


Lecture Notes in Computer Science 7796
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison, UK

Josef Kittler, UK

Alfred Kobsa, USA

John C. Mitchell, USA

Oscar Nierstrasz, Switzerland

Bernhard Steffen, Germany

Demetri Terzopoulos, USA

Gerhard Weikum, Germany

Takeo Kanade, USA

Jon M. Kleinberg, USA

Friedemann Mattern, Switzerland

Moni Naor, Israel

C. Pandu Rangan, India

Madhu Sudan, USA

Doug Tygar, USA

Advanced Research in Computing and Software Science

Subline of Lectures Notes in Computer Science

Subline Series Editors

Giorgio Ausiello, University of Rome ‘La Sapienza’, Italy

Vladimiro Sassone, University of Southampton, UK

Subline Advisory Board

Susanne Albers, University of Freiburg, Germany

Benjamin C. Pierce, University of Pennsylvania, USA

Bernhard Steffen, University of Dortmund, Germany

Madhu Sudan, Microsoft Research, Cambridge, MA, USA

Deng Xiaotie, City University of Hong Kong

Jeannette M. Wing, Carnegie Mellon University, Pittsburgh, PA, USA



David Basin John C. Mitchell (Eds.)

Principles of Security
and Trust

Second International Conference, POST 2013
Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2013
Rome, Italy, March 16-24, 2013. Proceedings

13



Volume Editors

David Basin
ETH Zurich, Department of Computer Science
Universitätsstr. 6, CNB F, 8092 Zürich, Switzerland
E-mail: basin@inf.ethz.ch

John C. Mitchell
Stanford University
Department of Computer Science
Gates 476, Stanford, CA 94305-9045, USA
E-mail: mitchell@cs.stanford.edu

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-36829-5 e-ISBN 978-3-642-36830-1
DOI 10.1007/978-3-642-36830-1
Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2013931844

CR Subject Classification (1998): C.2.0, C.2.2, E.3, K.4.4, K.6.5

LNCS Sublibrary: SL 4 – Security and Cryptology

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in ist current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.
The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply,
even in the absence of a specific statement, that such names are exempt from the relevant protective laws
and regulations and therefore free for general use.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Foreword

ETAPS 2013 is the sixteenth instance of the European Joint Conferences on
Theory and Practice of Software. ETAPS is an annual federated conference that
was established in 1998 by combining a number of existing and new conferences.
This year it comprised six sister conferences (CC, ESOP, FASE, FOSSACS,
POST, TACAS), 20 satellite workshops (ACCAT, AiSOS, BX, BYTECODE,
CerCo, DICE, FESCA, GRAPHITE, GT-VMT, HAS, Hot-Spot, FSS, MBT,
MEALS, MLQA, PLACES, QAPL, SR, TERMGRAPH and VSSE), three in-
vited tutorials (e-education, by John Mitchell; cyber-physical systems, by Martin
Fränzle; and e-voting by Rolf Küsters) and eight invited lectures (excluding those
specific to the satellite events).

The six main conferences received this year 627 submissions (including 18
tool demonstration papers), 153 of which were accepted (6 tool demos), giving
an overall acceptance rate just above 24%. (ETAPS 2013 also received 11 sub-
missions to the software competition, and 10 of them resulted in short papers
in the TACAS proceedings). Congratulations therefore to all the authors who
made it to the final programme! I hope that most of the other authors will still
have found a way to participate in this exciting event, and that you will all
continue to submit to ETAPS and contribute to making it the best conference
on software science and engineering.

The events that comprise ETAPS address various aspects of the system de-
velopment process, including specification, design, implementation, analysis, se-
curity and improvement. The languages, methodologies and tools that support
these activities are all well within its scope. Different blends of theory and prac-
tice are represented, with an inclination towards theory with a practical moti-
vation on the one hand and soundly based practice on the other. Many of the
issues involved in software design apply to systems in general, including hardware
systems, and the emphasis on software is not intended to be exclusive.

ETAPS is a confederation in which each event retains its own identity, with
a separate Programme Committee and proceedings. Its format is open-ended,
allowing it to grow and evolve as time goes by. Contributed talks and system
demonstrations are in synchronised parallel sessions, with invited lectures in
plenary sessions. Two of the invited lectures are reserved for ‘unifying’ talks on
topics of interest to the whole range of ETAPS attendees. The aim of cramming
all this activity into a single one-week meeting is to create a strong magnet for
academic and industrial researchers working on topics within its scope, giving
them the opportunity to learn about research in related areas, and thereby to
foster new and existing links between work in areas that were formerly addressed
in separate meetings.

ETAPS 2013 was organised by the Department of Computer Science of
‘Sapienza’ University of Rome, in cooperation with



VI Foreword

� European Association for Theoretical Computer Science (EATCS)
� European Association for Programming Languages and Systems (EAPLS)
� European Association of Software Science and Technology (EASST).

The organising team comprised:

General Chair: Daniele Gorla;
Conferences: Francesco Parisi Presicce;
Satellite Events: Paolo Bottoni and Pietro Cenciarelli;
Web Master: Igor Melatti;
Publicity: Ivano Salvo;
Treasurers: Federico Mari and Enrico Tronci.

Overall planning for ETAPS conferences is the responsibility of its Steering Com-
mittee, whose current membership is:

Vladimiro Sassone (Southampton, chair), Mart́ın Abadi (Santa Cruz), Erika
Ábrahám (Aachen), Roberto Amadio (Paris 7), Gilles Barthe (IMDEA-
Software), David Basin (Zürich), Saddek Bensalem (Grenoble), Michael O’Boyle
(Edinburgh), Giuseppe Castagna (CNRS Paris), Albert Cohen (Paris), Vittorio
Cortellessa (L’Aquila), Koen De Bosschere (Gent), Ranjit Jhala (San Diego),
Matthias Felleisen (Boston), Philippa Gardner (Imperial College London), Ste-
fania Gnesi (Pisa), Andrew D. Gordon (MSR Cambridge and Edinburgh),
Daniele Gorla (Rome), Klaus Havelund (JLP NASA Pasadena), Reiko Heckel
(Leicester), Holger Hermanns (Saarbrücken), Joost-Pieter Katoen (Aachen),
Paul Klint (Amsterdam), Jens Knoop (Vienna), Steve Kremer (Nancy), Gerald
Lüttgen (Bamberg), Tiziana Margaria (Potsdam), Fabio Martinelli (Pisa), John
Mitchell (Stanford), Anca Muscholl (Bordeaux), Catuscia Palamidessi (INRIA
Paris), Frank Pfenning (Pittsburgh), Nir Piterman (Leicester), Arend Rensink
(Twente), Don Sannella (Edinburgh), Zhong Shao (Yale), Scott A. Smolka
(Stony Brook), Gabriele Taentzer (Marburg), Tarmo Uustalu (Tallinn), Dániel
Varró (Budapest) and Lenore Zuck (Chicago).

The ordinary running of ETAPS is handled by its management group com-
prising: Vladimiro Sassone (chair), Joost-Pieter Katoen (deputy chair and pub-
licity chair), Gerald Lüttgen (treasurer), Giuseppe Castagna (satellite events
chair), Holger Hermanns (liaison with local organiser) and Gilles Barthe (indus-
try liaison).

I would like to express here my sincere gratitude to all the people and or-
ganisations that contributed to ETAPS 2013, the Programme Committee chairs
and members of the ETAPS conferences, the organisers of the satellite events,
the speakers themselves, the many reviewers, all the participants, and Springer-
Verlag for agreeing to publish the ETAPS proceedings in the ARCoSS subline.

Last but not least, I would like to thank the organising chair of ETAPS
2013, Daniele Gorla, and his Organising Committee, for arranging for us to have
ETAPS in the most beautiful and historic city of Rome.



Foreword VII

My thoughts today are with two special people, profoundly different for style and
personality, yet profoundly similar for the love and dedication to our discipline,
for the way they shaped their respective research fields, and for the admiration
and respect that their work commands. Both are role-model computer scientists
for us all.

ETAPS in Rome celebrates Corrado Böhm. Corrado turns 90 this year, and
we are just so lucky to have the chance to celebrate the event in Rome, where
he has worked since 1974 and established a world-renowned school of computer
scientists. Corrado has been a pioneer in research on programming languages and
their semantics. Back in 1951, years before FORTRAN and LISP, he defined
and implemented a metacircular compiler for a programming language of his
invention. The compiler consisted of just 114 instructions, and anticipated some
modern list-processing techniques.

Yet, Corrado’s claim to fame is asserted through the breakthroughs expressed
by the Böhm-Jacopini Theorem (CACM 1966) and by the invention of Böhm-
trees. The former states that any algorithm can be implemented using only
sequencing, conditionals, and while-loops over elementary instructions. Böhm
trees arose as a convenient data structure in Corrado’s milestone proof of the
decidability inside the λ-calculus of the equivalence of terms in β-η-normal form.

Throughout his career, Corrado showed exceptional commitment to his roles
of researcher and educator, fascinating his students with his creativity, passion
and curiosity in research. Everybody who has worked with him or studied un-
der his supervision agrees that he combines an outstanding technical ability and
originality of thought with great personal charm, sweetness and kindness. This
is an unusual combination in problem-solvers of such a high calibre, yet an-
other reason why we are ecstatic to celebrate him. Happy birthday from ETAPS,
Corrado!

ETAPS in Rome also celebrates the life and work of Kohei Honda. Kohei
passed away suddenly and prematurely on December 4th, 2012, leaving the sad-
dest gap in our community. He was a dedicated, passionate, enthusiastic scientist
and –more than that!– his enthusiasm was contagious. Kohei was one of the few
theoreticians I met who really succeeded in building bridges between theoreti-
cians and practitioners. He worked with W3C on the standardisation of web ser-
vices choreography description languages (WS-CDL) and with several companies
on Savara and Scribble, his own language for the description of application-level
protocols among communicating systems.

Among Kohei’s milestone research, I would like to mention his 1991 epoch-
making paper at ECOOP (with M. Tokoro) on the treatment of asynchrony in
message passing calculi, which has influenced all process calculi research since. At
ETAPS 1998 he introduced (with V. Vasconcelos and M. Kubo) a new concept
in type theories for communicating processes: it came to be known as ‘session
types,’ and has since spawned an entire research area, with practical and multi-
disciplinary applications that Kohei was just starting to explore.



VIII Foreword

Kohei leaves behind him enormous impact, and a lasting legacy. He is irre-
placeable, and I for one am proud to have been his colleague and glad for the
opportunity to arrange for his commemoration at ETAPS 2013.

My final ETAPS ‘Foreword ’ seems like a good place for a short reflection on
ETAPS, what it has achieved in the past few years, and what the future might
have in store for it.

On April 1st, 2011 in Saarbrücken, we took a significant step towards the
consolidation of ETAPS: the establishment of ETAPS e.V. This is a non-profit
association founded under German law with the immediate purpose of sup-
porting the conference and the related activities. ETAPS e.V. was required for
practical reasons, e.g., the conference needed (to be represented by) a legal body
to better support authors, organisers and attendees by, e.g., signing contracts
with service providers such as publishers and professional meeting organisers.
Our ambition is however to make of ‘ETAPS the association’ more than just
the organisers of ‘ETAPS the conference’. We are working towards finding a
voice and developing a range of activities to support our scientific community, in
cooperation with the relevant existing associations, learned societies and inter-
est groups. The process of defining the structure, scope and strategy of ETAPS
e.V. is underway, as is its first ever membership campaign. For the time being,
ETAPS e.V. has started to support community-driven initiatives such as open
access publications (LMCS and EPTCS) and conference management systems
(Easychair), and to cooperate with cognate associations (European Forum for
ICT).

After two successful runs, we continue to support POST, Principles of Secu-
rity and Trust, as a candidate to become a permanent ETAPS conference. POST
was the first addition to our main programme since 1998, when the original five
conferences met together in Lisbon for the first ETAPS. POST resulted from
several smaller workshops and informal gatherings, supported by IFIP WG 1.7,
and combines the practically important subject of security and trust with strong
technical connections to traditional ETAPS areas. POST is now attracting in-
terest and support from prominent scientists who have accepted to serve as PC
chairs, invited speakers and tutorialists. I am very happy about the decision we
made to create and promote POST, and to invite it to be a part of ETAPS.

Considerable attention was recently devoted to our internal processes in order
to streamline our procedures for appointing Programme Committees, choosing
invited speakers, awarding prizes and selecting papers; to strengthen each mem-
ber conference’s own Steering Group, and, at the same time, to strike a balance
between these and the ETAPS Steering Committee. A lot was done and a lot
remains to be done.

We produced a handbook for local organisers and one for PC chairs. The
latter sets out a code of conduct that all the people involved in the selection of
papers, from PC chairs to referees, are expected to adhere to. From the point
of view of the authors, we adopted a two-phase submission protocol, with fixed



Foreword IX

deadlines in the first week of October. We published a confidentiality policy to
set high standards for the handling of submissions, and a republication policy
to clarify what kind of material remains eligible for submission to ETAPS after
presentation at a workshop. We started an author rebuttal phase, adopted by
most of the conferences, to improve the author experience. It is important to
acknowledge that – regardless of our best intentions and efforts – the quality
of reviews is not always what we would like it to be. To remain true to our
commitment to the authors who elect to submit to ETAPS, we must endeavour
to improve our standards of refereeing. The rebuttal phase is a step in that
direction and, according to our experience, it seems to work remarkably well
at little cost, provided both authors and PC members use it for what it is.
ETAPS has now reached a healthy paper acceptance rate around the 25% mark,
essentially uniformly across the six conferences. This seems to me to strike an
excellent balance between being selective and being inclusive, and I hope it will
be possible to maintain it even if the number of submissions increases.

ETAPS signed a favourable three-year publication contract with Springer
for publication in the ARCoSS subline of LNCS. This was the result of lengthy
negotiations, and I consider it a good achievement for ETAPS. Yet, publication of
its proceedings is possibly the hardest challenge that ETAPS – and indeed most
computing conferences – currently face. I was invited to represent ETAPS at
a most interesting Dagstuhl Perspective Workshop on the ‘Publication Culture
in Computing Research’ (seminar 12452). The paper I gave there is available
online from the workshop proceedings, and illustrates three of the views I formed
also thanks to my experience as chair of ETAPS, respectively on open access,
bibliometrics, and the roles and relative merits of conferences versus journal
publications. Open access is a key issue for a conference like ETAPS. Yet, in my
view it does not follow that we can altogether dispense with publishers – be they
commercial, academic, or learned societies – and with their costs. A promising
way forward may be based on the ‘author-pays ’ model, where publications fees
are kept low by resorting to learned-societies as publishers. Also, I believe it is
ultimately in the interest of our community to de-emphasise the perceived value
of conference publications as viable – if not altogether superior – alternatives to
journals. A large and ambitious conference like ETAPS ought to be able to rely
on quality open-access journals to cover its entire spectrum of interests, even if
that means promoting the creation of a new journal.

Due to its size and the complexity of its programme, hosting ETAPS is an
increasingly challenging task. Even though excellent candidate locations keep
being volunteered, in the longer run it seems advisable for ETAPS to provide
more support to local organisers, starting e.g., by taking direct control of the
organisation of satellite events. Also, after sixteen splendid years, this may be
a good time to start thinking about exporting ETAPS to other continents. The
US East Coast would appear to be the obvious destination for a first ETAPS
outside Europe.

The strength and success of ETAPS comes also from presenting – regardless
of the natural internal differences – a homogeneous interface to authors and



X Foreword

participants, i.e., to look like one large, coherent, well-integrated conference
rather than a mere co-location of events. I therefore feel it is vital for ETAPS to
regulate the centrifugal forces that arise naturally in a ‘union’ like ours, as well
as the legitimate aspiration of individual PC chairs to run things their way. In
this respect, we have large and solid foundations, alongside a few relevant issues
on which ETAPS has not yet found agreement. They include, e.g., submission
by PC members, rotation of PC memberships, and the adoption of a rebuttal
phase. More work is required on these and similar matters.

January 2013 Vladimiro Sassone
ETAPS SC Chair

ETAPS e.V. President



Preface

The second conference on Principles of Security and Trust (POST) was held
March 18–19, 2013, in Rome, Italy, as part of ETAPS 2013. POST attracted 59
submissions, from which the committee selected 14. Aside from these contribu-
tions, POST also featured an invited talk given by Jean-Pierre Hubaux, of the
Swiss Federal Institute of Technology, Lausanne. The proceedings include the
selected papers as well as abstracts from ETAP’s two unifying speakers, Gilles
Barthe and Cédric Fournet.

We would like to thank our dedicated and collegial Program Committee, the
ETAPS Steering Committee, the ETAPS Local Organizing Committee, and our
invited speakers for their help in making this conference a success.

January 2013 David Basin
John Mitchell



Organization

Program Committee

Martin Abadi Microsoft Research and UCSC, USA
Alessandro Acquisti Carnegie Mellon University, USA
Gilles Barthe IMDEA Software Institute, Spain
Lujo Bauer Carnegie Mellon University, USA
Bruno Blanchet INRIA, Ecole Normale Supérieure, CNRS,

France
Jan Camenisch IBM Research, Zurich Research Laboratory,

Switzerland
Mihai Christodorescu IBM T.J. Watson Research Center, USA
Veronique Cortier CNRS, Loria, France
Pierpaolo Degano Università di Pisa, Italy
Deepak Garg Max Planck Institute for Software Systems,

Germany
Andy Gordon Microsoft Research, UK
Joshua Guttman Worcester Polytechnic Institute, USA
Steve Kremer INRIA Nancy, Loria, France
Ralf Kuesters University of Trier, Germany
Boris Köpf IMDEA Software, Spain
Benjamin Livshits Microsoft Research, USA
Gavin Lowe University of Oxford, UK
Sjouke Mauw University of Luxembourg, UK
Sebastian A. Mödersheim DTU, Denmark
Alexander Pretschner Karlsruhe Institute of Technology (KIT),

Germany
Andrei Sabelfeld Chalmers University of Technology, Sweden
Dominique Unruh Saarland University, Germany
Luca Viganò University of Verona, Italy

Additional Reviewers

Armando, Alessandro
Bana, Gergei
Birgisson, Arnar
Bodei, Chiara
Ciancia, Vincenzo
Clarkson, Michael
Crespo, Juan Manuel

Dong, Naipeng
Dupressoir, Francois
Ferrari, Gianluigi
Fredrikson, Matt
Gibson-Robinson, Thomas
Haralambiev, Kris
Hedin, Daniel



XIV Organization

Jia, Limin
Jonker, Hugo
Kelbert, Florian
Kifer, Daniel
Kordy, Barbara
Kumari, Prachi
Lopez, Javier
Mezzetti, Gianluca
Nori, Aditya

Rafnsson, Willard
Sanchez, Cesar
Truderung, Tomasz
Tuengerthal, Max
Vogt, Andreas
Warinschi, Bogdan
Wüchner, Tobias
Zhang, Chenyi



Computer-Aided Cryptographic Proofs

(Invited Talk)

Gilles Barthe

IMDEA Software Institute

Cryptography plays a central role in the security of computer and communica-
tion systems. Yet, designing, implementing, and deploying cryptographic con-
structions is notoriously difficult, mainly for two factors. First, security proofs
typically rest on elaborate arguments from information theory, complexity the-
ory, and possibly algebra or number theory. Second, attacks frequently exploit
characteristics such as execution time or power consumption, as well as imple-
mentation issues, such as error messages, rounding errors, or message formatting,
that are elided in proofs. Over the last thirty years, cryptographers have strived
to develop models and proof methods that simultaneously address these fac-
tors. Thanks to these efforts, it is becoming possible to provide rigorous security
proofs for detailed, “real world”, descriptions of cryptographic standards. On
the downside, security proofs are becoming extremely complex, making formal
verification an appealing alternative for building and verifying them.

Over the last six years, we have built two tools for computer-aided crypto-
graphic proofs: CertiCrypt [2] and EasyCrypt [1]. Both tools adopt the code-based
approach, in which cryptographic schemes and assumptions are modeled as prob-
abilistic programs, or games. Moreover, they use deductive verification, and in
particular relational program logics, to support the game-based approach, in
which security is proved using a sequence of games and probability claims about
pairs of games. We have used both tools to verify a representative set of em-
blematic cryptographic constructions, including public-key encryption schemes,
modes of operation, signature schemes, hash function designs, zero-knowledge
proofs.

Our most recent work intends to accomodate real world descriptions of cryp-
tographic constructions, and to provide support for modular proofs. We have also
started to use CertiCrypt and EasyCrypt as certifying back-ends for cryptographic
compilers and synthesizers.

References

1. Barthe, G., Grégoire, B., Heraud, S., Béguelin, S.Z.: Computer-Aided Security
Proofs for the Working Cryptographer. In: Rogaway, P. (ed.) CRYPTO 2011. LNCS,
vol. 6841, pp. 71–90. Springer, Heidelberg (2011)

2. Barthe, G., Grégoire, B., Béguelin, S.Z.: Formal certification of code-based cryp-
tographic proofs. In: 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2009, pp. 90–101. ACM, New York (2009)



An Implementation of TLS 1.2

with Verified Cryptographic Security

(Invited Talk)

Cédric Fournet1, Karthikeyan Bhargavan3, Markulf Kohlweiss1,
Alfredo Pironti2,3, and Pierre-Yves Strub2,4

1 Microsoft Research
2 MSR-INRIA Joint Centre

3 INRIA
4 IMDEA

Abstract. SSL/TLS is possibly the most used and most studied proto-
col for secure communications, with a 19-year history of flaws and fixes,
ranging from its protocol logic to its cryptographic design, and from the
Internet standard to its diverse implementations.

We develop a new, verified, reference implementation of TLS 1.2.
Our code fully supports its wire formats, ciphersuites, sessions and con-
nections, re-handshakes and resumptions, alerts and errors, and data
fragmentation, as prescribed in the RFCs; it interoperates with main-
stream web browsers and servers. At the same time, our code is carefully
structured to enable its modular, automated verification, from its main
API down to computational assumptions on its cryptographic algorithms
such as AES and RSA.

Our implementation is written in F# and specified in F7. We present
security specifications for its main components, such as authenticated
stream encryption for the record layer and key establishment for the
handshake. We describe their automated verification using the F7 refine-
ment typechecker. To this end, we equip each cryptographic primitive
and construction of TLS with a new typed interface that captures its
security properties, and we gradually replace concrete implementations
with ideal functionalities. We finally typecheck the protocol state ma-
chine, and thus obtain precise security theorems for TLS, as it is imple-
mented and deployed. We also revisit classic attacks and report a few
new ones.

References

1. Implementing TLS with verified cryptographic security: source code, technical re-
port, and details at http://msr-inria.inria.fr/projects/sec/tls (2012)

2. Dierks, T., Rescorla, E.: The transport layer security (TLS) protocol version 1.2.
RFC 5246 (2008)



Table of Contents

Invited Talks

Computer-Aided Cryptographic Proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XV
Gilles Barthe

An Implementation of TLS 1.2 with Verified Cryptographic Security . . . . XVII
Cédric Fournet, Karthikeyan Bhargavan, Markulf Kohlweiss,
Alfredo Pironti, and Pierre-Yves Strub

Regular Papers

Formal Analysis of Privacy for Routing Protocols in Mobile Ad Hoc
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Rémy Chrétien and Stéphanie Delaune

Practical Everlasting Privacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
Myrto Arapinis, Véronique Cortier, Steve Kremer, and Mark Ryan

A Differentially Private Mechanism of Optimal Utility for a Region
of Priors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Ehab ElSalamouny, Konstantinos Chatzikokolakis, and
Catuscia Palamidessi

Proved Generation of Implementations from Computationally Secure
Protocol Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

David Cadé and Bruno Blanchet

Sound Security Protocol Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
Binh Thanh Nguyen and Christoph Sprenger

Logical Foundations of Secure Resource Management in Protocol
Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and
Matteo Maffei

Keys to the Cloud: Formal Analysis and Concrete Attacks on Encrypted
Web Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

Chetan Bansal, Karthikeyan Bhargavan,
Antoine Delignat-Lavaud, and Sergio Maffeis

Lazy Mobile Intruders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147
Sebastian A. Mödersheim, Flemming Nielson, and
Hanne Riis Nielson



XX Table of Contents

On Layout Randomization for Arrays and Functions . . . . . . . . . . . . . . . . . . 167
Mart́ın Abadi and Jérémy Planul

A Theory of Agreements and Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino

Computational Soundness of Symbolic Zero-Knowledge Proofs: Weaker
Assumptions and Mechanized Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Michael Backes, Fabian Bendun, and Dominique Unruh

Proving More Observational Equivalences with ProVerif . . . . . . . . . . . . . . 226
Vincent Cheval and Bruno Blanchet

Formal Verification of e-Auction Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech

Sessions and Separability in Security Protocols . . . . . . . . . . . . . . . . . . . . . . 267
Marco Carbone and Joshua D. Guttman

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287



Formal Analysis of Privacy for Routing

Protocols in Mobile Ad Hoc Networks�

Rémy Chrétien and Stéphanie Delaune

LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France

Abstract. Routing protocols aim at establishing a route between dis-
tant nodes in ad hoc networks. Secured versions of routing protocols have
been proposed to provide more guarantees on the resulting routes, and
some of them have been designed to protect the privacy of the users.

In this paper, we propose a framework for analysing privacy-type
properties for routing protocols. We use a variant of the applied-pi calcu-
lus as our basic modelling formalism. More precisely, using the notion of
equivalence between traces, we formalise three security properties related
to privacy, namely indistinguishability, unlinkability, and anonymity. We
study the relationship between these definitions and we illustrate them
using two versions of the ANODR routing protocol.

1 Introduction

Mobile ad hoc networks consist of mobile wireless devices which autonomously
organise their communication infrastructure. They are being used in a large ar-
ray of settings, from military applications to emergency rescue; and are also
believed to have future uses in e.g. vehicular networking. In such a network,
each node provides the function of a router and relays packets on paths to other
nodes. Finding these paths is a crucial functionality of any ad hoc network. Spe-
cific protocols, called routing protocols, are designed to ensure this functionality
known as route discovery.

Since an adversary can easily paralyse the operation of a whole network by
attacking the routing protocol, substantial efforts have been made to provide
efficient and secure routing protocols [21,14,18]. For instance, in order to pre-
vent a malicious node to insert and delete nodes inside a path, cryptographic
mechanisms such as encryption, signature, and MAC are used. However, there
is a privacy problem related to the way routes are discovered by those routing
protocols. Indeed, most routing protocols (e.g. [14,18]) flood the entire network
with a route request message containing the names of the source and the desti-
nation of the intended communication. Thus, an eavesdropper can easily observe
who wants to communicate with whom even if he is not on the route between the
communicating nodes. Since then, in order to limit privacy issues, several anony-
mous routing protocols have been developed, e.g. ANODR [15], AnonDSR [20] to
resist against passive adversaries showing no suspicious behaviours.

� This work has been partially supported by the project JCJC VIP ANR-11-JS02-006.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 1–20, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 R. Chrétien and S. Delaune

Because security protocols are in general notoriously difficult to design and
analyse, formal verification techniques are particularly important. For example,
a flaw has been discovered in the Single-Sign-On protocol used e.g. by Google
Apps [4]. It has been shown that a malicious application could very easily gain
access to any other application (e.g. Gmail or Google Calendar) of their users.
This flaw has been found when analyzing the protocol using formal methods,
abstracting messages by a term algebra and using the AVISPA platform [5].

Whereas secrecy and authentication are well-understood notions, anonymity
itself is ill-defined: behind the general concept lie distinct considerations which
share the general idea of not disclosing any crucial information to an attacker
on the network. Thus, formalizing privacy-type properties is not an easy task
and has been the subject of several papers in the context of electronic voting
(e.g. [12,7]), RFID systems (e.g. [3,9]), or anonymizing protocols (e.g. [16,13]).
Whereas some of them rely on a probabilitistic notion of anonymity (e.g. [19]),
we focus on deterministic ones, for which formal analysis appears more natural.
All these definitions share a common feature: they are based on a notion of
equivalence that allows one to express the fact that two situations are similar,
i.e. indistinguishable from the point of view of the attacker.

Our contributions. In this paper, we propose a formal framework for analyzing
privacy-type properties in the context of routing protocols. We use a variant of
the applied-pi calculus as our basic modeling formalism [1], which has the advan-
tage of being based on well-understood concepts and to allow us to model various
cryptographic primitives by the means of an equational theory (see Sections 2
and 3). However, in order to model route discovery protocols, we have to adapt
it to take into account several features of those protocols, e.g. the topology of
the network, broadcast communication, internal states of the nodes, etc

Then, we investigate the different properties a routing protocol could achieve
to be considered indeed anonymous in presence of a passive attacker. We propose
three different families of such properties: indistinguishability, which deals with
the possibility to distinguish some external action undertaken by an agent from
another (see Section 4); unlinkability, which is related to the ability for the
attacker to link certain actions together (see Section 5); and finally anonymity
which concerns the disclosure of information such as the identity of the sender,
or the identity of the receiver (see Section 6). We formalise those properties
using a notion of equivalence between traces. Some difficulties arise due to the
application under study. In particular, to achieve those security properties, we
have to ensure that the network is active enough, and thus we have to provide a
formal definition of this notion. We study the relationship between these privacy-
type properties and we illustrate our definitions on two versions of the ANODR
routing protocol [15].

Related work. Notions of privacy have been studied for RFID protocols [3] such
as the key establishment protocol used in the electronic passport application.
Similarly, formal definitions and proofs of anonymity for anonymizing protocols,
like the onion routing, were proposed in [16,13]. Nevertheless these formalisms do



Formal Analysis of Privacy for Routing Protocols 3

not allow one to freely specify network topologies, a crucial feature for mobile ad-
hoc routing. Moreover, as an extension of the applied pi-calculus, our formalism
is not bound to a fixed set of primitives but make our definition usable for a
large class of routing protocols. A more detailed version of this paper is available
in [10].

2 Messages and Attacker Capabilities

As often in protocol analysis, cryptographic primitives are assumed to work per-
fectly. However, we do not consider an active attacker who controls the entire
network as generally done when analyzing more classical protocols. We will con-
sider an eavesdropper who listens to some nodes of the network or even all of
them. Basically, he can see messages that are sent from locations he is spying
on, and can only encrypt, decrypt, sign messages or perform other cryptographic
operations if he has the relevant keys.

2.1 Messages

For modeling messages, we consider an arbitrary term algebra, which provides a
lot of flexibility in terms of which cryptographic primitives can be modelled. In
such a setting, messages are represented by terms where cryptographic primitives
such as encryption, signature, and hash function, are represented by function
symbols. More precisely, we consider a signature (S, Σ) made of a set of sorts S
and a set of function symbols Σ together with arities of the form ar(f) = s1 ×
. . . × sk → s where f ∈ Σ, and s, s1, . . . , sk ∈ S. We consider an infinite set
of variables X and an infinite set of names N which are used for representing
keys, nonces, etc We assume that names and variables are given with sorts.
Terms are defined as names, variables, and function symbols applied to other
terms. Of course function symbol application must respect sorts and arities. For
A ⊆ X ∪N , the set of terms built from A by applying function symbols in Σ is
denoted by T (Σ,A).

We write vars(u) (resp. names(u)) for the set of variables (resp. names) that
occur in a term u. A term u is said to be a ground term if vars(u) = ∅. Regarding
the sort system, we consider a special sort agent that only contains names and
variables. These names represent the names of the agents, also called the nodes
of the network. We assume a special sort msg that subsumes all the other sorts,
i.e. any term is of sort msg.

For our cryptographic purposes, it is useful to distinguish a subset Σpub

of Σ, made of public symbols, i.e. the symbols made available to the attacker.
A recipe is a term in T (Σpub,X ∪ N ), that is, a term containing no private
(non-public) symbols. Moreover, to model algebraic properties of cryptographic
primitives, we define an equational theory by a finite set E of equations u = v
with u, v ∈ T (Σ,X ) (note that u, v do not contain names). We define =E to be
the smallest equivalence relation on terms, that contains E and that is closed
under application of function symbols and substitutions of terms for variables.



4 R. Chrétien and S. Delaune

Example 1. A typical signature for representing secured routing protocols is the
signature (S, Σ) defined by

– S = {agent,msg}, and
– Σ = {〈〉, proj1, proj2, senc, sdec, aenc, adec, pub, prv, req, rep, src, dest, key}

with the following arities:

senc, sdec, aenc, adec, 〈 〉 : msg ×msg → msg pub, prv : agent → msg
req, rep, src, dest, key : → msg proj1, proj2 : msg → msg

The constants req and rep are used to identify the request phase and the reply
phase, src, dest, and key are some other public constants. The function symbols
sdec, senc (resp. adec and aenc) of arity 2 represent symmetric (resp. asymmetric)
decryption and encryption. Pairing is modelled using a symbol of arity 2, denoted
〈 〉, and projection functions are denoted proj1 and proj2. We denote by pub(A)
(resp. prv(A)) the public key (resp. the private key) associated to the agent A.
Moreover, we assume that prv 	∈ Σpub. Then, we consider the equational theory E,
defined by the following equations (i ∈ 1, 2):

sdec(senc(x, y), y) = x adec(aenc(x, pub(y)), prv(y)) = x proji(〈x1, x2〉) = xi

For sake of clarity, we write 〈t1, t2, t3〉 for the term 〈t1, 〈t2, t3〉〉.

Substitutions are written σ = {x1 � u1, . . . , xn � un} where its domain is written
dom(σ) = {x1, . . . , xn}, and its image is written img(σ) = {u1, . . . , un}. We only
consider well-sorted substitutions, that is substitutions for which xi and ui have
the same sort. The application of a substitution σ to a term u is written uσ. A
most general unifier of two terms u and v is a substitution denoted by mgu(u, v).
We write mgu(u, v) = ⊥ when u and v are not unifiable.

2.2 Attacker Capabilities

To represent the knowledge of an attacker (who may have observed a sequence of
messages t1, . . . , t�), we use the concept of frame. A frame φ = new ñ.σ consists
of a finite set ñ ⊆ N of restricted names (those unknown to the attacker), and a
substitution σ of the form {y1�t1, . . . , y��t�} where each ti is a ground term. The
variables yi enable an attacker to refer to each ti. The domain of the frame φ,
written dom(φ), is dom(σ) = {y1, . . . , y�}.

In the frame φ = new ñ.σ, the names ñ are bound in σ and can be renamed.
Moreover names that do not appear in φ can be added or removed from ñ.
In particular, we can always assume that two frames share the same set of
restricted names. Thus, in the definition below, we will assume w.l.o.g. that the
two frames φ1 and φ2 have the same set of restricted names.

Definition 1 (static equivalence). We say that two frames φ1 = new ñ.σ1
and φ2 = new ñ.σ2 are statically equivalent, φ1 ∼E φ2, when dom(φ1) =
dom(φ2), and for all recipes M,N such that names(M,N) ∩ ñ = ∅, we have
that: Mσ1 =E Nσ1 if, and only if, Mσ2 =E Nσ2.



Formal Analysis of Privacy for Routing Protocols 5

Intuitively, two frames are equivalent when the attacker cannot see the difference
between the two situations they represent, i.e., his ability to distinguish whether
two recipes M,N produce the same term does not depend on the frame.

Example 2. Let φreq = new n.{y1 � senc(〈req, n〉, k)} and φrep = new n.{y1 �
senc(〈rep, n〉, k)} be two frames. Considering the equational theory E introduced
in Example 1, we have that φreq 	∼E φrep since the recipes M = proj1(sdec(y1, k))
and N = req allow one to distinguish the two frames. However, we have that
new k.φreq ∼E new k.φrep. Indeed, without knowing the key k, the attacker is un-
able to observe the differences between the two messages. This is a non-trivial
equivalence that can be established using an automatic tool (e.g. ProVerif [8]).

3 Models for Protocols

In this section, we introduce the cryptographic process calculus that we will
use for describing protocols. Several well-studied calculi already exist to analyse
security protocols and privacy-type properties (e.g. [2,1]). However, modelling
ad-hoc routing protocols requires several additional features. Our calculus is
actually inspired from some other calculi (e.g. [17,6,11]) which allow mobile
wireless networks and their security properties to be formally described and
analysed. We adapt those formalisms in order to be able to express privacy-type
properties such as those studied in this paper.

3.1 Syntax

The intended behavior of each node of the network can be modelled by a process
defined by the grammar given below (u is a term that may contain variables,
n is a name, and Φ is a formula). Our calculus is parametrized by a set L of
formulas whose purpose is to represent various tests performed by the agents
(e.g. equality tests, neighbourhood tests). We left this set unspecified since it is
not relevant for this work. For illustration purposes, we only assume that the
set L contains at least equality and disequality tests.

P,Q := 0 null process
in(u).P reception
out(u).P emission
if Φ then P else Q conditional Φ ∈ L
store(u).P storage
read u[Φ] then P else Q reading
P | Q parallel composition
!P replication
new n.P fresh name generation

The process “in(u).P” expects a message m of the form u and then behaves
like Pσ where σ is such that m = uσ. The process “out(u).P” emits u, and
then behaves like P . The variables that occur in u will be instantiated when the



6 R. Chrétien and S. Delaune

evaluation will take place. The process store(u).P stores u in its storage list and
then behaves like P . The process read u[Φ] then P else Q looks for a message of
the form u that satisfies Φ in its storage list and then, if such an element m is
found, it behaves like Pσ where σ is such that m = uσ. Otherwise, it behaves
like Q. The other operators are standard.

Sometimes, for the sake of clarity, we will omit the null process. We also omit
the else part when Q = 0. We write fvars(P ) for the set of free variables that
occur in P , i.e. the set of variables that are not in the scope of an input or a
read. We consider ground processes, i.e. processes P such that fvars(P ) = ∅, and
parametrized processes, denoted P (z1, . . . , zn) where z1, . . . , zn are variables of
sort agent, and such that fvars(P ) ⊆ {z1, . . . , zn}. A routing protocol is a set of
parametrized processes.

3.2 Example: ANODR

ANODR is an anonymous on-demand routing protocol that has been designed to
prevent traffic analysis in ad hoc networks [15]. We consider a simplified version

of this protocol, denoted P simp
ANODR. For sake of readability, we give below an Alice

and Bob version of this two-phase protocol where we omit some 〈· · · , ·〉 and we
use {·}· instead of senc and aenc.

S → V1 : 〈req, id , {D, chall}pub(D), {S, src}kS〉
V1 → V2 : 〈req, id , {D, chall}pub(D), {V1, {S, src}kS}k1〉
V2 → D : 〈req, id , {D, chall}pub(D), {V2, {V1, {S, src}kS}k1}k2〉
D → V2 : 〈rep, ND, chall , {V2, {V1, {S, src}kS}k1}k2〉
V2 → V1 : 〈rep, N2, chall , {V1, {S, src}kS}k1〉
V1 → S : 〈rep, N1, chall , {S, src}kS 〉

Request phase. The source initiates route discovery by locally broadcasting a
request. The constant req is used to identify the request phase whereas id is an
identifier of the request. The third component of the request is a cryptographic
trapdoor that can only be opened by the destination; and the last one is a
cryptographic onion that is used for route establishment. At this stage, the
onion built by the source contains only one layer.

Then, intermediate nodes relay the request over the network, except if they
have already seen it. However, contrary to what happen in many routing pro-
tocols, the names of the intermediate nodes are not accumulated in the route
request packet. This is important to prevent traffic analysis.

Reply phase. When the destination D receives the request, it opens the trapdoor
and builds a route reply.

During the reply phase, the message travels along the route back to S. The
intermediary node decrypt the onion using its own key which has been generated
during the request phase. If its own identity does not match the first field of
the decrypted result, it then discards the packet. Otherwise, the node is on the
anonymous route. It generates a random number (namely ND, N1, or N2), stores



Formal Analysis of Privacy for Routing Protocols 7

the correspondence between the nonce it receives and the one it has generated.
It peels off one layer of the onion, replaces the nonce with its own nonce, and
then locally broadcasts the reply packet.

Formally, this protocol is composed of four parametrized processes that can
be modelled using the signature given in Example 1. Let id be a name, zS , zV , zD
be variables of sort agent, and xN , xid , xtr and xonion be variables of sort msg.

The process executed by the agent zS initiating the search of a route towards a
node zD is:

Psrc(zS , zD) = new id .new chall .new kS .out(u1).in(u2).store(〈zD, xN 〉)

where

{
u1 = 〈req, id , aenc(〈zD, chall 〉, pub(zD)), senc(〈zS , src〉, kS)〉
u2 = 〈rep, xN , chall , senc(〈zS , src〉, kS)〉

The source zS builds a request message and sends it. Then, the source is waiting
for a reply containing the same cryptographic onion as the one used in the
request, a proof of global trapdoor opening (here modelled as a nonce chall ),
and a locally unique random route pseudonym N . Lastly, the source will store
that destination D can be reached using the route pseudonym N as the next
hop.

The process executed by an intermediary node zV during the request phase
is described below. For sake of simplicity, we did not model the fact that a
duplicated request message is directly discarded.

P req
int (zV ) = in(w1).if ¬Φreq then (new kV .store(〈key, kV 〉).out(w2))

where

{
w1 = 〈req, xid , xtr, xonion 〉 Φreq = proj1(adec(xtr, prv(zV ))) = zV
w2 = 〈req, xid , xtr, senc(〈zV , xonion 〉, kV )〉

The process executed by the destination node zD is the following:

Pdest(zD) = in(v1). if Φdest then (new N.out(v2))

where

{
v1 = 〈req, xid , xtr, xonion 〉 Φdest = proj1(adec(xtr , prv(zD))) = zD
v2 = 〈rep, N, proj2(adec(xtr, prv(zD))), xonion 〉

The process executed by an intermediary node zV during the reply phase is as
follows:

P rep
int (zV ) = in(w′

1).read 〈key, y〉 [Φrep] then (new N ′.store(〈xN , N ′〉).out(w′
2))

where

{
w′

1 = 〈rep, xN , xpr, xonion 〉 Φrep = proj1(sdec(xonion , y)) = zV
w′

2 = 〈rep, N ′, xpr, proj2(sdec(xonion , y))〉

Once, a route between S and D has been established using this protocol, a data
packet can then be sent from S to D using the route pseudonyms that nodes
have stored in their storage list.



8 R. Chrétien and S. Delaune

3.3 Configuration and Topology

Each process is located at a node of the network, and we consider an eavesdropper
who observes messages sent from particular nodes. More precisely, we assume
that the topology of the network is represented by a pair T = (G,M) where:

– G = (V,E) is an undirected finite graph with V ⊆ {A ∈ N | A of sort agent},
where an edge in the graph models the fact that two agents are neighbors.

– M is a set of nodes, the malicious nodes, from which the attacker is able to
listen to their outputs.

