


Lecture Notes of the Institute
for Computer Sciences, Social Informatics
and Telecommunications Engineering 106

Editorial Board

Ozgur Akan
Middle East Technical University, Ankara, Turkey

Paolo Bellavista
University of Bologna, Italy

Jiannong Cao
Hong Kong Polytechnic University, Hong Kong

Falko Dressler
University of Erlangen, Germany

Domenico Ferrari
Università Cattolica Piacenza, Italy

Mario Gerla
UCLA, USA

Hisashi Kobayashi
Princeton University, USA

Sergio Palazzo
University of Catania, Italy

Sartaj Sahni
University of Florida, USA

Xuemin (Sherman) Shen
University of Waterloo, Canada

Mircea Stan
University of Virginia, USA

Jia Xiaohua
City University of Hong Kong, Hong Kong

Albert Zomaya
University of Sydney, Australia

Geoffrey Coulson
Lancaster University, UK



Angelos D. Keromytis Roberto Di Pietro (Eds.)

Security and Privacy
in Communication
Networks
8th International ICST Conference, SecureComm 2012
Padua, Italy, September 3-5, 2012
Revised Selected Papers

13



Volume Editors

Angelos D. Keromytis
Columbia University
Department of Computer Science
1214 Amsterdam Avenue, M.C. 0401
New York, NY 10027-7003, USA
E-mail: angelos@cs.columbia.edu

Roberto Di Pietro
Università degli Studi Roma Tre
Dipartimento di Matematica
Largo San Leonardo Murialdo 1
00146 Rome, Italy
E-mail: dipietro@mat.uniroma3.it

ISSN 1867-8211 e-ISSN 1867-822X
ISBN 978-3-642-36882-0 e-ISBN 978-3-642-36883-7
DOI 10.1007/978-3-642-36883-7
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931847

CR Subject Classification (1998): K.6.5, K.4.4, C.2.0-4, E.3, H.4.3

© ICST Institute for Computer Science, Social Informatics and Telecommunications Engineering 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

Secure communications continue having an impact on how society views comput-
ing and communication, as well as to which extent society can really benefit from
the promises set by the ICT revolution. In particular, secure communications
are a fundamental pillar for implementing the “always connected” paradigm.
However, the ubiquity of digital communications has also spread the need for
ubiquitous security.

As a relatively young, growing, and respected community, we are asked to
continuously adapt the solutions for secure communications to cope with the
related, expanding threats. To this extent, the EAI Conference on Security Com-
munication has been a premier venue for researchers in communications privacy
and security to present their latest research in the field. Moreover, it has also
served as a forum for fostering international collaboration to address eminent
security threats faced by our society. In particular, over the last decade we have
seen an evolution in research, from traditional network security to complex secu-
rity problems that cannot leverage conventional techniques. We have witnessed
the emergence of new wireless systems (e.g., RFID, vehicular networks, WSNs),
the widespread deployment of new communication platforms (e.g., smartphones)
and of their applications (e.g., social media), the emergence of e-cash, as well as
an increased interest in forensics issues (e.g., device fingerprinting). However, the
most remarkable trend this year was probably the raising awareness of privacy
issues associated with these emerging technologies.

The SecureComm 2012 call-for-papers attracted 73 submissions from 35 coun-
tries and four continents: Asia, Australia, Europe, and North America. Unfor-
tunately, the acceptance rate set for this conference did not allow us to accept
all the papers with relevant merits. In this respect, special thanks are due to
the TPC members for their handling of the challenging, heavy, and rewarding
task of selecting the papers to be included in the proceedings. We arrived at a
collection of 21 papers presenting relevant, mature, and reproducible research
contributions to be included in these conference proceedings.

The 21 accepted papers can be broadly classified into the following themes:

– Crypto and Electronic Money
– Wireless Security
– Web Security
– Intrusion Detection and Monitoring
– Anonymity and Privacy
– Miscellaneous

In addition to the research papers being presented at the conference, we also
had two exciting keynotes, delivered by Atul Prakash, Professor in Computer
Science and Engineering at the University of Michigan (“Information Confine-
ment on Commodity Systems”) and Sabrina De Capitani di Vimercati, Professor
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in Computer Science at Dipartimento di Informatica Università degli Studi di
Milano (“Protecting Data in the Cloud: Issues and Solutions”).

Last but not least, we are also grateful to the local organizers of SecureComm
2012 for providing a perfect environment for running the conference.

November 2012 Angelos D. Keromytis
Roberto Di Pietro
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DAFA - A Lightweight DES Augmented Finite

Automaton Cryptosystem

Sarshad Abubaker and Kui Wu

Department of Computer Science
University of Victoria, Victoria BC V8P5C2, Canada

{sarshad,wkui}@uvic.ca

Abstract. Unlike most cryptosystems which rely on number theoretic
problems, cryptosystems based on the invertibility of finite automata are
lightweight in nature and can be implemented easily using simple log-
ical operations, thus affording fast encryption and decryption. In this
paper, we propose and implement a new variant of finite automaton
cryptosystem, which we call DES-Augmented Finite Automaton (DAFA)
cryptosystem. DAFA uses the key generation algorithm of the Data En-
cryption Standard (DES) to dynamically generate linear and non-linear
finite automata on the fly using a 128-bit key. Compared to existing fi-
nite automaton cryptosystems, DAFA provides stronger security yet has
similar encryption/decryption speeds. DAFA is also faster than popular
single key cryptosystems such as Advanced Encryption Standard (AES).
The test results on desktop and mobile phones with respect to the run-
ning speed and security properties are very promising.

Keywords: Cryptography, Finite Automata, Symmetric key, Proba-
bilistic encryption.

1 Introduction

Smartphones and other portable devices are rapidly changing people’s daily lives.
More and more sensitive information such as bank accounts, birthdays and health
care details are now carried over these devices, which still lag behind desktop
PC’s in terms of computational capability. Cryptosystems to protect the sensitive
information on these devices must be computationally lightweight, or otherwise
normal applications would be severely crippled when the main horsepower of the
devices is spent on executing security-related primitives.

Most cryptosystems used today rely on problems based on number theory.
In this paper, we explore a new type of single key cryptosystem based on the
invertibility of finite automata (FA) [15,18]. These cryptosystems have relatively
small key sizes and are lightweight in nature. They can be implemented easily in
hardware or software using simple logical operations, thus affording fast encryp-
tion and decryption [15]. The difficulty in inverting non-linear finite automata
and factoring matrix polynomials accounts for the security of these systems.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 1–18, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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An FA cryptosystem can be implemented as either a public-key system or
a single-key system [15]. In the public-key cryptosystem domain, various FA
cryptosystems, termed as FAPKC0, FAPKC1, FAPKC2, FAPKC93, FAPKC3
and FAPKC4 [18,15], have been proposed. Some successful attacks have been
reported on certain types of FA public-key cryptosystems [2,3,5,6]. However, in
the single-key cryptosystem domain, we have not seen any successful attacks on
the FA cryptosystems [15].

In this paper, we focus on the single-key FA cryptosystem and further enhance
its security while maintaining its fast running speed. We make the following
contributions:

1. We design a DES-Augmented Finite Automaton (DAFA) cryptosystem, us-
ing DES to dynamically generate linear and non-linear finite automata on
the fly. While the core encryption and decryption operations are similar to
those used in FAPKC3 [11], DAFA is based on a 128-bit key and the finite
automata are generated using a special modification of the key generation
algorithm used in DES [12].

2. We implement DAFA over smart phones and thoroughly test its performance.
Test results indicate that the statistical properties measured on the cipher-
text using DAFA are satisfactory and in the same range as the properties of
Advanced Encryption Standard (AES) [9]. We also demonstrate that DAFA
is very competitive in terms of speed of operation.

The paper is organized as follows. We begin with a very brief introduction of the
basic concepts of FA cryptosystems in Section 2. We present details of the DAFA
cryptosystem in Section 3 and test its statistical features and running speed in
Sections 4 and 5. We discuss some related work in Section 6 and conclude the
paper in Section 7.

2 Background in FA Cryptosystems

We start with the basic definitions [15].

Definition 1. We define an FA as a five tuple M = 〈X,Y, S, δ, λ〉, where X
denotes the set of all input alphabets, Y denotes the set of all output alphabets,
S denotes the set of all states of the finite automaton, δ is the state transition
function δ : S ×X → S, and λ is the output function λ : S ×X → Y .

In the context of FA cryptosystems, if we use an FA, M , to encrypt plaintext
to ciphertext, we need another FA, M ′, to recover the plaintext. M ′ is called
the inverse FA of M and its construction is based on the invertibility theory of
FA [15].

Definition 2. FA M = 〈X,Y, S, δ, λ〉 is said to be (weakly) invertible with delay
τ if for any input string x0, xi, . . . , xτ and s ∈ S, x0 can be uniquely determined
by the state s and the output string λ(s, x0.......xτ ).
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Definition 3. Given two FA M = 〈X,Y, S, δ, λ〉 and M ′ = 〈Y,X, S′, δ′, λ′〉,
states s ∈ S and s′ ∈ S′ are called a matching pair with delay τ if:

∀α ∈ Xω, ∃α0 ∈ Xn : λ′(s′, λ(s, α)) = α0α,

where |α0| = τ , Xω denotes the set of all infinite words of alphabet X, and Xn

denotes the set of all finite words of alphabet X. In other words, s′ matches s
with delay τ .

Definition 4. M ′ is said to be a weak inverse with delay τ of M if for any
s ∈ S, there exists s′ in S′ such that (s′, s) is a matching pair with delay τ .

As a special case of FA, we can define its state space S = (Yk ×Xh), where Yk

and Xh are sets of strings of length k and h, respectively. This type of FA is
called (h, k)-order memory FA:

Definition 5. M = 〈X,Y, (Yk ×Xh), δ, λ〉 is said to be an (h, k)-order memory
FA, if there is a single-valued mapping φ from Yk ×Xh+1 to Y , such that

y(i) = φ(yi−1, . . . yi−k, xi, . . . xi−h), i = 0, 1, . . .

δ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0) = 〈y0, . . . , y−k+1, x0, . . . , x−h+1〉
λ(〈y−1, . . . , y−k, x−1, . . . , x−h〉, x0) = y0

y0 = φ(y−1, . . . , y−k, x0, x−1, . . . , x−h)

What this means is that M needs k previous outputs and h previous inputs to
generate the current output. As a special case, if the mapping φ is from Xh+1

to Y , M is said to be an h-order input memory finite automaton.

Example 1. Assume that X and Y are input and output sets of 8-bit characters,
respectively. An example (linear) (1, 2)-order FA, M , is represented as follows:

y(i) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 1 0 0 0 1
0 1 1 0 0 1 1 1
0 0 0 0 1 0 1 1
1 1 0 1 1 1 1 0
0 0 0 0 1 0 1 0
0 1 0 1 0 1 0 0
1 1 1 0 1 0 0 1
0 0 1 1 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y(i− 1) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 1 1 1
0 0 0 1 1 1 1 0
0 0 0 0 1 1 0 0
0 0 1 1 0 0 0 1
0 1 1 0 0 0 0 1
0 1 1 0 0 1 1 1
1 0 1 1 1 1 0 1
0 1 0 1 0 0 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
y(i− 2)

+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(i) +

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 1 1 1 0 1
0 0 1 1 0 0 0 0
0 0 0 1 1 0 0 0
0 1 0 1 1 0 0 1
0 0 1 1 1 1 1 0
0 1 0 0 0 1 1 1
0 0 0 1 0 1 0 0
0 0 0 1 0 1 1 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x(i − 1), i = 0, 1, 2, . . . .
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The inverse FA of M with delay 1, M ′, is represented as:

x(i) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

x(i− 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
1 0 0 1 0 1 1 1
1 1 0 1 0 0 1 0
0 1 0 1 1 1 0 0
0 1 1 1 1 1 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 1 0 0
0 1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i+ 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0 0 0
0 0 1 0 0 1 1 0
0 0 1 0 0 0 0 1
1 1 1 0 0 1 1 1
1 1 1 0 1 1 0 0
1 0 1 0 1 1 1 1
0 0 1 0 1 1 1 0
0 1 0 1 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 1 0 0 1 1 1
1 0 1 1 1 1 1 1
1 0 0 1 0 1 0 1
0 0 1 0 1 0 0 1
0 0 1 0 0 1 0 1
0 0 1 1 0 1 1 0
0 1 1 0 1 1 0 0
0 0 1 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 1) +

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 1 1 1 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

y(i− 2), i = 0, 1, . . . .

Assume that the input string isx(0)x(1) =“AB”, i.e.,x(0) = 0X41 = (01000001)T

and x(1) = 0X42 = (01000010)T . Assume that the values in the initial state are
set as x(−1) = y(−2) = y(−1) = (00000000)T . Since M ′ is the inverse ofM with
delay 1, we append an arbitrary character, say x(2) = 0X0 = (00000000)T , to
the input string. We can then use M to generate output string (i.e., ciphertext)
y(0) = 0X00, y(1) = 0X01, y(2) = 0X7B, and we can useM ′ to recover the input
string x(0)x(1) =“AB”.

The above example is for illustration purpose only. Obviously, in practice, an FA
is much more complex and could be linear or non-linear depending on how it is
constructed. In a non-linear finite automaton, the degree of the polynomial that
constitutes the FA is greater than one. Due to space limit, please refer to [15]
for the details on the construction of linear/non-linear FA and the combination
of several FA.

3 DES-Augmented Finite Automaton (DAFA)
Cryptosystem

3.1 Basic Idea

In the section we present a new version of the single-key FA cryptosystems. Our
idea is to apply the key generation algorithm of the popular and widely-used
Data Encryption Standard (DES) [12] to the key generation process of FA cryp-
tosystems. The high-level block diagram of DAFA cryptosystem is illustrated
in Fig 1. In particular, DAFA operates on 64-byte plaintext blocks, and uses
μ pairs of linear and nonlinear FA for encryption and decryption, where μ is a
system parameter given by users. It includes three main functional components,
namely (a) key processing, (b) generation of automata and starting states, and
(c) encryption and decryption, which we will introduce in the sequel.
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       K1,k3,k5......     
   
          k2,k4,k6.......    

       
 

                                                      μ pairs of linear/non-linear automata 
                                                                                                                                   encrypt successive blocks.   

64 byte Input Block 
(Plaintext) 

 
Linear Automaton 

 
Non-Linear Automaton 

128 bit Key 

 
DES Based Key Generation 

Algorithm 

 

16 sub-keys (96 bit) 
 (k0,k1.... k16) 

(64+τ0+τ1)  byte output 
Block (Ciphertext) 

Starting States from 
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Fig. 1. High level block diagram of DAFA cryptosystem

3.2 Key Processing

We first need to describe the special treatment of the shift and permutation
tables. DAFA uses various permutation tables for its operation, similar to the
original DES cryptosystem. The permutation tables are randomly chosen. How-
ever, we test the tables to ensure that the permuted output is evenly spread
across the entire input, and no two bits of the output are derived from the same
bit of the input. Care has also been taken to ensure that there are no similar or
repeating patterns among any two permutation tables. For the shift table SH-1,
the sum total of all left shifts for the sixteen subkeys is 56 to ensure that at the
end of the shifting process, the subkeys represent all bits of the main key and
that changing even one bit of the main key will significantly affect all sixteen
subkeys. An example PC-1 permutation table and an example SH-1 shift table
are shown in Table 1 and Table 2, respectively.

Table 1. The PC-1 Permutation Table

57 49 41 33 25 17 9 71 105 108 72 93 78 120
1 58 50 42 34 26 18 75 86 92 104 107 83 111
10 2 59 51 43 35 27 65 102 87 99 69 95 3
19 11 127 60 52 44 36 77 116 94 118 122 74 124
63 55 47 39 31 23 15 89 98 66 112 88 81 126
7 62 54 46 38 30 22 106 113 110 119 115 79 6
14 128 61 53 45 37 29 73 90 84 97 101 114 123
21 13 5 28 20 12 4 85 67 100 80 125 70 91

DAFA is based on a 128-bit (main) key. This key is processed using a key gener-
ation algorithm similar to DES. This algorithm creates 16 subkeys, each of which
are 96 bits in length and are created using the 128-bit (main) key. These subkeys
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Table 2. The SH-1 Shift Table

Key Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Left Shifts 2 2 4 4 4 4 4 4 2 4 4 4 4 4 4 2

are then used to create the finite automata during encryption/decryption. The
required starting states are also derived from the subkeys. The steps for creating
the 16 subkeys are as follows:

– Step 1: The 128-bit key is initially permuted and shortened to 112 bits,
according to the PC-1 permutation table. For example, using Table 1, the
first bit of the new 112-bit key is the 57th-bit in the 128-bit key, and the
second bit of the new 112-bit key is the 49th-bit in the 128-bit key, and so
on till the 91st bit of the original key becomes the 112th bit of the permuted
key.

– Step 2: The 112-bit key so formed is now split up into left and right halves,
each 56 bits long. We denote these halves as L0 and R0 respectively. We now
form 16 blocks Ln and Rn for n = 1, 2, 3, . . . , 16. More specifically, Li and Ri

are obtained by left shifting Li−1 and Ri−1, i = 1, 2, 3, . . . , 16, respectively,
according to the shift table SH-1. By left shift, we mean that we move each
bit one place to the left, and the first bit is cycled to the end of the block.
For instance, according to the first row of the example shift table (SH-1)
shown in Table 2, L1 and R1 are obtained by left shifting twice of L0 and
R0, respectively. In this way, we get 16 pairs of subkeys each 56 bits long.

– Step 3: We now concatenate the Li and Ri pairs (i = 1, 2, . . . , 16) to form
16 subkeys which are each 112 bits long. This 112-bit key is now permuted
according to another permutation table PC-2 (e.g., as shown in Table 3). The
example in Table 3 permutes each key to a 96-bit key. The bit numbers 9, 18,
22, 25, 35, 38, 43, 54, 64, 72, 80, 83, 96, 99, 102 and 108 are discarded in this
process for each of the 112-bit keys. The choice of discarded bits is random,
and given that the shift table performs a complete rotation through all 56
bits of each half of the key, this choice does not expose any vulnerability
which may aid in cryptanalysis of the cipher. Thus we now have sixteen
96-bit keys generated in a fashion similar to that in the DES cipher.

Table 3. The PC-2 Permutation Table

14 17 11 24 1 5 60 87 82 105 63 70
3 28 15 6 21 10 77 73 98 86 76 57
23 19 12 4 26 8 65 94 106 111 92 81
16 7 27 20 13 2 88 85 57 109 71 66
41 52 31 37 47 55 69 93 110 104 112 78
30 40 51 45 33 48 75 79 103 67 101 91
44 49 39 56 34 53 90 100 62 107 97 68
46 42 50 36 29 32 58 95 74 84 89 61
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3.3 Generation of Automata and Starting State

Once the subkeys have been derived, we need to generate the automata which will
be used for encryption and decryption. The starting states for these automata
will also need to be generated from the subkeys. The steps involved in this
process include:

– Step 1: First we need to generate μ pairs of linear and non-linear finite au-
tomata for the cryptosystem. These finite automata will be derived using the
generated subkeys described above. The linear automaton is (h0, k0)-order
memory invertible linear FA with delay τ0, and the non-linear automaton is
h1-order input memory FA invertible with delay τ1, where all h0, k0, τ0, h1, τ1
are system parameters.

– Step 2: For the linear automaton, we need to generate h0 + k0 matrices as
the component matrices for generating the finite automaton. We also need
to generate τ0 full rank matrices. The specifics of how this can be generated
using the subkeys is as follows. For the first h0 + k0 component matrices, we
use alternate subkeys K1, K3, K5 and so on in a circular manner, rolling
over to the beginning when we reach K16. Since we need only 64 bits in order
to construct an 8X8 bit matrix, we use three permutation tables M-1, M-2
and M-3 (e.g., as shown in Tables 4, 5, 6) to derive 64 random bits from the
96-bit keys, using the similar operations as those in the PC-1 table (refer to
Step 1 in Section 3.2). These three permutation tables are used in sequence
in a cyclical manner. As each 64-bit represents an 8X8 matrix, we therefore
have the h0 + k0 component matrices.

Table 4. The M-1 Permutation Table

8 34 76 13 28 2 56 7
74 20 58 40 73 31 46 79
16 59 1 47 80 91 14 22
4 32 26 55 17 77 82 83
23 65 49 68 35 61 88 95
44 29 19 62 85 5 50 37
71 11 53 38 89 52 94 92
43 64 70 86 25 67 41 10

Table 5. The M-2 Permutation Table

86 65 82 90 49 72 87 13
69 14 89 85 92 4 66 95
27 64 38 80 71 26 91 83
70 3 81 68 63 50 84 94
40 48 10 1 39 78 5 75
28 19 24 25 60 51 61 67
6 46 34 44 52 33 8 59
12 32 18 58 43 7 29 17
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Table 6. The M-3 Permutation Table

2 83 88 92 94 48 93 89
74 87 26 35 85 75 16 84
17 47 71 8 29 11 80 25
39 12 30 44 78 53 21 66
56 65 34 76 3 70 43 67
31 22 62 49 52 7 69 79
4 40 15 61 24 42 13 58
38 51 6 20 57 96 33 60

In order to create the τ0 full rank matrices, a slightly different approach is
adopted. The τ0 matrices are generated using the same method as for the
first h0 + k0 matrices. However, to guarantee that these matrices to be full
rank, we need extra processing as follows:

– First we derive the decimal representations of the 8 component bytes
that make up each of the matrices so derived and raise them mod 8.
If two successive values (mod 8) are the same, then the second value is
incremented by 1.

– Next we make the matrices lower triangular (for linear automaton ma-
trices) or upper triangular (for nonlinear automaton matrices) by setting
all values in the diagonal to 1 and all values below or above the diagonal
to 0. This ensures that our resultant matrices are full rank.

– Finally we use the decimal values derived earlier to carry out two rounds
of four row swaps and additions. For example, assume that the 8 decimal
values derived are 1,7,3,6,2,0,5 and 4. For round one, we first swap rows
1 and 7 and then add row 6 to row 3. Then we carry out the inverse of
this operation, i.e. we now swap the rows 3 and 6 and then add row 7 to
row 1 for a total of four row adds and swaps. In round two, we perform
an identical operation with the last four decimal values. We first swap
rows 2 and 0 and then add row 4 to row 5. Then we carry out the inverse
of this operation, i.e. we now swap the rows 5 and 4 and then add row
0 to row 2. Since only basic row swaps and additions are performed,
the resultant matrix will be full rank. Using this process, we can create
random, full rank matrices for use in construction of the finite automata
as normal (refer to [15] for the construction of finite automata using
given matrices).

– Step 3: For the nonlinear automaton, we need h1 + 1 component matrices.
These are generated as in Step 2, except that they use the even set of subkeys
K2, K4 and so on in a circular manner, rolling over to the beginning when
we reach K16. Also, as before, we use the permutation tables (e.g., M-1, M-2
and M-3) to derive the 64 random bits from the 96-bit keys. We also need τ1
full rank matrices which are derived in a manner similar to that for the linear
automaton. These component matrices, once derived, are used to create the
nonlinear finite automaton as normal [15].
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– Step 4: After generation of each linear/nonlinear automaton, we derive the
starting state for that particular automaton before proceeding to generate
the next one. The starting state is derived from alternate subkeys imme-
diately following the last key that was used to generate a particular finite
automaton. For instance, if the first linear automaton was generated, (say)
using subkeys K1, K3 and K5, then the three 8 bit vectors that will be
required as the starting state of this automaton are generated from the se-
quential keys K7, K9 and K11. For this purpose, we use random look up
tables (e.g., tables SS-1, SS-2 and SS-3 shown in Table 7). These tables are
used alternately in order to provide confusion as to the selection of the 8 bits
from the 96-bit subkeys. That is, if SS-1 is used on K7 to generate the first
vector, then SS-2 will be used on K9, and SS-3 on K11. This cyclical process
will continue for each of the starting states required for all μ pairs of linear
and nonlinear automata.

Table 7. The Starting State Permutation Tables

SS-1 1 5 9 13 95 91 87 83

SS-2 40 56 9 16 11 91 34 61

SS-3 17 29 32 46 54 65 77 85

Note that the automaton and starting state creation process is designed in a
manner to increase confusion and prevent cryptanalysis. This also provides
for greater diffusion in the final ciphertext once encryption is performed.
Based on our implementation, it has been observed that since they are based
on simple bit operations, the generation of automata and starting states takes
very little time even for large values of h0, k0, τ0, h1, τ1 and μ.

3.4 Encryption and Decryption

As shown in Fig. 1, for encryption and decryption, the plaintext is split up into
64-byte blocks. Each block is encrypted with a linear and nonlinear automata
pair in succession. Since there are μ different linear/nonlinear automata pairs,
these are alternately cycled by the algorithm for each successive block.

As illustrated in Section 2, each FA needs to set an initial state (e.g., the
values of x(−1), y(−1), y(−2) in Example 1). Clearly, the number of bytes in the
initial state depends on the parameters of the FA (i.e., the values of h0, k0, τ0, h1

and τ1 in our DAFA cryptosystem). To enhance security, when we use alternative
linear/nonlinear FA pairs, we create dynamic initial states by allowing each block
(except the first one) to use the last portion of the ciphertext in the previous
block as the starting state. In this way, if a single bit of the plaintext is altered,
the ciphertext undergoes a drastic change.

Example 2. Assume that μ has a value of 2. Then two linear/nonlinear automata
pairs are generated by the algorithm, denoted by (L1, NL1) and (L2, NL2),
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respectively. Assume that we split the plaintext into 64-byte blocks. For every
eight blocks, denoted by B1, B2, . . . , B8, we can create the ciphertext c as:

c = BL1,NL1

1 BL2,NL2

2 . . . BL1,NL1

7 BL2,NL2

8

where BL1,NL1

i (i = 1, 3, 5, 7) returns the ciphertext of Bi encrypted using L1

and NL1 in sequence, and BL2,NL2

j (j = 2, 4, 6, 8) returns the ciphertext of Bj

encrypted using L2 and NL2 in sequence (refer to Example 1 for the operation).
Note that the initial states of L1 and NL1 when encrypting B1 is randomly
selected, but the initial states of FA when encrypting other blocks use the output
of ciphertext from the previous block, i.e.,

BL1,NL1

1 −→ BL2,NL2

2 −→ BL1,NL1

3 . . . −→ BL2,NL2

8 ,

where −→ means setting up the initial state.
Decryption is carried out in the reverse order. Assume that the ciphertext is

split up into eight 64-byte blocks C1, C2, ....., C8. The plaintext p will be gener-
ated as follows:

p = C
NL′

1,L
′
1

1 C
NL′

2,L
′
2

2 . . . C
NL′

1,L
′
1

7 C
NL′

2,L
′
2

8

where NL′
i and L′

i are the inverse FA of NLi and Li(i = 1, 2, . . . , 8), respectively,

C
NL′

1,L
′
1

i (i = 1, 3, 5, 7) returns the plaintext of Ci decrypted using NL′
1 and L′

1

in sequence, and C
NL′

2,L
′
2

j (j = 2, 4, 6, 8) returns the plaintext of Cj decrypted
using NL′

2 and L′
2 in sequence (refer to Example 1 for the operation).

3.5 Features of the DAFA Cryptosystem

The DAFA cryptosystem has some nice features, including:

– It uses a 128-bit key. Unlike the traditional finite automaton cryptosystems,
the key consists of a 128-bit string - not a collection of finite automata
and starting states. The underlying finite automata and starting states are
dynamically generated on the fly using a special modification of the key
generation algorithm used in DES.

– The key space is 2112 bits long. Though a 128-bit key is used, 16 bits are
discarded by the initial permutation, similar to DES. This security level is
equivalent to that provided by triple DES, which is commonly regarded as
sufficient for most applications.

– A new parameter, μ, is introduced to determine how many linear/nonlinear
automaton pairs are to be generated and used for encryption/decryption
purposes.

– The plaintext is split up into 64-byte blocks. Each block is encrypted by
a linear and nonlinear automaton pair in succession. Further, there are μ
different linear/nonlinear automaton pairs and these are alternately cycled
by the algorithm for each new block. The size of each block may be user
defined if required.
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– Since μ can take any positive integer values, cryptanalysis on the resultant
cipher is difficult since firstly, each automaton uses the encrypted values of
the previous block as part of its starting state and secondly τ0 + τ1 random
characters are added at the end of each block for encryption. This leads to
probabilistic encryption results [8], as discussed in our later security analysis.
The addition of two random characters to each 64-byte block of plaintext
results in roughly a 3% increase in the size of the ciphertext. However, this
can be reduced, if required, by increasing the size of the plaintext blocks to
either 128 or 256 bytes.

– Though DAFA’s key generation time is slightly larger (depending on μ)
than that of the existing FA cryptosystems, the speed for encryption and
decryption remains essentially the same. The security of DAFA, however, is
vastly increased due to the introduction of extra randomness via the random
characters appended in each block.

4 Security Analysis

The security of the FA cryptosystem has been discussed in [15]. Since DAFA
consists of the same core components (i.e., the linear and nonlinear FA) used in
these cryptosystems, the security of DAFA is at least as much as that afforded
by these cryptosystems. Currently, there is no known attacks successful to break
the single-key FA cryptosystems. In addition, the use of different automata pairs
and keys along with the block-based encryption scheme introduces further ran-
domness in the algorithm and enhances the security. We conduct extensive tests
to illustrate its strong statistical properties.

4.1 Probabilistic Encryption

To be semantically secure and to avoid chosen plaintext attacks, an encryption
algorithm must be probabilistic [8]. Nevertheless, most of the commonly-used
single key cryptosystems such as DES and AES are deterministic in nature, i.e.,
given a particular plaintext and a particular key, they always encrypt to the same
ciphertext. In order to achieve probabilistic encryption, DES and AES need to
use other mechanisms, e.g., working with Cipher Block Chaining (CBC) [7]. In
contrast, our DAFA cryptosystem integrates random padding into every block of
text encrypted, resulting in a truly probabilistic symmetric encryption scheme
that produces a different ciphertext each time encryption is done - even if the
plaintext and the keys remain unchanged!

Two main reasons contribute to this nice feature. First, for every 64-byte block
of plaintext encrypted, τ0 + τ1 random characters are appended at the end for
encryption with the linear/nonlinear automaton pair. This is significant because
it produces a cascading effect which alters the entire block depending on the
random bytes added at the end. Second, h0 + k0 bytes need to be derived from
the 128-bit key as the starting state for the first linear automaton used and h1
bytes need to be derived as the starting state for the first nonlinear automaton
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used. For the first block of data, these starting states remain constant depending
on the key used. However, for all subsequent blocks, part of the encrypted values
of the random characters added at the end of the current block are used as the
starting state for encrypting the next block of plaintext. Thus, the starting state
for the next block is random, resulting in a significant change in the ciphertext
even when the same plaintext is encrypted with the same key multiple times.

In general, τ0+τ1 random bytes are added to each block of plaintext processed
which also affects the subsequent blocks since their encrypted values are used
as the starting states for encrypting the next block of ciphertext. This results
in a completely probabilistic encryption scheme, rendering our cryptosystem
semantically secure and indistinguishable under a chosen plaintext attach (IND-
CPA) [8]. This means that the ciphertext hides even partial information about
the plaintext. This is evident from the statistical tests carried out on the cryp-
tosystem. It adds an element of randomness to every encryption procedure and
prevents partial decryption of ciphertext by ensuring that an adversary cannot
recover any portion of the plaintext without knowing the decryption key.

4.2 Multiple Keys and Alternating Automaton Types

As we have seen, the 128-bit key is processed by a sophisticated key generation
algorithm in order to produce sixteen 96-bit subkeys. These subkeys are used
to generate the finite automata used by the algorithm. The keys are used cycli-
cally, and the encryption algorithm uses 2μ different keys to construct different
automata, among which half of the constructed automata are linear and the
other half are nonlinear. Security is considerably enhanced as a result of these
alternating linear/nonlinear automaton pairs. Each pair is applied alternately
on successive blocks of text with the encrypted values of one block being used
as the starting state of the automaton in the next block. This introduces a high
degree of complexity making cryptanalysis difficult.

4.3 Statistical Analysis

We use ENT- a pseudo random number sequence test program [20] to test DAFA
cryptosystem. The statistical tests are similar to those in [14]. In order to ana-
lyze if some statistical features in the plaintext carry over into the ciphertext,
it is advantageous to start with plaintext which consists of highly patterned
bytes and which uses a uniform key (an example of a uniform key would be
PPPPPPPPPPPPPPPP). All tests have been conducted using a mix of multi-
ple randomly generated as well as uniform 128-bit keys.

All plaintext files are 4KB in size. Four different types of plaintext have been
tested. The first type, labeled as pt1, consists only of repetitions of the 32-
byte sequence AAAABBBBCCCCDDDDEEEEFFFFGGGGHHHH. The second
type, pt2, consists of all zeros. The third type, pt3, consists of all ones, and the
fourth type, pt4, consists of random English text.

A total of 1000 test runs were conducted on the ciphertexts created with
different random and uniform keys as explained earlier. The tests were conducted
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separately for two levels of security. In the first case, we use h0 = 1, k0 = 2, τ0 =
1, h1 = 2, τ1 = 2 and μ=7. We will refer to this security level as DAFA-121227.
The second case uses a security level of h0 = 2, k0 = 3, τ0 = 2, h1 = 3, τ1 = 3
and μ=7, which we will refer to as DAFA-232337. Generally speaking, higher
values result in a higher security level but a slower system, because more finite
automata are used in the key generation and encryption/decryption processes.
We also present the statistical results of the same tests on plaintexts encrypted
using AES with a 128-bit key, under CBC mode for ready reference. We will refer
to this as AES-128 in the remainder of this section. We conducted five types of
test as follows.

Tests for Entropy. Entropy was first introduced by Claude Shannon [13] and
is a measure of the uncertainty associated with a random variable. It refers to
the expected value of the information contained in a byte of data. In other words,
entropy refers to the density of the content or information contained in a file,
expressed as a number of bits per character. Files which are extremely dense
in information (close to 8 bits/byte) can be considered to be random. Our tests
show that files encrypted with the DAFA cryptosystem, even with a lower level of
security (DAFA-121227), demonstrate high average entropy (equivalent to that
of AES with a 128-bit key under CBC mode) with very low levels of standard
deviation. Table 8 shows the results of our entropy tests.

Table 8. Results for entropy tests using AES-128, DAFA-121227 and DAFA-232337

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) (bits/byte) (bits/byte) (bits/byte) (bits/byte)

Avg S.D. Avg S.D. Avg S.D.
pt1 (AAA. . . HHH) 3.00200 7.95488 0.00407 7.95578 0.00915 7.95793 0.00373

pt2 (00000000. . . ) 0 7.95479 0.00402 7.94977 0.03572 7.95770 0.00381

pt3 (11111111. . . ) 0 7.95485 0.00414 7.94943 0.03465 7.95793 0.00358

pt4 (English Text) 4.87487 7.95477 0.00405 7.95653 0.00394 7.95818 0.00368

Chi Square (χ2) Tests. The χ2 test [1] with 255 degrees of freedom is a
common test for measuring the randomness of data. The chi-square distribution
in our tests is calculated for a stream of bytes and is expressed as an absolute
number and a percentage which indicates how frequently a truly random number
sequence would exceed the calculated value [1,20]. In our test, we use χ2

0.01,255

to test whether a given data sequence is random. We consider the test successful
if the calculated χ2 value [1] is smaller than the value of χ2

0.01,255.
As mentioned earlier, multiple tests were conducted with different uniform

and random keys. Note that the results for the first three types of plaintext are
for worst case scenarios where the plaintext is well patterned. The test result
for the fourth type of plaintext is what would be the normal case scenario.
As before, test results for AES-128 are also presented with DAFA-121227 and
DAFA-232337 for ready reference. As is evident from Table 9, the test results
for DAFA, even at the lower level of security, are comparable to AES-128.
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Table 9. Results for χ2 tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Test Runs AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) (Unique Keys) % Tests Passed % Tests Passed % Tests Passed

pt1 (AAA. . . HHH) 1000 97.9 96.5 97.9

pt2 (00000000. . . ) 1000 98.0 84.1 98.0

pt3 (11111111. . . ) 1000 97.3 85.1 97.4

pt4 (English Text) 1000 97.2 97.2 98.6

Arithmetic Mean Tests. For the Arithmetic Mean (AM) test [20], we add the
values of all the bytes in the file and divide it by the file length. If the data is ran-
dom, this should be about 127.5 since there are 256 possible ASCII values that
each byte of data can represent. Almost all results for our cryptosystem show val-
ues very close to 127.5. Table 10 shows the average arithmetic mean calculated
from 1000 tests conducted on each type of plaintext with different keys.

Table 10. Results for AM tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) A.M Avg. A.M. Avg. A.M. Avg. A.M.

pt1 (AAA. . . HHH) 68.48000 127.52812 127.52098 127.51560

pt2 (00000000. . . ) 47.99000 127.44284 127.46245 127.44099

pt3 (11111111. . . ) 48.99000 127.49717 127.445632 127.433334

pt4 (English Text) 70.64840 127.49981 127.48059 127.57606

Tests for Monte Carlo Value for Pi (π). In the test for the Monte Carlo
Value for Pi [10], successive 6-byte blocks of data are used as the source for
plotting the X and Y coordinates within a square, using 24-bits for each axis.
The number of points which fall within a circle inscribed in the square is used
to approximate the value of Pi. As the number of points increases, the value
will approach the correct value of Pi if the sequence is random [20]. Our tests
in Table 11 show high accuracy in the Monte Carlo tests with a very low error
percentage in the estimated value of Pi.

Table 11. Results for Monte Carlo tests for value of Pi

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) Pi Error% Avg. Pi Error% Avg. Pi Error% Avg. Pi Error%

pt1 (AAA. . . HHH) 4.00 27.32 3.14010 0.0474 3.14077 0.0261 3.14064 0.0302

pt2 (00000000. . . ) 4.00 27.32 3.13981 0.0566 3.13996 0.0518 3.14270 0.0353

pt3 (11111111. . . ) 4.00 27.32 3.13977 0.0579 3.14192 0.0105 3.14153 0.0019

pt4 (English Text) 4.00 27.32 3.14125 0.0108 3.14188 0.0092 3.13651 0.1617

The Serial Correlation Coefficient. The degree to which neighboring bytes
are related to each other are measured by the Serial Correlation Coefficient
(SCC). The lower the relation, the lower the value of this measure. If the bytes
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are totally uncorrelated, the SCC would be close to zero [20]. Table 12 shows the
results of the SCC tests. We can see that in our results this value almost always
converges close to zero for both levels of DAFA security tested. Note that the
SCC for pt2 and pt3 is undefined since all values are equal [20].

Table 12. Results for SCC tests using DAFA-121227, DAFA-232337 and AES-128

Plaintext Type Plaintext AES-128 DAFA-121227 DAFA-232337
(Size 4 KB) S.C.C. Avg. S.C.C. Avg. S.C.C. Avg. S.C.C.

pt1 (AAA. . . HHH) 0.71926 -0.00031 -0.00015 -0.00019

pt2 (00000000. . . ) undefined 0.00023 0.00009 -0.00068

pt3 (11111111. . . ) undefined -0.00020 0.00012 -0.00044

pt4 (English Text) 0.46831 -0.00026 -0.00074 -0.00005

In addition to the tests over text files, we also conducted the five types of
tests of DAFA on a classic image, Lena. The test results are shown in Figure 2.

To summarize, all tests conducted with DAFA are satisfactory regarding the
randomness in the ciphertext. As is evident from both the encrypted text and
image files, there are no statistical patterns relating the original plaintext or
image with the encrypted version.

Before Encryption After Encryption
Entropy 4.488642 7.999389
χ² Dist & Random % 3032081 0.01% 222.95 92.70%
Mean (Random: 127.5) 21.4564 127.6129
Monte Carlo Pi & Error % 3.999726 27.32% 3.147025 0.17%
SCC (Random: 0) 0.219906 -0.0008

Fig. 2. Results after encryption of a bitmap image
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5 Encryption/Decryption Speed

We implemented DAFA in Java as a proof of concept in order to demonstrate its
robust statistical properties and lightweight nature. We tested the performance
of DAFA, as well as the AES cryptosystem with a 128-bit key using Cipher
Block Chaining(CBC) for reference, on both an Intel Core 2 Duo 2.16 GHz
desktop with 3GB RAM and the Nokia N900 Internet Tablet which has an ARM
Cortex A8 600MHz processor with 256MB RAM. As shown in Table 13, DAFA
greatly outperforms AES in terms of average encryption/decryption speed. The
results shown in Table 13 are the average of 50 tests conducted on each file size
with each test reflecting the average throughput for one complete encryption
and decryption cycle. Note that since the DAFA encryption and decryption
algorithms have similar operations on finite automata, the throughput for both
are nearly identical.

Table 13. Average encryption and decryption throughput

Platform Filesize AES-128 DAFA-121227 DAFA-232337
(KB) (Kbit/sec) (Kbit/sec) (Kbit/sec)

Intel Core 2 Duo 4 516.13 2909.09 2133.33
2.16Ghz, 3GB RAM 100 7476.64 12500.86 11940.30

1024 47080.46 49652.76 47851.74

Nokia N900 4 57.45 592.59 542.37
600MHz, 256MB RAM 100 1219.51 1523.81 1338.35

1024 3955.63 4264.45 4016.32

Performance in Java is largely dependent on the JVM (Java Virtual Ma-
chine) implementation. The code is initially interpreted but parts are compiled
at runtime using JIT (Just in Time) compilation [4] to boost performance for
computationally intensive code. This is the main reason why generally we find
that a Java program starts off slower when it is being interpreted and then
rapidly picks up speed as the JIT compilatio n occurs. This can be seen in the
performance results for both the AES as well as DAFA programs, where the
throughput achieved is lower for the smaller files as compared to the larger ones.

The AES implementation in our test uses the Java JCE (Java Cryptographic
Extension) library which is highly efficient and has been carefully optimized.
Standard libraries in Java are largely programmed using native code which is
much faster in terms of performance. In our profiling tests using the -Xprof
option in Java, we found that roughly 25.58% of the computation time for AES
encryption/decryption were handled by native method calls as compared to only
3.14% in our DAFA implementation. This is why with files of larger sizes, the
relative performance of AES with respect to DAFA improves. Despite these facts,
DAFA is very competitive in terms of speed even without speed and memory
optimization, on both test platforms.
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6 Related Work

Finite automata based public key cryptography termed FAPKC0 was introduced
in [16] in 1985. Since then various public key cryptosystems based on finite
automata have been proposed like FAPKC1, FAPKC2, FAPKC93, FAPKC3 and
FAPKC4 [17,18,19]. In contrast to this, fewer single key cryptosystems based on
finite automata have been proposed though the underlying theory behind both
are similar. An excellent source for comprehensive information about both single
and public key cryptosystems based on finite automata is [15]. A few attacks and
suggestions on how to avoid them have been proposed in [2,3,5,6] for public key
cryptosystems. However, in the single-key cryptosystem domain, we have not
seen any successful attacks so far [15]. For a detailed and clear discussion about
construction of finite automata required for public key cryptosystems, on which
DAFA is based, readers are referred to [11]. DAFA presents an improvement
on these schemes by firstly utilizing a compact key to generate finite automata
on the fly and secondly by utilizing μ pairs of different linear and non-linear
finite automata for encrypting successive blocks in order to increase the security
afforded by the overall system.

7 Conclusion

In this paper we proposed and implemented a new variant of finite automaton
cryptosystem, termed as DAFA, which uses DES to dynamically generate linear
and non-linear finite automata on the fly using a 128-bit key. We conducted
comprehensive statistical as well as running speed tests of DAFA on a desktop
computer and on a smartphone. DAFA demonstrates strong security properties
comparable to 128-bit AES, and it runs faster than AES. While our current
DAFA implementation is based on Java as a proof of concept, we believe that
there is large room to further improve its running speed if memory and code
optimization were conducted or if implemented in assembly or C language. We
expect that FA based cryptosystems, particularly the augmented variants such
as DAFA, will earn credibility in the applied cryptographic world as a viable
alternative to current cryptosystems and stand the tests of further cryptanalysis.
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Abstract. P-homomorphic signature is a general framework for comput-
ing on authenticated data, which is recently proposed by Ahn et al. With
P-homomorphic signature, any third party can derive a signature on the
object messagem′ from a signature ofm, ifm′ andm satisfy P (m,m′) = 1
for some predicate P which denotes the authenticatable relationship be-
tween m′ and m. Ahn et al. proposed a RSA P-homomorphic signature
scheme by using a RSA accumulator, which is very efficient in space. How-
ever, the computational cost of verification and derivation is very heavy.
We present an improved P-homomorphic signature scheme based on fac-
toring problem. In our construction, the time efficiency of both verification
and derivation are much better than Ahn’s scheme.

Keywords: P-homomorphic signature, signature derive, factoring prob-
lem, cloud computing.

1 Introduction

With the development of cloud computing, many secure problems have been
proposed. One of the most important problem is that it’s too much of a secu-
rity risk to give a public cloud provider such as Amazon or Google access to
unencrypted data. While data can be sent to and from a cloud provider’s data
center in encrypted form, the servers that power a cloud can’t do any work on
it that way. In 2009, Gentry proposed a fully homomorphic encryption scheme
to make it possible to analyze data without decrypting it [1]. Up to now, some
homomorphic encryption schemes have been proposed[1–3], while only a few
homomorphic signature schemes have been presented.

In the past few years, there are about three research classes which have touch
on this area: quoting/redacting signature, arithmetic signature, transi-
tive signature. Quoting/redacting signature [4–8] is that given Alice’s signature

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 19–28, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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on some messagem, any one can derive Alice’s signature on a subset of m. Quot-
ing/redacting signature is specially applied to signed text message and signed
images. Arithmetic signature [9–13] is motivated by the application of secure
network coding, which is that given Alice’s signature on vectors v1, · · · , vk ∈ Fn

p ,
any one can derive Alice’s signature on a vector in linear span of v1, · · · , vk. In
transitive signature[14–18], given Alice’s signature on edges in a graph G, any
one can derive Alice’s signature on a pair of vertices u, v, if there exists a path
from u to v in G.

Recently, Ahn et al. put forth a general framework of computing on signed
data[19], which can cover all the three classes research above. Their definition
is instantiated with any predicates, and allows to repeat derivation on the sig-
natures. They call this general framework slightly homomorphic signature or
P-homomorphic signature. In [19], they provide two general constructions for
computing signatures on any univariate, closed predicates, namely predicates
P (M,m′) where M only contains a single message and if P (a, b) = P (b, c) = 1
then P (a, c) = 1. The first construction is a brute force construction from any
signature. Soundness of this construction follows from the underlying signature
scheme. However, the signatures in this construction may become very large,
which effects both the signing time and signature size. The second construction
is a RSA accumulator-based construction, which can produce a short signature,
but the computational cost of both verification and derivation is even worse than
the first construction. The prime search component of hash function is the dom-
inant factor. Ahn et al. [19] also proposed the third efficient construction, which
is only suitable for quoting substrings and not a generic solution. Furthermore,
the signature derivation procedure in this construction is very complex.

In this paper, we propose an improved generic construction of P-homomorphic
signature from Ahn’s RSA accumulator based construction. Our scheme is effi-
cient in both in space and computational costs. The rest of this paper is organized
as follows: In the next section, we review some preliminaries related to our con-
struction. Then, we review Ahn et al.’s construction in Section 3. In Section 4,
we propose our improved scheme. The security properties will be analyzed in
Section 5. We conclude in Section 6.

2 Preliminaries

2.1 Some Concepts in Number Theory

Let N = p × q be a composite modulus, where p and q are two large prime
numbers. Let QN denote the subgroup of squares in Z∗

N . Then, it is well known
that QN is a cyclic group with order φ(N)/4 = (p− 1)(q − 1)/4 [20].

Factoring Problem. given a k-bit composite N, which is a multiple of two
large primes p and q, to output p or q. Factoring problem is usually considered
as a hard problem.

Theorem 2.1. Let a ∈ QN , N = p × q, where p, q are large primes and p =
2p′ + 1, q = 2q′ + 1. p′ and q′ are also large primes. Then a2d ≡ a (mod N),
where d = (N − p− q + 5)/8.
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Proof. Since d = (N−p−q+5)
8 = (p−1)(q−1)+4

8 = 4p′q′+4
8 , then a2d = ap

′q′+1 = a
(mod N).(We note that φ(N)/4 = (p− 1)(q − 1)/4 = p′q′.)

Indeed, Theorem 2.1 provides a way to compute one square root of a quadratic
residue a ∈ QN .

To further understand the algorithm of computing a 2lth root of a quadratic
residue, let us introduce the following theorem.

Theorem 2.2. Let N = p × q, where p, q are large primes and p = 2p′ + 1,
q = 2q′ + 1. p′ and q′ are also large primes. If a = x2 ∈ QN , then ad ∈ QN .

Proof. Since p′ and q′ are also large primes, then p′ = 2k + 1 and q′ = 2k′ + 1

for some integer k and k′. Then,d = (N−p−q+5)
8 = 4p′q′+4

8 = 2kk′ + k + k′ + 1 is
an integer. So we have ad = x2d = (xd)2 (mod N). Thus, ad ∈ QN .

From Theorem 2.1 and Theorem 2.2, we can know that a square root of
a ∈ QN computed by ad (mod N), still stays in QN . Therefore, a 2lth root of

a can be computed as ad
l

(mod N),where dl is computed over Zp′q′ .
Let N be a multiple of two large primes p,q and a ∈ QN . If s1 and s2 are

two square roots satisfying s1 	= ±s2 (mod N), then N could be factored by
computing GCD(s1+s2, N) or GCD(s1−s2, N) as the non-trivial divisor of N .
However, if s1 = ±s2 (mod N), it will be no useful to the factorization of N .
Thus, if given two random square roots, the probability of factoring N is 1/2.

2.2 Definition of P-Homomorphic Signature

Definition of Predicate P . LetM be a message space. A predicate P is defined
as P : 2M ×M → {0, 1} which maps a set of messages and a message to a bit
[19]. For the quoting application, the predicate P is defined as P (M,m′) = 1
where M ⊂ M iff m′ is a quote from the set of message M . The predicate P for
arithmetic computation is defined as P ((v1, · · · , vk), v) = 1 whenever v is in the
span of v1, · · · , vk.

A P-homomorphic signature scheme Π for message space M and predicate P
consists of four algorithms: KeyGen, Sign, SignDerive, Verify. Here, Sign
is simply a special case of SignDerive. We describe them as follows:

KeyGen(1λ): This algorithm outputs a key pair (pk, sk). We can treat the
secret key sk as a signature on the empty message ε.

Sign(sk,m ∈ M): Given the secret key sk and a message m, the algorithm
outputs a signature σ.

SignDerive(pk, ({σm}m∈M,M),m′, ω): This algorithm takes as input the pub-
lic key, a set of messages M and corresponding signatures {σm}m∈M , a de-
rived message m′, and possibly some auxiliary information ω. It generates
a new signature σ′ onm′. For complex predicate, ω can be served as a witness
for P (M,m′) = 1. For simplicity, Sign(sk,m) = SignDerive(pk, (sk, ε),m, ·)
denotes that if given sk, any messages can be derived. Here sk can be con-
sidered as a signature on the empty message ε.

Verify(pk,m, σ): If this algorithm is provided with the public key, message,
and the corresponding signature σ, it returns 1 when the signature is valid,
otherwise, it returns 0.



22 Z. Wang

We must confirm that if P (M,m′) = 1 then

SignDerive(pk, (Sign(sk,M),M)m′) 	=⊥,

and for all signature tuples {σm}m∈M satisfying

σ′ ← SignDerive(pk, (Sign(sk,M),M)m′) 	=⊥,

V erify(pk,m′, σ′) = 1 holds. These two rules make the signature derivation be
iterative if allowed by P .

3 Review of Ahn et al.’s RSA Accumulator-Based
Scheme

In Ahn et al.’s construction[19], they only focus on univariate, closed predicates
P (M,m′), namely M contains a single component and if P (a, b) = P (b, c) = 1
then P (a, c) = 1. We now describe their RSA accumulator-based scheme as
follows:

KeyGen(1λ): This algorithm selects three parameters: a 20λ-bit RSA modulus
N , a ∈ ZN and a hash function Hp which maps arbitrary strings to 2λ-bit
prime numbers. The public key pk = (N,Hp, a), and the secret key sk is the
factorization of N .

Sign(sk,m ∈ M): Let U = P ({m}) = {m′|m′ ∈ MandP (m,m′) = 1}. Com-
pute the signature as

σ = a1/(
∏

ui∈U Hp(ui)) (mod N).

SignDerive(pk, σ,m,m′): In this algorithm, first check that P (m,m′) = 1, if
not then outputs ⊥. Otherwise, let U ′ = P ({m′}), compute the signature as

σ′ = σ
∏

ui∈U−U′ Hp(ui) (mod N).

The signature is essentially of the form a1/(
∏

ui∈U′ Hp(ui)) (mod N).

Verify(pk,m, σ): Let U = P ({m}), if a = σ
∏

ui∈U Hp(ui) (mod N) the outputs
1, otherwise, returns 0.

This scheme can be proved secure under RSA, and the most important advan-
tage is that signatures only require one element in Z∗

N . However, the compu-
tational cost is very heavy. If computing an l-symbol quote from an n-symbol
message requires O(n(n − l)) evaluation of Hp() and O(n(n − l)) modular ex-
ponentiations. Verification requires O(l2) evaluation of Hp() and O(l2) mod-
ular exponentiations. The computational cost of prime search in Hp()
is the dominating factor, since the outputs of Hp() must be a prime
number.



Improvement on Ahn et al.’s RSA P-Homomorphic Signature Scheme 23

4 Our Improved Scheme

For overcoming the above shortcoming, we propose an improved scheme which
can be described as follows (We also focus on univariate, closed predicate.):

KeyGen(1λ): This algorithm selects a composite number N which is a multiple
of two safe large prime numbers p = 2p′+1, q = 2q′ +1. p and q satisfy that
(p−1)(q−1) ≥ 2l and pq < 2l+1 (l is another secure parameter derived from
λ). Then, computes d = (N − p− q + 5)/8, and chooses h ∈ QN and a hash
function H() : {0, 1}∗ → {0, 1}l. The public key pk = (N,H, h), while the
secret key sk = d.

Sign(sk,m ∈ M): Let U = P ({m}) = {m′|m′ ∈ M and P (m,m′) = 1}.
Compute the signature as

σ = h
∏

ui∈U dH(ui)

(mod N).

SignDerive(pk, σ,m,m′): In this algorithm, first check that P (m,m′) = 1, if
not then outputs ⊥. Otherwise, let U ′ = P ({m′}), compute the signature as

σ′ = σ
∏

ui∈U−U′ 2H(ui)

(mod N).

The signature is essentially of the form h
∏

ui∈U′ dH(ui)

(mod N).

Verify(pk,m, σ): Let U = P ({m}), if h = σ
∏

ui∈U 2H(ui)

(mod N) the outputs
1, otherwise, returns 0.

In the above scheme, signatures still requires only one element in Z∗
N . However,

the computational burden is much better than Ahn’s construction. Firstly, H()
is a common hash function, which does not require the output must be a prime
number. Thus, there exists no prime search component in H(), which saves
a large computational cost compared with Ahn’s construction. Secondly, the
modular exponentiations in SignDerive and Verify algorithm can be computed

very fast, since σ
∏

ui∈U−U′ 2H(ui)

and σ
∏

ui∈U 2H(ui)

can be done only through
adding and shifting.

5 Security Analysis

In this section, we first describe the security properties of P-homomorphic signa-
ture. Then, we prove that our improved scheme achieves the security properties.

5.1 Security Definition

The security definition of P-homomorphic signature should capture two proper-
ties: context hiding and unforgeability[19].

Context hiding means that a signature should reveal nothing more than the
message being signed. If a signature on m′ was derived from a signature on m,
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an attacker should not learn anything about m other than what can be deduced
by m′. This should be true even the original signature on m is revealed. For
example, in the case of quoting application, a signed quote should not reveal the
length of original message, the position of the quote etc. Ahn et al. proposed a
powerful statistic definition of context hiding called Strong Context Hiding.

Strong Context Hiding. Let M ⊂ M and m′ ∈ M such that P (M,m′) = 1.
Let (pk, sk) be the key pair. A P-homomorphic signature Π is strong context
hiding if and only if the following distribution are statically close:

(sk, {σm}m∈M ← Sign(sk,M), Sign(sk,m′))sk,M,m′

(sk, {σm}m∈M ← Sign(sk,M), SignDerive(pk, ({σm}m∈M ,M),m′))sk,M,m′

The distributions are taken over the coins of Sign and SignDerive. Here, for a set
of message M = {m1,m2, · · · ,mk}, it is convenient to let Sign(sk,M) denote
independently signing each of the k messages, which can be depicted as follows:

Sign(sk,M) = (Sign(sk,m1), · · · , Sign(sk,mk)).

The above definition implies that a derived signature on m′ is indistinguishable
from a signature generated independently of M . Therefore, the derived signa-
ture cannot reveal any information about M other than what is revealed by
m′. This definition uses statical indistinguishability meaning that even a un-
bounded attacker cannot distinguish the derived signatures from the fresh ones.
Thus, it is called strong context hiding. Furthermore, Ahn et al. also proposed
another definition called context hiding by using computational indistinguisha-
bility, which is very complex, since the attacker needs to be given a signing
oracle. The relation of context hiding and strong context hiding can be proved
that if a P-homomorphic signature scheme is context hiding then it is strong
context hiding.

Unforgeability of P-homomorphic signature is that an attacker can adaptively
choose messages and acquire the corresponding derived signatures, however,
he/she cannot output a signature on a message that is not derivable from the set
of signed messages at his hand. Ahn et al. presented the definition of unforgeabil-
ity by extending the basic notion of adaptively chosen existential unforgebaility.
Ahn’s definition can be defined by a game between a challenger C and an adver-
sary A with respect to scheme Π over message space M.

Setup: The challenger C runs KeyGen(1λ) to obtain a key pair (pk, sk) and
sends pk to A, while keeps sk for itself. Furthermore, C keeps a set T that
is initially empty.

Queries: A adaptively issues the following queries to C
1. Sign(m ∈ M): The challenger C runs Sign(sk,m) to get σ, and places

(m,σ) into a table T . Then C returns σ to A
2. SignDerive(m′ ∈ M): This challenger C retrieves all the tuples (σi,mi)

in T for i = 1, · · · , k. If T is empty, then C returns ⊥. Otherwise, let M =
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{m1, · · · ,mk}. If P (M,m′) = 1, then C runs
SignDerive(pk, ({σm}m∈M ,M),m′) to obtain σ′. C keeps (σ′,m′) into
T , and returns σ′ to A.

Output: Finally,A outputs a pair (σ′,m′). If A wins the game, the following
two conditions should be satisfied.
1. Verify(pk,m′, σ′) = 1;
2. Let M be the set of messages in T . P (M,m′) = 0 must hold.
Let ADVA denote the probability of A winning.

Unforgeability. If ADVA is negligible in λ, then A P-homomorphic signature
scheme Π is adaptively chosen-message attacks unforgeable.

Ahn et al. also proposed a weaker notion of unforgeability[19], which is also
defined by a game between challenger C and adversary A. Ahn et al. call it
NHU game, in which the adversary only makes calls to Sign oracle. The only
difference between NHU game and the standard unforgeability game for a P-
homomorphic signature scheme is that in this game, the adversary only wins if
his forged signature on m∗ such that for all m ∈ T , P (m,m∗) = 0, while in the
standard unforgeability game, the adversary wins if his forged signature on any
message that is not in T .

Ahn et al. proved that if a P-homomorphic signature scheme is NHU unforge-
able and strong context hiding, then it is standard-unforgeable.[19] This implies
that strong context hiding property can help simplify the security argument of
standard unforgeability.

5.2 Security Proof

In this section, we will provide the security proof to our improved scheme.

Theorem 5.1. If the factoring problem is hard, then our improved P-homomorphic
signature scheme is unforgeable and context hiding in the random oracle.

We proved Theorem 5.1 by showing that our scheme is strong context hiding
and NHU-unforgeable.

Lemma 5.1. The improved P-homomorphic signature scheme is strong context
hiding.

Proof. Let pk = (N,H, h), and challenge be any m,m′ where P (m,m′) = 1. Let
U = P (m) and U ′ = P (m′). We can deduce that

Sign(sk,m) = σ = hd
∏

u∈U H(u)

(mod N)

Sign(sk,m′) = σ′ = hd
∏

u∈U′ H(u)

(mod N)

SignDerive(pk, (σ,m),m′) = σ2
∏

u∈U−U′ H(u)

(mod N)

= (hd
∏

u∈U H(u)

)2
∏

u∈U−U′ H(u)

(mod N)

= hd
∏

u∈U′ H(u)

(mod N)

= σ′.
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Since Sign(sk,m′) equals SignDerive(pk, (σ,m),m′), the probability that an
adversary can distinguish between them is exactly 1/2. Thus, our improved P-
homomorphic signature scheme is strong context hiding.

Lemma 5.1The improved P-homomorphic signature scheme is NHU-uforgeable
if factoring problem is hard.

Proof. We will prove this lemma through the NHU game discussed above. In
the NHU game, the adversary A is only allowed to make Sign oracle queries.
We suppose adversary A queries the random oracle on at most s unique inputs.
If adversary A can outputs a successful forgery in NHU game, then we can
construct a challenger C that solves the factoring problem with a non-negligible
probability. Given a challenge N , C’s goal is to output the factorization of N .

Setup: Challenger C chooses s − 1 lbits distinct integer numbers e1, · · · , es−1

at random, but all ei 	= 2, ei > 0. Let E denote {e1, · · · , es−1}. Then, C
guesses a random number i∗ ∈ {1, · · · , s}, and keeps it. Next, C randomly

selects y ∈ Z
∗
N , and computes h = y

∏
ei∈E 2ei (mod N). Obviously, h ∈ QN .

Finally, C sends N, h to A, and will ask its queries on random oracle H
interactively.

Queries: C answers A’s adaptively Hash and Sign queries.
– Hash queries: When A makes the jth query to the random oracle, if

j = i∗, then C answers 2. Otherwise, if j < i∗, C answers with ej, and
ej−1 otherwise. Since we assume A’s queries are different every time, let
x∗ as the input when H(x∗) = 2.

– Sign queries: When A makes a sign queries on message m, C computes
U = P (m), and if x∗ ∈ U , then C aborts. Otherwise, C calls H on all
elements of U not previously queried to H . Let E(U) denote the set of
integer numbers derived by calling H on every element in U . C computes

σ = y
∏

i∈[E−E(U)] 2
ei

(mod N),

and returns σ,m as the answer to A.
Outputs: Eventually,A outputs a valid forged signature σ on messagem, where

m cannot be derived from any element returned by Sign. If m is still not
queried to H , or m 	= x∗, then C aborts. Otherwise, let U = P ({x∗})−{x∗},
and E(U) denotes the set of integer numbers derived by calling H on every
element in U . From the verification equation, the following equation holds.

h
∏

ei∈E(U) d
ei

= y
∏

ei∈[E−E(U)] 2
ei

= σ2 (mod N).

We computes b =
∑

i∈[E−E(U)] ei, then y2
b

= σ2 (mod N). If σ 	= ±y2
b−1

(mod N), C can factoring N by computing GCD(σ+y2
b−1

, N) or GCD(σ−
y2

b−1

, N). Since y is randomly chosen in Z
∗
N , the probability that σ and

±y2
b−1

are distinct is 1/2.

Probability Analysis: We assume that the attacker A can win the above game
with the probability of ε. A’s final forgery is based on the i∗th hash queries
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(1 < i∗ < s), and i∗ is randomly chosen from {1, · · · , s}. So we can deduce
that challenger C can solve the factoring problem through A’s forgery with the
probability of ε

2s .
This completes our proof.

Note: Our improved scheme is proved secure under the hardness of the factor-
ing problem, while Ahn et al.’s construction is proved secure under the RSA
assumption. However, the hardness of RSA problem is not identical to the hard-
ness of the factoring problem . It is generally believed that RSA assumption is
stronger than factoring assumption[21].

6 Conclude

P-homomorphic signature is a general framework for computing on authenticated
data, which can make any third party derive a signature on the object message
m′ from a signature ofm, ifm′ andm satisfy P (m,m′) = 1 for some predicate P .
Similar with homomorphic encryption, P-homomorphic signature can also make
cloud computing providers provide good services to customers. Cloud providers
can directly compute on the existing signature files without secret keys. In this
paper, we propose an improved P-homomorphic signature scheme, which is more
efficient in computational cost than Ahn’s scheme. Furthermore, our scheme can
be proved under the hardness of the factoring problem.
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1 Introduction

Almost any large scale network security system requires the establishment of
some kind of a security infrastructure. For example, if network authentication
or authenticated key establishment is required, then the communicating parties
typically need access to a shared secret key or certificates for each other’s public
keys.

Setting up a new security infrastructure for a significant number of clients is
by no means a trivial task. For example, establishing a public key infrastructure
(PKI) for a large number of users involves setting up a certification authority
(CA), getting every user to generate a key pair, registering every user and corre-
sponding public key, and generating and distributing public key certificates. In
addition, the ongoing management overhead is non-trivial, covering issues such
as revocation and key update.

At the same time, there are a number of existing security infrastructures, in
some cases with almost ubiquitous coverage. When deploying a new network
security protocol it is therefore tempting to try to exploit one of these existing
security infrastructures to avoid the need for the potentially costly roll-out of a
new infrastructure.

This is by no means a new idea (see, for example, [17,18,19,21]). However,
previous proposals have been ad hoc and application-specific. The alternative
approach we consider here involves building a framework on top of an existing
security infrastructure, which exploits the underlying infrastructure to enable the
provision of general-purpose security services. For example, 3GPP has standard-
ised the Generic Authentication Architecture (GAA) [4], which uses the mobile
telephony security infrastructures (including those for GSM1 and UMTS2) to
provide a set of security services. A full description of 3GPP GAA is presented
in [14]. Advantages of such a general approach include the usual benefits of a
layered protocol architecture, including re-usability of applications across under-
lying infrastructures and simplified application development.

In previous work [6,7] we proposed a generalised version of GAA, which aims
to enable almost any pre-existing infrastructure to be used as a basis for the pro-
vision of generic security services. A GAA instantiation supported by the Trusted
Computing (TC) infrastructure has been described [6]. In this paper we build on
the widely deployed EMV [9,10,11,12] (named after Europay, MasterCard, and
Visa) security infrastructure, involving the chip-based EMV credit/debit cards
deployed worldwide.3 We define a GAA instantiation building on the EMV se-
curity services, which we call EMV-GAA.

The remainder of this paper is organised as follows. In section 2 we introduce
a generalised version of GAA. In section 3 we provide an overview of EMV
security services. In section 4 we give details of EMV-GAA. This is followed

1 The Global System for Mobile Communications.
2 The Universal Mobile Telecommunications System.
3 Magnetic stripe cards are even more widely deployed for credit and debit purposes
than EMV cards; however, they cannot store (or process) secret keys, and hence
could not be used to support GAA.
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by an informal security analysis in section 5. We analyse relevant privacy and
security issues, and propose a modified scheme to address possible threats in
section 6. We review related work in section 7, and discuss possible applications
in section 8. In section 9 we draw conclusions.

2 Generic Authentication Architecture

We start by describing the generalised version of the GAA architecture on which
we build our novel scheme. We introduce the main roles in the framework, its
goals and rationale, and its two main procedures. This generalised GAA archi-
tecture was first described in [7], and was elaborated in [6].

2.1 Overview of GAA

As shown in Figure 1, the following entities play a role in GAA.

– The Bootstrapping Server Function (BSF) server B acts as a Trusted Third
Party (TTP), and is assumed to have the means to access credentials be-
longing to a pre-existing security infrastructure. B uses the pre-established
credentials to provide authenticated key establishment services to GAA-
enabled user platforms and GAA-aware application servers. B uses its Fully
Qualified Domain Name (FQDN) as its identifier IdB.

– A GAA-aware application server S is assumed to have the means to estab-
lish a mutually authenticated, confidentiality- and integrity-protected chan-
nel with B, and an arrangement to access the security services provided by
B . The means by which the secure channel between B and S is established
is outside the scope of the GAA framework. In practice, this could be sup-
ported by well-established techniques such as SSL/TLS channels with both
server and client side certificates, IPsec tunnelling, or some other appropri-
ate ‘virtual private network’. A permanent secure channel is also potentially
beneficial from an efficiency viewpoint, because it can be reused for multiple
protocol executions. The functionality of a GAA-aware application server is
also referred to as the Network Application Function (NAF) server. S uses
its FQDN as its identifier IdS .

– A GAA-enabled user platform P is assumed to be equipped with creden-
tials belonging to the pre-existing security infrastructure, and accesses the
security services provided by B .

The user platform and the BSF server need to interact with the pre-existing
security infrastructure, whereas the application server does not (it only needs to
interact with the BSF server and the user platform). Also, the user platform and
the application server do not need to have a pre-existing security relationship.

GAA provides a general purpose key establishment service for user platforms
and application servers. As described below, GAA uses a two-level key hier-
archy consisting of a master session key and server- and application-specific
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Fig. 1. GAA framework

session keys. The master session key is established using the pre-existing secu-
rity infrastructure, and is not used directly to secure GAA-based applications.
Instead it is used to generate the server/application-specific session keys using
a key diversification function. By choosing a function with appropriate proper-
ties, it can be arranged that knowledge of a server/application specific session
key will not reveal any information about the master session key or any other
server/application-specific keys.

2.2 GAA Procedures

As we now describe, GAA incorporates two main procedures: GAA bootstrapping
and Use of bootstrapped keys.

GAA bootstrapping uses the pre-existing security infrastructure to set up a
shared master key MK between P and B . Also established is a Bootstrapping
Transaction Identifier B-TID for MK and the lifetime of this key. B-TID must
consist of a (statistically) unique value which identifies both an instance of GAA
bootstrapping and IdB .

TheUse of bootstrapped keys procedure establishes a server/application-specific
session key SK between P and S, using the master key MK shared by P and B .
The procedure operates in the following way. P first derives a session key SK as:

SK = KDF(MK ,NAF -Id , other values)
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where KDF is a one-way key diversification function, and NAF-Id is an
application-specific value consisting of IdS and an identifier of the underlying
application protocol. Other values may be included in the key derivation com-
putation, depending on the nature of the underlying security infrastructure. P
then starts the application protocol by sending a request containing B-TID to
S. S submits the received B-TID and its own identifier NAF-Id to B to request
the session key SK . Note that B-TID contains IdB, so S knows where to send
the request. As stated above, we require that S and B have the means to es-
tablish a mutually authenticated and confidential secure channel, and hence B
can verify S against IdS . If S is authorised, B derives SK from the MK iden-
tified by B-TID, and sends SK, its lifetime, and other relevant information to
S via the secure channel. P and S now share SK, which they can use to secure
application-specific messages.

Note that key separation is enforced by including NAF-Id as an input to the
key diversification function. Other values used in the computation of SK could
include identifiers for the GAA bootstrapping instance and the user platform.

3 EMV Security

In this section we provide a high-level overview of the main security features
of the EMV payment system. We introduce the main roles in the system, the
associated cryptographic keys and payment messages, and the processes relevant
to this paper.

The EMV payment system involves five major interacting entities: a card-
holder, an EMV payment card, a merchant terminal, an acquiring bank (the Ac-
quirer) and a card issuing bank (the Issuer). The EMV specifications [9,10,11,12]
define the interactions between an EMV smart card and a merchant terminal,
as required to support financial transactions. Prior to engaging in such a trans-
action, the cardholder must complete an agreement with the Issuer, and be
equipped with a chip-based EMV credit/debit card. The cardholder can then
use this card to pay at merchant premises (EMV only supports transactions in
which the cardholder is physically present, i.e. it does not support e-commerce
or telephone transactions).

3.1 Transactions

An attempted EMV transaction can have a variety of outcomes; the transaction
might be:

– approved offline;
– declined offline (by either the card or terminal); or
– sent for online approval by the card issuer.

We focus here on the case where the transaction is declined offline by the termi-
nal, since we use the output of the card in this case as the basis of EMV-GAA
bootstrapping, as described in section 4.2.
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An EMV transaction that is declined offline involves the following steps. Many
of the procedures involved in a typical transaction, including Data Authentica-
tion4, Processing Restrictions, Cardholder Verification, Terminal Risk Manage-
ment and Terminal Action Analysis, are omitted from this description, since
they are not used in in EMV-GAA.

1. When a card is inserted into a terminal, the terminal first selects the EMV
credit/debit payment application. Note that an EMV smart card could con-
tain multiple applications, but will always contain an EMV payment appli-
cation.

2. The terminal initiates Application Processing to start a new transaction
session and to exchange information with the card. Note that in this manda-
tory step the Application Transaction Counter (ATC), a sequence number
maintained by the card, is incremented.

3. The terminal reads Application Data from the card. During this mandatory
step, the terminal acquires cardholder information (including the Primary
Account Number (PAN) and PAN Sequence Number (PAN-SN)) from the
card.

4. To decline the transaction, the terminal requests the card to generate an
Application Authentication Cryptogram (AAC) (using the first GENERATE
AC command [11, page 67]). The AAC is one example of an EMV-specific
construct known as an Application Cryptogram (AC); an AC is a MAC
computed on specific data using a key known only to a card and the card
issuing bank.

5. The card performs Card Risk Management to protect the Issuer from fraud or
excessive credit risk. Details of the card risk management algorithms within
the card are specific to the Issuer, and are outside the scope of the EMV
specifications.

6. The card performs Card Action Analysis to decide whether the transaction
should be approved offline, transmitted online to be authorised by the Is-
suer, or declined offline. The card action analysis process is performed when
the terminal issues the GENERATE AC command. Given that the card is
requested to generate an AAC, the result of card action analysis is always
to decline the transaction offline ([11, page 91]).

7. The card generates an AAC and returns it to the terminal. Details of this
computation are described in section 3.2.

8. The terminal performs Completion, which ends processing of the current
transaction.

3.2 AC Generation

In this section we provide further details of AC generation; we start by describing
the secret keys involved.

4 This procedure enables the terminal to verify the authenticity of the card. EMV
specifies three modes of Data Authentication, namely Static Data Authentication
(SDA), Dynamic Data Authentication (DDA) and Combined Data Authentication
(CDA) [10, page 51]
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The Issuer possesses an AC-specific 128-bit issuer master key, IMKAC, used
to generate the keys required to generate and verify ACs. When personalising
a card, the Issuer uses the PAN and PAN-SN for this card as diversification
information to derive a card-specific 128-bit Application Cryptogram master key
MKAC from IMKAC. This key is installed in the card during personalisation.

When the card receives a GENERATE AC command, it first derives a 128-bit
Application Cryptogram session key SKAC from MKAC, using the current ATC
as diversification information. The card then uses SKAC to produce the AC, a
64-bit cryptographic MAC computed as a function of a transaction-specific byte
string formed by concatenating the following data items:

– values received from the terminal, including the Amount Authorized, the
Transaction Date, and the Unpredictable Number (UN);

– values from within the card, including the ATC, which identify the current
transaction.

The card returns the generated AC to the terminal, together with the Cryp-
togram Information Data (CID), the ATC, and other relevant data.

Depending on the result of the Card Action Analysis, the card will generate
one of the following three types of AC:

– a Transaction Certificate (TC), if the transaction is approved offline;
– an Authorisation Request Cryptogram (ARQC), if an online authorisation

is requested;
– an AAC, if the transaction is declined offline.

The CID contains two bits indicating the type of AC generated.
The Issuer needs to recompute the AC for verification purposes. This requires

that the Account Identification Data of the card (i.e. the PAN and PAN-SN),
the CID, the ATC, the UN provided by the terminal, and all other data objects
used to compute the AC are transmitted to the Issuer. Using the received PAN
and PAN-SN, the Issuer derives MKAC, and from this obtains SKAC using the
received ATC. The Issuer then uses SKAC to compute the particular type of AC
indicated by the CID.

The EMV payment system makes use of a closed PKI to support Card Au-
thentication. We use the term EMV security infrastructure to refer to the set
of EMV cards possessed by cardholders, the Issuer servers, the associated secret
keys, and the supporting PKI.

4 EMV-GAA

In this section we describe a possible means of using the EMV security infras-
tructure to support the generic version of GAA outlined in section 2.1, which we
refer to as EMV-GAA. It is important to note that the scheme we propose here
works with currently deployed EMV cards, using the existing card applications.
That is, card re-issue (or card update) is not required.
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4.1 Architecture

As shown in Figure 2, the following EMV-specific entities play a role in EMV-
GAA.

Fig. 2. EMV-GAA

– The Issuer I issues EMV-compliant cards, and possesses a master key IMKAC

which is used to derive the card-specific master keys MKAC. I must be
trusted for the purposes of supporting the EMV-GAA service by all parties
using this service.

– The GAA-enabled user platform P incorporates a terminal T, an EMV-
compliant card C (with an EMV debit/credit payment application), and the
link between the two. To our knowledge, any EMV compliant card (SDA-,
DDA-, or CDA-capable) could in principle be used to support EMV-GAA,
since it does not make use of any of the Data Authentication procedures. T
consists of a network access device and a card reader. A typical instantiation
of T would be a Personal Computer (PC) with an attached or integrated
card reader, where the card reader may or may not possess an integral key-
pad (as shown in Figure 2). Alternatively, T could be a mobile device (such
as a Personal Digital Assistant) capable of communicating with C, e.g. using
Near Field Communication. We assume that T is equipped with a sup-
porting application that implements the EMV-GAA bootstrapping protocol
described below. This supporting application could be provided by a third
party trusted for the purposes of delivering the EMV-GAA service by all
parties using this service.
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– The BSF server B connects to I via a secure communications channel to
provide the GAA services. B must be trusted by all the parties used the
EMV-GAA service.

We assume that the participating entities are connected via an open network such
as Internet. Note that no assumptions are made about the security properties of
these communications links.

4.2 Procedures

In this section we specify the EMV-GAA bootstrapping and the EMV-GAA Use
of bootstrapped keys procedures.

The EMV-GAA bootstrapping protocol involves the following sequence of
steps.

1. The terminal T sends an initial request to B for the bootstrapping of a
master session key MK .

2. Upon receiving the request, B generates a random number RB, associates it
with a short time interval, and caches it5. B then sends RB to T .

3. T commences communications with an EMV payment card C (if necessary
first prompting the cardholder to insert C into the card reader), and selects
the EMV credit/debit payment application in C. T next initiates a trans-
action session (which automatically causes the ATC to be incremented) and
reads the card information, including the PAN, PAN-SN, etc. T will always
declined the transaction, and will, accordingly, request C to generate an
AAC by issuing the (first) GENERATE AC command. The UN sent with
the GENERATE AC command is set to RB, as selected in step 2. The other
data items sent with the GENERATE AC command can be set to fixed
values (in particular the ‘Amount Authorised’ can be set to 0).

4. C generates the AAC and returns the generated AAC, the CID data, the
ATC, and the other values necessary to verify it. We refer below to the data
sent with the AAC as M .

5. T ends the current transaction session with C.
6. T generates a random number RT , associates it with a short time interval,

and caches it. T then uses the AAC as a secret key K to compute a response
RES as

RES = f(K,RT , RB, IdB,M).

The function f can be implemented in many ways. One possibility, which
complies with clause 5.1.1 of ISO/IEC 9798-4 [15], is to instantiate f us-
ing HMAC [16] based on a suitable cryptographic hash function, where the

5 B will clear RB from its cache when the bootstrapping process completes or when
RB expires.
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various inputs to f are simply concatenated prior to applying HMAC. That
is, RES could be computed as:

RES = HMACK(RT ||RB||IdB||M)

where here and throughout || is used to denote concatenation. Note that the
values RT ||RB and IdB play the role of the nonce and the entity identifier,
respectively, in the ISO/IEC 9798-4 protocol.

7. T sends PAN, PAN-SN, RT , RB, M and RES to B .
8. B checks that RB is equal to the value selected in step 2. If not, B rejects

the bootstrapping request and terminates the protocol.
9. B forwards PAN, PAN-SN and M to I .
10. I uses the information received from B to recompute the AAC, and then

sends PAN, PAN-SN and the AAC back to B .
11. B uses the received AAC as a secret key K to recompute RES, and compares

it with the RES received in step 7. If they do not match, B rejects the boot-
strapping request; otherwise, B generates the master session key MK as

MK = KDF(K , RT , RB).

B also sets the lifetime of MK (LT ) in line with its operational policy,
constructs the key identifier B-TID as a combination of RB, RT and IdB,
and stores PAN, PAN-SN, RT , RB, B-TID, MK and LT .

12. B computes

XRES = f(K,RB, RT ,PAN,PAN-SN,LT ).

13. B sends RB, RT , B-TID, LT and XRES to T .
14. T checks that RT is the same as the value it selected in step 6. T then

recomputes XRES, and compares it to the value received from B. If either
of these checks fail, the bootstrapping fails.

15. T computes MK in the same way as B, and then stores PAN, PAN-SN, RB,
RT , B-TID, MK and LT .

During bootstrapping, the card-generated AAC is used as a secret key K shared
by T andB to establish the master keyMK . As defined in the EMV specifications
(see [11], Table 33 in Annex A), an AAC contains only 64 bits. Hence, since it
is derived from K, MK has at most 64-bit security. For a stronger MK (with
128-bit security), the protocol above requires the following changes.

– T must execute two separate declined offline EMV transactions with C;
that is T carries out steps 3, 4 to 5 twice to obtain two AACs, and then
concatenates them to form a 128-bit key K . In this case, RB in step 2 needs
to have length double that of the UN, and is used in two parts to initiate
two GENERATE AC commands belonging to two EMV transactions.

– Accordingly, I must generate the two AACs for B in step 10.

Note that the ATC is incremented for every new EMV transaction. Since the
ATC is used as diversification information in the computation of AAC, the two
AACs above will almost certainly be different from each other.
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In the EMV-GAA Use of bootstrapped keys procedure, P and S follow the
procedure defined in section 2.2 to establish a server- and application-specific
session key SK . The session key SK is derived (by B and P ) as follows:

SK = KDF(MK , RT , RB,PAN,PAN-SN,NAF -Id).

5 Informal Security Analysis

We now provide an informal security analysis of key aspects of the authentication
and key establishment protocol used by the EMV-GAA bootstrapping procedure
described in section 4.2. We consider a threat model in which an attackerA is able
to observe and make arbitrary modifications to messages exchanged between B
and P, including replaying and blocking messages as well as inserting completely
spurious messages. This allows a trivial denial of service attack which cannot be
prevented. Note that A is not allowed to compromise the implementations of B
and P (including T and C ); such attacks on system integrity cannot be prevent
by the key establishment process, and are thus not addressed by the schemes we
propose. We further assume that the communication channel between T and C is
secure, since both devices are controlled by the user.

It is important to note that the security of EMV-GAA rests on the secu-
rity of the underlying EMV security infrastructure; that is A is not allowed to
compromise I or C.

The EMV-GAA bootstrapping protocol makes use of symmetric cryptographic
techniques. The secret key K is an AAC, which can only be generated by the
card C and the Issuer I (since it is a function of a key known only to them),
and is securely transferred to T and B, respectively.

– Entity authentication. The protocol provides mutual authentication between
B and T (strictly, C) using a cryptographic check function. B can verify the
identity of T (strictly, C’s PAN and PAN-SN); that is, the MAC generated
by T on RT , RB and IdB using K allows B to authenticate T (step 11).
Similarly, T can authenticate B by verifying the MAC generated by B on
RB, RT , PAN and PAN-SN (step 14). Messages exchanged in steps 2, 7 and
13 conform to the three-pass unilateral authentication protocol mechanism
described in clause 5.2.2 of ISO/IEC 9798-4:1995 [15], in which the values
RB and RT , generated by B and T respectively, serve as the nonces.

– Confidentiality of the master session key MK . MK is derived from K, which
is shared by B and T . K is an AAC that can only be obtained by B and T .
Hence, A cannot access MK under the assumed threat model.

– Origin authentication. This is achieved by B and T generating MACs on the
exchanged messages using the key K. Integrity protection is also provided
by the MACs. Hence, A cannot alter messages without being detected, since
B and T will abort the bootstrapping procedure if any MAC verification
fails (step 11 and 14).

– Freshness. RB, generated by B, is included in the MAC sent to B in step 7;
similarly RT , generated by T , is included in the MAC sent to T in step 13.
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Hence, A cannot replay messages to T or B, since B and T will abort the
bootstrapping procedure if a received nonce is not fresh (step 8 and 14).

– Key confirmation. On receipt of the message in step 13, T can be sure that
B has generated the MK during the current session. However, T does not
confirm to B that it possesses MK . Note that A can block all the messages
exchanged, and network errors might occur, and hence only T can be sure
that it shares a fresh MK with B (until successful use of the key by T ).

– Key control. The protocol is a key agreement process, that is B and T jointly
control the inputs to the computation of MK (i.e. RB and RT ).

6 Privacy and Security Issues

6.1 Threats

The EMV payment system is designed to be used in a closed (controlled) en-
vironment. A card terminal at a merchant typically provides a level of tamper-
resistance, and is supplied by (or in conjunction with) themerchant’s issuing bank.
The terminal will be equipped with a pre-defined means of secure communication
with the acquiring bank. By contrast, EMV-GAA operates in a more open envi-
ronment. The terminal is user-controlled, and the communications with B and P
are assumed to use the Internet or other public communications medium.

This change of environment gives rise to two main threats. Firstly, the scheme
involves inserting the EMV card into a new type of terminal, which is itself a
threat. A terminal can cause a card to perform a transaction, the precise na-
ture of which is not apparent to the cardholder. Hence, a security threat arises
whenever a card is inserted into any unauthorised terminal. Secondly, the PAN
could be divulged to unauthorised entities and/or misused, including by a com-
promised terminal, by compromised software on a PC host, or by interception
during transmission. The PAN can be regarded as Personally Identifiable In-
formation (PII), and hence disclosure of the PAN is a privacy threat; it is also
information which could be misused to conduct unauthorised transactions, and
hence disclosure is also a security threat. We next consider the nature of these
threats together with possible mitigations in greater detail.

Before using this service, it is likely that the cardholder will need to agree
terms of use with the card issuer (and/or with the bootstrap server provider).
This could include equipping the cardholder with a special card reader designed
specifically for use with the EMV-GAA service—indeed, this is precisely what
happens when cards are used with the CAP service, discussed below (and hence
low-cost special-purpose card readers are clearly viable). This special reader
could even be delivered as additional functionality in an enhanced CAP reader,
further reducing deployment costs. The cardholder should in any case be ad-
vised never to insert his or her card into an unauthorised terminal. Part of the
functionality of EMV-GAA could be built into the card reader (as is the case
for CAP), thereby mitigating the threat of the card being forced to conduct
unauthorised transactions. Finally we observe that the scheme we propose does
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not require use of the Personal Identification Number (PIN) of the cardholder6,
further reducing the risk of an attacker being able to use a card to create illicit
PIN-authorised transactions.

The use of a special purpose card reader also mitigates the risk of PAN dis-
closure at the cardholder site. PAN disclosure as a result of intercepted commu-
nications can be prevented by using the modified version of the scheme outlined
below; the magnitude of the threat could also be reduced through the use of SSL
on the connection between B and P , a standard precaution for security-related
web connections.

6.2 A Modified Scheme

We now describe a minor modification to the bootstrapping procedure, designed
to remove the need to transmit the PAN. The modified scheme requires the
cardholder to register the EMV card C with the BSF server prior to use. As
a result of the registration procedure, the BSF stores an association between a
card-specific identifier IdC and the pair (PAN, PAN-SN) for C. The identifier
IdC must be computed as a fixed function of data stored on the card, e.g. as
h(SSAD), where h is a cryptographic hash function and SSAD is the Signed
Static Authentication Data, stored on the card and used in SDA.

The bootstrapping procedure is largely as described in section 4.2, except as
follows.

– In step 3, T reads the SSAD from C, and computes IdC for later use.
– In step 7, T sends IdC to B instead of PAN and PAN-SN, and on receipt B

uses IdC to look up the values of PAN and PAN-SN.

7 Related Work

The Chip Authentication Program (CAP)7 uses a EMV payment card in con-
junction with a dedicated handheld device (the CAP reader) to produce one-time
passwords (OTPs) for authenticating users and transactions in online banking.
A dummy transaction with the card is started by requesting it to generate an
ARQC, and after receipt of the ARQC the transaction is aborted. A decimal PIN
is then computed as a function of the ARQC. Although the complete protocol
details are not public, some information is in the public domain [8].

Urien [21] proposed the use of EMV payment cards to support the pre-shared
key TLS protocol (TLS-PSK) [13]. The EMV TLS-PSK protocol provides mutual
authentication, and could be used for on-line banking services. In EMV TLS-
PSK, the pre-shared key identity is made of two parts: an identifier (EMV-ID)
derived from parameters embedded in the card, and a set of cryptograms (i.e.

6 The Cardholder Verification procedure in which the cardholder enters his or her PIN
into the terminal is not used in EMV-GAA.

7 CAP is a MasterCard brand; the corresponding Visa system is called Dynamic
Passcode Authentication (DPA).
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ARQCs). The pre-shared key is a fixed value, deduced from the EMV card con-
tent (EMV-PSK) and additional information. The EMV-PSK is set to h(SSAD),
where h is a cryptographic hash function. The EMV-ID is set to h(h(SSAD)).

8 Applications

GAA offers a simple and uniform interface to generic security services which
operate independently of the underlying security infrastructure. Application de-
velopers are thus able to use the services provided by this interface without
having to understand the detailed operation of the underlying infrastructure,
substantially simplifying the development task and reducing the risk of error.
Moreover, this layered approach also enables the same application to operate
over a variety of different underlying infrastructures in a transparent way.

In ongoing work we are examining ways in which a range of variants of the
GAA service can be used to support an OTP system [5,7] for Internet appli-
cations. Such systems could, of course, be built using the EMV-GAA service.
OTP systems supported by a range of GAA services could be deployed to enable
the provision of ubiquitous OTP services for a large class of users. We are also
developing ways of using GAA to build more general identity management solu-
tions, including single sign-on schemes. Work along these lines has already been
standardised for 3GPP GAA, notably supporting interworking with CardSpace,
OpenID and Liberty [1,3]. We are also developing a way of enhancing the ‘Pwd-
Hash’ mechanism [20] which builds on GAA service to give a user-centric single
sign-on system.

The TLS-PSK protocol using the 3GPP GAA service (as supported by the
mobile telephony authentication infrastructures) has been specified by 3GPP [2].

9 Conclusions

GAA is a framework that enables pre-existing security infrastructures to be used
to provide general purpose security services, such as key establishment. We have
shown how GAA services can be built on the EMV security infrastructure, com-
plementing the previously proposed GAA schemes built on the mobile telephony
authentication infrastructures and Trusted Computing. Use of EMV-GAA could
constitute a potentially serious security and privacy threat (including the possi-
bility of revealing the PAN to unintended parties). To mitigate the risk, we have
proposed a modified scheme to avoid the need to routinely transmit the PAN
across any network links.

EMV-GAA provides a way of exploiting the now very widespread EMV infras-
tructure for the provision of fundamentally important general-purpose security
services. Of course, application-specific security protocols building on the infras-
tructure can be devised independently of any generic service and, indeed, there
is a large and growing literature on such schemes. However, the definition of
a standard GAA-based security service enables the EMV infrastructure to be
exploited in a simple and uniform way, and it also provides an opportunity for
EMV-aware third parties to provide novel security services.
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Abstract. We present the first anonymous transferable conditional
e-cash system based on two recent cryptographic primitives, i.e., the
Groth-Sahai(GS) proofs system and the commuting signatures, thus the
unlinkability and anonymity of the user is obtained. We solve an open
problem by dividing the deposit into two parts, so that the user is unlink-
able in the transferrable protocol and the deposit protocol. Comparing
the existing conditional e-cash, the size of the computation and commu-
nication of our scheme is constant.

