
Scalable Graph Clustering with Pregel

Bryan Perozzi, Christopher McCubbin, Spencer Beecher, and J.T. Halbert

Abstract. We outline a method for constructing in parallel a collection of local clus-
ters for a massive distributed graph. For a given input set of (vertex, cluster size)
tuples, we compute approximations of personal PageRank vectors in parallel using
Pregel, and sweep the results using MapReduce. We show our method converges
to the serial approximate PageRank, and perform an experiment that illustrates the
speed up over the serial method. We also outline a random selection and deconflic-
tion procedure to cluster a distributed graph, and perform experiments to determine
the quality of clusterings returned.

1 Introduction

Recent developments in clustering algorithms have allowed the extraction of local
clusters using a localized version of the PageRank algorithm known as “Personal-
ized PageRank” [2]. Personal PageRank vectors can be efficiently computed by ap-
proximation. The “Approximate personal PageRank” (APR) approach concentrates
the starting location of a normal PageRank in one vertex of the graph, and limits the
distance that the PageRank walk and teleportation can progress.

One may then sort the surrounding vertices in decreasing order by their degree
weighted probability from the APR vector, and then sweep them to search for the

Bryan Perozzi
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
e-mail: bperozzi@cs.stonybrook.edu

Christopher McCubbin
Sqrrl Data, Inc., Boston, MA, USA
e-mail: chris@sqrrl.com

Spencer Beecher · J.T. Halbert
TexelTek, Inc., Columbia, MD, USA
e-mail: {sbeecher,jhalbert}@texeltek.com

G. Ghoshal et al. (Eds.): Complex Networks IV, SCI 476, pp. 133–144.
DOI: 10.1007/978-3-642-36844-8_13 c© Springer-Verlag Berlin Heidelberg 2013



134 B. Perozzi et al.

presence of a local cluster. This method generates a local good cluster if it exists,
and runs in time proportionate to the size of the cluster.

In this work, we outline a method for constructing a collection of local clusters
of a distributed graph in parallel. There are many possible applications for this tech-
nique, and we illustrate this with an example which uses local clusters to generate a
clustering.

Our process to generate a clustering of a graph is composed of four steps that
represent an extension of the work of Spielman and Teng [18] and Andersen
et. al. [2].

The four steps are as follows.

1. We pick random pairs of source vertices and cluster sizes. The vertices are drawn
by degree from the stationary distribution and the cluster sizes are drawn from a
modification of Spielman’s RandomNibble procedure. [18]

2. We compute the approximate personal PageRank vectors in parallel using Pregel
[13] for each of these seed pairs.

3. We perform a sweep using MapReduce to produce the local clusters.
4. We reconcile cluster overlaps by assigning vertices to the cluster with lowest

conductance. This is an implementation of an idea put forward by Andersen et.
al. in an unpublished technical report.

Our contributions are the algorithms Parallel Approximate PageRank (PAPR) and
MapReduce Sweep(MRSweep), which together can find local clusters in parallel
on large graphs. We refer to their combination as ParallelNibble. We also provide
proofs of convergence and asymptotic running time and experimental investiga-
tion of both the quality of clusterings produced and the algorithm’s scalability on a
variety of real world graphs.

2 Background

We will be considering an undirected graph G= {V,E}where V is the set of vertices
and E ⊆ {V ×V} is the set of edges. Let n = |V | and m = |E|.

As is commonly known many graphs exhibit community structure: that is, it is
possible to group vertices into densely interconnected sets C = {Ci|Ci ⊆ V}. Ex-
tracting these communities from large graphs is something of an art since finding
methods to evaluate the quality of a community is still an active area of research.
We will discuss two of the more popular measures here.

One metric to describe the quality of a community Ci in a graph G is its conduc-
tance, φ(Ci). Intuitively φ(Ci) is the ratio between the perimeter of the cluster and
its size [10]. It is defined as:

φ(Ci) =
|outgoing edges of Ci|

min(Vol(Ci),Vol(V \Ci))



Scalable Graph Clustering with Pregel 135

Where Vol(Ci) = ∑ j∈Ci
degree( j). A lower conductance score therefore indicates a

better cluster; the vertices are more tightly connected to each other than to vertices
outside their community.