We consider several malicious nodes, and our setting allows us to deal with the
case of a global eavesdropper (i.e. M = V ). A trivial topology is a topology
T = (G,M) with M = ∅.

A configuration of the network is a quadruplet (E ;P ;S;σ) where:
– E is a finite set of names that represents the names restricted in P , S and σ;
– P is a multiset of expressions of the form P �A that represents the process P

executed by the agent A ∈ V . We write P �A ∪ P instead of {P �A} ∪ P .
– S is a set of expressions of the form u�A with A ∈ V and u a ground term.

u�A represents the term u stored by the agent A ∈ V .
– σ = {y1 � u1, . . . , yn � un} where u1, . . . , un are ground terms (the messages

observed by the attacker), and y1, . . . , yn are variables.

3.4 Execution Model

Each node broadcasts its messages to all its neighbors. The communication sys-
tem is formally defined by the rules of Figure 1. They are parametrized by the
underlying topology T . The Comm rule allows nodes to communicate provided
they are (directly) connected in the underlying graph, without the attacker ac-
tively interfering. We do not assume that messages are necessarily delivered to
the intended recipients. They may be lost. The exchange message is learnt by
the attacker as soon as the node that emits it is under its scrutiny.

The other rules are quite standard.
We write → instead of →T when the underlying network topology T is clear

from the context. Let A be the alphabet of actions where the special symbol

τ ∈ A represents an unobservable action. For every � ∈ A, the relation
�−→ has

been defined in Figure 1. For every w ∈ A∗ the relation
w−→ on configurations

is defined in the usual way. By convention K
ε−→ K where ε denotes the empty

word. For every s ∈ (A � {τ})∗, the relation
s
=⇒ on configurations is defined

by: K
s
=⇒ K ′ if, and only if, there exists w ∈ A∗ such that K

w−→ K ′ and s
is obtained from w by erasing all occurrences of τ . Intuitively, K

s
=⇒ K ′ means

that K transforms into K ′ by experiment s.

An initial configuration associated to a topology T = (G,M) and a routing
protocol Prouting is a configuration K0 = (E0;P0;S0;σ0) such that:

P0 =
⋃

P∈Prouting

A,B1,...,Bk∈V

!P (A,B1, . . . , Bk)�A.



Formal Analysis of Privacy for Routing Protocols 9

Comm (E ; �out(t).P �A ∪ {�in(uj).Pj�Aj |mgu(t, uj) �= ⊥ ∧ (A,Aj) ∈ E} ∪ P ;S ;σ)
�−→T (E ; {�Pjσj�Aj} ∪ �P �A ∪ P ;S ;σ′)

where

⎧
⎨
⎩

σj=mgu(t, uj)
σ′ = σ ∪ {y � t} where y is a fresh variable and � = (out(y),A) if A ∈ M;
σ′ = σ and � = τ otherwise

Store (E ; �store(t).P �A ∪ P ;S ;σ) τ−→T (E ; �P �A ∪ P ; �t�A ∪ S ;σ)
Read-Then (E ; �read u[Φ] then P else Q�A ∪ P ; �t�A ∪ S ;σ)

τ−→T (E ; �Pλ�A ∪ P ; �t�A ∪ S ;σ)
when λ = mgu(t, u) exists and Φλ is evaluated to true

Read-Else (E ; �read u[Φ] then P else Q�A ∪ P ;S ;σ)
τ−→T (E ; �Q�A ∪ P ;S ;σ)

if for all t such that �t�A ∈ S , mgu(t, u) = ⊥ or Φmgu(t, u) is evaluated to false

If-Then (E ; �if Φ then P else Q�A ∪ P ;S ;σ) τ−→T (E ; �P �A ∪ P ;S ;σ)
if Φ is evaluated to true

If-Else (E ; �if Φ then P else Q�A ∪ P ;S ;σ) τ−→T (E ; �Q�A ∪ P ;S ;σ)
if Φ is evaluated to false

Par (E ; �P1 | P2�A ∪ P ;S ;σ) τ−→T (E ; �P1�A ∪ �P2�A ∪ P ;S ;σ)
Repl (E ; �!P �A ∪ P ;S ;σ) τ−→T (E ; �P �A ∪ �!P �A ∪ P ;S ;σ)
New (E ; �new n.P �A ∪ P ;S ;σ) τ−→T (E ∪ {n′}; �P{n′

/n}�A ∪ P ;S ;σ)
where n′ is a fresh name

Fig. 1. Transition system

Such a configuration represents the fact that each node can play any role of the
protocol an unbounded number of times. Moreover, the agent who executes the
process is located at the right place. A typical initial configuration will consist
of E0 = S0 = σ0 = ∅, but depending on the protocol under study, we may want
to populate the storage lists of some nodes.

Example 3. Let T0 = (G0,M0) be a topology where G0 is described below, and
consider a global eavesdropper, i.e. M0 = {A,B,C,D}.

A B C D

We consider the execution of the protocol P simp
ANODR where B acts as a source to

obtain a route to D. Receiving this request, and not being the destination, its
neighbour C acts as a request forwarding node. We have that:

tr = K0
τ−→ τ−→ τ−→ out(y1),B−−−−−−→ (E1;P1;S1;σ1)

τ−→ τ−→ τ−→ out(y2),C−−−−−−→ (E2;P2;S2;σ2)



10 R. Chrétien and S. Delaune

where:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

K0 = (∅;P0; ∅; ∅) initial configuration associated to T0 and P simp
ANODR.

E1 = {id , chall , kB} E2 = {id , chall , kB, kC}
S1 = ∅ S2 = {〈key, kC〉�C}
σ1 = {y1 � u} σ2 = {y1 � u, y2 � v}
u = 〈req, id , aenc(〈D, chall 〉, pub(D)), senc(〈B, src〉, kB)〉
v = 〈req, id , aenc(〈D, chall 〉, pub(D)), senc(〈C, senc(〈B, src〉, kB)〉, kC)〉

The process Psrc(B,D)�B that occurs in K0 will first follow the rule New three
times to generate the nonces id , chall and kB leading to a new set of restricted
names E1. The rule Comm is then applied between nodes B and C. As B ∈ M0,
the message is included in σ1 to represent the knowledge gained by the attacker.
As the node C is not the destination, P req

int (C)�C can evolve (rule If-Then). It
generates a key (rule New) added in E2, and stores it in S2 (rule Store) and
finally it uses Comm to broadcast the resulting message, which is also added to
current substitution σ2. Actually, in case we are only interested by the visible
actions, this trace tr could also be written as follows:

tr = K0
out(y1),B
=======⇒ (E1;P1;S1;σ1)

out(y2),C
=======⇒ (E2;P2;S2;σ2).

3.5 Extension and Equivalence of Traces

We cannot expect that privacy-type properties hold in any situation. We have
to ensure that the traffic is sufficient. For this we need to introduce the notion
of extension of a trace. Roughly, we say that a trace tr+ is an extension of a
trace tr if tr+ contains at least all the actions that are exhibited in tr. In order
to track of the actions, we consider annotated traces. This need comes from the
fact that our calculus (and many others cryptographic calculi) does not provide
us with information that allow us to retrieve who performed a given action.

We will denote K
τ−−→

A,R
K ′ (resp. K

out(y),A−−−−−→
A,R

K ′ ) instead of K
τ−→ K ′ (resp.

K
out(y),A−−−−−→ K ′) to explicit the annotations. We have that A ∈ V and R is a

constant. Intuitively A is the node that performs the action (resp. the output)
whereas R is a constant that represents the role who is responsible of this action
(resp. output). Thus, to formalise this notion of annotated trace, we associate a
constant to each parametrized process part of the routing protocol under study.
Theses annotations are nonetheless invisible to the attacker: she has only access
to the labels of the transitions defined in our semantics. Annotations are meant
to be used to specify privacy properties.

Example 4. Going back to our running example, P simp
ANODR is made up of 4 roles

and we associate a constant to each of them, namely Src, Req, Dest, and Rep.
The annotated version of the trace tr described in Example 3 is:

K0
τ−−−→

B,Src

τ−−−→
B,Src

τ−−−→
B,Src

out(y1),B−−−−−−→
B,Src

K1
τ−−−→

C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K2

with K1 = (E1;P1;S1;σ1) and K2 = (E2;P2;S2;σ2).



Formal Analysis of Privacy for Routing Protocols 11

Given two configurations K = (E ;P ;S;σ) and K+ = (E+;P+;S+;σ+), we
write K ⊆ K+ if E ⊆ E+, P ⊆ P+, S ⊆ S+, and σ+

|dom(σ) = σ.

Definition 2 (extension of a trace). Let tr+ be an annotated trace:

tr+ = K0
�1−−−−→

A1,R1

K+
1

�2−−−−→
A2,R2

. . .
�n−−−−→

An,Rn

K+
n .

We say that tr+ is an extension of tr, denoted tr � tr+, if

tr = K0

�k1−−−−−→
Ak1

,Rk1

Kk1

�k2−−−−−→
Ak2

,Rk2

. . .
�k�−−−−−→

Ak�
,Rk�

Kk�

where 0 < k1 < k2 < . . . < k� ≤ n, and Kki ⊆ K+
ki

for each i ∈ {1, . . . , �}.
Given an indice i corresponding to an action in tr (1 ≤ i ≤ �), we denote by

indi(tr, tr
+) the indice of the corresponding action in tr+, i.e. indi(tr, tr

+) = ki.

Example 5. An extension of the trace tr described in Example 3 could be to
let A initiate a new session before B tries to discover a route to D. Such an
execution is formalised by the trace tr+ written below:

K0
τ−−−→

A,Src

τ−−−→
A,Src

τ−−−→
A,Src

out(y0),A−−−−−−→
A,Src

K+
0

τ−−−→
B,Src

τ−−−→
B,Src

τ−−−→
B,Src

out(y1),B−−−−−−→
B,Src

K+
1

τ−−−→
C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K+
2 .

where the configurations are not detailed, but (Ei;Pi;Si;σi) ⊆ K+
i (i ∈ {1, 2}).

Privacy-type security properties are often formalised using a notion equivalence
(see e.g. [12,3,9]). Here, we consider the notion of equivalence between two traces.

Definition 3 (equivalence of two traces). Let tr1 = K1
s1==⇒ (E1;P1;S1;σ1)

and tr2 = K2
s2==⇒ (E2;P2;S2;σ2) be two traces. They are equivalent, denoted

tr1 ≈E tr2, if s1 = s2 and new E1.σ1 ∼E new E2.σ2.

Note that only observable actions are taken into account in the definition of
equivalence between two traces. Roughly, two traces are equivalent if they process
the same sequence of visible outputs. The two sequences may differ (we do not
require the equality between σ1 and σ2) but they should be indistinguishable
from the point of view of the attacker.

Example 6. In the execution tr+ provided in Example 5 one could hope to hide
the fact that the node B is initiating a route discovery and let the attacker think
A is the actual source. Let tr′ be the execution below where A initiates a route
discovery towards D, while nodes B and C act as forwarders.

K0
τ−−−→

A,Src

τ−−−→
A,Src

τ−−−→
A,Src

out(y0),A−−−−−−→
A,Src

K ′
0

τ−−−−→
B,Req

τ−−−−→
B,Req

τ−−−−→
B,Req

out(y1),B−−−−−−→
B,Req

K ′
1

τ−−−→
C,Req

τ−−−→
C,Req

τ−−−→
C,Req

out(y2),C−−−−−−→
C,Req

K ′
2.

where the configurations are not detailed.
Unfortunately the attacker is able to tell the difference between tr+ and tr′.

Indeed, we have tr+ 	≈E tr′ since the test proj2(proj1(y0))
?
= proj2(proj1(y1)) can



12 R. Chrétien and S. Delaune

be used to distinguish the two traces. The equality test will hold in tr′ and not
in tr+. Note that, as the annotations are invisible to the attacker, she cannot
know a priori that B is playing a forwarder in tr′.

4 Indistinguishability

Intuitively, indistinguishability deals with the ability for the attacker to distin-
guish a specific action from another. For a routing protocol such actions take
the form of the various roles of the protocol. In particular we could hope, in an
execution of the protocol, to make actions of the initiator or recipient indistin-
guishable from actions of forwarding nodes. Our definition of indistinguishability,
and later of other privacy properties, depends on the network topology we are
considering. Incidentally, when designing anonymous protocols, these properties
should hold for large enough classes of topologies.

4.1 Formalizing Indistinguishability

Let Roles be a set of roles for which indistinguishability has to be preserved.
A very naive definition would be to ensure that for any annotated trace tr is-
sued from K0 (the initial configuration associated to the protocol under study)
where at some position i the role R ∈ Roles is played and observed by the at-
tacker, there exists an equivalent annotated trace tr′ where the role played at
position i is not in the set Roles. However, without appropriate traffic on the
network, this definition is far too strong. Indeed, as soon as the source role is the
only role able to spontaneously start a session, we will have no hope to achieve
indistinguishability.

Definition 4 (indistinguishability). Let K0 be an initial configuration asso-
ciated to a routing protocol and a topology, and Roles be a set of roles. We say
that K0 preserves indistinguishability w.r.t. Roles if for any annotated trace tr

tr = K0
�1−−−−→

A1,R1

K1
�2−−−−→

A2,R2

. . .
�n−−−−→

An,Rn

Kn = (E ;P ;S;σ)

and for any i ∈ {1, . . . , n} such that Ri ∈ Roles and �i 	= τ ( i.e. �i is an action
observed by the attacker), there exist two annotated traces tr+ and tr′ such that:
tr � tr+, tr+ ≈ tr′, and R′

indi(tr,tr+) 	∈ Roles where

tr′ = K ′
0

�′1−−−−→
A′

1,R
′
1

K ′
1

�′2−−−−→
A′

2,R
′
2

K ′
2 . . .

�′
n′−−−−−→

A′
n′ ,R′

n′
K ′

n′ .

The trace tr+ enables us to deal with the aforementioned traffic needed to aim
at preserving indistinguishability. Indeed rather than imposing the equivalence
of tr with another trace, indistinguishability will be achieved if there exist two
other traces tr+ and tr′ which look the same to the attacker, and in which the
action of interest is played by a different role.



Formal Analysis of Privacy for Routing Protocols 13

4.2 Analysis of ANODR

Now, we apply our formalisation of indistinguishability to the ANODR protocol.

Proposition 1. Let T be a topology with a malicious node that has only mali-
cious neighbours, and K0 be an initial configuration associated to P simp

ANODR and T .
We have that K0 does not preserve indistinguishability w.r.t. Src (resp. Dest).

Indeed, given a node A which is, together with its neighbors, under the scrutiny
of the attacker, consider a situation, i.e. a trace tr, where the node A starts a
new session by acting as a source. Of course, if this action is the only activity of
the network, there is no hope to confuse the attacker. The idea is to see whether
the attacker can be confused when the traffic is sufficient. In particular, we may
want to consider a situation, i.e. a trace tr+, where a request also arrives at
node A at the same time, so that the node A has also the possibility to act as
a forwarder. However, since a request conveys a unique identifier id , it will be
easy for the attacker to observe whether A is acting as a source (the request
will contain a fresh identifier) or as a forwarder (the request will contain an
identifier that has been previously observed by the attacker). Actually, the same
reasoning allows us to conclude that indistinguishability is not preserved w.r.t.
the role Dest: a reply conveys a globally unique nonce (namely chall ).

The updated version of ANODR proposed in [15] and informally described
below (see the appendice for a formal description) fixes the issue regarding in-
distinguishability w.r.t. Roles = {Dest}. In this version, KT is a symmetric en-
cryption key shared between the source A and the destination D; KA, KB and
KC are symmetric keys known only to their owners A, B, C, whereas KseedB ,
KseedC , KseedD are fresh keys shared between consecutive nodes on the reply
route. The key KD is generated by A and will be known by every node on the
route by the end of a session. The routes are stored as a correspondence between
route pseudonyms (the Ni) by each intermediate node. The proof of opening
takes the form of the key KD which is embedded in an onion which is different
from the onions used during the request phase. For sake of clarity, we use {·}·
instead of senc and aenc, and we omit some 〈·, ·〉.

A→ B : 〈req, id , pub(A), {dest,KD}KT , {dest}KD , {src}KA〉
B → C : 〈req, id , pub(B), {dest,KD}KT , {dest}KD , {NB, {src}KA}KB 〉
C → D : 〈req, id , pub(C), {dest,KD}KT , {dest}KD , {NC , {NB, {src}KA}KB}KC 〉
D → C : 〈rep, {KseedD}pub(C), {KD, {NC , {NB, {src}KA}KB}KC}KseedD

〉
C → B : 〈rep, {KseedC}pub(B), {KD, {NB, {src}KA}KB}KseedC

〉
B → A : 〈rep, {KseedB}pub(A), {KD, {src}KA}KseedB

〉
Considering a topology T such that any malicious node has at least two distinct
neighbours other than itself, and an initial configuration K0 associated to the
updated version of ANODR and T , we have thatK0 preserves indistinguishability
w.r.t. Roles = {Dest}, according to Definition 4.

Intuitively, for each trace tr in which the node A (under the scrutiny of the
attacker) acts as a destination, we will consider a trace tr+ which extends tr and



14 R. Chrétien and S. Delaune

such that the node A has at least two reply to treat (one as a destination and
one as a forwarder). Since the proof of opening and the onion are modified at
each hop of the route, the attacker will not be able to observe whether two reply
packets come from the same session or not. Thus, he can not be sure that the
action of interest has been done by the role Dest.

5 Unlinkability

We focus here on a different kind of anonymity: the (un)ability for the attacker
to determine whether two messages belong to the same session. Note that an
attacker able to determine whether two reply messages belong to the same session
will gain valuable information about the route being established.

5.1 Augmented Process

To define unlinkability, we need a notion of session. Note that, in our setting,
a session may involve an arbitrary number of actions since we do not know in
advance the length of the path from the source to the destination. In order to
define this notion formally, we need to be able to track an execution of the
process through the entire network, goal which is achieved through a notion
of augmented processes. Thus, given a routing protocol Prouting, we define its

augmentation P̃routing and modify the operational semantics accordingly to trace
an execution of one session of the protocol. We also add some information about
the source and the destination. This information will be useful later on to define
our notion of anonymity (see Section 6).

For sake of simplicity, we consider a routing protocol that is made up of
parametrized processes of two different kinds. Even if these syntactic restrictions
seem to be very specific, our definition actually captures most of the routing
protocols and are quite natural.

Initiator: a parametrized process with two parameters P (zS , zD) such that
its first communication action is an output possibly followed by several in-
puts. In such a case, its augmentation P̃ (zS , zD) is obtained from P (zS , zD)
by adding the prefix new sid . to it, by replacing the action out(u) with
out(〈u, 〈sid , zS , zD〉〉, and replacing each action in(u) with in(〈u, 〈x1, x2, x3〉〉)
where x1, x2, x3 are fresh variables.

Responder: a parametrized process with one parameter P (zV ) such that its
first communication action is an input possibly followed by several outputs.
In such a case, its augmentation P̃ (zV ) is obtained from P (zV ) by replacing
the action in(u) with in(〈u, 〈x1, x2, x3〉〉) where x1, x2, x3 are fresh variables,
and each action out(u) with out(〈u, 〈x1, x2, x3〉〉).

Now, to prevent the additional information that is conveyed by the messages to
occur in the frame, we need to adapt our operational semantics. Basically, when
we perform a communication, we only add the first projection of the outputted
term in the frame. The second projection of the outputted term is added under
the arrow as an annotation.



Formal Analysis of Privacy for Routing Protocols 15

Example 7. Back to Example 3, the counterpart of the trace tr, where only
visible actions have been exhibited, is succinctly depicted below:

K̃0
out(y1),B

==========⇒
B,Src,sid ,B,D

K̃1
out(y2),C

==========⇒
C,Req,sid ,B,D

K̃2

where the configurations K̃0, K̃1 and K̃2 are the counterpart of K1, K2, and K3.
The annotations under the arrows witness the fact that the two messages come
from the same session sid which was initiated by B to obtain a route towards D.

Note that only observable action will benefit from this annotation. For sake

of simplicity, we write K
�−−−−−−−−→

A,R,[sid,S,D]
K ′ even in presence of an unobservable

action � (i.e. when � = τ) and we add the brackets to emphasize the fact that
[sid , S,D] is optional. Actually, the annotation is undefined in this case.

5.2 Formalising Unlinkability

Intuitively, unlinkability means that an attacker cannot tell whether two visible
actions of a trace tr belong to the same session. As it was the case for indistin-
guishability, one cannot expect to achieve this goal without any sufficient traffic
on the network. Moreover, due to the globally unique identifier that occur for
efficiency purposes in many routing protocols (e.g. the nonce id in ANODR),
there is no hope to achieve unlinkability for request messages. However, this is
not a big issue since these messages are flooded in the network and thus tracking
them is useless. We may want to study unlinkability for particular sets of roles,
and our definition allows one to do that.

Definition 5 (unlinkability). Let K0 be an initial configuration associated to
a routing protocol and a topology, and Roles1, Roles2 be two sets of roles. We say
that K0 preserves unlinkability w.r.t. Roles1/Roles2 if for any annotated trace tr

tr = K0
�1−−−−−−−−−−−−→

A1,R1,[sid1,S1,D1]
K1

�2−−−−−−−−−−−−→
A2,R2,[sid2,S2,D2]

. . .
�n−−−−−−−−−−−−−→

An,Rn,[sidn,Sn,Dn]
Kn

and for any i, j ∈ {1, . . . , n} such that Ri ∈ Roles1, Rj ∈ Roles2, sid i = sid j,
and �i, �j 	= τ ( i.e. �i, �j are actions observed by the attacker), there exist two
annotated traces tr+ and tr′ such that: tr � tr+, tr+ ≈ tr′, and sid ′

indi(tr,tr+) 	=
sid ′

indj(tr,tr+) where

tr′ = K ′
0

�′1−−−−−−−−−−−−→
A′

1,R
′
1,[sid

′
1,S

′
1,D

′
1]

K ′
1

�′2−−−−−−−−−−−−→
A′

2,R
′
2,[sid

′
2,S

′
2,D

′
2]

. . .
�′
n′−−−−−−−−−−−−−−→

A′
n′ ,R′

n′ ,sid ′
n′ ,S′

n′ ,D′
n′

K ′
n′ .

Unlinkability versus indistinguishability. Note that unlinkability is a distinct
notion from the indistinguishability notion exposed in Section 4. Protocols un-
linkable w.r.t. any reasonable topology can be designed so as not to be in-
distinguishable for any role. An example of such a protocol would be P =
{P1(zS , zD), P2(zV )} defined as follows:



16 R. Chrétien and S. Delaune

P1(zS , zD) = out(src).in(x) P2(zV ) = in(x).out(dest)

where src and dest are two constants. The unlinkability is a consequence of
emitting the same messages for every session, whereas the indistinguishability
fails as the constant src (resp. dest) identifies the role P1 (resp. P2).

Reciprocally one can design protocols preserving indistinguishability for cer-
tain roles but not unlinkability for any two subsets of roles. The protocol P ′

made up of the three roles described below fails clearly at preserving the unlink-
ability w.r.t. any non-trivial topology for any sets of roles Roles1 and Roles2 as
it mimicks the session identifiers introduced formerly.

P ′
1(zS , zD) = new n.out(n).in(x) P ′

2(zV ) = in(x).out(x)

P ′
3(zV ) = in(x).store(x).out(x)

On the other hand, the indistinguishability w.r.t. any topology for either P ′
2

or P ′
3 is trivially preserved as the roles are essentially the same.

5.3 Analysis of ANODR

As discussed at the beginning of Section 5.2, ANODR, as many other routing
protocols, does not preserve unlinkability (as soon as the underlying topology is
non-trivial topology) for sets Roles1 = Roles2 = {Src,Req} due to the forwarding
of the same id by every intermediate node during the request phase. Actually,
the simplified version of ANODR presented in Section 3.2 does not preserve
unlinkability for sets Roles1 = Roles2 = {Dest,Rep} due to the forwarding of the
nonce chall by every intermediate node during the reply phase. This version does
not preserve unlinkability for sets {Src,Req}/{Dest,Rep} either. Indeed, during
the request phase, the nodes will emit a message containing an onion, and during
the reply phase, they are waiting for a message that contains exactly the same
onion. This allows the attacker to link a request message with a reply message
and to identify them as coming from the same session.

The updated version of ANODR (see Section 4.2) actually fixes the two last
issues. Again, we need for this to consider topologies T for which any malicious
node has at least two distinct neighbours other than itself. In such a situation,
following the same ideas as the one used to establish indistinguishability, we can
show that an initial configuation K0 preserves unlinkability w.r.t. {Dest,Rep}/
{Dest,Rep}, and {Src,Req}/{Dest,Rep} (according to Definition 5).

6 Anonymity

Anonymity is concerned with hiding who performed a given action. Here, we are
not concerned by hiding the identity of the sender (or the receiver) of a given
message, but we would like to hide the identity of the source (or the destination)
of the request/reply message. When the identity of the source is hidden, we
speak about source anonymity. Similarly, when the identity of the destination is
hidden, we speak about destination anonymity. Again, we consider both types



Formal Analysis of Privacy for Routing Protocols 17

of anonymity with respect to an external eavesdropper that is localised to some
nodes (possibly every one of them) of the network.

As in Section 5, to define the anonymity, we need to link messages occurring
at various places in the network to their respective source and destination, thus
we consider the augmented version of the protocol as in Section 5.1

6.1 Formalising Anonymity

Intuitively, source (resp. destination) anonymity can be achieved if the attacker
is unable to tell the source (resp. the destination) of an observed message. This
idea can actually be interpreted as the existence of anonymity sets of cardinal
greater or equal than two. As for the previous privacy-type notions, one cannot
expect to hide the source (resp. destination) of an action in a trace tr without
any sufficient traffic as it would be easy for an attacker to observe the first node
to output a request (resp. a reply) and deduce the source (resp. destination)
of this execution. For this reason, anonymity will be achieved if there exist two
other traces tr+ and tr′ of the system which look the same to the attacker, and in
which the corresponding transitions have different sources (resp. destinations).

Definition 6 (anonymity). Let K0 be an initial configuration associated to
a routing protocol and a topology. We say that K0 preserves source anonymity
(resp. destination anonymity) if for any annotated trace tr

tr = K0
�1−−−−−−−−−−−−→

A1,R1,[sid1,S1,D1]
K1

�2−−−−−−−−−−−−→
A2,R2,[sid2,S2,D2]

. . .
�n−−−−−−−−−−−−−→

An,Rn,[sidn,Sn,Dn]
Kn

and for any i ∈ {1, . . . , n} such that �i 	= τ ( i.e. �i is an action observed by
the attacker), there exist two annotated traces tr+ and tr′ such that tr � tr+,
tr+ ≈ tr′, and S′

indi(tr,tr+) 	= Si (resp. D
′
indi(tr,tr+) 	= Di) where

tr′ = K ′
0

�′1−−−−−−−−−−−−→
A′

1,R
′
1,[sid

′
1,S

′
1,D

′
1]

K ′
1

�′2−−−−−−−−−−−−→
A′

2,R
′
2,[sid

′
2,S

′
2,D

′
2]

. . .
�′
n′−−−−−−−−−−−−−−−→

A′
n′ ,R′

n′ ,[sid ′
n′ ,S′

n′ ,D′
n′]

K ′
n′

6.2 Anonymity versus Indistinguishability/Unlinkability

The notions of source and destination anonymity are distinct from indistin-
guishability for a set of roles and unlinkability of two sets of roles. The proto-
col P = {P1(zS , zD), P2(zV )} where P1(zS , zD) = out(zS).in(x), and P2(zV ) =
in(x).out(x) preserves both the indistinguishability of P1 (a node can play P2 as
a response to a session it initiated previously as P1) and the unlinkability of any
two subsets of {P1, P2} (as every session with the same node as a source will
generate the exact same messages) but not source anonymity as the identity of
the source is obvious for any attacker along the route. A symmetrical protocol
can be built by replacing zS with zD in P1 to disclose the destination of a session
without breaking the indistinguishability.

Conversely, the protocol P = {P1(zS , zD), P2(zV )} defined as

P1(zS , zD) = new n.out(〈src, n〉).in(x) P2(zV ) = in(〈x, y〉).out(〈dest, y〉)



18 R. Chrétien and S. Delaune

preserves destination anonymity as any node can play P2 in response to a request,
whatever the original destination was. Indeed, given such a topology T , a trace
tr of the protocol, and a visible action �i = (out(y), A) associated to a a source
Si = S and a destination Di = A, we can let tr+ be equal to tr and define tr′

to be the trace mimicking tr but with S as the source and destination of the
request associated to �i. The equivalence of tr and tr′ comes from the content
of their frames which is limited to the names of the request sources, identical in
both cases. On the other hand, P does not preserve indistinguishability of P1

or P2, nor unlinkability of any two subsets of {P1, P2} as session identifiers and
constants to distinguish roles are embedded in the protocol.

However, intuitively, there is a relation between source anonymity (resp. desti-
nation anonymity) and indistinguishability of the role source (resp. destination).
Indeed, source anonymity seems to imply that the action of interest can be mim-
icked by someone different from source, and thus who should not play the role
source. Thus, restricting ourselves to “reasonable” routing protocols, we are in-
deed able to establish this relation. For this, we define source and destination
roles as roles which are only used by nodes acting as sources or destinations.

Definition 7 (acting as a source (resp. destination)). Let K0 be an initial
configuration associated to a routing protocol and a topology. We say that Roles
is the set of roles acting as a source (resp. acting as a destination) if for any
annotated trace tr with �1, . . . , �n 	= τ

tr = K0
�1============⇒

A1,R1,sid1,S1,D1

K1
�2============⇒

A2,R2,sid2,S2,D2

. . .
�n=============⇒

An,Rn,sidn,Sn,Dn

Kn

and for any i ∈ {1, . . . , n}, Ri ∈ Roles if and only if Ai = Si (resp. if and only
if Ai = Di).

In case of ANODR (both versions), the set of roles acting as a source is {Src}.
This is the only role able to spontaneously start a session and it is unable to
reply to a request. The set of roles acting as a destination is limited to {Dest}.
The proof of opening prevents any node other than the destination to play it
and, conversely, a destination node can only play the role Dest as a response
to such a request. Note that, for some badly designed routing protocols, it may
happen that the set of roles acting as a source (resp. destination) is empty. In
such a case, the proposition below is trivially true.

Proposition 2. Let K0 be an initial configuration associated to a routing pro-
tocol and a topology. If K0 preserves source (resp. destination) anonymity, then
it preserves indistinguishability w.r.t. the set of roles acting as a source (resp.
destination).

6.3 Analysis of ANODR

In this section, we apply our formalisation of anonymity to the ANODR routing
protocol. As a consequence of Propositions 1 and 2, we have the following result.



Formal Analysis of Privacy for Routing Protocols 19

Corollary 1. Let T be a topology with a malicious node that has only malicious
neighbours, and K0 be an initial configuration associated to P simp

ANODR and T . We
have that K0 preserves neither source nor destination anonymity.

For the updated version of ANODR, similarly, we can show that it does not
preserve source anonymity. However, this protocol seems to have been designed
to achieve destination anonymity. Indeed, considering topologies for which any
malicious node has at least one neighbour other than itself, we can show that
any trace tr can be extended to tr+ so that the node of interest has at least two
reply to treat (one as the destination of the request, and the other one as the
forwarder). This is actually sufficient to confuse the attacker who observes the
network, and to establish anonymity of the destination according to Definition 6.

7 Conclusion

We have defined a framework for modeling routing protocols in ad hoc networks
in a variant of the applied pi-calculus. Within this framework we can stipulate
which agents are subject to the attention of a global eavesdropper. We were
able to propose several definitions for privacy-type properties that encompass
the specificity of a given network topology. We illustrate these definitions on
the anonymous routing protocol ANODR, considered in two versions, and thus
provide a partial formal security analysis of its anonymity.

As future work, it would be interesting to have a more general model of proto-
cols to represent high-level operations in routing protocols (e.g. reversing a list).
However, since our definitions are expressed in terms of traces, this should not
impact so much the privacy definitions proposed in this paper. Another direc-
tion is the enrichment of our attacker model, so as to model fully compromised
nodes which disclose their long-term keys or fresh nonces generated during the
execution of the protocols, and active attackers able to forge messages and in-
teract with honest agents. Finally, from the point of view of the verification,
a reduction result on network topologies as presented in [11] would make the
perspective of automated proofs of anonymity easier.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
Proc. 28th Symposium on Principles of Programming Languages, POPL 2001, pp.
104–115. ACM Press (2001)

2. Abadi, M., Gordon, A.: A calculus for cryptographic protocols: The spi calculus.
In: Proc. 4th Conference on Computer and Communications Security, CCS 1997,
pp. 36–47. ACM Press (1997)

3. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: Proc. 23rd Computer Security Foun-
dations Symposium, CSF 2010, pp. 107–121. IEEE Computer Society Press (2010)

4. Armando, A., Carbone, R., Compagna, L., Cuéllar, J., Tobarra, M.L.: Formal
analysis of SAML 2.0 web browser single sign-on: breaking the SAML-based single
sign-on for google apps. In: Proc. of the 6th ACM Workshop on Formal Methods
in Security Engineering, FMSE 2008, pp. 1–10. ACM (2008)



20 R. Chrétien and S. Delaune

5. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Hankes Drielsma, P., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vi-
gneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

6. Arnaud, M., Cortier, V., Delaune, S.: Modeling and verifying ad hoc routing proto-
cols. In: Proc. 23rd IEEE Computer Security Foundations Symposium, CSF 2010,
pp. 59–74. IEEE Computer Society Press (July 2010)

7. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic
voting protocols in the applied pi-calculus. IEEE Comp. Soc. Press (2008)

8. Blanchet, B.: An efficient cryptographic protocol verifier based on prolog rules. In:
Proc. 14th Computer Security Foundations Workshop, CSFW 2001. IEEE Comp.
Soc. Press (2001)

9. Bruso, M., Chatzikokolakis, K., den Hartog, J.: Formal verification of privacy for
RFID systems. In: Proc. 23rd Computer Security Foundations Symposium, CSF
2010, IEEE Computer Society Press (2010)

10. Chrétien, R., Delaune, S.: Formal analysis of privacy for routing protocols in mo-
bile ad hoc networks. Research Report LSV-12-21, Laboratoire Spécification et
Vérification, ENS Cachan, France, 24 pages (December 2012)

11. Cortier, V., Degrieck, J., Delaune, S.: Analysing Routing Protocols: Four Nodes
Topologies Are Sufficient. In: Degano, P., Guttman, J.D. (eds.) Principles of Secu-
rity and Trust. LNCS, vol. 7215, pp. 30–50. Springer, Heidelberg (2012)

12. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic
voting protocols. Journal of Computer Security (4), 435–487 (2008)

13. Garcia, F.D., Hasuo, I., Pieters, W., van Rossum, P.: Provable anonymity. In:
Proc. ACM Workshop on Formal Methods in Security Engineering, FMSE 2005,
pp. 63–72. ACM (2005)

14. Hu, Y.-C., Perrig, A., Johnson, D.: Ariadne: A Secure On-Demand Routing Pro-
tocol for Ad Hoc Networks. Wireless Networks 11, 21–38 (2005)

15. Kong, J., Hong, X.: ANODR: anonymous on demand routing with untraceable
routes for mobile ad-hoc networks. In: Proc. 4th ACM Interational Symposium on
Mobile Ad Hoc Networking and Computing, MobiHoc 2003. ACM (2003)

16. Mauw, S., Verschuren, J.H.S., de Vink, E.P.: A Formalization of Anonymity and
Onion Routing. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.)
ESORICS 2004. LNCS, vol. 3193, pp. 109–124. Springer, Heidelberg (2004)

17. Nanz, S., Hankin, C.: A Framework for Security Analysis of Mobile Wireless Net-
works. Theoretical Computer Science 367(1), 203–227 (2006)

18. Papadimitratos, P., Haas, Z.: Secure routing for mobile ad hoc networks. In: Proc.
SCS Communication Networks and Distributed Systems Modelling Simulation
Conference, CNDS (2002)

19. Serjantov, A., Danezis, G.: Towards an Information Theoretic Metric for
Anonymity. In: Dingledine, R., Syverson, P.F. (eds.) PET 2002. LNCS, vol. 2482,
pp. 41–53. Springer, Heidelberg (2003)

20. Song, R., Korba, L., Lee, G.: AnonDSR: Efficient anonymous dynamic source rout-
ing for mobile ad-hoc networks. In: Proc. ACM Workshop on Security of Ad Hoc
and Sensor Networks, SASN 2005. ACM (2005)

21. Zapata, M.G., Asokan, N.: Securing ad hoc routing protocols. In: Proc. 1st ACM
Workshop on Wireless SEcurity, WiSE 2002, pp. 1–10. ACM (2002)



Practical Everlasting Privacy

Myrto Arapinis1, Véronique Cortier2, Steve Kremer2, and Mark Ryan1

1 School of Computer Science, University of Birmingham
2 LORIA, CNRS, France

Abstract. Will my vote remain secret in 20 years? This is a natural question
in the context of electronic voting, where encrypted votes may be published on
a bulletin board for verifiability purposes, but the strength of the encryption is
eroded with the passage of time. The question has been addressed through a prop-
erty referred to as everlasting privacy. Perfect everlasting privacy may be difficult
or even impossible to achieve, in particular in remote electronic elections. In this
paper, we propose a definition of practical everlasting privacy. The key idea is
that in the future, an attacker will be more powerful in terms of computation (he
may be able to break the cryptography) but less powerful in terms of the data he
can operate on (transactions between a vote client and the vote server may not
have been stored).

We formalize our definition of everlasting privacy in the applied-pi calculus.
We provide the means to characterize what an attacker can break in the future
in several cases. In particular, we model this for perfectly hiding and computa-
tionally binding primitives (or the converse), such as Pedersen commitments, and
for symmetric and asymmetric encryption primitives. We adapt existing tools, in
order to allow us to automatically prove everlasting privacy. As an illustration,
we show that several variants of Helios (including Helios with Pedersen commit-
ments) and a protocol by Moran and Naor achieve practical everlasting privacy,
using the ProVerif and the AKiSs tools.

1 Introduction

Electronic voting schemes such as Helios [2], JCJ/Civitas [14,8], and Prêt-à-Voter [7]
aim simultaneously to guarantee vote privacy (that is, the link between the voter and
her vote will not be revealed), and outcome verifiability (that is, voters and observers
can check that the declared outcome is correct). A common way to achieve verifiability
is to publish a “bulletin board” that contains all encrypted votes (indeed, this is the way
it is done in the systems cited above). The strength and key-length of the encryption
should be chosen so that decryption by an attacker is impossible for as long as the votes
are expected to remain private. To prevent coercer reprisal not just to the voter but also
to her descendants, one may want vote privacy for up to 100 years.

Unfortunately, however, it is not possible to predict in any reliable way how long
present-day encryptions will last. Weaknesses may be found in encryption algorithms,
and computers will certainly continue to get faster. A coercer can plausibly assert that a
voter should follow the coercer’s wishes because the bulletin board will reveal in (say)
10 years whether the voter followed the coercer’s instructions. For this reason, systems
with “everlasting privacy” have been introduced by [18]. These systems do not rely

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 21–40, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



22 M. Arapinis et al.

on encryptions whose strength may be eroded, but on commitments that are perfectly
or information-theoretically hiding. These systems have computational verifiability in-
stead of perfect verifiability, and are considered less usable and computationally more
expensive than systems relying on encryptions. More recently, schemes have been pro-
posed with a weaker form of everlasting privacy (e.g., [10,12]); they rely on encryptions
for counting votes, but use commitments rather than encryptions for verifiability pur-
poses. Thus, the bulletin board which only publishes the commitments does not weaken
the privacy provided by the underlying scheme. Although the encrypted votes must be
sent to the election administrators, it is assumed that these communications cannot be
intercepted and stored en masse. We call this weaker form of everlasting privacy prac-
tical everlasting privacy.

Symbolic models for security protocol analysis have been used to model both privacy
properties (e.g., [11,3,13]) and verifiability properties (e.g.,[16,17]) of voting systems,
but they are currently not capable of distinguishing perfect versus computational no-
tions of privacy, or indeed, of verifiability. Our aim in this paper is to extend the model
to allow these distinctions. We focus on practical everlasting privacy, and use our defi-
nitions to verify whether particular schemes satisfy that property.

Our contributions. Our first and main contribution is a general and practical definition
of everlasting privacy. The key idea is that, in the future, an attacker will be more pow-
erful in terms of computation (he may be able to break cryptography) but less powerful
in terms of the data he can operate on (transactions between a vote client and the vote
server may not have been stored). We therefore distinguish between standard communi-
cation channels (on which eavesdropping may be possible, but requires considerable ef-
fort) and everlasting channels, on which the information is intentionally published and
recorded permanently (e.g. web pages that serve as a public bulletin board). Formally,
we model everlasting privacy in the applied-pi calculus [1], a framework well-adapted
to security protocols and already used to define privacy [11] and verifiability [16]. Our
definitions apply not only to voting protocols but also to situations where forward se-
crecy is desirable, such as for instance untraceability in RFID protocols.

Modeling everlasting privacy also requires to precisely model what an attacker can
break in the future. Our second contribution is a characterization, for several primi-
tives, of what can be broken. The first natural primitive is encryption, for which we
provide an equational theory that models the fact that private keys can be retrieved
from public keys, or even from ciphertexts. Some other primitives have been primarily
designed to achieve everlasting privacy. This is the case of perfectly hiding and compu-
tationally binding primitives, such as Pedersen commitments [19]. Intuitively, perfectly
hiding means that the hidden secret cannot be retrieved even by a computationally un-
bounded adversary, while computationally binding means that, binding is ensured only
for a (polynomially) limited attacker. We provide an equational theory that models such
perfectly hiding and computationally binding primitives in general.

As an application, we study everlasting privacy for several variants of Helios [2],
an e-voting protocol used for electing the president of the University of Louvain and
board members of the IACR1. We study in particular its latest variants with Pedersen

1 International Association for Cryptologic Research.



Practical Everlasting Privacy 23

commitments [12], designed to achieve everlasting privacy, still providing full verifia-
bility. We also model and prove everlasting privacy of a (simplified) version of Moran
and Naor’s protocol [18]. Interestingly, we were able to adapt algorithms in existing
tools to automate the verification of everlasting privacy and we use adapted versions of
the AKisS [6] and ProVerif [4] tools to analyze everlasting privacy for half a dozen of
protocols.