Keywords: conditional e-cash, transferability, anonymity, Groth-Sahai
proofs, commuting signatures.

1 Introduction

Conditional e-cash is introduced firstly by L. Shi [11], which allows a participant
to spend cash bank-issued electronic coin based on the outcome in the future. If
the outcome is not favorable to the payer, he loses and the payee can cash the
electronic coin from the bank; otherwise, the payer cashes back e-cash. There are
many applications of conditional e-cash. For example, outsourcing computations
make sure that the worker has completed the computation and can retrieve the
payment simultaneously. For another example, the prediction markets obtain
the outcome based the prediction in the future and the betting systems, where
many people can bet in an anonymous betting systems and obtain the electronic
coin depending on the result in the future.

Conditional transferable e-cash consists of the payers (the payees) U1,U2, · · · ,
Un, the bank B, the judge J and the publisher P . Firstly, the publisher publics
two commitments about two event outcomes. The user U1 registers one of the
two outcomes at the publisher. Secondly, he withdraws a coin co from the bank
B, and then spends the coin to the user U2. The payee U2 can spend the coin
to the third user U3, or deposit the coin to the bank B. When the publisher
publishes the outcome, only one user can win the coin, and then the user cashes
from the bank B. The bank B checks the coin, and decides to exchange the
coin for credit to the account of the user or announce the judge to recover the
identity of the double spenders. Meanwhile, traditional transferable e-cash also

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 45–60, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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allows the user to directly spend the e-cash to other ones without depositing the
e-cash into the bank.

There are some differences between transferable conditional e-cash system and
traditional transferable e-cash system [7,6,13,9,5,12]. Firstly, in the transferable
conditional e-cash, the user anonymously spend the conditional e-cash, while in
traditional e-cash, the merchant and the user must supply the identity in order to
receive money and serves respectively. Secondly, in the transferable conditional
e-cash, the payee can not spend the e-cash until the outcome of the condition
is published and only if the outcome is favorable to the payee, while the user
can spend an e-cash without any conditional in the traditional transferable e-
cash. And last, the payer can cash the e-cash in case of an unfavorable to the
payee outcome of the condition, but these can not also be done in the transfer-
able e-cash. Thus, new tools need to be developed to construct the transferable
conditional e-cash.

1.1 Related Results

E-cash is the digital equivalent of regular money. It has many properties, such
as divisibility, transferability, conditionality, et. al. Transferability is one of the
most important properties among these basic properties. Okamoto and Ohta
[16,12] proposed two transferred e-cash systems, however their systems can only
provide weak anonymity. Chaum and Pedersen [7] analyzed the size of the e-
cash in the transferred e-cash system, and they claimed that it is impossible
to transfer a coin without increasing its size. Next, Canard et al. [13] proposed
an anonymous transferable e-cash system, and analyzed the anonymity [6] in
transferred e-cash. To solve the problem about the size of the e-cash system,
Fuchsbauer et al. [9] constructed the first practical transferred constant-size fair
e-cash in the standard model. However, each user has to keep in memory the
data associated to all past transactions to prove her innocence in case of a fraud.
Moreover, the anonymity of all subsequent owners of a double-spent coin must
be revoked.

The conditional e-cash is another application in e-cash. L. Shi [11] firstly
introduced the definition of the conditional e-payments, where the payer can
anonymously spend the e-cash to the payee or transfer the e-cash to another.
However, the conditional e-payments is on-line and depends on the expensive
cut-and-choose techniques.

M. Blanton [3] improved the efficiency of the conditional e-payments and for-
malized it by uisng zero-knowledge proof, CL signature and verifiable encryption.
However the payer can recognize a coin he has already observed previously and
also decide whether he has already owned the coin he is receiving. Moreover the
deposit is not anonymous.

O. Blazy et al. [4] proposed an anonymously transferable e-cash, which is a
traditional transferable e-cash. It achieves the optimal anonymity in the trans-
ferable e-cash, namely observe-then-receive full anonymity (OtR − Fa), spend-
then-observe full anonymity (StO−FA) and spend-then-receive full anonymity
(StR− FA).
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J. Groth and A. Sahai [10] constructed the first efficient non-interactive proof
systems in the standard model. It considers a large class of statements over
bilinear groups. The witness indistinguishable guarantees that any adversary
cannot distinguish the user uses which witness. Their randomizability allows us
to improve the NIZK proofs.

G. Fuchsbauer [8] presented a system of commuting signatures and verifiable
encryption. It allows one to encrypt a message and corresponding signature
while preserving its public verifiability. Given a commitment, a signer can create
a verifiably encrypted signature on the committed message.

1.2 Our Construction

We propose an anonymous transferable conditional e-cash based on Groth-Sahai
proofs [10] and the commuting signatures [8]. In our paper, we firstly improve
the commitments and the corresponding proofs by the commuting signatures, so
the transferrable spending is unlinkable and the user is anonymous. Meanwhile,
we divide the deposit protocol into two parts to obtain the anonymity of the user
in the deposit protocol. Secondly, we introduce a publisher, who can commit two
secret value for two outcomes, so the conditional e-cash is obtained. Finally, we
compare the efficiency of our construction to that of [11] and [3]. our contribution
is listed as follows:

– We solve an open problem, which the identity of payee is unlinkable in the
conditional transfer and deposit protocol. Meanwhile, the payers cannot be
linked to payees or to ongoing or past transactions.

– We present the first anonymous transferable condition e-cash.
– We compare the efficiency of our construction to that of [11] and [3], and

show that the computation and communication is constant in our scheme.

1.3 Organization of the Paper

The rest of this paper is organized as follows. In Section 2, we describe the pre-
liminaries on the various cryptographic tools and assumptions. Security model of
the conditional e-cash is presented in Section 3. In Section 4, we give the general
description. The main protocol is presented in Section 5. The security analysis
is given in Section 6. In Section 7, we conclude the paper.

2 Preliminaries

In this section, we introduce the background knowledge that will be used for our
scheme.

2.1 Bilinear Map

A pairing is a bilinear mapping from two group elements to a group element.
Let ê be a bilinear map such that ê : G1 ×G2 → G3 and the following holds.
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– G1, G2 and G3 are cyclic multiplicative groups of prime order p.
– Each element of G1, G2 has unique binary representation.
– The elements g, h generate G1 and G2 respectively.
– ê : G1 ×G2 is a non-degenerate bilinear map so ê(g, h) generates G3 and for

all a, b ∈ Zn we have ê(ag, bh) = ê(g, h)ab.
– We can efficiently compute group operations, compute the bilinear map and

decide membership.

2.2 Mathematical Assumptions

The security of our construction is based on the following existing mathematical
assumptions, namely, the Symmetric External Diffie-Hellman(SXDH) [10] and
the asymmetric double hidden strong Diffie-Hellman assumption(q-ADH-SDH)
[1].

Definition 1. Symmetric External Diffie-Hellman. Let G1, G2 be cyclic
groups of prime order, g1 and g2 generate G1 and G2 respectively, and let ê : G1×
G2 → G3 be a bilinear map. The Symmetric External Diffie-Hellman (SXDH)
Assumption states that the DDH problem is hard in both G1 and G2 of a bilinear
group pair (G1, G2), namely, we give g1, g

a
1 , g

b
1 ∈ G1 and g2, g

a
2 , g

b
2 ∈ G2, for

random a, b, it is hard to distinguish gab1 and gab2 from G1 and G2 respectively.
It implies that there is no efficiently computable isomorphism from G2 to G1 or
vice versa.

Definition 2. q-ADH-SDH. Let g, f, k ∈ G1, h ∈ g2 and x, ci, vi ∈ Zn be

random. Given (g, f, k, gx;h, y = hx) and (ai = (k · gvi)
1

x+ci , bi = f ci , di =
hci , ui = gvi , wi = hvi)

for 1 ≤ i ≤ q − 1, it is hard to output a new tuple (a = (k · gv) 1
x+c , b =

f c, d = hc, u = gv, w = hv) with (c, v) 	= (ci, vi) for all i. i.e. one that satisfies
ê(a, y · d) = ê(k · u, h), ê(b, h) = ê(f, d) and ê(u, h) = ê(g, w).

2.3 Useful Tools

Groth-Sahai Proof. Groth and Sahai [10] constructed an NIZK proof system
that lets us prove statements in the context of groups with bilinear maps in
the standard model. In order to proof the statement, the prover firstly commits
to the group elements or Zp elements. Then the prover does the proof of the
group elements or Zp elements and sends the commitments, the proofs and cor-
responding parameters to the verifier. The last the verifier verifies the correct
of the proof. In this paper, We use SXDH-based GS commitments and proofs
to commit to elements and prove relations satisfied by the associated plaintexts.
The witness indistinguishability guarantees the anonymity of the payers and the
payees during the withdraw, conditional transfer and deposit.

Randomization. Belenkiy et al. [2] proposed the randomizable proofs of com-
mitments and the NIZK proofs. For example, let u1,1 = g1, u1,2 = gμ1 , u2,1 =
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gv1 , u2,2 = (gμ1 )
v, r1, r2 ∈ Zp, we obtain a commitment for X ∈ G1, namely

c(X) = ((u1,1)
r
1 · (u2,1)

r
2, X · (u1,2)

r
1 · (u2,2)

r
2) = (c1, c2). In order to randomize

the commitment, we choose two random values r′1, r′2 ∈ Zp and compute the

randomization as c(X)′ = (c1 · (u1,1)
r′1 · (u2,1)

r′2 , c2 · (u1,2)
r′1 · (u2,2)

r′2). Mean-
while we adapt its proof (π, θ) for commitments (ci)i to another (π, θ) for (c′i)i.
The property guarantees the anonymity of the payers and the payees. The bank
can not link any withdrawal protocol, spending protocol and deposit protocol.
Meanwhile, the randomizable proof is publicly verifiable.

Commuting Signatures. Commuting signatures and verifiable encryption [8]
combines a signature scheme with GS proofs. This allows one to commit a com-
mitment to a message, a verification or a corresponding signature and proves
that the committed values are correct, as he does these to that message. We
only briefly review two results of [8] relevant to our paper in the following.

SigCom allows a signer who is given a commitment c to a message, to make
a commitment to cσ to a signature on that message and a proof that cσ contains
a valid signature on the value committed in c.

AdCκ allows anyone to commit to a key and adapt a proof, and outputs a
commitment and a proof asserting that a commitment contains a valid signature
on a committed message.

Following the definition of [8], we instantiate the specific signature with the
Structure-Preserving signature (SP-signature) [1,15].

3 The Model

In this section, we firstly describe the algorithms for anonymous transferable
conditional e-cash. The main differences between our algorithms and [4] is that
we introduce a publisher and a new algorithm Publish() to give the bank the two
commitments of the outcomes. We also extend the model given in [4] to include
the publisher.

3.1 Algorithms

The conditional transferable e-cash system consists of withdraw protocol, spend-
ing(transferring) protocol, deposit protocol and identify procedure. We give the
procedures as follows, where λ is a security parameter.

– ParamSetup(1λ). It is a probabilistic algorithm that outputs the public pa-
rameters params.

– BKeyGen(),JKeyGen(),UKeyGen(),PKeyGen(). It is a probabilistic algo-
rithm executed respectively by B,J or U , that output a key pairs (pkB, skB),
(pkJ , skJ ), (pkU , skU ) and (pkP , skP).

– Withdraw(U(skU , pkU , pkB, pkJ , CB, CJ ),B(skB, pkB, Cpr, Cpe, pkU )). It is
an interactive protocol where U withdraws one conditional transferable coin
co from B. At the end, U outputs a coin or ⊥, and B checks the public key
of the user, deducts a coin from the user and obtains a view V or ⊥.
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– Publish(B(skB, pkB, CB, CJ ).P(Cpr , Epr, Cpe, Epe). It is an interactive pro-
tocol between the B and P . At the end, B obtains two commitments repre-
senting the two outcomes.

– Spend(U1(co, skU1 , pkB, pkJ , CB, CJ ),U2(skU2 , pkB, pkJ )). It is an interac-
tive protocol in which U1 spends/transfers the coin co to U2. At the end, U2

outputs a coin co′ or ⊥, and U1 outputs ok or ⊥.
– Deposit(U(co, skU , pkB, pkJ ),B(pkB, skB, pkU )). It is an interactive protocol

where U deposits a coin co to the bank. The bank outputs a commitment
and corresponding proof or ⊥. U deposits corresponding coin to the bank
using new commitment and corresponding proof.

– Identify(pkU , co, co′, skJ ). It is a deterministic algorithm executed by the
judge which outputs a public key pkU of double spender.

3.2 Security Properties

In this section, we give the security definitions for the transferable conditional e-
cash system. Every security property is given by a game between the adversaryA
and the challenger C. Firstly, we describe the ability of the adversary as arbitrary
and adaptive queries to oracles. The oracles are defined as follows.

– OSetup(). This oracle allows the adversary A to add a new user into the
system, or to corrupt a honest user. When the adversary interacts with the
oracle, A can obtain the keys of the user or the bank. If a honest user is
corrupted, the secret key is ⊥.

– OWith(). This oracle can act the bank or the user in the withdrawal protocol.
The adversary A can withdraw a conditional e-cash from the oracle acting
the bank. He can also obtain some e-cash from the oracle acting the user.

– OSpend(). This oracle can allows the adversary A to act a payee to receive a
conditional e-cash, or act a payer to spend a conditional e-cash.

– ODepo(). This oracle can act the bank or the user in the deposit protocol.
The adversary A can obtain a conditional e-cash from the oracle acting the
user, or spend some e-cash to the oracle acting the bank.

– OIdt(). This oracle can act the judge in the identity procedures. The adver-
sary A can submit two e-cash to the oracle and obtain the identity of the
user spending the two e-cash.

– OPubl(). This oracle can act the publisher to extract the secret value. Then
the adversary A can obtain the secret by interacting with the oracle.

In our paper, we think the publisher, the bank and the judger are trust orga-
nizes. The judge can not remove the identity of an honest user except that the
bank gives the two spending from double spenders. The publisher only publics
and announces the events correctly, and can also not extract a outcome before
publishing the outcome. Meanwhile, This is the request of the fair e-cash [14].
We require all the length of the conditional e-cash is the same.In the following,
we will define the security properties formally.

Anonymity. We also used the definition about anonymity in [4], but our scheme
only achieve the OtR − FA(FA) and StO − FA(PA1). It guarantees that no
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coalition of users, publisher and judger can able to distinguish if the the spending
protocol is executed by users or by a simulator.

Firstly, we give the security description of FA.

– (Initialization Phase.) A runs the ParamSetup(1λ) and obtains the public
parameters params and the key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP).
Then A gives pkB to C and keeps the skB to itself.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by
the OSetup(). For each OWith() and OSpend(), A can act as bank or user in
the withdrawal protocol or spending protocol. The adversary A can obtain
the identity of the user from the OIdt(), or extract the secret value from the
oracle OPubl().

– (Challenge Phase.) C chooses two public keys pkU0 and pkU1 , and presents
them to A. The two public keys must be the conditional e-cash received by
the adversary A. Then A acting the bank or the user interacts with the C. A
can specify which public C uses, with the restriction that he can not ask C to
over-spend any coin, and can also not require the oracle OIdt() and OPubl().
And last, A obtains a coin coM.

– (End Game Phase.) A decides which public key C uses.

For the security description of PA1. The every phase is similar to the FA except
that the two public keys is any keys in the Challenge Phase.

For all non-uniform polynomial timeA, the advantage breaking the anonymity
is defined by

AdvanonTCE,A = Pr[Expanon−1
TCE,A (λ) = 1]− Pr[Expanon−0

TCE,A (λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpanonTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvanonTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme is anonymous.

Unforgeability. No coalition of users and merchants can deposit more coins
than they have withdrawn from the bank.

– (Initialization Phase.) C runs the ParamSetup(1λ) and obtains the public
parameters params and the key pairs (pkB, skB), (pkJ , skJ ) and (pkP , skP).
Then C gives pkB to A and keeps the skB to itself.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by the
OSetup(). We define the e-cash received by the A is coa and initialize it with
zero. For each OWith(), A acting as user and withdraw a conditional e-cash
co0 in the withdrawal protocol. In the transferring protocol, the A acting
as payer transfers an e-cash co1 to the payee, or acting as payee receives an
e-cash co2. The A deposit an e-cash code to the C acting as the bank in the
deposit protocol. And last, the counter of the A is coa = co0 + co2.
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– (End Game Phase.) A wins the game if it can deposit coa + 1 to C, namely
code > coa.

For all non-uniform polynomial time A, the advantage breaking the unforgeabil-
ity is defined by

AdvunforTCE,A = Pr[ExpunforTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpunforTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvunforTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme is unforgeable.

Double-Spending. It guarantees that coalition of users and merchants can not
be able to double-spend a coin with the same serial number.

This is similar to the unforgeability in the Initialization Phase.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by the
OSetup(). In order to identify the identity of an honest user, the adversary A
extracts the message committed in commitments and corresponding proof,
and then forges a new coin. Meanwhile, the adversary can deposit the new
coin to the bank, and the output of the algorithm Identify() can not output
the public key. If the adversary can give a new coin as above, he must break
the unforgeability of the commuting signature and the soundness and witness
indistinguishability of GS proofs.

– (End Game Phase.) A wins the game if it can deposit a coin, the output of
the Deposit() is ⊥ and the Identify() cannot output the public key.

For all non-uniform polynomial time A, the advantage breaking the double-
spending is defined by

AdvunforTCE,A = Pr[ExpideTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpideTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvideTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme can identify the double-spending.

Exculpability. No coalition of the banks and users can accuse an honest users
of have double-spending a coin.

This is shown similarly to the FA in the Initialization Phase and the Probing
Phase.

– (Probing Phase.) A can perform a polynomially bounded number of queries
to the oracles in an adaptive manner. A can add and corrupt any user by
the OSetup(). We know the commute of the user and the bank is anonymous.
If the adversary A wants to forge another coin and frames an honest user,
he must break unforgeability of the commuting signature.
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– (End Game Phase.) A wins the game if it can forge a corresponding e-cash
and prove the spending is correct.

For all non-uniform polynomial time A, the advantage breaking the exculpability
is defined by

AdvunforTCE,A = Pr[ExpexcuTCE,A(λ) = 1]

where TCE be a anonymous transferable conditional e-cash system. The
ExpexcuTCE,A(λ) is the same as that in [4] except that we give the A an ability
to access the private key skpe and skpr.

If the AdvexcuTCE,A is negligible for any polynomial-time adversary A, we will
say that our scheme can frame an honest user making a double-spending.

Conditional Transfer. The payer can cash back his coin when an unfavorable
outcome happens. The payee can anonymously transfer the coin from the payer
to the payee until the time that the outcome is published. After publishing
the outcome, the publisher can extract the secret value, and send it to the
corresponding user and the bank. Then the user deposit the conditional e-cash
to the bank. Thus, the coin can be transfer to many users.

4 General Description

In a transferable e-cash with a condition, the payer anonymously transfers e-cash
before the outcome of the condition is published. The e-cash is valid to the payer
and the last payee, and only one of the two users can deposit the e-cash. When
the outcome is published, the publisher sends the extraction key to the winner
by an authenticated and secure channel. If a user submits the e-cash to the
publisher and wants to deposit the e-cash to the bank, the bank detects whether
the user has happened a double-spending. If so, the bank recovers the identity of
the user by the identify procedure. The transferable conditional e-cash consists of
the withdrawal protocol, spending (transferring) protocol, deposit protocol and
the identify procedure. We provide a new algorithm to construct the transferable
e-cash system based on the outcome of a condition. The general description is
given as follows.

The payer firstly withdraws an e-cash from the bank, and decides to spend the
e-cash to other user based on a condition. The transferring protocol is anonymous
to protect the identity of the payer U1 and the payee U2. To achieve anonymity,
two tricks are adopt to our e-cash system. Firstly, commuting signature technol-
ogy is used in our system. Generally, commitments and the corresponding proofs
are used in the interaction between U1 and U2 to achieve anonymity. However
this is not enough, i.e., if U2 transfers the e-cash to other payee U3, the bank
knows that the e-cash is from the same user U1. Thanks to commuting signature
technology, we can modify the commitments and proofs to achieve anonymity.
Secondly, we divide the deposit into two parts to obtain the anonymity of the
last user in the deposit protocol. More precisely, since the identity of the user
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is supplied in the deposit protocol, the bank can link the spending of the last
user and the deposit of the user. To obtain the anonymity of the last user in the
deposit protocol, we divide the deposit into two parts. The first part is exchang-
ing in which we can exchange the spending to another spending mo provided by
the bank. The other part is cashing, where the user updates the spending mo
to mo′ using the commuting signatures, and provides mo′ and an account num-
ber to the bank. In our scheme, the most important problem is how to obtain
the conditional e-cash, namely, two outcomes for the user U1 and another user
Ui. We achieve this goal by introducing a publisher, which gives two commit-
ment/extraction keys. The two commitment/extraction keys commit two secret
value for the two outcomes. When the outcome is favorable to a user, the corre-
sponding secret value is sent to the corresponding user by an authenticated and
secure channel. This publisher is very important, since he publishes the condi-
tions of two events and the correct outcome to decide who can deposit the e-cash
to the bank.

5 Conditional Transferable E-cash

Conditional transferable e-cash allows the user to spend a conditional e-cash to
other one based on the outcome in the future. In the follow, we give the details
of our scheme.

5.1 Setup

The bank B, the judge J , the publisher P and each user U generate key pairs
(pkB, skB), (pkJ , skJ ), (pkP , skP) and (pkU , skU ) respectively. The bank also
generates a pair of commitment/extraction key (CB, EB), which is used to com-
mitted the serial number of the e-cash. The users register their public keys to
the judge as membership certificate: certi = SPSignpkJ (pkUi), this is simi-
lar to the action that the users obtain an identity from the country and then
open a bank account from the bank. The publisher gives two pairs of commit-
ment/extraction keys, one is (Cpr, Epr) which is used to commit the coin for the
payer, and another is (Cpe, Epe) which is used to commit the coin for the payee.
If the outcome is favorable to the payer, the payer will obtain the secret key
Cpr, otherwise the payee will obtain Cpe. The judge also generates two pairs of
commitment/extraction keys (CJ , EJ ) and (Csp, Esp), the first key will be used
for identification of double spenders, and another key is used for the proof of our
scheme. The bank maintains a database DB, which is used to save the e-cash
spent. The database is initialized to empty.

5.2 The Withdrawal Protocol

The withdrawal protocol allows the user U1 to withdraw a coin co from the
bank B. We define the commitments of the publisher as pn, pm for the outcomes,
which is favorable to the payer, the payee respectively, and the commitments
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p̃n, p̃n′ , which is used to supply some information to adversary for the security
proof. The publisher publics the two commitments. And then the user registers
the outcome at the publisher. The jn and j̃n are defined as commitments that
commit a message n using CJ and Csp. The bn is defined as commitment that
commits a message n using CB. The pn and p̃n are defined as commitments
that commit a message n using Cpr and Cpe. In the following, We will give the
protocol in detail.

1. U1 picks at random a nonce n1 and makes commitments bn1 using the com-
mitment key of the bank, which represents the serial number of the coin, jn1

to n1 using the commitment key of the judge, which is used to verify the
spending chain of users and a proof πn1 that two committed values are equal

[9]. Moreover, U1 makes commitments jpkU1
, j̃pkU1

to the public key of the
user, which is used to recover the identity of users when a double-spending
happens, and a proof πpkU1

that two committed values are equal. U1 also
gives the commitment of the signature of the public key of user jcU1

, which
is made by the judge. At last, U1 gives the proof πcU1

[10,4] that the value
in jcU1

is a valid signature on the value in jpkU1
.

TheuserU1 sends the followingvalues to thebank:{pkU1, jpkU1
, jn1 , jcU1

, πcU1
}.

2. In order to supply two outcomes, B picks at random n and m, and gener-
ates two commitments pn and pm using the commitment keys Cpr and Cpe

respectively. B also gives the other two commitments p̃n and p̃m which is
used to prove the scheme completely. Meanwhile two proofs πn and πn′ are
given to prove two committed values are equal respectively. If the outcome
is favorable to the payer, the publisher P will give the extraction key to the
payer. Then the payer can open the commitment pn and obtain the value n.

3. B verifies the NIZK proof πcU1
and the public pkU1 . If they are correct, the

bank B chooses a random nonce n0 for the coin and generates two commit-
ments jn0 and bn0 using the commitment keys CJ and CB respectively. The
bank also gives a proof πn0 that the two committed values are equal. Then
the bank B produces a committed signature csc1 on the values n,m,n0,n1 and
pkU1 by running SigCom on pn,pm,jn0 , jn1 and jpkU1

, and also outputs the
proof πs1 [10,4]that the signature csc1 is valid to commitments pn,pm,jn0 ,
jn1 and jpkU1

.

The bank B sends the following values to the user: {pn, p̃n, πn, pm, p̃m, πm, jn0 ,
bn0 , πn0 , csc1 , πs1}.

Finally, the user U1 forms the coin co1 = (pn, p̃n, πn, pm, p̃m, πm, jn0 , bn0 , πn0 ,

jn1 , bn1 , πn1 , jpkU1
, j̃pkU1

, πpkU1
, jcU1

, πcU1
, csc1 , πs1).

5.3 The Spending(Transferring) Protocol

This is a protocol which makes a payer U1 to transfer a coin to the payee U2.
In order to obtain the anonymity of the user, U1 needs randomize the coin coi
before he spends the coin to the third user. U1 also converts the proof πsi to a
new proof by running AdCκ, which will hide the identity of the user.
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1. U2 picks at random a nonce n2 and makes a commitments bn2 using the
commitment key of the bank, which represents the coin, jn2 to n2 using the
commitment key of the judge, which is used to verify the spending chain
of users and a proof πn2 that two committed values are equal. Moreover,

U2 makes commitments jpkU2
, j̃pkU2

and a proof πpkU2
that two committed

values are equal. At last, U2 gives the proof πcU2
that the value in jcU2

is a
valid signature on the value in jpkU2

.

The user U2 sends the following values to U1: {jpkU2
, jn2 , jcU2

, πcU2
}.

2. U1 firstly checks the proof πcU2
. If the verification is correct, U1 randomizes

co1 to co11 = (p1n, p̃
1
n, π

1
n, p

1
m, p̃1m, π1

m, j1n0
, d1n0

, π1
n0
, j1n1

, d1n1
, π1

n1
, j1pkU1

, j̃1pkU1
,

π1
pkU1

, j1cU1
, π1

cU1
, c1sc1 , π

1
s1). Then U1 computes a committed signature csc2

on the values committed in j1n1
, jn2 and jpkU2

using SigCom, and also out-

puts the proof π′
s2 that the signature csc2 is valid to commitments j1n1

, jn2

and jpkU2
. To hide the verification key of U1, U1 also converts π′

s2 to πs2 by
running AdCκ.

The U1 sends the following values to U2: {co11, Csc2
, πs2}.

Finally, the user U2 forms the coin co2 = (co11, jn2 , bn2 , πn2 , jpkU2
, j̃pkU2

, πpkU2
,

jcU2
, πcU2

, csc2 , πs2 ).

5.4 The Deposit Protocol

When the outcome is published, the winner contacts the publisher and provides
the corresponding proof to the publisher by an authenticated channel. If the
proof is correct, the publisher sends the secret value to the winner. Without loss
of generality, the outcome is favorable to the payee, so the payee will obtain the
corresponding extraction key Epe. To achieve the anonymous of the user during
the deposit, we divide the deposit protocol into two sections, exchanging and
cashing.

Exchanging. Ui spends the coin co	 = (n	, p	n,m, p	m, co	1, co
	−1
2 , · · · , co2	−1,

j1n�
, b1n�

, π1
n�
, j1pkU�

, j̃1pkU�
, π1

pkU�
, c1jU�

, π1
cU�

, c1sc�
, π1

s�
) to the bank, that is, Ui runs

the protocol with the bank playing the role of U2. In order to detect the double-
spending, the bank firstly verifies the correctness of the secret value and com-
mitment (m, pm) and checks whether m equals the value committed in pm. Then
B opens the commitments b	n0

, b	−1
n1

, · · · , b2n�−1
, b1n�

contained in the coin, using
the extraction key of the bank. And last, the bank obtains the serial number
s = m||n0||n1||n2|| · · · ||n	, and checks whether the coin is found in the database
DB. If it does not, the bank sends the value mo = (m, cm, cσm , πcm) to the user
Ui, which represents a correct deposit of the user. The bank also saves the serial
number to the database DB. Otherwise, the bank running the following identify
procedures.

Cashing. In order to cash the coin from the bank, the user Ui converts the
value mo = (m, cm, cσm , πcm) to mo′ = (m, c′m, c′σm

, π′
cm) using AdCκ. Then
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Ui directly contacts the bank B through an authenticated channel, supplies his
account number and exchanges this piece of currency for credit to his account.

If the outcome is favorable to the first payer U1, the user U1 deposits the coin
to the bank as the above procedure except that the U1 spends the coin co11 and
the bank B will obtain the serial number s = n||n0||n1|| · · · ||n	.

5.5 The Identify Procedures

If B can find another serial number beginning with n in his database, i.e. s′ =
n||n′

0||n′
1||n′

2|| · · · ||n′
	. He compares the two serial numbers s and s′ and stops at

the last t such that nt = n′
t. Finally, the bank sends the two coins to the judge.

In order to identify the defrauder, the judge computes the identity committed
in jpkU�

using his extraction key EJ .

5.6 Efficiency

We analysis the efficiency by comparing the computation and communication.
Shi et al. [11] requires O(m1m2k) computation and communication, where m1

and m2 are cut-and-choose parameters and k is a security parameter for RSA-
based systems. We know that in cut-and-choose techniques with a parameter m
a dishonest user can cheat with probability 1/m, therefore a protocol that has
the overhead of O(m2k) is too heavy for any user. Blanton needs O(λlogm3),
where λ is a security parameter for groups with bilinear maps and m3 is the
probability of cheating.

On a contrary, we use the commitments and corresponding proofs for repre-
senting a conditional e-cash. The proofs are given by the NIZK proof using GS
proofs. Thus, the payer only needs to send some commitments and proofs to the
payee in the spending protocol, transferring protocol and the deposit protocol,
and the communication number only needs one time. Therefore, computation
and communication in our scheme are constant, namely O(λ), where λ is the
system parameter or a security parameter for groups with bilinear maps.

6 Security Analysis

We now give the security of our scheme. The scheme fulfills the security require-
ments given in Section 3.

Theorem 1. Our conditional transferable e-cash scheme provides anonymity,
unforgeability, identification of double-spender and exculpability under the fol-
lowing assumptions: SXDH assumption, unforgeability of the commuting signa-
ture scheme, soundness of NIZK proofs and witness indistinguishability of GS
proofs.

Proof. We briefly analyze the security properties as follows.

Anonymous. The anonymous of our scheme only achieves the FA and PA1.
Our scheme commits all messages sent between the users when transferring a
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coin. If the adversary wants to determine which one is the user chosen by the
Challenge in Challenge Phase, he needs to extract the public key committed in
jpkUi

. Thus, the adversary can break the soundness of NIZK proofs and witness
indistinguishability of GS proofs [6].

In the following, we give the prove of the FA by a game between an adversary
A and a challenge C. For fair e-cash, the judge and the publisher is necessary,
so they can not extract the secret key except that the bank give the proof that
the user happens a double-spending.

(Initialization Phase.)Let C supplies a system parameter λ to the adversary A
acting as the bank. The adversary A obtains the key pairs of the bank, the judge
and the publisher. And then (A) sends the public keys and the commitment keys
to the C.

(Probing Phase.)In the withdrawal protocol, the C acting the payer with-
draws conditional e-coins, then converts the coins to new coins by the algorithm
SigCom. The A any payee accepts the e-coins from the A act the payer in the
spending protocol. In the deposit protocol, the user deposits a coin to the A
acting the bank. By the above interact, the A obtains some commitments and
corresponding proofs. The length of the coins are the same.

(End Game Phase.)The C chooses two coins co0 and co1 from these coins in
the Probing Phase, and then flips a fair coin to decide to use co0 or co1 for the
deposit protocol. The GS proofs is soundness, so we know the commitments and
the corresponding proofs are correct. If the adversary A can distinguish which
coin the user deposits, coi(i=0/1), he must distinguish which public key the
user uses, pkUi , namely i = 0 or i = 1. We know if the A can solve the SXDH
problem, he can distinguish which commitment the user uses. But the probability
of solving the SXDH problem is ignore. For the commuting signatures, the A can
not forge any commuting signatures, so he can not give any help to distinguish
i = 0 or i = 1.

So we know the A can win if he can forge a commuting signature, solve the
SXDH problem and break the soundness of the NIZK proofs.

Unforgeability. Let A be an adversary. We outline the success probability of
A is negligible by interacting with a challenger C. The C gives the public key of
the bank. The A generates the remaining parameters.

For each KeyGen(), A can create a new user or corrupt an honest user. So A
obtains some key pairs. In withdrawal protocol,A can act as a user and withdraw
some coins from the challenger, we defined the coins as coui. For each spending
protocol, A can act as a user and spend(transfer) some coins to challenger, we
defined the coins as couo. he also gets some coins from challenger, we defined
the coins as co1ui. In deposit protocol, A deposits some coins to challenger, and
other users deposit some coins which come from A, to challenger. We defined all
the deposit as co1uo. So the A obtains the value of the coins is co = coui + co1ui −
couo − co1ui. If co > 0, the A has spent a coin which is not withdrew from the
bank.

We know the other users and the bank are honest, and the NIZK proof πsi

is soundness. If the A can spend more coins which are not withdrew from the
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bank, he must give a forgery of a new triples (n, n0, pkU1) from the bank. Thus,
A outputs a new signature on a message as a forgery, namely A breaks the
unforgeability of commuting signature.

Double-Spending. C gives the public key of the judge for identifying the iden-
tity of the double-spender. A sets up the remaining parameters.

When A can spend a coin twice without revealing the identity of the A, the
output of the Identify() is not the public key of any user. Because each valid coin
contains a valid certificate for the public key, by the soundness of NIZK proofs,
we know the A must forge a new valid certificate for the public key registered in
judge. Therefore, A breaks the soundness of NIZK proofs and the unforgeability
of commuting signature.

Exculpability. The exculpability is that the A acting the bank can accuse an
honest user of happening a double-spending. We request that the signature is
issued by an honest user rather than the bank.

If a user is identified as a double spending, the A needs to supply two cor-
respond spending to the user. The two spending containing two serial numbers
s and s′ in which ni = n′

i. By the soundness of NIZK proofs, the two coins
contain correct signatures. In order to accuse the honest user of happening the
double-spending, the A forges a signature on a coin. Therefore, A breaks the
unforgeability of commuting signature.

7 Conclusion

In this paper, we presented the first anonymous transferable conditional e-cash.
One of the most features in our protocol is that the spending and deposit protocol
is anonymous. In this protocol, we can modify commitments and corresponding
proof using the commuting signature and the GS proofs. How to design a efficient
conditional transferable e-cash will be a new think.
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Abstract. Key distribution is of a critical importance to security of
wireless sensor networks (WSNs). Random key predistribution is an ac-
knowledged approach to the key distribution problem. In this paper, we
propose and analyze two novel improvements that enhance security pro-
vided by the random key predistribution schemes. The first improvement
exploits limited length collisions in secure hash functions to increase the
probability of two nodes sharing a key. The second improvement intro-
duces hash chains into the key pool construction to directly increase the
resilience against a node capture attack. Both improvements can be fur-
ther combined to bring the best performance. We evaluate the improve-
ments both analytically and computationally on a network simulator.
The concepts used are not limited to the random key predistribution.

Keywords: hash function collision, key management, random key pre-
distribution, security, wireless sensor network.

1 Introduction

A wireless sensor network (WSN) consists of resource-constrained and wireless
devices called sensor nodes. WSNs monitor some physical phenomenon (e.g., vi-
brations, temperature, pressure, light) and send measurements to a base station.
There are several classes of sensor nodes available – ranging from high-end nodes
that can easily employ public-key cryptography down to nodes that can barely
make use of any cryptography at all. In our work, we consider cheap and highly
constrained nodes that can use only symmetric cryptography and their storage
is just a few kilobytes.

Key distribution is one of the greatest challenges in WSNs. Since network
topology is usually not a priori known, every node should be able to establish
a link key with a large portion of other nodes to ensure the connectivity of the
network. To achieve this requirement, nodes may pre-share a single network-
wide master key and use it to establish link keys. However, if a single node with
the master key is captured, then the whole network gets compromised. In an
alternative approach, each node pre-shares a unique link key with every node.
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This offers much better security, yet hits the memory limits as number of nodes
in the network increases.

A suitable trade-off between the two approaches comes with the random key
predistribution [1]. Every node is preloaded with a fixed number of keys ran-
domly selected from a given key pool. After the network deployment, two nodes
establish a link key if they share at least one key from the key pool. The scheme
can be extended to require at least q shared keys [2].

In this paper, we propose two improvements of the basic random key predis-
tribution schemes. In the first improvement, we increase a probability that any
two nodes establish a link key while maintaining memory requirements fixed. For
this purpose we construct the key pool using limited length (e.g., 80-bit) colli-
sions in a secure hash function. We also provide an evidence that such collisions
can be found in a reasonably short time on today’s personal computers.

The second improvement introduces hash chains into the key pool structure
to directly enhance the resilience against a node capture attack. Both the im-
provements can be further combined together to bring the best performance.
These improvements are particularly advantageous for situations in which the
attacker manages to capture a significant number of nodes.

The structure of the paper is following – we review the basic random key
predistribution schemes and other related work in Section 2. We present and
evaluate the first improvement in Section 3 and the second improvement in
Section 4. Then we evaluate their combination in the following section of this
paper. We provide computational results from a network simulator and proof of
concept for the collision search in Section 6, and then the last section concludes
the paper. Proofs of selected equations can be found in the Appendix.

2 Background and Related Work

In this section, we provide a background knowledge on the basic random key
predistribution schemes and other related work.

Our proposals modify the basic random key predistribution schemes proposed
by Eschenauer and Gligor [1] and Chen et al. [2]. We refer to the schemes as to
the EG scheme and the q-composite scheme, respectively, in our paper.

The EG scheme works as follows: in the (i) key setup phase, a key pool S is
created by randomly taking |S| keys from the possible key space. Then, for every
node, m keys are randomly drawn from the key pool S without replacement and
uploaded into the node. These keys form a key ring for the given node. If |S|
and m are chosen properly, any two nodes in the network share at least one key
with a high probability. E.g., for a key pool size |S| = 10, 000 and a ring size
m = 83 the probability that any two nodes share a key is p = 0.5.

In the (ii) shared key discovery phase, every two neighboring nodes try to
identify shared keys among their key rings. This can be done by various methods.
E.g., every key can be assigned a short unique identifier that is broadcasted by
the nodes that have the corresponding key in their key rings. If a shared key is
found, it is used as a link key for the communication between the two nodes. If
not, the link key can be established in the path-key establishment phase.
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The (iii) path-key establishment phase is optional. It uses already secured links
to establish link keys between two neighboring nodes that could not establish a
link key directly as they had no shared key or their keys were compromised [3].

The q-composite scheme is a generalization of the EG scheme. In the shared key
discovery phase, two nodes establish a link key only if they share at least q keys
in their key rings. The resulting link key is derived from all the shared keys.

2.1 Node Capture Resilience

The performance of random key predistribution schemes is evaluated with re-
spect to the node capture resilience [2]. It can be defined as the probability that
a given secured link between two uncaptured nodes can be compromised by an
attacker using keys extracted from already captured nodes. In other words, the
node capture resilience is a fraction of secured links between uncaptured nodes
that can be compromised by an attacker.

The node capture resilience is mostly influenced by the following three factors
– the ring size m, the key pool size |S| and the probability that any two nodes in
the network can establish a link key. These values are to some extent determined
by properties of the network concerned. The ring size m is limited by a storage
capacity of the network sensor nodes. If we want the network to be connected
by secure links, the minimum required probability of a link key establishment
is given by the size of the network and by the average number of neighboring
nodes (for details see [1]). Given the m and the minimum required probability,
the |S| is uniquely determined. Note that in the q-composite scheme also the q
influences the node capture resilience and the key pool size |S|.

2.2 Other Related Work

The basic schemes have been modified by Ren et al. [4]. The key pool in their
scheme consists of a large number of keyed hash chains where every hash chain
element is considered a unique key. Every node is then assigned a number of such
keys and a number of whole keyed hash chains represented by their hashing keys
and chain starting points. Deterministic and hybrid approaches how to select
keys for key rings based on combinatorial design are proposed in [5]. These
approaches enhance the performance of the basic schemes and similarly to them
can be also further improved with our proposals. For other key distribution
schemes in WSNs see the survey [6].

Our first proposal is based on hash collisions. Rivest and Shamir took an ad-
vantage of hash collisions for a security gain in the MicroMint micro payment
scheme, where an electronic coin was represented by a hash collision [7]. How-
ever, their scheme relies on the security economics rather than on computational
complexity per se. An attacker with a computational power equal to the broker
is able to cheat by finding a collision with given properties. In our scheme, an
attacker needs to find a pre-image for a given hash.

As far as we are aware, the first usage of hash-chains for key agreement ap-
peared in [8].
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3 Collision Key Improvement

We propose a modification to the basic random key predistribution schemes.
Keeping the key ring size m and the key pool size |S| same as for the basic
schemes, this modification additionally increases the number of keys that two
nodes may share.

In our scheme, two nodes X and Y can share a key directly as in the basic
schemes. Furthermore, an additional shared key C can be constructed if two
nodes carry two different, but related keys KA and KB such that the condition
C = H(KA) = H(KB), where H is a suitable cryptographic hash function, is
fulfilled. We call such related keys colliding keys and the resulting value C a
collision key. Probability of two randomly chosen values for KA and KB being
colliding keys is generally very low due to the collision resistance of the hash
function. Therefore, we modify the process how keys for the key pool are selected.

Instead of randomly selecting |S| keys from the possible key space, |S|
2 colliding

key pairs are taken to form a key pool S. Thus, the total number of keys in the
key pool remains |S| and the key pool gets the structure depicted in Figure 1.

Fig. 1. Key pool structure in the collision key improvement. Colliding keys from the
key pool are denoted KA and KB . Collision keys are depicted as C. H denotes a secure
hash function.

Colliding keys long enough to withstand a brute-force attack can be efficiently
generated due to the birthday paradox. In Section 6, we demonstrate that for
key length of N = 80 bits thousands of colliding key pairs can be generated with
a moderate computational power.

Beside the key pool structure, we also slightly modify the way how keys are
selected to a key ring. The keys are still picked from the key pool randomly with-
out replacement, however, we do not allow two colliding keys to be in the same
key ring. Thus, if a key is picked, not only itself but also its colliding counterpart
is temporarily marked off the key pool. Once the key ring is complete, all keys
are put back to the key pool and the next node is processed.

In the shared key discovery phase, similarly to the q-composite scheme, two
nodes X and Y can establish a link key if they share at least q keys. The shared
keys can be both colliding keys drawn directly from the key rings or collision
keys computed using a hash function H . Since every node has m keys in its key
ring, it is also able to establish m collision keys. Thus our improvement signifi-
cantly increases the effective size of the key rings as evaluated in the following
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subsection. Therefore, we can expand the key pool accordingly while keeping
the probability of a link key establishment at the desired level. This expansion
increases the node capture resilience. In the rest of the paper we refer to this
improvement as to the collision key improvement.

3.1 Probability of Link Key Establishment

In this subsection we show how to calculate the probability that any two nodes
in the network are able to directly establish a link key in the shared key dis-
covery phase. Let us define the following notation to support readability of the
subsequent analysis.

Definition 1{
|S|
m

}
=

|S| · (|S| − 2) · (|S| − 4) · ... · (|S| − 2 · (m− 2)) · (|S| − 2 · (m− 1))

m!

The formula expresses the number of all possible key rings of size m selected
from a key pool of size |S| where no colliding key pair is present in the key rings.
Thus it can be viewed as |S| choose m, where the choice has to respect the above
mentioned constraint. For justification see the Appendix.

The probability that any two nodes in the network share exactly i keys from
the key pool S and exactly j collision keys that do not result from the i shared
keys can be calculated as follows (see the Appendix for proof):

PSharedExactly(i, j) =

(
m
i

)(
m− i
j

){
|S| − 2m
m− i− j

}
{
|S|
m

} (1)

Two nodes can establish a link key if they share at least q independent keys,
no matter whether these are colliding or collision keys. The collision keys are
counted only if their pre-images are not. Thus the probability that any two nodes
in a network are able to establish a link key is, among m and |S|, dependent also
on the parameter q and can be calculated as:

PLinkEstablishI =

m∑
i=0

m∑
j=0

PSharedExactly(i, j) (2)

where i+ j ≥ q and i+ j ≤ m.

3.2 Resulting Node Capture Resilience

In this subsection we evaluate the collision key improvement with respect to the
node capture resilience. The resilience is dependent on the number of captured
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nodes x, the key pool size |S|, the key ring size m and the desired probability
of a link key establishment PLinkEstablishI . We assume that an attacker has
selected the nodes to capture in a random fashion and calculate the node capture
resilience as

PLinkComprI =

m∑
i=0

m∑
j=0

(1− (1− m

|S| )
x)i(1− (1− 2m

|S| )
x)j

PSharedExactly(i, j)

PLinkEstablishI
(3)

where i+ j ≥ q, i+ j ≤ m. For proof see the Appendix.
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Fig. 2. Node capture resilience after x randomly selected nodes have been captured,
key ring size m = 200, probability of link key establishment PLinkEstablishI = 0.33

Figure 2 presents a comparison of the q-composite scheme and the collision
key improvement. It is clear that our improvement provides a better node cap-
ture resilience for both values of q. E.g., if q = 2 and 50 nodes are captured, the
resilience of the q-composite scheme is 4.7%, whereas the collision key improve-
ment gives us the resilience of 2.7%.

4 Key-Chain Improvement

The second proposed modification of the basic random key predistribution in-
troduces hash chains into the key pool construction. We will refer to this modifi-
cation as to the key-chain improvement. The key-chain improvement was loosely
inspired by previous work of Ren et al. [4], but our scheme utilizes hash chains
in a different manner. Furthermore, we employ basic hash chains instead of the
keyed ones.
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In our scheme, the key pool consists of |S| hash chains of a length L and
every value in the chains is considered as a potential key. Thus, we refer to the
hash chains as to the key-chains. The structure of the key pool is depicted in
the Figure 3.

Fig. 3. Key pool structure in the key-chain improvement. The knowledge of a key Kij

enables one to compute keys Kik for every k ≥ j.

In the key-setup phase, every node is randomly assigned a key from m ran-
domly selected key-chains. If two nodes were assigned keys from the same key-
chain, they are able to calculate a shared key. A node with a value closer to the
beginning of the key-chain can traverse the chain downwards to find the shared
key carried by the second node.

In the shared key discovery phase, two nodes can establish a link key when
sharing at least q independent keys.

The actual size of the key pool is |S| · L, although in the subsequent analysis
we shall consider the number of key-chains |S| as the key pool size. The length
of a key-chain L shall be taken as an independent parameter that influences the
scheme security. The key-chain improvement can be further combined with the
collision key improvement to get even better performance. The combination is
considered in Section 5.

4.1 Probability of Link Key Establishment

The probability that any two nodes share exactly i independent keys is equal
to the same probability for the basic EG and q-composite schemes. To calculate
the probability we can use the formula from [2]:

PSharedExactly(i) =

(|S|
i

)( |S|−i
2(m−i)

)(
2(m−i)
m−i

)
(|S|
m

)2 (4)

Note that the probability is independent of the key-chain length L as the length
influences only the node capture resilience provided by the scheme. The proba-
bility of a link key establishment for a given q is then

PLinkEstablishII =
m∑
i=q

PSharedExactly(i) (5)
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4.2 Resulting Node Capture Resilience

The node capture resilience is in this case dependent (among other parameters)
also on the key-chain length L. To evaluate the node capture resilience, we first
calculate the probability that a key from a given key-chain is compromised after
an attacker captured x random nodes as follows (see the Appendix for proof):

PChainCompr =

L∑
i=1

2 · i− 1

L2
(1 − (1− m

|S|
i

L
)x) (6)

Assuming an attacker has selected the nodes to capture in a random fashion,
the node capture resilience can be calculated as

PLinkComprII =

m∑
i=q

(PChainCompr)
iPSharedExactly(i)

PLinkEstablishII
(7)
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Fig. 4. Node capture resilience after x randomly selected nodes have been captured,
key ring size m = 200, probability of link key establishment PLinkEstablishII = 0.33,
effective key-chain length L = 10

Figure 4 presents a comparison of the q-composite scheme and the key-chain
improvement. Again, our improvement provides a better node capture resilience
for both values of q. E.g., if q = 2 and 50 nodes are captured, the resilience of the
q-composite scheme is 4.7%, whereas the key-chain improvement provides the
resilience of 2.5%. Such a resilience is even better than the resilience provided
by the collision key improvement proposed in Section 3.
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4.3 Key-Chain Length

An important security parameter of the key-chain improvement is the length of
the key-chains. It holds that the longer the key-chain, the better the node capture
resilience. However, as the length of the key-chain increases, the security gain
obtained for a single unit increment decreases rapidly as demonstrated in Figure
5. Also, when evaluating the node capture resilience, we have to consider the
effective length of the key-chain, not the actual one. The effective length of a
key-chain is the number of different keys from the key-chain that are actually
assigned to some key ring. The effective length is dependent on the number of
nodes in the network n, the size of a key ring m and the size of the key pool |S|.
The average effective key-chain length cannot exceed n·m

|S| , which is the expected

number of nodes that will be assigned a key from a given key-chain. If we set the
actual length to be equal to this number, the average effective key-chain length
will be shorter. We can get close to the bound by setting the actual length
artificially long. Yet this would increase the computational complexity of the
key establishment as nodes would need to perform more hashing to establish a
shared key. In practice, it is not necessary to reach the maximum length available
due to the steep decrease in additional gain demonstrated in the Figure 5.
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Fig. 5. Relationship between an effective length of a key-chain and node capture re-
silience. Key ring size m = 200, probability of link key establishment PLinkEstablishII =
0.33, q = 2 and the number of captured nodes x = 50.

For most networks, a practical value of the effective key-chain length would
be around L = 10. Such an effective length is achievable with only a slightly
higher actual key-chain length for sufficiently large networks.
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5 Combined Results

The key-chain improvement can be directly combined with the collision key
improvement to obtain even better results with respect to the node capture
resilience. To combine both improvements, the end points of the key chains
should be the colliding keys. This requirement can be easily fulfilled due to the
nature of the parallel collision search algorithm. If the collision is found, also the
two hash chains that precede it are obtained, see Section 6.

The probabilities of a link key establishment between any two nodes in the
network are calculated similarly as in the case of the collision key improvement
using Equations 1 and 2. The size of the key pool |S| is in this case defined as
the number of key-chains. Thus |S| has a similar meaning as in the key-chain
improvement.

For given arguments, one obtains the same probability of a link key establish-
ment for both the collision key improvement and for the combined solution. Yet
there is a difference in the achieved node capture resilience, which is higher for
the combined solution. The difference is dependent on the effective length L of
the key-chains.

The node capture resilience of the combined scheme can be calculated as

PLinkComprIII =
m∑
i=0

m∑
j=0

(PChainCompr)
i(1−(1− 2m

|S| )
x)j

PSharedExactly(i, j)

PLinkEstablishI
(8)

where i+ j ≥ q, i+ j ≤ m.
Figure 6 demonstrates that the combined improvement outperforms the q-

composite scheme and the key-chain improvement. E.g., if q = 2 and 50 nodes are
captured, q-composite scheme scores 4.7%, collision key improvement 2.7%, key-
chain improvement 2.5% and the combined improvement 2.2%. The comparison
gets even better for the combined improvement as the number of captured nodes
grows.

The scheme of Ren et al. [4] provides a slightly better node capture resilience
than our combined improvement for a small number of captured nodes. However,
as this number grows our combined improvement starts to outperform the Ren’s
scheme. For PLinkEstablishI = 0.5, q = 2 and m = 161, the turning point is
around 125 of captured nodes. Since we were not able to fully reproduce Ren’s
analytical results (and did not get any response from the contacted authors), we
did the comparison only for the parameters used in their paper.

The communication overhead of the shared-key discovery phase, when our
combined improvement is used, is dependent on the discovery procedure itself.
For some procedures it is similar to the overhead of the basic random key predis-
tribution schemes. E.g., if the pseudo-random predistribution [9] is used, identi-
fiers of keys assigned to a particular node can be calculated from the node ID.
These identifiers can carry all the information necessary to discover shared keys
– the key’s position in a hash-chain and the hash-chain identifier. Additionally,
the shared collision key can be figured out through the hash-chain identifiers
when these identifiers (assigned to the colliding hash-chains) differ only in the
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Fig. 6. Node capture resilience of the combined improvement. Key ring size m = 200,
probability of link key establishment PLinkEstablishI = 0.33, effective key-chain length
L = 10.

Table 1. Probabilities that two nodes share exactly i keys from hash chains and j
additional collision keys. Value i is dependent on the row and value j on the column
of the table. PLinkEstablishI = 0.33, q = 1, m = 200.

i\j 0 1 2 3

0 0.67 0.1344 0.0134 0.0009
1 0.1344 0.0267 0.0026 0.0002
2 0.0134 0.0026 0.0003 0
3 0.0009 0.0002 0 0

least significant bit. Thus the communication overhead only covers transmission
of the node IDs. Another advantage of the pseudo-random approach is that the
nodes do not need to store their own key identifiers as these can be computed
when actually needed.

Another interesting information concerns the composition of link keys estab-
lished, e.g., what fraction of keys is based solely on the collision keys or solely
on the keys from the hash chains. Such information can be calculated using
Equation 1. The equation gives us the probability that two nodes share exactly
i keys from hash chains and j additional collision keys. The sample probabilities
for PLinkEstablishI = 0.33, q = 1, m = 200 and different combinations of i and
j are summarized in Table 1. E.g., the probability that a link key is based on
exactly two keys from hash chains and a single collision key is given in the row
2, column 1. The probability that two nodes do not share any key is in the row
0, column 0. Note that the table is symmetric, i.e., both types of keys are used
with an equal probability. The table is not complete, yet the probabilities of
other combinations of i and j are negligible.
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6 Computational Results

Analytical results presented in the previous sections were computationally ver-
ified using our network simulator. We have simulated the q-composite scheme
and all the proposed improvements using various settings for critical parame-
ters and networks of different sizes and topologies. For every setting, an average
over 10 different simulation runs was taken as a result. The reference simulated
network had 10,000 nodes, though we have tested also other sizes. It showed
that obtained analytical and simulated results for node capture resilience are
consistent. The simulator and its source codes are available for download along
with sample configuration scripts that enable the verification of results1.

The important part of the collision key and the combined improvement is
a search for collisions of the cryptographic hash function. This search can be
efficiently performed due to the birthday paradox. In order to find an N -bit
collision in a cryptographic hash function, one needs to perform approximately
2

N
2 hashing operations. Furthermore, to find c2 such collisions for 1 ≤ c ≤ 2

N
2 ,

one needs to perform “only” approximately c · 2N
2 hashing operations [7]. Thus,

once the first collision is found, additional collisions can be found increasingly
efficiently. If we assume 80-bit keys are used, to create the key pool for |S| =
216 one needs to find 215 collisions which requires approximately 247.5 hashing
operations. This can be reached with a moderate computational power. Note
that 80-bit keys can be still considered as secure and appropriate for use in
wireless sensor networks as attacker needs to try approximately 279 values to
brute force the key.

We have conducted our collision search using the parallel collision search
method proposed by van Oorschot and Wiener [10]. This method is based on
Hellman’s time-memory trade-off approach and calculates long hash-chains. We
have searched for 80-bit collisions of the SHA-256 hash function, 80-bit values
were taken as an input and 80 most significant bits of the SHA-256 function as
an output. We used the Gladman’s implementation2 of the hash function. The
aggregate time to find over 5,000 suitable collisions was approximately 19,000
hours on a single 3GHz CPU core. The search was distributed using the BOINC
infrastructure [11] to around 1,000 CPU cores so the search took less than a
day. Approximately 223 hash chains with an average length of 224 were com-
puted, thus about 247 hashing operations were performed. The time spent and
resources invested are moderate and within reasonable bounds since this proce-
dure takes place only once in a network lifetime. The speed of the search could
be significantly increased using GPUs or special purpose hardware like FPGA.

7 Conclusions

The key distribution stands among the most critical security issues for wireless
sensor networks. In this paper, we proposed and analyzed two improvements

1 http://www.fi.muni.cz/~xsvenda/papers/SecureComm2012/
2 http://gladman.plushost.co.uk/oldsite/cryptography technology/

sha/index.php

http://www.fi.muni.cz/~xsvenda/papers/SecureComm2012/
http://gladman.plushost.co.uk/oldsite/cryptography_technology/sha/index.php
http://gladman.plushost.co.uk/oldsite/cryptography_technology/sha/index.php
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(and their combination) of the random key predistribution schemes. The first im-
provement exploits limited length collisions in secure hash functions to increase
the probability of two nodes sharing a key. The second improvement introduces
hash chains into the key pool construction to directly enhance the node capture
resilience. Both these improvements can be further combined to bring the best
performance. Our analytical results were supported by simulations.

Our improvements are particularly advantageous for networks where the at-
tacker manages to capture a significant number of nodes. However, the benefits
of our improvements are not limited to the basic random key predistribution
schemes. The improvements could be employed, e.g., in the deterministic or hy-
brid approach proposed in [5]. We leave the investigation of such combination
for the future work. Another challenge is to analyze the improvements face to
face with a clever attacker who does not capture the nodes in a random fashion.
Yet the impact of such an attacker could be limited by a deterministic selection
of keys to be placed into key rings.
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6. Xiao, Y., Rayi, V.K., Sun, B., Du, X., Hu, F., Galloway, M.: A survey of key man-
agement schemes in wireless sensor networks. Computer Communications 30(11-
12), 2314–2341 (2007)

7. Rivest, R.L., Shamir, A.: PayWord and MicroMint: Two Simple Micropayment
Schemes. In: Crispo, B. (ed.) Security Protocols 1996. LNCS, vol. 1189, pp. 69–87.
Springer, Heidelberg (1997)

8. Leighton, T., Micali, S.: Secret-Key Agreement without Public-Key Cryptography.
In: Stinson, D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 456–479. Springer,
Heidelberg (1994)

9. Di Pietro, R., Mancini, L.V., Mei, A.: Random key-assignment for secure wire-
less sensor networks. In: 1st ACM Workshop on Security of Ad Hoc and Sensor
Networks (SANS 2003), pp. 62–71. ACM, New York (2003)

10. van Oorschot, P.C., Wiener, M.J.: Parallel collision search with cryptanalytic ap-
plications. Journal of Cryptology 12(1), 1–28 (1999)

11. Anderson, D.P.: BOINC: A system for public-resource computing and storage.
In: 5th IEEE/ACM International Workshop on Grid Computing, pp. 4–10. IEEE
Computer Society (2004)

Appendix: Proofs and Calculations

In this appendix we provide proofs of the selected equations and also justify the
following statement that relates to the Definition 1. The formula in Definition 1
expresses the number of all possible key rings of size m selected from a key pool
of size |S| where no colliding key pair is present in the key rings.

Proof. We have |S| possibilities how to select the first key for a key ring. After
this selection, we mark the selected key and its colliding key off the key pool.
Thus we have only |S| − 2 possibilities how to select the second key. The keys
are selected in this fashion until we select the m-th key for which only |S| − 2 ·
(m − 1) possibilities remain. Since the order in which the keys were selected is
not important, we divide the result by the number of permutations m!. ��

Proof (Equation 1). We have
{ |S|

m

}
possibilities how to select m keys into a key

ring for any given node. Given these m keys, we have
(
m
i

)
ways to select the i

shared keys. Similarly, once these i shared keys have been picked, we have
(
m−i
j

)
ways to select j shared collision keys that do not result from the i shared keys.
Finally, we have to pick the remaining m− i−j keys for the second key ring that
are not the keys from the first key ring nor their colliding counterparts. Hence
we pick them from the key pool without m colliding key pairs (2m keys). This
can be done by

{ |S| − 2m
m − i − j

}
ways. Thus the number of key ring assignments for

two nodes such that they share exactly i keys and are able to calculate exactly
j collision keys excluding the collision keys resulting from the i shared keys is{ |S|

m

} (
m
i

)(
m−i
j

) { |S| − 2m
m − i − j

}
. The total number of key ring assignments for any

two nodes is
{ |S|

m

}2
. Thus the resulting probability is the fraction of these two

values. ��
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Proof (Equation 3). We follow and extend the proof from [2]. Since every node
contains m keys out of |S|, the probability that an attacker obtains a particular
key after a single node is captured is m

|S| . The probability that the attacker does

not obtain the particular key after x nodes have been captured is thus (1− m
|S| )

x.

Finally, the probability that the attacker compromises a link key that is based
on exactly i shared keys is (1− (1 − m

|S|)
x)i.

Similarly, the probability that the attacker obtains a particular collision key

after a single node is captured is 2m
|S| , because we have only |S|

2 distinct collision

keys and every node is able to calculate exactly m such keys. Hence, the proba-
bility that the attacker compromises a link key based on exactly j collision keys
is (1 − (1− 2m

|S| )
x)j .

Assuming a link is secured with a link key, the probability that the link key

is based on exactly i shared keys and j collision keys is
PSharedExactly(i,j)
PLinkEstablishI

. ��

Proof (Equation 6). Assume that two nodes were assigned keys from a given
key-chain, then the probability that they establish i-th key of the key-chain
as a shared key is 2·i−1

L2 . Furthermore, the probability that i-th key of a given

key-chain was compromised after a random node was captured is m
|S|

i
L . The

probability that an attacker has compromised i-th key of a given key-chain after
he captured x nodes is 1− (1− m

|S|
i
L )

x. ��
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Abstract. In recent years, cellular networks have been reported to be
susceptible targets for Distributed Denial of Service (DDoS) attacks due
to their limited resources. One potential powerful DDoS attack in cellular
networks is a SMS flooding attack. Previous research has demonstrated
that SMS-capable cellular networks are vulnerable to a SMS flooding
attack in which a sufficient rate of SMS messages is sent to saturate the
control channels in target areas. We propose a novel detection algorithm
which identifies a SMS flooding attack based on the reply rate to mes-
sages sent by a handset. We further propose a mitigation technique to
reduce the blocking rate caused by the attack. Our simulation results
show that the false positive and false negative rates of our detection al-
gorithm are low even when the attack traffic is blended with flash crowd
traffic and/or the attack traffic mimics flash crowd traffic, and that the
blocking rate is successfully reduced through the mitigation technique.

Keywords: SMS flooding attack, DDoS attack, flash crowd, anomaly
detection, modeling, cellular network.

1 Introduction

Text messages continue to grow as the most popular data service of cellular
networks. The total number of text messages sent globally has tripled over the
past three years to reach 6.1 trillion in 2010. In other words, people around the
world are sending 200,000 text messages every second [1]. In the U.S. 66% of
mobile subscribers use text messaging service and over 600 text messages on
average are sent or received monthly by a subscriber [2].

With this growing popularity of text messages, the reliability of Short Message
Service (SMS) is becoming increasingly important. However, previous studies
have shown that the control channels in the cellular networks may be a bottleneck
for both SMS and voice services due to their limited capacity and shared nature.
The stand alone dedicated control channel (SDCCH) is the most vulnerable
since it is used for call setup and location updates as well as SMS [3,4,5]. An
abnormal increase of SMS traffic may result in high occupancy of the SDCCH
and high blocking rate of text messages and voice calls threatening the reliability
of cellular networks.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 76–93, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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There are two kinds of the events that may cause a sudden increase in the
SMS traffic volume in the cellular network: flash crowds and DDoS attacks.
Flash crowds are an unusual burst of legitimate traffic produced by an increased
number of users; these are frequently observed during special occasions [6,7]. For
example, the volume of text messages sent on the New Year’s Eve increases each
year [8] and the resulting congestion causes lost and delayed text messages [9].

DDoS attacks through SMS are another cause of abnormal increase of SMS
traffic. Typical SMS attacks aim to degrade target networks by depleting the
control channel resources with a flood of SMS messages. In previous research, the
feasibility of a SMS flooding attack was proved [10], and mitigation techniques
were proposed [11]. However, they do not address how to detect SMS flooding
attacks.

In this paper, we propose a novel anomaly detection mechanism that iden-
tifies malicious SMS flooding traffic causing intentional congestion in cellular
networks. The difficulty is that the attack traffic mimics flash crowd traffic to
circumvent detection. As the traffic behavior in flash crowds and flooding attacks
are very similar, we need to find some features that can be used to distinguish
them to reduce the false positive rate of our detection algorithm. Due to the
lack of attack traffic traces, we analyze normal SMS traffic to infer the difference
between flash crowds and flooding attacks. We find through the analysis that a
mobile user replies to a message from a close friend with high probability, and is
unlikely to answer a message from an unknown number. Therefore, we infer that
if the reply rate for a handset which sends messages into a congested network
is lower than a threshold, it is likely to be a malicious handset attempting to
deplete the control channels.

We also develop a mitigation technique which classifies SMS traffic as normal,
suspicious, or malicious and separates the traffic into three distinct queues with
decreasing priorities to reduce the blocking caused by attack traffic and allow for
fast identification of malicious handsets. The blocking of the normal handsets’
traffic is efficiently diminished since a higher priority for obtaining the limited
control channels is given to the normal handsets rather than the suspicious and
malicious handsets.

Our simulation results show that our baseline algorithm performs the detec-
tion of unmixed flooding traffic with a very low false positive rate. The detection
of attacks occurring in a flash crowd event and/or mimicking flash crowds is much
more challenging. The mitigation technique, however, reduces the blocking rate
of the messages from normal handsets successfully.

We compare our results to those of SMS-Watchdog, the most similar algorithm
to ours in the literature, and show that we are more effective at distinguishing
between attack traffic and naturally occurring flash crowd traffic.

The remainder of the paper is organized as follows. In Section 2, we discuss
related works. The characteristics of the SMS network architecture and the dif-
ferent types of SMS traffic are introduced in Section 3. Our detection algorithm
follows in Section 4. We evaluate our detection algorithm and mitigation tech-
nique through simulation in Section 5 and conclude in Section 6.
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2 Related Work

The increasing popularity of short messages in cellular networks has led to much
research on SMS capacity. In [3], it was shown that severe congestion may occur
when the SDCCH channels are exhausted as they are shared by SMS, call setup
and location updates. Agarwal et al. [5] conducted capacity analysis using a
queueing model to show that the SDCCHs can be a bottleneck which increases
the blocking probability of SMS as well as voice calls during elevated message
loads. The possibility of an attack exploiting the limited and shared property of
the SDCCHs was addressed in [4].

Enck et al. [10] demonstrated that SMS-capable cellular networks are vulner-
able to a SMS flooding attack where a sufficient rate of SMS messages is sent
from the Internet to local cell phones in order to saturate the SDCCH capacity.
Furthermore, Traynor et al. [11] evaluated the performance of this attack by
modeling and simulation and proposed mitigation techniques. However, they do
not address how to detect flooding attacks. We propose a detection algorithm to
identify SMS flooding attacks and a mitigation technique to lower the blocking
rates at the control channels.

Previous research conducted by Yan et al. [12] proposed a SMS-related attack
detection scheme named SMS-Watchdog that detects abnormal activities of SMS
users by checking deviations from their normal social behaviors. Their approach
is applicable to SMS flooding attacks because the attacker’s behavior may be
changed from the behavioral profile trained before the attack starts.

However, SMS-Watchdog gives false alarms when a flash crowd event occurs
because the behavioral characteristics of normal SMS users are changed dur-
ing flash crowd events. On the contrary, our algorithm can distinguish flooding
attacks and flash crowds reducing the false alarms.

As DoS attacks and flash crowds are the two major concerns threatening the
reliability and stability of the Internet, many studies on how to discriminate
them have been conducted in the IP networks [6,13,14,15]. However, the direct
application of these solutions is unsuitable because the IP flow and text messages
of flash crowds have different properties. For example, the flash crowd traffic in IP
networks is destined to a small number of servers while the messages exchanged
in flash crowd events are scattered over many users in cellular networks.

We characterize flash crowd traffic and attack traffic based on the analysis
of normal SMS traffic. [7] provides us with the statistics of flash crowd traffic
in cellular networks. We obtain real SMS traces of three service providers from
[16] and analyze them to infer the difference between a recipient’s behavior to
normal messages and attack messages.

3 SMS Communication Characterization

3.1 Network Characterization

The basic network structure of SMS is depicted in Fig. 1. A mobile handset B
can receive a text message from one of two sources - another mobile handset A or
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MSC SMSC

Internet
ESME HLR VLR
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BS BSA B

Fig. 1. SMS network structure

External Short Messaging Entity (ESME). An ESME is typically a non-mobile
entity that submits messages to, or receives messages from a Short Messaging
Service Center (SMSC) via the Internet. A text message from either is delivered
to a recipient through a SMSC, a Mobile Switching Center (MSC), and a Base
Station (BS).

A SMSC is responsible for storing and forwarding short messages to a termi-
nating MSC. It obtains routing information from the Home Location Register
(HLR) to locate the proper MSC. The MSC performs the switching functions
of the system and delivers SMS messages to the specific mobile subscriber by
retrieving the subscriber’s location from the Visitor Location Register (VLR).
A MSC can store the messages in a queue for a short time during which it re-
transmits the messages if acknowledgements are not received within a specific
time. If a message is not successfully delivered to the mobile station after the
maximum number of retransmission attempts, the MSC sends an error message
to the SMSC [17,18].

Between a BS and a mobile handset, a message is delivered via the air interface
using control channels. First, a BS transmits a paging request with an identifier
on the Paging Channel (PCH). When a mobile handset hears its identifier, it
responds to the BS on the Random Access Channel (RACH). Then, the BS
assigns a SDCCH to the handset. The handset authenticates with the BS and
receives the text message via the SDCCH. As a SDCCH is used for call setup and
location updates in addition to SMS transfer, it may be flooded by an increase
of SMS requests blocking both voice and SMS communication.

3.2 Normal Traffic Characterization

There have been prior efforts on characterizing normal SMS traffic patterns.
Some researchers analyze SMS traces collected from a nationwide cellular car-
rier with more than 20 million subscribers over a period of three weeks [19,7].
They present thread-level characteristics in addition to the SMS message-level
characteristics, where a thread is defined as messages exchanged between the
same two users within a predefined timeout period. According to their analysis
with 10 minutes as a timeout, the number of messages in each thread, or the
thread length, is 4.9 on average and the average thread duration is 8 minutes.
That implies that the average interval between receiving and responding to a
message is 2 minutes.
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However, not all the recipients make a reply to a message that they have
received. In our own analysis on the SMS trace data provided in [16], 22% of
the messages are ”single” messages which are not followed by another message,
where we only consider the messages from the handsets which generate at least
ten messages per a day on average. Thus, the average length of a thread including
”single” messages is 1 ∗ 0.22 + 4.9 ∗ 0.78 ≈ 4.

Another measurement study on SMS traffic, logged in records from three
different companies over a one month period, examines the distribution of the
intervals between messages belonging to one thread [16]. The empirical results
show that the inter-arrival time and the waiting time of normal messages have
power-law distribution within a thread duration and a new thread is initiated
by an exponential distribution. The arrival rates of calls and SMS messages in
a single sector per second and the service rates of calls and SMS messages at
SDCCH are also known as shown in Table 1.

Table 1. System Variables and Parameters

λcall Arrival rate of voice calls 0.25 calls/sector/sec [11]

λSMS Arrival rate of SMS msgs 0.7 msgs/sector/sec [11]

μ−1
SDCCH,call Service rate of voice calls at SDCCH 1.5 sec [20]

μ−1
SDCCH,SMS Service rate of SMS msgs at SDCCH 4 sec [4]

Flash crowd traffic shows different characteristics from regular SMS traffic.
The traffic looks anomalous because cellular networks suffer a sudden increase
of SMS traffic in a flash crowd event. For example, the volume of messages ex-
changed during the New Year’s Eve in India reaches almost eightfold the normal
traffic level [7]. Such an increase in traffic is affected more by an increase in the
number of SMS users sending and receiving messages rather than an increment
of messages per user. Therefore, the SMS communication in a flash crowd is dif-
ferent from a regular SMS communication in that the increased volume of traffic
is caused by an increased number of users without a change in the number of
messages sent by a user.

We also observe that 60% of handsets participating in a flash crowd do not
send any messages in three days before the event [7]. These new participants
have a higher probability to be mistakenly classified as malicious as they have
weak prior relationship with legitimate recipients.

Even though flash crowd traffic may slow down the message delivery or even
cause some messages to be discarded because of congestion [9], it should be ser-
viced as legitimate because it naturally occurs from normal handsets. Therefore,
we develop an anomaly detection algorithm to distinguish malicious attack traf-
fic from flash crowd traffic even when they are intermingled and malicious attack
traffic mimics flash crowd traffic to avoid the detection.
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3.3 Attack Traffic Characterization

Previous studies on SMS network capacity have proven that the SDCCH can be
a bottleneck in cellular networks due to its limited capacity and shared char-
acteristics [3,5]. This makes a SMS flooding attack feasible because an attacker
can paralyze cellular communications in a certain area by overloading SDCCHs
in that area. Such an attack will be performed by sending enough messages to
potential target lists which can be created by several efficient methods [10].

We assume that an attacker has the capability to compromise a number of
handsets so that they can send attack traffic under the control of the attacker
without any awareness of the owners. Even though we only consider a mobile-
to-mobile attack in this paper, a SMS flooding attack using bulk messaging
services can be detected if we cast each ESME of bulk messaging providers as
an attacking mobile handset in the algorithm.

Furthermore, we assume that the attacker is intelligent enough to mimic the
behavior of normal users in a flash crowd. The attacker can compromise a large
number of handsets and make them generate bogus messages with seemingly
normal rates so that the aggregated traffic saturates the SDCCHs in a target
area. The attacker can even launch the attack purposely during a flash crowd
event to reduce the probability of being detected.
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Fig. 2. Probability distribution function of reply rates

Consequently, a flooding attack and a flash crowd cannot be easily distin-
guished by the traffic characteristics determined by senders’ behavior such as
the total volume of generated messages, message generation rate per handset
and contents of the messages. However, we infer that the recipients’ behaviors
for the messages sent by a normal user in a flash crowd event and an attacker
disguised as a normal user are distinguishable.

We suppose that a user who sends out only one message to a recipient dur-
ing over a one month period represents an unknown or unfamiliar sender to the
recipient. Through the analysis of the SMS trace given in [16], we find that the
reply rates for the unfamiliar senders and the other normal users have distin-
guishable distributions as seen in Fig. 2 with a 15% and 62% average value,
respectively.
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Since an attacker is an unknown originator from a recipient’s point of view, it
is expected to have a similar distribution of reply rates to that for an unfamiliar
sender. Thus, we can distinguish an attack handset from a normal one based
on the reply rates regardless of whether the attacker mimics a normal user’s
message sending characteristics.

4 Detection Algorithm

4.1 Attack Model

The purpose of a SMS flooding attack is to paralyze the cellular network in a
specific area by overloading the SDCCHs. In this paper, the target of the attack
is a sector served by the BS of a MSC. The handsets serviced in the target area
are called local handsets and the handsets outside the targeted area are remote
handsets. The incoming attack occurs from remote handsets while the outgoing
attack is performed by the local handsets. Because handsets are authenticated,
while they can be infected with a virus that causes them to launch an attack,
their addresses cannot be spoofed.

The attack can be classified as a mixed attack or unmixed attack according
to whether it occurs in concurrence with a flash crowd or not. An attacker may
launch a mixed attack to accelerate the attack’s efficiency and avoid detection by
having the attack traffic intermingled with flash crowd traffic. Our base algorithm
aims at successfully identifying the messages sent from malicious handsets among
the intermingled traffic even under a mixed attack and keeping the false positive
rate low by adaptively changing the expected reply rate for the benign messages
during the congestion.

From the perspective of the intensity of the attack traffic from a single hand-
set, we can classify the attack as high-intensity or low-intensity. The attacker
can choose low-intensity with a large number of compromised handsets mim-
icking a flash crowd; however, a high intensity attack with a small number of
compromised handsets is easier to carry out. Detection of a low intensity attack
takes more time as the interval between attack messages sent by a handset and
the number of attackers are larger. However, the blocking rate for the normal
handsets decreases efficiently through our mitigation technique even when the
false negative rate is not low.

Consequently, we carry out a performance evaluation for four types of attack
- 1) unmixed attack with high intensity, 2) unmixed attack with low intensity, 3)
mixed attack with high intensity, and 4) mixed attack with low intensity. Intu-
itively, the detection of the mixed attack with low intensity is the most chal-
lenging while the unmixed attack traffic with high intensity is detected with the
shortest delay.

4.2 Algorithm for Identifying Attackers

We deploy a detector on each MSC to detect anomalies in air interfaces under
the coverage of a MSC. Because we make use of the reply rate of mobile handsets
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Alg. 1 : Monitor Threads

1: for each message M observed in W do
2: if M is an outgoing message from L to R then
3: if T = (L,R) exists then
4: Increase Ls by 1
5: else if T = (R,L) exists then
6: Increase Rr by 1
7: else
8: Create T = (L,R)
9: Increase Ls by 1
10: end if
11: end if
12: if M is an incoming message from R to L then
13: if T = (R,L) exists then
14: if M is delivered to L then
15: Increase Rs by 1
16: end if
17: else if T = (L,R) exists then
18: Increase Lr by 1
19: else
20: if M is delivered to L then
21: Create T = (R,L)
22: Increase Rs by 1
23: end if
24: end if
25: end if
26: end for

Table 2. Variables for Alg. 1

M SMS message collected during W

T Message thread represented by a pair of (sender, receiver)

L/R Local/remote handset

Ls/Rs The number of sent messages from L/R

Lr/Rr The number of replies to L/R

for distinguishing benign and malicious traffic, the detector gathers (sender ID,
recipient ID, timestamp) information of both outgoing and incoming messages.
At the end of every time window W with duration ω, the detector looks into all
the information collected during the time window and creates message threads
and updates the number of sent messages and the corresponding replies for a
handset as shown in Alg. 1 with the variables in Table 2.

Note that for incoming messages, only a message delivered to the destination
successfully can increase Rs. Otherwise, the reply rates will be underestimated.

A detector contains an analyzer which identifies the attackers sending over-
loading messages. Upon the detection of congestion, the analyzer is activated and
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Rc ≥ τs Rc ≥ τm 

Rc < τs Rc < τm 

Fig. 3. SMS state transition diagram

calculates the reply rate threshold under normal network conditions, θ, consid-
ering the upper bound on the expected false positive rate for the threshold. Let
X be a random variable of reply rates with finite expected value μ and non-zero
variance σ2. Given the arbitrary distribution of reply rates in the normal traffic
observed before the congestion, the false positive rate is bounded to 1

1+k2 if we
choose μ− kσ as the threshold, and consider a reply rate of less than that value
as an anomaly, which is supported by the one-sided Chebyshev’s inequality:

Pr(X ≤ μ− kσ) ≤ 1
1+k2 .

Accordingly, by setting k = 1 and θ = μ − σ, the false positive rate does not
exceed 0.5. To limit the upper bound of false positive rate to 0.2, we choose k
= 2 and θ = μ − 2σ. Even though a larger k and smaller θ guarantee a lower
expected false positive rate, this might cause a lower detection probability and
longer delay in return. The uncertainty of this effect is caused by the fact that
we do not know distribution of the reply rates for malicious handsets a priori,
although we expect them to be lower than that for normal handsets. In order
to remove this uncertainty and resolve the trade-off, we choose k = 1 and θ =
μ− σ to increase the detection probability and reduce the detection delay, and
use a scoring-based technique [21] to reduce the false positives by confirming the
anomalies as attacks only when the anomaly score exceeds a threshold.

Note that θ is based on the measured distribution of reply rates during nor-
mal network conditions before the congestion occurs. The reply rate from the
handsets in the area under attack will be decreased from its normal rate be-
cause the congestion in the attack area. This congestion will cause messages to
be blocked and thus, send no reply. Therefore, the reply rate threshold for suc-
cessfully delivered messages from a remote handset, τr, should be dynamically
changed to reflect the blocking rate caused by congestion. As the ratio of the
number of unblocked replied messages to that of replies in uncongested network
is (1 − Bavg), we set τr to θ ∗ (1 − Bavg). We use Bavg, the moving average of
blocking rate for ωB to smooth the change of the blocking rate.

The anomaly score representing the degree to which a handset is considered
an anomaly or attacker is initially set to 0. The score increases if the current
reply rate is lower than θ for a normal message under current network condi-
tions and decreases otherwise. When the anomaly score for a handset reaches a
threshold designated for suspicious handsets, τs, the analyzer marks the handset
as suspicious. If the score keeps increasing to a threshold for malicious handsets,
τm, the handset is deemed malicious. As the analysis progresses, the score may
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Alg. 2 : Identify Attackers

1: calculate θ
2: τr = θ ∗ (1−Bavg)
3: Rc = 0
4: for each handset R in T = (R,L) do
5: if R send or receive a message then
6: Rrr = Rr

Rs

7: if Rrr < τr then
8: Rc ++
9: else
10: Rc = max(Rc −−, 0)
11: end if
12: if Rc ≥ τm then
13: Mark R as malicious
14: else if Rc ≥ τs then
15: Mark R as suspicious
16: else
17: Mark R as normal
18: end if
19: end if
20: end for

Table 3. Variables for Alg. 2

Rrr Reply rate for R

Rc Anomaly score representing the likelihood that R is an attacker

Bavg Moving average of blocking rates for duration ωB

θ Reply rate threshold for normal handsets in normal network condition

τr Reply rate threshold for normal local/remote handsets in congested network

τs Anomaly score threshold for suspicious handsets

τm Anomaly score threshold for malicious handsets

go lower and higher than the each threshold causing the change of the status of
a handset as shown in Fig. 3.

The algorithm for an incoming attack is summarized in Alg. 2 and the vari-
ables used in Alg. 2 are presented in Table 3.

4.3 Mitigation Technique

We devise a 3-queue mitigation mechanism in which each kind of traffic classified
by the detector - normal, suspicious, and malicious traffic - is served by one of
three different queues with different weights. Weighted Fair Queueing [22] is used
for scheduling messages in the queues.

Normal traffic is processed with a weight of 2 while suspicious traffic has a
weight of 1. The malicious traffic is placed in the lowest priority queue and
is only served when the two higher priority queues are empty. The blocking
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rate for the messages from normal handsets is efficiently reduced by prioritizing
the process of the normal messages while reducing the number of requests for
the wireless control channels by delaying or refusing service for suspicious or
malicious handsets.

5 Simulation Results

In this section we evaluate our algorithm. We also compare it with the most
similar related work, called SMS-Watchdog, and show that we achieve better
results for the challenging circumstances.

5.1 Simulation Settings

To evaluate the performance of our algorithms, we implement a simulator based
on the characteristics of SMS communication and the proposed algorithms Alg.
1 and 2. We explain the settings in our simulation.

Network Settings. Assuming a SMS network with the network components in
Fig. 1, our detector modules are deployed at the MSCs because they can provide
all the information - (1) the blocking rate of SDCCHs in each sector, and (2)
(sender ID, recipient ID, timestamp) of messages needed to detect the attacks
targeting the SDCCHs in sectors controlled by the MSCs.

The message queues for mitigation techniques are implemented in the BS. The
forwarded messages from the MSC have indicators to which queue they belong.
If the corresponding queue is full, the MSC retries the delivery. The maximum
number of attempts is set to 2. After that, an error message returns to the SMSC
and the message is deleted from the MSC.

Parameter Settings. In Alg. 1, the interval of analysis on message threads,
ω, needs to be set considering the tradeoff between timely detection and compu-
tational overhead. In our simulation, we set ω = 10 seconds because it is short
enough to capture each message of one thread in each time window and long
enough not to overload the detector. We set the value of blocking rate acceptable
in cellular networks, β, to 1%. If the average blocking rate for ω is greater than
β, an analyzer is activated to identify the attackers.

In Alg. 2, the duration for the calculation of the moving average of blocking
rates, ωB, is set to 120 seconds. Since the average waiting time for a reply is 120
seconds, we expect the previous message to have been transmitted 120 seconds
prior to the message just received. Therefore, the average blocking rate for the
last 120 seconds affects the reply rate of the message.

Traffic Settings. We simulate 24 hours of SMS communication. Local and
remote handsets constantly transmit regular SMS traffic during the simulation.
The regular messages are submitted by 4800 handsets at 0.7 msgs/sector/sec
rate according to the normal traffic characteristics.
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Attack traffic is emitted for one hour from 23 to 24 hours. The reply rates for
normal handsets observed for 23 hours before the attack prevent the detector
from misclassifying the normal handsets as malicious handsets due to the tran-
sient low reply rates during the congestion. The longer training period builds a
stronger ”send-reply” relationship among normal users making the discrimina-
tion between the normal and malicious messages easier.

The aggregated volume of the attack traffic is 8 times more than the value
of regular traffic. For the mixed attack, flash crowd traffic fourfold the normal
traffic is generated in addition to the attack traffic.

5.2 Performance Evaluation

We evaluate our algorithm using several fundamental metrics: false positive rate
(FPR), false negative rate (FNR), and blocking rate. The false positive rate is
the fraction of benign handsets that are misjudged as malicious over all benign
handsets. The false negative rate is the fraction of malicious handsets that are
mistakenly judged as benign over all malicious handsets. The blocking rate is
the portion of messages which are blocked due to insufficient channel resources.

We show the performance of our baseline detection mechanism which identifies
the malicious handsets but does not resolve the congestion, and the performance
of the detector with a mitigation technique which reduces the blocking in the air
interface by placing the identified attackers in a low priority queue. The algo-
rithm performs significantly better with mitigation in places because malicious
handsets are removed from the traffic flow making it easier to detect remaining
malicious handsets.

Without Mitigation Techniques. We first examine the FNR and FPR of
the baseline algorithm for unmixed incoming traffic with high intensity with
τm= 1, 2, and 3. The results are presented in Fig. 4a and 4b respectively for
the time elapsed after the start of the attack. The FNR decreases more quickly
for a smaller τm because the attackers’ score, Rc, exceeds the threshold, τm,
in a shorter time. When τm = 1, however, the resulting FPR is over 5% on
average whereas for τm = 2 and 3, FPR is reliably low throughout the attack
period. This is because the attack likelihood score for a normal handset which
has not exchanged messages with recipients before the attack turns to 1 when
the detector sees the first incoming message and exceeds the threshold in the
case that τm = 1.

Our algorithm operates even in more challenging situations. When the at-
tacker generates a high intensity attack traffic in the middle of a flash crowd
event, it is difficult to distinguish malicious traffic from benign traffic because
more than a half of the benign handsets in flash crowds have not participated
in conversational message threads prior to the event. However, even with the
mixed traffic, our baseline algorithm identifies the attackers based on the differ-
ence between reply rates of malicious and benign messages.

Fig. 5a and 5b show more clearly that the FPR increases as τm decreases and
the FNR increases as τm increases. When τm = 1 or 2, the FPR increases to
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Fig. 4. (a) FNR and (b) FPR of unmixed attack traffic with high intensity without a
mitigation scheme
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Fig. 5. (a) FNR and (b) FPR of mixed attack traffic with high intensity without a
mitigation scheme
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Fig. 6. (a) FNR and (b) FPR of two kinds of attack traffic with low intensity without
a mitigation scheme

a high value even though the FNR decreases quickly. The dramatic increase of
FPR for τm = 1 is caused by the sudden increase of new SMS users in flash
crowds. Thus, we set τm to 3 considering trade-off between the FPR and the
FNR.
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With τm = 3, the performance of mixed and unmixed attacks with low-
intensity is shown in Fig. 6. The detection of the attacks is carried out slower
than the high-intensity attacks, but the false positive rates are very close to
those of the corresponding high-intensity attacks. Our observation is that the
intensity of attack messages initiated from a handset determines how fast the
attackers can be detected and the ratio of messages from new active normal
users during the attack determines the accuracy of the detection. The strength
of our detection algorithm is low false positive rates even in the extreme case of
the mixed traffic with low intensity even though the detection of the attacking
handsets is inherently slow due to the low arrival rate of the attack messages.

With Mitigation Techniques. Our detection algorithm identifies the attack-
ing handsets but cannot resolve the blocking caused by the attack messages. We
devise a 3-queue mitigation mechanism which places the three kinds of traffic -
normal, suspicious, and malicious traffic - classified by the detection algorithm
into the corresponding queues and schedules each messages using Weighted Fair
Queueing [22]. By providing normal messages with more wireless channel re-
sources, the blocking rate for normal messages is efficiently reduced.

For message classification, we need to determine the proper value of τs for τm
= 3. The attack likelihood scores for all incoming messages after the detection
starts are initially 0. A handset which has not established message threads with
a recipient before the attack is likely to have 0 as a reply rate and 1 as the
attack likelihood score at the first classification process. So, if we set τs to 1, the
handset is classified as suspicious. With τs set to 2, the handset is still regarded
as normal.
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Fig. 7. Blocking rates for mixed attack traffic with low intensity when a mitigation
technique is applied with (a) τs=1 and (b) τs=2

We determine the proper value for τs taking into account blocking rate as
the blocking rate is the ultimate measure of the performance of the mitigation
system. We show in Fig. 7 the blocking rate for the mixed attack with low
intensity when the mitigation technique is applied. The blocking is mitigated
most efficiently with τs = 1, from 60% to 20% in approximately 20 minutes.
Therefore, we set τs and τm to 1 and 3, respectively.
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Fig. 8. Classification of (a) malicious and (b) normal handset for mixed attack traffic
with low intensity with a mitigation scheme

Fig. 8a and 8b gives us insight into how the detector with the 3-queue scheme
operates to classify the message-sending handsets in case of mixed attack with
low intensity. Most of the malicious handsets are considered as suspicious at first
as we see in Fig. 8a. But, they are subsequently classified as malicious, and so
the ratio of malicious handsets classified as suspicious starts to decrease and
the ratio of malicious handsets classified correctly increases. Fig. 8b shows that
the normal handsets occupy both the normal queue and the suspicious queue.
This is because normal handsets from flash crowds are likely to be classified
as suspicious due to the absence of previous message threads while the normal
handsets which have sent messages and received replies during the prior normal
network situation are likely to be classified as normal.

The normal handsets in normal queue are served with the highest priority
without much competition with the malicious handsets. Moreover, the competi-
tion in the suspicious queue between the normal handsets and malicious handsets
is resolved as more malicious handsets are classified as malicious. Therefore, the
blocking rate for normal handsets decreases efficiently while the messages from
malicious handsets are suspended in lower priority queues or discarded after the
maximum number of retransmissions.

Fig. 9a presents the occupancy in each of the three queues of 3-queue scheme.
This results from the classification performed at the detector. The occupancy
at the normal queue is almost 1 at the start of the attack. As the classification
of suspicious handsets occurs, the occupancy of the suspicious queue increases
and the occupancy of the normal queue decreases. Then, the handsets in the
suspicious queue are judged as normal or malicious by the detector, and the
occupancy of the suspicious queue decreases. As more handsets are classified as
malicious, the occupancy of the normal and suspicious queues decreases because
the messages in these queues are served quickly. The blocking rate in each of the
queues of the 3-queue scheme is shown in Fig. 9b. The blocking rate of a queue
goes up when the occupancy of the queue is high and falls if the queue has space
for new messages.
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Fig. 9. (a) Occupancy and (b) blocking rate for mixed attack traffic with low intensity
with a mitigation scheme

5.3 Comparison with SMS-Watchdog

The work most similar to ours is SMS-Watchdog [12]. In this work, SMS-based
blending attacks are detected using each user’s regular social behaviors. For
example, anomalies are detected by checking if the number of recipients in a
window of messages from a sender deviate significantly from the average number
of unique recipients in training messages.

