t-tuples (x1, . . . , xt) of distinct column indices, and for 1 ≤ � ≤ τ ,
for each P� with P� ∩ (Δx1 × · · · ×Δxt) �= ∅, there exists an r with 1 ≤ r ≤ N
for which (ar,x1 , . . . , ar,xt) ∈ P�. The generality of the definition arises from the
flexibility in specifying t-restrictions.

We enumerate a few well-studied examples.

Disjunct Matrix [10]: The demand is {(δ1, . . . , δt) ∈ {0, 1}t : δ1 = · · · =
δt−1 = 0, δt = 1};

Frameproof Code [15]: The demand is {(δ1, . . . , δt) ∈ {0, 1}t : δ1 = · · · =
δt−1, δt �= δ1};

Covering Array [6]: Demands are all members of Δt;

Perfect Hash Family, PHF [18]: The demand is {(δ1, . . . , δt) ∈ Δt : δi �=
δj for i �= j};

For covering arrays, requiring only a subset S ⊆ Δt to be covered yields S-
quilting arrays [8]. For disjunct matrices (equivalently, superimposed codes or
cover-free families), numerous t-restriction problems arise in search theory [1,2].
For hash families when the t columns to be separated are partitioned into � classes
C1, . . . , C� of sizes w1, . . . , w� (with t =

∑�
i=1 wi) and we only require δi �= δj

when i and j are in different classes, we obtain a {w1, . . . , w�}-separating hash
family, {w1, . . . , w�}-SHF [12,16]. When on the t columns, the number of distinct
symbols that arise is at most m, we have m-strengthening hash families [7]. A
hash family that is {w1, . . . , ws}-separating for all {w1, . . . , ws} with

∑s
i=1 wi = t

is a (t, s)-distributing hash family, (t, s)-DHF [5]. An s-strengthening (t, s)-DHF
is a (t, s)-partitioning hash family, (t, s)-PaHF [5].

These examples only scratch the surface. Numerous problems in combinato-
rial search and group testing [2,10] and in combinatorial cryptography [3,15] fall
into this framework. Evidently, treating each such problem individually is prob-
lematic, and one wants general techniques to address the construction of arrays
for t-restrictions. One general technique, explored in many of these contexts, is
a recursive method using column replacement via hash families (e.g., [6]). But
these techniques rely on knowing solutions for few columns to produce solutions
for many.

Simple greedy or random algorithms produce solutions, but they cannot be
expected to minimize the number of rows. We propose a general technique here
to “post-optimize” an array, reducing its number of rows. We demonstrate that
the reduction obtained is worthwhile, and sometimes dramatic.
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2 Post-optimization

In [14], an heuristic method for reducing the number of rows in a covering array
is developed. It relies on the fact that certain entries of the array may not be
needed to ensure coverage. Such entries can be changed arbitrarily, with the
result that other entries that were previously required, are no longer needed.
The method exploits this to produce entire rows that are not needed. These can
be deleted, improving the size of the array, and the process can be repeated.
For covering arrays, the method has surprising success, and therefore we wish to
apply the technique more generally. Here we develop it for general t-restriction
problems.

2.1 Necessity Analysis

Consider an N × k array A on symbol set Δ ∪ {'} that meets the t-restriction
(P1, . . . ,Pτ ). Evidently if A contains a row that consists entirely of ' symbols,
this row is not used to meet any of the requirements, and can be removed. The
primary objective of our method is repeatedly to produce such an all-' row for
removal. To do this, we consider the necessity of each entry.

When one of the demands is met for columns (x1, . . . , xt) for a single row
of the array, the t entries in these columns in this row are strictly necessary to
meet the demand. One might hope that all entries of the array not determined
to be necessary in this way can be changed to ', since they are not “needed”.
However once one is changed to ', further entries may now become necessary.
Indeed determining the maximum number of entries that can be simultaneously
changed to ' is NP-hard [14].

We therefore adopt a more useful notion of necessity. Let ρ be a permutation
of {1, . . . , N}, the row indices. For each demand and each tuple of t columns,
there is a first row (under ρ) in which this demand is met; the entries in the
t columns of this row are necessary. A single scan of the array now suffices
to determine all necessary entries. All others are unnecessary, and all can be
changed to ' while ensuring that all demands are still met.

In determining necessity in this way, every demand must be checked in each
t-tuple of columns. This can often be accomplished by considering only a subset
of the t-tuples, as follows: Let π be a permutation of {1, . . . , t}. If there are two
demands Pa and Pb so that Pb = {(νπ1 , . . . , νπt) : (ν1, . . . , νt) ∈ Pa}, then we
can either (1) not check demand Pb if demand Pa is checked, or (2) not check
the t-tuple (xπ1 , . . . , xπt) of columns if (x1, . . . , xt) is checked. In practice this
reduces the effort to determine necessity for most cases of interest.

2.2 Generic Post-optimization

We may be very lucky, and find that after marking unnecessary entries, we have
an entire row of ' entries. But this should not be expected. Following ideas
from the special case of covering arrays [14], we employ two observations. Let A
be an N × k array that satisfies the t-restriction (P1, . . . ,Pτ ). First, reordering
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the rows of A results in an array that still satisfies the t-restriction (provided,
of course, that the specifications of the row alphabets are permuted in the same
manner as are the rows). And secondly, an entry of ' in row r and column c can
be replaced by any symbol in Σr ∩Δc, and the resulting array still satisfies the
t-restriction.

input : t-restriction with demands P1, . . . ,Pτ ,
N × k array A satisfying the t-restriction,
ITERATION LIMIT – number of iterations to be performed,
LOCAL LIMIT – number of iterations allowed with no row removal

output: M × k array C satisfying the t-restriction with M ≤ N

ρ ←− identity C ←− A noImprovementCounter ←− 0
maxUnnecessaryElements ←− 0 for i ← 1 ITERATION LIMIT do

Locate necessary and unnecessary entries in C using row order ρ Change all
unnecessary entries to � currentMax ←− maximum number of �s in a row of
C if currentMax > maxUnnecessaryElements then

maxUnnecessaryElements ←− currentMax
noImprovementCounter ←− 0

else
add 1 to noImprovementCounter

endif
if C contains any rows consisting entirely of �s then

Remove all such rows from C, adjusting N and
ρ maxUnnecessaryElements←− 0 Nominate a row of array C and adjust
ρ to make this row the last

endif
for every � at position (r, c) in C with r �= ρ(N) do

if C(ρ(N), c) ∈ Δc ∩Σr then
C(r, c) ←− C(ρ(N), c)

else
C(r, c) ←− random value in Δc ∩Σr

endif
endfor
if noImprovementCounter ≥ LOCAL LIMIT then

Choose permutation ρ of {1, . . . , N} at random
noImprovementCounter ←− 0

else
Choose ρ at random, without changing ρ(N)

endif
endfor

Algorithm 1. A generic post-optimization algorithm for k-restriction problems

These form the basis of a remarkably simple algorithm for post-optimization.
We repeatedly change ' entries to entries in Δ, implicitly reorder the rows of
the array, mark unnecessary entries, and delete any rows that now contain only
'. A more precise version is shown in Figure 1.
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Because progress occurs when a row is eliminated, a worthwhile intermediate
goal is to attempt to make a row with as many ' entries as we can. However,
row reordering could result in a row with many ' entries having none in the
next iteration. Therefore the algorithm nominates one row, retained at the end
of the row order, in which it repeatedly attempts to increase the number of 's.
By so doing, the method may become trapped in a local optimum, where no
further ' entries are formed in the nominated row. For this reason, a means to
escape such local optima by requiring progress is included; when progress has
apparently stalled, a complete row reordering is done, resulting in a new row
becoming nominated.

We report computational results for Algorithm 1 in §4. Prior to doing so, we
examine an interesting variant of the method.

3 Post-optimization with Conflict Graphs

In Algorithm 1, every entry is deemed to be either necessary or unnecessary.
Consider the first 3× 5 array on Δ = {0, 1, 2} in Figure 1; this array is a {1, 2}-
SHF . Every entry is strictly necessary. But the entry in the (3,4) position can
nonetheless be changed, from 1 to 0, forming a second array that also satisfies
the demand.

2 1 1 0 1
0 2 1 1 0
1 1 2 1 0

2 1 1 0 1
0 2 1 1 0
1 1 2 0 0

Fig. 1. {1, 2}-SHFs

Once changed, there is a possibility that an unnecessary entry appears, and
progress can be made. Next we explore transformations that permit the re-
placement of entries while still satisfying the t-restriction, for a certain type of
t-restriction.

3.1 Conflict Graphs

A demand P� is totally symmetric if, for every permutation π of the symbols
in Δ, (π(δ1), . . . , π(δt)) ∈ P� if and only if (δ1, . . . , δt) ∈ P�. We consider now
only those t-restrictions with totally symmetric demands P1, . . . ,Pτ . When the
demands are all totally symmetric, the symbols within any row can be permuted
arbitrarily while still satisfying the t-restriction. A new row produced in this
manner handles neither more nor fewer of the demands. We are interested in
modifying the row to handle all of the demands that it currently does, but
possibly to handle more. To do this, we develop conflict graphs, focussing on
SHFs. Roughly speaking, edges indicate a requirement for columns to contain
different symbols; we make this precise now.
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Let A be an N × k array, a {w1, . . . , ws}-SHF with t =
∑s

i=1 wi. Let zj =∑j
i=1 wi. Then the demand to be satisfied is {(δ1, . . . , δt) ∈ Δt : δa �= δb or zj <

a, b ≤ zj+1 for j ∈ {0, . . . , s−1}}. We construct a collection of graphsG1, . . . , GN ,
one for each row, as follows. Each Gi contains k vertices, representing the col-
umn indices {1, . . . , k}. As before, for every t-tuple of columns, we determine the
first row in which the demand is met. Suppose that the demand is first met for
columns (x1, . . . , xt) in row r. For row r to continue to meet this demand, it must
be the case that the symbols (σ1, . . . , σt) satisfy σa �= σb except possibly when
zj < a, b ≤ zj+1 for j ∈ {0, . . . , s − 1}. To represent this, we place an edge in
Gr between vertices xa and xb for all 1 ≤ a, b ≤ t, except when zj < a, b ≤
zj+1 for j ∈ {0, . . . , s− 1}. Once all t-tuples of columns are processed in this way,
the graphs G1, . . . , GN are the conflict graphs of array A for this demand. When
the t-restriction consists of multiple (separating) demands, each can be processed
in the sameway, possibly adding further edges to the conflict graphs; this results in
conflict graphs for the entire t-restriction. To connect with our earlier discussion,
when vertex c is isolated (is incident on no edges) in Gr, this is precisely the same
as saying that the (r, c) entry of A is unnecessary.

Interpret row r of A as a vertex colouring of Gr in |Σr| colours, where the
entry arc is treated as a colour of vertex c in Gr. This is a proper colouring.
More importantly, suppose that we form any proper colouring of Gr; this can be
interpreted as a row – and this row must meet all of the demands met for the first
by the original row. When the new colouring is not simply a permutation of the
original one, the new row may meet more demands than does the original! Each
conflict graph can be assigned a new proper colouring independently, producing
a new array of the same size satisfying the t-restriction. Thus, even when no
unnecessary entries arise, we can transform the array – and perhaps form un-
necessary entries. Extending the post-optimization process to incorporate these
recolouring transformations, while still nominating a row in which to maximize
the number of ' entries, opens a further avenue to seek improvements. Before
pursuing this further, we consider a small extension.

As developed thus far, conflict graphs are suitable for SHFs with multiple sepa-
ration requirements, and therefore for PHFs and DHFs as well. For strengthening
and partitioning hash families, however, we encounter a difficulty. It is not the
case that any recolouring of the conflict graphs will serve. Indeed in these situ-
ations, the demand requires not only that a certain separation be accomplished,
but also that not too many symbols (colours) are used in the separation; just
recolouring the conflict graph properly does not ensure the latter. PaHFs ad-
mit an easy modification to the conflict graphs. When a demand is met in
columns (x1, . . . , xt) in row r, this demand can only be met if vertices xi and
xj receive different colours when arxi �= arxj , and receive the same colour when
arxi = arxj . Then in forming the conflict graphs, whenever we find that xi and
xj must receive the same colour in Gr, we identify (coalesce) xi and xj into a
single vertex, ensuring that they receive the same colour. (This can be effectively
implemented using the disjoint set forest method [9].) Any recolouring of the
(coalesced) conflict graphs continues to meet all demands.
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One could also accommodate more general strengthening requirements in this
approach, by adding vertices to the conflict graph to ensure that when a demand
is met, not too many different colours are assigned to the corresponding columns.
However, this appears to increase the size of the conflict graphs exponentially,
so we do not pursue it here. Instead we focus on SHFs and PaHFs.

3.2 Recolouring Conflict Graphs

Vertex colouring is NP-complete [11]. However, our interest is in finding a colour-
ing of a graph Gr in |Σr| colours, when Gr is known to be |Σr|-colourable. Sim-
ply permuting the colours changes nothing. We want a non-trivial recolouring,
a proper colouring that is not simply a permutation of the original. Unfortu-
nately, deciding the existence of a non-trivial recolouring is also NP-complete.
To see this, one can use the fact that deciding whether a 3-SAT formula has a
second satisfying assignment, given one satisfying assignment, is NP-complete
[19]. Then using the well-known reduction from 3-SAT to vertex colouring [11],
one finds that deciding the existence of a non-trivial vertex recolouring is also
NP-complete.

With this complexity in mind, we do not make a concerted effort to find
non-trivial recolourings for the conflict graphs. Rather we use a simple greedy
approach. For each Gr, collapse multiple edges (if present) and sort the vertices
in nonincreasing order by degree, breaking ties at random. Now process the
vertices in this order, assigning each in turn a colour chosen at random from
those not already assigned to one of its neighbours. If none is available for
some vertex, no colouring is produced. We repeat this process until either a
colouring is produced, or a limit on the number of attempts is reached. When a
colouring is found, its colours are interpreted as symbols to replace row r. When
no colouring is found, the row is left unchanged.

Adding this recolouring method to the generic post-optimization strategy pro-
duces a variant, recolouring post-optimization.

4 Computational Results

A specialization of generic post-optimization has been surprisingly successful at
improving covering arrays [13,14]. Here we focus on applications to hash families,
but remind the reader that there is a wide variety of t-restriction problems in
which the methods could be employed. We always treat homogeneous, uniform
hash families with N rows, k columns, v symbols, and a restriction of strength
t. C++ implementations of both generic and recolouring post-optimization were
tested using an 8-core Intel Xeon processor clocked at 2.66GHz with 4MB of
cache, bus speed 1.33GHz, and 16GB of memory. Testing proceeds by first gen-
erating an array one row at a time, choosing rows at random, until all demands
are met. Post-optimization is then applied to improve the solution, if possible.
Except when noted, post-optimization was executed for one minute on a single
core.
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Perfect hash families have been very extensively studied (for example, [18]
and references therein). For strengths t ∈ {5, 6}, v = t, and k ≤ 25, generic
post-optimization of random arrays rarely produces arrays that are competitive
with the best known sizes; this should be expected, given the computational
effort invested [4,18]. What is surprising is that recolouring post-optimization
not only recreates many of the best known results, but constructs a 10×10 PHF
with t = v = 5, shown in Figure 2. This improves on the previous best known
13× 10 and 11× 9 PHFs [17].

We expect the most useful applications to arise for t-restriction problems
that have not been extensively researched before. In producing a {w1, . . . , ws}-
SHF, one could naturally use a PHF of strength t =

∑s
i=1 wi, provided that the

number of symbols is at least t. We therefore compare cases for {2, 2, 1}-, {4, 1}-
, and {3, 2}-SHFs, with the best known results for PHFs [17]. Table 1 gives a
selection of results from generic post-optimization. Columns headed by ‘G’ are
from generic post-optimization, those headed ‘I’ are sizes of the initial random
array, and the one headed ‘B’ is the best known result from [17].

Naturally as v is decreased, the number of rows generally increases, as one
would expect. Because of the randomness of post-optimization, it can happen
that a solution with fewer rows is found even when k is increased of v is decreased;

Table 1. Generic post-optimization for SHFs

{1, 1, 1, 1, 1} {2, 2, 1} {4, 1} {3, 2}
v → 5 5 5 5 5 4 4 3 3 5 4 3 2 5 4 3 2
k ↓ B G I G I G I G I G G G G G G G G

5 1 1 9 1 7 6 18 15 80 3 3 3 5 4 5 6 10
6 3 3 28 3 24 7 40 15 99 3 3 5 6 5 5 10 15
7 6 6 49 6 24 7 58 28 212 3 4 5 7 7 7 11 15
8 8 8 73 8 42 12 75 28 236 4 6 7 8 7 9 13 22
9 11 12 107 13 45 22 98 28 371 4 6 9 9 7 11 16 27
10 13 15 109 13 41 22 92 28 417 5 7 9 10 8 11 18 31
11 16 20 125 17 55 33 118 75 338 7 7 12 20 12 14 21 35
12 21 25 141 19 59 36 112 84 385 7 9 13 21 11 16 23 39
13 26 30 138 22 71 43 127 98 502 8 9 14 13 12 16 25 43
14 32 36 166 25 71 47 136 108 454 8 10 17 22 12 17 26 45
15 35 40 165 27 71 50 135 126 453 10 12 18 23 14 18 29 49
16 39 45 181 28 74 54 147 138 542 9 12 18 24 15 20 30 52
17 44 50 185 32 79 57 146 150 513 10 13 19 25 16 20 33 55
18 49 56 200 33 77 62 156 164 469 11 14 22 24 16 22 33 59
19 53 61 217 35 78 67 158 177 526 11 14 22 26 17 23 34 62
20 57 64 263 37 78 71 163 188 442 11 15 24 27 18 23 35 64
21 61 70 244 39 95 75 151 204 471 12 15 25 27 18 25 38 66
22 64 75 254 42 77 82 168 220 484 13 16 25 29 19 25 39 69
23 68 81 244 44 84 83 179 233 618 12 17 27 28 20 27 40 73
24 71 84 294 44 98 86 213 233 606 13 17 27 28 21 27 41 77
25 74 90 248 50 88 92 187 247 670 14 18 28 31 22 29 43 78
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2 3 4 3 0 4 1 0 2 1
0 1 1 3 4 2 2 4 3 0
1 4 2 0 3 0 3 4 2 1
1 1 2 3 3 4 0 4 2 0
2 4 4 1 1 2 0 3 0 3
1 1 4 3 4 0 0 2 2 3
2 1 0 3 2 0 4 1 4 3
4 3 0 2 4 1 3 1 2 0
4 2 0 3 0 3 2 1 4 1
2 4 1 4 3 2 3 0 0 1

4 4 1 4 0 3 2 4 5 1 0
5 0 5 1 3 2 0 2 2 3 4
5 4 3 1 2 3 3 0 2 3 0
3 1 4 0 4 0 2 5 3 5 1
4 1 0 0 4 3 5 2 5 1 3
3 0 0 2 2 5 2 2 4 1 1
0 1 5 4 0 1 0 5 3 3 2
5 2 1 4 0 3 3 5 2 0 4
5 2 3 5 0 0 1 4 3 5 1

Fig. 2. A 10× 10 PHF with t = v = 5, and a 9× 11 (6, 2)-DHF with v = 6

for example, a 13× 13 {4, 1}-SHF with v = 3 was found, having fewer rows than
the 21 × 12 solution with v = 3 and the 14 × 13 solution with v = 4. Here
one could treat the 13 × 13 solution as having v = 4, or delete a column to
obtain a 13× 12 solution with v = 3. We have not recorded such implications in
the tabulation, so as to focus on the results of post-optimization. Recolouring
post-optimization can often improve these results, sometimes substantially: The
247×25 {2, 2, 1}-SHFwith v = 3 improves to a 213×25 solution, a 13% reduction
in the number of rows.

Restrictions with more than one demand can also be treated. Suppose, for
example, that we want an array that is {4, 1}- and {3, 2}-separating with k = 25
and v = 5. Rather than using the 74 × 25 PHF, we could combine the 14 × 25
{4, 1}-SHF and the 22× 25 {3, 2}-SHF to produce a 36× 25 solution. Better yet,
generic post-optimization using the two demands simultaneously yields a 22×25
solution in one minute. Similarly, a 49× 25 array that is {2, 2, 1}-, {4, 1}-, and
{3, 2}-SHF with v = 5 was found, which unexpectedly has fewer rows than the
50× 25 {2, 2, 1}-SHF in Table 1.

Distributing hash families impose a number of separation demands simulta-
neously. Table 2 show results for (6, s)-DHFs with s ∈ {2, 3, 6}. The case when
s = 6 is the PHF, and the known result from [17] is reported. The remaining
values are from post-optimization. When v = 6, both generic and recolouring
post-optimization typically produce solutions with fewer rows than the PHF. No-
tably, recolouring post-optimization often yields a much smaller result than does
generic post-optimization, supporting the belief that conflict graph recolouring
can avoid many of the local optima encountered in the generic method. Because
these cases have strength t = 6, when k = 20 we are examining 27,907,200 6-
tuples of columns to check demands. Hence one might expect that our standard
one minute limit on computation time does not permit many iterations! Indeed
permitting five minutes rather than one improves the 116× 20 (6, 3)-DHF with
v = 6 to an 88× 20 solution.

Recolouring post-optimization also improves a 15× 11 (6, 2)-DHF with v = 6
to a 9 × 11 solution, shown in Figure 2, and it improves a 36 × 20 (6, 2)-DHF
with v = 6 to a 24× 20 solution. In the interests of conserving space, we do not
provide a complete list.
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Table 2. Generic and recolouring post-optimization on (t, s)-DHFs

Known Generic Recolouring
(6, 6) (6, 2) (6, 3) (6, 3)

k ↓ v → 6 6 5 4 3 2 6 5 4 3 6 5 4 3

6 1 1 7 12 15 31 10 17 31 90 1 16 28 89
7 4 8 8 11 20 42 11 17 39 113 4 16 37 101
8 8 7 15 18 27 50 17 25 54 177 10 22 48 175
9 13 9 13 20 32 57 16 31 64 224 16 29 63 223
10 18 11 16 24 39 72 21 38 83 291 20 37 81 278
11 24 15 19 26 43 84 26 46 99 352 25 44 95 340
12 27 15 21 30 49 96 34 94 150 563 30 53 113 403
13 39 19 24 32 55 110 37 66 140 516 36 61 133 473
14 53 20 26 39 62 123 44 81 162 590 40 72 150 539
15 64 25 29 43 69 136 55 93 185 676 47 83 173 615
16 77 26 32 45 72 151 63 113 211 765 52 90 190 685
17 86 29 35 47 81 164 71 112 236 853 64 101 214 769
18 94 30 39 53 89 182 87 130 273 1021 70 112 233 832
19 106 32 46 58 94 196 101 148 300 1021 74 127 256 914
20 120 36 53 63 104 213 116 158 321 1121 75 136 282 984

Table 3. Post-optimization on (t, s)-PaHFs. Columns labelled R are recolouring, the
rest generic.

(4, 2)- (5, 2)- (5, 4)- (6, 5)- (7, 6)-

k ↓ v → 4 3 2 2R 5 4 3 2 5 5R 4 6 5 7 6

5 10 10 10 10 15 15 15 15 10 10 10
6 12 12 10 10 15 24 15 16 16 15 18 15 15
7 12 12 11 11 21 20 21 20 24 23 25 23 31 21 21
8 14 11 12 11 29 29 29 28 29 28 21 41 55 38 45
9 14 15 15 11 36 35 35 35 33 33 46 53 80 66 98
10 17 11 16 11 43 40 39 39 43 42 56 74 100 112 162
11 17 16 17 17 47 45 44 44 49 48 70 93 196 220 271
12 19 18 18 17 50 49 49 46 61 55 81 122 187 313 388
13 22 21 19 19 54 54 53 52 66 64 91 152 242 573 580
14 22 21 21 20 56 57 56 54 73 70 106 177 283 909 1047
15 23 22 21 20 61 62 61 58 80 76 118 209 345
16 24 24 23 21 68 63 62 61
17 26 25 23 22 69 70 68 64
18 26 25 24 23 75 73 70 69
19 27 26 25 24 88 80 75 72
20 30 28 25 25 92 81 80 74
21 29 29 26 26 129 103 85 80
22 29 30 27 27 157 127 99 82
23 32 30 28 28 119 126 96 83
24 34 33 29 28 208 150 105 86
25 35 33 30 29 258 159 123 89
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Table 3 reports on the results of post-optimization on randomly generated
PaHFs; there is no known result with which to compare. Examining the (4, 2)-
and (5, 2)-PaHFs, it is striking that allowing more symbols often yields a larger
number of rows; yet it is clear that one can simply not use the extra symbols, and
so an array on fewer symbols remains a solution on more. The behaviour is an
artifact of the random selection process for the initial array. Indeed when more
symbols are provided, the chance increases that, while columns are separated, too
many symbols are used to do so. This could be overcome by using a better greedy
method to make the initial array, for example the methods in [7]. This does not
occur in every case examined. For (6, 5)- and (7, 6)-PaHFs, better results are
obtained with more symbols permitted. In these cases, in a separation

(
t
2

)
− 1

pairs must have different values, but only one pair requires the same. Hence
selecting rows uniformly at random yields a better initial solution in these cases.

Recolouring post-optimization (in the two columns marked R in Table 3)
yields improvements beyond those obtained by generic post-optimization. Co-
alescing vertices in the conflict graphs appears to have lessened the benefit of
recolouring; nonetheless it is striking that improvements remain possible.

5 Conclusion

Arrays for t-restrictions permeate many different applications. General tools to
construct them include greedy methods and random methods, but both appear
to yield arrays with an unnecessarily large number of rows. Naturally more
sophisticated methods can typically be devised for a specific t-restriction, but
requires careful analysis of the specifics of the restriction. Therefore we have
developed a general technique, focussing first on unnecessary entries and then
on changeable entries, to eliminate rows repeatedly. Even with modest invest-
ments of computation time, and even starting with poor input arrays, these
post-optimization methods yield useful arrays. We anticipate that their main
value is in improving solutions found by methods other than simple random tech-
niques, as has been the case with covering arrays. However, the real strength of
the methods is their ability to deal with arbitrary t-restriction problems. Ap-
plications beyond the realms of hash families and covering arrays appear well
worth further research.

Acknowledgements. Thanks to Daniel Horsley and Violet Syrotiuk for helpful
discussions about this research.

References

1. Ahlswede, R., Deppe, C., Lebedev, V.: Threshold and Majority Group Testing. In:
Aydinian, H., Cicalese, F., Deppe, C. (eds.) Ahlswede Festschrift. LNCS, vol. 7777,
pp. 488–508. Springer, Heidelberg (2013)

2. Ahlswede, R., Wegener, I.: Search Problems. Wiley Interscience (1987)
3. Alon, N., Moshkovitz, D., Safra, S.: Algorithmic construction of sets for k-

restrictions. ACM Transactions on Algorithms 2, 153–177 (2006)



608 C.J. Colbourn and P. Nayeri

4. Colbourn, C.J.: Constructing perfect hash families using a greedy algorithm. In:
Li, Y., Zhang, S., Ling, S., Wang, H., Xing, C., Niederreiter, H. (eds.) Coding and
Cryptology, pp. 109–118. World Scientific, Singapore (2008)

5. Colbourn, C.J.: Distributing hash families and covering arrays. J. Combin. Inf.
Syst. Sci. 34, 113–126 (2009)

6. Colbourn, C.J.: Covering arrays and hash families, Information Security and Re-
lated Combinatorics. In: NATO Peace and Information Security, pp. 99–136. IOS
Press (2011)

7. Colbourn, C.J., Horsley, D., Syrotiuk, V.R.: Strengthening hash families and com-
pressive sensing. Journal of Discrete Algorithms 16, 170–186 (2012)

8. Colbourn, C.J., Zhou, J.: Improving two recursive constructions for covering ar-
rays. Journal of Statistical Theory and Practice 6, 30–47 (2012)

9. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

10. Du, D.-Z., Hwang, F.K.: Combinatorial group testing and its applications, 2nd
edn. World Scientific Publishing Co. Inc., River Edge (2000)

11. Karp, R.M., Miller, R.E., Thatcher, J.W.: Reducibility among combinatorial prob-
lems. Journal of Symbolic Logic 40(4), 618–619 (1975)

12. Liu, L., Shen, H.: Explicit constructions of separating hash families from algebraic
curves over finite fields. Designs, Codes and Cryptography 41, 221–233 (2006)

13. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized Postoptimization of Cov-
ering Arrays. In: Fiala, J., Kratochv́ıl, J., Miller, M. (eds.) IWOCA 2009. LNCS,
vol. 5874, pp. 408–419. Springer, Heidelberg (2009)

14. Nayeri, P., Colbourn, C.J., Konjevod, G.: Randomized postoptimization of cover-
ing arrays. European Journal of Combinatorics 34, 91–103 (2013)

15. Stinson, D.R., Van Trung, T., Wei, R.: Secure frameproof codes, key distribu-
tion patterns, group testing algorithms and related structures. J. Statist. Plann.
Infer. 86, 595–617 (2000)

16. Stinson, D.R., Zaverucha, G.M.: Some improved bounds for secure frameproof
codes and related separating hash families. IEEE Transactions on Information
Theory, 2508–2514 (2008)

17. Walker II, R.A.: Phftables, http://www.phftables.com (accessed March 10, 2012)
18. Walker II, R.A., Colbourn, C.J.: Perfect hash families: Constructions and exis-

tence. Journal of Mathematical Cryptology 1, 125–150 (2007)
19. Yato, T., Seta, T.: Complexity and completeness of finding another solution and

its application to puzzles. IEICE - Transactions on Fundamentals of Electronics,
Communications and Computer Sciences E86-A(5), 1052–1060 (2003)

http://www.phftables.com


Search for Sparse Active Inputs: A Review

Mikhail Malyutov

Math. Dept., Northeastern University, 360 Huntington Ave., Boston, MA 02115
m.malioutov@neu.edu

Dedicated to the memory of Rudolf Ahlswede

Abstract. The theory of Compressed Sensing (highly popular in recent
years) has a close relative that was developed around thirty years earlier
and has been almost forgotten since – the design of screening experi-
ments. For both problems, the main assumption is sparsity of active
inputs, and the fundamental feature in both theories is the threshold
phenomenon: reliable recovery of sparse active inputs is possible when
the rate of design is less than the so-called capacity threshold, and im-
possible with higher rates.

Another close relative of both theories is multi-access information
transmission. We survey a collection of tight and almost tight screen-
ing capacity bounds for both adaptive and non-adaptive strategies which
correspond to either having or not having feedback in information trans-
mission. These bounds are inspired by results from multi-access capacity
theory. We also compare these bounds with the simulated performance
of two analysis methods: (i) linear programming relaxation methods akin
to basis pursuit used in compressed sensing, and (ii) greedy methods of
low complexity for both non-adaptive and adaptive strategies.

Keywords: search for sparse active inputs, multi - access communica-
tion, compressive sensing, group testing, capacity.

1 Introduction and History Sketch

The idea of using ‘sparsity’ of factors actively influencing various phenomena
appears repeatedly throughout a diverse range of applications in fields from com-
putational biology to machine learning and engineering. Notably, [12] used the
assumption of sparsity of contaminated blood donors to dramatically reduce the
number of experiments needed to adaptively screen them out. Troubleshoot-
ing complex electronic circuits using a non-adaptive identification scheme was
considered in [48] under the assumption that only a few elements (a sparse sub-
set) become defective. A recent application of these ideas enabled affordable
genetic screening to successfully eliminate lethal genetic diseases prevalent in an
orthodox Jewish community in New York city, as described in [13].

Successful optimization of industrial output for dozens of real world ap-
plications was reported in [4]. The authors of that paper used the sparsity
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assumption of non-negligible (active) coefficients in the multivariate quadrat-
ic regression model, randomized design, and proposed the Random Balance
Method (RBM) of analysis of outputs. The method was essentially a visual
greedy inspection of scatterplots to identify the most active inputs and allowed
consequent optimization of the output. RBM, inspired by the Fisher’s celebrated
idea of randomization in estimation, was officially buried by the leading Western
statisticians (G.E.P. Box, D.R. Cox, O. Kempthorne, W. Tukey et al) in their
unjustified disparaging discussion following the publication of [4] in the first vol-
ume of Technometrics. As a result, F.E. Satterthwaite, the author of RBM,
suffered a breakdown and was confined for the rest of his life to a psychiatric
clinic.

In the pioneering annotated overview of Western literature on regression and
design [39]1, V.V. Nalimov characterized RBM as a psycho-physiological triumph
of the experimenter’s intuition over mathematical arguments and predicted that
mathematicians would never understand RBM’s effectiveness, which Nalimov’s
team confirmed on many simulated and applied examples.

A partial combinatorial justification of RBM was soon obtained in [38] (see
also our section 1.2) and immediately continued in [32]. A.N. Kolmogorov made
me responsible to report to him on mathematical aspects of what was going on
in Nalimov’s Department of Kolmogorov’s huge Lab. This task made me inter-
ested in the subject and resulted in my many publications on optimal design of
experiment. [32] first introduced information-theoretic grounds for the effective-
ness of RBM. [32], together with organizing the donors’ blood group testing for
hepatitis in the Moscow Blood Transfusion Center and my joint (later patented)
work on built-in troubleshooting systems for the construction of complex redun-
dant circuits in the first Soviet aircraft carriers [48], this became a stimulus to
almost 40 years of my and my pupils’ continuing research in this exciting area.

The funding for the latter project motivated A.G. D’yachkov and V.V. Rykov
to join my seminar at the Kolmogorov Lab in Moscow University. Many
fundamental results were obtained by its participants. While I restricted myself
to finding probabilistic performance bounds in various screening adaptive and
nonadaptive models with positive error probability, D’yachkov and Rykov’s
main results were directed to combinatorial and algebraic methods of errorless
design construction for noiseless models. The Russian giants of Information The-
ory (Kolmogorov, Pinsker and Dobrushin) supported our activity substantially.
G. Katona introduced us to previous research on Search Theory of the Erdős-
Rényi school (implementable mostly for finding one active input under their
homogeneity condition). In his last published paper, C. Shannon announced
that he had found the Multi-Access capacity region, without disclosing it. This
problem was solved in the famous paper [1]. I. Csiszár pointed to the relevance
of this discovery to our problem.

R. Ahlswede was the first outstanding Western researcher to recognize the
results of our Moscow team. He endorsed its description in my Addendum to
the Russian translation of [2] and recommended its inclusion into the English

1 This book was later translated back into English.
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translation of their book (this was sabotaged by the Soviet copyright selling
agency). R. Ahlswede’s diploma student J. Viemeister at Bielefeld University
prepared a detailed survey [45] of our results spanning around 200 pages in 1982.
My stay in the instrumental depot of R. Ahlswede’s home in Bielefeld during
the period: Fall 1993 - Spring 1994, eliminated my depression caused by the
collapse of Soviet science.

Ironically enough, W. Tukey, one of RBM’s harshest critics, soon after the fatal
outcome of the aforementioned discussion paper became a supervisor of an un-
dergraduate student named David Donoho in Princeton. More than forty years
after that sad story, Donoho initiated and successfully marketed an enthusiasti-
cally accepted revival of related ideas under the name ‘Compressed Sensing’ for
estimation in over-parameterized linear models with L1-penalty or Linear Pro-
gramming (LP) analysis (basis pursuit). These ideas were also proposed around
the same time in [43] under the name of LASSO for related statistical problems.
Neither of these authors were apparently aware of the connection to the RBM
method. Thanks to D. Donoho’s popularization, sparsity is now a well established
assumption in statistical applications! LP with proven moderate degree polyno-
mial complexity under the so-calledRIP condition of [5] on the designmatrix allow
some upper bounds for the sample size of the design matrix.

The threshold phenomenon was observed in [11] as a result of intensive simula-
tion performed for randomized designs. Connection to the Shannon’s celebrated
justification for a closely related phenomenon arising in information transmis-
sion using his notion of channel capacity started to be noticed only later.
Some attempts to find lower performance bounds for compressive sensing using
information-theoretic tools were later made in [46]. I am unaware of the sit-
uations, where these lower bounds are asymptotically equivalent to the upper
bounds under the RIP condition in contrast to our lower bounds for the STI
analysis. Discussion of the relation between our and the most popular com-
pressive model is in Remark 2 after the Theorem 2.1.1. In section 4 we briefly
outline our doubts on validity of s/t asymptotics discussed in compressive sens-
ing unless the unknown parameters of the linear model are incommensurable.
Numerous publications on compressive sensing during the last decade are listed
on www.dsp.ece.rice.edu/cs.

Asymptotically sharp capacity bounds inspired by the Multi-Access Capacity
Region construction were obtained in [26,30], for brute-force (BF) analysis, and
in [31,33], for separate testing of inputs methods (STI). These bounds can greatly
enhance current understanding of the threshold phenomenon in sparse recovery.
Some of these results for a particular case of ∪-model and BF analysis were
rediscovered in [3].

These bounds are obtained for asymptotically optimal designs (which turn out
to include random designs) and thus imply upper bounds for the performance of
recovery under arbitrary designs. Random designs are a simple natural choice
for pre-specified experimental design and moreover they provide the ability to
effectively apply STI analysis via asymptotically optimal empirical mutual in-
formation maximization between inputs and the output. STI replaces the visual



612 M. Malyutov

inspection in RBM [4]. STI and greedy STI capacities outperform Linear Pro-
gramming relaxation for randomized designs in a wide range of models (see our
section 3-4). They also admit a straightforward generalization to nonparametric
noisy models including ‘colored noise’.

The outline of the present paper is as follows. Examples will always precede
the general theory and tables will be made transparent by corresponding plots.
We start by setting up elementary noiseless nonadaptive models and discuss their
relation to the compressive sensing in sections 2.1-2. Noisy models are introduced
in section 3 under known noise distribution. Capacity comparison simulation
under several methods of analysis and IID unknown noise will be covered in
sections 4-5 followed by the study of colored noise and finite t, N → ∞ in sections
6-7. Section 8 on adaptive designs starts with an elementary asymptotically
optimal adaptive search description for active inputs of an unknown boolean
function, followed by discussion of the example when capacity of adaptive search
exceeds that for any nonadaptive ones. Finally, we outline adaptive search for
active inputs of a nonparametric noisy additive function, which is similar to the
adaptive strategy for general unknown function studied in [35]. The outlines of
more involved proofs will be found in Appendices 9.1-5.

2 Popular Elementary Models

The first popular models of screening include the Boolean sum (or simply ∪-
model), and the forged coin model (FC-model). The ∪-model, was used [12] to
model the pooled adaptive testing of patients’ blood for the presence of a certain
antigen. Dorfman’s innovative adaptive design reduced experimental costs by
an order of magnitude! (the ∪-model is also known as “group testing” in search
theory or as “superimposed codes” in information theory).

Another combinatorial example is nonadaptive search for a subset of forged
coins (with their weights exceeding the weight of genuine coins by one unit) using
weighings of the minimal number of subsets of coins, as popularized in [14].

Let us formalize these two examples to show their interrelation. Introduce
an (N × t) nonadaptive design matrix X with entries xi(a) as indicators of
participation of a-th coin (patient) in the i-th trial, i = 1, . . . , N, a = 1, . . . , t.
Let A ∈ Λ(s, t) be the unordered subset of active inputs (AIs), i.e. forged coins
(or, respectively, of sick patients) and denote the corresponding part of the i -th
X ’s row as xi(A). The output yi of the i-th trial can then be described by the
formula:

yi = g(xi(A)), (1)

where in the first example, g is a boolean sum ∪:

g(x(A)) = ∪a∈Ax(a), (2)

and in the second example, g represents ordinary summation:

g(x(A)) =
∑
a∈A

xi(a). (3)
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Both functions are symmetric.
We first survey nonadaptive designs (as opposed to adaptive Dorfman’s pooled

blood testing strategies) for the ∪-model that were successfully applied in various
settings, e.g. for quality improvement of complex circuits, for trouble-shooting
of large circuits with redundancy [48], etc. The FC-model was used to model an-
nouncing existence of information packets ready for transmission through multi-
access phase-modulated communication channels in ALOHA-type systems.

Introduce ‘T-weakly separating’ (N×t) design matrices allowing identification
of the true s-subset of active inputs with probability≥ 1−γ under uniform distri-
butions of active s-subsets and analysis T of outputs, and minimum NT (s, t, γ)
of N for them. Of special interest is finding the maximal rate or (capacity)
CT (s) = limt→∞ log t/NT (s, t, γ). CT (s) exists, does not depend on γ > 0 and
is evaluated in the most general model with a nonparametric response function
and arbitrary unknown measurement noise for at least two methods of analysis
: Brute Force (BF) and Separate Testing of Inputs (STI). The capacity has not
yet been found for the L1 minimization analysis, although results of [17] reduce
it to a more feasible problem.

The theory of ‘strongly separating designs’ (SSD) for sure identification (γ =
0) of every significant s-subset is far from being complete: existing lower and
upper bounds for the minimal number N(s, t) in SSD differ several times ap-
parently in all models but one (sum modulo 2) including the two elementary
ones described before with s > 1. Apparently, randomly generated strongly
separating designs require asymptotically larger N than the best combinatorial
ones.