Outline. In the following section we recall the applied pi calculus and introduce nota-
tions and basic definitions. In Section 3 we define new equivalence relations, namely
forward and everlasting indistinguishability. Then, in Section 4 we instantiate these
equivalences to the case of voting protocols, define everlasting privacy and illustrate
this property on several examples. In Section 5 we present a modeling of perfectly hid-
ing and computationally binding (and vice-versa) primitives in the applied pi calculus.
In particular we model Pedersen commitments, which are for studying two protocols
that provide everlasting privacy. In Section 6 we discuss tool support for automatically
proving everlasting indistinguishability before concluding.

2 The Applied Pi Calculus

The applied pi calculus [1] is a language for modeling distributed systems and their
interactions. It extends the pi calculus with an equational theory, which is particularly
useful for modeling cryptographic protocols. The following subsections describe the
syntax and semantics of the calculus.

2.1 Syntax

Terms. The calculus assumes an infinite set of names N = {a, b, c, . . .}, an infi-
nite set of variables V = {x, y, z, . . .} and a finite signature Σ, that is, a finite set
of function symbols each with an associated arity. We use meta-variables u, v, w to
range over both names and variables. Terms M,N, T, . . . are built by applying func-
tion symbols to names, variables and other terms. Tuples M1, . . . ,Ml are occasionally
abbreviated M̃ . We write {M1/u1, . . . ,Ml/ul} for substitutions that replace u1, . . . , ul
with M1, . . . ,Ml. The applied pi calculus relies on a simple type system. Terms can
be of sort Channel for channel names or Base for the payload sent out on these chan-
nels. Function symbols can only be applied to, and return, terms of sort Base. A term is
ground when it does not contain variables.

The signature Σ is equipped with an equational theory E, that is a finite set of equa-
tions of the form M = N . We define =E as the smallest equivalence relation on terms,
that contains E and is closed under application of function symbols, substitution of
terms for variables and bijective renaming of names.

Example 1. A standard signature for pairing and encryption is:

Σenc = {0, 1, 〈 , 〉, fst( ), snd( ), pk( ), aenc( , , ), adec( , ), senc( , , ), sdec( , )}

The term 〈m1,m2〉 represents the concatenation of m1 andm2, with associated projec-
tors fst( ) and snd( ). The term aenc(k, r,m) represents the asymmetric encryption of



24 M. Arapinis et al.

P,Q,R ::= processes
0 null process
P | Q parallel composition
!P replication
νn.P name restriction
u(x).P message input
u〈M〉.P message output
if M = N then P else Q conditional

A,B,C ::= extended processes
P plain process
A | B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

where u is either a name or variable of channel sort.

Fig. 1. Applied pi calculus grammar

message m with public key k and randomness r while the associated decryption opera-
tor is adec. Similarly, senc(k, r,m) represents the symmetric encryption of message m
with key k and randomness r. The associated decryption operator is sdec. The proper-
ties of these primitives are modeled by the following standard equational theory Eenc:

Eenc =

⎧⎪⎪⎨⎪⎪⎩
fst(〈x, y〉) = x
snd(〈x, y〉) = y

adec(x, aenc(pk(x), y, z)) = z
sdec(x, senc(x, y, z)) = z

⎫⎪⎪⎬⎪⎪⎭
Processes. The grammar for processes is shown in Figure 1. Plain processes are stan-
dard. Extended processes introduce active substitutions which generalize the classi-
cal let construct: the process νx.({M/x} | P ) corresponds exactly to the process
let x = M in P . As usual names and variables have scopes which are delimited by
restrictions and by inputs. All substitutions are assumed to be cycle-free.

The sets of free and bound names, respectively variables, in process A are denoted
by fn(A), bn(A), fv(A), bv(A). We also write fn(M), fv(M) for the names, respec-
tively variables, in term M . An extended process A is closed if it has no free variables.
A context C[ ] is an extended process with a hole. We obtain C[A] as the result of fill-
ing C[ ]’s hole with A. An evaluation context is a context whose hole is not under a
replication, a conditional, an input, or an output.

Example 2. Throughout the paper we illustrate our definitions with a simplified version
of the Helios voting system [2]. Two techniques can be used for tallying in Helios: either
a homomorphic tally based on El Gamal encryption, or a tally based on mixnets. We
present here the version with mixnets.



Practical Everlasting Privacy 25

1. The voter V computes her ballot by encrypting her vote with the public key pk(skE )
of the election. The corresponding secret key is shared among several election au-
thorities. Then she casts her ballot together with her identity on an authenticated
channel. Upon receiving the ballot, the administrator simply publishes it on a pub-
lic web page (after having checked that V is entitled to vote).

2. Once the voting phase is over, the votes are shuffled and reencrypted through
mixnets. The permuted and rerandomized votes are again published on the pub-
lic web page (together with a zero knowledge proof of correct reencryption and
mixing).

3. Finally, the authorities decrypt the rerandomized votes and the administrator pub-
lishes the decrypted votes (with a zero knowledge proof of correct decryption).

The process representing the voter is parametrized by her vote v, and her identity id .

V (auth, id , v)
def
= νr.auth〈〈id , aenc(pk(skE ), r, v)〉〉

The administrator BB receives votes on private authenticated channels and publishes
the votes. It is parametrized by the authenticated channels of the voters. Then the ballots
are forwarded to the tally T over the private channel c. The tally consists in decrypting
the vote. The shuffle through mixnets is modeled simply, by non deterministic parallel
composition after all ballots have been received. For simplicity, we consider here an
election system for three voters.

BB(a1, a2, a3)
def
= νc. a1(x). bb〈x〉. c〈x〉 | a2(y). bb〈y〉. c〈y〉 | a3(z). bb〈z〉. c〈z〉 | T

T
def
= c(x′).c(y′).c(z′).

(bb〈adec(skE , snd(x′))〉 | bb〈adec(skE , snd(y′))〉 | bb〈adec(skE , snd(z′))〉)
The process H then represents the whole Helios system with two honest voters and
one dishonest voter (which does therefore not need to be explicitly specified and whose
authenticated channel is public).

H
def
= νskE . νauth1. νauth2.

bb〈pk(skE )〉. (V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

The first honest voter casts the vote a while the second honest voter casts the vote b.

2.2 Semantics

The operational semantics of the applied pi calculus is defined by the means of two
relations: structural equivalence and internal reductions. Structural equivalence (≡) is
the smallest equivalence relation closed under α-conversion of both bound names and
variables and application of evaluation contexts such that:

A | 0 ≡ A νn.0 ≡ 0
A | (B | C) ≡ (A | B) | C νu.νw.A ≡ νw.νu.A

A | B ≡ B | A A | νu.B ≡ νu.(A | B)
!P ≡ P |!P if u 	∈ fn(A) ∪ fv(A)

νx.{M/x} ≡ 0 {M/x} ≡ {N/x}
{M/x} | A ≡ {M/x} | A{M/x} if M =E N



26 M. Arapinis et al.

a(x).P
a(M)−−−→ P{M/x} A

α−→ A′ u does not occur in α

νu.A
α−→ νu.A′

a〈u〉.P a〈u〉−−−→ P
A

α−→ A′ bv(α) ∩ fv(B) = bn(α) ∩ fn(B) = ∅
A | B α−→ A′ | B

A
a〈u〉−−−→ A′ u �= a

νu.A
νu.a〈u〉−−−−−→ A′

A ≡ B B
α−→ B′ A′ ≡ B′

A
α−→ A′

Fig. 2. Labelled reductions

Internal reduction (−→) is the smallest relation closed under structural equivalence,
application of evaluation contexts satisfying the following rules:

COMM c〈x〉.P | c(x).Q −→ P | Q
THEN if N = N then P else Q −→ P
ELSE if L =M then P else Q −→ Q

for ground terms L,M where L 	=E M

Labelled reduction (
α−→) extends the internal reduction and enables the environment to

interact with the processes as defined in Figure 2. The label α is either an input, or the
output of a channel name or a variable of base type.

We write =⇒ for an arbitrary (possibly zero) number of internal reductions and
α
=⇒ for

=⇒ α−→=⇒. Whenever the equational theory is not clear from the context we annotate the
above relations by the equational theory and write e.g. −→E.

A trace of a process is the sequence of actions (i.e. labels) together with the corre-
sponding sent messages. Formally, the set of traces of a processA is defined as follows.
Note that it depends on the underlying equational theory E.

traceE(A) = {(α1 · α2 · . . . · αn, ϕ(B)) | A α1=⇒E A1
α2=⇒E · · ·An−1

αn=⇒E B}

Example 3. Consider the process H representing the Helios protocol as defined in Ex-
ample 2. A possible execution for H is:

H
νxk. bb〈xk〉
=======⇒ H1

νx. bb〈x〉
=====⇒ νy. bb〈y〉

=====⇒ auth3(〈id3,x〉)
=========⇒ νz. bb〈z〉

=====⇒ νx′. bb〈x′〉
======⇒ νy′. bb〈y′〉

======⇒ νz′. bb〈z′〉
======⇒ H2

where H1 and H2 are defined below (we omit the other intermediate processes). Note
that H2 is simply an active substitution.

H1 = νskE . νauth1. νauth2. νr1.

({pk(skE )/xk} | V (auth1, id1, a) | V (auth2, id2, b) | BB(auth1, auth2, auth3))

H2 = νskE . νauth1. νauth2. νr1. νr2.{pk(skE )/xk} | {a/x′, b/y′, a/z′} |
{〈id1, aenc(pk(skE ), r1, a)〉/x,〈id2, aenc(pk(skE ), r2, b)〉/y,〈id3, aenc(pk(skE ), r1, a)〉/z}



Practical Everlasting Privacy 27

This execution trace corresponds to the case where the two honest voters cast their vote
as expected, while the dishonest voter replays the first voter’s ballot. As we shall see in
Example 5, this corresponds to the attack on privacy discovered in [9].

2.3 Equivalence Relations for Processes

Privacy is often stated in terms of equivalence [11]. We recall here the definitions of
static and trace equivalence.

Sequences of messages are often stored as frames. Formally, a frame is an extended
process built from 0 and active substitutions {M/x}, and closed by parallel composition
and restriction. The domain of a frame φ = νñ. {M1/x1, . . . ,Mn/xn} such that xi /∈ ñ
is dom(φ) = {x1, . . . , xn}. Every extended process A can be mapped to a frame ϕ(A)
by replacing every plain process in A with 0. The frame ϕ(A) represents the static
knowledge output by a process to its environment.

Two frames are indistinguishable to an attacker if it is impossible to build a test that
allows to differentiate between the two.

Definition 1 (Static equivalence). Given an equational theory E two frames φ and ψ
are are statically equivalent, denoted φ ∼E ψ, if dom(φ) = dom(ψ) and there exist
ñ, σ, τ such that φ ≡ νñ.σ, ψ ≡ νñ.τ and for all terms M,N such that ñ ∩ (fn(M) ∪
fn(N)) = ∅, we have Mσ =E Nσ if and only if Mτ =E Nτ . By abuse of notation, we
may write Mφ instead of Mσ when σ is clear from the context.

Example 4. Let Eenc be the equational theory defined at Example 1. Let H2 be the
process/frame defined in Example 3. Let φ = ϕ(H2) (= H2 actually). Consider the
following frame ψ.

ψ = νskE . νr1. νr2.{pk(skE )/xk} | {a/x′, b/y′, b/z′} |
{〈id1, aenc(pk(skE ), r1, b)〉/x,〈id2, aenc(pk(skE ), r2, a)〉/y,〈id3, aenc(pk(skE ), r1, b)〉/z,}

The two frames φ and ψ are not statically equivalent for the equational theory Eenc.
Indeed, consider for example M = z′ and N = a, we have Mφ = a = Nφ but
Mψ = b 	= Nψ. Therefore, φ 	∼Eenc ψ.

The active counterpart of static equivalence is trace equivalence. Intuitively, two pro-
cessesA andB are indistinguishable to an attacker if any execution ofA can be matched
to an execution of B that is equal for their observable actions and such that the corre-
sponding sequences of sent messages are statically equivalent.

Definition 2 (Trace equivalence). Given an equational theory E two processes A and

B are trace equivalent, denoted A
tr≈ EB, if for any trace (trA, φA) ∈ traceE(A) there

is a corresponding trace (trB, φB) ∈ traceE(B) such that trA = trB and φA ∼E φB
(and reciprocally).



28 M. Arapinis et al.

Example 5. We consider the Helios system H ′ with two honest voters and one dishon-
est voter where one honest voter casts the vote b while the other one casts the vote a.

H ′ def
= νskE . νauth1. νauth2.

bb〈pk(skE )〉. (V (auth1, id1, b) | V (auth2, id2, a) | BB(auth1, auth2, auth3))

Let (tr , φ) be the trace corresponding to the execution of H described in Example 3
where φ = ϕ(H2) = H2 (as defined in Example 3) and tr = νxk. bb〈xk〉 · νx. bb〈x〉 ·
νy. bb〈y〉·auth3(〈id3, x〉)·νz. bb〈z〉·νx′. bb〈x′〉·νy′. bb〈y′〉·νz′. bb〈z′〉. Then (tr , φ) ∈
traceEenc(H) and for any (tr , φ′) ∈ traceEenc(H

′), it is easy to check that we have

φ 	∼Eenc φ
′. (In fact, φ′ = ψ from Example 4.) Therefore, H 	 tr≈EencH

′

Intuitively, if the dishonest voter’s strategy is to replay the first voter’s vote, then he
would cast a vote of the form 〈id3, aenc(pk(skE ), r1, a)〉 in the system H while he
would cast a vote of the form 〈id3, aenc(pk(skE ), r1, b)〉 in the system H ′. Once the
result is published, an attacker would be then able to distinguish H from H ′ since the
tally in H is {a, b, a} while it is {b, a, b} in H ′. This corresponds exactly to the replay
attack against Helios, explained in [9].

3 Forward and Everlasting Indistinguishability

In this section we introduce and illustrate our definitions of forward and everlasting
indistinguishability. In the next section we will show how the here presented definitions
can be used to define practical everlasting privacy in electronic voting.

3.1 Definitions of Forward and Everlasting Indistinguishability

From now on we suppose thatΣ is a signature and that E0 and E1 are equational theories
over Σ. We want to model that an attacker may interact with a protocol today and
store some data which may be exploited in the future when his computational power
has increased. We model the fact that the attacker’s computational power may change
by using two different equational theories: E0 models the attacker’s capabilities while
interacting with the protocol at the time of the election, while E1 models his capabilities
when exploiting the published data in the future when the strength of cryptography has
been eroded.

We also argue that in many situations it is reasonable to suppose that the attacker
does not store all of the data that was sent over the network. We will therefore con-
sider some channels to be everlasting: data sent over such channels will remain in the
attacker’s knowledge for future analysis while other data will be “forgotten” and can
only be used during the interaction with the protocol. Typically, everlasting channels
are media such as web-pages published on the Internet (that can easily be accessed by
anyone, for a rather long period of time) while public but non-everlasting channels can
be communications over the Internet, which can be recorded only by the active and
costly involvement of an attacker.

In order to reason about data that has been sent on certain channels we introduce
the following notation. Let P be a process, C a set of channels (corresponding to the



Practical Everlasting Privacy 29

everlasting channels), and tr = (α1 · α2 · . . . · αn, ϕ) ∈ traceE(P ) a trace of P . We
define the set of variables in the domain of ϕ corresponding to terms sent on channels
in C as VC(α1 · α2 · . . . · αn) = {x | c ∈ C, 1 ≤ i ≤ n, αi = νx. c〈x〉} and denote by
φV(Pn) the substitution φ(Pn) whose domain is restricted to the set of variables V .

Two processes A and B are said to be forward indistinguishable if, informally, an
attacker cannot observe the difference between A and B being given the computational
power modeled by E1 (where it can break keys for example), but for executions that
happened in the past, that is over E0 (the standard theory) and observing only the infor-
mation that was passed through everlasting channels.

Definition 3 (Forward indistinguishability). Let A and B be two closed extended

processes and C a set of channels. We define A
fwd

� C
E0,E1

B, if for every trace (α1 ·
α2 · · ·αn, ϕA) ∈ traceE0(A) there exists ϕB s.t. (α1 ·α2 · · ·αn, ϕB) ∈ traceE0(B)

and φAV ∼E1 φBV .

where V = VC(α1 · α2 · · ·αn). A and B are forward indistinguishable w.r.t. C, E0 and

E1, denoted A
fwd≈C

E0,E1
B, if A

fwd

�C
E0,E1

B and B
fwd

�C
E0,E1

A.

Note that in the above definition we only check equivalence of messages that were
sent on channels in the set C. We may also require thatA and B are indistinguishable in
the standard way (over E0). Standard indistinguishability and forward indistinguisha-
bility yield everlasting indistinguishability.

Definition 4 (Everlasting indistinguishability). Let A and B be two closed extended
processes, C a set of channels. A and B are everlasting indistinguishable w.r.t. C, E0

and E1, denoted A
ev≈C

E0,E1
if

1. A
tr≈E0B, i.e. A and B are trace equivalent w.r.t. E0; and

2. A
fwd≈C

E0,E1
B, i.e. A and B are forward indistinguishable w.r.t. C, E0 and E1.

3.2 Examples

We illustrate the above definitions on a simple RFID protocol. In the context of RFID
systems, forward secrecy is often a desired property: even if an RFID tag has been tam-
pered with, and its secrets have been retrieved by a malicious entity, its past transactions
should remain private. This can be seen as a form of everlasting security requirement.
Indeed, RFID tags being devices vulnerable to tampering, one would like to make sure
that when an intruder gains access to an honest device, he is not able to trace back the
movements of the tag. Such tampering can be modelled by the following equational
theory Ebreak, that gives direct access to keys.

Ebreak =

{
breakaenc(aenc(pk(x), y, z)) = x

breaksenc(senc(x, y, z)) = x

}
We also use this equational theory later to model that in 20 or 30 years an adversary
will be able to break nowadays encryption keys.



30 M. Arapinis et al.

Consider the following toy RFID protocol

session = νr. c〈enc(k, r, id)〉
tag = νk. νid. !session
system = !tag

where a tag identifies itself to a reader by sending its tag identifier id encrypted with a
long-term symmetric key shared between the tag and the reader.

We can model unlinkability as being the property that an attacker cannot distinguish
the situation where the same tag is used in several sessions from the situation where
different tags are used. Formally unlinkability is modelled as the trace equivalence:

system
tr≈Eencsystem

′

where
system′ =!νk.νid. session.

Intuitively, this protocols satisfies unlinkability only as long as the keys are not leaked.
Indeed, since each identification uses a different random in the encrypted message sent
to the reader, each of the sent messages is different and looks like a random message
to the intruder. However, system and system′ are not forward indistinguishable when
considering a theory E1 which allows to break keys, i.e.,

system 	fwd≈{c}
Eenc,Eenc∪Ebreak

system′

where Eenc is the equational theory introduced in Example 1. Indeed, once the key k of
a tag is obtained by the intruder, he can retrieve the identity behind each blob he has
seen on channel c, and thus distinguish the set of messages obtained by an execution of
systemwhere the same tag executes at least two sessions, from the set of messages ob-
tained by the corresponding execution of system′ where each tag has executed at most
one session. Thus this protocol does not satisfy the stronger requirement of everlasting
indistinguishability either:

system 	 ev≈{c}
Eenc,Eenc∪Ebreak

system′

4 Application to Practical Everlasting Privacy

We model a practical version of everlasting privacy in voting protocols based on ever-
lasting indistinguishability.

4.1 Definition of Practical Everlasting Privacy

We first recall the definition of vote privacy introduced in [15].

Definition 5 (Vote privacy). Let VP(v1, v2) be an extended process with two free vari-
ables v1, v2. VP(v1, v2) respects vote privacy for an equational theory E if

VP(a, b)
tr≈EVP(b, a)



Practical Everlasting Privacy 31

Intuitively, the free variables refer to the votes of two honest voters id1 and id2. Then
this equivalence ensures that an attacker cannot distinguish the situations where voter
id1 voted for candidate a and voter id2 voted for candidate b, from the situation where
the voters swapped their votes, i.e., voter id1 voted for candidate b and voter id2 voted
for candidate a.

Example 6. Let Helios(v1, v2) be the process

νskE . νauth1. νauth2.

bb〈pk(skE )〉. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

where processes V and BB are defined in Example 2.
In Example 5, when we illustrated trace equivalence we showed that Helios does not

satisfy vote privacy due to a vote replay attack discovered in [9].
A simple fix of the attack consists in weeding duplicates. The corresponding tally is

T ′ def
= c(x′).c(y′).c(z′).

if snd(x′) 	= snd(y′) ∧ snd(x′) 	= snd(z′) ∧ snd(y′) 	= snd(z′) then
bb〈adec(skE , snd(x′))〉 | bb〈adec(skE , snd(y′))〉 | bb〈adec(skE , snd(z′))〉

In other words, the tally is performed only if there are no duplicates amongst the cast
votes. We define the voting protocol Heliosnoreplay as Helios but with the revised version
T ′ of the tally. Using the tools ProVerif and AKISS we have shown that this protocol
satisfies vote privacy.

Heliosnoreplay(a, b)
tr≈EencHelios

noreplay(b, a)

The above definition of vote privacy does however not take into account that most cryp-
tographic schemes rely on computational assumptions and may be broken in the future.
In order to protect the secrecy of votes against such attacks in the future we propose a
stronger definition based on forward indistinguishability.

Definition 6 (Everlasting vote privacy). Let VP(v1, v2) be an extended process with
two free variables v1, v2. VP(v1, v2) satisfies everlasting privacy w.r.t. a set of channels
C and equational theories E0 and E1, if

VP(a, b)
ev≈C

E0,E1
VP(b, a)

We note that everlasting vote privacy is strictly stronger than vote privacy as it requires
trace equivalence of VP(a, b) and VP(b, a) (which is exactly vote privacy) and addition-
ally forward indistinguishability of these processes. Our definition is parametric with
respect to the equational theories and the channels we suppose to be everlasting. The
equational theory E1 allows us to exactly specify what a future attacker may be able to
break. The set of everlasting channels C allows us to specify what data a future attacker
has access to. When C corresponds to all channels we typically get a requirement which
is too strong for practical purposes. We argue that it is reasonable to suppose that in,
say 50 years, an attacker does not have access to the transmissions between individual
voters and the system while a bulletin board published on the Internet could easily have
been stored.



32 M. Arapinis et al.

4.2 Examples

Helios with Identities. As discussed In Example 6, Heliosnoreplay does satisfy vote
privacy. However, this protocol does not satisfy everlasting vote privacy with E0 = Eenc,
E1 = Eenc ∪Ebreak and C = {bb}. Intuitively, this is due to the fact that a future attacker
can break encryption and link the recovered vote to the identity submitted together with
the cast ballot. Formally, we can show that

Heliosnoreplay(a, b) 	fwd≈Heliosnoreplay(b, a)

Consider the trace (νxk. bb〈xk〉·νx. bb〈x〉·νy. bb〈y〉, ϕA)∈traceEenc(Helios
noreplay(a, b))

where
ϕA = νskE, r1, r2.{ pk(skE)/xk,

〈id1, aenc(pk(skE), r1, a)〉/x,
〈id2, aenc(pk(skE), r2, b)〉/y }

Traces (νxk. bb〈xk〉 · νx. bb〈x〉 · νy. bb〈y〉, ϕB) ∈ traceEenc(Helios
noreplay(b, a)) are

either such that

ϕB ≡ νskE, r1, r2.{ pk(skE)/xk,
〈id1, aenc(pk(skE), r1, b)〉/x,
〈id2, aenc(pk(skE), r2, a)〉/y }

or
ϕB ≡ νskE, r1, r2.{ pk(skE)/xk,

〈id2, aenc(pk(skE), r1, a)〉/x,
〈id1, aenc(pk(skE), r2, b)〉/y }

In both cases we have that ϕA 	∼Eenc∪Ebreak
ϕB . In the first case this is witnessed by the

test M = a and N = breakaenc(snd(x)) as

MϕA = a =Eenc∪Ebreak
NϕA but MϕB = a 	=Eenc∪Ebreak

b =Eenc∪Ebreak
NϕB

In the second case non equivalence is witnessed by the test M = id1 and N = fst(x).

Helios without Identities. As we just saw Heliosnoreplay does not satisfy everlasting
privacy. This is due to the fact that encrypted votes are published together with the
identity of the voter on the bulletin board. A simple variant (used e.g. in Louvain for
student elections) consists in publishing the encrypted vote without the identity of the
voter. We define Heliosnoid as Heliosnoreplay but redefining the process BB′ as

BB′(a1, a2, a3)
def
= νc. a1(x). bb〈snd(x)〉. c〈x〉 | a2(y). bb〈snd(y)〉. c〈y〉 |

a3(z). bb〈snd(z)〉. c〈z〉 | T ′

where T ′ is as defined at Example 6. As we shall see in Section 6, we prove everlasting
privacy of Heliosnoid w.r.t Eenc,Ebreak and everlasting channel bb, using (adaptations of)
ProVerif and AKISS.



Practical Everlasting Privacy 33

5 Modeling Commitments

Commitment schemes allow a sender to commit to a value v while keeping this value
hidden until an ‘opening’ phase, where the sender reveals v to the receiver of the com-
mitment commit(v). The receiver should then be able to verify that the revealed value is
indeed the one used to compute commit(v), and in that sense that the sender had indeed
committed to the revealed value. The two main security properties of such schemes
are binding (the sender can’t claim that commit(v) is a commitment to some v′ 	= v),
and hiding (the receiver can’t deduce v from commit(v)). These two properties can
hold ‘perfectly’ or merely ‘computationally’. It is known that there are no commitment
schemes which are both perfectly hiding and perfectly binding, so one has to choose be-
tween perfectly hiding and computationally binding (PHCB) and perfectly binding and
computationally hiding (PBCH). In this section, we characterize in our formal model
what it means for a primitive to be PHCB and PBCH. We also give equational theories
to model such primitives, which we then use for the verification of two voting protocols
that rely on such primitives to ensure everlasting vote privacy.

5.1 Modeling Hiding and Binding Cryptographic Primitives

PBCH Primitives. Informally, an n-ary function f is perfectly binding if the inputs are
totally determined by the output. In other words, f is perfectly binding if it admits no
collisions. It is computationally hiding if it is hard to retrieve the inputs from the output.

To model a PBCH primitive f using the applied pi calculus, we introduce two equa-
tional theories Ef

0 and Ef
1 over the signature Σ = {f, break1f , . . . , breaknf }, such that no

equation of the form
f(M1, . . . ,Mn) =E f(N1, . . . , Nn)

is derivable, where (M1, . . . ,Mn) 	=E (N1, . . . , Nn) and E ∈ {Ef
0,E

f
1}; and that the

equation
breakif(f(v1, . . . , vn)) =Ef

1
vi.

is derivable. As before, Ef
0 models the capabilities of a computationally bounded at-

tacker interacting with the protocol, while Ef
1 models the capabilities of a computation-

ally unbounded attacker in the future.

Example 7. A trivial example of a perfectly binding function is the identity function id.
However, id is not hiding.

Example 8. An example of a PBCH primitive is the ElGamal public key derivation
function. Given multiplicative cyclic groupG of order q with generator g, to generate a
private and public key pair Alice does the following:

1. she chooses at random her private key sk ∈ {1, . . . , q − 1},
2. she computes and publishes her public key pkG,g,q(sk) = gsk.

The secret key sk is totally determined by the public key pkG,g,q(sk) = gsk. It is
however as hard to find sk from pkG,g,q(sk) as it is to compute discrete logarithms.



34 M. Arapinis et al.

Thus, to reason about protocols relying on ElGamal encryption we consider
the following equational theories over the signature {aencG,g,q, adecG,g,q, pkG,g,q,
breakpkG,g,q

} (we omit the subscripts G, g, q for readability):

EElGamal
0 = {adec(xk, aenc(pk(xk), xr, xm)) = xm}

EElGamal
1 =

{
adec(xk, aenc(pk(xk), xr, xm)) = xm
breakpk(pk(xk)) = xk

}
The function pkG,g,q is PBCH. Note however that the encryption algorithm aencG,g,q

is not PBCH, since it is not perfectly binding. Indeed, given the parametersG, q, and g,
to encrypt the message m with the public key gsk, Alice would

1. pick a random r ∈ {0, . . . , q − 1} and comput c1 = gr;
2. compute the secret shared key s = (gsk)r; and
3. computer c2 = m.s

The computed ciphertext is then aenc(pk(sk), r,m) = (c1, c2) = (gr,m.(gsk)r).
Hence, for any public key pk(sk′)=gsk

′
, there exists a messagem′=m.(gsk)r/(gsk

′
)r

such that aenc(pk(sk), r,m) = aenc(pk(sk′), r,m′). Thus, ElGamal encryption is not
perfectly binding.

PHCB Primitives. Informally, an n-ary function f is perfectly hiding if given the out-
put, it is impossible to retrieve any of the inputs. So even enumerating all the possible
inputs shouldn’t allow one to retrieve the inputs from the output of the function. But
this implies that f should admit collisions for each possible input. On the other hand, f
is computationally binding if it is computationally not feasible to find such collisions.

Example 9. Any constant function f(x1, . . . , xn) = c is obviously perfectly hiding
but not computationally binding. The ⊕ function is also perfectly hiding since for all
z = x⊕ y

– for all x′, we have that y′ = z ⊕ x′ is such that x⊕ y = x′ ⊕ y′; and
– for all y′′, we have that x′′ = z ⊕ y′′ is such that x⊕ y = x′′ ⊕ y′′.

However, it is not computationally binding since it is easy to compute x′′ and y′.

Example 10. Pedersen commitments are PHCB. The Pedersen commitment over a
cyclic group G of order q and two generators h, g ∈ G such that loggh is not known is
the function PG

h,g(x, y) = hx · gy( mod q). Pedersen commitments are perfectly hiding
since for all z = PG

h,g(x, y),

– for all x′, we have that y′ = y + (x − x′) · loggh mod q is such that PG
h,g(x, y) =

PG
h,g(x

′, y′);

– for all y′′, we have that x′′ = x+ (y− y′′) · loghg mod q is such that PG
h,g(x, y) =

PG
h,g(x

′′, y′′).



Practical Everlasting Privacy 35

but they are computationally binding because finding these x′′ and y′ is as hard as
computing discrete logarithms.

To reason about protocols relying on Pedersen commitments using the applied pi cal-
culus, we introduce the function symbols forge1Ped, and forge2Ped and the two following
equational theories

EPed
0 = ∅

EPed
1 =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Ped(forge1Ped(v, y
′), y′) = v

Ped(x′, forge2Ped(v, x
′)) = v

forge1Ped(Ped(x, y), y) = x

forge2Ped(Ped(x, y), x) = y

forge1Ped(v, forge
2
Ped(v, x)) = x

forge2Ped(v, forge
1
Ped(v, y)) = y

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
For the first equation, suppose v = Ped(x, y), and we have some y′; then forge1Ped
allows us to compute a value x′ = forge1Ped(v, y

′) such that v = Ped(x′, y′). The
second equation is similar. The third and fourth equation allow us to recover one of the
arguments, given that the other argument is known. In other words the third equation
expresses that when forging x′ = forge1Ped(v, y) and v = Ped(x, y) then we must
have that x′ = x, and similarly for the fourth equation. The fifth and sixth equations
are also seen to be mathematically valid, given that forge1Ped(v, y) and forge2Ped(v, x)
respectively model the terms logg(v/h

y) and logh(v/g
x).

5.2 Applications: Electronic Voting Protocols and Everlasting Privacy

Pedersen commitments have been used in several voting protocols for achieving ever-
lasting privacy. In particular we study the protocol by Moran and Naor [18] and a recent
version of Helios [12] based on Pedersen commitments.

Moran-Naor Protocol. Moran and Naor [18] designed a protocol to be used with
voting machines in a polling station. The protocol aims to achieve both verifiability and
everlasting privacy. From a high level point of view the protocol works as follows.

1. The voter enters his vote into the voting machine inside the voting booth. The
machine then computes a Pedersen commitment to this vote and provides a zero
knowledge proof to the voter that the computed value commits to the voter’s choice.
The commitment is then published on a bulletin board so that the voter can verify
the presence of his ballot.

2. After all ballots have been cast, the votes are published (in random order) on the
bulletin board together with a zero knowledge proof asserting that the published
votes correspond to the votes of the published commitments.

As we are only interested in privacy and not verifiability we ignore the zero knowledge
proofs in our modeling and simply represent the protocol by the process

MoranNaor(v1, v2)
def
= νpriv 1. νpriv2.

V (priv1, v1) | V (priv 2, v2) | νc.(DRE(priv1, priv2, priv3) | T )



36 M. Arapinis et al.

where
V (priv , v)

def
= priv 〈v〉

DRE(p1, p2, p3)
def
= p1(x1).νr1.bb〈Ped(x1, r1)〉.c〈x1〉 |
p2(x2).νr2.bb〈Ped(x2, r2)〉.c〈x2〉 |
p3(x3).νr3.bb〈Ped(x3, r3)〉.c〈x3〉

T = c(y1).bb〈y1〉 | c(y2).bb〈y2〉 | c(y3).bb〈y3〉
As the voter enters his vote in a private ballot booth, we have modelled this communi-
cation on a private channel. We have been able to show that MoranNaor verifies ever-
lasting privacy with respect to the channel bb and the equational theories introduced for
Pedersen commitments.

Helios with Pedersen Commitments. In [12], the authors propose a version of the
Helios voting system that provides everlasting vote privacy w.r.t. the bulletin board.
They rely for this on Pedersen commitments. In this section, we present this new version
of the Helios system.

1. The voter V chooses her candidate v and commits to it by generating a random
number r and computing the Pedersen commitment Ped(r, v). She then separately
encrypts the decommitment values r and v using the public key pk(skE ) of the elec-
tion; and casts her commitment together with the encrypted decommitment values
and her identity on a private authenticated channel. Upon reception of the ballot,
the Bulletin Board (BB) publishes on a public web page the commitment Ped(r, v)
(after having checked that V is entitled to vote).

2. Once the voting phase is over, the ballots (i.e. the commitments together with the
encrypted decommitment values) are shuffled and rerandomized through mixnets.
The random permutation of the rerandomized ballots is published on the public
webpage (together with a zero knowledge proof of correct reencryption and mix-
ing).

3. Finally, the authorities decrypt the rerandomized and shuffled decommitment val-
ues and the BB publishes them.

The voter can be modelled by the following process:

V (id , auth, v)
def
= νs.νrv.νrs.

auth〈〈id , 〈Ped(s, v), 〈aenc(pk(skE), rv, v), aenc(pk(skE), rs, s)〉〉〉〉

She sends to the BB on the private authenticated channel authCh, her commitment
Ped(s, v) to vote v, together with her identity and the encrypted decommitment values
aenc(pk(skE), rv, v), aenc(pk(skE), rs, s).

The ballot box publishes her commitment for verifiability purposes. After having
received all votes, the BB publishes the votes in a random order through the process T .

BB(a1, a2, a3)
def
= a1(x). bb〈〈fst(x), fst(snd(x))〉〉. c〈x〉 |
a2(y). bb〈〈fst(x), fst(snd(x))〉〉. c〈x〉 |
a3(z). c〈z〉 | T



Practical Everlasting Privacy 37

T
def
= c(x). c(y). c(z).if fst(snd(snd(x))) 	= fst(snd(snd(z)))

∧ fst(snd(snd(y))) 	= fst(snd(snd(z)))
∧ fst(snd(snd(x))) 	= fst(snd(snd(y))) then

bb〈adec(skE , fst(snd(snd(x))))〉 |
bb〈adec(skE , fst(snd(snd(y))))〉 |
bb〈adec(skE , fst(snd(snd(z)))〉

Finally we can define the voting protocol HeliosPed as

HeliosPed(v1, v2)
def
= νskE . νauth1. νauth2.

bb〈pk(skE )〉. (V (auth1, id1, v1) | V (auth2, id2, v2) | BB(auth1, auth2, auth3))

which verifies everlasting privacy with respect to the channel bb and the previously
introduced equational theories.

6 Tool Support for Everlasting Indistinguishability

In order to verify everlasting indistinguishability on the examples presented in the
previous section we have adapted two tools for automated verification of equivalence
properties, AKISS [6] and ProVerif [5]. The two tools have shown themselves to be
complementary and the results obtained using the tools are summarized in Figure 3.

AKISS. AKISS is a recent tool that has been designed to automatically prove trace
equivalence by translating processes into Horn clauses and using a dedicated resolution
algorithm. More precisely it can both under- and over-approximate trace equivalence in
the case of a bounded number of sessions, i.e. for processes without replication. The
tool has currently two limitations: it does not support private channels, or else branches
in conditionals. However, it is able to deal with a wide range of equational theories,
including the theory for Pedersen commitments introduced in the previous section.

We have adapted the tool in order to check forward indistinguishability and adapted
the syntax to declare everlasting channels and an everlasting equational theory. More
precisely we implemented an algorithm to check an under-approximation of forward
indistinguishability, yielding a proof of forward indistinguishability whenever the tool
responds positively. While false attacks are possible, we did not encounter any in our
case studies.

Absence of support for private channels and else branches required us to adapt some
of the examples. In particular we rewrote the processes by directly inlining private com-
munications, which in the examples maintained the same set of traces, hence preserving
everlasting indistinguishability. The weeding operation in Heliosnoreplay, Heliosnoid and
Heliosped requires the use of an else branch. We encoded a different weeding proce-
dure using cryptographic proofs of knowledge. While the vote replay attack on the
simple Helios protocol is found in less than 10 seconds, the verification of other exam-
ples ranged from a few minutes to several hours. While attempting to verify Heliosped

the tool ran out of memory and we were only able to verify a version of Heliosped

with two honest voters and no dishonest voter. As the tool is still in a prototype status



38 M. Arapinis et al.

we are confident that future optimizations will allow the tool to scale up to this kind
of protocols. The tool and example files are available at https://github.com/
ciobaca/akiss.

ProVerif. The ProVerif tool [4] is an automatic cryptographic protocol verifier. It is
based on the representation of protocols by Horn clauses and relies on several approx-
imations. ProVerif can handle several types of properties and in particular equivalence
based properties [5] like the privacy-type ones which we are interested in this work.
Moreover, ProVerif can handle many different cryptographic primitives, including Ped-
ersen commitments as our case studies show.

The ProVerif tool works by translating biprocesses into Horn clauses built over
the two predicates attacker2 and message2. For equivalence checking, biprocess is
used to represent the pair of processes for which ProVerif is called to check equiv-
alence. The fact attacker2(M,M ′) means that the attacker can learn the value M
(resp. M ′) from the first (resp. second) process encoded by the biprocess. The fact
message2(M,N,M ′, N ′) means that the message N (resp. N ′) has appeared on the
channel M (resp. M ′) while executing the first (resp. second) process encoded by the
biprocess.

As for the AKISS tool, our extension of ProVerif consists in the addition of con-
structs for declaring everlasting channels and a future equational theory (different from
the present one). We introduce the extra binary predicate attacker2 ev for the gener-
ation of Horn clauses from biprocesses of our extended ProVerif language. The fact
attacker2 ev(M,M ′) means that in the future, the attacker will either remember or be
able to compute from messages he remembers, the valueM (resp. M ′). The declaration
of an everlasting channel c generates the following inheritance Horn clause:

message2 : c[], xm, c[], ym → attacker2 ev : xm, ym

This clause transports messages sent on the everlasting channel to the “future”. The
declaration of future equations generates the same equations as present ones but using
our new attacker2 ev predicate. For example, the everlasting equation

break(aenc(pk(xk), xr, xm)) = xk

will generate the two following clauses

attacker2 ev : x, aenc(pk(xk), xr, xm) → attacker2 ev : break(x), xk
attacker2 ev : aenc(pk(xk), xr, xm), x → attacker2 ev : xk, break(x)

These clauses model the “future” ability of the attacker to recover the decryption key of
ciphertexts he remembers.

Using our extension of the ProVerif tool, we managed to find the attack on
Heliosnoreplay presented in section 4.2, but also to prove that Heliosnoid, Heliospedersen

and that Moran − Naor satisfy everlasting vote privacy. However, because of the ab-
stractions made by ProVerif, we had to adapt our models of Heliosnoid and Heliospedersen

in order for ProVerif to succeed in proving that satisfy everlasting privacy. Indeed, these

https://github.com/ciobaca/akiss
https://github.com/ciobaca/akiss


Practical Everlasting Privacy 39

AKISS ProVerif
Helios attack on privacy attack on privacy

Heliosnoreplay
proof of privacy

attack on everlasting privacy
proof of privacy

attack on everlasting privacy

Heliosnoid proof of everlasting privacy
proof of everlasting privacy

(voters casting their votes in fixed order)

Heliosped
proof of everlasting privacy

(2 honest voters only)
proof of everlasting privacy

(voters casting their votes in fixed order)
Moran-Naor proof of everlasting privacy proof of everlasting privacy

Fig. 3. Automated verification using AKISS and ProVerif

two protocols do not satisfy uniformity under reductions, and ProVerif reported false
attacks on these two protocols. To overcome this limitation of ProVerif, we fixed the
order in which the three voters cast their votes.

The tool and example files are available at http://markryan.eu/research/
EverlastingPrivacy/.

7 Conclusion

The key idea of “practical” everlasting privacy is that in the future, an attacker will be
more powerful in terms of computation (he may be able to break the cryptography) but
less powerful in terms of the data he can operate on (transactions between a vote client
and the vote server may not have been stored). We realized this idea in the “symbolic”
model by allowing different equational theories in different phases, and restricting the
information flow from the earlier phase to the later one. We modified ProVerif and
AKISS to verify our examples automatically.

We foresee to apply our results to more evolved case studies, e.g. taking into account
the zero knowledge proofs that we omitted here for simplicity. Our case studies also
show the limitations of the tools for checking equivalence properties which motivates
further work to increase their efficiency and scope. Finally, the ability to model dif-
ferent equational theories with restricted information passing between them opens up
possibilities for modeling breakable cryptography and other kinds of forward security.
In particular it would be interesting to apply the notion of everlasting security to other
flavors of anonymity and untraceability.

