
Chapter 2
The Basics of the ISEs

In this chapter, we will discuss the formalism of the practically relevant repre-
sentation of the signals obtained from an ‘‘ideal’’ electrode. We will do this using a
macroscopic, thermodynamic approach. We will not go into the microscopic
details on why and when the electrodes respond in this particular way, leaving this
discussion, and also the discussion of the ‘‘real-world electrodes’’, which are not
that ideal, for subsequent chapters.

The consideration of the mechanism of ISE response relies on two types of
electric potentials: boundary potential and diffusion potential. We will start the
discussion of these two potentials with the description of their physical origin and
then turn to the respective thermodynamical formalism.

2.1 The Membrane Model

Basically, a membrane is a phase which separates two other phases. In this way,
ion-selective electrode membranes are true membranes. These separate the sample
(or the calibrator) solution from either the internal solution of the electrode, or the
internal solid contact. The model to be considered is based on several assumptions:

1. The membrane comprises a flat parallel ionically conducting piece of matter
placed in between two aqueous electrolyte solutions. Although the system is
three-dimensional, any changes may happen only along one axis: the x-axis
which is perpendicular to the membrane plane. Therefore, the system is
effectively one-dimensional.

2. There are no gradients of temperature and pressure within the system.
3. The interfaces between the membrane and solutions are at electrochemical

equilibrium, while the system as a whole is in a steady state.
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2.2 Boundary (Interfacial) Potential, the Nernst Equation

2.2.1 The Physical Nature of the Boundary Potential

Electric potentials at the interface between two phases may arise due to (1) par-
titioning of electrolytes, or due to (2) adsorption of charged species, or (3) even in
the total absence of individual charged species (ions)—just due to some regular
orientation of dipole molecules at the interface. Potentials caused by effects (2) and
(3) are only stable in electrolyte-free systems. Otherwise, only in the case (1) are
the potentials stable and reproducible. Therefore, since in this book we discuss
practically relevant issues, we will focus on the interfacial potential formed due to
partitioning of electrolytes between the phases in contact. As example, we consider
here two liquid phases.

First, we will consider a very simple and highly idealized situation: how an
electric potential arises at the interface between two initially neutral (non-charged)
phases. We will start with a single phase comprising, for example, an aqueous
electrolyte solution with uniform distribution of ions within the whole volume of
the phase (no concentration gradient). Ions bear electric charge, and therefore,
there is some microscopic electric field within the vicinity of any ion in the
solution. However, the microscopic fields produced by individual ions compensate
each other, and the resulting macroscopic field over the whole phase is zero.

Let us see what will happen if we join this aqueous electrolyte solution with, for
example, an organic phase consisting of a pure organic solvent immiscible with
water. When the phases are in contact, the electrolyte distributes between the
aqueous phase and the organic phase. Basically, cations and anions of the elec-
trolyte distribute between the two phases in equivalent quantities. However, this
equivalence is not exact, especially in the beginning of the distribution process,
producing small deviations from the electroneutrality of the two phases. Generally
speaking, the main role in the preferential uptake of ions with a particular charge
sign is played by DGI aq

org : the Gibbs free energy of the ion transfers from one
phase to another. This value depends on the Gibbs free energy of the ion hydration
in the aqueous phase DGI

hydr and that of the ion solvation in the organic phase
DGI

solv as follows: DGI
org
aq ¼ DGI

solv�DGI
hydr : If the hydration of cations and

anions is about the same, while, for whatever reason, the affinity of cations to the
organic phase is higher than that of anions, the number of cations crossing the
interface and getting into the organic phase will slightly exceed the number of
anions. This may happen if the organic solvent is a Lewis base, and therefore,
cations (which, obviously, are Lewis acids) are more strongly solvated in this
solvent than anions. On the contrary, if the solvent comprises a Lewis acid, its
affinity to anions is stronger than its affinity to cations. It may also happen that the
inequality of the ion distribution is mainly due to difference in hydration. A pref-
erential distribution of the cation of an electrolyte to the organic phase is due to,
respectively, strong hydration of the anion, or vice versa. Thus, the difference in
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the affinities of ions to water and to the organic solvent is the driving force of the
initial slightly unequal ion distribution.

Thus, after a very short time of the contact, the organic solvent contains some
small excess of cations over anions, while the aqueous phase contains an equal
excess of anions, so both phases acquire some electric charge, as shown in
Fig. 2.1. It is very important that the number of these non-compensated charges is
much smaller than the total number of ions in any of the phases. It is also
important that the non-compensated (excessive) ions are localized in the imme-
diate vicinity of the interface, forming the so-called electrical double layer. In the
bulk of any phase, the electric fields produced by individual randomly distributed
and chaotically moving ions compensate each other.1 Unlike this situation, ions
within the double layer are arranged relatively regularly, and the superposition of
the respective fields is not zero. Therefore, as soon as this double layer is formed,
the respective Coulombic forces between the ions result in attraction of anions to
positively charged organic phase, and rejection of cations. Thus, ‘‘chemical’’
driving force (the non-equal affinity of ions to the solvent) which causes the non-
equal ion distribution gets counterbalanced with the electric driving force: the
electric field created by ions regularly arranged within the double layer. Once both
driving forces become equal, a stable electric potential is established at the
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Fig. 2.1 Schematic representation of the formation of the electrical double layer. Top: two
phases separately, left phase with randomly distributed ions, right phase—without ions. Bottom:
two phases joined, electrolyte partitioned between the phases, most ions distribute randomly, but
some—regularly at the interface

1 Except of a phase with a gradient of an electrolyte, see Sect. 2.3.
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interface between the two phases. As soon as this is happen, the ions of the
electrolyte distribute between the two phases in exactly equal quantities, so that the
phases will not take more and more charge. The potential in question is called
interfacial or boundary potential, and the condition of the two-phase system under
consideration is called ‘‘electrochemical equilibrium.’’ The most crucial difference
between this two-phase system and the single phase we considered before is a
regular charge separation established at the interface. Without regular charge
separation, no electric field exists. The model discussed is, obviously, oversim-
plified and relates to the so-called dense part of the electrical double layer. The
diffuse parts of the double layers may penetrate deep into the phases, up to hun-
dreds of nm (in the case of solvent-polymeric membranes [1]).