The early upper bounds N̄BF (s, t, γ) for NBF (s, t, γ) and BF-analysis in
many elementary models including the two mentioned above can be found in
a survey [24] with lower bounds obtained thanks to the subadditivity of the
entropy. The entropy of the prior uniform A distribution is log

(
t
s

)
while the

entropy of each output cannot exceed 1 for the ∪-model and entropy of the
hypergeometric distribution for the FC-model. An early upper bound for the
∪-model NBF (s, t, γ) ≤ s log t + 2s log s − s log γ was obtained in [23] and
strengthened in [25]. For the FC-model, the asymptotic capacity expression

is N̄BF (s, t, γ) = s log t/H(B
(1/2)
s )(1 + o(1)) as t → ∞, where B

(1/2)
s (·) is the

Binomial distribution with parameter 1/2, and H(B
(1/2)
s ) is its binary entropy.

2.1 Noiseless Search in General Linear Model Under U

Consider the Linear (in inputs and parameters) model

yi =
∑
a∈A

baxi(a), (4)

with binary carriers xi(a) = ±1, i = 1, . . . , N, a = 1, . . . , t.
Assume first the incommensurability of the active coefficients: U. The only

solution to
∑

a∈A baθ(a) = 0 with rational coefficients θ(a) is θ(a) ≡ 0.
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Under U, the cardinality of {
∑

a∈A baθ(a), θ(a) = ±1}, is 2s. This maximal
cardinality of the range of the outputs holds almost surely if active coefficients
ba, a ∈ A, are chosen randomly with whatever non-degenerate continuous distri-
bution is taken in Rs. Their values can be determined in a few experiments but
their assignment to inputs is harder to determine.

Remarks. For the FC case ba ≡ 1, the cardinality of the same distinct linear
combinations is s+1. These two models with maximal and minimal cardinality of
the range of the function g(·, b1, . . . , bs) are the ones that have been studied the
best. Two main differences between the linear model under U and the previous
two models are the lack of symmetry leading to necessity of determining ordered
s-subsets of AIs and the presence of nuisance active non-null coefficients.

Theorem 2.1.1. [38] Under condition U and entries xi(a) = ±1 of the design
matrix chosen independently and equally likely, the system of equations (4)
determines the set As unambiguously with probability not less than 1− γ, if

N ≥ N̄BF (s, t, γ) = s+ log([t− s+ 1]/γ). (5)

Sketch of Proof
We use the following lemma in proving all our upper bounds for N with γ > 0.

Lemma 2.1.1. The mean of MEP over the ensemble of random designs equals
the same mean of conditional error probabilities P[s], when [s] := {1, . . . , s} is
the true set of SI’s.

The proof is straightforward because of the symmetry of the ensemble of
random designs.

Thus we can assume without loss of generality (WLOG) that As = [s]. The
next step is the following combinatorial lemma easily proved by induction:

Lemma 2.1.2. Any s-dimensional hyperplane can intersect the unit cube in
RN in no more than 2s vertices.

Consider the following events:
Bs = {X ∈ RN×t : the first s× s-minor is non-degenerate },
Cj,k : {X : N - column x(j) is linearly independent of the first s columns,
D = BsΠj>sCj,s.
Meshalkin argues: D holds under U with probability exceeding 1 − γ and

identities in equations (4) hold, if nonzero values are assigned only for the first
s coefficients under U and D.

Remarks. 1. The same lemma 2.1.2 and a straightforward criterion of [42]
of a noiseless linear model to be strongly separating allowed the proof in [24]
of an upper bound for N in randomly generated binary design to be strongly
separating without any condition on cardinality of all possible outputs:

N ≥ 2s[log(te/2s) + 1]. I am unaware of any lower bound for this model.
2. Meshalkin generalized his result for random q-ary γ-separating designs

obtaining for them the upper bound N(s, t, γ) ≤ s + logq[(t − s + 1)/γ] and
discussed the practical meaning of this bound in his two-page note of 1977.
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Continuous design levels for the linear model can increase the capacity
of screening. Moreover, the BF analysis can find the subset of AIs in
a bounded number of experiments as t → ∞ with prior probability 1
over significant coefficients, although this fact cannot be generalized
for the linear model with noise, in contrast to the Meshalkin’s theorem
for discrete designs.

Adaptive designs for the linear model with the same capacity as nonadaptive
ones were constructed in [32] (under a weaker assumption than U on active
coefficients). The first information-theoretic interpretation of AIs recovery in
sparse models was outlined there for the General Linear model.

The subadditivity of the entropy implies an asymptotic lower bound of about
log t, since the entropy of each trial cannot exceed s.

Random designs provide us with about s bits of information per each of the
first log t independent trials on an unknown subset A due to the fact that under
condition U , all 2s outputs corresponding to distinct combinations of values
taken by the AIs are different. In other words, the outputs signal about the
values taken by each AI in the first independent experiments. The additivity of
entropy for independent trials suggests that since initial uncertainty is log(t)s =
s log t(1+ o(1)), we can resolve the initial uncertainty in about log t steps. Thus
lower and upper bounds asymptotically coincide as t→ ∞.

2.2 STI

‘Identifying’ in the definition of γ-separating designs means unique restoration
of A ∈ Λ(s, t) by T - analysis with probability ≥ 1 − γ, which may involve
searching through all

(
t
s

)
possible subsets of all variables therefore becoming ex-

tremely computationally intensive for even moderate values of s as t→ ∞. Thus
studying capacity under simplified methods such as historically the first Sepa-
rate Testing of Inputs (STI) or greedy STI with analysis complexity of O(t log t)
discussed further in I. 3 (or more recent Linear Programming (LP) with proven
moderate degree polynomial complexity under the so-called RIP condition of [5]
on the design matrix) is an important problem. The analysis problem becomes
even more critical in more general models with noise and nuisance parameters.
Finding the capacity for linear models under LP analysis is still a challenge.
Hope for progress in this direction is based on applying the recent criterion [17]
instead of the RIP condition [5] which seems not suitable for capacity evaluation.

3 I.I.D. Noisy Sparse Recovery Setting

Suppose that we can assign an arbitrary t-tuple of binary inputs x := (x(j), j ∈
[t]), [t] := {1, . . . , t} and measure the noisy output Z in a measurable space
Z such that P (z|y) is its conditional distribution given ‘intermediate output’
y = g(x(A)) as in (1), and P (z|x(A)) is their superposition (Multi Access Chan-
nel (MAC)), where x(A) is an s-tuple of x of AIs. Conversely, every MAC can
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be decomposed uniquely into such a superposition. We omit the obvious gener-
alization to q-ary inputs and we mark distributions related to a particular MAC
by the superscript m ∈ M, where M is a convex set of MACs.

Successive measurements ζi, i = 1, . . . , N, are independent given anN -sequence
of input t-tuples ((N × t)-design).

To avoid rather mild algebraic technicalities, we review first the case of a
symmetric g(x(A)) and finite output alphabet, referring to [31], [36] for a general
case.

For a sequence D of N-designs, N = 1, . . . , introduce the asymptotic rate

CT (D) = lim sup
t→∞

log t

NT
s (γ)

(6)

of a test T . Here NT
s (γ) is the minimal sample size such that the probability of

T to misidentify s-tuple A over the measure product of uniform A prior and IID
noise distributions (mean error probability (MEP)) is less than γ , 0 < γ < 1.
For a general class of tests and designs, AR does not depend on γ, 0 < γ < 1,
and remains the same for slowly decreasing γ(t) : | log γ(t)| = o(log t) as t→ ∞.

It is well-known that for known MAC P (z|x(A)), the Maximum Likelihood
(ML)-decision minimizes the MEP for any design. It replaces the BF analysis
for the known MAC distribution. Thus CML is maximal among all tests, if
applicable. If MAC is unknown, the universal nonparametric test Ts inspired
by a similar development in [7] provides the maximal CTs under arbitrary finite
inputs and assumptions.

i. Strict positivity of the cross-entropy between the output distri-
butions corresponding to different g(·) and the so-called

ii. compactifiability of continuous output distributions [36].

Test Ts chooses as AIs the s-subset A maximizing the Empirical Shannon Infor-
mation (ESI)

Is(τNN (A)) =
∑

x(A)∈B|A|

∑
z∈ZN

τ(x(A), z) log(τ(z|x(A))/τ(z)), (7)

where τN (·) is the marginal quantized empirical distribution of the output.
The universal STI decision chooses maximal values of the I for an a-th input

and output, a = 1, . . . , t. I is defined as Is with summation now extended over
all values of x(a) instead of s-tuples.

One of the intuitive ideas behind the choice of the statistics T and Ts is that
for s- subset of AIs (and its subsets), T and Ts are strictly positive while for an s-
subsets of inactive inputs, T and Ts for inactive inputs asymptotically vanish for
large samples. The less transparent idea is that the large deviation probabilities
for this test are unexpectedly easy to bound from above using Sanov’s Large
Deviations theorem and its conditional version (see 9.1-4).
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3.1 Capacity of STI, Known Symmetric MAC

In Separate Testing Inputs for each input k we test the null ‘randomness’ hy-
pothesis: product distribution Q0(x, z) = P (ξ(k) = x)P (ζ = z) versus the
‘activeness’ alternative

Qk(x, z) = P (x)P (ζ = z|ξ(k) = x). (8)

Due to the independence of trials, these distributions generate the product
marginal distributions

Qj(x(k, z)), j = 0, k. (9)

We denote the mean and variance over Qj as Ej and σ2
j respectively, the likeli-

hood ratios lk(x(k, z)) and critical regions

Δk = {x, z : lk(x, z) > max{κu(k),max
m 
=k

lm(x, z)}, k = 1, . . . , s, (10)

and their complement Δ0.
The critical value is

κu(k) = Elk − uσ(lk). (11)

Of course, Elk = I(ζ) ∧ ξ(k) = NI(ζ ∧ ξ(k)). The variance is also additive.
Thus κu(k) = NLk − uσk

√
N .

Let us define the STI decision as (f(1), . . . , f(t)), where f(k) =
∑
k1k, and

1k is the indicator of set Δk.
The decision is correct if f(λi) = i, i = 1, . . . , s, where λi is the i-th AI and

f(j) = 0 for all other j.

Definition. AI k is hidden in noise(HiN) if Qk = Q0 for all values p of the
randomization parameter.

[31] gives elementary examples of HiN AI, a necessary and sufficient condition
for AI to be HiN and, as a corollary, sufficient conditions for non-existence of
HiN AIs.

It is proved in [31] that there are no HiN AIs in symmetric models.

Theorem 3.1.1.[31] For a symmetric model NSTI(s, t, γ)/ log t → 1/L as t →
∞, where L = Elk does not depend on k.

Proof. (sketch) Of the three types of errors, only
e0k = P ((ξ(j), ζ) ∈ Δk, j > s), k ∈ [s], depends on the design rate as t→ 0.
e0k ≤ PQ0(lk(x, z) > κu(k)) ≤
≤

∑
Δk

Q0(x, z) =
∑

Δk
exp (lk(x, z)) ≤ (1 − ek0) exp−κu(k) ≤ exp−κu(k).

For u ∼ Nα/2, 0 < α < 1, it follows that (t− s)e0k < exp−ε(logt)α for some
ε > 0 as t→ ∞ implying the necessary bound for MEP.

Remark. The asymptotic expression of theorem 1 can be applied to finite t with
caution since the residual is a power of log t decaying very slowly as t grows. In
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the following tables and plots we simply add 5 to the asymptotic expression for
N(s, t, γ) believing that 5 is more than the residual.

Examples. 1. For the ∪ - model

L(s) = H(ζ)−H(ζ|ξ) = (s+ 1)/(2s) + (2−1/s − 1/2) log(1− 2−(s−1)/s). (12)

L(2) = .38 is around .76 of the corresponding value for the BF-analysis. L(s)s→
ln 2. Thus L(s) is around .7 of the corresponding value for the BF-analysis.

2. For the FC-model, the conditional entropy does not depend on the input
value. Thus

L(s) = H(ζ)−H(ζ|ξ) = −
s∑

k=0

B(1/2)
s (k) log[B(1/2)

s (k)]+

1/2{
s∑

k=1

B
(1/2)
s−1 (k − 1) log[B

(1/2)
s−1 (k − 1)] +

s−1∑
k=0

B
(1/2)
s−1 (k) log[B

(1/2)
s−1 (k)]}

= −
s∑

k=0

B(1/2)
s (k) log[B(1/2)

s (k)] +

s∑
k=1

B
(1/2)
s−1 (k) log[B

(1/2)
s−1 (k)]

= H(B(1/2)
s )−H(B

1/2
(s−1)). (13)

s : H(Bs) 2:1.81 3:2.03 4:2.20 5:2.33 6:2.45 7:2.54

The comparative performance of STI vs. BF for this model is worse: for large
s its AR is around const× log s times less. This follows from the logarithmic

growth of H(B
(1/2)
s ) implying the almost constancy of sL(s) as s→ ∞.

The values log(t)/L+5 for the cases 1. and 2. and s=2,...,7, are tabulated at
the end of this section.

3. What is most amazing is the situation for the general linear
model with significant coefficients having a continuous non-degenerate
distribution. This model is discussed in a series of recent papers on
sparse representations and our section 2.1, where the general case
parameters can be restored by STI with the same asymptotic rate as
by the BF analysis.

1. Principal term of NSTI(s, t) for the ∪- model.

s/t 100 200 400 800 1600 3200 6400 12800

2 22.3 25.0 27.6 30.2 32.8 35.4 38.0 40.6
3 32.1 36.1 40.2 44.3 48.4 52.4 56.5 60.6
4 41.7 47.2 52.8 58.3 63.8 69.3 74.9 80.4
5 51.3 58.3 65.3 72.3 79.2 86.2 93.2 100.2
6 60.9 69.4 77.8 86.2 94.6 103.0 111.5 119.9
7 70.5 80.4 90.3 100.1 110.0 119.9 129.7 139.6
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2. Principal term of NSTI(s, t) for the FC-model.

s/t 100 200 400 800 1600 3200 6400 12800

2 13.2 14.4 15.7 16.9 18.1 19.4 20.6 21.8
3 35.2 39.7 44.3 48.8 53.4 57.9 62.5 67.0
4 44.1 50.0 55.8 61.7 67.6 73.5 79.4 85.3
5 56.1 63.8 71.5 79.2 86.9 94.6 102.3 110.0
6 60.4 68.7 77.0 85.4 93.7 102.0 110.4 118.7
7 78.8 89.9 101.0 112.2 123.3 134.4 145.5 156.6

Greedy STI for the ∪ Model. We give only an illustrative example suggesting
that a more elaborate greedy procedure has polynomial complexity of small
degree with larger values of s.

For s=2 in the ∪ model, the Greedy STI is a two-step procedure with MEP
< γ, analysis complexity O(t log t) and the same randomization parameter and
number of experiments as for the BF analysis. The STI is applied on the first
stage yielding (according to our sketch of the proof of theorem 3.1.1) not more
than t−L(2)+ε suspicious inputs satisfying all equations for arbitrary ε > 0, with
probability approaching 1, while the probability of losing at least one active
input is negligible as t → ∞. Applying (12) for s=2, we see that the number
of pairs of these suspicious inputs is less than t and BF analysis applied to all
of them does not yield a single pair of active inputs with small probability. A
modification of this idea works for s=3, and so on.

3.2 Linear Programming (LP) Relaxation, Hybrid LP-BF

Suppose instead of BF analysis, we use Linear Programming (LP) relaxations
for both problems. For the linear version of the problem, we use the popular
�1-norm relaxation of sparsity. The problem in (3) can be represented as

min |A|, such that yi =
∑
a∈A

xi(a), ∀i. (14)

Here |A| represents the number of elements in A. Instead, we define the indicator
vector IA such that IA(a) = 1 iff a ∈ A, and focus on the �1-norm of IA, i.e. on∑

a IA(a). Note that the range of IA is {0, 1}, so it is always nonnegative, and
instead of

∑
a |IA(a)| we can use

∑
a IA(a). We solve the relaxed problem

min
∑
a

IA(a), such that yi =
∑
a∈A

xi(a), ∀i. (15)

This type of relaxation has received a considerable amount of attention in many
fields including statistics (Lasso regression, [43]) and signal processing (basis
pursuit, [9,10], [21]). While the much simpler linear programming relaxation is
not guaranteed to solve the original combinatorial problem, theoretical condition
RIP was developed showing that if the unknown sparse signal is sparse enough,
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then the linear programming relaxation exactly recovers the unknown signal
([11] et al). This problem has also been studied in the random design simulation
setting, and bounds were developed on recovery of the unknown signal with high
probability summarized in the following sentence from [11]: “for many (design)
matrices there is a threshold phenomenon: if the sparsest solution is sufficiently
sparse, it can be found by linear programming”. Our numerical check of this
statement suggests that there are at least two thresholds: one for the brute force
analysis and another for the linear programming. For the non-linear problem we
are forced to relax not only the sparsity of the indicator vector IA but also the
measurement model.

Since yi = ∪a∈Axi(a), it then must hold that yi ≤
∑

a∈A xi(a). Hence, our
first relaxation is

min
∑
a

IA(a) such that yi ≤
∑
a∈A

xi(a), 0 ≤ IA(a) ≤ 1. (16)

We also note that if yi = 0, then it must hold that all xi(a) = 0, and the
inequality yi ≤

∑
a∈A xi(a) holds with equality. Hence, a stronger relaxation is

obtained by enforcing this equality constraint.

min
∑
a

IA(a) such that 0 ≤ IA(a) ≤ 1, and yi ≤
∑
a∈A

xi(a), if yi �= 0 and

(17)

yi =
∑
a∈A

xi(a) if yi = 0.

(18)

Thus, taking into account particular features of this nonlinear model before
applying linear programming is essential. To our knowledge, bounds for the
performance of this linear programming relaxation of the nonlinear screening
problem have not been studied in the literature.

Interesting relations between combinatorial properties of design matrices and
correctness of the LP solution are found in [22].

3.3 NLP and NLP−BF Simulations for ∪- Model

This and the next section describe results of [34]. Simulation of N∗ for several
analysis methods was organized roughly speaking as follows. For every s (from
2 to the upper limit depending on resources), a random IID repeated sample of
100 (N × t) binary design matrices was generated with optimal randomization
: P (0) = 2−1/s for the ∪-model and P (0) = 1/2 for FC and Linear models,
starting with N around 15 or 20. If, for a given t, the frequency of cases with
unique correct solution to the AIs recovery problem exceeded 95 percent, then
N for the next sample of 100 random matrices was chosen one less; otherwise N
was chosen one more until the procedure converges. This procedure was then
repeated for twice larger t, and so on.
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The entries in parenthesis inside the following (and two later similar tables) are
the empirical standard deviations forN∗ obtained in 10 independent simulations.

s/t 100 200 400 800 1600 3200 6400 12800

2 49(1.32) 64(1.58) 70(1.58) 82(1.65) 94(2.71) 109(1.56) 123(1.57) 138(1.64)
3 75(2.01) 94(1.78) 114(1.97) 142(1.51) 168(2.22) 197(2.17) 231(1.45) 256(2.17)
4 96(2.20) 126(1.94) 157(1.65) 192(2.10) 237(2.59) 281(2.80) 325(2.10) 372(2.30)
5 145(3.78) 190(3.01) 242(2.41) 296(2.51) 365(1.81) 428(3.37) 496(3.26)
6 175(1.55) 220(2.18) 283(3.00) 358(2.22) 431(1.69) 518(2.32) 602(1.85)
7 190(3.34) 248(3.29) 321(3.41) 405(2.62) 501(1.65) 607(1.26) 779(1.45)

Computations took several weeks to perform on a Windows XP PC.
A more intelligent algorithm, described in the previous section, treats zero

outputs as described in section 3.4. Both NLP s and computing times were
reduced considerably. We emphasize that this method of analysis is ‘half-way’
to the BF taking into account neat details of the ∪- model, which seems always
necessary for non-linear models. The table is as follows.

s/t 100 200 400 800 1600 3200 6400 12800

2 23(1.03) 26(1.35) 28(0.63) 30(0.88) 32(0.88) 34(0.74) 35(0.85) 38(1.32)
3 36(1.10) 39(1.35) 43(1.35) 45(1.43) 48(1.08) 51(1.07) 54(1.45) 56(1.18)
4 49(1.15) 52(1.55) 55(1.89) 58(1.49) 63(1.58) 66(2.06) 68(1.78) 74(1.81)
5 61(2.32) 67(1.81) 72(1.90) 76(0.97) 80(1.32) 85(1.32) 87(2.25) 91(2.13)
6 74(2.64) 80(2.50) 86(1.97) 89(2.87) 93(1.70) 100(1.58) 105(1.62) 111(2.15)
7 91(2.18) 96(2.75) 101(2.25) 108(2.79) 113(1.64) 118(2.04) 124(2.38) 129(2.21)

The table below represents the early upper bound [23], p. 145, for N(s, t, γ) ≤
s log2 t+ 2s log2 s− s log2(0.05).

s/t 100 200 400 800 1600 3200 6400 12800

2 25.9 27.9 29.9 31.9 33.9 35.9 37.9 39.9
3 42.4 45.4 48.4 51.4 54.4 57.4 60.4 63.4
4 59.9 63.9 67.9 71.9 75.9 79.9 83.9 87.9
5 78.05 83.05 88.05 93.05 98.05 103.05 108.05 113.05
6 96.8 102.8 108.8 114.8 120.8 126.8 132.8 138.8
7 116.1 123.1 130.1 137.1 144.1 151.1 158.1 165.1

In [25], Remark 3, p. 166, a more accurate upper bound is given: N(s, t, γ) ≤
log

(
t−s
s

)
− log (γ − t−c17), where constant c17 depends only on s and is obtained

as a result of a transformation chain consisting of 17 steps. For γ = 0.05, replac-
ing − log (γ − t−c17) for our big t′s with a larger value 5, we get the following
table:
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s/t 100 200 400 800 1600 3200 6400 12800

2 17.21 19.25 21.27 23.28 25.28 27.29 29.29 31.29
3 22.17 25.26 28.30 31.32 34.34 37.34 40.34 43.35
4 26.66 30.83 34.91 38.95 42.97 46.98 50.99 54.99
5 30.79 36.06 41.19 46.25 51.28 56.30 61.30 66.31
6 34.60 41.00 47.19 53.28 59.3252 65.35 71.36 77.37
7 38.14 45.69 52.95 60.08 67.14 74.18 81.19 88.20

Comparing this last table and the second table we conclude that the BF
capacity of ∪-screening is smaller than the simulated N∗ under the intelligent
improvement of LP analysis.

3.4 NLP Simulation for the FC Model

We know only an asymptotic upper bound for the FC-model BF- capacity ob-
tained in [24], Theorem 5.4.1, (this follows also from our general result [31]
on ‘ordinarity’ of symmetrical models). That result used a non-trivial en-
tropy H(Bs(p)) of the binomial distribution maximization result by P. Ma-
teev: max0<p<1H(Bs(p)) = H(Bs(1/2)) := as for all s ≥ 1: If for some
0 < β < 1, 0 < ε

N ≥ s log t/as + κ(ε)(log t/as)
(1+β)/2

s/t 100 200 400 800 1600 3200 6400 12800

2 16(0.67) 17(0.67) 18(0.57) 20(0.70) 22(0.52) 24(0.74) 27(0.42) 28(0.78)
3 22(1.06) 24(0.85) 25(0.95) 29(0.70) 31(0.88) 33(0.82) 35(0.85) 38(0.57)
4 28(1.29) 32(0.70) 33(0.92) 35(0.82) 39(0.63) 41(0.79) 44(0.71) 49(0.85)
5 35(1.76) 36(0.92) 40(0.82) 44(0.95) 47(0.88) 52(0.52) 57(0.52) 62(0.70)
6 44(1.81) 44(0.95) 50(0.88) 51(1.49) 53(1.05) 58(0.88) 64(0.42) 69(0.92)
7 51(1.99) 53(1.51) 55(1.17) 59(1.16) 62(1.07) 65(0.97) 73(0.85) 79(0.99)

then γ ≤ ε(s log t/as)
β . Thus, logt/N(s, t, γ) → as/s as t → ∞ and for β close

to 1, the second additive term grows (or declines, if κ < 0) with a rate of about
(log t)1/2.

s : H(Bs) 2:1.81 3:2.03 4:2.20 5:2.33 6:2.45 7:2.54

Using the preceding H(Bs) table, we prepare the log
(
t
s

)
/as table which is

asymptotically equivalent to N(s, t, γ) (as t→ ∞) for any 0 < γ < 1.

s/t 100 200 400 800 1600 3200 6400 12800
2 8.18 9.52 10.86 12.19 13.52 14.86 16.19 17.53

3 9.55 11.22 12.88 14.54 16.20 17.86 19.51 21.17
4 10.79 12.78 14.76 16.73 18.71 20.68 22.65 24.62
5 11.90 14.21 16.50 18.79 21.06 23.34 25.62 27.89
6 12.92 15.54 18.14 20.72 23.30 25.87 28.44 31.02
7 13.85 16.78 19.67 22.55 25.42 28.28 31.15 34.01
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As in the ∪-model, N∗(s, t) exceeds NBF (s, t, γ) significantly (by more than
two times). The asymptotic nature of this last table could not influence the
comparison. We observe that for large t (when the accuracy of our approximation
is better), the ratio becomes even larger.

Figures 1,2 summarize our tables for respectively s=2, 7. The simulated
straightforward NLP values are very large and are beyond the frames of our
figures. The lower straight line corresponds to BF analysis, the upper one – to
STI.
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|Aa| = 2s−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
—— —–
X(a) = 1 X(a) = −1

Fig. 3. Outline of limiting scatter diagrams: a significant variable X(a), no noise

4 STI in Noiseless Linear Model under Condition U

Due to the presence of unknown active coefficients, we do not know the noise
distribution and must apply the universal decision T . We first consider the
STI-detection of AIs under condition U on significant coefficients. We examine
all pairs (xN (a), zN) where xN (a) is the binary input column and zN is the
output column with components taking 2s values.

Let us assume for definiteness WLOG that variables x(1), . . . , x(s) are AI.
Fixing the value of one of them (say, the first) we still have 2s−1 equally likely
combinations of the rest with coefficients ±1.

In the left - (respectively right - hand) side of the scatter diagrams corre-
sponding to x(a) = ±1, we have non-overlapping sets of outputs y− ba (y+ ba),
with coefficients ba, a = 1, . . . , s, y, where y ∈ Aa and Aa is the set of linear
combinations of significant variables different fromX(a). The cardinality of |Aa|
is 2s−1. Hence, for each significant variable X(a), we have a separate partition
of the outputs Z into two subsets {±ba+Aa} displayed on the scatter diagrams.

It is clear that I(x1 ∧ Y ) = H(y)−H(Y |x1) = 1. Thus CSTI = CBF > CLP .
The last inequality follows from the results of the simulation in Fig 3.

The first equality follows also from an elementary combinatorial argument: a
particular inactive input can be regarded as active by STI if 2s output values
of its both partial scatterplots shrink to 2s−1 for random design with N >
(1 + ε) log t rows, ε > 0. These events are independent and have probability
1/2 for every row. Thus, it happens for at least one of the inactive inputs with
probability ≤ (t − s)2−N ≤ t−ε. Since ε > 0 is arbitrary, the STI capacity for
the random design ≥ 1.
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Falsity of s/t =const as t→ ∞ asymptotics for Linear model and binary
design. Meshalkin’s upper bound shows that under U , any fraction ct, c < 1,
can be restored with N(s, t, γ) less than t for sufficiently large t. However, if
U is not valid, then the information per measurement I is strictly less than
s implying asymptotically that NBF (s, t, γ) ≥ s log t/I = (s/I) log t. Putting
s = kt for whatever k < 1 implies NBF (s, t, γ) ≥ (kt/I)log t > t for sufficiently
large t, thereby showing that the ct-sparse designs and BF analysis are more
economical, than the trivial ones only if U holds, which can only doubtfully
be taken for granted in practice (although valid with Probability 1 under non-
degenerate prior distribution of significant coefficients).

The left - hand part of figure 4 shows simulated performance for the linear
model with incommensurable significant coefficients 1, e,

√
2, π. In the right -

hand side of figure 3, Meshalkins upper bound N̄BF (s, t, 0.05) (6) is also plotted.

4.1 Greedy STI, Its Simulation for Linear Model

STI involves O(t log t) operations as opposed to O(ts log t) for BF. Models in
[4] were usually multivariate polynomials of the second order involving a lot of
parameters to model industrial production in sufficient detail. Certain steps
can be taken after STI (greedy STI) to further improve its performance without
significantly increasing the computational burden (see, e.g. [24,18]). The greedy
STI consists of testing for significance the inputs which did not show activeness
in the original STI one by one when applied to the revised data with the effects
of the inputs shown to be active by STI before removed from the outputs. The
idea of greedy STI is that the noise created by randomly varying other AIs may
prevent the finding of less active inputs. After removal of this noise, AI detection
becomes feasible. Especially fruitful is this update for incommensurable active
parameters of the linear model, as shown in our Figure 4. LP N-values shown
in yellow are significantly greater.

4.2 Simulation Design for Greedy STI

1. Create a random (N × t)-matrix of 1′s and −1′s.
2. Set s = 4, bs = [1 e π

√
2]

3. Compute yi =
∑
bsxsi , i = 1, . . . , N.

4. Count the number of 1′s and −1′s for each X
N

(k), k = 1, . . . , t, separately,

and compute τ(X
N

(k)),

Count the number of various pairs (X
N

(k), Y
N

) and compute τ(X
N

(k), Y
N

),
i = 1, . . . , N.

Count the number of similar outputs and compute their empirical distribu-
tion.

5. Compute the ESI, I(XN

(k), Y
N

), k = 1, . . . , t. Then,

sort I(XN

(k), Y
N

), k ∈ [s] in ascending order and sort I(XN

(k), Y
N

), j >
s, in descending order.



626 M. Malyutov

If min
k∈[s]

I(XN

(k), Y
N

) > max
j>s

I(XN

(k), Y
N

), there is no error, otherwise

delete the min
k∈[s]

I(XN

(k), Y
N

), and its corresponding coefficient bs.

6. Set zi = yi−
∑
bsxsi , i = 1, . . . , N − 1, with the new bs. Then go to step 4.

If there are errors, calculate the error frequency for 100 runs,
7. If P (error) ≥ 5 percent, increase N and start all over, for otherwise we get
N∗.

4.3 N∗ Simulation for STI in Linear Model

The left plot shows that LP curve is higher than STI under U .
N∗ table: Upgraded (greedy) STI, incommensurable parameters

s/t 100 200 400 800 1600 3200 6400 12800
4 28 30 32 33 34 38 39 41

A similar N∗ simulation for the STI analysis in the noiseless linear model with
commensurable active coefficients 1, 2, 3 is described in [33].

In particular, N∗ = 18 for t=100 and N∗ = 35 for t=1600. Thus the suitable
relation for these two (N, t)- points is approximately log t/N = 0.4. The slope is
roughly the Shannon information between input and output for this set of active
coefficients and random equally likely binary design.

5 Noisy BF- and STI Recovery Capacity, Unknown MAC

Notation for the Main Results of This Section
We usually reserve Greek letters for random variables, corresponding Latin let-
ters for their sample values, with bold capitals reserved for matrices and bold
lower case (non-bold) letters for columns or rows. Pm

β is the joint distribution
of Ξ, ζ under the random design with Pβ(xi(α) = 1) = β for all i, α. Lemmas
are enumerated anew in each section.

Imβ (ξ(A) ∧ ζ) = EPβ
log

Pm
β (ζ|ξ([s]))
Pβ(ζ)

, (19)

where Pβ(·) is the marginal distribution of ζ, expected value is over Pm
β , and

C(s) = max
β∈B

inf
m∈M

Imβ (X(a) ∧ ζ). (20)

Define R(Xt) = log t/N.

Theorem 5.0.1. For a symmetric MAC and ε > 0, if R(Xt) < C(s) − ε then
MEP(Ts) decreases exponentially in N as t → ∞. If R(Xt) > Cs(s) + ε, then
MEP(T ) ≥ p > 0.

I. Csiszár (in 1978) pointed to the close relation between our set up and that
of MAC capacity region construction in [1]. One of the subtle differences is in
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the condition of identity of rates and code distributions used by all senders in our
set up. The capacity found in theorem 1 is the intersection of the corresponding
MAC capacity region with the main diagonal, but establishing this involves the
nontrivial proof of the so-called ordinarity of symmetric MAC.

5.1 Ordinary Models

A model is called ordinary if the max in the game value is attained on the empty
set, implying that the capacity is I(Z ∧ x[s]).

[31] starts with a consequence of the Chain Rule.

Lemma 5.2.1. I(ζ ∧ ξ([s])|ξ([v])) =
∑s

u=v+1 I(ζ ∧ ξ(u))|ξ([u − 1])).
Three equivalent necessary and sufficient conditions of a model being ordinary
are then formulated, of which we show only one:

Theorem 5.1.2. A MAC is ordinary, iff for every randomization parameter p
and every permutation σ = (i1, . . . , is) ∈ Λ(s, s) of [s] the following holds:

H(ξ(σ(u + 1))|z, x(σ[u]) ≤ H(ξ(σu))|z,x(σ[u − 1])), u = 1, . . . , s− 1, (21)

where σu = iu.

Corollary. All symmetric models are ordinary.

Proof. A well-known inequality

I(ξ(u + 1) ∧ ξ(u)|z, x([u− 1])) ≥ 0

and equality

H(x(u)|z, x([u− 1]) = H(x(u + 1)|z, x([u− 1])),

are valid because of symmetry, and imply (21).
Elementary examples of non-ordinary MAC are given in [31].

5.2 Capacity in Possibly Asymmetric Models

Theorem 5.1 below is a generalization of theorem 3.1.1 to possibly asymmetric
models using decision Ts. Its proof is in section 9.2. As a result of Lemma 2.1.1,
we can assume WLOG that As = [s].

Introduce L := max0<β<1 min1≤k≤s EβLk.

Theorem 5.1. For any ε > 0, if R(Xt) < L − ε, then MEP(T ) decreases
exponentially in N as t→ ∞.

For generally asymmetric MACs, identical AR of Ts and ML, (if applicable),
are described in terms of conditional Shannon information (CSI) as t → ∞.
Under the fixed set [s] = {1, . . . , s} of AIs, let V(v, s) denote the set of ordered
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subsets V ⊂ [s] of the cardinality |V | = v, V(s) = ∪s−1
r=0V(r, s), andletx(V ) be a

function x(i), i ∈ V.

Imμ (V ) = EμI
m
Pβ

(Z ∧X(V )|X(V c)),

where V c = [s] \ V, μ is the class B∗ of probability distribution μ on B = {0, 1}.
CSI is

Imβ (V ) = ImPβ
(Z ∧X(V )|X(V c)),

where

ImP (X ∧ Y |Z) = Em
P log

P (X |Y Z)
P (X |Z) ,

where P (·) is the joint density of X, Y, Z. Let C1(s) be the value of the game
in which the first player chooses β ∈ B and the second chooses V ∈ V(s) with
pay-off function

Jm
β (V ) =

Imβ (V )

|V | ,

i.e.,

Cs(s) = sup
μ∈B∗

inf
m∈M

min Jm
μ (V ),

where min is taken over V ⊂ V(s).
Let μ∗(s) be the maximin measure on B in the preceding formula.
The following result generalizes Theorem 5.0.1 to not - necessarily symmetric

MACs.

Theorem 5.2. For any ε > 0, if R(Xt) < Cs(s) − ε, then MEP(Ts) decreases
exponentially in N as t→ ∞. If R(Xt) > C1(s) + ε, then MEP(Ts) ≥ p > 0.

For symmetric (and more generally ordinary) models, C(s) = C1(s) and the
capacity is attained by the simpler ensemble Pβ of random designs. The non-
parametric ESI-decision was proved to attain the capacity in [33] for discrete
output distributions, and was generalized to continuous distributions in [36].

5.3 Lower Bounds for NBF (s, t.γ)

To make the idea in a general case more transparent, let us start with the lower
bound for the ∪- model. Any γ-separating N×t design and uniform distribution
on the set of unordered s-tuples Λ0(s, t) induce measures π(·) on the output
columns η. The entropy satisfies

H(η) ≥ −(1− γ) log γ +min{−γ log γ, 1}. (22)

Proof. γ-separability implies that at least (1 − γ) × |Λ0| columns η(λ) (corre-
sponding to separated s-tuples) are distinct and equally likely. Their entropy
is not less than the first summand. Entropy is minimal, if all other columns
coincide which proves the bound.
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The entropy of any binary component of the output columns does not exceed

1. The subadditivity of entropy yields the lower bound N ≥ H(η)
max1≤i≤N H(ηi)

∼
log

(
t
s

)
∼ s log t.

The only change in the scheme given above for the FC-model is in finding
maxH(ηi), which is shown to be H(Bs(1/2))(1 + o(1)) by Mateev.
Given a row of the (N × t) - design matrix X for a general symmetric model,

the uniform distribution of A implies the distribution πx(·) on Y = {y(x(A))}
which is defined by

πx(c) = b−1
∑

A∈Λ(s,t)
1A(c)

where b = ‖Y ‖,1A(c) is the indicator of the event {A : y(x(A)) = c.
Denoting p =

∑t
j=1 |x|j/t and (B)m = Πm

i=1(B − i+ 1) for natural B, we get

πx(c) =
∑

(|x|)|A|(t− |x|s−|A|)/(t)s := πp(c) (23)

where the sum is extended over A : y(x(A)) = c
This Hypergeometric-like distribution πp(c) for sampling without replacement

converges to that of sampling with replacement

π̃p(c) :=
∑

p|A|(1− p)s−|A|. (24)

As t → ∞, s = const with rate O(1/t) of convergence. The sum extends over
A : y(x(A)) = c.

If X is γ - separating, then taking x = xi, i = 1, . . . , N and applying well-
known rules of elementary information theory [16], (theorems 4.3.1, 4.3.3 and
4.2.1), we get the following chain of inequalities [25] (called the ‘Folk theorem’
in [3]):

(1−γ) logN −h(γ) ≤ H(Â∧δ(X, z)) ≤ (y(X(A))∧Z) ≤
∑

I(y(yi(A))∧Zi) ≤
(25)

N max0<p<1 I(πp(·)) ∼ N max0<p<1 I(π̃p(·)),
where h(p) := −p log p−(1−p) log(1−p) and max I(π̃p()) can be easily evaluated.
The first (Fano) inequality bounds from below the MEP given a complexity of
a decision rule. The second ‘Markov Chain’ inequality takes into account that
our decision is based solely on the design matrix and outputs of the model. The
third step in the chain is due to the subadditivity of the Shannon Information
for independent trials. Hence, we proved:

Theorem 5.4.1. limNBF (s, t, γ)/s log t ≥ 1/max I(π̃p(·)) as t→ ∞, s = const.
For asymmetric models, this lower bound is generally not tight.
To strengthen it, we complement our previous chain of inequalities by a set of

new ones for conditional decisions, which we only sketch. Two detailed proofs
are in [30], pp. 93–97, and the third one is in [45], pp. 80-87.

Consider the random s-tuple w,w ∩ [s] = v and the random ensemble Pμ of
design matrices. First, we prove that the ordered subset v and its complement
vc in w are asymptotically independent. Let X(v) be a function X(i), i ∈ v.
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We have a Markov sequence for an arbitrary ordered s-tuple w and its subset v:

vc → X(vc) → (z,X{v}) → δ(z,X(v) := arg max
w∩[s]=v

P (z|X(w)).

MEP ≤ γ for the latter conditional decision, if X is γ - separating. Repeating
the previous arguments based on [16], theorems 4.3.1, 4.3.3 and 4.2.1, we prove
that the set of asymptotic inequalities N ≥ log t/Jμ(v)(1 + o(1)), v ∈ [s],
must hold simultaneously for the number N of rows in X .

Thus, N ≥ log t/(supμ infv Jμ(v)(1+o(1)) showing the tightness of our upper
bounds proved in section 9.4.

6 The STI Capacity for Colored Noise

Given an arbitrary intermediate vector–output y (see section 3), the sequence of
z’s of the conditional distribution Pζ−y is that of a stationary ergodic random
string (SES) taking values from a finite alphabet Z.

Our lower bounds hold with the ‘entropy rate’ limN→∞(Imβ (XN
1 (λ)∧ ζN1 )/N)

instead of constant Imβ (X(λ)∧ ζ). The limit exists as a result of the stationarity
of the pair (IID Xi, ζi).

The asymptotically optimal STI- tests are as follows:
We choose a weakly universal compressor (UC) [47], denote

U = B × Z ,

and consider for a given j = 1, . . . , N two N -sequences with letters from U :

uj
N := (xj(i), z(i)), i = 1 . . . , N ;

and
vNj := (xj(i)(×)z(i)), i = 1 . . . , N,

taken from the original joint distribution and the generated product-distribution.
We digitize them into binary sequences UM

j ,V
M
j of appropriate length and eval-

uate the CCC homogeneity statistic (see further) of the product P0 and original
distributions P1 = P j

1 .
Arbitrary UC maps source SES-strings VM into compressed binary strings

VM
c of approximate length |VM

c | = − logP (VM )) = LM thereby generating the
approximate Log likelihood of source VM – the main inference tool about P0.