Acknowledgements. The research leading to these results has received funding from
the European Research Council under the European Unions Seventh Framework Pro-
gramme (FP7/2007-2013) / ERC grant agreement no 258865, project ProSecure, the
ANR projects ProSe (decision ANR 2010-VERS-004) and JCJC VIP (decision ANR-
11-JS02-006). We also acknowledge funding from EPSRC projects EP/G02684X/1
“Trustworthy Voting Systems” and EP/H005501/1 “Analysing Security and Privacy
Properties”.

http://markryan.eu/research/EverlastingPrivacy/
http://markryan.eu/research/EverlastingPrivacy/


40 M. Arapinis et al.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: 28th
Symposium on Principles of Programming Languages, POPL 2001. ACM Press (2001)

2. Adida, B.: Helios: web-based open-audit voting. In: 17th Conference on Security Sympo-
sium, SS 2008. USENIX Association (2008)

3. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting pro-
tocols in the applied pi-calculus. In: 21st IEEE Computer Security Foundations Symposium,
CSF 2008. IEEE (2008)

4. Blanchet, B.: An efficient cryptographic protocol verifier based on Prolog rules. In: 14th
Computer Security Foundations Workshop, CSFW 2001. IEEE (2001)

5. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for
security protocols. Journal of Logic and Algebraic Programming 75(1) (2008)

6. Chadha, R., Ciobâcă, Ş., Kremer, S.: Automated Verification of Equivalence Properties of
Cryptographic Protocols. In: Seidl, H. (ed.) ESOP 2012. LNCS, vol. 7211, pp. 108–127.
Springer, Heidelberg (2012)

7. Chaum, D., Ryan, P.Y.A., Schneider, S.: A Practical Voter-Verifiable Election Scheme. In:
De Capitani di Vimercati, S., Syverson, P.F., Gollmann, D. (eds.) ESORICS 2005. LNCS,
vol. 3679, pp. 118–139. Springer, Heidelberg (2005)

8. Clarkson, M., Chong, S., Myers, A.: Civitas: Toward a secure voting system. In: 29th IEEE
Symposium on Security and Privacy, S&P 2008 (2008)

9. Cortier, V., Smyth, B.: Attacking and fixing helios: An analysis of ballot secrecy. In: 24th
IEEE Computer Security Foundations Symposium, CSF 2011. IEEE (June 2011)

10. Cuvelier, E., Peters, T., Pereira, O.: Election verifiabilty or ballot privacy: Do we need to
choose? SecVote, Dagstuhl (2012),
secvote.uni.lu/slides/opereira-verif-or-priv.pdf

11. Delaune, S., Kremer, S., Ryan, M.D.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17(4), 435–487 (2009)

12. Demirel, D., Van De Graaf, J., Araújo, R.: Improving helios with everlasting privacy to-
wards the public. In: International conference on Electronic Voting Technology/Workshop
on Trustworthy Elections, EVT/WOTE 2012. USENIX Association (2012)

13. Dreier, J., Lafourcade, P., Lakhnech, Y.: Defining Privacy for Weighted Votes, Single and
Multi-voter Coercion. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 451–468. Springer, Heidelberg (2012)

14. Juels, A., Catalano, D., Jakobsson, M.: Coercion-resistant electronic elections. In: ACM
Workshop on Privacy in the Electronic Society, WPES 2005. ACM (2005)

15. Kremer, S., Ryan, M.: Analysis of an Electronic Voting Protocol in the Applied Pi Calculus.
In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 186–200. Springer, Heidelberg (2005)

16. Kremer, S., Ryan, M., Smyth, B.: Election Verifiability in Electronic Voting Protocols. In:
Gritzalis, D., Preneel, B., Theoharidou, M. (eds.) ESORICS 2010. LNCS, vol. 6345, pp.
389–404. Springer, Heidelberg (2010)

17. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifiabil-
ity. In: ACM Conference on Computer and Communications Security, CCS 2010 (2010)

18. Moran, T., Naor, M.: Receipt-Free Universally-Verifiable Voting with Everlasting Privacy.
In: Dwork, C. (ed.) CRYPTO 2006. LNCS, vol. 4117, pp. 373–392. Springer, Heidelberg
(2006)

19. Pedersen, T.P.: Non-interactive and Information-Theoretic Secure Verifiable Secret Sharing.
In: Feigenbaum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 129–140. Springer, Heidelberg
(1992)

secvote.uni.lu/slides/opereira-verif-or-priv.pdf


A Differentially Private Mechanism of Optimal Utility
for a Region of Priors�

Ehab ElSalamouny1,2, Konstantinos Chatzikokolakis1, and Catuscia Palamidessi1

1 INRIA and LIX, Ecole Polytechnique, France
2 Faculty of Computer and Information Science, Suez Canal University, Egypt

Abstract. The notion of differential privacy has emerged in the area of statistical
databases as a measure of protection of the participants’ sensitive information,
which can be compromised by selected queries. Differential privacy is usually
achieved by using mechanisms that add random noise to the query answer. Thus,
privacy is obtained at the cost of reducing the accuracy, and therefore the utility,
of the answer. Since the utility depends on the user’s side information, commonly
modelled as a prior distribution, a natural goal is to design mechanisms that are
optimal for every prior. However, it has been shown that such mechanisms do not
exist for any query other than (essentially) counting queries ([1]).

Given the above negative result, in this paper we consider the problem of iden-
tifying a restricted class of priors for which an optimal mechanism does exist.
Given an arbitrary query and a privacy parameter, we geometrically characterise
a special region of priors as a convex polytope in the priors space. We then derive
upper bounds for utility as well as for min-entropy leakage for the priors in this
region. Finally we define what we call the tight-constraints mechanism and we
discuss the conditions for its existence. This mechanism reaches the bounds for
all the priors of the region, and thus it is optimal on the whole region.

1 Introduction

Statistical databases are commonly used to provide aggregate information about the
individuals of a certain population, to attain a social benefit. In general, certain data of
the participants in the database may be confidential, and we should not allow queries
that can reveal them. On the other hand we would like to allow global queries, like,
for instance, the average salary of the inhabitants of a certain region, the percentage
of individuals having a certain disease, or the cities with the highest rates of crime.
This kind of information can be extremely useful for e.g. financial planning, medical
research, and anti-crime measures.

Unfortunately, even though these kinds of queries do not refer directly to the indi-
vidual data, they still represent a major threat to the privacy of the participants in the
databases. To illustrate the problem, consider a database whose records contain per-
sonal data, among which the salary, regarded as confidential. Suppose we are allowed
to query the number of participants and their average salary. Then, by querying the

� This work is partially funded by the Inria large scale initiative CAPPRIS, the EU FP7 grant
no. 295261 (MEALS), and the project ANR-09-BLAN-0169-01 (PANDA).

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 41–62, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



42 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

database before and after the insertion of a new record “Bob”, we can easily infer, by
an easy calculation, the exact salary of Bob.

A successful approach to solve the above problem is to report to the user an approx-
imate answer instead of the exact one. The approximate answer is produced by adding
controlled random noise to the exact answer. The overall procedure, representing the
sanitized query, is a (probabilistic) mechanism K which takes as input the database v
and reports to the user an output o in some domain O, according to some probabilis-
tic distribution. Intuitively, the uncertainty introduced at the level of the global answer
induces uncertainty about the value of the individual data in the database, thus mak-
ing it difficult for an attacker to guess such value. However it is crucial to know ex-
actly what kind of protection is achieved this way. Differential privacy, introduced by
Dwork ([2–5]), is a formalization of the privacy property that can be guaranteed by
such mechanism. It is a quantitative notion, in the sense that it depends on a parameter
ε representing the provided level of privacy.

Following common lines (e.g. [6–8]), in this paper we assume that the mechanismK
is oblivious with respect to the given query f . Namely, its output depends only on the
exact query result and not on the underlying database. Furthermore, we consider only
the case in which the domains of the answers (exact and reported) are finite. Under these
assumptions, the mechanismK is determined by an underlying stochastic noise matrix
X whose generic element xio is the conditional probability of reporting the answer o
when the exact query answer is i.

Besides guaranteeing differential privacy, a mechanism should of course provide an
answer which is still “useful” enough to the user asking the query. This second goal
is measured in terms of utility, which represents the average gain that a rational user
obtains from the reported answer. More precisely, on the basis of the reported answer o
the user can make a guess k (remapping) about the exact hidden query result i. His gain
g(i, k) is established by a given function g. The utility is then defined as the expected
gain under the best possible remapping. While the gain function can take various forms,
in this paper we restrict our analysis to the binary gain function, which evaluates to 1
when the user’s guess is the same as the query result (k = i) and evaluates to 0 otherwise.

The utility of a mechanism depends on the side-information which the user may have
about the database. This knowledge induces a probability distribution, called ‘prior’,
over the possible query results. Suppose for example that a user “Alice” knows that all
people in the database have a salary of at least 20K e. Thus Alice expects the average
of the salaries to be at least 20K e. This is reflected on Alice’s prior over the average-
salary query results: the total probability mass is distributed on the range of values
≥ 20K, while it is 0 on lower values. Given this prior, a mechanism X producing only
outputs ≥ 20K is intuitively more useful to Alice than another one generating also
values < 20K, which are less informative for Alice.

The optimal mechanism for a given prior and level of privacy ε is defined as the
mechanism which maximises the utility function, while satisfying ε-differential pri-
vacy. Naturally, we do not want to change the mechanism depending on the user, so
we would like to devise mechanisms which are universally optimal, i.e. optimal for any
prior. A famous result by Gosh et al. [6] states that this is possible for the so-called
counting queries, which are queries concerned with questions of the kind “how many



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 43

records in the database have the property P?” (for some P). In [6] it was proved that
the truncated geometric mechanism is optimal, for this type of queries, for all priors. Of
course the question immediately arises whether we can obtain a similar result for other
queries as well. Unfortunately Brenner and Nissim answered this question negatively,
by showing that for any query other than (essentially) counting queries a universally
optimal mechanism does not exist [1]. However, one can still hope that, also for other
queries, by restricting the class of users (i.e. the domain of priors), one could find mech-
anisms that are optimal for all the users of the class. This is exactly the objective of the
present paper: given a query, we aim at identifying a mechanism, and a class of users,
for whom that same mechanism provides ε-differential privacy and maximal utility at
the same time.

Given an arbitrary query and a privacy level ε > 0, we call ε-regular the priors, for
which, the probabilities of two adjacent answers (i.e. answers obtained from databases
that differ for only one record) are not very different (their ratio is bounded by eε). At
the same time, they may assign significantly different probabilities to “distant” answers.
As an example of such prior, consider a researcher “Alice” in a medical school who is
interested in the incidence of a certain disease in a statistical medical database contain-
ing 1000 records. (Each record represents a person and contains a field saying whether
or not the person is infected.) Assume that Alice’s side knowledge lets her to expect
that the percentage of infected people is likely to be, say, between 1% and 2%, while it
is highly unlikely to be higher than 5%. Also, assume that Alice does not have “sharp”
enough information to assign significantly different probabilities to adjacent answers,
e.g. 1.5% (15 people affected) and 1.6% (16 people affected). It is precisely this kind
of users that we target in this paper: we will see that, under certain conditions, we can
design a mechanism which maximises the utility for all of them.

A related issue that we consider in this paper is the amount of information leaked
by a mechanism, from the point of view of the so-called quantitative information flow
framework. There have been various proposal for quantifying the information flow; we
consider here the information-theoretic approach, in which the system (in this case the
mechanism) is regarded as a noisy channel, and the leakage is defined as the difference
between the a priori entropy of the input (the secret – in this case the database entries),
and the a posteriori one, after revealing the output (in this case the reported answer).
Depending on the notion of entropy adopted one can model different kinds of adver-
saries [9]. In particular, Shannon entropy (used, for instance, in [10–13]) is suitable for
adversaries who can probe the secret repeatedly, while Rényi min-entropy (used, for
instance, in [14, 15]) is suitable for one-try attacks. In both cases, the main difference
with differential privacy is that the information-theoretic approaches measure the ex-
pected threat to confidentiality (i.e. the average amount of leakage, where each leak is
weighted by its probability to occur), while differential privacy considers catastrophic
any disclosure of confidential information, no matter how unlikely it is.

Computing and bounding the information leakage has been pursued in several pa-
pers, we mention for instance [16, 17]. Recently, researchers have investigated the rela-
tion between differential privacy and information leakage [18–20, 8], and in particular
it has been proved in [20] that differential privacy induces a bound on the min-entropy



44 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

leakage, which is met by a certain mechanism for the uniform prior (for which min-
entropy leakage is always maximum). In this paper, we extend the above result so to
provide a more accurate bound for any fixed ε-regular prior distribution. More precisely,
we provide a bound to the leakage specific to the prior and that can be met, under a
certain condition, by a suitable mechanism. It is worth noting that this mechanism is
defined similarly to the one that is optimal for the ε-regular priors. In fact, min-entropy
leakage and utility are strongly related: the main difference is what we regard as the
input of the channel. For the former is the database, for the latter the exact answer to
the query. Correspondingly, min-entropy leakage measures the correlation between the
reported answer and the database entries, while utility measures the correlation between
the reported answer and the exact answer.

Contribution

– We identify, for an arbitrary query and a privacy parameter ε, the class of the ε-
regular prior distributions on the exact answers. The interest of this class is that for
each prior in it we are able to provide a specific upper bound to the utility of any ε-
differentially-private mechanism. We characterise this class as a geometric region,
and we study its properties.

– We describe an ε-differentially-private mechanism, called “tight-constraints mech-
anism”, which meets those upper bounds for every ε-regular prior, and is therefore
universally optimal in this region. We provide necessary and sufficient conditions
for the existence of such mechanism, and an effective method to test the conditions
and to construct the mechanism.

– Switching view, and considering the correlation between the databases and the re-
ported answers (instead than between the exact and reported answers) we recast
the above definitions and results in terms of quantitative information flow. The out-
come is that we are able to improve the upper bounds for the min-entropy leakage
of an ε-differentially-private mechanism, for all the ε-regular prior distributions on
the databases. A construction similar to the one in previous point yields the tight-
constraints mechanism which reaches those upper bounds.

Plan of the paper. In the next section we recall the basic definitions of differential pri-
vacy and utility. Section 3 introduces the notion of ε-regular prior, investigates the prop-
erties of these priors, and gives a geometric characterisation of their region. Section 4
shows that for all ε-regular priors on the exact answers (resp. databases), ε-differential
privacy induces an upper bound on the utility (resp. on the min-entropy leakage). Sec-
tion 5 identifies a mechanism which reaches the above bounds for every ε-regular prior,
and that is therefore the universally optimal mechanism (resp. the maximally leaking
mechanism) in the region. Section 6 illustrates our methodology and results using the
example of the sum queries. Section 7 concludes and proposes some directions for fu-
ture research.

For reasons of space we have omitted several proofs. The interested reader can find
them in the report version of this paper [21].



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 45

2 Preliminaries

2.1 Differential Privacy

The notion of ε-differential privacy, introduced by Dwork in [2], imposes constraints
on data reporting mechanisms so that the user is unable to distinguish, from an output,
between two databases differing only for one record. This indistinguishability property
represents a protection for the individual corresponding to that record. In the following,
the mechanism is represented as a probabilistic function K from the set of possible
databases V to the set of possible reported outputs O. The relation of ‘differing only
for one record’ for two databases v and v′ is represented by the adjacency relation and
written as v ∼ v′.

Definition 1 (Differential privacy [2]). A probabilistic mechanism K from V to O
satisfies ε-differential privacy if for all pairs v, v′ ∈ V, with v ∼ v′, and all S ⊆ O, it
holds that

P(K(v) ∈ S ) ≤ eε P(K(v′) ∈ S ).

Note that the indistinguishability property is independent from the a priori knowledge
the user may have about the database.

Consider a query f : V → R f , where R f is the set of the query results. Then
a mechanism K is said to be oblivious if for every database v ∈ V, the output of the
mechanism,K(v), depends only on f (v), the result of applying the query to the database
v, regardless of v itself. More formally,

Definition 2 ([1]). Let f : V → R f be a query. A mechanism K : V → O is oblivious
if there exists a randomised functionM : R f → O such that, for all v ∈ V, and all
S ⊆ O, it holds that

P(K(v) ∈ S ) = P(M( f (v)) ∈ S ).

According to the above definition, any oblivious mechanismK can be seen as a cascade
of two functions: the deterministic query f and a randomised functionM. The role of
M is to add random noise to the exact query result f (v) and produce a ‘noisy’ output
o ∈ O to the user. The privacy guarantees are therefore provided by the function M
which we implement by a stochastic matrix X = (xio), called the noise matrix. The rows
of X are indexed by the elements of R f and the columns are indexed by the elements of
O. With this representation xio is the probability of giving the output o when the exact
query result is i. In this paper, we consider only oblivious mechanisms and therefore our
results concern the design of the noise matrix X. Similarly, the query function f and the
mechanism can be represented as matrices and hence it holds by Def. 2 that K = f X.

Given a query f , The adjacency relation on databasesV induces another adjacency
relation on the set of query results R f as follows.

Definition 3 (Adjacent query results). Given a query function f with a range R f , two
different results i, h ∈ R f are said to be ‘adjacent’, and written as i ∼ f h, if and only if
there exists two databases v, v′ such that f (v) = i and f (v′) = h, and v ∼ v′.



46 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

0

1

2

n

A count query
f1(v) = count(v, p)

0

12

3

4 n

Query f2(v) =
count(v, p) mod (n + 1)

(0,n) (1,n) (2,n) (n,n)

(0,2) (1,2) (2,2) (n,2)

(0,1) (1,1) (2,1) (n,1)

(0,0) (1,0) (2,0) (n,0)

A 2-count query
f3(v) = (count(v, p1), count(v, p2))

Fig. 1. Examples for the graph structures of different queries

Informally, i, h ∈ R f are adjacent if they discriminate between two adjacent databases.
Using the introduced notion of adjacency between query results, a graph structure can be
used to model these results along with their adjacency relationship. More precisely, the
set of nodes in this graph represents the set of query results R f , while edges represent
the adjacency relationship among them. It is worth noting that this graph structure of
queries have been used also in [8, 1] to analyse the differentially private mechanisms.
Figure 1 shows examples of the graph structures of different queries. In these examples
count(v, p) refers to a counting query which returns the number of records in the database
v which satisfy a certain property p. Other queries in the figure are expressed using the
count function.

Let K be an oblivious mechanism for which X is the underlying noise matrix. It
is intuitive to see that satisfying the indistinguishability between adjacent databases
(i.e. satisfying differential privacy) corresponds to the satisfying indistinguishability
(by means of X) between adjacent query results. Formally,

Lemma 1. Given a noise matrix X, An oblivious mechanism K satisfies ε-differential
privacy if and only if for all query results i, h where i ∼ f h and all outputs o ∈ O, it
holds that xio ≤ eε xho.

Note that Lemma 1 provides an equivalent characterisation for differential privacy in
terms of adjacent query results rather than adjacent databases.

With the graph structure of a query, the ‘distance’ between two query results i, h,
denoted by d(i, h) is defined as the shortest graph distance between i and h. Using this
distance measure, differential privacy constraints can be further lifted from conditions
on pairs of adjacent query results (Lemma 1) to a general condition on any pair of query
results according to the following proposition.

Proposition 1. Given a noise matrix X, the oblivious mechanism K satisfies
ε-differential privacy if and only if for all query results i, h and all outputs o ∈ O, it
holds that xio ≤ eε d(i,h) xho.

That is, the ratio between the probability of reporting an answer o given that the query
result is r and the probability of reporting the same output o given that the query result



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 47

is h does not exceed eε d(i,h). We call the noise matrix that satisfies this condition ε-
differentially private. Note that, while Lemma 1 describes differential privacy in terms
of only adjacent query results, the equivalent characterisation given by Proposition 1
specifies the privacy constraints imposed on any pair of results (whether or not they are
adjacent to each other). This feature abstracts our analysis to arbitrary pairs of graph
nodes rather than reasoning about only adjacent ones.

2.2 Utility Model

For an oblivious mechanism K , the objective of the underlying noise matrix X is to
guarantee the differential privacy of the database, while providing the user with ‘useful’
information about the true query result. That is to satisfy a trade-off between the privacy
and utility. For quantifying the utility of K we follow the model adopted in [6]. Given
a query f , let i ∈ R f be the result of executing f on some database. After processing
i by the noise matrix X, let o be the reported output to the user. In practice, the user
may use the output o, to ‘guess’ the value of the real query result. Therefore she may
apply a remap ( or guess) function which maps the mechanism output o to a guess
k ∈ R f for the exact query answer. The remap function (or simply ‘remap’) can be
described as a stochastic matrix R, where its entry rok is the probability of guessing k
when the observed mechanism output is o. With this representation, it can be easily seen
that the probabilities of the user’s guesses given individual query results are described
by the matrix product X R. We say here that X is remapped to X R by the remap R.
Note that this remapping procedure models the post-processing done by the user for the
mechanism output o. Now, with the user’s guessed value k, a real-valued gain function
g : (R f × R f )→ R quantifies how informative k is compared to the real result i.

The utility of a given mechanism to the user is described as the expected value of the
gain function g. The evaluation of this expected value depends on the a priori probability
distribution π over the real query results, which models the side knowledge of the user
about the database. The utility of the mechanism depends therefore on the definition of
the gain function g, the mechanism’s underlying noise matrix X, the user’s remap R,
and also the probability distribution π over the real query results.

One choice for the gain function is the binary gain defined as gb(i, j) = 1 iff i = j
and 0 otherwise. The binary gain function formalises the requirement of a user to guess
the exact query result using the mechanism output. In the current work we restrict our
analysis to this gain function. An important feature of this function, is that it is ap-
plicable to the ranges of various queries including numerical and non-numerical one.
Moreover, it will be shown that this gain function is strongly connected to the infor-
mation theoretic notions of conditional entropy and information leakage. Hence, our
results about the utility of private mechanism imply corresponding results regarding
quantifying information leaked by these mechanisms. These results go inline with a re-
cent trend of research aiming at quantifying information leaked by security protocols,
and privacy mechanisms specifically (see e.g. [16, 17, 8, 18]). We leave considering
other gain functions to future work.

Now, for formulating the utility we represent the a priori probability distribution
(called the ‘prior’) over the real query results by a row vector π, indexed by R f , where



48 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

πi is the probability that the query in hand yields the result i. The prior is therefore
relative to the user and depends on her knowledge. With a generic gain function g, the
utility of a mechanism for a prior π using the remap R is denoted by U(X, π,R), and
defined as follows.

U(X, π,R) = E
[
g(i, k)

]
=
∑

i,k πi (X R)ik g(i, k), (1)

where X is the noise matrix of the given mechanism. In our case, where the binary gain
function gb is used, the utility reduces to a convex combination of the diagonal elements
of X R as follows.

U(X, π,R) =
∑

i πi (X R)ii. (2)

Accordingly, for a given prior π, an oblivious ε-differentially private mechanism, with a
noise matrix X, is said to be optimal if and only if there is a remap R such that the above
function is maximised over all ε-differentially private mechanisms and all remaps 1. As
exemplified in the introduction, the optimality of a mechanism depends, in general, on
the prior (user); that is a mechanism can be optimal for a prior while it is not for another
one. It has been proved by [1] that for arbitrary queries (except the counting ones), there
is no such a mechanism that is optimal for all priors simultaneously. Nevertheless, we
identify in the following section a region of priors, where it is possible to find a single
mechanism which is optimal to all of them.

3 ε-Regular Priors

In this section we describe a region of priors, called ‘ε-regular’. These priors are deter-
mined by the given query f and privacy parameter ε. In our way to specify these priors,
we first represent the ε-differential privacy constraints in a matrix form. By Proposition
1, observe that each ε-differential privacy constraint imposed on a noise matrix X can
be written as xio/xho ≥ e−εd(i,h). Since the lower bound e−εd(i,h) depends only on i, h,
all constraints can be described altogether by a square matrix Φ formed by such lower
bounds. We refer to this matrix as the privacy-constraints matrix. Note that the rows,
and also columns of Φ are indexed by the elements of R f , the set of query results.

Definition 4 (privacy-constraints matrix). The privacy-constraints matrix Φ of a
query f with a range R f , and a privacy parameter ε > 0 is a square matrix, indexed by
R f × R f , where φih = e−ε d(i,h) for all i, h ∈ R f .

Note thatΦ is symmetric (φih = φhi) due to the symmetry of the distance function d(i, h).
Observe that when ε → ∞, i.e. exclude privacy at all,Φ converges to the identity matrix
where each diagonal entry is 1 and other entries are zeros. In terms of the privacy-
constraints matrix of a query and ε, we define now the ε-regular priors as follows (note
that we use y ≥ 0 to denote ∀i : yi ≥ 0).

Definition 5 (ε-regular prior). For a given query f and a privacy parameter ε > 0, a
prior π is called ε-regular iff there exists a row vector y ≥ 0 such that π = yΦ.

1 Note that there may exist many optimal mechanism for a given prior.



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 49

In the following we describe the common properties of these priors and also give a
geometric characterisation for their region comparing it to the whole prior space. As
the first observation, note that, as privacy is excluded (ε → ∞), this region converges
to the entire prior space. This is because Φ approaches the identity matrix where the
vector y exists for each prior.

An important property of any ε-regular prior is that the ratio between any two of
its entries πi, π j is always bound as follows, depending on ε and the distance d(i, j).
Because of this property, such a prior is called ε-regular.

Proposition 2. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i, j ∈ R f : πi

/
π j ≤ eε d(i, j).

While the above property restricts the ratio between probabilities of adjacent query re-
sults, this restriction, in practice, holds for a large class of users who have no sharp
information suggesting discrimination between adjacent results. This class is exempli-
fied in the introduction. Note that the above property is not equivalent to Definition 5.
Namely, it is not true that all priors having such a property are ε-regular.

A consequence of the above proposition is that for any ε-regular prior π, the prob-
ability πi associated with any query result i is restricted by upper and lower bounds as
follows.

Proposition 3. Consider a query f and ε > 0. Then for any ε-regular prior π, it holds
for all i ∈ R f that

1
/∑

j∈R f
eε d(i, j) ≤ πi ≤ 1

/∑
j∈R f

e−ε d(i, j).

One implication is that any ε-regular prior must have full support, that is πi > 0 for all
i ∈ R f .

In the following we go further and describe the region of ε-regular priors as a region
of points in the prior space, where each point represents a member in this region. For
doing so, we identify by the following definition a set of priors which describe the
‘corner points’ or vertices of the region.

Definition 6 (corner priors). Given a query f and a privacy parameter ε > 0, then for
each query result i ∈ R f , a corresponding corner prior, denoted by ci, is defined as

ci
j =

φi j
∑

k∈R f
φik

∀ j ∈ R f .

Note that the above definition is sound, i.e. ci is a probability distribution. By the above
definition, for a given query with the domainR f of results, the region of ε-regular priors
has |R f | corner priors. Each one corresponds to a query result i ∈ R f . Note that each
corner prior ci is maximally biased (relative to the region) to the query result i; that is the
entry ci

i meets its maximum value given in Proposition 3. It can be seen that each corner
prior is ε-regular. Namely for any corner ci, define the vector y as yi = 1/

∑
k∈R f
φik and

y j = 0 for all j � i; thus it holds that ci = yΦ.
The region of the ε-regular priors can be characterised in terms of the corner priors.

More precisely, this region consists of all priors that can be composed as a convex
combination of the corner priors.



50 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

(1,0,0)

(0,1,0)

(0,0,1)

c1

c2

c3

e−ε = 0.5
e−ε = 0.2
e−ε = 0

f1

(1,0,0)

(0,1,0)

(0,0,1)

c1

c2

c3

f2

Fig. 2. Regions of ε-regular priors for queries described in Example 1

Proposition 4 (convexity). For a given a query f and privacy parameter ε > 0, a prior
π is ε-regular iff there exist real numbers γi ≥ 0, i ∈ R f such that

π =
∑

i∈R f
γi ci.

It is easy to see that it must hold that
∑

i∈R f
γi = 1 for any ε-regular prior. This is

obtained by summing the components of the π as follows.

∑
j∈R f
π j =

∑
i γi
∑

j ci
j and

∑
j π j = 1, ∀π.

From Proposition 4 and the above observation, the region of ε-regular priors is a convex
set, where each point (prior) in this region is a convex combination of the corner priors.
This region is therefore geometrically regarded as a convex polytope in the prior space.
Since the corner points always exists, this region is never empty.

For a prior π in this region, the coefficients γi model the ‘proximity’ of π to each
corner prior ci. Observe that 0 ≤ γi ≤ 1, and γi = 1 iff π = ci. We demonstrate this
geometric interpretation using the following examples.

Example 1. Priors having 3 entries can be represented as points in the 3-dimensional
euclidean space. These priors correspond to queries whose graph structures contain 3
nodes. These nodes can be arranged in either a sequence or a cycle, corresponding to
queries f1 and f2 respectively shown in Figure 1, with n = 2 in both cases. Figure 2
shows - for each of these queries - the region of ε-regular priors. The corner priors of
each region are represented by points c1, c2, c3. For each query in Fig. 2, we depict the
regions for e−ε = 0.5 and e−ε = 0.2. Note that the level of privacy set by ε imposes a
restriction on the region of ε-regular priors. With e−ε = 0.2 (less privacy), this region
is larger than the one with e−ε = 0.5. In fact, as e−ε → 0 (i.e. no privacy), the region
of ε-regular priors converges to the entire region of priors defined by the corner points
{(0, 0, 1), (0, 1, 0), (0, 0, 1)}.



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 51

(1,0,0)

(0,1,0)

(0,0,1)

(.6,.1,.1)

(.1,.6,.1)

(.1,.1,.6)

(.4,.2,.2)

(.2,.4,.2)

(.2,.2,.4)

(0

(.6,.1,.1)

.1,.6,.1).(

(.1,.1,.6)

2)

(.2,.2

( 1

2)

.2

(

(.4,.2,.2)

2,.4,.2)2(.22

4)4.2,.44

(

2)

(

.2

e−ε = 0.5
e−ε = 0.2
e−ε = 0

Fig. 3. Regions of ε-regular priors for the query described in Example 2

Example 2. Let v be database containing at most one record. Consider a bundle of two
counting queries f3 = (count(v, p1), count(v, p2)) which counts the records satisfying
properties p1 and p2 respectively in the database v. The graph structure of this query is
depicted in Figure 1 (with n = 1). Note that in this case the adjacency graph (and also
the set R f of query results) consists of 4 nodes: {(0, 0), (1, 0), (0, 1), (1, 1)}. Any prior
π corresponds therefore to a point in a 4-dimensional space. However, since the 4th
component of the prior is redundant (

∑
i πi = 1), each prior is defined by its ‘projection’

onto the 3- dimensional subspace. Given this observation, Figure 3 shows the projection
of the ε-regular prior region for different values of e−ε . It is again seen that the region is
getting larger as the level of privacy e−ε decreases, and coincides with the full space of
priors when e−ε → 0 (i.e. when no privacy is provided).

4 Upper Bounds for Utility and Min-mutual Information

In this section, we further describe the ε-regular priors in terms of the utility that can
be achieved for these priors by ε-differentially private mechanisms. We also describe
the amount of information that can be conveyed by these mechanisms to users with
such priors. More precisely, we identify for any ε-regular prior π upper bounds for the
utility and min-mutual information, considering all ε-differentially private mechanisms
and all possible remaps. These bounds are indeed induced by the privacy constraints
parameterised by ε and the query f as stated by Proposition 1. They also depend on the
given prior π.

4.1 Utility

Given a query f and a privacy parameter ε > 0, let π be a prior on the set R f of the query
results. For any noise matrix X satisfying ε-differential privacy (as in Proposition 1), and
a remap R, we derive in the following a linear algebraic expression for U(X, π,R), the



52 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

utility of X for π using the remap R. Such an expression will play the main role in the
subsequent results. We start by observing that the matrix product of the noise matrix
X and the remap R describes an ε-differentially private noise matrix X R : R f → R f .
Hence the entries of X R satisfy (by Proposition 1) the following subset of constraints.

e−ε d(i,k) (X R)kk ≤ (X R)ik

for all i, k ∈ R f . Using Definition 4 of the privacy-constraints matrix Φ, and taking into
account that

∑
k∈R f

(X R)ik = 1 for all i (as both X and R are stochastic), we imply the
following inequalities.

∑
k∈R f
φik (X R)kk ≤ 1, ∀i ∈ R f .

The inequality operators can be replaced by equalities while introducing slack variables
0 ≤ si ≤ 1 for all i ∈ R f . The above inequalities can therefore be written as follows.

∑
k∈R f
φik (X R)kk + si = 1, ∀i ∈ R f .

Let the slack variables si form a column vector s indexed by R f . Let also 1 denote
another column vector of the same size having all entries equal to 1. Using these vectors
and the privacy-constraints matrix Φ (for the given query and ε), the above equations
can be rewritten in the following matrix form.

Φ diag(X R) + s = 1, (3)

where diag(X R) is the column vector consisting of the diagonal entries of X R. Now,
for any noise matrix X : R f → O and a remap R : O → R f satisfying Eq. (3), and for a
prior π, we want to refine the generic expression (2) of the utility by taking Eq. (3) into
account. We start by rewriting Eq. (2) in the following matrix form.

U(X, π,R) = π diag(X R). (4)

Now, let y be a row vector such that

π = yΦ. (5)

Note that, the above matrix equation is in fact a system of |R f | linear equations. The
kth equation in this system is formed by the kth column of Φ, and the kth entry of π as
follows.

yΦk = πk ∀k ∈ R f .

Solving this system of equations for the row vector y has the following possible out-
comes: If the matrix Φ is invertible, then, for any prior π, Eq. (5) has exactly one solu-
tion. If Φ is not invertible (i.e. it contains linearly dependent columns), then there are
either 0 or an infinite number of solutions, depending on the prior π: If the entries of
π respect the linear dependence relation then are infinitely many solutions. Otherwise,
the equations are ‘inconsistent’, in which case there are no solutions.

Since the matrices Φ have a precise format, one may wonder whether it could be
that they are all invertible or all non invertible. In fact, this is not the case: In the report



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 53

version of this paper [21] we show an example of a matrix Φ that, for certain values of
ε is invertible, while for others is non invertible.

Whether Φ is invertible or not, we consider here only the priors where the matrix
equation (5) has at least one solution y. Note that, by definition, all the ε-regular priors
have this property, but there can be others for which the solution y has some negative
components. In some of the results below (in particular in Lemma 2) we consider this
larger class of priors, for the sake of generality.

Multiplying Equation (3) by y yields

yΦ diag(X R) + y s = y 1. (6)

Substituting Equations (5) and (4) in the above equation consecutively provides the
required expression for the utility and therefore proves the following lemma.

Lemma 2. For a given query f and a privacy parameter ε > 0, let π be any prior.
Then for every row vector y satisfying π = yΦ, the utility of any ε-differentially private
mechanism with a noise matrix X for the prior π using a remap R is given by

U(X, π,R) = y 1 − y s, (7)

for a vector s satisfying 0 ≤ si ≤ 1 for all i ∈ R f .

Lemma 2 expresses the utility function for any ε-private noise matrix X for a prior π
with a remap R as a function of the vector y and the slack vector s. Although the ma-
trix X and the remap R do not explicitly appear on the right hand side of Equation (7),
the utility still depends on them indirectly through the vector s. Namely, according to
Equation (3), the choice of X and R determines the slack vector s. The utility function
depends also on the prior π, because the choice of π determines the set of vectors sat-
isfying Eq. (5). Substituting any of these vectors y in Eq. (7) yields the same value for
U(X, π,R).

By Definition 5, of ε-regular priors, the above lemma specifies the utility for any
of them. Therefore, we use Lemma 2, and obtain an upper bound for the utility of ε-
differentially private mechanisms for ε-regular priors.

Theorem 1 (utility upper bound). For a given query f and a privacy parameter ε > 0,
let π be an ε-regular prior and X be an ε-differentially private noise matrix. Then for
all row vectors y ≥ 0 satisfying yΦ = π, it holds for any remap R that

U(X, π,R) ≤ ∑i∈R f
yi, (8)

where the equality holds iff Φ diag(X R) = 1.

The above result can be also seen from the geometric perspective. As shown by Propo-
sition 4, each member in the region of ε-regular priors is described as a convex combi-
nation of the corner priors. That is there are coefficients γi ≥ 0 for i ∈ R which form this
combination. It can be shown (as in the proof of Proposition 4) that γi = yi

(∑
k∈R f
φik

)
.

Hence, the upper bound given by Theorem 1 can be written as follows using the coeffi-
cients γi.

U(X, π,R) ≤
∑

i∈R f

γi
∑

k∈R f
φik
.



54 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

Inspecting the above result for corner priors, recall that for a corner ci, γ j is 1 for j = i
and is 0 otherwise; thus, the utility upper bound for ci is therefore 1/

∑
k φik. Moreover,

the upper bound for each ε-regular prior π can be regarded (according to the above
equation) as a convex combination of the upper bounds for the corner priors. That is,
from the geometric perspective, the utility upper bound for π linearly depends on its
proximity to the corner priors.

4.2 Min-mutual Information

In this section, we employ an information-theoretic notion, namely mutual information,
to quantify the amount of information conveyed by a noise matrix X as an information
theoretic channel. We use this notion in two distinct ways: first, mutual information is
used to measure the information conveyed about the result of a specific query, similarly
to the use of “utility” in the previous section. Mutual information and utility (under the
binary gain function) are closely related, which allows us to transfer the bound obtained
in the previous section to the information-theoretic setting.

Second, we use mutual information to quantify the information about the database
that is revealed by a mechanism, a concept known in the area of quantitative informa-
tion flow as “information leakage”. This allows us to obtain bounds on the informa-
tion leaked by any mechanism, even non-oblivious ones, independently from the actual
query. For arbitrary priors, we obtain in a more natural way the bound conjectured in
[18] and proven in [8]. Moreover, if we restrict to specific (ε-regular) priors, then we
are able to provide more accurate bounds.

Following recent works in the are of quantitative information flow ([14–17, 8, 18]), we
adopt Rényi’s min-entropy ([22]) as our measure of uncertainly. The min-entropyH∞(π)
of a prior π, defined as H∞(π) = − log2 maxi πi, measures the user’s uncertainty about
the query result. Then, the corresponding notion of conditional min-entropy, defined as
H∞(X, π) = − log2

∑
o maxi πi xio, measures the uncertainty about the query result after

observing the output of the noise matrix X. Finally, subtracting the latter from the former
brings us to the notion of min-mutual information:

L(X, π) = H∞(π) −H∞(X, π)

which measures the amount of information about the query result conveyed by the
noise matrix. In the area of quantitative information flow this quantity is known as
min-entropy leakage; the reader is referred to [14] for more details about this notion.

Min-mutual information is closely related to the notion of utility under the binary
gain function and using an optimal remap. A remap R̂ is optimal for X, π if it gives the
best utility among all possible remaps for this noise matrix and prior. The following
result from [8] connects min-mutual information and utility:

Proposition 5. Given a noise matrix X and a prior π, let R̂ be an optimal remap for
π, X. Then, it holds

L(X, π) = log2
U(X, π, R̂)

maxi πi

This connection allows us to transfer the upper-bound given by Theorem 1 to min-
mutual information.



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 55

Proposition 6 (min-mutual information upper bound). Let f be a query, let ε > 0,
let π be an ε-regular prior and let X be the noise matrix of any ε-differentially private
mechanism. Then for all row vectors y ≥ 0 satisfying yΦ = π, it holds that:

L(X, π) ≤ log2

∑
i∈R f

yi

maxi πi
(9)

The above bound holds only for ε-regular priors. However, it is well-known ([15]) that
min-mutual information is maximised by the uniform prior u, i.e.L(X, π) ≤ L(X, u) for
all X, π. Thus, in cases when u is ε-regular, we can extend the above bound to any prior.

Corollary 1. Let f be a query, let ε > 0 such that the uniform prior u is ε-regular, and
let X be the noise matrix of any ε-differentially private mechanism. Then for all row
vectors y ≥ 0 satisfying yΦ = u, and for all priors π, it holds that:

L(X, π) ≤ log2(|R f | ∑i∈R f
yi)

4.3 Quantifying the Leakage about the Database

In the previous section we considered the information about the query result conveyed
by an oblivious mechanism. This information was measured by the min-mutual infor-
mation L(X, π), where X is noise matrix, mapping query results R f to outputs.

We now turn our attention to quantifying the information about the database that
is conveyed by the complete mechanism K (even in the case of non-oblivious mecha-
nisms). Intuitively, we wish to minimise this information to protect the privacy of the
users, contrary to the utility which we aim at maximising. Quantifying this information
can be done in a way very similar to the previous section. The only difference is that we
use a stochastic matrix Y that models the mechanism K , mapping databases V = Vu

to outputs (recall that u is the number of individuals in the database and V the set of
possible values for each individual). Moreover, the underlying graph ∼ is the Hamming
graph, induced by the adjacency relation on databases, and ε-regularity concerns priors
π on databases.

In this case, L(Y, π) measures the information about the database conveyed by the
mechanism, which we refer to as “min-entropy leakage”, and the bounds from the pre-
vious section can be directly applied. However, since we now work on a specific graph
(V,∼), we can obtain a closed expression for the bound of Corollary 1. We start by
observing that due to the symmetry of the graph, the uniform prior u is ε-regular for all
ε > 0. More precisely, we can show that the vector y, defined as

yi =

(
eε

|V |(|V | − 1 + eε)

)u
i ∈ V

satisfies yΦ = u and y ≥ 0. Thus, applying Corollary 1 we get the following result.

Theorem 2 (min-entropy leakage upper bound). LetV = Vu be a set of databases,
let ε > 0, and let Y be an ε-differentially private mechanism. Then for all priors π, it
holds that:

L(Y, π) ≤ u log2
|V | eε

|V | − 1 + eε



56 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

1

1.5

2

2.5

3

3.5

4

4.5

5

0.5 0.6 0.7 0.8 0.9 1

L
ea
ka
ge

b
ou

n
d
(b
it
s)

Bound for all priors
Bound for π

Fig. 4. Leakage bounds for various values of ε

This bound determines the maximum amount of information that any differentially
privacy mechanism can leak about the database (independently from the underlying
query). The bound was first conjectured in [18] and independently proven in [8]; our
technique gives an alternative an arguably more intuitive proof of this result.

Note that the above bound holds for all priors. If we restrict to a specific ε-regular
prior π, then we can get better results by using the bound of Proposition 6 which de-
pends on the actual prior. This is demonstrated in the following example.

Example 3. Consider a database of 5 individuals, each having one of 4 possible values,
i.e.V = Vu with V = {1, 2, 3, 4} and u = 5. Assume that each individual selects a value
independently from the others, but not all values are equally probable; in particular
the probabilities of values 1, 2, 3, 4 are 0.3, 0.27, 0.23, 0.2 respectively. Let π be the
corresponding prior on V that models this information. We have numerically verified
that for all 0.48 ≤ ε ≤ 1 (with step 0.01) π is ε-regular. Thus we can apply Proposition 6
to get an upper bound of L(Y, π) for this prior.

The resulting bound, together with the general bound for all priors from Theorem 2,
are shown in Figure 4. We see that restricting to a specific prior provides a significantly
better bound for all values of ε. For instance, for ε = 0.5 we get that L(Y, π) ≤ 1.2 for
this π, while L(Y, π) ≤ 2.5 for all priors π.