Boundary potentials cannot be measured experimentally, because one cannot
separate the ‘‘pure chemical’’ and ‘‘pure electrical’’ contributions to the whole free
energy of the interfacial ion transfer from one another. However, boundary potentials
can be estimated theoretically using some model calculations. According to the
theoretical estimations, these potentials can reach up to several hundred mVs [2–7].

In reality, the mechanism of the boundary potential formation is more com-
plicated. In the first place, no real-world objects are ideally neutral: they always
bear some small electric charge. For instance, even if you have an ideally neutral
solution in an ideally neutral bottle, and you pour this solution into an ideally
neutral beaker, all these phases will acquire some electric charge. This happens
due to the wall friction of solution in the bottle and in the beaker while pouring.
Thus, the aqueous phase and the organic phase in our aforementioned example
must bear some accidental, fortuitous charges already before contact. Furthermore,
both phases (not only the aqueous solution) may contain electrolytes before fusion.
However, this does not change the final result. The only difference is that if the
organic phase is initially charged, for example, more positively than the aqueous
phase, the number of the excessive cations in the organic phase will be smaller
than in the ‘‘ideal’’ case, and the ‘‘gap’’ will be filled with the accidental charges
acquired due to friction or to some other force. The distribution of the electrolytes
between the two phases will not be affected by the accidental charges, because the
number of the latter is negligible when compared with the total number of parti-
tioning ions. As for the interfacial potential, its value is the same as in the ‘‘ideal’’
case, although some of the ions forming the electrical double layer belong to the
partitioning electrolyte while the rest are of ‘‘accidental’’ origin. In the opposite
case, when the organic phase is initially negatively charged, it will gain a few more
excessive cations than in the ‘‘ideal’’ case. The only issue of importance is the
equality of the two driving forces: chemical and electric.

Although we have discussed the origin of the boundary potentials considering the
interface between aqueous and organic phases, the same physics underlies boundary
potentials between various materials. This includes interfaces between aqueous
solutions and ionically conducting inorganic phases like crystals and glasses, which
are used as ion-selective membrane materials, along with organic liquids and
polymers. The processes underlying potentials between an ionically conducting
phase and an electronic conductor (metal) are slightly different, see Sect. 8.2.

14 2 The Basics of the ISEs

http://dx.doi.org/10.1007/978-3-642-36886-8_8


2.2.2 Formal Thermodynamical Description of Boundary
Potential

Now, having the physical idea about the origin of boundary potentials between
aqueous solution and some other phase (which we will call ‘‘electrode’’), we will
discuss this kind of potentials using a strict thermodynamic approach.

If an electrode is immersed into a solution, and the interface between the
solution and the electrode is at electrochemical equilibrium in relation to species
IzI (zI stands for the charge number2 of the species), the value of the electro-
chemical potential ~l of this species is the same in the solution phase and in the
electrode phase:

~lI
solution ¼ ~lI

electrode ð2:1Þ

In turn, the electrochemical potential of a species located in a certain part within
the phase relates to lI the chemical potential of this species and / the electrical
potential in this part of the phase:

~lI ¼ lI þ zIF/ ð2:2Þ

Here, F is the Faraday constant. The sensitivity of a species to the electric
potential is proportional to the species charge, and this is why zI appears in Eq. (2.2).

Note, in contrast with the chemical potential lI and the charge zI ; the electric
potential term / does not contain index I. This is because the former parameters
refer to the particular species IzI and their values are different for different species,
while the electric field—and therefore also the electric potential—is the same in
the particular part of the space, resulting from all the species involved, and also
affecting all the species involved.

Combining Eqs. (2.1) and (2.2), we obtain for boundary potential at
equilibrium:

ub ¼ /electrode � /solution ¼ � lI
electrode� lI

solution

zIF
ð2:3Þ

Equation (2.3) represents the intuitive physical description of the electro-
chemical equilibrium in strict terms. Indeed, at equilibrium, the electric potential
difference compensates for the difference between the chemical potentials of the

2 Charge number (valency) is an integer indicating the number of elementary charges carried by
the species. One elementary charge equals 1.60 9 10-19 C. For instance, an electron carries an
electric charge of -1.60 9 10-19 C, and a calcium cation carries an electric charge of
+3.20 9 10-19 C, so the respective charge numbers are -1 and +2. Rigorously speaking, we
must use term ‘‘charge number’’ to characterize the electric charge of the species. In practice,
however, we never do so, and instead of ‘‘charge number’’, we just say ‘‘charge,’’ like charge of
electron is -1 and charge of calcium cation is +2. Therefore, throughout the text, the term
‘‘charge’’ will be used for ‘‘charge number.’’
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species in the two phases, which refer to the affinity of the species to the respective
phases.