The conductance φ(C) of a clustering C in graph G is defined to be the minimum
conductance of its clusters. This measure is favored by many authors (in particular
Spielman et. al. in [18]) because of its connection to global spectral clustering via
the Cheeger inequality. Additionally Andersen et. al. build a local version of the
Cheeger inequality in [2].

Another metric to evaluate the quality of a clustering C is its modularity [16].
Modularity is designed to calculate the ratio of the internal edges of clusters in a
given clustering to the number of edges that would be expected given a random
assignment of edges. We calculate modularity with the following formula:

q(C) = ∑
Ci∈C

{
|E(Ci)|

m
−
(

∑v∈Ci
deg(v)

2m

)2
}

Modularity satisfies the inequality −1
2 ≤ q ≤ 1, and higher modularities are consid-

ered better clusterings.

3 Related Work

In this section we describe current publications in local graph algorithms, clustering,
and distributed systems as it pertains to our work.

Graph Clustering Algorithms. An excellent overview of graph clustering is given
in [17]. With the advent of so-called “big data”, graphs with node and edge cardi-
nalities in the billions or more have become common. This has created the need for
algorithms that are scalable. Beginning with the famous PageRank algorithm, spec-
tral methods for analyzing graphs have gained popularity in the past decade. Local
spectral clustering methods, introduced by Speilman and Teng [18], and advanced
by Andersen et. al. in [2] seek to apply these techniques scalably. The best time
complexity to date comes from EvoCut [3], but does not beat the approximation
guarantee of [2], which our work is an extension of.

An alternative to computing personal PageRank vectors in parallel is presented
by Bahmani et. al. [5], who developed a fast Monte Carlo method for approximating
a personal PageRank vector for every vertex in a graph using MapReduce. Our work
uses a different approximation technique for personal PageRank vectors and is built
on Pregel, but could perhaps be enhanced by their technique.

Local spectral methods and other local methods often require that a seed set of
nodes is chosen. The problem of selecting the best starting vertices for local graph
clustering has attracted some attention in the literature. Methods typically try to
quickly compute metrics associated with good communities, and then use these re-
sults to seed community detection algorithms based on personalized PageRank. Re-
cent work from Gleich and Seshadhri proposes a heuristic based on triangle counting
in the vertex neighborhood [8].



136 B. Perozzi et al.

A simple local graph clustering technique called semi-clustering was discussed
in [13]. Our approach is computed in a different way, is optimizing a different cluster
quality metric, and has different theoretical guarantees.

Nibble: An Algorithm for Local Community Detection. The Nibble algorithm
was first sketched in [18] and more fully described in [19]. The algorithm finds a
good cluster, of a specified size, near a given vertex. It runs nearly linearly in the
size of the desired cluster, but is not guaranteed to succeed (i.e. such a set may not
exist).

Nibble finds local clusters by computing an approximate distribution of a trun-
cated random walk starting at the “seed” vertex. They extend the work of Lovász
and Simonovits [12] to describe a set of conditions that find a low conductance cut
based on these approximations quickly.

The PageRank-Nibble algorithm introduced by Andersen, Chung, Lang [2] im-
proves upon this approach by using personal PageRank vectors to define nearness.
They similarly extend the mixing result of Lovász and Simonovits to PageRank
vectors.

Hadoop, MapReduce, and Giraph. Hadoop is an open-source implementation
of the Distributed File System and MapReduce programming paradigm introduced
in [7]. It has been used to implement a variety of algorithms for large graphs. [21,15]

Bulk Synchronous Parallel (BSP) processing is more flexible parallel computing
framework than MapReduce. In BSP, a set of processors do computations. During
these computations, the processors may send messages to other processors, either
by name or as a broadcast. The computation will proceed until a barrier is reached
in the algorithm. When the processor reaches a barrier, the system ensures that the
processing will not continue until all the processors have reached the barrier. The
system can then be seen as proceeding through a set of supersteps, marked by the
barriers. Usually termination is done when all processors vote to halt at a barrier.
If the virtual processors coincide with the nodes of a graph, we can perform many
useful graph algorithms with BSP. This is the model used by the Pregel system [13]
and later implemented in open source by the Apache Giraph project [4].

4 Algorithm

We use a three step process to compute a clustering of a graph. First, in PAPR, we
compute many approximate personal PageRank vectors in parallel using the Pregel
computing model. Next, in MRSweep, we perform a sweep of the vectors in parallel
using Hadoop. These two algorithms together are a parallel version of the PageR-
ank Nibble algorithm put forward in [2]. A critical difference of our ParallelNibble
algorithm is that it produces local clusters which are overlapping. This prevents us
from clustering graphs with a straightforward application of the Partition algorithm
from [18]. The final step of our process transforms these overlapping local clusters
into a non-overlapping clustering of the graph.