Note that, in general, the above bounds for the utility and the min-mutual information
are not tight. For a given query and a privacy parameter ε, there may be no noise matrix
X that meets these bounds. Nevertheless, they provide ultimate limits, induced by the
privacy constraints, for all ε-differential private mechanisms and ε-regular priors. Note
also that these bounds are simultaneously tight if the common conditionΦ diag(X R) =
1 is satisfied (note that this condition is independent of the underlying prior). From this
point we investigate the mechanisms that, whenever exist, they satisfy such a condition
and are therefore optimal for the entire class of ε-regular priors.



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 57

5 Tight-Constraints Mechanisms

In this section we introduce the notion of tight-constraints mechanism and we investi-
gate their properties in terms of privacy guarantees and optimality for ε-regular priors.

Definition 7 (A tight-constraints mechanism). For a given query f with range R f ,
and a given privacy parameter ε > 0, an oblivious mechanism with a noise matrix X :
R f → R f is called a tight-constraints mechanism iff it satisfies the following conditions
for all i, k ∈ R f .

e−ε d(i,k) xkk = xik. (10)

It is important to note that, in general, there may exist zero, one or more tight-constraints
mechanisms for a given query f and a privacy parameter ε > 0. The above definition
enforces |R f | (|R f | − 1) linearly independent equations, referred to as the ‘tight con-
straints’. Additionally it must also hold that

∑
k∈R f

xik = 1 for all i ∈ R f . Thus we
have, in total, |R f | |R f | equations. If these equations are linearly independent, then they
solve to unique values. If these values are non-negative, then they determine a unique
tight-constraints mechanism. On the other hand, if these equations are not linearly in-
dependent, then there may be multiple solutions with non-negative entries, in which
case we have multiple tight-constraints mechanisms for the given query and privacy
parameter ε.

5.1 Properties

It has been seen from Definition 7, that the choice of a query f and a value ε > 0
correspond to a set of tight-constraints mechanisms. The first important feature of these
mechanisms is that they satisfy ε-differential privacy as confirmed by the following
proposition.

Proposition 7 (differential privacy). For a given query f and a privacy parameter
ε > 0, every tight-constraints mechanism is ε-differentially private.

Thanks to the above fact, we can give a further useful characterisation of the tight-
constraints mechanisms in comparison to other ε-differentially private mechanisms.
More precisely, the following proposition identifies a linear algebraic condition that
is satisfied only by the tight-constraints mechanisms for given f , ε:

Lemma 3 (diagonal characterisation). Let f be a query and let ε > 0. Then for any
oblivious ε-differentially private mechanism K with a noise matrix X : R f → R f , the
following equation holds iff K is a tight-constraints mechanism.

Φ diag(X) = 1. (11)

The above proposition provides a way to check the existence of, and also compute, the
tight-constraints mechanisms for given f , ε. Since Condition (11) is satisfied only by
these mechanisms, then there is at least one tight-constraints mechanism if there is a
vector z, with non-negative entries, that satisfies the equation Φ z = 1. In this case the



58 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

noise matrix X̂ of a tight-constraints mechanism is obtained by setting its diagonal to z,
and evaluating the non-diagonal entries from the diagonal using Eqs. (10).

Now we turn our attention to the region of ε-regular priors and we identify the obliv-
ious mechanisms which are optimal wrt both utility and min-mutual information in this
region. It turns out that the set of these optimal mechanisms consists exactly of all the
mechanisms that can be mapped to a tight-constraints one using a remap R.

Theorem 3 (Optimality). Let f be a query and let ε > 0 such that at least one tight-
constraints mechanism exists. Then any oblivious mechanism K : V → O is optimal
(wrt both utility and min-mutual information) for every ε-regular prior π iff there is a
remap R : O → R f such thatK R is a tight-constraints mechanism for f , ε.

Proof. If there exists a tight-constraints mechanism for given f , ε, then its noise matrix
X̂ must satisfy Eq (11). This implies that the upper-bound in Theorem 1 is reachable by
X̂ and the identity remap. Thus that upper-bound, in this case, is tight. By Theorem 1,
a mechanism K with a noise matrix X meets such an upper bound for the utility (and
therefore is optimal) iff it satisfies the condition Φ diag(X R) = 1, with some remap R.
Since any mechanism with noise matrix X R is ε-differentially private, then by Lemma
3, this condition is satisfied iff X R is the noise matrix of a tight-constraints mechanism
(for f , ε). That is iff f X R = K R is a tight-constraints mechanism. Using the relation,
given by Proposition 5, between utility and min-mutual information, the same argument
holds for the latter. �
Note that tight-constrains mechanisms are themselves optimal as they are mapped to
themselves by the identity remap.

As a consequence of the above general result, we consider the special case of the
uniform prior, denoted by u, where all exact query results in R f are equally likely. Note
that this prior corresponds to users having unbiased knowledge about the query results,
i.e. they assume that all the exact results R f are yielded, by executing the query, with
the same probability. Firstly, the following lemma proves an equivalence between the
existence of at least one tight-constraints mechanism on one hand and the uniform prior
u being ε-regular on the other hand.

Lemma 4. For a given query f and privacy parameter ε > 0, there exists at least one
tight-constraints mechanism iff the uniform prior u is ε-regular.

It is worth noticing that in general the region of ε-regular priors may or may not include
the uniform prior. However, as shown earlier in Section 3, this region is enlarged and
converges to the entire prior space as less privacy is imposed (that is as ε increases). This
means that for the values of ε above certain threshold ε∗, depending on the query, the
region of ε-regular priors accommodates the uniform prior u, and therefore (by Lemma
4), there is at least one tight-constraints mechanism. This provides a design criteria to
select a setting for ε such that we have an optimal mechanism for the whole region.

Using Lemma 4, we can describe the optimal mechanisms for the uniform prior as a
corollary of Theorem 3.

Corollary 2. Let f be a query and let ε > 0 such that there exists at least one tight-
constrains mechanism. Then a mechanismK : V → O is optimal for the uniform prior
iff K R is a tight-constraints mechanism for some remap R : O → R f .



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 59

0 1 2 3 4 vu

(a) Sum query

(0,u) (1,u) (2,u) (u,u)

(0,2) (1,2) (2,2) (u,2)

(0,1) (1,1) (2,1) (u,1)

(0,0) (1,0) (2,0) (u,0)

(b) 2-count query

Fig. 5. Adjacency graphs

In fact when we consider arbitrary queries, we find that our specification for the tight-
constraints mechanisms covers other well known differentially-private mechanisms. In
particular, when we consider a counting query, we find that a tight-constraints mecha-
nism for this query is exactly the truncated-geometric mechanism, which is shown by
[6] to be optimal for every prior. Furthermore, we are able to show that this mechanism,
as a tight-constraints one, exists for the selected query with any ε > 0.

Another class of queries, studied in [8] are the ones whose graph structures are ei-
ther vertex-transitive or distance-regular. The authors in [8] were able to construct a
mechanism which is optimal for the uniform prior for any ε > 0. In the context of our
results, when we consider a query f in this class, it is easy to show that such an optimal
mechanism is in fact a tight-constraints mechanism for f . We can also show that this
tight-constraints mechanism exists for all ε > 0.

6 Case-Study: Sum and 2-Count Queries

In this section we show the usefulness of the tight-constraints mechanism by apply-
ing it to two particular families of queries, namely sum and 2-count queries. For each
family, we evaluate the tight-constraint mechanism on databases consisting of u indi-
viduals each having an integer value between 0 and v, and we compare its utility to the
geometric mechanism.

It is well-known that no universally optimal mechanism exists for these families; in
particular, the geometric mechanism, known to be optimal for a single counting query, is
not guaranteed to be optimal for sum queries or multiple counting queries. On the other
hand, as discussed in the previous section, tight-constraints mechanisms, whenever they
exist, are guaranteed to be optimal within the region of ε-regular priors.

The comparison is made as follows: for each query, we numerically compute the
smallest ε (using a step of 0.01) for which a tight-constraints mechanism exists (i.e. for
which the uniform prior u is ε-regular, see Lemma 4). Then we compute the utility (us-
ing an optimal remap) of both the tight constraints and the geometric mechanisms, for
a range of ε starting from the minimum one. Note that the tight constraint mechanism
exists for any ε greater than the minumum one.

Sum query. Let f be the query returning the sum of the value for all individuals, thus it
has range R f = {0, . . . , vu}. By modifying the value of a single individual, the outcome



60 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.8 0.9 1 1.1 1.2 1.3

U
ti

li
ty

Tight-constraints
Geometric

(a) Sum query

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.9 1 1.1 1.2 1.3

U
ti

li
ty

Tight-constraints
Geometric

(b) 2-count query

Fig. 6. Utility for various values of ε

of the query can be altered by at most v (when changing the value from 0 to v), thus
two elements i, j ∈ R f are adjacent iff |i − j| ≤ v. The induced graph structure on R f is
shown in Figure 5(a) (for the case v = 3).

For our case-study we numerically evaluate this query for u = 150, v = 5 and for the
uniform prior. We found that the minumum ε for which a tight-constraints mechanism
exists (and is in fact unique since Φ is invertible) is 0.8. Figure 6(a) shows the utility of
the tight-constraint mechanism, as well as that of the geometric mechanism, for values
of ε between 0.8 and 1.3, the uniform prior and using and optimal remap. We see that
the tight-constraint mechanism provides significantly higher utility than the geometric
mechanism in this case.

2-count query. Consider now the query f consisting of 2 counting queries (i.e. reporting
the number of users satisfying properties p1 and p2), thus it has range R f = {0, . . . , u} ×
{0, . . . , u}. By modifying the value of a single individual, the outcome of each counting
query can be altered by at most 1, thus two anwers (i1, i2), ( j1, j2) ∈ R f are adjacent iff
|i1− j1| ≤ 1 and |i2− j2| ≤ 1. The induced graph structure on R f is shown in Figure 5(b).

We evaluate this query for u = 30 and for the uniform prior. We found that the
minumum ε for which a tight-constraints mechanism exists is 0.9. Figure 6(b) shows
the utility of the tight-constraint mechanism, as well as that of the geometric mecha-
nism (applied independently to each counting query), for values of ε between 0.9 and
1.3 and the uniform prior. Similarly to the sum query, we see that the tight-constraint
mechanism provides significantly higher utility than the geometric mechanism in this
case.

7 Conclusion and Future Work

In this paper we have continued the line of research initiated by [6, 1] about the exis-
tence of universally-optimal differentially-private mechanisms. While the positive re-
sult of [6] (for counting queries) and the negative one of [1] (for essentially all other
queries) answer the question completely, the latter sets a rather dissatisfactory scenario
for differential privacy and the typical mechanisms used in the community, since count-
ing queries are just one of the (infinitely many) kinds of queries one can be interested



A Differentially Private Mechanism of Optimal Utility for a Region of Priors 61

in. In practice the result of [1] says that for essentially any query other than counting
queries one cannot devise a mechanism that gives the best trade-off between privacy
and utility for all users. Hence one has to choose: either design a different mechanism
for every user, or be content with a mechanism that, depending on the user, can be
far from providing the best utility. We have then considered the question whether, for
a generic query, the optimality is punctual or can actually be achieved with the same
mechanism for a class of users. Fortunately the answer is positive: we have identified
a class of priors, called ε-regular, and a mechanism which is optimal for all the priors
in this class. We have also provided a complete and effectively checkable characteri-
sation of the conditions under which such mechanism exists, and an effective method
to construct it. As a side result, we have improved on the existing bounds for the min-
entropy leakage induced by differential privacy. More precisely, we have been able to
give specific and tight bounds for each ε-regular prior, in general smaller than the bound
existing in literature for the worst-case leakage (achieved by the uniform prior [20]).

So far we have been studying only the case of utility for binary gain functions. In
the future we aim at lifting this limitation, i.e. we would like to consider also other
kinds of gain. Furthermore, we intend to study how the utility decreases when we use
a tight-constraints mechanism outside the class of ε-regular priors. In particular, we
aim at identifying a class of priors, larger than the ε-regular ones, for which the tight-
constraints mechanism is close to be optimal.

The definition of tight-constrains mechanism is related to the connectivity condition
of the column graphs introduced by Kifer and Lin [23, 24]. They show that this property
implies maximality w.r.t. the postprocessing preorder. Following the suggestion of an
anonymous reviewer, we will try to exploit the above result to strengthen our results in
Section 5, in particular Theorem 3.

The negative result of [1] is stated in terms of the graph induced by ∼ f : a universally
optimal mechanism can exist only if such graph is a line. This is the case of counting
queries, but not only: any composition of a counting query with a function that preserves
the graph structure would induce the same kind of graph, and it is for this reason that
the authors of [1] write “essentially counting queries”. As pointed out by an anonymous
reviewer, we can use the techniques of our paper to prove that a universally optimal
mechanism exists if and only if the query is derivable from a counting query by a
bijection, thus making the result of [1] more precise, and extending the result of [6].

Acknowledgement. We would like to thank the anonymous reviewers for their valu-
able recommendations for improving the paper, and their suggestion for future work.

References

1. Brenner, H., Nissim, K.: Impossibility of differentially private universally optimal mecha-
nisms. In: Proc. of FOCS, pp. 71–80. IEEE (2010)

2. Dwork, C.: Differential Privacy. In: Bugliesi, M., Preneel, B., Sassone, V., Wegener, I. (eds.)
ICALP 2006, Part II. LNCS, vol. 4052, pp. 1–12. Springer, Heidelberg (2006)

3. Dwork, C., Lei, J.: Differential privacy and robust statistics. In: Proc. of STOC, pp. 371–380.
ACM (2009)

4. Dwork, C.: Differential privacy in new settings. In: Proc. of SODA, pp. 174–183. SIAM
(2010)



62 E. ElSalamouny, K. Chatzikokolakis, and C. Palamidessi

5. Dwork, C.: A firm foundation for private data analysis. Communications of the ACM 54(1),
86–96 (2011)

6. Ghosh, A., Roughgarden, T., Sundararajan, M.: Universally utility-maximizing privacy
mechanisms. In: Proc. of STOC, pp. 351–360. ACM (2009)

7. Gupte, M., Sundararajan, M.: Universally optimal privacy mechanisms for minimax agents.
In: Proc. of PODS, pp. 135–146. ACM (2010)

8. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Palamidessi, C.: On the Relation between
Differential Privacy and Quantitative Information Flow. In: Aceto, L., Henzinger, M., Sgall,
J. (eds.) ICALP 2011, Part II. LNCS, vol. 6756, pp. 60–76. Springer, Heidelberg (2011)

9. Köpf, B., Basin, D.A.: An information-theoretic model for adaptive side-channel attacks. In:
Proc. of CCS, pp. 286–296. ACM (2007)

10. Clark, D., Hunt, S., Malacaria, P.: Quantitative information flow, relations and polymorphic
types. J. of Logic and Computation 18(2), 181–199 (2005)

11. Boreale, M.: Quantifying Information Leakage in Process Calculi. In: Bugliesi, M., Preneel,
B., Sassone, V., Wegener, I. (eds.) ICALP 2006, Part II. LNCS, vol. 4052, pp. 119–131.
Springer, Heidelberg (2006)

12. Malacaria, P.: Assessing security threats of looping constructs. In: Proc. of POPL, pp. 225–
235. ACM (2007)

13. Chatzikokolakis, K., Palamidessi, C., Panangaden, P.: Anonymity protocols as noisy chan-
nels. Inf. and Comp. 206(2-4), 378–401 (2008)

14. Smith, G.: On the Foundations of Quantitative Information Flow. In: de Alfaro, L. (ed.)
FOSSACS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009)

15. Braun, C., Chatzikokolakis, K., Palamidessi, C.: Quantitative notions of leakage for one-try
attacks. In: Proc. of MFPS. ENTCS, vol. 249, pp. 75–91. Elsevier (2009)

16. Köpf, B., Smith, G.: Vulnerability bounds and leakage resilience of blinded cryptography
under timing attacks. In: Proc. of CSF, pp. 44–56. IEEE (2010)

17. Andrés, M.E., Palamidessi, C., van Rossum, P., Smith, G.: Computing the Leakage of
Information-Hiding Systems. In: Esparza, J., Majumdar, R. (eds.) TACAS 2010. LNCS,
vol. 6015, pp. 373–389. Springer, Heidelberg (2010)

18. Barthe, G., Köpf, B.: Information-theoretic bounds for differentially private mechanisms. In:
Proc. of CSF, pp. 191–204. IEEE (2011)

19. Clarkson, M.R., Schneider, F.B.: Quantification of integrity. Tech. Rep. (2011),
http://hdl.handle.net/1813/22012

20. Alvim, M.S., Andrés, M.E., Chatzikokolakis, K., Degano, P., Palamidessi, C.: Differential
Privacy: On the Trade-Off between Utility and Information Leakage. In: Barthe, G., Datta,
A., Etalle, S. (eds.) FAST 2011. LNCS, vol. 7140, pp. 39–54. Springer, Heidelberg (2012)

21. ElSalamouny, E., Chatzikokolakis, K., Palamidessi, C.: A differentially private mechanism
of optimal utility for a region of priors. Technical report, INRIA (2013),
http://hal.inria.fr/hal-00760735/

22. Rényi, A.: On Measures of Entropy and Information. In: Proc. of the 4th Berkeley Sympo-
sium on Mathematics, Statistics, and Probability, pp. 547–561 (1961)

23. Kifer, D., Lin, B.R.: Towards an axiomatization of statistical privacy and utility. In: Proc. of
PODS, pp. 147–158. ACM (2010)

24. Kifer, D., Lin, B.R.: An axiomatic view of statistical privacy and utility. Journal of Privacy
and Confidentiality 4(1), 5–49 (2012)

http://hdl.handle.net/1813/22012
http://hal.inria.fr/hal-00760735/


Proved Generation of Implementations from

Computationally Secure Protocol Specifications

David Cadé and Bruno Blanchet

INRIA Paris-Rocquencourt, France
{david.cade,bruno.blanchet}@inria.fr

Abstract. In order to obtain implementations of security protocols pro-
ved secure in the computational model, we have previously implemented
a compiler that takes a specification of the protocol in the input language
of the computational protocol verifier CryptoVerif and translates it into
an OCaml implementation. However, until now, this compiler was not
proved correct, so we did not have real guarantees on the generated im-
plementation. In this paper, we fill this gap. We prove that this compiler
preserves the security properties proved by CryptoVerif: if an adversary
has probability p of breaking a security property in the generated code,
then there exists an adversary that breaks the property with the same
probability p in the CryptoVerif specification. Therefore, if the protocol
specification is proved secure in the computational model by CryptoVerif,
then the generated implementation is also secure.

1 Introduction

The verification of security protocols is an important research area since the
1990s: the design of security protocols is notoriously error-prone, and errors can
have serious consequences. Formal verification first focused on verifying formal
specifications of protocols. However, verifying a specification does not guarantee
that the protocol is correctly implemented from this specification. It is therefore
important to make sure that the implementation is secure, and not only the
specification. Moreover, two models were considered for verifying protocols. In
the symbolic model, the so-called Dolev-Yao model, messages are terms. This
abstract model facilitates automatic proofs. On the other hand, in the compu-
tational model, typically used by cryptographers, messages are bitstrings and
attackers are polynomial-time probabilistic Turing machines. Proofs in the lat-
ter model are more difficult than in the former, but yield a much more precise
analysis of the protocol. Therefore, we would like to obtain implementations of
protocols proved secure in the computational model.

To reach this goal, we have proposed the following approach in [7]. We start
from a formal specification of the protocol. In order to prove the specified proto-
col secure in the computational model, we rely on the automatic protocol verifier
CryptoVerif [4,5]. This verifier can prove secrecy and authentication properties.
The generated proofs are proofs by sequences of games, like the manual proofs
written by cryptographers. These games are formalized in a probabilistic process

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 63–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



64 D. Cadé and B. Blanchet

calculus. In order to obtain a proved implementation from the specification, we
have written a compiler that takes a CryptoVerif specification and returns an
implementation in the functional language OCaml (http://caml.inria.fr). This
compiler starts from a CryptoVerif specification annotated with implementation
details: the annotations specify how to divide the protocol in different roles,
for example, key generation, server, and client, and how to implement the vari-
ous cryptographic primitives and types. The compiler then generates an OCaml
module for each role in the input file. In order to get a full implementation of the
protocol, this module is combined with manually written network code, respon-
sible in particular for sending and receiving messages from the network. From
the point of view of security, the network code can be considered as part of the
adversary, so we do not need to prove its security.

To make sure that the generated implementation is actually secure, we need
to prove the correctness of our compiler. This proof was still missing in [7]. It
is the topic of this paper. To make this proof, we needed a formal semantics
of OCaml. We adapted the operational small-step semantics of a core part of
OCaml by Owens et al. [13]. We added to this language support for simplified
modules, multiple threads where only one thread can run at any given time, and
communication between threads by a shared part of the store.

An adversary against the generated implementation is an OCaml program
using the modules generated by our compiler. On the CryptoVerif side, an ad-
versary is a process running in parallel with the verified protocol. In our proof,
for each OCaml adversary, we construct a corresponding CryptoVerif adversary
that simulates the behavior of the OCaml adversary.When the OCaml adversary
calls one of the functions generated by our compiler, which comes from an oracle
in the CryptoVerif process, the CryptoVerif adversary calls this oracle. Then we
establish a precise correspondence between the traces of the CryptoVerif process
with that CryptoVerif adversary and the traces of the OCaml program. This cor-
respondence allows us to show that the probability of success of an attack is the
same on the CryptoVerif side and on the OCaml side. Therefore, if CryptoVerif
proves that the protocol is secure, then the generated OCaml implementation is
also secure, and the bound on the probability of success of an attack computed
by CryptoVerif is also valid for the implementation.

We have made several assumptions to get this proof; the important ones are:

A1. The cryptographic primitives are correct with respect to the assumptions
made on them in the specification.

A2. The roles are executed in the order specified in CryptoVerif (e.g., in a
key-exchange protocol, the key generation is called before the servers and
clients).

A3. The adversary and the network code do not access files created by our
implementation (e.g. private key files).

A4. The network code is a well-typed OCaml program, which does not use
unsafe OCaml functions to bypass the type system.

A5. We represent bitstrings by the OCaml type string. We assume that the
network code does not mutate strings passed to or received from generated



Proved Generation of Implementations from Protocol Specifications 65

code. This could be guaranteed by using an abstract type instead of string.
In our semantics, strings are immutable values.

A6. Our semantics of threads is obeyed, which implies that two processes that
read or write the same file are not run concurrently (which can be enforced
using locks), and that one cannot fork in the middle of a role.

Related work. Several approaches have been considered in order to obtain proved
implementations of security protocols. In the symbolic model, several approaches
generate protocols from specifications, e.g. [12,14]. Other approaches analyze
implementations by extracting a specification verified by a symbolic protocol
verifier, e.g. [3,1], or analyze them by other tools such as the model-checker
ASPIER [8], the general-purpose C verifier VCC [9] or typing [15].

In contrast, the following approaches provide computational security guaran-
tees, by analyzing implementations. The tool FS2CV [11] translates a subset of
F# to the input language of CryptoVerif, which can then prove the protocol
secure. The tool F7, which uses a dependent type system to prove security prop-
erties on protocols implemented in F#, has been adapted to the computational
model in [10]; it uses type annotations to help the proof. The symbolic execu-
tion approach of [1] provides computational security guarantees by applying a
computational soundness result, which however restricts the class of protocols
that can be considered. The tool of [2] generates a CryptoVerif model from a C
implementation; however, it can analyze only a single execution path.

To the best of our knowledge, our approach is the first one for generating
implementations with a computational proof. The work of [2] and ours are the
only ones to provide an explicit bound on the probability of success of an attack
against the verified protocol implementation.

Outline. Section 2 describes the common input language of CryptoVerif and of
our compiler. Section 3 describes OCaml, the output language of our compiler.
Section 4 describes the compiler itself. Sections 5 to 8 present our proof. The
long version [6] provides additional details on the semantics of the CryptoVerif
input language, on the compiler, and on the proof.

2 The CryptoVerif Input Language

This section presents the syntax and semantics of the CryptoVerif input lan-
guage, as well as the annotations that specify implementation details.

Syntax and Informal Semantics. Let us first introduce the syntax of the Cryp-
toVerif language in Fig. 1. The language is typed, and types T are subsets of
bitstring⊥ = bitstring ∪ {⊥} where bitstring is the set of all bitstrings and ⊥ is
a symbol that is not a bitstring, used, for example, to represent the failure of a
decryption. The boolean type bool = {true, false} with true being the bitstring
1 and false 0, bitstring, and bitstring⊥ are predefined.

Variables x[i1, . . . , im] represent arrays of bitstrings of a given type T indexed
by the values of the indices i of the replications foreach i ≤ N do Q present above
the definition of the variable. We call these indices replication indices, and we



66 D. Cadé and B. Blanchet

M ::= x[i1, . . . , im] | f(M1, . . . ,Mm) (Terms)

Q ::= 0 | Q | Q′ | foreach i ≤ N do Q | O[̃i](x1 [̃i], . . . , xk [̃i]) := P
(Oracle definitions)

P ::= return(M1, . . . ,Mk);Q | end | x[i1, . . . , im]
R← T ;P

| x[i1, . . . , im] ← M ;P | if M then P else P ′ | event e(M1, . . . ,Mk);P

| insert Tbl(M1, . . . ,Mk);P

| get Tbl(x1[̃i], . . . , xk [̃i]) suchthat M in P else P ′

| let (x1 [̃i], . . . , xk′ [̃i]) = O[M1, . . . ,Ml](M
′
1, . . . ,M

′
k) in P else P ′

| let x[̃i] = loop O[M1, . . . ,Mn](M
′) in P else P ′ (Oracle bodies)

Fig. 1. Syntax of the CryptoVerif language

abbreviate i1, . . . , im by ĩ. Each function f comes with its type T1 × · · · ×Tm →
T ; all CryptoVerif functions are deterministic and efficiently computable. Some
functions are predefined, and some are infix, like the equality test = and boolean
operations. The cryptographic primitives used in the protocol are represented
by CryptoVerif functions. TermsM represent computations over bitstrings: they
can be variable accesses x[i1, . . . , im] or function applications f(M1, . . . ,Mm).

The oracle definitions Q represent the oracles that will become available to
the adversary at this point. The nil construct 0 provides no oracle. The parallel
composition Q | Q′ provides oracles in Q and Q′. The replication foreach i ≤
N do Q provides N copies of Q, indexed by i ∈ {1, . . . , N}. The parameter N
is unspecified and is used by CryptoVerif to express the maximum probability
of breaking the protocol, which typically depends on the number of calls to the
various oracles. The oracle definition O[̃i](x1 [̃i] : T1, . . . , xk [̃i] : Tk) := P makes

available the oracle O[̃i], and when called by the adversary with arguments

a1, . . . , ak, it executes the oracle body P with xj [̃i] set to aj .
The oracle bodies P represent the behavior of the oracle. A return statement

return(M1, . . . ,Mk);Q returns the result of M1, . . . ,Mk to the caller, and makes
available oracles in Q. An end statement end returns to the caller on an error. A

random number assignment x[̃i]
R← T ;P puts a uniformly chosen random value

of type T in variable x[̃i], and continues with P . The type T must consist of all

bitstrings of a given size. An assignment x[̃i] ←M ;P puts the result ofM in the

variable x[̃i], and continues with P . A conditional statement if M then P else P ′

executes P if M evaluates to true and P ′ otherwise.
An insert statement insert Tbl(M1, . . . ,Mk);P inserts the result of M1, . . . ,

Mk into the table Tbl. Tables are lists of tuples, used for example to store tables
of keys. A get statement get Tbl(x1[̃i], . . . , xk [̃i]) suchthatM in P else P ′ searches
for an element a1, . . . , ak in the table Tbl such that the termM evaluates to true
when x1 [̃i] = a1, . . . , xk [̃i] = ak. If there is no such element, we continue with P ′,
and otherwise we choose randomly one of the elements that correspond, store



Proved Generation of Implementations from Protocol Specifications 67

it in the variables x1 [̃i], . . . , xk [̃i], then continue with P . An event statement
event e(M1, . . . ,Mk);P is used to log events. Events serve for specifying security
properties of protocols, but do not change the execution of the process.

An oracle call let (x1 [̃i], . . . , xk′ [̃i]) = O[M1, . . . ,Ml](M
′
1, . . . ,M

′
k) in P else P ′

calls oracle O[M1, . . . ,Ml], stores its returned values in the variables x1 [̃i], . . . ,

xk′ [̃i], and continues with P if the oracle terminates with a return statement,
and continues with P ′ if the oracle terminates with end.

A loop let x[̃i] = loop O[M1, . . . ,Mn](M
′) in P else P ′ calls oracle O in a loop.

Oracle O takes a unique argument (the internal state of the loop) and returns
a pair containing a result of the same type and a boolean indicating whether
the loop should continue or not. O[M1, . . . ,Mn](M

′) is first called. If it returns
(a1, true), O[M1+1,M2, . . . ,Mn](a1) is called. If it returns (a2, true), O[M1+2,
M2, . . . ,Mn](a2) is called, and so on, until O[M1 + k,M2, . . . ,Mn](ak) returns

(ak+1, false). Then we run P with x[̃i] set to ak+1. If O terminates with end,
we run P ′. Oracle call and loop statements cannot appear in the CryptoVerif
process representing the protocol, but are used for representing the adversary.

Formal Semantics. The complete formal semantics of the language can be found
in [6]. The semantics is defined as a reduction relation on semantic configura-
tions, which are tuples of the form C = E,P, T ,Q,R, E . The environment E
is a mapping from variables with their replication indices to bitstring values.
The oracle body P is the oracle body currently running. The mapping T maps
table names to their contents, which is the multiset of elements inserted in the
table. The set Q contains the set of the callable oracle definitions. The list R is
the call stack, which consists of triplets containing the variables with which the
result should be bound and two oracle bodies, the first will be executed if the
oracle returns a result with a return statement, and the second will be executed
if the oracle returns on an end statement. The sequence E is the list of events
e(a1, . . . , ak) executed so far, by the construct event e(M1, . . . ,Mk).

The notation E,M ⇓ a means that the term M evaluates to the bitstring a
under the environment E. We say that an oracle definition O[̃i](x1 [̃i], . . . , xk [̃i])
:= P is defined at the beginning of Q when this oracle definition is present in Q
without entering into oracle bodies. The list reduce′(Q) = [(Q1, b1), . . . , (Qn, bn)]
contains all oracle definitions at the beginning of Q, ordered from left to right,
with the boolean bi to true if Qi is under a replication in Q, and false oth-
erwise. The set reduce(Q) contains all oracle definitions present in reduce′(Q).
The semantics is probabilistic: C →p C′ means that C reduces into C′ with
probability p. The initial configuration for running the oracle definition Q is
Ci(Q) = ∅, let x = Ostart() in return(x) else end, ∅, reduce(Q), ∅, ∅, which starts
by calling oracle Ostart. The oracle definition Q typically contains a protocol in
parallel with an adversary.

Annotations. In order to compile a CryptoVerif process into an implementation,
we added annotations to the language, to specify implementation details.

First, we separate the parts of the process that correspond to different roles,
such as client and server, which will be included in different OCaml programs in



68 D. Cadé and B. Blanchet

the generated implementation. We annotate processes to specify roles: the be-
ginning of role is specified in oracle definitions role{Q; the end of role is specified
by a closing brace } between a return(. . .) and its following oracle definition Q.
We denote by Q(role) the part of the process corresponding to the role role.

The process for a role Q(role) may have free variables, but CryptoVerif re-
quires that these free variables be defined under no replication, so that they can
be passed from the process that defines them to the process Q(role), which uses
them, simply by storing each variable in a file. (There must be a single value
to store, not one for each value of the replication indices.) The user must also
declare, for each free variable x[ ] in a role, the file f in which the variable will
be stored. Let files be the set of these pairs (x[ ], f). Let also tables be the set of
pairs (Tbl, f) such that the table Tbl will be stored in file f .

Finally, the user annotations provide, for each CryptoVerif type T , the cor-
responding OCaml type GT (T ) as well as several OCaml functions: a function
Grandom(T ) : unit → GT (T ) that generates random numbers uniformly in T
(when T is used in a random number generation), serialization and deserial-
ization functions Gser(T ) : GT (T ) → string and Gdeser(T ) : string → GT (T )
(when T is written or read from tables and files), and a predicate function
Gpred(T ) : GT (T ) → bool that returns true if its argument corresponds to an
element of type T and false otherwise (when T is present in the interface of the
oracle definitions). The user annotations also provide, for each CryptoVerif func-
tion f , a corresponding OCaml function G(f). We assume that these functions
are all provided in an OCaml module μprim.

Requirements. CryptoVerif verifies the following requirements:

1. Variables are renamed so that each variable has a single definition. The
indices ĩ of a variable x[̃i] are always the indices of replications above the
definition of x.

2. The processes are well-typed. (In particular, functions receive arguments of
their expected types. See [4] for a similar type system.)

3. Oracles with the same name can be defined only in different branches of an
if or get construct.
We define types of oracles as follows. The type of a return(M1, . . . ,Mn);Q
statement consists of the types of M1, . . . ,Mn and the type of the oracle
definitions at the beginning of Q. The type of an oracle definition consists
of the role that it starts (if it starts a role), the oracle name, the bounds of
the replications above that oracle definition, the types of the arguments of
the oracle, and the common type of its return statements.
An oracle may have several return statements, but they must be of the same
type. When there are several definitions of an oracle with the same name O,
they must be of the same type.

Item 1 makes sure that a distinct array cell is used in each copy of a process, so
that all values of the variables during execution are kept in memory. (This helps
in cryptographic proofs.) To lighten notations, we often omit the indices since
they are determined by Item 1. Item 3 guarantees that the various definitions



Proved Generation of Implementations from Protocol Specifications 69

of an oracle are consistent, and can in fact be compiled into a single function in
OCaml. Furthermore, for simplicity, we also require the following points:

1. All oracle definitions are included in a role.
2. No replication occurs directly under a replication.

We can encode nested replications by adding a dummy oracle between the two
replications. These assumptions are relaxed in our implementation.

3 The OCaml Language

We do not repeat the syntax of OCaml, which is standard (see the manual at
http://caml.inria.fr). To define its formal semantics, we adapted the semantics
by Scott Owens et al. [13]. This semantics is a small step, operational semantics
of the core part of the OCaml language. We modified it in several ways.

First, this semantics substitutes directly variables with their values. Instead,
we define an environment Env that maps variables to their values. This way, it is
easier to relate the OCaml state to the CryptoVerif state which also contains an
environment. Then, we need to define explicit closures function[Env, pm ] where
pm is a pattern matching. A pattern matching is a list of tuples containing a
pattern and an expression, which is denoted pat1 → e1 | . . . | patm → em. When
matching a value v, this executes the first expression ej such that the pattern pat j
matches v. We also need to add an explicit call stack Stack. The stack is a list
of pairs (Env,C), where C is an evaluation context, that is, an expression with
a hole [·], such that the expression inside the hole can be immediately evaluated.
For instance, e [·] and [·] v are evaluation contexts, so we evaluate the argument
of applications first, and when it becomes a value v, we evaluate the function. In
order to evaluate an expression C[e], that is, C with e in the hole, we push the
context C on the stack with the current environment, evaluate the expression e
until it becomes a value v, and finally pop the context C from the stack, insert-
ing the obtained value in it, yielding C[v]. As usual, the contents of references
are stored in a store, which maps locations to their current values. Hence, the
semantic configuration of an OCaml program is 〈Env, pe, Stack, store〉, where
pe is the program or expression currently evaluated.

Moreover, a security protocol typically involves several programs running in
parallel on different machines. We model this by considering several threads.
Each thread has a configuration Th i = 〈Envi, pei, Stacki, storei〉 and the se-
mantic configuration becomes

[Th1, . . . ,Thn], globalstore, j ,

where j is the number of the thread currently being executed, and globalstore is
a store for locations shared between threads. We use it to model the communi-
cation between threads by storing messages in shared locations, and to store the
files containing private data from the CryptoVerif process (free variables of roles
and tables). In practice, these files may for example be copied from one machine
to another by the user. The values in the global store contain no closure and no



70 D. Cadé and B. Blanchet

reference. Let Sg be the set of locations of the global store and Spriv ⊂ Sg be the
ones reserved for private CryptoVerif data. (The latter cannot be used by the ad-
versary, following Assumption A3.) We define the new primitives addthread(pe),
which starts the program pe in a new thread, and schedule(j), which stops execu-
tion of the current thread and continues execution of the thread j. The primitive
addthread does not allow using the same local store in several threads, which cor-
responds to forbidding fork in the middle of a role. Moreover, we reduce only the
active thread, and we change threads only with schedule. So we can only change
threads in code defined by the adversary, because neither the primitives nor the
generated modules use schedule. So a call to an oracle cannot be interleaved with
other threads. This corresponds to Assumption A6: if multiple oracles cannot
interleave reads and writes in the same table file, one can reconstruct a well-
defined call order for these oracles in the CryptoVerif process, which processes
one oracle call after another, so that the calls can be simulated in our semantics.

In order to represent random choices, we add the primitive random (), which
returns a random boolean true or false with equal probability.

OCaml programs typically contain several modules. A module named μ con-
sists of an OCaml program peμ and its interface interfaceμ that is the set of
OCaml identifiers defined in μ and usable in other modules. A correct OCaml
program is then of the form peμ1

;; . . . ;; peμn
, where, for all i ≤ n, the free vari-

ables of μi are defined in the interfaces of μj with j < i.
Finally, we instrument OCaml code in three ways. First, we add a new kind

of functions and closures tagfunction that behave exactly in the same way as the
regular closures. We use these to differentiate closures coming from our generated
code and closures coming from the adversary.

Second, we need to be able to match CryptoVerif events, so we add to the
semantic configuration an element events that contains the list of the events
executed until now. We add the primitive event e(e1, . . . , ek) that adds the event
e(v1, . . . , vk) to events where e1, . . . , ek evaluate to the values v1, . . . , vk respec-
tively. Events serve in specifying security properties of protocols, so they appear
in generated code, but cannot be used by the adversary.

Third, the roles of a CryptoVerif process cannot be executed in any order: if a
role is defined after the return from an oracle, it can be executed only after the
previous oracle has returned. For instance, we can run a server only after gen-
erating its keys. We need to enforce this constraint also in the OCaml program.
Each CryptoVerif role role is translated by our compiler into an OCaml module
μrole . We add to the OCaml configuration the multiset of callable modules MI
that contains tuples (μrole , b) of a module μrole and a boolean b, indicating, if
true, that the module can be called any number of times and if false that the
module can be called only once. The construct addthread is then modified to
reject new programs that contain a module that cannot be called. We add the
primitive return(MI ′, e) that adds to the module list MI the generated mod-
ules present in MI ′, and returns the result of e. This primitive is useful to add
modules newly defined at the return from an oracle.



Proved Generation of Implementations from Protocol Specifications 71

G(x
R← T ;P ) = let Gvar(x) = Grandom(Tx) () in (Gfile(x);G(P )) (Random)

G(x ← M ;P ) = let Gvar(x) = GM(M) in (Gfile(x);G(P )) (Let)

G(if M then P else P ′) = if GM(M) then G(P ) else G(P ′) (If)

[(Q1, b1), . . . , (Ql, bl)] = reduce′(Q)

G(return(N1, . . . , Nk);Q) = (GO(Q1, b1), . . . ,GO(Ql, bl),GM(N1), . . . ,GM(Nk))
(Return1)

G(return(N1, . . . , Nk)};Q) = (return(GgetMI (Q), (GM(N1), . . . ,GM(Nk)))) (Return2)

G(end) = (raise Match failure) (End)

G(event e(M1, . . . ,Mk)) = event e(GM(M1), . . . ,GM(Mk)) (Event)

GO(Q, false) = let token = ref true in tagfunction pm false(Q)
pm false(O(x1 : T1, . . . , xk : Tk) := P ) = (Gvar(x1), . . . ,Gvar(xk)) →

if (!token)&& (Gpred(T1) Gvar(x1))&& . . . &&(Gpred(Tk) Gvar(xk))
then (token := false;G(P )) else raise Bad Call

(Oracle1)

GO(Q, true) = tagfunction pmtrue(Q)
pmtrue(O(x1 : T1, . . . , xk : Tk) := P ) = (Gvar(x1), . . . ,Gvar(xk)) →

if (Gpred(T1) Gvar(x1))&& . . . &&(Gpred(Tk) Gvar(xk)) then G(P )
else raise Bad Call

(Oracle2)

Fig. 2. Translation function G, excerpt

Hence, the instrumented semantic configuration is

C = [Th1, . . . ,Thn], globalstore, j,MI, events

We have shown that this instrumentation does not alter the semantics of OCaml:
an instrumented program behaves exactly in the same way as that program
with the instrumentation deleted, provided only allowed roles are executed, as
assumed by Assumption A2. Below, when the current thread of C is Thj =
〈Envj , pej , Stackj, storej〉, we denote by Cpe(C) = pej and Cstore(C) = storej
the current program and store of C.

4 Translation

Our compiler translates each CryptoVerif role role into an OCaml module μrole

and each CryptoVerif oracle into a function. Let Gvar be an injective function
taking a CryptoVerif variable name and returning an OCaml variable name.
The function GM transforms a term M into an OCaml expression as follows:
GM(x[̃i]) = Gvar(x) and GM(f(M1, . . . ,Mm)) = Gf(f) (GM(M1), . . . ,GM(Mm)).
To translate an oracle, we translate the body of the oracle using the function G
defined in Fig. 2, except the translation of get and insert, which is shown in [6].
Most cases are straightforward.

After defining a variable, we store it in a file if needed, using Gfile(x) which
is () when x[ ] is not present in files, and f := Gser(Tx) Gvar(x) when (x[ ], f) is
present in files.



72 D. Cadé and B. Blanchet

For the return case, if the return is not at the end of a role, we return the
closures corresponding to the oracles defined after the return (Return 1). Other-
wise, we update the set of available roles using the primitive return introduced in
the previous section (Return 2). We let GgetMI (Q) be the set of pairs (μrole , b)
where role is defined at the beginning of Q, and the boolean b is true if the role
role is under a replication and false otherwise.

An oracle O(x1, . . . , xn) := P is transformed in a closure by the function GO

as shown in Fig. 2. When the oracle O is not under replication (second argument
of GO false, in (Oracle 1)), we use a boolean token token to make sure that it
can be called only once: token is initially true, it is set to false in the first call. In
subsequent calls, an exception will be raised. The translation of an oracle always
checks that the arguments are correct values for their CryptoVerif types.