Because a blending attack has similar characteristics to flash crowds in terms
of the increased number of recipients per sender, the SMS-Watchdog algorithms
is not effective at distinguishing an attack from a flash crowd. Fig. 10a shows that
the false positive rate of SMS-Watchdog’s R detection scheme for a flash crowd
increases to 17% and 20% for a twofold and fourfold increase in the number of
recipients per sender, respectively, in a case in which the number of messages
and senders increases up to 4 times more than that under regular conditions.
On the contrary, our scheme has false positive rate of less than 2% as shown in
Fig. 10b, which means we correctly classify flash crowd traffic.
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Fig. 10. False positive rates of (a) R-type detection in SMS-Watchdog scheme and (b)
our scheme for a flash crowd
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6 Conclusion

We propose a novel detection algorithm which identifies a SMS flooding attack
regardless of whether the attack traffic is mixed with legitimate flash crowd traffic
and/or the attack traffic is mimicking flash crowd traffic. To distinguish malicious
handsets, we consider the reply rate to messages sent by a handset. If the reply
rate of a certain handset is lower than that expected for a normal handset, the
handset is likely to be an attacker. We show that our baseline algorithm performs
the detection of unmixed traffic with a very low false positive rate. The detection
of attackers mimicking benign users during a flash crowd event takes longer, but
the false positive rate is still low.

We propose a 3-queue mitigation scheme to reduce the congestion on the
wireless control channels. The mitigation scheme employs three queues with
different priorities to serve normal, suspicious, and malicious traffic differentially.
We show that the blocking rate of normal handsets is efficiently diminished by
prioritizing normal messages.
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Abstract. We show that existing proposed mechanisms for preserving
the privacy of reported data values in wireless sensor networks are vul-
nerable against a simple and practical form of attack: the set difference
attack. These attacks are particularly effective where a number of sepa-
rate applications are running in a given network, but are not limited to
this case. We demonstrate the feasibility of these attacks and assert that
they cannot, in general, be avoided whilst maintaining absolute accuracy
of sensed data. As an implication of this, we suggest a mechanism based
on perturbation of sensor results whereby these attacks can be partially
mitigated.

Keywords: privacy, privacy-preserving, wireless sensor network, data
perturbation, differential privacy, privacy-preserving data aggregation.

1 Introduction

Wireless sensor networks are increasingly being deployed to monitor a variety
of real-world environments and processes. Initially designed for military appli-
cations such as battlefield monitoring or perimeter security, wireless sensor net-
works are now being used to monitor industrial processes, environmental pol-
lution, marine- and land-based ecosystems, and stock control, as well as many
other purposes.

The data gathered by wireless sensor networks can in many cases be sensitive,
either when considered in isolation or when combined with other data. Where
individuals and their actions are monitored by a wireless sensor network we de-
sire, or may even be legally required [5], to ensure adequate protection measures
for personally sensitive data. Even when data is not directly sensitive, it is good
privacy and security hygiene to prevent unnecessary dissemination of readings
from individual sensor nodes.

In practice, wireless sensor networks occur with varying degrees of complexity
[15]. These networks can be roughly classified according to their structure, either
as standalone, multi-application or federated multi-application networks.

The simplest wireless sensor networks have tended to be standalone systems
running a bespoke application that defined both the constituent nodes and all
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c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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other aspects of the network. In such a deployment, hardware requirements are
tailored to fit the needs of the application in question, with the application
exploiting all aspects of the network. This structure remains common today.

Increasingly, however, wireless sensor networks are being deployed in a multi-
application structure comprising nodes running a common middleware that al-
lows one or more applications to run on the same infrastructure. The use of
middleware offers a flexible and standardized abstraction of the low-level char-
acteristics of the hardware, allowing data collected by each node to serve a
number of applications. This increases the range of uses for a given deployment,
but also has the potential to raise privacy or security concerns.

The sharing model can be extended further by allowing federation of the
infrastructure. A federated multi-application network allows different entities to
run applications across the same set of nodes, sharing resources between multiple
stakeholders. This provides an economic benefit, and can lead to longer-term
deployments offering a range of sensing options, but also raises even greater
privacy concerns for those individuals in the sensing environment [11].

To date, research in wireless sensor network privacy has focused largely on
privacy-preserving data aggregation (PPDA) protocols that protect the data col-
lected in sensor nodes against outside observers, or limited malicious network
participants. Importantly, existing protocols have focused almost solely on stan-
dalone networks, without consideration for the more complex multi-application
and federated networks.

In this work we are chiefly concerned with protecting, or conversely learning,
individual readings from nodes in a wireless sensor network. Specifically, we
are concerned with the potential to derive individual sensor node readings in
a range of network structures, but we focus on networks that support multiple
applications, even in the presence of existing privacy-preserving protocols.

The remainder of the paper is structured as follows. Firstly, we define our
model and underlying assumptions, and introduce the notion of the set difference
attack. We then explore the capabilities and goals of existing privacy-preserving
data aggregation protocols, describe in detail how they fail to protect against
these attacks, and analyse the potential for these attacks to function in practical
deployments. Finally, we propose an initial approach towards mitigating these
attacks, and explore its implications for data collection in sensor networks.

2 System and Attacker Model

We are concerned with wireless sensor networks in which multiple stakeholders
deploy applications that aggregate information provided by nodes in the network.

More formally, we consider a wireless sensor network W as being comprised of
a set of discrete sensor nodes S = {s1, s2, ..., sn} along with a function mapping
nodes to their reported readings modelled as simple natural numbers: V : S →
N . Users query some subset of sensor nodes, corresponding to those running
some application, and receive a simple addition of the individual sensor values:



96 T. de Souza et al.

V(A) | A ⊆ S; we further assume that both the set of nodes comprising a given
application and the aggregate results of any queries are known1.

Our goal is to protect or, adversarially, to learn the reading of any individual
sensor: V({s}) | s ∈ S.

We assume that applications aggregate a known subset of S, reporting only
an aggregate value. Intrinsically, we assume some lower limit on the size of the
set A ⊆ S in order to prevent trivially requesting the value of an individual
node. We will show later how this simple defence is ineffective.

We consider two attacker models based on the standard global passive attacker
commonly used in the field of privacy-enhancing technology research. This at-
tacker is able to observe, but not decrypt, traffic passing between nodes but
cannot alter, delay or drop communications; nor can this attacker compromise
an individual node directly.2

We will focus on this first, truly passive, attacker restricted simply to observ-
ing the aggregate readings of applications, however the nature of our system
model also naturally lends itself towards a partially active attacker that may
deploy one or more applications subject to the limitations inherent in the sys-
tem. We distinguish this from a truly active attacker in that this attacker may
not drop or delay communications. These attackers correspond, respectively, to
a non-stakeholder that queries the aggregate results of applications deployed by
others in the network, and to a stakeholder with the ability to deploy their own
applications on demand but who will not engage in openly malicious behaviour.

Further, for the current work we focus on a static moment and will not anal-
yse in detail the potential effects of long-term analysis of sensed values. We will,
however, make some mention of the effects of timing with respect to node avail-
ability in subsequent sections, but leave detailed investigation of this for future
work.

The model we have described here represents recent research in federated
wireless sensor network design, for example the work of Leontiadis et al. [12].

3 Set Difference Attacks

A set difference attack exploits the intersections between the sets of sensors
comprising applications to discover scenarios in which individual nodes, or small
clusters of nodes, are isolated.

The simplest form of this attack is demonstrated in Figure 1. The node cov-
erage of two small applications is delineated by the light-grey regions. The first
application covers the set {b, d, e}, and the second the set {b, c, d, e}. An applica-
tion querying aggregate results from these two applications can trivially subtract

1 While this may seem to place a great deal of information in the hands of potential
attackers, it is a reasonable representation of existing wireless sensor network plat-
forms. It should also be noted that the attacks we will describe remain feasible with
greatly reduced, or more localized, information.

2 Note that this attacker differs from the common Dolev-Yao attacker in security
protocol literature in that it cannot affect messages in transit.
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the aggregate of the first application from the aggregate of the second in order
to learn the exact value of node c.

Fig. 1. Simple set differences in a WSN

This form of attack has some similarities to known attacks in statistical
databases, known as tracker attacks [1], as well as to attacks against mix-based
anonymous communications systems in the form of (n−1) attacks [8]. In Section
5 we will explore more complex scenarios in which these attacks apply.

An interesting feature of these attacks is that they rely only on consideration
of aggregate values reported to a sink, and thus make no attempt to read data
as it passes across the network. Crucially, as we will demonstrate, this makes
these attacks applicable against most well-known families of privacy-preserving
protocols for wireless sensor networks proposed in the literature.

Having introduced the set difference attack, we will now describe the most
common approaches towards protecting privacy of individual sensor node read-
ings in wireless sensor networks before showing how the attack applies against
these protocols.

4 Privacy-Preserving Protocols in Wireless Sensor
Networks

4.1 Goals

Privacy-preserving protocols in wireless sensor networks aim to preserve the pri-
vacy of individual nodes against some combination of the sink, the node that
aggregates values reported by other nodes, and against other nodes in the net-
work. Different approaches have tended to focus on some combination of these,
with mixed results.

The protocols shown here make various trade-offs between communication
complexity, computational requirements, integrity of data, and security.

4.2 Clustering

Privacy-preserving clustering, illustrated in Figure 2, functions by forming dis-
joint subsets of nodes, each of which calculates an aggregate sum of their data
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before it is sent to the sink. A variety of approaches are possible to achieve this
aggregation, but a popular approach [9] makes use of a variation on the Average
Salary Problem. This algorithm, a simple instance of the more general secure
function evaluation problem, allows nodes to sum their individual values without
leaking any more information than the aggregate itself. The desired effect is that
neither the sink, nor any node in the cluster, can learn the exact value of any
individual node unless (n− 1) nodes in a cluster of size n collude.

a

cb

ed

g ih j

Fig. 2. Private clustering in WSNs

An advantage of the clustering approach is that it prevents both the sink and
any individual nodes in the network from learning any single node’s values, at
the expense of the bandwidth required to form clusters and perform the secure
data aggregation.

4.3 Slicing

Slicing, introduced in [9] and then expanded in [10], chiefly aims to prevent
individual nodes in the network from learning the values reported by any other
nodes.

To achieve this, a node divides its values into a number of randomly-sized
slices and selects multiple paths through the network, as illustrated in Figure 3.
Each slice is sent via a different path, and added to the total sum calculated by
each intermediate node, which acts as an aggregator until the value reaches the
sink. The number of paths that each node sends its data acts as a configurable
parameter to the required privacy level. This simple mechanism aims at providing
confidentiality against other nodes in the network as well as the sink.

4.4 Privacy Homomorphisms

Privacy homomorphism uses the well-known homomorphic properties of certain
public-key encryption systems to aggregate data in transit without revealing
individual values. Again, this mechanism provides protection against external
attackers and malicious nodes in the network, but does not prevent the sink
from learning individual values.
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Fig. 3. Private slicing showing the path of two private data ‘slices’ travelling across
the network from f to a

Homomorphic encryption schemes allow manipulation of message plaintexts
via the corresponding encrypted ciphertexts, enabling operations such as aggre-
gation, or summation, of messages to be performed without decryption. Many
well-known encryption schemes allow restricted homomorphic operations; in the
Paillier scheme, for example, the multiplication of two ciphertexts under the
same public key will decrypt to the summation of corresponding plaintexts,
whilst raising one ciphertext to the power of another will decrypt to the product
of the plaintexts.

Gentry [7] presented a fully homomorphic encryption scheme, allowing for
arbitrary operations to be performed on ciphertexts. Whilst the original scheme
was extremely computationally expensive, several improved schemes have al-
ready been suggested. In practice, however, even restricted homomorphism pro-
vides powerful and practical tool for privacy-preserving protocols.

In a wireless sensor network, therefore, nodes simply encrypt their values to
the public key of the sink. As the message is relayed through the network, nodes
can aggregate the value of any received messages simply by aggregating the
ciphertexts, as demonstrated in Figure 4. Crucially, this protects the values of
any individual message from being learnt by any party except the sink.

{md}Ka ⊕ {me}Ka

= {md +me}Ka

{me}Ka{md}Ka

a

b

ed

Fig. 4. Homomorphic encryption in WSNs. Values are aggregated in encrypted form
at each node.
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5 Set Difference Attacks in Detail

The set difference attack seeks to isolate nodes from aggregates in order to breach
the privacy of their data. In practice, this can be achieved in one of two ways.

Firstly, the segmentation of the network caused by multiple applications run-
ning across disparate set of nodes can be exploited. An attacker therefore com-
bines aggregate values of multiple applications in order to isolate single nodes.
It is this approach on which we focus in the current work.

Secondly, an attacker can exploit the participation of nodes in aggregates
taken at different moments in time. If nodes cannot be guaranteed always to
report their values, then the aggregate value of an aggregate may include or ex-
clude certain nodes when queried at different times. This behaviour is extremely
likely to result in a set difference attack, as the set of nodes being queried is
likely to remain largely the same.

These two approaches can be employed in isolation, or combined by an at-
tacker. If the attacker can learn predictable patterns of node uptimes across
the network, or can observe that certain groups of nodes are more likely to be
clustered in applications, the effectiveness of the attack is increased.

While the example set difference attack shown in Figure 1 is relatively sim-
ple, the attack itself is surprisingly powerful and hard to avoid. In addition to
the simple isolation of a node via finding an appropriately-sized subset, four
additional cases are worthy of mention.

5.1 Isolated Cluster

Trivially, the set difference attack allows us to reveal the aggregate value of
an isolated cluster rather than an individual node. While this is not a privacy
risk equivalent to the leakage of an individual node value, the leaking of the
aggregates of a small set of nodes may still be in violation of the privacy goals
of the system.

5.2 Combined Subsets

Although the most basic form of set difference attack comes from observing a
subset of size n− 1 of a given set of size n, it is of course possible for the subset
to itself be the union of a number of disjoint subsets as illustrated in Figure 5.

This possibility greatly increases the likelihood of observing a successful set
difference attack. Observed aggregates can be stored by an attacker and com-
bined whenever new appropriate aggregates are found. Of course, this application
of the attack is highly time-dependent.

5.3 Total Set Coverage

In general, set difference attacks are not possible where observed subsets over-
lap, as this includes multiple unknown values in the combined aggregates. It is
possible, however, to calculate values through gathering complete collections of



Set Difference Attacks in Wireless Sensor Networks 101

Fig. 5. A set difference attack combining multiple disjoint subsets

sets that intersect on all but one of their elements. By gathering every possible
subset of size n− 1 from a set of size n, we can derive all individual values that
comprise the set. The aggregate values reported for each subset form a simple
system of simultaneous equations that can be solved for each individual value.

The difficulty of performing this attack relies on the size of the subsets that
we observe, as we require all

(
n

n−1

)
subsets of the observed subset of size n.

While we will not perform a detailed analysis of the likelihood of this scenario,
it relates to the well-known coupon collector’s problem [4] in which a collector
seeks to obtain a complete collection of a set of coupons, one of which is randomly
included with each purchase of a given product. It is known that the number
of purchases required before obtaining the entire set of coupons is of the order
n log(n), where n is the number of coupons in the set. For large networks, this
scenario quickly becomes highly unlikely, however it may be practical in smaller
networks or those networks where applications are likely to sample from small
sets of related nodes.

5.4 Attack Recursion

The result of a successful set difference attack provides information to an attacker
that can lead to further successful attacks. By learning the value of an individual
node, or of a small subset of nodes, an attacker can remove that node’s value from
any observed aggregates in the network. This may itself reveal further isolated
subsets that can themselves compromise further sets. As such, the attacker can
potentially ‘recurse’ through several further attacks once any one attack has
succeeded.

6 Attacking Existing Protocols

Existing approaches to protecting privacy in wireless sensor networks focus, to
varying degrees, on manipulating data as it flows from a sensor to a sink. Clus-
tering approaches aggregate data by combining values that are then forwarded
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in aggregate form. Slicing approaches split data unpredictably and randomly
re-route individual portions along different paths. Privacy homomorphism en-
crypts data in such a way that it can be unobservably aggregated in transit.
The set difference attack, however, is entirely agnostic with respect to the flow
of data; instead it operates purely through examination of the final aggregate,
undermining the assumptions of existing protocols and therefore rendering them
vulnerable.

Clustering, in particular, may actively aid in the application of a set difference
attack. As presented in [9], the choice of node clusters is random. A result of this
is that multiple requests by an application are likely to result in the selection
of different clusters. These, in turn, can directly cause the isolation of nodes in
precisely the way envisioned in our original statement of the attack.

Slicing approaches and solutions based on homomorphic encryption share sim-
ilar patterns of failure. The values of each node are protected, or at least ob-
scured, whilst in transit, however the results are still accurately aggregated by
the application. Whilst the existing protocols do provide some measure of pro-
tection against the specific threat model of an adversary that seeks to learn
values in transit, they are ineffective against the attacker described in Section 2.

Ultimately, it is the requirement for accurate data reporting that results in
the success of the set difference attack, and it is therefore this feature of the
network that must be addressed by protocols in order to prevent the attack.

6.1 Node Availability

As we have mentioned, it is possible to perform a set difference attack through
node availability rather than overlapping applications. In this case, an appli-
cation that has a known, fixed set of nodes, but for which certain nodes are
not always available, the absence or presence of individual nodes can clearly
lead to similar attacks. Most notably, this attack will be effective even in single-
application networks.

The inclusion of a time dimension in the attack clearly adds a layer of sophis-
tication to the attack. If the availability of certain nodes is predictable, queries
can be specifically targeted to take advantage of this data. Interestingly, an in-
dividual node has little power to prevent this attack in the general case, as it
will be offline when the attack effectively occurs.

A slightly more nuanced version of this attack, which we leave for future work,
comes from the predictability of individual nodes over time. Clearly, certain types
of sensor readings will vary predictably with time, such as light levels during the
day. This can lead to predictable patterns of data being reported for each node.
A more sophisticated variant of the attack would be to infer variations between
nodes due to the predictable variations in aggregate reports. Similar concepts
have been suggested in the context of tracking of users in online anonymization
services [13], however we will not consider this potential further in the current
work.
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7 Feasibility of Set Difference Attacks

To investigate the feasibility of the set difference attack in practice, we adopt a
simulation-based approach, employing abstract networks of varying size based
on the system model of Section 2.

For each experiment, randomly-sized subsets of the network were repeatedly
drawn at random. Each subset was stored and compared against all previously-
drawn sets, individually and in additive and subtractive operations, to determine
if a set difference attack had become possible. An attack was considered to have
occurred as soon as any individual node could be isolated due to the combination
of any number of previously-drawn sets. Sets were drawn continually until the
attack succeeded, whereupon the number of sets drawn was recorded. To prevent
trivial attacks, subsets were restricted to being of cardinality three or greater,
up to the size of the network. To ensure a sufficiently low error margin for the
mean, experiments were repeated in the order of one thousand times for each
network size.

As a practical example of a successful simulated attack, consider a network of
five nodes, S = {a, b, c, d, e}, in which each node is equally likely to be selected.
During a particular simulation run, three subsets were drawn: A1 = {a, c, e},
A2 = {a, b, c, d, e} and A3 = {a, b, d}. The isolation of a node occurs by sub-
tracting the aggregate of A2 from that of A1, which is then summed with the
aggregate result of A3. This sequence of operations will result in isolating the
reported reading of node a. Note that both operations, additive and subtractive,
take place over the aggregate result of a query sent towards a subset of nodes,
and not as subset operations.

The results of the simulation, showing the mean number of sets drawn before
a successful attack, are presented in Figure 6.
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Fig. 6. Mean average and sample standard deviation of randomly-chosen sets required
in networks of varying size before a successful set difference attack
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As can be seen, the mean number of subsets required before isolating a single
node is relatively low in the simulated networks, typically being lower than the
number of nodes. The growth of the function does, however, appear to be more
than linear, as might be expected due to the rate of increase of possible subsets.
While this suggests that extremely large networks may not be easy targets for the
set difference attack, networks of the size commonly seen in practice may well be
vulnerable. Despite this it is worth noting that the lower bound for the required
number of sets remains two, and simulation demonstrated such attacks occurring
in practice for each network size that was tested. Due to space considerations,
we leave a more detailed analysis of these results for future work.

Calculating the appropriate sets required to conduct an attack is itself
extremely computationally expensive. As each new set is drawn, it must be
combined with all existing sets, both in an additive and subtractive sense, to
determine if an attack has been successful. The stored sets, and the number of
comparisons required, grow exponentially. There are various optimizations to re-
duce the number of sets that must be stored and compared, and various ways to
exclude sets that cannot take part in a successful attack, however the underlying
complexity of the problem cannot be avoided.

For the sake of practicality, it will be possible to take a heuristic approach
towards discovering set overlaps that, despite missing a proportion of successful
attacks, will still result in isolating individual nodes. It is also the case that, as
we have discussed, real-world networks present time constraints on the freshness
and availability of sensor readings. This will present challenges to the attacker
in discovering appropriate sets during a given time window, but will also greatly
reduce the complexity required to perform the attack.

8 Preventing Set Difference Attacks

As has been demonstrated, existing protocols cannot protect node-level privacy
against the set difference attack under reasonable assumptions. This is largely
due to their reliance purely on data aggregation to provide privacy guarantees
at the node level. In this section, we will consider the use of data perturbation
to provide effective privacy guarantees, and examine the accuracy tradeoff that
these approaches cause.

8.1 A Note on Fixed Clustering

Before we discuss data perturbation it is worth first mentioning one potential
avenue of protection against set difference attacks, and explaining why this ap-
proach is unlikely to be of great use.

One approach that initially seems attractive for protecting against this form
of attack is to enforce fixed-size clusters, or fixed size applications, and ensure
the subsets of nodes resulting from these are either entirely disjoint or entirely
equal. By doing so, individual nodes cannot be isolated, and thus the attack
fails.
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There are two major problems with this approach. Firstly, it places unrea-
sonable constraints on applications in a multi-application or federated network.
Specific deployments are likely to require specific node coverage, and the inabil-
ity to choose other than a given fixed topology for applications could seriously
hinder the flexibility of the network.

More seriously, this approach still cannot protect against attacks due to un-
available nodes. As is mentioned in Section 6.1, set difference attacks can arise
from both predictable patterns of node availability, and potentially from pre-
dictable patterns of sensor readings. Neither of these factors will be affected by
fixed-size clustering, and thus cannot provide full protection against the attack.
We will therefore focus on other, fundamentally different, approaches.

8.2 Data Perturbation

To protect against a set difference attack, we propose applying random noise to
sensor readings. The purpose of this is to prevent the individual value reported
by a node from being meaningful even if it can be isolated by the attack. Clearly,
for some applications, this data perturbation approach can cause an unacceptable
level of inaccuracy in aggregate results. In such cases, the risks of attack must
be weighed against the requirement for accurate data.

Sensor nodes can effectively obscure their data by adding random noise drawn
from an appropriately-scaled symmetric probability distribution with mean 0 to
their reported readings. To protect readings effectively, the standard deviation
of the distribution in question should be chosen according to the possible range
of values for the given reading type. Due to Chebyshev’s inequality, this ensures
that the value reported by a node, including noise, effectively covers a range of
values that could be reported by the node with high probability. In the next
section, we will discuss a well-known method for selecting privacy-preserving
noise optimally according to the differential privacy guarantee of Dwork [2],
where we will also discuss the notion of data perturbation in more detail.

Usefully, combining multiple readings and their associated random noise causes
the aggregate noise to converge rapidly towards zero as the number of nodes in-
creases, due to the weak law of large numbers. The aggregate therefore tends to-
wards greater accuracy as the number of nodes in a given application increases,
making the data perturbation approach increasingly applicable as the network
scales.

For noise drawn from a Gaussian distribution the sample mean, representing
the aggregate noise reported from each sensor, is a good estimator of the true
mean. The mean standard error of the sample mean, therefore, describes the
expected inaccuracy incurred by this method of privacy-preserving data pertur-
bation. To summarize:

For the sample mean:

X̄ =
1

n

n∑
i=1

Xi (1)
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The mean standard error can be described as:

MSE(X̄) = E((X̄ − μ)2) =
σ2

n
(2)
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Fig. 7. Mean standard error (MSE) for various values of σ as application size increases

As can be seen from Figure 7, the expected error rapidly becomes small as
the number of nodes in an application increases, even for relatively large values
of σ.

Perturbation Alongside Other Mechanisms. It is important to note that
the perturbation of data in the sense we have described above is largely orthogo-
nal to the mechanisms surveyed in Section 4. As such it is entirely possible, and
may indeed be advisable, for nodes to cluster, slice or encrypt their data in ad-
dition to perturbing their data. In particular, this approach has the potential to
improve the node-level privacy even in situations where set difference attacks are
not possible, and may add privacy properties that protect against other classes
of attacker. We leave a fuller analysis of the combination of perturbation with
other mechanisms for future work.

Having examined an informal approach to data perturbation, we will now dis-
cuss the more formal and optimal guarantees that can be provided by differential
privacy.

9 Differential Privacy

The technique of gaining privacy in statistical aggregates through data perturba-
tion is not new, and indeed represents a well-known approach that is the subject
of much recent study. An important result in this area comes from Dwork [2],
in which the concept of differential privacy is proposed. This technique aims to
provide robust privacy guarantees through data perturbation, with a provably
minimal addition of noise to the result of statistical queries.

The core of the differential privacy guarantee is that the existence or absence of
a single record in a database should not cause a noticeable difference in the result
of queries against that database. This is achieved by ensuring that databases that
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differ only in a single record are, in some sense, indistinguishable to any party
able to make statistical queries against that database.

The purpose of this indistinguishability is to prevent an individual record from
leaking useful information even in the presence of arbitrary, unknown auxiliary in-
formation.By ensuring thatno single record is distinguishable in a statistical query,
differential privacy ensures that any privacy breach involving statistical queries
from a database could have occurred without the result of that statistical query.

More formally, differential privacy states that for any two databases D1 and
D2 that differ only in a single data record, the result of a randomized statis-
tical query should be almost equally probable for D1 or D2. Dwork’s original
statement of the guarantee provides that a randomised function K achieves ε-
differential privacy if, for any two databases D1, D2 differing on at most one
element, and all S ⊆ Range(K):

Pr[K(D1) ∈ S] ≤ exp(ε) × Pr[K(D2) ∈ S]

where ε is a security parameter that allows security to be balanced against
accuracy of results.

The probability of a given result is therefore within a small multiplicative
factor regardless of whether D1 or D2 was queried. This ensures that the result
of a statistical query cannot be used to determine with any certainty which
database was queried. It thus becomes impossible for the existence or absence
or a record, or its value, to be determined.

The differential privacy guarantee is extremely strong. As is clear from the
definition, however, repeated queries against the same databases will reveal more
information concerning the underlying probability distributions, and eventually
allow the databases to be distinguished with high probability. Differential privacy
therefore provides the concept of a ‘privacy budget’ that is partially exhausted
with each query. Once that budget is exhausted, no further queries can be made
against the database in question without violating the guarantee.

In practice, differential privacy is most commonly achieved by applying noise
drawn from a Laplace distribution with mean 0 and standard deviation propor-
tional to the sensitivity of the query and the strength of the guarantee, expressed
as the probability of differentiating the two databases as a result of the query.
This sensitivity, written Δf for some query function f , is the greatest value by
which the result of the query can change according to the change of a single
record:

Δf = max(f(D1)− f(D2))

for all D1, D2 that differ in at most one record. As an example, a simple count
function on a database, which returns the number of records that meet a given
constraint, has a sensitivity of 1, as the addition or deletion of a single record
can alter the result of the count by at most 1. Clearly, for functions that have
high sensitivity, such as the average height in centimetres of a small group of in-
dividuals, achieving the differential privacy guarantee may require unacceptably
high costs in terms of accuracy.
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Figure 8 illustrates the desirable property of the Laplace distribution for ap-
plying noise. The probability of the observed events a and b from the perspective
of each probability distribution are within a small, fixed multiplicative factor,
allowing each result to be convincingly drawn from either distribution.
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Fig. 8. Overlapping Laplace distributions, means μ1 and μ2, showing comparative
probabilities of two values, a and b, drawn according to either distribution

A significant advantage of this differential privacy mechanism is that it is
largely independent of the data itself, but provides its guarantees due to the
nature of the query function.

9.1 Differential Privacy against Set Difference Attacks

Application of a differentially-private mechanism for protecting individual sensor
node readings in WSNs functions similarly to the addition of random Gaussian
noise as described above. The use of differential privacy, however, provides a
number of attractive advantages over more ad-hoc methods. The guarantee pro-
vided by the mechanism gives provable privacy preservation for individual sensor
nodes [2], as well as a number of attractive properties such as composability be-
tween multiple queries, at the cost of higher levels of inaccuracy. The generality
of the method makes it applicable without reference to the data reported by the
sensor node, relying instead on the query made by the application. Queries can
be of arbitrary complexity, and are not restricted to simple functions such as
counts or averages, although the noise associated with high sensitivity queries
cannot be avoided. Despite this, the Laplace distribution has been shown in [3]
to give a provable optimal level of noise, reducing inaccuracies in query results
to the minimum required for a strong guarantee of privacy.

It is crucial to note that this framing of private data reporting is substan-
tially different to the mechanism for differential privacy described by Dwork [2].
The original framing of differential privacy considers an accurate data store,
corresponding to a sink in a wireless sensor network, that is trusted to hold
and process an entire dataset. In our model, by contrast, we explicitly consider
the sink as an adversary that we wish to prevent from learning individual data
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values, analogous to records in the database. As such, our model can best be
conceived by considering each sensor node as analogous to the trusted database
in Dwork [2]. Each node therefore represents a single-entry database that must,
correspondingly, add a sufficient amount of noise to hide that entry. We rely
on the aggregation of these single-entry databases to reduce the overall noise.
The result of this is a higher level of noise than would be seen if the sink held
accurate values, but with the advantage of preserving node-level privacy from
all actors in the network.

10 Conclusions and Future Work

We have described the set difference attack, and shown that existing approaches
to providing node-level privacy in wireless sensor networks are vulnerable to
this attack under reasonable assumptions. Further, we have demonstrated that
the attack is likely to be feasible in real-world networks. We propose that the
weakness of existing privacy-preserving data protocols is ultimately due to their
reliance on data aggregation as the sole means to achieve privacy, and thus that
the ease of isolating nodes from aggregate values results in a failure to protect
privacy adequately.

In response, we have proposed a countermeasure against the attack based
on data perturbation and optimized with techniques from differential privacy.
This approach allows for nodes to protect themselves against the set difference
attack by trading accuracy of results against privacy. As we have demonstrated
in Section 8.2, this tradeoff is reasonable for realistic scenarios, with the loss of
accuracy decreasing quickly as the size of the network increases.

There are still a number of significant avenues to be explored in relation to
this work. We have largely avoided an involved mathematical analysis of the
feasibility of the set difference attacks in realistic networks, relying instead on
simulation. There are many factors that can affect the feasibility of the attack in
different networks, and a more rigorous mathematical analysis would be of great
use in exploring these and considering approaches towards protecting networks.

The tradeoff between privacy guarantees and the accuracy of results is key
to this approach. The use of the differential privacy guarantee provides a well-
defined mathematical framework for this tradeoff, and allows for the security
parameter to be reduced directly in favour of accuracy. Despite this, the appli-
cation of the differential privacy guarantee in a wireless sensor network raises a
number of issues related to distributed noise generation that we intend to explore
in future work. The full implications of combining noise as we have described
also remain to be investigated.

An area of great interest in data perturbation for privacy is in how strong
privacy guarantees can be maintained over time series data, or highly-linked
data-sets. The differential privacy guarantee is extremely strong, but is quickly
violated through repeated queries of the same database. When a query can
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potentially cover a series of readings, the preservation of privacy without adding
unacceptably high levels of noise remains open despite some initial results in this
area [6, 14].

Our focus in this paper has been exclusively on data aggregation in its simplest
form. In some networks, however, there may be a requirement for more complex
queries to be distributed across the nodes in the network. The applications of
set difference attacks, and the related perturbation defence, to more complex
scenarios is worthy of attention.

Finally, the set difference attacks themselves can be extended to consider
changes in the network over time. Nodes can join or leave the network, or be
included in or excluded from a given aggregate. Nodes may also have predictable
data patterns that can be exploited to discount their participation in a given
aggregate. These last approaches, which extend the set difference attack to a far
wider range of scenarios, is an avenue of great interest in extending the work
presented here.
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Abstract. JavaScript (JS) based shellcode injections are among the
most dangerous attacks to computer systems. Existing approaches have
various limitations in detecting such attacks. In this paper, we propose
a new detection methodology that overcomes these limitations by fully
using JS code execution environment information. We leverage this in-
formation and create a virtual execution environment where shellcodes’
real behavior can be precisely monitored and detection redundancy can
be reduced. Following this methodology, we implement JSGuard, a pro-
totype malicious JS code detection system in Debian Linux with kernel
version 2.6.26. Our extensive experiments show that JSGuard reports
very few false positives and false negatives with acceptable overhead.

Keywords: malicious JavaScript code, shellcode detection, web secu-
rity, intrusion detection, browser security.

1 Introduction

JavaScript (JS) is a scripting language that is widely used to enrich the function-
ality of client-side applications, e.g., Web browsers and Adobe Reader. Unfor-
tunately, the user experience improvement brought by JS is often accompanied
by security risks since JS codes can programmatically access these applications’
computational objects. There are several types of JS based attacks against client-
side applications [20, 40, 41], the most dangerous of which exploits target pro-
cesses’ memory errors using shellcodes. Shellcodes are segments of executable
codes that are injected into vulnerable processes’ address spaces. After the shell-
codes are injected and the control flow transfers to them, attackers can execute
arbitrary code in the target hosts that can steal sensitive information, furtively
download and activate malware, and carry out other nefarious tasks.

A typical example of JS based shellcode injection attacks is exploiting Mi-
crosoft Internet Explorer’s (IE’s) HTML object memory corruption vulnerabil-
ity [53] using an HTML document with a specially crafted JS code embedded.
After IE loads the document, the JS code is parsed, compiled, and then exe-
cuted, which creates large objects containing shellcodes in IE’s heap via heap
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spraying [47]. The shellcodes are activated once IE’s control flow is hijacked and
redirected to them.

Recently, such JS based shellcode injection attacks are growing increasingly se-
vere [14,40]. This stems from 2 facts: (1) users do not update their Web browsers
in a timely manner yet spend more and more time surfing the Internet [21]; and
(2) numerous browser plug-ins have been released, many of which have vulner-
abilities [45]. The deteriorating situation is also witnessed by the popularity of
“drive-by download” attacks [41] where users are duped into downloading JS
codes that dynamically generate shellcodes and activate them via client-side
vulnerabilities.

Unfortunately, existing solutions that detect JS based shellcode injection at-
tacks are insufficient. Some approaches can miss detecting shellcodes since these
approaches do not capture the accurate program execution environment, which
is required for exposing the malicious features of shellcodes. Some approaches
cannot effectively handle attacks in which shellcode is divided into several parts
that are connected using control-flow-redirection instructions (e.g., jmp). We will
present 2 representative examples in §2 that illustrate the limitations of existing
detection approaches. We provide a review of existing solutions in §6.

In this paper, we focus on detecting malicious JS codes that inject shellcode
into target applications. We propose a detection system that effectively over-
comes the problems of existing solutions. Similar to existing work, we assume
that the JS interpreter does not have exploitable memory errors and that such
exploitable errors exist in the application (e.g., the Web browser) that runs the
JS interpreter, plug-ins, or extension modules. We also assume that the appli-
cation and its plug-ins and extensions are not malware. Therefore, we target
malicious codes coming from external untrustable sources. Although we use a
Web browser as an exemplary client-side target application in the rest of this
paper and our prototype system is also built within a Web browser, our system
can be extended to protect other client-side applications such as Adobe Reader.

To the best of our knowledge, our system is the first that creates an emulation
environment within the target application process’s address space that shadows
the address space information during emulation to detect malicious shellcodes
in JS codes. We perform such shadowing only when necessary. Our system ac-
curately and comprehensively captures customized application information and
real-time memory information at runtime in a lightweight manner; stand-alone
machine simulators cannot easily obtain this information. From extensive exper-
iments, we find that JSGuard yields very few false negatives and false positives.
These results illustrate the promise of our detection methodology. In particular,
we make the following contributions:

– We propose a new methodology that can comprehensively detect shell-
codes in JS code. We propose leveraging the JS code execution environment
information to instantiate a lightweight emulation environment that reveals and
monitors shellcodes’ real behaviors. Our emulation environment also enables ex-
amination of invoked system calls and their parameters as well as the execution
flow to detect malicious shellcodes.
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– We propose a technique for reducing detection redundancy at multiple lev-
els. We fully utilize JS code execution environment information to reduce the
number of times the detection system is activated and a JS string is checked.
This information includes native methods, stack frames, and properties of each
individual JS object.

– We implement JSGuard, a prototype system using the above methodology
in Debian Linux with kernel version 2.6.26. We integrate JSGuard into the Fire-
fox 4 Web browser. Our system is adaptive and extensible. It is designed to run
in the target process’s address space. JSGuard can efficiently fetch and use JS
code execution environment information for shellcode detection.

– We conduct extensive experiments based on real traces and thousands of
malicious shellcode samples. The experimental results show that our malicious
JS code detector has high detection accuracy with acceptable overhead.

Paper Organization. The rest of this paper is organized as follows. §2 provides
background information and motivating examples. §3 presents our system design
and implementation. §4 presents detection examples. §5 evaluates JSGuard’s
performance. §6 reviews related works. §7 concludes.

2 Background and Motivating Examples

In this section, we provide a brief background on detecting shellcode in JS ob-
jects. Then we use 2 examples to illustrate the limitations of existing approaches.

2.1 Background: Detecting Shellcode in JS Objects

Malicious JS code usually places shellcode into objects generated at runtime and
then activates it by exploiting vulnerable applications’ memory errors. Therefore,
detecting shellcode in JS objects is critical. Existing detection approaches can
be classified into 2 categories: content analysis and hijack prevention.

Content Analysis. The approaches in this category are based on scanning
JS objects’ contents to determine if they contain malicious shellcode. It can be
further divided into 2 sub-categories: static analysis and dynamic analysis. In
static analysis, input data are first disassembled and then screened via code-
level pattern analysis and matching. Patterns can be complicated signatures
or simple heuristics that are obtained from studying known malicious codes. A
representative work is Nozzle [43]. Static analysis detection is fast, but it is known
that determining program behavior via static analysis is generally undecidable
and, often, it can be effectively thwarted by obfuscation techniques [5].

Dynamic analysis based methods detect malicious shellcode by exploiting in-
formation generated during shellcode execution. A representive work is [18] that
uses libemu [28] to detect shellcode in JS strings. The state of the art of dynamic
analysis is network-level emulation, which decodes input data into instruction
sequences and then emulates their execution [28,37–39]. If any of them exhibits
malicious behavior during emulation, the input data are classified as malicious.
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Even though network-level emulation can achieve better detection completeness
than static analysis, it is still prone to evasion. This is because it assumes that
the working shellcodes either are self-contained or use specific memory access
behaviors, i.e., their executions are independent of the dynamics of the JS code
execution environment. Without knowledge of the execution environment, these
approaches can be fooled by shellcode whose execution takes advantage of virtual
memory information in the target process.

Hijack Prevention. As suggested by the name, hijack prevention approaches
focus on preventing shellcode from being fully executed. This is often achieved
by inserting special characters into the shellcode. A representative example is
Bubble [22]. In Bubble, a JS string object is divided into multiple units, each
25 bytes long. In each unit, Bubble inserts 0xCC (i.e., int 3) into a randomly
selected position. If a JS string object contains shellcode and the shellcode is
executed, an interrupt handler will be activated when the control flow reaches
the insertion point. However, existing hijack prevention approaches cannot ef-
fectively detect shellcodes split into parts that are “connected” at runtime via
instructions that alter control flow, e.g., jmp and call.

In the following, we first introduce the heap spraying technique. Then we
present 2 examples using it that can evade content analysis and hijack prevention
approaches.

2.2 Heap Spraying

Heap spraying is an attack technique to thwart address space layout randomiza-
tion (ASLR) [6, 36], a memory protection mechanism where objects’ positions
are randomly arranged in a process’s address space. ASLR intents to prevent
attackers from easily predicting target object addresses. However, the memory
space that can be randomized is often limited, especially in 32-bit operating sys-
tems. If we allocate many large objects in the heap, then new objects will likely
be placed in a contiguous memory area after a number of allocations, making
their positions predictable. This technique is called heap spraying [17, 47].

2.3 Example 1: Thwarting Content Analysis Approaches

Fig. 1(a) shows a shellcode that is modified from an example illustrated in [37].
In the shellcode, eaddr is used to calculate the addresses at which the encrypted
payload can be accessed. Since heap spraying can make the positions of some
heap objects predictable, a skilled attacker can write JS code that first sprays
target processes’ heaps, and then inserts the shellcode into the objects whose
addresses can be predicted and determined. In this example, we assume that the
starting address of the shellcode is 0x0000 and eaddr is 0x0008.

This shellcode modifies its instructions at runtime. From address 0x0014 to
address 0x0093, there is an encrypted payload, which often appears to be a mean-
ingless or invalid instruction sequence. When the control flow reaches address
0x000a, the instruction addb $0xe2, 0xa(%esi) will be executed. This instruc-
tion modifies the contents of memory at address 0x0012. After it is executed, the
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1 0000 6a7f push $0x7f

2 0002 59 pop %ecx

3 0003 6a08 push $eaddr;eaddr=0x08

4 0005 5e pop %esi

5 0006 46 inc %esi

6 0007 4e dec %esi

7 0008 fec1 incb %cl

8 000a 80460 ae2 addb $0xe2 ,0xa(%esi)

9 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

10 0012 00fa addb %bh ,%dl

11 0014

12 ......... <encrypted payload >.........

13 0093

(a)

1 0000 6a7f push $0x7f

2 0002 59 pop %ecx

3 0003 6a08 push $eaddr

4 0005 5e pop %esi

5 0006 46 inc %esi

6 0007 4e dec %esi

7 0008 fec1 incb %cl

8 000a 80460 ae2 addb $0xe2 ,0xa(%esi)

9 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

10 0012 e2fa loop 0xe

11 000e 304 c0e0b xorb %cl ,0xb(%esi ,%ecx)

12 0012 e2fa loop 0xe

13 .... ........ .......................

(b)

Fig. 1. (a) Self-modifying shellcode example. The second column indicates the address
of each instruction, the third column indicates the instruction binary code, and the
fourth column is the IA-32 assembly code. The shellcode is mapped to address 0x0000.
(b) Execution trace of the self-modifying shellcode shown in Fig. 1(a).

instruction at address 0x0012 is modified to loop 0xe, which forms a backward
loop to decrypt instructions from 0x0093 to 0x0014. The loop is controlled by
register ecx, which decreases by 1 upon each execution of loop 0xe. Within
the loop, the instruction at address 0x000e, xorb %cl, 0xb(%esi,%ecx), is for
decryption. It decrypts 1 byte per iteration. When ecx becomes 0, the loop
terminates, the content stored from 0x0093 to 0x0014 is fully decrypted, and
the control flow continues to the instruction at address 0x0014, the last de-
crypted instruction. We can see this from the shellcode execution trace shown
in Fig. 1(b).

As there is no information that is dynamically generated during shellcode
execution, e.g., register values at runtime, static analysis based detection ap-
proaches cannot effectively handle the decryption procedure after the shellcode is
interpreted as an instruction sequence; these approaches only see the encrypted
payload as a meaningless or invalid instruction sequence. Malicious behaviors
that are only exhibited during execution are thus effectively concealed.

The shellcode shown in Fig. 1(a) can also be used to evade detection by current
dynamic analysis based tools [18, 28, 37–39]. Given an input stream containing
the shellcode shown in Fig. 1(a), network-level emulation based approaches will
copy the input stream into a memory space that performs this emulation, and
all read/write operations will be performed in the emulated memory space. The
real contents of virtual memory units at the addresses calculated from eaddr are
difficult to obtain. Then the shellcode’s encrypted payload cannot be correctly
decoded and emulated. In addition, these approaches do not use information in
other objects to detect shellcode in the current object, which precludes shell-
code detection. Since the use of heap spraying can enable prediction of objects’
positions in a heap, it is not difficult for attackers to design shellcode in JS code
that makes use of information stored in different objects. For example, if 2 JS
objects have predictable heap positions, attackers can store shellcode in one and
critical information for decryption in the other.

We also notice that some tools based on network-level emulation use heuris-
tics based on the GetPC code [24, 37] in shellcode detection, e.g., [18] uses



JSGuard: Shellcode Detection in JavaScript 117

sub-shellcode1 sub-shellcode2 sub-shellcode3

1 be20010505 movl $Saddr ,%esi

2 8976 f8 movl %esi ,-0x8(%esi)

3 836 ef810 subl $0x10 ,-0x8(%esi)

4 31c0 xor %eax ,%eax

5 eb09 jmp Offset1

1 8846 f7 movb %al ,-0 x9(%esi)

2 8946 fc movl %eax ,-0 x4(%esi)

3 b00b mov $0x0b ,%al

4 8b5ef8 movl -0x8(%esi ),% ebx

5 8d4ef8 leal -0x8(%esi ),% ecx

6 8d56fc leal -0x4(%esi ),% edx

7 cd80 int $0x80

8 eb04 jmp Offset2

1 31db xor %ebx ,%ebx

2 89d8 mov %ebx ,%eax

3 40 inc %eax

4 cd80 int $0x80

Fig. 2. A shellcode can be divided into multiple parts (3 parts here). Each part, denoted
by sub-shellcode, can be connected to another part by using a jmp instruction.

libemu [28]. Besides the aforementioned evasion methods, attackers can also
evade detection by writing shellcode without call group instruction or fstenv

instruction opcodes, e.g., using purely alphanumeric shellcode [31]. Note the
shellcode shown in Fig. 1(a) has no bytes that can be decoded as the GetPC
code.

2.4 Example 2: Thwarting Hijack Prevention Detection

In this subsection, we discuss how to design shellcode that evades hijack pre-
vention detection. Fig. 2 shows a shellcode that can open a root shell. This
shellcode can be divided into 3 parts as shown in Fig. 2. The first part, de-
noted sub-shellcode1, is 16 bytes long. The second part, sub-shellcode2, is 21
bytes long. The third part, sub-shellcode3, is 7 bytes long. In sub-shellcode1,
Saddr is 0x05050120 pointing to some part of an object. The memory at ad-
dress (Saddr-16) stores arguments of the system call used to open a root shell.
These include an ASCII sequence /bin/sh. At the end of sub-shellcode1, there is
an instruction jmp Offset1, where Offset1 is the offset between sub-shellcode1
and sub-shellcode2. This instruction diverts control flow from sub-shellcode1 to
sub-shellcode2. In sub-shellcode2, Offset2 is the offset between sub-shellcode2
and sub-shellcode3. At the end of sub-shellcode2, instruction jmp Offset2 di-
verts control flow from sub-shellcode2 to sub-shellcode3.

Using heap spraying, the arguments and the sub-shellcodes can be placed into
2 different objects whose positions can be predicted. Let the arguments be placed
in object1 and sub-shellcode1, sub-shellcode2, and sub-shellcode3 be placed in
object2. Because the data structures of object1 and object2 are known to the
attacker, it is not difficult to arrange and predict the addresses of the arguments
and the above 3 sub-shellcodes in memory.

Consider a Web browser with a certain memory vulnerability that can be
exploited to overwrite a function pointer and thus execute arbitrary code. The
attacker can use sub-shellcode1’s address to overwrite the function pointer. After
the web browser’s control flow is directed to sub-shellcode1 and the instruction
jmp Offset1 is executed, the control flow can be directed to sub-shellcode2,
and then to sub-shellcode3 through the instruction jmp Offset2. In this way,
the entire shellcode can be executed and a root shell is opened eventually.
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Existing hijack prevention approaches may fail to detecting such shellcode
with high probability. For example, if the 3 sub-shellcodes are placed at the
beginning of 3 25-byte blocks in object2, the probability that the entire shellcode
can evade detection by Bubble [22] is (25−16)/25× (25−21)/25×(25−7)/25 =
4.1%. This implies, on average, more than 4 attacks can succeed per 100 trials.

Example 2 also illustrates the importance of JS code execution environment
information for an attack. The arguments of the system calls used by the shell-
code embedded in object2 rely on information stored in object1.

These examples presented in §2 clearly demonstrate the criticality of fully
leveraging JS code execution environment information in order to detect shell-
code in JS objects. In addition, to guarantee detection completeness, we need to
check all possible instruction sequences that can be decoded.

3 System Design and Implementation

In this section, we present the design methodology of JSGuard, its architecture
and key components, and implementation. The detailed workflow will be further
illustrated by examples in §4.

3.1 Design Rationale

Fundamentally, the limitations of existing approaches arise because they do not
fully use the JS code execution environment information during detection. This
motivates our proposal of a new detection approach that overcomes the lim-
itations by efficiently and fully exploiting this information, including: (1) the
virtual memory contents of the target application running the JS interpreter;
(2) the host system’s context information, e.g., system call information; and (3)
the JS code semantics, which include stack frames, native method information,
JS object properties, etc.

This information is used at the core of JSGuard in the following 2 ways:

– Creating a Virtual Execution Environment for Detection. When our detec-
tion system is activated, the real environment information at that moment is
used to instantiate a virtual environment where potentially malicious JS strings
are executed and monitored. Such real environment information is critical for
observing the real behaviors of possible shellcodes as they exhibit real execution
flow. In malicious shellcodes, process state information can be used to redirect
the execution flow, e.g., for encryption or decryption (as illustrated in Exam-
ple 1) or it can be leveraged to compute arguments for system calls to perform
malicious actions (as illustrated in Example 2). Without precise virtual memory
information, the shellcode’s execution flow or characteristics can be changed and
its malicious behavior may not be captured.

Using the real environment information also enables leveraging a target
system’s binary code to emulate system calls appearing in a decoded instruction
sequence, especially those that do not change processes’ states but can be used to
take part in shellcode computation. This kind of emulation can help us observe
more possible shellcode behaviors.



JSGuard: Shellcode Detection in JavaScript 119

Live JSString 
Objects

List of 
Trustable Sites

Malicious JSString 
Detector

Shellcode Analyzer

JSGuard Core

JS Interpreter

Client-Side Application Address Space

Fig. 3. The overall architecture of JSGuard

– Facilitating Multiple-level Redundancy Reduction. We propose reducing de-
tection overhead at 3 levels. First, the number of JS objects to be checked should
be minimal. Second, given a JS object to be checked, checking occurs only as nec-
essary (e.g., after mutable objects have changed). Finally, the detection system
should be activated as infrequently as possible.

We achieve this multiple-level redundancy reduction at JSGuard’s core using
the following execution environment information: stack frames, properties of JS
objects, and native methods. The JS interpreter maintains a stack frame for each
JS function being interpreted including its origin information. By searching the
current stack frames, we can determine if JS functions are internal functions or
from trustable sites. If not, objects generated in JS functions are to be checked. In
addition, since external components are targets of malicious code, our detection
system is activated right before control flow enters them. External components
are called by JS code via external native methods. Native method information
is used to distinguish built-in JS native methods that are secure (as we assume
the JS interpreter is secure) from external ones that are written by users to
call their external components. We only activate our detection system before
external native methods are called.

3.2 JSGuard Architecture and Key Components

JSGuard aims to detect whether JS codes embedded in webpages generate mali-
cious shellcode. If a JS code generates such shellcode at runtime, it is considered
malicious. Like other work [18,22], JSGuard focuses on detecting shellcode in JS
string objects, as it is difficult to insert shellcode in other types of objects.

As illustrated in Fig. 3, JSGuard resides in the address space of the target
process. Besides the JSGuard core, the core functionality block that performs
detection, JSGuard also involves the JS interpreter and a list of trustable sites.
The JS interpreter determines the origins of JS functions being interpreted; only
those from external untrusted sites are further checked by the JSGuard core.
The list can be maintained manually or automatically. New sites can be added
to it according to JSGuard’s detection results for them as well as the user’s
knowledge. These sites can be those that are often visited by the user, e.g., the
site of the company he or she is working for. They can be also those maintained
by reputable companies or organizations, such as Microsoft, CNN, etc. If users
are concerned about a trustable site, they can always force JSGuard to check it.
The list entries can be trustable organizations’ hostnames or domain names.
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1 #define BENIGN 0

2 #define MALICIOUS 1

3

4 struct JSString {

5 size_t length;

6 jschar *chars ;

7 };

8

9 int maliciousJSStringDetector (checkinglist ) {

10 JSString *string;

11 check = checkinglist ;

12 while (check != NULL ) {

13 string = check -> string;

14 if(ShellcodeAnalyzer (string ->chars )== MALICIOUS )

15 return MALICIOUS ;

16 check =check ->next ;

17 }

18 checkinglist = NULL ;

19 return BENIGN;

20 }

Fig. 5. Workflow of malicious JS string detector

As shown in Fig. 3, JSGuard core has 2 key components: the malicious JS string
detector and the shellcode analyzer.Themalicious JS string detector runs in the JS
interpreter. It prepares JS strings to be checked at runtime and then feeds them to
the shellcode analyzer. The shellcode analyzer checks if an input object’s content
contains malicious shellcode or a part thereof and reports the results back to the
malicious JS string detector. If a malicious JS string is found, interpretation stops;
otherwise, it continues. In the following, we detail these components.

Malicious JavaScript String Detector. As shown in Fig. 4, the detector
retrieves and checks JS strings from a checking list, which contains all JS strings
that might have malicious shellcode. The checking list is maintained by in-
strumenting string-related operations and the JS interpreter’s garbage collector
(GC). In particular, when a new string JS is created, it is inserted into the check-
ing list; when the GC reclaims a JS string, the string will be removed from the
checking list after its content is zeroed.

The basic workflow of the malicious JavaScript string detector is shown in
Fig. 5. The function maliciousJSStringDetector() has an input checking-

list. When called, it scans all strings in checkinglist and feeds them to shell-
codeAnalyzer(), which detects malicious shellcode in JS string contents. If
shellcodeAnalyzer()finds a JS string containing malicious shellcode, it returns
MALICIOUS to maliciousJSStringDetector(). Then maliciousJSStringDe-

tector() stops checking the remaining JS strings in checkinglist and returns
MALICIOUS to the JS interpreter, which stops interpreting JS code. If no JS
string is found to be malicious, then maliciousJSStringDetector() returns
BENIGN to the interpreter, which continues interpreting JS code. In JSGuard’s
core, maliciousJSStringDetector() is called immediately before JS code calls
an external component.

checkinglist contains the JS strings to be checked. Every time a JS string
is generated, all current stack frames are checked. If there are any JS functions
from external untrusted sites, then we add the JS string to checkinglist. We
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1 #define MALICIOUS 1

2 #define BENIGN 0

3 #define MALICIOUS_SEQUENCE 1

4 #define BENIGN_SEQUENCE 0

5

6 int ShellcodeAnalyzer (base_addr , base_size ) {

7 for (i = 0; i< base_size ; i++)

8 if (MaliciousInstructionSeq (base_addr + i))

9 return MALICIOUS ;

10 return BENIGN;

11 }

12

13 int MaliciousInstructionSeq (addr ){

14 InitializeEmulationEnvironment ();

15 instruction = InstructionDecoder (addr );

16 if (End(instruction )) return BENIGN_SEQUENCE ;

17 instruction.exe_depth = 1;

18 while (instruction ) {

19 if (MaliciousSystemCall (instruction ))

20 if (instruction.exe_depth > exe_depth_thresh )

21 return MALICIOUS_SEQUENCE ;

22 InstructionEmulator (instruction );

23 UpdateEmulationEnvironment ();

24 target = ComputeTarget (instruction );

25 prevInstruct = instruction ;

26 instruction = InstructionDecoder (target);

27 if (End(instruction )) break ;

28 SetExecutionDepth (instruction , prevInstruct );

29 }

30 return BENIGN_SEQUENCE ;

31 }

Fig. 7. Workflow of shellcode analyzer

do so because only JS codes from external untrusted sites attempt to generate
shellcode that exploits target applications’ vulnerabilities. As JS strings are im-
mutable objects, we can safely remove the strings from checkinglist after they
have been checked once [22].

Shellcode Analyzer. The shellcode analyzer architecture is shown in Fig. 6.
This module consists of an instruction decoder, an instruction emulator, a ma-
licious behavior detector, an emulated memory system, and emulated registers.

Given a position in a JS string content, the instruction decoder decodes instruc-
tions starting at that position and sends each decoded instruction to the emulator.
For each instruction the emulator receives, it emulates the execution thereof, for
which the emulated memory system and registers provide a virtual runtime envi-
ronment.TheJScode execution environment informationprovided to the shellcode
analyzer includes the target process’s address space, current registers, and other
context information as necessary.The emulator executes each instruction sequence
and the malicious behavior detector determines whether there is anymalicious be-
havior. If any such behavior is detected, then the instruction sequence is considered
malicious. As a result, the shellcode analyzer concludes there is malicious shellcode
in the content buffer. Hence the JS string object is considered malicious.

During instruction sequence emulation, if there is an instruction that reads
memory, the memory values are first fetched from the real memory units in
the target process’s address space. Next, these values are stored in the emu-
lated memory system. Future read operations to the same memory units will
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be directed to the emulated memory system. If there is a write memory opera-
tion, it will be directed to the emulated memory system. The write operation is
never performed on the corresponding real memory units in the target process’s
address space to avoid disturbing “normal” JS code execution.

The shellcode analyzer workflow is shown in Fig. 7. From each input data
position, the shellcode analyzer uses the target process’s virtual memory infor-
mation to emulate the execution of the decoded instruction sequence. There are
2 input parameters for ShellcodeAnalyzer(): (1) base address, the starting
address of the input data to be analyzed; and (2) base size, the input data size.

The key function of the shellcode analyzer is MaliciousInstructionSeq(),
which detects a malicious instruction sequence. The workflow of MaliciousIn-
structionSeq() is shown in lines 13–31 in Fig. 7. The while loop from line 18
to line 29 in Fig. 7 emulates a sequence of instructions, which continues until
one of the following occurs: (1) a malicious behavior is detected; (2) a privileged
or invalid instruction is encountered;1 (3) an illegal memory access occurs; or
(4) the number of executed instructions exceeds a threshold.

In our system, a malicious behavior is defined as a malicious system call in-
vocation. In Linux and Microsoft Windows systems, not all system calls can
compromise the target host’s security. This depends on system call numbers and
parameters, which are stored in registers before system call instructions are ex-
ecuted. Through the JS code execution environment information interface, the
system call number and its parameters can be accurately obtained to determine
if the system call invocation is intended to compromise the host’s security. For
example, in Linux, the system call number 11 corresponds to the system func-
tion execve, which executes a program. During instruction emulation, if the
instruction is a system call instruction and the value of the emulated eax is 11,
then the system call number is 11. After checking parameters stored in other
emulated registers and the emulated memory system, if its first parameter is
/bin/sh, then we can conclude that the instruction tries to open a root shell.
In this case, the system call instruction will be considered malicious.

Shellcodes normally need several instructions to initialize system call parame-
ters. Hence, we also use the exe depth of an instruction that invokes a system call
to decrease false positives. An instruction’s exe depth is defined as the number
of instructions from the starting point to it during emulation of an instruction
sequence. For example, suppose that a statement S in a for loop is executed
100 times. Then the execution depth of S is 2 (for statement and S).

Our system can also leverage heuristics used in current network-level em-
ulation tools [18, 28, 37–39] to detect shellcode in JS strings during emulation.
However, these heuristics are confined to detect particular types of shellcode that
exhibit self-decrypting behavior [18, 28, 37, 38] or match specific memory access
patterns [39]. In addition, as illustrated in §2, they are ineffective at detecting
shellcode that fully exploits JS code execution environment information.

1 Privileged instructions can only be executed in kernel mode; shellcodes normally run
in user mode. An exception occurs if a shellcode contains a privileged instruction.
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3.3 Implementation

The JSGuard prototype system is implemented in Debian Linux with kernel ver-
sion 2.6.26 using C and C++ with gcc 4.3.2. The key component is the JSGuard
core, which comprises 2 major parts. The first part is a modified JS interpreter
integrated with the malicious JS string detector. This part is based on the Spider-
Monkey JS interpreter [49], which is used in various Mozilla products including
Firefox. The second part is the shellcode analyzer module. We implement it as
a C library in Debian Linux system. When the malicious JS string detector calls
the module, it is loaded into the address space of the application running the
JS interpreter. We also implement a Firefox extension that maintains the list of
trustable sites, which is loaded into Firefox’s address space upon execution.

Modified JS Interpreter. In this part, we implement a malicious JS string
detector, which scans JS string objects from a checkinglist and then calls the
shellcode analyzer to determine if they have malicious content. The checking-

list is maintained by the code that we add into all functions related to JS string
operations. First, we instrument all functions related to JS string object creation.
In this way, we can track all JS string objects generated during execution of the
external JS code. Populating the checkinglist with all strings fundamentally
guarantees the completeness of our detection. Second, before adding a JS string
to checkinglist, we also use the list of trustable sites and current stack frames
to decide if the JS string should be added to checkinglist. If all JS functions
being interpreted are from trustable sites or internal JS functions, the string will
not be added to checkinglist; otherwise, it will.

After analyzing the source code of the SpiderMonkey JS interpreter, we find
all call points that invoke native methods and insert calls to the malicious JS
string detector at these points. Since the JS interpreter also uses native methods
to implement some built-in JS class methods, we check if a native call is calling
a JS built-in method at native call points. If this is the case, we do not activate
the malicious JS string detector; otherwise, we activate it. This is due to our
assumption that the JS interpreter has no exploitable memory errors. The native
methods for JS built-in class methods are parts of the JS interpreter, so they
do not have exploitable memory errors. However, when control flow leaves the
JS interpreter to external functions, the malicious JS string detector will be
activated to check all JS strings in the checkinglist.

We modify the JS interpreter’s garbage collector to maintain the checking-

list and integrate the modified JS interpreter into the Firefox 4 Web browser.

Shellcode Analyzer. The shellcode analyzer prototype focuses on the IA-32
architecture and the Linux OS. We implement an instruction emulator and an
instruction decoder, which is based on the Bastard project’s libdisasm with
version 0.23-pre [50].

When encountering a system call instruction (sysenter or int 0x80) in em-
ulation, the shellcode analyzer will determine, with the parameters stored in the
emulated memory/register system, whether it is one of 36 system calls that can
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be used to compromise the Linux system [32]. Besides these “malicious” sys-
tem calls, we also use the exe depth threshold to determine if the instruction
truly tries to compromise the host’s security; we set the threshold to 10 since
most unencrypted malicious shellcodes have at least 10 instructions [38, 55]. To
avoid an infinite loop during instruction sequence emulation decoded from a po-
sition of a JS string’s content, we set the threshold to 8000 for the number of
executed instructions. According to current research, this threshold suffices to
detect malicious shellcodes [37, 38].

4 A Detection Example

We illustrate our detection system’s effectiveness by presenting the detection
procedure for Example 2 in §2.3. Example 1 in §2.2 can similarly be detected.

Assume that an attacker tries to exploit a Firefox external component in Linux
using a malicious JS code. He first uses heap spraying to allocate large JS objects,
then inserts the arguments and the 3 sub-shellcodes, as shown in Fig. 2, into 2 ob-
jects. We denote these objects as object1 and object2. The objects are allocated in
2 contiguous memory areas and their addresses are predictable, say, 0x05250020
and 0x05350020, respectively. The JS code places the arguments in object1 with
Saddr set to 0x05250084 and places sub-shellcode1, sub-shellcode2 and sub-
shellcode3 into object2 with their addresses set to 0x05350084, 0x0535009D
and 0x053500B6 respectively. Then the offset between sub-shellcode1 and sub-
shellcode2 is 9 and the offset between sub-shellcode2 and sub-shellcode3 is 4.
Hence, in Fig. 2, Saddr is 0x05250084, Offset1 is 9, and Offset2 is 4.

The attack starts when the 3 sub-shellcodes are ready in the heap. The JS
code calls the vulnerable component. Before control flow is diverted from the JS
interpreter to the external component, the JS interpreter with JSGuard invokes
maliciousJSStringDetector() to check whether there are malicious JS strings
arranged in the heap. maliciousJSStringDetector() will scan JS strings in
checkinglist and send them iteratively to the shellcode analyzer. At a certain
moment, the shellcode analyzer receives the content of object2.

The shellcode analyzer decodes every possible instruction sequence starting
from each byte position of the content, and then executes it. Each instruction
in the instruction sequence starting from the address 0x05350084 will be de-
coded and then executed. When the instruction jmp Offset1, i.e., jumping to
0x0535009D, is decoded and executed, the shellcode analyzer will follow the
control flow and begin to decode instructions starting from 0x0535009D and
execute them. Note 0x0535009D is the starting address of the sub-shellcode2
instruction sequence. In this way, the instruction sequence of sub-shellcode2
is discovered and executed. When system call instruction int $0x80 is exe-
cuted, we can obtain its parameters since the contents of the emulated regis-
ters/memory system precisely reflect the runtime changes during the emulation.
The shellcode analyzer discovers that this system call instruction tries to open
a root shell. Meanwhile, this instruction’s exe depth exceeds the threshold. Thus
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this system call instruction will be considered malicious. As a result, the en-
tire emulated instruction sequence is considered malicious. The shellcode ana-
lyzer concludes that object2 content contains malicious shellcode and returns
to maliciousJSStringDetector(). When the malicious JS string detector re-
ceives MALICIOUS from the shellcode analyzer, it in turn concludes that object2
is a malicious JS string and the JS code being interpreted is malicious. It throws
an exception and stops interpreting JS code.

5 Evaluation

We conduct extensive experiments to evaluate JSGuard, particularly its detec-
tion effectiveness and runtime overhead. We do so on a HP Pavilion a815n with
an Intel Pentium 4 3.06 GHz CPU and 1 GB RAM. The computer is connected
to a university campus network through 100 Mbps Ethernet; it runs Debian
Linux with kernel version 2.6.26.

5.1 Effectiveness

Detection effectiveness is measured by false positives and false negatives.

– False Positive: 0/2000. We implement a Firefox extension that automati-
cally fetches websites listed in a file. We set the time interval between 2 fetches
to be 50 s, which is generally sufficient for JS codes embedded in a webpage to
be fully executed. Every 50 s, the extension iteratively reads a URL from the file
and then loads the webpage in a browser window. We construct a benign URL
list containing 2000 URLs taken from the Alexa ranking of top global sites [1].
These are real websites with various content and Web applications. JSGuard
classifies all of them as benign.

– False Negative: 0/5063. We collect 12 real world malicious webpages con-
taining JS code that generate shellcode to launch attacks; we also collect 51 plain
malicious shellcodes from the Internet. All of them target Linux systems. Based
on the 51 plain shellcodes, we use the following tools to generate 5000 polymor-
phic or/and metamorphic malicious shellcodes: the Metasploit project’s Jump-
CallAdditive, Pex, PexFnstenvMov, PexFnstenvSub, and ShikataGaNai [51] as
well as ADMmutate [30] and TAPiON [2], which are also used in other shellcode
detection tools [37, 38, 54, 55] to test their effectiveness. We then create 5051
JS codes that generate these malicious shellcodes at runtime and invoke native
methods that are not built in to the JS interpreter. For example, the JS method
document.write() eventually calls a native method. Finally we craft 5051 ma-
licious webpages with these malicious JS codes. We put these 5051 malicious
webpages and the 12 real world malicious webpages on our internal Web server
and we visit them using Firefox with JSGuard on a client computer. JSGuard
classifies all of them as malicious. In addition, we also write 2 heap spraying
JS codes, dynamically generate the 2 shellcode examples presented in §§2.2–2.3,
and feed them to JSGuard. It correctly classifies them as malicious.
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Table 1. The overhead of checking trustable sites only. “Original version” is Firefox
without our system. “Trustable List Only” is Firefox with our detection system enabled
(JSGuard core disabled).

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

Trustable List Only 492.254 s 1.64085 s 0.00101 s

Table 2. The overhead purely incurred by the JSGuard core block. “JSGuard Core
Only” is Firefox with our system enabled (checking trustable sites disabled).

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

JSGuard Core Only 1651.45 s 5.50483 s 3.86499 s

Table 3. The overhead incurred by JSGuard. The version with JSGuard is Firefox
with our entire JSGuard system enabled.

Firefox Version Total Time Time/Page Overhead/Page

Original Version 491.953 s 1.63984 s N/A

With JSGuard 753.059 s 2.51019 s 0.87035 s

5.2 Overhead

To measure JSGuard’s overhead, we use 2 versions of Firefox 4: one integrated
with JSGuard and an “original” version without JSGuard. We use the 100 most
popular websites as described by Alexa [1] as the testing dataset. In our experi-
ments, we visit each website 3 times using each version of Firefox. The time we
measured, rendering time, includes the times for downloading a webpage from
the Internet, page parsing and rendering, and executing all JS codes therein.

We performed 3 types of experiments to measure overhead incurred: (1) by
only checking trustable sites; (2) by only using the JSGuard core functionality
block; and (3) by using entire JSGuard system.

In the first experiment, we disable JSGuard and measure the overhead purely
incurred by checking trustable sites. We use the 10,000 most popular websites
from Alexa [1] to form a list of trustable sites. The experiment results are shown
in Table 1, which shows that this overhead is very low. Thus our detection sys-
tem has little impact on the rendering time when all JS functions called during
runtime are internal ones or from trustable sites. The second experiment mea-
sures the overhead purely incurred by running JSGuard core without checking
trustable sites. It is an extreme case where every site the user visits is assumed to
be malicious, i.e., every JS string is put into checkinglist so long as all inter-
preted JS functions are from external sites. From Table 2, the average overhead
incurred by JSGuard core is 3.865 s. Note that this performance is measured in
the worst-case scenario with a low-end machine. Indeed, studies show that overall
user frustration increases when page load times exceed 8–10 s [8,33]. Hence, per-
formance is acceptable even in this extreme case. The third experiment measures
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the overhead incurred by the entire JSGuard system. We construct a random
list of 50 trustable sites from our testing dataset. The remaining 50 sites in our
testing dataset are thus considered untrustable. Table 3 shows the experiment
results. JSGuard’s average overhead is modest: ∼0.87 s.

6 Related Work

Detecting shellcode in JS objects is essential to protect vulnerable applications
from JS based shellcode injection attacks. As §2.1 noted, existing shellcode de-
tection approaches fall into 2 categories: content analysis and hijack prevention.

Content analysis is particularly popular in detecting shellcode from network
messages. In [52], Toth and Kruegel proposed identifying exploit code by detect-
ing NOP sleds. However, attacks can bypass this detection technique by either ex-
cluding NOP sleds or by using polymorphic techniques [11, 16, 30]. Chritodorescu
and colleagues [12,13] proposed techniques to detectmalicious patterns in executa-
bles using semantic heuristics. Lakhotia andEric in [27] used content analysis tech-
niques to detect obfuscated calls in binaries. Chinchani and van denBerg proposed
a rule-based scheme in [11].Wang et al. proposed SigFree [55] that checks if network
packets contain malicious codes using “push and call” patterns and the number of
useful instructions in the longestpossible execution chain.Thesemethods arebased
on static analysis. Although they are efficient in detecting shellcode, they still can
be thwarted by using binary obfuscation [5]. To improve detection completeness,
Polychronakis et al. proposed a new network-level emulation approach [37, 38] to
detect polymorphic shellcode.Gene [39] used network-level emulationwith specific
memory access pattern heuristics to detect shellcode forMS-Windows systems.Gu
et al. proposed the virtual memory snapshot based emulation approach in end sys-
tems to detect shellcode in networkmessages before they are processed by network
server programs [23]. ShellOS provides a framework leveraginghardwarevisualiza-
tion to detect shellcode [46]. It requires users to dump the entire target process’s
states and load them into ShellOS in order to construct an emulation environment.
A powerful shellcode analyzer named ”Shellzer” is proposed in [56]. It conducts
analysis by instrumenting each instruction, which may incur undesirable overhead
for online detection.

All these approaches are useful for detecting shellcode in network messages,
but they are not directly applicable to detecting shellcode in JS strings, as such
shellcode is not transmitted in its binary form. Instead, each byte of the shell-
code is transmitted using its ASCII representation. In general, ASCII charac-
ter sequences cannot be successfully decoded into the corresponding shellcode
instruction sequences [18], though this is sometimes possible [35]. Nozzle is a
well-known JS shellcode attack detection tool. It scans a heap object, inter-
prets the object content to build a control flow graph (CFG), and then uses the
CFG to check weather the content contains shellcode [43]. Egele et al. propose
an approach that uses libemu [28] to check if the content of a JS string con-
tains a sufficiently long valid instruction sequence using network-level emulation
and GetPC code based heuristics. Hijack prevention based approaches can be
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used before or during shellcode execution. Such approaches include randomiza-
tion [4, 6, 7, 26, 36], OS extension [3, 25] and flow tracking techniques [34, 42]. In
general, these approaches have good detection completeness due to their exten-
sive use of context information. However, their troubleshooting to find out the
root cause is inefficient [55], which often requires heavy playback or log analy-
sis. Recently, Gadaleta et al. proposed Bubble [22], a lightweight approach that
encumbers complete execution of injected shellcode.

Recently, several machine learning based systems were proposed to detect
malicious JS code. Zozzle applies Bayesian classification to hierarchical features
of the JavaScript abstract syntax tree to identify syntax elements that strongly
predict malware [15]. Jsand [14] emulates JS code in a virtual browser environ-
ment using machine learning methods to capture malicious features. Prophiler [9]
constructs a filter that can quickly discard benign pages and forward potentially
malicious pages to heavyweight analysis tools. JSGuard can complement these
systems by providing malicious code training samples.

We note that some works like Cujo [44] and Blade [29] can also prevent drive-
by-download attacks. However, their focus differs from ours, which is malicious
shellcode detection in JS code. These works cannot prevent in-memory execution
of injected shellcode. We are aware that tools like [10,19] have been proposed to
audit JS activities, but they are not malicious shellcode detection systems.

7 Conclusion

In this paper, we have proposed a new methodology to detect JS shellcode that
fully uses JS code execution environment information in an efficient manner.
Following the methodology, we implemented JSGuard, a prototype malicious JS
code detection system on Debian Linux. Extensive experiments with real traces
and thousands of malicious shellcodes illustrate our detection system’s perfor-
mance with acceptable overhead and very few false negatives or false positives,
which validated our methodology’s promise for this purpose.
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52. Tóth, T., Kruegel, C.: Accurate Buffer Overflow Detection via Abstract Payload

Execution. In: Wespi, A., Vigna, G., Deri, L. (eds.) RAID 2002. LNCS, vol. 2516,
pp. 274–291. Springer, Heidelberg (2002)

53. Vulnerability Note VU#492515: Microsoft Internet Explorer HTML object mem-
ory corruption vulnerability, http://www.kb.cert.org/vuls/id/492515

54. Wang, X., Jhi, Y.-C., Zhu, S., Liu, P.: STILL: Exploit Code Detection via Static
Taint and Initialization Analyses. In: ACSAC (2008)

55. Wang, X., Pan, C.-C., Liu, P., Zhu, S.: SigFree: A Signature-Free Buffer Overflow
Attack Blocker. USENIX Security (2006)

56. Fratantonio, Y., Kruegel, C., Vigna, G.: Shellzer: A Tool for the Dynamic Analysis
of Malicious Shellcode. In: Sommer, R., Balzarotti, D., Maier, G. (eds.) RAID 2011.
LNCS, vol. 6961, pp. 61–80. Springer, Heidelberg (2011)

http://www.phrack.org/
http://pax.grsecurity.net/docs/aslr.txt
http://secunia.com/blog/11
http://www.mozilla.org/js/spidermonkey/
http://bastard.sourceforge.net
http://www.metasploit.com
http://www.kb.cert.org/vuls/id/492515


Detection of Configuration Vulnerabilities

in Distributed (Web) Environments�

Matteo Maria Casalino, Michele Mangili, Henrik Plate, and Serena Elisa Ponta

SAP Research Sophia-Antipolis, 805 Avenue Dr M. Donat, 06250 Mougins, France
{matteo.maria.casalino,henrik.plate,serena.ponta}@sap.com

Abstract. Many tools and libraries are readily available to build and
operate distributed Web applications. While the setup of operational en-
vironments is comparatively easy, practice shows that their continuous
secure operation is more difficult to achieve, many times resulting in
vulnerable systems exposed to the Internet. Authenticated vulnerability
scanners and validation tools represent a means to detect security vul-
nerabilities caused by missing patches or misconfiguration, but current
approaches center much around the concepts of hosts and operating sys-
tems. This paper presents a language and an approach for the declarative
specification and execution of machine-readable security checks for sets
of more fine-granular system components depending on each other in
a distributed environment. Such a language, building on existing stan-
dards, fosters the creation and sharing of security content among security
stakeholders. Our approach is exemplified by vulnerabilities of and cor-
responding checks for Open Source Software commonly used in today’s
Internet applications.

Keywords: configuration validation, detection of misconfiguration, web
security, distributed environments.

1 Introduction

The importance of security is nowadays well recognized and mechanisms to en-
force it are being developed and adopted within enterprises. However, this is not
sufficient to ensure that security requirements are met, as such mechanisms have
to be correctly configured and maintained at operations time. In fact, a signif-
icant share of vulnerabilities results from security misconfiguration, as shown
by data breach reports such as [1], [2] and projects such as the OWASP Top
10 [3]. The reason is that activities targeting the creation and maintenance of
a secure setup, such as patch or configuration management, are labor-intense
and error-prone. Software vendors, for instance, issue an increasing number of
security advisories, while users, on the other hand, struggle to understand if a
given vulnerability is exploitable under their particular conditions and requires
immediate patching. As another example, configuration best-practice provided

� This work was partially supported by the FP7-ICT-2009.1.4 Project PoSecCo
(no. 257129, www.posecco.eu)

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 131–148, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013

www.posecco.eu


132 M.M. Casalino et al.

as prose documentation and supposingly supporting system admininistrators, is
often very broad and ambiguous.

Due to such difficulties, configuration validation is needed to gain assurance
about system security, but again, often requires manual intervention, and thus
is time-consuming and limited to samples. New trends focus on providing stan-
dards for security automation, e.g., the Security Content Automation Protocol
(SCAP, [4]), provided by the National Institute of Standard and Technology
(NIST), whose specifications receive a lot of attention in the scope of the config-
uration baseline for IT products used in US federal agencies [4]. SCAP comprises
a language that allows the specification of machine-readable security checks to
facilitate the detection of vulnerabilities caused by misconfiguration. While this
represents an important step towards the standardization and exchange of secu-
rity knowledge, SCAP focus on the granularity of hosts and operating systems,
and as such cannot be easily applied to fine-granular and distributed system
components1 independent from their environment, e.g., a Java Web Application
(JWA). Furthermore, SCAP does not leverage standards and technologies in the
area of system and configuration management, in order to, for instance, separate
check logic and information about configuration retrieval.

To address these limitations and make the advantages of SCAP available to
Web security experts, we propose a SCAP-based language and approach for the
declarative specification and execution of checks for sets of fine-granular com-
ponents depending on each other in a distributed environment. Moreover we
separate the check logic from the retrieval of the configuration values for which
we rely on existing system management procedures and technologies, e.g., Con-
figuration Management Databases (CMDB) as defined in the IT Infrastructure
Library (ITIL). Each check is essentially a set of tests over software component
properties - such as the release and patch level - and configuration settings that
determine a system component’s behavior. Though this is not a limitation of
the language, we focus on security checks, i.e., one of the most important usages
is the detection of security vulnerabilities. As an example, the language allows
the specification of a check to express that the deployment descriptor of any
JWA deployed in a Servlet container supporting a Servlet specification version
of at least 3.0 must have the http-only flag enabled, to prevent the access of
client-side scripts to session cookies.

This paper is structured as follows. Sect. 2 introduces a sample system based
on common Open Source Software (OSS), introduces a set of scenarios for con-
figuration validation, and derives requirements for a configuration validation
language. Sect. 3 presents state-of-the-art with regard to the specification of
security checks for software and configuration vulnerabilities. Sect. 4 presents
the configuration validation language, while Sect. 5 describes our approach. The
paper concludes with an outlook on future work in Sect. 6.

1 A system component hereby represents a single installation of a software compo-
nent (or product) in a specific system, such as a given deployment of a Java Web
Application in a Servlet container.
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2 Use Case and Requirements

This section outlines an example landscape composed of a custom application
on top of common OSS, and herewith prototypic for many real-life systems. An
overview about network topology and installed software components is shown in
Fig. 1. The service provider ACME operates this landscape for its application
service “eInvoice”, which allows customers to manage electronic invoices, and
to make them available to their business partners through the Internet. The
application front-end for managing and accessing invoices is implemented as a
JWA. Instances of the application, each dedicated to one customer, are deployed
in Tomcat, in customer-specific context roots. Tomcat instances run inside an

Fig. 1. ACME landscape

internal subnet, and are proxied by
the Apache HTTP Server installed on
a physical machine connected to the
DMZ. Requests for a customer-dedicated
sub-domain of acme.com are forwarded
by the reverse-proxy to the respective,
customer-dedicated instance of the JWA
via the Apache JServ Protocol (AJP).

Another machine running in the inter-
nal network hosts a LDAP server for the
management of user accounts, as well as
a MySQL database used for persistency.

As the system is prototypic, so are the tasks related to configuration man-
agement and validation. In the following, we will describe different scenarios
for configuration validation, different in terms of periodicity, urgency (response
time), validation scope, and authorship of configuration checks.

Vulnerability Assessment (S1). This scenario focuses on the detection of
known vulnerabilities. Upon disclosure of a new security vulnerability of off-the-
shelf applications or software libraries, system administrators need to investigate
the susceptibility of their system. First, they need to check for the presence of
affected release and patch levels. This can be difficult in case of software libraries
embedded into off-the-shelf applications as their presence is often unknown. Sec-
ond, they need to check whether additional conditions for a successful exploita-
tion are met. Such conditions often concern specific configuration settings of the
affected software, as well as the specific usage context and system environment.
The automation of both activities with help of machine-readable vulnerability
checks decreases time and effort required to discover a system vulnerability, and
at the same time increases the precision with which the presence of vulnera-
bilities can be detected. Precision is important as organizations are typically
reluctant to apply patches or other measures in a productive environment un-
less absolutely necessary. Such checks would represent a valuable complement
to textual descriptions published by security researchers or software vendors in
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vulnerability databases such as the NVD [4]. As an example, CVE-2011-31902

reports a vulnerability in the AJP connector implementation of several Tomcat
releases [5], which, however, only applies under certain conditions, e.g., if certain
connector classes are used, and reverse proxy and Tomcat do not use a shared
secret. A machine check looking at the Tomcat release level and related con-
figuration settings could be easily provided by the application vendor (Apache
Software Foundation). An example for a critical security bug in a software library
is CVE-2012-0392 which describes a vulnerability in Apache Struts, a common
framework to support the Model-View-Controller paradigm in JWAs. The de-
tection of this vulnerability is made more problematic by the fact that end-users
typically do not know if applications installed in their environment make use of
such library, and they cannot rely on the presence of a well-established security
response process at each of their application vendors. Thus security bugs may
be dormant in libraries without the service operator being aware.

Configuration Best-Practice (S2). This scenario focuses on establishing if
best practices are followed. During operations time, system administrators need
to periodically check whether the system configurations follow best-practices,
for single and distributed system components. Today, these are often described
in prose and evolve over time thus requiring continuous human intervention.
Examples of best-practices are the Tomcat security guide from OWASP [6], and
the SANS recommendations for securing Java deployment descriptors [7].

Example 1 (SANS recommendation on cookie-based session handling). SANS rec-
ommends to configure the cookie-based session handling for JWAs
(<cookie-config> section of the deployment descriptor), i.e., (i) preventing the
access to session cookies (<http-only> set to true), and (ii) transmitting cookies
securely (<secure> set to true). In particular the http-only flag is an example of
recommendation that only applies after the release 3.0 of the Servlet specification.

Configuration best-practices may also cover a set of distributed components, e.g.,
the how-to about Apache HTTP server as a reverse proxy for Apache Tomcat [8].
A language supporting the specification of such best-practice checks should sup-
port the flexible adoption to a specific environment. A recommendation related
to the session timeout, for instance, may be refined by an organization to reflect
its particular policy.

Compliance with Configuration Policy (S3). This scenario focuses on the
periodic validation of landscape specific configuration implementing the designed
policy. Such a configuration includes a set of mandated configuration settings
that an organization expects to be active in its system. As an example, the con-
figuration that enforce the ACME’s access control policy embraces configuration
settings of several distributed system components, e.g., the realm definition of
each Tomcat instance, as well as the deployment descriptor of each Java appli-
cation instance. In particular the deployment descriptor has to allow the role
admin-role to access to the URL path /manager/*. Moreover the realm of

2 CVE entries are maintained in vulnerability databases, e.g., NVD.
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Tomcat has to refer to the LDAP server located at 192.168.2.1. This example
illustrates that configuration checks aiming to assess compliance with a given
configuration policy strongly reflect a particular system and environment, and
are therefore authored internally to the organization rather than by externals,
as in the previous scenarios.

A language for supporting the above scenarios have to fullfill the following
requirements.

(RL1) The language must support the definition of configuration checks for di-
verse software components (e.g., network-level firewalls or application-level
access control systems) and diverse technologies.

(RL2) The language must be expressive enough to cover new technologies or con-
figuration formats without requiring extensions. This would avoid the need
to update the language interpreter every time a new extension is published.

(RL3) It must be possible to specify target components by defining conditions
over properties such as name, release, and supported specification, or over
the existence of relationships between components. This is necessary in cases
where externally provided checks must be applied to all instances of the
affected software components (scenarios S1 and S2).

(RL4) Motivated by scenario S3, it must be possible to specify target compo-
nents by referring to specific instances of a software component.

(RL5) It must be possible to validate the configurations of different, potentially
distributed system components within one check.

(RL6) Checks must be uniquely identifiable, declarative, standardized and cer-
tifiable, to support trusted knowledge exchange among security tools and
stakeholders, e.g., software vendors, experts, auditors, or operations staff.

(RL7) The language must support parametrization in order to adopt externally
provided checks to a specific configuration policy.

(RL8) The specification of checks must be separated from the collection of the
involved configuration settings from a given managed domain.

3 State of the Art

Prior art for the definition of the configuration validation language comprises
several specifications out of the Security Content Automation Protocol (SCAP),
as well as proprietary languages supported by vulnerability and patch scanners.

SCAP [11] is a suite of specifications that support automated configuration,
vulnerability and patch checking, as well as security measurement. Some of the
specifications are widely applied in industry, e.g., the Common Vulnerabilities
and Exposures (CVE, http://cve.mitre.org), and those related to configura-
tion validation will be discussed with regard to above-described requirements.
Note that several approaches assess a system’s overall security level by analyzing
and reasoning about the potential combination of individual vulnerabilities (ex-
ploits) by an adversary [9], [10]. Though referring to SCAP specifications, these
approaches do not look into the vulnerability specification itself, but use the
language and related tools merely for the discovery of individual vulnerabilities.
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Common Platform Enumeration (CPE, http://cpe.mitre.org) is a XML-
based standard for the specification of structured names for information technol-
ogy systems, software, platforms, and packages. It allows the definition of names
representing classes of platforms which can be compared in order to establish
if, e.g., two names are equal or if one of the names represents a subset of the
systems represented by the other. CPE 2.3, the latest version, consists of four
modular specifications which work together in layers: (i) CPE Naming providing
a formal name format, (ii) CPE Language allowing the description of complex
platforms, (iii) CPE Matching providing a method for checking names against
a system, and (iv) CPE Dictionary binding text and tests to a name.

While the specifications CPE Naming and CPE Matching allow the definition
and comparison of single software components according to properties such as
vendor or product name, the CPE Language specification does not meet (RL3)
with regard to component relations. It supports the specification of a complex
platform through a logical condition over several CPE Names, but the seman-
tics of their relationship is not explicitly defined. The typical interpretation used
in many CVE entries is that a complex platform condition is met as soon as
all software components are installed on the same machine. This interpretation,
however, is in many cases not sufficient to state that a vulnerability exists. CVE-
2003-0042, for instance, is only exploitable if Tomcat actually uses a given JDK
version, the mere presence of both components on the same system is not suf-
ficient. This interpretation is even more misleading if vulnerabilities are caused
by combinations of client-side and server-side components, e.g., CVE-2012-0287.
A special kind of relationship is the composition of software components, e.g.,
in the case of Java libraries. Today, each vendor of an application that embeds a
vulnerable library needs to issue a dedicated CVE, as CPE insufficient to detect
the use of a given library (in an application).

Open Vulnerability Assessment Language. (OVAL, [12]) defines a lan-
guage for the definition of security tests detecting the presence of vulnerabilities
or configuration issues on a computer system (machine). It defines several XML
schemas: (i) OVAL System Characteristics represent system configuration in-
formation that is subject to testing, (ii) OVAL Definitions specify conditions
for the presence of a specified machine state (vulnerability, configuration, patch
state, etc.), (iii) OVAL Results report the assessment result, i.e., the comparison
of OVAL Definitions and OVAL System Characteristics.

Since OVAL already fulfills some of the before-mentioned requirements, the
language proposed in Sect. 4 is to a good extent based on OVAL concepts.
According to SCAP design goals, the language supports standardized, unam-
biguous, and exchangeable representations of configuration checks (RL6) as well
as variables for parametrization (RL7). However, a significant limitation is that
OVAL checks (like CPE) work on the granularity of machines (computer sys-
tems). This impacts several other requirements. With regard to (RL1), it is
difficult, sometimes impossible, to write configuration checks for fine-granular
system components independently from their software computing environment
(container), e.g., JWAs. The reason is that generic OVAL objects from the
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independent schema (e.g., textfilecontent54 object) are relative to the ma-
chine’s file system, which varies from one Servlet container to the other The
definition of container-specific objects (e.g., spwebapplication object for Mi-
crosoft Sharepoint), on the other hand, restricts the use of checks to dedicated
environments. Requirement (RL2) is not fulfilled as OVAL requires the extension
of several schemas to address new software components. This either requires tool
vendors to constantly update the language interpreter, or leads to a fragmented
market where tools only support a subset of the language. We believe that the
broad adoption of OVAL could be reached more easily by the use of generic types
(RL2), e.g., on the basis of XML, herewith leveraging the fact that it is used
for many application-level configuration formats. With regard to (RL3), (RL4)
and (RL5) it is impossible in OVAL to specify a target for checks that look at
distributed components, since the execution of a set of OVAL definitions and
their tests are meant to be executed on a single machine. Furthermore, OVAL
does not clearly separate check logic from the retrieval of the actual configura-
tion values (RL8), herewith missing to leverage industry efforts in the area of IT
Service and Application Management (ITSAM). The deployment descriptor of
a JWA, for instance, can be retrieved by several means and potentially from dif-
ferent sources (the actual component, or a configuration store with copies). The
mixture of these concerns makes the work of check authors difficult and error
prone, as they cannot focus on the check logic (e.g., the session configuration of
a deployment descriptor), but also care for the retrieval of values, e.g., the iden-
tification of a file path depending on installation directories and environment
variables. To allow the separation of these concerns, the check language itself
must be agnostic to potential configuration sources, the latter being cared for
by administrators.