Consider a query binary SES UM distributed as P1 and test whether the
homogeneity hypothesis P0 = P1 contradicts the data or not. Let us partition
yM into several slices Ui, i = 1, . . . , S, of identical length n divided by ’brakes’ -
strings of relatively small-length δ to provide approximate independence of slices
(brakes of length 2k are sufficient for k-MC). Introduce concatenated strings
Ci = (VM ,Ui). Define CCCi = |Ci|− |VM | CCC-statistic and CCC = average

of all CCCi. Similarly, CCC
0
= average of all CCC0

i with Ui replaced with
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independent P0- distributed slices of the same length. Finally, homogeneity

R̄ = CCC − CCC
0
. The R̄ test is shown in [29] and in section 9.5 to have the

same exponential tail under P0 as the Likelihood Ratio test, provided the error
probability under alternative is positive and arbitrarily small. Thus, the R̄ test
is asymptotically efficient in terms of capacity.

6.1 Applications

We propose applying the methods analyzed in the last section to several problems
of strong practical relevance for many industrial applications:

i. ‘Tagging’ the change-point in users’ profiles in a large computer network
possibly caused by unauthorized intrusion into the system for a more detailed
follow up study.

ii. Monitoring large corpora of texts, e.g. on-line forums or the phone call
traffic in some areas for ‘tagging’ matches to specific profiles of interest for a
more detailed follow up study.

7 Static Search for N → ∞ and Finite t

If t = const, the parametric set (including the set of AIs, the set of active
parameters ba, a ∈ A, and the unknown error distribution) are fixed as N → ∞.
The MEP here involves averaging the conditional error probabilities under the
fixed set of different parameters (s-tuples of variables). Its Bayesian nature
remains essential as N → ∞. In particular, for studying the MEP of test Ts, we
need to average the conditional error probabilities under various AIs with the
ones under inactive variables that have certain non-degenerate weights.

The asymptotic upper and lower bounds for the error exponent of the Bayes
test with arbitrary strictly positive priors coincide and are expressed in terms of
the Chernoff Information, see the proof in [6], pp. 308-309. The upper bound
is based on Sanov’s theorem ([6], pp. 292-294). The lower bound follows from
finding the worst empirical distribution in Sanov’s theorem.

Let us formulate this general result. Consider two distributions Pi, i = 1, 2,
on the finite sample space S and a sample xN of N IID RV’s obeying one of the
above laws. Let d(xN ) be an arbitrary decision on which of the distributions is
correct. The Bayes Error Probability aP1(d = P2) + (1 − a)P2(d = P1) for any
fixed prior weights a, 1 − a, a > 0, is denoted by QN . It holds for the optimal
decision:

lim
N→∞

logQN/N = −C(P1, P2) ≡ −C(P2, P1),

where

C(·) = min
ρ∈E

D(ρ||P1), (26)

and E is the set of distributions on S

E = {ρ : D(ρ||P1) ≥ D(ρ||P2)}. (27)
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D(ρ||P ) = Eρ log(ρ/P ) is Divergence (cross-entropy) between ρ and P .
Now we formulate the main results of this section.
Let us make a specific choice concerning the distribution ofXN (λ) in {−1, 1}N ;

namely, we assume that
(a) the vectors {XN(λ)} are i.i.d. for λ = 1, . . . , t;

(b)
∑N

i=1Xi(λ) = (2β − 1)N for some fixed β ∈ (0, 1); and
(c) XN (λ) is chosen uniformly from all vectors satisfying (b).

Theorem 7.1. [28] The ML-test based on s maximal values of the likelihood of
(X(λ), Z) and test T introduced in section 3 have the same error exponent

EEP = min
a∈A

Cβa,

where

Cβa = C(P (x(a), z);P (x(a)P̄ (z)), a ∈ A, a ∈ A.

Here Cβ denotes the β-weighted Chernoff Information of the conditional joint
and product-input-output distributions given the input.

The elementary case t = 2, s = 1 with no noise shows that the random designs
are no longer optimal. Hence the problem of finding the best exponent of the
search error probability remains a challenge.

8 Adaptive Search for AIs

The adaptive counterpart of the theory outlined earlier was developed in a se-
quence of our papers as an extension of elementary search strategy for AIs in
an unknown binary output noiseless model suggested by L. Bassalygo and
described in [20] . Its publication was delayed for several years until the former
Soviet KGB gave permission (apparently due to KGB applications unknown to
me). Suppose that the function g(·) : Bt → B is binary and unknown. (This
corresponds to a ‘compound channel’ in Information Theory). The asymptoti-
cally optimal adaptive restoration algorithm of all active inputs of g(·) and of
the function g(·) itself with the Mean Length s log2 t(1 + o(1)) is as follows. A
random search finds a t-tuple x ∈ Bt such that g(x) differs from g(0, . . . , 0).
Then, each non-zero entry of x is tested for activeness in the obvious way to
yield at least one AI. This procedure is repeated s times until all AIs are found.

The noisy generalization of the problem is straightforward provided we ad-
mit MEP < γ and γ > 0. The generalizations to a multi-valued noisy linear
functions ([37] and [27]), extended to arbitrary unknown functions in [35] use
the two-stage-loop generally suboptimal sequential algorithm which we describe
further.

The first random search phase separates Bt into s subsets containing one AI
each. Then, the elementary nonrandom algorithm finds each AI. If the error
occurs, or the length of the algorithm is excessive, everything is repeated anew.
We describe these algorithms more accurately below.
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Suppose that fixing an input sequence

xN = (x(1), . . . ,x(t))

we observe the output sequence of random variables

ZN = (Z1, . . . , ZN )

from a measurable space Z distributed according to the transition probability
density

FN (zN |xN ) =

N∏
i=1

F(zi|fS(xi)),

where F(·|·) is a transition density function with respect to a σ–finite measure
μ on Z, satisfying the conditions formulated later. We use an adaptive design
of experiments π consisting of a Markov stopping time N with respect to the
filtration Fn generated by the measurements and randomizations of the design
points until the time n, and Fi−1- measurable randomized rules of choice of
xi, i = 1, . . . , N .

A general suboptimal adaptive search strategy is outlined below. Its advantage
over static ones is that codings of different AIs need not be the same. It follows
from [27] (adapting the MAC strategy [15] for the FC model) that the capacity
of adaptive search generally exceeds the capacity of the corresponding static one.

The best cooperation between codings of different variables maximizing ca-
pacity has been found neither in MAC theory nor in our parallel settings, even
for s=2, see references in [44].

The algorithm consists of two phases. The aim of Phase 1 is to partition
[t] = {1, ..., t} into s disjoint sets Tα, α = 1, . . . , s, containing exactly one index
of an AI each. Such a partition is called correct; all others are called false.

We bound the MEP from above. The mean length (MEAL) of our procedure
is O((log t)−1) as t→ ∞, while the MEAL of Phase 1 is O(log log t). We do not
optimize the performance in the Phase 1 because its MEAL has a smaller rate
than that of the whole procedure as t→ ∞, s = const.

Phase 1 is composed of a random number of similar loops, each of them
consisting of two stages. The first stage of a loop is a partition of [t] into s
subsets while stage 2 is testing for the presence of an AI in each subset. If the
test rejects the presence of an AI in at least one subset or the test involves too
many experiments, the next loop begins anew. Note that the presence of an AI
in each subset implies that each subset contains a single AI because the number
s is regarded as known.

We present our strategy for AIs separation in a general nonparametric linear
model outlined in [37] and [27]. For the generalization to nearly maximally
general model see [35,36]. Consider real variables x(j), x(j) ∈ X = {x : |x| ≤
1}, j = 1, . . . , t. Choosing a sequence xi ∈ Xt, we perform measurements of a
nonparameric additive function

g(xi) =
∑
α∈A

gα(xi(α)), |A| = s,
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corrupted by additive noise, i.e. we observe zi = g(xi) + εi; εi, i = 1, . . . , N , are
independent random variables.

If α ∈ A, then we call x(α) an active variable and gα(·) an active function.
Assume that all the active functions on X belong to the class G(Δ,μ), described
by the following conditions

G1. g(·) is continuous on X and its modulus of continuity does not exceed μ(·).
G2. r(g(·), X) = maxx g(x)−minx g(x) ≥ Δ > 0.
The algorithm consists of two phases. The aim of phase 1 is now to separate
indices of AIs and also find two points xα and xα in each subset Tα of variables
such that

gα(xα)− gα(xα) ≥ r(gα, X)− δ,

where δ > 0 is chosen to be sufficiently small depending on the parameters in
the problem. In the second phase of AIs identification, all the variables in Tα
are chosen randomly to be xα or xα independently for different variables or
measurements with certain randomization probabilities pα as a part of a general
strategy of simultaneous detection of AIs in each Tα with MEAL=O(log t) and
MEP=(log t)−1. This is a suboptimal strategy for the second phase. The optimal
strategy has not yet been found.

Let us outline phase 1 of our strategy in the case of an unknown discrete
system. Assuming for simplicity that t = s�, � ∈ N, we use the random partition
of the set of indices into s subsets Tα each containing � indices. After making
the partition, we repeat independently several series of measurements for each
subset Tα with the following design. We choose independent random equiprob-
able allocations of levels 0, 1 for any variable in T cα. For each fixed given series
allocation A in T cα, we repeat measurements yj(A) at a random independent
sequence of levels of variables xi, i ∈ Tα putting P(Xi = 0) = β. The mixed
choice of β = β0 provides the maximal AR of the search.

We then test adaptively the hypothesis of existence of an AI in each Tα.
If for at least one Tα this hypothesis is rejected, or the forced termination of
experiments is used, we start the whole procedure over again.

Let Us Outline First the Idea Behind the Procedure. If the allocation A of
variables’ levels in a particular T cα is chosen properly (that is, in such a way that
the underlying function f(·) depends essentially on the unique AI in Tα), then
the distribution of independent outputs in a given series is a mixture of those
levels, corresponding to distinct values of the AI in Tα with probabilities β.

On the other hand, if Tα is devoid of AIs, the distribution of outputs in the
given series is the same for a fixed allocation of levels in T cα, that is attached
to the same sequence of levels of AIs and hence to a unique value y of the
function f(·). If the parameter β = β0 is chosen in such a way that all of
these distributions P (·|y) are distinct from the mixtures described above, we
can discriminate reliably, e.g., by the maximum likelihood test (provided the
noise distribution is known). Note that the hypotheses Hiα, stating that i =
0, 1 AIs are present in Tα, are generally composite. The first of them consists
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of n, n = |Yf | distinct distributions P (·|y), while the number of distributions
contained in H1α does not exceed n(n− 1)/2 under a fixed parameter β.

We need not estimate the error probability of the test (for presence of AIs)
under the actual number of AIs in Tα exceeding 1. Undesirable influence of this
event on the order of magnitude of the MEAL of the procedure is eliminated by
a suitable truncation.

Repetitions of random allocations in T cα are needed to avoid situations (with
a large probability when M is large) , such as, for example, when f(a1, a2) =
a1 ∩ a2, where the value a2 = 0 involves f(a1, a2) = 0, irrespective of the value
of a1.

For discrimination between the presence and absence of AIs in Tα, the vector
statistic S is used with the following components:

Sijyn :=

n∑
k=1

logF β0

ij (Zk)/F (Zk|y); i, j, y ∈ Y.

For a fixed γ > 0, define the minimal value τα of n ∈ N such that either

max max
i
=j∈Y

min
y∈Y

Sijyn ≥ − log γ, (28)

or
−max

y∈Y
min
i
=j∈Y

−Sijyn ≥ − log γ, (29)

and its truncated version

Nα := min{τα,M1},M1 = (1 + ε)K1(β0)| logλ|, ε > 0,

which we choose as the stopping time in exploring subset Tα, α ∈ [s].
Our technical tools for exploring means of RVs τα (and similar RVs for the

second phase) and the deviations from their means include elementary large
deviation bounds for martingales and the following bound for the overshoot at
the first passage time to the remote quadrant.
Let a finite family of random sequences

Xi := (Xi(l), l = 1, . . . , l), i = 0, 1, . . . , X0(l) := 0,

be the sum of a strictly increasing linear non-random vector process and a square-
integrable martingale family {Y (l)} under the filtration F = (Fn, n ∈ N), i.e.

Xi(l) = i · Al + Yi(l),

where Al > 0, l = 1, . . . , l, E(Yi(l)|Fi−1) = Yi−1(l) a.e. satisfying for a fixed
number D, all i ∈ N and l = 1. . . . , L, the following inequality a.e.:

E[(Yi+1(l)− Yi(l))
2|Fi] ≤ D2.

We study here the mean of the first passage time τ = τx over a high level x by
the process

Zi := min
l=1,...,L

Xi(l).
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Theorem 8.4
E(τ) ≤ x ·A−1 +K1DLx

1/2 + B

for any positive x, where K1 is a universal constant, and

A := min
l=1,...,L

Al, B := A−1 max
l=1,...,L

Al.
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9 Appendices

9.1 Large Deviations via Types

In proving the theorem in section 9.2, we use half of the celebrated Sanov’s
theorem in the theory of large deviations, which (for a finite output alphabet)
is easier to introduce via the theory of types. The type of a sequence xn1 ∈ An is
its empirical distribution P̂ = P̂xn

1
; that is, the distribution defined by

P̂ (a) =
|{i : xi = a}|

n
, a ∈ A.

A distribution P on A is called an n-type, if it is the type of some xn1 ∈ An.
The set of all xn1 ∈ An of type P is called the type class of the n-type P and is
denoted by T n

P .
We use the notation: D(Q‖P ) := EQ(log(Q/P )),
D(Π‖P ) = infQ∈Π D(Q‖P ).

Sanov’s Theorem. Let Π be a set of distributions on A whose closure is equal
to the closure of its interior. Then for the empirical distribution of a sample
from a strictly positive distribution P on A,
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− 1

n
logP

(
P̂n ∈ Π

)
→ D(Π‖P ).

See proof in [6] or in [8].

9.2 Proof of Theorem 5.1

By Lemma 2.1.1 we can assume WLOG that As = [s] and under the maxmin
value β∗ we have EL1 = I1 ≤ I2 ≤ · · · ≤ Is.

The error of the test T occurs, if

max
k>s

I(τ(XN (k), ZN )) ≥ min
j∈[s]

I(τ(XN (j), ZN )) (30)

The event in (30) is included in the event

⋂
T≥0

[ ⋃
k>s

{I(τ(XN (k), ZN)) ≥ T }∪j∈[s]{I(τ(XN (j), ZN )) ≤ T }
]
. (31)

We bound the probability of (31) from above by∑
k>s

P (I(τ(XN (k), ZN)) ≥ I1 − ε) +
∑
j∈[s]

P (I(τ(XN (j), ZN )) ≤ I1 − ε), (32)

where ε > 0 is arbitrary. Let us estimate from above the first sum in (32). It is
easy to check that

D((τ(x(k), z)||π(x(k), ·)π(·, z)) = D((τ(x(k), z)||τ(x(k))τ(z)) +
+ D((τ(z)||π(·, z)) +D((τ(x(k))||π(x, ·))
= I(τ(x(k), z)) +D((τ(z)||π(·, z)) +
+ D((τ(x(k))||π(x, ·)). (33)

By Sanov’s theorem, the first sum in (32) does not exceed

(t− s) exp{−N min
τ∈Dε

D((τ(x(k), z)||π(x(k), ·)π(·, z))}

≤ (t− s) exp{−N(I1 − ε)}, (34)

where Dε = {τ : I(τ) ≤ L−ε} in view of (33), (32) and nonnegativity of D(·||·).
When R = ln t

N ≤ L− 2ε, we have

(t− s) exp{−N(L− ε)} ≤ exp{N((L− 2ε)− L− ε)} = exp{−Nε}.

By Sanov’s theorem, the second sum in (32) is bounded from above by

s exp{−Nmin
ClDc

ε

D(τ(x(ξ), z)||π(x, z))}. (35)
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Now, we note by definition that π(·, ·) /∈ ClDc
ε for any ε > 0.

Since D(τ ||π) is a convex function of the pair (τ, π) [6], it follows that D is
jointly continuous in τ and π, and

min
τ∈ClDc

ε

D(τ ||π) = D((τ∗||π) is attained at some points τ∗ ∈ Dε, which does

not coincide with π. Hence D(τ∗(x(ξ), z)||π(x, z)) = δ(ε) > 0. We see that (35)
does not exceed s exp{−Nδ(ε)}. The total upper bound for (32) is

exp{−Nε}+ s exp{−Nδ(ε)} → 0 as N → ∞

for any rate R ≤ L−2ε. Therefore, AR > L−2ε for any ε > 0, and consequently,
AR ≥ L. The proof is now complete.

Before proving theorem 5.2 we sketch the appropriate half of the conditional
form of Sanov’s theorem.

9.3 Conditional Types

In theorem 5.2, we use the following straightforward generalization of the method
of types (cf. [7]) that was given above. If X and Y are two finite sets, the joint
type of a pair of sequences XN ∈ XN and Y N ∈ YN is defined as the type of
the sequence {(xi, yi)}Ni=1 ∈ (X × Y)N . In other words, this is the distribution
τXN ,Y N on X × Y denoted by

τXN ,Y N (λ, α) = n(λ, α|XN , Y N ) for every λ ∈ X , α ∈ Y. (36)

Joint types will often be given in terms of the type of XN and a stochastic
matrix M : X → Y such that

τXN ,Y N (λ, α) = τXN (λ)M(α|λ) for every λ ∈ X , α ∈ Y. (37)

Notice that the joint type τXN ,Y N uniquely determines M(α, λ) for those λ ∈ X
which do occur in the sequence XN . For conditional probabilities of sequences
Y N ∈ Y given a sequence XN ∈ X , the matrix M in the equation given above
will play the same rule as the type of Y N does for unconditional probabilities.
We say that Y N ∈ YN has conditional type M given XN ∈ XN if

n(λ, α|XN , Y N ) = n(λ|XN )M(α|λ) for every λ ∈ X , λ ∈ Y. (38)

For any given XN ∈ XN and stochastic matrixM : X → Y, the set of sequences
Y N ∈ YY having conditional type M given XN will be called the M -shell of
XN , TM (XN).

Let MN denote the family of such matrices M. Then

|MN | ≤ (N + 1)|X ||Y|. (39)

Remark. The conditional type of Y N given XN is not uniquely determined, if
some λ ∈ X do not occur in XN . Nevertheless, the set TM (XN ) containing Y N

is unique. Notice that the conditional type is a generalization of types. In fact,
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if all the components of the sequence XN equal x, the conditional type coincides
with the set of sequences of type M(·|x) ∈ YN .

In order to formulate the basic size and probability estimates for M -shells, it
will be convenient to introduce some notation. The average of the entropies of
the rows of a stochastic matrix M : X → Y with respect to a distribution τ on
X will be denoted by

H(M |τ) :=
∑
x∈X

τ(x)H(M(·|x)). (40)

The similar average of the informational divergences of the corresponding rows
of stochastic matrix M1 : X → Y from M2 : X → Y will be denoted by

D((M1||M2|τ) :=
∑
x∈X

τ(x)D(M1(·|x)||M2(·|x)). (41)

Notice that H(M1|τ) is the conditional entropy H(X |Y ) of RV’s X and Y such
that X has distribution τ and Y has conditional distributionM onX. The quan-
tity D(M1||M2|τ) is called the conditional informational divergence (conditional
relative or cross- entropy).

The detailed proofs of the following statements are in [33]. The counterpart
of the theorem on type class size for M -shell is

Statement 1. For every XN ∈ XN and stochastic matrix M : X → Y such
that TM (XN ) is non-void, we have

1

(N + 1)|X ||Y| exp{NH(M |τXN )} ≤ |TM (XN )| ≤ exp{NH(M |τXN )}.

Statement 2. For every XN ∈ XN and stochastic matrix M1 : X → Y,
M2 : X → Y such that |TM1 (X

N )| is non-void,
M2(Y

N |XN ) = exp{−N(D((M1||M2|τXN ) +H(M1|τXN ))}, (42)

if Y N ∈ TM1(X
N ),

1

(N + 1)|X |s|Z| exp{−ND((M1||M2|τXN )} ≤

≤M2(TM (XN )|XN ) ≤ exp{−ND((M1||M2|τXN )}. (43)

Statement 3. (Conditional Sanov’s Theorem (part)): Let XN ∈ XN be i.i.d.
with distribution matrix M2 : X → Y. Let E be a set of distributions closed in
the Euclidean topology of Y∗. Then

M2(E|XN ) ≤ (N + 1)|X ||Y| exp{−ND(M∗
1 ||M2|τXN )}, (44)

where
M∗

1 = arg min
M1∈E

D(M1||M2|τXN ) (45)

is the distribution in E that is closest to the matrix distribution M2 in terms of
conditional relative entropy.
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9.4 Proof of Theorem 5.2

We denote the set of unordered v-sets ν = (i1, . . . , iν), 1 ≤ i1 < i2 < · · · < iν <
s, 0 ≤ ν < s by V. For an arbitrary ν ∈ V we define I(ν) as follows:

I(ν) = I(Z ∧X([s] \ ν)|X(ν)).

Let us consider the subset Λ(ν), ν = (i1, . . . , iν) ∈ V of the set Λ0 = Λ(s, t) \ [s]
that consists of those λ ∈ Λ0 for which {λ1, . . . , λs} ∩ [s] = {i1, . . . , iν}.
It is also obvious that Λ(ν) ∩ Λ(ν∗) = ∅ if ν �= ν∗ and Λ0 = ∪V Λ(ν).
We define

A(ν) = {(XN , ZN) : Ts(XN , ZN ) ∈ Λ(ν)}.

It is obvious that A(ν) is expressed in the form

A(ν) = {(XN , ZN ) : ∪λ∈Λ(ν)I(τ(XN (λ), ZN )) ≥ I(τ(XN ([s]), ZN ))}.

By conditioning, we get

P (A(ν)) =
∑

xN (ν),z

P (A(ν)|xN (ν)) P (xN (ν). (46)

The following inclusion is valid for arbitrary T :

A(ν) ⊆ {I(τ(xN ([s]), zN )) ≤ T } ∪ {max
Λ(ν)

I(τ(xN (λ), zN ) ≥ T }.

Consequently, for fixed xN (ν) the conditional probability of the event A(ν) can
be estimated as

P (A(ν)|xN (ν)) ≤ P (I(τ((xN ([s]), zN )) ≤ T |∗) +
+ P (∪Λ(ν)I(τ((xN (λ), zN )) ≥ T |∗)
≤ P (I(τ((xN ([s]), zN )) ≤ T |∗) +
+

∑
Λ(ν)

P (I(τ((xN (λ), zN )) ≥ T |∗),

where T = T (∗), ∗ := xN (ν).

P (A(ν)) =
∑

xN (ν),z

[
P (I(τ((xN ([s]), zN)) ≤ T |∗) +

+
∑

λ∈Λ(ν)
P (I(τ((xN (λ), zN )) ≥ T |∗)

]
P (xN (ν)). (47)

Let us estimate from above the second sum in square brackets in (47), T =
I(ν)− ε. We have the corresponding conditional identities
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D(τ(xN (λ), zN )||π(xN (λ), ·)π(·, zN )|τxN (ν)) =

=
∑
x∈X

τxN (ν){D(τ(xN (λ), zN |τxN (ν))||π(xN (λ), ·)π(·, zN )|τxN (ν))} =

=
∑
x∈X

τxN (ν){D(τ(xN (λ), zN )||τ(xN (λ))τ(zN )|τxN (ν)) +

+ D(τ(zN )||π(·, zN )|τxN (ν)) +D((τ(xN (λ))|τxN (ν))||π(xN , ·)|τxN (ν))} =

= D(τ(xN (λ), zN )||τ(xN (λ)τ(zN )|τxN (ν)) +

+ D(τ(zN )||π(·, zN )|τxN (ν)) +D(τ(xN (λ))||π(xN , ·)|τxN (ν)) =

= I(τ(xN (λ), zN )|τxN (ν)) +

+ D(τ(zN )||π(·, zN )|τxN (ν)) +D(τ(xN (λ))||π(xN , ·)|τxN (ν)). (48)

By the conditional form of Sanov’s theorem, as well as in view of (47), (48),
nonnegativity of D(·|| · |·) and the inequality |Λ(ν)| ≤ ts−ν , the second sum in
square brackets in (47) does not exceed

ts−ν(N + 1)|X |s|Z| ×
× exp{−N min

τ∈Dε

D(τ(xN (λ), zN )||π(xN (λ))π(zN )|τxN (ν))}}.

Here, Dε = {τ : I(τ) ≤ I(ν) − ε}. Since the last bound does not depend on
τ(xN (ν)), we bound (using Jensen’s inequality) the sum in (47) over types of
xN (ν) from above by

ts−ν(N + 1)|X |s|Z| exp{−N(Iπ(ν)− ε)}. (49)

If R = ln t
N ≤ I(ν)− 2ε, (49) is bounded from above by

exp{−N [ε(s− ν)− |X |s|Z| log(N + 1)

N
]},

which is exponentially small for sufficiently large N.
Also, by the conditional form of Sanov’s theorem, the first term in (47) is bound-
ed from above by ∑

τ
xN (ν)

(N + 1)|X |s|Z|×

× exp{−N min
ClDc

ε

D((τ(xN ([s]), zN )||π(xN , zN)|τxN (ν))}p(τxN (ν)). (50)

We note that, by definition, π(·, ·) /∈ ClDc
ε for any ε > 0.

Hence, min
ClDε

D((τ(xN (λ), zN )||π(xN , zN)|τxN (ν)) = δ(ε) > 0 because of condi-

tional D() continuity in all its variables. We see from Jensen’s inequality that
(50) does not exceed

exp{−N(δ(ε)− |X |s|Z| log(N + 1)

N
)}.
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The total upper bound for (50) is

exp{−N(δ(ε)− |X |s|Z| log(N + 1)

N
) +

+ exp{−N [ε(s− ν)− |X |s|Z| log(N + 1)

N
]} → 0 as N → ∞.

for any rate R ≤ I − 2ε. Therefore, AR > I − ε for any ε > 0, and consequently,
AR ≥ I. The proof is thus complete.

9.5 Compression Based Homogeneity Testing

We develop here the theory of CCC test used in section 7. Let B = {0, 1},
xN ∈ BN = (x1, ..., xN ) be a stationary ergodic random binary (training)
string ( SES) distributed as P0 = P .

An arbitrary Universal Compressor (UC) satisfying the conditions in [47] maps
source strings xN ∈ BN into compressed binary strings xN

c of approximate
length |xNc | = − logP (xN ) = LN thus generating the approximate Loglikelihood
of source xN – the main inference tool about P .

Consider a query binary SES yM distributed as P1 and test whether the
homogeneity hypothesis P0 = P1 contradicts the data or not. Let us partition
yM into several slices yi, i = 1, . . . , S, of identical length n divided by ’brakes’ -
strings of relatively small-length δ to provide approximate independence of slices
(brakes of length 2k are sufficient for k-MC). Introduce concatenated strings
Ci = (xN ,yi). Define CCCi = |Ci| − |xN |. CCC-statistic is the CCC =
average of all CCCi. Homogeneity of two texts can be tested by the test statistic
T = CCC/s, where s is the standard deviation of CCCi, i = 1, . . . , S . Extensive
experimentation with real and simulated data displayed in the second part of [41]
demonstrates excellent T -discrimination between homogeneity and its absence
in spite of the lack of knowledge about P0, P1. Here, we sketch the proof of its
consistency and exponential tail equivalence to that of the Likelihood Ratio Test
(LRT) in full generality under certain natural assumption about the sizes of the
training string and query slices.

Validity of our assumption in applications depends both on the compressor
used and the source distribution. The main advantages of CCC-test are: (i.) its
applicability for arbitrary UC and long memory sources, where the likelihood is
hard to evaluate, and (ii.) its computational simplicity (as compared to statistics
from [47]) enabling processing of multi-channel data simultaneously on line.

Preliminaries. Conditions on regular stationary ergodic distributed strings are
as in [47]. SES are well-approximated by n-Markov Chains as n→ ∞.

[19] outlined a compressor construction adapting to an unknown IID distri-
bution and gave a sketch of a version of Theorem 9.5.1 below for IID sources,
connecting for the first time the notions of complexity and randomness. First
practically implementable UC LZ-77/78 were invented during the 12 years af-
ter, and became everyday tools of computer work after a further ten years had
elapsed.
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Introduce Ln = − logP (xn) and the entropy rate hn = H(P ) = −
∑
P (xn) logP (xn).

Warning Without notice, we actually consider conditional probabilities and
expectations of functions of the query slice with regard to the training text.

A compressor is called UC (in a weak sense), if it adapts to an unknown
SES distribution, namely if for any P ∈ P and any ε > 0, it holds that:

lim
n→∞

P (x ∈ Bn : |xnc | − Ln ≤ nε) = 1.

Equivalently, UC attain for P ∈ P asymptotically the Shannon entropy lower
bound:

lim
n→∞

P (|xn
c|/|xn| → h) = 1 as |x| → ∞.

This was established in the seminal works of C. Shannon in 1948-1949, where
SES were first singled out as appropriate models of natural language.

J. Rissanen’s pioneering publication on the Minimum Description Length
principle [40] initiated applications of UC to statistical problems for SES sources.
This has been continued in a series of recent papers of B. Ryabko and coauthors.

Kraft Inequality Lengths of any uniquely decodable compressed strings
satisfy the following inequality : ΣBn2−|xn

c |) ≤ 1 .
As before, cross entropy D(P1||P0 := E1 log(P1/P0). Consider goodness of fit

tests of P0 vs. P1.
‘Stein’s lemma’ for SED [47](Proved first for the IID case by H. Cramer

in 1938). If D(P1||P0) ≥ λ and any 0 < ε < 1, then the error probabilities of
LRT satisfy simultaneously

P0(L0 − L1 > nλ) ≤ 2−nλ

and

limP1(L0 − L1 > nλ) ≥ 1− ε > 0.

No other test has lower values for both error probabilities (in terms of order of
magnitude) than the two given here.

Theorem 9.5.1. [47]. Consider the test statistic T = Ln0 − |xnc | − nλ. Then
nonparametric goodness of fit test T > 0 has the same asymptotics of error
probabilities as in the Stein lemma.

Main Results. ‘Quasiclassical Approximation’ assumption (QAA). The
sizes of the training string N and query slices n grow in such a way that the
joint distribution of CCCi, i = 1, . . . , S, converges in Probability to P1(L

n
0 (y)):

N → ∞ and n→ ∞ is sufficiently smaller than N .
The intuitive meaning of this assumption is: given a very long training set,

continuing it with a comparatively small query slice with alternative distribution
P1 does not actively affect the encoding rule. The typical theoretical relation
between lengths is n ≤ const logN → ∞.
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In practice, an appropriate slice size is determined by empirical optimization.
Define entropy rates hi = limhni , h

n
i = ELni , i = 0, 1.

Under QAA and h1 ≥ h0, the following two statements are true for SES
strings:

Theorem 9.5.2: Consistency The mean CCC is strictly minimal as n → ∞
provided that P0 = P1.

Proof. E1(CCC) −E0(CCC) =
∑

(P0(x) − P1(x)) logP0(x) =
= −hn0 +

∑
P1(x) logP1(x)(P0/P1) = hn1 − hn0 + D(P1||P0) which finishes the

proof thanks to positivity of divergence, unless P0 = P1.
If h1 < h0, then inhomogeneity can be proved by estimating both conditional

and unconditional complexities of strings.
Generate an artificial (n)-sequence zn independent of yn. This zn is distribut-

ed as P0 and we denote by CCC0 its CCC.
Also, assume that the brakes’ negligible sizes are such that the joint distribu-

tion of S slices of size n converge to their product distribution in Probability.

Theorem 9.5.3. Suppose D(P1||P0) > λ and we reject homogeneity, if the

‘compression version of the Likelihood Ratio’ test R̄ = CCC − CCC
0
> nλ.

Then the same error probability asymptotics as valid for LRT and for this test.

Proof (sketch). Under negligible brakes and independent slices, probabilities
multiply. To transparently outline our ideas (with some abuse of notation) re-
place the condition under the summation sign with a similar one for the whole
query string: instead of P0(R̄ > 0) =

∑
y,z:CCC−CCC0

>λ
P0(y)P0(z), we write

the condition under the summation as CCC − CCC0 > nλ, which is approxi-
mated in Probability under P0 by Ln(y) − |z| > nλ.

Thus, P0(R̄ > 0) ≤
∑

z

∑
P0≤2−nλ−|z| P0(y)P0(z) ≤ 2−nλ

∑
z 2

−|z| = 2−nλ by
the Kraft inequality. We refer to [47] for an accurate completion of our proof in
a similar situation.

Informally again, limP1(R̄ > 0) = limP1(n
−1(|y| − |z|) > λ = D(P1||P0) +

ε, ε > 0. |y|/n is in Probability P1 around − logP0(y) = E1(− log(P0(y))) + r,
|z|/n is in Probability P0 around − logP0(z) = hn0 + r′. As in the Consistency
proof, all the principal deterministic terms drop out, and we are left with the
condition r < ε+ r′. Its probability converges to 1 since both r, r′ shrink to zero
in the product (y, z)-Probability as n→ ∞.
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Abstract. The following model is considered. There is exactly one un-
known element in the n-element set. A question is a partition of S into
three classes: (A,L,B). If x ∈ A then the answer is “yes” (or 1), if x ∈ B
then the answer is “no” (or 0), finally if x ∈ L then the answer can be
either “yes” or “no”. In other words, if the answer “yes” is obtained then
we know that x ∈ A ∪L while in the case of “no” answer the conclusion
is x ∈ B ∪ L. The mathematical problem is to minimize the minimum
number of questions under certain assumptions on the sizes of A,B and
L. This problem has been solved under the condition |L| ≥ k by the
author and Krisztián Tichler in previous papers for both the adaptive
and non-adaptive cases. In this paper we suggest to solve the problem
under the conditions |A| ≤ a, |B| ≤ b. We exhibit some partial results
for both the adaptive and non-adaptive cases. We also show that the
problem is closely related to some known combinatorial problems. Let
us mention that the case b = n−a has been more or less solved in earlier
papers.

Keywords: combinatorial search, search with lies.

1 Introduction

Let us start with the basic model of Search Theory. An n-element set S is given,
one of its elements, say x, is distinguished, the goal is to find x. Questions of
type “x ∈ A?” can be asked, where A is a subset of S. The unknown x should
be determined on the base of the answers to these questions. In general one
cannot use every subset A. A family A ⊂ 2S is given, the question sets A can
be chosen only from A.

We show some “practical examples”.
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1.1. Twenty question. Alfred chooses a person x, Paul has to find out who
he/she is and he can ask questions like “is x a man?”, “is x alive?”, and so on...
Alfred answers honestly, and Paul has to determine the person based on the
answers to his questions. Obviously, S is the set of persons, A is the set of men,
or the set of living persons, etc.

1.2. Chemical analysis. It is known that the given solution contains exactly
one metal. This should be determined by chemical tests. Then S is the set of all
metals, x ∈ S is the one contained in the solution. A chemical test is e.g. when
a certain other specific chemical is added to the solution. If x ∈ A where A is a
subset of S then the solution turns red, otherwise it does not.

A recent important variant of this example when the solution contains an
unknown genetic sequence.

1.3. Criminal investigation. Given a crime, we have a set S of possible
perpetrators. The real perpetrator, x ∈ S should be found. Each evidence
restricts x to be in a set A ⊂ S. For instance if a witness says that the perpetrator
is bold then we know x ∈ A, where A is the set of bold ones among the possible
perpetrators.

There are two basic ways to use the questions. In the adaptive model the choice
of the next question may depend on the answers to the previous questions. The
search algorithm starts with a question set A. If the answer is that x �∈ A then
the next question is a certain A0, otherwise A1. If the answer to the question
“x ∈ A0?” is no then the question set A00 comes, and so on. That is the
search algorithm consists of a binary tree structure of subsets of S where A is
the root. The information obtained along the path from the root to a leave
uniquely determines x. The complexity of such a search algorithm is the length
of the longest path from the root to a leaf. The mathematical problem is to
find the search algorithm with the least complexity using sets from A. (Shortest
algorithm in the worst case.)

In the non-adaptive model the question sets are given in advance: A1, A2,
. . . , Am. Of course the knowledge if x ∈ Ai(1 ≤ i ≤ m) must uniquely determine
x. One can easily see that this holds iff A1, A2, . . . , Am is a separating family
that is, for any x, y ∈ S, x �= y there is an i such that exactly one of x ∈ Ai and
y ∈ Ai holds. The mathematical problem is to find the minimum of m that is
the size of the smallest separating subfamily of A.

There is a very large number of variants of this basic model. The interested
reader can find them in the survey paper [11] and in the monographs [10], [3],
[2].

An important direction is when the answers to the questions “x ∈ A?” can
be wrong. The first such problem was independently posed by Rényi and Ulam.
Every subset can be chosen as a question set that is A = 2S, the search is
adaptive, at most one of the answers can be wrong along a path leading from
the root to a leave. The unknown x has to be found surely, with probability one.
What is the minimum number of questions in the worst case? The problem is
called the Rényi-Ulam game ([17], [16]). Berlekamp ([5], [6]) has basically solved
the problem (gave good estimates). This problem has many variants, as well.
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A general term for these types of problems, when the answer to the question
can be erroneous Search with Lies. [9] is a good survey paper. The case when
A consists of all sets of size at most k is treated in [12].

2 Our Model

In the models Search with Lies briefly introduced in the first section every ques-
tion has the same chance to be incorrectly answered. In other words, the occur-
rence of a lie does not depend on the relationship of the question set A and the
unknown element x. In our present model this is not true. For a given question
there are certain unknowns x triggering the possibility of a false answer. If the
unknown x is different from these then the answer must be correct. Let us show
some examples continuing our examples in the previous section.

2.1. Twenty question. Suppose that Alfred has a famous transsexual in his
mind as the unknown x. Paul asks “is he a man?”. Alfred has to answer “yes” or
“no”. He will unintentionally lie, misleading Paul. (When Twenty Question was
played on the Hungarian TV in the nineteen seventies, they had to introduce the
the third possible answer “not characteristic” because of the protests concerning
incorrect answers of this type.)

2.2. Chemical analysis. The outcome of the chemical test might sensitively
depend on a parameter we cannot well control or sense. But only in the case of
certain metals. For “good” metals the result of the test is correct, for the “bad”
metals however it might be wrong.

2.3. Criminal investigation. The officer asks the witness if the perpetrator is
bold. The witness might lie only if it is in his/her interest: the perpetrator is
his/her relative or friend.

In the first section a question A divided S into two parts: into A and A. If
the answer was “yes” we learned that x ∈ A, if it was “no” then the conclusion
was x ∈ A. Here a question is a partition of S into three classes: (A,L,B). If
x ∈ A then the answer is “yes” (or 1), if x ∈ B then the answer is “no” (or 0),
finally if x ∈ L then the answer can be either “yes” or “no”. In other words, if
the answer “yes” is obtained then we know that x ∈ A ∪ L while in the case of
“no” answer the conclusion is x ∈ B ∪ L.

The obvious problem is what the fastest algorithm using such questions is. If
there is no limitation on the choice of these 3-partitions, then the easy answer
is that only partitions with L = ∅ should be used and we are back to the old,
trivial model. Therefore a natural assumption is that every L is large, that is,
|L| ≥ k holds for every partition we can use. On the other hand it will be
supposed that all the possible partitions (A,L,B) satisfying |L| ≥ k can be used
as questions.

The adaptive case will be solved in Section 3 by exhibiting the best algorithm
and proving that there is no better one in the worst case. The non-adaptive
case is more difficult. In Section 4 we reduce the problem to a graph theoretical
problem: a nearly perfect matching in the graph of the n-dimensional cube
should be found which satisfies the additional condition that the number of
edges in the matching is the same in all directions.
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The results of this paper were first presented at the “Workshop on Combina-
torial search” in Budapest in April 26th, 2005. Professor Rudolf Ahlswede liked
them very much. Each time when we met he urged us to write them up but
we kept postponing it. In the mean time he even solved some closely related
problems in [1]. I hope he will like that this paper is published at least in his
memorial volume.

3 The Adaptive Search

Suppose that k ≤ n − 2 holds. We start with the description of an algorithm.
The starting question is an arbitrary partition (A,L,B) satisfying |L| = k, |A| =

n−k2 �, |B| = �n−k2 . After obtaining the answer the unknown x will be restricted

either to A∪L or to B ∪L where |A ∪L| = 
n+k2 �, |B ∪L| = �n+k2 , both sizes
are < n.

Suppose that x is already limited to a set Z ⊂ S at a certain stage of the
search. The next step of the algorithm will be determined distinguishing two
cases depending on the size of Z. However in both cases the new L is chosen to
minimize |Z ∩L| since the incorrect answer in L is not interesting outside of Z.

1. |Z| > n − k. Choose L of size k in the following way: S − Z ⊂ L. Divide

Z − L into two parts A and B of sizes
⌈
|Z−L|

2

⌉
and

⌊
|Z−L|

2

⌋
, respectively. This

defines the next question (A,L,B).
2. |Z| ≤ n − k. Choose an L of size k to be disjoint to Z. Divide Z into

two parts U and V of sizes
⌈
|Z|
2

⌉
and

⌊
|Z|
2

⌋
, respectively. Let the next question

(A,L,B) in the algorithm be defined by A = U,B = V ∪ (S − Z − L).
After receiving the answer to this last question the unknown element x is

restricted to a set Z ′ of size either 
n−k2 � or �n−k2  in the first case and of size

either 
 |Z|
2 � or � |Z|

2  in the second case. (Observe that all these four values are
less than |Z|.)