Finally, we generate an OCaml module μrole for each role role in the Cryp-
toVerif process. This module provides a single function init which returns the
functions implementing the oracles defined at the beginning of Q(role), so its
interface is interfaceμrole

= {μrole .init} and its program is

peμrole
= let μrole .init = let token = ref true in tagfunction pmrole

pmrole = () → if (!token) then
Gread(x1[ ]) in . . .Gread(xm[ ]) in
(token := false; (GO(Q1, b1), . . . ,GO(Qk, bk)))

else raise Bad Call

where [(Q1, b1), . . . , (Qn, bn)] = reduce′(Q(role)) and x1[ ], . . . , xk[ ] are the free
variables of Q(role), which are the variables we need to retrieve from the files.
These variables are read by Gread(x) = let Gvar(x) = Gdeser(Tx) !(f) where
(x[ ], f) ∈ files.

The generated modules are included in manually-written programs that rep-
resent the full implementation of the protocol, for instance a client and a server.
In particular, these programs are responsible for sending the result of oracles
to the network and receiving messages to be passed as arguments to oracles.
We consider that these programs are run by the adversary using the addthread
primitive. We represent the adversary by an OCaml program pe0. For simplicity,
we require that the programs added by addthread in pe0 contain modules in the
following order peμprim

;; peμrole1
;; . . . ;; peμrolek

;; pe where pe contains no generated

module. We assume that pe0 uses the generated modules only inside addthread,
and that pe0 is a well-typed OCaml program. (The network code is well-typed
by Assumption A4. The adversary itself is any probabilistic Turing machine,
which can be implemented by a well-typed OCaml program.) The program pe0
is run in the initial OCaml configuration C0(Q0, pe0) defined as follows:

C0(Q0, pe0) = [〈∅, pe0, [ ], ∅〉], globalstore0, 1,GgetMI (Q0)

where GgetMI (Q0) is the set of modules available at the beginning of the exe-
cution and globalstore0 = {x �→ [ ] | x ∈ Sg} is the initial value of global store.
We use the empty list [ ] as initial value, representing that the file has not been
created yet, or that the table is empty.



Proved Generation of Implementations from Protocol Specifications 73

5 Correctness of the Translation of Oracle Bodies

Let us first define precisely the notion of trace.

Definition 1 (Traces). A trace CT is a sequence of reductions: CT = C0 →p1

· · · →pn Cn. The trace CT is complete when there is no possible reduction from
its last configuration Cn. The probability of the trace CT is Pr[CT ] = p1×· · ·×pn.
The probability of a set of traces is the sum of the probabilities of its elements.

We write C →∗
p C′ when there exists a trace from C to C′ and p is the probability

of the set of all traces from C to C′ that contain a single occurrence of C′. The
notation C →∗ C′ means C →∗

1 C′.
We denote OCaml traces by CT and CryptoVerif traces by CT.

For expressions that do not use addthread, return, event, nor schedule operations
and do not use the store nor the global store, we use the shortened OCaml
configuration Env, pe, Stack. The rest of the OCaml configuration is unchanged.
We make the following assumptions on the code of primitives.

Assumption 1. 1. There are no addthread, return, event, nor schedule opera-
tions and no mention of global store locations in peμprim

.
2. There are no operations that touch the store (ref, !, :=) and no mention of

store locations in peμprim
.

3. There exists Envprim such that for all programs pe, we have ∅, peμprim
;; pe, [ ]

→∗ Envprim, pe, [ ].

Item 2 may not be realistic (the primitives often use the store internally). This
assumption is made here only for simplicity; it can be relaxed at the cost of a
much more complex proof: when the primitives use the store, we need to make
sure that the part of the store used by the primitives is disjoint from the one
used by the rest of the program. We are finishing this proof. Item 3 requires that
there are no random choices during the initialization of primitives, so that the
obtained environment is always the same. This is not restrictive since random
choices are allowed during calls to primitives.

To establish the correspondence between CryptoVerif values and OCaml val-
ues, we define a function GvalT , which maps each CryptoVerif bitstring a to its
associated value v in OCaml. For a given type T , GvalT must be a bijection
between T and the set of OCaml values of type GT (T ) satisfying the predicate
function Gpred(T ). We extend this function to events by Gev(e(a1, . . . , aj)) =
e(GvalT1

(a1), . . . ,GvalTj
(aj)) if e is of type T1 × · · · × Tj. This function is natu-

rally extended to lists of events. The next assumption states that the primitives
have been correctly implemented, following Assumption A1.

Assumption 2 (Correct primitives). For each CryptoVerif function f of
type T1×· · ·×Tn → T , for all CryptoVerif values a1, . . . , an of types T1, . . . , Tn,
Envprim,Gf(f) (GvalT1

(a1), . . . ,GvalTn
(an)), [ ] →∗ Env′,GvalT (f(a1, . . . , an)), [ ].

For each CryptoVerif type T used for getting fresh values, for each value a ∈ T ,
Envprim,Grandom(T ) (), [ ] →∗

1/|T | Env
′,GvalT (a), [ ].



74 D. Cadé and B. Blanchet

For each CryptoVerif type T used to check predicates, for each value v of the
OCaml type GT (T ), Envprim,Gpred(T ) v, [ ] →∗ Env′, v′, [ ] where v′ = true if
G−1

valT
(v) exists, and v′ = false otherwise.

For each CryptoVerif type T used for serialization/deserialization, for each
value a ∈ T , there exists an OCaml string value ser(T, a), such that

Envprim,Gser(T ) GvalT (a), [ ] →∗ Env′, ser(T, a), [ ]

and Envprim,Gdeser(T ) ser(T, a), [ ] →∗ Env′,GvalT (a), [ ]

We denote by fv(P ) the free variables of the oracle body P , with their indices,
defined as usual. Let us define the minimal environments and global stores cor-
responding to CryptoVerif variables and tables.

Definition 2 (Minimal environments and stores).

Env(E,P ) = {Gvar(x) �→ GvalTx
(a) | x[ã] ∈ fv(P ), E, x[ã] ⇓ a} (Environment)

globalstore(E, T ) =
{

{f �→ ser(Tx,GvalTx
(a)) | (x[ ], f) ∈ files, E, x[ ] ⇓ a} ∪

{f �→ [ ] | (x[ ], f) ∈ files, x not defined in E}∪
{f1 �→ l1, . . . , fk �→ lk}

| {(Tbl1, f1), . . . , (Tblk, fk)} = tables, li ∈ Gtbl(T (Tbli))
} (Global store)

where Gtbl(t) is the set of OCaml lists corresponding to the table contents t,
defined as follows. Suppose the table has type T = T1, . . . , Tl. Let Gtblel(b1, . . . , bl)
be the OCaml value (ser(T1,GvalT1

(b1)), . . . , ser(Tl,GvalTl
(bl))) corresponding to

the table element (b1, . . . , bl). If t = {a1, . . . , ak}, Gtbl(t) is the set of all lists
containing elements Gtblel(a1), . . . ,Gtblel(ak) in any order.

We also define Env(E,Q) and Env(E,M) in the same way as Env(E,P ).

The globalstore function above returns the set of all the possible minimal global
stores in which the contents of the files and the tables is correct with respect to
the CryptoVerif configuration.

The next lemma shows that CryptoVerif terms are correctly translated into
OCaml. It is proved by induction on the syntax of the term M .

Lemma 1 (Term reduction). For all CryptoVerif terms M of type T and all
CryptoVerif environments E, if Env ⊇ Envprim ∪ Env(E,M) and E,M ⇓ a,
then Env,GM(M), Stack →∗ Env′,GvalT (a), Stack.

The next lemma shows that CryptoVerif oracle bodies are correctly translated
into OCaml.

Lemma 2 (Inner reduction). Consider a CryptoVerif configuration C whose
program part P is not in a return, end, call or loop form. Suppose we have n
reductions beginning at this configuration:

C = E,P, T ,Q,R, E →pi Ci = Ei, Pi,Q, Ti,R, Ei



Proved Generation of Implementations from Protocol Specifications 75

for i ≤ n. Let C be an OCaml configuration such that C = [Th1, . . . ,Thj , . . . ,
Thm], globalstore, j,MI,Gev(E) with Thj = 〈Env,G(P ), Stack, store〉, Envprim
∪ Env(E,P ) ⊆ Env, and G ⊆ globalstore for some G ∈ globalstore(E, T ).

Then there exist m disjoint sets of OCaml traces CT S1, . . . , CT Sm, all start-
ing at C, such that none of these traces is a prefix of another of these traces,
Pr[CT Si] = pi, and the last configurations of traces in CT Si are of the form
[Th1, . . . ,Th

′
j , . . . ,Thm], globalstore′, j,MI,Gev(Ei) with Th ′

j = 〈Env′,G(Pi),
Stack, store〉, Envprim ∪ Env(Ei, Pi) ⊆ Env′, and G′ ⊆ globalstore′ for some
Env′, globalstore′, and some G′ ∈ globalstore(Ei, Ti).

This lemma is proved by cases on the process P . We use Lemma 1 when we need
to evaluate a term. Similar lemmas can be proved for return and end, adapting
the form of the final configuration. The oracle bodies that we translate into
OCaml do not contain calls nor loops.

6 Simulation of OCaml Code

In this section, we show how to simulate in CryptoVerif any OCaml program pe0
corresponding to an adversary interacting with the protocol implementation gen-
erated from the CryptoVerif process Q0. Basically, we run the OCaml program
pe0 inside a CryptoVerif primitive f (which is possible since these primitives can
represent any deterministic Turing machine). When pe0 needs to call an oracle of
Q0, the primitive returns and the call is made by CryptoVerif. When pe0 needs
to generate a random number, this generation is performed by CryptoVerif.

We assume that the OCaml program pe0 runs in bounded time, so makes a
bounded number of oracle calls. When oracle O is under replication, we letNO be
the maximum number of calls to GO(Q, true) for each call to the oracle defined
above O. We use NO as the bound of the replication above O. When a role
role is under replication, we let Nrole be the maximum number of executions of
addthread(pe) for some pe that contains μrole for each call to the oracle defined
above role. We use Nrole as the bound of the replication above role. These
replication bounds are chosen such that the OCaml program never exhausts the
number of oracle calls allowed by the CryptoVerif process.

From the OCaml program pe0, we build a CryptoVerif adversary Qadv(Q0,
pe0) given in Fig. 3. The initial CryptoVerif configuration is then C0(Q0, pe0) =
Ci(Q0 | Qadv(Q0, pe0)). In Fig. 3, we use a let construct with pattern matching,
which can easily be encoded in the syntax shown in Fig. 1, by defining functions
for creating tuples and their corresponding projections. Let O1, . . . , On be the
oracle names in Q0. We define n constants o1, . . . , on which are used to designate
the oracles O1, . . . , On respectively, oR which corresponds to a random choice,
and oS which corresponds to the end of the OCaml program.

The adversary is mainly encoded by the function f . This function takes as
argument the bitstring representation s = repr(CS) of a simulator configuration
CS = C,RI, I, which consists of an OCaml configuration C (without MI and
events) and sets RI and I that finitely represent the callable oracles Q of Cryp-
toVerif. The set RI represents the callable roles with their replication indices.



76 D. Cadé and B. Blanchet

Qadv(Q0, pe0) = (Ostart() = let r = loop Oloop(s0(Q0, pe0)) in end else end)
| Qc(Q0, pe0)

Qc(Q0, pe0) = foreach i′ ≤ N ′ do Oloop[i
′](s : bitstring) :=

(1) let (s′, o, i, args) = f(s) in
(2) if o = oS then
(3) return(s′, false)

else if o = o1 then
let (a11 , . . . , a1m1

) = args in let (i11 , . . . , i1n1
) = i in

(4) (r11 , . . . , r1k1 ) ← O1[i11 , . . . , i1n1
](a11 , . . . , a1m1

);

(5) return(f ′
O1

(s′, (r11 , . . . , r1k1 )), true)

(6) else return(f ′′
O1

(s′), true)
else if o = o2 then . . .
else if o = oR then

(7) bR
R← bool ; return(fR(s

′, bR), true)

Fig. 3. The program Qc(Q0, pe0)

Its elements are as follows: role
[
[a,+∞[, ã′

]
means that role role is under repli-

cation and the roles role[1, ã′] to role[a − 1, ã′] have been used, and the roles

role[a, ã′] to role[Nμ, ã′] are callable; role[ã] means that role is not under repli-
cation and role[ã] is callable. Similarly, the set I represents the callable oracles

(inside an already started role), using O
[
[a,+∞[, ã′

]
to mean that the oracles

O[a, ã′] to O[NO, ã′] are usable, and O[ã] to mean that oracle O[ã] can be called.
The OCaml configuration C is slightly modified with respect to a standard

OCaml configuration. It uses the additional constructs call(O[ã]) and call(O[ , ã])
which are functional values and correspond to our generated closures for oracle
O (the latter for oracles under replication, for which the first index is the first
available index value; the former for oracles not under replication). The semantics
of call(O[ã]) (v1, . . . , vk) is defined as follows. If the required oracle O[ã] is not
in I, or the number of arguments of O is not k, or v1, . . . , vk are not values
of the types expected by O, then it reduces into raise Bad Call, as the OCaml
translation of the oracle does. Otherwise it blocks; the oracle call succeeds but
will be handled outside f by the process Qc(Q0, pe0) as we detail below. The
semantics of call(O[ , ã]) is defined similarly. The semantics of random is modified
so that random () blocks; the random number generation is handled outside f
by the process Qc(Q0, pe0). The semantics of addthread is also modified so that
it updates the sets of available roles and oracles RI and I, and it replaces the
program of generated modules μrole from CryptoVerif code with:

program ′(role[ã]) = let μrole .init = let token = ref true in tagfunction pm ′
role[ã]

pm ′
role[ã] = () → if (!token) then (token := false; (call(O1[ã]), . . . , call(Ok[ã])))

else raise Bad Call

where ã are the smallest replication indices such that role[ã] is present in
RI, O1, . . . , Ok are the oracles defined at the beginning of Q(role), which are



Proved Generation of Implementations from Protocol Specifications 77

supposed not to be under replication. (When Oj is under replication, we use
the form call(Oj [ , ã]) instead of call(Oj [ã]).) All oracle calls are then performed
using call rather than directly in OCaml.

Then f(repr(CS)) is defined as follows. Let CS ′ be the configuration such that
CS →∗ CS ′ and ∀CS ′′, CS ′ 	→ CS ′′, using the semantics outlined above.

– If Cpe(CS ′) = call(O[ã]) (v1, . . . , vl), let T1, . . . , Tl be the type of the argu-
ments of the oracle O and let o be the constant associated to O. We define

f(repr(CS)) = (repr(CS ′), o, ã, (G−1
valT1

(v1), . . . ,G
−1
valTl

(vl))) .

The case Cpe(CS ′) = call(O[ , ã]) (v1, . . . , vl) can be defined similarly, calling
O[a′, ã] when O

[
[a′,+∞[, ã

]
is in the component I of CS ′.

– If Cpe(CS ′) = random (), we define f(repr(CS)) = (repr(CS ′), oR, (), ()).
– Otherwise, we define f(repr(CS)) = (repr(CS ′), oS , (), ()).

The function f can be implemented by a deterministic Turing machine (since
the random choices are handled outside f), so it can be used as a CryptoVerif
primitive.

When f returns (repr(CS ′), o, ã, (a1, . . . , al)), the CryptoVerif process Qc(Q0,
pe0) performs the corresponding oracle call O[ã](a1, . . . , al) (lines (4)–(6) of
Fig. 3). Similarly, when f returns (repr(CS ′), oR, (), ()), the process Qc(Q0, pe0)
performs a random choice (lines (7)–(8)), and when f returns (repr(CS ′), oS , (),
()), the process Qc(Q0, pe0) terminates (lines (2)–(3); the corresponding OCaml
program also terminates).

The functions f ′
O and f ′′

O replace, in the simulator configuration, the call ex-
pression by the result returned by the oracle, or raise the Match failure exception,
respectively. More formally,

– f ′
O(repr(C,RI, I), (r1, . . . , rn)) = repr(C′,RI, I ′) where the current program
is Cpe(C) = call(O[ã]) (v1, . . . , vl), T1, . . . , Tn are the types of the return
value of O, the oracles defined after the return from O in Q0 are O1, . . . , Ok,
C′ is the configuration C where the current expression is replaced with
the translated result (call(O1[ã]), . . . , call(Ok[ã]),GvalT1

(r1), . . . ,GvalTn
(rn)),

I ′ = I \ {O[ã]} ∪ {O1[ã], . . . , Ok[ã]} is obtained from I by removing the
called oracle O[ã] and adding the newly available oracles O1[ã], . . . , Ok[ã].
(For simplicity, the previous notations assume that the oracles O,O1, . . . , Ok

are not under replication; they can be easily adapted to situations in which
these oracles are under replication. We also assumed that the return of oracle
O does not terminate a role.When it terminates a role, the oraclesO1, . . . , Ok

are not returned nor added to I, but the roles that start after the return
from O are added to RI.)

– f ′′
O(repr(C,RI, I)) = repr(C′,RI, I \ {(O[ã]}) where Cpe(C) = call(O[ã]) (v1,
. . . , vl) and C′ is the configuration C in which the current expression is re-
placed with raise Match failure. (The case Cpe(C) = call(O[ , ã]) (v1, . . . , vl)
can be defined similarly.)

– fR(repr(C,RI, I), b) = repr(C′(b),RI, I) where C′(b) is the configuration C
in which the current expression is replaced with Gvalbool (b).



78 D. Cadé and B. Blanchet

Finally, the initial state of the simulator is

s0(Q0, pe0) = repr(([〈∅, pe0, [ ], ∅〉], globalstore0, 1),RI0(Q0), ∅)

where RI0(Q0) is the set of the initially callable roles of Q0.

7 Correctness of the Simulation

This section proves the correctness of the simulator, by showing a precise relation
between the state of the simulator and the state of the OCaml program. Basically,
the OCaml configuration is obtained by replacing the call present in the simulator
configuration with the corresponding closures. We show that the tables and
files in the OCaml global store correspond to the CryptoVerif tables T and
environment E, and that the OCaml events match the CryptoVerif events.

Definition 3 (Preliminary definitions). Let us first define the set of oracles
O(I) and O(RI) represented by I and RI respectively:

O(I) = {O[b, ã′] | O
[
[a,+∞[, ã′

]
∈ I, a ≤ b ≤ NO} ∪ {O[ã] | O[ã] ∈ I}

O(RI) = {O[b, ã] | role[ã] ∈ RI, O defined under replication at the beginning
of role in Q0, 1 ≤ b ≤ NO}

∪ {O[ã] | role[ã] ∈ RI, O defined not under replication at the beginning of
role in Q0}

∪ {O[b, ã′] | role
[
[a,+∞[, ã′

]
∈ RI, O defined at the beginning of role in

Q0, a ≤ b ≤ NO}

We say that I and RI represent the set of callable processes Q, and we write
Q ↔ RI, I, when Q contains exactly one element O[ã](x̃) := P for each O[ã]
in O(I) ∪ O(RI). In this case, we denote by Q(O[ã]) this element of Q.

Given a simulator thread Th = 〈Env, pe, Stack, store〉, Ocall(Th) is the set
of oracles O[ã] not under replication such that call(O[ã]) occurs in Th out-
side tagfunction functions or closures. Let rolelist(Th) be the set of roles role[ã]
such that tagfunction[Env, pm ′

role[ã]] occurs in thread Th, and the store of Th

binds Env(token) to true. Let rolefunlist(Th) be the set of roles role[ã] such that
program ′(role[ã]) occurs in Th.

We also define Ocall(CS) (resp. rolelist(CS), rolefunlist(CS)) as the union of
Ocall(Th) (resp. rolelist(Th), rolefunlist(Th)) for all threads present in CS.

The set Owillbeavailable(CS) contains the set of oracles that can eventually become
available in O(I) or O(RI) in a future configuration, and that are not available

now. More precisely, Owillbeavailable(CS) is the set of O′[ã′, ã] such that there is an
oracle O defined above O′ in Q0 such that O[ã] ∈ O(I)∪O(RI )∪O(rolelist(CS))∪
O(rolefunlist(CS)).

The function replaceinitpm replaces everywhere in a simulator thread the pat-
tern matchings corresponding to role initialization of the simulator by the OCaml
module initialization for the given role. Formally, replaceinitpm(Th) replaces each
occurrence of pm ′

role[ã] in Th with pmrole .



Proved Generation of Implementations from Protocol Specifications 79

Suppose that Q ↔ RI, I, and ltok is a function that associates to each oracle
O[ã] the location of its token. We define the set of closures that correspond to
an oracle:

– correctclosures(O[ã], I, E,Q, ltok) = {tagfunction[Env, pm false(Q(O[ã]))] |
Envprim ∪ Env(E,Q(O[ã])) ⊆ Env,Env(token) = ltok(O[ã])} if O[ã] ∈ I;

– correctclosures(O[ã], I, E,Q, ltok) = {tagfunction[Env, pm false(Q)] | for any
Q,Env(token) = ltok(O[ã])} if O[ã] 	∈ I;

– correctclosures(O[ , ã], I, E,Q, ltok)={tagfunction[Env, pmtrue(Q(O[a′, ã]))] |
Envprim ∪ Env(E,Q(O[a′, ã])) ⊂ Env} if O

[
[a′,+∞[, ã

]
∈ I;

– correctclosures(O[ , ã′′], I, E,Q, ltok) = ∅ if O
[
[a′,+∞[, ã′′

]
	∈ I.

The function replacecalls replaces in its argument the calls call(O[ã]) with closures
that correspond to the oracle.

replacecalls(〈Env, pe, Stack, store〉, I, E,Q, ltok) = {〈Env′, σ(pe), σ(Stack),
store ′〉 | Env′ is any environment if pe is a value v or an exception raise v,
Env′ = σ(Env) otherwise; store ′ ⊇ σ(store) with σ a function that replaces
each occurrence of a call(R) with an element of correctclosures(R, I, E,Q, ltok)}

The function gettokens returns the store part corresponding to the tokens of the
closures of oracles not under replication:

gettokens(I,O, ltok) = {ltok(O[ã]) �→ true | O[ã] ∈ O ∩ I}
∪ {ltok(O[ã]) �→ false | O[ã] ∈ O \ I}

Definition 4 (Relation between CryptoVerif and OCaml states). Let
CS be a configuration of the simulator, E, T ,Q, E be parts of a CryptoVerif
configuration, and C be an OCaml configuration. We say that CS, E, T ,Q, E ≡ C
when the following properties are all true:

1. CS = ([Th1, . . . ,Thn], globalstore, i),RI, I.
2. C = [Th ′

1, . . . ,Th
′
n], globalstore

′, i,MI, events.
3. Q ↔ RI, I.
4. The environment E contains values for every free variable in the oracle def-

initions present in Q.
5. There exists an injective function ltok that associates to each oracle O[ã] a

store location that does not occur in CS such that
– ∀i ≤ n,Th ′

i ∈ replacecalls(replaceinitpm(Thi), I, E,Q, ltok),
– ∀i ≤ n, gettokens(I,Ocall(Th i), ltok) ⊆ store ′i where store ′i is the store

part of Th ′
i.

6. There exists an injective function l′tok that associates to each role role[ã] a
store location such that for all i, for all closures tagfunction[Env, pm ′

role[ã]],

present in thread Thi, l
′
tok(role[ã]) = Env(token).

7. ∀l ∈ Spriv, globalstore(l) = [ ].
8. G′ ⊆ globalstore′ for some G′ ∈ globalstore(E, T ).
9. ∀l /∈ Spriv, globalstore(l) = globalstore′(l).



80 D. Cadé and B. Blanchet

10. MI = {(μrole , false) |role[ã] ∈ RI} ∪ {(μrole , true) |role
[
[a′,+∞[, ã

]
∈ RI}.

11. events = Gev(E).
12. The sets O(I)∪Ocall(CS), O(RI) and Owillbeavailable(CS) are pairwise disjoint.
13. The 3n sets Ocall(Thi), O(rolefunlist(Th i)), and O(rolelist(Thi)) for i ≤ n

are pairwise disjoint, and are all included in O(I) ∪Ocall(CS).

Item 3 is an invariant on the CryptoVerif side: it relates the CryptoVerif available
oracles inQ to elements of the simulator configuration. Item 4 is also an invariant
of the CryptoVerif semantics.

Item 5 relates the threads of the simulator and of the OCaml semantics. Ba-
sically, the simulator uses call while OCaml uses the corresponding tagfunction.
The tokens that determine whether oracles can be called are absent from the sim-
ulator: the value of these tokens is determined from I by the function gettokens,
and we require that they are present in the OCaml store with their correct value.

Item 6 assures that all instances of a closure of a given role initialization
role[ã] share the same store location for their tokens.

Items 7 to 9 relate the values of the global store in the simulator and in the
OCaml semantics. The public part of the global store is the same on both sides
(Item 9). The private part (files and tables) is empty in the simulator, since this
part is handled by CryptoVerif itself (Item 7). We require that the private part of
the OCaml global store corresponds to the CryptoVerif configuration (Item 8).

Item 10 relates the OCaml set of callable modules MI and the simulator set
of callable roles RI, and Item 11 relates the OCaml and CryptoVerif events.

Finally, Items 12 and 13 are required to keep the injections of Items 5 and 6.
Given a CryptoVerif configuration C, it is easy to recover the corresponding

simulator configuration CS. The next definition formalizes this point.

Definition 5 (Simulator configuration). Let C = E,P, T ,Q,R, E be a Cryp-
toVerif configuration. If E(r[ ]) is defined (we are at the end of the loop), then
CS(C) = repr−1(E(r[ ])). Otherwise, if E(s[α]) is defined and E(s′[α]) is not de-
fined (we are just before line (1) of Fig. 3 in iteration number α), then CS(C) =
repr−1(E(s[α])). Otherwise, if E(s′[α]) is defined and E(s[α+ 1]) is not defined
(we are after line (1) in iteration number α), then CS(C) = repr−1(E(s′[α])).

Definition 6 (Invariant). Let C = E,P, T ,Q,R, E be a CryptoVerif config-
uration and C be an OCaml configuration. We say that C ≡ C if and only if
CS(C), E, T ,Q, E ≡ C.

We say that a CryptoVerif configuration C = E,P, T ,Q,R, E is at a checkpoint
when the process P corresponds to the process at lines marked (1), (2), (4), (7)
of Fig. 3 and the stack R contains one element or P is end and R is empty.
The following lemma shows that the invariant of Definition 6 is preserved at
checkpoints during execution.

Lemma 3. Let CT1, . . . ,CTn be CryptoVerif traces starting at C, such that C
and the last configuration of these traces are at checkpoints, and there is no other
checkpoint in these traces. Let C be an OCaml configuration such that C ≡ C.



Proved Generation of Implementations from Protocol Specifications 81

Then there exist disjoint sets of OCaml traces CT S1, . . . , CT Sn all starting
at C such that none of these traces is a prefix of another of these traces, for all
i ≤ n, Pr[CTi] = Pr[CT Si], and if C′ is the last configuration of CTi and C′ is
the last configuration of a trace in CT Si, then C′ ≡ C′. Furthermore, if C′ cannot
be reduced, then neither can C′.

From this lemma, we can prove:

Proposition 1. Let CT1, . . . ,CTn be complete CryptoVerif traces starting at
C0(Q0, pe0). Then there exist disjoint sets of complete OCaml traces CT S1, . . . ,
CT Sn all starting at C0(Q0, pe0) such that for all i ≤ n, Pr[CTi] = Pr[CT Si],
and if C is the last configuration of CTi and C is the last configuration of a trace
in CT Si, then C ≡ C.

8 Security Result

CryptoVerif security properties are defined using distinguishers D which are
functions that take a list of events E and return true or false. We denote by Pr[C :
D] the probability of the set of complete CryptoVerif traces starting at C and
such that the list of events E in their last configuration satisfies D(E) = true. For
instance, to show that a protocolQ0 satisfies a correspondence of the form “for all
a, if e1(a) has been executed, then e2(a) has also been executed”, we define D by
D(E) = true if and only if the correspondence does not hold, that is, E contains
e1(a) but not e2(a) for some a. Then we bound the probability Pr[Ci(Q0 | Qadv) :
D], that is, the probability that the adversary Qadv breaks the correspondence
in Q0. We can also define secrecy using events and distinguishers [5]. We use a
similar definition in OCaml: Pr[C : D] is the probability of the set of complete
OCaml traces starting at C and such that the list of events events in their last
configuration satisfies D(G−1

ev (events)) = true. Our main theorem is then:

Theorem 1 (Security result). Pr[C0(Q0, pe0) : D] = Pr[C0(Q0, pe0) : D].

This theorem is easy to prove from Proposition 1, noticing that, when C ≡ C
and the events of C are E , the events of C are Gev(E) (Definition 4, Item 11).

In other words, the adversary pe0 against the OCaml program has the same
probability of breaking the security property as the adversary Qadv(Q0, pe0)
against the CryptoVerif process. If CryptoVerif bounds the probability Pr[C0(Q0,
pe0) : D], then the same bound also holds for the generated implementation.

As detailed in [7], CryptoVerif shows that our model of the SSH Transport
Layer Protocol guarantees the authentication of the server to the client and the
secrecy of the session keys. By Theorem 1, our generated implementation of this
protocol satisfies the same properties, provided assumptions A1 to A6 hold.

9 Conclusion

We have proved that our compiler preserves security. Therefore, by using Cryp-
toVerif, we can prove the desired security properties on the protocol specification,



82 D. Cadé and B. Blanchet

and then by using our compiler, we get a runnable implementation of the pro-
tocol, which satisfies the same security properties as the specification. Making
such a proof is also useful because it clarifies the assumptions needed to ensure
that the implementation is secure (Assumptions A1 to A6 in our case). The
proof technique presented in this paper, simulating any adversary by a Cryp-
toVerif process, is also useful to show that any Turing machine can be encoded
as a CryptoVerif adversary, which is important for the validity of the verification
by CryptoVerif. We have done the proof by hand. Formalizing it using a proof
assistant (e.g. Coq) would be interesting future work.

Acknowledgments. This work was partly done while the authors were at École
Normale Supérieure, Paris. It was partly supported by the ANR project ProSe
(decision ANR 2010-VERS-004).

References

1. Aizatulin, M., Gordon, A.D., Jürjens, J.: Extracting and verifying cryptographic
models from C protocol code by symbolic execution. In: CCS 2011, pp. 331–340.
ACM, New York (2011)

2. Aizatulin, M., Gordon, A.D., Jürjens, J.: Computational verification of C protocol
implementations by symbolic execution. In: CCS 2012, pp. 712–723. ACM, New
York (2012)

3. Bhargavan, K., Fournet, C., Gordon, A., Tse, S.: Verified interoperable implemen-
tations of security protocols. ACM TOPLAS 31(1) (2008)

4. Blanchet, B.: A computationally sound mechanized prover for security protocols.
IEEE Transactions on Dependable and Secure Computing 5(4), 193–207 (2008)

5. Blanchet, B.: Automatically verified mechanized proof of one-encryption key ex-
change. In: CSF 2012, pp. 325–339. IEEE, Los Alamitos (2012)

6. Cadé, D., Blanchet, B.: Proved generation of implementations from computation-
ally secure protocol specifications,
http://prosecco.gforge.inria.fr/personal/dcade/post2013full.pdf

7. Cadé, D., Blanchet, B.: From computationally-proved protocol specifications to
implementations. In: ARES 2012, pp. 65–74. IEEE, Los Alamitos (2012)

8. Chaki, S., Datta, A.: ASPIER: An automated framework for verifying security
protocol implementations. In: CSF 2009, pp. 172–185. IEEE, Los Alamitos (2009)

9. Dupressoir, F., Gordon, A.D., Jürjens, J., Naumann, D.A.: Guiding a general-
purpose C verifier to prove cryptographic protocols. In: CSF 2011, pp. 3–17. IEEE,
Los Alamitos (2011)

10. Fournet, C., Kohlweiss, M., Strub, P.Y.: Modular code-based cryptographic verifi-
cation. In: CCS 2011, pp. 341–350. ACM, New York (2011)

11. http://msr-inria.inria.fr/projects/sec/fs2cv/
12. Milicia, G.: χ-spaces: Programming security protocols. In: NWPT 2002 (2002)
13. Owens, S.: A Sound Semantics for OCamllight. In: Drossopoulou, S. (ed.) ESOP

2008. LNCS, vol. 4960, pp. 1–15. Springer, Heidelberg (2008)
14. Pironti, A., Sisto, R.: Provably correct Java implementations of spi calculus security

protocols specifications. Computers and Security 29(3), 302–314 (2010)
15. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bharagavan, K., Yang, J.: Secure

distributed programming with value-dependent types. In: ICFP 2011, pp. 266–278.
ACM, New York (2011)

http://prosecco.gforge.inria.fr/personal/dcade/post2013full.pdf
http://msr-inria.inria.fr/projects/sec/fs2cv/


Sound Security Protocol Transformations�

Binh Thanh Nguyen and Christoph Sprenger

Institute of Information Security, ETH Zurich, Switzerland
{thannguy,sprenger}@inf.ethz.ch

Abstract. We propose a class of protocol transformations, which can be
used to (1) develop (families of) security protocols by refinement and (2)
abstract existing protocols to increase the efficiency of verification tools.
We prove the soundness of these transformations with respect to an
expressive security property specification language covering secrecy and
authentication properties. Our work clarifies and significantly extends
the scope of earlier work in this area. We illustrate the usefulness of our
approach on a family of key establishment protocols.

1 Introduction

It is well-known that security protocols are notoriously hard to get right. This
motivates the use of formal methods for their design and development. The last
decade has witnessed substantial progress in the formal verification of security
protocols’ properties such as secrecy and authentication. However, methods for
transforming protocols have received much less attention.

Protocol transformations are interesting for at least two applications: we can
use them (1) to develop (families of) protocols by refinement [17,9,16,7,6,4] and
(2) to abstract existing protocols for the more efficient tool-based verification
of their properties [11]. Abstraction and refinement correspond bottom-up and
top-down views on (the same) protocol transformations. To be useful, protocol
transformations must be sound with respect to a relevant class of security prop-
erties, i.e., refinement must be property-preserving, or equivalently, abstraction
must be attack-preserving.

In this work, we propose a class of syntactic protocol transformations cov-
ering a wide range of protocols and security properties. Following Hui and
Lowe [11], we support both message-based transformations, which we lift to pro-
tocol roles, and structural transformations, which directly operate on protocol
roles. Message-based transformations include the removal of hashes or encryp-
tions, pulling cleartext fields out of an encryption, and rearranging pair compo-
nents. To guarantee the uniform transformation (e.g., removal) of variables and
the messages they are supposed to receive, we work with typed messages. We
use the type system of Arapinis and Duflot [2], which enables a fine-grained con-
trol over the message transformations. We establish the soundness of our typed
� This work is partially supported by the EU FP7-ICT-2009.1.4 Project No. 256980,

NESSoS: Network of Excellence on Engineering Secure Future Internet Software
Services and Systems.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 83–104, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



84 B.T. Nguyen and C. Sprenger

transformations with respect to an expressive property specification language
based on [14].

We make the following contributions. First, our work provides a sound formal
underpinning for protocol transformations, which can serve as a foundation for
rigorous security protocol development by refinement as well as for the abstrac-
tion of existing protocols. As an example of the latter, our approach helps to
improve the performance of security protocol verifiers that are sensitive to mes-
sage sizes such as SATMC [3]. Second, we extend existing work with respect to
the expressiveness of the protocol specifications, the protocol transformations,
and the preserved properties. In particular, we extend [11] in several ways: (1) we
clarify and formally justify the application of transformations to protocol specifi-
cations, which contain variables not only ground terms as in [11]; (2) we support
composed keys under a mild restriction; (3) we cover additional transformations
(e.g., splitting encryptions) including many of those in [5,7,6]; and (4) we extend
soundness to a more expressive property language based on predicates expressing
event occurrence and ordering, intruder knowledge, and including quantification
over thread identifiers.

The full version of this paper [15] includes the proofs of all our results and
the treatment of structural transformations.

A Motivating Example. We discuss the abstraction and refinement of key
establishment protocols. We first take the abstraction view and defer a brief
discussion of the refinement view to the end of this section. We start from a core
version of Kerberos IV, called K4, which we simplify in several steps with the
aim of optimizing the performance of verification tools. In Alice&Bob notation,
the protocol K4 reads as follows.

K4(1). A→ S : A,B, nA

K4(2). S → A : {|B, tS , nA, kAB, {|A, tS , kAB|}sh(B,S)|}sh(A,S)

K4(3). A→ B : {|A, tS , kAB|}sh(B,S), {|c, tA|}kAB

K4(4). B → A : {|tA|}kAB

The security properties we are interested in include: (P1) the secrecy of the ses-
sion key kAB, (P2) A authenticates S on kAB , nA, and tS , and (P3) A and B
authenticate each other on kAB and tA. To improve the performance of verifica-
tion tools, we remove protocol elements that we deem unnecessary for a given
property to hold and verify that property on the simplified protocol. If there is
no attack then the soundness of our abstractions allows us to conclude that the
original protocol also satisfies the property.

In the first abstraction step, we pull B’s ticket out of the encryption in message
K4(2). The result is the core of Kerberos V, called K5, which differs from K4 as
follows.

K5(2). S → A : {|B, tS , nA, kAB|}sh(A,S), {|A, tS , kAB|}sh(B,S)

In the second step, we eliminate the forwarding of B’s ticket by A by applying
structural transformations. This yields protocol K3, on which we verify mutual



Sound Security Protocol Transformations 85

authentication of A and B (P3). We omit the message K3(1) which equals K5(1).

K3(2). S → A : {|B, tS , nA, kAB|}sh(A,S)

K3(3). S → B : {|A, tS , kAB|}sh(B,S)

K3(4). A→ B : {|c, tA|}kAB

K3(5). B → A : {|tA|}kAB

In the third step, we remove the key confirmation phase, i.e., messages K3(4)
and K3(5). For the resulting protocol, K2, which we omit here, we verify the
authentication property (P2).

In a final transformation, we remove the server timestamp tS and the initiator
nonce nA. The result is protocol K1 for which we verify secrecy (P1).

K1(1). A→ S : A,B
K1(2). S → A : {|B, kAB|}sh(A,S)

K1(3). S → B : {|A, kAB|}sh(B,S)

The protocols and transformations above will serve as running examples through-
out the paper. We will report on experiments with SATMC in Section 4.

We can also view these transformations in the other direction, as a devel-
opment of K4 by refinement. We start from the abstract protocol K1 satisfying
session key secrecy (P1) and add new properties or modify the protocol structure
with each refinement step. We verify properties (P2) and (P3) for K2 and K3,
respectively, knowing that they are preserved by further refinements. By refining
given protocols in different ways, we can develop entire protocol families, whose
members share structure and properties. For example, most server-based key
establishment protocols can be derived from K1.

2 Security Protocol Model

2.1 Term Algebra

We define a generic set of terms T (V, U, F, C) parametrized by four sets V , U , F ,
and C. We will instantiate these parameters to generate different sets of terms
including those in protocol descriptions, network messages, and types, i.e., V to
variables, U to roles or agents, F to fresh values, and C to constants, as well as
to their associated types.

T ::= V variables
| U | F | C atoms: agents/roles, fresh values, constants
| pk(U) | pri(U) | sh(U,U) atoms: long-term keys (public, private, shared)
| h(T ) | 〈T , T 〉 | {|T |}T composed terms: hashing, pairing, encryption

We use T as a shorthand for T (V, U, F, C) in the generic case where the concrete
parameters do not matter. We denote by |t| the size of a term t. The set St(t)
denotes the set of subterms of t. For T ⊆ T , vars(T ) and atoms(T ) denote the
sets of variables and atoms in St(T ). A term without variables is called ground.



86 B.T. Nguyen and C. Sprenger

The terms pk(A), pri(A), and sh(A,B) for A,B ∈ U denote the public key of
A, the private key of A, and a symmetric key shared by A and B. We define the
function (·)−1 on ground terms t as follows: pk(A)−1 = pri(A), pri(A)−1 = pk(A),
and t−1 = t otherwise. Next, we define a number of functions on terms in T .

A multiset m over a set S is a function m : S → N, where m(x) denotes the
multiplicity of x in m. The relations �,�,� denote multiset intersection, union,
and inclusion, respectively, and set(m) = {x ∈ S | m(x) > 0}.
Definition 1. We define the pair splitting function on terms as follows.

split(u) = {u} if u is not a pair
split(〈u1, u2〉) = split(u1) � split(u2)

We also define split(U) =
⊔

u∈U split(u) for a set U of terms.

Definition 2. We define the set acc(t) of accessible subterms of a term t by

acc(u) = {u} if u is a variable, atom, or hash
acc(〈u1, u2〉) = acc(u1) ∪ acc(u2)
acc({|u|}k) = acc(u)

2.2 Protocols

Let V , R, F , and C be infinite and pairwise disjoint sets of variables, role names,
fresh names, and constants. We define the set of messages by M = T (V ,R,F , C).

We specify protocols in terms of roles. A role is a sequence of send and receive
events of the form snd(t) or rcv(t) for a term t ∈ M. We denote the set of all
events by Event . We write term(e) for the term contained in the event e. Let
mgu(t, u) denote the most general unifier of the terms t and u.

Definition 3 (Protocol). A protocol role is a sequence of events. We define
Role = Event∗. A protocol P : R ⇀ Role is a partial function from role names
to roles such that
1. the sets of variables and fresh values in different roles are pairwise disjoint,
2. variables first occur in accessible positions of receive events, i.e., for all events

e in a role P (R) and all variables X ∈ vars(term(e)) there is an event rcv(t)
in P (R) such that rcv(t) equals or precedes e in P (R) and X ∈ acc(t).

3. the events in P ’s roles can be exhaustively enumerated in a list of pairs
of send and receive events [(s1, r1), . . . , (sm, rm)]. We require that, for each
i ∈ {1, . . . ,m}, there exist a substitution δi such that
– δ1 = mgu(term(s1), term(r1)), and, for 1 < k ≤ m,
– δk = mgu(term(sk)(δk−1 ◦ · · · ◦ δ1), term(rk)(δk−1 ◦ · · · ◦ δ1)).

We define δP = δm ◦ ... ◦ δ1 and call it the honest substitution of P .

The second condition of this definition ensures that δP is a ground substitution.
Given a protocol P , let VP , RP , FP , and CP be the sets of variables, role

names, fresh values, and constants appearing in the roles of P (i.e., RP =
dom(P )). We assume a constant nil ∈ C \ CP and define Cnil

P = CP ∪{nil}. We de-
note by EventP the set of all events in the protocol P and RtP = term(EventP ).
Moreover, we define the set of protocol messages (over the atomic messages of
the protocol P ) by MP = T (VP ,RP ,FP , Cnil

P ).