As representative vulnerability and patch scanner, we consider Nessus
(http://www.tenable.com/products/nessus), which is a widely adopted tool
and comeswith a proprietary syntax for the definition of so-called audit checks.Or-
ganizations can either write custom checks according to this language, or subscribe
to a commercial feed to receive compliance checks tailored for a variety of standards
and regulations, e.g., PCI DSS (https://www.pcisecuritystandards.org).
Having comparable expressivity, checks written in this proprietary language can
be transformed into SCAP content, which is why Nessus and similar tools were
SCAP-validated by the MITRE. SCAP and Nessus’ proprietary language also
have in common that they focus on operating systems, which makes it difficult
to specify checks on a more fine-granular level, i.e., for objects which cannot be
easily identified relative to the OS: custom items for Windows and Unix require,
for instance, the specification of file paths which is not necessarily possible for
JWA or Web services; built-in checks for Unix hide the configuration source from
the check author, but instead of making the source customizable, it is hard-coded
(RL9). Checks considering distributed system components are not supported at
all (RL5). Nessus does also not allow to condition the applicability of the check

http://www.tenable.com/products/nessus
https://www.pcisecuritystandards.org
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Fig. 2. Configuration validation language class diagram

on the basis of component properties (e.g., release level) or component relation-
ships (RL3) but only on the basis of hard-coded keywords such as Unix. As
a proprietary language, processed only by Nessus, it is not extensible by 3rd
parties (RL3), nor standardized (RL4).

4 Configuration Validation Language

The configuration validation language allows the definition of checks for selected
software components and addresses the use cases presented in Sect. 2. It includes
the definition of the checks as well as of their results. This section introduces
all the concepts used within the language, and defines the extensions we carried
out over the OVAL standard. We formally define the semantics of the language
without binding to a specific syntax. Notice that in the definitions we only
consider the parts of the OVAL standard which are extended by our language.
As OVAL is XML-based, a straightforward implementation of our formalism is
an XML serialization.

Fig. 2 shows the main concepts of the configuration validation language. The
concepts are organized into three main areas. The Check and Target areas concern
the definition of the configuration checks and of the affected software components,
resp., the System area contains elements corresponding to actual configurations
and components of a managed domain.

The Check area (top left of Fig. 2) concerns the definition of checks in the form
of tests comparing an expected and an actual value. This area relies on the OVAL
standard [12]. The concepts we borrow and extend are shown in Fig. 2 and prefixed
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with “OVAL”. In a nutshell, a definition is characterized by an arbitrary complex
boolean combination of tests and a test defines an evaluation involving an object
(possibly containing a set of other objects) and zero or more states. As described
in Sect. 3, the existing OVAL objects do not fulfill requirements (RL2), and (RL8).
To fulfill them, we defined a new test, object, and state, generic enough to apply
to multiple configurations of multiple software components and independent from
the collection mechanisms. The test and state we defined are not shown in Fig. 2
as it is the object, XML Config Object, that contains the major contributions. The
XML Config Object is characterizedby three attributes: thetypedenoting a type of
configuration relevant for a software component, the schemadenoting the format in
which the configurations are represented, and query expressing how to identify the
object within the configuration. Such object also overcomes the OVAL drawbacks
about (RL1) discussed in Sect. 3.

Example 2 (Object, state, and test for http-only flag). The XML Config Object

can be used to specify the recommendation described in Ex. 1. In the excerpt
below, type (line 2) indicates that the configuration considered is a deployment
descriptor (computing environment independent), schema (line 3) refers to the
location of the schema for the deployment descriptor of J2EE web application
and the Xpath query (line 4) points to the http-only configuration.

1 <xmlconfiguration_object id="oval:sans.security :obj:1">
2 <type >deployment descriptor </type >
3 <schema >http://java.sun.com/xml/ns/j2ee </schema>
4 <query >//*session -config /*cookie -config /*http -only/text()</query >
5 </xmlconfiguration_object>

By modifying only the query element, all the other recommendation of Ex. 1 can
be specified. Moreover, by modifying also the type and schema, our object can be
used for any other XML based configuration. The expected value for the configu-
ration is defined through a xmlconfiguration_state defining true as expected
value for the http-only tag. Finally, the OVAL test, xmlconfiguration_test,
contains the object and state above which are used to evaluate the configuration.

Definition 1 (OVAL Definition). An OVAL Definition OD ⊆ T is a set of
OVAL Tests.

Example 3 (OVAL Definition for SANS). The OVAL definition checking for the
SANS recommendations described in Ex. 1 is a set of tests, one for each recom-
mendation, i.e, ODsans = {thttp−only, tsecure−flag}.

According to OVAL, a definition is a boolean combination of tests. As SANS
requires all recommendations to be followed, all the tests involved are charac-
terized by an OR boolean relation in order to raise an alarm whenever one of
the recommendation is not followed. thttp−only (line 3) is described in Ex. 2. All
other tests can be analogously defined.

1 <definition id="oval:sans.security :def:1">
2 <criteria operator ="OR">
3 <criterion test_ref ="oval:sans.security :tst:1" comment ="HttpOnly flag"/>
4 <criterion test_ref ="oval:sans.security :tst:2" comment ="Secure flag"/>
5 </criteria >
6 </definition >
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Table 1. Properties description

product Product name, e.g., Struts unc path UNC path for shared location

vendor Product vendor, e.g., Apache ctx root JWA context root

release Product release, e.g., 2.3.1.1 ip jmx IP address of JMX endpoint

sup spec,
req spec

Supported/Required specifi-
cation

port jmx Port number of JMX endpoint

Table 2. Relations description

depl in deployed in, models a
component installed in
another

comp of composed of, represents the inter-
nal structure of applications (e.g.
linked libraries)

comm with communicates with, rep-
resents network communi-
cation

instr set instruction set, for either compiled
(x86, x64) or interpreted (Java
Runtime) binaries

The Target area (top right of Fig. 2) allows the definition of targets for the
checks. A target definition is an abstract concept representing either a software
component or a relation which can be defined over software components or rela-
tions themselves. A software component is characterized by a set of conditions on
specific properties such as those in Tab. 1 (left side). A relation defines the rela-
tionship between software components. We distinguish three kinds of relations. A
static relation, i.e., “composed of”, which allows to represent the internal struc-
ture of a software. Run-time relations, i.e., “deployed in” and “communicates
with”, which allow to define relations among software components running in
a landscape. Finally, boolean relations (AND, OR) combine either static or dy-
namic relations. Dynamic and boolean relations can be nested whereas the static
relation can only be applied to software components. These types of relations,
combined with the possibility to nest them, allow to define a set of software
components satisfying an arbitrary complex expression.

Definition 2 (Software Component). A software component SC ⊆ C is a
set of conditions. A condition C ∈ C is a tuple C = 〈P, θ, V 〉, where
– P ∈ P is a property name,
– θ ∈ {=, <,>,≥,≤} is an operator,
– V ∈ dom(P ) is a value for the property.

We define R as a set of relations. Examples are listed in Tab. 2. We define
R̂ = R × N as the set of numbered relations where any relation can occur an
arbitrary number of times and is uniquely identified by a natural number. In the
examples we omit the natural number when no ambiguity arises.

Definition 3 (Target Definition). A target definition is a tuple TD = 〈SCS ,
RS , ρ〉 where
– SCS is a set of software components (cf. Def. 2),
– RS ⊂ R̂ is a set of numbered relations,
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– ρ : RS → (SCS ∪RS)×(SCS∪RS) is a total and acyclic function mapping a
relation into the pair of elements, denoted as ρ1 and ρ2, sharing the relation
(either software components or relations).

A target definition TD = 〈SCS ,RS , ρ〉 is valid iff |SCS | = 1 when RS = ∅.

Example 4 (Software Component and Target Definition for SANS). SANS ap-
plies to JWAs developed according to one of the releases of the Servlet specifica-
tion and deployed in a web application container supporting such specification.
In particular the recommendations in Ex. 1 refer to the release 3.0. According to
Def. 2, a software component for the web application container can be defined
as the set containing a single condition referring to the supported specifica-
tion, SCwebappcont = {〈sup spec,≥, Java Servlet 3.0〉}. As the recommendation
applies to all JWAs therein deployed, the software component for the web ap-
plication can be specified as an empty set SCwebapp = ∅. Finally, the target
definition, according to Def. 3, can be expressed as TDsans = 〈SCS sans,RSsans,
ρsans〉 where SCSsans = {SCwebapp, SCwebappcont}, RSsans = {depl in}, and
ρ1sans(depl in) = {SCwebapp}, ρ2sans(depl in) = {SCwebappcont}.

We extend the OVAL standard by referring each OVAL definition to a target
definition, i.e., to a set of related software components, and referring each OVAL
test contained in the definition to a software component of the target definition.
Thus we fulfill requirements (RL3) and (RL5). We name the resulting new arti-
fact check definition. Note that this artifact is not represented by a single class
in Fig. 2 but it involves several of the concepts therein presented and formalized
above. Def. 1 and 3 provide the building blocks for the check definition.

Definition 4 (Check Definition). A check definition is a tuple CD = 〈OD ,
TD , τ〉 where

– OD ⊆ T is an OVAL definition,
– TD = 〈SCS ,RS , ρ〉 is a target definition,
– τ : OD → SCS is a total function that maps an OVAL test included in the

definition OD into the software component to which it applies defined for the
target definition TD.

Example 5 (Check Definition for SANS). Given ODsans and TDsans defined in
Ex. 3 and Ex. 4 resp., a check definition for SANS recommendations on cookies
is CDsans = 〈ODsans,TDsans, τsans〉 where τ(t) = SCwebapp for all t ∈ OD .

The System area (bottom of Fig. 2) contains the concepts characterizing systems
in a landscape and their configurations. A system component represents a single
installation of a software component in a specific domain. As the purpose is to
identify its configurations, the system component is defined as a set of attributes
denoting how the configurations can be retrieved. The configurations required are
given by the OVAL tests which are defined for software components. To evaluate
the tests, the objects they contain have to be retrieved for each installation
of the software component, i.e., for each system component. The tests to be
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performed on system components are defined through the test mapping. The
set of attributes necessary to collect a configuration is given by the collector
(more details about how system components are derived starting from the target
definition and the collector can be found in Sect. 5). By allowing the separation
of the check logic from the attributes needed for the collection, our language
fulfills requirement (RL8).

Definition 5 (Collector). A collector is a tuple K = 〈SCK ,PS , OK〉 where
SCK is a set of conditions, PS ⊆ P is a set of properties, and OK is a query
over OVAL objects.

Example 6 (Collector for Web Applications deployment descriptor). A collector
for web applications deployment descriptor has to define the set of attributes
for retrieving the deployment descriptor of the web application installed in the
landscape. Several alternatives are viable, e.g., accessing a shared file system
via the Universal Naming Convention (UNC) or relying on the JMX interface of
Tomcat. These alternatives can be defined as two collectors, Kunc = 〈SCKwebapp

,
{unc path}, OKwebapp

〉 Kjmx = 〈SCKwebapp
, {ctx root, ip jmx, port jmx},

OKwebapp
〉 where SCKwebapp

= {〈req spec,=, Java Servlet 3.0〉} is the same for
both as they apply to the same software component, and OKwebapp

is an Xpath
query over the XML serialization of the object (omitted for the sake of brevity).

Definition 6 (System Component). A system component SI ⊆ A is a set
of attributes. An attribute is a tuple A = 〈P, V 〉, where P ∈ P and V ∈ dom(P )
are properties and values, resp.

Example 7 (System Component for SANS). The check definition for SANS in
Ex. 5 includes the software component SCwebapp = ∅ defined in Ex. 4 which is
referred to by an XML Config Test. Moreover the web application installed in the
managed domain of Fig. 1 are characterized by the property of supporting the
Servlet specification 3.0. Thus the collector defined in Ex. 6 can be used for estab-
lishing the set of attributes of the resulting system components. By usingKunc, the
resulting system component for one installation of the eInvoice web application
sold by ACME is SI unc = {〈unc path, \\192.168.2.3\path\to\web.xml〉}. By us-
ing Kjmx, the resulting system component is SI jmx = {〈ctx root, /manager/∗〉,
〈ip jmx, 192.168.2.2〉, 〈port jmx, 8059〉}.

Definition 7 (System Test). A system test is ST = 〈SIS ,OD ,TM 〉 where

– SIS is a set of system components,
– OD ⊆ T is an OVAL definition, i.e., a set of tests,
– TM ⊆ OD×SIS is a set of test mappings defining which test of the definition

applies to which system component.

Example 8 (System Test for SANS). The check definition CDsans = 〈ODsans,
TDsans, τsans〉 defined in Ex. 5 originates several system tests, one for each set of
software components installed in the managed domain fulfilling the
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target definition TDsans. Given, ODsans = {thttp−only, tsecure−flag}, TDsans =
〈SCS sans,RSsans, ρsans〉, and τ(t) = SCwebapp, a system test defining the tests
to be performed for one possible installation of the software components is
ST sans = 〈SISsans,ODsans,TM sans〉 where SIS sans = {SI jmx}, and TM sans =
{(thttp−only, SI jmx), (tsecure−flag , SI jmx)}. Notice that no system component for
SCwebappcont is included in SIS sans as no tests apply to it.

The system test refers a test to specific system, thus (RL4) is met.
Finally, the OVAL Item in Fig. 2 represents the configuration collected from a

system component for the OVAL object defined in the OVAL test. By evaluating
such items according to the test, a boolean result for the test is produced. Based
on the test results, the boolean result of the definition is also evaluated. Differ-
ently from OVAL, our OVAL Items may derive from different system, however
this does not affect the evaluation algorithm defined in [12], which we rely on.
A check definition originates several system tests, each one originating a check
result.

Definition 8 (Check Result). A check result is a tuple CR = 〈ST , ω〉 where
– ST = 〈SIS ,OD ,TM 〉 is a system test,
– ω : TM → {�,⊥} is a function that maps test mappings into its result, i.e.,

the boolean values true (�) or false (⊥).

5 Approach

The language presented in Sect. 4 separates the checks’ logic from the systems
to which they apply. In this section we establish the link between these two
aspects, thereby describing how the checks can be instantiated and executed in
a concrete landscape.

The overall approach is outlined in Fig. 3. External and internal authors
(from the perspective of an organization) can define, independently from the
landscape, checks CD (Def. 4) for known vulnerabilities affecting software com-
ponents (cf. (S1)), and for best practices of single or multiple software com-
ponents sharing relations (cf. (S2)). An additional input is the set of collector
definitions K, that has to be provided by system administrators as creates the
link between the software components used in the checks and the attributes
of system components which allow the collection of the configurations. The
TD Evaluatormodule has in input the above artifacts and is responsible for pro-
ducing all the system tests ST defining which test has to be executed on which
system component. To produce the System Test artifact, the TD Evaluator re-
lies on a Data Source, an authoritative source of information about the software
components installed in a managed domain. We assume a single Data Source

to provide information about several aspects of the managed domain, ranging
from the properties of installed software (e.g. product names and vendors), or
the internal structure of applications (e.g. linked libraries), up to architectural
details on the deployment or the network interaction among different pieces
of software. Since such information is often scattered over several repositories
within an organization (e.g., CMDBs), the Data Source is a federated set of
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Fig. 3. Detection of vulnerabili-
ties approach

views over these repositories, which consti-
tute the interface to our language. Although
strong, this assumption is not unrealistic. In-
deed, several theoretical formulations of this
problem are tackled in literature on data in-
tegration [13][14]. Furthermore the increas-
ing adoption of standards such as DMTF’s
CMDBf [15] demonstrates the practical feasi-
bility of configuration data federation.

The system test can also be manually pro-
vided by system administrators in case of
checks for selected system components (cf. sce-
nario (S3)). System tests are then processed by
the OVAL Processor module that interprets the OVAL content and collects the
objects defined for each system component within ST . The configurations col-
lected from distributed systems are then evaluated and check results CR are
produced, highlighting existing misconfiguration issues (if any).

A key step of the approach is the generation of the system tests based on
the data source. In the following we formally define the interpretation of target
definitions w.r.t. a data source, which provides information about the properties
of software components deployed within a managed domain. We then describe
how this leads to the generation of system tests.

Informally a data source can be seen as a particular instantiation of software
component properties (cf. Def. 2) and target definition relations (cf. Def. 3) for
a managed domain. Let I be the domain of instances of software components,
namely software component identifiers, containing one unique symbol for each
software component installed in a given managed domain. The data source then
maps every software component identifier to the actual values of its properties
and links it to the other software component identifiers it is related to.

Definition 9 (Data Source). A data source is the pair of sets DS = 〈Π,Γ 〉.
Π contains a partial function πP : I → dom(P ) for each property P ∈ P, while
Γ includes a relation γR ⊆ I × I for each symbol R ∈ R.

Example 9 (Data Source). Figure 4 depicts a tabular representation of the data
source DS1 for the example landscape of Fig. 1. Due to space limitations, only
a subset of the properties listed in Tab. 1 and relations of Tab. 2 are considered.

A software component can be seen as a simple conjunctive query ranging over
properties of software deployed within a managed domain. The data source pro-
vides the necessary views on the managed domain to answer such a query. The
answer consists of the set of software component identifiers matching to all the
conditions within the software component. If it contains no conditions, the an-
swer is the entire domain of software component identifiers I. This evaluation
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i πvendor(i)

a Apache
l OpenLDAP
t1 Apache
t2 Apache
wa ACME
wb ACME
wc ACME

(a) πvendor

i πrelease(i)

a 2.2
l 2.4.30
t1 7.0.18
t2 7.0.18
wa 1.0
wb 1.0
wc 1.0

(b) πrelease

i πproduct(i)

a Apache HTTPd
l OpenLDAP
t1 Tomcat
t2 Tomcat
wa Web eInvoice
wb Web eInvoice
wc Web eInvoice

(c) πproduct

i πsup spec(i)

t1 Java Servlet 2.5
t1 Java Servlet 3.0
t2 Java Servlet 2.5
t2 Java Servlet 3.0

(d) πsup spec

i1 i2
wa t1
wb t2
wc t2

(e)
γdepl in

Fig. 4. Example of data source instance

is performed by the data source interpretation of software components, given
by the mapping �·�DS : SC → 2I :

�∅�DS = I (1)

�〈P, θ, v〉 ∪ SC�DS = {i ∈ I | πP (i) θ v} ∩ �SC�DS .

A target definition TD = 〈SCS ,RS , τ〉 is instead a more complex selection pred-
icate (cf. Def. 3) and there can be several sets of software component identifiers
which satisfy it.The interpretation ofTD over a data sourceDS, �TD�DS , provides
all such sets. This is done by relying on two interpretation functions, one providing
the sets of software component identifiers, and one providing a function that maps
each software component identifier to the corresponding software component.

The interpretation function �·�DS,ρ : (SC ∪ R̂) → 22
I
associates every SC ∈

SC and R ∈ R̂ to a powerset of software component identifiers, as defined in (2)
and (3), respectively. Notice that this function depends both on the data source
DS and the function ρ that carries the structure of target definition expressions.

�SC�DS,ρ=
{
�SC�DS

}
(2)

�R�DS,ρ =

⎧⎪⎪⎨⎪⎪⎩
�ρ1(R)�DS,ρ × �ρ2(R)�DS,ρ if R = ∧
�ρ1(R)�DS,ρ ∪ �ρ2(x)�DS,ρ if R = ∨{
{v1, . . . , vn, w1, . . . , wm} | {v1, . . . , vn} ∈ �ρ1(R)�DS,ρ,

{w1, . . . , wm} ∈ �ρ2(R)�DS,ρ, 〈v1≤i≤n, w1≤j≤m〉 ∈ γR
}

otherwise

(3)

Similarly, the interpretation function �·�DS,ρ : (SC ∪ R̂) → (I → SC) maps

every SC ∈ SC and R ∈ R̂ to a function σ associating each software component
identifier to the corresponding software component, according to (4) and (5).

�SC�DS,ρ = σ, where σ(i) = SC , ∀i ∈ �SC�DS (4)

�R�DS,ρ = σ, where σ(i) = �ρ1(R)�DS,ρ(i), ∀i ∈ dom(�ρ1(R)�DS,ρ)

and σ(j) = �ρ2(R)�DS,ρ(j), ∀j ∈ dom(�ρ2(R)�DS,ρ). (5)

Finally, the evaluation function for a valid target definition TD = 〈SCS ,RS , ρ〉
over the data source DS, �·�DS : T D →

(
22

I × (I → SC)
)
, associates a TD to
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the pair 〈I∗, σ〉, where I∗ is a powerset of software component identifiers and σ
a function mapping every i ∈ I ∈ I∗ to a SC ∈ SCS . As expressed in (6), the
definition of �·�DS relies on the aforementioned recursive interpretation functions
of all the elements within the target definition expression, starting, in the general
case, from the only relation R0 which never appears in the ρ co-domain. In case
RS = ∅, we know from Def. 3 that ∃! SC 0 ∈ SCS and therefore SC 0 is the only
element being interpreted.

�TD�DS =

{
〈�R0�DS,ρ, �R0�DS,ρ〉,with {R0} = dom(ρ) \ cod(ρ) if RS 	= ∅
〈�SC 0�DS,ρ, �SC 0�DS,ρ〉,with {SC 0} = SCS otherwise.

(6)

Example 10. We hereby compute the interpretation of the target definition
TDsans, introduced in Ex. 4, w.r.t. the data source DS1, shown in Ex. 9.

First, we recognize (Eq. (6)) that �TDsans�DS1 = 〈I∗sans, σsans〉 =
〈�depl in�DS1,ρ, �depl in�DS1,ρ〉, since depl in ∈ dom(ρ) \ cod(ρ).

In order to obtain �depl in�DS1,ρ, according to (3), we now need to compute
the two following terms:

(i) �ρ1(depl in)�DS1,ρ = {�SCwebapp�DS1,ρ
} = {�∅�DS1

} = {I};
(ii) �ρ2(depl in)�DS1,ρ = {�SCwebappcont�DS1,ρ

} =

= �{〈sup spec,≥, Java Servlet 3.0〉}�DS1,ρ
=

= {{i ∈ I | πsup spec(i) ≥ Java Servlet 3.0}} = {{t1, t2}}.
We then have I∗sans = �depl in�DS1,ρ =

{
{v, w} | v ∈ I, w ∈ {t1, t2}, 〈v,

w〉 ∈ {〈wa, t1〉, 〈wb, t2〉, 〈wc, t2〉}
}
=
{
{wa, t1}, {wb, t2}, {wc, t2}

}
.

Analogously, by applying (5), we obtain σsans = �depl in�DS1,ρ = {wa :
SCwebapp, wb : SCwebapp, wc : SCwebapp, t1 : SCwebappcont, t2 : SCwebappcont}.
As last step, the TD Evaluator needs to identify one or more system tests,
mapping each OVAL test to the system component carrying the information
about how to collect the object.

A check definition CD = 〈OD ,TD , τ〉 is defined for the target definition TD ,
being interpreted over a data source resulting in a pair �TD�DS = 〈I∗, σ〉. Every
I ∈ I∗ is a set of software component identifiers satisfying the TD expression.
Therefore one system test has to be created for every such set I.

When the TD Evaluator processes a check definition, it must identify amatch-
ing collector K , among the set K of all the ones defined for a given managed
domain. This has to be done for every software component identifier i ∈ I, and
provides the set of properties PS necessary to collect the to-be-checked config-
urations for specific OVAL Objects from i. For this reason, every K ∈ K (cf.
Def. 5) references a software component SCK and contains a Xpath query OK ,
matching to the XML serialization of the OVAL Objects it applies to. We write
t |= OK whenever the XML serialization of all the OVAL Objects referenced
within an OVAL Test t satisfy the Xpath query OK .

Given a collector property set PS and a software component identifier i,
Eq. (7) defines how to retrieve the corresponding system component from a data
source DS, through the interpretation function ‖·‖DS(i) : 2

P → SI.
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‖PS‖DS(i) = ‖{P1, . . . , Pn}‖DS,i = {〈P1, πP1(i)〉, . . . , 〈Pn, πPn(i)〉}. (7)

The conditions required to determine whether a collector matches to a software
component identifier are now formalized by the following definition.

Definition 10 (Matching Collector). For a CD = 〈OD ,TD , τ〉, where TD =
〈SCS ,RS , ρ〉, let �TD�DS = 〈I∗, σ〉 be an interpretation of TD over DS and
τ−1 : SCS → 2OD be the inverse of τ , mapping every SC to the set {t ∈ OD |
τ(t) = SC}. We then say that K = 〈 SCK , PS , OK 〉 matches to i ∈ I ∈ I∗, iff

i ∈ �SCK �DS and P ∈ PS ⇒ ∃〈P, ·〉 ∈ ‖PS‖DS(i) and t ∈ τ−1(σ(i)) ⇒ t |= OK .

Given the interpretation �TD�DS = 〈I∗, σ〉 of a target definition within a check
definition CD = 〈OD ,TD , τ〉, we are now in a position to associate each I ∈ I∗

to a system test ST I = 〈SIS I ,OD ,TM I〉, constructed as follows. (i) OD is
the same OVAL Definition contained in CD . (ii) Every element SI ∈ SIS I is a
system component, i.e. a collection of attributes associated to properties of the
software component identifier which allows to collect configuration information
from it. For every i ∈ I we first need to find a matching collector K carrying
such set of properties PS , and we then retrieve the system component SI , i.e.
the attributes corresponding to the properties in PS , from the data source DS.
(iii) TM I maps every test t ∈ OD to a system component SI ∈ SIS I .

Eq. (8) finally specifies how the system test’s components SISI and TMI ,
informally described above, are built by the TD Evaluator.

∀i ∈ I if ∃K ∈ K s.t. K matches to i, then

‖PS‖DS(i) ∈ SIS I and 〈t, ‖PS‖DS,i〉 ∈ TM I ∀t ∈ τ−1(σ(i)).
(8)

Example 11. Let us consider the check definition CDsans = 〈ODsans,TDsans,
τsans〉, introduced in Ex. 5, and the data source interpretation of its target
definition �TDsans�DS1 = 〈I∗sans, σsans〉, which has been derived in Ex. 10.
Three sets of software component identifiers satisfy the target definition, namely
I∗sans =

{
{wa, t1}, {wb, t2}, {wc, t2}

}
=
{
Ia, Ib, Ic

}
, hence three system tests will

be created. Among those, we shall only discuss, for brevity, the system tests
STIa and STIb , related to Ia and Ib resp.

For the sake of this example we extend the data source DS1 = 〈Π1, Γ1〉 such
that it includes the properties required by the collectors (cf. Ex. 6). Let such an
extended data source be DS′

1 = 〈Π1 ∪{πctx root, πip jmx, πport jmx, πunc path, }, Γ 〉,
where: πctx root(wa) = /manager/∗, πip jmx(wa) = 192.168.2.2, πport jmx(wa) =
8059, and πunc path(wb) = \\192.168.2.3\path\to\web.xml.

According to Def. 10 the collector Kjmx matches to the software component
identifier wa (and not to wb), as (i) wa ∈

⌈
SCKwebapp

⌉
DS

, (ii) πctx root(wa),
πport jmx(wa), πport jmx(wa) are all defined in DS (while this is not the case for
wb), and (iii) both thttp−only |= OKwebapp

and tsecure−flag |= OKwebapp
hold. From

analogous reasoning it follows that Kunc matches to wb (and not to wa).
By applying (8) we finally derive that STIa = 〈{SI jmx}, ODsans, {(thttp−only,

SI jmx), (tsecure−flag , SI jmx)}〉 = STsans, as anticipated in Ex. 7 and 8. Anal-
ogously, we obtain STIb = 〈{SI unc}, ODsans, {(thttp−only, SI unc), (tsecure−flag ,
SI unc)}〉.
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6 Conclusion and Future Work

This paper presents a formal approach to specify and execute declarative and
unambiguous checks able to detect vulnerabilities caused by system misconfig-
uration. This paper extends the state of the art on configuration validation as
security checks can be specified for fine-granular components in a distributed
environment and separate the check logic from the configuration retrieval.

A proof of concept has been developed to explore the feasibility of our approach
at the example of OWASP and SANS recommendations for JWA, using a CMDB
as data source for resolving target definitions, and JMX for the collection of config-
uration settings. In future work, we will evaluate the prototype in near-world envi-
ronments that comprise a greater numbers of systemcomponents. Furthermore,we
plan to generate security checks and checklists in an automated fashion to facilitate
scenario (S3), where checks are used for gaining assurance about compliance with
system-specific configuration policies. This would allow to gain assurance without
the need to manually author check on a low technical level. Lastly, we intent to in-
vestigate the usage in cloud scenarios, were cloud providers could use and offer a
corresponding tool for ensuring the security of consumer-managed resources.
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Abstract. Malicious web pages are among the major security threats
on the Web. Most of the existing techniques for detecting malicious web
pages focus on specific attacks. Unfortunately, attacks are getting more
complex whereby attackers use blended techniques to evade existing
countermeasures. In this paper, we present a holistic and at the same
time lightweight approach, called BINSPECT, that leverages a combi-
nation of static analysis and minimalistic emulation to apply supervised
learning techniques in detecting malicious web pages pertinent to drive-
by-download, phishing, injection, and malware distribution by introduc-
ing new features that can effectively discriminate malicious and benign
web pages. Large scale experimental evaluation of BINSPECT achieved
above 97% accuracy with low false signals. Moreover, the performance
overhead of BINSPECT is in the range 3-5 seconds to analyze a sin-
gle web page, suggesting the effectiveness of our approach for real-life
deployment.

Keywords: malicious web page, static analysis, lightweight emulation,
machine learning.

1 Introduction

The Web has become an indispensable global platform that glues together daily
communication, sharing, trading, collaboration, and service delivery. Web users
often store and manage critical information that attracts cybercriminals who mis-
use the Web and the Internet to exploit vulnerabilities for illegitimate benefits.

Malicious web pages, that exploit vulnerabilities and launch attacks for just
one time visit, take an alarmingly significant share of web-based attacks in recent
years [1–4]. When an innocent victim visits a web page, an attacker might have
compromised the page under visit (or crafted it purposefully) and the outcome
of the visit could be stealing of critical credentials (e.g., credit card details) to
impersonate the victim, installation of a malware binary on the victim’s machine
for future attacks, or even a complete takeover of the victim’s system to remotely
command and control it as a member of botnet [5–7]. In recent years, not only
is the prevalence of malicious web pages on the rise but also the way in which
attackers trick victims to malicious web pages is also getting sophisticated [2].
It has become a daily encounter to get contaminated search results from search

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 149–166, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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engines on trendy terms, malicious links shared on social media, and legitimate
web pages injected with malicious scripts [3].

The thus-far proposed defenses against malicious web pages fall into two major
blocks, i.e., static analysis and dynamic analysis techniques. However, the use
of blacklists is still a common way to facilitate and enrich these techniques by
making use of heuristics and learning techniques.

Static analysis techniques, [5, 8–16], inspect web page artifacts without ren-
dering the page in a browser. The inspection usually involves quick extrac-
tion of discriminative features from the URL string, host identity, HTML, and
JavaScript code. The feature values are then encoded to train machine learning
techniques to build classifiers based on which unknown web pages are classified.
The major assumption in static analysis is that the statistical distribution of fea-
tures in malicious URLs (e.g., spam URLs, phishing pages) tend to differ from
that of benign.

In static analysis, it is difficult to detect attacks that require rendering of a
page to take action. More precisely, when using page source there is a high risk
of obfuscated content (e.g., JavaScript) and overlooking of malicious JavaScript
that exploits vulnerabilities of browser plugins. In addition, host details of fresh
(benign) URLs, registered by registrars with low reputation, are likely to be
misclassified as malicious due to their low reputation scores. In effect, there is a
high risk of false positives. On the other hand, false negatives may arise as well-
reputed registrars may host malicious web pages which have escaped the static
analysis effort. Other sources of false negatives are web pages that use free host-
ing services or already compromised sites with benign-looking URLs and host
details. For static anlaysis relying on lexical URL features, an attentive attacker
may evade these features to mislead detection techniques by carefully crafting
malicious URLs which look statistically indistinguishable from the benign ones.

Dynamic analysis approaches, [11, 17–25], inspect the execution dynamics
when a page is executed. Such techniques could be deployed at a proxy-level
(e.g., [20]) to intercept requests (responses), visit the URL in a controlled envi-
ronment (e.g., disposable virtual machine), analyze its execution dynamics for
hints of malicious activity (e.g., unusual process creation, repeated redirection),
and decide if it is safe to render the page in the browser. Alternatively, client-
side sandboxing of critical page content (e.g., JavaScript) could be used (as in
[18]) to log critical actions (e.g., invoking a plugin) and match logs with known
patterns of malicious activities or apply learning-based techniques to model and
classify malicious intentions.

While effective at uncovering daunting malicious web pages, dynamic analysis
approaches are resource intensive as they need to load and execute the page
under analysis and modern web pages are usually stuffed with rich client-side
code and content which take longer analysis time. Moreover, not all web pages
are likely to launch attacks when visited. There are web pages which require user
interaction or wait for certain conditions to take action.

Blacklisting-based techniques maintain a list of known malicious URLs, IP
addresses, and domain names collected by manual reporting, honeyclients, and



BINSPECT: Holistic Analysis and Detection of Malicious Web Pages 151

custom analysis techniques. For example, Google Safe Browsing service
[26] maintains a blacklist against which it checks URL requests from browsers
to alert users if the requested URL happens to be in the blacklist. Another tool
powered by blacklisting is McAfee Site Advisor [27] which is pluggable to
Mozilla Firefox and Internet Explorer to rate safety of web pages and
search engine results prior to rendering the page in the browser.

Although lightweight to deploy and easy to use, blacklisting is effective only if
one can exhaustively patrol the Web to identify malicious web pages and timely
update the blacklist. In practice, to do so is infeasible due to: fresh web pages are
too new to be blacklisted even if they are malicious right from the outset, some
web pages may escape from the blacklisting due to ‘cloaking’, and attackers may
frequently change where the malicious web pages are hosted. Consequently, the
URLs and IP addresses may also change accordingly [5], [17].

Heuristic-based techniques (e.g., [15]) build signatures of known attack pay-
loads to be used by antiviral systems or intrusion detection systems to scan a
web page and flag it as malicious if its heuristic pattern matches signatures in
the database. Unfortunately, such signatures are easily bypassed by attackers
(mainly through obfuscation) and the heuristics fail to detect novel attacks. In
addition, the rate at which the signature database of heuristic-based systems is
updated is way slower than the pace at which attackers overwhelm victims with
novel attacks, resulting in zero-day exploits.

In addition to the afore-mentioned limitations, most approaches focus on one
prominent attack while attack techniques are getting more and more complex
whereby attackers use blended attack techniques by combining existing attack
techniques to evade existing countermeasures. More importantly, applying static
or dynamic analysis approaches in a complementary fashion is limited to cap-
turing partial snapshot of a malicious web page.

To this end, the ideal solution is to leverage static and dynamic analysis
to capture a comprehensive snapshot of a malicious web page and ensure that
the overhead cost of analyzing a web page is optimal. This can be achieved by
holistically characterizing and then analyzing, and detecting malicious web pages
to capture a comprehensive snapshot of malicious web pages while ensuring that
the analysis and detection remains lightweight in terms of its responsiveness and
resource consumption.

In this paper, we present the design, implementation, and experimental eval-
uation of a holistic and lightweight system, called BINSPECT, that leverages
a combination of static analysis and minimalistic emulation to apply super-
vised learning techniques in detecting malicious web pages pertinent to drive-by-
download, phishing, injection, and malware distribution. BINSPECT achieved
detection accuracy above 97% with low false signals and an average performance
overhead of at most 5 seconds.

The contributions of this paper are the following:

– we developed a holistic approach to analyze and detect malicious web pages
by leveraging static analysis and lightweight emulation of web page rendering
with low performance overhead.
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– we introduced novel features and enhanced existing ones so as to improve
their discriminative power in the characterization of malicious and benign
web pages.

– we designed, implemented, and evaluated our approach over a large dataset
of malicious and benign web pages and demonstrated that our approach is
effective in practice.

The paper is structured as follows. In Section 2, we present a real motivational
example pertinent to malicious web pages. Section 3 covers details of holistic
characterization of malicious web pages focusing on features we introduce as
new and enhance from existing ones. In Section 4, a high-level description of our
approach is presented. Details of the experimental setup and evaluation of our
approach are discussed in Section 5. Section 6 positions our approach relative to
prior work. Finally, Section 7 concludes the paper.

2 Motivational Example on Malicious Web Pages

In this section, we provide illustrations of real threats posed by malicious web
pages.

A malicious web page is a web page that exploits one or more vulnerabili-
ties of the browsing environment to launch one or more attacks when visited by
an unsuspecting victim. Usually, malicious web pages perform attacks in four
ways: obfuscation (e.g., obfuscated malicious JavaScript), setting up malicious
web pages (e.g., using HTTP or JavaScript redirection), victim luring (e.g., so-
cial engineering tricks), and victim takeover (e.g., installing malware). To give
context to threats of malicious web pages, in what follows we describe a real
malicious website attack that compromised a high-profile website [28].

On September 26, 2011, when users visited http://mysql.com, the file at
http://mysql.com/common/js/s_code_remote.js?ver=20091011
was infected by a heavily obfuscated malicious JavaScript code (the de-
obfuscated code is shown in Listing 1.1). The malicious code embeds an iframe to
http://falosfax.in/info/in.cgi?5&ab iframe=1&ab badtraffic
=1&antibot hash=1255098964&ur=1&HTTP REFERER=http://mysql.
com/ malicious domain and then throws an HTTP 302 redirection to
load the http://truruhfhqnviaosdpruejeslsuy.cx.cc/main.php
exploit domain. This exploit domain hosts the BlackHole exploit pack which,
upon discovering a vulnerable browsing environment (Java plugin vulnerability
in this case), leads the browser to download a malware binary to the user’s
machine. All this happens without the user’s knowledge. In this attack, the
actual payload is an exploitation of Java runtime vulnerability in the browser
(Internet Explorer 6) to download and execute malware that steals and
sends back to the attacker FTP client passwords from the user’s machine. Such
an attack is called drive-by-download [29].

http://mysql.com
http://mysql.com/common/js/s_code_remote.js?ver=20091011
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://falosfax.in/info/in.cgi?5&ab_iframe=1&ab_badtraffic=1&antibot_hash=1255098964&ur=1&HTTP_REFERER=http://mysql.com/
http://truruhfhqnviaosdpruejeslsuy.cx.cc/main.php
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if (document.getElementsByTagName(’body’)[0]){
iframer();
}else{
document.write(<iframe src=’http://falosfax.in/info/in.

cgi?5’width=’10’height=’10’style=’visibility:hidden;
position:absolute;left:0;top:0;’></iframe>);

}
function iframer(){
var f=document.createElement(’iframe’);
f.setAttribute(’src’, ’http://falosfax.in/info/in.cgi?5

’);
f.style.visibility=’hidden’;
f.style.position=’absolute’;
f.style.left=’0’;
f.style.top=’0’;
f.setAttribute(’width’, ’10’);
f.setAttribute(’height’, ’10’);
document.getElementsByTagName(’body’)[0].appendChild(f)

;
}

Listing 1.1. De-obfuscated JavaScript exploit code of the attack [28]

Discussion. The attack described before sounds specific to a compromised legit-
imate website, i.e., http://mysql.com. However, there are a couple of inter-
esting aspects in the attack chain. First, the attacker has to target a high-profile
website with solid user-base and daily traffic. Secondly, she exploited a vulnerable
spot on the website (to inject malicious code) and abused HTTP redirection to
lead the browser to where the actual exploit is hosted. Then after, she exploited
a vulnerability of the browser extension to trick the browser into downloading a
malware binary. Even if the target in this attack is the Java plugin, in principle
this could have been any one of the vulnerable browser components or its exten-
sions (e.g., PDF Renderer, Flash Player) since the malware usually runs with
the privilege of the current user. The downloaded binary could be a key-stroke
sniffer to steal and submit passwords and credit card details to a remote server
controlled by the attacker. Or even worse, it could be a malware that compro-
mises the victim’s machine to remotely control it as a member of botnet to use
it in future criminal activities (e.g., spam campaigns). Similarly, the vulnera-
bility of the browsing environment could be of various risks depending on the
client operating system, browser type and version, and browser extensions and
configuration. An essential part of the attack chain is fingerprinting of the envi-
ronment which provides clues to vulnerable spots based on which actual exploit
is orchestrated.

http://mysql.com
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3 Holistic Characterization of Malicious Web Pages

Given an unknown web page, BINSPECT analyses and classifies the web page as
malicious or benign. To do so, BINSPECT extracts features from the page under
inspection and applies a number of models that evaluate the features extracted
from the page. The models are derived from training on a known mix of benign
and malicious web pages. BINSPECT considers malicious web pages related to
drive-by-download, phishing, injection, and malware delivery.

The features on which BINSPECT bases its statistical characterization of
web pages leverages three classes of features, i.e., URL features, Page-Source
features (HTML and JavaScript), and Social-Reputation features. The underly-
ing assumption in using these features, in prior work and in ours, is based on
the discriminative power of the statistical distribution of benign and malicious
web pages. In what follows, we describe the 39 features we extract and inspect
(focusing on the new features) which are the basis for building the models we
use to classify malicious web pages in BINSPECT.

3.1 URL Features

In BINSPECT, we rely on 11 URL features among which 8 features are reused
from prior work ([5], [10]) and we introduce 3 new features. The URL features we
reuse are: length of URL string, length of host name, number of dots (‘.’), number
of hyphens (‘-’), number of underscores (‘ ’), number of forward slashes (‘/’),
number of equal signs (‘=’), and availability of the client and/or server
words in the URL. After evaluating the F-Score measure of candidate URL fea-
tures, we found the 3 new features to be of significant relevance as a high F-score
value of a feature indicates a higher potential of the feature to split benign and
malicious web pages. These features are: length of the path in the URL,
length of the query in the URL, and length of the file-path in
the URL. Apart from the F-Score, manual inspection revealed that most mali-
cious URLs have abnormally long path and query as compared to benign URLs.
In Section 5, we show the experimental verification as to the effectiveness of
these new URL features in practice.

3.2 Page-Source Features

While most prior work extract HTML and JavaScript features statically, we use
an emulated browser to parse and render the HTML and execute JavaScript
on page-load so as to capture what is manifested by JavaScript code. In this
sense, the granularity of most HTML features used in our work is high because
the JavaScript that is executed on page-load particularly enriches the HTML
features. Another reason to use an emulated browser is to capture the side-
effects of obfuscated JavaScript code that is usually executed when the page loads
because malicious JavaScript is often ‘shipped’ with a strong shell of obfuscation.

In total, we extract 25 Page-Source features. These are : document length,
number of words, number of lines, number of blank spaces, average length
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of words, number of links, number of same-origin links, number of different-
origin links, number of external JavaScript files, number of hidden ele-
ments, number of iframes, and number of suspicious JavaScript functions (in-
cluding suspicious functions : subString(), fromCharCode(), eval(),
setTimeout(), document.write(), createElement(), unescape(),
escape(), link(), exec(), and search()).

Although the Page-Source features we use are mostly from prior work, we
introduce new (e.g., exec() function) and enhance existing features for a
more fine-grained characterization of web pages. For instance, apart from ex-
tracting the total number of links on the page, we split links to: number
of same-origin links, number of different-origin links, and
number of external-JavaScript files. We enhanced link features be-
cause manual analysis shows that malicious web pages link to remote origins and
malicious JavaScript is often downloaded from external domains.

3.3 Social-Reputation Features

The ubiquitous effect of social network platforms, such as Facebook, Twitter, and
Google Plus, is continuously changing the landscape of online social interaction
and reputation building about what is shared online. Search engines are partly
relying on social network reputation of URLs to enrich their ranking algorithms
because of human involvement in rating URLs [30]. To evaluate if these social-
reputation indicators are of use in the characterization of malicious and benign
URLs, we examined the statistical distribution of URL-Sharing on Facebook and
Twitter as these platforms keep track of the public share-count of URLs.

Experimental evaluation of these features suggests that for benign web pages,
the share-count is usually higher as users are confident enough to share a URL
that they know as harmless or they re-share after seeing that their friends have
done so. On the contrary, the share-count for malicious URLs suggests that,
either the URLs are not circulated across the social network or users refrain
from sharing a URL they know less about.

Figure 1 shows a statistical separation in distribution of public share-counts
for benign and malicious URLs on Twitter over a part of the training set we used
for this work. The three new features we introduce are the Facebook Share
Count, Twitter Share Count, and Google Plus Share Count which
tell the number of times a URL is publicly shared on Facebook, Twitter, and
Google Plus, respectively.

An attentive reader may argue that these features may contribute to false
negatives in the case where a malicious user publicly shares a malicious URL
on a social network and accumulates large share-count. However, as time passes
by, the tendency that a malicious URL is circulated across the social network
will reduce or the share-count of the URL does not increase because of built-in1

URL analysis and detection techniques in the social network platform.

1 Such as Link Shim of Facebook
(http://www.facebook.com/note.php?note_id=10150492832835766)

http://www.facebook.com/note.php?note_id=10150492832835766
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Fig. 1. Distribution of the top 100 Twitter share-counts for benign and malicious URLs
on the training set

4 BINSPECT System Overview

In a nutshell, BINSPECT has three major components: feature extraction and
labeling, multi-model training, and classification, as shown in Figure 2. In the
following, we provide a high-level discussion of the components of BINSPECT.

Feature Extraction and Labeling. As shown in Figure 2, we use a dataset
of benign and malicious samples (described in Section 5) to label the samples
and extract the necessary features which characterize malicious and benign web
pages. The URL feature extraction is implemented based on the URL class
of Java and the features are collected by lexical scanning of the URL string.
The Page-Source features are collected by visiting the page via a lightweight
emulated browser so as to capture the details of what is rendered (HTML) and
executed (JavaScript) using a feature extraction engine we implemented in Java.
We customized the HTMLUnit [31] headless browser for the emulation and used
it with two User-Agent personalities (Internet Explorer 6 and Mozilla Firefox 3).
For each URL we visit for feature extraction, a fresh instance of the emulated
browser is created to ensure a unique session for each URL. We used the Facebook
Graph API [32], the Twitter URLs API [33], and a custom2 script on Google
Plus to automatically extract the Social-Reputation features. Features extracted

from each web page are represented as a vector of the form [v
(i)
1 , v

(i)
2 , ..., v

(i)
n−1,

v
(i)
n , class(i)] where the v

(i)
k ’s are feature values (k = 1, .., n), n is the number

of features, and class(i) is the class label of URL(i) which is either benign or
malicious.

2 There was not a standard API for Google Plus at the time of this experiment.
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Fig. 2. BINSPECT System Overview

Multi-model Training. Using the extracted features, we train 7 supervised
learning algorithms namely Decision Trees (J48, Random Tree, and Random
Forest), Bayesian Classifiers (Naive Bayes and Bayes Net), Support Vector Ma-
chines, and Logistic Regression. At the end of the training, one model for each
classifier is maintained as shown in the second block of Figure 2.

Confidence-Weighted Majority Vote Classification. For classification of
an unknown web page using the learned models, we use the Confidence-Weighted
Majority Vote algorithm that we customized (see Algorithm 1) to decide the
class of the web page. To flag a page as either malicious or benign, instead
of just taking the count of votes of the individual models, the vote count of
the class label is multiplied with the sum of confidences with which the votes
are made by each model (lines 17, 20, and 23 in Algorithm 1). The benefit
of weighted-confidence majority vote is twofold. First, it minimizes the bias of
relying on a single model to do classification. Secondly, it allows comparison of
different models and makes the overall result more resistant to evasion attempts
by attackers.
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Algorithm 1 Confidence-Weighted Majority Vote Classification

1: Confbenign ← 0
2: Confmalicious ← 0
3: V otebenign ← 0
4: V otemalicious ← 0
5: for i = 1 → numModels do
6: features ← extractFeatures(URL)
7: V otei, Confi ← getPredictionWithConfidence(features,Modeli)
8: if V otei == benign then
9: V otebenign ← V otebenign + 1
10: Confbenign ← Confbenign + Confi
11: end if
12: if V otei == malicious then
13: V otemalicious ← V otemalicious + 1
14: Confmalicious ← Confmalicious + Confi
15: end if
16: end for
17: if (V otemalicious × Confmalicious) > (V otebenign × Confbenign) then
18: Prediction ← malicious
19: end if
20: if (V otemalicious × Confmalicious) < (V otebenign × Confbenign) then
21: Prediction ← benign
22: end if
23: if (V otemalicious × Confmalicious) == (V otebenign × Confbenign) then
24: Prediction ← suspicious
25: end if

5 Experimental Setup and Evaluation

In this section, first we describe the data collection, dataset construction, and the
experimental procedure. Then, we evaluate BINSPECT from the standpoint of
its accuracy, significance of the features we introduced, its performance overhead,
and its immunity to possible evasion.

5.1 Dataset and Experimental Setup

Data Source and Dataset. We collected samples from multiple sources for
both malicious and benign web pages and divided the dataset into a training and
a testing set. As shown in Table 1, for the malicious dataset, we collected 71,919
URLs from the malware and phishing blacklist of Google [26], the Phishtank
database of collaboratively verified phishing pages [34], and the malware and
injection attack URL list of MalwareURL [35]. The dataset of 414,000 benign
URLs is also drawn from three popular sources. These are the Alexa Top
sites [36], the Yahoo random URL generation service [37], and the DMOZ
directory [38].
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Table 1. Dataset for training and testing

Purpose Benign Malicious Total

Training 300, 000 50, 000 350, 000

Testing 114, 465 21, 919 136, 384

Experimental Protocol. Using the training set, we extracted 39 features of
which 3 are Social-Reputation features, 11 are URL features, and the remain-
ing 25 are Page-Source features. When extracting the Page-Source features, we
configured the emulated browser to manifest two different browser personalities
(Internet Explorer 6 and Mozilla Firefox 3) and we used only the core compo-
nents of the browser, i.e., Necko HTML Engine, Rhino JavaScript Engine, and
the default CSS Parser in order to make the analysis lightweight. We used the
Weka [39] machine learning toolbox to train the 7 standard classifiers with 10-
fold cross validation. As a sanity check of the ground truth, we removed, from
the training set, all unreachable URLs when visiting using the emulated browser.

5.2 Evaluation Results and Insights

Classification Accuracy
To decide the best combination of classifiers in BINSPECT, we evaluated the 7
classifiers in terms of accuracy, False Positive Rate (FPR), and False Negative
Rate (FNR). Figures 3, 4, 5, and 6 show performance evaluation of the classifiers
over the training set across the four classes of features, i.e., all features, URL
features, Page-Source features, and Social-Reputation features respectively. As
shown in Figure 3, training on all the features suggests that tree-based classi-
fiers outperformed the other classifiers. In particular, the Random Tree classifier
achieved 100% accuracy, 0% FPR, and 0% FNR.

Fig. 3. With all features Fig. 4. With URL features

We also evaluated how the classifiers perform on individual feature classes and
the results suggest that some classifiers perform way better than the union of the
features. For instance, accuracy of Naive Bayes increased by 30% (Figure 4) on
URL features probably because the URL features have a statistical distribution
that fits into the high degree of independence assumed in the algorithm. Another
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Fig. 5. With Page-Source features Fig. 6. With Social-Reputation features

Table 2. Performance of BINSPECT in comparison to a public malicious web page
analysis and detection service on the testing set

Measure BINSPECT Wepawet [40]

Classification Accuracy 97.81% 61.62%

False Positive Rate 0.189 0.983

False Negative Rate 0.011 0.073

interesting insight from Figure 6 is the high FNR of all the classifiers on social-
reputation features which is attributed to the fact thatmalicious URLswhich have
higher share-count are likely to be misclassified as benign, suggesting that it is
more effective to combine social-reputation features with other features to increase
their predictive power. In general, the overall classification performance is better
on all the features than the individual feature classes with the exception of Naive
Bayes, which did not perform well in most cases (see Figures 3, 5, and 6).

For testing, we used all the classifiers except Naive Bayes due to its poor
performance on the training set. Table 2 shows the overall classification accuracy
of BINSPECT over the testing set. We measured the classification accuracy as
the ratio of correct classifications to the total size of the testing set. We submitted
the same testing set to Wepawet [40] to compare BINSPECT with a publicly
deployed analysis and detection service. As can be seen from Table 2, BINSPECT
correctly classified 97.81% of the test set with a FPR of 0.189 and FNR of 0.011.
On the other hand, Wepawet achieved a lower accuracy of 61.62% on the same
testing set. The only speculation behind the low performance of Wepawet in our
opinion is the difference in the class of features we use in BINSPECT which
span URL, HTML, JavaScript, and social reputation scores while Wepawet uses
emulation to dynamically analyze web pages. The high accuracy of BINSPECT
and its very low FNR on the testing set is an indication that our approach is
effective at analyzing and detecting malicious web pages in a holistic manner
with low performance overhead while covering malicious web pages leading to
drive-by-download, phishing, injection, and malware delivery.

Significance of New Features
To verify whether the new features are of predictive importance in enhancing the
accuracyofdetectingmaliciouswebpages,we compared the classificationaccuracy,
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FPR, andFNRof the classifierswith andwithout our newly introduced (enhanced)
features on the training set. As shown in Table 4, the new features, particularly the
new URL features, improved the overall performance of 5 of the 7 classifiers (J48,
Random Forest, Naive Bayes, Bayes Net, and Logistic Regression) shown with (↑)
for accuracy and with (↓) for FPR and FNR. The new Page-Source features im-
proved the overall performance of only 2 classifiers (Random Forest and Logistic
Regression). Social-Reputation features have also improved the overall classifica-
tion accuracy ofRandomForest,BayesNet, andLogisticRegression classifiers.Not
surprisingly, the performance of Naive Bayes has not improvedmuch with the new
features as its overall performance is also very low.

In addition to the individual contribution of the new features, we also mea-
sured the overall improvement in accuracy of the classifiers as a result of the
new features as shown in Table 3. The new features improved the accuracy of 4
of the 7 classifiers with improvements in the range 0.21% to 3.08%. Among the
remaining 3 classifiers, on 2 (Random Forest and SVM), the new features seem
to have no contribution on accuracy. The Random Tree classifier is an excep-
tion in this case as its accuracy was 100% even without the new features. Out
of curiosity, we measured its accuracy with the new features and it remained
the same, which most probably implies that this is the best classifier given the
feature set and the dataset we used for training.

Table 3. Overall Contribution of new features on the accuracy of classifiers

Classifier Without new (%) With new(%) Change(%)

J48 Decision Tree 98.97 99.27 ↑ 0.30

Random Tree 100.0 100.0 −
Random Forest 99.94 99.94 −
Naive Bayes 28.16 30.62 ↑ 2.46

Bayes Net 91.28 94.36 ↑ 3.08

SVM 96.62 96.62 −
Logistic Regression 96.94 97.15 ↑ 0.21

Performance Overhead
The experimental infrastructure we used is an Intel dual-core 2.66GHz CPU
and 64-bit MacOSX operating system with 8GB of memory. Under this com-
putational resource, the average time it takes to train a classifier is only 1.51
seconds. BINSPECT, took between 3 to 5 seconds (under variable system load)
to analyze and detect a single page, which is an acceptable overhead given the
fact that part of the analysis requires rendering the page in an emulated browser.
Unfortunately, we could not compare performance overhead of BINSPECT with
Wepawet due to the long delay it took to get back the results from Wepawet
server which uses queueing to process batch requests for analysis.

Immunity to Evasion
Given the holistic nature of our approach, we claim that BINSPECT is not
easily evadable. However, by closely inspecting the features we use, there are
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Table 4. Performance of classifiers with and without new features on the training set

Classifier Accuracy(%) False Positive Rate False Negative Rate

Without new features

J48 Decision Tree 98.97 0.260 0.268

Random Tree 100.00 0.000 0.000

Random Forest 99.94 0.017 0.017

Naive Bayes 28.16 0.122 0.100

Bayes Net 91.28 0.381 0.391

Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.94 0.845 0.874

With new URL features

J48 Decision Tree 98.98(↑) 0.254(↓) 0.262(↓)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 46.45(↑) 0.184(↑) 0.171(↑)
Bayes Net 93.32(↑) 0.350(↓) 0.360(↓)
Support Vector Machine 96.62 0.966 1.000(↑)
Logistic Regression 97.05(↑) 0.798(↓) 0.825(↓)
With new Page-Source features

J48 Decision Tree 98.93(↓) 0.260 0.268 ↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 28.08(↓) 0.119(↑) 0.095(↓)
Bayes Net 90.85(↓) 0.381(↓) 0.391(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 96.96(↑) 0.0842(↓) 0.871(↓)
With new Social-Reputation features

J48 Decision Tree 98.99(↑) 0.265(↑) 0.274(↑)
Random Tree 100.00 0.000 0.000

Random Forest 99.95(↑) 0.014(↓) 0.014(↓)
Naive Bayes 26.69(↓) 0.075(↓) 0.051(↓)
Bayes Net 93.29(↑) 0.353(↓) 0.362(↓)
Support Vector Machine 96.62 0.966 1.000

Logistic Regression 97.06(↑) 0.806(↓) 0.834(↓)

a few things an attentive attacker has to do to try evading our analysis and
detection technique. One method an attacker might use is to craft a benign-
looking URL so as to imitate lexical aspects of benign URLs, which makes the
URL features less useful in discriminating benign URLs from malicious ones.
Another likelihood of evasion is for the attacker to use highly obfuscated client-
side code (e.g., JavaScript). In such a case, BINSPECT is likely to be partly
tricked because of the low consideration of obfuscated content in our approach.
With regards to the Social-Reputation features, the only risk is that the attacker
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might lure users on social networks to publicly share a link to a malicious URL
in order to collect reputation scores that could mislead BINSPECT. Even in
this case, the luring would not last long because users stop sharing the link
or the built-in URL scanning facility of the social network platform discovers
the maliciousness of the URL. In general, it requires a great deal of effort from
the attacker’s side to completely bypass BINSPECT as it is quite difficult for
the attacker to take control of the three complementary classes of features used in
our approach and due to the nature of the classification that relies on weighted-
confidence of each classifier.

6 Related Work

Canali et al. [5] proposed Prophiler, a purely static pre-filtering technique that
deems web pages that launch drive-by-download attacks as likely malicious or
likely benign. Prophiler achieved a very low false positive rate over a large testing
set of URLs using 79 features on URL, host details, HTML, and JavaScript fea-
tures. In BINSPECT, we apply static analysis and lightweight dynamic analysis
to deem a web page as benign or malicious. Unlike Prophiler, where the best
classifiers are used for testing, BINSPECT uses confidence-weighted majority
vote for classification. Except the new features we introduced, all other features
used in BINSPECT are also used by Prophiler. In BINSPECT, the number of
features are half the number of features used in Prophiler.

Cova et al. [40] built Wepawet, an emulation-based dynamic analysis and
detection framework for malicious content (mainly malicious JavaScript and
malware). It is based on anomaly detection and the analysis and detection is
available as a public service. Wepawet is reported by the authors to have a low
false negative rate, particularly for drive-by-download web pages. BINSPECT,
however, is a learning-based approach using mostly static features with a mini-
malistic emulation support.

Ma et al. [10] proposed a purely static analysis technique based on URL lexical
features and host details and applied supervised learning and online learning
techniques to achieve about 99% accuracy with a very low false positive rate.
However, BINSPECT differs in that they use URL and host-based information
only and the focus is to quickly classify URLs without further analysis of the
page content and the execution dynamics in a browser. In our case, we reuse
most of the URL features used by them in a statistical manner than lexical
(presence/absence). More importantly, we use an emulated browser to visit and
render the page and execute client-side code up on page load.

Dewald et al. [18] proposed ADSandbox, a client-side JavaScript sandboxing
and signature-based, analysis technique that executes JavaScript embedded in
a page within an isolated environment and logs every critical action to detect
malicious web pages. ADSandbox achieved false positive close to zero but at a
high performance overhead. BINSPECT, however, is a learning-based approach
not only limited to web pages that host malicious JavaScript but also includes
phishing pages, malware delivery pages, and pages that initiate injection attacks.
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Compared to most prior work, BINSPECT characterizes malicious web pages
spanning four classes of attacks (drive-by-download, phishing, malware-delivery,
and injection) to build a lightweight detection system that relies on only 39
features of URL string, HTML, JavaScript, and Social-Reputation of URLs.

7 Conclusion

Existing techniques for detecting malicious web pages are effective at combating
specific attack types. However, they are limited to partial snapshot of a malicious
payload which limits their ability to cope up with the ever-changing and com-
plex threats posed by malicious web pages. We presented BINSPECT, a holistic
approach to defend users against malicious web pages by leveraging static anal-
ysis and lightweight emulation based on supervised learning. We have shown
through large scale evaluation that BINSPECT is effective at precisely detect-
ing malicious web pages with very low false signals. Moreover, the new features
we introduced are relevant enough in improving the performance of the analysis
and detection of malicious web pages. Our experiments suggest that BINSPECT
incurs acceptable overhead cost to analyze web pages in a realistic scenario due
to few and effective features reused from prior work and novel features.

BINSPECT lacks analysis of obfuscated JavaScript and emulation of the
browser with plugins. In the future, we would like to incrementally improve
BINSPECT by introducing these missing analysis steps. Another line of im-
provement is to further investigate additional features from social networks to
characterize malicious web pages. We would also like to make BINSPECT an
evolution-aware analysis and detection framework that takes into account the
evolution of features and tunes its detection models accordingly.

Acknowledgments. We thank the anonymous reviewers for their insightful
comments and the Authors of Wepawet for allowing us to submit and evaluate
our test set.
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Abstract. Intrusion Detection Systems (IDS) have emerged as one of
the most promising ways to secure systems in the network. To be ef-
fective against evasion attempts, the IDS must provide tight bounds on
performance. Otherwise an adversary can bypass the IDS by carefully
crafting and sending packets that throttle it. This can render the IDS
ineffective, thus resulting in the network becoming vulnerable.

We present a performance throttling attack mounted against the com-
putationally intensive string matching algorithm. This algorithm per-
forms string matching by traversing a finite-state-machine (FSM). We
observe that there are some input bytes that sequentially traverse a chain
of 30 pointers. This chain of traversal drastically degrades performance,
and we observe a 22X performance drop in comparison to the average
case performance. We investigate hardware and software mechanisms to
counter this performance degradation. The software mechanism is tar-
geted for commodity general purpose CPUs. While the hardware-based
mechanism uses a parallel traversal suitable for network processor archi-
tectures. Our results show that our proposed mechanisms significantly
improves (by over 3X magnitude) string matching algorithm’s worst per-
forming cases.

1 Introduction

Intrusion Detection Systems (IDS) are emerging as one of the most promising
ways of providing protection to systems on the network. By monitoring the
traffic in real time, an IDS can detect and also take preventive actions against
suspicious activities. To be effective, an IDS must be able to inspect packets at
wire speeds. The consequences of not doing so can result either in undetected
malicious packets or expensive packet drops. An adversary can also bring the IDS
to this state of not being able to process packets at wire speeds. Such attempts
are commonly referred to as evasion[6, 9, 18], and stem from weaknesses in some
part of IDS processing.

Evasion can come in various flavors. An example of evasion is clever packet
fragmentation at “malicious content” boundaries, thus tricking the IDS from
inspecting malicious content. Other examples include deliberate packet header

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 167–184, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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corruption and stream re-assembly. The nature and ease of evasion makes it
very appealing for malicious hosts to bypass the IDS. Evasion can also occur
by throttling the performance of the IDS. Since the system is unable to keep
up with the wire speed, it can lead to the IDS being disabled and attack flood
gates opened. For this to occur, an adversary exploits the wide performance gap
between the average case and worst-case processing time[6, 15, 21]. This can
also be viewed as a class of Denial-of-service (DoS) attack that targets system
resource utilization[13]. Earlier works in this direction investigate attack and
defense mechanisms for hash tables[6] used by an IDS. Additionally, other works
explore weaknesses due to synctatics of signature specifications[21] in the Snort
IDS.

In this work we present a performance throttling attack mounted against
the string matching algorithm used by an IDS. An IDS like Snort[19] operates
by scanning packets for malicious content using a database of >40,000 known
attack strings. So Snort uses the Aho-Corasick algorithm[1] to perform a multi-
string matching against the packet payload. Since the packet payload needs to
be scanned and compared with a database of >40,000 strings, so it is compu-
tationally very intensive. Hence, the string matching algorithm can be suscep-
tible to performance throttling attacks. A closer look at the processing time
per payload byte of the string matching algorithm reveals a wide performance
variation. We observe that there are payload bytes that need 22X processing
times in comparison to the average case. Further, the cause of this variance
in performance is due to the sequential traversal of a chain of pointers. Our
counter-measure focuses on improving the worst-case performance by accelerat-
ing this sequential chain traversal. We propose two mechanisms - hardware-based
and software-based mechanisms - to counter this performance degradation. The
hardware-based mechanism is targeted for a highly parallel architecture like the
network processor ([5, 11]). The software-based mechanism is for commodity
general purpose CPUs. Our results indicate that our proposed mechanisms sig-
nificantly improves the worst-case performance.

The rest of the paper is organized as follows. Section 2 provides a brief back-
ground on the Aho-Corasick algorithm. Section 3 presents the motivation of this
work. Section 4 details our proposed counter-measure and our architecture. The
simulation methodology is discussed in Section 5, and Section 6 presents the
performance results. Section 7 discusses the related work in this area. Section 8
provides future directions.

2 Background

An IDS like Snort operates by inspecting packets for prior reported attacks.
This database of attack strings are byte patterns that have commonly occurred
and detected in attacks. The vast variety of attacks and their constant evolution
bloats the attack string database. We observe that there are 42, 670 attack strings
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in the Snort April-2010 ruleset1 release. So Snort commonly uses a multi-string
matching algorithm like the Aho-Corasick algorithm[1] for attack detection. This
algorithm works by constructing a FSM using the set of attack strings. Once the
FSM is constructed, incoming bytes from packets are used to traverse this FSM.
We provide a brief overview of the Aho-Corasick algorithm with an example.

Consider the set of strings: attacker, tacked, acken, ckeh, ket. Figure
1 shows the corresponding Aho-Corasick FSM constructed from these strings.
The FSM is built in two stages. In the first stage, characters from the strings
are added to the FSM. This is done in a way that strings that share a common
prefix also share the same set of parents in the FSM. The edges corresponding
to this stage are shown as thick lines. The nodes 9, 15, 20, 24, 27 indicate a
match for attacker, tacked, acken, ckeh, ket respectively. These nodes also
store a pointer to the list of matched strings. For example, node 9 stores a
pointer to attacker. The second stage in building the FSM consists of inserting
failure edges. When a string match is not found, it is possible for the suffix of
one string to match the prefix of another. So failure edges need to be inserted.
Failure edges are shown with dotted lines. For figure clarity, only a few failure
edges are shown. Once this FSM is built, the algorithm traverses it with the
payload bytes. In case the payload byte does not match any of the examined
edges, then the traversal is restarted from the root-node.
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Fig. 1. Example of the Aho-Corasick Finite State Machine

An important issue with this FSM is the large storage space needed. This
huge storage size requirement also impacts the performance efficiency of an IDS,
due to the large working set size. Some earlier works in reducing the storage
space needed for FSM have proposed removing the inherent redundancy in the
FSM. A common example of redundancy is due to failure edges. Consider node
8 and its edge d. This is a failure edge and is identical to the edge from node

1 A rule in Snort typically contains multiple attack strings. We instrumented Snort to
dump all the strings.
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14. Thus Node 14 is a failure pointer of node 8, and this traversal can also be
done by jumping to node 14. In this way all failure edges are eliminated.

Figure 2(a) shows the FSM built with the failure pointer optimization. We
observe that 93% of the edges are failure edges, and hence the failure pointer
optimization provides important area benefits. As a consequence, earlier works[2,
12, 20, 22, 23, 25] have optimized the failure edges in this manner. For the rest
of the paper, we consider this optimized FSM.

The FSM constructed using the Aho-Corasick algorithm is very similar to a
deterministic finite automata (DFA). In fact Snort and other IDSs[16] also use
regular expressions to specify attack strings. These regular expressions are again
converted to DFAs or NFAs. Hence our work is equally applicable to regular ex-
pressions used in an IDS. Note that the optimized FSM thus built is very similar
to a NFA. A NFA, unlike a DFA, can have multiple active states. Further these
active states need to be traversed sequentially. In order to efficiently traverse the
FSM, the Snort[19] IDS uses a backtracking based heuristic for traversing the
NFA. This heuristic is very similar to the failure pointer optimization, and so
our work can be adapted to accelerate NFA traversal in Snort.

3 Motivation

The optimization of failure chains significantly compacts the data structure.
However this has a drawback. A node with failure pointers may need additional
processing when there are no matching edges. In some cases we observe that this
additional processing is a significant overhead.

We illustrate this more clearly with an example. Let the input bytes to the
optimized FSM in Figure 2(a) be a, t, t, a, c, k, e, t. The first 6 bytes lead
up-to node 8. For the final byte, t, the failure pointer needs to be traversed as
there are no matching edges at node 8. Hence, node 14 - the failure pointer of
node 8- is accessed. Here again there are no matching edges, and so the failure
pointer of node 14 is accessed. This is repeated until a matching edge is found,
or the traversal is restarted from the root-node. Note that these chain of failure
pointers are accessed sequentially and sometimes wastefully as well. This can
lead to significant performance degradation when large chains are visited.

Figure 2(b) shows the failure chain length distribution for various Snort
database releases. We define failure chain length of a node as the maximum
number of failure pointers that can be traversed starting from that node. The
failure chain length of node 8 in the above example is 4. It is very interesting
to observe that there are nodes with failure chain length of up-to 31. Thus for
bytes accessing failure edges of these nodes, the processing time can be high. We
investigate the performance impact of traversing failure chains.

Figure 3(a) shows the CDF of processing time per byte2. We see that 95%
of input bytes need less than 31 cc, thus leading to an average processing time

2 Processing time per byte is measured as the total number of clock cycles (cc) needed
to complete the processing of a byte.
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Fig. 2. Impact of Failure chain
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Fig. 3. Impact of Failure chains on Performance

of 23.5 cc/B. However, there are bytes that need up-to 516 cc. This clearly
indicates that there is a wide variation in processing time. We investigate the
cause of this wide variation, by examining the processing of the ten most clock
consuming bytes (refer to Figure 3(b)). This is also the tail end of the CDF. As
seen in Figure 3(b), we observe that these bytes need at-least 495 cc. The cause
of the enormous processing time is due to the traversal of a chain of failure
pointers. In contrast, on examination of the relatively lesser clock consuming
bytes (left half of 0.95 probability in the CDF plot), we observe that these bytes
traverse at most 3 failure pointers. This clearly shows the significant impact of
traversing a large chain of failure pointers.
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The dependency of processing time on the failure chain length makes the IDS
vulnerable to performance throttling attacks. Hence it is important to accelerate
the failure pointer traversal. So we study techniques to do the same.

4 Proposed Counter-Measure

Intrusion detection systems are commonly deployed in routers. Routers in turn
can use network processors that have a high degree of parallelism. For example,
the Intel IXP 2400[11] has a total of 64 threads. We propose a hardware-based
mechanism that uses 2 cores and it is suitable for network processor deployment.
IDSs can also be deployed in end systems in a non parallel set-up. Hence we also
propose a software-based mechanism targeted for such an environment.

4.1 Hardware-Based Mechanism

The processing of the failure chain takes a performance hit mainly due to the se-
quential nature of its traversal. So our proposal performs a parallel traversal. One
engine performs the regular FSM traversal, while another engine concurrently
finds the candidate failure pointer. We first describe a mechanism to identify the
candidate failure pointer and to incorporate it in the traversal algorithm. Later,
we present the parallel architecture used for the traversal.

Candidate Failure Pointer Identification. The traversal of a chain of failure
pointers can be viewed as a comparison of the edges of a node to the input byte.
Further, this process is repeated for the chain of failure nodes. So we break it
into comparison of a chain of outgoing edges. We illustrate this more clearly with
an example. Let the input bytes to the FSM in Figure 2(a) be a, t, t, a, c, k,
e, t. The first 6 bytes lead up-to node 8. For the final byte, t, since there are
no matching edges the failure pointer is traversed. The failure pointer of node
8, node 14, is traversed. Since it is a mismatch, the failure chain is followed
until node 26. So the main operation in the failure pointer traversal is the
comparison of the input byte with all outgoing edges of a node. This is checking
for membership in a set of outgoing edges, and with each set corresponding to a
failure pointer.

Bloom filters[3] offer a convenient and efficient way to check - without incur-
ring any false negatives - for set memberships. We use bloom filters to do the
membership check. We create a hash for each failure pointer by using its set of
outgoing edges. We term it as a bloom filter signature. We illustrate this with an
example. Consider node 8 (from Figure 2(a)), we create and store bloom filter
signatures for all its failure chains, namely, nodes 14, 19, 23, and 26. Each
of these signatures are generated using outgoing edges of each node.

Figure 4 shows the signature storage of node 8 generated in this manner.
In addition to signatures, we also store offset and fan-out of the corresponding



Improving the Resilience of an IDS against Performance Throttling Attacks 173

Node 14

Sig

Node 19

Sig

Node 23

Sig

Node 26
Sig

fn(d) fn(n) fn(h) fn(t)

Node 26Node 23Node 19Node 14

fan−out)

(offset,(offset,(offset,

fan−out) fan−out) fan−out)

(offset,

Fig. 4. Node 6 Signature Storage

failure pointer. This is done so that when a signature matches, we can directly
jump to the matching failure pointer. The traversal using bloom filter signatures
is as follows. Consider traversing node 8 with input byte as t. Since there are
no matching edges in node 8, we check if there are any matching edges in the
failure chain. A signature is generated using t, and compared against all the
failure chain signatures of node 8. Since node 26 has a matching signature, we
directly traverse to node 26. Note that in case of multiple matches, the matches
are traversed sequentially. This preserves traversal correctness, as the signatures
are stored in the way they are originally encountered.

Signature Storage

Node 8 Signature
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conventional 
node 8 storage
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Fig. 5. Node 8 FSM Storage and Signature Access

The failure chain signature matching can be performed independently and in
parallel with the conventional node processing. In the above example, the failure
chain traversal is done sequentially after checking for matching edges in a node.
We accelerate it by performing the failure pointer identification concurrently
with the conventional node processing. If there is no need to traverse the failure
pointer, then the failure pointer identification is discarded. So our proposed
architecture consists of two engines: a regular FSM traversal engine and an
engine to identify the candidate failure pointer. We further decouple the memory
by storing the bloom filter signatures in a separate memory bank. Our memory
architecture consists of two memory banks, with one containing the FSM and
the other containing signatures. This helps us in decoupling the FSM traversal
from the failure chain computation. Additionally, we store a pointer to the node
signature in the FSM data structure. So every node also stores a pointer to the
signature database and its failure chain length. Figure 5 shows the storage for
node 8.
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Fig. 6. Hardware Architecture

Hardware Architecture. Figure 6 shows our proposed hardware architecture.
The hardware consists of a FSM traversal engine and a signature processing
engine. The FSM traversal engine performs the regular state-machine traversal.
We have used the FSM traversal engine as proposed in [20] and we provide here
a brief summary. The traversal operations essentially consist of two steps. In
the first step, all the edges of a node are scanned, and then the matching edge
information is read. So we split this engine into these operations (refer to Figure
7(a), 7(b), 7(c)). In edge scanning, the set of edges are read and compared with
the input byte. This is iterated over all edges until a matching edge is obtained. If
a matching edge exists, then the associated edge information is read. Otherwise,
the traversal is restarted from the root-node.

The signature matching engine performs the following functionalities. It gen-
erates the bloom filter signature using the input byte, and then compares it with
the stored signatures. Signatures are of length 4 B and are generated using two
hash functions3. Since the signature comparison is an AND operation, so we use
16 B AND operators for signature comparison. This allows us to compare four
signatures at a time. If a signature matches, then the matched failure pointer is
traversed. Figure 7(c) shows the flow-chart for the signature matching engine.

Our architecture concurrently perform signature comparison and the regular
FSM traversal. Hence if the input byte matches an edge, the signature processing
is flushed. However, if there are no matching edges, then the candidate failure
pointer is obtained from the signature matching engine. Subsequently, this node
is traversed by the FSM traversal engine.

4.2 Software-Based Mechanism

In this mechanism, the Aho-Corasick FSM is constructed so that there is an
upper-bound on the failure chain length. This upper-bound can also be viewed
a threshold value. In this mechanism, failure edges are inserted for nodes with
failure chain lengths a multiple of this threshold value.

3 A design space exploration was done to obtain these parameter values.
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We illustrate it more clearly with an example. Consider the FSM shown in
Figure 2(a). If we use a threshold value of 3, then failure edges are inserted for
nodes with failure chain length of 3. Hence, failure edges are inserted for node
14. In this way we limit the failure chain traversal to a fixed upper bound. This
also enables in efficiently storing the FSM as failure edges are only inserted for
selective nodes and not all the nodes in the FSM. In our simulations, we explore
different values of the threshold in order to find an optimal point.
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5 Simulation Methodology

We evaluate the performance of our proposed mechanisms, and compare it with
the conventional method of sequentially traversing the failure pointer. We have
used three public traces, a synthetically generated trace, and a Honeypot trace.

The public traces are from the Lincoln labs [14] and Defcon[7]. For the Lincoln
labs we have used two weeks of traces (referred to by their respective week) from
1999. In the Defcon trace, we use the trace captured for the Capture the flag
(CTF) game[7]. CTF is a hacking contest in the Defcon conference. The objective
of this contest is to break into computers of other teams, while at the same time
preventing others from do so. We have also deployed a low-interaction Honeypot
running in collaboration with the Leurrecom project[17]. This Honeypot has been
running for 3 months, and the logs indicate that there has been an interaction
with the outside world for at-least 61 days.We have used the traces collected from
this Honeypot. We also include a synthetically generated trace. The synthetic
trace was generated by randomly selecting strings from the Snort rule database
and further combining multiple strings. This was done to ensure minimum-sized
packet (64 B).

Table 1 summarizes the traces used. Note that we have inspected TCP, ICMP
and UDP packets from these traces. We have used the Snort database released
on April 2010 and containing 40,678 strings. We use average number of clock
cycles per incoming byte as the metric for performance comparison. This
is computed by dividing the total number of clock-cycles by the total number
of bytes. Total number of clock-cycles is the sum of total processing time
and total memory access time. The total processing time comprises of:
edge-scanning, reading edge-information, signature comparison, and signature
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Table 1. Summary of Traces used in the Evaluation

Data-sets Mean Packet Size (B) Num Packets (M)

Defcon 71.9 15.64

synthetic 73.64 0.120

Week 2 160.51 13.18

Week 3 200.01 14.91

Honeypot 205 0.46

offset computation. These processing times are obtained by assuming each of
the arithmetic processing blocks need 1 cycle and branches need 2 cycles (refer
to Figure 7(a), 7(b), 7(c)). With this assumption, edge scanning needs 6 cc plus
the memory access latency.

The total memory access time is obtained from the trace-driven cache
simulator [8], which was modified to model cache access times and processing
times. The cache miss penalty is obtained from CACTI [24] by plugging into
the SRAM model of CACTI the FSM memory sizes. We have used a 16k direct-
mapped cache-configuration for the caches. Note that in case of the hardware-
based mechanism, there are two caches each of 16k size. The cache hit time of 2
cc is used (also obtained from CACTI). The core frequency is assumed to be 3
GHz.

6 Results

We compare the performance of our proposed architecture with the Baseline.
Note that the Baseline performs traversal using the conventional way of se-
quentially following failure pointers.

For the hardware-based mechanism, we have varied the minimal failure chain
length. Hence signatures are kept only for those nodes with a failure chain length
greater than the threshold. We have used threshold values of 1, 3, 5. A threshold
value of 1 indicates that nodes with failure chain lengths >= 2 have stored sig-
natures. For the software-based mechanism, we have similarly varied the failure
chain length threshold. So in this scheme, nodes with a given threshold failure
chain length will have all its failure edges in place. We have used threshold values
of 3, 5, 7.

In order to evaluate the worst performance cases, we compare the processing
clock cycles (cc) needed for the 10 most clock consuming bytes. Note that a
byte that performs badly in one scheme may not do so in another scheme. We
also compare the average-case performance. We initially report results for the
synthetic trace to determine the optimal points for the hardware and software-
based mechanism. Later we report results for the remaining traces.

A few terminology clarifications. Sig-1 refers to the use of bloom-filter signa-
tures of threshold value 1. Further, sw-3 refers to the failure chain length of 3
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(a) Worst-case performance (b) Average-case Performance

Fig. 9. Synthetic Trace Comparison Result for Hardware-based Mechanism

(a) Worst-case performance (b) Average-case Performance

Fig. 10. Synthetic Trace Comparison Result for Software-based Mechanism

used in the software-based mechanism. Figure 9(a) shows the 10 most clock con-
suming bytes for the hardware-based mechanism for the synthetic trace. While
Baseline needs at least 495 cc, the use of signatures brings it down to at most
119 cc. Additionally, on a closer examination of various threshold values, we
see that Sig-1 gives the best performance. For Sig-1 we see a worst-case perfor-
mance of 119 cc - a 4.33X improvement over the Baseline. Figure 9(b) shows
the average-case performance, and we see that it remains unaffected.
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Figure 10 shows the comparison results for the software-based mechanism.
We again observe that keeping an upper-bound of the failure chain length signif-
icantly brings down the worst-case performance. While Baseline needs at least
495 cc in these bytes, the software-based mechanism reduces it to at most 219
cc. Figure 10(b) shows the average-case performance and we see that it remains
largely unaffected.

We observe that Sig-1 is the best performing configuration for the hardware-
based mechanism. Further, sw-3 performs best for the software-based mecha-
nism. So for the remaining traces we compare the performance of Sig-1, sw-3
and Baseline.

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 11. Defcon Trace Comparison Results

For Defcon trace we observe a similar performance behaviour (refer to Fig-
ure 11). Comparing the worst-case performance, the hardware-based mechanism
reduces the worst-case performance to 139 cc - over 3X improvement over the
Baseline. On the other hand, the software-based mechanism reduces the worst-
case performance to 147 cc. On comparing the hardware-based and software-
based mechanisms, we observe that the hardware-based mechanism moderately
outperforms the software-based mechanism.

Figures 12, 13 and 14 show the performance results for week2, week3, and
Honeypot respectively. We again observe a similar behaviour, with Sig-1 pro-
viding the best performance for the worst-case. Note however that there is a
mild average-case performance degradation for the software-based mechanism.

Our mechanisms needs additional memory in comparison to the Baseline.
So we evaluate the additional storage space needed (measured in KBs) for our
proposal. Figure 15 shows the storage space required for various schemes. The
memory required has been normalized to the Baseline (706 KB). In case of the
hardware-based mechanism, the additional storage space is between 34% and
84% to that of the Baseline.

In case of software-based mechanism, the additional storage space is between
1% to 140% in comparison to the Baseline. This exponential increase in storage
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(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 12. Comparison Results for Week2 Trace

(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 13. Comparison Results for Week3 Trace

space is due to the following. As the threshold failure chain length is reduced from
7 to 3, the number of nodes that need to store the failure edges grows by more
than 2 order of magnitude. This consequently contributes to the exponentially
increased storage space.

It is interesting to note that our proposed mechanisms - hardware based and
software based mechanisms - are orthogonal. These mechanisms can also be
combined using an FSM constructed with an upper bound failure chain length
and a parallel FSM traversal. However, we observe no significant worst-case
or average-case performance improvement. Further, the combined scheme also
needs additional storage space.
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(a) Worst-case perfor-
mance

(b) Average-case Perfor-
mance

Fig. 14. Comparison Results for Honeypot Trace

Fig. 15. Storage Space Comparison

7 Related Work

To the best of our knowledge, Crosby et al[6] were the first to introduce attacks
targeting the worst-case performance. They exploited weaknesses in the hash
tables used for port scanning in the Bro IDS[16]. A hash table needs O(n) time
for insertion on an average and O(n2) in the worst-case. They carefully construct
packets that cause collision in the hash table. In this manner, the performance
of the hash table is significantly degraded. As a counter measure, they proposed
the use of universal hash functions that significantly reduces collisions.

Smith et al[21] present algorithmic complexity attacks that exploit syntactics
of rule specification. There are rules in Snort that are dependent on the relative
position of bytes in the packet. They exploited this dependency to create pack-
ets that lead to multiple repeated and often redundant processing of the same
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byte. So they propose a memoization based technique to prevent such redundant
processing of bytes.

Earlier works in this direction have focused on either compacting the FSM
or on improving the system throughput. To compact the FSM, Kumar et al[12]
used a Delayed input DFA (D2FA). A DFA is very similar to the FSM studied
in this paper. They observed that a DFA typically has numerous states with
identical outgoing transitions. So they remove this redundancy using a default
transition. This transition is very similar to the failure pointer studied in this
paper. So our proposed architecture and traversal complements the D2FA in
improving its worst-case performance.

Tuck et al[25] study different optimizations to reduce the size of each node in
the FSM. They use a 256 bit bitmap for each node in the FSM. A bit is set in the
bitmap if the corresponding character is an outgoing edge. They further compact
the FSM using the failure pointer optimization as discussed earlier. Hence our
proposed traversal and architecture is directly applicable to this work.

Becchi et al[2] propose state merging for reducing the storage space. Two
states are similar if they have multiple common output states. They combine
such states to form a compact FSM. Interestingly, they use the bit mapped
based implementation of Tuck et al [25] for representing states. So our proposed
architecture is directly applicable to it. Song et al[23] propose using a cached DFA
(CDFA) for efficient traversal. In a CDFA, a cached state is used to eliminate
1-step transitions. Among the mechanisms they investigate for compacting the
FSM, they also include failure pointer optimization as discussed earlier. So again
our proposed architecture is directly applicable to this work.

In addition, there have been numerous works that study a rich variety of
DoS attacks. A taxonomy of DoS attacks is given in[13]. Moscibroda et al[15]
study DoS attacks against DRAM scheduling in multi-cores. They observe that
a malicious application can starve other benign applications, thus leading to
significant performance degradation. So they propose a memory architecture
that provides fairness to all executing applications. Cai et al[4] study algorithmic
complexity attacks against the Unix file system. So in this attack a malicious
system process tricks the OS to access system files that are not in its access
privileges. They propose a defense mechanism that is provably secure. Hasan
et al[10] study DoS attacks that forcefully heat up certain resources in a SMT.
In this attack, a malicious thread creates a hot spot in a shared resource by
repeatedly accessing it. They study several mechanisms to mitigate the hot-spot
including selective throttling of threads.

8 Conclusion

In this paper, we have presented a counter-measure for a performance throttling
attack against the string matching algorithm in an IDS. Our study reveals that
with certain input bytes, the Aho-Corasick algorithm can end up traversing a
chain of up-to 31 pointers. Our results indicate a massive performance degra-
dation, a 22X fall in comparison to the average case performance. We investi-
gate two mechanisms to counter this performance degradation - hardware-based
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mechanism and software-based mechanism. In the hardware-based mechanism
we identify the candidate pointer from the chain of pointers and directly jump to
it. We propose a parallel architecture for FSM traversal. The signature matching
engine identifies the pointer to jump to, while the FSM engine performs the regu-
lar FSM traversal. In the software-based mechanism, we propose a modified FSM
that restricts this chain of sequential pointer traversal to a fixed upper bound.
Both these scheme result in over 3X improvement in the worst-case performance.

An applicability of this work is in detecting tampering of the Snort signature
database. If an adversary corrupts the memory stack of the IDS using buffer
overflow attempts, then the pattern matching module can be compromised. In
order to detect such tampering, the hardware-based mechanism needs to be ex-
tended for detecting FSM traversal violations. Performance throttling attack
is an example of an evasion attempt, there are other ways of evasion includ-
ing packet re-assembly and packet fragmentation. In both of these attacks, the
adversary can force the IDS to maintain an infinite number of states (TCP con-
nections) that finally leads to memory exhaustion. Under this circumstance, even
benign packets suffer massively. It will be interesting to study defense mecha-
nisms against these attacks.
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The Unbearable Lightness of Monitoring:

Direct Monitoring in BitTorrent
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Abstract. It is known that BitTorrent file-sharing traffic is analysed to
identify exchangers of copyrighted material. In general, copyright holders
can perform monitoring using two approaches: indirect monitoring, where
indirect clues of the sharing activity of a peer are considered (e.g., its
presence in the peer list of a tracker), and direct monitoring, which estab-
lishes connections with peers to estimate their participation in sharing ac-
tivity. Previous research has focused exclusively on indirect monitoring.
We provide a broader characterisation of the monitoring of BitTorrent
activity by considering both indirect and direct monitoring. In particu-
lar, we review previous work on indirect monitoring, provide features to
detect peers engaged in such monitoring, and apply them to identify a
number of monitoring organisations. Additionally, we introduce features
that detect direct monitors, and provide the first ever measurements of
direct monitoring, showing that it is now occurring.

Keywords: BitTorrent, P2P monitoring, copyright enforcement.

1 Introduction

BitTorrent is a decentralised peer-to-peer (P2P) protocol designed for the effi-
cient transfer of large files. It is used by millions of users, contributing signifi-
cantly to the volume of global Internet traffic [19]. BitTorrent users exchange a
range of legal content: many Linux distributions rely on BitTorrent as a content
delivery mechanism, and video game companies use it to provide updates and
patches to their customers [2]. However, BitTorrent is also widely used (over-
whelmingly so, according to one study [11]) for the illegal exchange of copy-
righted material, such as music, movies and software.

Many copyright holders perceive this illegal exchange of content as a threat to
their business models and have increasingly sought to prevent it. In particular,
copyright holders are known to routinely monitor file-sharers, collect evidence of
infringement, issue cease-and-desist letters and, in some cases, demand financial
compensation from the users they deem to have infringed their copyright [8]. The
task of policing BitTorrent is often outsourced to specialist copyright enforcement
agencies.

One key aspect of BitTorrent monitoring is the precise set of techniques em-
ployed by enforcement agencies, which have never been disclosed publicly; in
fact, the companies involved appear keen to avoid having their evidence being
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c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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Fig. 1. Different methods by which a monitoring peer (PM ) may monitor a regular
peer (PR) via a tracker (T ). From left to right: indirect monitoring; passive direct
monitoring; active direct monitoring.

examined in court [8]. Nevertheless, two general approaches are possible: indirect
and direct monitoring [17].

With indirect monitoring, enforcement agencies rely on indirect clues that
a peer is uploading or downloading some content (i.e., by the presence of the
peer’s IP address in the group, or swarm, of peers reported by a BitTorrent
tracker to be sharing the file — see Figure 1). A 2008 study by Piatek et al. [17]
showed that indirect monitoring was extensively used by enforcement agencies.
The study also demonstrated the high rate of false positives caused by this
approach by implicating innocent devices such as printers and wireless access
points as file-sharers, which later received cease-and-desist letters. More recent
studies have confirmed that these flawed practices continue to be used [6, 18].

With direct monitoring, enforcement agencies collect first-hand evidence of
a peer’s activity. Direct monitoring can be active if the monitor establishes
connections with peers to confirm that they are sharing a file, or passive if
the monitor advertises its IP address to a tracker and waits for peers to connect
to it (see Figure 1). Clearly, direct monitoring techniques have the potential to
gather more conclusive evidence, but are also costlier (in terms of bandwidth and
computational resources) when compared with indirect techniques; methods of
improving the efficiency of direct monitoring have been proposed [1]. Documents
recently filed in a New York Southern District Court case imply that at least one
copyright enforcement agency is using some form of direct monitoring to collect
its evidence against file-sharers [15]; however, at this time it is not clear whether
comprehensive direct monitoring is in widespread use.

The goal of this work is to characterise the current state of BitTorrent moni-
toring by investigating it from several points of view. Firstly, we review indirect
monitoring and assess various features to detect peers that are engaged in this
activity (how can indirect monitoring be detected?). Secondly, we focus on direct
monitoring and study its characteristics. The occurrence of this type of moni-
toring has not been studied before; thus, we want to introduce features to detect
peers engaging in direct monitoring (how can direct monitoring be detected?), as
well as investigate its mechanics (how is direct monitoring performed?). Thirdly,
we assess whether the information gathered by monitoring agencies is accurate
and conclusive (what information is really collected?). Finally, we investigate
how users can defend themselves against monitoring.
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We conducted this study by measuring the activity of 1,033 swarms across 421
trackers for 36 days over 2 years, collecting over 150GB of BitTorrent traffic. We
note that our aim is to design and test novel monitoring detection techniques,
rather than provide a comprehensive picture of BitTorrent monitoring.