The algorithm stops when |Z| becomes 1.

Theorem 1. Let k ≤ n−2. The algorithm described above is the fastest adaptive
search.

Proof. A stronger statement will be proved, namely that this algorithm is the
fastest if it is started from a position when the unknown element is restricted to
a z-element subset Z. Let f(n, k, z) denote the minimum number of questions
in this situation in the worst case. Induction on z will be used.

Suppose that the unknown element is restricted to to a set Z where |Z| = z.
We will prove that our algorithm is the shortest one, using the assumption that
it is the shortest for smaller values of z. Let (A, Y,B) with |Y | ≥ k be the first
question of an arbitrary algorithm. If the answer is “yes” then the unknown
element is restricted to the set Z ∩ (A ∪ Y ), otherwise to Z ∩ (B ∪ Y ). By the
inductional hypothesis at least

max{f(n, k, |Z ∩ (A ∪ Y )|), f(n, k, |Z ∩ (B ∪ Y )|)} (3.1)
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more questions are needed.
Since A ∪ Y and B ∪ Y cover Z,

max{|Z ∩ (A ∪ Y )|, |Z ∩ (B ∪ Y )|} ≥
⌈
|Z|
2

⌉
. (3.2)

On the other hand either |A| or |B| is at most
⌊
n−|Y |

2

⌋
≤

⌊
n−k
2

⌋
. Hence the

smaller one of |Z ∩ A| and |Z ∩B| is also at most
⌊
n−k
2

⌋
. This implies

max{|Z ∩ (A ∪ Y )|, |Z ∩ (B ∪ Y )|} ≥ |Z| −
⌊
n− k

2

⌋
. (3.3)

Using the obvious fact that f(n, k, z) is a monotone function of z, (3.1)-(3.3)
imply

f(n, k, z) ≥ 1 + max{f(n, k, |Z ∩ (A ∪ Y )|), f(n, k, |Z ∩ (B ∪ Y )|)} ≥

1 + max

{
f
(
n, k,

⌈z
2

⌉)
, f

(
n, k, z −

⌊
n− k

2

⌋)}
.

Here
⌈
z
2

⌉
≥ z−

⌊
n−k
2

⌋
holds if and only if z ≤ n− k, following the separation in

the definition of the algorithm proving that we cannot do anything better than
our algorithm. �

One can conclude that the best algorithm decreases the size of Z by �n−k2  in
each step until its size becomes at most n−k. Then the usual “halving” finishes
the algorithm. Using the trivial fact f(n, k, 1) = 0, this gives us a formula for
the length of the algorithm.

Consequence. Suppose k ≤ n− 2. The length of the fastest adaptive algorithm
is

f(n, k, n) = f(n, k) =

⌈
n

�n−k2 

⌉
−2+

⌈
log2

(
n−

⌊
n− k

2

⌋(⌈
n

�n−k2 

⌉
− 2

))⌉
.

It is worth mentioning that this formula is basically identical with that of The-
orem 3.8 in [11].
k ≤ n − 2 was supposed in Consequence 1. If k = n, the tests give no

information, the unknown element cannot be found. The case k = n− 1 is not
really better. Let the question contain L as an arbitrary n − 1-element set ,
the remaining one-element set is A. If the answer is “yes” then we obtained no
information. On the other hand, if the one-element set is B then the answer
“no” leaves us without information. That is in the worst case no information is
gained from these questions.

4 The Non-Adaptive Search

In this case the “algorithm” consists of a series of questions

(A1, L1, B1), (A2, L2, B2), . . . , (Am, Lm, Bm) (4.1)
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such that the answers to these questions uniquely determine x in all cases. Take
two distinct elements x, y ∈ S. If

either x ∈ Ai, y ∈ Bi or x ∈ Bi, y ∈ Ai (4.2)

holds for the question (Ai, Li, Bi) we say that this question really separates x and
y. If (4.2) holds then the answer to this question will be different when x is the
unknown element and when it is y. In other words this question distinguishes x
and y. On the other hand, if both x and y are in Ai (Bi) then the answer to
the question is the same in the two cases (when x is the unknown or it is y).
Finally, if one or both x and y are in Li then we might obtain the same answer
in the two cases, this question does not necessarily distinguishes x and y.

One can see from this that the answers to the set of questions (4.1) uniquely
determine the unknown x iff (4.2) holds for every pair x, y ∈ S. We say in this
case that (4.1) is a really separating set of questions. Our goal is to minimize m
under the conditions that (4.1) is really separating and |Li| ≥ k, for given n, k.
Let this minimum be denoted by N(n, k).

It is useful to consider the “characteristic matrix” of the set of questions. The
characteristic vector associated with the question (A,L,B) is a vector containing
1, ∗, and 0 in the jth coordinate if the jth element of S is in A,L,B, respectively.
Let the m× n question-matrix Q have the characteristic vector associated with
(Ai, Li, Bi) in its ith row. Condition (4.2) is equivalent to the condition that
for any pair of distinct columns of Q there is a row where the entries are 0, 1 or
1, 0 in the crossing points of this row and the two given columns. We say that
that such a matrix is ∗-less separating. In these terms N(n, k) is the minimum
number of rows in an m×n, ∗-less separating 0,∗,1-matrix containing at least k
stars in each row.

The following trivial lemma will be used later.

Lemma 1. 2x ≥ 2x holds for every non-negative integer x.

Proof. The statement is true for x = 0, 1, 2. For x ≥ 3 one can use induction:
2x = 2x−1 + 2x−1 ≥ 2(x− 1) + 2 = 2x. �

Lemma 2. If Q is an m× n, ∗-less separating 0,∗,1-matrix containing at least
k stars in each row then

2km ≤ 2m (4.3)

holds.

Proof. Let mj denote the number of ∗s in the jth column of Q. Replacing all ∗s
in the jth column by either 0 or 1, 2mj different columns are obtained. Consider
another, say the �th column. Since Q is ∗-less separating, the columns obtained
from the �th column by replacing the ∗s by 0 or 1 must be different from the
columns obtained from the jth column. Hence we have

n∑
j=1

2mj ≤ 2m. (4.4)
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Lemma 4.1 gives a lower estimate on the left hand side:

n∑
j=1

2mj ≥
n∑
j=1

2mj = 2
n∑
j=1

mj . (4.5)

The last sum in (4.5) is just the total number of ∗s in Q therefore it must be at
least km (at least k in each of the m rows).

n∑
j=1

mj ≥ km. (4.6)

Inequalities (4.4)-(4.6) give (4.3). �

Lemma 3. If Q is an m× n, ∗-less separating 0,∗,1-matrix containing at least
k stars in each row then

n+ km ≤ 2m (4.7)

holds.

Proof. It will be very similar to the proof of the previous lemma. We use here a
tiny bit improved version of Lemma 4.1. When x = 0 then 20 = 1 is used rather
than 20 ≥ 2 · 0. (4.5) becomes

n∑
j=1

2mj ≥
n∑
j=1

mj +

n∑
j=1

mj + (the number of js with mj = 0). (4.8)

Here
n∑
j=1

mj + (the number of js with mj = 0) ≥ n (4.9)

since the non-zero mjs are decreased by replacing them by 1. Use (4.6) for the
first term of the right hand side of (4.8) then (4.8) for the two other terms:

n∑
j=1

2mj ≥ km+ n.

(4.4) finishes the proof. �
It is somewhat surprising that these two easy conditions (Lemmas 4.2 and

4.3) are sufficient for the existence of a good Q.

Theorem 2. Suppose 3 ≤ m. A Q m × n, ∗-less separating 0,∗,1-matrix con-
taining at least k stars in each row exists if and only if both (4.3) and (4.7)
hold.

Proof. Sketching why we need here a graph construction. We only have to
construct a matrix satisfying the conditions if the inequalities (4.3) and (4.7)
hold. The matrix will contain one or zero ∗s in every column, and exactly k
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∗s in every row. The 0,1 columns of the matrix will be considered as points of
the m-dimensional cube Bm. (Here Bm = (V,E) is a graph where V consists of
all 0,1 sequences of length m and two such vertices are adjacent if the sequence
differ in exactly one position.) A column containing one ∗ can be considered as
a pair of points, namely the points corresponding to the two columns obtained
by replacing the ∗ by a 0 and a 1. These points are adjacent in Bm therefore
the column containing exactly one ∗ can be considered as an edge of Bm. This
edge has a direction, namely the index of the position of the ∗. It is obvious that
two such edges cannot have a common point, otherwise the two columns would
not be different by all substitutions. This shows that our matrix generates a
matching in Bm. Since we want to have exactly k ∗s in every row, the number
of edges in the desired matching should be the same in every direction.

A subgraph (in our case a matching) of Bm is called balanced if the number
of edges in every direction is the same. We showed how these concepts came
into the picture. Let us now formulate our main tool what was developed for
the present purpose but its proof can be found in [14].

Theorem 3. Bm(m ≥ 3) contains a balanced matching with⌊
2m−1

m

⌋
(4.10)

edges in every direction.

The construction. Suppose that (4.3) and (4.7) hold. Start with the balanced
matching in Theorem 4.2. By (4.3) k cannot exceed (4.10). Keep only k edges of
the matching in each direction. If e is an edge of the matching in direction i then
take a a corresponding column in Q having a ∗ in the ith row, its other 0,1 entries
are the joint coordinates of the two endpoints of e. In this way we obtained an
m× km ∗-less separating matrix. We need to add n− km 0,1 columns (without
a ∗) keeping the property. The existing km columns exclude 2km columns,
what are obtained by replacing the ∗s by 0 or 1. There are 2m − 2km other 0,1
columns for our disposal. However n− km ≤ 2m − 2km follows from (4.7), the
construction of Q can be completed. �
Consequence. If k ≥ n− 2 ≥ 1 then the minimum length of the non-adaptive
algorithm is

N(n, k) = min{m : 2km ≤ 2m, n+ km ≤ 2m}.

The conditions on n and k ensure m ≥ 3 by (4.7). Theorem 4.2 can be applied.
�

5 Remarks

1. Pálvölgyi (unpublished) [15] gave an asymptotically good construction for
the non-adaptive case. Bassalygo and Kabatianski (unpublished) [4] also solved
a problem related to the non-adaptive case.
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2. There were earlier attempts to model the situation described in the pa-
per. Katona and Szemerédi [13] considered the non-adaptive case (formulated in
terms of graphs), when the partitions (A1, L1, B1), (A2, L2, B2), . . . , (Am, Lm, Bm)
really separate every pair of elements x and y. It was proved that

m∑
i=1

|Ai|+
m∑
i=1

|Bi| ≥ n log2 n

that is if the cost of a test is the number of “real elements” then one cannot
do better than taking Li = ∅ for every i and “halve” the underlying set log2 n
times. For what powers of |Ai| and |Bi| is it still true? For recent improvements
see [7] and [8].

3. We have to admit that the condition that all L’s have size at least k is
not realistic from a practical point of view. In a typical case many Li’s can
be empty. However if the partitions with large Li are numerous and situated
adversely then it can reduce the ideal minimum length log2 n. Find conditions
for that in both the adaptive and non-adaptive cases.

An interesting generalization of our model in the present paper is the fol-
lowing. Let a test be a family {A1, A2, . . . , At} where their union covers the
underlying set (set of possible unknown elements). If the only unknown element
is in Ai1 ∩ . . .∩Aiu then the result of the test is any one of the indices i1, . . . , iu.
One can ask mathematical questions similar to the ones in our paper.
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Abstract. We consider a cutting problem, which have a practical ap-
plication. In this problem, items are being cut from larger items, for ex-
ample textile patterns from a panel of cloth. We deal steel tubes of given
length, which have to be sawed from longer steel tubes. These longer
steel tubes come with given costs and the sawing has to be planned such
that the total costs are minimized.

Keywords: cutting problem, one-dimensional, Gilmore and Gomory
approach.

1 Introduction

The minimization of costs while cutting various materials is a common prob-
lem in practice. Additionally, it is analogous to the packing problem where,
for example, a container has to be loaded with boxes as efficiently as possi-
ble. Packing and cutting problems are divided into three groups: 1-dimensional,
2-dimensional and 3-dimensional, depending on whether 1-dimensional bars, 2-
dimensional surfaces or 3-dimensional objects are packed or cut. Problems of
higher dimensions are thinkable, but do not occur in practice. 3-dimensional
cutting problems arise, as mentioned, when containers are loaded with boxes,
2-dimensional ones when cutting patterns from various materials. 1-dimensional
cutting problems arise, like in our case, when tubes are sawed from larger tubes.
A survey of approaches for all these problems was given in [6].

In our case we examine a 1-dimensional cutting problem. More precisely, under
side conditions detailed later on, a number of ordered customer lengths l1, .., ln
with given quantities q1, .., qn will be cut from a set of choosable initial lengths
L1, .., Lm with certain costs a piece. The total costs, which are calculated from the
costs and amounts of the initial lengths, has to be minimized. The 1-dimensional
cutting problem was first solved by Eisemann [4] using linear programming. Here,
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we assign a variable to any possibility to cut customer lengths from initial lengths.
In Eisemann’s case, these initial lengths were given. Using the simplex method,
the variables which produce a minimal solution are chosen from the set of all vari-
ables. The number of variables is very large, however.

1961 Gilmore and Gomory published an approach [7] which builds on Eise-
mann’s solution. It shortens the time-consuming calculation and choice process
by column generation. Eisemann’s method checks every assumed solution as to
whether there exists an unused variable whose substitution would result in an
improvement. All existing variables have to checked for this. The algorithm of
Gilmore and Gomory does not choose such a variable from all possibilities, but
instead constructs it directly. This additional subproblem is solved by a knap-
sack problem. 1963 Gilmore and Gomory published a second part of their paper
[8]. The authors responded in particular to the needs of the paper industry
(limiting the number of saws and even machine usage) and present an alternate
algorithm for the solution of the knapsack problem. As will be seen later, even
with the help of the second paper not all side conditions can be introduced into
the algorithm, whereas the limit on the number of saws can easily be inserted
into the first algorithm.

Another difference fromGilmore and Gomory to Eisemann is the waiving of the
restriction to whole number solutions. The production numbers can be arbitrary
non-negative numbers. The solution has to be turned into integers afterwards,
which can result in a loss of optimality. A small survey of methods which solve
this second subproblem has been published by Wäscher and Gau [11].

The algorithm of Gilmore and Gomory is the standard approach of 1-
dimensional cutting problems. Another, newer approach by Dyckhoff [5] shall be
presented nevertheless. The idea of Gilmore, Gomory and Eisemann was, that
all production processes are carried out at once. Dyckhoff’s algorithm starts by
producing one customer length after the other, and only calculates the next step
after the previous has been finished. After one has been produced, we have a
new set of customer lengths. The result is not a simplex algorithm with column
generation by a knapsack problem, but one single large knapsack problem. The
solutions are integers, however, in the case of unfavorable numbers, a knapsack
problem with a large number of variables and equations occurs which results in
a long calculation.

There is no polynomial bound to the runtime of the algorithm of Gilmore and
Gomory [1]. Using the ellipsoid method [9] would result in a polynomial bound,
in practice, however, the method of Gilmore and Gomory calculates the solution
faster.

We will use the algorithm of Gilmore and Gomory as a starting point. The
main problem of this paper will be to adjust the algorithm to the various side
conditions. The free choice of initial lengths and the limitation of the number of
saws have already been mentioned. Unfortunately, we will see that the adjust-
ment is not readily possible. The key point is that the customer lengths cannot
be distributed among the initial lengths arbitrarily. For logistic reasons, the en-
tire order of one length has to be cut from the same initial length. To solve this
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problem, an additional, graph theoretical algorithm is introduced, which canmod-
el the problem precisely. Every possibility to cut a set of customer lengths from a
certain initial length (this is called a batch), constitutes an edge of a hypergraph.
The cost of the batch takes the role of an edge weight. The goal is to choose edges
which are a partition of the hypergraph. The sum of the weights has to be min-
imal. No algorithm for this problem exists so far, nor one for a similar problem
that could be transformed. We will therefore suggest a heuristic solution.

In [12] an extended overview with examples of the results we present here is
given.

This paper is structured as follows: first the production process, as far as rel-
evant, is described, so that the side conditions can be understood. What follows
is the construction of a cost function, which will calculate the cost of an initial
length. In the next step the algorithm of Gilmore and Gomory is described,
including the adjustments for the side conditions. Then we will reformulate
the problem into graph theory. Lastly, the procedure to turn the solution into
whole numbers is described, which will then accommodate the remaining side
conditions.

2 The Production of Precision Tubes

We will first describe how precision tubes are produced and then what conditions
have to be accounted for in the optimization of the production. So far, the
optimization is carried out without the aid of a computer algorithm. The orders
of a week are combined into batches in advance.

2.1 The Production

The precision tubes are made from steel cylinders, called blocks. These blocks
are processed into hollows in the warm shop. These hollows are then processed
on into precision tubes in the cold drawing shop.

The Warm Shop
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In the warm shop the block, which can weigh up to 180kg, is first heated and
then brought into tube shape on the pushing bench. The pushing bench consists
of rolls on which the heated block is put. A bar is then pushed into the block
from one side, while the rolls stretch the block. The bar is then removed and
the ends of the blocks cut off. Next the block is stretched again by moving rolls
and cut into equal parts. These equal tubes are the hollows. Their measurement
in terms of thickness and diameter are very imprecise, however, since they were
not worked by an inner tool. A part of the production is sold directly as hollows.
The majority is processed further in the drawing shop.

The Drawing Shop

In the drawing shops, the cooled hollows first have a tang, a kind of grip,
worked into them and are provided with lubricants. Then the real production
step takes place on one of several drawing benches. The longest bench can
produce tubes of lengths up to 33 meters. The hollow is drawn through an outer
and an inner tool, which stretches the tubes and gives it a precise diameter and
thickness. The processed hollow is now a precision tube. After the draw, the
ends of the precision tube are removed and the rest cut into the desired lengths.
Since there are only 6 saws, one tube can be sawed into 5 smaller tubes (due
to the cut off ends). These 5 tubes may, due to logistic reasons, only consist
of 3 different lengths. After a negligible finishing process, the production of the
precision tube is completed.

2.2 Side Conditions of the Optimization

There are four special conditions in which the given problem differs from the
requirements of the algorithm of Gilmore and Gomory.

The first and most important difference is the combination to batches. A
batch is simply a set of customer lengths with a quantity, which are processed
from an initial length. The quantity of a customer length belonging to a batch
has to be produced entirely from this batch, which means from this particular
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initial length. To assure optimality in general, Gilmore and Gomory will usually
obtain each customer length from a number of initial lengths. The question how
the customer lengths can be combined to batches is central. This adjustment
happens within the graph theoretical algorithm.

The second difference is that, as mentioned, the initial lengths are not given,
but freely selectable. Before the algorithm can be used, we therefore need a pro-
cess that chooses adequate initial lengths. The necessary work happens within
the construction of the cost function. This function will then be applied in the
graph theoretical part.

Thirdly, it has to be paid attention to the fact that at most 3 different lengths
and at most 5 tubes may be sawed. In the following, this condition is referred to
shortly as 5-3-condition. The adjustment only requires a relatively small change
in the knapsack problem.

The fourth condition is the integration of so-called variable customer lengths.
The customers are offered two types of orders. Next to the normal type (length
and quantity) variable lengths can be ordered as well. Here, the customer gives
a tolerance of length per tube and a total length of the order. The actually
produced length can vary within the tolerance and even vary within the batch.
The quantity is then dependent on the choice. Both types of orders can be
combined in a batch. The last section mostly deals with this problem.

3 The Cost Function

3.1 Notation

We come now to the construction of the cost function. The following parameters
are relevant here.

First there are the measurements. Here, tk shall denote the thickness and od
the outer diameter of the tube resp. the hollow. The restrictions of the machines
are denoted by maxDL for the maximum drawing length of a drawing bench, and
maxBW for the maximum block weight in the warm shop. T stands for the length
of the hollow which is needed for the tang, which pulls the hollow. L stands for
the loss at the beginning and end of the tube after the draw. The warm shop
loss is always an almost constant 20kg, therefore no notation is introduced for
it. Finally, mw denotes the weight of a hollow resp. tube per meter.

3.2 The Warm Shop

The linear approximation of the data givesW II(b) = −1.778b+828.This function
calculates the cost of the warm shop per ton of steel depending on the utilized
block weight b in kg.

The cost of just one block is then

W I(b) =
−1.778b2 + 828b

1000
.
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To calculate how heavy the block has to be for a particular drawing length, we
first have to calculate how heavy the hollow, from which a particular precision
tube is created, is. Let a be the length of the tube, then the weight of the hollow
is

H(a) =

(
(a+ L) · tkt · (odt − tkt)

odh · (odh − tkh)
+ T

)
·mwh.

The number of hollows per block is

N(a) =

⌊
maxBW − 20

H(a)

⌋
.

The utilized block weight is therefore

B(a) = N(a) ·H(a) + 20.

The warm shop costs for one precision tube is thus

W (a) =
W I(B(a))

N(a)
.

3.3 The Drawing Shop

The cost function for the drawing shop is

DI(d) = 35.83z2 − 2.711z + 35.836.

This function gives the cost per ton of precision tubes depending on the deviation
0 ≤ d ≤ 1 from the maximum drawing length. This cost function is only valid
for one drawing bench (maxDL here 33 meters). The difference from one bench
to another is small, however.

If we replace d by 1− a
maxDL

we obtain the same function, but now in depen-
dence of of the absolute drawing length.

DI(a) =
35.83

maxDL
2
a2 − 68.949

maxDL
a+ 68.955.

D(a) gives the costs of one tube of length a instead of the costs of a ton of tubes

D(a) =
a ·mwt

1000
·DI(a)

The total costs of a precision tube are therefore

C(a) =W (a) +D(a).

4 The Algorithm of Gilmore and Gomory

The algorithm of Gilmore and Gomory (1961) delivers, using then revised sim-
plex method, production patterns with quantities, which produce the ordered
customer lengths and whose total costs are minimal. The number of selected
patterns is always equal to the number of different customer lengths. Their
quantity can be 0, however.
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4.1 Notations and Variables

The customer and initial lengths receive the following notations, which we have
already used before partly. Since in the algorithm of Gilmore and Gomory the
initial lengths are given, we will assign a variable to them, too.

m Number of used initial lengths
j Index of the used initial lengths
Lj The length of initial length j (w.l.o.g. we require Lj > Lj+1)
Cj The costs of initial length j

n Number of customer lengths and utilized patterns
i Index of customer lengths
li Length of customer length i
qi Ordered quantity of customer length i

We are looking for cutting patterns after which one or more customer lengths
are sawed from an initial length. A pattern is every natural solution of the
inequality

n∑
i=1

liyi,k ≤ Lj for one j.

The variables here stand for:

k Index of the selected patterns
yi,k Multiplicity of customer length i in pattern k
ck Costs of the pattern k (= costs of the respective initial length)
xk Number of applications of pattern k

4.2 Course of the Algorithm

The revised simplex algorithm starts with a trivial solution:

The selected n patterns are the ones for which yi,k =
⌊
L1

li

⌋
for i = k, and

yi,k = 0 otherwise.
The solution will now be improved step by step, by using column generation

to construct a new pattern and replace a previously selected one. This happens
until no new pattern can be found which would improve the solution.

Let A be the (n× n)-matrix which consists of the currently selected pattern
as column vectors (y1,k, ..., yn,k)

�.
Let c = (c1, ..., cn) be the vector, which consists of the costs of the n patterns.

Column Generation. A new pattern p is a natural vector (p1, ..., pn) with
costs cp. The pattern is a strict improvement of the solution if and only if:

c�A−1p > cp.
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This is the case since A−1p is p represented as linear combination of the vectors
in A. If this vector is multiplied by c�, we obtain the costs of this combination. If
these costs are strictly greater than cp, then adding p would be an improvement.

Now we will construct such a pattern directly. This happens by solving the
following knapsack problem for some j:

Lj ≥ l1p1 + · · ·+ lnpn

Cj < (c�A−1)1p1 + · · ·+ (c�A−1)npn

The li correspond to the size resp. the costs of the items, which may not exceed
a certain bound, the (c�A−1)i to the benefit, which may not be below a certain
bound. The solution of the knapsack problem is done by the method of Dantzig
[3], which will be presented in Section 4.4.

The initial lengths are processed one by one. If no pattern can be found for
j = 1, we proceed with j = 2 and so on.

Choice of the Replaced Pattern. Let B be the matrix A expanded by a 0th
row and column:

B0,0 := 1

B0,i := −ci

Bi,0 := 0.

To find out which previously selected pattern shall be replaced by the new one,
calculate for all 1 ≤ i ≤ n for which holds (B−1p)i > 0 and xi ≥ 0 the ratio

xi

(B−1p)i
. The index of the minimal ratio is the index of the pattern which is to

be removed. Let k be this index.
In case the choice of k is not unique, the lexicographic rule is applied [2]. For

this, let k1, .., ks be the candidates for k and βij the coefficients ofB−1. The index

for which
βki1

(B−1p)ki
is minimal is chosen. If this is not unique either, restrict the can-

didates accordingly again and repeat the procedure with the next column ofB−1.
Since the columns of B−1 are linear independent, a unique k will be determined.

End of the Algorithm. The solution is finally a vector x = (x0, x1, .., xn) :=
B−1 · q

Here, q is the vector (0, q1, .., qn). In the solution x, x0 gives the total costs
and x1, .., xn the multiplicity of the respective pattern.

The calculation of the new B−1 and x in each step can be accelerated. Define
the (n+ 1) × (n+ 3)-matrix

G :=
[
B−1 x B−1p′

]
.

p′ ist here the usual p with the additional 0th element. Now execute a Gauss
elimination for the kth element of the last column. The new B−1 and x are the
desired ones.
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The x1, .., xn now have to be rounded up. How the generated overproduction
can be lowered will be explained later on.

4.3 Remark about Slack Variables

The common simplex algorithm uses slack variables as additional variables. As
vectors they contain only zeros and a −1 at one position. They are necessary,
since under certain circumstances, an optimal solution can be one with over-
production. Interestingly, slack variables can be omitted for the algorithm of
Gilmore and Gomory. For every optimal solution which contains slack variables,
there exists one with equal costs, but no slack variables. In [7], Gilmore and Go-
mory attribute this to the omission of the restriction to whole number solutions.
This is incorrect, however, as the following remark will show.

Remark. From the property, that for every pattern (y1, ..., yn) with at least
one yi ≥ 1 we also have a pattern (y1, .., yi−1, yi − 1, yi+1, .., yn), and both have
the same initial length and costs, follows that slack variables can be omitted.

Proof. As pattern with index j let the ith slack variables (−1 at the ith position)
be part of the solution. This means the ith customer length is produced more
often than necessary.

If there is a pattern j′ in the solution with yi,j′ ≥ 1 and xj′ ≥ xj , then the
solution can be altered. The pattern j′ gets produced xj times less and a new
pattern j is introduced, which, apart of one occurrence of li less, is identical with
j′ and is produced xj times. The slack variable is removed. Both pattern use
initial length j′ and together are produced xj′ times. The costs are the same.

If all patterns producing li have multiplicity < xj , choose an arbitrary pattern
as j′. Replace this pattern by the pattern which produces li one time less than
j′. xj is reduced by xj′ . Since the initial length of j′ is not changed, the costs
remain the same.

Repeat this step until the first case occurs. Since∑
k 
=j

yi,k · xk > xj ,

this will happen after finitely many steps. �

This proof differs only in one step from the one Gilmore and Gomory use. The
difference is, that in the second case yi,j′ is not reduced by 1, but 0 in entered
immediately. This is why the removal of whole number solutions is necessary.
The proof shows, that not non-whole number solutions are crucial, in fact they
alone do not suffice. The above property holds for Gilmore and Gomory, too,
of course, it is merely not used. What is used implicitly is the existence of a
pattern (y1, .., yi−1, 0, yi+1, .., yn).

Gilmore and Gomory continue to use slack variables, however. The reason
is that when more than one optimal solution exists, the algorithm finds the
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one with the least utilized patterns. In every step of the algorithm, before the
generation of a new pattern by the solution of the knapsack problem, it is first
checked whether a slack variable would improve the current solution. If this
check is removed, calculation time is saved. We will therefore not use slack
variables, since the numbers in practice will only rarely allow more than one
solution with equal costs. In Section 5.5 we will see that in their example,
Gilmore and Gomory only used natural numbers ≤ 10. Should in practice such
a suitable constellation occur, the solution which uses the least patterns is not
automatically chosen anymore, however, it is also not always one with n patterns.
In this case, the time needed to adjust the saws for a new pattern, which is not
considered in the algorithm, has to be tolerated.

4.4 Solution of the Knapsack Problem by Dantzig and Adjustment

The knapsack problem is solved recursively, as in the work of Gilmore and Go-
mory [7]. They in turn refer to Dantzig [3].

Let 1 < t ≤ n and let l be an arbitrary length. Then:

Rt(l) = max
0≤pt≤� l

lt
�
{pt(cA−1)t +Rt−1(l − ptlt)}.

Knapsack Heuristic. To increase the speed of the algorithm, it is not necessary
to use the knapsack algorithm in each step. Patterns can be constructed using
an arbitrary knapsack heuristic. If the heuristic does not find a new pattern at a
certain point, it does not mean that there is none, but that the exact knapsack
algorithm has to be used instead. This will usually only affect the last few steps
of the algorithm of Gilmore and Gomory. The calculation time of the other steps
is lowered in turn.

In this case we will use the knapsack heuristic of Dantzig [3], which Gilmore
and Gomory used as well. Any other one is applicable as well. The heuristic
works as follow:

We will switch the indices 1, .., n of the general knapsack problem so that:

cA−1
1

l1
≥ cA−1

2

l2
≥ · · · ≥ cA−1

n

ln
.

Set the new pattern p as follows:

p1 = � a
l1


p2 = �a− l1q1,p
l2



p3 = �a− l1q1,p − l2q2,p
l3



and so on. Before the pattern can be used, we have to bring the indices back
into the original order, of course.
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Adjustment for the 5-3-Condition. The calculation of the solution of the
knapsack problem will now be adjusted, so that the sum of the pt cannot be
larger than 5, and so that no more than 3 positive pt exist.

To generalize, let g be the maximal number of produced customer lengths per
precision tube (5 here) and h the maximal number of produced customer lengths
of differing length per precision tube (3 here).

The new recursion step is now

Rt,g,h(l) = max
0≤pt≤r

{pt(cA−1)t +Rt−1,g−pt,h′(l − ptlt)},

where

h′ :=

{
h if pt = 0

h− 1 if pt ≥ 1

and

r :=

{
0 if h = 0

min{� l
lt
, g} if h ≥ 1

.

What has to be solved then, is the problem Rn,5,3(Lj) for one j.
The key in the adjustment is the restriction of pt by r. If h = 0, then all

following pt are 0 as well. Otherwise r is additionally restricted by g. Both
values are decreased appropriately in each recursion step.

In the heuristic it has to be watched that for every pi, pi ≤ 5 and that the
heuristic is stopped after the third positive pi.

5 Graph Theoretical Approach

Since one customer length cannot be distributed among differing initial lengths,
the goal is to partition the set of customer lengths into subsets, which will
then equal the batches. For these subsets we then have to determine a suitable
initial length onto which we will optimize the customer lengths via Gilmore and
Gomory’s algorithm.

5.1 Formulation

The problem can be described as a complete, weighted hypergraph H = (V,E).
In a hypergraph, V is the finite set of vertices. In our case the nodes will represent
the various customer lengths li. The set E consists of a subset of the power set of
V . The elements e of E are called hyper edges. While in a regular graph only two
vertices can be connected by an edge, in a hypergraph a hyper edge can connect a
number of vertices. Even one vertex alone constitutes an edge. The edges in our
case stand for every possibility to combine customer lengths into a batch. Our
hypergraph thus contains the entire power set (except the empty set).

Weighting means that a certain number is assigned to every hyper edge. Here
the weights we of the edges e correspond to the minimal costs which would arise
if the customer lengths in e were to be combined into one initial length.
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The problem can now be solved by choosing a subset F ⊂ E, which constitutes
a partition of the hypergraph and whose total weight is minimal.

No algorithm exists for this problem, nor for a similar problem which could be
reformulated. The only possibility would be to check all possible F . For small
n this might be feasible, but not for larger ones. Where the border lies for this
is determined by the computer capacity.

One possibility to move this border would be to drop the completeness of the
graph. In a practical case, it is improbable that batches will contain a large
number of customer lengths. It would be possible to only allow edges up to a
certain maximum grade Δ. Aside from having less possible partitions, this also
reduces the required time to calculate the weights for all edges. This happens
at the expense of the guarantee of optimality.

Calculation of the Edge Weights. Let an edge e = {k1, .., kt} be given.
There is a property which can be utilized here. After the optimization, a

chosen initial length has to contain at least one pattern which does not cause
any waste. If all patterns would cause waste, the initial length could be shortened
by the minimum waste, which would lower the costs. All initial lengths for which
no pattern of the same length exists can be dropped therefore. Due to this, the
choice of the initial lengths can be limited to the following candidates.

Calculate the length of all pattern p = (p1, ..., pt), which consist of k1, ..., kt
and for which holds:

max

{
max(ki),

max(L)

2

}
≤

t∑
i=1

piki ≤ max(L).

Now, using Gilmore and Gomory, the customer lengths are optimized on each
of these candidates and the one with minimal costs will be used. The calculated
minimal costs give the weight we.

5.2 The Heuristic

For large n we will now introduce a heuristic, which will yield an at least ac-
ceptable solution quickly. First the edge weights are normalized:

we :=
we

n∑
i=1
li∈e

li · qi
.

we gives the costs per produced meter. The adjustment is necessary, since the
absolute costs depend on the strongly varying total length of the customer orders
and may differ greatly.

Course of the Heuristic. The heuristic will first construct a tree from the
hypergraph, from which we will then be able to take the solution.
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1. Consider every possibility to partition the vertices of the hypergraph into
two sets M1 and M2. It shall hold M1∪̇M2 = V and |M1| = |M2| for n even
and |M1| = |M2| + 1 for n odd (w.l.o.g. for even n, l1 is always in M1, so
that no bisection is calculated twice).

2. Choose a partition for which∑
e⊂M1

we +
∑
e⊂M2

we

is minimal.
This is exactly the partition with minimal average costs per meter. (Di-

viding by |{e ⊂ M1}| and |{e ⊂ M2}| is unnecessary, since |{e ⊂ M1}| and
|{e ⊂M2}| are always the same.)

3. Continue with these two sets until n one-element sets are reached. This way
we arrived at a tree with V as root and the leaves l ∈ V . Every vertex v of
the tree stands for a bisection constructed before. A vertex is a neighbor of
another if one of them originated from the other by a bisection.

In the following, every vertex in the tree shall stand for the corresponding
hyper edge in the graph. The weight we of the edge is transfered to the
vertex of the tree.

4. The leaves of the tree are the starting solution. Choose the superior vertex
v1 to two currently chosen v2 and v3 with distance 2, if wv1 ≤ wv2 + wv3 .

5. If no more superior vertices can be chosen, the solution has been found.

5.3 An Alternative

Whenever the drawing length of a bench is changed, the change takes a certain
time. The cost of this time could not be accounted for in the cost function.

There exists, however, a rule of thumb which is used in practice. Two batch-
es are combined whenever the additional waste that occurs does not exceed a
certain limit, even if the costs rise. This limit is given in kilograms and depends
on the quality of the steel.

With the goal in mind to minimize the number of batches first and then the
costs, one can proceed as follows.

During the calculation of the edge weights the waste in kilograms is calculated
as well. If the value lies above the limit, the edge is deleted. Only edges with
weight less than this limit appear now in the hypergraph. The number of edges
will be reduced greatly this way. However, since an edge of degree 1 always has
a waste of 0, there are no isolated vertices and there will still always exist a
partition.

For small n all possible partitions are checked and the one which has the least
edges is chosen. If this is not unique, choose the one with the lowest cost among
these.

For large n the heuristic is used, which is shorter now. The difference is, that
in step 2 we do have to divide this time. After this, the tree does not have to be
constructed completely. As soon as in the process of bisections an M is found
for which M ∈ E(H), we can stop constructing this branch. At the end, again,
the leaves of the tree yield the solution.
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6 Variable Customer Length and Lowering of the
Overproduction

6.1 Treatment of Variable Customer Lengths

The problem of variable customer lengths arises in two places. First, how do
variable customer length take influence on the choice of the initial length? Sec-
ond, how will they be treated in the algorithm of Gilmore and Gomory? Since
the portion of variable length orders of the total order volume is relatively low,
compatibility is more important than optimality. Let us write in the following
min li for the lower bound of a variable length and max li for the upper one.

Variable Customer Length in the Choice of the Initial Length. In
order to limit the length of the calculation it is important that the number of
candidates does not increase too much.

Let an arbitrary hyper edge l1, .., lk be given. W.l.o.g. let the first 1 ≤ m ≤ k
lengths be variable. To take advantage of the entire range, first calculate all
candidates for li := min li for 1 ≤ i ≤ m, then with li := max li for the same i.

An additional opportunity presents itself to us here. Recalling the graph of
costs per meter of tube, we can also admit the distinctive minima at which
production is most cost effective.

Variable Customer Lengths in the Algorithm of Gilmore and Gomory.
At this point we have to fix which lengths are actually used within the given
range. On the one hand, the lengths should be long, to save costs, on the other
hand longer lengths mean less possible pattern which can mean higher costs.

The choice of the length which is entered as parameter into the algorithm of
Gilmore and Gomory, will be made as follows:

1. Let L be the given initial length. Calculate for all 1 ≤ i ≤ m all non-
extendable pattern from the initial length L − min li which only use the
customer lengths min li, lm+1, .., lk.

2. Divide the waste of every pattern by 1+ the multiplicity of min li. Let

min
{
min li +

W
|{min li}|+1

}
be the utilized length li.

6.2 Lowering of the Overproduction

If there is waste in a pattern which contains variable customer lengths, increase
the chosen length by this waste, as long as it stays under max li. If the pattern
contains more than one, distribute the waste evenly.

Due to this lengthening and the rounding up of the xi, overproduction occurs.
This overproduction can be decreased by lowering the multiplicity of appropriate
patterns. Since overproduction and waste mean the same loss, the lengthening of
the variable customer lengths means that we have more possibilities to decrease
multiplicities.
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Sort the indices of the customer lengths within every batch downward by the
total overproduction. Every pattern whose multiplicity can be lowered receives
the indices of its element as a word, which means, that the ordered set of the
indices is treated as letters. The multiplicity of the pattern with the lexicograph-
ically smallest word is now reduced as much as possible, then the next smallest
word is treated the same until no multiplicities can be lowered anymore.

7 An Example

To illustrate the graph theoretical algorithm, we will give a short example. Under
realistic conditions and 7 different customer lengths we will create the tree and
the alternative tree. The procedure can be taken from these.

7.1 Example Parameters

The condition of the maximum usable block weight depends on the maximum
block weight and this depends on the type of steel and its quality. The same
holds for the allowable waste. The maximum drawing length depends on the
utilized drawing bench.

Max. usable block length: 143.8 kg
Max. drawing length: 24.4 m
Max. all. waste per batch: 518 kg

The conditions on the measurements of the precision tubes and the hollow are
the following:

tube hollow
Outer diam.: 25.4 mm 31.8 mm
Thickness: 2.27 mm 2.9 mm
Weight per m: 1.294 kg/m 2.065 kg/m

The previous conditions are only important to the calculation of the cost func-
tion. For the actual algorithm we primarily need the 7 different customer lengths
and their quantities.

Cust. L. Quantity
1. 4.3 m 1778
2. 4.9 m 686
3. 9.5 m 525
4. 10.2 m 330
5. 11.0 m 330
6. 14.5 m 583
7. 15.5 m 750

To create the tree, the actual algorithm has been run manually. The maximal
degree has been limited to 3. The calculations of the original algorithm of
Gilmore and Gomory have been done using the computer program AMPL (which
in turn uses CPLEX).
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7.2 The Tree
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The numbers in the tree have the these meanings:
The highlighted numbers of the respective first line stand for the respective

customer lengths. The second number shows how expensive the production of
this batch would be and the third the used initial length. The last number gives
the waste in kg.

The highlighted nodes are the optimal choice. As can be seen, the sum of the
nodes 2 and 7 (resp. 4 and 5) is greater than the costs of the node 2,7. This is
not the case for 1 and 3, however.

The node 1,2,3,4,5,6,7 has no calculated costs due to the previously stated
reasons. The costs of the node 1,3,4,5 were calculated separately, but do not
go into the creation of the tree, only into the choice of the batches.
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7.3 The Tree (Alternative)

The tree of the alternative method of choice is only complete for presentation,
the lowest row of nodes would not actually be created at all. The result differs
from the first method in one point. The total waste belonging to node 1,3 of
245 kg is chosen to reduce the number of batches.
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8 Continuing Thoughts

Two items can be listed here. The first concerns possible improvements of the
algorithm, the second a production process that has been disregarded in this
work.
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The most obvious improvement would be that of an exact algorithm, not a
heuristic one, which would solve the graph theoretical problem in acceptable run
time. One approach would be an additional application of the simplex algorithm,
where every edge of the graph would receive a variable. Via column generation
the involved calculation of the edge weights could be lowered additionally.