Sound Security Protocol Transformations 87

u ∈ T
T � u

Axiom
T � t T � u
T � 〈t, u〉 Pair

T � 〈t1, t2〉
T � ti

Proji

T � u
T � h(u)

Hash T � t T � u
T � {|t|}u Enc

T � {|t|}u T � u−1

T � t
Dec

Fig. 1. Intruder deduction rules

2.3 Attacker Model and Operational Semantics

Let A and TID be infinite sets of agents and thread identifiers. We partition A
into non-empty sets of honest and compromised agents: A = AH ∪ AC .

When we instantiate a role into a thread for execution, we mark variables, role
names, and fresh values of the respective role script with the thread identifier
to distinguish them from those of other threads. Given a thread identifier tid ∈
TID , we define the instantiation function insttid as the homomorphic extension
of the following definition to all messages:

inst tid(w) = wtid if w ∈ V ∪ F ∪R
inst tid(c) = c if c ∈ C
inst tid(k(R)) = k(Rtid) if R ∈ R, k ∈ {pk, pri}
inst tid(sh(R,S)) = sh(Rtid, Stid) if R,S ∈ R

We define by T � = {inst i(t) | t ∈ T ∧ i ∈ TID} the set of instantiations of
terms in a set T . Hence, the set of instantiated messages of protocol P is M�

P .
We lift this to sets of events by instantiating the terms they contain, e.g., to
define Event �P . We also define the set of network messages, i.e., the ground
messages transmitted over the network, by NP = T (∅,A,F �

P ∪ F•
P , Cnil

P ), where
F • = {f• | f ∈ F} for F ⊆ F are attacker-generated fresh values. Furthermore,
we abbreviate M�

P = MP ∪M�
P ∪ NP .

Attacker model. We use a standard Dolev-Yao attacker model. The intruder’s ca-
pabilities for network messages are described by the deduction rules in
Figure 1.

Operational semantics. We define a transition system with states (tr, th, σ),
where

– tr is a trace consisting of a sequence of pairs of thread identifiers and events,
– th : TID ⇀ R×Role is a thread pool denoting executing role instances, and
– σ : V� ∪R� → NP is a substitution with network messages as its range.

The trace tr as well as the executing role instance are symbolic (with terms
in M�

P ). The separate substitution σ instantiates these messages to (ground)
network messages. The ground trace associated with such a state is trσ.

We define the (symbolic) intruder knowledge IK (tr) derived from a trace tr
as the set of terms in the send events on tr, i.e., IK (tr) = {t | ∃i. (i, snd(t)) ∈ tr}.



88 B.T. Nguyen and C. Sprenger

th(i) = (R, snd(t) · tl)
(tr, th, σ) → (tr · (i, snd(t)), th[i �→ (R, tl)], σ)

SEND

th(i) = (R, rcv(t) · tl) IK (tr)σ ∪ IK 0 � tσ

(tr, th, σ) → (tr · (i, rcv(t)), th[i �→ (R, tl)], σ)
RECV

Fig. 2. Operational semantics

We associate with each protocol P a fixed ground initial knowledge IK 0 and
assume that C ∪ A ∪ F• ⊆ IK 0. In particular, nil ∈ IK 0.

In our model, the substitution σ is chosen non-deterministically in the initial
state. The set of initial states InitP of protocol P contains all (ε, th, σ) satisfying

∀i ∈ dom(th). ∃R ∈ RP . th(i) = (R, inst i(P (R))) ∧ σ(R�) ⊆ A,

where inst i is applied to all terms in the respective protocol role.
The state transitions are defined by the rules in Figure 2. In both the SEND

and RECV rules, the first premise states that a send or receive event is in the
first position of the role script of thread i. The executed event is removed from
the role script and added together with the thread identifier to the trace tr.
Transitions do not change the substitution σ, which is fixed in the initial state.
The second premise of the RECV rule requires that the network message tσ
matching the term t in the receive event is derivable from IK (tr)σ ∪ IK 0, i.e.,
the intruder’s (ground) knowledge derived from tr and his initial knowledge IK 0.

2.4 Type System

We introduce a type system that extends Arapinis and Duflot’s [2] with type
variables, but is equivalent to theirs for ground types. In this type system, all
roles and agent names have the same type α and similarly with each kind of
long-term key (e.g., pk(α) is the type of public keys). Each fresh value f ∈ F
and constant c ∈ C has its own type: βf and γc. This enables a fine-grained
control in our message transformations. The types of composed terms follow the
structure of the terms.

Let Vty be an infinite set of type variables disjoint from V . We define the set
of types by Y = T (Vty, {α}, {βf | f ∈ F}, {γc | c ∈ C}). A typing environment
is a partial function Γ : V ⇀ Y assigning types to (message) variables. Typing
judgements are of the form Γ " t : τ , where Γ is a typing environment, t is
a term, and τ is a type. The derivable typing judgements are determined by
the inference rules in Figure 3. The first row displays the rules for variables,
fresh values, and constants. The first two rules assign the types given by the
typing environment to plain and instantiated variables. The last three rules in
the first row give a type to each fresh value or constant. In the second row, the



Sound Security Protocol Transformations 89

(X, τ ) ∈ Γ

Γ � X : τ

(X, τ ) ∈ Γ i ∈ TID

Γ � Xi : τ

f ∈ F
Γ � f : βf

f � ∈ F� ∪ F•

Γ � f � : βf

c ∈ C
Γ � c : γc

U ∈ R ∪R� ∪A
Γ � U : α

U ∈ R ∪R� ∪A
Γ � pk(U) : pk(α)

U ∈ R ∪R� ∪A
Γ � pri(U) : pri(α)

U, V ∈ R ∪R� ∪ A
Γ � sh(U, V ) : sh(α, α)

Γ � t : τ
Γ � h(t) : h(τ )

Γ � t1 : τ1 Γ � t2 : τ2
Γ � 〈t1, t2〉 : 〈τ1, τ2〉

Γ � t1 : τ1 Γ � t2 : τ2
Γ � {|t1|}t2 : {|τ1|}τ2

Fig. 3. Type system

first rule assigns the agent type α to role names and agents and the remaining
rules assign types to long-term keys. The third row shows the typing rules for
composed terms, i.e., hashes, pairs, and encryptions.

The abbreviation YP = T (Vty, {α}, {βf | f ∈ FP }, {γc | c ∈ Cnil
P }), defines

the set of types of a protocol P . We derive the canonical typing environment
ΓP : VP ⇀ YP for the protocol P from the honest substitution δP as ΓP =
{(X, τ) | X ∈ dom(δP ) ∧ ∅ " XδP : τ}. Note that ΓP ranges over ground types.

Proposition 1 (Type inference). Let P be a protocol and t ∈ M�
P . Then

there is unique ground type τ ∈ YP such that ΓP " t : τ .

By this proposition, we can extend ΓP to all terms t ∈ M�
P , i.e., we have

ΓP (t) = τ if and only if ΓP " t : τ . We say that a substitution is well-typed if
the terms in its range respect the types of the variables in its domain.

Definition 4 (Well-typed substitutions). A substitution θ is well-typed
with respect to a typing environment Γ iff Γ " X : τ implies that Γ " Xθ : τ
for all X ∈ dom(θ).

In this paper, we assume that it is sufficient to consider attacks with well-typed
substitutions. There are multiple ways to achieve this. For example, tagging
can be used in protocols that can fully decrypt all messages, in which case tag
checking is sufficient to prevent all ill-typed attacks. Alternatively, we can use
a result along the lines of [10,12,2,1] stating that there is a well-typed attack
for any ill-typed one under certain conditions (e.g., sufficient tagging or well-
formedness, which prevents the confusion of ciphertexts with different types).

3 Protocol Transformations

Following Hui and Lowe [11], we distinguish two kinds of protocol transforma-
tions: message-based and structural transformations. Message-based transforma-
tions are functions on protocol messages, which we lift to events and protocol
roles. In contrast, structural transformations apply directly to protocol roles.



90 B.T. Nguyen and C. Sprenger

We cover essentially the same structural transformations for splitting and relay-
ing as [11]. The splitting transformation splits selected events with pairs into
two events and the relaying transformation removes a rcv(X) and a subsequent
snd(X) event from a protocol role. In Section 1, they together justify the step
from protocol K5 to K3. The other abstractions, from K4 to K5, from K3 to K2,
and from K2 to K1 are obtained by message-based transformations. Here, we
mainly focus on message-based protocol transformations. However, structural
transformations are discussed in the full version of this paper [15].

In Section 3.1, we introduce a class of message transformations, which includes
the following operations on messages: (1) remove encryptions and hashes, (2)
remove fields from an encrypted message, (3) pull fields outside of an encryption,
(4) split encryption into several ones, and (5) project and reorder pairs.

Consider a logical language L to express security properties.We will define
such a language in Section 4. We want to achieve three main properties for our
transformations f (both message-based and structural) and formulas φ.

Well-definedness. If P is a protocol then so is f(P ), i.e., the three conditions
of Definition 3 are preserved by f .

Simulation. f preserves reachability, i.e., if the state (tr, th, σ) is reachable in
P then the transformed state (f(tr), f(th), f(σ)) is reachable in f(P ).1

Attack preservation. For a state (tr, th, σ) reachable inP such that (tr, th, σ) �
φ we have (f(tr), f(th), f(σ)) � f(φ).

The proofs of these three properties hinge on two more basic properties: the
preservation of unifiers and of message deducibility. Unifier preservation is needed
for well-definedness (the existence of an honest substitution) and attack preser-
vation (for message equalities). Formally, this is expressed as follows.

tθ = uθ ⇒ f(t)f(θ) = f(u)f(θ) (1)

Deducibility preservation is required for the simulation of receive events (see
second premise of RECV rule) and attack preservation (for formulas expressing
the intruder’s knowledge). Formally, this property is stated as follows.

Tθ ∪ IK 0 " uθ ⇒ f(T )f(θ) ∪ f(IK 0) " f(u)f(θ) (2)

We further reduce the properties (1) and (2) to two simpler properties. First,
we show in Section 3.2 deducibility preservation for ground terms: T " u implies
f(T ) " f(u) if all terms in T∪{u} are ground and the set T satisfies an additional
mild condition. Second, we establish the substitution property:

f(tθ) = f(t)f(θ). (3)

This property (as well as (1) and (2)) does not hold for all transformations. The
problem stems from the application of f to terms with variables: a term t and
its instantiation tθ may be transformed in different ways (see Example 1 below).
1 For now, you can read f(θ) as the composed substitution f ◦ θ.



Sound Security Protocol Transformations 91

We solve this problem by typing variables and restricting θ to well-typed
substitutions. In Section 3.3, we thus introduce a restricted class of type-based
message transformations, where a message’s type uniquely determines how it is
transformed. We use the type system from Section 2.4, which enables a fine-
grained control over the transformations. In Section 3.4, we show that the sub-
stitution property (3) holds for type-based transformations f and well-typed
substitutions. Then we lift these transformations to protocols and establish well-
definedness and the simulation property. Section 4 treats attack preservation.

3.1 Message Transformations

We now introduce a class of message-based transformations. In these transfor-
mations, the constant nil plays a special role for the removal of (sub)terms. We
remove variables and atoms by mapping them to nil and we rely on the following
normalization function to remove the resulting nil-subterms and eliminate trivial
encryptions (with key nil).

Definition 5 (Normalization).

nf (t) = t if t is a variable or an atom
nf (h(t)) = if nf (t) = nil then nil else h(nf (t))

nf (〈t1, t2〉) = if nf (t1) = nil then nf (t2)
else if nf (t2) = nil then nf (t1)
else 〈nf (t1), nf (t2)〉

nf ({|t|}u) = if nf (t) = nil then nil
else if nf (u) = nil then nf (t)
else {|nf (t)|}nf (u)

We say that a term t is in normal form iff nf (t) = t.

Note that nil can only occur in a normal-form term t if t equals nil. We now
formally define message transformations.

Definition 6 (Message transformation). A function f : T → T is a mes-
sage transformation on T if the following conditions hold:

1. for all non-normal form terms t ∈ T , f(t) = f(nf (t)),
2. if t ∈ nf (T ) is a variable or an atom, then f(t) = t or f(t) = nil. Moreover,

if t is an asymmetric key then f(t) = nil if and only if f(t−1) = nil,
3. if h(u) ∈ nf (T ), then f(h(u)) ∈ {nf (ha(f(u))) | a ≥ 0} ∪ {nil}.
4. if 〈u1, u2〉 ∈ nf (T ), then f(〈u1, u2〉) = nf (〈f(t1), . . . , f(tn)〉) for some terms

ti, 1 ≤ i ≤ n, such that P(〈u1, u2〉, 〈t1, . . . , tn〉) and |ti| < |〈u1, u2〉|.
5. if {|u|}k ∈ nf (T ), then for some ti, 1 ≤ i ≤ n s.t. P(u, 〈t1, . . . , tn〉), |ti| ≤ |u|,

ai ≥ 0, and b ≥ 0, f({|u|}k) = nf ({|〈{|f(t1)|}f(k)a1 , . . . , {|f(tn)|}f(k)an 〉|}f(k)b ).

where P(u, t) = split(t) � split(u) ∧ set(split(t)) = set(split(u)) and {|m|}ka

denotes the a-fold encryption of message m with the key k.



92 B.T. Nguyen and C. Sprenger

Condition 1 ensures that we only transform normal-form terms. Conditions 2-
5 put restrictions on the transformation of the different kinds of messages. Note
that we normalize the result of each transformation step. By Condition 2 we
can either remove variables and atoms or keep them unchanged. Moreover, an
asymmetric key and its inverse must be both removed or kept. This is necessary
to achieve that f respects key inversion, i.e., f(t−1) = f(t)−1 for all terms t.
We need this property to prove deducibility preservation. Condition 3 enables
two types of transformations for hashes: we can (a) add or remove hash function
applications or (b) map it to nil (i.e., remove it completely).

Condition 4 allows us to arbitrarily rearrange the components of a pair pro-
vided that (a) every component of 〈t1, . . . , tn〉 is also in 〈u1, u2〉 but possibly
with a smaller number of occurrences (expressed using P) and (b) each term ti
is smaller than the pair 〈u1, u2〉. This ensures the well-foundedness of our defini-
tion and enables inductive proofs on term sizes. Similarly, Condition 5 describes
the transformation of encryptions by splitting its plaintext into an arbitrary
number of smaller terms ti (compared to the size of the plaintext). The terms
f(ti) may be encrypted zero or more times with f(k). This enables splitting and
selective removal of encryptions.

3.2 Deducibility Preservation

As mentioned above, our proof of deducibility preservation requires that f re-
spects key inversion. However, the conditions discussed above are not sufficient.
For instance, we may have f(h(pk(a))) = pk(a) and therefore f(h(pk(a))−1) =
pk(a) 	= pri(a) = f(h(pk(a)))−1. This shows that we must restrict the transfor-
mation of arbitrary terms into asymmetric keys. Therefore, we now introduce
the notion of simple terms and we show that message transformations respect
key inversion on simple ground terms.

Definition 7 (Simple terms and simple-keyed term sets). A ground term
t ∈ T is simple if it is an atom or it contains asymmetric keys only in key
positions of encryptions. A set of ground terms T is simple-keyed if k is simple
for all {|u|}k ∈ St(T ).

Lemma 1. Let f : T → T be a message transformation and t ∈ T be a simple
ground term. Then f respects key inversion, i.e., f(t−1) = f(t)−1.

Using this lemma, we establish deducibility preservation for simple-keyed sets of
network messages.

Theorem 1 (Deducibility preservation). Let f be a message transforma-
tion on NP , T ⊆ NP be a simple-keyed set of network messages and let u ∈ NP .
Then T " u implies f(T ) ∪ {nil} " f(u).

We next present a more syntactic, type-based definition of message transforma-
tions for which the substitution property holds.



Sound Security Protocol Transformations 93

3.3 Type-Based Protocol Transformations

We want to extend our message transformations to protocols. However, a simple
lifting from messages to events, roles, and protocols will not work, since pro-
tocol roles contain variables and we cannot guarantee that a pair of matching
send and receive events still matches after the transformation. Technically, this
problem manifests itself as a failure of the substitution property (3) and unifier
preservation (1) for some message transformations. Before giving an example,
we extend message transformations to substitutions.
Definition 8. f : T → T be a message transformation on T and θ : V ⇀ T .
Then we define the substitution f(θ) = {(x, f(θ(x))) | x ∈ dom(θ) ∧ f(x) = x}.
Note that dom(f(θ)) ⊆ dom(θ) as f may map some variables in dom(θ) to nil.
Example 1. Let X be a variable and θ a ground substitution such that f(X) =
nil. For the substitution property to hold for X and θ, i.e., f(X)f(θ) = f(Xθ),
we need f(Xθ) = nil. Since θ is arbitrary so is θ(X). Hence, f would have to map
all terms to nil, thus reducing f to a trivial transformation. Similarly, f(X) and
f(Xθ) are unifiable only if f(Xθ) = nil. Hence, unifier preservation also fails.
In order to solve this problem we introduce type-based message transformations
and restrict our attention to well-typed substitutions. Intuitively, in the typed
setting, we can ensure that (1) a term and its (well-typed) instances have the
same type and (2) all terms with the same type are transformed in a uniform
way. We will guarantee this by having the type of a term alone determine how the
term is transformed. This excludes situations like in Example 1 and enables us
to establish the substitution property for well-typed substitutions (Section 3.4).
Moreover, since the terms in matching send and receive events will have the same
type, the typing ensures that the transformed events also match. This enables
the lifting of type-based transformations to protocols.

The type system from Section 2.4 is well-suited for our purposes because it
gives us a fine-grained control over the transformation of messages. More pre-
cisely, since each fresh value and constant has a different type, we can transform
messages of similar shapes, but with different types in different ways. For exam-
ple, we can remove the nonce nA from 〈A, nA〉, while 〈A, nB〉 remains unchanged.

Specifying Type-Based Transformations In order to guarantee the uniform
transformation of messages with the same type, our definition of type-based
message transformations consists of two parts. The first part determines which
terms are mapped to nil and therefore removed. It is specified as a set of types.
The second part determines how composed messages are transformed and is
specified using pattern matching on terms and types. In both cases, we have to
ensure that it is only the type of a term, which determines how it is transformed.
We define the semantics of these transformations as a functional program.

To avoid the need to introduce fresh variables in transformations, we now
restrict our attention to protocols without variables of pair types. This is not a
limitation, since we assume that protocol roles can always decompose pairs.
Definition 9. A protocol P is splitting iff, for all X ∈ VP , XδP is not a pair.



94 B.T. Nguyen and C. Sprenger

Function specifications. Let Vpt be an infinite set of pattern variables distinct
from V and Vty. We construct term patterns from pattern variables using hash-
ing, pairing and, encryption. Type patterns are types which contain (type) vari-
ables.

Definition 10. The set of term patterns is defined by P = T (Vpt, ∅, ∅, ∅). A
term pattern p ∈ P is linear if each pattern variable occurs at most once in p.

We introduce a simple generic form of recursive function specifications. Based
on these we will then define type-based transformations. Below, we use typing
environments of the form Γ : Vpt ⇀ YP with pattern variables rather than
message variables in the domain. Otherwise, the type system remains the same.

Definition 11. Let f be an unary function symbol. A function specification for
f with respect to a typing environment Γ : Vpt ⇀ YP is a list of equations

Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) = un],

where each pi ∈ P is a linear term pattern and πi ∈ YP is a type pattern such that
Γ " pi : πi. The ui are terms, built from the pattern variables in pi, cryptographic
operations, and the function symbol f .

We introduce the notion of a complete set of type patterns to ensure that each
term’s type matches some type pattern of a function specification. The use of
type variables is essential to achieve this.

Definition 12. A set of type patterns S ⊆ YP is complete w.r.t. a set of ground
types T if, for all τ ∈ T , there is π ∈ S such that τ = πθ for some θ : Vty ⇀ YP .

Example 2. We define E0(f), the “homomorphic” function specification for f
with respect to Γ0(f) = {(X,X ), (X ′,X ′)} below. Clearly, any set of patterns
including the set {h(X ), {|X |}X ′ , 〈X ,X ′〉} is complete with respect to composed
ground types in YP .

E0(f) = [f(h(X) : h(X )) = h(f(X)), f({|X |}X′ : {|X |}X ′) = {|f(X)|}f(X′),
f(〈X,X ′〉 : 〈X ,X ′〉) = 〈f(X), f(X ′)〉]

Transformation specifications. We can now make the two parts of the specifica-
tion of a type-based transformation for a function symbol f more precise. The
first part is given by a set Tf of atomic and ground hash types. The intention
is that all terms composed from terms of these types by hashing, pairing, and
encryption map to nil and are therefore removed. The second part handles com-
posed terms and is given as a function specification Ef for f with respect to
a Γf . By posing conditions on the term and type patterns, we ensure that the
matching clause only depends on the term’s type and that the restrictions on
message shapes required for protocol transformations are satisfied.

Definition 13 (Type-based message transformation). A type-based mes-
sage transformation for a splitting protocol P and function symbol f is a triple
Sf = (Tf , Γf , Ef ) satisfying the following conditions:



Sound Security Protocol Transformations 95

1. Tf ⊆ YP \{α} is a set of atomic and ground hash types such that pk(α) ∈ Tf
if and only if pri(α) ∈ Tf ,

2. Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) = un] is a function specification for f
with respect to Γf : Vpt ⇀ YP such that
(a) {π1, . . . , πn} is a complete set of patterns with respect to composed ground

types, i.e., the ground types in the set YP \ atoms(YP ), and
(b) pi is not deeper than πi for each 1 ≤ i ≤ n, i.e., each term position in

pi is also a position in πi.
Moreover, for all (f(p : π) = u) ∈ Ef one of the following holds:
– p = h(q) and u = ha(f(q)), where q ∈ Vpt and a ≥ 0,
– p = 〈q, r〉 and u = 〈f(t1), . . . , f(tm)〉, where set(split(〈q, r〉)) ⊆ Vpt,

split(〈t1, . . . , tm〉) = split(〈q, r〉) and |ti| < |〈q, r〉| for 1 ≤ i ≤ m, or
– p = {|q|}r and u = {|〈{|f(t1)|}f(r)a1 , . . . , {|f(tm)|}f(r)am 〉|}f(r)b , where

set(split(q)) ∪ {r} ⊆ Vpt, ai, b ≥ 0, split(〈t1, . . . , tm〉) = split(q), and
|ti| ≤ |q| for 1 ≤ i ≤ m.

We forbid α ∈ Tf , since this would result in the removal of all role names from a
protocol, which does not make much sense. The type of public and private keys
can only be included together in Tf . For the case of pairs and encryptions, the
linearity of the patterns pi implies that the subsumption relation P between two
term tuples from Definition 6 reduces to an equality here.

Transformation semantics. Before defining the semantics of type-based trans-
formations, we formalize the set of types of those terms that we want to remove.

Definition 14. For a set of ground types G, we define the removable types
rem(G) as the least set closed under the following rules.

– if τ ∈ G then τ ∈ rem(G),
– if τ ∈ rem(G) then h(τ) ∈ rem(G),
– if τ1, τ2 ∈ rem(G) then 〈τ1, τ2〉 ∈ rem(G), and
– if τ ∈ rem(G) then {|τ |}τ ′ ∈ rem(G) for all ground types τ ′.

Definition 15 (Semantics of typed-based transformations). The seman-
tics of a type-based transformation Sf for a splitting protocol P and function
symbol f is given by Program 1.

As said earlier, the main motivation for type-based setting is to achieve uniform
transformations based on types, i.e., the type τ = ΓP (t) of a term t uniquely
determines how t is transformed (τ is well-defined by Proposition 1). We achieve
this by ensuring that both (1) term removal and (2) pattern matching for com-
posed types only depend on the type τ . The program ensures point (1) by re-
moving terms with types in rem(Tf ) (line 3). The lemma below guarantees that
rem(Tf ) describes precisely these terms.

Lemma 2. Let P be a splitting protocol and Sf = (Tf , Γf , Ef ) be a type-based
message transformation. Suppose t ∈ nf (M�

P ) \ {nil} and ΓP " t : τ . Then
τ ∈ rem(Tf ) iff f(t) = nil.



96 B.T. Nguyen and C. Sprenger

1 fun frec(t) =
2 let τ = ΓP (t) in
3 if τ ∈ rem(Tf ) then nil
4 else if t ∈ vars(M�

P ) ∪ atoms(M�

P ) then t
5 else case (t, τ ) of
6 (p1, π1) ⇒ nf (u1[f

rec/f ])
7 | · · ·
8 | (pn, πn) ⇒ nf (un[f

rec/f ])
9

10 fun f(t) = frec(nf (t))

Program 1. Functional program resulting from specification Sf = (Tf , Γf , Ef )

Point (2) is guaranteed by Conditions (2a) and (2b) of Definition 13. A composed
term’s type uniquely determines a non-empty set of matching term-type patterns
of Ef . This is expressed in the following lemma, which together with Lemma 2
will allow us to establish the substitution property.

Lemma 3. Let P be a splitting protocol and Sf = (Tf , Γf , Ef ) be a type-based
message transformation for P , where Ef = [f(p1 : π1) = u1, . . . , f(pn : πn) =
un], and let S(t, τ) = {i | ∃θ. (pi, πi)θ = (t, τ)}. Then S(t1, τ) = S(t2, τ) 	= ∅
for all composed terms t1, t2 ∈ M�

P of ground type τ in environment ΓP .

As expected, type-based message transformations are indeed message transfor-
mation, as stated in the following proposition.

Proposition 2. Let P be a splitting protocol and Sf be a type-based message
transformation. Then f is a message transformation on M�

P and also on NP .

Transforming protocols We extend type-based transformations to events, roles
and protocols. Transformed events with nil arguments are removed from roles.

Definition 16 (Protocol transformations). Let Sf be a type-based message
transformation. We define f(s(m)) = s(f(m)) for events s(m) ∈ Event and, for
event sequences,

f(ε) = ε f(e · tl) = if term(f(e)) = nil then f(tl) else f(e) · f(tl)

For protocols P , f(P )(R) = f(P (R)) for R ∈ dom(P ) and undefined otherwise.

Next, we present two examples of type-based message transformations formal-
izing some transformations from Section 1. The first one pulls a message out of
an encryption and the second one removes some atoms from messages.

Example 3 (K4 to K5). We formalize the protocol K4 as follows (where c ∈ C).

K4(A) = snd(A,B, nA) · rcv({|B, TS, nA,KAB, X |}sh(A,S))·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K4(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB , {|A, tS, kAB |}sh(B,S)|}sh(A,S))
K4(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S), {|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)



Sound Security Protocol Transformations 97

The type-based message transformation Sf4 = (Tf4 , Γf4 , Ef4), where Tf4 = ∅ and
Ef4 is defined using list concatenation @ and E0(f) from Example 2 as follows.

Ef4 = [f4({|X1, X2, X3, X4, X5|}K : {|X1,X2,X3,X4,X5|}sh(α,α))
= 〈{|f4(X1, X2, X3, X4)|}K , f4(X5)〉] @ E0(f4)

Applying f4 to K4 yields K5 = f4(K4) as follows. In this and the next example,
we omit roles that are unchanged by the respective transformations.

K5(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S), X)·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K5(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB|}sh(A,S), {|A, tS , kAB|}sh(B,S))

Example 4 (K3 to K2). Recall that K3 results from K5 by structural transfor-
mations f5 eliminating the forwarding of B’s ticket by A. In K3, defined below,
there are therefore separate events for the server sending A and B’s ticket and
for B receiving his ticket (from S) and the authenticator (from A).

K3(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S))·
snd({|c, tA|}KAB ) · rcv({|tA|}KAB )

K3(S) = rcv(A,B,NA) · snd({|B, tS , NA, kAB|}sh(A,S)) · snd({|A, tS , kAB |}sh(B,S))
K3(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S)) · rcv({|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)

The type-based message transformation Sf3 = (Tf3 , Γf3 , Ef3) is defined by Tf3 =
{βtA , γc} and Ef3 = E0(f3). Applying f3 to K3 yields protocol K2 = f3(K3)
where the key confirmation messages have been removed.

K2(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB|}sh(A,S))
K2(B) = rcv({|A, T ′

S ,K
′
AB|}sh(B,S))

A further abstraction, f2, removes tS and nA from K2, resulting in protocol K1.

3.4 Well-Definedness and Simulation

We are now in a position to establish the substitution property for splitting
protocols and well-typed substitutions. Its proof uses Lemmas 2 and 3 above to-
gether the following lemma stating that well-typed substitutions preserve types.

Lemma 4. Let θ be a well-typed substitution with respect to a typing environ-
ment Γ . Then for all terms t ∈ T , Γ " t : τ implies that Γ " tθ : τ .

Theorem 2 (Substitution property). Let P be a splitting protocol and Sf
be a type-based protocol transformation and θ be a well-typed substitution with
respect to ΓP . Then for all t ∈ M�

P , we have f(tθ) = f(t)f(θ).

The first application of the substitution property is to establish well-definedness.

Proposition 3 (Well-definedness). Let P be a splitting protocol and Sf be a
type-based protocol transformation. Then f(P ) is a protocol with honest substi-
tution δf(P ) = f(δP ).



98 B.T. Nguyen and C. Sprenger

Next, we lift deducibility preservation (Theorem 1) to non-ground terms and
establish the simulation property. Since protocol descriptions contain non-ground
terms, we restrict our attention to simple-keyed protocols, for which the set of
(ground) types of the protocol’s terms is simple-keyed. Hereafter, IK 0 and IK ′

0

denote the intruder’s initial knowledge associated with P and f(P ), respectively.

Definition 17. A protocol P is simple-keyed if the set of types ΓP (RtP ) is
simple-keyed.

Lemma 5. If P is a simple-keyed protocol, T ⊆ Rt�P and θ is well-typed ground
substitution with respect to ΓP , then Tθ is a simple-keyed set of terms.

Proposition 4. Let P be a simple-keyed, splitting protocol, Sf a type-based mes-
sage transformation, and θ a well-typed ground substitution with respect to ΓP .
Assume that IK 0 is simple-keyed and f(IK 0) ⊆ IK ′

0. Then, for all T ⊆ Rt�P
and u ∈ M�

P , we have Tθ ∪ IK 0 " uθ implies f(T )f(θ) ∪ IK ′
0 " f(u)f(θ).

Theorem 3 (Simulation). Let P be a simple-keyed, splitting protocol and let
Sf be a type-based message transformation. Assume that IK 0 is simple-keyed
and f(IK 0) ⊆ IK ′

0. Then for all states (tr, th, σ) reachable in P such that σ is
well-typed w.r.t. ΓP , then (f(tr), f(th), f(σ)) is a reachable state of f(P ) and
f(σ) is well-typed w.r.t. Γf(P ).

4 Property Language and Soundness

We introduce a specification language for security properties including secrecy
and authentication. We extend our transformations to formulas of the property
language and establish the preservation of well-typed attacks (and hence sound-
ness) for protocols and formulas satisfying certain injectiveness conditions.

4.1 Security Properties

Our property specification language is an instance of first-order logic with formu-
las in negation normal form (negation occurs only in front of atomic formulas).

φ ::= A | ¬A | φ1 ∧ φ2 | φ1 ∨ φ2 | ∀i. φ′ | ∃i. φ′

Here, A are atomic predicates and the quantified variables i represent thread
identifiers. An atomic predicate or negated atomic predicate is called a literal.
The atomic predicates and their meaning are as follows, where m,m′ ∈ M�

P are
messages, e, e′ are events, i, j are thread-id variables, and R is a role name.

A ::= i = j thread i and thread j are equal
| m = m′ messages m and m′ are equal
| role(i, R) thread i executes role R
| honest(i, R) the agent playing role R in thread i’s view is honest
| steps(i, e) thread i has executed event e
| (i, e) ≺ (j, f) thread i has executed e before thread j has executed f
| secret(m) the intruder does not know m



Sound Security Protocol Transformations 99

To achieve attack preservation, we focus on the fragment of this logic where the
predicate secret(m) only occurs positively. We call this language LP . A property
is a closed formula of LP . In examples, we freely use standard abbreviations
(e.g., for implication) if there is an equivalent negative normal form in LP .

Recall that AH denotes the set of honest agents. Let ϑ be a substitution
such that range(ϑ) ⊆ dom(th). We define formula satisfaction, (tr, th, σ, ϑ) � φ,
as follows (omitting the standard cases for the boolean operators and the dual
existential quantifier):

(tr, th, σ, ϑ) � i = j iff ϑ(i) = ϑ(j)
(tr, th, σ, ϑ) � m = m′ iff mσ = m′σ
(tr, th, σ, ϑ) � role(i, R) iff ∃seq ∈ Event∗. th(ϑ(i)) = (R, seq)
(tr, th, σ, ϑ) � honest(i, R) iff Rϑ(i)σ ∈ AH

(tr, th, σ, ϑ) � steps(i, e) iff (ϑ(i), e) ∈ tr
(tr, th, σ, ϑ) � (i, e) ≺ (j, e′) iff (ϑ(i), e) ≺tr (ϑ(j), e

′)
(tr, th, σ, ϑ) � secret(m) iff IK (tr)σ ∪ IK 0 " mσ is not derivable
(tr, th, σ, ϑ) � ∀i. φ′ iff (tr, th, σ, ϑ[i �→ tid]) � φ′ for all tid ∈ dom(th)

where a ≺tr b (“a occurs before b on tr”) holds if tr = tr1 ·a · tr2 · b · tr3 for some
tr1, tr2, tr3. We write (tr, th, σ, ϑ) � φ if (tr, th, σ, ϑ) � φ does not hold. If φ is a
closed formula, we write (tr, th, σ) � φ instead of (tr, th, σ, ϑ) � φ.

Definition 18 (Attack). We say that a state s = (tr, th, σ) is an attack on φ
if s 	|= φ. The state (attack) s is well-typed if σ is well-typed.

We extend transformations f to formulas φ ∈ LP as follows:

f(i = i′) = i = i′ f(secret(m)) = secret(f(m))
f(m = m′) = f(m) = f(m′) f(¬A) = ¬f(A)

f(role(i, R)) = role(i, f(R)) f(φ1 ∧ φ2) = f(φ1) ∧ f(φ2)
f(honest(i, R)) = honest(i, f(R)) f(φ1 ∨ φ2) = f(φ1) ∨ f(φ2)
f(steps(i, e)) = steps(i, f(e)) f(∀i. φ′) = ∀i. f(φ′)

f((i, e) ≺ (j, e′)) = (i, f(e)) ≺ (j, f(e′)) f(∃i. φ′) = ∃i. f(φ′)

Example 5 (Secrecy and authentication). Consider the initiator and re-
sponder roles of the core Kerberos IV protocol K4 as specified in Example 3.

K4(A) = snd(A,B, nA) · rcv({|B, TS , nA,KAB, X |}sh(A,S))·
snd(X, {|c, tA|}KAB ) · rcv({|tA|}KAB )

K4(B) = rcv({|A, T ′
S ,K

′
AB|}sh(B,S), {|c, TA|}K′

AB
) · snd({|TA|}K′

AB
)

We express the secrecy of the session key kAB for role A by

φs = ∀i. (role(i, A) ∧ honest(i, [A,B]) ∧ steps(i, rcv(t2))) ⇒ secret(Ki
AB).

where t2 = {|B, TS , nA,KAB, X |}sh(A,S) and honest(i, [A,B]) abbreviates the
obvious conjunction. We abstract this property to verify it on the simplified



100 B.T. Nguyen and C. Sprenger

protocol K1 = g(K4), where g = f2 ◦ f3 ◦ f5 ◦ f4 is the composition of all
transformations in our running example. Hence, we derive φ′s = g(φs), yielding

φ′s = ∀i. (role(i, A) ∧ honest(i, [A,B]) ∧ steps(i, rcv(t′2))) ⇒ secret(Ki
AB).

where t′2 = {|B,KAB|}sh(A,S). Next, we formalize non-injective agreement of B
with A on the key kAB and the timestamp tA. This property is based on the
authenticator.

φa = ∀i. (role(i, B) ∧ honest(i, [A,B]) ∧ steps(i, rcv(u1, u2)))
⇒ ∃j. role(j, A) ∧ steps(j, snd(X, {|c, tA|}KAB ))

∧ 〈Ai, Bi,K ′ i
AB, T

i
A〉 = 〈Aj , Bj ,Kj

AB, t
j
A〉

where u1 = {|A, T ′
S ,K

′
AB|}sh(B,S) and u2 = {|c, TA|}K′

AB
. For the simplified pro-

tocol K3 = f5 ◦ f4(K4), we check the abstracted formula φ′a = f5 ◦ f4(φa), where
B’s ticket and the associated variable X of role A have been removed.

φ′a = ∀i. (role(i, B) ∧ honest(i, [A,B]) ∧ steps(i, rcv(u2)))
⇒ ∃j. role(j, A) ∧ steps(j, snd({|c, tA|}KAB ))

∧ 〈Ai, Bi,K ′ i
AB, T

i
A〉 = 〈Aj , Bj ,Kj

AB, t
j
A〉

4.2 Soundness

We now show that if there exists a well-typed attack on a property φ of a protocol
P , then the transformed attack state constitutes an attack on property f(φ) of
protocol f(P ). In other words, we can say that the protocol P is at least as
secure as f(P ).

However, attack preservation does not hold for all properties φ and type-
based message transformations f . For example, attacks on properties involving
protocol events may not be preserved if f maps two different events of P to a
single one in f(P ). Similarly, if f identifies messages then attacks on equality
are not preserved. These atomic predicates typically appear in authentication
properties.

Our soundness result is therefore restricted to a subset of (P, f)-safe formulas
of LP . We first define some auxiliary notions. Let T+

eq(φ) be the set of pairs
(m,m′) such that the equation m = m′ occurs positively in φ and let Tevt(φ)
(T+

evt(φ)) be the set of events s(m), s′(m′) such that (i, s(m)) ≺ (j, s′(m′)) or
steps(i, s(m)) occurs (positively) in φ.

Definition 19 ((P, f)-safe formulas). Let P be a protocol and Sf be a type-
based message transformation for P and function symbol f . A formula φ ∈ LP

is (P, f)-safe if

1. mσ 	= m′σ implies f(mσ) 	= f(m′σ) for all (m,m′) ∈ T+
eq(φ) and well-typed

ground substitutions σ,
2. m 	= m′ implies f(m) 	= f(m′) for all s(m) ∈ T+

evt(φ) and s(m′) ∈ Event �P ,
and

3. f(m) 	= nil for all s(m) ∈ Tevt(φ).



Sound Security Protocol Transformations 101

Table 1. Experimental verification results for Kerberos (times in seconds); the abstrac-
tion level increases from left to right columns; (*) denotes highest abstraction level for
marked properties

protocol K4/6 K5/6 K3/6 K2/6 K1/6
property sec aut kc sec aut kc sec aut kc∗ sec aut∗ sec∗
time [sec] 1.45 1.31 1.16 20.65 20.5 18.27 1.44 1.31 1.18 0.95 0.85 0.14
#clauses/1000 15.4 13.8 12.1 188.9 486.2 165.6 15.9 14.2 12.6 10.0 8.8 1.1
#atoms/1000 2.0 1.9 1.9 33.0 32.9 32.8 2.0 2.0 1.9 1.4 1.3 0.4

Theorem 4 (Attack preservation). Let P be a simple-keyed, splitting proto-
col, Sf a type-based message transformation for P and function symbol f , and
φ ∈ LP a (P, f)-safe property. Assume that IK 0 is simple-keyed and f(IK 0) ⊆
IK ′

0. Then, for all well-typed states (tr, th, σ) reachable in P , we have that
(f(tr), f(th), f(σ)) is a well-typed reachable state of f(P ), and if (tr, th, σ) � φ
then (f(tr), f(th), f(σ)) � f(φ).

Example 6. Consider the protocol K4 and the typed-based message transfor-
mation Sf4 from Example 3. We check that φs and φa from Example 5 are
(K4, f4)-safe, i.e., satisfy the three conditions of Definition 19. The first condi-
tion holds for φs, since T+

eq(φs) = ∅. It also holds for φa, since f4(t) = t for all t
of the form 〈t1, t2, t3, t4〉 such that ΓK4 " t : 〈α, α, βkAB , βtA〉. The second condi-
tion holds trivially for φs and it holds for φa, since f4 does not identify the only
term 〈X, {|c, tA|}KAB 〉 ∈ T+

evt(φa) in its conclusion is not identified with another
protocol event term. The third condition holds, since f4 does not map any term
appearing in a steps predicate of φs or φa to nil. Hence, the properties φs and
φa are both (K4, f4)-safe. Since the protocol K4 is splitting and simple-keyed,
Theorem 4 guarantees that the transformation f4 preserves well-typed attacks
on these properties.

4.3 Experimental Results

We applied abstractions analogous to those described in this paper for the four-
message core versions of Kerberos IV and V, K4 and K5, to the full six-message
version of these protocols, K4/6 and K5/6. For the resulting protocols we have
verified several secrecy and authentication properties using SATMC [3]. Our
results are summarized in Table 1.

The columns denote the protocols and the properties verified. We grouped
the properties into three classes: session key secrecy from the perspective of each
role (sec), authentication properties involving a Kerberos server (aut), and key
confirmation (kc). Those columns where the highest degree of abstraction for
a given property class is achieved are marked with a star (∗). The rows show
the verification time and the number of clauses and atoms of the SAT encoding
(in thousands). The verification time is dominated by the encoding into a SAT
problem whereas the SAT solving time is negligible.



102 B.T. Nguyen and C. Sprenger

We observe a slowdown from K4/6 to K5/6. We attribute this to the unen-
crypted responder ticket in K5/6, which increases the intruder’s possibilities to
interfere with the ticket variable X . The performance on K3/6 is similar to the
one on K4/6. More interesting are the performance gains obtained by the further
abstractions and the overall speedups that we achieve for the protocols K4 and
K5. For example, verifying secrecy on K1/6 is 148 times faster than on K5/6 and
still 10.4 times faster than on K4/6.

Additionally, we also used SATMC to verify a variant of the ISO/IEC 9798-3
three-pass mutual authentication protocol (ISO) and both secrecy and authenti-
cation for the TLS protocol (TLS). For both protocols we observed an enormous
performance gain. For ISO, verification time for the initiator dropped from 107s
to 0.2s (factor 535) by removing the responder’s nonce and similarly for the re-
sponder. For TLS, we have reduced the verification for each property from more
than 120s to less than 0.8s (factor 150) by removing fields that are irrelevant for
the verified properties such as the cipher suite offer, session id, and certificate
verification.