The chemical potential of the species within a system is defined as partial Gibbs
free energy of the system (in the case of a charged species—except of the electric
part of the free energy) related to this particular kind of species:

lI ¼
dG

dnI

� �
p;T ;nJ 6¼I

ð2:4Þ

Here, G, p, and T stand for the Gibbs free energy of the phase, the pressure, and
the absolute temperature. Thus, the chemical potential of species IzI is a partial
derivative of the Gibbs free energy over the number of moles of species IzI at a
constant pressure, temperature, and the numbers of moles of all other kinds of
species present in the system. The value of G, as that of any energy quantity,
cannot be determined to an absolute value. It is only determined in relation to
some standard state, and one can only measure DG the difference in G between the
current state of the system and the standard state. Thus, G ¼ G0 þ DG: One could
think that differentiation eliminates G0 and therefore we may have the absolute
value of lI : This, however, is not true, because G ¼ U � TS (U stands for the
internal energy and S for the entropy of the system), and G0 ¼ U0 � TS0; while U0

and S0 are extensive values which are proportional to the mass of the system.
Therefore, dG0

�
dnI

� �
p;T ;nJ 6¼I

6¼ 0 and chemical potential can only be determined in

relation to some standard state (some reference point):

lI ¼ lI
0þRT ln aI ð2:5Þ

Here, lI
0 is the standard value of the chemical potential, that is, the chemical

potential of species IzI in the standard state, R is the gas constant, and aI is the
activity of species IzI in the phase. The standard state can be chosen at our own
will; however, some choices may be more convenient than others.

Very often, it is said that activity is a kind of ‘‘active concentration,’’ that is, CI

concentration value is ‘‘corrected’’ to comply with strict thermodynamic relations.
The correction is represented by cI activity coefficient, so that

aI ¼ cICI ð2:6Þ

Sometimes one claims that Eq. (2.6) defines activity as ‘‘concentration multi-
plied by activity coefficient.’’ In fact, the reverse is true: Eq. (2.6) defines activity
coefficient, while activity is defined as a function which satisfies the following
equation:

aI ¼ expððlI � lI
0Þ
�

RTÞ ð2:7Þ

Obviously, Eq. (2.7), which defines activity, is just a rewritten Eq. (2.5).
Combining Eqs. (2.3) and (2.5), we obtain for the electric potential difference

between the electrode and solution (the boundary potential):
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ub ¼ /electrode � /solution ¼ � lI
0;electrode� lI

0;solution

zIF
� RT

zIF
ln

aI
electrode

aI
solution

ð2:8Þ

Equation (2.8) is known as Nernst equation. If for whatever reason (to be discussed
in later chapters) the activity of IzI in the electrode phase is constant, the interfacial
potential follows a very simple formula:

u ¼ u0 þ RT
zIF

ln aI
solution ð2:9Þ

Term u0 includes the constant terms � lI
0; electrode � lI

0; solution
�

zIF
� �

and
� RT=zIFð Þ ln aI

electrode: The potential difference u is called electrode potential.
Thus, the electrode potential is regularly dependent on the activity of ion IzI ; and
this makes the prerequisite for use of the electrode as a sensor of species IzI :

2.3 Diffusion Potential

2.3.1 The Physical Nature of the Diffusion Potential

Unlike boundary potentials arising at interfaces between contacting phases, dif-
fusion potentials arise within homogeneous phases with non-uniform distribution
of electrolytes. If an electrolyte is non-uniformly distributed within a solution, the
electrolyte diffuses from layers with higher value of the chemical potential of the
electrolyte to layers with lower chemical potential, very often, just from layers
with higher concentration to layers with lower concentration of the electrolyte. In
general, I+ and X- ions forming the electrolyte have different diffusion coefficients
DI, DX and, respectively, also different mobilities uI, uX, see Eq. (2.10):

un ¼ Dn=RT ð2:10Þ

This difference results in small, but regular charge separation, and therefore in a
potential difference called diffusion potential—because it originates, ultimately,
due to diffusion.

Let us try to understand the origin of the diffusion potential using a very simple
model presented in Fig. 2.2. A 1:1 electrolyte producing I+ cations and X- anions
with diffusion coefficients DI and DX is non-uniformly distributed within the
volume of the phase. The electrolyte concentration along the x-axis decreases as
shown in Fig. 2.2.

Now assume that at time t = 0, the phase is ‘‘frozen,’’ that is, ions are not
allowed to move. We can (in one’s mind) slice the phase into thin layers with
uniform distribution of the electrolyte within each layer, thus representing the
continuous profile of the electrolyte concentration with a stepped line. Let us
assume there is no regular charge separation: neither within each of the slices, nor
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within the whole phase.3 If we allow ions to move, they will diffuse along the x-
axis from left to right. Let us assume DI [ DX: In such a case, in the beginning of
the diffusion process, cations within each slice will slightly pass the anions. This
will produce some regular charge separation along the x-axis within each of the
slices. The resulting regular Coulombic forces will speed up the anions and slow
down the cations within each slice, preventing further charge separation. Thus
established, regular charge separation produces a minute potential difference
within each slice, which taken over the whole phase may reach up to several
dozens of mVs, according to model calculations [2–8]. This is how diffusion
potential arises.