Scalable Graph Clustering with Pregel 137

Parallel Approximate PageRank. The computation of full PageRank has been in-
timately associated with the Pregel framework [14]. Here we present the approach
for computing an approximate personal PageRank vector in Pregel, an outline of
the proof of correctness showing that approximate personal PageRank vectors com-
puted in this way still converge to personal PageRank vectors, and an analysis of the
amount of work required to perform this computation.

Computing an approximate personal PageRank vector. We compute the approxi-
mate personal PageRank vector with a direct parallelization of the approach of An-
dersen, et. al. [2]. We start with a PageRank vector p of all zeros and a residual
vector r initially set to r = χv, i.e. the vector of all zeros except a 1 corresponding
to the source vertex v.

The two inputs to this algorithm are {v}, the set of source nodes, and b, the log
volume of the desired cluster. In the following proofs we follow the notation of [2]
which uses the energy constant ε ∈ [0,1], and the teleportation constant α ∈ [0,1].
The energy constant ε controls the approximation level of the personal PageRank
vector. As the size of the desired cluster grows, a finer approximation is necessary.
In practice, we require ε = O( 1

2b ) and typically initialize α = 0.10.

Algorithm 1. PAPR(v,ε ,α)
At each vertex u, for each superstep:

1. If this vertex has any messages i from a neighbor pushing weight wi from the last step, set
ru = ru +wi

2. If ru
du

> ε perform the push operation at this vertex.
3. If ru

du
< ε , vote to halt.

We define the push operation at a vertex to be:

1. set pu = pu +αru

2. set ru = (1−α)ru/2
3. for each of my neighbors, send a message with weight w = (1−α)ru/2du attached.

In Pregel, each vertex has a corresponding processor and state. We realize the
vectors p and r in our implementation by storing the scalar associated with vertex i in
its processor. Along with pi and ri, we also store the values of the global parameters
m, α , and ε . The algorithm for each vertex in a superstep is given in Algorithm 1.

Run this algorithm until all nodes vote to halt. We will show that PAPR halts
and converges to an approximate PageRank vector; the number of push operations
performed by PAPR is O( 1

εα ); and the complexity of PAPR is O( 1
εαω ) where ω is

the number of workers. The basic ideas of these proofs follow in spirit along with
proofs in [2], except where one step at at time is considered in those proofs, multiple
steps may be performed in parallel by our algorithm. We can show that equivalent
steps will be performed at each vertex as in the original algorithm up to a reordering,
and therefore the same results hold due to the linearity of the functions involved.



138 B. Perozzi et al.

Proof that PAPR Terminates and Converges to Approximate PageRank

Lemma 1. Let U be the set of nodes that experience the push operation in a super-
step. After the push operation, our algorithm will produce the vectors:

p′ = p+ ∑
u∈U

αr(u)χu (1)

r′ = r− ∑
u∈U

{r(u)χu +(1−α)r(u)χuW} (2)

Proof:

It is evident that p′ is of the form described by the definition of the algorithm.
We can simplify the equation for r′ to:

r− ∑
u∈U

{
r(u)χu +

1
2
(1−α)r(u)

(
χu +

χuA
d(u)

)}
(3)

Using this simplification, we can compare components with what the algorithm will
produce. If an element v of r corresponds to a vertex that is not in U or U’s neigh-
bors, then all the components in equation 3 besides the first are 0, so r′(v) = r(v)
like we expect. Otherwise, if v is not in U but is a neighbor of U , equation 3 has as
the components of r(v)

r(v)− ∑
u∈U

{
������0
r(u)χu(v)+

1
2
(1−α)r(u)

(
����

0
χu(v)+

χuA(v)
d(u)

)}

r(v)− ∑
(v,u)∈E

{
1
2
(1−α)r(u)

1
d(u)

}

Which is what you would expect. When v is in U , the χu factors cancel to 1 when
v = u so we get

������0
r(v)− r(v)+

r(v)(1−α)

2
+ ∑

(v,u)∈E

(1−α)r(u)
2d(u)

which is also what we expect, proving the lemma.