The main contributions of this study are:

– We determine that indirect monitoring is still in use against BitTorrent users
and devise more effective techniques to detect peers engaging in it;

– We find indications that certain entities engage in direct monitoring of Bit-
Torrent users and provide features to detect such peers;

– We also notice that direct monitoring, in its current form, falls short of
providing conclusive evidence of copyright infringement.

1.1 Related Work

A number of studies have focused on measuring and characterising specific prop-
erties of BitTorrent (e.g., [5,7]); other work has introduced improvements to the
measuring process itself (e.g., [24, 26, 27]). The limitations of the evidence col-
lected through indirect monitoring for legal cases motivated Bauer et al. [1] to
design BitStalker, an active probing mechanism for identifying hosts using Bit-
Torrent to download files. Wolchok and Halderman [25] have shown that BitTor-
rent’s distributed hash tables can be quickly crawled to more efficiently monitor
users’ activity. Similarly, Le Blond et al. [12, 13] have demonstrated how proto-
col features can be leveraged for efficient spying on large numbers of BitTorrent
users. While some of the techniques proposed in these papers are related to our
work, our aims are quite different; rather than measuring the behaviour of the
typical BitTorrent user, we wish to determine if and how monitoring is taking
place by measuring the atypical behaviour of monitors.

The issue of detecting and understanding how the indirect monitoring of users’
activity is performed on BitTorrent has received attention in the past. In a 2008
study, Piatek et al. [17] provided empirical evidence that enforcement agencies
resort to indirect monitoring for identifying infringing users. They questioned the
robustness of evidence collected via indirect monitoring and presented attacks
that may cause arbitrary network users to be wrongly accused of infringement.
Siganos et al. [20] described a set of network-level features that can be used for
automatically detecting “deviant” clients, some of which are deemed to be indi-
rect monitors. We revisit the issue of identifying indirect monitors and introduce
a new and novel detection method; we show that our method is simple to com-
pute and provides more accurate results than those of Siganos et al. [20] by ruling
out false positives due to network address translation (NAT). We are the first
to study whether direct monitoring is used by copyright enforcement agencies
to identify file-sharers, and discuss techniques for detecting direct monitors.

A common approach to BitTorrent monitor evasion is to prevent interac-
tion with peers that are suspected of monitoring at the transport layer (lists of
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suspicious peers are often referred to as blocklists). Potharaju et al. [18] offer
a blocklist generation technique for BitTorrent based on peers’ participation in
multiple swarms sharing the same content, arguing that simultaneously down-
loading multiple copies of the same content is suspicious. The blocklist approach
only prevents direct monitoring and it is only effective if reliable techniques exist
for identifying monitors. We compare our results with the contents of a popular
blocklist and discover a high incidence of false positives and false negatives in
the blocklist we examine.

1.2 Ethical Statement

The tension between BitTorrent users and copyright enforcement agencies is of-
ten described as an arms race [17, 20, 25], in which one side attempts to share
content and the other attempts to monitor and disrupt this activity. As with
previous studies in this area, we do not take a side in this arms race: the re-
sults we present could benefit both users (e.g., by improving the detection and
blocking of monitors) and copyright enforcement agencies (e.g., by improving
monitoring techniques). Furthermore, it has been noted previously [18] that the
monitoring process used by copyright enforcement agencies may wrongly impli-
cate researchers performing experiments in BitTorrent swarms. The features we
present may enable them to design more conservative research experiments or
to better interpret their results.

There are significant privacy concerns when reporting on data collected from
BitTorrent traffic. To protect the privacy of the peers we monitored, we do not
disclose the IP addresses of individual peers, and the peer lists and peer/peer
communication data that were collected during monitoring will be destroyed
when they are no longer required. The web addresses of notable trackers are
revealed, but since they regularly track hundreds of thousands of torrents si-
multaneously, this poses no risk of a privacy violation. We only disclose the
identity of copyright enforcement agencies that have publicly announced that
they are monitoring BitTorrent. Following previous work in this area (e.g., [18]),
we indicate Autonomous Systems (ASes) that appear to host large numbers of
monitors, but we do not disclose individual ranges inside an AS.

Finally, in all of our data collection processes, we were careful not to upload or
download any shared files; therefore, we have not participated in any copyright-
infringing activity as a result of this study. Piatek et al. [17] deliberately impli-
cated innocent network devices (such as printers and routers) in file-sharing to
draw unsubstantiated cease-and-desist letters from copyright enforcement agen-
cies; since their study was designed to highlight the shortcomings of indirect
monitoring, and ours involved communicating directly with other peers from
network devices potentially capable of infringing copyright, we did not design
our study in a way that would intentionally cause us to receive cease-and-desist
letters.
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2 Background

Firstly, we provide an overview of the BitTorrent protocol, emphasising the as-
pects of the protocol that are relevant to our work. We focus on the original
specification of the protocol.

2.1 Protocol Overview and Terminology

The BitTorrent protocol was designed to replace the distribution of large files
via other, less efficient protocols, such as HTTP and FTP.
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Fig. 2. A file being shared using BitTorrent

Figure 2 summarises how a file is shared using BitTorrent. The user holding
the file creates a torrent file containing metadata about the shared file. The
shared file is described in terms of smaller pieces, which are divided further
into blocks. When concatenated, the pieces produce the original shared file. The
torrent file also contains the URL of a tracker, a centralised server that tracks
which peers are downloading and uploading the shared file. A SHA-1 hash —
the torrent’s infohash — is used in all subsequent peer/tracker communication
to uniquely identify this torrent. The torrent file can then be published (e.g., on
a web server).

Users interested in the shared file download the torrent file and report their
presence to the tracker by announcing to it — thus they become peers, and join
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the collective swarm of peers uploading and downloading pieces of the shared
file. The tracker responds with a list of up to 200 IP addresses and port numbers
of other peers in the swarm. Peers that hold a complete copy of the file are
seeders, and those that do not are leechers.

Peers contact other peers in the swarm using the list of IP addresses given
to them by the tracker. They exchange information about which pieces of the
shared file they have, and may announce their interest in particular pieces held
by the remote peer. The remote peer may then agree to send a particular piece to
the peer. When a peer holds every piece, it can reconstruct a copy of the original
file. It becomes a seeder, whose role is to continue sending pieces to leechers.

Periodically, peers will update the tracker to inform it of their progress on
uploading and downloading the shared file. In return, the tracker responds with
an updated list of peers in the swarm, allowing further new peers to join.

2.2 BitTorrent Protocol Messages

For peer/peer communication, the protocol specifies messages that can be ex-
changed between peers. We concern ourselves with the following relevant mes-
sages:

handshake. Sent immediately after a connection has been established between
two peers; the peer that initiated the connection sends its handshake message
first. Each peer includes a randomly-generated peer ID that the recipient uses
to uniquely identify the sender.

extprotocol. Optionally sent after the handshake message, this message allows
peers to exchange information about which protocol extensions they support.

bitfield. Sent after peers have exchanged handshake messages; the peer that ini-
tiated the connection sends its bitfield message first. The bitfield is a bit mask
representation of the pieces that the sender claims to be holding; e.g., in a 10-
piece torrent, the bitfield 1001010010 indicates that the peer holds pieces 0, 3,
5 and 8.

have. May be sent at any time during a connection’s lifetime. Used to inform
the recipient that the sender now holds a piece that the sender was not holding
when the peers exchanged their bitfields; e.g., if peer PA has the bitfield 1000

stored for peer PB and PB later sends the message have(2), PA can update its
bitfield for PB to 1010.

request. Requests that the recipient send a piece (or a block of a piece) that it
has previously advertised.

piece. Contains the piece data that was requested by the recipient in an earlier
request message.

keepalive. Idle peer/peer connections are usually closed after three minutes. This
message is used to ask the recipient not to close the connection as a result of
idleness, as the sender may send further messages later.
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2.3 BitTorrent Indexing

The BitTorrent protocol does not specify how a torrent file should be circulated
to other users interested in downloading the shared file. Consequently, torrent
indexing web sites such as The Pirate Bay [21] were created to facilitate the
organisation and distribution of torrent files. Many of them index copyright-
infringing torrents — in the case of The Pirate Bay, this is its explicit purpose.
The administrators of torrent indexing web sites are often targeted by legal
action initiated by trade organisations representing copyright holders, who claim
that online copyright infringement causes financial disruption to their members’
businesses; these trade organisations have successfully persuaded courts in the
United States, Sweden, Slovenia and other countries to order the closure of
offending web sites and trackers.

3 Detecting Indirect Monitoring

A simple approach for performing indirect monitoring involves announcing to
trackers and collecting the IP addresses of peers returned by the tracker. This
technique offers a fast method of harvesting a large number of peers, but it
has been shown by Piatek et al. [17] that IP address-based peer identification
produces unreliable results. Furthermore, by announcing to trackers, monitors
leave a trace of their presence: their IP addresses also appear in peer lists. We
can then indirectly observe the behaviour of peers to identify differences between
regular peers and monitors.

To motivate our subsequent work on direct monitoring, we first reassess tech-
niques previously proposed to identify indirect monitors, and propose an addi-
tional novel feature for identifying them.

3.1 Methodology and Data Collection

To automatically collect information from BitTorrent trackers, we created our
own indirect monitoring client that gathers newly-published torrent files from
the Top 100 in each category on The Pirate Bay, and continually contacts each
of the trackers and stores (IP address, port number, infohash, time) tuples from
the peer lists that are returned; it then attempts to establish a TCP connection
with each host and sends a handshake message to ensure that the host is in fact a
BitTorrent peer. The monitor also requests from trackers the number of seeders
and leechers in each swarm.

We collected data from July 21–28, 2009, routing our traffic through the Tor
anonymity network [23]. This led to an excessive number of connections timing
out or being dropped, so we collected data again without using Tor from August
4–6, 2009. A summary of data collected is presented in Table 1. The comparative
success of the second trace when compared with the first seems to be entirely
due to the poor performance of Tor.
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Table 1. A summary of indirect monitoring activity

Jul 21–28, 2009 Aug 4–6, 2009

IP addresses seen 831,039 1,351,853
(IP, port) pairs seen 894,529 1,498,015
Torrents monitored 967 690
Trackers seen 196 181

3.2 Features for Detecting Monitors

Using this data we build profiles for the behaviour of BitTorrent clients, which
we can use to differentiate regular peers from monitors. The assumption is that
“anomalous” profiles may be indicative of the behaviour of monitors. To build
such profiles, we first consider five features that have been previously proposed
in the literature:

1. The proportion of a subnet that has been seen in BitTorrent swarms. Mon-
itoring agencies may use a large proportion of their subnet for monitoring.

2. The length of time a peer spends in a swarm. Monitors may spend more
time in the swarm than regular file-sharers.

3. The number of different (IP, port, infohash) combinations per IP address.
Monitoring agencies may operate many clients from a single IP address.

4. Whether a peer reported by a tracker accepts incoming connections. Moni-
tors may block all incoming connection attempts.

5. The number of swarms in which IP addresses from a particular subnet ap-
pear. Monitoring agencies may monitor many torrents from their subnet.

Features 1–4 have been suggested by Siganos et al. [20] and Piatek et al. [17],
and feature 5 by Potharaju et al. [18]. Potharaju et al. also leverage web search
engines to derive a database of the content being shared by each torrent, and look
for peers that download multiple copies of the same content. Another potentially
useful but untested feature is whether a peer is downloading content that is likely
to appeal to very different audiences (e.g., a peer that downloads both classical
and pop music tracks). We do not consider either of these features, as they
cannot be calculated from information provided by trackers alone.

While investigating feature 4, we found that only 16% of peers in our datasets
accepted incoming connections. Given the commonness of this behaviour, we
conclude that the typical behaviour of a BitTorrent client is to reject incoming
connection requests. This is likely due to BitTorrent users being affected by
incorrectly-configured residential routers or firewalls. We show in Section 4 that
many monitors do accept incoming connections, therefore we do not use this
feature for detecting monitors.

Our heuristic for detecting monitors relies on the remaining four features.
More precisely, we consider a peer likely to be a monitor if it appears in the top
first percentile for each of the features (i.e., the highest number of connections,
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the longest connection time, etc.); by applying this test we found 1,139 IP ad-
dresses that were in the top first percentile for all four features. To understand
whether these features are effective at identifying monitors, we manually anal-
ysed these anomalies; they included IP addresses assigned to a company named
Checktor [3], which offers commercial BitTorrent monitoring services, and 16 ad-
dresses assigned to a medium-sized computer security consultancy company that
does not publicly acknowledge monitoring BitTorrent. Another subnet, which we
saw in over 500 swarms, belongs to a company that advertises itself as providing
“intellectual property advice”, but does not specifically acknowledge monitor-
ing BitTorrent. We also found two subnets assigned to hosting companies, one
with IP addresses in 433 swarms and the other with IP addresses in 371 swarms.
These hosting companies advertise themselves as providers of Internet services to
businesses, rather than residential users, where BitTorrent traffic is more likely
to be regulated. We speculate that copyright enforcement companies are using
these hosting companies as a front to disguise their identities. We also identified
a number of IP addresses allocated to large ISPs, such as Vodafone, Etisalat and
SingNet. These ISPs have all been assigned very small subnets and therefore use
NAT. Some of the 1,139 also seemed to be very active users on residential ISPs
that were seeding a large number of files; while unusual, there was nothing to
suggest that these peers were engaged in monitoring.

3.3 A Novel Feature

When comparing the profiles of suspicious peers that appeared to be monitoring
with those that appeared to be subject to NAT, we noticed that the suspicious
peers had multiple (IP, port) pairs in a number of different swarms. According
to the BitTorrent protocol, a client should open a different port for each swarm
that it joins; therefore, this behaviour is not expected from regular peers. While
it would be possible for an (IP, port) pair to appear in more than one swarm, this
should only happen when a peer has just left one swarm and joined another. The
instances of peers in different swarms from ISPs that made heavy use of NAT,
such as Vodafone and Etisalat, all had unique (IP, port) pairs. This observation
led us to a new, sixth feature for identifying peers likely engaged in monitoring:

6. The number of times the same (IP, port) pair is observed concurrently in
different swarms.

We considered any (IP, port) pair that appeared in four or more swarms to be
suspicious. This feature found IP addresses assigned to Peer Media Technolo-
gies [16] (a well-known copyright enforcement agency) monitoring seven Harry
Potter ebook and movie torrents, and the INRIA research institution [10], which
had been overlooked by features 1–5 because so few torrents were being moni-
tored, and because a very small proportion of INRIA’s subnet was being used
for monitoring. While we were collecting our data, INRIA did not publicly ac-
knowledge monitoring BitTorrent; however, researchers there have since pub-
lished work describing the detection of initial seeders of files [13].
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3.4 Discussion

These results continue a line of work by Piatek et al. [17], Siganos et al. [20] and
Potharaju et al. [18], who show that indirect monitoring of BitTorrent is occur-
ring and can be detected by profiling specific characteristics of peers’ behaviour.

The Stopped Message. The BitTorrent protocol allows a peer to send a
stopped message in the announce to the tracker to inform it that the peer is
leaving the swarm. The tracker should then remove the peer’s IP address from
its peer list. If a tracker correctly implements this rule of the protocol, an indi-
rect monitor can send the message immediately after receiving a peer list and
thus make itself undetectable. We tested a number of trackers’ support for this
message and while some trackers removed the IP address immediately, those
operated by The Pirate Bay did not. By requesting from the tracker the number
of completed downloads for each torrent, we found that The Pirate Bay bal-
anced tracker load across six servers; it therefore seems probable that the two
announces were being processed by different servers, which explains why peer
IP addresses are not always removed from peer lists.

False Positives and Negatives. We note that, as a normal user of BitTorrent
could be said to be “monitoring” the peers it connects to, it would be possible
for a monitor to avoid detection by any set of features that tries to distinguish
monitors from a regular peer. A monitoring client could avoid detection by our
new feature by selecting a different port for each torrent, and monitoring agencies
could use many different subnets and limit the amount of time that each IP
address was used. This would make monitoring a much more expensive and
time-consuming process, so while we cannot guarantee the detection of a monitor
that deliberately tries to obscure its activities, we can detect monitors that try
to maximise the number of file-sharers they find.

The suspicious behaviour we detected from the IP addresses of companies that
acknowledge that they monitor BitTorrent (such as Checktor), and our detection
of the INRIA monitors before they released their publication, does provide some
ground truth to validate our methods. Inspecting our suspected monitors by
hand, we found no results that appeared to be false positives (although we cannot
absolutely rule out results that may be due to network behaviour we are unaware
of). This suggests that our false positive rate is low. Inspecting a sample of the
negative results, we did not find any that appeared to be monitors, although,
for the reasons given above, it is harder for us to rule out false negatives.

We can make accurate comparisons between sets of features. Comparing the
methods of Siganos et al., Piatek et al. and Potharaju et al. with our own, we
found that they incorrectly identified IP addresses allocated to ISPs which make
heavy use of NAT, such as Vodafone, Etisalat and SingNet. They also missed
some of the smaller monitoring agencies such as Peer Media Technologies and
INRIA. We can therefore be confident that the addition of our new feature
decreases the false negative and false positive rate.
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4 Detecting Direct Monitoring

Direct monitoring, in which monitors directly contact and probe other peers, was
proposed by Bauer et al. as a method of improving the accuracy of file-sharing
evidence collected by monitors [1]. However, it has not been shown conclusively
that direct monitoring is being employed widely by copyright enforcement com-
panies.

A direct monitor may operate actively (by announcing to the tracker, receiving
peer lists and initiating outgoing connections to other peers), or passively (by
placing itself into a swarm and listening for incoming connections only). Passive
monitoring has the advantage of detecting peers using NAT and others that
do not accept incoming connections; active monitoring can be performed more
quickly and thus can monitor more peers across the same period. Initiating and
listening for direct connections takes much longer than harvesting IP addresses
from a tracker, so we concentrate on features that can be calculated without
monitoring a large number of swarms.

4.1 Methodology and Data Collection

We created a number of customised BitTorrent clients, inserted them into swarms
and observed their behaviour. Every protocol-compliant message sent to our
clients was logged along with the timestamp, the message’s payload, and the
peer’s IP address, port number and peer ID. As a side-effect of joining swarms,
our clients regularly received peer lists from trackers after announcing to them,
which we also stored for later use.

Table 2. A summary of direct monitoring activity

Aug 10–23, 2010 Feb 9–18, 2011 May 3–8, 2011

IP addresses seen 311,549 112,584 98,385
(IP, port) pairs seen 2,441,555 371,572 321,949
Torrents monitored 30 20 16
Trackers seen 20 12 12

We created two classes of clients: one designed to communicate with passive
direct monitors (by harvesting peer lists and attempting to connect to each
peer systematically), and another designed to communicate with active direct
monitors (by joining the swarm and only listening for incoming connections).
Since it is possible for monitors to engage in either or both forms of direct
monitoring, this allowed us to determine which (if any) form is being used most
frequently.

Our clients used three different bitfield-reporting strategies to detect discrep-
ancies between the bitfields reported by other peers, so a peer intentionally
misreporting its own bitfield would be noticeable:
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Mirror strategy. Designed to appear as uninteresting as possible to other peers:
reports to connecting clients that it holds the same pieces as the connecting
client (by “mirroring” the client’s bitfield and have messages back to them), does
not send request messages for pieces of the shared file, and does not respond to
request or piece messages.

Empty strategy. Appears to have joined the swarm recently: per the mirror strat-
egy, but always reports an empty bitfield and does not mirror have messages.

Full strategy. Appears to be a seeder: per the mirror strategy, but always reports
a full bitfield and does not mirror have messages.

Two groups of swarms were monitored: 6 sharing public domain files, and
60 sharing copyright-infringing files. Public domain torrents were sourced from
ClearBits [4] and LinuxTracker [14]. Copyright-infringing torrents were selected
from a range of categories on The Pirate Bay, including music, movies, TV shows,
music videos and software. Torrents were selected from both within and outside
of the Top 100. Table 2 summarises the data we collected.

4.2 Features for Detecting Monitors

We identify two features for distinguishing peers likely to be performing active
monitoring:

Reported Completion. Since our clients logged all bitfield messages, and most
peers reconnected to our monitors, we could compare the bitfields the clients
were sent and track their progression over time. Although the majority of peers
reported steady progression towards completing the download, peers in 20 small
subnets always reported completions of between 45% and 55%. For these IP
addresses, further inspection of the bitfields showed no consistency: they ap-
peared to be generated randomly, rather than reflecting a progressively com-
pleting download (compare Figures 3 and 4: black blocks indicate pieces of the
file that a peer claims to have; white blocks are missing pieces). A peer that
reports a piece as not downloaded when it had previously reported it as down-
loaded is lying about the parts of the shared file it is holding, and is therefore
likely to be a monitor.

Connection Frequency. It is common for peers to reconnect to peers they have
discovered previously to check whether they are advertising new pieces that the
peer still needs to download. Most peers connected to our clients over a 40-
hour period during the entire monitoring period. However, 0.05% of the peer
population, scattered across a low number of small subnets, connected to our
monitors over a much longer 133-hour period; all of these peers were also detected
by the “reported completion” feature. This is indicative of a group of peers more
interested in analysing the download progress made by other peers rather than
making any download progress of their own, and is another strong feature for
identifying monitors.

Peers detected using these features superficially appeared to be active, but
in fact they were not downloading the shared file; their IP addresses belong to
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time

Fig. 3. The download progression of a regular peer. Its bitfield steadily progresses
toward completion.

time

Fig. 4. The download progression of a monitoring peer. Its bitfield changes randomly
over time.

subnets of three hosting companies. We can be sure that each connection was
from the same BitTorrent client due to the unique peer ID in the handshake.
This behaviour was not observed in any of the swarms sharing public domain
content; the most likely explanation is that these were monitors. Notably, they
did not request any pieces of the shared file after connecting, so it is questionable
whether a copyright enforcement agency employing this technique could prove
that other peers in the swarm were really sharing the file. We note that monitors
could avoid detection by our “reported completion” feature by simulating a
realistic bitfield over time, but establishing connections with other peers and
then reporting a complete bitfield would be highly suspicious; additionally, as
we could distribute monitors over several subnets, monitors could only avoid
our “connection frequency” feature by making fewer connections, reducing their
effectiveness.

We also experimented with several ineffective features; we briefly discuss them
here, for the sake of completeness and to aid future research into direct moni-
toring:

Duration of connection. The protocol states that idle connections should be
closed after 3 minutes to aid resource conservation. Peers may send keepalive
messages to other peers to indicate that they wish to communicate again soon
(e.g., to request a piece), and therefore want the connection to be kept alive. As
there is no incentive for other peers to remain connected to our “mirror” and
“empty” clients, it is expected that peers should spend little time connected to
them, and conversely spend more time connected to our “full” clients; this was
indeed the case, and we found no evidence that certain peers were deliberately
keeping connections alive for monitoring purposes.

Protocol violations. All peers are expected to obey the protocol; e.g., if a peer
advertises the availability of a piece, it should not request that piece in a future
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message. Similarly, a peer should not attempt to send a piece to another peer
unless the receiving peer has explicitly requested it. Although we found no ev-
idence that protocol violations indicate the presence of a monitor, instances of
protocol violation were observed from 4 IP addresses assigned to ISPs known
to use NAT, indicating that this may instead be another suitable feature for
identifying peers being subjected to NAT or firewalling.

Number of request messages sent. Since BitTorrent is a file-sharing protocol, it
follows that peers should be expected to request pieces of the shared file from oth-
ers; peers that do not request pieces of the file may therefore be participating in
the swarm for reasons other than file-sharing (e.g., monitoring). However, a large
proportion of peers (over 99.9%) connected to our clients without ever sending a
request message for a piece of the file the clients were offering, and subsequently
showed progress in downloading the file in future connections; therefore, this is
an unlikely feature for detecting monitors.

4.3 Discussion

ASes Involved in Monitoring. Based on the features we identify, we suspect
six ASes of harbouring a total of 856 peers engaging in direct monitoring (see
Table 3). Two of these ASes (AS558 and AS1213) have previously been identi-
fied in the study by Potharaju et al. [18] as potential harbourers of monitoring
agencies; we suspect a further four. AS209 was considerably more active in 2010
than in 2011; it may be that this AS was once being used by monitoring agencies,
but no longer is.

Incidence of Monitoring on the Pirate Bay. Our features only detected
monitors in Top 100 torrents; this implies that copyright enforcement agencies
are monitoring only the most popular content on public trackers. Movie and mu-
sic torrents were most heavily monitored (by 65 and 26 monitors respectively),
particularly by AS23504 and AS558; the other categories were less heavily mon-
itored, although between 1 and 7 IP addresses suspected of monitoring were still
present in each category.

The Use of Active vs. Passive Direct Monitoring. All of the potential
monitors we have identified engaged in active direct monitoring: our clients were

Table 3. ASes suspected of engaging in direct monitoring

Number of Monitors AS Name

467 23504 Speakeasy, Inc.
202 174 Cogent/PSI
114 209 Qwest LLC
39 558 Net2EZ
17 27699 TELESP
17 1213 HEAnet Ltd
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unable to establish outgoing connections to them. This is understandable, as
monitors are able to communicate with many more peers (and therefore detect
a larger number of downloaders) by harvesting peer lists and processing them
systematically, as opposed to simply waiting for incoming connections for other
peers.

Average Time before Monitors Connect. 40% of the monitors that com-
municated with our clients made their initial connection within 3 hours of the
client joining the swarm; the slowest monitor took 33 hours to make its first
connection. The average time decreases for torrents appearing higher in the Top
100, implying that enforcement agencies allocate resources according to the pop-
ularity of the content they monitor.

Proportion of Peers Accepting Incoming Connections. The results of
our 2009 study revealed that outgoing connections could only be made to 16%
of peers. This fell to 7% in 2011. Since monitors currently engage in active direct
monitoring only, peers may still be able to participate in a swarm undetected
by enforcement agencies, who rely solely on a peer’s ability to accept incoming
connections in order to communicate with them.

False Positives and Negatives. As with indirect monitoring, the rate of false
negatives is difficult to quantify, because a monitor can arbitrarily behave like
a regular peer. However, this comes at the cost of a far-reduced monitoring
capability. The more measures a monitor takes to increase its efficiency and
coverage, the more easily it can be detected. As for false positives, the suspected
monitors we found showed a highly irregular download progression (as shown in
Figure 4); it is impossible for a peer sharing content to behave in this way, so we
can be sure that they were not regular file-sharers. While we cannot be certain
that they were monitors, it seems highly likely.

Some BitTorrent clients are known to deliberately misreport their bitfields
when seeding, ostensibly to evade ISPs’ traffic management policies that penalise
BitTorrent seeders [22]: rather than sending a complete bitfield, these clients
send a partially-complete bitfield and then immediately complete it with have
messages for the pieces that were omitted (a technique named “lazy bitfield”);
we note that this behaviour is now widespread among BitTorrent clients. Our
customised clients eliminate this potential source of false positives by grouping
the pieces advertised in a client’s bitfield message with those advertised in have
messages received in the subsequent 30 seconds as if they had all been advertised
in the initial bitfield message.

To corroborate the potential sources of suspicious behaviour we had detected,
we compared our results with the contents of public blocklists. These are lists
of peers suspected of being involved in suspicious activity, and are typically
created through manual analysis by a community of concerned users. We use
such lists as a baseline for comparing our results and, in particular, for gaining
an understanding of potential false positives and false negatives. More precisely,
we used the Anti-Infringement blocklist available from I-BlockList [9], as it is
popular among BitTorrent users.
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As a preliminary step, we assessed the accuracy of the Anti-Infringement list
by measuring the number of false positives it contained (i.e., the number of listed
peers that are unlikely to engage in monitoring activity). To do so, we leveraged
the observation that enforcement agencies have no incentive to monitor public
domain torrents. Therefore, we consider an entry in the blocklist to be a false
positive if we find a peer in the subnet engaged in the download of public domain
torrents. During 27 days of monitoring, we found 5 false positives in the blocklist
(out of 2,880 total subnets), and discarded them from the rest of this analysis.
We considered the remaining 2,875 to be true positives (i.e., subnets that could
contain monitoring peers).

Our direct monitoring analysis produced 593 peers (out of 856) that appear
in subnets listed in the Anti-Infringement list. This represents a 69% overlap
between our results and the contents of the list; therefore, the majority of our
results are corroborated by the results of independent blocklists. In addition,
our analysis identifies 263 peers (31% of our results) that, albeit displaying the
same behaviour as monitoring peers (as determined by our detection features),
do not currently appear in blocklists. We consider this a strong indication that
these results are true positives of our analysis that are not detected by (manual)
blocklisting techniques; BitTorrent users should therefore not rely solely on such
speculative blocklists to protect their privacy, and should instead combine them
with blocklists based on empirical research, such as those generated by Potharaju
et al. [18], to reduce the number of false negatives encountered.

Finally, we measured the number of subnets in the Anti-Infringement list
that were observed during direct monitoring and were not detected by our tech-
niques; we consider peers in these subnets to be potential false negatives of our
analysis that warrant further examination. We found 57 such peers. There are
several reasons that these peers might not have been detected by our features: 53
disconnected from our monitoring clients at unexpected times, indicating pos-
sible network connectivity problems or malfunctioning BitTorrent clients. The
remaining 4 used IP addresses whose ISPs are known to use NAT, potentially
limiting their ability to communicate properly with our monitoring clients; these
peers showed no signs of engaging in suspicious activity, so we suspect that their
subnets were mistakenly added to the blocklist.

5 Conclusion

In this paper, we examined the current state of BitTorrent monitoring. We in-
troduced several novel techniques for identifying peers that perform monitoring
and validated them on large datasets. We determined that copyright enforcement
agencies use indirect monitoring (confirming the results of earlier studies) as well
as direct monitoring (a novel contribution of our work) to determine users’ ac-
tivity. From our experiments, we derived a number of interesting properties of
monitoring, as it is currently performed: e.g., that monitoring is prevalent for
popular content (i.e., the most popular torrents on The Pirate Bay) but ab-
sent for less popular content, and that peers sharing popular content are likely
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to be monitored within three hours of joining a swarm. Finally, we found that
publicly-available blocklists, used by privacy-conscious BitTorrent users to pre-
vent contact with monitors, contain large incidences of false positives and false
negatives, and recommended that blocklists based on empirical research [18] are
used over speculative ones.
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24. Wojciechowski, M., Capotǎ, M., Pouwelse, J.A., Iosup, A.: BTWorld: towards ob-

serving the global BitTorrent file-sharing network. In: Proceedings of the ACM
Workshop on Large-Scale System and Application Performance (LSAP), Chicago,
IL, USA (2010)

25. Wolchok, S., Halderman, J.A.: Crawling BitTorrent DHTs for Fun and Profit.
In: Proceedings of the USENIX Workshop on Offensive Technologies (WOOT),
Washington, DC, USA (2010)

26. Zhang, B., Iosup, A., Pouwelse, J., Epema, D., Sips, H.: Sampling Bias in BitTor-
rent Measurements. In: D’Ambra, P., Guarracino, M., Talia, D. (eds.) Euro-Par
2010, Part I. LNCS, vol. 6271, pp. 484–496. Springer, Heidelberg (2010)

27. Zhang, C., Dhungel, P., Wu, D., Ross, K.W.: Unraveling the BitTorrent Ecosystem.
IEEE Transactions on Parallel and Distributed Systems 22(7), 1164–1177 (2011)

http://www.sandvine.com/downloads/documents/2010GlobalInternetPhenomenaReport.pdf
http://www.sandvine.com/downloads/documents/2010GlobalInternetPhenomenaReport.pdf
http://www.thepiratebay.se
http://wiki.theory.org/BitTorrentSpecification#bitfield:_.3Clen.3D0001.2BX.3E.3Cid.3D5.3E.3Cbitfield.3E
http://wiki.theory.org/BitTorrentSpecification#bitfield:_.3Clen.3D0001.2BX.3E.3Cid.3D5.3E.3Cbitfield.3E
https://www.torproject.org


Towards Designing Packet Filter

with a Trust-Based Approach Using Bayesian
Inference in Network Intrusion Detection

Yuxin Meng1, Lam-For Kwok1, and Wenjuan Li2

1 Department of Computer Science, College of Science and Engineering,
City University of Hong Kong, Hong Kong, China

ymeng8@student.cityu.edu.hk, cslfkwok@cityu.edu.hk
2 Computer Science Division, Zhaoqing Foreign Language College,

Guangdong, China
wenjuan.anastatia@gmail.com

Abstract. Network intrusion detection systems (NIDSs) have become
an essential part for current network security infrastructure. However, in
a large-scale network, the overhead network packets can greatly decrease
the effectiveness of such detection systems by significantly increasing the
processing burden of a NIDS. To mitigate this issue, we advocate that
constructing a packet filter is a promising and complementary solution
to reduce the workload of a NIDS, especially to reduce the burden of
signature matching. We have developed a blacklist-based packet filter to
help a NIDS filter out network packets and achieved positive experimen-
tal results. But the calculation of IP confidence is still a big challenge for
our previous work. In this paper, we further design a packet filter with
a trust-based method using Bayesian inference to calculate the IP confi-
dence and explore its performance with a real dataset and in a network
environment. We also analyze the trust-based method by comparing it
with our previous weight-based method. The experimental results show
that by using the trust-based calculation of IP confidence, our designed
trust-based blacklist packet filter can achieve a better outcome.

Keywords: Packet Filter, IP Confidence, Trust Calculation, Network
Intrusion Detection, Bayesian Inference.

1 Introduction

Over the past ten years, network intrusion detection systems (NIDSs) [1,3] have
already become an important and essential component for current network se-
curity infrastructure. These detection systems are widely deployed in various
network environments (e.g., a bank) to analyze network traffic and identify dif-
ferent kinds of network attacks (e.g., malware, spyware). Traditionally, these
detection systems can be categorized into two types: signature-based NIDS and
anomaly-based NIDS. The signature-based NIDS [2,4] detects an attack in terms
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of its signatures1 so that this kind of detection systems can only identify well-
known attacks. On the other hand, the major advantage of an anomaly-based
NIDS [6,7] is the ability to detect novel attacks by means of identifying signifi-
cant deviations between current network traffic and its normal profile2. In real
deployment, a NIDS usually employs both the above two detection approaches,
whereas the signature-based method is more widely used [9], compared with the
anomaly-based detection, as a basis for a NIDS.

However, in a large-scale network environment, it is a big bottleneck for a NIDS,
especially for a signature-basedNIDS, to deal with overhead network packets. The
large number of network packets can heavily consume computer resources and pos-
sibly cause a NIDS to be unable to response to current network events, which can
greatly decrease the effectiveness of these detection systems [12].Take Snort [2,8] as
an example, this lightweight signature-based network intrusion detection system
usually spends round about 30 percent of its total computational power in conduct-
ing signaturematching between its signatures and incoming packet payloads, while
its computational consumption can be significantly increased when deployed in a
heavy traffic network environment. Up to 80 percent ormuchmore of its processing
burden will be put into signature matching when a massive of packets arrive [13].
Overall, its computational burden is at least linear to the size of an input packet
payload [14].

In this case, these detection systems are vulnerable to denial of service (DoS)
attacks [11,10] due to their poor performance in an intensive traffic environment.
The DoS (or distributed DoS) attack is an attempt to cause a computer or
network resource unavailable to its users. In the context of network intrusion
detection, the DoS attack can render a detection system unusable and paralyzed,
which aims to lower the level of network security by sending massive network
packets to exceed the maximum processing capability of the NIDSs.

To mitigate this issue, some packet filtration mechanism has been proposed in
the literature. We also advocate this approach that by appropriately filtering out
a number of network packets, a network intrusion detection system can achieve
more reliable and desirable performance in a large-scale network environment.
But how to appropriately filter out network packets is still a challenge in con-
structing such a packet filter. In our previous work [17], we have proposed and
developed an adaptive blacklist-based packet filter to filter out network packets
in terms of IP confidence. Our previous approach can be treated as a reputation-
based method of constructing a packet filter to address the problem of overhead
network packets for a NIDS, especially for a signature-based NIDS. However, for
the reputation-based method, a big suffering problem is that how to appropri-
ately calculate the reputation. This issue is also a big challenge for our previous

1 These signatures (or rules) are predefined in a NIDS and are critical to an organi-
zation to spot and remediate unwanted events in their network.

2 Anomaly detection refers to detecting patterns in observed events that do not con-
form to an established normal profile. The interesting objects of this detection are
often unexpected bursts in activity.
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work in which we used a method of weighted ratio-based calculation to compute
the IP confidence, but the calculation lacks of theoretical basis.

In this work, we aim to construct a packet filter by using a trust-based method
that refers to Bayesian inference, with the purpose of enhancing the theoretical
background of computing IP confidence and further improving the performance
of the packet filter in a large-scale network environment. Specifically, we design
a particular component called trust calculation engine to calculate the trust
values3 (or IP confidence) for determining the blacklisting IP addresses. The
specific calculation of trust values is referred to a Bayesian inference model. We
also propose that an appropriate packet filtration mechanism should have several
characteristics as follows:

– The packet filter should have a minimum impact on the network perfor-
mance.

– The packet filter should indeed provide a good filtration rate.
– The packet filter should not lower the whole level of network security.

The contributions of our work can be summarized in terms of the above charac-
teristics as below:

– We further designed a trust-based blacklist packet filter by applying Bayesian
inference in calculating the trustworthiness of blacklisting IP addresses. In-
terfering only with abnormal traffic, the impact of our packet filter on the
network performance is minimum.

– In the experiment, we evaluated our approach with Snort in real settings
and the experimental results showed that our packet filter could indeed help
reduce the burden of a signature-based NIDS by filtering our a number of
network packets (e.g., a reduction rate between 20% and 30%).

– We further analyzed the capability of our approach in defending against the
DoS attack, and discussed the impact of impersonation attacks [15] on the
packet filter. We presented that our approach would not affect and lower
the whole level of network security.

In addition to the above work, we further compared our current trust-based
method with our previous weight-based method in the aspect of both false rate
(false positive and false negative) and traffic sensitivity by simulating network
traffic in a network environment.

The rest of this paper is organized as follows. The background of our pre-
vious work is presented in Section 2; in Section 3, we show the architecture of
our designed trust-based blacklist packet filter and describe the trust calculation
in details; Section 4 illustrates the experimental methodology and experimental
results, and we also compare the current trust-based computation with our pre-
vious weight-based calculation; Section 5 discusses the related work and we point
out the future work in Section 6. Finally, we present conclusions in Section 7.

3 The term of trust value is used to measure the IP confidence, therefore, we use these
two terms interchangeably throughout this paper.
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Fig. 1. The high-level architecture of the adaptive blacklist-based packet filter, which
consists of a blacklist packet filter and a monitor engine

2 Background

In our previous work [17], we have proposed and developed an adaptive blacklist-
based packet filter to help a NIDS filter out a number of network packets. The
packet filter refines network packets depending on a blacklist, which can be
generated by calculating the IP confidence. We show the high-level architecture
of the adaptive blacklist-based packet filter in Fig. 1.

There are mainly two components in the adaptive blacklist-based packet filter :
a blacklist packet filter and a monitor engine. The blacklist packet filter is re-
sponsible for filtering out network packets based on IP confidence. The monitor
engine is used to collect data and update the blacklist in the blacklist packet
filter by calculating the IP confidence.

In real deployment, this packet filter is implemented in front of the NIDS.
Therefore, network traffic will firstly arrive at the blacklist packet filter. The
filtration procedure is described as below:

– If the source IP address of a packet is not in the blacklist, then this packet
will be forwarded into the NIDS for examination.

– The NIDS examines this packet as the traditional way and decides
whether to output an alarm.

– If this packet is malicious, then the NIDS will produce an alarm and
report this information to the monitor engine.

– If this packet is normal, then the NIDS will send it to the target network.

– If the source IP address of a packet is in the blacklist, then this packet will
be compared with the NIDS signatures stored in the blacklist packet filter.
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– If a match is found, then the blacklist packet filter will generate an alarm
and send a copy of this alarm to the monitor engine.

– If no match is identified, then the blacklist packet filter will directly send
the packet to the target network and report the status (e.g., good or
normal) of the packet (or IP address) to the monitor engine.

The monitor engine calculates the IP confidence by collecting the data from
both the NIDS and the blacklist packet filter. In our previous work, we used a
method of weighted ratio-based blacklist calculation. The formula of the method
is shown in equation (1) (i represents the number of good packets, k represents
the number of bad packets and 10 is the weighted value). In a fixed updating
time, the monitor engine will update the blacklist in the blacklist packet filter to
adapt the packet filter to the network contexts.

IP confidence =

∑n
i=1 i∑m

k=1 10× k
(n,m ∈ N) (1)

In the previous experiments, we achieved positive results that our packet filter
could perform well and reduce the packets ranged from 11% to 23%. However,
the IP calculation is effective and computed based on real performance. In other
words, the weight-based approach of calculating the IP confidence lacks of theo-
retical basis. According to the work [18], the above equation is a straightforward
method without the need of a distribution model, whereas it cannot accurately
capture and model the uncertainty of network traffic. To improve this issue, we
therefore attempt in designing our packet filter with a trust-based method of us-
ing Bayesian inference in calculating the IP confidence. Our current work aims
to measure packet filtration and reduction with a theoretical model.

3 Our Proposed Method

In this section, we begin by describing the Bayesian inference and introducing its
application in our designed packet filter. We then present the architecture of our
further proposed trust-based blacklist packet filter and describe its components
and functions in details.

3.1 Trust Value Calculation Using Bayesian Inference

In compute science, the notion of trust is borrowed from the social science litera-
ture aiming to evaluate and predicate the behavior of target objects. There is no
clear definition for trust in the computer networks so that it can be interpreted
as reputation, probability, trusting option, directed graphs, etc.

A lot of research work has studied and applied the notion of trust in different
fields (see Section 5). In this paper, referring to some related work about IP
reputation [18,19], we therefore aim to apply a trust-based method of using
Bayesian inference (a theoretical model) into calculating the IP confidence for
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our designed trust-based blacklist packet filter, which can greatly help the packet
filter deal with variants in network traffic.

As discussed in Section 2, the adaptive blacklist-based packet filter can be re-
garded as a reputation-based method. Thus, we can calculate the trust values (or
IP confidence) by applying other trust-based approaches. In statistics, Bayesian
inference is a method of inference in which Bayes’ rule is used to update the
probability estimate for a hypothesis as additional evidence. The objective of
using the Bayesian inference in our work is to determine whether an IP address
should be blacklisted. We give a major assumption as follows:

– Assumption. We assume that all packets are independent from each other.
That is, if one packet is found to be a malicious packet, the possibility of the
following packet being a malicious packet is still 1/2.

This possibility assumption indicates that the attacks may come in various forms,
either in one packet or in a number of packets. To derive the calculation of trust
values. We assume that N packets are sent from an IP address to the trust-based
blacklist packet filter, of which k packets are proven to be normal. we further
provide some terms as below:

Vi (means that the ith packet is normal.)

n(N) (means the number of normal packets.)

P (ni : normal) = p (means the possibility of the ith incoming packet is normal.)

In terms of the work [18,19] and the above assumption, the distribution of ob-
serving n(N) = k is governed by Binomial distribution4 as below.

P (n(N) = k|p) = (Nk )pk(1 − p)N−k (2)

Then, our objective is to estimate the possibility P (VN+1 = 1|n(N) = k). We can
use the Bayesian Inference approach to calculate this possibility. From Bayesian
equation, we can have the following probability distribution.

P (VN+1 = 1|n(N) = k) =
P (VN+1 = 1, n(N) = k)

P (n(N) = k)
(3)

For the above equation, we use marginal probability distribution5 and have:

P (n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p) · dp (4)

P (VN+1 = 1, n(N) = k) =

∫ 1

0

P (n(N) = k|p)f(p)p · dp (5)

4 Binomial distribution is the discrete probability distribution that represents the
number of successes in a sequence of n independent, which the possibility of each n
is the same p.

5 Marginal distribution of a subset of random variables is the probability distribution
of the variables contained in the subset.
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There is no prior information about p, so that we assume that p is determined by
a uniform prior distribution f(p) = 1 where p ∈ [0, 1]. Therefore, using equation
(2), (3), (4) and (5), we can have the following equation:

P (VN+1 = 1|n(N) = k) =

∫ 1
0 P (n(N) = k|p)f(p)p · dp∫ 1
0
P (n(N) = k|p)f(p) · dp

=
k + 1

N + 2
(6)

Based on the equation (6), we can calculate the trust values (denoted tvalue) for
relevant IP addresses. If we set a threshold to T ∈ [a, b] (the selection of the
threshold will be discussed later), then we can judge a blacklisting IP address6

to be maintained or deleted as follows:

– If tvalue ∈ T , then the blacklisting IP address will be deleted from the black-
list.

– If tvalue is not in T , then the blacklisting IP address will be still in the
blacklist.

3.2 Architecture of Trust-Based Blacklist Packet Filter

As shown in Fig. 2, we describe the architecture of our further designed trust-
based blacklist packet filter. There are totally two major components: a blacklist

Fig. 2. The architecture of the trust-based blacklist packet filter, which consists of a
blacklist packet filter and a trust calculation engine

6 In the packet filter, a new IP address will be blacklisted as long as a NIDS alarm for
this IP address is produced.
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packet filter and a trust calculation engine. The blacklist packet filter is similar
in our previous work and is mainly responsible for filtering out network packets
based on trust values. It consists of two components: a blacklist and a look-up
table. The blacklist contains all blacklisting IP addresses while the look-up table
contains NIDS signatures indexed by the blacklisting IP addresses. The trust
calculation engine is used to collect data from both the blacklist packet filter
and the NIDS, and is responsible for computing trust values and updating the
blacklist accordingly. When network packets arrive, the filtration procedure of
the trust-based blacklist packet filter is described as below:

– If the IP address of a packet is in the blacklist, then the packet payload will
be compared with the signatures stored in the look-up table.

– If a match is found, then the blacklist packet filter will produce an alarm
and send a copy of this alarm to the trust calculation engine.

– If no match is found, then the packet will be sent to the target network.

– If the IP address of a packet is not in the blacklist, then the packet will be
forwarded into the NIDS for examination

In Fig. 3, we give the construction of the look-up table in the blacklist packet
filter. The look-up table contains two sub-tables: table of Matched NIDS Sig-
natures and table of All NIDS Signatures. The table of All NIDS Signatures
contains all NIDS signatures that are active in the NIDS signature database.
The table of Matched NIDS Signatures contains the NIDS signatures that have
been matched in the detection procedure and the matched NIDS signatures are
indexed by blacklisting IP addresses. The comparison procedure in the look-up
table is described as below:

For a payload from an IP address, the look-up table will firstly search in the
table of Matched NIDS Signatures based on its IP address.

– Situation1. For this IP address, if there are no any signatures in the table of
Matched NIDS Signatures, then the look-up table will compare the payload
with the signatures in the table of All NIDS Signatures.

– If a match is found, then an alarm will be produced.

– If no match is found, then the packet will be sent to the target network.

– Situation2. For this IP address, if there are signatures existing in the table of
Matched NIDS Signatures, then the look-up table will compare the payload
with the matched signatures.

– If a match is found, then an alarm will be produced.

– If no match is found, then the look-up table will compare the payload
with all signatures in the table of All NIDS Signatures. The comparison
process is the same as Situation1.
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Fig. 3. The construction of the look-up table: table of Matched NIDS Signatures and
table of All NIDS Signatues

4 Evaluation

To evaluate the trust-based approach, in this section, we describe the experi-
mental methodology, illustrate how to determine the threshold in the designed
packet filter, present experimental results and discuss the current approach with
our previously used weight-based method.

4.1 Experimental Methodology

The first question is that how to set an appropriate threshold for distinguish-
ing normal and abnormal IP addresses. According to the equation (6), we can
calculate the trust values (tvalue) as follows:

tvalue =
k + 1

N + 2

Therefore, if k is big enough which means that normal packets dominate the
network traffic, then the tvalue will become larger. Since k is smaller than N
(the total number of packets), the value range of tvalue is belonging to [0,1].
In this case, the best scenario for tvalue is that its value infinitely close to 1,
which means that the vast majority of current network packets are normal. On
the other hand, when the tvalue declines, it means that malicious packets are
detected in the network environment. Therefore, the threshold can be initially
presented as [a,1]. To determine the lower limit a of the threshold, we simulate
some normal traffic to the trust-based blacklist packet filter and identify the
threshold by analyzing the simulation results.
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Fig. 4. The average trust values for the two parts of the real dataset: DATA1 and
DATA2

After obtaining the threshold, we then investigate the performance of our
trust-based blacklist packet filter with a real dataset and in a network environ-
ment, comparing with the performance of Snort. At last, in the network environ-
ment, we compare the calculation of trust values with the weighted ratio-based
calculation by simulating some normal and malicious packets.

4.2 Threshold Selection

In order to select an appropriate lower limit for the threshold, we conducted
an experiment for the designed packet filter by using a real dataset. The real
dataset was captured by a Honeypot7 which was deployed in our CSLab. The
Honeypot provided several services (e.g., FTP, HTTP) for users from outside
network and recorded all incoming traffic. The incoming traffic can contain both
normal and abnormal traffic.

By analyzing the captured traffic, we constructed a real dataset and divided
it into two parts (called DATA1 and DATA2 ), with about 4 to 6 million packets
and the base rates are nearly B=0.003325 and B=0.001723 respectively which
are regarded to be reasonable and normal in real settings. We simulated the
traffic to our packet filter and the results are shown in Fig. 4.

In the experiment, the trust values will be updated in every 1 second. The
average trust values are simply average values of all IP addresses in the dataset.
For the DATA1, its average trust values are from 0.765 to 0.934, while for the
DATA2, the average trust values are from 0.788 to 0.965. On the whole, the
range of trust values is between 0.75 and 1.0. Therefore, based on the simulation
results, we select the threshold to [0.75,1].

7 This project is managed by HoneybirdHK (http://www.honeybird.hk/)

http://www.honeybird.hk/
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Fig. 5. The trust values for IP1, IP2, IP3, IP4, IP5 in DATA3

4.3 Experiment with Real Dataset

Based on the Honeypot, we additionally constructed another dataset called
DATA3 to explore the initial performance of the trust-based blacklist packet
filter. By analyzing the DATA3 in advance, we have found some malicious pack-
ets are from the IP addresses: denoted IP1, IP2 and IP3. We present the trust
values about these possible blacklisting IP addresses in Fig. 5.

The trust values will be updated in every 1 second. It is visible that the trust
values for IP1, IP2 and IP3 gradually decline below the threshold [0.75,1] when
these IP addresses send some malicious packets. In comparison, we give the
trust values of two normal IP addresses: IP4, IP5. As shown in Fig. 5, the trust
values of these two normal IP addresses steadily fall within the threshold [0.75,1].
The results of this experiment show that the trust-based blacklist packet filter
is capable of detecting the malicious IP addresses that are sending malicious
packets mixing with normal packets.

In the experiment, it is hard for the trust values to reach the perfect value 1
since packet record may arrive late and the trust calculation engine will not count
these packets in the calculation of trust values. That is, the trust calculation
engine may not consider the late packets to be normal packets in nature. This
mechanism ensures that only confirmed normal packets can be used in calculating
the trust values, which can secure the trust calculation.

4.4 Experiment in a Network Environment

To further investigate the performance of the packet filter in the aspect of packet
filtration, we constructed a network environment by using existing tools and
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Fig. 6. The experimental deployment consists of Snort1, Wireshark1, Wireshark2,
trust-based blacklist packet filter, Snort2 and Internal Network

deployed the trust-based blacklist packet filter in this network environment. The
experimental deployment is shown in Fig. 6.

The network environment mainly consists of Snort, Wireshark [16] and the
trust-based blacklist packet filter. In particular, we implemented two Snort in
the network environment, one (named Snort1 ) is deployed in front of the trust-
based blacklist packet filter whereas the other (named Snort2 ) is deployed behind
the packet filter. Due to this deployment, we can evaluate the capability of the
packet filter in reducing the burden of a NIDS by comparing the performance
between Snort1 and Snort2. The Wireshark is responsible for monitoring net-
work packets and verifying the performance of our packet filter in the aspect of
packet reduction by analyzing recorded packet information.

We conducted the experiment for a week and the first-day results of CPU
usage between Snort1 and Snort2 are presented in Fig. 7. The results show that
the CPU usage of Snort1 generally larger than that of Snort2 by implementing
in the same network environment. The CPU-usage performance of other 6 days
is similar to the first day, which means that our packet filter can indeed reduce
the burden of a NIDS by filtering out a number of network packets. In Table 1,
we show the packet reduction rate for 7 days. The information is calculated
based on the recorded data from the two Wireshark tools. It is easily visible
that our packet filter can achieve a packet reduction rate in the range from
21.54% to 33.87% in the experimental network environment. The results verify
that our packet filter is able to filter out network packets by using the trust-based
approach to calculate the IP reputation.
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Fig. 7. The CPU usage of Snort1 and Snort2 for the first day

Table 1. Results of Packet Reduction Rate

Week Day Packet Reduction Rate (%) Week Day Packet Reduction Rate (%)

Monday 21.54 Saturday 24.33

Tuesday 22.56 Sunday 25.80

Wednesday 31,67

Thursday 27.84

Friday 33.87

The specific packet reduction rate is depending on the number of blacklist-
ing IP addresses in the blacklist packet filter. In general, more IP addresses are
blacklisted, bigger reduction rate can be achieved. In this case, the packet reduc-
tion rate in a real network environment may be fluctuant in terms of network
contexts (i.e., when the network traffic is becoming normal, the reduction rate
will be decreased, but if the network traffic contains a lot of malicious packets,
then the reduction rate will be possibly increased). More future experiments can
be conducted to explore this relationship.

4.5 Outcome Comparison

The above experiments show positive results of our designed trust-based blacklist
packet filter in reducing the burden of a NIDS by filtering out network packets.
In this section, we compare the trust-based approach with our previous weight-
based method in the aspect of blacklist generation.
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Fig. 8. The number of blacklisting IP addresses for Mtrust and Mweight

Our packet filter is based on a blacklist, thus, it is very important to ap-
propriately generate a good blacklist. The meaning of a good blacklist can be
represented as follows:

– The blacklist should accurately reflect the current traffic. In other words,
the false positive and the false negative of the blacklist should be low.

– The blacklist should be sensitive to the traffic change. That is, when a poten-
tial malicious IP address is detected or deleted, the blacklist should contain
or remove this IP address in terms of calculated trust values or IP confidence.

To compare the two approaches (we denote our current approach as Mtrust while
our previous method as Mweight), we deployed these approaches in a network
environment like Fig. 6 and simulated some traffic to both mechanism. During
the experiment, we utilized a packet generator [5] to simulate some malicious IP
addresses by sending out some malicious packets. The number of blacklisting IP
addresses for both methods is shown in Fig. 8.

At the beginning, we simulated 33 malicious IP addresses. The approach of
Mtrust blacklisted 30 of them whereas the approach of Mweight blacklisted 32 of
them. The detection rate of Mweight is a bit higher since we use a 10-weighted
ratio based method to emphasize the impact of every malicious packet.

Then in the time interval of 5s to 10s, we additionally simulated 15 new
malicious IP addresses. For the Mtrust, it blacklisted all these new IP addresses
while the number of blacklisting IP is 44 rather than 45, the reason is that 1
blacklisting IP address has become normal in terms of its trust value. For the
Mweight, it detects all these new malicious IP with no blacklisting IP becoming
normal. Subsequently, we only maintained 32 malicious IP addresses to send
malicious packets between 10s and 15s. It is easily visible that Mtrust can quickly
adaptive to this change and its number of blacklisting IP addresses decreases to
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34. But for Mweight, its number of blacklisting IP addresses only decreases from
47 to 38. During [25s,30s], [30s,35s] and [50s, 60s], we maintained the number
of malicious IP addresses to 36, 30 and 34 respectively. Similarly, we find that
Mtrust is more sensitive to the traffic changes than Mweight.

Overall, based on the simulation results, both of the two approaches have an
acceptable false positive and false negative (i.e., Mtrust with FN 6.8% and FP
8.32%, Mweight with FN 2.2% and FP 15.4%). The false positive of Mweight

is higher than Mtrust in that we use 10 as the weighted value in calculating
IP confidence which means that an IP address may be blacklisted by sending
only several malicious packets. On the other hand, due to the weighted blacklist
generation,Mweight is more powerful in detecting a malicious IP address. On the
whole, the false positive and the false negative of both approaches are acceptable.
Regarding to the sensitivity, the approach of Mtrust is greatly more sensitive to
the traffic changes in a network than Mweight. Based on the definition of a good
blacklist, we considerMtrust is generally better than Mweight by considering both
false rate (false positive and false negative) and traffic sensitivity.

4.6 Security Discussion and Potential Countermeasures

DoS Attack. As discussed before, DoS attack is a big problem for a NIDS. By
implementing the packet filter, a lot of network packets can be filtered out so
that the possibility of a NIDS surviving in a large-scale network environment
will be increased.

For the packet filter, DoS attack is also a big challenge as for other packet
filters that some countermeasures should be considered. However, the counter-
measures should not affect the network security too much. We therefore consider
employing a d-threshold into our packet filter that all packets from an IP address
will be discarded if the trust value of this IP address is below the d-threshold. In
this case, the possibility range [0,1] can be further divided into three intervals:

– [0,d-threshold]. When the trust values belong to this interval, all packets
from these IP addresses will be discarded.

– [d-threshold,0.75]. When the trust values fall in this interval, all packets from
these IP addresses will still be compared with NIDS signatures by the trust-
based blacklist packet filter in order to keep the level of network security.

– [0.75,1]. When the trust values are classified into this interval, all packets
will be processed into a NIDS for examination.

The DoS attack can be partly mitigated by employing a d-threshold. If the trust
value of an IP address is smaller than this d-threshold, it means that this IP
address is harmful to the network. Therefore, it is crucial to appropriately select
this d-threshold. Further experiments should be conducted to collect more data
to investigate this issue.

IP Spoofing. This IP spoofing attack is a kind of impersonation attacks, which
refers to sending network packets by concealing the identity of the sender or



218 Y. Meng, L.-F. Kwok, and W. Li

impersonating another computer users. The final goal of this attack is possibly
to launch a DoS attack, which affects the availability of network resources.

For our packet filter, the IP spoofing attack may succeed in bypassing the
filtration of the packet filter. However, as discussed in our previous work [17],
this attack will not affect the whole level of network security since the packets
still need to be examined by a NIDS even if these packets bypass our packet filter.
Moreover, our packet filter and the NIDS use the same NIDS signature database
so that the detection capabilities of the packet filter and the NIDS are the same.
To further mitigate this attack, we can develop an IP verification mechanism to
verify the IP source and filter out spoofed packets. More experiments and data
should be collected to evaluate this approach.

5 Related Work

Trust-based methods have been applied in many fields. Gonzalez et al. [19] pre-
sented a work by using Bayesian inference in defending against IP spoofing
attacks at the router level. Their results showed that their application could
effectively detect malicious access routers and has a low impact on the network
performance. Our work is different from their work in that we apply the Bayesian
inference and Bayesian model into network packet filtration to help compute IP
confidence (determine blacklist) and construct a trust-based blacklist packet fil-
ter. It is visible, from our work, that the trust-based method is a promising
method that can be applied into the evaluation of packet filtration. To the best
of our knowledge, our work is an early work that attempts in designing a packet
filter with a Bayesian model and applying this probability model into producing
a blacklist. We expect to see more work to be done in this research area.

For the application of trust-based approaches, Yao et al. [20] proposed a
Bayesian network-based trust model for a peer-to-peer file sharing application,
which could present differentiated trust and combine different aspects of trust.
Sun et al. [18] presented an information theoretical framework to quantitatively
measure trust and to build a model for trust propagation in ad hoc networks. The
framework was developed to secure ad hoc routing and malicious node detection.
Then, Zhu et al. [24] extended the above idea to formalize the trusted actions
by using mutual information to quantify trust and to use MaxMin mechanism
to calculate trust which could be established through multiple recommendation
paths in ad-hoc networks. Later, Chung et al. [21] presented a trust model, based
on Bayesian networks, which could adapt to ad hoc networks and distributed
systems. Their model evaluated the trust in a server based on two points: direct
experiences with the server and recommendations concerning its service.

For filtering out packets in intrusion detection, Ioannis et al. [22] introduced a
packet pre-filtering approach, which was a powerful hardware-based technique,
as a means to resolve the burden of an intrusion detection system. They imple-
mented the header matching portion of a NIDS system together with a small
prefix match that the rules could be checked more efficiently by a full-match
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module. Later, Ning et al. [23] proposed a high-performance memory-based IDS
that could be easily reconfigured for new rules by utilizing deep packet pre-
filtering and novel finite state encoding.

6 Future Work

A lot of studies have been conducted on constructing packet filters. But it is still
a hot topic for efficiently designing such kind of filters and appropriately evaluat-
ing the packet filtration and reduction. Our current work aims to design a packet
filter to adaptively filter out network packets by calculating IP confidence and
generating a blacklist with a theoretical model. There are many possible work in
future experiments. The future work could include exploring the performance of
the trust-based blacklist packet filter in a distributed network environment (i.e.,
exploring whether the threshold is the same when deployed in a distributed net-
work environment). Future work could also include employing more information
theory (e.g., entropy theory) in calculating the IP confidence and evaluating the
performance of packet filtration and reduction.

7 Conclusion

The performance of a network intrusion detection system is greatly restricted
in a large-scale network environment. That is, overhead network packet can
significantly reduce the effectiveness of a NIDS and heavily consume computer
and network resources. To mitigate this issue, we advocate that constructing a
packet filter is a promising solution.

In this work, we further design a trust-based blacklist packet filter to reduce the
burden of a NIDS by filtering out a number of network packets. Specifically, the
trust-based blacklist packet filter consists of two major components: a blacklist
packet filter and a trust calculation engine. The blacklist packet filter is respon-
sible for filtering out network packets in terms of IP confidence while the trust
calculation engine is responsible for collecting data and updating the blacklist.
The blacklist is generated by computing the trust values (or IP confidence) by
using a trust-based approach of Bayesian inference.

In the experiment, we showed how to select an appropriate threshold for our
packet filter. We then evaluated the performance of the packet filter with a
real dataset and in a network environment. The experimental results show that
the packet filter is effective at filtering out network packets without lowering
the network security and has a minimum impact on the network performance.
We further compared our current trust-based method with our previous weight-
based method and the simulation results describe that the trust-based method
is generally better by considering both false rate and traffic sensitivity.

Acknowledgments. We would like to thank HoneybirdHK for supporting and
providing the real dataset and all anonymous reviewers for their valuable com-
ments.
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Abstract. We describe a network-based data-leak detection (DLD)
technique, the main feature of which is that the detection does not re-
veal the content of the sensitive data. Instead, only a small amount of
specialized digests are needed. Our technique – referred to as the fuzzy
fingerprint detection – can be used to detect accidental data leaks due to
human errors or application flaws. The privacy-preserving feature of our
algorithms minimizes the exposure of sensitive data and enables the data
owner to safely delegate the detection to others (e.g., network or cloud
providers). We describe how cloud providers can offer their customers
data-leak detection as an add-on service with strong privacy guarantees.
We perform extensive experimental evaluation on our techniques with
large datasets. Our evaluation results under various data-leak scenarios
and setups show that our method can support accurate detection with
very small number of false alarms, even when the presentation of the
data has been transformed.

Keywords: privacy, data leak, network security, protocol.

1 Introduction

Typical approaches to preventing data leak are under two categories – host-based
solutions and network-based solutions. Host-based approaches may include i)
encrypting data when not used [4], ii) detecting stealthy malware with anti-
virus scanning or monitoring the host [29,31,18], and iii) enforcing policies to
restrict the transfer of sensitive data. These approaches are complementary and
can be deployed simultaneously.

We present a network-based data-leak detection (DLD) solution that comple-
ments host-based methods. Network-based data-leak detection focuses on ana-
lyzing unencrypted outbound network traffic through i) deep packet inspection
or ii) information theoretic analysis (e.g., through entropy analysis [13]). For the
deep packet inspection approach, a straightforward solution requires inspecting
every packet for the occurrence of any of the sensitive data defined in the sensi-
tive database. Such solutions generate alerts if the sensitive data is found in the
outgoing traffic. However, this simple solution requires storing sensitive data in
plaintext in the detection system.

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 222–240, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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The reason that this plaintext-based comparison mechanism is undesirable is
two-fold: i) the machine performing the comparison may be compromised, which
reveals sensitive data1, and ii) it does not support the outsource of data-leak
detection operations, as the provider performing the DLD service may learn
or accidentally expose the sensitive data. In addition to provide the regular
networking, computing, or storage services, network or cloud providers may in-
troduce additional security protection for their customers. For their customers,
these add-on security services – such as data-leak detection – are attractive,
as they may have a lower cost compared to building in-house security manage-
ment of their own. Thus, one may outsource the data-leak detection to a DLD
provider. However, the data owner may not allow the DLD provider to access the
sensitive data. The technical challenge is that the detection algorithm needs to
provide guarantees on the secrecy of customers’ sensitive data while still enabling
the provider to identify signs of data leak in the traffic.

This problem of the lack of support for privacy-enhancing data-leak detection
has not been systematically addressed in the security literature. In this paper we
design, implement, and experimentally evaluate an efficient technique that en-
hances the data privacy during the data-leak detection operations. Our method is
based on a fast and practical one-way computation and does not require any ex-
pensive cryptographic operations. We provide extensive experimental evidences
and theoretical analysis to demonstrate the feasibility and effectiveness of our
approach.

We model the DLD provider as an honest-but-curious (aka semi-honest) ad-
versary. The DLD provider is trusted to perform inspection on network traffic,
but may attempt to learn the information about the sensitive database provided
by the data owner, or to discover the leaked data easily from the network traffic.
Existing work on cryptography-based multi-party computation is not efficient
enough for practical data leak inspection in this setting. We design, implement,
and evaluate a new privacy-enhancing data-leak detection system that enables
the data owner to securely delegate the traffic-inspection task to DLD providers
without exposing the sensitive data. It is hard for a DLD provider to learn the
exact value of sensitive data during the detection process.

In our model, the data owner computes a special set of digests or fingerprints
from the sensitive data, and then discloses only a small amount of digest in-
formation to the DLD provider. These fingerprints have important properties,
which prevent the provider from gaining knowledge of the sensitive data, while
they enable accurate comparison and detection. The DLD provider performs
deep packet inspection to identify whether these fingerprint patterns exist in
the outbound traffic of data owner’s organization or not. We perform extensive
experiments with real-world datasets in various data-leak scenarios to confirm
the accuracy and efficiency of our proposed solutions. Our contributions are
summarized as follows.

1 Sensitive data may be in encrypted storage, but is plaintext when in memory for
comparison.
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1. We describe a privacy-preserving data-leak detection (DLD) model for pre-
venting inadvertent data leak in network traffic. Such a model yields a pow-
erful and delegatable data-leak detection framework. For example, in the
cloud computing environment the cloud provider can perform data-leak de-
tection as an add-on service to its clients. We describe a quantitative privacy
model needed for data-leak detection as a service.

We design, implement, and evaluate a new and efficient technique, fuzzy
fingerprint, for realizing privacy-preserving data-leak detection. Fuzzy finger-
prints are special digests of the sensitive data that the data owner releases
to the DLD provider. We describe the operations in our protocol that is run
between the data owner and the DLD provider.

2. We implement our detection system and perform extensive experimental
evaluation on 2.6 GB Enron dataset, Internet surfing traffic of 20 users, and
also 5 simulated real-world data-leak scenarios to measure the privacy guar-
antee, detection rate and efficiency of our technique. Our results indicate high
accuracy performed by our underlying scheme with very low false positive
rate. It also shows that the detection accuracy does not degrade when only
partial (sampled) sensitive-data digests are used. In addition, these partial
fingerprints represent the full set of data without any bias.

The rest of the paper is organized as follows. Our models and design require-
ments for a privacy-preserving data-leak detection system are presented next.
Details of our system including digest computation, data-inspection strategies
are described in Section 3. We analyze the privacy in Section 4, and also point
out the limitations of our method. Our implementation and evaluation are de-
scribed in Section 5. Related work is given in Section 6. Conclusions and future
work are given in Section 7.

2 Model and Overview

There is a privacy goal and threat model beside the normal security goal and
threat model for any solution to outsource data-leak detection. The former is
for preventing the service provider from gaining knowledge about the sensitive
data during the detection, whereas the latter relates to preventing unauthorized
transmission of sensitive data. There are two types of players in our model: the
organization (i.e., data owner) and the data-leak detection (DLD) provider.

– Organization owns the sensitive data and authorizes the DLD provider to
inspect the network traffic from the organizational networks for anomalies,
namely inadvertent data leak. However, the organization does not want to
directly reveal the sensitive data to the provider.

– DLD provider inspects the network traffic for potential data leaks. The in-
spection can be performed offline without causing any real-time delay in
routing the packets. However, the DLD provider may attempt to gain knowl-
edge about the sensitive data.

We describe the security and privacy goals in Section 2.1 and Section 2.2.
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2.1 Security Goal and Threat Model

We categorize three causes for sensitive data to appear on the outbound traffic
of an organization, including the legitimate data use by the employees.

– Case I Inadvertent data leak: The sensitive data is accidentally leaked in the
outbound traffic by a legitimate user. This paper focuses on detecting this
type of accidental data leaks over the network. Inadvertent data leak may
be due to human errors such as forgetting to use encryption, carelessly for-
warding an internal email and attachments to outsiders without encryption,
or due to application flaws (such as described in [19]).

– Case II Malicious data leak: A rogue insider or malicious and stealthy soft-
ware may steal sensitive personal or organizational data from a host. Because
the malicious adversary can use strong encryption or steganography to dis-
able content-based traffic inspection, thus this type of leaks (including covert
channels) are out of the scope of our network-based solution. Host-based de-
fenses (such as detecting the infection onset [33]) need to be deployed instead.

– Case III Legitimate and intended data transfer: The sensitive data is sent by
a legitimate user intended for legitimate purposes. In this paper, we assume
that legitimate data transfers use data encryption such as SSL, which allows
one to distinguish it from the inadvertent data leak. Therefore, in what
follows we assume that plaintext sensitive data appearing in network traffic
is only due to inadvertent data leaks.

The security goal in this paper is to detect the inadvertent data leak in Case I. In
this scenario, the traffic is usually not encrypted and thus deep packet inspection
is feasible. Network-based security approaches are not effective against data leak
caused by malware or rogue insiders as in Case II, because the intruder may use
strong encryption when transmitting the data.

2.2 Privacy Goal and Threat Model

To prevent the DLD provider from gaining knowledge of the sensitive data during
the detection process, we need to set up a privacy goal that is complementary to
the security goal above. We model the DLD provider as a semi-honest adversary,
who follows our protocol to carry out the operations, but may attempt to gain
knowledge about the sensitive data of the data owner. Our privacy goal is defined
as follows. The DLD provider is given digests of sensitive data from the data
owner and the content of network traffic to be examined. The DLD provider
should not find out the exact value of a piece of sensitive data with more than
1
K probability, where K is an integer representing the number of all possible
sensitive-data candidates that can be inferred by the DLD provider.

We present a novel privacy-preserving DLDmodel with a new fuzzy fingerprint
mechanism to improve the data protection against semi-honest DLD provider.
We generate digests of sensitive data through a one-way function, and then
hide the sensitive values among other non-sensitive values via fuzzification, The
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privacy guarantee is much higher than 1
K when there is no leak in traffic, because

the adversary’s inference can only be done through brute-force guesses.
The traffic content is accessible by the DLD provider in plaintext. Therefore,

in the event of true data leak, the DLD provider may learn about the leaked
information, which is inevitable for all deep-packet inspection approaches. Our
unique solution confines the amount of maximally information learned during
the detection and provides quantitative guarantee for the data privacy.

2.3 Overview of Privacy-Enhancing DLD

Our privacy-preserving data-leak detection method supports practical data-leak
detection as a service and minimizes the knowledge that a DLD provider may
gain during the process. Figure 1 illustrates the six operations between the data
owner and the DLD provider in our protocol, which include Preprocess run
by the data owner to prepare the digests of sensitive data, Release for the data
owner to send the digests to the DLD provider, Monitor and Detect for the
DLD provider to collect outgoing traffic of the organization, compute digests of
traffic content, and identify potential leaks, Report for the DLD provider to
return data leak alerts to the data owner where there may be false positives (i.e.,
false alarms), and Postprocess for the data owner to pinpoint true data leak
instances. We explain the operations in details in the next section.

1. Preprocess and prepare 
fuzzy fingerprints2. Release fingerprints

3. Monitor outbound network traffic

4. Detect

5. Report all data leak alerts
6. Postprocess and identify 

true leak instances

DLD Provider Data Owner

Fig. 1. Privacy-preserving DLD Model

The protocol is based on strategically computing data similarity, specifically
the quantitative similarity between the sensitive information and the observed
network traffic. High similarity indicates potential data leak. For data-leak de-
tection, the ability to tolerate certain degree of data transformation in traffic is
important. We refer to this property as noise tolerance. Our key idea for fast and
noise-tolerant comparison is the design and use of a set of local features that are
representative of local data patterns. Local features preserve data patterns even
when modifications (insertion, deletion, and substitution) are made to parts of
the data. To achieve the privacy requirement, the data owner generates a special



Data Leak Detection 227

type of digests, which we call fuzzy fingerprints. Intuitively, the purpose of fuzzy
fingerprints is to hide the true sensitive data in the crowd so that the DLD provider
is unable to learn its exact value. We describe the technical details next.

3 Fuzzy Fingerprint Method and Protocol

We describe technical details of our fuzzy fingerprint mechanism in this section.

3.1 Fingerprints

The DLD provider obtains digests of sensitive data from the data owner. The
data owner uses Rabin fingerprint algorithm [24] and a sliding window to gener-
ate short and hard-to-reverse (i.e., oneway) digests through the fast polynomial
modulus operation. Rabin fingerprints are computed as polynomial modulus
operations, and can be implemented with fast XOR, shift, and table look-up
operations. It has a unique min-wise independence property [7], which allows
randomly sampling of the digests without creating any bias.

The shingle-and-fingerprint process is defined as follows. For a binary string,
we first generate q-grams (shingles) using a sliding window, and then compute
Rabin fingerprint of each k-bit shingle using irreducible polynomial p(x):

f1 = c1x
k−1 + c2x

k−2 + . . .+ ck−1x+ ck mod p(x)

From the detection respective, a straightforward method is for the DLD provider
to raise an alert if any sensitive fingerprint matches the fingerprints generated
from the traffic. However, this approach has a privacy issue. In case of a data
leak detected, there is a match between two fingerprints from sensitive data and
network traffic. Then, the DLD provider learns the corresponding shingle, as it
knows the content of the packet. Therefore, the central challenge is to prevent
the DLD provider from learning the sensitive values even in data-leak scenarios,
while allowing the provider to carry out the traffic inspection.

We propose a novel and efficient technique to address this problem. The main
idea is to relax the comparison criteria by strategically introducing matching
instances on the DLD provider’s side without increasing false alarms for the data
owner. Specifically, i) the data owner perturbs the sensitive-data fingerprints
before disclosing them to the DLD provider, and ii) the DLD provider detects
leaking by a range-based comparison instead of the exact match. The range
used in the comparison is pre-defined by the data owner and correlates to the
perturbation procedure. We first define the fuzzy length and fuzzy set next and
then describe how they are used in our detailed protocol in Section 3.2.

Definition 1. Given a fingerprint f , fuzzy length pd (pd < pf ) is the number
of the least significant bits in f that may be perturbed by the data owner.

Definition 2. Given a fuzzy length pd, and a collection of fingerprints, the fuzzy
set Sf,pd

of a fingerprint f is the set of fingerprints in the collection whose values
differ from f by at most 2pd − 1.
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In Definition 1 for fuzzy length, pf denotes the total length of a fingerprint.
In Definition 2, the size of the fuzzy set |Sf,pd

| is upper bounded by 2pd , but the
actual size may be smaller due to the sparsity of the fingerprint space.

3.2 Operations in Our Protocol

1. Preprocess:
This operation is run by the data owner on some sensitive dataset. The data
owner chooses the public parameters (k, p(x), pd), where k is the length of
shingles, p(x) is an irreducible polynomial for computing Rabin fingerprint,
and pd is the fuzzy length. The length of a fingerprint is denoted by pf

2.
The data owner first computes the set S of Rabin fingerprints of the sensi-

tive data. Then the data owner transforms each fingerprint f ∈ S into a fuzzy
fingerprint f∗ as follows. Given the fingerprint f of some shingle v and a fuzzy
length pd, the data owner flips an unbiased coin pd times to generate the new
least significant pd bits in f . The rest of the bits in f are unchanged. The trans-
formation generates a fuzzy fingerprint f∗ of f . We denote the resulting set of
fuzzy fingerprints by S∗, which is the output of this operation.

2. Release:
This operation is run by the data owner. The fuzzy fingerprint set S∗ ob-
tained from the Preprocess operation above is released to the DLD provider
for use in the detection, along with the public parameters (k, p(x), pd). The
real fingerprint f and the corresponding sensitive shingle v are kept at the
data owner and not released to the DLD provider.

3. Monitor: This operation is run by the DLD provider. The DLD provider
monitors the network traffic T from the data owner’s organization. The
header of the packet in T is removed and the payload is collected. The
processed traffic T̃ is the output.

4. Detect:
This operation is run by the DLD provider on T̃ as follows.
(a) The DLD provider first computes the Rabin fingerprints of traffic content

T̃ based on the public parameters.
(b) For each fuzzy fingerprint f∗ ∈ S∗ of some sensitive data, and each

fingerprint f ′ ∈ T̃ from the traffic, and the public parameters, the DLD
provider outputs 1 (indicating possible data leak) if values of f∗ and f ′

differ by at most 2pd − 1, and 0 otherwise.
(c) For all the data-leak matching instances detected during this range-based

detection, the DLD provider records the set of {(x1, f1), . . . , (xi, fi), . . .)}
pairs, where xi is the shingle appearing in the traffic, and fi is its Rabin
fingerprint. The DLD provider and the data owner may agree upon cer-
tain aggregation methods and a threshold for logging alerts, which we
discuss more in the evaluation section 5.

Because the fuzzy set of f∗ includes the original fingerprint f , thus the true
data leak can be detected (i.e., true positive). Yet, due to the increased
detection range, multiple values in the fuzzy set may trigger alerts. Because

2 The degree of polynomial p(x) is pf + 1.
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the fuzzy set is large for the given network flow, the DLD provider has a
low probability of pinpointing the sensitive data, which can be bounded as
shown in Section 4.

5. Report:
The DLD provider reports the set of detected candidate leak instances
{(x1, f1), . . . , (xi, fi), . . .)} tuples to the data owner.

6. Postprocess:
This operation is run by the data owner. Given the data-leak instance can-
didates in the reported set of tuples {(x1, f1), (x2, f2), . . .}, the data owner
searches to see if any sensitive fingerprint f ∈ S exists in the report. If there
exist fi = f and xi = v, i.e., the shingle xi and fingerprint f in the traf-
fic match those (v, f) of the sensitive data, then there is a true data leak,
otherwise the submitted candidates can be safely ignored by the data owner.

The Detect operation can be performed between T̃ and S
∗ via set intersection

test (e.g. Formula 2 in Section 5 as one realization). The advantage of our method
is that the additional matching instances introduced by fuzzy fingerprints protect
the sensitive data from the DLD provider; yet they do not cause additional
false alarms for the data owner, as the data owner can quickly distinguish true
and false leak instances. Given the digest f of a piece of sensitive data, a large
collection T of traffic fingerprints, and a positive integerK " |T |, the data owner
can choose a fuzzy length pd such that there are at least K − 1 other distinct
digests in the fuzzy set of f , assuming that the shingles corresponding to these
K digests are equally likely to be candidates for sensitive data and to appear
in network traffic. A tight fuzzy length (i.e., the smallest pd value satisfying the
privacy requirement) is important for efficient Postprocess operation. Due to
the dynamic nature of network traffic, pd needs to be estimated accordingly. We
provide quantitative analysis on fuzzy fingerprint including empirical results on
different sizes of fuzzy set.

3.3 Extensions

Fingerprint Filter. We develop this extension to use Bloom filter in the Detect
operation for efficient set intersection test. Bloom filter is a well-known space-
saving data structure for performing set-membership test, and the range-based
comparison in the Detect operation can be generalized to the membership test
with it. Bloom filter in combination with Rabin fingerprint is referred to by us
as the fingerprint filter. We have implemented, evaluated, and compared this
technique in our experiments in Section 5.

Bit Mask. We can generalize the Preprocess operation with a bit mask, which
specifies any arbitrarily chosen bits or any mapped bit pattern for comparison.
Details of how bit mask works are discussed in our technical report [28].

Sampling.Using the min-wise independent property of Rabin fingerprint, the data
ownermay sample the fingerprints and only reveals a subset of sensitive-data’s fin-
gerprints to the DLD provider. That is, the data owner may release a subset of S∗
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to the DLD provider in Release operation. The purpose of sampling is two-fold:
to increase the scalability of the comparison in the Detect operation, and to re-
duce the exposure of data to the DLD provider for privacy. The subset is selected
by choosing the subset of smallest fingerprints when Rabin fingerprint is equipped.
More description can be found in our technical report [28].

4 Analysis and Discussion

We analyze the security and privacy guarantees provided by our data-leak de-
tection system, as well as discuss the sources of possible false negatives – data
leak cases being overlooked and false positives – legitimate traffic misclassified
as data leak in the detection.

Privacy Analysis. Our privacy goal is to prevent the DLD provider from infer-
ring the exact knowledge of all sensitive data, both the outsourced sensitive data
and the matched digests in network traffic. We quantify the probability for the
DLD provider to infer the sensitive shingles. Suppose there are matches between
sensitive fingerprints and traffic fingerprints. Given a fuzzy length, there are mul-
tiple (e.g., K) fingerprints (including the sensitive data’s fingerprint) that may
trigger alerts at the DLD provider; thus, the DLD provider is unable to pinpoint
which alerts are true data leaks. Therefore, even if sensitive data appeared on
the traffic due to inadvertent data leak, the DLD provider has no more than 1

K
probability of inferring the sensitive data, assuming that the shingles associated
with the fuzzy set are equally likely to be sensitive data and appear in the net-
work traffic. The size of fuzzy set K is upper bounded by 2pd . For a large shingle
set of size 2pf−pd ≤ n ≤ 2pf , the expected value of K = n

2pf
×2pd , assuming that

the fingerprints of shingles are uniformly distributed. It is a reasonable assump-
tion, especially when binary sensitive data is included, which expands the small
distinguishable text space to the vast more well-distributed whole binary space.
This privacy guarantee protects the sensitive data in the worst-case scenario.

If there is no match between sensitive and traffic fingerprints, then the ad-
versarial DLD provider needs to brute force to reverse the Rabin fingerprinting
computation to obtain the input shingle. The time needed depends on the size of
shingle space. This brute-force attack is difficult for a polynomial-time adversary
and thus the success probability is not included in Theorem 1. We summarize
the above privacy analysis in the following theorem.

Theorem 1. A polynomial-time adversary has no greater than 2pf−pd

n probabil-
ity of correctly inferring a sensitive shingle, where pf is the length of a fingerprint
in bits, pd is the fuzzy length, and n ∈ [2pf−pd , 2pf ] is the size of the set of traffic
fingerprints, assuming that the fingerprints of shingles are uniformly distributed
and are equally likely to be sensitive and appear in the traffic.

Alert Rate.We qualify the rate of alerts expected in the traffic for a sensitive data
entry (the fuzzified fingerprints set of a piece of sensitive data) given the follow-
ing values: the total number of fuzzified sensitive fingerprints M , the expected
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traffic fingerprints set size n, fingerprint length pf , fuzzy length pd, sampling
rate ps ∈ (0, 1], and the expected rate α of the leak in terms of the percentage of
fingerprints in the sensitive data entry that appear in the network traffic. Based
on Theorem 1, the expected alert rate R can be expressed in Equation 1. It is
used to derive threshold in the detection; the detection threshold should be lower
than the expected rate of alerts.

R =
αpsKM

n
=

αpsM

2pf−pd
(1)

Collisions. Collisions may be due to where the legitimate traffic happens to
contain the partial sensitive-data fingerprints by coincidence. The collision may
increase with shorter shingles, or smaller numbers of partial fingerprints, and
may decrease if additional features such as the order of fingerprints are used for
detection. A previous large-scale information-retrieval study empirically demon-
strated the low rate of this type of collisions in Rabin fingerprint [6], which is
a desirable property suggesting low unwanted false alarms in our DLD setting.
Collisions due to two distinct shingles generating the same fingerprint are proved
to be low [5] and are negligible.

Dynamic data. For protecting dynamically changing data such as source code or
documents under constant development or keystroke data, the digests need to be
continuously updated for detection, which may not be efficient or practical. We
raise the issue of how to efficiently detect dynamic data with a network-based
approach as an open problem to investigate by the community.

Space of sensitive data. The space of all text-based sensitive data may be smaller
than the space of all possible shingles. Yet, when including non-ASCII sensitive
data (text in UTF-8 or binaries), the space of sensitive data can be significantly
expanded. Thus, the assumption in Theorem 1 is practical.

Data modification. False negatives (i.e., failure to detect data leak) may also oc-
cur due to the data being modified by the leaking application (such as insertion,
deletion, and substitution). The new shingles/fingerprints may not resemble the
original ones, and cannot be detected. As a result, a packet may evade the de-
tection. In our experiments, we evaluate the impact of several types of data
transformation in real world scenarios.

5 Experimental Evaluation

We implement our fuzzy fingerprint framework in Python (version 2.7), includ-
ing packet collection, shingling, Rabin fingerprinting and fingerprint filter. Our
implementation of Rabin fingerprint is based on cyclic redundancy code (CRC).
We use the padding scheme mentioned in [23] to handle small inputs, and map
our shingle into a sparse fingerprint space. In all experiments, the shingles are in
8-byte, and the fingerprints are in 32-bit (33-bit irreducible polynomials in Rabin
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fingerprint). We set up a virtual network environment in Oracle VirtualBox, sim-
ulating a scenario where the sensitive data is leaked from a local network to the
Internet. Valid users’ hosts (Windows 7) are put into the local network, which
connects to the Internet via a gateway (Linux). The gateway dumps the network
traffic and sends it to a DLD server/provider (Linux). Using the sensitive-data
fingerprints defined by the users in the local network, the DLD server performs
off-line data leak detection. We also set up some servers (FTP, HTTP, etc.) and
a hacker’s host on the Internet side to which a valid user can connect to.

The DLD server detects the sensitive data within each packet on basis of a
stateless filtering system. We define the sensitivity of a packet in Formula 2.

Spacket =

|#
pd

S̈∗ ∩#
pd

T̃|

min(|S∗|, |T̃|)
× |S∗|

|S̈∗|
(2)

T̃ is the set of all fingerprints extracted in a packet. S∗ is the set of all sensitive
fuzzy fingerprints. For each piece of sensitive data, data owner computes S∗ and
reveals a sample set S̈∗ (S̈∗ ⊆ S

∗) to the DLD server. The operator #
pd

indicates

right shifting every fingerprint in a set by pd bits. The DLD server computes
Spacket (Spacket ∈ [0, 1]) and compares it to a threshold Sthres ∈ (0, 1). Packets
with Spacket ≥ Sthres are marked sensitive.

Without the fuzzification phase, Formula 2 can be simplified to Formula 3. S
is the set of all sensitive fingerprints, and S̈ is the revealed fingerprints set.

Spacket =
|S̈ ∩ T̃|

min(|S|, |T̃|)
× |S|

|S̈|
(3)

Our current evaluation results reported are based on the simplified leak detection
without the fuzzification phase. Additional experiments assessing the impact of
fuzzification on privacy can be found in [28].

The goal of our evaluation is to answer the following questions:

1. Can our solution accurately detect sensitive data-leak in the traffic with low
false positives (false alarms) and high true positives (real leaks)?

2. Does using partial sensitive-data fingerprints reduce the detection accuracy
in our system?

3. What is the performance advantage of our fingerprint filter over traditional
Bloom filter equipped with SHA-1?

4. How to choose a proper fuzzy length and make a balance between the privacy
need and the number of alerts?

5. Can we experimentally validate the min-wise independence property of Ra-
bin fingerprint?

The questions are experimentally addressed and answered in our following sec-
tions with the last two answered in our technical report [28].
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5.1 Accuracy Evaluation

We generate 20,000 personal financial records as the sensitive data and store
them in a text file. The data contains (fictitious) person name, social security
number, credit card number, credit card expiration date, and credit card CVV.

To evaluate the accuracy of our strategy, we perform three separate experi-
ments using the same sensitive dataset:

Exp.1 A user leaks the entire set of sensitive data via FTP by uploading it to
a FTP server on the Internet.

Exp.2 (Base Line) The outbound HTTP traffic of Internet-surfing by 20 users
are captured (30 minutes per user), and given to the DLD server to analyze,
as a base line. No sensitive data (i.e., zero true positive) should be confirmed.

Exp.3 (Base Line) The Enron dataset (2.6 GB data, 150 users’ 517,424 emails)
as a virtual network traffic is given to the DLD server to analyze. Each virtual
network packet created is based on an email in the dataset. No sensitive data
(i.e., zero true positive) should be confirmed by the data onwer.

All sensitive fingerprints (FD
sens = F

A
sens) are used in the detection, and the

results are shown in Table 1. The first experiment is designed to infer the true
positive rate. We manually check each packet and find out that the DLD server
detects all 651 real sensitive packets (all of them have sensitivity values greater
than 0.9). The sensitivity value is less than one, because the layered headers (IP,
TCP, HTTP, etc.) in a packet are not sensitive. The next two experiments are
designed to estimate the false positive rate. We found that none of the packets
has a sensitivity value greater than 0.05, and the average sensitivity is very low.
The results indicate that the algorithm performs as expected on plaintext.

Table 1. Mean and standard deviations of the sensitivity per packet in three separate
experiments. For Exp.1, the higher sensitivity, the better; for the other two (negative
control), the lower sensitivity, the better.

Dataset Exp.1 Exp.2 Exp.3

Spacket Mean 0.952564 0.000005 0.001849
Spacket STD 0.004011 0.000133 0.002178

The data owner may reveal a subset of sensitive data’s fingerprints to the DLD
server for detection, as opposed to the entire set. We are particularly interested
in measuring the percentage of revealed fingerprints that can be detected in
the traffic, assuming that fingerprints are equally likely to be leaked (Given the
subset independence property, sensitive-data’s fingerprints are equally likely to
be selected for detection). We reproduce several real-world scenarios where data
leaks are caused by human users or software applications.

– In the web-leak scenarios, a user posts sensitive data on wiki (MediaWiki)
and blog(WordPress) pages.
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Fig. 2. Performance comparison in terms of (a) the averaged sensitivity and (b)

the number of detected sensitive packets. X-axis,
|FDsens|
|FAsens|

, indicates the percentage of

sensitive-data fingerprints revealed to the DLD server and used in the detection. [out]
indicates outbound traffic only, while [all] means both outbound and inbound traffic
captured and analyzed.

– In the backdoor scenario, a program (Glacier) on the user’s machine (Win-
dows 7) leaks sensitive data.

– In the email-leak scenario, a malicious Firefox extension FFsniFF records
the information in sensitive web forms, and emails the data to the attacker.

– In the keylogging scenario, a keylogger EZRecKb exports intercepted
keystroke values on a user’s host. The keylogger records every key stroke, re-
placing the function keys with labels, such as “[left shift]” in its log. EZRecKb
connects to a pre-defined SMTP server on the Internet and sends its log pe-
riodically. In this experiment, the user manually type the text, simulating
typos and corrections, which bring in modifications of the original sensitive
data.