There is a fundamental difference between interfacial and diffusion potentials.
Interfacial potentials (when established) refer to equilibrium states and result from
differences in equilibrium values: the chemical potentials of charged species in the
contacting phases. Stable values of interfacial potentials, in principle, can last
forever. Diffusion potentials refer to non-equilibrium states and result from dif-
ferences in non-equilibrium values: mobilities of ions. Steady values of diffusion
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Fig. 2.2 Origin of the diffusion potential. Left: ‘‘frozen’’ phase, in one’s mind divided into thin
layers. The concentration decreases from the left layer to the right layer; each layer is electrically
neutral; ions are randomly distributed. Right: ions allowed to diffuse from left to right. Each layer
remains electrically neutral, but cations are slightly shifted to the right relative to anions

3 Due to thermal movement, some random, chaotic charge separation always exists on short
distances. However, being averaged over space and time, it produces zero effect.
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potentials refer to steady states. Let us take a look at these states. Under equi-
librium state, there are no fluxes of matter or energy within the system.4 If the
system is not at equilibrium, there are fluxes of matter driven by gradients of
chemical potentials of the species. Now, if the flux is constant over space (e.g.,
diffusion flux over the x-axis) while the profile of the driving force is constant over
time, we have the so-called steady state.

There is a very simple example of steady state, see Fig. 2.3. Let us assume, you
pour a liquid from one large glass to another one. To avoid spilling, you use a
funnel. It is easy to ensure a constant level of liquid in the funnel: when the flux of
liquid coming from the source glass to funnel equals that from the funnel to the
drain glass. You have established a constant level of the liquid in the funnel and
constant flux along the whole system, from source to drain. Note: you will need
some time to adjust the stream before the steady state is established, and you
cannot maintain it forever: either the source empties, or the drain overfills. In
general, a long-lasting steady state requires either a large source and a large drain,
or a very small flux.

2.3.2 The Mathematical Description of the Diffusion
Potential

There are different approaches aimed at mathematical description of the diffusion
potential. We will discuss here the simplest case, which is when diffusion takes
place along only one direction—along x-axis. This simplest case is the most

Drain

Source

Steady level of liquid

Fig. 2.3 Simple example of
a steady state: using a funnel
when filling a glass

4 Some local fluctuations and local fluxes always exist except at absolute zero; however, they do
not produce any macroscopic effect due to averaging over space and time.
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relevant for all further discussions. We will use the Nernst–Planck equation for the
flux of the IzI charged species along the x-axis:

JI ¼ �uICI
d~lI

dx
¼ �uICI RT

d ln aI

dx
� zIF

d/
dx

� �
ð2:11Þ

Although we omit its derivation, the equation’s meaning is very clear: the flux
depends on how fast the species moves uIð Þ; on the concentration of the species
CIð Þ; and on the driving force of the flux: the gradient of ~lI the electrochemical

potential along x coordinate. The negative sign before the right-hand part in Eq.
(2.11) appears because the species moves from high to low values of ~lI :

We discuss potentiometric sensors, so the measurements are performed under
zero-current conditions: I = 0. On the other hand, in a system containing k sorts of
charged species, the current density relates to the respective fluxes in a very simple
way:

I ¼ F
Xk

n¼1

znJn ð2:12Þ

Thus,

Xk

n¼1

znunCn RT
d ln an

dx
þ znF

d/
dx

� �� �
¼ 0 ð2:13Þ

By rearranging Eq. (2.13), we obtain for the differential of the diffusion
potential:

d/ ¼ �RT
F

Pk
n¼1

d znunCn ln anð Þ

Pk
n¼1

z2
nunCn

� � ð2:14Þ

The value of the diffusion potential is given by

ud ¼ �
RT
F

Zright

left

Pk
n¼1

znunCnd ln anð Þ

Pk
n¼1

z2
nunCn

� � ð2:15Þ

Integration requires knowledge on the profiles of activities and concentrations
along the x-axis for all charged species present in the system. Generally speaking,
this is not possible. Recently, advanced models have been developed which allow
for numerical simulations of species concentration profiles and the electric
potentials in real time and space, under certain assumptions [4–7, 9–11]. However,
there are situations for which Eq. (2.15) can be simplified and easily solved for the
respective special cases.
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It is of importance to understand that diffusion potentials, as well as interfacial
potentials cannot be rigorously measured and we can only approximate their
values.

2.3.3 The Segmented Model of the Overall Membrane
Potential

The overall membrane potential is the potential difference generated on a mem-
brane dividing two solutions. This difference is zero in symmetric systems when a
uniform membrane divides two identical solutions. A non-zero membrane
potential arises in two cases: (1) solutions are non-identical, and (2) the membrane
is non-uniform. It is convenient to split the overall membrane potential in three
components: two boundary potentials at the membrane/solution interfaces and
diffusion potential within the membrane, as shown in Fig. 2.4.

The solid horizontal lines show the potentials in the solutions far from the
membrane. Within the space-charge regions 1 and 2—on both sides of the
membrane, there are steep drops of the potential. These are boundary potentials
ub

1; ub
2: The thickness of the space-charge regions is very much exaggerated in

the figure. In fact, these are a few nm on the aqueous side, and up to 100–300 nm
on the membrane side (for polymeric membranes with ionophores). This is why
vertical dotted lines which show the physical borders of the membrane are shifted
from the center of the space regions. Gently sloped solid line within the membrane
bulk shows ud—the diffusion potential. The boundary potentials, typically, have
opposite signs and partly eliminate each other. Therefore, um—the overall
membrane potential—is much smaller than any of the boundary potential drops.

x

φm

b
1

b
2

d

φ

1 2

MembraneSolution 1
Solution 2

Fig. 2.4 The segmented model of the overall membrane potential
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2.4 Galvanic Cells without Liquid Junction
and with Liquid Junction, Advantages
and Disadvantages Thereof

As mentioned in Chap. 1, potential of an individual electrode cannot be measured.
One can only measure the difference of the potentials of two electrodes contacting
via solution, as shown in Fig. 1.2. This construct containing the sensor electrode
(also known as the indicator electrode [ISE]), the other (reference) electrode, and
solution is called galvanic cell. Systems containing only one electrode in contact
with the respective solution are often called half-cells.

