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Abstract. In this paper we present a framework to study evolution of communities
in dynamic networks. A dynamic network is represented by a sequence of static
graphs named as network snapshots. We introduce a distance measure between static
graphs to study similarity among network snapshots and to detect outlier events.
To find a detailed structure within each network snapshot we used a modularity
maximization algorithm based on a fast greedy search extended with a random walk
approach. Community detection often results in a different number of communities
in different network snapshots. To make communities evolution studies feasible we
propose a greedy method to match clustering labels assigned to different networks.
The suggested framework is applied for analysis of dynamic networks built from
real-world mobile datasets.

1 Introduction

The growing spread of smart phones equipped with various sensors makes it possi-
ble to record rich-content user data and complement it with on-line processing. Mo-
bile data processing could help people to enrich their social interactions and improve
environmental and personal health awareness. At the same time, mobile sensing data
could help service providers to understand better human behavior and its dynamics,
identify complex patterns of users’ mobility, and to develop various service-centric
and user-centric mobile applications and services on-demand. One of the first steps
in analysis of rich-content mobile datasets is to find an underlying structure of users’
interactions and its dynamics by clustering data according to some similarity mea-
sures. In cases when data are given in the relational format (causality or dependency
relations), e.g., as a network consisting of N nodes and E edges representing some
relations among the nodes, then this task may be formulated as a problem of finding
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communities, i.e., groups of nodes which are interconnected more densely among
themselves than with the rest of the network.

The growing interest to the problem of community detection was triggered by
the introduction of a new clustering measure called modularity [1]. The direct mod-
ularity maximization is known as a NP-hard problem and currently a number of
sub-optimal algorithms are proposed, e.g., see [2] and references within. However,
most of these methods address static networks partitioning into disjoint communi-
ties. On the other hand, in practice communities are dynamic and often overlapping
structures. It is especially visible in social networks, where interactions among peo-
ple and their affiliations to different groups are changing in time.

In this paper we present a framework to study evolution of communities in dy-
namic networks. A dynamic network is represented by a sequence of static graphs
named as network snapshots [3]. We introduce a distance measure between static
graphs to study similarity among network snapshots and to detect outlier events.
To find a detailed structure within each network snapshot we used a modularity
maximization algorithm based on a fast greedy search [4, 5] extended with a ran-
dom walk approach [6, 7]. Community detection may results in a different number
of communities in each network snapshot and in a different labeling of communi-
ties within snapshots. To make communities evolution visible we propose a greedy
method to match clustering labels assigned to different network snapshots. The pa-
per is organized as follows. In Section 2 we describe a distance measure between
networks based on graph Laplacian spectra. A greedy algorithm to match partitions
is outlined in Section 3. Analysis of real-world mobile datasets [8] briefly presented
in Section 4, followed by conclusions in Section 5.

2 Distance Measure between Networks

To quantify structural properties of dynamic networks a variety of measures has
been suggested. For example, in [9] a measure based on Katz-centrality is proposed
to analyze time-dependent networks. However, this measure assumes a connected
network, which is not always observed in dynamic social or biological networks
with a set of disjoint subgraphs. On the other hand, substructure-based measures
(e.g, edit-distance, a maximal common subgraph) do not take into account a global
structure of a graph. Furthermore, usually only a part of users (nodes) appear in a
network snapshot, a total set of nodes is obtained only after the aggregation of all
snapshots.

In this paper we use graph spectral methods [10, 11] to characterize global graph
structures (e.g., a graph connectivity, disjoint subgraphs) and compare network
snapshots defined on a common set of nodes. Graph Laplacian is widely used to
describe network structure, but its discrete nature complicates networks compari-
son. To compare network snapshots aggregated over different time periods we used
dynamical systems approach similar to [12, 13].

Let us consider a network of N identical particles (nodes) connected by elastic
strings according to an adjacency matrix A and described by motion equations
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ẍi +
N−1

∑
j=1

Ai j(xi − x j) = 0 , (1)

where xi is the coordinate of the i-th particle. Vibrational frequencies ωa of this
network are defined by eigenvalues γa = −ω2

a of Laplacian LA of the matrix A.
Laplacian spectrum of a graph is often called a vibrational spectrum [10]. In the
following we measure a similarity between two graphs using Laplacian spectra. In
particular, we present a spectral density ρ(ω) of a graph G as a sum of narrow
Lorentz distributions [14]

ρ(ω) = K
N−1

∑
a=1

γ
(ω −ωa)2 + γ2 , (2)

where γ is the width of the Lorentz distributions, K is a normalization coefficient
such that

∫
ρ(ω)dω = 1. Using spectral densities (2), a distance d(Gk,Gm) between

two graphs Gk and Gm may be defined using the mean square error

de(Gk,Gm) =

∫ ∞

0
[ρk(ω)−ρm(ω)]2dω , (3)

or as the inner product of densities

dp(Gk,Gm) = ∑
i

ρk(ωi) ·ρm(ωi). (4)

In this paper we use only (4) for networks comparison.

3 Partitions Matching Algorithm

In general, subgraphs matching is a NP-hard problem. In the following we used a
greedy matching strategy to find sub-optimal solutions. To match partition labels
over all network snapshots we process iteratively two graphs at a time. A simplified
description of one iteration is outlined below.

Greedy algorithm to match partition labels in two graphs

Input: partition matrix P(N,2), where P(:,1) is formed by partition labels of a reference
graph, P(:,2) consists of community labels of a graph to be matched; labels corresponding to
unconnected nodes in P(:,2) are set to zero.