Lemma 2. To show that PAPR converges to APR, we need to show that in PAPR as
in APR, p+ pr(α,r) = p′+ pr(α,r′).

Using equation 5 in [2] and the linearity of the pr function,

p+ pr(α,r) =p+ pr(α,r− ∑
u∈U

r(u)χu)+ ∑
u∈U

pr(α,r(u)χu)

=p+ pr(α,r− ∑
u∈U

r(u)χu)+ ∑
u∈U

[αr(u)χu +(1−α)pr(α,r(u)χuW )]



Scalable Graph Clustering with Pregel 139

=p′+ pr(α,r− ∑
u∈U

[r(u)χu)+ (1−α)r(u)χuW ])

=p′+ pr(α,r′)

Lemma 3. Let T be the total number of push operations performed by Parallel Ap-
proximate PageRank, S be the number of supersteps, ω be the number of workers
and di be the degree of the vertex u used in the ith push. We would like to show that
∑T

i=1 di ≤ 1
εα

Proof: The proof follows as the proof in [2]. However, in PAPR many push op-
erations are performed in each superstep. We can number the push operations using
an index i, using the constraint that a push operation in an earlier superstep than
another always has a lower index (numbering within a superstep is arbitrary). Since
we use the same condition to choose vertices to perform the push operation on as
in [2], each individual push operation on a vertex taken by itself still decreases |r|1
by an amount greater than εαdi. The result follows.

Complexity of PAPR. Consider S, the vector of super step lengths.
We partition the algorithm into |S| super steps, such that ∑Si∈S Si = T , i.e. Si

represents the number of pushes in step i. So then

T

∑
i=0

di = ∑
S j∈S

S j

∑
i=0

di =⇒ εα
T

∑
i=0

di = ∑
S j∈S

εα
S j

∑
i=0

di

Consider ω workers, each of which have been assigned |Supp(p)|
ω i.i.d. vertices for

computation in parallel (i.e. the vertices with non-zero entries in p are divided uni-
formly among ω). We can then write the total amount of work in terms of the ex-
pected amount of work performed by each worker per superstep:

εα
T

∑
i=0

di = ∑
S j∈S

εα
S j

∑
i=0

di = ∑
S j∈S

εαω
S j/ω

∑
i=0

di

This implies εαω ∑S j∈S ∑
S j/ω
i=0 di = εα ∑T

i=0 di ≤ 1, as in the proof by [2], because
||r||1 = 1. This would them imply that the total running time satisfies the relationship

∑S j∈S ∑
S j/ω
i=0 di ≤ 1

εαω . Therefore PAPR’s complexity is O( 1
αεω ).

Computing multiple APRs simultaneously. In the previous section, we showed that
we can compute one APR from a starting vertex v using a parallel algorithm. To
compute more APRs from a set of starting points S, we simply store a scalar pager-
ank entry p j and residual entry r j for each starting vertex s j ∈ S, and initialize
appropriately. We then modify the algorithm to compute each scalar quantity in turn
for each starting vertex.

MapReduce Sweep. In [2], each APR vector is converted into a good clustering
using a sweeping technique. One orders the nodes in the graph using the corre-
sponding probability value in the personal PageRank vector divided by the degree:
pn
dn

. If the PageRank vector has a support size equal to a number Np, this creates an



140 B. Perozzi et al.

ordering on the nodes n1,n2, . . . ,nNp and induces sweep sets Sp
j = {ni|i ≤ j}. A set

with good conductance is found by finding the set with minimum conductance out
of these sweep sets, but will output nothing if the set’s conductance is greater than
φmin.

In the graphs that we are considering, we wish to compute many such good sets
in parallel and also leverage the power of the MapReduce framework to aid in the
algorithm computation. Between the Map and Reduce phases of MapReduce, the
keys emitted by the Mapper are both partitioned into separate sets, and within each
partition the keys are sorted according to some comparator. Keys present in a parti-
tion are guaranteed to be processed by the same Reducer, in sorted order.