The algorithm could also be improved if the decision over the respective initial
length and the lengths of variable orders could be made directly during the op-
timization and not beforehand. This would require and entirely new algorithm.

Not considered in this work was the so-called multiple draw. In this situation,
a hollow is first drawn on the bench and sawed as usual. After this, however, the
tubes are drawn and stretched again. The new problems which would have to be
solved in the algorithm due to this production process were avoided by omission.
Even though the percental part of the total production volume is relatively low,
the given algorithm is regrettably not complete.

9 Summary

We now possess an algorithm which delivers a solution for the given case of a 1-
dimensional cutting problem, although not necessarily the optimal one. In this
algorithm the given customer lengths represent the vertices of a hypergraph,
from whose weighted edges a partition with minimal total weight is chosen.
The elements of the partition correspond to the batches. The weighting of the
edges are calculated using the adjusted algorithm of Gilmore and Gomory. The
customer lengths of the respective edge (a heuristically chosen length in the case
of variable customer lengths) and a set of candidates for the lengths of the drawn
precision tube is given to the algorithm. The algorithm will yield a solution
which does not necessarily consist of whole numbers for the multiplicities of the
patterns, so this property is reinstated afterwards by a short process. Finally,
from all the candidates the one is chosen whose total costs are minimal. This
way we will receive weights for all edges. From these a partition is chosen by
splitting the set of vertices in half iteratively such that the sum of the costs per
meter of the edges, which only lie in one of the two subsets, is minimal. This
stepwise bisection of the edges yields a tree, whose nodes give a small set of
possible partitions into batches, from which the ideal solution is chosen.
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Abstract. One hundred years ago, in 1912 game tree search was intro-
duced as a scientific field by Ernst Zermelo in a concise 4-page paper.
Almost four decades later the first computers were there, and three more
or less concrete proposals for a Chess computer program were made by
Norbert Wiener, Claude Shannon, and Alan Turing. After a long march
of craftsmanship, in 1997 computer Deep Blue beat the best human
Chess player in a match with six games.

The other big classic in the world of games is Go from Asia. The
approach from computer Chess does not work in Go. But in 2006 a
Monte Carlo tree search procedure became the starting point of a tri-
umph march. Within the following six years computer Go programs have
reached a level near to that of the best western amateur players. Also
in other games like Havannah, Monte Carlo search led to tremendous
progress in computer playing strength.

We describe the origins of game tree search in the early 20th century
and discuss some of the waves of progress. With the help of C. Donninger
we also meditate about the twilight role of science and scientific research
for progress in game programming.

Keywords: game tree search, computer Chess, computer Go, Monte
Carlo game search.

1 Introduction

This paper concentrates on games with the following properties:

* There are 2 players.
* Both players have complete information all the time.
* The players move in turn.
* There are no elements of chance in the game.
* The game is zero sum, with only finitely many possible scores. The two most
natural cases are games with the score spectra (win, loss) and (win, draw,
loss).
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* The game is finite in a two-fold sense. In each position there are only finitely
many feasible moves. And each game can have only finite length.

Wellknown examples are Chess, Checkers, Nine Men’s Morris, Go, other games
of territory like Amazons, connection games like Hex and Havannah. Progress
in game tree search and research happened in big waves. We present the main
waves in the subsequent sections. Throughout the paper, we discuss mainly the
developments in the classics Chess (Section 2) and Go (Section 3).

Rudolf Ahlswede never investigated combinatorial games, at least not aca-
demically. But he was an enthusiastic Chess player, for instance with Blitz
sessions in the nights of Oberwolfach workshops. In the late 1980’s he gave part
of his research budget at Bielefeld University for my experiments in computer
Chess and 3-Hirn Chess [3], [6]. I was his assistant, when in 1990 Ralph Gasser
from the ETH Zurich visited our group and presented preliminary results from
his retrograde analysis of the game “9 Men’s Morris” (= Muehle, in German).
In particular, Gasser reported that endgame positions with 6 stones vs 4 stones
could be very complicated, including positions where the stronger side needed
157 moves for a win when both sides played perfectly. Such positions would be
very difficult to win for human players.

Prof. Ahlswede did not believe this. Gasser had an Atari computer with him,
and I proposed a bet: Ahlswede got the side with 6 stones and should try to win
one of the 157-move positions against the machine. Our arrangement for the
bet: Should Ahlswede win, he got one hundred Deutsche Mark. On the other
hand he had to pay me ten D-Mark, when he was not able. So, we had a quota
of 10:1. The machine was started and one of the positions with a win in 157
set up. Ahlswede made his first move, and immediately the program claimed
on the monitor: Now it is a draw! Ahlswede tried for 80 more moves until he
conceded the inevitable. After the exhibition we looked into the database and
found that there were 15 feasible moves in the original position. Only one of
them was winning, the other 14 gave a draw. Ahlswede did not hesitate to pay
the ten D-Mark.

Two days later another professor from pure mathematics asked me in the lift:
“There was this seminar talk by the ETH guy. At the strange end you bet 10:1
that your Professor would not win against the bot. Is it really true: you the
assistant would give him 100 DM in one case, and get only 10 DM in the other
case? In my younger days such bets were always the other way round.” Rudolf
Ahlswede did not have such prejudices about behaving (here betting) according
to ranks.

2 Minimaxing in Game Trees

2.1 The Wave Inspired by Lasker-Tarrasch

In the early 20th century Chess played a major role in cultural life. To quote R.
Leonard [42]: “The central thesis can be put simply: game theory saw the light
of day as part of the rich Central European discussions of the psychology and
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mathematics of Chess and other games at the beginning of the 20th century.”
By the way, the focus of Leonard’s book is mainly on “economic game theory”,
not on combinatorial games.

In 1908, one of the most popular matches for a Chess World Championship
took place: between title holder E. Lasker and challenger S. Tarrasch. It was a
clash of two different views on the game.

Tarrasch was a born teacher. He wrote several bestselling Chess books and
formulated many rules of thumb which were adopted both by Chess masters
and amateurs. One of Tarrasch’s famous claims was: “In (almost) every Chess
position there is a uniqe best move.” He formulated it again and again, most
pronounced in his last book [63, p. 306]. A crucial point: Tarrasch never
formally defined what a best move is, and it seems he would not have been
able when asked. On the other hand Lasker, who held a doctoral title in pure
mathematics, was a very pragmatic fighter at the chess board. He was said to
look not necessarily for some abstract best move but for a move that was most
inconvenient for the current opponent. A year before the 1908 match Lasker
had published his philosophical view on Chess and life in a small booklet, enti-
tled “Kampf” (translated to “Struggle” in English) [40]. According to Leonard
“Kampf” may be seen as a predecessor to game theory.

In those days, E. Zermelo was already famous within mathematics for his
groundbreaking work on axiomatics and set theory [67]. Later for instance
Goedel based his work on that of Zermelo. In 1912, Zermelo was invited to
give one of the main talks at the fifth International Congress of Mathemat-
ics in Cambridge, UK. The audience was surprised when his did not speak on
foundations of mathematics, but about best moves in Chess [68]. Here is some
speculation why Zermelo found Chess a proper topic for a mathematician. In
Goettingen, where Zermelo had got habilitation and his first professorship, he
was active in Felix Klein’s seminar. In winter semester 1909/1910, amongst oth-
ers the psychology of Chess masters (including Tarrasch) was discussed in the
seminar [36], [37]. It is likely that Zermelo did know about Tarraschs unformal
claim on “the best move” - and wanted to formalize the term.

Zermelo describes Chess as a game in a tree. Each node is a position. There
is an arrow from position X to position Y when there is a Chess move that
transforms X to Y. Having a suitable stopping rule (for instance: a game is
declared a draw when a position occurs a second time in that game) the tree
is finite. For each terminal position the value is known: either a win for White
or a win for Black or a draw. These values can be recursively backed up by a
procedure called minimaxing. At the end, the values for all direct successors of
the root node are known, and a best move is to go to one of the positions that
give the best result for the root player.

For me it is not clear why Zermelo called his talk in Cambridge “Anwendung
der Mengenlehre ...” (“application of set theory...”). Perhaps it was the most
natural choice for him as a set theorist, or perhaps the title was a compromise
to avoid scaring the audience already with a less mathematical title.
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There is one contemporary of Tarrasch whose theoretical contribution had so
far almost no influence on the development of computer Chess. In 1913, Oskar
Cordel’s “Three Moves Law” was published in his book [20]. Cordel claimed that
during his analysis of opening lines he had found evidence that in most Chess
positions there is either a unique best move or three almost equally best moves.
So, having a position with exactly two best moves seemed to be an exception for
him. As a Chess master Cordel was classes below Tarrasch, but as journalists,
the two were serious rivals. Only recently people started to remember Cordel’s
law. In a study by E. Bleicher and L. Schreiber on Chess endgame databases
(documented in [55]) it turned out that Cordel is in tendency right, although
situations with exactly two best moves are not so seldom.

In 1911, the Spanish mathematician and engineer Torres y Quevedo built an
automaton that was able to play the Chess endgame with king plus rook vs. king
correctly for the stronger side. Unfortunately this machine remained an isolated
achievement with no substantial follow-up. It is an open question how Quevedo
was motivated to build the automaton. Was he influenced by the publicity of
the Lasker-Tarrasch match? B. Randell, the author of [47] and [48], could not
give an explanation when asked directly in February 2012.

2.2 The Early Computer Wave and Chess

During the last years of World War II the first freely programmable calculation
machines had been built and used, for instance in code breaking. As soon as these
computers existed creative minds began seriously to think about “interesting”
applications. Computer Chess was one of the most attractive challenges.

In 1948, N. Wiener published his seminal book on cybernetics [66]. On the last
two pages (p. 193 and 194) he describes how a Chess program could be developed
using a depth-limited minimax search with an evaluation function. Interestingly,
he did not use “Computer Chess” in the title of this section. Perhaps he had the
fear that “Chess” might not look scientific enough. C. Shannon had less scruple.
His famous article on computer Chess which appeared in the Philosophical Mag-
azine [58] is likely the most-cited historical computer Chess paper. In a much
more precise and technical way Shannon described what Wiener had proposed in
handwaving manner. Interestingly, Shannon also made a comment on the very
weak strength of a randomly moving Chess program. Perhaps he had tried some
Monte Carlo approach, only to see that it would likely not work in computer
Chess. In 1953 A. Turing wrote about his Chess machine and especially about
his paper-and-pencil simulation of a whole Chess game [64]. Recently, M. Feist
from the ChessBase company realized the programs of Shannon [25] and Turing
[24] (with help by K. Thompson) so that they can be run on normal PC. Both
engines are (of course) chanceless against state of the art programs on the same
hardware. A 10-game match between the engines of Shannon and Turing on
modern PC hardware ended in a 5-5 tie [9].

The principal approach of all three authors is easily understood with the
Zermelo construction (from Subsection 2.1) in mind. In contrast to Zermelo they
do not generate the whole Chess tree but only the top d levels, starting from
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the current board position. They “find” artificial evaluations for the positions
at distance d from the root (for instance by weighted counts of the pieces on the
board) and back them up by minimaxing as if they were the true values. At the
root they make a move to that successor with the best backed-up value.

With this approach it took “only” less than fifty years of engineering and
craftsmanship (with a few really clever ideas on the road) until in 1997 the best
human player (Kasparov) lost a six game match against a Chess computer on
super hardware named Deep Blue [35]. In some sense it might have gone faster;
see the description by C. Donninger in Paragraph 4.1 on the complications,
advantages, and disadvantages of secret research [23]. Five years after Deep
Blue, commercial Chess programs had surpassed the best human players, when
running on normal PC machines. I am proud that Stefan Meyer-Kahlen, one of
my doctoral students, has won (so far) altogether 16 world championship titles
in computer Chess (between 1996 and 2010) with his program “Shredder”.

In the early game programming years Shannon also tried a completely different
approach. Together with E.F. Moore he built analog computers for Hex and
another connection game. The board is modeled by a two-dimensional electrical
charge distribution, and the brightest lamp indicates the place where the next
move should be played. Only sixty years later a theoretical analysis showed that
this heuristic does not always find a best move, see Chapter 5 in [26].

2.3 The Wave of Retrograde Analysis

Retrograde analysis is similar to Zermelo’s minimaxing in the way that it starts
from end positions and works back by application of minimax. However, it takes
into account that Chess is indeed not a game on a tree but on a directed graph
where circuits are possible and frequent. This helps to keep the search space
much smaller than the corresponding tree. In 1965 R. Bellman was the first to
propose the retrograde approach for Chess endgames [14]. Five years later T.
Ströhlein used retrograde analysis for a complete analysis of Chess endgames
with only three or four pieces on the board [62].

In the meantime all Chess endgames with up to six pieces have been complete-
ly analysed. Even for some endgames with seven stones on the board the data
bases have been generated. And there exists software, for instance the “Freezer”
([15], [16]) for analysing endgames with even more pieces when some of them
have artificially reduced mobility.

Other games have been completely solved by retrograde analysis. R. Gasser
found out that Nine Men’s Morris ends in a draw when played perfectly [28],
[29]. His results were independently verified by P. Stahlhacke [60]. Stahlhacke
in turn solved the deeper Morris variant “Lasker Morris” [61], which had been
proposed by E. Lasker in [41, p. 154]. J. Schaeffer [53] and his team solved the
game Checkers in an endeavour of almost twenty years [52]. Checkers is a draw
when both sides play perfectly. A verification of this analysis by an independent
group is still due.

In the late 1970’s human Chess masters were surprised to learn how difficult
it is to win with king and queen against king and rook, when the rook side
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is played by a perfect data base. Looking at the analogous endgame on other
board sizes than 8x8 gives a hint why this is the case. Whereas 3-piece endgames
like king and rook versus king or king and queen versus king take at most
linearly many moves (in n) on a board of size n x n, king plus queen versus
king plus rook seems to be different. For quadratic boards with size up to n=15
retrograde analysis gives the following maximum lengths to mate (observe: in
several other lists not the distance to mate is given, but the distance to conversion
in a won sub-endgame.): 6x6 23; 7x7 29; 8x8 35; 9x9 44; 10x10 54; 11x11 69;
12x12 85; 13x13 108; 14x14 132; 15x15 205. It is an open question whether
length max(nxn) grows quadratically in n or even faster. More data points,
especially for rectangular boards with m x n cells can be found in [12].

3 Evaluation by Random Games

3.1 The Monte Carlo Wave

In 1990, B. Abramson proposed a new way to evaluate a game position: Play
many random games from this position to the very end and take record of all
the final results. Abramson named the average over these results “Expected-
Outcome” and used it as evaluation of the position [1]. He showed that Expected
Outcome was a reasonable heuristic for the games Chess, Connect4, and Oth-
ello. His paper(s) did not have a big resonance because for the games from his
investigation already strong traditional evaluation functions existed. Perhaps,
also his correct but technical choice for the name (“Expected Outcome” instead
of something more sketchy) was non-optimal from the viewpoint of marketing.
Three years later and independently, the theoretical physicist B. Bruegmann
looked for some interesting interlude after the completion of his Ph.D. Thesis.
Without knowing the work of Abramson he invented “Monte-Carlo Go”, both
the procedure and the name. Bruegmann generated random games for each di-
rect successor position of the root and played to the successor move with the best
score. However, his random games were not purely random: more natural moves
(like ko, other captures, shape moves) got higher probabilities to be played. On
9x9 Go board, Bruegmann’s bot did not play completely bad, but also not really
well. The report [18] was never regularly published but is the seminal paper of
Monte-Carlo Go.

A real breakthrough came in 2006 with contributions by two independent
groups: in [38] and [22] versions of Monte-Carlo were proposed which generated
the game tree step by step. First, several random games from the successors of
the root were played. Then, for the successors with the best scores the successors
were generated and more random games from them were played. In the limit, the
whole game tree would be generated, and the backed-up scores would converge
to the game-theoretic values. R. Coulom did not only analyse his procedure
theoretically but also applied it in a bot for the Computer Olympiad in 2006.
For 9x9 Go his “CrazyStone” achieved the gold medal which was the starting
signal for an unprecedented Monte-Carlo race on all board sizes that is still
underway today (in 2012).
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After the initial successes of Monte-Carlo Go, people quickly started to apply
Monte-Carlo tree search to other games where normal evaluation functions were
in trouble. The triumphal march of Monte-Carlo can best be seen from the
winner lists in the Computer Olympiads. In Hex [34] and Amazons [10] it
started in 2009, in computer Havannah Monte-Carlo was in the driver’s seat
from the very beginning in 2009 [32].

A side remark: In some 2-player games with elements of chance pure Monte
Carlo without tree search was a helpful tool already for some decades in the
last century. In Backgammon it started in the 1970’s when some endgames
were analysed by manual rollouts. In the late 1980’s Scrabble programs used
Monte-Carlo [59]. For card counting approaches in the casino game BlackJack
Monte-Carlo has a history dating back to the 1950’s.

3.2 Hot Spot Computer Go

The world of Go has a traditional rating system which is also used for finding
proper handicaps. The ranks of weak players are counted in kyu degrees. Best
kyu-level is 1-kyu, then comes 2-kyu, and so on. When two kyu players with
different degrees (say k and m) play each other than the stronger player gives
—k-m— handicap stones on the normal board of size 19x19. Next level above 1-
kyu is 1-(amateur)-dan, then comes 2-dan, 3-dan, 7-dan. Here also the difference
in degree tells how many handicap stones should be given. Professional players
have their own professional dan levels, ranging from 1-p to 9-p. (Very rarely
an “honor 10-p” degree is awarded.) Observe: in the professional ranking a
difference of d levels does NOT mean that the stronger should give d handicap
stones; the levels are much closer to each other.

In contrast to the best Chess programs 25 years ago, Go programmers have
an easier life in finding appropriate human opponents for test play. There exist
several internet servers where Go is played. One of the largest and most conve-
nient is KGS: there computer players are welcome and find human opponents 24
hours per day. It is not uncommon that a bot plays 50 games per day on KGS -
for a whole month this adds up to some 1,500 games. There is also one special
bot tournament on KGS each month where the best programs compete. Some
human players on KGS have specialized in beating bots. Being in combat with
them helps the programmers a lot to weed out bot weaknesses.

Currently the strongest computer program is Zen. Appearing in public for
the first time in March 2009, Zen has so far become the bot with the best ranks
on KGS. In 2009 it was 1-dan and 2-dan; in 2010 it climbed from 2-dan to 4-dan.
Early in 2012 Zen became 5-dan and only slightly later 6-dan in a “deep” version
with strong hardware (26 cores).

In 2008, exhibition games of Go programs against professional players became
popular. The humans are still clearly ahead, so the bots get handicap stones.
A race started to get wins against pro players with as few handicap stones as
possible. A list of all such games is maintained at [65]. The first sensation was
when in August 2008 Myungwan Kim (8p) lost to MoGo (a program running
on massively parallel hardware) at handicap 9. In September 2008 CrazyStone
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beat a 4p-player with handicap 8. In December 2008 CrazyStone won against
the same player at handicap 7. In February 2009, MoGo was successful against
Chun-Hsun Chou (9p) at handicap 7, and against a 1p at handicap 6. The
following three steps forward were achieved by Zen: In July 2010 it won against
a 4p at handicap 6, in August 2011 against a 6p at handicap 5, and in March
2012 against Masaki Takemiya (9p) on one day at handicaps 5 and 4.

Later in 2012, the leading bots Zen and CrazyStone were successful against
pro players in several more games with handicap 4, during conferences and oth-
er events, see [65] for details. Remarkable is what happened during the Euro-
pean Go Congress in July and August 2012. Top European professional Catalin
Taranu (5p) got the offer to decide about the number of handicap stones (5 or 4
or 3) in his games against bot CrazyStone. In case of handicap 5 Taranu would
have got 300 Euro for a win, at handicap 4 200 Euro, and at handicap 3 only
100 Euro for a win. After two sparring games at handicap 4 (score 1:1) Taranu
opted for handicap 4. He lost the first exhibition game and won a second one.

3.3 Havannah: Race for a Prize

In the late 1970’s, game designer Christian Freeling (NL) invented an abstract
board game for two players and called it Havannah. Havannah is an exceptional
connection game. It is played on a six-sided board with hexagonal cells. The
task for a player is to either form a ring or to connect two corners or to connect
three sides by his pieces. The commercial version of Havannah was published
by Ravensburger company in four editions during the 1980’s and 1990’s. This
version was in the shortlist for the prestiguous German prize “Spiel des Jahres”
(“Game of the Year”) in 1981 and 1982 and has a board with side length 8 and
169 cells.

For many years, no computer program for Havannah had shown up, and
Freeling came to the conclusion that his game was very difficult for machines
to play. This led him to offer a prize of 1,000 Euro in 2002: He claimed that
within ten years no bot would be able to beat him in at least one game in
a series of ten games, played on a Havannah board with side length 10 and
291 cells. Until October 2008 nothing happened. Then, during the computer
Olympiad in Beijing with another big step forward by Monte Carlo algorithms
in Go, this author got the feeling that time was ripe to try with computer
Havannah. Within less than a year he was able to motivate several programming
teams from Germany, France, the Netherlands, Poland, Canada, and the U.S.
to design Havannah bots. The internet game server LittleGolem.net became a
good platform for sparring games and exchange of ideas.

In October 2012, finally one ten-game match was played between Freeling and
three different bots: four games by “Lajkonik”, programmed mainly by Marcin
Ciura (Poland); four games by “Castro”, programmed by Timo Ewalds from
Edmonton; two games by “Wanderer”, programmed by Richard Lorentz from
California. Before the match, Freeling had had no problems to beat the bots
in row. But to the surprise of most spectators, he showed some nerves and the
bots a surprisingly strong performance. The machines were able to win three of
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the ten games (Lajkonik two, Castro one). Important detail: two of the three
bot wins were at the last day of the five-day event, when Freeling was exhausted
already. All three bots were based on Monte Carlo algorithms; without the
“Monte Carlo working horse” the machines would have had no chance against
Freeling. Three reports highlight different aspects of the Havannah match: [8]
gives the historical development, [21] explains the programmer’s view, and [39]
is the protocol by the match organizers.

Humans are still ahead of the bots on large Havannah boards, but it may take
only a few more years until they will be surpassed by machines. For the Monte
Carlo game programming community it was a big piece of luck that Freeling had
offered his prize. It turned out to be a challenge just of the right calibre.

4 Interplay between Science and Game Programming

A portion of the progress in computer Chess happened in the development of
ever stronger commercial programs. Looking back on the last three decades,
it even seems that the commercial branch of computer chess contributed much
more to progress than the “establishment” of the scientific community.

4.1 Communication by Competition (by Guest Writer C.
Donninger)

Dr. Christian Donninger has almost 25 years of experience in computer chess; he
started in the late 1980’s with his first chess program “Nimzo”. Before that he
had studied Mathematics and received a doctoral degree in Statistics from the
“Technische Universitaet” in Vienna. In some phases during his computer Chess
career he has simultaneously been working for Siemens, developing software for
apparatus medicine. Donninger is an outspoken senior, knowing both the worlds
of traditional science and commercial game programming. When Donninger
wrote his referee report for this paper, he left anonymity and commented on the
original version (text in [...] are explanations by I.A.):

“I miss somewhat a discussion of the harmful influence of the Artificial Intel-
ligence community on computer Chess and computer Go. Progress started when
programmers did not care anymore about the drosophila paradigm [“Drosophia
paradigm” claimed that computer Chess is a role model for the research field of
Artificial Intelligence (= AI), like the small fly Drosophila has been a role model
in genetics. The hope was that a computer could be made to think like a human
and that all techniques developed for computer Chess should be applicable to
many other open problems in AI.]. From the perspective of a commercial Chess
programmer the drosophila paradigm is completely ridiculous. It is clear that
the mechanism of a program has nothing in common with human thinking. Only
someone who had never tried to write a reasonably playing Chess program could
come up with such an idea. So I [C.D.] ever wanted to know if the academic re-
searchers really believed in this paradigm or if it was just a means to get research
honors and funds... It was argued [in the original version of this article] that
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commercial computer Chess slowed down progress. The argument is in this form
not valid. First of all, a commercial Chess programmer can dedicate hundred
percent of his time to solve the real problem: playing as strong as possible. He
does not have to pretend that he solves in fact something much more important
than a mere game. The Chess programmers do not have to give lectures, write
articles, ... Second: craftsmanship is not a high value in the academic world.
Academics are usually poor programmers, with a few notable exceptions like D.
Knuth. But solving the computer Chess problem is mainly a question of crafts-
manship. The article [in its original form] calls this aspect “Engineering”. The
term craftsmanship is much more to the point. Personally I even find the term
“Engineer” offending for my work.

In the computer Chess community another wellknown quote of mine [C.D.] is:
“Those who publish something know nothing. And those who know something,
do not publish.” This is probably true not only in computer Chess. But, there is
in fact a very intense form of communication between commercial programmers.
The programs are improved by autoplay: one watches day after day, month after
month the own program playing against the others. Over time, one knows the
behaviour of opponent programs quite well and gets a very good feeling what
they are doing and what they are not doing. If the new version of opponent X
improves considerably, one analyses in detail the possible reasons and works as
long till the own program has improved at least the same. This way of improving
the programs resulted even in inbreeding effects.

Furthermore, one can always reverse-engineer a program by disassembling.
For a skilled craftsman, in the computer Chess case disassembling is relatively
straightforward, because one knows the general structure of the program. The
recursive alpha-beta search is relatively easy to spot. It is then obvious at which
point the move generator and the evaluation function are called ... E.g., back
in early 2006 I disassembled Rybka 1.0 [the leading commercial program in that
year] and informed the Rybka team: There is a bug in the mating routine, please
fix this line accordingly. I have therefore known from the beginning that Rybka
was a clone of “Fruit”. [Fruit was a very strong open source program in 2005.]
In the input-output unit the Rybka team had divided Fruit’s node count by 16,
reduced the search depth shown in the Fruit display by constant 3 and added
some minor adjustments in the evaluation function. The mate bug mentioned
above was also a new Rybka feature [compared with Fruit].

Also in other fields of technology there is in some way “Communication by
Competition”. This form of communication is rather effective and has a high
signal to noise ratio. In “Communication by Competition” [CbC] one does not
have to filter away the white noise of the AI paradigm which plays a significant
role in academic papers. It was obvious that these AI-ideas were useless and
nobody used them. In CbC every idea that is realized is interesting, because
it had been tested at length before by a highly skilled craftsman or a highly
competent company like e.g. Apple, Daimler-Benz, Siemens-Medical, ... One
can be sure that this craftsman does not use a “galactic algorithm”. In contrast,
at least 75 to 95 percent of published algorithms (rate highly positively correlated
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with the academic prestige of the journal, see [57]) are galactic. [An algorithm is
called “galactic” when it is asymptotically fast but slow in real-world instances.
An example might be given by a linear runtime with very large coefficient, for
instance 1, 000, 000, 000, 000, 000n for input length n.] In computer Chess the
galactic rate was even higher than 90 percent.”Here the text by C. Donninger
ends.

4.2 Deep Dead Roads in Game Tree Science

Mathematicians, also people from Information Theory, are familiar with the
phenomenon described by Donninger above: Often deep and “clean” results are
not important for applications; instead a few simple “tricks” are responsible for a
large portion of the success. It may be particularly disappointing for researchers
of high caliber - who put a lot of energy in understanding principle structures of
some problem - to see when progress in real life relies mainly on craftsmanship
and engineering. In game tree research the following theoretical approaches are
examples for dead ends.

* Combinatorial Game Theory. Starting with analysis of the classical Nim
game (with three heaps of matches), Combinatorial Game Theory developed
over the whole 20th century, culminating in work by E. Berlekamp, J.H.
Conway, and R. Guy [13]. There is even a thick book [19] trying to show
how CGT can be applied to Go endgames. Only future can show if this deep
and rich theory will ever play a role in mastering games of territory, like Go
and Amazons.

* Complexity Status of Games. The 1970’s and 1980’s were golden decades
for computational complexity theory, see the complexity bible of those years
[30]. During that phase also most well-known games were proven to be
computationally difficult [51], for instance: Chess on nxn board needs expo-
nential time [27], Go with Japanese rules on nxn board requires exponential
time [50], Hex on nxn board is PSpace-complete, see [49], based on a diplo-
ma thesis written in Bielefeld in 1978. None of these really nice results had
any importance for game tree programming in practice.

* Pathology in Game Tree Search. Computer Chess practice shows that
searching deeper in the game tree (before pruning and evaluating artifi-
cially) increases the playing strength [33]. This was evident already in the
mid 1970’s. Mathematicians tried to prove this phenomenon theoretically
and stumbled across a paradox which they called “pathology in game tree
search” [44], [45]: searching deeper led to worse results.

Later it turned out that not the game tree search itself had this pathology
but that instead a certain “simple” stochastic model was responsible: People
assumed that the true game-theoretic values at the leaves of the tree were
realizations of independent random variables, and also that the heuristic
evaluations contained random noise, independently for each leave. In reality
things are not this way: neighboring nodes and leaves of the the game tree
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tend to have positively correlated values, and also errors in the heuristic
values are typically positively correlated for neighboring nodes.

G. Schrüfer [56] gave a very simple and convincing model which explained
what happened in game trees from reality and what was responsible for
increase or decrease of evaluation errors (he coined the terms “deepening
positive” and “deepening negative” for the two cases). In [2] it was proved
that any nontrivial Boolean function with independent random arguments
has the property that independent evaluation errors are increased. So, the
phenomenon is not restricted to game trees and even not restricted to trees
with arbitrary back-up rules.

The pathology research, especially the results from the early years, had
a terrible influence on the relationship between programmers and theorists:
programmers knew from their bots that searching deeper improved playing
strength. When people from theory now came and claimed the opposite this
could only mean that theory was not useful in game tree search. The author
of this paper was one of the victims of this development - with his theoretical
research in the late 1980’s.

* Humanlike Chess Style. Based on early studies by psychologist A. de Groot
[31] it was clear that strong human Chess players have large sets of positional
patterns in their brains, typically some ten-thousands. There were several
attempts to build Chess programs with such data bases of “chunks”. In the
1960’ and 1970’s H. Simon (co-winner of the Nobel prize for Economics in
1978) was one of the most prominent supporters of this approach, besides
his attempts to design computer programs with “general problem solving”
capabilities.

4.3 Game Design with Computer Help

The most natural goal in game programming is to concentrate on one game
(for instance Chess or Go) and to make the program as strong as possible.
However, programs can also be used to test prototypes of newly invented games.
Computers can perform long series of selfplay, giving information about average
game length, drawing quota, first player advantage and other natural parameters
[4], [17]. For such tests it is not important that the bot plays the game almost
optimally; a reasonable medium playing strength is completely sufficient. After
a selfplay run the rules may be modified, a new selfplay run executed, rules
modified again and so on. Within a few hours tremendous progress is possible
- much faster than in the traditional design process with human-only test play.
This author designed two commercially successful games with computer help:
“EinStein würfelt nicht” (Edition Perlhuhn and 3-Hirn company, since 2004)
and “Finale” (Noris company, 2005-2008) alias “Torjäger” (Kosmos company,
since 2009). In C. Browne’s Ph.D. thesis [17] the board game “Yavalath” is
exhibited which was fully automatic generated by a computer program.
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5 Conclusion and the Future

Starting with the seminal paper by Zermelo, a century with several waves of
progress has passed by. The game programming scene is again in the middle of
fast progress. Likely, already in five years people will read this essay and can
tell: this and that happened indeed; here was a surprising breakthrough; and
there game programmers are still stuck...

5.1 The Advantage of Being Late

The development in computer Go is about 25 years behind that in computer
Chess. The internet with its advantages (quick communication, mailing lists,
Go servers for realtime play) and also the advantage to see how progress hap-
pened in computer Chess make things easier for the Go programmers. Neverthe-
less, sometimes people seem to be blind for experiences from history and try to
reinvent wheels and procedures. In particular, the Go world is still missing com-
mercial Go bots with nice and pragmatic features for analysing games, despite
everlasting efforts by this author [5].

5.2 Basic Research on Monte-Carlo Game Tree Search

Currently the success of Monte-Carlo game tree search is theoretically not real-
ly well understood. In many games it works surprisingly well, but programmers
typically implement lots of special tricks to achieve a good performance. Even the
non-tree version “pure Monte-Carlo” which plays random games only from the di-
rect successors of the root is not well understood (see for instance the analysis of
pure Monte-Carlo selfplay in Chapter 2 of the dissertation [26]). More abstract
investigations are necessary here. For instance, [46] and [7] give surprising results
for 2-player games where the turn order is not alternating but random: in this
setting pure Monte-Carlo is asymptotically perfect for many games.

5.3 Waves to Come and Open Problems

* Tools for Analysing a Human-Human Game. In Chess, programs on
normal computers are nowadays much stronger than most or even all human
players. Nevertheless Chess between humans is still played, and computers
have mainly become important tools for analysis (before and after a game)
and opening preparation. For such tasks it is helpful to let the programs run
in a mode where not only the best move is computed but instead the k best
ones (for some appropriate value of k, for instance k=3), together with prin-
cipal variations and evaluations. It is expected that a similar development
will come for the game of Go, too. See [5] for several nice visualizations of
multiple candidate moves in different games.

* Opponent Modelling. When computers are very strong in a game, where
they have to play against less strong (human) opponents, it becomes an
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important topic to exploit the special weaknesses of the opponents. Such
opponent modelling includes “pressing for a win” in drawn positions and
refined measures to avoid Monte Carlo “laziness” in handicap games [11].

* Go at Super-Human Level. When will Go programs play on one level with
the best human players? Once that point is passed, how much better than
humans can Go programs become? Will the bots once be able to give two
or three handicap stones to the best human players? Will in that period
“Combinatorial Game Theory” [19] play an important role again?

* Quantum Computers. Will they ever take a leading role in game tree search?

5.4 Yes, We Can!

In 1992, the discovery of America by Christopher Columbus 500 years ago was
celebrated and critically discussed. Rudolf Ahlswede contributed with a very
clear statement: “People like to criticize Columbus for many reasons. But the
key point is: He had the courage and the energy to start sailing westwards.” A
similar statement is true in many other fields of life, also in mathematics and in
game tree (re)search: Do not hesitate until doomsday, but make your first step!
The world is mainly shaped by makers.
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Abstract. Given a nonnegative sequence α of integers with Kraftsum at
most 3/4, Ahlswede, Balkenhol and Khachatrian proposed the existence
of a fix-free code with exactly αn words for any length n. In this article
complete thin fix-free codes are constructed and both so-called n-closed
systems and multiplication are used to enlarge this class. In addition,
a sufficient criterion is given in terms of elementary sequence-shifting
preserving the fix-freedom of the associated code.

Keywords: 3/4-conjecture, fix-free code, complete code, Kraft sum.

1 Introduction

Being uniquely decipherable in spite of variable length, codes with words that
are no prefixes of each other are an important subject in coding theory. In order
to ensure a small average length by coding with these prefix-free codes, it was
studied, for which sequences α there exists a prefix-free code C with exactly
αn words of length n for all n, shortly C ∼ α. Kraft’s inequality solved this
problem, proving that there exists a prefix-free C ∼ α if and only if its Kraftsum
K(α) :=

∑
i∈IN αi · 2−i does not exceed 1, considering the binary case as in the

whole article.
Sometimes it is desirable to decode from both sides simultaneously, a property

fulfilled by fix-free codes which in addition to their prefix-freedom have no words
that are suffixes of each other. Ahlswede, Balkenhol and Khachatrian proved in
[1] that for each γ > 3/4 there exists a sequence α with K(α) < γ such that
there is no fix-free code with length sequence α. Supporting their conjecture,
they showed the existence of fix-free codes for special sequences with Kraftsum
not exceeding 3/4. Following this, criteria for the existence of fix-free codes were
given in [1–10], among these

K(α) ≤ 3/4 , 2αlmin(α)+αlmin(α)+1 ≥ 2lmin(α) implying a fix-free C ∼ α (1)

and the sufficiency of the Kraftsum not exceeding 5/8, both proved by Yekhanin
in [9] and [10] respectively.
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A common strategy for proving the existence of a fix-free C ∼ α is the follow-
ing. Going successively through all lengths n, add αn words of length n to the
code Cn−1 which has exactly αi words of length i for all i ≤ n − 1, preserving
the fix-freedom of the code. Adding the words of length n, one has to omit the
words in Δn

P(Cn−1) and Δ
n
S(Cn−1), denoting the sets of n-words having a pre-

and suffix in Cn−1 respectively. Using Lemma 8 in [7] for the so-called n-th bifix
shadow Δn

B(Cn−1) := Δn
P(Cn−1) ∪Δn

S(Cn−1) of a fix-free code Cn−1, we obtain

|Δn
B(Cn−1)| = 2n+1 ·K(Cn−1)−

∑
x,y∈Cn−1

|In(x, y)| (2)

with K(Cn−1) := K(α′) whenever Cn−1 ∼ α′ and In(x, y) denoting the set of
n-words having x as a prefix and y as a suffix. The problem with the described
strategy is that for an optimal Cn−1 in the sense that |Δn

B(Cn−1)| is minimal,
the code Cn, where we have added αn words of length n to Cn−1, does not
necessarily minimize |Δn+1

B (·)|.
The beginning remarks in Section 2 reveal additional problems of the strategy

discussed above, motivating a new approach using elementary shifting in the
sequences preserving fix-freedom. A special case of this sufficient condition is
proved and a new proof for Kraft’s inequality deduced. Thin fix-free codes with
Kraftsum 1, called complete, are constructed in Section 3. Using so-called n-
closed systems, a method is presented for the construction of fix-free codes, not
necessarily thin, with Kraftsum 1 from a given set of such codes. The results
of multiplication with the constructed codes are presented in Section 4 and a
discussion of prospective strategies is given in the last section.

2 Observations and Shifting

The two following remarks show that in general there is no satisfactory reduction
from the (n+1)-th bifix shadow to the n-th bifix shadow and that the (n+1)-th
bifix-shadow may contain all words of length n + 1 even for small Kraftsum-
values.

Remark 1. For C fix-free and n ≥ lmax(C) we have

|Δn
B(C)| ≤ |Δn+1

B (C)| ≤ 4 · |Δn
B(C)|

and the right inequality cannot be improved.

Proof. We have v ∈ Δn
P(C) if and only if v0, v1 ∈ Δn+1

P (C) and w ∈ Δn
S(C) if

and only if 0w, 1w ∈ Δn+1
S (C). This implies

|Δn
B(C)| ≤ |Δn

P(C)|+ |Δn
S(C)| = |Δn+1

P (C)| ≤ |Δn+1
B (C)| ,

|Δn+1
B (C)| ≤ |Δn+1

P (C)| + |Δn+1
S (C)| = 2 · (|Δn

P(C)|+ |Δn
S(C)|) ≤ 4 · |Δn

B(C)| .

The example |Δ3
B({01})| = 4 = 4 · |Δ2

B({01})| shows that the right inequality
cannot be improved. �
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Regarding the left-hand side of Remark 1, the factor 1 cannot be raised to 18/13
or greater due to the example C = {001, 011, 1000, 1010, 1110} for n = 5.

Let the de Bruijn digraph B2(n) be the digraph with all binary n-words as
vertices and arcs (v, w) whenever In+1(v, w) �= ∅. This adjacency condition will
be used in the proof of the following remark.

Remark 2. For any γ > 1/2 there exists a fix-free C′ ⊆ {0, 1}lmax(C
′) with

K(C′) ≤ γ and Δ
lmax(C

′)+1
B (C′) = {0, 1}lmax(C

′)+1 ,

whereas Δ
lmax(C)+1
B (C) �= {0, 1}lmax(C)+1 for any fix-free C with K(C) ≤ 1/2.

Proof. For n ∈ IN let Wn be a maximal loop-free independent set in B2(n)
and let α∗(2, n) := |Wn| denote the loop-free independence number. Being a
one-level code, {0, 1}n \Wn is fix-free such that (2) implies

|Δn+1
B ({0, 1}n \Wn)|

= 2n+2 ·K({0, 1}n \Wn)−
∑

x,y∈{0,1}n\Wn

|In+1(x, y)|

= 2n+2 · (2n − α∗(2, n)) · 2−n −
∑

x,y∈{0,1}n

|In+1(x, y)|

+
∑

x∈Wn,y∈{0,1}n

(|In+1(x, y)|+ |In+1(y, x)|)−
∑

x,y∈Wn

|In+1(x, y)|

= 2n+2 − 4α∗(2, n)− 2n+1 + 4 · |Wn| − 0

= 2n+1 .