The potential difference between the sensor electrode and the reference elec-
trode (RE) is called electromotive force (EMF) of the cell:

E ¼ u� uRE ð2:16Þ

2.4.1 Cells without Liquid Junction

Let us imagine, we have two ideally working electrodes (i.e., both electrodes obey
the Nernst equation). One electrode is cation-responding, and the other one is
anion-responding. For further clarity, let these electrodes respond, for example, to
potassium cation and to chloride anion:

uK ¼ uK
0 þ RT

zKF
ln aK ð2:17Þ

uCl ¼ uCl
0 þ RT

zClF
ln aCl ð2:18Þ

If we immerse these two electrodes into a pure KCl solution, that is, solution
containing only KCl and water, and connect the electrodes to a measuring device
(as shown in Fig. 2.5, left), we will measure the EMF:

E ¼ uK
0 þ RT

zKF
ln aK � uCl

0 � RT
zClF

ln aCl ð2:19Þ

Since zK ¼ 1; zCl ¼ �1; Eq. (2.19) transforms into

E ¼ uK
0 � uCl

0 þ RT
F

ln aK þ
RT
F

ln aCl ¼ E0 þ RT
F

ln aKaClð Þ ¼ E0 þ 2RT
F

ln a�KCl

ð2:20Þ

Here, E0 ¼ uK � uCl is the so-called standard EMF value, and a�KCl ¼
ffiffiffiffiffiffiffiffiffiffiffi
aKaCl
p

is the so-called mean activity of KCl. The mean activity of an electrolyte is a
thermodynamically determined quantity. It can be experimentally measured by
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various independent techniques, such as isopiestic measurements, cryoscopy,
ebullioscopy, extraction measurements, etc.

If we have two electrodes both responding to ions of the same charge, for
example, two anions like chloride and nitrate, immersed in a mixed solution
containing NaCl and NaNO3, the respective EMF obeys the following expression:

E ¼ uCl � uNO3
¼ uCl

0 � RT
F

ln aCl

� �
� uNO3

0 � RT
F

ln aNO3

� �

¼ uCl
0 � uNO3

0 � RT
F

ln
aCl

aNO3

ð2:21Þ

We can multiply the numerator and the denominator in the last term in
Eq. (2.21) by the same quantity, for example, by aNa and then the EMF is

E ¼ uCl
0 � uNO3

0 � RT
F

ln
aClaNa

aNO3
aNa

¼ uCl
0 � uNO3

0 � 2RT
F

ln
a�NaCl

a�NaNO3

ð2:22Þ

Thus, again we obtain an expression containing only thermodynamically
defined quantities.

Galvanic cells shown in Fig. 2.5 left—when both electrodes are immersed into
the same solution—are called cells without liquid junction. The whole system,
comprised of both electrodes and solution, is at equilibrium. Therefore, the EMF
of a galvanic cell without liquid junction is thermodynamically well defined. This
is a significant advantage of this kind of cell, and therefore, measurements with
cells without liquid junction are routinely used in thermodynamic studies.

However, the vast majority of measurements with ISEs are made for analytical
rather than for thermodynamic objectives, and for analytical goals, this kind of cell
is not suitable. Let us discuss this issue using the same pair of electrodes—those
responding to K+ and to Cl-. Furthermore, let us assume we wish to know the

RERE ISEISE

Salt bridgeSalt bridge

Fig. 2.5 Left—cell without liquid junction, right—cell with liquid junction
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potassium ion concentration: CK : In a pure KCl solution, CK ¼ CCl ¼ CKCl ¼
a�KCl=c�KCl: Having a�KCl from the EMF measurements (see Eq. 2.20), and an
independently known value of c�KCl; one can obtain the target quantity CK :
However, in mixed aqueous solutions, leaving alone real-world samples of various
origins, measurements with cells without liquid junction are not practical. Let us
assume we now have a mixed solution of KCl and NaCl. In this solution, the
activity and concentration of our target ion (K+) relate to one another as aK ¼
CKcK ¼ CKClcK : Thus, only KCl directly contributes to K+-ion activity, in full
analogy with pure KCl solution (although the presence of NaCl also indirectly
affects aK because cK the potassium-ion activity coefficients in pure and mixed
solutions with the same CK are not the same). The respective relation for Cl- is
very different from that in a single salt solution aCl ¼ CClcCl ¼ CKCl þ CNaClð ÞcCl;
thus, Cl--ion activity is directly affected by both salts: KCl and NaCl. The mean
activity of KCl in mixed KCl ? NaCl solution relates to the concentrations of the
respective electrolytes as follows:

a�KCl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CKClcK CKCl þ CNaClð ÞcCl

p
ð2:24Þ

One can see that a�KCl—the value obtained from measurements using cell
without liquid junction—is not unambiguously related to K+ ion concentration if
some other electrolyte is also present in the sample.

Below, an example is given on how large the error caused by use of cell without
junction may be for analysis of a mixed solution. Once again, let us consider
galvanic cell consisting of K+ and Cl- electrodes, both responding to the
respective ions, and assume that the standard EMF value of the cell is 200.0 mV,
and the slope is 118.0 mV/ log a�KCl: If the electrodes are immersed into pure
0.01 M KCl solution with c�KCl ¼ 0:91; the measured EMF is as follows:

E ¼ 200:0þ 118:0 � logð0:01 � 0:91Þ ¼ �40:8 mV

If the same electrodes are immersed into mixed solution containing the same
0.01 M KCl, and also 0.1 M NaCl, with c�KCl ¼ 0:79 (this value is calculated by
Debye-H}uckel theory, see Sect. 2.5.), the measured EMF is as follows:

E ¼ 200:0þ 118:0 � log
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01 0:01þ 0:1ð Þ

p
� 0:79

� 	
¼ 13:0 mV

The difference between the values is 53.8 mV, and K+ ion concentration in the
latter case (mixed solution) is 2.9 times overestimated.