Initialization:
- find indexes of nodes for each of the communities in P(:,1) and P(:,2);
- mark all communities in P(:,2) as unprocessed;

Repeat until all communities are marked as processed in P(:,2):
- select a set of unprocessed communities in P(:,2);
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- find a community c2(k) with the largest number of same labels l(m)
2 in P(:,2);

- set l(swap)
2 = l1(k), where l1(k) corresponds to k-th community label in P(:,1);

- swap labels l(m)
2 and l(swap)

2 in P(:,2);
- mark community c2(k) in P(:,2) as processed.
Stop when a maximum number of iterations is reached.

We tested the algorithm using synthesized networks. The greedy matching finds the
optimal solution in 80% cases, in other cases solutions are close to the optimal. The
complexity of the algorithm is mainly determined by a finite number of selection
operations (sorting and swapping), which is in average O(N logN).

4 Analysis of Real World Datasets

To analyze mobile users behavior and underlying social structure Nokia/Lausanne
organized a mobile data collection campaign (MDCC) at EPFL university campus
[15]. Rich-content datasets (including data from mobile sensors, call-logs, users
proximity, their locations and etc) are collected from about 200 participants during
June/2009-June/2011 [15].

Below we briefly outline applications of the proposed framework for analysis of
dynamic social affinity graphs constructed from MDCC voice-call logs. Fig.1 shows
network snapshots constructed by aggregating voice-call interactions among MDCC
participants during different months. First, we analyzed a similarity among network
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Fig. 1 Dynamics of voice-call activities among MDCC participants during Jan-Dec/2010:
adjacency matrices are aggregated over one month period
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Fig. 2 Normalized vibration spectra (2) of monthly-aggregated network snapshots during
Jan/2010-Feb/2011 (left part). Distance dp among different network snapshots (right part), it
clearly shows an outlier at ΔT13.

snapshots using the proposed distance measures described above. As an illustration,
vibration spectra (2) and distance (4) among monthly-aggregated network snapshots
are depicted at Fig.2, left and right parts, respectively. In particular, at the right part
of Fig.2 one can see a high similarity (dp = 0.9 . . .0.95) in social interactions for
periods ΔT2, . . . , ΔT5 (Feb-May/2010) and ΔT9, . . . , ΔT12 (Sept-Dec/2010). Since
a significant part of MDCC participants are students, these similar behavior pat-
terns most probably correspond to session periods at the EPFL university. Also,
one can clearly see an abnormality in social interaction at ΔT13 (Jan/2011). De-
tailed inspection of the data revealed that during this period most of the participants
were contacted by one of the organizers about the MDCC updated conditions. For
the following analysis we removed network connections relevant to detected outlier
events.

To find communities in each network snapshot we used the algorithm [4] ex-
tended with a random walk [6, 7]. Communities detected in the voice-call network
for data aggregated over the whole data collection campaign are shown by different
colors at Fig.3.

Next, we applied the community detection algorithm for network snapshots built
from monthly data. Connectivity among participants and their numbers are different
at each snapshot, it results in a different number of communities shown by different
colors at each snapshot (Fig.4). Furthermore, even in cases when some nodes (users)
happen to belong to the same community at different time periods, their community
labels assigned by community detection at different network snapshots may not
necessarily coincide. As an illustration, color-coded community labels in different
network snapshots corresponding to different months are shown at Fig.5, left. Dark
blue color here (marked by zero at color bar) indicates no-calls intervals for a user
within the participants set.

Hence, to analyze a community evolution we need to find a set of clustering
labels at each network snapshot which gives the best match to clustering labels
for a reference case. As a reference for MDCC datasets we used snapshots ag-
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Fig. 3 Communities detection in voice-call network; data are aggregated over the whole
MDCC period

Fig. 4 Communities detection in voice-call networks, data are aggregated over one month
period. Upper row: Jan-March/2010; lower row: Apr-June/2010.

gregated over the whole period (cf. Fig.3). Fig.5 (right part) depicts communities
within monthly snapshots with community labels matched to the reference network.
Columns on the left from color bars at Fig.5 present communities detected in the ref-
erence network. All participants are re-ordered according to community labels de-
rived from the reference network. As one can see, after re-labeling the evolution of
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Fig. 5 Evolution of communities in MDCC voice-call social network during 14 months:
color-coded community labels for 134 users in monthly-aggregated snapshots before (left
part) and after (right part) re-labeling. Dark blue color (marked by zero at color bar) indicates
no-calls intervals. The 15th column on both figures presents the assignment of community
labels in the aggregated over the whole period network.

Fig. 6 Evolution of voice-call activity of users within their own communities in time. Exam-
ples of communities with dominating intra- and inter-community activities are shown on the
left and on the right, respectively. Color bar represents community labels.

communities in time became clearly visible. Examples of communities with intra-
and inter-communities interactions are depicted at Fig.6. One of the observations
here is that communities detected in networks built from all aggregated data may
be misleading. For example, the community shown at Fig.6 (right) actually is not
observable in monthly network snapshots. In fact, it hardly may be called a ho-
mogenous community due to prevailing inter-community interactions, while users
interactions within this community are sparse and not stable. It looks that this com-
munity actually is an artifact appeared due to data aggregation over a long period.
On the other hand, the community at Fig.6 (left) reveals the stable structure at both,
monthly and over the year, time scales.

5 Conclusions

In this paper we introduced a distance measure between network snapshots and
applied it to study dynamics of communities in real-world mobile datasets. The
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proposed method allowed us to find outliers and clean the data. Community detec-
tion results in a different number of communities at different network snapshots.
To match clustering labels at different snapshots we proposed a suboptimal greedy
re-labeling method, verified it on synthesized networks and then applied it for
real-world mobile data. The proposed method allowed us to remove artifacts in
community detection due to data aggregation.
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