Within the second to last step we used (2) with |Δn+1
B ({0, 1}n)| = 2n+1 for the

first sum, ⋃
y∈{0,1}n

In+1(x, y) = {x0, x1}

and
⋃
y∈{0,1}n In+1(y, x) = {0x, 1x} for any x ∈ Wn for the second sum and

for the third sum, that Wn is a loop-free independent set in B2(n). For the
calculation of the Kraftsum note that the independence number α(2, n) of B2(n)
exceeds α∗(2, n) at most by two, since 0n and 1n have the only loops in B2(n):

lim
n→∞

K({0, 1}n \Wn) = 1− lim
n→∞

α∗(2, n) · 2−n

≤ 1− lim
n→∞

α(2, n) · 2−n + lim
n→∞

2−n+1

=
1

2
,

using Theorem 3 in [1] to calculate the limit involving α(2, n). Hence, the
definition C′ := {0, 1}n \Wn with n large enough is sufficient.



Multiplied Complete Fix-Free Codes and Shiftings 697

Considering C fix-free with K(C) < 1/2 for the second statement, we obtain

|Δlmax(C)+1
B (C)| ≤ 2lmax(C)+2 ·K(C) < 2lmax(C)+2 · 2−1 = 2lmax(C)+1 .

Assuming |Δl+1
B (C)| = 2l+1 in the case K(C) = 1/2 with l := lmax(C) leads to

2l+1 = |Δl+1
B (C)| = 2l+2 · 2−1 − |Δl+1

P (C) ∩Δl+1
S (C)|

and hence {0, 1}l+1 would be a disjoint union of Δl+1
P (C) and Δl+1

S (C). Noticing

that 0l+1 ∈ Δl+1
P (C) if and only if 0l+1 ∈ Δl+1

S (C), we derive a contradiction. �

Having faced some difficulties regarding the successive adding of words to a fix-
free code, different approaches for proving the existence of fix-free codes will be
shown. While constructive methods are presented in Section 3 and Section 4,
the next remark provides a theoretical condition in terms of shifting.

Remark 3. The 3/4-Conjecture is true, if the existence of a finite fix-free C ∼ α
with K(α) ≤ 3/4 implies the existence of fix-free C(k) ∼ α(k) for all k ∈ IN, with

α
(k)
lmax(α)

= αlmax(α) − k ≥ 0 , α
(k)
lmax(α)+1 = 2k and α

(k)
i = αi otherwise.

The statement remains true for prefix-free codes with the Kraftsum raised to 1.

Proof. Due to the 2-adic representation of the real numbers we can put without
loss of generality K(α′) = 3/4 and K(α′) = 1 respectively. Considering the
starting sequence (1, 1, 0, . . . ) ∼ {0, 11} and accordingly (2, 0, . . . ) ∼ {0, 1}, any
sequence α′ with Kraftsum 3/4 and 1 respectively can be reached from this
starting sequence by successive replacements in the following way. Going through
any length of the starting sequence, test whether the entry compared to α′ is
too big or not, noting that it cannot be too small due to its Kraftsum. If the
entry of the starting sequence is too big, decrease it by the necessary value k to
equalize the entries and increase the next entry by 2k, otherwise change nothing
and move on to the next length. �

The advantage of the shifting-strategy is that the manipulation does not involve
a raise of the Kraftsum. Note that the replacement of k words of length lmax by
2k words of length lmax + 1 is sufficient but not necessary for the shifting. In
the following let |w| denote the number of letters of w.

Theorem 1. 1. For any fix-free C with K(C) ≤ 2/3 and n > lmax(C) there
exists w ∈ C replaceable by 2n−|w| n-words in C so that C remains fix-free.

2. For any prefix-free code C and U ⊆ C the code

(C \ U) ∪ {uz |u ∈ U, z ∈ {0, 1}}

is prefix-free. Using Remark 3, this provides a new proof of Kraft’s inequality.



698 M. Bodewig

Proof. 1. Defining l as the maximal number with

|Δn
B(C \ {w})| ≥ |Δn

B(C)| − 2n−|w| + l

for all w ∈ C, we consider l ≥ 1 without loss of generality, since the claim
otherwise would be proved already. For all w ∈ C we have

2n−|w| + l

≤ |Δn
B(C \ {w})| − |Δn

B(C)|+ 2n−|w|+1

(2)
= 2n−|w|+1 − 2n+1 ·K({w})−

∑
x,y∈C\{w}

|In(x, y)|+
∑
x,y∈C

|In(x, y)|

= −|In(w,w)| +
∑
x∈C

(|In(x,w)| + |In(w, x)|)

=: ψ(w) .

Choosing w̃ ∈ C with ψ(w̃) = 2n−|w̃| + l, we obtain

|Δn
B(C \ {w̃})|

(2)
= 2n+1 ·K(C)− 2n−|w̃|+1 −

∑
x,y∈C\{w̃}

|In(x, y)|

= 2n+1 ·K(C)− 2n−|w̃|+1 + ψ(w̃)−
∑
x,y∈C

|In(x, y)|

= 2n+1 ·K(C)− 2n−|w̃|+1 + 2n−|w̃| + l − 2−1 ·
∑
y∈C

(ψ(y) + |In(y, y)|)

≤ 2n+1 ·K(C)− 2n−|w̃| + l− 2−1 ·
∑
y∈C

(2n−|y| + l)

= 2n+1 ·K(C)− 2n−|w̃| + l− 2n−1 ·K(C)− 2−1 · |C| · l
= 3 · 2n−1 ·K(C)− 2n−|w̃| − l · (2−1 · |C| − 1)

|C|≥2

≤ 2n − 2n−|w̃|

since K(C) ≤ 2/3 and l ≥ 1. Notice that the statement is trivial for |C| = 1.
2. Let u ∈ U ⊆ C. The words u0 and u1 have no prefixes of length smaller than

|u0| in C\U , since these would have been prefixes of u in C. Moreover, u0 and
u1 cannot be prefixes of another word in C\U , since this word would have had
u as a prefix in the original code. Moreover, the set {uz |u ∈ U, z ∈ {0, 1}}
is prefix-free due to the prefix-freedom of U .

�

Comparing Theorem 1 to the preliminaries in Remark 3, we notice that the
Kraftsum is 2/3 instead of 3/4, the shift is made from an unknown level i ≤
lmax(α) with αi > 0 instead of the determined level lmax(α) and that we have
k = 1. However, we have the advantage that the shift can be made not only
onto the level lmax(α) + 1, but onto an arbitrary level larger than lmax(α).
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3 Complete Codes and n-Closed Systems

Since finding any fix-free code can be reduced to finding all maximal fix-free
codes, it is important to consider these codes in view of the 3/4-Conjecture.

In [2] the class of maximal thin fix-free codes is studied extensively. Denoting
the binary words including the empty word with {0, 1}∗, a code C ⊆ {0, 1}∗ is
called thin, if there exists a word w ∈ {0, 1}∗ with {xwy |x, y ∈ {0, 1}∗}∩C = ∅.
The two basic parameters of a maximal thin fix-free code C are its degree and
kernel. The degree is defined by

d(C) := max{LC(w) |w ∈ {0, 1}∗}

where LC(w) is the number of prefixes of w, including the empty word, having
no suffixes in C. The kernel is the set of all codewords that are also internal
factors of the code, these are words where at least one beginning and one ending
letter of some codeword are left out. Berstel and Perrin note that any maximal
thin fix-free code is uniquely determined by the combination of its kernel and
degree and that for a given degree there can be only finitely many maximal thin
fix-free codes, all of them constructible by so-called internal transformation.

Since this recursive method does not deliver an overview over the constructed
codes and sequences fitting them, a large class of complete thin fix-free codes and
their sequences will be presented in Theorem 2. According to Kraft’s inequality
on the one hand and Proposition 2.1 in Chapter III and Theorem 5.10 in Chapter
I of [2], among the thin fix-free codes the complete ones are exactly the maximal
ones. The results within this and the next section can be viewed as a contribution
to the 3/4-Conjecture in the sense that leaving out words in a complete thin fix-
free code delivers many fix-free codes with Kraftsum at most 3/4.

Definition 1. Let m, k ∈ IN0 and i ∈ IN with 2i−1 ≥ k. We define the sequences
α(m,k,i) and β(m,k,i) with p := i+m− �limn→k log2(n) ∈ IN ∪ {∞} by

α
(m,k,i)
l :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, l < i+m or l > i+ p ,

2i−1 − k, l = i+m ,

2i+m+1 − 3 · 2i−1 + 2k, l = i+m+ 1 < i+ p− 1 ,

2i+m+1 − 2i+1 + 4k, l = i+m+ 1 ≥ i+ p− 1 ,

2i−1, i+m+ 2 ≤ l ≤ i+ p− 2 ,

2p−m−1k, l = i+ p− 1 > i+m+ 1 ,

2i+1 − 2p−mk, l = i+ p > i+m+ 1

and

β
(m,k,i)
i+m+1 = 2 · α(m,k,i)

i+m+1 − 2i+m+1 , β
(m,k,i)
l = 2 · α(m,k,i)

l for l �= i+m+ 1 .

Moreover, define the code

Cm
k (i) :=

⋃
1≤r≤5,r 
=3

Kr ∪
⋃

m+1≤j<p−1

K3,j ,
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where for fixed m, k, i, for m + 1 ≤ j < p − 1 and bi(w) :=
∑|w|−1

i=0 2i · w|w|−i,
denoting the binary value of w ∈ {0, 1}∗, we put

K1 := {w ∈ {0, 1}i+m | k ≤ bi(w) < 2i−1} ,
K2 := {w ∈ {0, 1}i+m+1 | bi(w) < k or 2i ≤ bi(w) < 2i+m + k

or 2i+m + 2i−1 ≤ bi(w)} ,
K3,j := {w ∈ {0, 1}i+j+1 | 2i+j + 2i−1 ≤ bi(w) < 2i+j + 2i} ,
K4 := {w ∈ {0, 1}i+p−1 | 2i−1 ≤ bi(w) < 2p−m−1k} ,
K5 := {w ∈ {0, 1}i+p | 2p−m−1k ≤ bi(w) < 2i

or 2p−m−1k + 2i+p−1 ≤ bi(w) < 2i + 2i+p−1} .

The connection between the codes and sequences just defined is revealed by the
following theorem. Some special cases which will be mentioned in Corollary 1
and exemplary illustrations will be given both in Figure 1 and Figure 2.

Theorem 2. Let m, k ∈ IN0 and i ∈ IN with 2i−1 ≥ k. Then Cm
k (i) is a

complete thin fix-free code which satisfies

Cm
k (i) ∼ α(m,k,i) and d (Cm

k (i)) = i+m+ 1 .

Proof. Throughout this proof let

w(1) ∈ K1 and w(4) ∈ K4 ,

w(3,j) ∈ K3,j for m+ 1 ≤ j < p− 1 ,

w(2,1) ∈ K2 with bi(w) < k ,

w(2,2) ∈ K2 with 2i ≤ bi(w) < 2i+m + k ,

w(2,3) ∈ K2 with 2i+m + 2i−1 ≤ bi(w) ,

w(5,1) ∈ K5 with 2p−m−1k ≤ bi(w) < 2i ,

w(5,2) ∈ K5 with 2p−m−1k + 2i+p−1 ≤ bi(w) < 2i + 2i+p−1 .

In order to prove prefix-freedom, for a binary word w of length at most a let
P (a)w denote an arbitrary child of w with length a. Using

2a−|w| · bi(w) ≤ bi(P (a)w) < 2a−|w| · (bi(w) + 1)

for all w ∈ {0, 1}∗, for k > 0 we get the following chain of inequalities for all
m+ 1 ≤ j < p− 1, implying prefix-freedom of different K3,j and Cm

k (i) overall:

bi(P (i+p)w(2,1)) < 2p−m−1k ≤ bi(w(5,1)) < 2i

≤ bi(P (i+p)w(4)) < 2p−mk ≤ bi(P (i+p)w(1)) < 2i+p−m−1

≤ bi(P (i+p)w(2,2)) < 2i+p−1 + 2p−m−1k ≤ bi(w(5,2)) < 2i+p−j−2 + 2i+p−1

≤ bi(P (i+p)w(3,j)) < 2i+p−j−1 + 2i+p−1 ≤ bi(P (i+p)w(2,3)) .

For k = 0 and arbitrary a ≥ i+m+2 instead of i+ p, we obtain the subsequent
correlation for all m+ 1 ≤ j ≤ a− i− 1, implying prefix-freedom in this case:

bi(P (a)w(1)) < 2a−m−1 ≤ bi(P (a)w(2,2)) < 2a−1 + 2a−j−2

≤ bi(P (a)w(3,j)) < 2a−1 + 2a−j−1 ≤ bi(P (a)w(2,3)) .
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For the proof of suffix-freedom let S(a)v denote the a-suffix of a word v with

length at least a. For k > 0 and w(5) ∈ K5 we have bi(w
(4)), bi(S(i+p−1)w

(5)) < 2i

implying the first p − 1 letters of w(4) and S(i+p−1)w
(5) to be zero, whereas

K4 = K5 = ∅ for k = 0. In order to obtain the (i +m+ 1)-suffixes of w(4) and

S(i+p−1)w
(5) respectively, their first (i+ p− 1)− (i+m+1) = p−m− 2 < p− 1

letters are canceled and since these are zeros only, we obtain

bi(S(i+m+1)w
(4)) = bi(w(4)) and bi(S(i+m+1)w

(5)) = bi(S(i+p−1)w
(5)) .

With these calculations we get the following chain of inequalities proving the
suffix-freedom of K1 ∪K2 ∪K4 ∪K5, where K4 = K5 = ∅ for k = 0:

bi(w(2,1)) < k ≤ bi(0w(1)) < 2i−1

≤ bi(S(i+m+1)w
(4)) < 2p−m−1k ≤ bi(S(i+m+1)w

(5)) < 2i

≤ bi(w(2,2)) < 2i+m + k ≤ bi(1w(1)) < 2i+m + 2i−1

≤ bi(w(2,3)) .

Due to the binary value of the K3,j-words, their first and (j + 2)-th letter are
ones where only zeros lie in between. On the one hand this implies that there
cannot be any suffix-forbiddances within

⋃
m+1≤j<p−1K3,j due to the leading

one and on the other hand we have

2i−1 ≤ bi(S(i+m+1)w
(3,j)) < 2i for all m+ 1 ≤ j < p− 1 .

Therefore, w(3,j) has no suffix in K1 ∪K2 and it is not a suffix in K4 ∪K5 since

bi(w(4)), bi(S(i+p−1)w
(5)) < 2i < bi(w(3,j)) .

For the proof of Cm
k (i) ∼ α(m,k,i) note that K3,p−2 and K4 are disjoint due to

different first letters and that for all m+ 1 ≤ j < p− 2 we have

|K1| = 2i−1 − k ,

|K2| = k + 2i+m + k − 2i + 2i+m+1 − (2i+m + 2i−1)

= 2i+m+1 − 3 · 2i−1 + 2k ,

|K3,j | = 2i+j + 2i − (2i+j + 2i−1) = 2i−1 ,

|K3,p−2 ∪K4|
k 
=0
= 2i−1 + 2p−m−1k − 2i−1 = 2p−m−1k ,

|K5|
k 
=0
= 2 · (2i − 2p−m−1k) = 2i+1 − 2p−mk .

This implies the claim for k < 2i−2 which is equivalent with i+m+1 < i+p−1.
For the case 2i−2 ≤ k < 2i−1, implying i+m+ 1 = i+ p− 1, note that K2 and
K4 are disjoint and that

|Cm
k (i) ∩ {0, 1}i+m+1| = |K2|+ |K4|

= 2i+m+1 − 3 · 2i−1 + 2k + 2p−m−1k − 2i−1

= 2i+m+1 − 2i+1 + 4k .
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Within the case k = 2i−1, which is equivalent with i +m + 1 = i + p, we have
K2 ∪K5 = {0, 1}i+m+1 and therefore this case is also proved.

For k < 2i−2 we show K(Cm
k (i)) = 1 by using the following chain of equality:

K(Cm
k (i)) =

α
(m,k,i)
i+m

2i+m
+
α
(m,k,i)
i+m+1

2i+m+1
+
α
(m,k,i)
i+p−1

2i+p−1
+
α
(m,k,i)
i+p

2i+p
+

i+p−2∑
l=i+m+2

α
(m,k,i)
l

2l

= (2−m−1 − 2−i−mk) + (1 + 2−i−mk − 3 · 2−m−2) + 2−i−mk

+(2−p+1 − 2−i−mk) + 2i · (1− (1/2)i+p−1 − (1− (1/2)i+m+2))

= 1 .

Moreover, we have K(Cm
2i−1(i)) = K({0, 1}i+m+1) = 1 and within the case

2i−2 ≤ k < 2i−1 it holds

K(Cm
k (i)) = K(K1) +K(K2 ∪K4) +K(K5)

= (2−m−1 − 2−i−mk) + (1− 2−m + 2−i−m+1k) + (2−p+1 − 2−i−mk)

= 1 .

For k > 0 the finite code Cm
k (i) is thin. Moreover, we have v1i+m+2w �∈ Cm

0 (i) for
arbitrary binary words v and w, since the K3,j-words are the only ones in Cm

0 (i)
with length possibly larger than i +m+ 1, but these have j zeros from position 2
to j +1 and therefore contain maximally (i+ j +1)− j = i+ 1 < i+m+2 ones.

Since we have 0i+m+1 ∈ K2 ⊆ Cm
k (i) for k > 0, the statement regarding the

degree follows from Proposition 5.1 in Chapter III of [2] in this case. In the case
k = 0, according to Theorem 3.1 in Chapter III of [2] we only have to calculate
the number of prefixes without suffix in Cm

0 (i) for an arbitrary word which
is not an internal factor of Cm

0 (i). As we have seen in the proof of thinness,
1i+m+2 is not an internal factor and the prefixes 1j for 0 ≤ j ≤ i + m have
no suffix in Cm

0 (i), in contrast to 1i+m+1 and 1i+m+2, hence we have proved
d (Cm

k (i)) = i+m+ 1. �

Corollary 1. The following choices of m, k and i are covered by Theorem 2:

1. The codes Cm
2i−1(i) = {0, 1}i+m+1 for m ≥ 0 and i ∈ IN.

2. Setting K
(
α
(0,2i−2,i)
j

)
:= K

(
(0, . . . , 0, α

(0,2i−2,i)
j , 0, . . . )

)
, j ∈ IN, i ≥ 2:

K
(
α
(0,2i−2,i)
i

)
= K

(
α
(0,2i−2,i)
i+2

)
=

1

4
=

1

2
·K

(
α
(0,2i−2,i)
i+1

)
.

3. The codes C0
0 (i) ∼ α(0,0,i) with α

(0,0,i)
l = 2i−1 for all l ≥ i = lmin(α

(0,0,i)).

Note that Cm
k (i) ∼ α(m,k,i) implies existence of a fix-free C ∼ α for all α

not exceeding the values of α(m,k,i). The upper bound 2lmin(α)−1 estimated
in Corollary 1 is the best possible uniform upper bound for a given minimal
length lmin(α) of an arbitrary sequence α. Moreover, this upper bound is an
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Fig. 1. The code C1
2(3)
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Fig. 2. The code C0
0(3) without K3,j for j ≥ 3

improvement of the one given in Theorem II.4 of [6], apart from the number of
words of maximal length.

The following definition will later be used as a useful instrument for the con-
struction of new fix-free codes from a given class.

Definition 2. For T ⊆ {0, 1}∗ and n ∈ IN define

Pn
T :=

{
w ∈ {0, 1}n

∣∣w ∈ Δn
P(T ) or ∃ t ∈ T : t ∈ Δ|t|

P ({w})
}

,

SnT :=
{
w ∈ {0, 1}n

∣∣w ∈ Δn
S(T ) or ∃ t ∈ T : t ∈ Δ

|t|
S ({w})

}
and call T n-closed system, if T is fix-free, SnT ⊆ Pn

T and K(Pn
T ) ≤ K(T ).

Lemma 1. 1. If T is a n-closed system, then T∪({0, 1}n\Pn
T ) is a fix-free code

with Kraftsum 1. Vice versa there arises a n-closed system from a fix-free
code with Kraftsum 1 by leaving out all n-words.
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2. Let T be a n-closed system and T the set of all words in T where all ones
and zeros are interchanged. If T ∪ T is fix-free, then it is a n-closed system.

Proof. 1. If T is a n-closed system, then T ∪ ({0, 1}n \Pn
T ) ⊆ T ∪ ({0, 1}n \SnT )

is fix-free by the definition of Pn
T and SnT . Using that T and {0, 1}n \Pn

T are
disjoint due to T ∩ {0, 1}n ⊆ Pn

T , we get

K(T ∪ ({0, 1}n \ Pn
T )) = K(T ) +K({0, 1}n)−K(Pn

T )

≥ K(T ) + 1−K(T )

= 1 .

We show that leaving out all words of an arbitrary length n from a fix-free
code C with K(C) = 1 delivers a n-closed system Tn. As a subset of a fix-
free code, Tn is fix-free. Since C is fix-free, Pn

Tn
∪SnTn

= Pn
C\{0,1}n ∪SnC\{0,1}n

and C \ Tn = C ∩ {0, 1}n are disjoint subsets of {0, 1}n. This implies the
inequality K(C \ Tn) +K(Pn

Tn
∪ SnTn

) ≤ 1 and using K(C) = 1, we obtain
K(Tn) ≥ K(Pn

Tn
∪SnTn

). The last inequality together with K(Pn
Tn

) ≥ K(Tn)
by the definition of Pn

Tn
, implies K(Pn

Tn
) ≤ K(Tn) and S

n
Tn

⊆ Pn
Tn

.

2. We have w ∈ Sn
T∪T if and only if w is or has a suffix in T or in T and hence

Sn
T∪T = SnT ∪ Sn

T
.

In addition, w ∈ Sn
T
means that w is or has a suffix in T . This is equivalent to

w being or having a suffix in T , which means w ∈ SnT and therefore w ∈ SnT .
Since the argumentation regarding the prefixes is the same, we get

Sn
T∪T = SnT ∪ Sn

T
= SnT ∪ SnT ⊆ Pn

T ∪ Pn
T = Pn

T ∪ Pn
T
= Pn

T∪T .

For R := T ∪ T we get

K(R) = K({t ∈ R | |t| < n}) +K({t ∈ R | |t| = n}) +K({t ∈ R | |t| > n})
(∗)
≥ K({p ∈ Pn

R | ∃x ∈ R \ Pn
R : p ∈ Δn

P({x})})

+K(R ∩ {0, 1}n) +K
({
p ∈ Pn

R

∣∣ ∃x ∈ R \ Pn
R : x ∈ Δ

|x|
P ({p})

})
= K(Pn

R) ,

the last step following from the sets being disjoint due to the prefix-freedom
of R. In the following we prove (∗). It is obvious that

K({t ∈ R | |t| < n}) = K({p ∈ Pn
R | ∃x ∈ R \ Pn

R : p ∈ Δn
P({x})}) ,

since any x with the above property has 2n−|x| children in Pn
R . More-

over, K({t ∈ R | |t| = n}) = K(R ∩ {0, 1}n) is obvious. For the remaining
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inequality consider p0 ∈ Pn
R and x0 ∈ R \ Pn

R such that p0 is a prefix of
x0. For x0 ∈ T we have p0 ∈ Pn

T . Since T is a n-closed system, we have
K(Pn

T ) ≤ K(T ) and therefore all the children of p0 with length |x0| must be
in T . The other case x0 ∈ T is treated the same way so that all children of
the elements in p ∈ Pn

R , p having at least one child in R, lie in R. �

Corollary 2. For k ∈ IN0 and m, i ∈ IN with 2i−1 ≥ k there exists a complete
thin fix-free code B which satisfies

B ∼ β(m,k,i) and d (B) = i+m+ 1 .

Proof. We use the notation from the proof of Theorem 2. For k = 2i−1 we have
α(m,k,i) = β(m,k,i), so without loss of generality we put k < 2i−1 from now on.
According to Theorem 2 the code Cm

k (i) is complete and fix-free, therefore

Dm
k (i) := Cm

k (i) \ {0, 1}i+m+1 = K1 ∪
⋃

m+1≤j<p−1

K3,j ∪M ∪K5

is an (i + m + 1)-closed system due to Lemma 1, where M = ∅ if k ≥ 2i−2

and M = K4 otherwise. In order to prove that D := Dm
k (i) ∪ Dm

k (i) is an
(i+m+ 1)-closed system, according to Lemma 1 it is only left to prove that D
is fix-free.

Theorem 2 implies that Dm
k (i) and Dm

k (i) are fix-free. Since w ∈ Dm
k (i) is

a prefix in Dm
k (i) if and only if w ∈ Dm

k (i) is a prefix in Dm
k (i), it suffices to

consider the left half of the binary tree. Using bi(w) = 2|w| − bi(w) − 1 and
the binary values from the proof of Theorem 2, we obtain the following chain of
inequalities for k > 0, proving prefix-freedom with respect to m > 0:

bi(w(5,1)) < 2i ≤ bi(P (i+p)w(4)) < 2p−mk

≤ bi(P (i+p)w(1)) < 2i+p−1 − 2i+p−j−1 ≤ bi(P (i+p)w(3,j)) < 2i+p−1 − 2i+p−j−2

≤ bi(w(5,2)) .

Replacing the length i+ p by an arbitrary length a ≥ i+m+ 2 yields the same
argument for k = 0.

In order to prove suffix-freedom, we again use bi(w) = 2|w| − bi(w) − 1 and
the binary values from the proof of Theorem 2 in order to obtain

bi(S(i+m+1)w
(4)), bi(S(i+m+1)w

(5)), bi(S(i+m+1)w
(3,j))

< 2i

m>0
< 2i+m − 2i−1

≤ bi(0w(1)), bi(1w(1)), bi(S(i+m+1)w(3,j)), bi(S(i+m+1)w(4)) .

This proves suffix-freedom, since
⋃
m+1≤j<p−1K3,j ∪K4 ∪K5 cannot have w(1)

as suffix and w(3,j), w(4) cannot be a suffixes in K4 ∪K5 and K5 respectively.
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Therefore, we have proved D to be an (i +m+ 1)-closed system and we can

complete it according to Lemma 1 to a complete fix-free code having 2 · α(m,k,i)
l

words of length l �= i+m+ 1 and

2i+m+1 −
[(

2i+m+1 − α
(m,k,i)
i+m+1

)
· 2

]
= 2 · α(m,k,i)

i+m+1 − 2i+m+1

words of length i+m+ 1, regarding that Dm
k (l) ∩Dm

k (l) = ∅.
Let Bm

k (i) denote the code constructed above with Bm
k (i) ∼ β(m,k,i). For k >

0 the finite code Bm
k (i) is thin. Moreover, we have v1i+m+20i+m+2w �∈ Bm

0 (i)
for arbitrary v and w, since the K3,j- and K3,j-words are the only ones in Bm

0 (i)
with length possibly larger than i+m+1. But theseK3,j-words have j zeros from
position 2 to j+1 and therefore contain maximally (i+j+1)−j = i+1 < i+m+2
ones and K3,j-words have j ones from position 2 to j + 1 and therefore contain
maximally i+ 1 zeros.

Since for k > 0 there are no words in D containing only zeros or only ones,
we must have 0i+m+1, 1i+m+1 ∈ Bm

k (i) and the statement regarding the de-
gree follows from Proposition 5.1 in Chapter III of [2]. Using Theorem 3.1 in
Chapter III of [2], the calculation of d (Bm

0 (i)) is reduced to the determina-
tion of the number of prefixes of 1i+m+20i+m+2 without suffix in Bm

0 (i), since
1i+m+20i+m+2 is not an internal factor of Bm

0 (i). The (i + m)-suffixes of the
prefixes 1j, i+m ≤ j ≤ i+m+ 2, and 1i+m+20j, 0 ≤ j ≤ i− 1, lie in K1 since
bi(1i+m−r0r) = 2i+m−2r, 0 ≤ r ≤ i+m, andK1 covers exactly the (i+m)-words
with binary value at least 2i+m− 2i−1. Due to the binary values of the words in
K3,j, j ≥ m+1, and in K1, the binary values of P i+m+1

D on the right half of the
binary tree are lower than 2i+m + 2i−1 or are at least 2i+m+1 − 2i respectively.
Therefore, the (i+m+1)-suffixes of the prefixes 1i+m+20j , i+1 ≤ j ≤ i+m−1,
are contained in the completion Bm

0 (i) of the (i+m+1)-closed system D, since
their binary value is bi(1i+m+1−j0j) = 2i+m+1 − 2j . The prefixes 1i+m+20j ,
i + m ≤ j ≤ i + m + 2, have the suffix 0i+m in Bm

0 (i). There are i + m + 1
remaining prefixes, on the one hand 1j , 0 ≤ j ≤ i + m − 1, which have no
suffix in Bm

0 (i) due to their length, and on the other hand 1i+m+20i which does
not have a suffix of length at most i + m + 1, as seen in the discussions of
(i + m)- and (i + m + 1)-suffixes above. In addition, for r ≥ i + m + 2, the
r-suffix of 1i+m+20i has binary value bi(1r−i0i) = 2r− 2i > 2r−1+2i for m > 0,
whereas the binary value 2r−1 + 2i is not exceeded by the words in K3,j for
j = r − i− 1. �

4 Multiplication of Fix-Free Codes

For X,Y ⊆ {0, 1}∗ and two sequences α, β define the products

X · Y := {xy ∈ {0, 1}∗ |x ∈ X, y ∈ Y }

and α · β given by (α · β)i :=
∑

l,m∈IN: l+m=i αl · βm for all i ∈ IN. According to
Example 3.5 in Chapter III of [2], X · Y is a complete thin fix-free code, if the
same holds for X , Y and within this case the degree is d(X · Y ) = d(X) + d(Y ).
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Lemma 2. The fix-free codes X ∼ α and Y ∼ β satisfy

X · Y ∼ α · β and K(X · Y ) = K(X) ·K(Y ) .

Proof. If X and Y are fix-free, any word w ∈ X ·Y can be decomposed uniquely
as w = xy with x ∈ X and y ∈ Y , implying X · Y ∼ α · β. Let α and β be
sequences with X ∼ α and Y ∼ β. Then we get

K(X · Y ) = K(α · β)

=
∑
i∈IN

( ∑
l,m∈IN: l+m=i

αl · βm
)
· 2−i

=
∑
i∈IN

∑
l,m∈IN: l+m=i

(
αl · βm · 2−l · 2−m

)
=

(∑
l∈IN

αl · 2−l
)
·
( ∑
m∈IN

βm · 2−m
)

= K(X) ·K(Y ) .

�
This tells us that multiplication yields new classes of fix-free codes. The unsolved
question arises, which sub-class of fix-free codes is sufficient for obtaining all fix-
free codes with Kraftsum at most 3/4 by multiplication within this sub-class.
For the next theorem we make use of the codes mentioned in Corollary 1 and
write n for the natural numbers not exceeding n.

Theorem 3. Let s ∈ (IN0)
n \ {0} for n ∈ IN. Then Cs :=

∏
i∈n(C

0
0 (i))

si is

a complete thin fix-free code which satisfies Cs ∼ α and d (Cs) = lmin(α) + l,
where l :=

∑
j∈n sj and

αi = 2lmin(α)−l ·
(
i− lmin(α) + l − 1

l− 1

)
for all i ≥ lmin(α) =

∑
j∈n

sj · j .

Proof. Let s �= 0 be a nonnegative sequence. Due to Theorem 2, Lemma 2 and
Example 3.5 in Chapter III of [2], the code Cs is thin, complete and fix-free with
minimal length lmin(C

s) =
∑

j∈n sj · j and degree
∑

j∈n sj · (j+1) = lmin(α)+ l.

Estimating α by the according formal power series, we write t := lmin(α) − l
and for the number ak(l) of ordered partitions of k with l summands we have
ak(l) =

(
k−1
l−1

)
for all k ≥ l. We obtain
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∑
i∈IN

αi · xi Cor.1
=

∏
i∈n

(
2i−1 ·

∑
j≥i

xj
)si

= 2t · xt ·
( ∑
j∈IN

xj
)l

= 2t · xt ·
∑
k∈IN

(
ak(l) · xk

)
=

∑
k≥l

2t ·
(
k − 1

l− 1

)
· xt+k

=
∑
i≥t+l

2t ·
(
i− t− 1

l− 1

)
· xi.

�
Corollary 3. The subsequent choices for s in Theorem 3 yield the following
entries of α for which there exists a fix-free Cs ∼ α:

1. The entries αi = (i−k)·2k−1 for all i ≥ k+1 = lmin(α), choosing s1 = sk = 1
and sj = 0 otherwise.

2. The entries αi = i− 1 for all i ∈ IN, choosing s1 = 2 and sj = 0 otherwise.
3. The sequence α non-increasing for l ≥ lmin(α) with K(α) ≤ 3/4.

Considering the non-increasing case, note that for αlmin(α) > 2lmin(α)−1 the state-
ment follows from Equation (1) and the opposite case is a consequence of the
existence of the codes C0

0 (i), i ∈ IN. Again notice that Cs ∼ α implies the
existence of a fix-free C ∼ α′ for all α′ not exceeding the values of α.

So far, we have multiplied within a sub-class of our new codes, next we will
use the multiplication of C0

0 (1) with a fix-free code E ∼ ε. The result is the
fix free code C := C0

0 (1) · E which fits the sequence α = (1, 1, . . . ) · ε such that

αi =
∑i−1

j=1 εj for i ∈ IN and K(α) = K(ε). Note that in none of the cases in the
following remark it is necessary to demand lmin(α) > 1 due to Equation (1).

Corollary 4. For the following choices of α with K(α) ≤ 3/4 there exists a
fix-free C ∼ α:

1. The sequence α given by αlmin(α) = αi < αk = αj for all lmin(α) ≤ i < k ≤ j
with k ∈ IN fix.

2. The sequence α given by αki = αj < αki+1 for all ki ≤ j < ki+1 and i ∈ IN,
where k1 = lmin(α) and ki+1 ≥ 2ki − 1 for all i ∈ IN.

3. The sequence α non-decreasing with αlmin(α) + αlmin(α)+1 ≥ 2lmin(α)−1, im-
proving (1) for non-decreasing sequences.

4. The sequence α non-decreasing with K((0, . . . , 0, αlmin(α), 0, . . . )) ≥ 1/4.
5. The sequence α non-decreasing with α1 �= 0 or α2 �= 0.
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Proof. 1. If we choose ε given by K(ε) ≤ 3/4 and εi > 0 if and only if i ∈ {p, q}
with p < q ∈ IN, Theorem 12 in [4] implies the existence of a fix-free E ∼ ε.
We obtain αi+1 −αi �= 0 if and only if i ∈ {p, q}. With lmin(α) := p+1 and
k := q + 1, the statement follows.

2. We choose ε given by K(ε) ≤ 3/4 and εm > 0 if and only if we have that
m ∈ M = {mi | i ∈ IN} where mi+1 ≥ 2mi for all i ∈ IN. Then Lemma
4 in [1] delivers the existence of a fix-free E ∼ ε and this implies that
αm+1 − αm �= 0 if and only if m ∈M . With ki := mi + 1 for all i ∈ IN and
k1 := lmin(α) the statement follows.

3. If we choose ε given by K(ε) ≤ 3/4 and 2εk + εk+1 ≥ 2k with k := lmin(ε),
(1) implies the existence of a fix-free E ∼ ε. Using the relation between ε
and α, we obtain the following condition on α:

2lmin(α)−1 = 2k ≤ 2εk+εk+1 = 2αk+1+(αk+2−αk+1) = αlmin(α)+αlmin(α)+1

and since ε is nonnegative, α is non-decreasing.
4. Since α is non-decreasing, the condition αlmin(α) ≥ 2lmin(α)−2 satisfies the

condition of the preceding item.
5. For lmin(α) = 1 use (1) and lmin(α) = 2 implies αlmin(α) ≥ 2lmin(α)−2 again.

�

5 Conclusion

We have noticed that proving a certain shifting to preserve fix-freedom, is a suf-
ficient criterion regarding the 3/4-Conjecture. Since the proof seems to be diffi-
cult, it is feasible to start by finding special cases where the shifting is achieved
by a simple replacement of words.

Moreover, the construction of complete thin codes yields large classes of fix-
free codes, allowing words with Kraftsum at least 1/4 to be left out. The unique-
ness verified in [2] motivates the construction of a complete thin fix-free code for
given degree and kernel. In doing this, n-closed systems are a helpful instrument
that could be generalized for adding more than just one level. Also binary trees
can be used for giving an instant overview on the prefix-forbiddances, allowing
to concentrate on the suffix-structure.

As Section 4 has demonstrated, the multiplication of fix-free codes enlarges
this class and therefore it would be desirable to find all fix-free codes with an
irreducible associated formal power series. Although we have restricted to the
binary case in this article, most of the results are expected to be generalizable
on the q-ary case.

Acknowledgements. For the introduction to this intriguing problem, the au-
thor would like to thank Eberhard Triesch as well as for his generous support of
the research.
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Dedicated to the memory of Rudolf Ahlswede

Abstract. Rudolf Ahlswede introduced the theory of creating order
roughly at the same time as his theory of identification. He was al-
ways surprised that it did not achieve the same popularity as identifi-
cation. We shall here present a multi-user model in which, contrasting
to Ahlswede’s original model, the size of the memory may vary in time.
The influence of the maximum size of the memory device on the expect-
ed occurrence of the first 0 in the sequence produced by the organizer
is studied. In the case that there is one outgoing bit in each time unit
two steps of a simple random walk on the lattice can be combined to one
step in a random walk for the exhaustion of the memory.

Keywords: creating order, permuting channel, Chebyshev polynomials,
ballot sequences.

1 Introduction

Ahlswede, Ye, and Zhang [2] introduced the following model for creating order
in sequence spaces. We are given a box containing (a fixed number) β balls
labelled by letters from an alphabet of size α. In each time unit a person O –
denoted as organizer – takes out one ball of the box which is replaced by a new
ball thrown into the box by a second person I. The aim of the organizer is to
reduce the space of possible output sequences. As a measure for the efficiency of
the ordering process the number of possible output sequences and the entropy
of the output space have been studied (cf. also [3], [7], [15]). A related model in
which the output sequence is regarded as a message from person I to a decoder
D was considered by several authors studying the permuting channel, e. g. [1],
[9], and [10].

In this paper a multi–user version of the original model for creating order is
discussed. Now there are s ≥ 2 persons I1, . . . , Is, say, throwing balls labelled
either 0 or 1 into the box. We shall present the model using a slightly different
terminology. In each time unit s sources I1, . . . , Is produce one bit each. These
s bits arrive at an organizer who in the same time unit has to choose one bit
for output. This bit may be one of the s arriving bits or a bit stored in some
memory device (the box), in which the bits not used so far may be stored. The

H. Aydinian, F. Cicalese, and C. Deppe (Eds.): Ahlswede Festschrift, LNCS 7777, pp. 711–724, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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organizer follows a simple strategy: if it is possible the output must be a 1. So
if one of the arriving bits is a 1, the organizer will put out a 1 for sure. The
bits not used for output he may store in the memory device. If all the s sources
produce a 0, then the organizer will take a look at the memory. If there is still
a 1 contained he will put out a 1, otherwise he must put out a 0.

We assume that at the beginning the memory device is empty. At some point
it may occur that no further 1 can be stored, since the device is full of 1’s (a 0
may be replaced by a 1). In this case there is a maximum size or capacity of
M bits which cannot be superceded. Of theoretical interest is also the not very
realistic model, in which the memory device can store infinitely many bits.

Observe that contrasting to the original model for creating order the size of
the memory device (or box) now may vary in time. A natural question is: how
much influence does the maximum size of the memory have on the behaviour
of the sequence of bits arranged by the organizer? Of course, in the strategy
considered the organizer’s aim is to produce the all–one sequence and we shall
study how well he can manage to achieve this goal. As a new measure for the
influence of the memory we consider the expected value of the first occurence of
a 0 in this sequence. We shall denote this expectation as

E0 =

∞∑
t=1

t · Prob(first 0 at time t). (1)

Further, we shall denote by

xi = (xi1, x
i
2, . . .), (2)

the sequences of bits produced by the sources Ii, respectively and by

z = (z1, z2, . . .) (3)

the sequence arranged by the organizer according to the above strategy. The
results below are mainly derived from properties of the sequence

u = (u1, . . . us, us+1, . . . , u2s, u2s+1, . . .) = (x11, . . . , x
s
1, x

1
2, . . . , x

s
2, x

1
3, . . .) (4)

which is obtained by merging the sequences xi, i = 1, . . . , s into one sequence u,
where the bits in the positions ≡ i mod s are those produced by Ii. (Observe
that the order of the incoming bits at each time unit does not matter, since the
organizer waits until all the s bits have arrived. So u may also be defined by
any other merging procedure which assigns the postions (s − 1)t + 1, . . . , st to
the bits arriving in time unit t).

Our first result is obtained for two memoryless, independent and equiprobable
sources, i. e., I1 and I2 produce 1 and 0 with equal probability 1

2 .In this case it
is

Prob(first 0 at time t− 1) =
1

4t
· a(0, t− 1), (5)

where a(0, t−1) denotes the number of sequences u produced by the two sources
leading to the all-one sequence as output with size of stock of ones 0 at time t.
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Clearly an empty stock at time t− 1 is a necessary condition for the occurrence
of the first 0 at time unit t, which then happens with probability 1

4 (4t−1 is the
number of all possible sequences u until time t− 1).

More exactly, a(0, t−1) = aM (0, t−1) also depends on the size of the memory
M - here also the case of an infinite memory M = ∞ is possible. However, we
shall mostly skip the index M , since in the respective chapters the parameter
M will be indicated.