Obviously, for measurements of a target analyte in a mixed sample, we must
have another kind of galvanic cell. This other kind of cell is called cells with liquid
junction and is described below.
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2.4.2 Cells with Liquid Junction

Obviously, if we wish to measure an individual species concentration via the
potential of respective electrode, the potential of the other electrode must be
constant. In our previous example, this means that Cl--responding electrode has to
have a constant potential. If this is achieved, the EMF varies exclusively due to the
variation of K+-responding electrode potential, and it delivers information on the
K+ ion concentration in the sample. The other electrode (Cl- electrode in our
example) is then called reference electrode (RE). Attempts to make electrodes with
constant potentials whatever the sample composition are well known, and there is
some progress in solving this problem [12]. The reliability of these REs so far
remains insufficient. The commonly used approach is, therefore, different. The
electrode to be used as the RE is placed in a separate vessel, and in this way, the
constancy of its potential is guaranteed. The two half-cells—the sample vessel
with the ISE and the reference vessel with the RE—are connected with one
another via the so-called salt bridge, as shown schematically in Fig. 2.5, right.

Earlier, the common RE used to be the so-called saturated calomel electrode:
Hg/Hg2Cl2 in saturated KCl. Because of the toxicity of mercury metal and of
mercury salts, this electrode was replaced by silver chloride electrode, and now-
adays, Ag/AgCl electrode immersed in 3 M KCl or in saturated KCl has become
the most common RE. The concentration of a saturated solution is constant even if
the vessel is not hermetically closed. This advantage, however, is largely depre-
ciated by the temperature dependence of the solubility. Therefore, 3 M KCl is
predominating as the RE solution.

It is more practical to immerse RE directly into sample or calibrator solutions,
rather than use the setup shown in Fig. 2.5. The respective constructs, the so-called
single-junction RE and double-junction RE, are discussed in more detail in Sect.
9.1.

The region of the contact of the salt bridge with the sample solution is called
liquid junction. This term reflects the lack of a phase boundary between the sample
solution and the bridge solution. The compositions of the salt bridge electrolyte
and the sample are, generally speaking, different. Therefore, the respective elec-
trolytes diffuse from the bridge to the sample and vice versa, driven by the gra-
dients of their chemical potentials. Thus, in between the bulk of the sample
solution and the bulk of the bridge solution, a layer arises with composition, which
gradually varies from the composition of the sample to the composition of the
bridge solution. This layer is called diffusion layer, because all of the electrolytes
present in the system diffuse across this layer according to the respective gradients
of chemical potentials.

Over time of the contact, the diffusion layer expands, and the sample gets
contaminated by the species from the salt bridge solution, while the latter gets
contaminated by the species from the sample. Therefore, normally the salt bridge
is relatively thin tubing, and various measures can be taken to minimize the
aforementioned mutual contamination.
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Electrolytes diffuse from the RE to sample and vice versa. However, mobilities
of ions differ; some ions move faster than the other. Because of this, a potential
difference arises over the diffusion layer. This potential is called liquid junction
potential, and it is of diffusion nature (see also Sect. 2.3.). Thus, the EMF of a cell
with liquid junction combines not only the potentials of the ISE and the RE, but
also the liquid junction (diffusion) potential:

E ¼ uISE � uRE þ ud ð2:25Þ

The very idea of the cell is therefore somewhat compromised: we want to
measure the variation of the ISE potential against a constant RE potential, but we
actually have an additional term which also contributes to the measured signal.
Obviously, to achieve our goal, we must make the liquid junction potential con-
stant or simply minimize its value, which is given by [13]:

ud ¼ �
RT
F

Xk

n¼1

Zbridge

sample

tn
zn

d ln an ð2:26Þ

Thus, the liquid junction potential can be presented as a sum of integrals for
each kind of the charged species (from 1 to k) present in the diffusion layer. The
limits of integration are obviously the bulk of the sample and the bulk of the
bridge—the domains with constant compositions not affected by diffusion.

The values of an—the activities of the species—vary from the respective values
in the sample to those in the bridge. Term tn is called transference number, and it is
defined as the part of qn the electric charge transferred by the nth sort of species to
the total charge transferred across the diffusional layer by all the species present:

tn ¼
qnj jPk

n¼1
qnj j

ð2:27Þ

According to this definition,
Pk
n¼1

tn ¼ 1: The electric charge transferred by a

species equals Jn the flux of the species multiplied by zn : qn ¼ znFJn ¼ z2
nFunCn:

5

Thus, tn transference number of species n can be calculated as

tn ¼
zn

2unCnPk
n¼1

zn
2unCn

ð2:28Þ

5 This equation appears very different from Eq. 2.11. The difference comes from the procedure
of the measurements of the transference numbers. These are performed in a uniform solution (no
activity gradients, so d ln aI=dx ¼ 0), and the results are normalized to 1 unit of the electric
field: du=dx ¼ 1; for example, 1 V/m, or 1 V/cm, or whatever. In fact, this normalization does
not really matter because in Eq. 2.28, the respective terms eliminate anyway.
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Bearing in mind Eq. (2.28), one can easily see that Eq. (2.26) is equivalent to
Eq. (2.15).