In these experiments, the source file of TCP/IP page on wikipedia (24KB in
text) is used as the sensitive data. Partial fingerprints are revealed for detection,
the sensitivity threshold is set Sthres = 0.05, and plain set intersection test is
used in Detect operation.

Figure 2 shows the comparison of performance across various size of finger-
prints used in the detection, in terms of the averaged sensitivity per packet in
(a) and the number of detected sensitive packets in (b). These accuracy val-
ues reflect results computed by the data owner after running the Postprocess
operation. The results show that the use of partial sensitive-data fingerprints
does not much degrade the detection rate compared to the use of full sets of
sensitive-data fingerprints.

In Figure 2 (a), the sensitivities of experiments vary due to different lev-
els of modification by the leaking programs, which makes it difficult to detect.
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WordPress converts space into “+” when sending the HTTP POST request.
Keylogger inserts function-key as labels into the original text as well as typing
typos and corrections. In Figure 2 (b), [all] results contain both outbound and
inbound traffic and double the real number of sensitive packets in Blog and Wiki
scenarios due to HTML fetching of the submitted data.

5.2 Runtime Comparison

Our fingerprint filter implementation is based on the Bloom filter library in
Python (Pybloom). We compare the runtime of Bloom filter with SHA-1 and
that of fingerprint filter with Rabin fingerprint. For Bloom filters and fingerprint
filters, we test their performance with 2, 6, and 10 hash functions. We inspect 100
packets with random content against 10 pieces sensitive data of various length
for each point drawn in Figure 3 – there are a total of 1,625,600 fingerprints
generated from the traffic and 76,160 pieces of fingerprints from the sensitive
data. We show the detection time per packet in Figure 3. The time used to
create the filters during the sensitive data initialization is similar to the detection
phase. Therefore it is not shown in the paper due to limited space.

The result indicates that fingerprint filters run faster than Bloom filters, which
is expected as Rabin fingerprint is easier to compute than SHA-1. The gap is
not significant due to the fact that Python uses a virtualization architecture. We
have the core hash computations implemented in Python C/C++ extension, but
the remaining control flow and function call statements are in pure Python. The
performance difference between Rabin fingerprint and SHA-1 is large masked by
the runtime overhead spent on non-hash related operations.
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Using fewer hash functions in Bloom filters or fewer polynomials in the fin-
gerprint filters produces more false positives at the DLD provider. The data

Pybloom
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owner can quickly identify real data leaks from reported leaked instances. This
increased collision improves the data privacy. For example, Bloom filter with 10
hashes has a collision (false positive) probability of 0.10%, 6 hashes 1.56%, and
2 hashes 25%. We expect fingerprint filter to provide similar detection accuracy
to the plain set intersection realization as reported in Section 5.1. Our fuzzy
fingerprint should not be confused with fuzzy Bloom filter [22].

Summary. Our detection rates in terms of the number of sensitive packets found
do not decrease much with the decreasing size of fingerprint sets in Figure 2,
even when only 10% of the sensitive-data fingerprints are used for detection.
It is desirable for both privacy and efficiency considerations to have the data
owner reveal as few fingerprints as possible. Our experiments evaluate several
noisy conditions such as data insertion – for MediaWiki-based leak scenario,
traffic contains extra HTML tags in addition to sensitive data, data deletion
– traffic contains truncated sensitive data (not shown due to space limit), and
data substitution – for the keylogger and WordPress-based leak scenarios, certain
original data elements are replaced in the traffic. Our results indicate that the
shingle-and-fingerprint method indeed can tolerate these three types of noises in
the traffic to some degree. Our algorithm works well especially in the case where
consecutive data blocks are preserved (i.e., local data features are preserved) as in
the MediaWiki-based leak scenario. When the noises spread across the data and
destroy the local features (e.g., replacing every space with another character), the
detection rate decreases as expected. The use of shorter shingles mitigates the
problem, but may increase false positives. How to improve the noise tolerance
property in those conditions remains an open problem. Our fuzzy fingerprint
mechanism supports the detection of data-leak at various sizes and granularities.
Our evaluation reported is run at the packet level. More fine-grained segment
inspection may be needed for detecting smaller pieces of sensitive data leaked.

6 Related Work

Our fuzzy fingerprint method and its privacy-preserving feature enable its
adopter to provide the data-leak detection as a service. Therefore, our technique
distinguishes itself from existing commercial products (e.g., Global Velocity).

There have been several advances in developing privacy-aware collaborative
solutions from both system [9,21,27] and theory perspectives [20,34]. Specifically,
Rabin fingerprint [24] based on shingles was used previously for identifying sim-
ilar spam messages in a collaborative setting [21], as well as collaborative worm
containment [9], virus scan [14], and fragment detection [25].

Our work fundamentally differs from the above shingle-based studies [9,14]
in particular. We consider the new problem of data-leak detection in a unique
outsourced setting where the DLD provider is not fully trusted. Such privacy
requirement does not exist in the virus-scan paradigm [14], for the virus signa-
tures are non-sensitive. In comparison, data-leak detection is more challenging
because of the additional privacy requirement, which limits the amount of data
that can be used during the detection and the amount of sensitive information
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gained by the DLD provider. In the meantime, the provider’s detection accu-
racy cannot be compromised with partial digests based on the sensitive data.
Our fuzzy fingerprint method is new, and our work describes the first systematic
solution to privacy-preserving data-leak detection with convincing results.

Information leak through outbound web traffic was studied by Borders and
Prakash [3]. Both theirs and our work detect suspicious data flow on unencrypted
network traffic. Their approach is based on the key observation that network
traffic has high regularities and that information (e.g., header data) may be
repeated. They proposed an elegant solution that detects any substantial increase
in the amount of new information in the traffic. Their anomaly-detection method
detects deviations from normal data-flow scenarios, which are captured in rules.
In comparison, our work inspects traffic for signatures of sensitive-data and
does not require any assumption on the patterns of normal header fields or
payload. Furthermore, our solution provides privacy protection of the sensitive
data against semi-honest DLD providers. We also give performance evidences
indicating the efficiency of our solution in practice.

A black-box approach for data leak detection was proposed in [11], which
expands local data tracking to a network-wide environment. It mainly focuses on
data confinement and detecting unauthorized sensitive data flow among forked
processes. The specific goal makes it different from our approach to detect general
data leaks over a network.

In the grid computing environment, the verification of outsourced execution
was studied by Du and Goodrich in [12]. The method inserts chaff into input
before outsourcing a job and verifies whether the chaff is processed or not af-
ter harvest. The threat models and security goals in our outsourced data-leak
detection work and in [12] are fundamentally different.

The method of deep packet inspection is also widely used in network intrusion
detection system (NIDS), such as SNORT [26] and Bro. They focus on designing
and implementing efficient string matching algorithms [1] to handle short and
flexible patterns in network traffic. However, NIDS is not designed for various
kinds of sensitive data (e.g. long non-duplicated data), it may cause problems
(e.g. large amount of states in an automaton) in data leak detection scenarios.
On the contrary, our solution is not limited to very special types of sensitive data,
and we provide an unique privacy-preserving feature for service outsourcing.

Encrypted traffic, which cannot be directly inspected [30], requires host-based
DLD solutions to complement our network-based method. One approach is to
instrument the kernel so that the inspection can be performed in the operating
system of a host before data is encrypted. Existing approaches involving data
flow and taint analysis [37] can be integrated.

An alternative to our approach for privacy-preserving computation is to use
cryptographic mechanisms. Secure multi-party computation (SMC) is a research
direction pioneered by Yao [35], where participants only learn the outcomes of
computation, not the private inputs. Existing SMC solutions can support a wide
range of fundamental arithmetic, set, and string operations as well as complex
functions such as knapsack computation [36], automated trouble-shooting [15],
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network event statistics [8], private information retrieval [32], genomic compu-
tation [17], private join operations [10], and distributed data mining [16]. The
provable privacy guarantees offered by SMC come at a cost in terms of compu-
tational complexity and implementation complexity as well. The advantage of
our shingle/fingerprint based approach is much more efficient and simpler.

7 Conclusions and Future Work

We proposed a novel privacy-preserving data-leak detection model and its fuzzy
fingerprint realization. Using special digests, the exposure of the sensitive data
is kept to a minimum during the detection. We have conducted extensive ex-
periments to validate the accuracy, privacy, and efficiency of our solutions. For
future work, we plan to focus on designing a host-assisted mechanism for the
complete data-leak detection for large-scale organizations.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM (1975)

2. Bohman, T., Cooper, C., Frieze, A.M.: Min-wise independent linear permutations.
Electr. J. Comb. 7 (2000)

3. Borders, K., Prakash, A.: Quantifying information leaks in outbound web traffic.
In: Proceedings of the IEEE Symposium on Security and Privacy (May 2009)

4. Borders, K., Vander Weele, E., Lau, B., Prakash, A.: Protecting confidential data
on personal computers with storage capsules. In: USENIX Security Symposium,
pp. 367–382. USENIX Association (2009)

5. Broder, A.Z.: Some applications of Rabins fingerprinting method. In: Sequences II:
Methods in Communications, Security, and Computer Science, pp. 143–152 (1993)

6. Broder, A.Z.: Identifying and Filtering Near-Duplicate Documents. In: Giancarlo,
R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 1–10. Springer, Heidelberg
(2000)

7. Broder, A.Z., Charikar, M., Frieze, A.M., Mitzenmacher, M.: Min-wise independent
permutations. Journal of Computer and System Sciences 60, 630–659 (2000)

8. Burkhart, M., Strasser, M., Many, D., Dimitropoulos, X.: SEPIA: Privacy-
preserving aggregation of multi-domain network events and statistics. In: Proceed-
ings of USENIX Security (2010)

9. Cai, M., Hwang, K., Kwok, Y.-K., Song, S., Chen, Y.: Collaborative Internet worm
containment. IEEE Security and Privacy 3(3), 25–33 (2005)

10. Carbunar, B., Sion, R.: Joining Privately on Outsourced Data. In: Jonker, W.,
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Abstract. In this paper we present an algorithm that is able to pro-
gressively discover nodes cooperating in a P2P network. Starting from
a single known node, we can easily identify other nodes in the peer-to-
peer network, through the analysis of widely available and standardized
IPFIX (NetFlow) data. Instead of relying on the analysis of content char-
acteristics or packet properties, we monitor connections of known nodes
in the network and then progressively discover other nodes through the
analysis of their mutual contacts. We show that our method is able to dis-
cover all cooperating nodes in many P2P networks. The use of standard-
ized input data allows for easy deployment onto real networks. Moreover,
because this approach requires only short processing times, it scales very
well in larger and higher speed networks.

1 Introduction

Peer-to-peer networks generate a significant amount of traffic in today’s Inter-
net. Peer-to-peer protocols are popular with file sharing applications, are imple-
mented for a VoIP application (Skype) and have also been adopted by malware
as a Command & Control (C&C) channel. The ability to observe peer-to-peer
networks is useful — it can be used to manage networks more effectively thus
providing better quality of service, to detect and mitigate botnets employing
P2P for their C&C architecture, etc. Furthermore, peer-to-peer traffic can de-
grade the performance of anomaly detection techniques. The detection rate can
decrease by up to 30% and false positive rate can increase by up to 45% [9].

In this paper we propose a method that tries to exploit the inherent properties
of the peer-to-peer networks to find cooperating hosts in the network. We consider
two hosts to be cooperating if they are part of the same overlay network. We find
cooperating hosts by observing their mutual peers. It shows that if two hosts are
in the same overlay network their sets of peers overlap. Some theoretical ground
for this observation in connection with random graphs can be found in [4].

While graphs and graph algorithms are used to detect peer-to-peer networks
in [4,10] our approach differs in both the graph representation and the employed
graph algorithm. In [4] the graph is created based on all network traffic and
only afterwards the likely members of a peer-to-peer botnet are identified by a
graph algorithm. In [10] the graph is created based on flows grouped together by
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c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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clustering and afterwards its properties are evaluated. Based on the properties
the algorithm decides whether the flows were induced by peer-to-peer network
or not. Unlike the two, we employ a graph construction algorithm and the graph
constructed by this algorithm represents a single peer-to-peer network.

In our evaluation we show that the algorithm is able to link hosts cooperat-
ing in the usual peer-to-peer networks, such as KAD, Gnutella, BitTorrent and
Skype P2P network; and also to link hosts infected by the same malware using
peer-to-peer as its C&C channel. Knowing which hosts are engaged in the same
overlay with the infected host might help to mitigate the botnet in the network.
We believe that this method can be used as a pre-processing layer for packet
inspection based detection, where we would first find clusters of hosts in the
network and then perform the detection only for few of them and extend the
results on the remaining hosts in the cluster.

2 Related Work

There is a plethora of research in the field of peer-to-peer networks. One can find
studies of BitTorrent in [17,12,18], BitTorrent’s DHT [5], KAD (which is based
on Kademlia) in [19,14] and Gnutella in [13,1,15]. There are also many works
proposing various improvements to peer-to-peer protocols, but those are not of
primary interest here.

Peer-to-peer architecture is now often used by botnets for their C&C. An
overview of peer-to-peer botnets and an analysis of one of them can be found
in [7]. A peer-to-peer based C&C is, on an example of Kademlia, analyzed theo-
retically in [8], where the authors show that P2P based C&C is harder to monitor
compared to the centralized C&C architecture. Besides that, they also propose
several mitigation techniques.

Detection of peer-to-peer networks is another topic often dealt with. There
are three main groups of detection methods — packet payload based, flow based
methods and graph methods. Within all three groups the detection can be based
on the observation of either the specific peer-to-peer network behavior or inherent
peer-to-peer networks properties. We do not dive into packet payload based
methods in this overview and also skip the methods based on specific peer-to-
peer protocol features.

A flow-based method to detect peers using inherent properties of peer-to-peer
networks is introduced in [2]. The method itself does not use any protocol-specific
features and thus, in theory, might be used for any peer-to-peer network. The
authors validate the method on BitTorrent and Gnutella networks.

As an example of graph methods, we can mention one introduced in [3]. The
method is agnostic of any specific peer-to-peer protocol features. It creates a
connection graph of the peers communicating on a given port and based on the
network diameter and number of hosts that function as both client and server
determines whether they constitute a peer-to-peer network.

Graphs were used to even greater extent in [10], where they are used to deter-
mine whether certain group of flows was generated by the peers in a peer-to-peer
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flows seed endpoints

cooperating
hosts

persistent  flows

merge graphs

remove graphs

PM

process flows

Fig. 1. Schema of the detector. As an input it takes flows from the network which are
processed by the Persistence Module (denoted by the PM). The set of seed endpoints is
then transferred to the Graph module which processes the flows induced by persistent
endpoints and merges and deletes graphs as needed. The output of the detector are
sets of endpoints that appear to be cooperating in peer-to-peer networks.

network. The groups of flows are identified based on packet payload inspection,
which might limit the potential use of this method. Traffic Dispersion Graphs
are also used in [11] to analyze the network traffic and identify unwanted appli-
cations.

Peer-to-peer architecture of the botnet C&C is used against the botnet itself
to detect its members knowing one starting bot [4]. Their proposed method is
similar to ours; it also starts with one known node of a given P2P network and
is based on monitoring of mutual contacts. However, they use a rather different
graph representation and determine the detected node’s confidence after the
graph is constructed.

In this work we also use ideas from paper aimed at detecting botnet C&C [6].
The authors focus on observing long term connections that are possible used for
botnet C&C. They use whitelists and any long-lasting connection not whitelisted
is considered a C&C channel.

3 Detection Method

We propose a detector that takes network traffic as input and finds hosts co-
operating in peer-to-peer networks. The detector is composed of two separate
modules. At the core of the detector there is the Graph Module which constructs
graphs around starter nodes, further called seed nodes. Nodes are a representa-
tion of hosts participating in peer-to-peer networks and each graph represents a
single peer-to-peer network. Seed nodes are selected by the Persistence Module.
The schema of the two is depicted in Fig. 1 and both are further explained in
detail in Sections 3.1 and 3.2.

The network traffic processed by the detector is represented by set of flows,
where flow is a tuple

(src ip, src port, dst ip, dst port, protocol).

Flows can be constructed either from NetFlow data or packet capture.
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Fig. 2. The histogram shows that majority of endpoints are active only one or two time
intervals. Then we can see only a marginal number of endpoints being active between
three and nine time steps. All services that run steadily and are regularly used are
active all 10 time windows.

The goal of the detection method is to find cooperating hosts in the network.
We consider two hosts in the network to be cooperating if they are participating
in the same peer-to-peer network. Any host that is participating in an arbitrary
peer-to-peer network needs to listen for incoming connections from other peers
within the same network — thus it has to keep an open port. Therefore, each
peer in a peer-to-peer network can be represented as a tuple (ip address, port)
which we call endpoint.

In reality, the host can participate in more peer-to-peer networks. For each
peer-to-peer network it uses, the host needs to keep a listening port open. For
each such host, different peer-to-peer networks are represented by independent
endpoints, enabling us to separate peer-to-peer networks effectively.

Note that the aforementioned nodes used in the Graph Module and selected
by the Persistence Module are in fact endpoints.

Our choice of node representation is different to the one used in [4] because
we argue that one host may be taking part in several peer-to-peer networks, e.g.
downloading music on BitTorrent, using Skype and at the same time be infected
by a P2P botnet. If the authors in [4] chose such a host as a starter node in
their graph algorithm, we believe they would suffer a hight false positive rate.
We show in the evaluation that using endpoint as the node representation can
overcome this issue. In our approach, such a host would simply appear as three
distinct endpoints that belong to different graphs.

We would like to note that, while the algorithm could process flows continu-
ously, we process flows in 5-minute batches, i.e. we collect flows for five minutes,
which are then processed at once. It follows that observation window size, tryout
and ignore periods and memory limit can only be a multiple of 5 minutes.

3.1 Persistence Module

The graph algorithm used in the Graph Module needs a seed node around which
it constructs the connection graph. The sole purpose of this module is to find
such nodes. We already established that nodes representing peers have the form



Revealing Cooperating Hosts by Connection Graph Analysis 245

of endpoints. There are two criteria for choosing the seed endpoints — the per-
sistence criterion and peers count criterion.

The persistence criterion means that we choose endpoints that are persistent,
i.e. are sending or receiving data for longer periods of time. During normal
network operation, a single host uses many ports to communicate with other
hosts. Most of these ports are used only for a short period of time. However,
there are some ports that are kept open — these are usually used for listening
for incoming connections. We performed a small experiment on the University
network, in which we monitored network traffic in ten 5-minute intervals. In
the first time interval we recorded all observed endpoints in our network. In the
following 9 time intervals we recorded whether the given endpoints were reused.
This way, we were able to create a histogram showing the number of endpoints
used in either one, two or up to ten time intervals. The histogram can be found
in Fig. 2. We can see that most endpoints were used only in one time interval
during the experiment. Then the trend is declining with exception of endpoints
that were used during all time intervals. We believe that these are the endpoints
that represent services (such as web servers or IMAP servers) or active peers of
peer-to-peer networks.

To define persistence of endpoints formally, we use simplified method of mea-
suring persistence introduced in [6]. The original method was focused on re-
vealing hidden C&C channels. We, on the other hand, are interested only in
persistence of endpoints, no matter where they connect to. We are not trying to
detect exact periodicity of connections but an ongoing character of a connection.
For this purpose, the regularity of an endpoint activity is observed by a sliding
window W , which is split into n bins. This window is called observation window
and bins are called measurement windows. We can write W = [b1, b2, b3, ..., bn].
We then formally define persistence of an endpoint as:

p(e,W ) =
1

n

n∑
i=1

1e,bi

where e is the endpoint for which the persistence is calculated, W is the obser-
vation window and function 1e,bi is equal to 1 if at least one connection to or
from the endpoint e occurred during the measurement window bi, otherwise it
is equal to 0.

The persistence calculation itself is based on three parameters—measurement
window size, which states how long the connections are recorded into one bin
before proceeding to another, observation window size, which determines how
many bins there are in the observation window and the threshold persistence p∗.
This parameter determines how many seed endpoints are passed to the Graph
Module.

When moving to the next observation window, we calculate persistence for all
endpoints. We select those with the persistence exceeding the threshold p∗ and
apply the second criterion, which is the number of contacted peers during the last
observation window. We assume that any peer communicates with more than one
other peer in the peer-to-peer network. Therefore, from the persistent endpoints
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Fig. 3. Algorithm illustration. First we have a seed node A with 3 recorded contacts.
In the second time interval, another node, B, is observed, sharing two mutual contacts
with A. If we consider K = 2, then in the third step, node B is already moved to the Vc.
Moreover, the algorithm detected yet another node, which has only one mutual contact
with a node from Vc. Note that the weights of the edges in the graph are determined
by the time step in which they occurred most recently.

we select those that had at least two peers in the last observation window. This
effectively removes long lasting connection between only two peers. These could
be clients downloading large files from the Internet or users connecting to other
computers via Remote Desktop or SSH.

In the end, only endpoints that exceed the persistence threshold and have at
least two peers in the last observation window are passed to the Graph Module
as the seed endpoints.

3.2 The Graph Module

The graph module is responsible for

– constructing graphs around the seed endpoints received from the persistence
module,

– merging similar graphs,
– removing graphs that failed to find any cooperating host for the given seed

endpoint.

Before describing the Graph Module in detail, where we work with the term
graph extensively, we first introduce its formal definition. Graphs can be used
to represent a P2P network, where vertices represent nodes participating in the
P2P network and edges represent connections between two nodes participating
in the P2P network. To detect the nodes of a P2P overlay network within our
network we use a 3-partite weighted graph

G = (V,E,w)

where
V = Vc ∪ Vs ∪ Vr.
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Vc is a set of nodes from our network we believe are participating in the P2P net-
work, Vs is a set of nodes from our network that we suspect are participating in
the P2P network and Vr is a set of nodes from outside of our network communi-
cating with nodes from Vc∪Vs. E is a set of edges. Function w assigns each edge
a weight — a value equal to the time when the edge was added to the graph. We
ignore all intra-network communication and cannot see communication between
the nodes that are outside of our network. Therefore the graph we define is in-
deed a 3-partite weighted graph. This also implies that G = ((Vc ∪ Vs) ∪ Vr, E)
can be considered a bipartite graph.

The algorithm for constructing graph around a seed node is explained later
in this section. Graph Module, just like the Persistence Module processes flows
collected in the network. Here, however, we process only flows that originate from
or are directed towards a persistent endpoint. We do that because we assume,
just like in the Persistence Module, that all endpoints representing peers in an
arbitrary peer-to-peer network are persistent. Then removing flows assigned to
non-persistent endpoints does not compromise the ability of the module to find
cooperating peers.

However, before the module can construct any graph, it first needs to receive
seed endpoints from the Persistence module. The persistence module feeds seed
endpoints to the graph module periodically. When the module receives the first
set of seed endpoints it creates a graph for each of them. For every subsequent
set of received seed endpoints it checks whether given seed endpoints are already
recorded in any of the graphs. For those that are not, it creates new graphs. This
way we prevent the creation of duplicate unnecessary graphs.

Since we expect this method to find cooperating endpoints (which are be-
lieved to be persistent) we should, after some time, construct graphs that are
very similar and describe the same peer-to-peer network despite starting from
different seed endpoint. There is no point in keeping such graphs separate so the
module joins them together. It rises a question though, how to define “similarity”
of two graphs. Two graphs that represent the same P2P network should have
similar sets Vc by some measure. However, since both graphs were iteratively
constructed from different seed nodes, they do not necessarily contain similar
sets of edges or set Vr. Therefore we define similarity of two graphs G1 and G2

as

s(G1, G2) =
| V G1

c ∩ V G2
c |

min(| V G1
c |, | V G2

c |)

where V G1
c resp. V G2

c represents Vc of graph G1 resp. G2. This definition ensures
that similarity of two graphs G1, G2 is high (in fact equal to 1) even in the
case when V G1

c ⊂ V G2
c and | V G1

c |"| V G2
c |. This is a case of two graphs that

represent the same P2P network but one of them is much smaller (either because
it was created later or because the seed was not as “active” as the seed of the
other graph). We merge two graphs if their similarity is greater than the merge
overlap threshold, which is another algorithm parameter.

There is, of course, a possibility that the graph algorithm will not be able to
find any cooperating hosts for certain seed. This might happen when the seed
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is the only peer of the respective peer-to-peer overlay in the network, or when
the seed node around which we tried to construct a graph was a service, e.g.
an email server. If any graph fails to find at least one cooperating endpoint in
the network for certain period of time called the tryout period it is removed
from the module. Even thought we remove the graph, it might be recreated
next time the seed nodes are received from the persistence module, because the
endpoint might be active despite the fact it has no cooperating nodes. Therefore
we define another time parameter, the ignore period, that determines how long
after removing a graph with a specific seed node, this seed node may not be used
to construct another graph. We do not want to ignore the given seed endpoint
forever, because service using the port may change or a cooperating peer might
appear later.

The Graph Algorithm. As we already mentioned, P2P networks can be rep-
resented by a graph. We try to exploit this graph structure to find other partici-
pating P2P nodes using one starter node. To achieve this, we traverse the edges
of the graph which is constructed on the basis of observed network communica-
tion. Since P2P overlay networks are dynamically changing, so should the graph
that represents a P2P overlay network.

The detection algorithm monitors network traffic and constructs (modifies)
the graph defined in the beginning of the section based on the observed network
activity in the following way:

– the graph starts with only the seed node n ∈ Vc,
– when a network connection occurs between any node n ∈ Vc and some node

m outside of our network then there are two options:
– m ∈ Vr already; in this case we just update w({m,n}) = current time(),
– m /∈ Vr yet; in this case we add m to Vr and {m,n} to E and set
w({m,n}) = current time().

– when a network connection occurs between any local node not yet in the
graph and some node m ∈ Vr, we add n to Vs, add {m,n} to E and set
w({m,n}) = current time(),

– any edge e ∈ E for which tnow − w(e) > tL is removed from the graph,
– any node n ∈ V is removed from the graph when it does not have any

incident edge (it has a zero degree),
– if (∃m ∈ Vs)(∃n ∈ Vc)(| Adj(m)∩Adj(n) |> K) then we move m from Vs to

Vc, where Adj(n) is a set of vertices adjacent to n.

The output of the algorithm is the set Vc which at any given moment contains
a list of active P2P nodes in the local network. There are two parameters used
in this algorithm:

– a memory limit, tL, which specifies how long a recorded connection (an edge
in the graph) is kept in memory,

– a mutual contacts overlap threshold, K, which specifies how many mutual
adjacent vertices a node from Vs needs to have with any node from Vc to be
moved to Vc, i.e. to consider it a P2P node.

First three steps of such an algorithm can be found in Fig. 3.
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Table 1. List of peer-to-peer networks with their respective clients installed on the
client hosts in the control set. Last column specifies how many hosts is running given
client application.

network client application hosts

Skype official client 18
BitTorrent μTorrent 26
KAD eMule 15
Gnutella Phex 18

4 Evaluation

4.1 Experiment Setup

To evaluate the detector we deployed it in the University network consisting of
approximately 1000 hosts. Since we did not have access to all the computers and
could not establish the ground truth concerning the network activity, i.e. what
service did every endpoint in the local network belong to, we chose 155 hosts
from two subnets for a small control set.

The first subnet contains 36 hosts of which 18 are running Windows XP,
15 are running Windows 7 and 3 are running Linux. We refer to these hosts
as client hosts. The client hosts were engaged in casual Internet activity, such
as browsing the web, working with email, listening to music, watching videos,
sharing files, etc. On these we also installed client applications for several P2P
networks, where one host can participate in several peer-to-peer networks. The
list of installed client applications can be found in Table 1.

To examine whether the algorithm is capable of linking hosts participating in
a botnet, we infected three computers with Trojan.Sirefef-6 malware, which uses
peer-to-peer for its C&C [16]. To ease up the determination of the ground truth
for the client hosts we set all client applications belonging to the same peer-to-
peer network to use the same port. This has no effect on detection capabilities
of our algorithm.

The second subnet contains servers - we refer to this hosts as server hosts.
None of the them is running any of the aforementioned applications. They run
many services, such as web servers, IMAP/POP services and other.

We were collecting network traffic for 20 hours during a working day. The
traffic was collected in form of NetFlow data by a network probe. Flows were
always collected for five minutes and then sent in a batch to our algorithm.
Number of flows within one 5 minute interval ranges from 37000 at night to
240000 during peak hours. To establish the ground truth for the client hosts in
the control set, we collected netstat information on each client host every five
minutes. This was necessary since many applications tend to open more ports
than the main port. This way we were able to determine what application did
every endpoint of the client hosts belong to. Ground truth for the server hosts
was determined in cooperation with their administrators.
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Table 2. Parameters and their values used in the experiment

parameter values

persistence threshold 0.5, 0.8
mutual contacts overlap threshold 3, 4, 5, 6
memory limit 60, 90, 120 minutes
merge overlap threshold 0.3, 0.5, 0.7

Some of the parameters mentioned in the previous sections do not have any
impact on detection performance. They are used to tune the memory and pro-
cessing power requirements of the detector. These are tryout period, ignore pe-
riod, and measurement and observation window sizes. In our experiments we
fixed value of tryout period to 1 hour. Ignore period was set to 1 hour as well,
however, every consecutive time the graph around a certain seed node is removed
because it failed to find cooperating peers, the ignore period for the given seed
increases by 1 hour. Observation window size is 5 minutes, which is also the
smallest value we can set (because we process flows in 5-minute batches). Re-
sorting to higher values would extend the time an endpoint needs to become
persistent. Measurement window size was chosen in accordance with [4].

The remaining parameters and their values used in the experiment are summed
up in Table 2.

4.2 Evaluation Methodology

Since the algorithm runs continually and modifies the graphs according to the
changes in the network (hosts joining/leaving peer-to-peer networks) we need
to choose a point in time when we evaluate the detection performance. In our
control set we started the client application and let them run for several hours.
Therefore we decided to choose the point when the numbers of detected nodes
of the peer-to-peer networks in their respective main graphs stabilize, i.e. the
numbers are same for at least three consecutive time intervals.

It is possible that endpoints participating in the same peer-to-peer network
will be spread in several graphs. Therefore we need to choose the main graph
- the graph that managed to link most of the cooperating hosts from the given
peer-to-peer network. We use this graph for the performance evaluation.

Please note that the algorithm does not detect any endpoint until it receives
first data from the Persistence Module.

Once we choose the point in time and graphs representing the peer-to-peer
networks, we determine the detection rate and number of false positives.

Client applicationsused for variouspeer-to-peer networksdiffer inusage ofports.
Some applications use more than 1 listening port, a typical example being Skype.
Another difference is in the number of used ephemeral ports.While clients for peer-
to-peer networks based on UDP use only one or small number of ports, clients for
TCPbased peer-to-peer networks are very eager in using ephemeral ports, e.g. Bit-
Torrent. For each peer-to-peer network and its client application we are interested
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Table 3. Detection rate for various memory limit and mutual contacts threshold val-
ues. Memory limit values are intentionally chosen very lower so that the relationship
between the two is obvious. Higher mutual contacts threshold may require longer mem-
ory limit in order to attain “comparable” detection rate. Memory limit is in first row
in minutes, mutual contacts threshold in the first column.

(a) Skype

5 10 15 25 45

2 94.4 94.4 94.4 94.4 94.4
3 94.4 94.4 94.4 94.4 94.4
4 94.4 94.4 94.4 94.4 94.4
5 94.4 94.4 94.4 94.4 94.4
6 72.2 83.3 94.4 94.4 94.4
7 16.7 22.2 22.2 27.8 83.3
8 16.7 16.7 22.2 22.2 38.9

(b) BitTorrent’s DHT

5 10 15 25 45

2 96.2 100 100 100 100
3 53.8 76.9 92.3 100 100
4 34.6 57.7 69.2 88.5 100
5 34.6 42.3 61.5 73.1 92.3
6 34.6 42.3 57.7 65.4 84.6
7 34.6 42.3 42.3 65.4 76.9
8 34.6 42.3 42.3 61.5 65.4

in the main listening port. In some graphs we may observe several endpoints asso-
ciated with a single host, especially if they represent a peer-to-peer network using
TCP as transport protocol. In a rigorous understanding, these endpoints are true
positives because they are used for the communication in the peer-to-peer overlay.
To keep the things simple, we ignore all endpoints that are in fact true positives
but are not associated with the main listening port. If we did not ignore such end-
points we would have issues with the detection rate calculation as we do not know
the exact number of ephemeral ports used by a client.

Identification of false positives differs among the peer-to-peer networks. For
KAD, Gnutella, BitTorrent and Trojan.Sirefef-6 we consider every detected end-
point not associated with the host from the control set and the respective lis-
tening port of the client application to be a false positive. We can do so since
these peer-to-peer networks are used only rarely at the University. Using this
approach we determine the upper bound of the false positives detected by our
algorithm. We cannot do the same with Skype as it is very popular at the Uni-
versity. Therefore we evaluate false and true positives only on the control set.

4.3 Evaluation Results

We evaluated the algorithm performance for all combination of parameters,
summed up in Table 2. Before we move on to the actual results of the detection
we describe the effect of the particular parameters on the detection performance
of the algorithm.

Increasing the persistence threshold in general lowers the number of graphs
in the Graph Module. This is important for the performance consideration, es-
pecially on huge networks. Having too many graphs in the model can result in
exhaustion of the system resources. To focus on detection performance, rising
the persistence threshold lowers the number of endpoints induced by the client
application but not associated with the main port. It does not seem to have any
significant impact on false positives rate.
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Table 4. Parameters used for the evaluation of the algorithm. These provide the best
results, however they are not the only choice of parameters that attains the same
detection performance.

parameter value

persistence threshold 0.8
mutual contacts overlap threshold 5
memory limit 90 minutes
merge overlap threshold 0.3

Choice of memory limit has a minor impact on false positives rate — the rise
of the memory limit is accompanied by the rise of the false positive rate. On
the other hand, it can have severe impact on the detection rate (explanation of
the connection to mutual contacts overlap threshold, will be introduced shortly).
This parameter also impacts memory requirements, high memory limit result in
increased memory requirements of the algorithm.

Mutual contacts overlap threshold is the parameter that we believe has the
greatest impact on the false positive rate. Increase in its value is accompanied by
the drop of the detection rate. There is some boundary (determined by the peer-
to-peer protocol) exceeding which the detection rate would drop considerably.
This can be easily seen in Table 3a. When using memory limit of 5 minutes, the
change from mutual contacts overlap threshold from 6 to 7 causes a significant
drop in the detection rate. However, under this limit value, we can attain the
same detection rate for various values of mutual contacts overlap threshold just
by adjusting the memory limit.

There is a connection between the memory limit and mutual contacts over-
lap threshold parameters. Rising the mutual contacts threshold while fixing the
memory limit lowers the detection rate. On the other hand, raising the memory
limit while keeping the mutual contacts threshold fixed improves the detection
rate. This is best seen in Table 3.

We did not notice any impact of the merge overlap threshold value on the
detection results.

We do not present results for all combinations of parameters, since there are
too many of them and many bring the same results. We rather present only the
results for one combination of parameters that brings the best results. For the
parameters please refer to Table 4.

Detection Rate. The algorithm was able to find all cooperating hosts in Skype,
BitTorrent, Kademlia and Trojan.Sirefef-6 peer-to-peer networks. On the other
hand, detection rate for Gnutella was considerably lower — 44%.

While Gnutella uses TCP protocol for its communication, Skype, Kademlia
and Trojan.Sirefef-6 all use UDP for their peer-to-peer overlay. Finally, newest
BitTorrent protocol implementations use both UDP and TCP. In BitTorrent,
TCP is used for communication in swarms, i.e. the communities created to share
files listed in a single torrent file and UDP is used in BitTorrent’s DHT imple-
mentation, which is utilized for distributed tracker functionality.
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As was mentioned before, the algorithm attained 100% detection rate for Bit-
Torrent clients. However, these were detected based on BitTorrent’s DHT imple-
mentation which is used for distributed tracker functionality and not based on
the BitTorrent protocol. The question is whether the algorithm would be able to
detect BitTorrent clients that do not use DHT. To verify the detection perfor-
mance on clients using only BitTorrent protocol without any DHT we ran the
algorithm again with the same parameters, while ignoring all UDP connections
from or to the μTorrent listening port (effectively removing the DHT traffic).

Here we need to realize the difference between the BitTorrent protocol and
the other peer-to-peer protocols in this evaluation. While other peer-to-peer
networks maintain an overlay network at all times, the BitTorrent client is not
part of any overlay (if it is not using DHT) unless it wants to download a file and
joins a swarm. Therefore, when we talk about detecting cooperating hosts for
BitTorrent using only the BitTorrent protocol, we mean hosts that are members
of the same swarm.

With such setting, we were able to detect all peers cooperating in the same
BitTorrent swarm. This shows that even without DHT we were able to find
cooperating hosts and that the algorithm is not restricted only to the UDP-
based peer-to-peer networks and can be effective for TCP-based peer-to-peer
networks as well.

Detecting Gnutella peers seems to be much harder. The algorithm found only
8 peers which constitutes around 44% of all peers. Gnutella uses TCP for com-
munication. Unlike protocols that use UDP and the listening port is used for
both incoming and outgoing connections, Gnutella uses the listening port only
for incoming connections. Outgoing connections are sent through an ephemeral
ports that are assigned and changed at the discretion of the operating system.
That makes the detection much harder. Gnutella has two types of peers, leaf
nodes and ultrapeers. Leaf nodes only connect to the ultrapeers and ultrapeers
connect to both ultrapeers and leaf nodes. Ultrapeers have higher frequency of
connections with other peers and are thus more likely to be linked together. Most
of the cooperating hosts found for the Gnutella network were in fact ultrapeers.

The important thing to note here is that linking cooperating hosts (with the
exception of BitTorrent peers detection without DHT) did not require any user
activity besides connecting (and logging in) to the network.

False Positive Rate. For four of the peer-to-peer networks we experimented
on we encountered no false positives. These were Skype, KAD, Gnutella and
Trojan.Sirefef-6. Only one false positive was found when linking cooperating
hosts in the BitTorrent’s DHT network. Due to the low number of false positives
we refrain from calculating the false positive rate, since it would only have a
negligible value.

5 Conclusion

In this paper we presented a novel method that links cooperating hosts in the
same peer-to-peer network by exploiting the inherent properties of peer-to-peer
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networks. It tries to reconstruct the peer-to-peer overlay based on the observed
connection in the network.

The method managed to detect all cooperating peers in most of the networks
and attained almost zero false positive rate.

Since the method does not use neither packet payloads nor flow statistics, it is
a viable option for deployment on the backbone network where computationally
expensive models are not an option.

We believe that this method presents a viable approach to detecting peers in
overlay networks, both well known file sharing networks and specialized peer-to-
peer networks used by botnets as a C&C channel.
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Abstract. In recent years, there has been an alarming increase of online
identity theft and attacks using personally identifiable information. The
goal of privacy preservation is to de-associate individuals from sensitive
or microdata information. Microaggregation techniques seeks to protect
microdata in such a way that can be published and mined without pro-
viding any private information that can be linked to specific individuals.
Microaggregation works by partitioning the microdata into groups of at
least k records and then replacing the records in each group with the
centroid of the group. An optimal microaggregation method must min-
imize the information loss resulting from this replacement process. The
challenge is how to minimize the information loss during the microaggre-
gation process. This paper presents a new microaggregation technique for
Statistical Disclosure Control (SDC). It consists of two stages. In the first
stage, the algorithm sorts all the records in the data set in a particular
way to ensure that during microaggregation very dissimilar observations
are never entered into the same cluster. In the second stage an optimal
microaggregation method is used to create k-anonymous clusters while
minimizing the information loss. It works by taking the sorted data and
simultaneously creating two distant clusters using the two extreme sorted
values as seeds for the clusters. The performance of the proposed tech-
nique is compared against the most recent microaggregation methods.
Experimental results using benchmark datasets show that the proposed
algorithm has the lowest information loss compared with a basket of
techniques in the literature.

Keywords: Privacy, Microaggregation, Microdata protection,
k-anonymity, Disclosure control.

1 Introduction

In recent years, the phenomenal advance of technological developments in infor-
mation technology enable government agencies and corporations to accumulate
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an enormous amount of personal data for analytical purposes. These agencies and
organizations often need to release individual records (microdata) for research
and other public benefit purposes. This propagation has to be in accordance
with laws and regulations to avoid the propagation of confidential information.
In other words, microdata should be published in such a way that preserve the
privacy of the individuals. Microdata protection in statistical databases has re-
cently become a major societal concern and has been intensively studied in recent
years. Microaggregation for Statistical Disclosure Control (SDC) is a family of
methods to protect microdata from individual identification. SDC seeks to pro-
tect microdata in such a way that can be published and mined without providing
any private information that can be linked to specific individuals. SDC is often
applied to statistical databases before they are released for public use.

To protect personal data from individual identification, SDC is often applied
before the data are released for analysis [2,26]. The purpose of microdata SDC
is to alter the original microdata in such a way that the statistical analysis from
the original data and the modified data are similar and the disclosure risk of
identification is low. As SDC requires suppressing or altering the original data,
the quality of data and the analysis results can be damaged. Hence, SDC methods
must find a balance between data utility and personal confidentiality.

Various methods for Microaggregation has been proposed in the literature for
protecting microdata [3,4,7,8,11,12,20,23]. The basic idea of microaggregation is
to partition a dataset into mutually exclusive groups of at least k records prior to
publication, and then publish the centroid over each group instead of individual
records. The resulting anonymized dataset satisfies k-anonymity [18], requiring
each record in a dataset to be identical to at least (k − 1) other records in the
same dataset. As releasing microdata about individuals poses privacy threat due
to the privacy-related attributes, called quasi-identifiers, both k-anonymity and
microaggregation only consider the quasi-identifiers. Microaggregation is tradi-
tionally restricted to numeric attributes in order to calculate the centroid of
records, but also has been extended to handle categorical and ordinal attributes
[4,8,19]. In this paper we propose a microaggregated method that is also appli-
cable to numeric attributes.

The effectiveness of a microaggregation method is measured by calculating its
information loss. A lower information loss implies that the anonymized dataset is
less distorted from the original dataset, and thus provides better data quality for
analysis. k- anonymity [17,18,21] provides sufficient protection of personal con-
fidentiality of microdata, while ensuring the quality of the anonymized dataset,
an effective microaggregation method should incur as little information loss as
possible. In order to be useful in practice, the dataset should keep as much in-
formative as possible. Hence, it is necessary to seriously consider the tradeoff
between privacy and information loss. To minimize the information loss due to
microaggregation, all records are partitioned into several groups such that each
group contains at least k similar records, and then the records in each group
are replaced by their corresponding mean such that the values of each variable
are the same. Such similar groups are known as clusters. In the context of data
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mining, clustering is a useful technique that partitions records into groups such
that records within a group are similar to each other, while records in different
groups are most distinct from one another. Thus, microaggregation can be seen
as a clustering problem with constraints on the size of the clusters.

Many microaggregationmethods derive from traditional clustering algorithms.
For example, Domingo-Ferrer and Mateo-Sanz [3] proposed univariate and mul-
tivariate k-Ward algorithms that extend the agglomerative hierarchical clustering
method of Ward et al. [24]. Domingo-Ferrer and Torra [6,7] proposed a
microaggregationmethodbased on the fuzzy c-means algorithm [1], andLaszlo and
Mukherjee [13] extended the standard minimum spanning tree partitioning algo-
rithm for microaggregation [27]. All of these microaggregation methods build all
clusters gradually but simultaneously. There are some other methods for microag-
gregation that have been proposed in the literature that build one/two cluster(s) at
a time. Notable examples includeMaximumDistance [15], Diameter-based Fixed-
Size microaggregation and centroid-based Fixed-size microaggregation [13],
Maximum Distance to Average Vector (MDAV) [8], MHM [9] and the Two Fixed
Reference Points method [28]. Most recently, Lin et al. [29] proposed a density-
basedmicroaggregationmethod that forms clusters by thedescending orderof their
densities, and then fine-tunes these clusters in reverse order.

The reminder of this paper is organized as follows. We introduce the prob-
lem of microaggregation in Section 2. Section 3 introduces the basic concept
of microaggregation. Section 4 reviews previous microaggregation methods. We
present a brief description of our proposed microaggregation method in Sec-
tion 5. Section 6 shows experimental results of the proposed method. Finally,
concluding remarks are included in Section 7.

2 Problem Statement

The algorithms for microaggregation works by partitioning the microdata into
groups, where within groups the records are homogeneous but between groups
the records are heterogeneous so that information loss is low. The similar groups
are also called clusters. The level of privacy required is controlled by a security
parameter k, the minimum number of records in a cluster. In essence, the pa-
rameter k specifies the maximum acceptable disclosure risk. Once a value for k
has been selected by the data protector, the only job left is to maximize data
utility. Maximizing utility can be achieved by microaggregating optimally, i.e.
with minimum within-groups variability loss. So the main challenge in microag-
gregation is how to minimize the information loss during the clustering process.
Although plenty of work has been done, to maximize the data utility by forming
the clusters, this is not yet sufficient in terms of information loss. So more re-
search needs to be done to form the clusters such that the information loss is as
low as possible. This paper analyses the problem with a new multi-dimensional
sorting algorithm such that the information loss is minimal.

Observing this challenge, this work presents a new clustering-based method for
microaggregation, where a new multi-dimensional sorting algorithm is used in the
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first stage. In the second stage two distant clusters are made simultaneously in a
systematic way. According to the second stage, sort all records in ascending order
byusing a sorting algorithm in the first stage explained in Section 5) so that the first
record and the last record are most distant to each other. Form a cluster with the
first record and its (k− 1) nearest records and another cluster with the last record
and its (k − 1) nearest records. Sort the remaining records ((n − 2k), if dataset
contains n records) by using the same sorting algorithm and continue to build pair
clusters at the same time by using the first and the last record as seeds until some
specified records remain. Finally formone/two cluster(s) depending on the remain-
ing records. Thus all clusters produced in this way contain k records except the last
cluster thatmay contain at themost (2k−1) records. Performance of the proposed
method is compared against the most recent widely used microaggregation meth-
ods. The experimental results show that the proposed microaggregation method
outperforms the recent methods in the literature.

3 Background

Microdata protection through microaggregation has been intensively studied in
recent years. Many techniques and methods have been proposed to deal with
this problem. In this section we describe some fundamental concepts of microag-
gregation.

When we microaggregate data we should keep in mind two goals: data utility
and preserving privacy of individuals. For preserving the data utility we should
introduce as little noise as possible into the data and preserving privacy data
should be sufficiently modified in such a way that it is difficult for an adver-
sary to reidentify the corresponding individuals. Figure 1 shows an example of
microaggregated data where the individuals in each cluster are replaced by the
corresponding cluster mean. The figure shows that after aggregating the chosen
elements, it is impossible to distinguish them, so that the probability of linking
any respondent is inversely proportional to the number of aggregated elements.

Consider a microdata set T with p numeric attributes and n records, where
each record is represented as a vector in a p-dimensional space. For a given
positive integer k ≤ n, a microaggregation method partitions T into g clusters,
where each cluster contains at least k records (to satisfy k-anonymity), and then
replaces the records in each cluster with the centroid of the cluster. Let ni denote
the number of records in the ith cluster, and xij , 1 ≤ j ≤ ni, denote the jth
record in the ith cluster. Then, ni ≥ k for i = 1 to g, and

∑g
i=1 ni = n. The

centroid of the ith cluster, denoted by x̄i is calculated as the average vector of
all the records in the ith cluster.

In the same way, the centroid of T , denoted by x̄, is the average vector of all
the records in T . Information loss is used to quantify the amount of information
of a dataset that is lost after applying a microaggregation method. In this paper
we use the most common definition of information loss by Domingo-Ferrer and
Mateo-Sanz [3] as follows:

IL =
SSE

SST
(1)
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Fig. 1. Example of Microaggregation using mean

where SSE is the within-cluster squared error, calculated by summing the Eu-
clidean distance of each record xij to the average value x̄i as follows:

SSE =

g∑
i=1

ni∑
j=1

(xij − x̄i)
′
(xij − x̄i) (2)

and SST is the sum of squared error within the entire dataset T , calculated by
summing the Euclidean distance of each record xij to the average value x̄ as
follows:

SST =

g∑
i=1

ni∑
j=1

(xij − x̄)
′
(xij − x̄) (3)

For a given dataset T , SST is fixed regardless of how T is partitioned. On the
other hand, SSE varies of a dataset depending on the partition of the dataset.
In essence, SSE measures the similarity of the records in a cluster. The lower
the SSE, the higher the within-cluster homogeneity and the higher the SSE, the
lower the within cluster homogeneity. If all the records in a cluster are the same,
then the SSE is zero indicating no information is lost. On the other hand, if all
the records in a cluster are more diverse, SSE is large indicating more informa-
tion is lost. In this paper, we used SSE as a measure of similarity indicating a
record will be included in a particular cluster if it causes least SSE among all
other records in the dataset. Therefore, the microaggregation problem can be
enumerated as a constraint optimization problem as follows:

Definition 1 (Microaggregation Problem). Given a dataset T of n elements
and a positive integer k, find a partitioning G = {G1, G2, ..., Gg} of T such that
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1. Gi ∩Gj = Φ, for all i 	= j = 1, 2, ..., p,
2. ∪p

i=1Gi = T ,
3. SSE is minimized,
4. for all Gi ∈ T , | Gi |≥ k for any Gi ∈ G.

The microaggregation problem stated above can be solved in polynomial time
for a univariate dataset [12] but has been shown to be NP hard for multivariate
dataset [14]. It is a natural expectation that SSE is low if the number of clusters
is large. Thus the number of records in each cluster should be kept close to k.
Domingo-Ferrer and Mateo-Sanz [3] showed that no cluster should contain more
than (2k − 1) records since such clusters can always be partitioned to further
reduce information loss.

4 Previous Microaggregation Methods

Previous microaggregation methods have been roughly divided into two cate-
gories, namely fixed-size and data-oriented microaggregation [3,9]. For fixed-size
microaggregation, the partition is done by dividing a dataset into clusters that
have size k, except perhaps one cluster which has a size between k and (2k− 1),
depending on the total number of records n and the anonymity parameter k.
For the data-oriented microaggregation, the partition is done by allowing all
clusters with sizes between k and (2k− 1). Intuitively, fixed-size methods reduce
the search space, and thus are more computationally efficient than data-oriented
methods [29]. However, data-oriented methods can adapt to different values of k
and various data distributions and thus may achieve lower information loss than
fixed-size methods.

Domingo-Ferrer and Mateo-Sanz [3] proposed a multivariate fixed-size mi-
croaggregation method, later called the Maximum Distance (MD) method [15].
The MD method repeatedly locates the two records that are most distant to
each other, and forms two clusters with their respective (k − 1) nearest records
until fewer than 2k records remain. If at least k records remain, it then forms
a new cluster with all remaining records. Finally when there are fewer than k
records not assigned to any cluster yet, this algorithm then individually assigns
these records to their closest clusters. This method has a time complexity of
O(n3) and works well for most datasets. Laszlo and Mukherjee [13] modified
the last step of the MD method such that each remaining record is added to its
own nearest cluster and proposed Diameter-based Fixed-size microaggregation.
This method is however not a fixed size method because it allows more than one
cluster to have more than k records.

The MDAV method is the most widely used microaggregation method [15].
MDAV is the same as MD except in the first step. MDAV finds the record r
that is furthest from the current centroid of the dataset and the record s that
is furthest from r instead of finding the two records that are most distant to
each other, as is done in MD. Then form a cluster with r and its (k− 1) nearest
records and form another cluster with s and its (k − 1) nearest records. For
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the remaining records, repeat this process until fewer than 2k records remain. If
between k and (2k − 1) records remain, MDAV simply forms a new group with
all of the remaining records. On the other hand, if the number of the remaining
records is below k, it adds all of the remaining records to their nearest clusters.
So MDAV is a fixed size method. Lin et al. [29] proposed a modified MDAV,
called MDAV-1. The MDAV-1 is similar to MDAV except when the number
of the remaining records is between k and (2k − 1), a new cluster is formed
with the record that is the furthest from the centroid of the remaining records,
and its (k − 1) nearest records. Any remaining records are then added to their
respective nearest clusters. Experimental results indicate that MDAV-1 incurs
slightly less information loss than MDAV [29]. Another variant of the MDAV
method, called MDAV-generic, is proposed by Domingo-Ferrer and Torra [8],
where by the threshold 2k is altered to 3k. If between 2k and (3k − 1) records
remain, then find the record r that is furthest from the centroid of the remaining
records and form a cluster with r and its (k − 1) nearest records and another
cluster with the remaining records. Finally when fewer than 2k records remain,
this algorithm then forms a new cluster with all the remaining records. Laszlo
and Mukherjee [13] proposed another method, called Centroid-based Fixed-size
microaggregation that is also based on a centroid but builds only one cluster
during each iteration. This algorithm first find a record r that is furthest from
the current centroid of the dataset and then find a cluster with r and its (k− 1)
nearest records. For the remaining records repeat the same process until fewer
than k records remain. Finally add each remaining record to its nearest clusters.
This method is not a fixed-size method as more than one cluster has more than
k records. Solanas et al. [16] proposed a variable-size variant of MDAV, called V-
MDAV. V-MDAV first builds a new cluster of k records and then tries to extend
this to up to (2k − 1)records based on some criteria. V-MDAV adopts a user-
defined parameter to control the threshold of adding more records to a cluster.
Chang et al. [28] proposed the Two Fixed Reference Points (TFRP) method
to accelerate the clustering process of k-anonymization. During the first phase,
TFRP selects two extreme points calculated from the dataset. Let Nmin and
Nmax be the minimum and maximum values over all attributes in the datasets,
respectively, then one reference point G1 has Nmin as its value for all attributes,
and another reference point G2 has Nmax as its value for all attributes. A cluster
of k records is then formed with the record r that is the furthest from G1 and
the (k− 1) nearest records to r. Similarly another cluster of k records is formed
with the record s that is the furthest from G2 and (k − 1) nearest records to s.
These two steps are repeated until fewer than k records remain. Finally, these
remaining records are assigned to their respective nearest clusters. This method
is quite efficient as G1 and G2 are fixed throughout the iterations. When all
clusters are generated, TFRP applies a enhancement step to determine whether
a cluster should be retained or decomposed and added to other clusters.

Lin et al. [29] proposed a density-based algorithm (DBA) for microaggrega-
tion. The DBA has two different scenarios. The first state of DBA (DBA-1)
repeatedly builds a new cluster using the k-neighborhood of the record with the
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highest k-density among all records that are not yet assigned to any cluster until
fewer than k unassigned records remain. These remaining records are then as-
signed to their respective nearest clusters. The DBA-1 partitions the dataset into
some clusters, where each cluster contains no fewer than k records. The second
state of DBA (DBA-2) attempts to fine-tune all clusters by checking whether
to decompose a cluster and merge its content with other clusters. Notably, all
clusters are checked during the DBA-2 by the reverse of the order that they
were added to clusters in the DBA-1. After several clusters are removed and
their records are added to their nearest clusters in the DBA-2, some clusters
may contain more than (2k− 1) records. At the end of the DBA-2, the MDAV-1
algorithm is applied to each cluster with size above (2k − 1) to reduce the in-
formation loss. This state is finally called MDAV-2. Experimental results show
that the DBA attains a reasonable dominance over the latest microaggregation
methods.

All of the microaggregation methods described above repeatedly choose one/
two records according to various heuristics and form one/two cluster(s) with
the chosen records and their respective (k − 1) other records. However there
are other microaggregation methods that build all clusters simultaneously and
work by initially forming multiple clusters of records in the form of trees, where
each tree represent a cluster. The multivariate k-Ward algorithm [3] first finds
the two records that are furthest from each other in the dataset and build two
clusters from these two records and their respective (k − 1) nearest records.
Each of the remaining record then forms its own cluster. These clusters are
repeatedly merged until all clusters have at least k records. Finally the algorithm
is recursively applied to each cluster containing 2k or more records. Domingo-
Ferrer et al. [10] proposed a multivariate microaggregation method called μ-
Approx. This method first builds a forest and then decomposes the trees in the
forest such that all trees have sizes between k and max(2k − 1, 3k − 5). Finally,
for any tree with size greater than (2k − 1), find the node in the tree that is
furthest from the centroid of the tree. Form a cluster with this node and its
(k − 1) nearest records in the tree and form another cluster with the remaining
records in the tree.

Hansen an Mukherjee [12] proposed a microaggregation method for univariate
datasets called HM. After that Domingo-Ferrer et al. [9] proposed a multivariate
version of the HM method, called MHM. This method first uses various heuris-
tics, such as nearest point next (NPN), maximum distance (MD) or MDAV to
order the multivariate records. Steps similar to the HM method are then applied
to generate clusters based on this ordering. Domingo-Ferrer et al. [7] proposed
a microaggregation method based on fuzzy c-means algorithm (FCM) [1]. This
method repeatedly runs FCM to adjust the two parameters of FCM (one is the
number of clusters c and another is the exponent for the partition matrix m)
until each cluster contains at least k records. The value of c is initially large (and
m is small) and is gradually reduced (increased) during the repeated FCM runs
to reduce the size of each cluster. The same process is then recursively applied
to those clusters with 2k or more records.
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5 The Proposed Approach

This section presents the proposed sorting algorithm and pairwise systematic
algorithm for microaggregation that minimizes the information loss and satisfies
the k-anonymity requirement.

It has been observed that the reason many of the existing techniques has high
information loss is due to some clusters containing very different observations
which increases the information of a cluster. Therefore, the initial choice of clus-
ter(s) is often difficult since these observations are not known in advance. The
proposed technique solves this problem by applying a multi-dimensional sort-
ing on the dataset in a particular way so that the different observations are at
opposite ends of the sorted dataset. This process is explained in Section 5.1.
Next, a pairwise systematic method takes this sorted dataset to create two clus-
ters repeatedly by minimizing information loss and observing k-anonymity. The
algorithm is described in Section 5.2.

5.1 Sorting Technique

Before describing the sorting technique, first we consider a simple example. Con-
sider Table 1 which consists of two variables V1 and V2. Rank/Index each of the
variables in ascending order individually and create a table where the columns
indicates the position of the value in the original data (Table 1). For example,
the first rank (3) of column 1 in Table 2A indicates the position of smallest
value of the first variable (1) in Table 1. Similarly, the second (4) and third (2)
ranks indicate the positions of second smallest (2) and third lowest (3) values
respectively. The second column is also created in the same way. Now sum the
positions of each rank. For example, in Table 2B rank 1 comes from the positions
of 5th row of first column and 4th row of second column, rank 2 comes from the
positions of third row of first column and fifth row of second column and so on,
i.e., 1(9), 2(8), 3(4), 4(3), 5(6), where first number is the rank and the number in
bracket is the sum of the respective positions. The last column is the rank of
the sum-values in bracket of the previous column. For example, 4(3) is ranked
1, since 3 is the smallest sum in 9, 8, 4, 3, 6. Thus according to this sorting algo-
rithm, the first record in the sorted table (see Table 3) should be the 4th row,
the second record should be third row of original table in Table 1 and so on. The
sorted table is presented in Table 3. The algorithm of this sorting technique is
presented in Table 4.

Using the algorithm in Table 5, it is expected that the first record and the
last record are more distant and there is zero probability that the first record
and the last recorded will be included in the same cluster.

5.2 Pairwise-Systematic Microaggregation Algorithm

The Pairwise-Systematic (P-S) microaggregation proposed by Kabir et al. [22]
is a practical microaggregation algorithm that creates two distant clusters in
a systematic way. Based on the information loss measure in equation (1), the
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Table 1. Original variable

V1 V2

5 6

3 10

1 3

2 1

4 2

Table 2. A.Rank of sorted values B.Sum of Ranks and final positions

R1 R2

3 4

4 5

2 3

5 1

1 2

Rank Sum R

1(5+4)=1(9) 5

2(3+5)=2(8) 4

3(1+3)=3(4) 2

4(2+1)=4(3) 1

5(4+2)=5(6) 3

Table 3. Sorted variables

V1 V2

2 1

1 3

4 2

3 10

5 6

sorting algorithm in Table 5 and the definition of the microaggregation problem,
the Pairwise-Systematic (P-S) microaggregation algorithm is as follows. Please
refer to Kabir et al. [22] for detailed of the algorithm.

According to this method, first sort all records of n in the dataset T in ascend-
ing order by using the algorithm in Table 5. Thus in the sorting dataset, the first
record and the last record are the most distant to each other among all other
pair records in the dataset T . The algorithm (see Table 5) repeatedly builds
pair clusters using the first record and the last record in the sorting dataset and
their corresponding (k − 1) nearest records until fewer than 3k records remain
(see steps 2-6 of Table 5). The nearest records in a cluster are chosen in such a
way that the inclusion of these records causes less SSE than the other records in
the dataset. If between 2k and (3k − 1) records remain, then sort these records
in ascending order by using the same sorting algorithm in Table 5 and find the
first record f . Form a cluster with f and its (k− 1) nearest records, and another
cluster with the remaining records (see step 7 of Table 5). Moreover, if fewer
than 2k records remain, then form a new cluster with all remaining records (see
step 9 of Table 5).

The proposed algorithms stated above endeavours to repeatedly build two
clusters simultaneously in a systematic way. As the records in the dataset T are
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Table 4. Multi-dimensional Sorting Algorithm

function [C, IX]= MultiDSort(X)

Input: X is a d-dimensional matrix with m rows or instances
Output: C is a d-dimensional matrix, IX is index of the sorted matrix

For n = 1 to d
Y = Sortn(X) along dimension n
Create an index array IA such that the value at IA(i) = j represents X(i)′s
position/index in the sorted array Y(j)(n)
End For

For p = 1 to m
For n = 1 to d

Let z be an m dimensional array containing indeces of the
multidimensional sorted matrix, then

Z(p) = Z(p) + Y (p)(n)
End For

End For

End function

arranged in ascending order and the first record and the last record are most
distant to each other, building clusters in this systematic way, the algorithm
easily captures if there are any extreme values in the dataset.

Definition 2 (Systematic clustering-based microaggregation decision
problem). In a given dataset T of n records, there is a clustering scheme G =
{G1, G2, ..., Gg} such that

1. | Gi |≥ k, 1 < k ≤ n: the size of each cluster is greater than or equal to a
positive integer k, and

2.
∑g

i=1 IL(Gi) < c, c > 0: the total information loss of the clustering scheme
is less than a positive integer c.

where each cluster Gi(i = 1, 2, ..., p) contains the records that are more similar
to each other such that the cluster means are close to the values of the clusters
and thus cause the least information loss.

6 Experimental Results

This section presents the experimental results and compares the results with sev-
eral existing techniques. The objective of this experiment is to investigate the
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Table 5. P-S microaggregation algorithm

Input: a dataset T of n records and a positive integer k

Output: a partitioning G = {G1, G2, ..., Gg} of T , where g = |G|
and Gi ≥ k for i = 1 to g.

1. Let G = Φ, and T
′
= T ;

2. Sort all records in T
′
in ascending order by using the algorithm in Table 5;

3. Find the first f ∈ T
′
and the last record l ∈ T

′
;

4. Form a cluster G1 containing first record f and its (k − 1) nearest records in T
′
;

and another cluster G2 containing last record l and its (k − 1) nearest records in T
′
;

5. Set G = G ∪G1 ∪G2 and T
′
= T

′ −G1 −G2;

6. Repeat steps 2-4 until |T ′ | < 3k;

7. If 2k ≤ |T ′ | ≤ (3k − 1);
(i) Go to step 2;

(ii) Form a cluster containing the first record f ∈ T
′
;

and its (k-1) nearest records in T
′
;

(iii) Form another cluster with remaining records in T
′
;

8. else;

9. If T
′
< 2k;

(i) Form a new cluster with all the remaining records in T
′
.

effectiveness of the proposed algorithm in terms of measured information loss of
represented cluster data. The following three datasets [9], which have been used
as benchmarks in previous studies to evaluate various microaggregation meth-
ods, were adopted in the experiments.

1. The “Tarragona” dataset contains 834 records with 13 numerical attributes.
2. The “Census” dataset contains 1,080 records with 13 numerical attributes.
3. The “EIA” dataset contains 4,092 records with 11 numeric attributes (plus

two additional categorical attributes not used here).

To accurately evaluate our approach, the performance of the proposed algo-
rithm is compared in this section with various microaggregation methods. Ta-
bles 6-8 show the information losses of these microaggregation methods. The
lowest information loss for each dataset and each k value is shown in bold face.
The information losses of methods DBA-1, DBA-2, MDAV-1 and MDAV-2 are
quoted from [29]; the information losses of methods MDAV-MHM, MD-MHM,
CBFS-MHM, NPN-MHM and M-d (for k = 3, 5, 10) are quoted from [9]; the in-
formation losses of methods μ-Approx and M-d (for k = 4) are quoted from [10],
and the information losses of methods TFRP-1 and TFRP-2 are quoted from
[28]. TFRP is a two-stage method and its two stages are denoted as TRFP-1
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Table 6. Information loss comparison using Tarragona dataset

Method k = 3 k = 4 k = 5 k = 10

MDAV-MHM 16.9326 22.4617 33.1923
MD-MHM 16.9829 22.5269 33.1834
CBFS-MHM 16.9714 22.8227 33.2188
NPN-MHM 17.3949 27.0213 40.1831

M-d 16.6300 19.66 24.5000 38.5800
μ-Approx 17.10 20.51 26.04 38.80
TFRP-1 17.228 19.396 22.110 33.186
TFRP-2 16.881 19.181 21.847 33.088
MDAV-1 16.93258762 19.54578612 22.46128236 33.19235838
MDAV-2 16.38261429 19.01314997 22.07965363 33.17932950
DBA-1 20.69948803 23.82761456 26.00129826 35.39295837
DBA-2 16.15265063 22.67107728 25.45039236 34.80675148

Multi-DSort 9.8572 11.9989 18.17 32.1338

Table 7. Information loss comparison using Census dataset

Method k = 3 k = 4 k = 5 k = 10

MDAV-MHM 5.6523 9.0870 14.2239
MD-MHM 5.69724 8.98594 14.3965
CBFS-MHM 5.6734 8.8942 13.8925
NPN-MHM 6.3498 11.3443 18.7335

M-d 6.1100 8.24 10.3000 17.1700
μ-Approx 6.25 8.47 10.78 17.01
TFRP-1 5.931 7.880 9.357 14.442
TFRP-2 5.803 7.638 8.980 13.959
MDAV-1 5.692186279 7.494699833 9.088435498 14.15593043
MDAV-2 5.656049371 7.409645342 9.012389597 13.94411775
DBA-1 6.144855154 9.127883805 10.84218735 15.78549732
DBA-2 5.581605762 7.591307664 9.046162117 13.52140518

Multi-DSort 2.0954 3.6254 3.4595 6.8497

Table 8. Information loss comparison using EIA dataset

Method k = 3 k = 4 k = 5 k = 10

MDAV-MHM 0.4081 1.2563 3.7725
MD-MHM 0.4422 1.2627 3.6374
NPN-MHM 0.5525 0.9602 2.3188
μ-Approx 0.43 0.59 0.83 2.26
TFRP-1 0.530 0.661 1.651 3.242
TFRP-2 0.428 0.599 0.910 2.590
MDAV-1 0.482938725 0.671345141 1.666657361 3.83966422
MDAV-2 0.411101515 0.587381756 0.946263963 3.16085577
DBA-1 1.090194828 0.84346907 1.895536919 4.265801303
DBA-2 0.421048322 0.559755523 0.81849828 2.080980825

Multi-DSort 0.4048 0.5299 0.7956 1.7709
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and TRFP-2 respectively. The TFRP-2 is similar to the DBA-2 but disallows
merging a record to a group of size over (4k − 1).

Tables 6-8 show the information loss for several values of k and the Tarragona,
Census and for the EIA datasets respectively. The information loss is compared
with the proposed algorithm among the latest microaggregation methods listed

above. Information loss is measured as SSE
SST ×100, where SST is the total sum

of the squares of the dataset. Note that the within-groups sum of squares SSE
is never greater than SST so that the reported information loss measure takes
values in the range [0,100]. Tables 6-8 illustrate that in all of the test situations,
the proposed algorithm causes significantly less information loss than any of the
microaggregation methods listed in the table. This shows the utility and the
effectiveness of the proposed algorithm.

Analysis: Figure 2 shows how the information loss values changes with k for
each dataset. Results indicate that information loss increases with k. This is
obvious since the higher number of records in each cluster results in higher sum-
of-squared-error (SSE) values due to the fact that each cluster now has more
observations and possibly larger variance. Interestingly, there is little correlation
between overall information loss of a dataset and its size as evident from the
fact that the information loss for CIA dataset (containing 4092 instances) is
much lower than the information loss for Tarragona dataset (containing 1082
instances). This may be due to the lower variance in EIA dataset resulting in
clusters with lower SSE, hence lower information loss.

Figure 3 shows the how the execution time varies with k and different file
sizes. Again, results show that the execution time depends on the value of k.
It shows that the execution time increases slightly due to the increased number
of permutations that need to be calculated for each cluster for the higher k.
Furthermore, as expected the execution is also related to the file size. As shown
in Figure 3 it takes the longest time to find k-anonymous clusters for the EIA
dataset (4092 instances) and quickest time for the census dataset (834 instances).

7 Conclusion

Microaggregation is an effective method in SDC for protecting privacy in mi-
crodata and has been extensively used world-wide. The level of privacy required
is controlled by a parameter k, often called the anonymity parameter. For k-
anonymization, k is basically the minimum number of records in a cluster. Once
the value of k has been chosen, the data protector and the data users are inter-
ested in minimizing the information loss. This work has presented a new multidi-
mensional sorting technique for numerical attributes. The new method consists
of two stages. In the first stage it sorts all the records in the dataset so that the
first and the last record are very different, and in the second stage it describes
a pairwise systematic clustering algorithm that builds clusters with minimum
information loss. A comparison has been made of the proposed algorithm with
the most widely used microaggregation methods using the three most popular
benchmark datasets (Tarragona, Census and the EIA). The experimental results
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show that the proposed algorithm outperforms all the tested microaggregation
methods with respect to information loss. Thus the proposed method is very
effective in preserving the privacy microdata sets and can be used as an effective
privacy preserving k-anonymization method for Statistical Disclosure Control.
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Abstract. Trust-based onion routing employs users’ own trust to circumvent
compromised onion routers. However, it runs a high risk of being deanonymized
by the inference attack based on a priori trust relationship. In this paper, we first
observe that the onion routers with higher trust degree (e.g., those that are trusted
by more users) are more effective in defending against the inference attack. We
therefore incorporate trust degree into trust-based onion routing. With a rigor-
ous theoretical analysis, we devise an optimal strategy for router selection and an
optimal routing algorithm for path selection. Both minimize the risk of
deanonymization by the inference attack without sacrificing the capability of
evading compromised routers. Moreover, simulation-based experiments on top
of real-world social networks confirm the effectiveness of the optimal router
selection.

Keywords: trust degree, anonymity, trust-based onion routing.

1 Introduction

Recently, trust-based models have attracted growing research interests in the anony-
mous communication area [1–4], especially for onion routing [5–7]. Onion routing net-
works protect anonymity with the help of onion routers. However, since onion routers
are usually deployed by volunteers whose identities and technical competence are not
verified [7], users cannot easily detect compromised routers. And even worse, various
attacks employ compromised routers to deanonymize users [8–20]. The most recent re-
search proposes trust-based onion routing algorithms to address this problem [2, 4]. By
considering the trust that an user assigns to routers’ owners, he can select routers from
trusted individuals, hence circumventing the compromised routers.

In existing trust-based onion routing networks, a user only considers its own trust
and believes that routers with equal trust can protect its anonymity equivalently. How-
ever, confronting the adversary who can observe the routers in users’ connections and
perform inference attack based on a priori trust relationship, users are more likely to be
deanonymized if they select the routers that are rarely trusted by other users. As studied
in [4,21], this inference attack is a major threat to trust-based onion routing. Therefore,
besides the user’s own trust for router selection, the trust from other users also plays a
very important role in protecting anonymity. In this paper, we find that the routers are
more effective for a user in defending against the inference attack, if these routers are

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 273–291, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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trusted by more other users. We thus define a router’s trust degree with respect to a user
as the sum of trust from other users in this router.

Figure 1 illustrates the effectiveness of trust degree in protecting anonymity. In this
example, users can only select their trusted onion routers to make their connections.
Alice trusts Bob and Ken equally, both of them operate onion routers. Pete is an adver-
sary who knows the trust relationship among users and routers. If Pete observes Bob’s
router in Alice’s connection, he can deanonymize Alice directly as Bob is only trusted
by Alice. However, Pete cannot deanonymize Alice by observing Ken’s router, because
Ken is also trusted by many other users.

Pete
Trust

KenBob

Other users

Observe

Web Server Pete
Trust

Alice

Observe

Web Server

Alice or others?

Routers

?
?

?
Trust

Alice!

Routers

Fig. 1. Trust degree in protecting anonymity

Moreover, since we observe in real world that each person’s friends are always trusted
by different numbers of other people, an average person can potentially gain more
anonymity by considering trust degree in trust-based onion routing networks. To support
this assertion, we analyze a public data set from the Facebook reported in [22]. This data
set regards other people in a person’s friend list as friends with equal trust. The authors of
this data set crawl the New Orleans regional network in Facebook from December 29th,
2008 to January 3rd, 2009 and collect more than 1.5 millions social links from about
60, 000 people to their friends. And 53, 609 of them have more than one friend.

Figure 2 illustrates the distribution of trust degrees of these 53, 609 people’s friends
in [22]. We calculate a friend’s trust degree with respect to a person as the number of
other people who have this friend in their friend lists. The horizontal axis represents
the person index while the vertical axis shows the trust degree of people’s friends. To
ease the explanation, we sort these people in an ascending order according to their trust
degree distance, which can be computed by subtracting the smallest trust degree from
the largest one of each person’s friends. As can be seen, more than 99.6% of the people
have friends with different trust degree. In particular, for more than 80% of them, their
friends’ trust degree varies larger than 50.

Trust degree is an intuitive, and effective, feature in defending against the inference
attack, but past work neglects it. By selecting routers with a large trust degree, users
can intelligently hide their identities with the help of many other users, hence obtaining
more protection for their anonymity. In this paper, we incorporate trust degree into the
trust-based onion routing. In particular, we make three major contributions:

1. To the best of our knowledge, we are the first to incorporate trust from other users
into the trust-based onion routing.
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Fig. 2. The distribution of trust degrees of 53, 609 people’s friends

2. More importantly, we prove an optimal router selection strategy based on the trust
from other users. This minimizes the chance of deanonymization through inference,
but does not sacrifice the capability of evading compromised routers. We evaluate
this strategy in both simulation and real-world social networks. Experimental re-
sults show the user anonymity can be effectively improved.

3. We also prove an optimal trust degree aware routing algorithm for path selection.

The remainder of this paper is organized as follows. We review related works in Section
2. Section 3 introduces necessary preliminaries, including the trust model, the adversary
model, the definition of trust degree, and the definition of anonymity. In Section 4, we
present an optimal strategy for router selection that incorporates trust degree. We also
analyze the anonymity improvement in both simulation and real-world social networks.
In Section 5, we prove an optimal trust degree aware routing algorithm for path selec-
tion. We finally conclude this paper in Section 6.

2 Related Work

Trust-based onion routing appears recently and attracts growing interests from both
industrial and academic communities [1–4]. Trust is effective in identifying compro-
mised routers [2, 4], thus defending against correlation-like attacks [8–20]. However,
users who select routers according to trust run a high risk to be deanonymized by the
adversary who knows a priori trust relationships [4, 21].

In this section, we review three kinds of past work in the literature. We first present
a brief description of the attacks that rely on compromised routers. We then review
existing trust-based anonymous communications. Moreover, we discuss the side effect
if the trust models are used to protect anonymity.

In onion routing networks, users anonymously access the Internet through layered
encrypted circuits. These circuits are established by dynamically selected onion routers
[5–7]. However, without an effective mechanism to verify routers’ identities, onion
routing networks are vulnerable to compromised routers. A number of attacks ex-
ploit compromised routers to compromise anonymity in onion routing networks. This
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includes the predecessor attack [8], the congestion attack [9], the traffic analysis at-
tacks [10, 11, 23, 24], the sybil attack [12] and many other correlation attacks [13–20].

To circumvent compromised routers, prior research proposes to incorporate trust into
router selection. The first work is proposed by Puttaswamy et al. [1] which allows users
to select onion routers from their friends or friends of friends in online social networks
[8]. Drac system [3] uses a similar technique, but it is mainly designed to facilitate
anonymous communication against a global passive adversary in a peer-to-peer fashion.
The first general trust model for onion routing is proposed by Johnson and Syverson [2].
This model reasons about the trust as the difficulty of compromising onion routers, but
ignore the fact that different users may trust different parts of the network. To address
this issue, Johnson et al. [4] presents a more comprehensive trust-based onion routing.
This model considers users with different trust distribution in the network. Moreover,
Marques et al. [25] report a preliminary survey for trust models used in anonymous
communication.

Although trust models help evade compromised routers, the adversary who has the
knowledge of a-priori trust relationships is more likely to deanonymize users by making
inference. Diaz et al. [21] present a pioneer research to discuss this attack. It assumes
the source and destination of a communication in a mix-based network [26,27] are also
members of a social network. The adversary who obtains the social network graph in ad-
vance can reduce the anonymity protected by the mix-based network. Johnson et al. [4]
also discuss a similar attack against trust-based onion routing. They propose a downhill
algorithm to mitigate the adversary’s inferences. Since the compromised routers in a
user’s connection close to this user are more effective in attacking anonymity than the
routers far away from this user, the downhill algorithm allows users to select routers
from sets with a decreasing minimum trust threshold. This algorithm does not leverage
trust degree information in the design space, thus losing the chance to further improve
anonymity by selecting onion routers that are trusted by more other users.

The trust we consider in this paper is very different from another two notions of
trust. One is the behavioral trust that represents the performance reputation [28–32], and
the other is the environmental trust that defines the security of software and hardware
platforms where the anonymity toolkits run [33].

3 Preliminaries

In this section, we first present a general trust model for trust-based onion routing. We
then elaborate on the adversary model. After that, we formalize the trust degree, and
give a brief description of the anonymity protected by onion routing networks.

3.1 The Trust Model

We consider the general trust model proposed by Johnson et al. [4]. It provides a founda-
tion for trust-based onion routing in several aspects. First, this model reasons about trust
for the onion routing protocol and describes the notion of trust as the difficulty of com-
promising the onion routers. This difficulty represents the probability that the adversary
is failed to compromise the routers. Second, this model considers a very coarse level of
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trust in onion routers. It is a reasonable consideration because users need outside knowl-
edge to estimate the trust. This includes the knowledge of the technical competence of
individuals who operate the routers, the computer platform where the routers are run-
ning in, and the likelihood that the router is deployed by the adversary, etc. Therefore,
it is unrealistic to expect an accurate trust assigned to the routers. Third, since different
users have different adversaries, this model investigates different users with different
distributions of trust in routers. For example, organizations may deploy onion routers to
serve their own members but attack the users from their rival.

In this model, V is the set of nodes in a trust-based onion routing network. V =
U
⋃
R
⋃
Δ, where U is the set of users (e.g., the human beings or their computers), R

is the set of onion routers, and Δ is the set of the destinations (e.g., the web servers). cij
is the probability that the onion router rj ∈ R is successfully compromised by ui’s ad-
versaries. C = [cij ]

|U|×|R| is the matrix of the probabilities for each user’s adversaries
compromising each router in the network. |U | and |R| are the number of users and onion
routers in the network, respectively. T = [tij ]

|U|×|R| = [1− cij ]
|U|×|R| = I −C is the

matrix of users’ trust distributions over routers. tij = 1−cij is the trust ui assigns to rj .
Since this model only takes coarse level of trust into account, there are a very limited
number ν of distinct values of trust in T . Such as in [2, 4], only ν = 2 and ν = 3 have
been studied.

We use the terms “path” and “connection” interchangeably in the rest of the paper to
represent an onion route consisting of several onion routers. We regard a position of a
connection as a hop of this connection. To establish a connection, a user should select
onion routers to fill in all the hops of its connection. In trust-based onion routing, a user
makes a connection with several hops and actively selects onion routers according to T
for these hops. P = [pij ]

|U|×|R| is the matrix of probabilities that users use to select
routers based on T . 1

3.2 The Adversary

We consider two kinds of adversary in this paper. The first kind attempts to compromise
onion routers in the network. If some routers in an user’s connection are compromised,
especially if the routers in both the first and last hops are compromised, various attacks
[8–20] can be launched to deanonymize the user. The adversary could manipulate onion
routers by two means. One is to compromise legal routers that already exist in the
network, and the other is to deploy its own malicious routers in the network. In some
worse conditions, the adversary could compromise a significant fraction of the network,
such as launching the Sybil attack [12]. The trust-based onion routing algorithms are
originally proposed to defend this kind of adversary. With the help of users’ own trust
in onion routers, they identify and exclude compromised routers in their connections.

Although the trust model can defend against the adversary who compromises onion
routers, a new kind of adversary appears and poses a significant threat to trust-based
onion routing [4]. This adversary deanonymizes users by making inference based on a
priori trust relationships. In particular, this adversary could exploit compromised routers

1 P = [pij ]
|U|×|R| may be different when users select routers for different positions of their

connections. This will be elaborated on in Section 5.
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or malicious destinations (e.g., malicious web servers) to observe routers in connec-
tions, and then infer the original user of the connection according to the fact that users
prefer to choosing their trusted routers in trust-based onion routing. In this paper, we
follow prior work [4] and assume that, the adversary can only employ compromised
routers to observe the routers in adjacent positions of the connections (i.e., adjacent
hops), or use the malicious destinations to observe the router in the last hop. To face
this adversary, the user runs a high risk to be deanonymized if she selects a router barely
trusted by other users.

Prior research [4,21] shows it is feasible for an adversary to make inference in prac-
tice, although this adversary is required to know users’ trust distributions over onion
routers in advance. In realistic environment, the adversary could estimate these trust
distributions through outside knowledge [2, 4]. For example, the users belonging to an
organization may be more likely to trust the routers deployed by this organization. In
particular, if both users and routers’ owners are members of social networks, the ad-
versary can profile the trust relationships by crawling and deanonymizing online social
networks [34, 35]. Moreover, since the trust-based onion routing algorithm may be set
up by default in softwares and shared in the public, the adversary who knows the trust
distributions can also infer users’ router selection probabilities [2].

In this paper, we focus on defending against the adversary who makes inference to
deanonymize the user without sacrificing the capability of defending against the adver-
sary who attempts to compromise onion routers.

3.3 The Trust Degree

Existing trust-based onion routing networks employ users’ own trust to improve
anonymity by thwarting the adversary who attempts to compromise routers [4], but
do not consider the trust from other users. However, if the adversary deanonymizes the
user by making inference based on the knowledge of a priori trust distributions, the trust
from other users plays a very important role in protecting anonymity.

We define a router’s trust degree with respect to a user as the sum of other users’
trust in this router. Let dij be the trust degree of the router rj ∈ R with respect to the
user ui as:

dij =
∑

ux∈U

txj − tij =
∑

ux∈U/ui

txj (1)

where tij is the trust ui assigns to rj , txj is the trust ux ∈ U/ui assigns to rj and U/ui

is the set of users excluding ui.
As elaborated on in Section 3.2, the adversary can estimate the trust-based router

selection distributions if they have the knowledge of a priori trust relationships and the
corresponding trust-based router selection strategies. However, a user’s router selection
distribution may not be the same as this user’s trust distribution over routers. For exam-
ple, according to the trust-based algorithms proposed by Johnson and Syverson [2], if
the adversary compromises a significant fraction of the network, ui should choose the

most trusted routers with the probability 1 rather than
maxrj∈R tij∑

rj∈R tij
to maximize the ca-

pability of keeping from compromised routers. The adversary could infer the user with
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higher accuracy by using the router selection distributions rather than the trust distribu-
tions. Therefore, a more accurate definition of a router’s trust degree with respect to a
user could be the sum of other users’ selection probabilities for this router:

dij =
∑

ux∈U

pxj − pij =
∑

ux∈U/ui

pxj (2)

where pij is the probability that ui uses to select rj and pxj is the probability that
ux ∈ U/ui uses to select rj . In the rest of the paper, we use Eqn.(2) to calculate dij .

3.4 The Anonymity

The onion routing protocol keeps the adversary from linking the source and destination
of a connection that a user 2 makes, hence protecting the information of who is talking
to whom in a communication [6]. As a result, the path anonymity of a connection can
be protected if the user or the destination of this connection can be concealed. When
the source link (i.e., the user) of a connection can be observed by the adversary, the
path anonymity depends on the destination’s anonymity. In this case, Johnson et al. [4]
conclude that the path anonymity can be best protected if users select one of their most
trusted routers to make a single hop connection.

But if the destination link of a connection can be observed, the protection of path
anonymity relies on the protection of the user anonymity. This is a common scenario
in real world. For example, an organization imposes censorship on some sensitive web
sites and attempts to record who access these sites. In this paper, we focus on the prob-
lem of protecting the user anonymity when the destination link can be observed.

4 Trust Degree in Router Selection

In existing trust-based onion routing networks, users select routers only according to
their own trust, thus being vulnerable to the adversary who makes inference based on
a priori trust relationship [4]. However, we find that the routers trusted by more other
users are more effective in defending against this inference. Therefore, we incorporate
the trust from other users into trust-based onion routing.

In this section, we elaborate on selecting routers for a single hop based on trust
degree information. Section 4.1 defines the metric of anonymity for router selection.
In particular, we use the chance of a user to be inferred by the adversary to measure
anonymity. Section 4.2 presents the optimal router selection strategy by considering
routers’ trust degree to maximize anonymity. We also analyze the anonymity improve-
ment with the help of the optimal strategy in both simulation and real-world social
networks in Section 4.3. This is compared with existing trust-based strategy. Table 1
summarizes important notations used in this section.

2 In this paper, a user actively selects routers to initiate a connection and access a destination
through this connection.
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Table 1. Important notations in Section 4

Symbol Definition Symbol Definition

|A| the size of set A [aij ]
I×J an I × J matrix of elements aij

tij ui’s trust in router rj dij rj ’s trust degree with respect to ui , dij =
∑

ui∈U\ui

pij

pij ui’s probability to select router rj Re a set of routers that ui equally trusts, ∀rj ∈ Re, tij = te

U \ ui the set of users excluding ui pi{Re} ui’s strategy to select routers from Re, pi{Re} = [pij ]
1×|Re|

Γ (pi{Re}) the expectation of the chance to infer ui for strategy pi{Re}
De De =

∑
rj∈Re

dij θe θe =
∑

rj∈Re

pij

4.1 Minimizing the Chance of Being Inferred in Router Selection

We investigate a user ui who is aware of routers’ trust degree with respect to a popula-
tion of other users whose trust distributions and router selection strategies are known.
To preserve the capability of defending against compromised routers, we only consider
the trust degree information for the routers equally trusted by ui. The number of routers
equally trusted by ui could be large due to the small number of distinct trust levels
considered in existing trust-based onion routing [2, 4]. Moreover, as a person’s friends
always receive different amount of trust from other persons [22], the routers equally
trusted by ui are more likely to have different trust degrees.

We consider the scenario that the adversary makes inference according to the ob-
servation on a single hop of ui’s connection. It may be the case that the adversary
manipulates the destination and observes the last hop (i.e., the Hop-X in Figure 3).

ui Web Server Exposed to Path

Router Adversary

Hop-X

Hop

Fig. 3. An example of the single hop that can be observed

Since the adversary has the knowledge of a priori trust relationships and users’ router
selection strategies in the network, she gets the probability pij

pij+dij
to infer ui if the

router rj is observed, where dij can be calculated by Eqn.(2). Moreover, if ui has the
probability pij to choose rj for the exposed hop, the adversary has the probability pij to
observe rj in this hop of ui’s connection. Therefore, ui has the probability pij · pij

pij+dij

to be inferred through rj in the exposed hop.
We consider the problem of minimizing ui’s chance of being inferred when a single

hop of ui’s path is observed by the adversary. The objective function is defined as:

Γ (pi{Re}) =
∑

rj∈Re

pij · pij

pij+dij (3)

where, Re ⊆ R is a set of routers to which the user ui assigns the equal trust te, i.e.,
∀rj ∈ Re, tij = te. R is the set of onion routers in the entire network. pi{Re} =
[pij ]

1×|Re| is a selection strategy that ui uses to select a router from Re for the exposed
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hop. Herein, pij is a probability for ui to select router rj , the matrix [pij ]
1×|Re| consists

all the pijs for rj ∈ Re and |Re| is the size of set Re.
The objective function Γ (pi{Re}) calculates the expectation of the chance to be

inferred when ui uses strategy pi{Re} to select routers from Re. A lower chance of
being inferred means more anonymity for ui. To maximize ui’s anonymity, we should
find the optimal strategy pi

∗{Re} to minimize Γ (pi{Re}). We formalize this as:

pi
∗{Re} = arg min

pi{Re}
Γ (pi{Re}), subject to

∑
rj∈Re

pij = θe (4)

where, θe =
∑

rj∈Re

pij is the sum of ui’s probabilities of choosing routers from Re.

Existing trust-based algorithms decide θe. For example, If ui is only allowed to select
the most trusted routers, θe = 1 for Re with te = maxrj∈R tij and θe = 0 for other
Re. Since a user’s trust in a router is modeled as the difficulty of this user’s adversary
in compromising this router [2, 4], the routers with equal trust from a user should have
the same probability of being not compromised by this user’s adversary. Therefore, to
preserve the capability of defending against compromised routers, we should not change
the value of θe when we minimize Γ (pi{Re}).

4.2 The Optimal Router Selection Strategy

As existing trust-based algorithms do not consider routers’ trust degree, ui can only use
an equal probability to select routers with equal trust (i.e., p=ij = θe

|Re| for rj ∈ Re)
[2, 4]. However, by considering the trust from other users, ui can intuitively gain more
anonymity by using a higher probability to select routers trusted by more other users.

Let [dij ]1×|Re| be the matrix of dij for rj ∈ Re. Let De =
∑

rj∈Re

dij be the sum of

trust degree dij for rj ∈ Re.
Considering [dij ]

1×|Re|, we prove an optimal router selection strategy for ui to min-
imize the chance of being inferred. Lemma 1 gives this optimal solution pi

∗{Re} and
shows the minimal chance of being inferred Γ (p∗i {Re}) in theory. In pi

∗{Re}, ui’s
probability of choosing a router rj ∈ Re is proportional to dij . The minimal chance
Γ (p∗i {Re}) is inversely proportional to De.

Lemma 1. Subject to
∑

rj∈Re

pij = θe, the optimal strategy pi
∗{Re} for minimizing

Γ (pi{Re}) is pi
∗{Re} = [p∗ij ]

1×|Re| = θe
De

· [dij ]1×|Re|. The minimum chance is

Γ (p∗i {Re}) =
∑

rj∈Re

p∗ij ·
p∗
ij

dj
= (θe)

2

θe+De
.