Analogously, the numbers a(m, t) (= aM (m, t) are defined for the size of the
stock of ones m = 1, . . . ,M, t = 1, 2, . . .. Let us denote by ut = (u2t−1, u2t)
the two bits arriving at time t. Now observe that in each time unit the source
inputs ut = 10 and ut = 01 do not change the size of the stock of ones, ut = 00
decreases the size by one bit (and is forbidden for m = 0, since in this case
the organizer must put out a 0) and ut = 11 increases the size by one bit
if m < M (and does not change the size of the stock of ones if the capacity
m =M is reached. So we have a random walk in the memory size expressed by
the recursion formulae for the numbers a(m, t)⎛⎜⎝ a(0, t)

...
a(M, t)

⎞⎟⎠ = AM+1 ·

⎛⎜⎝ a(0, t− 1)
...

a(M, t− 1)

⎞⎟⎠ (6)

where

An =

⎛⎜⎜⎜⎜⎜⎝
2 1 0 . . . 0 0 0
1 2 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 2 1
0 0 0 . . . 0 1 3

⎞⎟⎟⎟⎟⎟⎠ , (7)

with initial matrices A1 = (3), A2 =

(
2 1
1 3

)
.

Theorem 1. If I1 and I2 are two memoryless, independent and symmetrical
sources, then

i)

E0 =
1

4

M+1∑
i=1

ci

(
1− λ

(M+1)
i

4

)−2

(8)

where λ
(M+1)
i , i = 1, . . . ,M + 1 are the eigenvalues

λ
(M+1)
i = 4 · sin iπ

2M + 1
(9)

of the matrix AM+1 and ci, i = 1, . . . ,M + 1 are appropriate constants.

ii) E0 does not exist if the size of the memory M(t) at time t is bounded by a
function f(t) which exceeds every positve integer M from some time t0(M) on.



714 U. Tamm

We shall prove Theorem 1 in the next section where we shall also take a closer
look at the transition matrices defined in (7) and further matrices of a similar
structure. The matrices An have been studied before in geometry and they
can also be obtained from the squares of the transition matrices of the random
walk which occurs in the study of the Brownian motion. Their characteristic
polynomials are known to be combinations of Chebyshev polynomials. Further
in Section 2 for small capacitiesM = 0, 1 the numbers a(0, t) will be determined
exactly for small capacities M = 0, 1 and also the case in which two identical
nonsymmetric sources give bits to the organizer will be considered.

Part (ii) of Theorem 1 states that E0 does not exist if the number of bits
M(t) that the memory device is able to store at time t is an arbitrarily slowly
growing function (in fact, the condition is even weaker). If every incoming bit
can be stored, i. e., M(t) = t is linear in time, then there is a second proof based
on some property of the merged sequence u, which also extends to the situation
of s incoming bits in each time unit.

Theorem 2. Let there be s identical sources I1, ..., Is producing one bit each
per time unit with Prob(X = 1) = p, Prob(X = 0) = 1−p. If the memory device
can store every incoming bit, then the expected value for the occurence of the
first 0 in the sequence arranged by an organizer (if he puts out a 1 if possible) is

E0

{
= ∞, p = 1

s
<∞, p < 1

s

(10)

Theorem 2 will be proved in Section 3. It turns out that the numbers a(0, t−1) =
a∞(0, t−1) (defined as before for the finite memory case) are generalized Catalan
numbers

C
(s)
t =

1

(s− 1) · t+ 1
·
(
st

t

)
(11)

In Section 4 a model with more than one outgoing bits will be discussed Finally,
in Section 5 some generalizations and open problems will be stated.

2 The Transition Matrices An

The transition matrices An and further matrices of a similar structure we shall
consider in this section are closely related to Chebyshev polynomials (tn(x))n=1,2,...

and Chebychev polynomials of the second kind (un(x))n=1,2,.... The reason is
that these polynomials occur as determinants of special matrices, namely (cf.
[5], p. 228)

tn(x) =
n

2
·
�n

2 �∑
i=0

(−1)i

n− i

(
n− i

i

)
(2x)n−2i = det Tn(x) (12)
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with

Tn(x) =

⎛⎜⎜⎜⎜⎜⎝
x 1 0 . . . 0 0 0
1 2x 1 . . . 0 0 0
...

...
...
. . .

...
...

...
0 0 0 . . . 1 2x 1
0 0 0 . . . 0 1 2x

⎞⎟⎟⎟⎟⎟⎠ , (13)

un(x) =

�n
2 �∑

i=0

(−1)i
(
n− i

i

)
(2x)n−2i = det Un(x) (14)

with

Un(x) =

⎛⎜⎜⎜⎜⎜⎝
2x 1 0 . . . 0 0 0
1 2x 1 . . . 0 0 0
...

...
...
. . .

...
...

...
0 0 0 . . . 1 2x 1
0 0 0 . . . 0 1 2x

⎞⎟⎟⎟⎟⎟⎠ , (15)

Further, in [12] it is shown that

un(x) + un−1(x) = det Vn(x), (16)

where

Vn(x) =

⎛⎜⎜⎜⎜⎜⎝
2x 1 0 . . . 0 0 0
1 2x 1 . . . 0 0 0
...

...
...
. . .

...
...

...
0 0 0 . . . 1 2x 1
0 0 0 . . . 0 1 2x+ 1

⎞⎟⎟⎟⎟⎟⎠ , (17)

Observe that the transition matrix AM = VM (1) occurs for the special value
x = 1.

The following well–known properties of the Chebyshev polynomials (cf. [12]
and [11]) will be used later on.

tn(x) = 2x · tn−1(x) − tn−2(x), un(x) = 2x · un−1(x)− un−2(x) (18)

tn(x) = un(x)− un−2(x) (19)

4 · sin iπ

2n+ 1
, i = 1, . . . , , n are the eigenvalues of Vn(x) (20)

Proof of Theorem 1

i) With (6)⎛⎜⎝ a(0, t)
...

a(M, t)

⎞⎟⎠ = AM+1

⎛⎜⎝a(0, t− 1)
...

a(m, t)

⎞⎟⎠ = AtM+1

⎛⎜⎝ a(0, 0)
...

a(M, 0)

⎞⎟⎠ = AtM+1

⎛⎜⎜⎜⎝
1
0
...
0

⎞⎟⎟⎟⎠ ,

(21)
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since in the beginning the memory device does not contain any 1. AM+1 is
symmetric, hence there exists an orthogonal matrix P = (pij)i,j=1,...,M+1 with
PT = P−1 such that

P ·AM+1 · P−1 = diag(λ1, . . . λM+1), (22)

where diag(λ1, . . . , λM+1) is the diagonal matrix consisting of the eigenvalues of
AM+1. Now AtM+1 = P−1 · (diag(λt1, . . . , λM+1)

t) · P . With (21) and ci = p21i
then

a(0, t) =

M+1∑
i=1

ci · λti (23)

Now using (23) and
∑∞

t=1 t · xt−1 = 1
(1−x)2

E0 =
∞∑
t=1

t
a(0, t− 1)

4t
=

1

4

M+1∑
i=1

ci

∞∑
t=1

t · (λi
4
)t−1 =

1

4

M+1∑
i=1

ci · (1−
λi
4
)−2 (24)

The eigenvalues of AM+1 have been listed under (20) and thus (i) is proved.

ii) Observe that the largest eigenvalues λ
(M+1)
max of the matrices AM+1 form a

sequence converging towards 4, hence the series of expected values for the occur-

rence of the first 0 E
(M)
0 is divergent. If the maximum size M(t) of the memory

device varies in time such that for every positive integer M it is M(t) > M for

some t0(M) on, then E0 > E
(M)
0 for every fixed capacity M (with appropriate

rescaling, set t0(M) = 0).

Remark 1. It is clear from the proof that the results of Theorem 1 also hold if
we start with any number m > 0 of 1’s in the memory device, only the constants
ci will change then. Implicitly this fact has already been used in the proof of part
(ii).

The matrices AM can further be obtained as a submatrix of the squares of
matrices

Bn =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 0 2
0 0 0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎠ , (25)

with B1 = (0) and B2 =

(
0 2
1 0

)
.

To see this, observe that the recursion formulae in (6) are obtained by regard-
ing the single time units t of the ordering process, which are represented by the
two bits u2t−1, u2t of the sequence u. It is also possible to obtain a recurrence
from the single components of u. In order to do so, consider the transitions (for
i = 1, 2, . . . ; k = 0, 1, . . . , n)
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b(i+ 1, k) =

⎧⎪⎪⎨⎪⎪⎩
b(i, k + 1) k = 0,
b(i, k − 1) + b(i, k + 1) k = 1, . . . n− 2
b(i, k − 1) + 2 · b(i, k + 1) k = n− 1
b(i, k − 1), k = n

(26)

which just define the matrices Bn. This is just a random walk on the line
{0, . . . , n} with absorption at the point 0 and reflection at point n, which occurs
in the study of the Brownian motion (cf. [8]). Now observe that the recurrence
formulae (6) are obtained from (26) by combining two consecutive instances
i, i + 1, i. e., b(i + 2, k) is obtained from the b(i, .) via the same recursion as
a(t,m) is obtained from the a(t − 1, .). Since for even i b(i, k) = 0 if k is odd,
we have

Proposition 1. Let B2
2n+1 = (bij)i,j=1,...2n+1, where B2n+1 and An are the

matrices defined in (25) and (7). Then

An = (bij)i,j even. (27)

Moreover, by an appropriate permutation L of lines and columns

LB2
2n+1L

T =

(
An 0
0 Cn+1

)
. (28)

where

Cn+1 = (bij)i,j odd =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 . . . 0 0 0
1 2 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 2 2
0 0 0 . . . 0 1 2

⎞⎟⎟⎟⎟⎟⎠ , (29)

with C2 =

(
1 2
1 2

)
and C3 =

⎛⎝1 1 0
1 2 2
0 1 2

⎞⎠.

Analogously, we can consider the matrices

An =

⎛⎜⎜⎜⎜⎜⎝
2 1 0 . . . 0 0 0
1 2 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 2 1
0 0 0 . . . 0 1 2

⎞⎟⎟⎟⎟⎟⎠ , (30)

Bn =

⎛⎜⎜⎜⎜⎜⎝
0 1 0 . . . 0 0 0
1 0 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 0 1
0 0 0 . . . 0 1 0

⎞⎟⎟⎟⎟⎟⎠ , (31)
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Cn =

⎛⎜⎜⎜⎜⎜⎝
1 1 0 . . . 0 0 0
1 2 1 . . . 0 0 0
...
...
...
. . .

...
...
...

0 0 0 . . . 1 2 1
0 0 0 . . . 0 1 1

⎞⎟⎟⎟⎟⎟⎠ , (32)

where following the same lines it can be derived (with B
2

n = (bij)i,j=1,...,n)

LB
2

2n+1L
T =

(
An 0
0 Cn+1

)
. (33)

where
An = (bij)i,j even (34)

and
Cn+1 = (bij)i,j odd (35)

The matrices Bn and Bn are well known as transition matrices for certain
random walks (cf. [8] and [13], pp. 238–240) and the matrices An and An

have an application in geometry (cf. [12]). Think of the vertices P1, . . . , PN
of a regular N–gon drawn on a unit circle. Then the eigenvalues of AN−1

2
(if

N is odd) or AN−2
2

(if N is even) give the squares of the different distances

Pi, Pj , i, j = 1, . . . , N .

From this property it is immediate that the largest eigenvalues λ
(n)
max of the

matrices An form a strictly increasing sequence with limn→∞λ
(n)
max = 4. The

reason is that the largest distance P1, PN−1
2

tends to the diameter 2 of the unit

circle. This property was the central argument in the proof of Theorem 1, where
it was derived analytically using an explicit formula for the eigenvalues of An.

Now let us take a look at the characteristic polynomials.

Proposition 2. For the characteristic polynomials of the matrices we consider
holds

χBn
(λ) = un(−

λ

2
) =

�n
2 �∑

i=0

(−1)n−i
(
n− i

i

)
λn−2i (36)

χBn(λ) = tn(−
λ

2
) =

�n
2 �∑

i=0

(−1)n−i(

(
n− i

i

)
+

(
n− i− 1

i− 1

)
)λn−2i (37)

χAn(λ
2) =

(−1)n+1

λ
χB2n+1(λ), χAn

(λ2) =
(−1)n+1

λ
χB2n+1

(λ), (38)

χCn+1(λ) = −λχAn(λ), χCn+1
(λ) = −λχAn

(λ), (39)

| 1
λ
(χB2n+1(λ))

2 |=| χB2
2n+1

(λ2) |, | 1
λ
(χB2n+1

(λ))2 |=| χ
B

2
2n+1

(λ2) |, (40)
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Proof: By definition, (36) follows from the fact that Bn = Un(0).
Using the properties (18) and (19) of the Chebyshev polynomials, (37) can be

derived via

χBn(λ) = −λ ·χBn−1
(λ)−2χBn−2

(λ) = −λ ·un−1(
λ

2
)−2un−2(

λ

2
) = un(

λ

2
)−2un−2(

λ

2
)

The characteristic polynomials in (38) can be derived using the recurrence
χAn(λ) = (2 − λ) · χAn−1(λ) − χAn−2(λ) which is the same as for χAn

, on-

ly the initial values differ: χA1(λ) = 3 − λ, χA2(λ) = λ2 − 5λ + 5, whereas
χA1

(λ) = 2− λ, χA2
(λ) = λ2 − 4λ+ 3.

(39) can be derived using χCn(λ) = (2− λ) · χTn−1(1)(λ)− 2 · χTn−2(1)(λ) and
χCn

(λ) = (1− λ) · χTn−1(1)(λ) − χTn−2(1)(λ).

Finally (40), follows from (28), (33), (38), and (39).
Observe that for the coefficients ri and ri in the polynomials χBn(λ) =∑n
i=0 riλ

i and χBn
(λ) =

∑n
i=0 riλ

i it is

n∑
i=0

| ri |= Ln,
n∑
i=0

| ri |= Fn (41)

where Fn and Ln denote the n–th Fibonacci and Lucas number, respectively
defined by Fn = Fn−1 + Fn−2 and Ln = Ln−1 + Ln−2 with initial values F1 =
F2 = 1 and L1 = 1, L2 = 3.

The Fibonacci numbers also occur in the analysis of the expected value E0 for
maximum memory size M = 1. Obviously, if there is no memory (M = 0), then
the number a(0, t) = 3t, where 3 is also the largest eigenvalue of A1 = (3). In
this case E0 =

∑∞
t=1 t · (34 )t−1 · 1

4 = 4 is just the expected value of the geometric
distribution with parameter 1

4 , since with probability 1
4 two 0’s arrive at time t.

Proposition 3. For maximum memory size M = 1 the numbers a(0, t) and
a(1, t) are a(0, 2t) = 5t · Ft, a(1, t) = 5t · Ft+1,

a(0, 2t+ 1) = 5t · (2Ft + Ft+1), a(1, 2t+ 1) = 5t · (Ft + 3Ft+1) (42)

Proof

We have the transition matrices AM =

(
2 1
1 3

)
Now A2

M =

(
5 5
5 10

)
=5 ·

(
1 1
1 2

)
,

from which follows that A2t
M = 5t ·

(
1 1
1 2

)t

= 5t ·
(

Ft Ft+1

Ft+1 Ft+2

)t

by a well–known

property of the Fibonacci numbers.

Finally let us take a look at the transition matrices in the case where two
identical nonsymmetric sources give bits to the organizer. If p is the probality
for the sources to produce a 1, the transition matrices can be obtained as in (28)
from the square of the matrices
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B′
n =

⎛⎜⎜⎜⎜⎜⎝
0 1− p 0 . . . 0 0 0
p 0 1− p . . . 0 0 0
...

...
...

. . .
...
...
...

0 0 0 . . . p 0 1
0 0 0 . . . 0 p 0

⎞⎟⎟⎟⎟⎟⎠ , (43)

The matrices B′
n have been studied intensively in [8]. An exact determination of

their eigenvalues seems to be quite difficult in the nonsymmetric case, however
it is clear from Theorem 2 that for M −→ ∞ the sequence of expected values
E0(M) is not divergent for p < 1

2 . The characteristic polynomial again is a
combination of Chebyshev polynomials.

Proposition 4. The characteristic polynomial of B′
n is

χB′
n
(λ) = −λ(p(1−p))

n−1
2 ·un−1(

λ√
p(1− p)

)−p(p(1−p))
n−2
2 un−2(

λ√
p(1− p)

)

(44)

Proof: First, consider the matrix B
′
n obtained from B′

n by changing the element

b′n−1,n from 1 to 1−p The characteristic polynomial of the matrix B
′
n obeys the

three–term recurrence

χB′
n
(λ) = −λ · χB′

n−1
(λ)− p(1− p) · χB′

n−2
(λ) (45)

which as solution yields the weighted Chebyshev polynomial of the second kind

χB′
n
= (p(1 − p))

n
2 · un(

λ√
p(1− p)

) (46)

Now observe that the characteristic polynomial χ′
Bn

is

χB′
n
(λ) = −λ · χB′

n−1
(λ)− p · χB′

n−2
(λ) (47)

3 Every Incoming Bit Can Be Stored

When the memory device can store every incoming bit, there is a simple criterion
on the sequence u, which guarantees that the organizer can put out the first 0
at time t+ 1. To see this, recall that there are two necessary conditions for the
occurence of the first 0 at time unit t: 1) there are no further 1’s in the memory
device after the t–th bit has been put out by the organizer, 2) up to time t the
all-one sequence has been arranged by the organizer. These conditions can be
translated into conditions required from the sequence u, namely

i)
wt(u1, . . . , ust) = t, (48)
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ii)
wt(u1, . . . , usi) ≥ i for i = 1, . . . , t− 1. (49)

As usual, here the weight wt(x) of a {0, 1}–vector x denotes the number of 1’s
in x. By condition (i) no 1’s can be left in the device, since t 1’s have arrived
at the organizer and t 1’s have been used for output. The second condition (ii)
assures that at all time units before it was possible to put out a 1 (by the same
argumentation).

The number a(0, t) of all sequences of length s fulfilling the conditions (i)
and (ii) are well known in Combinatorial Theory, these are just the generalized
Catalan numbers defined in (11) (cf. [6], pp. 343–350).

Proof of Theorem 2: Recall that the sources I1, . . . , Is each produce a 1 with
probability p. Hence with probability (1− p)s only 0’s arrive at the organizer at
time unit t+1. In this case he has to put out a 1 if the memory device is empty,
which happens by the preceding discussion with probability a(0, t)·pt(1−p)(s−1)t.
Hence the expected value for the occurence of the first 0 now is

E0 =

∞∑
t=1

(t+ 1) · a(0, t) · pt(1− p)st (50)

We shall now use Stirling’s formula

n! ≈
√
2πn · (n

e
)n (51)

to find that the binomial coefficient
(
st
t

)
in the Catalan numbers a(0, t) is ap-

proximately (
st

t

)
≈ (

ss

(s− 1)s−1
)t · 1√

t
(52)

Now let p = 1
s′ . Then with (52)

E0 =

∞∑
t=1

(t+1)a(0, t)(
1

s′
)t(1− 1

s′
)st =

∞∑
t=1

t+ 1

(s− 1)t+ 1

(
st

t

)
(
(s′ − 1)s

(s′)s+1
)t ≈

∞∑
t=1

St√
t

(53)
with

S =
ss · (s′ − 1)s−1

(s′)s · (s− 1)s−1
(54)

Now if p < 1
s then S < 1 and the series (50) converges and hence the expected

value E0 exists. If p = 1
s then S = 1 and E0 does not exist, since in this case

1√
t
is the decisive term in the single summands which again yields a divergent

series for (50).

4 More Than One Outgoing Bit

Finally, let us discuss a model for creating order in which there are s > 2 bits
arriving in each time unit at the organizer who then has to put out a number l
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(s > l > 1) of bits. With the argumentation above, the number a(0, t) in this
case is the number of sequences of length st fulfilling the two conditions

wt(u1, . . . , ust) = l · t, (55)

wt(u1, . . . , usi) ≥ l · i for i = 1, . . . , t− 1. (56)

For the analysis of the numbers a(0, t) we need the concept of domination (or
majorization). A sequence a = (a1, a2, . . . , an) is dominated by a sequence
b = (b1, b2, . . . , bn) if for all m = 1, . . . , n it is

∑m
i=1 ai ≤

∑m
i=1 bi. We shall write

a - b in this case.

Proposition 5. When in each time unit s bits arrive at the organizer who in
the same time unit has to put out a fixed number l < s bits (using the strategy
which prefers a 1 towards a 0), then the number a(0, t) of sequences fulfilling
(55) and (56) is

a(0, t) =
∑

(l,...,l)�(i1,...,it)

(
s

i1

)
·
(
s

i2

)
· · ·

(
s

it

)

Proof: For j = 1, . . . , t the binomial coefficient
(
s
ij

)
is the number of possible

ways in which exactly ij bits can arrive at the organizer in time unit j. In order
to assure that the memory is exhausted at time t, i. e. (i’) holds, it must be
i1 + · · · + it = l · t and in order to guarantee (ii’) for all j < t, it must hold
i1 + · · ·+ ij ≥ l · i. This just means that the sequence (i1, . . . , it) dominates the
sequence (l, . . . , l)︸ ︷︷ ︸

t

For the special case l = 1, we can derive from Proposition 5 the following identity
for the generalized Catalan numbers

C
(s)
t+1 =

∑
(1,...,1)�(i1,...,it)

(
s

i1

)
·
(
s

i2

)
· · ·

(
s

it

)
(57)

For the analysis of the parameter E0 it would be nice to have such a closed
expression also for the case l > 1, gcd(l, s) =1.

The random walk for the exhaustion of the memory is closely related to an-
other random walk defined by a path in a lattice (where from point (x, y) one
can either move to (x+1, y+s− l) or to (x+1, y− l). Essentially, an analysis for
l = 1 outgoing bit in our model for creating order was possible since these two
processes are closely related. The combination of s steps of the random walk
defined by the lattice paths yields the one for the exhaustion of the memory
and also the nonnegative paths in the lattice by Proposition 5 correspond to the
sequences with the properties (48) and (49), such that finally the same counting
function arises.
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If there are l > 2 (gcd(l, s) = 1) outgoing bits per time unit, the counting
functions for the nonnegative paths in the corresponding lattice and the exhaus-
tion of the memory, respectively, are different. Let, e. g., s = 5 and l = 2, then
the numbers a(0, t) of sequences fulfilling (55) and (56) for s = 5 and l = 2 start
with a(0, 1) = 10, a(0, 2) = 155, a(0, 3) = 2335.

On the other hand, in order to enumerate the nonnegative paths of the corre-
sponding elementary random walk in the lattice observe that such a walk yields
a sequence (a1, . . . , am) with ai ∈ {s− l,−l} and the nonnegative lattice paths
correspond to such sequences with the additional property

m∑
i=1

ai = 0,

m′∑
i=1

ai ≥ 0 for m′ = 1, . . . ,m− 1

Observe that such a sum can only be 0 if m = s · n is divisible by s.
Letting again s = 5 and l = 2, there are two such sequences for m = 5

(namely (3, 3 − 2,−2,−2) and (3,−2, 3,−2,−2)), 23 sequences for m = 10 and
377 sequences for m = 15, which fulfill These sequence had been first observed
by Berlekamp [4] in the analysis of a special class of convolutional codes and
thoroughly studied in [14].

5 Concluding Remarks

We analyzed a model for creating order in sequence spaces in which in each time
unit two or more bits arrive at an organizer who then has to choose one bit for
output. The case, where two bits are produced by symmetric sources is quite
well understood.

Several generalizations are possible. In the s–user model (s ≥ 3) also the case
of a memory device with maximum size M may be considered. The analysis
here is much more difficult, since now the transition matrices become more
complicated, e. g., a reflection argument in order to obtain the transition matrix
from the power of the matrix of an elementary random walk is no longer possible.

For the infinite–memory case an open problem connected to the model in
which the organizer has to put out more than one bit per time unit has already
been stated at the end of Section 3.

One might also consider nonidentical sources. Even for s = 2 sources produc-
ing a 1 with probalities p and q, respectively, this seems to be quite hard. For
the case that every incoming bit can be stored one might ask for a condition on
the probabilities p and q to assure the existence of E0.
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Abschied

Alexander Ahlswede

Es füllten mich die Träume
wie immer mit altem Schwank,

im Schatten hoher Bäume
nahm ich den Zaubertrank.

Und nun trat plötzlich jenes
Los in mein stöberndes Licht:
zuviel erbittert Geschehenes,
und Hoffnung gibt es nicht.

Doch tragen die Schatten noch Bilder
vom geliebten Vater dahin,

und meine Seele wird milder,
gab er meiner Liebe doch Sinn.



Rudi

Beatrix Ahlswede Loghin

My name is Beatrix Ahlswede Loghin. I was married to Rudi Ahlswede from

1970 until 1984. Rudi and I are the parents of a son, Alexander Ahlswede.

Rudis death was sudden. There was no warning, no time to consider, to right

wrongs, to express love and thanks. He left us quickly and undramatically. We

have come together here today to reclaim a moment of closeness with him which

death snatched away. Through the power of our remembrance, we evoke Rudi

back into our world for this brief moment. Or, to quote T.S. Eliot : “History is

now and England, with the drawing of this love, and the voice of this calling”.

Preparing this obituary I found myself pondering the question, again and

again: how to go about this? A human being is so complex. Of all the myriad

possibilities, moments, experiences, selves, of which we consist, which ones do

we choose to share? What does one say? Isn’t anything that we say a reduction,

a limiting of this particular human beings complexity? Is not our life a great

work of algebra, in which we ponder the great X, the mystery of our lives? And

so I realized that I cannot write about Rudi, because I dont know “Rudi”. Even

after all these years of experience with him, living with him, being in a family

with him, I dont really know Rudi. All I know is my Rudi, my experience of

him.

The Canadian writer, Margaret Atwood, gave this advice to young writers:

“Say what is yours to tell”. That is all we can do, but also all we need to do:

Say what is ours to tell.

“I come to bury Caesar, not to praise him”. No sooner are these words spo-

ken, than Marc Antony of course begins to do just that praise Caesar, in Shake-

speares historical drama. Nevertheless, I pondered the distinction. How does one

speak of the dead? If we praise, we end up speaking only of the “nice”, “pleas-

ant” attributes. A kind of “Rudi Ahlswede lite” version. Those of us who spent

time with Rudi know that this was not his way. Rudis interaction with life was

passionate. He loved “not wisely, but too well”. He was not given to strategic

behavior, even though it would perhaps have been wiser at times. On the other

hand, the dead are defenceless, they relinquish to us the power of definition, for

we are still alive to tell the tale. Looking into my heart, I asked myself, “What

is it really that you want to tell?” The answer that I found was this: I want to

honor Rudis life here, I want to honor the complexity of his being. I want to

acknowledge the difference Rudi made in my life.

But what does it mean to acknowledge someone? The Oxford dictionary states

that to acknowledge means to take something which has been previously known

to us and which we now feel bound to lay open or make public. It means to rec-

ognize a particular quality or relationship which we forgot or did not consciously

see. And it means to own with gratitude.
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What did I know then, and wish to lay open now? Which qualities did I forget

or not consciously see? What can I own with gratitude? Of the rich tapestry of

Rudis life, where do I begin to acknowledge? We cannot remember the entire

sequence of life. We remember moments, special moments which - for some reason

- stayed in our memory. So this is what I really want - to share with you some

of these moments.

Thinking of Rudi, an image of a great mountain range comes to my mind, with

invincible summits, terrifying plunges and depths, and a smattering of meadows

in between. This image has been the defining core of my relationship with Rudi,

beginning with our first meeting in the summer of 1967 in Columbus, Ohio. I

was 18 years old and had just begun my freshman year at Ohio State University.

Rudi was 29 years old and starting his first job in the US as an assistant professor

in the Department of Mathematics.

At this time explosions were rocking the social and political fabric of Amer-

ican society. Afro-Americans, Latinos, Asian Americans and other groups were

claiming their rightful place in American society, and protest against the Viet-

nam War was flaming up everywhere, even in politically conservative Ohio. I

frequented a bar known as Larrys in Columbus, on High Street, refuge to those

who considered themselves left-wing, or at least to the political left of the main-

stream. In this bar, classical music, jazz and soul music was played, people of

different races and nationalities congregated in cheerful bawdiness, and of course

chess was played.

A mutual friend at Larrys Bar introduced us, and between long silences, in

which he scrutinized his chess partners moves, Rudi told me a little about him-

self, his fascination with his research, information theory, and the discoveries he

was making about life in the United States. The more I became embroiled in

the political demonstrations against the Vietnam War, the more Rudi became

interesting for me. My fellow demonstrators and I quoted Ho Chi Minh, Mao

Tse Tung and Marx, but Rudi had actually read some of Karl Marxs writings,

and he was able to put these writings into a philosophical context, showing the

evolution of Hegels and Feuerbachs ideas. The great breadth of his knowledge

left me stunned. I began to pay closer attention to Rudi. Not only had he read

philosophy, but also literature, finding his own favourite writers and poets. In a

conversation, Rudi would suddenly, just at the right moment, quote Schiller or

Gottfried Benn, Goethe, Shakespeare, Thomas Wolfe or Nietzsche.

I was amazed, for he refuted all my conceptions of “typical” mathematicians.

He told me more about himself. His parents owned a large farm in northern

Germany. Born as the second son, he realized early in life that, much as he love

the land with its wide open spaces, hills and cliffs and lush forests, he would

have to leave it, as the farm would not be able to support two families. This

realization was painful, tinged with bitterness. It forced him, at a very early age,

to learn to create his own future. “God bless the child thats got his own”, is a

line from a Billie Holliday song. Rudi was such a blessed child - he had his own.

He found his new world at school - his home became the world of books, the

world of learning. And his aptitude in mathematics became apparent. At the
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age of ten he left his parents home and lived with another family in the nearby

larger town, where he could attend the Gymnasium, the secondary school which

would prepare him for a university education. Later, at Gymnasium, he often

felt excluded because of his background as a farmers child. Some of his fellow

students let him feel, very clearly, that he was lacking in social graces, that he

came from an inferior social background. I think he never quite got over the pain

of this discrimination. Learning became his passion. And this path led him from

his humble elementary school in Dielmissen to the greatest universities in the

world, to membership in the Russian Academy of Science. He had a fire in his

mind, and this made conversations with him scintillating. This was the terrain

where our minds met, and where I fell in love.

Many evenings, watching him sit in the turmoil of Larrys bar, he exuded a

quality of tranquillity. He was above the fray, either focused on his chess game,

or “in communion” with his own thoughts, which he would occasionally add to

the paper lying before him. He clearly had something which very few others in

the room had: a world of his own. He seemed incredibly strong and rooted in

himself. Occasionally he would sit up, take notice of the life teeming around him,

and then return again to this other, inner space.

This fascination with the world of mathematics became particularly evident

one evening in the Spring of 1970. Richard Nixon had just announced the inva-

sion of Cambodia. At universities around the country, massive strikes as a form

of resistance took place. Soon the campus at Ohio State became a small battle-

ground. Tanks rolled through the streets, students erected barricades and threw

bricks and Molotov cocktails. Helicopters flew overhead, spraying the demon-

strators with tear gas. Rudi and I sought refuge in the McDonalds on High

Street, where we found Rudis colleague, Bogdan Baishanski, also seeking shel-

ter. Demonstrators ran into the McDonalds, followed by night-stick brandishing

police. We fled back onto the streets. In front of me, I saw Rudi and Bogdan

running from the police, jumping over barricades, clearly illuminated by the

searchlights of the helicopters flying over our heads, throwing more tear gas in

our direction. Stumbling blindedly behind them, I noticed that, as they ran,

they were deep in conversation - about the (at that time still unsolved) four

color conjecture!

A short time later, Rudi had been stopped in the middle of the night while

driving home, for making a right turn without a full stop. Because of an out-

standing traffic violation, he was arrested and led off in handcuffs. I scrambled

to find two hundred dollars with which to bail him out. When I arrived at the

jail the next morning, Rudi emerged smiling. He told me about the “interest-

ing” evening he had spent, stuffed in a holding cell with his fellow inmates. And,

he told me proudly, he had gotten a new idea in jail which led to a significant

break-through in the paper he was currently writing!

Years later I read in book written by someone who was researching happiness,

that the happiest people are those who have something in their lives which so

absorbs them that it permits them to completely forget themselves and the

world around them. This process of forgetting oneself is called flow. I think
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Rudi spent much of his life in this state. But of course this obliviousness to his

surroundings left him vulnerable. Many times a date began with long searches

in the parking lots around the Mathematics Department - Rudi simply could

not remember where he had left the car that morning. Between us this was of

course often a cause of exasperation on my part. One day, in a store, I noticed

two young salesgirls giggling about Rudi, who was lost in space, smoking, and

running his hands through his hair. A fierce determination to protect him in this

vulnerability was born in me at that moment.

In this way, Rudi was like no one I had ever met. Years later, after we had

moved to Germany, listening to my son and his friends recount funny anecdotes

about Rudi, I realized that they were fascinated by precisely his way of being

different from others, his eccentricity, to use another word. The word eccentric

comes from the Greek words ek kentros, meaning not having the same center.

Years later, after we had married, I stood in a market square with Rudi in Sicily,

in Syracusa, the town where the great Archimedes had lived. He was killed when

a Roman soldier accosted him in the market place, where he sat, drawing designs

in the sand. Awed by Archimedes fame, the soldier asked if there was anything

he could do for him. Archimedes is said to have answered: “Dont disturb my

circles”. This story impressed me greatly, for I was sure that Rudi would have

given the same answer, and I recognized that he was a kindred spirit.

Shortly after we met, Rudi returned to Germany for a few weeks. He wrote to

me that he was reading a book by Giordano Bruno, entitled “Heroic Passions”.

It seemed so fitting. Years later, when we lived in Rome, we spent many an hour

at the Campo dei Fiori, where Bruno was burned at the stake for refusing to

renounce his scientific ideas. I had no doubt that Rudi would have ended there

too had he lived in this time. Rudi was never politically correct. He said what he

thought and accepted the consequences. Rudi was incapable of inauthenticity.

There was a wild, almost savage need in him to stay true to himself, a need

which caused him much conflict and grief. But suppressing his beliefs in order to

attain some goal was beyond him. He paid a huge price in his life for that and,

at the same time, this is what made him so strong.

Rudi was the freest person I have ever met.

I saw Rudi for the last time on his last birthday, September 15, 2010. We

spent the evening together, drinking a bottle of wine and talking of our son, of

mutual old friends. The years passed by before our inner eyes. He was, as always,

excited about life, looking forward to the new research he had embarked upon,

and which he told me about, as always, with sparkling eyes. But something was

different about this evening. After he finished talking, he asked me about myself.

Amazed, I found myself telling Rudi about my life, my plans. He listened with

a care and an attention that was new. We sat, side by side, companions of a

shared life. I went home elated, feeling blessed and rich from this evening with

Rudi.

Standing at his coffin in the cemetery, looking at his dead body, I realized

there was only one word left to say to him: Thank you.
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Rudi Ahlswede bin ich zum letzten Mal begegnet, als er am 30. Januar 2009 in

Erlangen einen Festvortrag zur Nachfeier meines 80. Geburtstages hielt. Math-

ematiker wie Nichtmathematiker erlebten da einen Fürsten seines Fachs, der

sein gewaltiges Souveränitätsgebiet begeistert und begeisternd durchstürmte und

Ideen zu dessen fernerer Durchdringung und Ausweitung in großen Horizonten

entwarf.

Ich möchte noch kurz ein wenig über die “Anfangsbedingungen” berichten,

die Rudi bei seinem 1966 mit der Promotion endenden Stochastik-Studium

in Göttingen vorfand. Das Fach Stochastik, damals Mathematische Statistik

genannt, war nach Kriegsende in West-Deutschland m.W. nur durch die

Göttinger Dozentur von Hans Münzner (1906 - 1997) vertreten und mußte somit

praktisch neu aufgebaut werden. Das begann mit der Übernahme neugeschaf-

fener Lehrstühle durch Leopold Schmetterer (1919 - 2004) in Hamburg und

Hans Richter (1912 - 1978) in München, die beide ursprünglich Zahlentheo-

retiker waren und sich in ihr neues Fach einarbeiteten. Dieser “1. Welle” fol-

gte eine zweite, in der Jungmathematiker, wie Klaus Krickeberg (* 1929) und

ich (* 1928), die in ihrem ursprüng-lichen Arbeitsgebiet bereits eine gewisse

Nachbarschaft zur Stochastik vorweisen konnten. Bei mir war das durch Ar-

beiten zur Ergoden- und Markov-Theorie gegeben. Als ich 1958 in Göttingen das

Münznersche Klein-Institut im Keller des großen Mathematischen Instituts an

der Bunsenstraße übernahm, war ich für meine neue Aufgabe eigentlich zu jung

und unerfahren. Ein Student, der damals zu meiner kleinen Gruppe stieß, konnte

nicht erwarten, von einem souveränen, erfahrenen Ordinarius umfassenden Rat

zu erhalten: ich hatte ihm damals nur einen Schritt der Einarbeitung in neue

Themengebiete voraus. Meinen Zugang zur Shannon’schen Informationstheorie,

auf die ich Rudi und andere “anzusetzen” versuchte, hatte ich über die Ergoden-

theorie gefunden, die mit der Einführung der Entropie-Invarianten (1959) durch

A.N. Kolmogorov (1903 - 1987) und Y. Sinai (* 1937) einen mich unmittelbar

betreffenden Bezug zur Informationstheorie erhalten hatte, der in einem Uspehi-

Artikel (1956) von A.Y. Chintchine (1894 - 1995) schon vorher systematisch aus-

gebreitet worden war; da diese Arbeit in Ostdeutschland sogleich ins Deutsche

übersetzt worden war, hatten wir hier sprachlich sofort Zugang. Wesentlichere

Impulse für uns ergaben sich allerdings aus dem Ergebnisbericht Coding The-

orems of Information Theory (1961) von Jacob Wolfowitz (1910 - 1981). Nach

seiner Promotion kam es zu intensiven Kontakten mit J. Wolfowitz, mit dem

Rudi später mehere Arbeiten gemeinsam verfaßte, und dem er schließlich einen

groß-artigen Nachruf widmete.
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Da ich Studenten wie R. Ahlswede und V. Strassen nur geringfügig “voraus”

war, hatte ich später das beglückendste Erlebnis, das einem akademischen Lehrer

zuteil werden kann: von seinen “Schülern” überholt zu werden und von ihnen

lernen zu können.

Auch nach der Erlanger Begegnung Anfang 2009 kam es immer wieder zu

Telefonkontakten zwischen Rudi und mir. Bei einem der letzten (wohl 2010)

schilderte ich ihm meine Erwägungen über die Frage, wie man sich als Mathe-

matiker zu dem unvermeidlichen fachlichen Leistungsabfall - wie allmählich auch

immer - nach der Emeritierung stellen solle. Ich hatte mich dafür entschieden,

dann (bei mir nach 1993) nicht mehr forschungsaktiv zu sein, sondern mich

anderen Interessengebieten zuzuwenden, wenn auch naturgemäß auf nunmehr

amateurhaftem Niveau. Als ich ihn um seine Meinung hierzu fragte, kam die

Antwort sogleich und in aller Entschiedenheit: seine Devise sei

Stirb in den Stiefeln!

(Die in your boots!).

Bei seinem Naturell kam nur in Frage, weiterzuarbeiten, so intensiv und so lange

es nur angehen mochte. Rudi hatte noch eine Überfülle von Ideen und Prob-

lemen. In den Stiefeln, die ihm angewachsen waren, wäre er noch sehr lange

weitermarschiert. So einen wie ihn vergißt man nie.
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Rudolf Ahlswede, a mathematician, one of the truly great personalities of In-

formation Theory, passed away on December 18, 2010 in his house in Polle,

Germany, due to a heart attack. He is survived by his son Alexander. His un-

timely death, when he was still very actively engaged in research and was full

with new ideas, is an irrecoverable loss for the IT community.

Ahlswede was born on September 15, 1938 in Dielmissen, Germany. He studied

Mathematics, Philosophy and Physics in Göttingen, Germany, taking courses,

among others, of the great mathematicians Carl Ludwig Siegel and Kurt Reide-

meister. His interest in Information Theory was aroused by his advisor Konrad

Jacobs, of whom many students became leading scientists in Probability Theory

and related fields.

In 1967 Ahlswede moved to the US and became Assistant Professor, later

Full Professor at Ohio State University, Columbus. His cooperation during 1967

- 1971 with J. Wolfowitz, the renowned statistician and information theorist,

contributed to his scientific development. Their joint works included two papers

on arbitrarily varying channels (AVCs), a subject to which Ahlswede repeatedly

returned later.