Let us assume that we have only one uni-univalent electrolyte IX in the dif-
fusion layer, so that the diffusing species are I+ and X-. Then the liquid junction
potential is

ud ¼ �
RT
F

Zbridge

sample

uICI

uICI þ uXCXð Þd ln CIcIð Þ þ RT
F

Zbridge

sample

uXCX

uICI þ uXCXð Þd ln CXcXð Þ

ð2:29Þ

Due to the macroscopic electroneutrality, CI ¼ CX everywhere over the diffu-
sion layer. Thus, if the mobilities of I+ and X- are equal, uI ¼ uX; the liquid
junction potential is almost eliminated because the two integrals in Eq. (2.29)
differ only inasmuch as activity coefficients differ.

Filling the salt bridge with electrolyte consisting of ions with nearly equal
mobilities is the most common approach aimed at minimization of the liquid
junction potential. Such electrolytes are called equitransferring electrolytes.
Among electrolytes with nearly equal mobilities of the cation and the anion are
KCl, LiCH3COO, NH4NO3. The most commonly used electrolyte for salt bridges
is 3 M KCl. If ions with equal mobilities predominate over other species in the
diffusion layer, the respective transference numbers approach 0.5, while trans-
ference numbers of all other species approach zero. This is the reason to use high
concentration of equitransferring electrolytes in salt bridges. Furthermore, if only
two sorts of species (K+ and Cl-) predominate in diffusion, the liquid junction
potential remains constant as long as the system is in steady state, even though the
diffusion layer widens over time.

Minimization of the liquid junction potential makes cells with liquid junction
practical, and the activity of the target analyte can be calculated from the measured
EMF by equation

E ¼ E0 þ 2:3026
RT
zIF

log aI þ uLJ ð2:30Þ

where the last term is either neglected or calculated according to Henderson for-
malism. The real-world electrodes never obey Eq. (2.30) exactly: the slope S ¼
dE=dlog aI differs from the theoretical value 2:3026 RT=zIF which, at 25 �C,
equals 59:2=zI mV=log aI : Normally, the experimental slope values are slightly
below this number.

More important, however, is another issue. Unlike a�IX—the mean activity of
electrolyte, activity of IzI single ion cannot be measured independently (the
problem of single-ion activity is discussed in Sect. 2.5.) One may think that the use
of thermodynamically undetermined values—single-ion activities and diffusion
potentials—makes cells with liquid junction somewhat ‘‘fishy.’’ Below we will try
to see whether this is true, using as example the same pair of electrodes,
responding to K+ and to Cl- ions.
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Let us imagine a cell with liquid junction, such as that shown in Fig. 2.5, right:
the K+—responding electrode (ISE) is placed into right part of the system, with
low concentration of KCl; and the Cl-—responding electrode (RE) is placed into
left part, with high concentration of KCl. Both electrodes obey the Nernst equa-
tion, so that the EMF of the cell is

E ¼ uK � uCl þ ud ¼ uK
0 � uCl

0 þ RT
F

ln aK
right þ RT

F
ln aCl

left þ ud ð2:31Þ

For the liquid junction potential, using Eq. (2.26), we can write

ud ¼ �
RT
F

Zright

left

tK
zK

d ln aK þ
tCl

zCl

d ln aCl

� �
; ð2:32Þ

and eliminating tCl as tCl ¼ 1� tK we rearrange it as follows:

ud ¼ �
RT
F

Zright

left

tKd ln aK þ
RT
F

Zright

left

d ln aCl �
RT
F

Zright

left

tKd ln aCl

¼ �RT
F

Zright

left

tKd ln aKaClð Þ þ RT
F

ln
aCl

right

aCl
left

ð2:33Þ

By combining Eqs. (2.31) and (2.33), we obtain for the EMF of the cell:

E ¼ uK
0 � uCl

0 þ RT
F

ln aK
rightaCl

right
� �

� RT
F

Zright

left

tKd ln aKaClð Þ; ð2:34Þ

which finally gives

E ¼ uK
0 � uCl

0 þ 2RT
F

ln a�KCl
right

� �
� 2RT

F

Zright

left

tKd ln a�KClð Þ ð2:35Þ

Equation (2.35) contains parameters which can be independently measured:
mean activities of electrolyte (KCl in our example) and transference number of K+.
If we eliminate tK as tK ¼ 1� tCl; we would get a similar expression containing tCl

Nobody claims it is easy to measure transference numbers along the whole dif-
fusion layer. The point is, however, that these values, in principle, can be mea-
sured. Thus, when the EMF of a cell with liquid junction is considered as a whole,
it is in no way ‘‘thermodynamically worse’’ than that of a cell without liquid
junction. Uncertainties and problems with thermodynamics arise from our methods
of interpreting the EMF. Once we wish to split the whole EMF into separate
electrode potentials, we immediately encounter problems of the single-ion activity
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and the diffusion potential. However, our practical analytical goals force us to do
so, and this is why we must somehow deal with these problems.