Proof. In Re, we have |Re| routers denoted as r1, r2, · · · , r|Re|. We assume the sum of
probability that ui uses to choose r1 and r2 is β ≤ θe. We first consider the problem of
finding the optimal strategy for ui to select r1 and r2 and minimize pi1 · pi1

pi1+di1
+ pi2 ·

pi2

pi2+di2
. This problem can be formalized as below:

p∗i {r1, r2} = arg min
pi{r1,r2}

(pi1 · pi1

di1+pi1
+ pi2 · pi2

di2+pi2
), s.t., pi1 + pi2 = β ≤ θe
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As pi2 = β−pi1, min
pi(r1,r2)

(pi1 · pi1

di1+pi1
+pi2 · pi2

di2+pi2
) can be written as min

pi1∈[0,β]
f(pi1),

where, f(pi1) = pi1 · pi1

di1+pi1
+(β− pi1) · (β−pi1)

di2+β−pi1
. We know that, if f(pi1)’s second

derivative is larger than 0, f(pi1) has a minimum value. And this minimum value can be

obtained when f(pi1)’s first derivative equals to 0. Such that, if f ′′(pi1) =
d2f(pi1)
d2pi1

> 0,

f(pi1) reach its minimum when f ′(pi1) = df(pi1)
dpi1

= 0. As β ≥ pi1 ≥ 0 and di1 >
0, di2 > 0, then we have:

f ′′(pi1) = 2d2i2 · pi1 + 2d2i1(β − pi1) + 2di1(di1di2 + d2i2) > 0.

Therefore, f(pi1) has a minimum value when f ′(pi1) = 0, such as:

f ′(pi1) = (d2i2 − d2i1) · p2i1 + 2di1(di1di2 + di1β + d2i2) · pi1 − d2i1β(2di2 + β) = 0

By solving this quadratic equation, we can get two roots. But considering pi1 ≥ 0, we
only use the positive result pi1 = di1

di1+di2
· β. We thus have:

p∗i1 = di1

di1+di2
· β, p∗i2 = β − pi1 = di2

di1+di2
· β

and the minimum value of (pi1 · pi1

di1+pi1
+ pi2 · pi2

di2+pi2
) is:

min
pi(r1,r2)

(pi1 · pi1

di1+pi1
+ pi2 · pi2

di2+pi2
) = p∗i1 ·

p∗
i1

di1+p∗
i1
+ p∗i2 ·

p∗
i2

di2+p∗
i2

= β2

di1+di2+β

Based on that, we have:

(
p2
i1

di1+pi1
+

p2
i2

di2+pi2
) � β2

di1+di2+β = (pi1+pi2)
2

di1+di2+(pi1+pi2)

and when pi1 = di1

di1+di2
· β, pi2 = di2

di1+di2
· β, the equality satisfies.

Subject to
∑

rj∈Re

pij = θe, we minimize Γ (pi{Re}) using above inequation as:

Γ (pi{Re}) =
|Re|∑
j=1

pij · pij

dij+pij
= (

p2
i1

di1+pi1
+

p2
i2

di2+pi2
) +

|Re|∑
j=3

pij · pij

dij+pij

≥ (pi1+pi2)
2

di1+di2+(pi1+pi2)
+

p2
i3

di3+pi3
+

|Re|∑
j=4

pij · pij

dij+pij

≥ (pi1+pi2+pi3)
2

di1+di2+di3+(pi1+pi2+pi3)
+

p2
i4

di4+pi4
+

|Re|∑
j=5

pij · pij

dij+pij

≥ · · · ≥
(

∑
rj∈Re

pij)
2

∑
rj∈Re

pij+
∑

rj∈Re

dij
= (θe)

2

θe+
∑

rj∈Re

dij
= (θe)

2

θe+De

When pij =
dij

De
· θe, all the equalities satisfy.

Therefore, we have the optimal strategy pi
∗{Re} = [p∗ij ]

1×|Re| = θe
De

· [dij ]1×|Re| to

minimize Γ (pi{Re}), i.e., min
pi{Re}

Γ (pi{Re}) = Γ (p∗i {Re}) =
∑

rj∈Re

p∗ij ·
p∗
ij

p∗
ij+dij

=

(θe)
2

θe+De
. Lemma 1 is proved. ��
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4.3 More Anonymity through Trust Degree

We demonstrate that ui can gain more anonymity by considering routers’ trust degree
in both simulation and real-world social networks. This is compared with the strategy
used by existing trust-based algorithms, where the equal probability is used to select
routers with equal trust [4]. We denote this existing trust-based strategy as p=i {Re} =
[p=ij ]

1×|Re|, where p=ij = θe
|Re| for ∀rj ∈ Re. Although the optimal strategy p∗i {Re}

is proved to be able to maximize ui’s anonymity, we show that ui can gain different
anonymity improvement in the context of different [dij ]1×|Re|. We use Γ (pi{Re}) as
the metric for ui’s anonymity. A smaller Γ (pi{Re}) represents more anonymity. As θe
will not affect our analysis, we simply consider θe = 1.

Simulation. We consider the case that ui has 10 equally trusted routers (i.e., |Re| = 10)
and the sum of dij for rj ∈ Re is 100 (i.e., De = 100). Figure 4(a) shows the heat map
for 1000 different samples of [dij ]1×|Re| that we randomly generate. The dark color
indicates a large dij while the light color means a small value. Figure 4(b) illustrates
the comparison of ui’s anonymity for these 1000 samples of [dij ]1×|Re| between ex-
isting trust-based strategy (i.e., p=i {Re}) and the optimal strategy (i.e., p∗i {Re}). In
Figure 4(a), we sort the indexes of the 1000 samples of [dij ]1×|Re| in an ascending or-
der according to Γ (p=i {Re}) of these samples and arrange dijs in each [dij ]

1×|Re| in a
descending order according to rj .

Figure 4(b) shows that the Γ (p∗i {Re}) stays at 0.0099 for any [dij ]
1×|Re|. The value

0.0099 is the minimal chance of inferring ui when De = 100 and θe = 1 because
(θe)

2

θe+De
= 1

101 = 0.0099. Refer to Figure 4(a), we find that, a larger anonymity im-

provement (i.e., a larger Γ (p=
i {Re})

Γ(p∗
i {Re}) ) could be achieved in the context of [dij ]

1×|Re|

whose dijs vary more significantly. In particular, when [dij ]
1×|Re| satisfies ∃dij = 100

and other dijs are all equal to 0, the Γ (pi{Re}) is reduced from 0.9001 in p=i {Re}
to 0.0099 in p∗i {Re}. The value 0.9001 indicates ui suffers more than 90% probabil-
ity to be inferred while 0.0099 represents this probability is less than 1%. Even when
[dij ]

1×|Re| are uniformly distributed, i.e., dijs for ∀rj ∈ Re are all the same and equal
to De

|Re| = 10, the optimal strategy can at least keep anonymity the same as in existing

strategy (i.e., Γ (p=
i {Re})

Γ(p∗
i {Re}) = 1).

Real-World Social Networks. We also investigate the optimal strategy p∗i {Re}’s ef-
fectiveness by using the public data set from the Facebook [22]. This set includes more
than 1.5 millions social links from 53, 609 persons to their friends. Each person has
more than one friend and all these 53, 609 persons have 63, 406 friends in total. We
thus regard the 53, 609 persons as the users in onion routing networks and assume the
63, 406 friends deploy onion routers. We consider all these 53, 609 persons as to be
ui one by one, and compare ui’s anonymity between the optimal strategy p∗i {Re} and
existing trust-based strategy p=i {Re}. Each person equally trusts the routers set up by
their friends, but distrusts other routers (i.e., two levels of trust are considered). Persons
only select routers from their friends (i.e., θe = 1 for Re where te = maxrj∈R tij). We
measure ui’s anonymity using Γ (pi{Re}) and a smaller Γ (pi{Re}) indicates more
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Fig. 4. Anonymity comparison between existing trust-based strategy and the optimal strategy for
1000 random samples of [dij ]1×|Re| when |Re| = 10 and De = 100

anonymity. Note that, when a person is considered as ui, we calculate dij for this per-
son in the case that other persons use existing trust-based strategy to choose routers.

Figure 5 shows the results for these 53, 609 users. The Des of these users are from
0.01 to 2491. In accordance with Lemma 1, although Γ (p∗i {Re}) decreases when De

increases, Γ (p∗i {Re}) is consistently smaller than Γ (p=i {Re}) for any De. By analyz-
ing the results in depth, we find more than 99.6% users can improve their anonymity
with the help of the optimal strategy p∗i {Re} (i.e., Γ (p=

i {Re})
Γ(p∗

i {Re}) > 1). In particular,

more than 65.6% users obtain at least 1.5 times improvement for their anonymity (i.e.,
Γ (p=

i {Re})
Γ(p∗

i {Re}) > 1.5). The largest improvement is Γ (p=
i {Re})

Γ(p∗
i {Re}) = 31.1. It can be seen that

the user anonymity can be improved by considering routers’ trust degree in practice.
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Fig. 5. Anonymity comparison between existing trust-based strategy and the optimal strategy in
real-world social networks [22]

5 Trust Degree Aware Routing Algorithm for Path Selection

The scenario discussed in Section 4 assumes the adversary only observes a single hop
of a connection. However, a more common scenario is that the adversary can observe
more than one hop in a connection. By taking this general case into account, we design
trust degree aware routing algorithms for path selection. We still only consider trust
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degree information among the routers equally trusted by a user. This helps preserve the
capability of circumventing compromised routers.

Section 5.1 first formalizes the metric of anonymity for path selection. In particular,
we measure anonymity by using the chance of a user to be inferred by the adversary
who observes multiple hops of this user’s connection. Section 5.2 then gives a general
version of the optimal trust degree aware routing algorithm for path selection in theory.

Table 2 summarizes important notations used in this section.

Table 2. Important notations in Section 5

Symbol Definition

A \ B the set A excluding a sub set B ⊆ A or an element B ∈ A

hk the k-th hop in ui’s path
O the set of hops exposed to the adversary
on the n-th element of set O
tk a trust threshold for ui to select routers in hop hk

pk
ij ui’s probability to select router rj for hop hk

Rn
+ a set of routers where rj ∈ Rn

+, tij ≥ tn
Rn

e a set of routers with equal trust from ui , rj ∈ Rn
e , tij = te ≥ tk

pi{Rk
+}|O a routing algorithm pi{Rk

+}|O = {pi{Rk
+}, hk ∈ O}

pi{Rk
e}|O a sub routing algorithm pi{Rk

e}|O = {pi{Rk
e}, hk ∈ O}

N N = |O| be the number of exposed hops

Γ
(
pi{Rk

+}|O
)

the expectation of the chance to infer ui if pi{Rk
+}|O is used

θk
e θk

e =
∑

rj∈Rk
e

pk
ij

D(n)
e · d(n+1,N)

ij

∑
rj∈Rk

e ,hk=on

· · · ∑
rj∈Rk

e ,hk=o1

∑
ux∈U\ui

∏
hk∈O

pk
xj

5.1 Minimizing the Chance of Being Inferred when Multiple Hops Exposed

Similar to Section 4.1, we focus on a user ui who is aware of routers’ trust degree with
respect to a population of other users whose trust distributions and routing algorithms
are known. Given a path of ui, the adversary attempts to compromise routers in this path
and employs the compromised routers to observe routers in adjacent hops. In particular,
if the destination (e.g., a web server) is compromised, the last hop can be observed
by the adversary. Based on the knowledge of a priori trust relationships, the adversary
infers ui by observing routers in exposed hops.3

Given a L-hop path of ui. Let hk be the k-th hop in the path. Let O be the
set of hops exposed to the adversary. Therefore, ui has the probability

∏
hk∈O

pkij ·∏
hk∈O

pkij/
∑

ux∈U

∏
hk∈O

pkxj to be inferred through rj in each of these exposed hops, where

pkij is the ui’s probability to select rj for the k-th hop (i.e., hop hk) in ui’s path.
Let on ∈ O be the n-th element of the set O. Let N = |O| ≤ L be the number of

exposed hops.

3 Prior research [4] assumes the length of users’ paths is fixed and known. The adversary thus
can know the number of unexposed hops in the path and make some inference based on these
unexposed hops. In this paper, we do not consider the inference based on unexposed hops
because the user can simply establish path with random length to evade such inference.
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We consider the problem as minimizing the chance of being inferred when a set O
of hops in ui’s path are observed by the adversary. The objective function is:

Γ
(
pi{Rk

+}|O
)
=

∑
rj∈Rk

+,hk=oN

· · ·
∑

rj∈Rk
+,hk=o1

∏
hk∈O

pk
ij ·

∏
hk∈O

pk
ij

∑
ux∈U

∏
hk∈O

pk
xj

(5)

where, pi{Rk
+}|O = {pi{Rk

+}, hk ∈ O} is a routing algorithm consisting of N = |O|
router selection strategies for these exposed hops belonging to O in the path. Each
pi{Rk

+} = [pkij ]
1×|Rk

+| is a router selection strategy for the k-th hop (i.e., hk). Rk
+ ⊆ R

is the set of candidate routers that ui can select for hop hk, i.e.,
∑

rj∈Rk
+
pkij = 1. Ex-

isting trust-based routing algorithms will use a trust threshold tk to restrict ui’s router
selection for its hop hk, such as ∀rj ∈ Rk

+, tij ≥ tk. In particular, the downhill algo-
rithm [4] uses a decreasing trust threshold in the hops from the user to the destination,
i.e., tk ≤ tk−1. But if ui is only allowed to select the most trusted routers for its con-
nection, tk = max

rj∈R
tij for ∀k ∈ [1, L].

Let Rk
e be a set of routers with equal trust te ≥ tk (i.e., rj ∈ Rk

e , tij = te ≥ tk). We
can express Rk

+ as Rk
+ =
⋃

te≥tk
Rk

e .
The object function Γ

(
pi{Rk

+}|O
)

calculates the expectation of the chance that ui

can be inferred when the routing algorithm pi{Rk
+}|O is used. As a lower chance of

being inferred indicates more anonymity, we maximize ui’s anonymity by finding the
optimal routing algorithm pi{Rk

+}|∗O to minimize Γ
(
pi{Rk

+}|O
)

as:

pi{Rk
+}|∗O = arg min

pi{Rk
+}|O

Γ
(
pi{Rk

+}|O
)
, where, Rk

+ =
⋃

te≥tk

Rk
e

subject to
∑

rj∈Rk
e

pkij = θke for te ≥ tk and hk ∈ O
(6)

where, θke is the sum of ui’s probabilities of choosing routers with equal trust te ≥ tk
for hop hk in ui’s connection. We should keep any θke the same as in existing trust-
based algorithms when we explore the optimal pi{Rk

+}|∗O, because the same θke means
the same capability of defending against compromised routers.

Let pi{Rk
e}|O = {pi{Rk

e}, hk ∈ O}. As Rk
+ =
⋃

te≥tk
Rk

e , the object function in
Eqn.(5) thus can be re-expressed as:

Γ
(
pi{Rk

+}|O
)
=

∑
te≥tk,hk=oN

· · ·
∑

te≥tk,hk=o1

Γ
(
pi{Rk

e}|O
)
,

where, Γ
(
pi{Rk

e}|O
)
=

∑
rj∈Rk

e ,hk=oN

· · ·
∑

rj∈Rk
e ,hk=o1

∏
hk∈O

pk
ij ·

∏
hk∈O

pk
ij

∑
ux∈U

∏
hk∈O

pk
xj

(7)

Therefore, to facilitate the exploration of the minimal Γ
(
pi{Rk

+}|O
)

without changing
the value of any θke for te ≥ tk, hk ∈ O, we can find the minimal Γ

(
pi{Rk

e}|O
)

subject
to each θke instead. When all the minimalΓ

(
pi{Rk

e}|O
)
s for te ≥ tk, hk ∈ O are found,

the minimal Γ
(
pi{Rk

+}|O
)

is also reached. The optimal routing algorithm pi{Rk
+}|∗O

consists a set of sub optimal routing algorithms pi{Rk
e}|∗O for te ≥ tk, hk ∈ O.
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5.2 The Optimal Trust Degree Aware Routing Algorithm in Theory

Intuitively, we expect the sub optimal routing algorithm pi{Rk
e}|∗O can be implemented

by applying the single hop’s optimal router selection strategy p∗i {Re} proposed in Sec-
tion 4 to each of the N = |O| exposed hops independently, i.e., p∗i {Rk

e} = p∗i {Re}
for hk ∈ O. However, it is not the case because the router selection strategies p∗i {Rk

e}
for these N exposed hops are correlated. To illustrate it, we give an example in Figure
6. We assume ui equally trusts routers r1, r2 and r3. If only hop h2 is exposed to the
adversary, according to the single hop’s optimal router selection strategy p∗i {Re}, we
should have a larger probability to choose r1 than r2 for hop h2, because r1 is trusted by
two other users (i.e., u1 and u2) but r2 is just trusted by one (i.e., u3). However, if hop
h3 is also exposed and r3 is already selected for hop h3, the adversary can deanonymize
ui directly if ui selects r1 for hop h2. The reason is that, except ui, no other users trust
both r1 and r3 in Figure 6. In this situation, we cannot minimize the adversary’s chance
of inferring ui by applying the single hops’s optimal strategy to hop h2 independently.

ui Web Server
Exposed to Path

Router Adversary

h1 h2 h3

Other users

r1 r2

r3r1 ? r2
Trust

Hop

u1 u2 u3

Fig. 6. An example to show the router selection strategies in different exposed hops are correlated

Based on the analysis of Figure 6, we find that the joint probabilities of selecting
routers for multiple exposed hops are correlated. We consider ui selects routers for
its connection in a descending order (i.e., given hk, hk′ and k

′
> k, ui first selects

routers for hk′ ). In this case, to minimize the chance of being inferred, ui’s probability
of selecting a router for a hop hk ∈ O should depend on the routers already selected in
hops hk′ ∈ O, k

′
> k.

Lemma 2 gives the optimal routing algorithm pi{Rk
e}|∗O and the minimal

Γ
(
pi{Rk

e}|O
)

using this algorithm. Due to the page limit, we omit the proof of Lemma
2 in this paper.

We sort O in an ascending order, i.e., for hk = on and hk′ = on+1, we have k < k
′
.

Let D(n)
e · d(n+1,N)

ij =
∑

rj∈Rk
e ,hk=on

· · ·
∑

rj∈Rk
e ,hk=o1

∑
ux∈U\ui

∏
hk∈O

pkxj , where U \ ui

is the set of users excluding ui. In particular,D(0)
e ·d(1,N)

ij = d
(1,N)
ij =

∑
ux∈U\ui

∏
hk∈O

pkxj

and D
(N)
e · d(N+1,N)

ij = D
(N)
e =

∑
rj∈Rk

e ,hk=oN

· · ·
∑

rj∈Rk
e ,hk=o1

∑
ux∈U\ui

∏
hk∈O

pkxj .
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Lemma 2. Subject to
∑

rj∈Rk
e

pkij = θke for te ≥ tk, hk ∈ O, the optimal routing algo-

rithm pi{Rk
+}|∗O for minimizing Γ

(
pi{Rk

+}|O
)

consists of a set of sub optimal algo-
rithms pi{Rk

e}|∗O for te ≥ tk, hk ∈ O. In each pi{Rk
e}|∗O, for hk = on, we have:

p∗i {Rk
e} = [pk∗ij ]

1×|Rk
e | = θk

e

D
(n)
e ·d(n+1,N)

ij

·D(n−1)
e · [d(n,N)

ij ]1×|Rk
e |

where, the hop hk is the n-th element in O (i.e., hk = on). Using this optimal routing
algorithm, the chance can be minimized to be:

min
pi{Rk

+}|O
Γ
(
pi{Rk

+}|O
)
=

∑
te≥tk,hk=oN

· · ·
∑

te≥tk,hk=o1

(
∏

hk∈O

θk
e )

2

∏
hk∈O

θk
e+D

(N)
e

Where, D(n−1)
e · [d(n,N)

ij ]1×|Rk
e | is a matrix of D(n−1)

e · d(n,N)
ij s for rj ∈ Rk

e , hk = on.

Moreover, D(n)
e · d(n+1,N)

ij can be considered as the sum of D
(n−1)
e · d(n,N)

ij s over

rj ∈ Rk
e , hk = on. Since the calculation of D(n−1)

e · d(n,N)
ij and D

(n)
e · d(n+1,N)

ij are
based on the pkijs for hk ∈ {on+1, . . . , oN}, different rj ∈ Rk

e , hk ∈ {on+1, . . . , oN}
will lead to different p∗i {Rk

e}, hk = on. In the optimal algorithm pi{Rk
e}|∗O, the router

selection strategy p∗i {Rk
e} = [pk∗ij ]

1×|Rk
e | = θk

e

D
(N)
e

·D(N−1)
e · [d(N,N)

ij ]1×|Rk
e | for the last

exposed hop hk = oN is the base case and independent from the routers in other hops.
The optimal routing algorithm given in Lemma 2 is general and we can use it to

improve any trust-based onion routing algorithms. In particular, if the trust-based algo-
rithm restricts ui to select its most trusted routers for its connection, the corresponding
optimal trust degree aware routing algorithm is a special case of the general version
when tk = te = max

rj∈R
tij and θke = 1 for hk ∈ O. Since the downhill algorithm uses the

same probability to select routers from Rn
+ [4], the optimal trust degree aware downhill

algorithm can be the special case of the general version when tk ≤ tk−1 and θke =
|Rk

e |
|Rn

+|
for te ≥ tk, hk ∈ O.

An Example. We give an example to help understand Lemma 2 in depth. In this ex-
ample, we design an optimal trust degree aware routing algorithm for ui given the last
two hops exposed (i.e., O = {o1 = h2, o2 = h3}) in Figure 6. We assume the net-
work only includes four users (i.e., ui, u1, u2 and u3) and three onion routers (i.e.,
r1, r2 and r3). We investigate ui who considers trust degree information with respect
to other users (i.e., u1, u2 and u3) who use the equal probabilities to select routers
with equal trust. We consider two levels of trust (i.e., trust and distrust) and users are
restricted to select their trusted routers. u1 and u2 trust r1 but distrust r2 and r3. u3

equally trusts r2 and r3 but distrusts r1. Therefore, we have pk11 = pk21 = 1 and
pk32 = pk33 = 0.5 for hk ∈ O = {h2, h3}. Moreover, ui equally trusts r1, r2 and
r3, we have R2

+ = R2
e = R3

+ = R3
e = {r1, r2, r3} and θ2e = θ3e = 1.

If ui uses the same probability to choose routers with equal trust for its connection
(i.e., ui’s routing algorithm is pi{Rk

+}|={h2,h3} where pk=ij = 1
3 for rj ∈ Rk

+, hk ∈
{h2, h3}), the adversary has the chance Γ

(
pi{Rk

+}|={h2,h3}
)
= 0.587 to infer ui. But
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if ui uses the optimal trust degree aware routing algorithm pi{Rk
+}|∗{h2,h3} for the 2

exposed hops according to Lemma 2, the adversary’s chance of inferring ui is min-

imized to Γ
(
pi{Rk

+}|∗{h2,h3}
)

= 0.25. It can be seen, ui obtains more than 2 times

improvement for its anonymity (i.e.,
Γ(pi{Rk

+}|={h2,h3})
Γ
(
pi{Rk

+}|∗{h2,h3}
) > 2). Table 3 gives this optimal

algorithm. The probabilities of selecting routers for hop h2 depend on the routers that
are already selected in hop h3.

Table 3. The optimal trust degree aware routing algorithm pi{Rk
+}|∗{h2,h3} of ui in Figure 6

rj ∈ R3
+ r1 r2 r3

p3∗
ij 0.6667 0.1667 0.1667

rj ∈ R2
+ r1 r2 r3 r1 r2 r3 r1 r2 r3

p2∗
ij 1 0 0 0 0.5 0.5 0 0.5 0.5

6 Conclusions

In this paper, we show that the user can gain more anonymity by considering routers’
trust degree in trust-based onion routing networks. With solid theoretical analysis, we
propose the optimal trust degree aware solutions to maximize anonymity for both router
selection and path selection. This is a theoretical foundation for trust degree aware onion
routing. Our results benefit future research for practical applications.
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25. Marques, R., Zúquete, A.: Social networking for anonymous communication systems: A
survey. In: Proc. International Conference on Computational Aspects of Social Networks
(2011)

26. Chaum, D.: Untraceable electronic mail, return addresses, and digital pseudonyms. Commu-
nications of the ACM (1981)

27. Danezis, G., Dingledine, R., Mathewson, N.: Mixminion: Design of a type iii anonymous
remailer protocol. In: Proc. IEEE Symposium on Security and Privacy (2003)

28. The Tor Project. Tor path selection specification (2009),
http://tor.hermetix.org/svn/trunk/doc/spec/path-spec.txt

29. Snader, R., Borisov, N.: A tune-up for Tor: Improving security and performance in the Tor
network. In: Proc. ISOC Network and Distributed System Security Symposium (2008)

30. Snader, R., Borisov, N.: Improving security and performance in the Tor network through
tunable path selection. IEEE Transactions on Dependable and Secure Computing (2010)

http://socialnetworks.mpi-sws.org/data-wosn2009.html
http://tor.hermetix.org/svn/trunk/doc/spec/path-spec.txt


More Anonymity through Trust Degree in Trust-Based Onion Routing 291

31. Dingledine, R., Freedman, M.J., Hopwood, D., Molnar, D.: A Reputation System to Increase
MIX-Net Reliability. In: Moskowitz, I.S. (ed.) IH 2001. LNCS, vol. 2137, pp. 126–141.
Springer, Heidelberg (2001)

32. Dingledine, R., Syverson, P.: Reliable MIX cascade networks through reputation. In: Proc.
International Conference on Financial Cryptography (2003)
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Abstract. Back-propagation is an effective method for neural network
learning. To improve the accuracy of the learning result, in practice
multiple parties may want to collaborate by jointly executing the back-
propagation algorithm on the union of their respective data sets. During
this process no party wants to disclose her/his private data to others for
privacy concerns. Existing schemes supporting this kind of collaborative
learning just partially solve the problem by limiting the way of data par-
tition or considering only two parties. There still lacks a solution for more
general and practical settings wherein two or more parties, each with an
arbitrarily partitioned data set, collaboratively conduct learning.

In this paper, by utilizing the power of cloud computing, we solve this
open problem with our proposed privacy preserving back-propagation
algorithm, which is tailored for the setting of multiparty and arbitrarily
partitioned data. In our proposed scheme, each party encrypts his/her
private data locally and uploads the ciphertexts into the cloud. The
cloud then executes most of the operations pertaining to the learning al-
gorithms with ciphertexts but learns nothing about the original private
data. By securely offloading the expensive operations to the cloud, we
keep the local computation and communication costs on each party min-
imal and independent to the number of participants. To support flexible
operations over ciphertexts, we adopt and tailor the BGN ‘doubly ho-
momorphic’ encryption algorithm for the multiparty setting. Thorough
analysis shows that our proposed scheme is secure, efficient and scalable.

Keywords: privacy reserving, learning, neural network, back-
propagation, cloud computing, computation outsource.

1 Introduction

Back-propagation[17] is an effective method for learning neural networks and has
been widely used in various applications. The accuracy of the learning result, de-
spite other facts, is highly affected by the volume of high quality data used for
learning. As compared to learning with only local data set, collaborative learning
improves the learning accuracy by incorporating more data sets into the learning
process[19,11]: the participating parties carry out learning not only on their own
data sets, but also on others’ data sets. With the recent remarkable growth of new
computing infrastructures such as Cloud Computing, it has been more convenient
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than ever for users across the Internet, who may not even know each other, to con-
duct joint/collaborative learning through the shared infrastructure[12,13].

Despite the potential benefits, one crucial issue pertaining to the Internet-wide
collaborative learning is the protection of data privacy for each participant. In
particular, the participants from different trust domains may not want to disclose
their private data sets, which may contain privacy or proprietary information, to
anybody else. In applications such as healthcare, disclosure of sensitive data, e.g.,
protected health information (PHI)[2], is not only a privacy issue but of legal
concerns according to the privacy rules such as Health Insurance Probability and
Accountability Act(HIPAA)[1]. In order to embrace the Internet-wide collabora-
tive learning, it is imperative to provide a solution that allows the participants,
who lack mutual trust, to conduct learning on neural networks jointly without
disclosing their respective private data sets. Preferably, the solution shall be ef-
ficient and scalable enough to support an arbitrary number of participants, each
possessing arbitrarily partitioned data sets.

Related Work. Theoretically, secure multiparty computation (SMC)[20] can
be used to solve problems of this kind. But the extremely high computation and
communication complexity of SMC, due to the circuit size, usually makes it far
from practical even in the two-party case. In order to provide practical solu-
tions for privacy preserving back-propagation network (BPN) learning, several
schemes have been proposed recently. Schlitter[18] introduces a privacy preserv-
ing BPN learning scheme that enables two or more parties to jointly perform
BPN learning without disclosing their respective private data sets. But the so-
lution is proposed only for horizontal partitioned data. Moreover, this scheme
cannot protect the intermediate results, which may also contain sensitive data,
during the learning process. Chen et. al.[6] proposes a privacy preserving BPN
learning algorithm for two-party scenarios. This scheme provides strong pro-
tection for data sets including intermediate results. However, it just supports
vertically partitioned data. To overcome this limitation, Bansal et. al.[4] en-
hanced this scheme and proposed a solution for arbitrarily partitioned data.
Nevertheless, this enhanced scheme, just like [6], was proposed for the two-party
scenario. Directly extending them to the multi-party setting will introduce a
computation/communication complexity quadratic in n, the number of partici-
pants. In practical implementation, such a complexity represents a tremendous
cost on each party considering the already expensive operations on the underly-
ing groups such as Elliptic Curves. To our best knowledge, there is no efficient
and scalable solution that supports collaborative BPN learning with privacy
preservation in the multiparty setting over arbitrarily partitioned data.

Our Scheme. In this work, we address this open problem by incorporating the
computing power of the cloud. The main idea of our scheme can be summarized
as follows: each participant first encrypts her/his private data with the system
public key and then uploads the ciphertexts to the cloud; cloud servers then
execute most of the operations pertaining to the learning process over the ci-
phertexts and return the encrypted results to the participants; the participants
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jointly decrypt the results with which they update their respective weights for
the BPN. During this process, cloud servers learn no privacy data of a partici-
pant even if they collude with all the rest participants. Through off-loading the
computation tasks to the resource-abundant cloud, our scheme makes the com-
putation and communication complexity on each participant independent to the
number of participants and is thus highly scalable. For privacy preservation, we
decompose most of the sub-algorithms of BPN into simple operations such as
addition, multiplication, and scalar product. To support these operations over
ciphertexts, we adopt the BGN ‘doubly homomorphic’ encryption algorithm [5]
and tailor it to split the decryption capability among multiple participants for
collusion-resistance decryption. As decryption of [5] is limited to small numbers,
we introduce a novel design in our scheme such that arbitrarily large numbers
can be efficiently decrypted. To protect the intermediate data during the learning
process, we introduce a novel random sharing algorithm to randomly split the
data without decrypting the actual value. Thorough security analysis shows that
our proposed scheme is secure. Performance evaluation shows that our scheme
is efficient and highly scalable.

Contribution. Our contribution can be summarized as follows:

– To our best knowledge, this paper is the first that provides privacy preserva-
tion for multiparty (more than two parties) collaborative back-propagation
network learning over arbitrarily partitioned data;

– Thorough analysis shows that our proposed scheme is secure and efficient;
– We tailor [5] to support multiparty secure scalar product and introduc de-

signs that allows decryption of arbitrary large messages. These improvements
can be used as independent general solutions for other related applications.

The rest of this paper is organized as follows. Section 2 presents the models and
assumptions. In section 3 we introduce technique preliminaries which is followed
by detailed description of our proposed scheme in section 4. Section 5 evaluates
our proposed scheme. We conclude our work in section 6.

2 Models and Assumptions

2.1 System Model

We consider a system composed of three major parties: a trusted authority (TA),
the participating parties and the cloud servers (or cloud). TA is the party only
responsible for generating and issuing encryption/decryption keys for all the
other parties. It will not participate in any computation other than key gen-
eration and issuing. Each participating party s, denoted as Ps, owns a private
data set and wants to perform collaborative BPN learning with all other par-
ticipating parties. That is, they will collaboratively conduct learning over the
arbitrarily partitioned data set, which is private and cannot be disclosed dur-
ing the whole learning process. We assume that each participating party stays
online with broadband access to the cloud and is equipped with one or several
contemporary computers, which can work in parallel if there are more than one.
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2.2 Security Model

Our scheme assumes the existence of a trusted authority who is trusted by all
the parties, TA has the knowledge of system secret key and will not participate
in any computation besides the key generation and issuing. TA is allowed to
learn about each party’s private data whenever necessary. We claim that the
existence of TA is useful when investigation is needed in case some malicious
party intentionally interrupts the system, say using bogus data sets. In real life,
parties such as the government agents or organization alliances can be the TA.
Although the existence of TA is helpful, we leave the completely distributed
solution as a future work.

The participating parties do not fully trust each other. Therefore, they do not
want to disclose their respective private data(except for the final weights learned
by the network) to any other parties than TA. The cloud is not fully trusted by
the participating parties either, i.e., the cloud is not allowed to learn about the
sensitive information, such as original data sets and intermediate data. In this
paper, we follows the curious-but-honest model[8]. That is, all the parties (i.e.,
all the participating parties and the cloud) will honestly follow our protocol but
try to discover others’ private data as much as possible. A number malicious of
participating parties may collude among themselves and/or with the cloud.

2.3 Design Goals

– The multiple (two or more) participating parties can jointly perform a BPN
learning over arbitrarily partitioned data. Specifically, the parties shall be able
to jointly execute all the learning steps as defined by the BPN algorithm [17],
which mainly includes a feed forward stage and a back-propagation stage.

– Confidentiality of private data shall be protected during the joint learning
process. Specifically, we want to protect confidentiality of each party’s private
data set as well as all the intermediate results during the learning process,
which means each party learns nothing but the final learned neural network.

– The system shall be efficient and scalable. In particular, the cost introduced
on each party shall not grow with the number of participating parties. The
computation tasks can be securely offloaded to the cloud without compro-
mising data privacy. But the processing time on the cloud shall be less than
or comparable to that on each participant. The overall execution time of the
learning algorithm shall be practically acceptable.

3 Technique Preliminaries

3.1 Arbitrarily Partitioned Data

In this paper, we consider arbitrarily partitioned data as Bansal et al. did in[4]
among multi-parties, say Z parties(Z > 2). For arbitrarily partitioned data,
each party Ps, 1 ≤ s ≤ Z, holds parts of the data set without any specific
order. Specifically, consider a data set D with N rows {DB1, DB2, · · · , DBN},
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and each row DBv, 1 ≤ v ≤ N has m attributes{xv
1 , x

v
2 · · · , xv

m}. DBv
s is the

subset of data set owned by Ps, we have DBv = DBv
1

⋃
DBv

2 · · ·
⋃
DBv

Z and
DBv

1

⋂
DBv

2 · · ·
⋂
DBv

Z = ∅. For each DBv, Ps has tvs attributes(i.e. |DBv
s | =

tvs), where
∑Z

s=1 t
v
s = m, and each tvs , 1 ≤ v ≤ N does not have to be equal.

When t1s = t2s = · · · = tNs and the attributes owned by a party in each row are
at the same position, the arbitrary partitioning becomes vertical partitioning.
Similarly, it is horizontal partitioning if each Ps completely holds some DBv.

3.2 Back-Propagation Network Learning

Back-Propagation Network[17] is one of the most widely used model in neural
network learning. The multi-layer BPN can approximate any nonlinear function.

BPN learning algorithm is mainly composed of two stages: feed forward and
error signal back− propagation. As shown in Figure.1, there is a configuration
for a three layer(a-b-c) BP network: vector{x1, x2, · · · , xa} contains the values
of input nodes, vector{h1, h2, · · · , hb} represents values of hidden nodes and the
values of output nodes are {o1, o2, · · · , oc}. wh

jk denotes the weight connecting
the input layer node k and the hidden layer node j. wo

ij denotes the weight
connecting j and the output layer node i, where 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c.

... ... ...

Input Layer Output LayerHidden Layer

Fig. 1. Configuration of BP Network

During the BPN learning process, the goal is to model a given function by
modifying internal weights of input signals to generate an expected output signal.
As described in Algorithm 1, all the weights are initialized as small random
numbers[10,7,14]. In the FeedForwardStage, values at each layer are calculated
using the weights, the sigmoid function, and the values at the previous layer. In
the signalBack − Propagationstage, the algorithm checks whether the error
between output values and target values is within the threshold. If not, all the
weights will be modified according to Eq.(1),(2) and the learning procedure
is repeated. The learning will not be terminated until the error is within the
threshold or the max number of iterations is exceeded. After the learning, the
final weights on each link are the used to generate the learned network. Ref.[17]
describes details of the BPN algorithm.

Δwo
ij = −(ti − oi)hj (1)

Δwh
jk = −hj(1− hj)xk

∑c
i=1[(ti − oi) ∗ wo

ij)] (2)
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Algorithm 1. Back-Propagation Learning Algorithm
Input: N input sample vectors Vi, 1 ≤ i ≤ N , with a dimensions, iterationmax ,learning rate

η,target value ti,sigmoid function f(x) = 1

1+e−x

Output: Network with final weights: wh
jk, w

o
ij , 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c

begin

Randomly Initialize all wh
jk, w

o
ij .

for iteration = 1, 2 · · · , iterationmax do
for sample = 1, 2 · · · , N do

//Feed Forward Stage:
for j = 1, 2 · · · , b do

hj = f(
∑a

k=1 xk ∗ wh
jk)

for i = 1, 2 · · · , c do
oi = f(

∑a
j=1 hj ∗ wo

ij)

//Back-Propagation Stage:

if Error = 1
2

∑c
i=1(ti− oi)2 > threshold then

Δwo
ij = −(ti − oi) ∗ hj

Δwh
jk = −hj1 − hjxk

∑c
i=1[(ti − oi) ∗ wo

ij)]

wij = wij − ηΔwij

wh
jk = wh

jk − ηΔwh
jk

else
//Learning Finish
break

3.3 BGN Homomorphic Encryption

Homomorphic encryption is a form of encryption that enables operations on
plaintexts to be performed on correspondingly ciphertexts without disclosing the
plaintexts. Most existing homomorphic encryption schemes only support single
operation - either addition or multiplication. In [5], Boneh et al. introduced a
public-key ‘doubly homomorphic’ encryption scheme which simultaneously sup-
ports one multiplication and unlimited number of addition operations. Therefore,
given ciphertexts C(m1), C(m2), · · · , C(mi) and C(m̂1), C(m̂2), · · · , C(m̂i), one
can compute C(m1m̂1 + m2m̂2 + · · · + mim̂i) without knowing the plaintext,
where C() is the ciphertext encrypted by the system’s public key. Specifically,
this scheme can be described as follows.

– KeyGen: Generate two cyclic groups G and G1 of order n = q1q2 as well as
a bilinear map e : G×G → G1, where q1 and q2 are large primes. Randomly
pick two generators g, u ← G and set h = uq2 . The public key is published
as PK = (n,G,G1, e, g, h) and the private key is SK = q1.

– Encrypt: Pick a random number r ← Zn and encrypt the message M as:
C = gMhr, where C is the ciphertext.

– Decrypt: Obtain q1. Compute Cq1 = gMq1hrq1 . As hrq1 = 1 and gq1 can be
easily computed, the message M can be decrypted using Pollard’s lambda
method[15] as long as the message is not large.

Apparently, this scheme is homomorphic under the addition operation. It is easy
to verify that one multiplication operation over the message can still be applied
using bilinear map, after which unlimited number of addition operations can be
applied. Details of this scheme is described in [5].
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We shall point out that this scheme is designed for two parties. Moreover, due
to message decryption involves solving discrete logarithm of the ciphertext using
Pollard’s lambda method, this algorithm just works with small numbers. While
it is easy to extend the work to decrypt long messages (in which the message is
treated as a bit string) using a mode of operation, it remains open to efficiently
decrypt large numbers (wherein the final message is interpreted by its value and
unknown to the encryptor after homomorphic operations).

4 Our Proposed Scheme

4.1 Problem Statement

In this paper, we aim at enabling multiple parties to jointly conduct back-
propagation network learning without revealing their private data. The input
data sets owned by the parties can be arbitrarily partitioned. The computa-
tional and communicational costs on each party shall be practically efficient and
the system shall be scalable.

Specifically, we consider a 3-layer(a-b-c configuration) neural network for
simplicity but it can be easily extended to multi-layer neural networks. The
learning data set for the neural network, which has N samples(denoted as
vector{xm

1 , xm
2 , . . . , xm

a }, 1 ≤ m ≤ N), is arbitrary partitioned into Z(Z ≥ 2)
subsets. Each party Ps holds xm

1s, x
m
2s, · · · , xm

as and have:

xm
11 + xm

12 + · · ·+ xm
1Z = xm

1 (3)

· · · · · ·
xm
a1 + xm

a2 + · · ·+ xm
aZ = xm

a (4)

Each attribute in sample {xm
1 , xm

2 , . . . , xm
a }, 1 ≤ m ≤ N , is possessed by only

one party - if Ps possesses xm
k , 1 ≤ k ≤ a, then xm

ks = xm
k ; otherwise xm

ks =
0. In this paper, we use wh

jk to denote the weight used to connect the input
layer node k and the hidden layer node j; wo

ij to denote the weight used to
connect the hidden layer node j and the output layer node i, where 1 ≤ k ≤
a, 1 ≤ j ≤ b, 1 ≤ i ≤ c and a, b, c are the number of nodes of each layer as we
describe in Figure.1. For collaborative learning, the main task for all the parties
is to jointly execute the operations defined in the Feed Forward stage and the
signal back-propagation stage as shown in Algorithm 1. During each learning
stage, except for the final learned network, neither the input data of each party
nor the intermediate results(weights, value of hidden layer node, value of output
layer node, etc) generated can be revealed to anybody else other than TA.

4.2 Privacy Preserving Multi-party Neural Network Learning

In this section, we introduce our cloud based privacy preserving multi-party BPN
learning algorithm over arbitrarily partitioned data. As we described in Algo-
rithm 2, all the parties generate and assign random weights wh

jks and wo
ijs to each
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Algorithm 2. Privacy Preserving Multi-Party BPN Learning Algorithm
begin

Input: each Ps ’s data set for N data samples,xv
1s, x

v
2s, · · · , xv

as, 1 ≤ v ≤ N , whv
jks and wov

ijs
for N samples, iterationmax , η, target value ti

Output: Network with final weights: wh
jk, w

o
ij , 1 ≤ k ≤ a, 1 ≤ j ≤ b, 1 ≤ i ≤ c

for iteration = 1, 2, · · · , iterationmax do
for v = 1, 2, · · · , N do

//Feed Forward Stage: for j = 1, 2, · · · , b do
Using Algorithm 3 and Algorithm 4, each Ps obtain random shares ϕvs for∑a

k=1(x
v
k1 + xv

k2 + · · ·+ xv
kZ) ∗ (whv

jk1 + whv
jk2 + · · · + whv

jkZ )
Using Algorithm 5, all the parties compute the sigmoid function and obtain the
random shares hvjs ,

∑Z
s=1 hvjs = hvj and hvj = f(

∑Z
s=1 ϕvs), where f() is

the approximation for the sigmoid function as described in section4.6.

for i = 1, 2, · · · , c do
Using Algorithm 3,Algorithm 4 and Algorithm 5, each Ps obtain random shares
ovis for f(

∑b
j=1(hvj1 + hvj2 + · · ·+ hvjZ ) ∗ (wov

ij1 + wov
ij2 + · · · + wov

ijZ ))

//Back-Propagation Stage: Using Algorithm 3, all the parties and cloud calculate
Error = 1

2

∑c
i=1(ti − oi)

2

if Error > threshold then
for i = 1, 2, · · · , c do

//(step 1)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share Δwov

ijs for

Δwov
ij = (−(tvi − ∑Z

s=1 ovis) ∗ (
∑Z

s=1 hvjs)

for j = 1, 2, · · · , b do
//(step 2)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share μv

s for∑c
i=1[(

∑Z
s=1 ovis − tvi) ∗ (

∑Z
s=1 wov

ijs)]

//(step 3)
Using Algorithm 4 and Algorithm 3, each ps obtains random share κv

s for∑Z
s=1 xv

ks ∗ ∑Z
s=1 μv

s
//(step 4)
Using Algorithm 4 and Algorithm 3, each Ps obtains random share ϑv

s for∑Z
s=1 hvjs ∗ (1 − ∑Z

s=1 hvjs)
//(step 5)

Using Algorithm 4 and Algorithm 3, each Ps obtains random share Δwhv
jks for

Δwhv
jk =

∑Z
s=1 κv

s ∗ ∑Z
s=1 ϑv

s

Each Ps updates wov
ijs = wov

ijs − η ∗ Δwov
ijs and whv

jks = whv
jks − η ∗ Δwhv

jks

else
Learning Finished;

Ps and make agreement on the max number of learning iteration iterationmax,
the learning rate η, error threshold and target value ti of each output layer node
at the beginning of learning. In the Feed Forward Stage, all the parties agree
on the terms of approximation for the sigmoid function according to their accu-
racy requirement(details given in section 4.5) and obtain random shares hjs for
value of hidden layer node and ois for value of output layer node. After the Feed
Forward Stage, all the parties work together to check whether the network has
reached the error threshold. If not, they go into the Back-Propagation Stage,
which aims at modifying the weights so as to achieve correct weights in the
neural network. For the weights of each output layer node wo

ij , each Ps obtains
random shares of the changes in weights, denoted as Δwo

ijs, for Δwo
ij from Eq.

(1) by using the cloud based Algorithm 3 and Algorithm 4. For the weights of
each hidden layer node wh

jk, instead of directly computing the changes in weights
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according to Eq. (2), our proposed scheme divided it into four step computation:∑c
i=1[(ti − oi) ∗ wo

ij)], xk

∑c
i=1[(ti − oi) ∗ wo

ij)],−hj(1 − hj) and Δwh
jk, and let

each Ps obtains the random shares(μs,κs,ϑs,Δwh
jks) for each computation step

respectively by using Algorithm 3 and Algorithm 4. Finally, each Ps updates its
own weights with their shares and learning rate η.

4.3 Secure Scalar Product and Addition with Cloud

In this subsection, we tailor Ref.[5] and propose an algorithm that allows multiple
parties to perform secure scalar product and homomorphic addition operations
on ciphertexts using cloud computing. Specifically, each party encrypts his data
with the system public key and uploads the ciphertexts to the cloud. The cloud
servers compute the sum of original messages based on their ciphertexts. If the
original messages are vectors, the cloud computes the scalar product of the vec-
tors. During this process, the cloud does not need to decrypt nor learn about
the original messages. The final result of the sum or scalar product is returned
to all the parties in ciphertext. Decrypting the results needs the participation
of all the parties. Due to efficiency limitation of the Pollard’s lambda method,
the algorithm in [5] can only work well with relative small numbers. We over-
come such a limitation and make it suitable for large numbers. Our algorithm is
presented in Algorithm 3.
Decryption of Large Numbers: Message decryption in the BGN algorithm in-
volves solving the discrete log using Pollard’s lambda method[15]. On a single
contemporary computer, for example, the Pollard’s lambda method is able to
decrypt numbers of up to 30-40 bits within a reasonable time slot (e.g., in min-
utes or hours). Decryption of larger numbers is usually believed less practical in
terms of the time complexity. In practice, however, it is hard to guarantee that
the final results (numbers) are always small enough for the Pollard’s lambda
method to efficiently decrypt. This is either because the numbers contained in
the vectors are too large, or the vectors are too long (of high dimension). To
overcome this limitation, we propose to let the data holders divide the numbers,
if they are large, into several numbers, and the cloud then decrypt the smaller
”chunks” with which the final result can be recovered. The decryption process
can be parallelized for efficiency. Assuming that the cloud is able to efficiently
decrypt the result if each input number is less than d bits, our solution for sup-
porting large numbers can be described as follows. W.l.o.g., we just consider the
scalar product operation over input numbers of 3d bits.

Let VA = (A1, A2, · · · , Ak) and VB = (B1, B2, · · · , Bk) be two vectors, where
Ai and Bi are 3d-bit numbers for 1 ≤ i ≤ k. Each vector can be represented as:

Ai = Ai2 ∗ 22d +Ai1 ∗ 2d +Ai0

Bi = Bi2 ∗ 22d +Bi1 ∗ 2d +Bi0

We can compute the product of Ai ∗Bi as follows:

Ai ∗Bi = 24d(Ai2 ∗Bi2) + 23d(Ai2 ∗Bi1 +Ai1 ∗Bi2) + 22d(Ai2 ∗Bi0 +Ai0 ∗
Bi2 +Ai1 ∗Bi1) + 2d(Ai1 ∗Bi0 +Ai0 ∗Bi1) +Ai0 ∗Bi0



Privacy Preserving Back-Propagation Learning Made Practical 301

Algorithm 3. Secure Scalar Product and Addition
– Key Generation:

TA generates two cyclic groups G and G1 of order n = q1q2, where q1 and q2 are large primes, and a
bilinear map e : G × G → G1. Then it picks two random generators g, u ∈ G and computes h = uq2 .
TA splits q1 as q1 = (q11 + q12 + · · · + q1Z ) mod n, where q1s is randomly chosen from Zn for
1 ≤ s ≤ Z. For 1 ≤ s ≤ Z, TA sends q1s to party Ps as her/his secret key. The public key is published as
PK = (n,G,G1, e, g, h), and the system master key is SK = q1 which is only known to TA.

– Encryption: Given a message M , encrypt it as: C = gMhr ∈ G, r
R← Zn.

– Secure Scalar Product: Given the ciphertexts of vector (M11,M12, · · · ,M1v) and (M21,M22, · · · ,M2v),
the cloud computes their scalar product as:

C(prod) = hr
1 ∗ ∏v

i=1 e(C1i, C2i),

where h1 = e(g, h),C1i and C2i are the ciphertexts of message M1i and M2i respectively.
– Secure Addition: Given the ciphertexts of message M1,M2, · · · ,Mv , the cloud computes their sum as:

C(sum) =
∏v

i=1 Ci

– Decryption: W.l.o.g., we just demonstrate the decryption of C(sum) as follows. The cloud broadcasts
C(sum) to each party. On receiving the ciphertext, each party Ps computes C(sum)q1s and returns the
result to the cloud.
With the results from all the parties, the cloud computes:

∏Z
j=1 C(sum)q1s = C(sum)q1 .

Since C(sum) =
∏v

i=1 Ci =
∏v

i=1 gMihri , we have:

C(sum)q1 = (g
∑v

i=1 Mi
∏v

i=1 hri )q1 = (gq1 )
∑t

i=1 Mi

Note that hq1 = 1.
∑v

i=1 Mi can be efficiently solved using Pollard’s lambda method[15] given gq1 . The
encrypted scalar product can be decrypted jointly in the similar way.

The scalar product of VA and VB can be calculated as follows:
k∑

i=1

(Ai ∗Bi) (5)

= 24d
k∑

i=1

(Ai2 ∗Bi2) + 23d(

k∑
i=1

(Ai2 ∗Bi1) +

k∑
i=1

(Ai1 ∗Bi2))

+22d(

k∑
i=1

(Ai2 ∗Bi0) +

k∑
i=1

(Ai0 ∗Bi2) +

k∑
i=1

(Ai1 ∗Bi1))

+2d(

k∑
i=1

(Ai1 ∗Bi0) +

k∑
i=1

(Ai0 ∗Bi1)) +

k∑
i=1

(Ai0 ∗Bi0)

Therefore, instead of directly calculating
∑k

i=1(Ai ∗ Bi), the participants can

first compute
∑k

i=1(Ai0∗Bi0), · · · ,
∑k

i=1(Ai2∗Bi2) separately and finally recover∑k
i=1(Ai ∗ Bi) using Eq. (5). For this purpose, the data holders need to split

Ai and Bi and encrypt Ai0, Ai1, Ai2 and Bi0, Bi1, Bi2, which are d-bit numbers.
By doing this, the encryption cost on each data holder increases by x times,
where x is the number of smaller numbers that each large number is broken
into. In the above example x = 3. The cloud needs to perform x2 more time
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operations on ciphertexts than for a single scalar product. x2 more decryptions
will be performed by participants and the cloud. If x is fixed, the expansion
of computation/communication cost is of constant time. Usually, x will not be
large. For example, if 30-bit numbers can be efficiently decrypted, our technique
can efficiently decrypt 90-bit numbers with x = 3.

4.4 Secure Sharing of Scalar Product and Sum

As the intermediate results generated during the BPN learning process may be
used to derive some privacy information, the actual intermediate results can-
not be known to each party as well as the cloud server. However, the ‘BGN’
algorithm[5] only supports one step multiplication over ciphertext and need to
decrypt the intermediate results first, which will disclose some privacy data,
for further privacy-preserving learning operations. To protect these intermediate
results(scalar products or sum), we introduce a secure sharing algorithm in Al-
gorithm 4, which enables each participating party to get a random share of the
intermediate result without knowing its actual value. As described in Algorithm
3, Z parties can efficiently perform secure scalar product and addition compu-
tation with the help of cloud. To securely share the result, say ε, each party first
generates a random number Ls←(0, u), where u is the upper bound of ε, and

encrypts it as: C(Ls) = gLs
1 hrsq2

1 ,where g1 = e(g, g), h1 = e(g, h), rs
R← Zp. Then

all the parties uploads the ciphertexts of Ls to the cloud and the cloud securely
calculates the ciphertext of sumL =

∑Z
s=1 Ls as:

C(sumL) =
∏Z

s=1 C(Ls) = gL1+L2+···+LZ
1 hq2r̂s

1

where r̂s
R← Zp. All the parties work together to decrypt the difference between

ε and sumL as L̂ = |ε− sumL| and send it to P1. Note that 0 <
∑Z

s=1 Ls <

Z ∗ u, 0 < ε < u, we have −u <
∑Z

s=1 Ls − ε < Z ∗ u. As the cloud is able to

efficiently decrypt numbers as large as u, it can decrypt
∑Z

s=1 Ls − ε efficiently
as long as Z is not very large. Finally, all each Ps get its secure share εs of ε.
For P1, ε1 = L1 + L̂ and for other parties, εs = Ls.

To ensure the efficiency for computing L̂, we consider about the following two
possible cases: Case1: ε >

∑Z
s=1 Ls and Case2: ε <

∑Z
s=1 Ls. In multi-party

scenarios(Z ≥ 2), as Ls
R← (0, U), there is a high possibility that ε <

∑Z
s=1 Ls.

At the same time,
∑Z

s=1 Ls will not be much larger than ε(in 10 party scenarios,∑Z
s=1 Ls is at most 4bits larger than ε). Therefore, the cloud and all the parties

can start decryption from Case2. If the successfully decryption of L̂ cannot be
achieved in empirical time using Pollard’s lambda method, we can change to
decrypt L̂ process in Case1.

4.5 Approximation of Activation Function

In this subsection, we introduce the approximation of activation function us-
ing Maclaurin series expansion[3] and its secure sharing based on Algorithm
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Algorithm 4. Secure Share of Scalar Product and Sum
Input: Ciphertext of ε
Output: Shares of ε: εs for Ps, 1 ≤ s ≤ Z
begin

for s = 1, 2 · · · , Z do

Choose Ls
R← (0, u)

C(Ls) = gLs
1 h

rsq2
1

//where u is the upper bound of ε

//Cloud Calculates:

C(sumL) =
∏Z

s=1 C(Ls)

case 1.ε >
∑Z

s=1 Ls

C(L̂) = C(ε) ∗ C(sumL)−1

case 2.ε <
∑Z

s=1 Ls

C(L̂) = C(sumL) ∗ C(ε)−1

Decrypt C(L̂) with Algorithm 3 and send L̂ to P1

//Output Shares:

ε1 = L1 + L̂
for i = 2, 3 · · · , Z do

εs = Ls

end

3 and Algorithm 4. Since the ‘BGN’ encryption does not support exponentia-
tion operations over ciphertext(i.e. calculating C(ex) given C(x)) and cannot
directly support the secure computation of sigmoid function 1

1+e−x , we utilize
Maclaurin series expansion to approximate the sigmoid function and make it
suitable for our proposed Algorithm 3 and Algorithm 4. Since the sigmoid func-
tion 1

1+e−x ∈ (0, 1), we can guarantee the converge of its Maclaurin series and
approximate it as:

1
1+e−x = 1

2 + x
4 − x3

48 + x5

480 +O(x6) (6)

Due to the property of Maclaurin series, the terms in the expansion can be
decided depends on the accuracy requirement. As shown in the approximation
of sigmoid function in Eq. (6), the major challenge of secure computation for
the equation becomes how to compute xk, 2 ≤ k ≤ n and share it without
disclosing any privacy data. Based on the aforementioned Algorithm 3 and 4, Z
parties are allowed to securely calculate and share x. With these properties, we
proposed Algorithm 5 to securely share xk. Using x2 for instance, Z parties first
work together to get the secure shares of x using Algorithm 3 and 4, denoted
as xs for each Ps. With the ciphertext of x and xs, each Ps then calculates
Ĉs(x) = C(x)

xs and uploads it to the cloud. Cloud computes C(x2) using secure
addition in Algorithm 3 and finally all the parties securely get the shares of x2

with Algorithm 4. The scenarios of xk, k > 2 can be easily extended as x2. Due
to spcae limitation, we provide the correctness of this algorithm in Appendix.

4.6 Security Analysis

In this section, we sketch the prove that our scheme is semantically secure un-
der the subgroup decision assumption. As stated in section 4.1, our scheme is
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Algorithm 5. Secure Share of Activation Function
Input: xs,ciphertext of x: C(x)

Output: Shares of xk, xk
s for Ps, 1 ≤ s ≤ Z

begin
for j = 2, 3 · · · , k do

//each Ps calculate:

Ĉs(x
j−1) = C(xj−1)

xs

Cloud Calculate C(xj) using Algorithm 3.

C(xj) =
∏Z

s=1 Ĉs(x
j−1)

Call Algorithm 4, generate secure shares of xj
s

composed of four sub-algorithm and we first analyze the security of Algorithm
4, since the other three algorithm are based on it:

Theorem 1. Algorithm 3 is semantically secure assuming the group G satisfies
the subgroup decision assumption.

Proof. First, in our scheme, the secret key q1 is randomly split into Z parts,
and each part is distributed to a data holder. Therefore, unless all the data
holders work together, they cannot recover the secret key q1 with their own
parts. Suppose a polynomial time adversary B, which is also a involved data
holder in the collaborative computation and can collude with less than other
Z − 2 data holders and the cloud server, is able to break the semantic security
of the scheme with non-negligible advantage. We can construct an algorithm A
that breaks the subgroup decision assumption with the same advantage. The
construction of the algorithm A is the same as that in [5].

Security of Algorithm 4: To share one number, each party Ps independently
chooses a random number Ls and encrypts it locally before he uploads to the
cloud. Since Algorithm 3 is secure according to the above theorem, the random
number chosen by each party is well protected. The decrypted data, i.e., the
difference between ε and the sum of all the local random numbers, is indistin-
guishable from a random number as long as at least one of the local random
numbers is not disclosed. This means that the data confidentiality of ε, which
can be an intermediate value, can be well protected under the random oracle
model as long as there is at least one non-malicious party.

Security of Algorithm 5: To share the result of approximation of activation
function, we utilize the Algorithm 3 and Algorithm 4. Since we do not intro-
duce any other steps to Algorithm 5 beside Algorithm 3 and Algorithm 4, we
can achieve the same data confidentiality in Algorithm 5 as Algorithm 3 and
Algorithm 4 did.

Security of Algorithm 2: In Algorithm 2, all the data exchange for parties are
during the the secure computation of step1, 2, 3, 4, 5. All these steps are based
on Algorithm 3, Algorithm 4 and Algorithm 5, which has been proved secure
in terms of data confidentiality. Thus, we can prove that the same security for
Algorithm 5 as Algorithm 3, Algorithm 4 and Algorithm 5 according to the
composable security model.
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5 Performance Analysis

5.1 Complexity Analysis

In this section, we numerically evaluate the performance of our proposed scheme
in terms of computation cost and communication cost and compare it with the
existing techniques. Since our scheme is composed of four sub-algorithms, we
first give the analysis of each sub-algorithm and then provide the complexity of
whole scheme. For expression simplicity, in the following part of this section, we
denote time complexity of one multiplication operation on Group G as MUL1

and that of one exponentiations operation on Group G as EXP.
Complexity of Algorithm 3: In multi-party scenarios, when all the parties need

to jointly perform a secure scalar product or addition computation, each party
Ps first needs to encrypt all his data attributes once, which costs 2ns EXP and
ns MUL, where ns is the number of data attributes owned by Ps. Then cloud
would calculate the ciphertext of scalar product or sum based on encrypted
data uploaded by each party and send back the ciphertext of result to each
party. After receiving the ciphertext of result, each Ps just needs to perform
one EXP and upload it into cloud for generate the final result. Therefore, the
total computation cost for each party Ps for the secure computation for scalar
product or sum is 2ns EXP and (ns + 1) MUL. Note, 2ns EXP and ns MUL
in our scheme is one time cost, it does not need to be performed in each secure
computation round. For communication cost, each Ps needs to exchange (ns+2)
messages with cloud, where |G| bits for each of ns messages and |G1| bits for the
other two. Note, ns messages are also one time cost.

Complexity of Algorithm 4: To securely get the random share of the result of
scalar product or addition, each Ps first needs to perform 2 EXP and one MUL
to encrypt its chosen random number. After the cloud calculates the ciphertext
of difference between the result the sum of all the local random number based
on the uploaded ciphertexts, another EXP is needed for each Ps to decrypt the
difference. Therefore, the total cost for each Ps during the secure sharing process
is 3 EXP and one MUL. For communication cost, only 3 messages exchange are
needed for each party Ps and cause 3|G1| bits cost.

Complexity of Algorithm 5: To jointly perform the approximation of activation
function(here we choose 5 terms for our approximation to achieve acceptable
accuracy as in [21]), each party Ps needs to perform 8 EXP and 2 MUL besides
the cost in Algorithm 3 and 4. For communication cost, 9 more messages, which
have 9|G1| bits are needed for each party besides cost in Algorithm 3 and 4.

Complexity of the Whole Scheme: In this part, we analyze the computation
cost and communication cost of our whole privacy preserving multi-party neural
network learning scheme. Considering the neural network configuration(a-b-c)
as described in section 3.2, each party Ps first needs to encrypt all its privacy
data once using Algorithm 3 with 2(ns+b+c) EXP and (ns+b+c) MUL, where
ns is the number of data attributes holed by Ps, a,b and c represent the number

1 When the operation is on the elliptic curve, EXP means scalar multiplication oper-
ation and MUL means one point addition operation.
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Table 1. Computation/Communication Cost of Privacy-Preserving BPN Learning
Schemes. ns: number of data attributes owned by party Ps; Z: number of participating
party; G and G1: size of messages

Our Scheme Bansal’s scheme Chen’s Scheme

Comp. (31b + 18c + 2ns)EXP Z2 ∗ (4ns(a + 4b + c + bc)) Z2 ∗ (5ab + 2bc
+(8b + 6c + ns)MUL ∗(EXP+MUL) +abc)(EXP+MUL)

+Z2 ∗ (12bEXP+8bMUL) +Z2 ∗ (4ns(2bc + 4ab
+b))(EXP+MUL)

Comm.(bit) ns ∗ a ∗ |G|+ (24b + 5c) ∗ |G1| Z2 ∗ (ab + 3bc + 4b + 2)|G| Z2 ∗ (b + 2bc + 4ab + 2)|G|
+2ns|G| +2ns|G|

of input layer nodes, hidden layer nodes and output layer nodes respectively.
Note: this is the one time cost and do not need to be performed again during
the whole learning process. In the Feed Forward Stage, by using Algorithm 4
and Algorithm 5, each Ps performs 11(b+ c) EXP and 3(b+ c) MUL to get the
random shares of every hidden layer node value and output layer node value.
In the Back-Propagation Stage, to get the random share of changes for each
output layer nodes, step1, 3 cost each Ps 5c EXP+2c MUL and 5b EXP+2b
MUL respectively; step1, 3 both need 3b EXP and b MUL and step5 needs 7b
EXP and 3b MUL. Thus Ps needs to perform (18b + 5c) EXP+(4b + 2c) MUL
using Algorithm 3 and Algorithm 4.
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Party Number
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Fig. 2. Cost Influence of Party Number

Combining the cost for the two stages, the computation complexity for each
party Ps of one round privacy preserving back-propagation neural network learn-
ing in multi-party scenarios is 31b+ 18c+ 2ns EXP and 8b+ 6c+ ns MUL. For
cloud side, it needs to perform 4 + a + b + c pairing operations on Group G,
Z ∗ (8b+14c) MUL and 11 decryption, where the complexity of each decryption
is O(

√
K) andK is the size of message for decryption. Although the computation

cost on cloud side will linearly increase with the party number, cloud can handle
it in parallel efficiently. For communication cost, each party Ps needs to exchange
ns ∗a+24b+5cmessages with (ns ∗a∗ |G|+(24b+5c)∗ |G1|) bits during the one
round privacy preserving BPN learning process. By securely outsource most com-
putation tasks to the cloud server, our scheme makes the cost of each party inde-
pendent to the number of participating parties, which is a significant difference
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with the excising scheme[4,6] as we shown in Figure.2. To compare our scheme
with existing ones[4,6], we summarize the cost of our scheme and Ref.[4,6] in Ta-
ble.1. Considering the same neural network configuration(a-b-c), when extend-
ing scheme in Ref.[4] to Z parties scenarios, which utilized ElGamal[9] for secure
computation, Z2 ∗ (4ns(a+4b+ c+ bc))∗(EXP+MUL)+Z2∗ (12bEXP+8bMUL)
are needed for each party Ps for computation. When compared with scheme in
Ref.[6], which can support two party privacy preserving back-propagation neural
network learning over vertical partitioned data, Z parties scenario will introduce
Z2 ∗ (5ab+2bc+ abc+4ns(2bc+4ab+ b))(EXP+MUL) computation cost to the
each party. For communication cost, schemes in Ref.[4,6] will cause Z2 ∗ (ab +
3bc+4b+2)∗ |G1|+2ns ∗ |G1| bits and Z2 ∗ (b+2bc+4ab+2)∗ |G1|+2ns ∗ |G1|
bits respectively for Z parties scenarios. Different form our scheme, both [4] and
[6] will introduce a computation/communication complexity quadratic in Z for
Z parties scenario and make their scheme unpractical. As a result, by offloading
most computation cost to the cloud, our proposed scheme significantly outper-
forms the existing works in multi-party scenarios without any limitation on the
type of data partition.

5.2 Accuracy Analysis

In our proposed scheme, the only place that introduces accuracy loss is the ap-
proximation for the activation function. As described in section 4.5, we achieve
the approximation by using Maclaurin series expansion, whose accuracy can be
adjusted by modifying the number of series terms according to the system re-
quirement. Due to the property of Maclaurin series, our scheme can achieve any
higher accuracy by adding more series terms in approximation. Similar method
of approximation with Maclaurin series expansion is used in [21], but it just sup-
ports two party setting. Moreover, the cost brought by the increasing accuracy
requirement in our scheme is lightweight. Taking the a-b-c configuration BPN
for an example, it will cause 8(b + c) EXP 2(b + c) MUL for each party if we
extend 5 series terms to 9 series terms for more accuracy. Compared with the
existing schemes in [4,6], which use the piecewise linear approximation[16] for
the activation function and introduce about only 3%− 6% more error rate than
none privacy-preserving scheme, our approximation can achieve at least the same
accuracy as these works. Furthermore, due to limitation of finite fields for secure
computation, both schemes in [4] and [6] need to map the real numbers in sigmod
function to fixed-point representations in every step of Feed Forward Stage and
Back-Propagation Stage, which will lead to further loss in accuracy. However,
our proposed scheme can omit this limitation and be efficiency performed on
the sigmod function without any accuracy loss during the secure computation
process by utilizing the cloud server.

6 Conclusion

In this work, we proposed the first secure and practical multi-party BPN learn-
ing scheme over arbitrary partitioned data. In our proposed approach, the parties
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encrypt their arbitrarily partitioned data and upload the ciphertexts to the cloud.
The cloud can execute most operations pertaining to the BPN learning algorithm
without knowing any private information. The cost of each party in our scheme is
independent to the number of parties. This work tailors the BGN homomorphic
encryption algorithm to support the multi-party scenario, which can be used as
an independent solution for other related applications. Complexity and security
analysis shows that our proposed scheme is scalable, efficient and secure. As a fu-
ture work, we will study the feasibility of performing secure multiparty learning
without the help of any trusted authority.
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Appendix

Correctness of Algorithm 5

This section proves the correctness of Algorithm 5 and shows how to compute
any xk, k ∈ ZR for the approximation of activation function.

Proof. 1. When k = 1, xk = x, as aforementioned in Section 4.3, it can be
securely calculated without disclosing any privacy information.
2. If when k = n, multi-party can securely compute xn without revealing any pri-
vacy information. For k = n+1, we have: C(xn) = gx

n

1 hrn
1 , Ĉ(xn)s = C(xn)xs =

gx
n∗xs

1 hrn∗xs
1 , where C(xn) is the ciphertext of xn based on Algorithm 3 and xsis

the random share of x(
∑Z

s=1 = x) for party Ps by using Algorithm 4. After each

Ps uploading his Ĉ(xn)s to cloud, cloud can calculates as:

Z∏
s=1

Ĉ(xn)s (7)

= g
∑Z

s=1 xn∗xs

1 h
∑Z

s=1 rn∗xs

1 = g
xn∗∑Z

s=1 xs

1 h
∑Z

s=1 rn∗xs

1

= gx
n∗x

1 h
x∗∑Z

s=1 rn
1 = gx

n+1

1 h
x∗rn+1

1 = C(xn+1)

With the ciphertext of xn+1, all the parties can utilize Algorithm 3 and Algo-
rithm 4 to securely get the random share of xn + 1.
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Abstract. Exploiting static configuration of networks and hosts has al-
ways been a great advantage for design and launching of decisive attacks.
Network reconnaissance of IP addresses and ports is prerequisite to many
host and network attacks. At the same time, knowing IP addresses is re-
quired for service reachability in IP networks, which makes complete
concealment of IP address for servers infeasible. In addition, changing
IP addresses too frequently may cause serious ramifications including
service interruptions, routing inflation, delays and security violations. In
this paper, we present a novel approach that turns end-hosts into un-
traceable moving targets by transparently mutating their IP addresses
in an intelligent and unpredictable fashion and without sacrificing net-
work integrity, manageability or performance. The presented technique is
called Random Host Mutation (RHM). In RHM, moving target hosts are
assigned virtual IP addresses that change randomly and synchronously
in a distributed fashion over time. In order to prevent disruption of active
connections, the IP address mutation is managed by network appliances
and totally transparent to end-host. RHM employs multi-level optimized
mutation techniques that maximize uncertainty in adversary scanning
by effectively using the whole available address range, while at the same
time minimizing the size of routing tables, and reconfiguration updates.
RHM can be transparently deployed on existing networks on end-hosts
or network elements. Our analysis, implementation and evaluation show
that RHM can effectively defend against stealthy scanning, many types
of worm propagation and attacks that require reconnaissance for success-
ful launching. We also show the performance bounds for moving target
defense in a practical network setup.

1 Introduction

In the current Internet architecture, network configuration parameters such as
IP addresses are mostly static and easily discoverable. Although this simplifies
reachability and manageability, it gives adversaries significant advantage to re-
motely scan networks and identify their targets accurately and quickly using
off-the-shelf scanning tools [1,2]. Despite firewall deployment, most enterprise
networks have many public and private hosts accessible from outside. Using the
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existing dynamic IP assignment techniques like DHCP does not protect from
scanning, and using NAT makes it difficult to reach legitimate hosts remotely.
In addition, these techniques are insufficient to provide proactive countermeasure
because the IP mutation is infrequent and traceable.

In this paper we propose a novel proactive moving target defense, called Ran-
dom Host Mutation (RHM), that challenges the principal assumptions of scan-
ning adversaries in cyber warfare: “if you can scan it (i.e., a response received),
you can find it. Otherwise, it is an unused address”. We propose a mutable net-
work architecture that mutates IP addresses of designated moving target (MT)
hosts randomly and frequently so that the attackers’ premises about the network
fail. The goal of these mutations is to make the hosts untraceable via network
reconnaissance attacks. However, developing an efficient and practical scheme
that can be deployed on general networks requires careful consideration of tough
challenges: (1) IP mutation must be transparent to the end-host to prevent
disruption of active connections, (2) the integrity of end-to-end Internet reacha-
bility should be maintained, (3) IP mutations should be fast and unpredictable
to deceive scanners by optimally using the whole available address range, (4) IP
mutations should avoid service interruptions, routing inflation, delays and secu-
rity violations, (5) RHM should be seamlessly deployed in any existing networks
without requiring any changes in the end-host or network infrastructure.

RHM addresses each of these challenges and develops an optimized moving
target defense architecture that maximizes the uncertainty on the adversary
discovery, while satisfying the configuration management constraints. To keep
the IP addresses of end-hosts unchanged, RHM creates routable short-lived vir-
tual IP addresses (vIP) that will be changed randomly, consistently and syn-
chronously in the network to allow unpredictable, yet safe mutation. The vIP
addresses will be used for routing and are automatically translated into the real
IPs (rIP) and vice versa at the network edges (subnet) close to the destina-
tion. Using rIP and vIP addresses allows for separating network administration
and mutation management, making mutation transparent to administrators and
end-host configuration. Under RHM architecture, a MT host is reachable by a
name that is then resolved to a vIP address. However, scanners do not often
query DNS for scanning networks because (1) it increases detection probabil-
ity [3], and (2) not all hosts names are necessarily known by scanners or DNS.
Although users commonly use named servers to reach their destinations, RHM
allows only authorized users (e.g., administrators) to reach MT hosts based on
policy-based access control predefined by RHM managers for each MT host.

To optimize IP mutation, the mutant vIPs are selected randomly from the
entire unused address space in the network in order to increase unpredictabil-
ity while satisfying various mutation speed requirements of different MT hosts,
routing table size bound, routing convergence, and network operation integrity.
We formulate this problem as a constraint satisfaction problem and solve it
using Satisfiability Modulo Theories [4] (SMT) solvers. To allow for the maxi-
mum use of unused address space for mutation while considering routing con-
vergence, RHM employs two-phase mutation: (1) low frequency mutation (LFM)
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that solves the constraint satisfaction problem to select an optimal assignment
of MT hosts to random mutation range of vIPs, and (2) high frequency mutation
(HFM) that uses a cryptographic random function to select from a designated
range a specific mutant vIP randomly, yet synchronously across RHM compo-
nents in the network. In both mutations, active sessions are maintained.

The RHM architecture was implemented and tested in our university campus,
and comprehensive evaluation were conducted to study the effectiveness and
limitations of RHM. Our theoretical analysis, simulation and experimentation
results show that RHM can protect up to 40 − 90% of the network host from
reconnaissance attacks lunched by scanning tools or vicious random scanning
worms.

Previous works [5,6,7,8] propose techniques to allow for changing or hiding
IP address using consecutive DHCP updates [5], encrypting headers [6], trans-
lation [7], or rerouting to another server [8]. These solutions are very limited
as they do not support wide range of IP mutation. Also, they are not readily
deployable solutions as they do not address the challenges discussed before.

The rest of the paper is organized as follows. Section 2 describes the related
works. Section 3 presents the formulation and algorithms for RHM. In Sec-
tion 4 the RHM architecture and protocol are described; Section 5 describes
the required re-configurations. Section 6 presents implementation, analysis and
evaluation, and Section 7 concludes the paper.

2 Related Works

A few research proposals on dynamically changing IP addresses for proactive
cyber defense have been presented in the literature. The APOD (Applications
That Participate in Their Own Defense) scheme [8] uses hopping tunnels based
on address and port randomization to disguise the identity of end parties from
sniffers. However, this approach is not transparent as it requires cooperation of
both client and server hosts during the IP mutation process.

The DyNAT provides a transparent approach [9] for IP hopping by translating
the IP addresses before packets enter the core or public network in order to hide
the IP address from man-in-the-middle sniffing attacks. Although this technique
will make network discovery infeasible for sniffers, it does not work for scanners
who rely on probe responses for discovering the end-hosts.

A network address space randomization scheme called NASR [5] was pro-
posed to offer an IP hopping approach that can defend against hitlist worms.
NASR is a LAN-level network address randomization scheme based on DHCP
update. NASR is not transparent to the end-hosts because DHCP changes are
applied to the end-host itself which results in disruption of active connections
during address transition. Moreover, it requires changes to the end-host operat-
ing system which makes its deployment very costly. Also, NASR provides very
limited unpredictability and mutation speed because its IP mutation is limited
on the LAN address space and will require DHCP and host to be reconfigured
for this purpose (the maximum IP mutation speed is once every 15 minutes).
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A technique called OF-RHM (OpenFlow Random Host Mutation) was pro-
posed in [10]. OF-RHM offers an IP mutation technique for software-defined
networks. Although the technique is transparent to end-hosts and provides high
mutation rate, it is not deployable on traditional networks.

Yegneswaran et al. [11] and Cai et al. [12] present techniques for defending
honeynets from systematic mappings that aim at differentiating live IPs from
monitored ones and blacklisting monitored IPs for efficient target selection. RHM
completely wipes out systematic mapping attacks, because generated blacklists
are only valid for a relatively short interval.

In summary, none of the previous techniques provides a deployable transpar-
ent mechanism for IP mutation that can defend against external and internal
scanning attacks without changing the configuration of the end-hosts. RHM im-
plement an efficient IP mutation in term of unpredictability, mutation speed
and configuration management. Unlike the previous techniques, RHM uses the
entire address space to increase unpredictability and updates configurations at
real-time while preserving network operation integrity.

3 Host Mutation Optimization

Maximizing mutation unpredictability and mutation speed are primary objec-
tives of RHM. To achieve the first goal, RHM uses the maximum portion of
unused address space for mutation. However, achieving the second goal is lim-
ited by the routing convergence time and table size bounds. Thus increasing the
mutation speed implies bounding the mutation space to local ranges. To satisfy
these conflicting objectives, RHM uses two levels of random mutation granular-
ity: Low Frequency mutation (LFM) and High Frequency mutation (HFM). LFM
is used for selecting a random network address, denoted as virtual address range
(VAR) for the MT hosts, and HFM is used to select a random vIP within VAR
assigned during LFM. Combining the two levels of mutation, enhance not only
the mutation unpredictability and speed but also the network manageability.

The duration of an LFM or HFM is called an LFM or HFM interval, respec-
tively. An LFM interval contains multiple HFM intervals, and in every HFM
interval the MT host will be associated with a unique vIP from the designated
VAR of that particular host. Since LFM is more expensive than HFM, LFM
interval is fixed, while the HFM interval is customized based on the required
mutation speed of each MT host. To maintain connectivity with MT hosts, MT
hosts engaged with active sessions will retain their vIPs in addition to new ones
during mutation. Therefore, a MT host might be associated with more than one
vIP simultaneously.

In the following, we describe the main phases of RHM algorithm: (1) gener-
ation of unused VARs, (2) LFM for optimal assignment of VARs to MT hosts,
(3) VAR segmentation, and (4) HFM for random and synchronized vIP selection
within the allocated VARs for each MT host. The configuration management and
session tracking for active connections will be discussed in subsequent sections.
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Table 1. Description of parameters

bij denotes whether range rj is assigned to host hi (bij ∈ {0, 1})
{h1, . . . , hn} set of MT hosts
{r1, . . . , rm} set of VARs
Bkj denotes whether range rj is assigned to at least one of the host in

subnet Sk (Bkj ∈ {0, 1})
Ei The expected value of vIP repeat probability in LFM interval for host

hi

F p
i set of address ranges used by those hosts similar to host hi in the last

p LFM intervals
Ni The number of vIP mutations in an LFM interval for host hi

Sl set of address ranges uses by any host in the previous l LFM intervals
{S1, . . . , Sz} set of subnets
Td maximum routing update propagation delay
Ri = 1/THFMi mutation speed of host hi

TLFM length of an LFM interval
U upper bound for routing table size
Vi minimum required address space for hi

3.1 VAR Generation

The first step of each LFM interval is to generate unused address blocks (VARs)
in the network address space. The unused address space is defined as the address
space that includes rIPs and vIPs that are currently in-use for active sessions.
Given used address ranges A1, . . . , Au of the network and vIPs, q1, . . . , qk vIP ad-
dresses used in currently active sessions, we can generate contiguous blocks of un-
used address space by simply masking the full network address spaceA as follows:

{r1, r2, .., rm} ← A ∧ ¬(A1 ∨ . . . ∨ Au ∨ q1 ∨ . . . ∨ qk) (1)

We implemented this by encoding A, A1, . . . , Au, and q1, . . . , qk as Boolean ex-
pressions using Binary Decision Diagram (BDD) [13] operations.

In addition, LFM will require sufficient unused address space to allow for
swapping VARs during mutation. This means that the unused address space
should be at least twice the total mutation space required by all MT hosts (for-
mally, 2

∑
1≤i≤n Vi ≤

∑
1≤j≤m |rj |, where Vi is the minimum required address

space for MT hi).

3.2 LFM Formulation

The core problem of LFM is to assign VARs to MT hosts at each interval such
that (1) mutation unpredictability can be maximized, (2) mutation speed, and
(3) routing table size constraints are satisfied. Suppose we currently have a set
of MT hosts {h1, . . . , hn}, VARs {r1, . . . , rm}, mutation rate (Ri) for each host
hi, the expected value of vIP repeating probability (Ei) for each hi, maximum
routing convergence time Td, and the upper bound for the routing table size
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(U). Each host belongs to a subnet in the set {S1, ..., Sk}, where subnet is a
group of hosts that are physically connected through a switch. We can then
formulate LFM constraint optimization problem using the following SMT-based
(Satisfiability Modulo Theories [4]) formulas:

The following is the description of these constraints. Table 1 describes the
important parameters of our formalization.

VAR Allocation Constraint: Eq. 2 is to guarantee that at least one VAR
must be assigned to each MT host.

Unpredictability Constraint: Eq. 3, 4, and Eq. 6 are used to maximize un-
predictability during LFM and HFM, respectively. Eq. 3 is to guarantee that
VARs used in the past l intervals (Sl) will not be repeated for any host during
the coming LFM interval. Similarly, Eq. 4 is to avoid using the same VAR that
has been used by another host with similar characteristics in last p intervals
(F p

i represents the list of VARs used by hosts similar to hi). This is important
to countermeasure fingerprinting attacks by preventing scanners from utilizing
vulnerability information discovered for another host. A longer interval assures
that, similar hosts share vIPs less frequently. Users can increase l and p (usually
p > l) to achieve the desired level of unpredictability.∑

1≤j≤m

bij ≥ 1 (2)

bij = 0, if rj ∈ Sl (3)

bij = 0, if rj ∈ F p
i (4)

∑
1≤i≤n

bij Vi ≤ |rj | (5)

Vi ≥
(Ni − 1)

2Ei
(6)

bij ≤ Bkj , ∀hi ∈ Sk (7)

∑
1≤k≤z

∑
1≤j≤m

Bkj ≤ U (8)

bij , Bkj ∈ {0, 1}, 1 ≤ i ≤ n, 1 ≤ j ≤ m, 1 ≤ k ≤ z

Mutation Speed Constraint: RHM allows each MT host to specify the target
mutation rate (mutation per second) it requires based on its security require-
ments. During each LFM interval the size of allocated VARs should be sufficient
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for the mutation rate of each and all moving hosts. Each MT host hi has a muta-
tion rate Ri, based on which the HFM interval of the host, THFMi , is calculated:
THFMi = 1/Ri. Also, during an LFM interval all the vIPs of a host are selected
from the same VAR. TLFM is greater than the maximum routing convergence
time: TLFM > Td + δ, where Td is the routing convergence time and δ is the
LFM planning time.

Thus total number of vIPs selected by RHM during an LFM interval will be
Ni = �TLFM/THFMi�. We can then calculate the probability of repeating a vIP
for a MT host after selecting jth vIP as Pi = (j−1)/Vi, where Vi is the minimum
required size of the VAR associated with a host. Therefore, we can then calculate
the expected value of the repeating probability in HFM interval as follows:

E(Pi) =
1

Ni

Ni∑
j=1

j − 1

Vi

=
Ni − 1

2Vi

where 1 ≤ i ≤ n. Therefore:

Ei ≥
Ni − 1

2Vi

The constraint in Eq. 6 is to guarantee that Vi has minimum addresses required
to ensure that the expected value of Pi will not exceed the expected threshold
(Ei) associated with this host. Since a VAR can be assigned to more than one MT
host, Eq. 5 is used to ensure that VAR size (|rj |) is large enough to accommodate
MT hosts sharing the same VAR, rj .

Routing Table Size Constraint: We should minimize the routing table size
incurred by the VAR assignments. To this aim, one should assign those hosts
that are in the same subnet with VARs that have the same prefixes. We define
Bkj as a Boolean parameter (that is, Bkj ∈ {0, 1}) to indicate if range rj is
assigned to at least one host in subnet Sk. Eq. 7 denotes that if a range rj is
assigned to a host hi (bij = 1) in subnet Sk, then the routing entry for rj must
be added to the total routing entries of the subnet.

Eq. 8 constraint is used to bound the number of distinct VARs assigned to
different subnets, Sk. This consequently implies assigning minimum number of
VARs to moving hosts that are in the same physical subnet to minimize the
routing table size (supernetting or route aggregation).

3.3 VAR Segmentation

RHM allows more than one MT host to share the same VAR in order to op-
timize the use of VAR spaces and allow for maximizing the possibility of su-
pernetting for MT hosts in the same subnet. To avoid address collision within a
VAR, participating MT hosts will be eventually allocated non-overlapping ranges
within the shared VAR. Since a VAR rj may be assigned to multiple MT hosts,
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∑
1≤i≤n bij = p means that rj is allocated to p MT hosts. So rj must be divided

into p separate sub-VARs proportional to the Vi requirement for each MT host.
The assignment of sub-VARs is randomized to minimize the possibility that the
same host uses the same sub-VAR in two consecutive LFM intervals.

3.4 HFM Formulation

Each host hi has a specific HFM interval THFMi , which is determined based on
the security requirements of the MT host. To achieve synchronization in HFM,
every MTG of the network will use a pre-established hash function H and a
shared key K to compute virtual addresses for all moving hosts in its subnet.
The shared key is distributed by the MTC. Suppose there are p available vIPs
{a1, a2, . . . , ap} for host hi in the current LFM interval, then the MTG can
compute the vIP of HFM interval Ij of MT host hi as:

A(Ij , hi) = a(H(K,j) mod p)+1 (9)

Here j is the index of the current HFM interval which can be calculated from
the mutation speed of the MT host. The mod operation guarantees that the
computed address index fall into the valid range between 1 and p. The random-
ness (or unpredictability) of the vIP mutations in VAR is guaranteed by the
randomness of the hash function. However, Eq. 6 guarantees that for a host hj ,
even in case of uniform vIP selection, the repeat probability never surpasses Ei.

This synchronization of MTGs is not precise time synchronization. Instead it
is a loose synchronization that is realized via sharing of K, mutation index j and
the designated VARs of MT hosts. The sharing allows each MTG to compute
the active vIP addresses of every MT host in the network. In the case when a
MTG crashes, it can still get the shared key and mutation index from the MTC
to resume the IP mutations of the MT hosts within its subnet.

4 RHM Architecture and Protocol

4.1 Architecture

The main architecture of RHM network is depicted in Figure 1. The tasks of
assigning a VARs to MT hosts (Sections 3.1, 3.3 and 3.2) are performed by a
MTC. At each LFM interval, MTC selects new VARs for each MT hosts such
that it satisfies constraints in Section 3. Then, the new designated VARs are
announced to MTGs, which are boxes deployed at the boundary of subnets
(between subnet switch and the core).

Each MTG is responsible for management of MT hosts in one subnet. MTG
has various functions. Firstly, it selects a vIP from the current VAR of a MT
host using a cryptographic function and a secret random key to guarantee unpre-
dictability and intractability (Section 3.4). Secondly, it translates source rIP to
vIP for outbound, and destination vIP to rIP for inbound packets. MTG stores
the mapping between rIP and vIP in a translation table and performs address
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Fig. 1. The Architecture of moving target network

translation for incoming and outgoing packets. Active connections using old vIP
will be maintained by storing the information of forwarding flows in the con-
nection table. MTG will forward packets from old connections until the session
is terminated (e.g., FIN for TCP) or expired (i.e., long inactive time for both
TCP and UDP). Thirdly, it advertises routing updates of assigned VARs (for MT
hosts in its subnet) by using the appropriate Interior Gateway Protocol (Section
5). Finally, it is responsible for changing DNS responses of local authoritative
DNS servers (Section 4).

In addition to VAR selection, MTC is responsible for management of MTGs,
key distribution for HFM vIP selection, and authorization of rIP-based flows
(Section 4).

4.2 Protocol

There are two ways to communicate with MT hosts: using host name or host
rIP. These two scenarios are depicted in Figures 2 and 3, respectively. These
figures show a scenario where a MT host communicates with another MT host.
Other scenarios (e.g., non-MT host communicating with a MT host) are special
cases of this scenario.

Figure 2 shows that when a DNS query is sent to resolve the name of an
MT host, the DNS response is intercepted by the MTG and the rIP of the MT
server is replaced with its current vIP (steps 1-3). Moreover, the MTG also
sets the TTL value in the DNS response according to the HFM interval. As a
result, clients will receive the vIP mapping to MT host name and initiate their
connections accordingly (steps 3-4).

Figure 3 shows how authorized users (e.g., administrators) can reach MT hosts
using rIPs. In this case, MTGwill request and authorize access for this source from
MTC (steps 1-4). If access is granted, the MTG of the source will translate the
rIP of the destination to the corresponding vIP and update its translation table
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accordingly. It is important to note that this authorization is performed once per
every session that includes rIP as destination. MTC access control policy can be
managed by administrators based on the criticality of the MT host. In both sce-
narios (access by name or rIP) the source rIP is always translated to vIP.

As a result, RHM protocol restricts routing to vIP destinations in order to
(1) ensure MT host mutation in the network, and (2) filter out traffic destined
to rIPs and inactive vIPs that can be generated randomly by internal scanners
at source MTG.

5 Reconfiguration Planning

RHM deployment does not require any change to current Internet infrastructure.
In this section, we describe required reconfigurations that must be considered
for deployment of RHM in current setting of Internet infrastructure.

5.1 Session Tracking

In order to prevent the disruption of active sessions, the MTG stores the rIP-
vIP mapping of each flow in its translation table, and does not delete them until
the termination of the flow. Active sessions continue using their vIPs without
any disruption, and MTG handles their packets based on the translation table.
The vIP is evicted from the available unused address space, and thus will not
be assigned to any other MT host. However, the MT host will be assigned a
new VAR that will be used for the next HFM. Therefore, an MTG might keep
multiple vIP entries for the same MT host in its translation table in order to
handle old and new active sessions.
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5.2 DNS

Ideally, the TTL values of MT host DNS records should be set to be not more
than the THFMi . However, setting a small TTL values (order of seconds) might
generate high volume of DNS traffic to the authoritative DNS. On the other
hand, higher TTL values will increase DNS cashing but result in decreasing of
the mutation speed in HFM. Therefore, this trade-offs between mutation speed
and volume of external DNS traffic can be adjusted by administrators to satisfy
particular network requirements.

5.3 Access Control Devices

Figure 1 shows possible locations of firewall devices in the network. For firewalls
located behind MTG, no changes are required because only rIP is seen at this end.
Firewalls that are in front of MTGs need to be reconfigured to be consistent with
recent vIP changes. However, from a practical perspective, firewall polices that are
in frontofMTGsusuallyusedomain/subnet ranges insteadof specific IPaddresses.

Thus a simple approach is to use default-accept in these firewalls for only
the unused address space leaving the responsibility of filtering out the actually
unused address space to MTGs. Since allocated VARs are strictly from the un-
used address space, this will not overlap with any of the existing rules in the
firewall. This simply implies delegating the filtering out of the traffic destined to
the unused addresses to MTGs, which eliminates spurious traffic by discarding
any traffic not destined to an active vIP [14].

We assume that IDS/IPS devices are deployed behind the MTGs which is
practically sound for most networks. Moreover, MTG bypasses hosts that use
IPSec traffic because they are inherently protected from scanning attacks by
IPSec gateways.