His first seminal result was, however, the coding theorem for the (discrete

memoryless) multiple-access channel (MAC). Following the lead of Shannons

Two-Way Channel paper, this was one of the key results originating Multiuser

Information Theory (others were those of T. Cover on broadcast channels and

of D. Slepian and J. Wolf on separate coding of correlated sources), and it was

soon followed by an extension to two-output MACs, requiring new ideas. Also

afterwards, Ahlswede continued to be a major contributor to this research di-

rection, in collaboration with J. Körner (visiting in Columbus in 1974) and later

also with other members of the Information Theory group in Budapest, Hun-

gary. In addition to producing joint papers enriching the field with new results

� This obituary first appeared in IEEE Information Theory Society Newsletter, Vol.
61, No. 1, 7-8 2011.
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and techniques, this collaboration also contributed to the Csiszár- Körner book

where several ideas are acknowledged to be due to Ahlswede or have emerged in

discussions with him.

In 1975 Ahlswede returned to Germany, accepting an offer from Universität

Bielefeld, a newly established “research university” with low teaching obliga-

tions. He was Professor of Mathematics there until 2003, and Professor Emeri-

tus from 2003 to 2010. For several years he devoted much effort to building up

the Applied Mathematics Division, which at his initiative included Theoretical

Computer Science, Combinatorics, Information Theory, and Statistical Physics.

These administrative duties did not affect his research activity. He was able to

develop a strong research group working with him, including visitors he attracted

as a leading scientist, and good students he attracted as an excellent teacher.

In the subsequent years Ahlswede was heading many highly fruitful research

projects, several of them regularly extended even after his retirement which is

quite exceptional in Germany. The large-scale interdisciplinary project “General

Theory of Information Transfer” (Center of Interdisciplinary Research, 2001 -

2004) deserves special mentioning. It enabled him to pursue very productive joint

research with many guests and to organize several conferences. An impressive

collection of new scientific results obtained within this project was published in

the book “General Theory of Information Transfer and Combinatorics” (Lecture

Notes in Computer Science, Springer, 2006).

During his research career Ahlswede received numerous awards and honours.

He was recipient of the Shannon Award of the IEEE IT Society in 2006, and pre-

viously twice of the Paper Award of the IT Society (see below). He was member

of the European Academy of Sciences, recipient of the 1998/99 Humboldt-Japan

Society Senior Scientist Award, and he received honorary doctorate of the Rus-

sian Academy of Sciences in 2001. He was also honored by a volume of 50 articles

on the occasion of his 60th birthday (Numbers, Information and Complexity,

Kluwer, 2000.)

Ahlswedes research interests included also other fields of Applied and Pure

Mathematics, such as Complexity Theory, Search Theory (his book “Search

Problems” with I. Wegener is a classic), Combinatorics, and Number Theory.

Many problems in these disciplines that aroused Ahlswedes interest had connec-

tions with Information Theory, and shedding light on the interplay of IT with

other fields was an important goal for him. He was likely the first to deeply

understand the combinatorial nature of many IT problems, and to use tools of

Combinatorics to solve them.

In the tradition of giants as Shannon and Kolmogorov, Ahlswede was fas-

cinated with Information Theory for its mathematical beauty rather than its

practical value (of course, not underestimating the latter). In the same spirit, he

was not less interested in problems of other fields which he found mathematically

fascinating. This is not the right place to discuss his (substantial) results not re-

lated to IT. We just mention the celebrated Ahlswede-Daykin “Four Functions

Theorem” having many applications in Statistical Physics and in Graph Theory,

and the famous Ahlswede-Khachatrian “Complete Intersection Theorem”. The
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latter provided the final solution of a problem of Paul Erdős, which had been

very long-standing even though Erdős offered $500 – for the solution (Ahlswede

and Khachatrian collected). For more on this, and also on combinatorial re-

sults of information theoretic interest, see his book “Lectures on Advances in

Combinatorics” with V. Blinovsky (Springer, 2008).

Even within strict sense Information Theory, Ahlswedes contributions are too

wide-ranging for individual mentioning, they extend as far as the formerly exotic

but now highly popular field of Quantum Information Theory. Still, many of his

main results are one of the following two kinds.

On the one hand, Ahlswede found great satisfaction in solving hard mathe-

matical problems. Apparently, this is why he returned again and again to AVCs,

proving hard results on a variety of models. By his most famous AVC theorem,

the (average error) capacity of an AVC either equals its random code capacity

or zero. Remarkably, this needed no hard math at all, “only” a bright idea, the

so-called elimination technique (a kind of derandomization). He was particularly

proud of his solution of the AVC version of the Gelfand-Pinsker problem about

channels with non-causal channel state information at the sender. To this, the

elimination technique had to be combined with really hard math. Another fa-

mous hard problem he solved was the “zero excess rate” case of the Multiple

Descriptions Problem (the general case is still unsolved).

On the other hand, Ahlswede was eager to look for brand new or at least little

studied models, and was also pleased to join forces with coauthors suggesting

work on such models. His most frequently cited result (with Cai, Li and Yeung),

the Min- Cut-Max-Flow Theorem for communication networks with one source

and any number of sinks, belongs to this category. So do also his joint results with

Csiszár on hypothesis testing with communication constraints, and with Dueck

on identification capacity, receiving the Best Paper Award of the IT Society

in 1988 and 1990. Later on, Ahlswede has significantly broadened the scope of

the theory of identification, for example to quantum channels (with Winter).

Further, a two-part joint paper with Csiszár provides the first systematic study

of the concept of common randomness, both secret and non-secret, relevant,

among others, for secrecy problems and for identification capacity. The new kind

of problems studied in these papers support Ahlswedes philosophical view that

the real subject of information theory should be the broad field of “information

transfer”, which is currently unchartered and only some of its distinct areas (such

as Shannons theory of information transmission and the Ahlswede-Dueck theory

of identification) are in view. Alas, Rudi is no longer with us, and extending

information theory to cover such a wide scope of yet unknown dimensions will

be the task of the new generation.
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We, his friends and colleagues at the Department of Mathematics at the Univer-

sity of Bielefeld are terribly saddened to share the news that Professor Rudolf

Ahlswede passed away in the early hours of Saturday morning 18th December,

2010.

Rudolf Ahlswede had after an excellent education in Mathematics, Physics,

and Philosophy almost entirely at the University of Göttingen and a few years

as an Assistant in Göttingen and Erlangen received a strong push towards re-

search, when he moved to the US, taught there at the Ohio State University in

Columbus and greatly profited from joint work in Information Theory with

the distinguished statistician Jacob Wolfowitz at Cornell and the University of

Illinois during the years 1967-1971 (see the obituary [A82]).

The promotion to full professor in Mathematics followed in 1972, but only

after Rudolf Ahlswede convinced his faculty by his work in Classical Mathemat-

ics. Information Theory was not yet considered to be a part of it. A problem

in p-adic analysis by K. Mahler found its solution in [AB75] and makes now a

paragraph in his book [M81].1

For a short time concentrating on Pure Mathematics and quitting Information

Theory was considered. But then came strong responses to multi-way channels

[A71] and it became clear that Information Theory would always remain a fa-

vorite subject – it looked more interesting to Rudolf Ahlswede than many areas

of Classical Mathematics. An account of this period is given in the books [W78],

[CK81], and [CT06]. However, several hard problems in Multi-user Information

Theory led Rudolf Ahlswede to Combinatorics, which became the main sub-

ject in his second research stage starting in 1977. Writing joint papers, highly

emphasized in the US, helped Rudolf Ahlswede to establish a worldwide network

of collaborators. Finally, an additional fortunate development was an offer from

the Universität Bielefeld in 1975, which for many years was the only research

university in Germany with low teaching obligations, implying the possibility

1 Ingo Althöfer heard this story from Rudolf Ahlswede in a version with more per-
sonal flavour: Rudolf Ahlswede was in the Math department of Ohio State, but his
Mathematics (= Information Theory) was not fully accepted by some traditionalists
in the department. Rudi decided to ask them: “Who is the strongest mathematician
in the department?” Answer: “Kurt Mahler.” So, he stepped in Mahler’s office and
asked him: “Please, give me an interesting open problem of yours.” So did Mahler
(1903-1988), and Ahlswede solved it within a few weeks. After that demonstration
there were no problems for him to get full Professorship.
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to teach only every second year. In a tour de force within half a year Rudolf

Ahlswede shaped a main part of the Applied Mathematics Division with Pro-

fessorships in Combinatorics, Complexity Theory (first position in Computer

Science at the university), and Statistical Mechanics.

Among his students in those years were Ingo Althöfer (Habilitationspreis der

Westfälisch-Lippischen Universitätsgesellschaft 1992), Ning Cai (IEEE Best Pa-

per Award 2005), Gunter Dueck (IEEE Best Paper Award 1990; Wirtschafts-

buchpreis der Financial Times Deutschland 2006), Ingo Wegener (Konrad-Zuse-

Medaille 2006), Andreas Winter (Philip Leverhulme Prize 2008) and Zhen Zhang.

In the second stage 1977-87 the AD-inequality was discovered, made it into many

text books like [B86], [A87], [AS92], [E97], and found many generalizations and

number theoretical implications [AB08].

We cite from the book [B86] $ 19 The Four Function Theorem:

“At the first glance the FFT looks too general to be true and, if true, it seems
too vague to be of much use. In fact, exactly the opposite is true: the Four
Function Theorem (FFT) of Ahlswede and Daykin is a theorem from “the book”.
It is beautifully simple and goes to the heart of the matter. Having proved it, we
can sit back and enjoy its power enabling us to deduce a wealth of interesting
results. ”

Combinatorics became central in the whole faculty, when the DFG-Sonderfor-

schungsbereich 343 “Diskrete Strukturen in der Mathematik” was established in

1989 and lasted till 2000. The highlight of that third stage is among solutions of

several number theoretical and combinatorial problems of P. Erdős [A01]. The

most famous is the solution of the 4m-Conjecture from 1938 of Erdős/Ko/Rado

(see [E97], [CG98]), one of the oldest problems in combinatorial extremal theory

and an answer to a question of Erdős (1962) in combinatorial number theory

“What is the maximal cardinality of a set of numbers smaller than n with no

k + 1 of its members pairwise relatively prime?”.

As a model most innovative seems to be in that stage Creating Order [AYZ90],

which together with the Complete Intersection Theorem demonstrates two essen-

tial abilities, namely to shape new models relevant in science and/or technology

and solving difficult problems in Mathematics.

In 1988 (with Imre Csiszár) and in 1990 (with Gunter Dueck) Rudolf Ahlswede

received the Best Paper Award of the IEEE Information Theory Society. He re-

ceived the Claude Elwood Shannon Award 2006 of the IEEE information Theory

Society for outstanding achievements in the area of the information theory (see

his Shannon Lecture [A06]).

A certain fertility caused by the tension between these two activities goes like

a thread through Rudolf Ahlswede’s work, documented in 235 published papers

in roughly 4 stages from 1967-2010.

The last stage 1997-2010 was outshined by Network Information Flow

[ACLY00] (see also [FS07a], [FS07b], [K]) and GTIT-updated [A08], which to-

gether with Creating Order [AYZ90] was linked with the goal to go from Search

Problems to a Theory of Search.
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The seminal paper [ACLY00] founded a new research direction in the year

2000, with many applications especially for the internet. It has been identified

by Essential Science IndicatorsSM as one of the most cited papers in the research

area of “NETWORK INFORMATION FLOW”. Research into network coding

is growing fast, and Microsoft, IBM and other companies have research teams

who are researching this new field. The most known application is the Avalanche

program of Microsoft.

Rudolf Ahlswede had just started a new research project about quantum

repeaters to bring his knowledge about physics and information theory together.

Unfortunately he cannot work for the project anymore.

We lost a great scientist and a good friend. He will be missed by his colleagues

and friends.
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I might not sound original if I say that in life there are people whose demise

leaves behind an irreplaceable emptiness. Trying to explain it in more details,

the most painful part of this feeling is not to be able to imagine that now,

when you dial that phone number, there is not anymore the familiar gruffish

voice. And if you think, at first, that he is probably just away, mechanically you

start considering the conferences occurring right now, and remember the last

conversation - “Was he going to go somewhere last time?” You remember that

he told: “I have been traveling a lot lately, but now I am at home, in Bielefeld,

and I enjoyed the coming back home, to the German autumn, where the rain

continuously drizzles, paints fade day by day, and with pleasure I drink the beer

and look out of the window at the familiar street and think that Christmas is

coming soon.”

We have many photos at home with different scientific actions or simply

friendly meetings, on the photos he is frequently with my father. The matter

is that Rudi’s scientific interests were closely connected to the researchs which

were conducted at our institute at that time. He found here the right partners.

He invited many researchers to Bielefeld for collaboration. Rudi always tried to

make these trips not only interesting and productive from the scientific point

of view. He organized meetings and conferences where it was possible to get

acquainted with people, to exchange experiences. I remember that when I was a

visitor and lived at the ZiF, at that time in the same place there were many scien-

tists from Russia and from other countries, Hungary, Denmark, Italy. Ahlswede

organized to meet once a week in an informal atmosphere in a guest lounge of

the ZiF. But he also tried to make people acquainted with Germany, with the

special charm of other places around Bielefeld which, can go unnoticed by the

star-oriented Michelin’s guide fans, but whose warmth foreign scientists could

discover thanks to the trips with Rudi. After all he was born near Bielefeld. So

we got acquainted on these trips with the German Renaissance, with cozy small

towns, with history. For example, I remember the trip which began with visit-

ing the possession of the visionary baron Münchhausen very popular in Russia

because the baron served in Russia and the book of adventures was translated

and published in Russia and adapted for children.

The Influence of Ahlswede to science and life of many mathematicians has

deep and long-live consequences. He was the type of person who can change a

life and deliver harmony in mathematical theories. His works is the genesis of

Information Theory and Combinatorics which was very close to the main stream
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of research in the Institute of Information Transmission Problems at that time.

Close cooperation with the Institute was one of the important activities of Rudi.

He was recognized as Honorable Professor of the Institute, it was his first such

award as he mentioned later. He appreciated the quality of scientific work in

the Institute and many researchers from the Institute were frequent guests in

Bielefeld. It was also the time when Russia became an open country and many

people had their first experience to travel abroad. He also visited Russia many

times. When Rudi was in Moscow I would invite him to go to the Bol’shoy

theatre. Unfortunately during his stay there where no ballet in Bol’shoy, only

operas. We went to see “Eugenii Onegin”, by Chai’kovsky, it was in Russian.

He listened the opera from the beginning to the end very enthusiastically and

at the end Rudi said “Pushkin (the author of the same name poem) become my

dream.”

In a very popular German series, called “Crime scene” (in German “Tatort”),

one of the episodes is “Bielefelder plot” (“Bielefelder Verschwörung”). The main

point is that in the course of an investigation detectives face a hypothesis that

the town of Bielefeld, indicated in all Germany maps, actually doesn’t exist -

possibly it is the thought-up strategic object and on this place anything isn’t

present, except for a field or the wood.

The inquisitive investigator as usual says “I don’t trust, there can’t be it.” In-

tuition of the skilled police officer can’t deceive, the city exist. And after looking

for proofs, the investigator naturally finds them. And so if mathematicians from

different places in the world are asked whether they know a city in Germany

under the name of Bielefeld, each of them will tell: “Oh yes, it is that place

where Ahlswede worked.”
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Professor Dr. Rudolf Ahlswede. Rudi Ahlswede: this name will always remind

us of a man of great intellectual prowess, totally confident in his own strengths,

but ... also one who can be pretty mischievous!

My family met up with Rudis family around 1976 when Rudi was working

with my father David Daykin. They clearly had good synergy, or chemistry as

Rudi called it, both mathematically and in their personalities, along with much

mutual respect. My father learnt a great deal from Rudi, as did most people who

entered the circle of his aura and knowledge. They produced the celebrated 1978

“Four Functions” theorem, and I feel so proud that it carries the family name

alongside that of Ahlswede. Funnily enough, these kindred spirits also had brief

spells in jail: religious reasons for dad but irreligious for Rudi! Yes, they both

liked to speak their mind, their convictions. And how lucky we are that Rudi did

like to express himself and share his novel and ground-breaking ideas spanning:

information theory, combinatorics, complexity and classical mathematics. He was

guided not only by scientific truth, but also by aesthetic beauty. Even more, Rudi

could talk for hours very knowledgeably on such topics as history, philosophy,

literature and world affairs images of Renaissance man!

Life plays strange movies Rudi said to me. Well we were in one of those

movies even when he said those words. It was 2010, and my father had died

in the summer in true friendship Rudi came over to England to attend the

memorial event at Reading University in the November. It was amazing for me

to have contact with him again after so many years naturally he was very

entertaining company, but also tremendously comforting regarding my recent

loss. During those days I was also really fortunate to have Rudi advise me on

my own research. How could we know at that time that we were actors in a

movie that was about to end just 6 weeks later with the loss of Rudi? I feel truly

honoured that I was present with my sons Paris and Alexander at the last talks

given by Rudi, hosted by Reading University, Kings College and Queen Mary

University of London; generous as ever with his acquired life experience, he also

shared his company and wisdom with my sons, as he had done in previous years

with my mother Valerie and sister Babs. Great memories - including us picking

giant wild mushrooms in the forests of Germany with the Ahlswedes.

Coming to the Zif, University of Bielefeld, for Rudis memorial occasion in

July 2011 was really enjoyable, especially seeing the ever-kind Trixie again, but

it was also very nostalgic of course. What a delight to see how the young boy

Sascha had grown into such a likeness of his dad no wonder Rudi had talked so
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fondly of him during our days together in that English autumn. Thank you Rudi

for how you touched the lives of our family, for what you gave to the scientific

community world-wide, and most importantly your own family too. You have

left a rich legacy.

Yes, as we go through life we meet many people on the way and some leave

a deeper impression than others: Rudis imprint on us all was permanent, so

although he has gone ... he is still here. As is dad too of course. Indeed, it is

quite poetic that my last joint paper with my father appears in the memorial

volume in honour of the renowned Rudi Ahlswede.
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We would like here to summarize, in chronological order, the long-standing happy

connection of Professor Rudolf Ahlswede to a Japanese research group, especially

Japanese information theorists.

The first contact with Japanese researchers took place at Grignano, in 1979;

Te Sun and Kingo first met there Rudi on the occasion of IEEE ISIT. This is our

first experience to visit outside Japan and to join an international symposium.

Subsequently, on response to Rudi’s kind invitation, Te Sun visited Bielefeld for

three months in 1980.

In 1984, Rudi visited Japan, and delivered several invited talks at the 7th

SITA (=Symposium on Information Theory and its Applications), Kinugawa,

and at University of Tokyo, a plenary talk : “Strategies for trap-door channels”

by R. Ahlswede and A. Kaspi, and “The rate-distorsion region for multiple-

descriptions without excess rate” by R. Ahlswede, respectively. In particular,

the talk on the trapdoor channel has greatly interested Kingo and motivated

him to enthusiastically study the permuting relay channel. As a result: Kingo

published a paper related to the trapdoor channel, “Combinatorial structure

and capacity of the permuting relay channel,” IEEE Trans. on Inform. The-
ory, IT-33, No.6, pp.813-826, 1987. On the other hand, Te Sun and Shun-ichi

Amari were greatly inspired by the talk on multiterminal hypothesis testing and

multiterminal parameter estimation, which has occasioned for them to publish

a series of papers on this topics in IEEE Trans. on Inform. Theory, 1987, 1989,

1995, 1998, etc.

In 1986, Te Sun and Kingo visited Germany to attend Oberwolfach Workshop

on Information Theory that Rudi organized and invited us to. On the occasion of

IEEE ISIT, Kobe in 1988, Rudi visited Japan, and joined a workshop at Hakone

that we organized.

After IEEE IT Cornell Workshop in 1989, Te Sun, Kingo and Suguru Ari-

moto visited Germany to attend Oberwolfach Workshop on Information Theory

which Rudi organized. Meanwhile, Te Sun visited Bielefeld University as a vis-

iting fellow for joint research with Rudi between 1994 and 1995, and Kingo

was staying at Bielefeld as a visiting fellow for joint research with him between

1993 to 1995. These collaborations led to publication of a joint paper, “Universal

coding of integers and unbounded search trees,”IEEE Trans. on Inform. Theory,
R.Ahlswede, T. S. Han and K.Kobayashi, Vol.43, No.2, March, pp.669-682,1997.
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It should be mentioned also that we made a remarkable success of a joint

program between Japan and Germany, from 1995.10.1 to 1997.9.30, under the

Japanese-German Cooperative Science Promotion Program “A mathematical

study on fundamental structures of information” (Japanese side: S.Arimoto,

T.S.Han, K.Kobayashi, etc.; German side: A.J.H.Vinck, R.Ahlswede, U.Tamm,

etc.). During that period, several researchers from Bielefeld University, Ulrich

Tamm, Ning Cai, Levon Khachatrian, etc., visited Japan, and exchanged re-

search ideas with Japanese researchers by having small workshops several times.

In this connection, we would like to remind you of the paragraph “A visit of Te

Sun Han for 6 months in Bielefeld in 1980 and of Kingo Kobayashi for two years

in the 90’s caused spreading of ideas and added to a flourishing school in Infor-

mation Theory in Japan,” which appeared in the preface of the book “Numbers,

Information and Complexity,” I. Althöfer, N. Cai, G. Dueck, L. Khachatrian, M.

S. Pinsker, A. Sárközy, I. Wegener and Z. Zhang ed., Kluwer, 2000.

From Nov. 1, 1998 to March 5, 1999, Rudi visited University of Electro-

Communications as a visiting scientist under the exchange program between

JSPS (= Japan Society for the Promotion of Science) and the Humboldt Foun-

dation, endowed with Japan Society Senior Scientist Award. In this opportunity,

we held a Memorial Workshop for the 50th Anniversary of the Shannon Theory,

SITA, Kofu, Japan, Jan. 22- 24, 1999. At this workshop, Rudi gave the special

talk: “Some of my ideas in information theory.”

On the other hand, Kingo, Hiroshi Nagaoka and Norihide Tokushige from

Japan visited Bielefeld University to attend the Opening Conference on “Gen-

eral Theory of Information Transfer,” in November, 2002. Moreover, Kingo and

Hiroshi stayed in Bielefeld, August, 2003, to attend the workshop on “Infor-

mation Theory and Some Friendly Neighbors - ein Wunschkonzert” on General

Theory of Information Transfer and Combinatorics. Just before this workshop,

we organized the Asia-Europe Workshop at Kamogawa Japan, followed by IEEE

ISIT Kobe, to welcome many European researchers to Japan.

Furthermore, Kingo, Hiroyoshi Morita and Hirosuke Yamamoto visited Biele-

feld University in April, 2004 to attend the workshop on General Theory of

Information Transfer and Combinatorics, and Kingo attended at a workshop

held on the occasion of Rudi’s 66th birthday, Sep. 2004. At IEEE ISIT Seatle,

June, 2006, Rudi won Shannon Award. In the same year, the seminal book,

General Theory of Information Transfer and Combinatorics, R. Ahlswede et al.

(Eds.), LNSC 4123, Springer, was published with the picture of the “trapdoor”

on the cover of the book.

Kingo visited Germany to attend Dagstuhl workshop on Search Methodologies

which Rudi organized in 2009, and also visited Bielefeld University in October

to attend the 2nd workshop on Search Methodologies, in 2010.

Rudi put great significance on the research of “Search”. He shed light on the

logical structures of searching problems by revealing the essential, common key

points underlying various kinds of search problems, and published the first book

on search from a mathematical viewpoint in 1979, translated into Russian in

1982, and into English in 1987.
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He chose “Search Problems” but not “The Theory of Searching” as the ti-

tle of the book with the intention to focus on the interdisciplinary character

of this study and to emphasize the recognition of the importance of this prob-

lem. After his great trail of multidimensional studies on (multiterminal, network

and quantum) information theory, discrete structures of mathematics, number

theory, etc., he came back to this theme of “searching” again, to organize two

workshops on “Search Methodologies” held at Dagstuhl and Bielefeld in his last

two years. It seems that he started his academic career with “search” and ended

with “search.”

At the end of the workshop, when Kingo asked Rudi if he is willing to organize

another workshop, he replied with a childlike smile, “No, Enough!” In retrospect,

was Rudi already feeling at that time a presentiment for the last sad accident?



From Information Theory to Extremal

Combinatorics: My Joint Works with Rudi
Ahlswede

Zhen Zhang

Communication Sciences Institute, Ming Hsieh Department of Electrical Engineering,
Viterbi School of Engineering, University of Southern California

zhzhang@usc.edu

Rudolf Ahlswede, a giant in the fields of combinatorics and information theory,

has left us for more than two years. I met Rudi for the first time in 1984 when

he visited Cornell University. I came to the University of Bielefeld in 1986 and

worked with Rudi for two years. After that I visited Rudi in Bielefeld several

times in the 1990s. Rudi and I have common interest in both extremal com-

binatorics and information theory(actually Rudi introduced me to the theory

of extremal combinatorics). During our long time collaborations, we published

many joint papers. Rudi’s unexpected death was an irrecoverable loss of the

fields of both combinatorics and information theory. This article is written in

memory of Rudi, in which I will recall some of our most important joint works.

1 Ahlswede-Zhang Identity

The Ahlswede-Zhang Identity was discovered in 1987 and published in 1990 (“An

identity in combinatorial extremal theory”, Adv. Math. 80 (1990), no. 2, 137151)

. This identity turns unexpectedly the famous LYM inequality into an identity.

Let

[n] = {1, 2, ..., n},
and Ωn be the family of all subsets of [n], and Φ be the empty set. Let Φ �= F ⊂
Ωn.

If A �⊆ B, ∀A, B ∈ F with A �= B, then F is called an antichain. For any

antichain F , the following inequality holds:∑
X∈F

1(
n
|X|

) ≤ 1.

This is called the LYM-inequality (Lubell, Yamamoto, Meshalkin) Many gener-

alizations of the LYM-inequality have been obtained. In particular, the LYM-

inequality is a direct consequence of the AZ identity.

Theorem 1. For every family F of non-empty subsets of Ω = {1, 2, . . . , n}∑
X∈2Ω

WF (X)

|X |
(

n
|X|

) = 1,
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where WF (X) = |
⋃

X⊃F∈F F |.

This equation is called the AZ-identity. Note that when F is an antichain this

equation becomes ∑
F∈F

1(
n
|F |

) +

∑
X �∈F

WF (X)

|X |
(

n
|X|

) = 1,

and as the second term on the left is non-negative, we obtain the LYM inequality.

The AZ identity has been generalized in several ways and was found to be a

powerful tool in extremal combinatorics.

2 Creating Order in Sequence Spaces

This series of works was done in 1987, too. At that time, I was helping Rudi

to guide one of his Ph.D. students. I proposed a problem as the Ph.D. research

topic for his student. The problem is the following: Let {Xn}∞n=0 be a stationary

random sequence(the simplest case is the i.i.d. sequence) with finite alphabet

X . Consider a finite state machine that operates as follows: An organizer who

picks one element at time n as the output Yn from a buffer of size m that

stores m elements of X before Xn is added to the buffer as the input to replace

the output removed. The output selection depends on the buffer content, the

knowledge of some of the previous output(memory of the past) and may also

depend on the future inputs(look ahead). This operation changes the order of

the random variables of the random input sequence to create a new random

output sequence. The problem is to find the output selection rules in such a way

that the entropy rate of the output sequence is minimized.

The problem seems very difficult and we were able to solve only one of the

simplest cases. When Rudi looked at the problem, he proposed to drop the ran-

domness of the input sequence and consider the cardinality of the set of all

possible output sequences instead of the entropy rate of the output. Then the

problem is to minimize the cardinality of the output space. This made the prob-

lem much easier and tackleable. In our joint paper titled “Creating Order in

Sequence Space with Simple Machines”, (Information and Computation, Vol.

89, No. 1, 47-94, November, 1990) by Rudi Ahlswede, Ye and myself, the deter-

ministic version of the problem was formulated and several cases were resolved.

Although there are some follow-up works, but just like Rudi mentioned in his

Shannon Lecture that this research direction did not receive as much attention

as it deserves.

3 Inherently Typical Subset Lemma

In the summer of 1995, Enhui Yang and I visited Rudi in Bielefeld, through

our discussion with Rudi, we proposed a problem called identification with com-

pressed data. During our research, we found that the problem is closely related
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to a very general isoperimetric problem originally proposed in the book “Infor-

mation Theory: Coding Theorems for Discrete Memoryless Systems” by Imre

Csiszár and Janos Körner which had been open for over 20 years. After a whole

month of intensive work, the problem was resolved and a paper titled “Identi-

fication via Compressed Data” was published in Jan. 1997 in IEEE Trans. on

Information Theory. The key for the solution of the problem is a lemma called

inherently typical subset lemma. As stated in the paper, this new method goes

considerably beyond the entropy characterization the image size characteriza-

tion, and its extensions. It is conceivable that this new method has a strong

impact on multiuser information theory.

In a survey paper by Imre Csiszár titled “The Method of Types”, this lemma

is cited as follows: A recent combinatorial result of Ahlswede, Yang, and Zhang

is also easiest to state in terms of F-types. Their inherently typical subset lemma

says, effectively, that given X and ε, there is a finite set S such that for sufficiently

large n, to any A ⊂ Xn there exists a mapping F : X ∗ → S and an F-type such

that

|A| 	 |A ∩ T n,F
SX | ≥ exp{nH(X |S) − ε}.

While this lemma is used to prove (the converse part of) a probabilistic result,

it is claimed to also yield the asymptotic solution of the general isoperimetric

problem for arbitrary finite alphabets and arbitrary distortion measures.

A conference paper by Rudi Ahlswede and myself titled “Asymptotical isoperi-

metric problem” was published in Proceedings of the 1999 IEEE Information

Theory and Communications Workshop, in 1999. In this paper, the inherently

typical subset lemma was used to resolve the general isoperimetric problem for

arbitrary finite alphabets and arbitrary distortion measures. In the paper, only

a sketch of the proof was given.

4 Other Works

During our 25 years collaboration since 1996, Rudi and I had written more

than 20 joint papers. Besides the works mentioned above, we also worked on

other extremal combinatorial problems such as the diameter problem (Rudolf

Ahlswede, Ning Cai, Zhen Zhang: Diametric theorems in sequence spaces. Com-

binatorica 12(1):1-17. 1992), and many information theoretical problems such

as the write efficient memories (Rudolf Ahlswede, Zhen Zhang: Coding for

Write-Efficient Memory Inf. Comput. (IANDC) 83(1):80-97 (1989) , On mul-

tiuser write-efficient memories. IEEE Transactions on Information Theory (TIT)

40(3):674-686 (1994)), identification via channels (Rudolf Ahlswede, Zhen Zhang:

New directions in the theory of identification via channels. IEEE Transactions

on Information Theory (TIT) 41(4):1040-1050 (1995)) and so on.

Our last joint work was published in 2005 and I hope very much that there

will be one more to come. After 13 years of silence on the general isoperimetric

problem, recently Zhen Zhang and Kang Wei wrote a rigorous version of the proof

and this will be submitted for publication with Rudi as one of the coauthors.



Mr. Schimanski and the Pragmatic Dean

Ingo Althöfer

Fakultät für Mathematik und Informatik, Friedrich-Schiller-Universität Jena, 07737
Jena Germanyingo.althoefer @ uni-jena.de

1 Mr. Schimanski, Sometimes Shy

When Prof. Ahlswede was Dean, he had regular contact with Mr. Schimanski

who directed the administration of the department. They found out that they

both liked card games a lot. But, of course the lunch break was typically too

short for full joy. When at one day Schimmi again remembered: “Boss, we have

to go back to office, our job is waiting”, Ahlswede found an elegant alternative

solution: “I will give you official order that you have to go to Cafeteria for card

play with your dean from 1 p.m. to 2 p.m. every working day.” The secretary

Frau Mehler (who saw many strange deans come and go ...) typed the order,

and Schimanski framed it, hanging the letter at the wall behind his office desk.

2 Teaching Elementary Math to Mr. Schimanski

One day in the early 1990’s Ahlswede came to Mr. Schimanski’s office: “Listen,

now I can explain you what a geometric series is. Four weeks ago I was at Essen

University, attending a conference in Numerical Mathematics. On the way back,

police radar caught me on the Autobahn three times because of my speed. I got

three fines: the first one was 100 D-Mark, the second one 200 D-Mark, and the

third one 400 D-Mark. You see: 100 - 200 - 400, that is a geometric series. Each

time the value is multiplied by the same scalar (= 2 in this example). By the

way; I also learned from this series: I will never again drive to a conference for

Numerical Mathematics!”

3 The Pragmatic Dean

Professor Ahlswede was Dean of the Bielefeld Math department in 1978 and

again in 1992. During this second period he once had to direct a Habilitation

talk, given by a young man from Algebra. The presentation took place in Lecture

Hall 8, next to the paper shop in the big hall of Bielefeld’s University building.

The candidate was full of energy, and under his writing the long blackboard

started to swing back and forth in some eigenfrequence.

Dean Ahlswede wanted to bring the blackboard back under control and asked

the speaker to stop for a moment: “Here I have a doctoral dissertation, sub-
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mitted just this afternoon. I hope we can fix the board by squeezing the thesis

between board and wall.” Said it, stood up, and immediately executed the plan.

And it helped, indeed! What Ahlswede did not realize: Matthias Löwe, the au-

thor of the dissertation, was sitting in the audience and followed with disbelief

what happened to his brainchild. But at the end everything turned well: The

habilitation was successful, Löwe got his Dr. title and later also a professorship

(at Münster University).



Broken Pipes�

Thomas M. Cover��

I met Rudi first in Tshahkadsor, Armenia, in the late 60s where we had several

hours of intense conversation about the emerging field of multiuser information

theory. I thought of him then and have thought of him since as one of the fastest

and deepest thinkers in the field.

Perhaps I should tell a story about him in connection with his two month

visit to Stanford University about 15 years ago. He was working on a number

of problems in multiple user theory and information inequalities. I received a

call at my home at 4 in the morning from Germany. I was informed that his

house in Bielefeld, which was unoccupied at the time, had ice flowing out of the

windows. Apparently, the pipes had broken, flooding the house, bursting through

the windows and causing cascades of ice down the stairs, over the carpets and

out the windows, making your house look like something out of Dr. Zhivago.

Since this was an emergency, I called Rudi immediately. I described the damage

in some detail. His first response was: “That’s interesting, but wait till I tell you

the result I got last night.”

As I recall, it took him two days before he realized that the damage to his

house would require that he has to go back and attend to it before he continued

on with his research here.

So I would like to salute your devotion to information theory and your prolific

contributions over the last 50 years.

� This memorial talk was given at the ITA Workshop, February 7, 2011.
�� Thomas Cover, one of the world’s top information theorists and a professor of elec-

trical engineering and of statistics at Stanford University, died March 26 at Stanford
Hospital at the age of 73.



Rudolf Ahlswede’s Funny Character�

Ilya Dumer

Electrical Engineering Department, College of Engineering,
University of California Riverside

Most of us knew Rudi as a great information theorist. I wish to mention some

other things that made him so special, such as his insatiable curiosity, funny

character, and ability to reach to different scientific fields and many people.

I never worked with Rudi but visited him once in Bielefeld in 1993 when I

was with Humboldt Foundation. We also met at many conferences. One of these

encounters stands out for me. It was in Sweden in 1993 when Rudi offered me a

ride back to Bielefeld. He, Ning Cai, and I soon arrived in Copenhagen, where

we learned that Rudi wants to show us the city. It was an amazing intellectual

tour de force. For two good hours Rudi guided the two of us through the narrow

streets talking about history with such a detail as if he were present there at the

times of Hans Christian Andersen.

In fact, Rudi was always much interested in many different subjects. He got a

very rigorous classic education in languages, philosophy, and mathematics and

it took him a few years to choose mathematics instead of philosophy. He kept

reading and refreshing Encyclopedie Britannica through all his life. This curiosity

and versatility have also motivated his research. For many of us, he is foremost an

information theorist. Some mathematicians will consider him an equal authority

in number theory or combinatorics. Yet, he also made some seminal contributions

to coding theory. Jointly with Mark Pinsker and Leonid Bassalygo, he opened

the whole new area of codes correcting localized errors. Within a few years, the

three of them essentially closed the field by constructing exact bounds, almost

optimal codes, and decoding algorithms with polynomial complexity.

This brings me to his outstanding ability to work with a huge variety of

people. Throughout his life, he had many dozens of long-term visitors in Bielefeld.

From the former Soviet Union alone, there were tens of visitors coming from all

scientific centers (Moscow, Novosibirsk, Yerevan, and S.-Petersburg).

Finally, Rudi had a great sense of humor and an ability to make things look

funnier. At the international conference in Tashkent in Uzbekistan in 1984, many

participants got foodpoisoned. Unaware of this, all went for a long 4-hour bus

trip to the ancient city of Samarkand. Outside of Tashkent, the life was quite

simple at those times, to say the least, and normal public amenities were some-

times almost non-existent. Many participants were in desperate need of public

restrooms but most laughed when Rudi sick himself declared that there was

no other conference with such an urgent call for papers.

� This memorial talk was given at the ITA Workshop, February 7, 2011.
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Last time, I talked to Rudi in September 2010 in Dublin. There was the same

twinkle in his eye and the same excitement about his new grant and the new

problems to be solved. Rudi carried this love for research and curiosity through

all his life. To me, he always was a Renaissance man of many gifts and talents,

and I will remember this feeling of fun and excitement that he could bring to

his own life and the life of others.



Two Anecdotes of Rudolf Ahlswede

Ulrich Tamm

German Language Department of Business Informatics
Marmara University, Istanbul, Turkey

tamm@ieee.org

1 Rudolf Ahlswede Playing Cards

Rudolf Ahlswede was a very strong card player. With this passion he was not

alone at the University of Bielefeld and even not in the Department of Mathe-

matics. During the lunch break usually about 10 - 20 people met in the cafeteria

including Rudolf Ahlswede and the head of our department’s administration,

Mr. Schimanski, who also was chairman of the local bridge club - hence, a very

strong card player himself.

Both of them did not like too much losing a game. An advantage of partner

games as bridge or the german game “Doppelkopf”, which was actually played

in the cafeteria, is that in this case one can shift the responsibility for the loss

to the partner.

One day, as usual, there was a big crowd at the card players’ table and Rudolf

Ahlswede and Mr. Schimanski both were among the players. Suddenly, it was get-

ting loud at their table and two persons stood up blaming each other for having

played erroneously. First they addressed each other as “Rudi” and “Schimmi”

(their nicknames among the card players) but soon they switched to the for-

mal “Professor Ahlswede” and “Mr. Schimanski” (the way they addressed each

other in the department). Since Rudolf Ahlswede was dean those days they had

to spend the rest of the day in the same office.

2 Rudolf Ahlswede and the Computer

Rudolf Ahlswede was pushing computer science already in the 1970’s. Among

the students in his group were Ingo Wegener, Gunter Dueck, Rüdiger Reischuk,

Friedhelm Meyer auf der Heide and other leading computer experts. Later, the

department’s computer laboratory was administered by his students. However,

he himself did not use (and did not want to use) a computer himself. For a long

time he had no email address - all his correspondence was done by his chair’s

secretary Mrs. Hollmann. He seemingly first wrote an email himself during his

three-months visit to Japan in 1999 in order to keep the contact to his research

group. All other computer work had to be done by his assistants. They even

prepared the slides for his lectures.

In 2006 Rudolf Ahlswede received the most prestigious award in Information

Theory - he was selected as Shannon Lecturer of the IEEE Information Theory
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Society. I did not trust my eyes when I suddenly saw an email in my mailbox from

the organizers of the ISIT conference in Seattle, where Rudolf Ahlswede had to

present his Shannon Lecture. They asked me to tell him that he should not use

printed slides for an overhead projector but provide an electronic file preferably

in PowerPoint, which would be projected by a beamer. My first reaction was

that I should keep out and direct the request to my colleagues from his group in

Bielefed (I had already left Bielefeld five years before). However, since he always

had used an overhead projector for his lectures, I was afraid that he might react

very sensible. So, I told the organizers that he surely would not want to learn

how to use PowerPoint and suggested them to inform him that they could not

provide an overhead projector and instead would ask him to provide them the

pdf-file of his slides which then would be projected by a beamer. They followed

my suggestion and it worked well.

Later, I learnt the background: In a previous lecture Rudolf Ahlswede was so

concentrated on his results that during his talk he had written some changes not

on the slides but on the overhead projector. The organizers wanted to avoid such

a situation and informed a German professor whom they thought to be rather

close to Rudolf Ahlswede. He rejected (they always kill the people who bring the

bad news - that was also the reason why I first wanted to forward the request

to Bielefeld) and instead suggested to contact me in this matter.



Bibliography of Publications by Rudolf Ahlswede

1967

[1] Certain results in coding theory for compound channels, Proc. Colloquium

Inf. Th. Debrecen (Hungary), 35–60.

1968
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I; R.L. Graham and J. Nesetril, ed., Algorithms and Combinatorics B,

Springer Verlag, Berlin/Heidelberg/ New York, 104–116.

[117] Intersecting Systems, (with N. Alon, P.L. Erdős, M. Ruszinko, L.A. Székely),
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tion Transfer and Combinatorics, Lecture Notes in Computer Science, Vol.

4123, Springer Verlag, 293-307.

[185] Large families of pseudorandom sequences of k symbols and their complex-

ity, Part II, (with C. Mauduit and A. Sárközy), General Theory of Infor-
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Nötzel, Janis 247

Pálvölgyi, Dömötör 543
Piotrowski, Victor P. 419

Rykov, Vyacheslav 509
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