In our MapReduce implementation of the Sweep algorithm, the Mapper will it-
erate over the vertices output by the Pregel APR algorithm. This output contains the
probability value for each APR vector computed that affected that vertex, as well as
the vertex’s degree. We create keys emitted by the Mapper that are partitioned by the
APR start vertex, and are sorted by the sweep metric pn

dn
. Therefore after the Map

phase the Reducers will receive all the probability and degree values for a single
APR vector, sorted the correct way to produce the sweep sets. The Reducer then can
compute the conductance for each APR’s sweep sets and find the minimum conduc-
tance value. As an additional optimization, the data structure used to compute prior
conductance values can be re-used to quickly compute the conductance value for
the same set with an additional vertex. One simply stores the structures needed to
compute conductance, such as the set of vertices adjacent to the cluster but not in
the cluster, and updates them as new vertices arrive with their neighbor data.

4.1 Clustering Whole Graphs

The ParallelNibble procedure presented above provides a way of computing local
clusters in parallel on distributed graphs. The ability to detect local communities
is useful in a variety of real-world graph analysis tasks when one wants to know
more about a source node (e.g. in a social network such as Twitter, one could model
a node’s local community affiliation and use it to determine interest in trending
topics.)

To further explore the power of these local methods, we now consider the prob-
lem of generating a clustering for an entire graph. In order to do this we require
an approach to generate good candidate tuples of source nodes and cluster sizes to
build local clusters from, and a method for dealing with overlapping clusters.

Selection of source vertices and cluster sizes. As with all local clustering meth-
ods, the selection of the starting vertices will make a significant difference in the
final clustering. To generate tuples (vi,bi) as input for ParallelNibble we take in-
spiration from Spielman and Teng’s RandomNibble [18]. Specifically, for each
desired candidate nibble i, we randomly select a vertex vi from the stationary
distribution and a cluster size bi in the range �logm�

2 , . . . , �logm� according to
Pr[b = i] = 2−i/(1− 2−�logm�).



Scalable Graph Clustering with Pregel 141

This distribution for b is a truncated version of RandomNibble’s; it focuses on
finding larger clusters instead of smaller ones. Choosing b this way makes sense for
performing a coarse clustering of G, but it does have a disadvantage - this approach
will be unable to detect small clusters. A remedy for this is to recursively apply the
same procedure to the generated clusters.

Postprocessing overlapping clusters. Once we have computed the local clusters for
all the source vertices, we wish to convert them into a good global clustering. There
are a variety of ways that these overlapping local clusters could be combined. We
choose a simple method put forward by Andersen, et. al. which has the desirable
property of preserving the minimum conductance of the final clustering. The method
amounts to resolving conflicts in local cluster membership by always assigning a
vertex to its cluster with the least conductance. It is accomplished by the following
procedure.

First, we sort the generated clusters by their conductance. Then we iterate through
the clusters, adding them to our final clustering. As we add each cluster the final
clustering, we mark all of the vertices in it as ‘used’. Clusters with higher (worse)
conductances can not use these vertices again.

This is clearly not optimal for maximizing the modularity of the clustering, but
provides a straightforward approach for dealing with a complicated problem.

5 Experimental Results

Here we present results obtained from running our algorithm on real graphs. We fo-
cus on two types of metrics: the quality of the clustering in terms of conductance or
modularity, and the algorithm scalability measured by the running time vs. number
of worker processes.

Test Environment. We used two different environments, a 12 machine cluster for
the quality of clustering tests, and a 32 machine cluster for the scalability test. Each
machine has 96 GB of RAM, and 2 Intel Xeon processors. The cluster was using
Apache Hadoop 0.20.203 on CentOS 6. All experiments were written in Scala, using
Apache Giraph 0.2.

Evaluation of Clustering. In order to evaluate the quality of the clustering found
by our algorithm, we have benchmarked it against a variety of real world graphs
found from the SNAP Network Datasets1. We compare our results against Louvain
Fast Unfolding [6] a popular modularity optimization algorithm that performs a
local search followed by a cluster contraction phase which repeats until it finds a
maximum modularity. Fast Unfolding is not optimal, but it is quite fast and has
been shown to achieve excellent results on a variety of real world graphs.

We emphasize that Fast Unfolding is an algorithm optimizing a global criteria
(modularity) using local changes, while Nibble and its derivatives are completely
local algorithms optimizing a local criteria (the conductance of local cuts). In some

1 Available: http://snap.stanford.edu/data/index.html

http://snap.stanford.edu/data/index.html


142 B. Perozzi et al.

cases, Fast Unfolding is barely able to run and must be supplied with multiple giga-
bytes of memory. We compare the results of our clustering process against the first
phase of Fast Unfolding before cluster contraction is applied. We refer to this as
the Baseline modularity. The conductance of this clustering we use as our baseline
conductance.