5.4 Routing

For implementation of RHM, no change is required on gateway and other exter-
nal routers, because they simply route the traffic to/from our network. Routing
updates must be advertised for internal routers. To address the routing conver-
gence time, which is relatively small, MTC pre-computes VAR assignments one
LFM interval before using them for mutation. Therefore, routing updates can
be propagated in a timely and conflict-free manner.

For non-MT hosts using real IP address no routing update is required. MTC
delegates routing update responsibility to MTGs, because they act as the gateway
between routers and subnets. MTC informs MTGs of the next set of designated
VARs for their MT hosts. MTGs generate initiates and broadcast advertisement
messages as new VARs being assigned. If authentication is required, MTG will be
given the credentials to authenticate itself to routers in the network. MTG trig-
gers updates both periodically (required for most interior gateway protocols), and
upon receiving new VAR assignments from MTC.
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5.5 Implementation and Deployment

To study and demonstrate the feasibility of RHM, we implemented a proof-
of-concept for RHM in a designated class C subnet in our university campus
network. The network is further divided into 3 subnets each containing up to 3
MT hosts. The MTG and MTC components are implemented on Linux-based
(Ubuntu) boxes and given privilege to interact with RIP-2 based routers and
local firewalls. One RHM subnet includes an Apache Web Server, an Apache
FTP server, and an OpenSSH server that reside on different MT hosts. To update
routing information, MTC pre-computes and distributes VAR assignments to
all MTGs for every LFM interval. MTG boxes implement RIP-2 protocols to
communicate and advertise VARs to routing devices.

Our implementation proved that the RHM approach is feasible. We run several
network activities during mutation: downloading files from FTP server and SSH
server, video streaming from the HTTP server, and web browsing. Availability
of these surfaces was not affected and long-lived connections functioned soundly
and accurately, even after numerous LFM intervals. The routing propagation
convergence was fast and the delay was negligible (less than 60 seconds). This
shows that RHM is deployable and manageable on real networks. However, the
implementation may not measure the scalability of the approach, since scalability
evaluations require thousands of network elements. For this purpose, to show the
effectiveness and scalability of RHM approach we performed analytical studies
and simulation experiments, and we provide this result in Section 6.

6 Analysis and Evaluation

In this section, we evaluate RHM effectiveness against attacks and the over-
head it incurs on the network. We use analytical modeling, experimentation and
simulation to evaluate RHM.

6.1 Effectiveness

We evaluate the RHM effectiveness against scanning external and internal
scanners.

External Scanners. The prolonged interval between target discovery and at-
tack allows RHM to mutate the vIP of the scanned host before the actual launch-
ing of the attack. RHM can prevent information gathering by external scanners,
which may be used for various purposes including hitlist attacks effectively, since
the IP addresses in the hitlist will be soon out-of-date. Due to high mutation
speed, and unpredictability of vIP assignments, our solution will be the optimal
solution for defense against hitlist worms. To show the effectiveness of RHM
against hitlist attacks, we run 100 different Nmap scanning over 90 minutes for
a class B RHM network of up to 10− 20% MT hosts. Then, after comparing all
the hundred scanning reports with the ground truth we found not more than 3%
of actual IP addresses has been discovered, as shown in Figure 4.
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Internal Scanners. Internal network scanning is performed via sequence of
probes sent to random IPs, usually by random scanning worms. We can further
classify random scanning worms into two categories: the first category is non-
repeat random scanning worms, which never repeat addresses that have been
scanned before. This can be achieved by some periodic pseudo-random genera-
tors or more sophisticated cooperative scanning approaches such as divide-and-
conquer, or sequential scanning [15]. The second category is repeatable random
scanning worms, which may choose a repeated address during random scan. In
this section, we study the effectiveness of RHM on random scanning worms using
the following two metrics: (1) The mutation success probability: the probability
that a host is not hit by a scanner; and (2) slow-down rate of worm propagation:
the total infection time with and without RHM.

Mutation Success Probability: Suppose there are N addresses in the avail-
able address space of the MT host and the MT host will use a random address
from the address space in any HFM interval. Assume a non-repeat uniform scan-
ner that is scanning an RHM network. We define speed ratio k as scanning rate
of scanners on mutation speed of MT host. It can be shown that for N scans
and k = 1, the scanner will miss the target with probability

Pmiss =

(
1− 1

N

)N
≈ e−1 = 0.37 (10)

Given k and N , for a non-repeat random scanner, the scanner will miss the
target with the following mutation success probability:

M =

�N−k
k ∏

j=0

(
j · k
N

+
N − j · k

N

k−1∏
i=0

(
1− 1

N − j · k − i

))

Figure 5 shows the theoretical and simulated mutation success probability of
the moving hosts with N = 30000, 60000 and 120000 and different k values for
the non-repeatable scanners. The scanner makes a total of 30000 scans, which
means the scan ratios are 1, 0.5, 0.25 respectively in the three cases. In the
simulation, every data point is the average of 10 runs, and there are 10% MTs
in the network. The mutation success probability is the percentage of the MTs
that are not infected at the end of the simulation. We can see that the simulated
result is roughly consistent with the theoretical analysis. We can also see that
the mutation success probability is stable when k is less than some threshold.
If the scanner can scan the whole mutation address space, the mutation success
probability can reach a maximum value about 0.4. If the scanner cannot scan
the whole space, the mutation success probability can be much higher than 0.4.
When the scanner can only scan one quarter of the address space, the mutation
success probability can reach about 0.8.
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For a repeatable uniform scanner, if a host uses a fixed or moving address and
the scanner uses a random address from a set that has N possible addresses for
every scan, then the scanner may hit the host with probability 1/N for every
scan. In other words RHM has no effect on the repeatable scanners. For routing
worms [16], the worm scanning space is determined based solely on BGP routing
data, and the RHM effect is similar to uniform scanners.

Slow-Down Rate of Worm Propagation: The ideal case of non-repeatable
scanning can be achieved via cooperative scanning, such as divide-and-conquer
scanning [15]. Based on our analysis of non-repeat scanner in equation 10, a
cooperative will miss about e−1 (more than one third) portion of the vulnerable
hosts (this can be considered to be equivalent to that the whole network only
contains e−1V vulnerable hosts). Also, the propagation speed will also decrease
because the total number of hittable vulnerable hosts decreases.
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Based on [15], in a moving target network, the propagation model for an ideal
non-repeat cooperative scan worm is

dI(t)

dt
=

{
(1−e−1)η

N V I(t) I(t) < V
0 I(t) = V

(11)

The solution of the equation is:

I(t) = I(0)ea(1−e−1)t for I(t) < (1− e−1)V (12)

Here a = ηV
N and I(0) is the number of infected hosts in the beginning. We

calculated the worm propagation speed based on the above analysis. Fig. 6 shows
the time (in seconds) for the worm to propagate a class A network (224 total
addresses) with 10000 vulnerable hosts.

We can see that with RHM, worm propagation takes about two times more
than usual time. This means that RHM can slow down the worm propagation
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significantly. We also integrated IDS feedback in mutation decision, in order to
move MT hosts to scanned safe area with a probability P . Figure 7 shows that the
mutation success probability will be improved to 40 to 80% with IDS feedback.

6.2 Overhead Evaluation

In this section, we evaluate (1) the required address space overhead with varying
scanning rate, (2) the computational complexity of the constraint satisfaction
solution, and (3) the routing and firewall overheads.

Address Space Overhead. The required address space necessarily depends
on mutation speed. Similarly, the HF and LF mutation speed is dependent on
targeted attack model.

To maximize the defense benefit of RHM, enough addresses for an LFM in-
terval should be provisioned. For example, based on our analysis for non-repeat
uniform scan worm in Section 6.1, if we want to keep the mutation success prob-
ability to be over 0.3, then the size of the address space assigned to a single MT
host for an LFM interval should be at least

(scanning speed/P0.3) · TLFM (13)

Here P0.3 is the mutation speed that can achieve mutation success probability
0.3 for this scanning speed. Figure 10 shows the required size of address space
with network size N = 1000, 10000 and 30000.

SMT Formalization. We also tested the feasibility of the constraint satisfac-
tion algorithm for LFM VAR assignment. We use the Z3 SMT solver [4] for our
evaluation. The running time of the SMT instance is very sensitive to the selec-
tion of the upper bound U of the routing table size in Eq. 8. Figure 11 shows the
running time of the SMT formalization for a network with 100 moving hosts,
40 empty address ranges, while the demand of every host is a random number
between 1 and 5, the size of the empty ranges is a random number between 10
and 20. In the table, “UNSAT” means the SMT solver reported that the in-
stance is unsatisfiable. In this case one must relax some of the parameters (such
as decreasing the routing table size upper bound or increasing the size of empty
address ranges) to get a feasible solution.

Figure 12 shows the running time of the SMT formalization for a network
with 300 moving hosts, 120 empty address ranges. In the table, “FAIL” means
the SMT solver failed to solve the instance. This means that the upper bound
used in the constraint is beyond the solving ability of the SMT solver. In this
case one also needs to relax some of the parameters to get a feasible solution.

Routing and Firewall Updates Overhead. The overhead of routing update
is proportional to the routing table size after every LF mutation. Suppose the
total number of hosts in a subnet is Ht, and the number of moving hosts in
the subnet is Hm. We also assume that in the LFM optimization algorithm we
can arrange Nh moving hosts with the address ranges that have the same prefix
(route summarization). Then we can see that the total number of routing entries
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needed for the subnet in one LFM interval is 1 + (Hm/Nh). Here (Hm/Nh) are
the routing entries required for the moving hosts, and we need to add 1 entry
for all fixed hosts in the same subnet. If no LFM optimization is adopted, then
the total number of routing entries needed for the subnet in one LFM interval
will be close to 1 + Hm, because RHM will assign different address blocks for
different moving hosts, which requires a different entry in the routing table. If
there is no LFM and HFM optimization and the motion is completely random,
and there are on averageNHFM HFM intervals in a LFM interval, then the total
number of routing entries needed for the subnet in one LFM interval will be close
to 1+Hm ·NHFM , because we need to use a different entry in the routing table
for every host in every HFM interval.

We simulated RHM in networks with various sizes, ranging from 100 to 800
hosts. The networks contain up to 16 subnets and every subnet contains up to
50 hosts respectively. Fig. 8 shows the routing table size for every LFM interval
for different kinds of RHM setting. We can see from the figure that LFM and
HFM optimization can greatly reduce routing table size.

We also simulated the routing convergence time for different network sizes. We
assumed each subnet includes 50 hosts, and the network uses RIP for routing ad-
vertisements. In RIP, each router broadcasts its routing table every 30 seconds.
We assumed the routers form a full tree and simulated routing convergence time
for branching degrees 2, 3, and 4. As represented in Figure 9, the convergence time
for branching degree 2 and a network including 10000 hosts is less than 4 minutes.

For firewall updates, the analysis and results are similar. The firewall updates
occurs for new VARs in each LFM interval, and the firewall updates are basically
equal to routing updates. The only difference is that for firewalls we have to evict
old entries, while in routers unadvertised destinations will be excluded after a
certain timeout interval.

7 Conclusion and Future Work

Moving target is a game changing technique that puts the defender in a stronger
position with proactive rather than reactive defense. In this paper we present a
novel framework called Random Host Mutation (RHM). We formulated intelli-
gent host randomization with constraint satisfaction problem to achieve high un-
predictability and speed while satisfying routing and configuration constraints.
We implemented RHM in existing network without requiring changes in end-
hosts or network infrastructure. We performed rigorous theoretical analysis and
experimentation to evaluate the effectiveness and overhead of RHM.

We evaluated RHM through implementation, experimentation and simulation.
Our experimentation shows that RHM can defeat scanning tools by invalidating
at least 97% of its discovery.We also show that RHM can defeat random scanning
worms by decreasing the number of infected hosts by 40 to 80% and by slowing
down the propagation speed by 50%.

Our implementationand simulationalso shows that the routingupdate overhead
is tens of times smaller than randommutation without optimization and the aver-
age packet translation and lookup overhead is less than one tenth of a millisecond.
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In the future, we plan to study reliability and security issues with RHM op-
eration. For example, we would like to study impact of failures and attacks on
RHM devices. We also plan to investigate other related moving target techniques
such as random route mutation and deceptive fingerprinting.
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Summary. In recent years researchers have shown that the analogue
signalling behaviour of digital devices can be used for identification and
monitoring purposes. The basic postulate of these so-called physical-layer
identification (PLI) approaches is that devices are sufficiently variable in
their behaviour to be distinguishable and that an attacker would be
unable to adequately emulate this behaviour. Recent work, however, has
shown that at least some PLI implementations can be defeated using elec-
tronic equipment capable of generating arbitrarily shaped signals known
as arbitrary waveform generators (AWGs).

In thisworkwefirst present a framework todeterminewhether anAWG,
specified in terms of resolution, sampling rate, distortion, andnoise param-
eters, could beused todefeat a givenPLI system.We then utilise this frame-
work in the formulation of a cost-minimisation problem to find the most
cost-effective values of these parameters; i.e. we characterise the least ex-
pensive, and hence lowest performing, AWG an attacker would require to
defeat a PLI system. The use of the framework is illustrated by applying it
to a previously proposed PLI approach. Results indicate that the PLI sys-
tem could be defeated using an AWG with a substantially lower sampling
rate and resolution than the PLI system sampler.

1 Introduction

Identifying digital devices based on signalling differences manifested at the phys-
ical layer (known as physical-layer identification or PLI) has been shown to be
effective for a wide range of technologies. From wired [1] and wireless [2–6] net-
working devices to sensor [7, 8] and RFID devices [9–11], PLI approaches are
able to reliably distinguish between highly similar devices with accuracies of
over 90% [12,13].

The methodology of PLI is similar to that of biometrics [14]: (1) identify
and acquire a recurring and ubiquitous signal, S, to serve as a ’fingerprint’, (2)
extract a set of features from the signal, L = f(S), and (3) employ a classification
technique to compare a test feature set with a database of existing feature sets
in order to verify the purported identity of the test subject. When a threshold
technique is used in (3) to compare feature sets, a reference feature set, LR, is

A.D. Keromytis and R. Di Pietro (Eds.): SecureComm 2012, LNICST 106, pp. 328–348, 2013.
c© Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2013
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used with a distance measure, d(·), to check whether the differences between L
and LR are within a certain threshold, d(LR, L) ≤ th.

While PLI could be used to corroborate higher layer mechanisms used for
authentication, intrusion detection, and forensics, its use in these areas is predi-
cated on the belief that the slight variations in the signalling behaviour of devices
are difficult, if not impossible, to control and duplicate. In light of recent work
by Danev et al. [15] and Edman and Yener [16], which showed that wireless
signals can be successfully forged using arbitrary waveform generators (AWGs),
it is no longer possible to merely assert the inherent unreproducibility of signals.
Instead, we now require a framework to not only judge the security of PLI sys-
tems, in absolute terms and in relation to each other, with respect to existing
AWGs but one that also specifies the performance an AWG of the future would
need to defeat a given PLI system.

1.1 Paper Contributions and Structure

While existing work has shown that certain PLI systems can be defeated us-
ing AWGs, ours is the first work to consider the problem of whether a specific
AWG can defeat an arbitrary PLI system. In what follows we propose, and pro-
vide implementation details of, a general framework for determining whether
an AWG, characterised by sampling rate, resolution, signal-to-noise ration, and
total harmonic distortion, could produce a forged signal that would be accepted
by a given PLI system. By estimating the cost associated with an increase or
decrease in each parameter, we can also find the least expensive—i.e. lowest
performing—AWG necessary to defeat the PLI system.

As a result of this work, researchers and designers of PLI systems will be
able to 1) determine if a PLI system is secure from an attacker using a given
AWG; 2) compare and evaluate the relative security of systems; 3) investigate
the strengths and weaknesses of different PLI methodologies to decide which
features and comparison techniques are most effective in securely identifying
devices; and 4) evaluate the trade-offs associated with selecting higher or lower
performing equipment for acquiring device signals.

In the next subsection we provide an overview of the two works that motivated
our research: we discuss which PLI systems were attacked, the equipment used,
and the authors’ results. In Section 2 we describe two ways in which PLI systems
can be subverted, define our threat model, and note the most relevant parameters
used to characterise AWGs. The modelling of the attacker’s AWG is detailed in
Section 3, where we also discuss how a cost minimisation problem can be defined
that utilises the model to determine the most cost-effective values for the AWG
performance parameters. In Section 4 we demonstrate the use of the framework
by analysing the matched filter PLI system outlined by Gerdes et al. in [1, 12].

1.2 Related Work

In both [15] and [16] two types of attacks were carried out against the PLI
approach (which utilised the demodulation characteristics of 802.11b signals)
proposed by Brick et al. [5]; in addition, a transient-based PLI approach for
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sensor nodes proposed by Danev and Capkun [8] was also examined in [15]. The
PLI system of [5] was compromised in both works by creating signals with the
features of known devices and through the replay of observed frames. For the
former attack, false-accept rates (FAR) of 98% and 75% were reported for [15,16],
respectively; in the latter attack, the FAR for [16] was 55% while the replay
attack met with similar success as the generation attack for [15]. The difference
in attack success rates can probably be attributed to not only the threat models
but the vastly different hardware used to implement the PLI system and carry
out the attacks.

In [15] universal software radio peripherals (USRP) operating at 128Megasam-
ples/s and controlled with the GNU Radio library were used for both the genuine
and attacker devices, with the attacker device being programmed to produce the
features of the genuine devices as measured by, and at, the PLI system (which
consisted of an Agilent Digital Signal Analyser operating at 40Gigasamples/s
with 8000MHz of bandwidth). The replay attack was carried out using a Tek-
tronix AWG 7000 (20 Gigasamples/s); the frames used for the replay were cap-
tured at the attacker’s location using the PLI system. In [16] both the PLI system
and the attacking device were built using the same USRP (14-bit analogue-to-
digital converter operating at 100 Megasamples/s and dual 16-bit digital-to-
analogue converter operating at 400MHz). The attacker sought to reproduce or
generate signals, which it captured, from one of three laptops used to represent
legitimate users.

In their analysis of the PLI system of [8], Danev et al.were able to successfully
replay frames captured by the PLI system over a wired channel; however, when
a wireless channel was used the system could only be defeated if the attacker
assumed the genuine device’s physical location.

2 Preliminaries

The following notation and nomenclature will be used when discussing the ana-
logue signalling behaviour of digital devices and the PLI system used to identify
those devices. We will also assume that devices transmit data using frames, as
in IEEE 802.3 and 802.11b.

A record, r, is defined as a discrete time/voltage sampled version (obtained
using an analogue-to-digital converter) of the analogue signal that makes-up

the data frame. For the PLI system, Lj
i is used to represent the feature vector

derived from the jth frame of the ith device; Lj
i (k) denotes access to the kth

element of the feature vector. In addition, a collection of feature vectors from
the ith device are denoted as Li, where Li(j) is used to refer to the individual

vector Lj
i . The feature vectors of frames that are to be tested by the system are

always accompanied by the subscript T ; the reference feature vector(s) used to
establish a device’s baseline behaviour by the subscript R. A generic analogue
signal is denoted by s̃ and a sampled version of it s.

2.1 Attack Types

We define and discuss the two classes of attacks that can be used against PLI
systems.
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Type I Attack. We define a type one attack as an attack in which an attacker
is attempting to accurately reproduce those portions of a device’s signal used for
identification. In the terminology of [15], this type of attack can be carried out
through feature replay or signal replay. In the former case, the attacker attempts
to replicate only the specific features used by the PLI system for identification;
those portions of the signal not used for identification needn’t be considered.
For a signal replay attack, the attacker acquires a sampled version of a device’s
signal and attempts to produce near-perfect copies of those portions of the signal
used for identification using an AWG.

We provide a demonstration of how our framework can be used to measure
the resiliency of PLI systems to signal replay attacks in Section 4. Because the
PLI system analysed in that section uses each sample point of the device’s signal
as features, the feature replay attack is not examined in this work. We note that
the framework can be used to evaluate feature replay, though.

Type II Attack. In a type two attack the attacker does not seek to produce
a high-fidelity copy of a device’s signal but rather exploits the limitations of
the identification technique used by the PLI system. For example, consider a
PLI system using a threshold-based approach where the distance measure is
simply the sum of the differences between the test and reference feature vectors
(d(LR, LT ) = LR(1) − LT (1) + . . . + LR(n) − LT (n), with d(LR, LT ) ≤ th for
LT to be accepted). To defeat the PLI system the individual differences between
all the elements of the feature vectors needn’t be sufficiently small, only the
sum of the differences; thus an attacker could simply engineer a signal such that
LT (n) ≥ th− LR(1) + LT (1)− . . .− LR(n) to satisfy the threshold.

A type two attack could be effected through manipulation of a signal generated
by a device under the attacker’s control or the attacker could craft a signal using
an AWG. The only limitation faced by the attacker is that their signal must
behave according to the standard governing data transmission for the device
(for example, in the case of 10Mb Ethernet the voltage levels, signal transitions,
etc must be in accordance with those specified in the 802.3 standard [17]).

To carry out such an attack, however, requires more knowledge of the PLI
system and associated target device than a type one attack. Whereas a type one
attack can be carried out simply by observing frames from the targeted device,
in a type two attack, assuming a threshold scheme is used by the PLI system,
the attacker must possess both the device’s reference feature set and thresholds
for future outputs to be able to construct their signal. By knowing these along
with the distance measure, an attacker might be able manipulate their signal, in
whole or in part, to produce a signal falling within the threshold for the device.
We are aware of no attacks of this type having been demonstrated against PLI
systems.

While this type of attack is not amenable to a general analysis, due to the com-
plicated and PLI-specific relationship between the signal, feature vectors, and dis-
tance function, so long as an AWG is used to actually generate a specially crafted
signal our framework can be used to determine if the attack would succeed for a
given AWG. A type two attack is proposed and evaluated in Section 4.
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Fig. 1. (Threat model) Assuming lossless channel (a) attacker and PLI system, using
the same samplers, are able to measure device’s signal s̃d and obtain same sampled
version sd, and (b) attacker uses a non-ideal AWG to synthesise the analogue signal
s̃a from sd, and the PLI system, using the same sampler as in (a), measures s̃a to
determine whether the attacker’s signal is distinguishable from sd

2.2 Threat Model

To simplify our analysis we chose to ignore channel effects and equip both the
attacker and PLI system with ideal samplers of the same resolution and sampling
rate (these parameters are explained below). In consequence of these assump-
tions, an attacker would be able to 1) capture the same device signal, s̃d, as the
PLI system (Figure 1a), and 2) generate a forged version of s̃d, denoted by s̃a,
using an AWG and know it be identical to what will be measured at the PLI
system, taking into account differences in the sample rates and resolutions of the
AWG and PLI system sampler, to produce the sampled signal sa (Figure 1b).

To justify ignoring channel effects at this time, despite the very real obstacle they
present to an attacker, as demonstrated in [13], we note that a non-ideal channel
is not only a problem for an attacker. Simply changing a device’s position with re-
spect to the PLI system significantly degrades our ability to re-identify it (unless
training data has been previously acquired for the new position) [8]. Our analysis
thus presents a best-case scenario for the attacker. In actuality an attackerwouldbe
required tomodel the channel and integrate its effect into the signal to be produced
by the AWG.

The decision to provide the attacker and PLI system with identical samplers
was mostly a practical matter: doing otherwise would have required multiple
oscilloscopes to carry out our experiments. It is also difficult to see the benefit of
an attacker using a sampler with a higher resolution and sampling rate than the
PLI system as, irrespective of the sampling rate and resolution of the attacker’s
AWG, the forged signal would be downsampled at the PLI system. In addition,
we would argue, and indeed it is assumed in our AWG framework, that an
attacker captures s̃d at a resolution and sampling rate greater than or equal to
that of their AWG for the simple reason that upsampling the captured signal
could add no new information. Both of these cases could be tested at a future
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Source
memory

Code
DAC

x̂
LPF

x̃

Fig. 2. (Arbitrary waveform generator) the code specifies the levels of discrete signal
x̂, which the low-pass filter smooths to create x̃ (NOTE: x̂ has discrete levels but is
continuous in time)

time, and the framework is, in any case, flexible enough as-is to accommodate
different samplers for the attacker and PLI system.

We also note that while both the channel and tap of Figure 1 are depicted using
lines, this is not meant to imply that the framework is limited to analysing wired
PLI systems. In the case of awireless channel, an antennawould serve as the tap and
if down-mixing were used by the PLI system (as in [8]) appropriatemixers could be
placed in front of the ideal samplers and after the non-ideal AWG. If down-mixing
were not used by the wireless PLI system, we could either stipulate that the sam-
pling rate of the non-ideal AWG be no less than twice the carrier frequency used by
the devices or place a mixer after the AWG to up-mix the generated signal.

2.3 AWG Characteristics

An arbitrary waveform generator creates an analogue version of a digitized
waveform. The three core components of an AWG are the waveform source
memory, digital-to-analogue converter (DAC), and low-pass filter (Figure 2);
optional components include scaling circuits, DC offset circuits, and differential
outputs [18]. An analogue signal is created by feeding the binary values of the
digitized waveform (known as codes) to the DAC, where a stepped, analogue
output is generated; the stepped output is smoothed by the low-pass filter.

Because of the central role of the DAC in recreating the digital signal, we
will concentrate our performance analysis exclusively on it and assume the other
components of the AWG to be ideal. In any case, the parameters related to the
DAC we will be discussing are always given with respect to the output of the
AWG, so we are merely overestimating the minimum performance of the AWG.

According to [19], the most important specifications used to evaluate the
dynamic performance of a DAC are settling time, glitch impulse area, distor-
tion, spurious free dynamic range (SFDR), and signal-to-noise ratio (SNR). In
addition to these parameters, we will also discuss DAC resolution. Definitions
for each of these parameters may be found in the appendix. Static performance
measures (gain, offset, differential non-linearity [DNL], and integral non-linearity
[INL], see [20]) are not discussed due to the fact that dynamic non-linearities
dominate at high frequencies [21]. Our distortion model does, however, allow us
incorporate errors due to static non-linearities.

3 Framework Overview

A system diagram of our framework is given in Figure 3. The attacker begins
with sd, a sampled version of some authenticated device’s signal, s̃d, that is
acquired at the PLI systems sampling rate, fp, and resolution, Rp. Because of
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Fig. 3. (Framework overview) Operations used to simulate (red) attacker producing
analogue signal s̃a from authentic device’s sampled signal sd, and (blue) PLI system
sampling and comparing attacker’s forged signal to baseline behaviour of device to
determine whether authentic and forged signal are distinguishable

the lossless channel assumed in our threat model, sd is the same for the attacker
and the PLI system. The first step the attacker takes is to downsample sd to
the sampling rate of their AWG. Allowing fa = P/Q × fp (P/Q ≤ 1) to be
the sampling rate of the AWG, sd is downsampled by P/Q. The downsampled
signal is then discretised according to the resolution of the AWG, Ra. To simulate
the distortion and noise present in all real-world AWGs, the downsampled signal
must be passed through a distortion function and have noise (in our case, additive
white gaussian noise) added to the resulting signal to produce the attacker’s
output, s̃a. However, before noise is added to the distorted signal, it is upsampled
to the PLI system rate—i.e. it is upsampled by Q/P—and a reconstruction filter
is applied. Upsampling at this point is done for two reasons.

In the first place, distortion and noise measurements of actual AWGs are
made after the generated signal has passed through a reconstruction (low pass)
filter. Applying our distortion model to an upsampled signal would introduce
high frequency distortion components that would otherwise be filtered by the
AWG’s reconstruction filter. Secondly, since we are synthesising signals for the
PLI system to compare with actual sampled data to determine the similarity
between the two, the synthesised data must be at the same sample rate as the
original. In actuality the attacker’s AWG would produce a continuous-time signal
that would then be sampled by the PLI system at the rate fp; upsampling the
discrete representation of the attacker’s signal simulates this sampling.

At the PLI system, s̃a is discretised according to the sampler resolution Rp

(the sampling of the signal having been accomplished by the AWG model).
The preceding involves only the first step of the PLI methodology; steps two

and three, wherein the attacker’s signal is subjected to feature extraction and
comparison, are specific to the PLI system under examination.

The methodology used to model the attacker’s AWG and the PLI system is
detailed in the next subsection, while a cost-based method for determining the
most economical values for the parameters outlined in Section 2.3 for the AWG
are covered in Section 3.2.

3.1 AWG and Sampler Models

The functionality of the AWG and sampler models of the framework are explained
within the context of the performance parameters given in Section 2.3. Note: the
text in parenthesis immediately following each parameter indicates which aspect
of the framework (with reference to Figure 3) the parameter bears upon.
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Settling Time. (Down-sampler, Up-sampler, Reconstruction filter) It is the
settling time of the DAC used in the AWG that sets the ultimate limit on the
maximum sampling rate of the AWG. Allowing τ to denote the settling time
of the DAC, the sampling rate of the AWG, f , must be less than or equal to
the inverse of the settling time (f ≤ 1/τ). If we stipulate that the settling time
of the attacker’s AWG, τa is much less than the inverse of the sampling rate,
fp, of the PLI system sampler (τa << 1/fp) the settling time may be ignored
as it unlikely that the attacker’s signal would be sampled during the transition
period (modern AWGs are capable of meeting this requirement, see [22]). By
this assumption, the glitch area may be similarly ignored.

Based on the above, we need focus only on the sampling rate of the AWG
and PLI system sampler. To simulate the attacker downsampling the signal sd
by integer amounts—i.e. the new sample rate is given by 1/n × fp, where n
is an integer—we can simply discard every nth data point; however, to down-
sample by a non-integer factor, of say P/Q requires upsampling (insertion of P
zeros between data points), application of an anti-alias filter, and downsampling
(discarding every Q datapoints) [23]. An FIR least-squared filter with a cutoff
frequency of P/Q ∗ fp/2 (the Nyquist frequency) is used as the anti-aliasing fil-
ter in our implementation. The Nyquist frequency of the attacker’s AWG was
chosen as most commercially available DACs are able to generate signals up to
their own Nyquist frequency [24].

The same procedure is used to restore the attacker’s signal to the PLI system
sample rate (the signal is upsampled by Q/P ).

Resolution. (Discretisers) Because of the filtering used to downsample and
upsample signals, the sample points of the resampled signals will not be exact
multiples of the increment voltage of either the attacker’s AWG or the PLI
system’s sampler. In order to incorporate the effects of the finite resolution of the
AWG and sampler, it is therefore necessary to discretise these signals by rounding
each sample to the nearest multiple of the increment voltage. (Algorithm 1 details
how the sampled signal s is discretised for an n-bit AWG/sampler with full-scale
voltage VFS .)

Algorithm 1. Set resolution

Input : s, n, and VFS

Output: s∗ (n-bit representation of sd)
foreach si ∈ s do

i ← argminm

(∣∣∣si −m VFS
2n−1

∣∣∣
)
; //m is an integer

s∗ ← s∗ ∪
(
i× VFS

(2n−1)

)
;

end

Distortion. (Distortion) A full and proper accounting of how the output of a
DAC deviates from its ideal output depends not only on the behaviour of the
non-ideal components used to construct the DAC [25] but also on its architec-
ture [26,27]. As such, it is not possible to utilise a single distortion model in our
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framework. Rather, an attacker would need to select (based upon market avail-
ability or the manufacturing resources at their disposal) a distortion model for
the DAC used in their AWG. While several so-called behavioural models have
been proposed for many different DAC architectures and deployments [28–32],
to simply illustrate how distortion models can be used in our framework we have
selected a model that, while not tied to any particular architecture, nonetheless
produces adjustable amounts of static and dynamic distortion.

Allowing s[i] to denote the ith sample point of the sampled signal s and s∗

the distorted version of s, distortion of both types can be introduced using the
polynomial [33]

s∗[i] = D(s[i]) = β + αs[i] + γ × (β + αs[i])2 + δ × (β + αs[i])3

+ η × (β + α× (s[i]− s[i− 1]))2 + κ× (β + α× (s[i]− s[i− 1]))3 (1)

In (1), static distortion is generated through the scaling of individual sample
points, while dynamic distortion is introduced by taking the difference between
two sample points.

To achieve a certain amount of distortion using this model one would create a
test signal (see the [34]), apply (1) to it, and vary the coefficients until the desired
THD was reached. Unfortunately, we are aware of no set procedure for how the
coefficients should be modified. In the absence of formal guidelines, we follow [33]
and set the initial values of the coefficients to α = 1, β = 0 (no gain or offset error,
as these can be compensated for), γ = 0.003, δ = 0.0001, η = 0.0001, κ = 0.002
and vary each coefficient (excepting α and β) by a constant multiple, m, to
achieve a specified distortion. Our distortion model is then

s∗[i] = D(s[i],m) = β + αs[i] +m× γ × (β + αs[i])2

+m× δ × (β + αs[i])3 +m× η × (β + α× (s[i]− s[i− 1]))2

+m× κ× (β + α× (s[i]− s[i− 1]))3 (2)

In our framework the THD of the AWG is established using a procedure similar
to that of real AWGs: Equation 2 is applied to a test signal1, consisting of a
single period of a 10 MHz sine wave, sampled at the sample rate of the AWG,
and m varied until the THD equals the value specified. Common test signals
used in real world measurements for several DACs we examined were 1,2,4,5,
and 10 MHz (see [35], e.g.). A 10 MHz test signal was selected due to the fact
that the PLI system used to illustrate our framework extracts features from a 5
MHz square wave and 10 MHz sits between the fundamental frequency and the
first harmonic of 15 MHz (see Section 4.3). As noted at the beginning of Section
3, the test signal is upsampled before the distortion measurements are made.

Having found an m that produces the specified THD, (2), is applied to the
attacker’s signal and the resulting distorted signal upsampled by Q/P to the
PLI system sample rate (Algorithm 2).

1 The attacker’s signal is not used with the model to establish the THD of the AWG
because it is composed of multiple frequencies, and while the THD can be calculated
for any particular frequency over the bandwidth of the signal, we cannot say which
particular THD represents the THD of the AWG.
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Algorithm 2. Set distortion

Input : s, P,Q, and thd
Output: s∗ (distorted version of s)
st ← create test signal;
sD ← st ; //distorted test signal

m ← 1;
//THD(·) calculates THD using Equation 2 of [34]

while THD(st, sD) �= thd do
if THD(st, sD) > thd then decrease m;
else increase m;
foreach si ∈ st do

sD ← sD ∪ D(si, m);
end
sD ← upsample (sD, Q, P );

end
foreach si ∈ s do

s∗ ← s∗ ∪ D(si,m);
end
s∗ ← upsample (s∗, Q,P );

Spurious Free Dynamic Range (SFDR). The distortion model described
above only allows one or the other of THD/SFDR to be specified (the other may
be calculated). We chose to specify THD as it more informative, in the sense that
the SFDR may remain constant while harmonic distortion continues to increase.

Noise. (Noise) Just as is the case for distortion, there are several ways to model
the noise performance of DACs [36,37]. Again, for the purposes of illustration, we
have selected a simple, non-behavioural model that uses additive white Gaussian
noise (AWGN) for the attacker’s AWG.

As noted in [34], the signal-to-noise ratio of an AWG is calculated in such a
way as to exclude the effects of distortion. Therefore, we use the signal produced
by the distortion model in the numerator of the SNR ratio (see Equation 1
of [34]); i.e. a distorted signal, s, produced using (2), is defined as being free
of noise. Having calculated the power of this signal, ps = P (s), to achieve a
specified signal-to-noise ratio, snr, we need merely generate a noise signal, sn of
equal length with power P (sn) = ps/snr and add the two to produce a signal
with both distortion and noise, s∗ = s+ sn (Algorithm 3).

Algorithm 3. Set SNR

Input : s and snr
Output: s∗ (noisy version of s, with SNR of snr)
ps ← P (s) ; //P (·) calculates power

pn ← ps/snr;
sn ← create signal of white Gaussian noise, having power pn;
s∗ ← s+ sn;
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3.2 Finding Minimum AWG Performance

By following the procedure outlined above, it is possible to simulate an attacker
generating a forgery of an authenticated device’s signal using an AWG of a
specified sample rate, resolution, THD, and SNR. This forged signal can then
be used in steps two and three of the PLI methodology (feature extraction and
comparison) to determine whether the attacker’s AWG is sufficient to defeat a
given PLI system.

To judge the security of any particular PLI system, one could of course gather
performance information on all the AWGs currently available, construct AWG
models for each, and simulate attacker signals. To evaluate the relative secu-
rity of different systems a similar process would be followed for each, with the
system that required the most expensive AWG necessary to defeat it adjudged
the most secure. Consider, however, a PLI system for which no existing AWG
is capable of defeating. While, through trial and error, the framework could be
used to find a number of AWGs that would defeat the system, if we wished to
actually manufacture such an AWG, how would we decide which combination of
performance parameters would be cost-effective?

This is to say, given two theoretical AWGs capable of defeating a particular
PLI, the same in every respect except that one has five bits of resolution and
a THD of -90 dBc while the other has a resolution of six bits and a THD of
-70 dBc, the attacker would want to select the cheaper of the two to manufac-
ture. Finding the most cost-effective AWG may be accomplished by utilising the
above framework in the constraint function of a cost-minimisation (constrained
optimisation) problem that accounts for the marginal cost for improvements in
each performance parameter. Such a formulation would also be useful in the case
where a wide enough gap exists between the cost of manufacturing an AWG ca-
pable of defeating the system and simply purchasing an existing AWG that is
known to be able to defeat it. Similarly, we would need to know the lowest per-
forming theoretical AWG necessary to defeat a system to be able to say that
the system is secure against attacks using AWGs with sample rates, resolutions,
THDs, and SNRs below a certain level.

Cost Minimisation Formulation. The cost, or objective, function in our for-
mulation, fc(f, n, snr, thd), returns the cost necessary to obtain an AWG with
a sampling rate of f , resolution of n, SNR of snr, and THD of thd. Allow
sa = AWG(sd, f, n, snr, thd) to be the attacker’s forgery of an authenticated de-
vice’s signal, sd, produced using the AWG with the aforementioned parameters.
Furthermore, let th = d(LR, f(sT )) be the maximum distance allowed between
a signal, sT , claiming to originate from the device and the device’s feature set,
LR, where the function f(·) extracts features specific to the PLI approach from
the sampled signal sT and d(·) is the distance measure the approach employs.
Our minimisation problem is then

min
f,n,snr,thd

fc(f, n, snr, thd) subject to d(LR, f(sa)) ≤ th (3)

The derivation of a sample cost function is covered in Section 4.4.
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Equation 3 describes a mixed-integer non-linear programming problem, with
black box constraints. To ease the process of solving of it, we can impose upper and
lower boundaries on each parameter, in addition to stipulating integer values for
each.

Given the assumptions of our threat model, the upper bounds for the sam-
pling rate and resolution must be those of the PLI system sampler. Modern
DACs are capable of achieving THDs < −80 dBc [35] and SNRs > 75 dB [38],
so our theoretical DAC must be capable of exceeding at least these numbers.
Lower bounds are calculated using the framework by setting all parameters to
their upper values and then choosing one parameter to decrease until the signal
generated by the AWG model violates the constraint of (3); the value at which
the constraint is violated is then the lower bound for that parameter. This pro-
cess is repeated for each parameter. Lower bounds are thus specific to the PLI
system under consideration.

To convert (3) to an integer non-linear problem, we mandate that thd and
snr be integers (n is already an integer), while for the sampling rate we define
fa to be some fraction P/Q of the PLI system sampling rate (where P and Q
are integers, passed separately to the optimiser). As the signal the attacker is
attempting to forge is sampled at the PLI system sampler rate, and our upsam-
pling/downsampling routine will first upsample by P and then downsample by
Q, the attacker’s effective sample rate would be P/Q× fp.

4 Framework Application

We demonstrate the use of the framework on the PLI approach of Gerdes et
al. , which was proposed to identify wired Ethernet devices. In what follows we
provide a brief overview of their PLI approach, describe our implementation of
it, and detail how the framework was used to analyse the security of it.

4.1 Overview of PLI Approach

Using the nomenclature of Section 2 and the generic PLI methodology of Section
1, the PLI approach of Gerdes et al. is to [12]: (1) capture the beginning of a
10Mb Ethernet frame, known as the synchronisation signal, where a slope-based
trigger is used by the sampler to detect the beginning of the frame, (2) extract a
specified number of contiguous sample points, using the triggering sample point
as a reference for which sample point to start with, and (3) check if the inner
product of the extracted features and reference features lies between the two
thresholds established for the device.

More explicitly, as laid out in Sections 4.2–3 of [12], for device k to be accepted
as device i the inner product between the reference features, LRi, of the i

th device
and the features, Lj

Tk, extracted from the jth record, rjk, of the kth device must
fall between the thresholds th+i and th−i.

The reference feature vector, derived from an arbitrary record, rli, of the ith

device is LRi = rli[trg
l
i+m : trgli+n], where trgli is the sample point in the record

rli at which the scope triggered and m and n are the first and last sample points,
relative to the trigger, of the span of sample points used as the feature set for the
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device. To account for triggering error and slight deviations in signal levels, the
test feature set is actually taken to be Lj

Tk = f(rjTk, trg
j
k) = rjTk[trg

j
k +m− δ :

trgjk + n + δ], where δ is the number of extra sample points to include in the
feature vector.

Stating the preceding in terms of a constraint equation, we have that for a
record from device k to be identified by the PLI system as having originated
from device i, it must satisfy

th−i ≤ max

(
n−m∑
h=1

LRi[h]× Lj
Tk[h+Δ]

)
≤ th+i (4)

where Δ may vary from 0 . . . 2× δ and th+/−i are established using the last 25
accepted records but only updated after 20 records are accepted (see Sections
4.2.2.3 and 4.3.3 of [12]).

4.2 Attacks Against PLI Approach

Type I Attack. For the type one attack the attacker attempts to replay the
synchronisation portion of the original waveform, but with a different payload,
using the lowest performing AWG possible.

Type II Attack. As an example of a type two attack, let us assume that the
attacker is still attempting to produce a high fidelity copy of the targeted device’s
signal but wishes to compensate for the inherent error of their DAC so that a
lower performing AWG can be used. If the error distribution of the DAC is such
that it is just as likely to overshoot the desired output value as undershoot it,
for the attacker to maximise the amount of allowable error between the forged
signals and the authentic signals they should construct a single frame based
upon the average of multiple observed waveforms and transmit it with a custom
payload. The proof follows.

Following the procedure set out in Section 4.3.3 of [12], the thresholds for the
next m records from device i are determined by taking the mean of distance
measures for the previous n records and adding, for the upper threshold, or sub-
tracting, for the lower threshold, the standard deviation of those same measures
times some constant, K. Allowing the output of the distance measure for the jth

record to be represented by dj = d(LRi, f(s
j
i , trg

j
i )) the thresholds are then

th+/−i(d
j · · · dj+m−1) = μ(dj−n · · · dj−1)±K × σ(dj−n · · · dj−1) (5)

where μ(·) and σ(·) are the mean and standard deviation, respectively.
As d(·) is the sum of products, forging a signal that produces (th+ + th−)/2

allows for the maximum, equal amount of deviation for each sample point in
either direction. The average of the signals used to calculate the thresholds is
just such a signal.

We note that d(·) for this PLI approach is effectively using correlation to find
the maximum alignment between LR and LT , and by extension the records, sR
and sT , used to create the feature vectors. Allow LT∗ to equal those elements of
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LT found to produce the maximum output of the distance measure with LR and
l to be number of elements of LR (i.e. we extract the m− n contiguous sample
points from sT that produce the maximum correlation with the m − n sample
points of sR that constitute LR). The distance measure for the jth record may
then be simplified to

dj =

l∑
k=1

LR[k]× Lj
T∗ [k] (6a)

= LR · Lj
T∗ (6b)

The mean of the distance measure for n training records can be expressed by

μ(d1 · · · dn) = d1 + d2+, . . . ,+dn

n
(7a)

=
LR · L1

T∗ + LR · L2
T∗+, . . . ,+LR · Ln

T∗

n
(7b)

=
LR ·
(
L1
T∗ + L2

T∗+, . . . ,+Ln
T∗
)

n
(7c)

= LR · μ
(
L1
T∗ · · · �Ln

T∗
)

(7d)

It is worth noting that although an infinite number of arbitrary signals (though
not an infinite number of signals falling within the guidelines set by the 802.3
standard [17]) could be generated to produce a distance measure equal to the
mean of the previous n records, finding the average signal only requires that
an attacker observe n waveforms, align, and then average them. Of course an
attacker could not know the which frames would exactly constitute the n train-
ing records, and while the attacker can align and average observed waveforms,
there is no guarantee that the resulting signal, even if reproduced perfectly,
would be aligned with LR in such a way as to produce a distance measure of
(th+ + th−) /2.

4.3 Experimental Validation of PLI Approach

To ensure that the devices we intended to forge were identifiable using the
matched filter PLI system we collected data from 27 different Ethernet cards;
using the matched filter PLI approach outlined above, we were able to identify
the cards with ≈ 94% accuracy (false-reject rate of 0.2%).

Our experimental setup consisted of two PCs: one to act as the Test PC
(TPC), which housed the Ethernet card to be fingerprinted, while the other,
the Data Acquisition PC (DAQPC), made use of a passively tapped internal
Ethernet card to capture Ethernet frames sent to it over a crossover cable by
the TPC. A Tektronix 4032 digital phosphor oscilloscope (DPO), interfaced via
USB and controlled by MATLAB, was used as the PLI system sampler. As per
our threat model, both the attacker and the PLI system used the data collected
by the DAQPC.

In order to generate traffic for the DAQPC to capture, the TPC was instructed
to ping the DAQPC. During a typical data acquisition period the TPC would
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ping the DAQPC 10,000 times over the course of approximately three hours.
To ensure that only traffic from the TPC was captured and that the measure-
ment equipment did not affect the load characteristics of the DAQPC, as seen
by the TPC, only the receiving pins of the DAQPC’s Ethernet card on the sec-
ondary side of the transformer were connected to the oscilloscope. In this way
the DAQPC could respond to the TPC’s pings and ensure that the data acqui-
sition process didn’t cause packet loss or affect the transmitting circuitry of the
TPC. Upon detection of an Ethernet frame (a simple slope-based threshold was
used) the oscilloscope began to sample the signal at a rate of 2.5 Gigasamples/s;
the signal was sampled 1,000,000 times, for a total of 400 micro-seconds. The
oscilloscope had 8-bits of resolution.

Finally, the data collected during sampling was sent to the DAQPC via USB
interface, where a MATLAB routine monitoring the interface accepted the data
and stored the values in a vector called a record, which was subsequently written
to disc. Each captured frame was stored in its own record; all of the records
collected for a device during a session are said to encompass its dataset.

We note that a 10Mb Ethernet frame is transmitted using a differential signal
to lessen the effects of environmental noise. The frame is reconstructed at the
receiver by taking the difference of the received signals. In what follows, we apply
the framework to the reconstructed 10Mb Ethernet waveform, which we found
by taking the difference of the signals captured at the receive pins on secondary
side of the DAQPC’s transformer. This results in a loosening of the constraints
placed on an attacker, as in actuality an attacker would be required to forge two
signals when attempting to defeat the system. We make this simplification as
the PLI approach of Gerdes et al. uses the reconstructed signal for identification.

In addition, as each channel of the oscilloscope used to acquire device signals
had 8 bits of resolution, and we take the difference between the channels to
reconstruct the Ethernet Frame, the device signals should actually be considered
9-bit: the maximum of the absolute value of any of the binary sample points
that make up the waveforms was greater than 127 but less than 255; 8 bits, plus
another bit for the sign, are required to represent this data then. The y-scale, or
voltage, increment used in the capturing routine was 0.02 volts, which leads to
an effective full-scale voltage of -5.12 to +5.10 V (binary values for the sample
points range from -256 to 255).

4.4 Cost Function Estimate

To estimate the cost of acquiring an arbitrarily specified AWG, we assumed a lin-
ear relationship between cost and each performance parameter; i.e. we assumed
that DAC performance scales linearly with cost, so that, for example, all other
parameters being equal, a DAC with an SNR of 65 dB would cost more than
one with an SNR of 50 dB.

Pricing information for 37 different DACs from Analog Devices was obtained
using their online tool ADIsimDAC, which suggests DACs that meet certain
user specifications, along with their cost [39]. Since we wished to obtain pricing
data on as many DACs as possible, we only specified the dynamic range (-4
to 4 V) and minimum sampling resolution of 100 MS/s. We note that even
though the PLI system sampler has a dynamic range of ≈±5.12 V, only ≈±4
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V is necessary to forge the reconstructed Ethernet frame, as the signal does
not exceed ±3.5 V. Furthermore, while an attacker could utilise a DAC with a
different dynamic range, by scaling and applying an offset to the DAC output
using an amplifier, this would introduce additional distortion and noise that
would need to be included in the AWG model [40].

Having found DACs meeting these two specifications, we then extracted sam-
ple rate, resolution, noise, and distortion parameters from their datasheets. Of
the 37 DACs meeting our requirements, 17 reported inter-modulation distor-
tion (IMD) and noise-spectral density (NSD) instead of THD/SNR. While these
measures could be used with our framework, by using different test signals with
the distortion model and performing different noise measurements, they are
nonetheless incompatible with—i.e. cannot be converted to—THD/SNR mea-
sures; as such, they were discarded. Seven DACs reported THD/SINAD instead
of THD/SNR; because of the relationship between THD, SINAD, and SNR noted
in Section 2.3 we were able to convert the SINAD measure to SNR. If multiple
test signals or bandwidths were used to give a range of values for a particular pa-
rameter, we selected the signal with the highest frequency, at the highest output
current, with measurements made over the largest bandwidth.

Using these data we performed a multiple linear regression (R2 of 0.8185) to
obtain the following cost function

fc(P,Q, n, snr, thd) = 0.0693× P/Q× 2500 + 1.6201× n− 0.1518× thd

+ 0.0164× snr − 26.4959 (8)

Where the sampling rate is defined, in units of Megasamples/s, as a fraction of
the PLI system sampling rate fp = 2500, resolution (n) in bits, THD (thd) in
dBc, and SNR (snr) in dB.

When examining the datasheets, we noticed that in general DACs with higher
resolution and sample rate tended to have higher THD. This implies that is
very costly to achieve small amounts of distortion at higher resolutions and
sampling rates. However, when linear regression was performed using THD values
from the datasheets, a positive coefficient was reported. As THD is negative,
increasing the absolute value of the THD (i.e. decreasing the distortion) within
the framework would actually lead to a lowering of the cost. Thus, a solver
employing a cost function with a positive coefficient for THD would tend to
drive it to −∞ (zero distortion). To counter this we transformed the THD values
by adding a positive scalar greater than any of the THD values and taking the
negative of the result.

4.5 PLI System Evaluation Setup and Results

To evaluate the security of the PLI system, we first incorporated (4) into the
cost-minimisation formulation given in (3), which lead to

min
f,n,snr,thd

fc(f, n, snr, thd) subject to d(LR, f(sa, trga)) ≤ th+

th− ≤ d(LR, f(sa, trga))
(9)
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where d(·) = max (
∑n

i=1 LR[i]× LT [i +Δ]), n is number of elements in LR,
sa = AWG(sd, f, n, snr, thd), and trga is the sample point in the attacker’s
record, sa, at which the PLI system sampler triggered.

Equation 9 is then used, along with the cost function defined by (8), to find the
lowest-cost AWG necessary to successfully carry out a type one replay attack
and a type two attack against each of the devices used for the experimental
validation of the PLI. A randomly selected record was used in the type one
attack, while the type two attack used a synthesised record based on the average
of 25 records.

A lower bound for each of the AWG parameters was established by decreasing
or increasing their value (the former in the case of sampling rate and resolution
and the latter for SNR and THD), while the other parameters were set to their
ideal values, until either of the constraints of (9) were violated by the resulting
record. The lower bounds were found to be fa = 2/100 × 2500 = 50, n = 5,
thd = −25, and snr = 20; should any one of the parameters fall below these
values, the resulting record would be automatically rejected. Upper bounds were
fa = 2500, n = 9, thd = −90, and snr = 100.

Record Selection. To select the record(s) to be forged, we first chose 44 se-
quential records (the first record was chosen randomly, though it had to number
1000 or greater to ensure that the device was operating outside the warming-up
period); the first 25 records were used to establish thresholds for the remaining
19. For the type one attack, one of the 19 records was chosen, at random, to
be reproduced using the AWG model; for the type two attack a combination
of 25 records were chosen from the training records and the remaining 19, with
at most 24 records selected from the training set (again, these were selected se-
quentially). To create the averaged record, each of the 25 selected records was
aligned with the first and the average computed. The reference features were
extracted from the first record of each device’s dataset.

In [12], 25 records are used to establish thresholds for the next 20 records.
We limited our selection of records usable for forgery to only the next 19 (and
stipulated that the attacker could only use at most 24 of 25 training records
for averaging) because if record 20 should be selected randomly (or the attacker
begins averaging with the first record), the attacker would be forging a record
used as training data to determine the thresholds for the forgery. This case
should be examined separately to see how much, if any, advantage is gained by
the attacker. We also checked to be sure that the single record used in the type
one attack would have been accepted by the PLI system—an attacker would not
be able to guarantee this, which is another reason for them to use an average of
several records.

Results. A summary of the AWG characteristics for each of the attacks, found
using the genetic algorithm solver included in the Global Optimisation toolbox
for MATLAB, are given in Tables 1a and 1b. As can be seen from examining
the best-case scenario (when the attacker is required to utilise the most expen-
sive AWG), the sampling rate and resolution of an AWG necessary to defeat a
matched-filter based PLI system would need to be substantially less than those
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Table 1. Characteristics of highest, mean (rounded), and lowest cost AWGs required
to carry out the (a) type one attack using randomly selected signal and (b) type two
attack

Parameter Highest Mean Lowest
Resolution (bits) 5 5 5
Sample rate (MS/s) 53 50 50
THD (dBc) -35 -30 -26
SNR (dB) 21 22 20

(a)

Parameter Highest Mean Lowest
Resolution (bits) 5 5 5
Sample rate (MS/s) 53 51 50
THD (dBc) -37 -32 -25
SNR (dB) 22 22 20

(b)

of the sampler used in our implementation (for the PLI system sampler, n = 9
and fp = 2500 MS/s). In the worst-case scenario (lowest cost to attacker), the
sampling rate, resolution, SNR, and THD are at the lower bounds (or nearly so),
while for the mean case only the SNR and THD are appreciably distant from
the lower bounds. In any case, the sampling rate, resolutions SNR, and THD
of each of the DACs used for the cost function estimation of Section 4.4 are in
excess of those reported in the tables.

Both the average and maximum costs for the type two attack are (slightly)
higher than those of the type one, contrary to the results of Section 4.2. This is
in spite of the fact that when the AWG attacker’s averaged record was tested
directly (i.e. it did not pass through the AWG model) with the reference feature
set the resulting distance measure was almost exactly (th+ + th−)/2. It seems
possible that the averaged sample point values, when they are discretised, are
biased slightly towards one of the higher or lower level, instead of being equally
distributed among the two (as assumed in our proof).

It should also be mentioned that because of the randomness of the noise an at-
tacker record will sometimes be rejected at the reported minimum SNRs. Having
repeatedly checked for constraint violations using the same SNR, it appears that
the more the noise changes the trigger point of the attacker record relative to the
record used for the reference feature set (i.e. as |trgp− trga| grows larger) the more
likely it is that the record will be identified as a forgery. To ensure acceptance, the
attacker should employ an AWG with a slightly higher SNR (≈2 dB).

5 Conclusion

We have proposed, and illustrated the use of, a framework to determine whether
an attacker could defeat a given PLI system by replaying a record using an AWG
of a specified sample rate, resolution, THD, and SNR. The framework is flexible
enough to be used in evaluating arbitrary PLI system implementations, using
different threat models and AWG models. We also showed how the framework
can be used with a cost-minimisation problem to find the lowest performing
AWG necessary to defeat a PLI system. Given a particular pricing model for the
sample rate, resolution, THD, and SNR, the cost-minimisation formulation can
also be used to determine the most cost-effective AWG.

For the reasons given in Section 2.2, this version of the framework did not in-
corporate channel effects and assumed ideal/identical samplers for the attacker
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and PLI system. In order to better evaluate the security of PLI systems, we
will extend our work by integrating both channel models and models for non-
ideal/differing samplers into the framework. To widen the application of the
framework, we will use it to evaluate and compare PLI approaches for the wire-
less domain and investigate the feature replay attack mentioned in Section 2.1.
Finally, the immediate focus of our future work will be to experimentally confirm
the predictions of the framework for the PLI system of Gerdes et al.
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Abstract. With the growing popularity of VoIP and its large customer
base, the incentives of telemarketers for voice spam has been increas-
ing in the recent years. If the threat of voice spam remains unchecked,
it could become a problem as serious as email spam today. Compared
to email spam, voice spam will be much more obnoxious and time con-
suming nuisance for telephone subscribers to filter out. In this paper,
we propose a content-based approach to protect telephone subscribers
voice mailboxes from voice spam. In particular, based on Dynamic Time
Warping (DTW), we develop a speaker independent speech recognition
system to make content comparison of speech messages. Using our sys-
tem, the voice messages left on the media server by callers are matched
against a set of spam filtering rules involving the study of call behav-
ioral pattern and the analysis of message content. The uniqueness of our
spam filtering approach lies in its independence on the generation of voice
spam, regardless whether spammers play same spam content recorded in
many different ways, such as human or machine generated voice, male or
female voice, and different accents. We validate the efficacy of the pro-
posed scheme through real experiments, and our experimental results
show that it can effectively filter out spam from the subscribers’ voice
mailbox with 0.67% false positive rate and 8.33% false negative rate.

Keywords: VoIP, voice spam, content filtering, Dynamic TimeWarping.

1 Introduction

IP telephone service providers are moving fast from low-scale toll bypass deploy-
ments to large-scale competitive carrier deployments; thus giving an opportu-
nity to enterprise networks for supporting less expensive single network solution
rather than multiple separate networks. The broadband-based residential cus-
tomers also switch to IP telephony due to its convenience and cost effectiveness.
On the contrary to traditional telephone system in which the end devices are
dumb, the VoIP architecture pushes intelligence towards the end devices like
PCs and IP phones, creating many new services. This flexibility coupled with
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the growing number of subscribers has attracted attackers for malicious resource
abuse. As the number of VoIP subscribers hits a critical mass, it is expected
that voice spam will emerge as a serious threat. In fact in Japan where VoIP
market is much more mature than USA, has witnessed some recent voice spam
attacks. The SoftbankBB, a VoIP service provider with 4.6 million users has
reported three incidents of spam attacks within its own network [20]. These
incidents include unsolicited messages advertising an adult website, scanning
of active VoIP phone numbers and requesting personal information of users.
Similarly, Columbia University experienced a voice spam attack, with someone
accessing the SIP proxy server and “war dialing” a large number of IP phone
extensions [21]. There are many reported incidents of spam messages on Google
voice too [7]. Evidently, the effectiveness of telephone calls presents strong in-
centives for spammers to establish voice channels with many subscribers at the
same time. Such machine generated unsolicited bulk calls known as SPIT (Spam
over Internet Telephony) may hinder the deployment of IP telephony, and if the
problem remains unchecked then it may become as potent as email spam today.
In many aspects, the voice spam is similar to an email spam. Moreover, voice
spam will be much more obnoxious and harmful than email spam. The ringing
of telephone at odd time, answering of spam calls, phishing attacks and inability
to filter spam messages from the voicemail box without listening each one are
real nuisance and waste of time.

In the past, a number of anti-spam solutions have been proposed. Both aca-
demic and industry research groups have made some efforts to address the voice
spam problem. Most of the ideas are borrowed from the data security field, using
the techniques such as intrusion detection systems, black and white lists, Tur-
ing tests, computational puzzles, reputation systems, and rate throttling at the
gatekeeper. These solutions generally distinguish a legitimate subscriber from
a spammer using only SIP signaling messages. However, in this paper we take
a radically different approach. Instead of analyzing the SIP signaling messages
and identifying the spam originating source(s) or ascertaining the real identity
of spammers, we try to avoid spam message deposition on the subscribers’ voice
mailboxes. The goal of the proposed approach is two-pronged. First, we allow
only legitimate messages to be deposited on the subscribers’ mailbox account,
unsolicited spam messages are blocked at the media server itself. Secondly, the
proposed approach also provides a way to identify spamming sources based on
spam messages. To the best of our knowledge, this is a first attempt to clean
subscribers’ voice mailboxes from voice spam messages.

Beyond the basic observation that SIP signaling messages needs to be analyzed
for its source and caller identification, we make three additional observations that
are central to our approach. First, the spammers would prefer to see high hit ratio
for their spamming attacks. Thus, most of the spamming attacks are expected
to occur in bulk (i.e., as much spam as possible within a short duration of time)
and most of the spam messages will be delivered to voice mailboxes. Second,
during the spam attack instance, a spammer will play pre-recorded messages to
many of the spam victims at the same time. Third, the originating spam source
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is expected to be some sort of interactive voice response (IVR) system, which
can interact with the users if the calls are answered and it should also be able to
leave a voice mail if the calls are not answered. However, it should be noted that
in most of the spam attacks the voice stream originating from the spam source is
machine generated. Based on these observations, we design and develop a voice
mailbox filtering approach.

In our approach, we first segment voice messages in their voiced segments
using a silence removal technique. Our silence removal technique is based on two
audio features; the signal energy and the spectral centroid. After calculating the
partial similarity between each pair of voiced segments coming from two differ-
ent voice messages, we can determine how similar are the two voice messages
content-wise. To measure the similarity between two voiced segments as a metric
for content comparison, we use the technique of Dynamic Time Warping (DTW)
to compute the cosine similarity between two sequences of speech feature matri-
ces. A popular speech feature representation known as RASTA-PLP (Relative
Spectral Transform - Perceptual Linear Prediction) is used to extract speech
feature matrices from voice messages. After a message is left on the server by
a caller, it is divided into voiced segments using our segmentation method and
RASTA-PLP spectra for its voiced segments being calculated. Using our DTW
based system, the RASTA-PLP matrix is then matched against a set of spam
signatures. If a match is not found, our system is further coupled with Bayesian
filtering to reveal the hidden spam words/phrases within a voice message to show
how closely (probabilistically) it matches with the known spam messages seen in
the past. Normally during a spam attack, many of the deposited voice messages
share the same content, we finally use our speaker independent speech recog-
nition technique to find how many similar messages (in content) are deposited
within a predefined time interval of ΔT .

We conduct two sets of experiments to evaluate the effectiveness of our pro-
posed solution against realistic spam attack scenarios. In the first experiment,
we investigate the most generic spam attack scenario, where a spammer repeat-
edly sends the same spam message to many of the subscribers at the same time.
Three hundred voice messages in various size are deposited from thirty speakers
with different accents (such as American, British, or Indian English), different
sex and ages to form the scenario. In the second set of experiment, we investigate
the power of our method to classify voice messages as spam and non-spam, in
which the deposited voice messages include spam words/phrases. Our experi-
mental results show that our approach is computationally efficient, and speaker
independent to identify a common segment of voice message out of a database
of known spam signatures and classify the voice message correctly.

The remainder of the paper is structured as follows.The basicVoIP architecture,
SIP-based IP telephony, voice message deposition process, and a brief overview of
the proposed approach are presented in Section 2. In Section 3, we describe the
technical details on voice message signature construction. In Section 4, we detail
spam detection methodology. Section 5 analyzes the performance of the proposed
solution. Section 6 surveys related work. Finally, Section 7 concludes the paper.
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Fig. 1. Island-based SIP VoIP Deployment

2 Background

Voice spam is an extension of email spam in the VoIP domain. The technical know-
how and execution style of email spam can easily be adapted to launch voice spam
attacks. For example, a voice spammer first harvests user’s SIP URIs or telephone
numbers from the telephone directories or by using spam bots crawling over the
Internet. Then, a compromised host is used as a SIP user agent (UA) that sends
out call setup request messages. Finally, the established sessions are played with
a pre-recorded .wav file. However, voice spam is much more obnoxious and harm-
ful than email spam. The ringing of telephone at odd time, answering of spam
calls, phishing attacks and inability to filter spam messages from the voicemail
box without listening each one are real nuisance and waste of time.

Before we delve into voice spam problem, we briefly describe the basic VoIP
architecture as it serves two purposes: first, it explains as why we do not hear much
of voice spam attacks today as compared to email spam; second, it also describes
as why it could be a serious problem for VoIP subscribers in the near future.

2.1 VoIP Architecture

As shown inFig. 1, in today’s IP telephonyworldmost of theVoIP service providers
(such asVonage,AT&TCallvantage, andViaTalk) operate in partially closed envi-
ronments and are connected to each other through the public telephone network.
VoIP service providers allow only their own authenticated subscribers to access
SIP proxy server resources. The authentication of call requests is feasible because
user accounts are stored locally on the VoIP service provider’s SIP servers. How-
ever, in general the threat of spam calls is associated with the open architecture of
VoIP service, where VoIP service providers interact with each other through the
IP-basedpeering points. It provides an ability for individual subscribers to connect
with each other without traversing the PSTN cloud. Therefore, it is quite possible
that an INVITEmessage received by a VoIP service provider from another service
provider (through IP network) for one of its subscriber may not have any type of
authentication credentials for the calling party.

Recently, we are witnessing a large demand for SIP trunks. A SIP trunk is
a service offered by a VoIP service provider permitting business subscribers to
reach beyond the enterprise network and connect to the PSTN through IP-based
connections. Generally most of the SIP trunks are set up without authentication.
Only few of the service providers use TLS or IPSec to secure SIP signaling. In
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Fig. 2. Voice Message Deposition

this scenario, a spam attack can be launched from within the enterprise network
(e.g., a corporate network is infected with malicious worm) or by a man-in-the-
middle where SIP signaling is transported over the Internet in plaintext without
any encryption.

2.2 SIP-Based IP Telephony

The Session Initiation Protocol (SIP) [15], belonging to the application layer of
the TCP/IP protocol stack, is used to set up, modify, and tear down multimedia
sessions including telephone calls between two or more participants.

SIP-based telecommunication architectures have two types of elements: end de-
vices referred to as user agents (UAs) and SIP servers. Irrespective of being a soft-
ware or hardware phone, UAs combine two sub-entities: the connection requester
referred as the user agent client (UAC) and the connection request receiver re-
ferred to as the user agent server (UAS). Consequently, during a SIP session, both
UAs switches back and forth between UAC and UAS functionalities.

SIP messages consisting of request-response pairs are exchanged for call set up,
from six kinds including INVITE, ACK, BYE, CANCEL, REGISTER, and OPTIONS

- each identified by a numeric code according to RFC 3261 [15].

2.3 Voice Mail Deposition

A simple voice message deposition scenario is shown in Fig. 2. A caller calls a
callee who is busy and unable to take phone call, in this particular case, the call
is answered by a voice messaging system. The call is set up between caller and
callee’s voice messaging system that plays a “busy” greeting message and asks
the caller to leave a voice message. The caller records the voice message and
then hangs up. With the SendMail command, the application (i.e., call control)
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Fig. 3. Overview of Spam Filtering Approach

server requests the media server to deliver the recorded voice message to the
callee’s inbox. The media server sends email with the recorded message as an
attachment (in .wav file format) to the user account on SMTP mail server.

2.4 Overview of Spam Filtering Approach

As shown in Fig. 3, our spam filtering approach can be briefly described as a
three-step process. Given a recorded voice message, we first verify if it matches
with any of the known spam signatures stored in the database. For example,
when a caller leaves a voice message for a callee, media server records the RTP
stream and converts it into a .wav file. The feature extraction process takes this
.wav file as an input and extracts few features from the corresponding spec-
trogram. This set of features is searched in the database to find a match with
known spam signatures. In the second step, even if a match is not found with
known spam signatures, we observe the words and phrases and their spamicity.
The overall spam score of the message determines its likelihood of being a spam
message. In the third step, we observe how many similar messages (in content)
are deposited within a predefined time interval of ΔT .

3 Voice Message Signature Construction

This section provides technical details as how we can extract some specific fea-
tures from a recorded message on the media server, which later on can be used
to construct a signature of the deposited message.

3.1 Visual Representation of a Voice Message

Now assume that a telemarketer has left a voice message in one of the callees
voice mailbox saying:
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Fig. 4. Speech Waveform and Spectrogram (US Female Speaker)

Take off those unwanted pounds - without strict diets. Just because you
live a busy life doesn’t mean you can’t lose weight. Look and feel 20 years
younger. You will Love how it makes you feel. Please give us a call now
at 777 666 5555

When we analyze the recorded .wav file, Fig. 4 shows the visual representation
of human speech vibrations in the form of waveform and spectrogram. At the
top, the waveform tracks variation in pressure as a function of time for a given
point in space. Although we can learn quite a lot by a visual inspection of
a speech waveform, it is impossible to detect individual speech sounds from
waveforms because a speech consists of vibrations produced in the vocal tract.
The vibrations themselves can be represented by speech waveforms. To read the
phonemes in a waveform, we need to analyze the waveform into its frequency
components, i.e., a spectrogram which can be deciphered (the bottom of Fig. 4).
In the spectrogram, the darkness or lightness of a band indicates the relative
amplitude or energy present at a given frequency.

3.2 Silence Removal From Deposited Voice Message

In our spam content analysis, we are interested in only voiced portions of the
deposited message. Therefore, we need a method to remove all silence periods and
segment the deposited message in voided segments. We use a method based on
two simple audio features, namely the signal energy and the spectral centroid.
In order to extract the feature sequences, the signal is first broken into non-
overlapping short-term-windows (frames) of 50 msec. length. For each frame, the
two features, described below, are calculated, leading to two feature sequences
for the whole deposited voice message.

Signal Energy: Let us assume that the deposited voice message’s ith frame has
N audio samples xi(n), n = 1, 2, ..., N . The ith frame energy is calculated as:

E(i) =
1

N

N∑
n=1

|xi(n)|2 (1)
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Fig. 5. Detected voiced segments from a deposited voice message

Spectral centroid: The spectral centroid, Ci , of the i
th frame is defined as the

center of gravity of its spectrum

Ci =

∑N
k=1(k + 1)Xi(k)∑N

k=1 |Xi(k)|2
(2)

where Xi(k), k=1,2,...,N, is the Discrete Fourier Transform (DFT) coefficients
of the ith short-term frame, where N is the frame length.

Estimating two thresholds – T 1 and T 2, the two feature sequences are com-
pared with their respective thresholds. The voiced segments are formed by suc-
cessive frames for which respective feature values are larger than their thresholds.
The detailed description of the method can be found in [6]. We use the same ex-
ample spam message recorded by Crystal, a US native English speaker and apply
silence removal method. Fig. 5 (a) and (b) show energy and spectral centroid
sequences and their threshold values, respectively. The detected voice segments
are shown in Fig. 5 (c). These individual voiced segments serve as fundamental
units to build our spam detection methodology.

3.3 RASTA-PLP Spectrogram Characterization

As the first step towards comparing two voiced segments, Short-time Fourier
transform (STFT) can be adopted. Using STFT features, the sinusoidal fre-
quency and phase content of local sections of a signal as it changes over time,
can be determined. Since STFT, similar to most of speech parameter estimation
techniques, is easily influenced by the frequency response of the speech channel,
e.g. from a telephone line, we use another popular speech feature representation
known as RASTA-PLP, an acronym for Relative Spectral Transform - Percep-
tual Linear Prediction. PLP is a speech analysis technique for warping spectra to
minimize the differences between speakers while preserving the important speech
information [9]. RASTA was proposed to make PLP more robust to linear spec-
tral distortions. RASTA applies a band-pass filter to the energy in each frequency
subband to remove any constant offset resulting from steady-state spectral fac-
tors of the speech channel and to tolerate short-term noise variations [10]. After
a deposited message is segmented to voiced segments, RASTA-PLP spectra for
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RASTA−PLP spectra for first detected speech segment of Diane’s speech
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Fig. 6. RASTA-PLP spectral features for the first voiced segment of Diane (Female)
and Dallas (Male) Native Speakers

all voiced segments of the voice message is calculated. For each spam voice mes-
sage, its RASTA-PLP spectral matrices, corresponding to its voiced segments,
are stored in the spam signature database. Fig. 6 shows the RASTA-PLP spec-
trograms for the first voiced segment (“Take off those unwanted pounds without
strict diets.”) of two deposited messages from different speakers, Diane (Female
English speaker) and Dallas (Male English speaker), with the same content.

3.4 Matching Process

The spam filtering architecture can work in a standalone or distributed collab-
orative manner. In the standalone mode, the voice messages left by the callers
are undergoing through the behavioral analysis and signature matching based
on the locally stored signatures. However, in the collaborative distributed mode,
a group of disparate VoIP service providers work together. A centralized spam
database can be queried as per need basis by individual service providers for
signature matching, and at the same time newly found spam message is made
available to the database so that it can be signaturised and used by the other
service providers.

For signature matching and call behavior analysis, the newly arrived voice
message is divided to voiced segments and corresponding RASTA-PLP matrices
are calculated. The database of known spam signatures is queried to find the
voice spam message that has similar content to the newly arrived voice message.
If the computed cosine distance between the newly arrived and an already known
spam message is less than a threshold, we confidently declare that a match has
been found. However, in case there is no match found, then we perform call
behavior analysis. Within a predefined time interval of ΔT (say 5 minutes),
we segment all of the voice messages left on the media server to their voiced
segments and calculate their corresponding RASTA-PLP matrices to observe
how many messages are of similar content. Beyond a threshold value (say 3
messages per 5 minutes), the matched messages are considered to be a part of an
impending spam attack and demand further analysis. The unmatched messages
are deposited to their respective user accounts (i.e., mailboxes).
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Fig. 7. Using DTW to find similarity between constructed scores matrices for the first
voiced segment of Diane’s speech and Dallas’s speech

4 Detection Methodology

To either find if the newly arrived voice message has similar content to a spam
signature or observe as how many similar messages (content-wise) are recorded
on the media server within a predefined time interval, we propose a speaker inde-
pendent speech recognition method. The newly deposited message is first divided
into small voiced segments using the silence removal technique described in Sec-
tion 3.2. For each of the voiced segments, we create RASTA-PLP matrices. As a
similarity measure, we use Dynamic TimeWarping (DTW) method and calculate
the cosine distance for each pair of voiced segments coming from two different
voice messages. Based on these partial scores for the corresponding speech seg-
ments, we finally determine if the two voice messages are similar enough and a
match is found. The details of these phases are presented as follows.

4.1 Scoring Similarity between Two Speech Segments

Constructing Scores Matrix. Cosine Similarity is considered here as the
similarity measure between two speech segments. We calculate the cosine dis-
tance between every pair of frames from RASTA-PLP spectral matrices for two
segments, and then we construct the local match scores matrix. The left side of
Fig. 7 shows spectrogram-like scores matrix for the first voiced segment (“Take
off those unwanted pounds without strict diets.”) of two speech snippets of Di-
ane (female) and Dallas (male) native speakers. High similarity values can be
seen as a dark stripe approximately down the leading diagonal in the figure.

Dynamic Time Warping (DTW). Although two different voice segments
(speaker’s utterances) with same content have more or less the same sounds in
the same order, the durations of each sub-segment (words and letters) may not
match. As a consequence, matching between two voice segments without tempo-
ral alignment may fail. To cope with different speaking speeds and differences in
timing between two segments, we use a dynamic programming method named
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Dynamic Time Warping (DTW) [5]. Considering a 2D space with the X-axis
of time frames from one segment and the Y-axis of time frames from another
segment, DTW tries to find the path through this 2D space that maximizes the
local match between the aligned time frames. The total similarity cost found by
DTW can be considered as a proper indication of how well these two segments
match. The right side of Fig. 7 illustrates how DTW finds the lowest-cost path
between the opposite corners of the scores matrix. As we can see in the right
side of Fig. 7, the path on the scores matrix follows the dark stripe depicted in
the left side of Fig. 7.

Similar to other dynamic programing, the bottom right corner of theminimum-
cost-to-this point matrix returns the cost of minimum-cost alignment of the two
speech segments. This value as a partial score, can be used as our similarity mea-
sure. The smaller is a partial score, the closer are the two corresponding segments
of different voice messages. Since the value of the partial score has a relationship
with the size of spectral matrices (duration of voiced segments), we divided the
partial score by the minimum duration of two segments to define a more compara-
ble weighted partial score. To specify a threshold to find if two segments are similar
enough, the method againstmany different voicemessages is tested. Hence, we em-
pirically found 10 as the proper threshold for acceptance or rejection of similarity
between two segments.

4.2 Voice Message Content Matching

To find if two speech messages are similar enough, weighted partial scores for all
pair of corresponding segments of both messages are calculated. After comparing
the weighted partial scores to the threshold value of 10 for each pair of correspond-
ing segments, we can determine if the two segments have same content. If a certain
number of corresponding segments for both messages have same content, the two
whole speech messages are also similar enough and a match has been found.

4.3 Bayesian Content Filter

Based on the idea of Bayesianfiltering for email spam, we propose a similarmethod
for voice spam filtering. In this method, we have a database of known spam words
named spam speech database. In the training phase, the spam words are con-
verted to speech using text-to-speech (TTS) system and stored in the spam
speech database. Speech words here can be a single word, a combination of
words (i.e., phrase), phone number or URL address with high spamicity. In
other words, we transform the known email spam database and its probabilities
to voice spam world. Since there is no speaker independent speech segmentation
method (without language-specific knowledge) to perfectly segment speech mes-
sages at the word level, we take an alternative approach. In our approach, entries
of the spam speech database are tested against the voice message to find if the
voice message includes an entry of the database. As an example, suppose Mike
left a voice message, “Free mortgage consultations available now”, for his friend.
To check if the deposited message is spam, entries of the database are tested
against this voice message. Assuming that “mortgage” is an entry in the spam
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speech database, that was previously detected from another speaker (Crystal)
and stored in the database, we try to find if the voice message includes this
speech word “mortgage”. Starting from the beginning of the voice message, a
frame in size of the entry of the database (speech word “mortgage”) traverses
the waveform of the speech message. While the frame traversing the message,
the dissimilarity of the current frame of the speech message and the speech word
from database (“mortgage”) is calculated using DTW. Reaching the end of the
speech message, the frame of speech message with maximum similarity is the
determiner if the message includes the spam word (“mortgage”). This similarity
score is compared to a threshold to find if the speech message includes that spam
word. Using Bayes’ Formula and based on the number and spamicity of spam
words from the database that the spam message contains, we can decide if the
the speech message is spam or not. To justify the threshold, as the most im-
portant part of this method, we have tested the method for different words and
phrases in different sizes. Hence, it is empirically found that the similarity score
using DTW is tightly related to the size of speech words. For example, DTW
similarity score for word in size of “mortgage” is about 4.5-5, and for word in
size of “777 5555 666” (as a phone number) is about 50. Therefore, the threshold
is set in a dynamic way based on the size of the speech word to be tested.

4.4 Searching

As explained in Section 3, we construct two separate databases to store RASTA-
PLP matrices; Spam Signature Database for spam signatures, and Spam Speech
Database for spam words and phrases with high spamicity. After voice messages
are left on themedia server by callers, the SpamSignature Database is first queried
to find a match. Entries in the Spam Signature Database can be organized in cate-
gories based on VoIP service providers where they have been locally stored from to
speed up the search process. In case a match is not found (i.e., signature does not
exist in the Spam Signature Database), entries of the Spam Speech Database are
searched against the voice message to find if the voice message includes that entry
of the database. After performing this search, Bayesian spam filtering is used to
determine the final probability of the voice message being spam. To reduce the
search time, we propose a cluster-like structure for the Spam Speech Database,
where cluster heads are speech words with the highest probabilities in each clus-
ter. For example, two clusters of the database are described here:

– Cluster 1:

• cluster head: Viagra

• cluster members: sex, cheap, night, www.buyviagraonline.com

– Cluster 2:

• cluster head: Mortgage

• cluster members: 100% free, lower interest, “555 666 7777” (phone number)
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To perform a search, we start with cluster heads. If none of the cluster heads
matches, the voice message is classified as non-spam. If one of the cluster heads
matches, we narrow our search to the corresponding cluster to consider all other
relevant words in relevance order. The Baye’s Formula will take care of calcu-
lating the probability of being spam based on the number of spam segments it
contains and their spamicities.

5 Performance Evaluation

We conduct a series of experiments to evaluate the performance of our solution.
In our experiments, we left voice messages on Google voice [7] and then later on
analyzed for their legitimacy and spam detection rate. In addition to these man-
ually deposited voice messages, three popular TTS systems are used to generate
various voice messages with different speakers in different sizes. Eight speakers
were selected from AT&T Natural Voices R© TTS system [1]. Twelve speakers
were selected from Cepstral engine [3], as a TTS system that makes realistic
synthetic voices. Moreover, ten speakers were selected from PlainTalk [22], the
advanced built-in TTS technology of Mac OS. These thirty selected speakers
have different accents (such as American, British or Indian English), different
sex (male and female) with ages ranging from 10 to 60 years old.

5.1 Arrival of Same Content Voice Messages

This is a most generic spam attack scenario where a spammer repeatedly sends
the same spam message to many of the subscribers at the same time. If a newly
arrived voice message matches with any of the signatures stored in the database,
the message is categorized as a spam message.

Ten totally different text messages with different size and content were con-
verted to voice messages spoken by the thirty above mentioned different speakers
to form 10 different sets of 30 voice spam messages with same content. All of
these 300 different voice messages were first segmented into small voiced speech
segments. Then the RASTA-PLP spectral matrices for all segments were calcu-
lated as well. After randomly selecting 3 voice messages of different speakers out
of total 30 messages from each set of speech messages (with same content), a
database with 30 entries were generated. For each sub-experiment, this process
was repeated 10 times and each time one voice message from one of 10 sets is
selected to check if it is spam. Iterating the sub-experiment 10 times forms a
complete experiment. To take average, the complete experiment was conducted
three times and the results are summarized in Table 1:

In our experiments, we found that our speaker independent spam detection
algorithm can detect similar content message with 91% accuracy while gener-
ating 0.67% false positive rate and 8.33% false negative rate. However, if the
newly arrived message does not match with any of the spam signatures stored in
the database, we recorded its signature and observed if this signature matches
with any of the future deposited messages within a predefined time interval ofΔT
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Table 1. False Positive and False Negative rates of Voice Message Content Filtering

Case Correct False Positive False Negative

#1 91 0 9
#2 87 1 12
#3 95 1 4

(& 5 minutes). The similar message count beyond a threshold value within a
time period can be categorized as an impending spam attack and needs further
analysis.

We are aware that there are some legitimate applications that can generate
calls in bulk. For example, it is possible that an emergency response system
within a company, city or college may call many of the telephone numbers at
the same time alarming about some untoward incidents. It is also possible for a
credit card company to send a prerecorded generic message at a particular time
to many of its customers regarding fraudulent activity in their accounts. In all
such cases, there will be a number of matches (beyond a defined threshold value)
within a predefined time interval ΔT and therefore possibly be labeled as spam
messages without delivering to their respective mailboxes.

These legitimate call scenarios may cause false positives. To avoid such false
positives, before labeling these legitimate voice messages as spam, our Bayesian
content filtering method is used to calculate the probability of being spam for
one of the newly deposited voice messages. Moreover, if we are provided with
the calling numbers and the originating source IP addresses used by these bulk
call applications in advance, then combining the SIP signaling information and
content filtering approach can also avoid such false positives.

5.2 Hiding Spam Words/Phrases within a Voice Message

In this set of experiments, the Spam Speech Database was built with 137 en-
tries in five clusters: Employment, Financial (Business and Personal), Market-
ing, Medical, and Calls-to-Action. In addition to having one or more cluster
heads, each cluster has several cluster members converted from email spam trig-
ger words/phrases, and some special elements, such as URL address, email ad-
dress and phone number, which have been extracted from our Spam Signature
Database. Table 2 summarizes the details of the clusters in our Spam Speech
Database.

To evaluate the efficiency of the proposed Bayesian based content filtering
method, we recorded 30 various voice messages in different size from mentioned
speakers with different accents, genders, and ages. This set of voice messages
includes three types of voice messages as follows:

(1) Spam voice message: a voice message that includes at least one cluster
head and either at least one special element or significant number of relevant
cluster members. This type of voice messages should be classified as spam.
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Table 2. Cluster details of the Spam Speech Database

Cluster # of cluster members # of special elements

Employment 24 4
Financial (Business) 15 2
Financial (Personal) 18 2

Marketing 35 5
Medical 18 3

Calls-to-Action 9 2

(2) Doubtful voice message: a voice message that includes at least one cluster
head but neither special element nor significant number of relevant cluster mem-
bers. Although this type of voice messages could be classified as either spam or
non-spam, our system classifies it as non-spam to reduce the false positives. In
other words, a few relevant words/phrases from a cluster of the Spam Speech
Database do not classify a deposited message as spam. There have to be enough
words/phrases with a high spamicity to outweigh the rest of the voice message
that includes words/phrases with a low spamicity. For example, a voice message
from your spouse taking out a second mortgage on the house should not be
misclassified as spam.

(3) Non-spam voice message: a voice message that does not include even one
cluster head. This type of voice messages should be classified as non-spam.

Our Bayesian based spam detection method is used to classify the test set of
voice messages. The results show that the method can correctly classify 83.33%
of voice messages while 13.33% of either non-spam or doubtful voice messages
are misclassified as spam and 20% of spam voice messages are not detected. We
further looked into the results and details of the method to find the causes of
these false positives and false negatives. It is discovered that the problem arises
when voice messages are deposited by speakers with accents rather than US
English, such as British or Indian English. Since the entries of our Spam Speech
Database are converted by Crystal, a US native English speaker from spam
email world, the dissimilarity score computed by our DTW based algorithm is
not dependable enough to compare the small-size speech words of those speakers
with different accents.

6 Related Work

The SIP IETF working group has published a couple of informational drafts
proposing (1) computational puzzles to reduce spam in SIP environments and
(2) an extension of SIP protocol to send user’s feedback information to the
SPIT identification system [12,14]. To some extent, the combination of user’s
whitelist with the Turing tests or computational puzzles can prevent spam calls.
However, the capability of a SIP UA to solve the computational puzzle relies
on its computing resources. Therefore, it cannot be ignored that a spammer can
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potentially have significantly more resources than a normal user. The solving
of audio Turing tests requires caller’s time and manual intervention. Still, the
Turing tests cannot be a solution for deaf (or blind) users and can be thwarted by
employing cheap labor. Recently, a number of products such as Sipera’s IPCS [19]
and NEC’s VoIP SEAL [11] incorporate audio Turing test to solve the voice spam
problem. However, an attacker may abuse these security devices as reflectors
and amplifiers to launch a stealthy DDoS attack [16]. Now we review some other
related work on SPIT prevention.

Inferring Spoken Words. The closest work to our approach is a method in
which the spam detection module detects spoken words within an established
voice stream. The most intuitive way to detect a spam message is to use “speech-
to-text” engine, where deposited voice messages can be converted to text format
and then the well-known email filtering approaches can be used for detection.
However, the performance of speech-to-text engine is largely depends on speaker,
speaking style, ambient environment, and language. Because of the high error
rate, this approach is still far away to become a commercially viable solution to
filter voice spam messages.

Collaborative Approach. Google Voice [7] has a feature to report calls as spam
and block future calls from that number. This is a reactive approach requiring
spam call to be received by a user and then block that number. It has a few
drawbacks to be applicable in telecommunication networks: (1) what will happen
if the spam message is generated from a spoofed number, e.g., every time a new
telephone number is used to send a spam message; (2) the current generation
of hardphones do not provide any button to send feedback about received spam
calls; (3) it is based on inferring spoken words and thus suffers from the same
drawback as discussed above; and (4) there is no previous study on what will
happen if the message content itself mutates (i.e., spam messages use different
accents or male/female speakers), making it difficult to infer spoken words.

Content Analysis. The V-Priorities [8] system developed by Microsoft is ex-
plored to filter spam calls. V-Priorities works on three levels: first, analysis ex-
amines the prosody – rhythm, syllabic rate, pitch, and length of pauses – of a
caller’s voice; secondly, rudimentary word and phrase recognition is done to spot
target words that could indicate the nature of a call; and finally, at the third
level analysis involves metadata, such as the time and length of a message. The
voice content analysis does not require maintenance of caller’s call history and
remains independent of signaling. However, this approach suffers from scalability
issue since it is difficult to monitor hundreds of voice streams simultaneously.
The real-time content analysis is an exceedingly difficult task. By the time, calls
are analyzed to be spam calls, it has already affected the receiver (human re-
cipient or voice mailbox). The prosody analysis of machine generated voice may
give different results compared to human generated voice. As mentioned earlier,
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inferring spoken words makes it error-prone and its success largely depends upon
users, ambient environment, and language.

Black/Whitelists, Trust and Reputation System. The unwanted callers
and domains are blacklisted so that their future calls can be filtered as spam
calls. By contrast, the known callers are put in a whitelist and the calls from
such callers are given preference by allowing them to go through. The trust and
reputation system is used in conjunction with black/whitelists. The social net-
work mechanism is used to derive a reputation value for a caller. Dantu et al. [4]
used the Bayesian algorithm to compute the reputation value of a caller based on
its past behavior and callee’s feedback. Rebahi et al. [13] derived caller’s repu-
tation value by consulting SIP repositories along the call path from call’s source
to its destination. As an anti-spam solution, Sipera’s IPCS [19] also relies on
caller’s reputation value. These solutions can block the spam call during the call
setup phase. However, the derivation of caller’s reputation value requires build-
ing a social network. The notion of user’s feedback requires the modification of
SIP clients and an extension of SIP protocol [12]. The construction of a whitelist
suffers from the introduction problem and the calculation of a reputation value
is vulnerable to “bad-mouthing attacks”, where malicious users may collude and
provide unfair ratings for a particular caller. Furthermore, these schemes rely on
caller’s identity which can be spoofed.

Call Duration-Based Approach. Sengar et al. [17] observed the significance
of call duration in spam detection and raised a fundamental question about how
small it could be for normal conversations. Their proposed statistical approach
lacks the consideration of those calls that are hidden behind a firewall, SBC or
B2BUA agents. Balasubramaniyan et al. [2] used the call duration to develop
call credentials. A caller provides a call credential to the callee when he makes
a call. However, a spammer could set up at least two accounts to build call
credentials by calling each other and then later on use these trusted accounts to
launch spam attacks.

Recently, Wu et al. [23] proposed a spam detection approach involving user-
feedback and semi-supervised clustering technique to differentiate between spam
and legitimate calls. However, the current generation of telephone sets do not
provide an option to give feedback of a call to service provider’s system. Sengar
et al. [18] used callers calling behavior (day and time of calling, call duration
etc.) to detect an onslaught of spam attack. However, it is difficult to capture
calling pattern for each of the subscribers and, being an after-the-fact method,
by the time we detect a spam attack many of the subscribers must have already
been affected by the spam.

7 Conclusion

Although there are very few reported incidents of voice spam today, with the
growth of VoIP and its openness, the voice spam could become a serious threat
in the near future. The heart of the problem lies in the fact that a spammer
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can send unsolicited advertisements and messages with low or no cost while be-
ing anonymous. Unfortunately, many of the mechanisms which work for email
spam fail completely in the context of VoIP. Most of the previous solutions
against voice spam are proposed to distinguish a legitimate subscriber from a
spammer using SIP signaling messages. Instead of analyzing the SIP signaling
messages to identify the spammer, this paper proposes a speaker independent
speech recognition scheme for content filtering to avoid spam message deposition
on the subscribers’ voice mailboxes. Being a speaker independent, computation-
ally efficient, and scalable solution, our proposed approach can effectively pro-
tect subscribers’ voice mailboxes from spam messages. Our work is evaluated in
real-world experiments. The experimental results show that our spam filtering
approach can successfully classify a voice message into spam with 91% accuracy,
while having 0.67% false positive rate and 8.33% false negative rate.
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