2.5 The Mean Electrolyte Activity and the Single-Ion
Activity. The Elements of the Debye–Hückel Theory

For a solution containing two components, solvent and ImþXm� electrolyte, using
the Gibbs–Duhem equation, one can obtain for the activities at equilibrium:

aI
mþaX

m�

aIX

¼ K; ð2:36Þ

K is constant, and its value depends on the standard state chosen for the electrolyte.
Since the standard state can be chosen at will, we chose the standard states for ions as

lim aI
CIX!0

¼CI ¼ mþCIX

lim aX
CIX!0

¼CX ¼ m�CIX

9>=
>; ð2:37Þ

According to this choice, the ion activity approaches the ion concentration
along with dilution of the solution. This choice is the most convenient from the
practical point of view. For the electrolyte, the standard state is chosen in such a
way that K = 1, so that single-ion activities and the so-called full electrolyte
activity relate to each other according to

aI
mþaX

m� ¼ aIX ð2:38Þ

As to mean activity of the electrolyte and mean activity coefficient, these are
defined as

a�IX ¼aIX
1=m ¼ aI

mþaX
m�ð Þ1=m

c�IX ¼ciX
1=m ¼ cI

mþcX
m�ð Þ1=m

)
; ð2:39Þ

with m ¼ mþ þ m�:
As already mentioned above, full and mean electrolyte activities are thermo-

dynamically well-defined quantities, and their values can be experimentally
measured by various independent techniques. On the contrary, the single-ion
activity cannot be measured, and only combinations of single-ion activities like
multiples of cation and anion activities, or ratios of two cations or two anions
activities are accessible: aIaX ¼ aIX; aI=aJ ¼aIX=aJX; aX=aY ¼aIX=aIY:

To access single-ion activities, one has to introduce some extra-thermodynamic
assumptions. These are either arbitrarily chosen rules for the fragmentation of full
electrolyte activities into single-ion activities, or theoretical calculations based on
some models aimed at consideration of the non-ideality of real systems.
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The most common fragmentation rule for aqueous solutions is the so-called
McInnes assumption—ion activity of K+ cation and that of Cl- anion in KCl
solutions are equal to one another and therefore equal also to the mean activity of
KCl:

aK ¼ aCl ¼
ffiffiffiffiffiffiffiffiffiffiffi
aKaCl

p ¼ a�KCl ð2:40Þ

This assumption can be utilized for calculation of other single-ion activities. Let
us illustrate this using the calculation of Na+ cation activity in NaCl solution.
Indeed, according to Eq. (2.38),

aNa
NaCl ¼

a�NaCl
NaCl

� �2

aCl
NaCl

Next, we replace the Cl- anion activity in NaCl solution with that in the KCl
solution of the same concentration, and using the McInnes assumption, we finally
get

aNa
NaCl ¼

a�NaCl
NaCl

� �2

a�KCl
KCl

In the same way, one can use the McInnes assumption for calculation of
activities of various cations and anions. Less common is the so-called Guggenheim

assumption: aCa ¼ aCl ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aCaaCl

23
p

¼ a�CaCl2
One can use it in the same way as

the McInnes assumption to calculate ion activities in different solutions.
Fragmentation rules do not help in the most typical cases: mixed solutions

containing several electrolytes. The single-ion activity values for these systems
can be calculated using the Debye-Hückel theory. This theory accounts to elec-
trostatic interactions only. Under the first approximation of the theory, ions are
considered infinitely small. According to this approximation, the IzI ion activity
coefficient is determined by J—the so-called ionic strength of the solution:

log cI ¼ �AzI
2
ffiffiffi
J
p

ð2:41Þ

For a solution containing n sorts of ions, the ionic strength is dependent on the
concentrations and charges of all sorts of ions present in the solution:

J ¼ 1
2

Xn

k¼1

Ckzk
2 ð2:42Þ

For instance, the ionic strength of 0.01 M KCl equals 0.01 M, for 0.01 M CaCl2
J = 0.03 M, and for mixed solution of 0.1 NaCl ? 0.01 K2SO4 J = 0.13 M. The
A constant in Eq. (2.41) is dependent on e—the elementary charge value, NA—the
Avogadro number, e0—the vacuum dielectric permittivity, e—the relative
dielectric permittivity of the solution, k—the Boltzmann constant, and T—the
absolute temperature:
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A ¼ e3
ffiffiffiffiffiffi
NA
p

2:3026p4
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 e0ekTð Þ3=2

q

For aqueous solutions at 25 �C, A � 0:512: The first approximation of the
Debye–Hückel theory can be used only for 1:1 electrolytes and only up to
J = 0.001 M. The second approximation of the theory considers the sizes of the
ions. This improvement yields for the single-ion activity coefficient:

log cI ¼ �
AzI

2
ffiffiffi
J
p

1þ aKjelB
ffiffiffi
J
p ð2:43Þ

Here, aKjel is the Kjelland parameter which is roughly equal to the hydrated (or
solvated) ion radius. Values of aKjel for a number of ions are summarized in [14],
see also Table 9.1 in Sect. 9.3. The B constant is as follows:

B ¼ 2e2NA

�
eoekT

� �1=2

For aqueous solutions at 25 �C, B � 0:328: Equation (2.43) can be used for
monovalent ions up to J = 0.1 M and for divalent to J = 0.01 M.

The dielectric permittivity in the vicinity of an ion is different from the average
value of the whole solution. This effect was considered in the third approximation
of the Debye–Hückel theory which yields

log cI ¼ �
AzI

2
ffiffiffi
J
p

1þ aKjelB
ffiffiffi
J
p þ 0:1zIJ ð2:44Þ

Equation (2.44) is suitable even for divalent ions at ionic strength up to 0.1 M.
More advanced theories have been invented by Pitzer and by Robinson and Stokes.
However, at ionic strengths below 0.3 M, these more complicated theories yield
data close to those of the Debye–Hückel theory and therefore hardly needed for the
ISE practice.

It appears a paradox: single-ion activity cannot be measured, but comments are
available on whether a theory, that is, the Debye–Hückel theory can or cannot be
used for a particular situation. The point is that the theory allows for calculation of
a cation and also of an anion activity, and then the multiple can be compared with
the thermodynamically rigorous full electrolyte activity value. This is how the
reliability of such theories is evaluated.
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