For all these tests, we used the number of Giraph workers ω = 10, the telepor-
tation constant α = 0.10, and the minimum acceptable conductance of MRSweep
φmin = 0.15.

Table 1 shows that PAPR is able to find low conductance clusters, but that the
complete clustering performs worse than the baseline modularity. Potential ways to
improve performance include taking more samples, changing the way sources are
selected, or calculating a more precise PageRank vector.

Table 1 The quality of clusterings produced by our method on some publicly available graph
datasets. We have ignored clusters with φ = 0 (this indicates a disconnected cluster was
discovered). Baseline modularity (q) and baseline φ are derived from a clustering made with
the Fast Unfolding method [6]

Graph Name |V | |E| φ Baseline φ q Baseline q

soc-livejournal 4,847,571 68,993,773 0.0376 0.1764 0.488 0.665527
web-google 875,713 5,105,039 0.027 0.015 0.689 0.76056

web-stanford 281,903 2,312,497 0.017 0.001 0.584 0.815849
amazon0302 262,111 1,234,877 0.109 0.03846 0.617 0.637707
ca-AstroPh 18,772 396,160 0.1507 0.0666 0.244 0.54332
ca-GrQc 5,242 28,980 0.106 0.004 0.538 0.708325

ca-HepPh 12,008 237,010 0.120 0.002 0.473 0.587588
email-Enron 36,692 367,662 0.066 0.15 0.384 0.557363
loc-gowalla 196,591 950,327 0.107 0.1515 0.459 0.639371

oregon1-010526 10,670 22,002 0.145 0.1594 0.438 0.458858
soc-Epinions1 75,879 508,837 0.164 0.2 0.271 0.405964
web-Stanford 281,903 2,312,497 0.022 0.001 0.54 0.81631

wiki-Vote 7,115 103,689 0.178 0.111 0.295 0.42207

PAPR Scalability. To verify the scalability of our local clustering approach we
computed a fixed number of clusters on the biggest graph we considered, soc-
livejournal, and varied the number of workers, ω , available to the Apache Giraph
job. Source vertices were selected randomly, but the cluster size was fixed. Other
parameters are as used earlier. The total time to run the algorithm includes the time
for Giraph to load the graph, and the time to run PAPR. We present the total time
and the PAPR running time in Figure 1.

As expected, increasing the number of workers decreases the running time. Af-
ter a certain number of workers (ω=10 in this case) the synchronization and com-
munication costs begin to dominate the computation, and there is no benefit from
additional parallelization.



Scalable Graph Clustering with Pregel 143

One of the prime contributors to this communication overhead comes from the
difficulty of partitioning graphs which follow a power-law distribution. When faced
with such a graph Pregel randomly assigns the vertices to workers. This results in
most of the edges running between different workers and requires network overhead
for messages passed over these edges. Recent work by Gonzalez et. al. [9] presents
the problem in detail and provides a computational approach using vertex-cuts in-
stead of edge-cuts which allows for much greater parallelization.

Fig. 1 Effects of increas-
ing the number of workers
on running time. Initially,
adding workers has a big
effect, however the synchro-
nization and communication
overhead limits the con-
tributions of workers past
a certain point (here, at
ω = 10).

5 10 15 20 25 30

250

500

750

1,000

1,250

1,500

Number of Workers (ω)

T
im

e
(s

)
Total Run Time
PAPR Run Time

6 Conclusions and Future Work

We have shown that a parallel technique can be used to create Approximate PageR-
ank vectors and turn those vectors into local clusters using the parallel processing
techniques of Pregel and MapReduce. We have shown that the calculation of these
vectors is highly parallelizable and results in significant time savings as workers
are added. This time and memory parallelization allows the use of these local spec-
tral clustering techniques on larger graphs than would traditionally be possible by
simply adding more commodity hardware to the analysis system.

Recent work on community detection [1, 20] shows that allowing communities
to overlap better captures the behavior observed in in real world networks. Methods
based on local clustering have already been used to analyze the profile of network
communities at different size scales [11], and there is reason to believe that these
techniques can aide in other aspects of the analysis of large graphs. We plan to per-
form more scalability analysis of the technique using more hardware and “Internet
scale” graphs reaching into the billions of nodes, where traditional methods have
serious difficulty providing meaningful results.

References

1. Ahn, Y.Y., Bagrow, J.P., Lehmann, S.: Link communities reveal multiscale complexity
in networks. Nature 466(7307), 761–764 (2010)

2. Andersen, R., Chung, F., Lang, K.: Local graph partitioning using pagerank vectors. In:
47th Annual IEEE Symposium on Foundations of Computer Science, FOCS 2006, pp.
475–486. IEEE (2006)



144 B. Perozzi et al.

3. Andersen, R., Peres, Y.: Finding sparse cuts locally using evolving sets, CoRR,
abs/0811.3779 (2008)

4. Apache giraph (February 2012), http://incubator.apache.org/giraph/
5. Bahmani, B., Chakrabarti, K., Xin, D.: Fast personalized pagerank on mapreduce. In:

Proceedings of the 2011 ACM SIGMOD International Conference on Management of
Data, SIGMOD 2011, pp. 973–984. ACM, New York (2011)

6. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Mech, E.L.J.S.: Fast unfolding of com-
munities in large networks. J. Stat. Mech., P10008 (2008)

7. Dean, J., Ghemawat, S.: Mapreduce: simplified data processing on large clusters. Com-
mun. ACM 51(1), 107–113 (2008)

8. Gleich, D.F., Seshadhri, C.: Vertex neighborhoods, low conductance cuts, and good seeds
for local community methods. In: KDD, pp. 597–605 (2012)

9. Gonzalez, J.E., Low, Y., Gu, H., Bickson, D., Guestrin, C.: Powergraph: distributed
graph-parallel computation on natural graphs. In: Proceedings of the 10th USENIX
Conference on Operating Systems Design and Implementation, OSDI 2012, pp. 17–30.
USENIX Association, Berkeley (2012)

10. Kannan, R., Vempala, S., Vetta, A.: On clusterings: Good, bad and spectral. J.
ACM 51(3), 497–515 (2004)

11. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Statistical properties of com-
munity structure in large social and information networks. In: roceedings of the 17th
International Conference on World Wide Web, WWW 2008, pp. 695–704. ACM, New
York (2008)

12. Lovász, L., Simonovits, M.: Random walks in a convex body and an improved volume
algorithm. Random Structures & Algorithms 4(4), 359–412 (1993)

13. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, pp. 135–146. ACM, New York (2010)

14. Malewicz, G., Austern, M.H., Bik, A.J.C., Dehnert, J.C., Horn, I., Leiser, N., Cza-
jkowski, G.: Pregel: a system for large-scale graph processing. In: Proceedings of the
2010 ACM SIGMOD International Conference on Management of Data, SIGMOD
2010, pp. 135–146. ACM, New York (2010)

15. McCubbin, C., Perozzi, B., Levine, A., Rahman, A.: Finding the ’needle’: Locating in-
teresting nodes using the k-shortest paths algorithm in mapreduce. In: 2011 IEEE Inter-
national Conference on Data Mining Workshops, pp. 180–187 (2011)

16. Newman, M.E.J.: Modularity and community structure in networks. Proceedings of the
National Academy of Sciences 103(23), 8577–8582 (2006)

17. Schaeffer, S.E.: Graph clustering. Computer Science Review 1(1), 27–64 (2007)
18. Spielman, D.A., Teng, S.H.: Nearly-linear time algorithms for graph partitioning, graph

sparsification, and solving linear systems. In: Proceedings of the Thirty-Sixth Annual
ACM Symposium on Theory of Computing, pp. 81–90. ACM (2004)

19. Spielman, D.A., Teng, S.-H.: A local clustering algorithm for massive graphs and its
application to nearly-linear time graph partitioning, CoRR, abs/0809.3232 (2008)

20. Yang, J., Leskovec, J.: Structure and overlaps of communities in networks, CoRR,
abs/1205.6228 (2012)

21. Zhao, Z., Wang, G., Butt, A.R., Khan, M., Kumar, V.S., Marathe, M.V.: Sahad: Subgraph
analysis in massive networks using hadoop. In: 2012 IEEE 26th International Parallel &
Distributed Processing Symposium (IPDPS), pp. 390–401. IEEE (2012)

 http://incubator.apache.org/giraph/

	Scalable Graph Clustering with Pregel
	Introduction
	Background
	Related Work
	Algorithm
	Clustering Whole Graphs

	Experimental Results
	Conclusions and Future Work
	References