5 Related Work

We can classify existing work on protocol transformations into syntactic and
semantic approaches. Syntactic approaches use syntactic criteria to delimit a
class of transformations for which soundness can be established a priori. Hui
and Lowe [11] define several kinds of transformations similar to ours with the
aim improving the performance of the CASPER/FDR model checker. They prove
soundness of each kind of transformations based on general soundness criteria
for secrecy and authentication. Their protocol model is restricted to atomic keys
and they establish their results only for ground messages. We work in a more
general setting and discuss in detail the non-trivial issue of handling terms with
variables as they appear in protocol specifications. Other works [16,7,6] propose
a set of syntactic transformations without however formally establishing their
soundness.

Semantic approaches generally cover a larger class of transformations, but
each transformation requires a separate proof for its justification. Examples are
classical refinement and using abstract channels with security properties [17,4]
and Guttman’s protocol transformations based on strand spaces [9,8]. Sprenger
and Basin [17] have recently proposed a refinement strategy for security proto-
cols that spans several different abstraction levels (including, e.g., confidential
and authentic channels). The transformations in the present paper belong to
their most concrete level of cryptographic protocols. Guttman [9,8] studies the
preservation of security properties by a rich class of protocol transformations in
the strand space model. His approach to property preservation is based on the
simulation of protocol analysis steps instead of execution steps. Each analysis
step explains the origin of a received message. However, he does not provide
syntactic conditions for the transformations’ soundness.



Sound Security Protocol Transformations 103

6 Conclusions

We presented a large class of protocol transformations which is useful both for
abstraction and refinement. We have shown its soundness with respect to an
expressive property language. Our results constitute a significant extension of
Hui and Lowe’s work [11]. To validate our approach, we used our transformations
to simplify the Kerberos, ISO, and TLS protocols. As a result, we achieved
substantial performance improvements for SATMC. We also showed how to use
our transformations in the other direction to refine the abstract protocol K1 into
the core Kerberos IV and V protocols.

To handle terms with variables as they occur in protocol specifications, our
transformations employ the type system given by Arapinis and Duflot [2]. The
use of a type system is also motivated by the fact that there are type-flaw at-
tacks that can be fixed by simple transformations that we would like to cover.
For example, Meadows [13] presents such an attack on the full seven-message
Needham-Schroeder-Lowe protocol, which can be fixed by swapping the com-
ponents of a pair. Transformations fixing type-flaw attacks are obviously un-
sound. In a typed model, this problem is avoided since attacks based on type
confusion are ruled out. In practice, well-typedness can be achieved by using
appropriate tagging schemes [12,10]. Arapinis and Duflot [2] show that for se-
crecy properties of well-formed protocols it is sufficient to consider well-typed
attacks. Well-formedness can be achieved by a lightweight tagging scheme. In
her PhD thesis [1] (in French), Arapinis extends this result to a fragment of
PS-LTL.

In future work, we want to formally justify the restriction to well-typed attacks
for all properties expressible in our language LP . This could be achieved either by
embedding our property language LP into PS-LTL or by directly proving a sim-
ilar result for LP . We also envision several other extensions. First, tool support
to automate the abstraction process is needed. This should include automatic
abstraction-refinement to find an appropriate abstraction for a given protocol
and property. Second, we want to support additional transformations such as
the context-dependent removal of message fields and the transformation of com-
posed messages into atomic ones other than nil (e.g., to turn a Diffie-Hellmann
exponentiation into a nonce). This will require the inclusion of freshness argu-
ments in the soundness proof. Finally, extensions of the message algebra with
equational theories and the adversary model would be useful (e.g., for modeling
forward secrecy for Diffie-Hellmann protocols). However, it is not clear how to
extend the typed setting to equational theories.

Acknowledgements. We are grateful to David Basin, Ognjen Maric, and Cas
Cremers for their useful comments on earlier drafts of this paper. We also thank
the anonymous reviewers for their helpful feedback.



104 B.T. Nguyen and C. Sprenger

References

1. Arapinis, M.: Sécurité des protocoles cryptographiques: décidabilité et résultats de
réduction. PhD thesis, Université Paris-Est (November 2008)

2. Arapinis, M., Duflot, M.: Bounding Messages for Free in Security Protocols.
In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

3. Armando, A., Compagna, L.: SAT-based model-checking for security protocols
analysis. International Journal of Information Security 7(1), 3–32 (2008)

4. Bieber, P., Boulahia-Cuppens, N.: Formal development of authentication protocols.
In: Sixth BCS-FACS Refinement Workshop (1994)

5. Cervesato, I., Meadows, C., Pavlovic, D.: An encapsulated authentication logic for
reasoning about key distribution protocols. In: CSFW 2005: Proceedings of the
18th IEEE Workshop on Computer Security Foundations, Washington, DC, USA,
pp. 48–61 (2005)

6. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: Abstraction and refinement in
protocol derivation. In: Proc. 17th IEEE Computer Security Foundations Work-
shop, CSFW (2004)

7. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and com-
positionl logic for security protocols. Journal of Computer Security 13, 423–482
(2005)

8. Guttman, J.D.: Transformations between Cryptographic Protocols. In: Degano,
P., Viganò, L. (eds.) ARSPA-WITS 2009. LNCS, vol. 5511, pp. 107–123. Springer,
Heidelberg (2009)

9. Guttman, J.D.: Security Goals and Protocol Transformations. In: Mödersheim,
S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer,
Heidelberg (2012)

10. Heather, J., Lowe, G., Schneider, S.: How to prevent type flaw attacks on security
protocols. Journal of Computer Security 11(2), 217–244 (2003)

11. Hui, M.L., Lowe, G.: Fault-preserving simplifying transformations for security pro-
tocols. Journal of Computer Security 9(1/2), 3–46 (2001)

12. Li, Y., Yang, W., Huang, C.-W.: Preventing type flaw attacks on security protocols
with a simplified tagging scheme. In: Waldron, J. (ed.) ISICT. ACM International
Conference Proceeding Series, vol. 90, pp. 244–249. Trinity College Dublin (2004)

13. Meadows, C.A.: Analyzing the Needham-Schroeder Public-Key Protocol: A Com-
parison of Two Approaches. In: Bertino, E., Kurth, H., Martella, G., Montolivo, E.
(eds.) ESORICS 1996. LNCS, vol. 1146, pp. 351–364. Springer, Heidelberg (1996)

14. Meier, S., Cremers, C.J.F., Basin, D.A.: Strong invariants for the efficient construc-
tion of machine-checked protocol security proofs. In: Proc. 23th IEEE Computer
Security Foundations Symposium, CSF, pp. 231–245 (2010)

15. Nguyen, B.T., Sprenger, C.: Sound security protocol transformations. Technical
Report 781, Department of Computer Science, ETH Zurich (2012)

16. Pavlovic, D., Meadows, C.: Deriving Secrecy in Key Establishment Protocols. In:
Gollmann, D., Meier, J., Sabelfeld, A. (eds.) ESORICS 2006. LNCS, vol. 4189, pp.
384–403. Springer, Heidelberg (2006)

17. Sprenger, C., Basin, D.: Refining key establishment. In: Proc. 25th IEEE Computer
Security Foundations Symposium, CSF, pp. 230–246 (2012)



Logical Foundations of Secure Resource
Management in Protocol Implementations

Michele Bugliesi1, Stefano Calzavara1, Fabienne Eigner2, and Matteo Maffei2

1 Università Ca’ Foscari Venezia
2 Saarland University

Abstract. Recent research has shown that it is possible to leverage
general-purpose theorem proving techniques to develop powerful type
systems for the verification of a wide range of security properties on ap-
plication code. Although successful in many respects, these type systems
fall short of capturing resource-conscious properties that are crucial in
large classes of modern distributed applications. In this paper, we pro-
pose the first type system that statically enforces the safety of crypto-
graphic protocol implementations with respect to authorization policies
expressed in affine logic. Our type system draws on a novel notion of
“exponential serialization” of affine formulas, a general technique to pro-
tect affine formulas from the effect of duplication. This technique allows
to formulate an expressive logical encoding of the authentication mech-
anisms underpinning distributed resource-aware authorization policies.
We further devise a sound and complete type checking algorithm. We
discuss the effectiveness of our approach on a case study from the world
of e-commerce protocols.

1 Introduction

Verifying the security of modern distributed applications is an important and
complex challenge, which has attracted the interest of a growing research com-
munity audience over the last decade. Among various static analysis approaches,
security type systems have played a major role, since they are able to statically
provide security proofs for an unbounded number of concurrent executions, even
in presence of an active attacker; they are modular, and scale remarkably well
in practice. Recent research has shown that it is possible to leverage general-
purpose theorem proving techniques to develop powerful type systems for the
verification of a wide range of security properties on application code, thus nar-
rowing the gap between the formal model designed for the analysis and the
actual implementation of the protocols [4,2,26]. The integration between type
systems and theorem proving is achieved by resorting to a form of dependent
types, known as refinement types. A refinement type {x : T | F (x)} qualifies
the structural information of the type T with a property specified by the logical
formula F : a value M of this type is a value of type T such that F (M) holds.

Authorization systems based on refinement types use the refinement formu-
las to express (and gain static control of) the credentials associated with the
data and the cryptographic keys involved in the authorization checks. Clearly,
the expressiveness of the resulting analysis hinges on the choice of the under-
lying logic, and indeed several logics have been proposed for the specification

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 105–125, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



106 M. Bugliesi et al.

and verification of security properties [14]. A number of proposals have thus
set logic parametricity as a design goal, to gain modularity and scalability of
the resulting systems. Though parametricity is in principle a sound and wise
choice, current attempts in this direction draw primarily (if not exclusively)
on classical (or intuitionistic) logical frameworks. Classical logic, however, is
unsuitable to express several interesting resource-aware authorization policies,
such as those based on consumable credentials, or predicating over access counts
and/or usage bounds [16,10]. The natural choice for expressing and reasoning
about such classes of policies are instead substructural logics, such as linear and
affine logic [17,29]. On the other hand, integrating substructural logics with ex-
isting refinement type systems for distributed authorization is challenging, as
one must build safeguards against the ability of an attacker to duplicate the
data exchanged over the network, and correspondingly duplicate the associated
credentials, thus undermining their bounded nature [13].

Contributions. In this paper, we present an affine refinement type system for
RCF [4], a concurrent λ-calculus which can be directly mapped to a large subset
of a real functional programming language like F#. The type system guarantees
that well-typed programs comply with any given authorization policy expressed
in affine logic, even in the presence of an active opponent.

This type system draws on the novel concept of exponential serialization, a
general technique to protect affine formulas from the effect of duplication. This
technique makes it possible to factor the authorization-relevant invariants of the
analysis out of the type system, and to characterize them directly as proof obli-
gations for the underlying affine logical system. This leads to a rather general
and modular design of the system, and sheds new light on the logical founda-
tions of standard cryptographic patterns underpinning distributed authorization
frameworks. Furthermore, the concept of serialization enhances the expressive-
ness of the type system, capturing programming patterns out of the scope of
many substructural type systems.

The clean separation between typing and logical entailment has the additional
advantage of enabling the formulation of an algorithmic version of our system,
in which the non-deterministic proof search distinctive of substructural type
systems can be dispensed with and expressed in terms of a single proof obligation
to be discharged to an external theorem prover. This is the key to achieve an
efficient implementation of our analysis technique. We prove the algorithmic
version sound and complete.

We show the effectiveness of the type system on a realistic case study, namely
the EPMO electronic purchase protocol proposed in [20]. The proof obligation
generated by the type derivation for the customer code is validated by the linear
logic theorem prover llprover [27] in less than 20 ms.

Related work. Several papers develop expressive type systems for (variants of)
RCF [6,4,15,2,26] but, with the exception of F∗ [26], they do not support resource-
aware authorization policies: in fact, even for simple linearity properties like
injective agreement they rely on hand-written proofs [5]. F∗ [26] is a depen-
dently typed functional language for secure distributed programming, featuring



Logical Foundations of Secure Resource Management 107

refinement types to reason about authorization policies and affine types to reason
about stateful computations on affine values. Similarly to companion proposals
for RCF, the type system of F∗ assumes the existence of the contraction rule in
the underlying logic, hence it does not support authorization policies built over
affine formulas. While some simple authentication patterns (e.g., basic nonce
handshakes) may certainly be expressed by encoding affine predicates in terms
of affine values, other more complex authentication mechanisms are much harder
to handle in these terms. The EPMO protocol we analyze in Section 6 provides
one such case, as (i) the nonce it employs may not be construed as an affine
value because it is used twice, and (ii) the logical formulas justified by crypto-
graphic message exchanges are more structured than simple predicates. Though
it might be possible to come up with sophisticated encodings of these authenti-
cation mechanisms in the programming language (by resorting to, e.g., pairs of
affine tokens to encode a double usage of the same nonce and special functions to
eliminate logical implications), such encodings are hard to formulate in a general
manner and, we argue, are much better expressed in terms of policy annotations
than in some ad-hoc programming pattern.

Bhargavan et al. [7] propose a technique for the verification of F# protocol
implementations by automatically extracting ProVerif models [9]. Remarkably,
the framework can deal with injective agreement. On the other hand, the analysis
carried out with ProVerif is not modular and has been shown less robust and
scalable than type-checking [6]. Furthermore, the fragment of F# considered is
rather restrictive: for instance, it does not include higher-order functions and
admits only very limited uses of recursion and state.

A formal account on the integration of refinement types and substructural
logics was first proposed by Mandelbaum et al. [21] with a system for local
reasoning about program state built around a fragment of intuitionistic linear
logic. Later, Bierhoff and Aldrich developed a framework for modular type-state
checking of object-oriented programs [8,25,23]. Contrary to our proposal, none
of these type systems deals with the presence of hostile (or untyped) program
components, or attackers, a feature that would require fundamental changes in
these systems and has deep impact on the type rules and the analysis technique.

Tov and Pucella [28] have recently shown how to use behavioral contracts
to link code written in an affine language to code in a conventionally typed
language. The idea is to coerce affine values to non-affine ones that can be
shared with the context, but can still be reasoned about safely using dynamic
access counts. There are intriguing similarities between this approach and the
usage of nonces and session keys to enforce freshness in a distributed setting,
which are worth investigating in the future. The two type systems are, however,
fundamentally different, since our present work deals with an affine refinement
logic and considers an adversarial setting, which makes a precise comparison
hard to formulate.

There exist a number of types and effects systems targeted at the analysis of
authenticity properties of cryptographic protocols [18,19,11]. These type systems
incorporate ad-hoc mechanisms to deal with nonce handshakes and, thus, to
enforce injective agreement properties. Our exponential serialization technique
can be seen as a logic-based generalization of such mechanisms, independent of



108 M. Bugliesi et al.

the language and type system. As a consequence, our type system is similarly
able to verify authenticity in terms of injective agreement, while allowing for
expressing also a number of more sophisticated properties involving access counts
and usage bounds. As a downside, the current formulation of our type system
does not allow to validate some specific nonce-handshake idioms, like the SOSH
scheme [19]. Still, this can be recovered by extending our type system with union
and intersection types, as shown in [2].

In a previous work [13], we made initial steps towards the design of a sound
system for resource-sensitive authorization, drawing on techniques from type
systems for authentication and an affine extension of existing refinement type
systems for the applied pi-calculus [1]. That work aims at analyzing crypto-
graphic protocols as opposed to their implementations. Furthermore, the type
system is designed around a specific cryptographic library: the consequence is
that extending the analysis to new primitives requires significant changes in the
soundness proof of the type system. In contrast, the usage of RCF in this work
allows us to encode cryptography in the language using a standard sealing mech-
anism (cf. Section 5.8), which makes the analysis technique easily extensible to
new cryptographic primitives. Finally, the non-standard nature of our previous
type system makes it difficult to devise an efficient algorithmic variant.

Structure of the paper. Section 2 overviews the challenges and the most impor-
tant aspects of our theory on a simple example. Section 3 presents the meta-
theory of exponential serialization. Section 4 reviews RCF. Section 5 outlines
the type system and our treatment of formal cryptography. Section 6 presents
the case study. Section 7 discusses the algorithmic version of our type system.
Section 8 concludes. Due to space constraints, we refer to the long version [12]
for the complete formalization of the type system and its algorithmic variant,
full proofs, and a discussion on a further case study (the Kerberos protocol).

2 Overview of the Framework

We give an intuitive overview of our approach, based on a simple example of
a distributed protocol involving a streaming service S and a client C that sub-
scribes to the service and pays for watching a movie, chosen from a database of
available contents.

Verifying the protocol with a refinement type system requires to first dec-
orate the protocol with security annotations, structured as assumptions and
assertions. The former introduce logical formulas which are assumed to hold
at a given point (and express the credentials available at the client’s side); the
latter specify logical formulas which are expected to be entailed by the previ-
ously introduced assumptions (and are employed as guards for the resources at
the server end). For our example, we start by assuming the authorization policy
encoded by the formula below:

∀x, y.(Paid(x, $1) ⇒ Watch(x, y))

This is a first-order logic formula stating that each client paying one dollar can
watch any movie from the database. We can then encode C and S in RCF as
follows, using some standard syntactic sugar to enhance readability:



Logical Foundations of Secure Resource Management 109

C � λxC . λxaddS . λxm. λxk. assume Paid(xC , $1);

let xmsg = sign (xC , xm) xk in send xaddS xmsg

S � λxS . λxaddS . λxvk . let ymsg = recv xaddS in

let (zC , zm) = verify ymsg xvk in assert Watch(zC , zm)

C and S are structured as functions abstracting over the parameters defined
by the protocol specification. Initially, C makes the assumption Paid(xC , $1),
invokes the function sign to produce a signed request for movie xm under her
private key xk, and sends it to S on channel xaddS . When S receives the message,
she invokes the function verify to check the signature using the public key xvk ,
retrieves the two components of the request zC and zm, and asserts the formula
Watch(zC , zm). Crucially, the assertion by S is done in terms of the variables
zC and zm occurring in her code, not of the variables xC and xm reported in
the code of C. The specification will be judged safe if for all protocol runs the
assertion made at the server side is entailed by the assumption made at the client
and the underlying authorization policy.

Indeed, the specification can be proved safe, but a closer look shows that the
authorization policy is too liberal to enforce the expected access constraints.
In fact, we have ∀x, y.(Paid(x, $1) ⇒ Watch(x, y)),Paid(C, $1) " Watch(C,m) ∧
Watch(C,m′), i.e., a single payment by C allows her to arbitrarily access the
movie database for unboundedly many movies. In other words, the policy does
not protect against replay attacks (to which the protocol is indeed exposed).

Affine logic for specification. As we noted earlier, the problem may be addressed
by resorting to substructural logics, which capture the intended interpretation
of Paid(x, $1) as a consumable credential (i.e., a resource).

We focus on a simple, yet expressive, fragment of intuitionistic affine logic [29]:

F ::= A | F ⊗ F | F � F | ∀x.F | !F | 0
A ::= p(t1, . . . , tn) | t = t′ p of arity n in Σ
t ::= x | f(t1, . . . , tn) f of arity n in Σ

This is the multiplicative fragment of affine logic with conjunction (⊗) and impli-
cation (�), the universal quantifier (∀), the exponential modality (!) to express
persistent truths, false (0) to express negation, and equality. We presuppose an
underlying signature Σ of predicate symbols, ranged over by p, and function
symbols, ranged over by f . The set of terms, ranged over by t, is defined by
variables and function symbols as expected. We mention here that RCF terms
can be encoded into the logic using the locally nameless representation of syntax
with binders, as shown by Bengtson et al. [4]. The true boolean predicate is writ-
ten 1 and encoded as () = (), where () is the nullary function symbol encoding
the RCF unit value. Atomic formulas, noted A in the above productions, consist
of predicates and equalities.

We show some selected rules of our entailment relation in Table 1. Intuitively,
proofs in affine logic must use each formula in the environment at most once.
The duplication of resources is prevented by the splitting of environments among
the premises of each rule. The presence of the weakening rule distinguishes our



110 M. Bugliesi et al.

Table 1. The entailment relation Δ � F (selected rules)

(Weak)
Δ � F ′

Δ,F � F ′

(Contr)
Δ, !F, !F � F ′

Δ, !F � F ′

(⊗-Left)
Δ,F1, F2 � F ′

Δ,F1 ⊗ F2 � F ′

(⊗-Right)
Δ1 � F1 Δ2 � F2

Δ1,Δ2 � F1 ⊗ F2

(�-Left)
Δ1 � F1 Δ2, F2 � F ′

Δ1, F1 � F2,Δ2 � F ′

(�-Right)
Δ,F1 � F2

Δ � F1 � F2

(!-Right)
Δ � F Δ = !F1, . . . , !Fn

Δ � !F

relation from linear logic, in which all formulas in the environment have to be
used exactly once in the proof.

We can then re-express the authorization policy for our example as the
persistent formula: !∀x, y.(Paid(x, $1) � Watch(x, y)), stating that each pay-
ment grants access to a single movie. In affine logic, given the environment
∀x, y.(Paid(x, $1) � Watch(x, y)),Paid(C, $1), one can derive Watch(C,m) but
not Watch(C,m) ⊗ Watch(C,m′), since the latter derivation would require a
double usage of the affine hypothesis Paid(C, $1).

Affine refinement types for verification. We move on to typing the previous RCF
code, to illustrate how refinement types are employed to provide a static account
of the transfer of credentials required for authorization. In our example, this
amounts to showing how to statically transfer the payment assumption made by
C to S. That assumption is needed by S to justify (i.e., type-check) her assertion
according to the underlying authorization policy; the transfer of the assumption,
in turn, is achieved by giving xk and xvk suitable types.

Namely, assuming xc : T1 and xm : T2, the existing refinement type systems
would give xk type SigKey(x : T1 ∗{y : T2 | Paid(x, $1)}), formalizing that xk is a
private key intended to sign a pair bearing the expected formula as a refinement;
xvk , instead, would be given the corresponding verification key type1. The type
of xk requires C to assume the formula Paid(xC , $1) upon signing, while the type
of xvk allows S to retrieve the formula Paid(zC , $1) upon verification, which is
enough to entail Watch(zC , zm) and make the protocol type-check.

With affine formulas, however, such a solution deserves some special care [13],
since if Paid(zC , $1) is extracted with no additional constraint by the type of xvk ,
a replay attack mounted by an opponent could fool S into reusing the formula
multiple times. We discuss next how to deal with such issues.

2.1 Exponential Serialization

There are various possibilities to protect the previous protocol against replay
attacks. Here, we decide to run the protocol on top of a nonce-handshake, leading
to the following updated RCF code:
1 In RCF we do not have any primitive notion of cryptography and, therefore, we do

not have types for cryptography in our type system. We still use this notation to
simplify the presentation and we discuss the encoding of these types in Section 5.8.



Logical Foundations of Secure Resource Management 111

C � λxC . λxaddC . λxaddS . λxm. λxk.

let yn = recv xaddC in assume Paid(xC , $1);

let xmsg = sign (xC , xm, yn) xk in send xaddS xmsg

S � λxaddS . λxaddC . λxvk . let xn = mkNonce( ) in send xaddC xn;

let ymsg = recv xaddS in let (zC , zm, zn) = verify ymsg xvk in

if xn = zn then assert Watch(zC , zm)

mkNonce � λ_ : unit. let xf = mkFresh() in assume N(xf );xf

We assume to be given access to a function mkFresh : unit → bytes, which
generates fresh bit-strings. The function mkNonce : unit → {x : bytes | N(x)}
is a wrapper around mkFresh, which additionally assumes the formula N(xf )
over the return value xf of such a function. This new assumption is reflected
by the refined return type of mkNonce. Then, the typing of the key xk may be
structured as follows:

xk : SigKey(x : T1 ∗ y : T2 ∗ {z : bytes | ! (N(z) � Paid(x, $1))})

to protect the affine formula Paid(xC , $1) with the guard N(xn): if N(xn) can
be proved only once, also Paid(xC , $1) can be extracted only once, irrespectively
of the number of signature verifications performed. Remarkably, the guarded
version of Paid(xC , $1) is an exponential formula, i.e., a stable truth: as such, it
can be safely transmitted over the network, unaffected by replay attacks.

There is one problem left: the assumption Paid(xC , $1) available at the client
C does not entail the guarded, exponential formula ! (N(xn) � Paid(xC , $1)),
which C needs to prove in order to use the key xk to transmit her request. This is
indeed the most intriguing bit of our construction: to construct the desired proof,
we may introduce a serializer for Paid(xC , $1) among the assumptions of C, to
automatically provide for the creation of the guarded version of Paid(xC , $1).
The serializer has the form:

! ∀x, y.(Paid(x, $1) � !(N(y) � Paid(x, $1)))

that is, an exponential and universally quantified formula, serving for multi-
ple communications of different predicates built over Paid. Serializers may be
generated automatically for any given affine formula, and introducing them as
additional assumptions is sound, in that it does not affect the set of entailed
assertions, as we discuss in the next section. Furthermore, serializers capture
a rather general class of mechanisms for ensuring timely communications, like
session keys or timestamps, which are all based on the consumption of an affine
resource to assess the freshness of an exchange.

3 Metatheory of Exponential Serialization

In principle, the introduction of serializers among the assumed hypotheses could
alter the intended semantics of the authorization policy, due to the subtle in-
terplay of formulas through the entailment relation. Here, we isolate sufficient



112 M. Bugliesi et al.

conditions under which exponential serialization leads to a sound protection
mechanism for affine formulas.

We presuppose that the signature Σ of predicate symbols is partitioned in
two sets ΣA and ΣC . Atomic formulas A have the form p(t1, . . . , tn) for some
p ∈ ΣA; control formulas C have the same form, though with p ∈ ΣC . We
identify various categories of formulas defined by the following productions.

B ::= A | B ⊗B | B � B | ∀x.B | !B base formulas
P ::= B | C | P ⊗ P payload formulas
G ::= C � P | !G guarded formulas

Base formulas B are formulas of an authorization policy, which are used as se-
curity annotations in the application code. For simplicity, we dispense in this
section with equalities and 0, since they are used in the analysis but they are
never assumed in the code. (Notice that compromised principals can be modelled
also without negation [4].) Payload formulas P are formulas which we want to
serialize for communication over the untrusted network. Importantly, payload
formulas comprise also control formulas, which allows, e.g., for the transmission
of fresh nonces to remote verifiers: this pattern is present in several authentica-
tion protocols [18]. Finally, guarded formulas G are used to model the serialized
version of payload formulas, suitable for transmission. We let S denote an ar-
bitrary serializer of the form !∀x̃.(P � !(C � P )) and we write Δ " Fn for
Δ " F ⊗ . . .⊗ F (n times), with the proviso that Δ " F 0 stands for Δ � F .

Given a multiset of assumptions Δ, the extension of Δ with the serializers
S1, . . . , Sn is sound if Δ and its extension derive the same payload formulas. As
it turns out, this is only true when Δ satisfies additional conditions, which we
formalize next.

Definition 1 (Rank). Let rk : ΣC → N be a total, injective function. Given a
formula F , we define the rank of F with respect to rk, noted rk(F ), as follows:

rk(p(t1, . . . , tn)) = rk(p) if p ∈ ΣC

rk(F1 ⊗ F2) = min {rk(F1), rk(F2)}
rk(F ) = +∞ otherwise

Definition 2 (Stratification). A formula F is stratified with respect to a rank
function rk if and only if: (i) F = C � P implies rk(C) < rk(P ); (ii) F = P �
G implies that G is stratified; (iii) F = ∀x.F ′ implies that F ′ is stratified; (iv)
F = !F ′ implies that F ′ is stratified. We assume F to be stratified in all the
other cases. A multiset of formulas Δ is stratified if and only if there exists a
rank function rk such that each formula in Δ is stratified with respect to rk.

For instance, the multiset C1 � C2, C2 � C3 is stratified, given an appropriate
choice of a rank function, while the multiset C1 � C2, C2 � C1 is not stratified.
Stratification is required precisely to disallow such circular dependencies among
control formulas in the proof of our soundness result, Theorem 1 below. To prove
that result, we need a further definition:
Definition 3 (Guardedness). Let Δ = P1, . . . , Pm, S1, . . . , Sn be a stratified
multiset of formulas. We say that Δ is guarded if and only if Δ " Ck implies
k ≤ 1 for any control formula C.



Logical Foundations of Secure Resource Management 113

Table 2. Syntax of RCF

M,N ::= x | () | (M,N) | λx.E | h M values (h ∈ {inl, inr, fold})
D,E ::= M | M N | M = N | let x = E in E′ | expressions

let (x, y) = M in E |
match M with h x then E else E′ |
(νa)E | E � E′ | a!M | a? | assume F | assert F

The intuition underlying guardedness may be explained as follows. Consider a
multiset Δ, a payload formula P such that Δ " P and let S = !∀x̃.(P � !(C �
P )) be a serializer for P . Now, the only way that S may affect derivability is by
allowing the duplication of the payload formula P via the exponential implication
!(C � P ). However, this effect is prevented if we are guaranteed that the control
formula C guarding P is derived at most once in Δ: that is precisely what the
guardedness condition ensures.

Theorem 1 (Soundness of Exponential Serialization). LetΔ=P1, . . . , Pm.
If Δ′ = Δ,S1, . . . , Sn is guarded and Δ′ " P , then Δ " P for all P .

While guardedness is convenient to use in the proof of Theorem 1, it is clearly
an undecidable condition. Fortunately, it is not difficult to isolate a sufficient
criterion to decide whether a multiset of formulas is guarded based on a simple
syntactic check.

Proposition 1. If Δ = P1, . . . , Pm, S1, . . . , Sn is stratified and the control for-
mulas occurring in P1, . . . , Pm are pairwise distinct, then Δ is guarded.

4 Review of RCF

The syntax of values and expressions of RCF [4] is overviewed in Table 2. We
assume collections of names (a, b, c,m, n) and variables (x, y, z). Values include
variables, unit, pairs, functions and constructions; constructors account for the
creation of standard sum types and iso-recursive types. Expressions of RCF in-
clude standard λ-calculus constructs like values, applications, equality checks,
lets, pair splits, and pattern matching, as well as primitives for concurrent,
message-passing computations. For space reasons, we keep the presentation in-
tuitive and mostly informal (we refer to [4] and the long version for complete
details). The semantics of expressions is standard, so we just discuss the RCF-
specific constructs. Expression (νa)E generates a fresh channel name a and then
behaves as E. Expression E � E′ evaluates E and E′ in parallel, and returns
the result of E′. Expression a!M asynchronously outputs M on channel a and
returns (). Expression a? waits until a term N is available on channel a and
returns N .

Definition 4 (Safety). A closed expression E is safe if and only if, in all
evaluations of E, the conjunction of the asserted formulas is entailed by the
introduced assumptions.

We let an opponent be any closed expression of RCF which does not contain any
assumption or assertion. Our goal is to guarantee that safety holds, despite the
best efforts of an active opponent.



114 M. Bugliesi et al.

Definition 5 (Robust Safety). A closed expression E is robustly safe if and
only if, for any opponent O, the application O E is safe2.

5 The Type System

Our refinement type system builds on previous work by Bengtson et al. [4],
extending it to guarantee the correct usage of affine formulas and to enforce our
revised notion of (robust) safety.

5.1 Types, Typing Environments, and Base Judgements

The syntax of types is defined as follows. The unit value is given type unit. Sum
types have form T +U , iso-recursive types are denoted by μα. T . Type variables
are denoted by α. There exist various forms of dependent types: a function
of type x : T → U takes as an input a value M of type T and returns a value
of type U{M/x}; a pair (M,N) has type x : T ∗ U if M has type T and N has
type U{M/x}; a value M has a refinement type {x : T | F} if M has type T
and the formula F{M/x} holds true. We use type Un � unit to model data that
may come from, or be sent to the opponent, as it is customary for security type
systems. Type bool � unit+ unit is inhabited by true � inl() and false � inr().

Our type system comprises several typing judgements of the form Γ ;Δ " J ,
where Γ ;Δ is a typing environment collecting all the information which can be
used to derive J . In particular, Γ contains the type bindings, while Δ comprises
logical formulas that are known to hold at run-time. Formally, we let Γ be an
ordered list of entries μ1, . . . , μn and Δ be a multiset of affine logic formulas.
Each entry μi in Γ denotes either a type variable (α), a kinding annotation
(α :: k), or a type binding for channels (a ( T ) or variables (x : T ).

We use the judgement Γ ;Δ " ) to denote that the typing environment Γ ;Δ
is well-formed, i.e., it satisfies some standard syntactic conditions (for instance,
it does not contain duplicate type bindings for the same variable). The only
remarkable point in the definition of Γ ;Δ " ) is that we forbid variables in Γ to
be mapped to a refinement type: indeed, when extending a typing environment
with a new type binding x : T , we use the function ψ to place the structural
type information in Γ and the function forms to place the associated refinements
in Δ. As an example, we have ψ({y : unit | F (y)}) = unit and forms(x : {y :
unit | F (y)}) = F (x).

Finally, we use the judgement Γ ;Δ " F to denote that the formulas in Δ entail
F . The formal definition also syntactically checks that Γ ;Δ is well-formed.

5.2 Environment Rewriting

All the type information stored in Γ can be used arbitrarily often in the deriva-
tion of any judgement of our type system. The treatment of the formulas in Δ,
instead, is subtler, since affine resources must be used at most once during type-
checking. In particular, we need to split environment Δ among subderivations
2 Here, the notation O E is standard syntactic sugar for let x = O in let y = E in x y.



Logical Foundations of Secure Resource Management 115

to avoid the duplication of resources. The general structure of the rules of our
system will thus be the following:

Γ ;Δ1 � J1 . . . Γ ;Δn � Jn Γ ;Δ ↪→ Γ ;Δ1, . . . ,Δn

Γ ;Δ � J

where Γ ;Δ ↪→ Γ ;Δ′ denotes the environment rewriting of Γ ;Δ to Γ ′;Δ′.
The environment rewriting relation is defined as:

(Rewrite)
Δ � Δ′ Γ ;Δ � � Γ ;Δ′ � �

Γ ;Δ ↪→ Γ ;Δ′

where we write Δ " F1, . . . , Fn to denote that Δ " F1 ⊗ . . . ⊗ Fn, with the
proviso that Δ " ∅ stands for Δ " 1. The adoption of the environment rewrit-
ing relation as an house-keeping device for the formulas of Δ greatly improves
the expressiveness of the type system in a very natural way. Interestingly, all the
non-determinism introduced by the application of the rewriting rules and the
splitting of the logical formulas among the premises can be effectively tamed by
the algorithmic type system presented in Section 7.

5.3 Kinding and Subtyping

Security type systems often rely on a kinding relation to discriminate whether
or not messages of a specific type may be known to the attacker or received from
it. The kinding judgement Γ ;Δ " T :: k denotes that type T is of kind k. Kind
k = pub denotes public messages which may be sent to the attacker, while kind
k = tnt characterizes tainted message which may come from the attacker. The
type Un is both public and tainted.

The subtyping judgment Γ ;Δ " T <: U expresses the fact that T is a subtype
of U and, thus, values of type T can be used in place of values of type U . The
subtyping judgment makes public types subtype of tainted types and further
describes standard subtyping relations for types sharing the same structure (e.g.,
pair types are covariant and function types contra-variant in their arguments).

Our treatment of kinding and subtyping resembles other security type systems
[4,2] and only differs in the management of affine formulas, which is similar to
the one we employ for typing values and expressions (see below).

5.4 Typing Values

The typing judgement Γ ;Δ "M : T denotes that value M is given type T under
environment Γ ;Δ. Some selected rules for assigning types to values are given in
the top part of Table 3.

Rule (Val Refine) is a natural adaptation to an affine setting of the standard
rule for refinement types. Rules (Val Fun) and (Val Pair) are more interest-
ing: notice that our type system does not incorporate affine types, in that the
type information in Γ is propagated to all the premises of a typing rule. It is
thus crucial for soundness that both pairs and functions are type-checked in an



116 M. Bugliesi et al.

exponential environment, i.e., an environment of the form !Δ = !F1, . . . , !Fn. For
instance, using an affine formula F from the typing environment to give a pair
(M,N) type x : T ∗ {y : U | F} would lead to an unbounded usage of F upon
replicated pair splitting operations on (M,N), as we discuss in Section 5.7. Al-
lowing for affine refinements but forbidding affine types confines the problem of
resource management to the formula environment, which simplifies the system
but might seem overly restrictive. In Section 5.7 we explain how the exponential
serialization technique can be leveraged to encode affine types in our framework
and, thereby, enhance its expressiveness.

5.5 Typing Expressions

The typing judgement Γ ;Δ " E : T denotes that expression E is given type T
under environment Γ ;Δ. Some selected typing rules for expressions are given in
the bottom part of Table 3.

Rule (Exp Subsum) is a standard subsumption rule for expressions. In rule
(Exp Split) we exploit the logic to keep track of the performed pair splitting
operation and make type-checking more precise. Rule (Exp Assert) is standard
and requires an asserted formula F to be derivable from the formulas collected
by the environment.

The most complex rule is (Exp Fork): intuitively, when type-checking the
parallel expressions E1 � E2, assumptions in E1 can be used to type-check
assertions in E2 and vice-versa. On the other hand, we need to prevent an affine
assumption in E1 from being used twice to justify assertions in both E2 and E1.
This is achieved through the extraction relation, i.e., through the premises of
the form Ei � [Δi | Di]: the extraction operation destructively collects all the
assumptions from the expression Ei and returns the expression Di obtained by
purging Ei of its assumptions. The typing environment is then extended with
the collected assumptions and partitioned to type-check the purged expressions
D1 and D2 respectively. The extraction relation is reported in Table 4. Notice
that we prevent formulas containing free names from being extracted outside of
the scope of the respective binders (cf. Extr Assume).

The extraction relation is also used to type-check any expression possibly con-
taining active assumptions, i.e., lets, restrictions, and assumptions themselves.

5.6 Formal Results

The main soundness result of our type system is reported below.

Theorem 2 (Robust Safety). If ε; ∅ " E : Un, then E is robustly safe.

Theorem 2 above and Theorem 1 in Section 3 (establishing the soundness of
exponential serialization) constitute the two building blocks of our static verifi-
cation technique, which we may finally summarize as follows.

Given any expression E, we identify the payload formulas assumed in E, and
construct the corresponding exponential serializers S1, . . . , Sn for those formulas.
Let then E
 = assume S1 ⊗ · · · ⊗ Sn � E. By Theorem 2, if ε; ∅ " E
 : Un, then
E
 is robustly safe. By Theorem 1, so is the original expression E, provided
that a further invariant holds for E
, namely that all multisets of formulas



Logical Foundations of Secure Resource Management 117

Table 3. Typing values and expressions (selected rules)

(Val Var)
Γ ;Δ � � (x : T ) ∈ Γ

Γ ;Δ � x : T

(Val Fun)
Γ, x : ψ(T ); !Δ′, forms(x : T ) � E : U Γ ;Δ ↪→ Γ ; !Δ′

Γ ;Δ � λx.E : x : T → U

(Val Pair)
Γ ; !Δ1 � M : T Γ ; !Δ2 � N : U{M/x}

Γ ;Δ ↪→ Γ ; !Δ1, !Δ2

Γ ;Δ � (M,N) : x : T ∗ U

(Val Refine)
Γ ;Δ1 � M : T Γ ;Δ2 � F{M/x}

Γ ;Δ ↪→ Γ ;Δ1,Δ2

Γ ;Δ � M : {x : T | F}

(Exp Subsum)
Γ ;Δ1 � E : T

Γ ;Δ2 � T <: T ′

Γ ;Δ ↪→ Γ ;Δ1,Δ2

Γ ;Δ � E : T ′

(Exp Let)
E �∅ [Δ′ | E′] Γ ;Δ1 � E′ : T

Γ, x : ψ(T );Δ2, forms(x : T ) � D : U x /∈ fv(U)
Γ ;Δ,Δ′ ↪→ Γ ;Δ1,Δ2

Γ ;Δ � let x = E in D : U

(Exp Split)
Γ ;Δ1 � M : x : T ∗ U

Γ, x : ψ(T ), y : ψ(U);Δ2, forms(x : T ), forms(y : U), !((x, y) = M) � E : V
{x, y} ∩ fv(V ) = ∅ Γ ;Δ ↪→ Γ ;Δ1,Δ2

Γ ;Δ � let (x, y) = M in E : V

(Exp Assume)
Γ ;Δ,F � assume 1 : T

F �= 1

Γ ;Δ � assume F : T

(Exp True)
Γ ;Δ � �

Γ ;Δ � assume 1 : unit

(Exp Assert)
Γ ;Δ � F

Γ ;Δ � assert F : unit

(Exp Fork)
E1 �∅ [Δ1 | D1] E2 �∅ [Δ2 | D2] Γ ;Δ′

1 � D1 : T1 Γ ;Δ′
2 � D2 : T2

Δ,Δ1,Δ2 ↪→ Δ′
1, Δ

′
2

Γ ;Δ � E1 � E2 : T2

Notation: For Δ = F1, . . . , Fn we write !Δ to denote !F1, . . . , !Fn.

assumed during the evaluation of E
 are guarded. While this latter invariant
is not enforced by our type system, the desired guarantees may be achieved by
requiring that the assumption of control formulas be confined within system code
packaged into library functions providing certified access and management of the
capabilities associated with those formulas. The certification of the system code
provided by the library function, in turn, may be achieved with limited effort,
based on the syntactic guardedness condition provided by Proposition 1.

5.7 Encoding Affine Types

Here we discuss how we can take advantage of exponential serialization to encode
affine types and, thus, enhance the expressiveness of our type system. For the
sake of simplicity, we focus on the encoding of affine pairs.



118 M. Bugliesi et al.

Table 4. Extraction

(Extr Fork)
E1 �ã [Δ1 | D1] E2 �ã [Δ2 | D2]

E1 � E2 �ã [Δ1,Δ2 | D1 � D2]

(Extr Let)
E1 �ã [Δ | D1]

let x = E1 in E2 �ã [Δ | let x = D1 in E2]

(Extr Res)

E �a,˜b [Δ | D]

(νa)E �˜b [Δ | (νa)D]

(Extr Assume)
F �= 1 fn(F ) ∩ {ã} = ∅
assume F �ã [F | assume 1]

(Extr Exp)
no other rule applies

E �ã [∅ | E]

Consider the typing environment Γ ;Δ � x : Un, y : Un;A(x), B(y). Standard
refinement type systems as [4] allow for the following type judgement:

Γ ;Δ " (x, y) : {x : Un | A(x)} ∗ {y : Un | B(y)}

If the formulas A(x) and B(y) are interpreted as affine resources, however, the
previous type assignment is sound only as long as the pair (x, y) can be split only
once, since every application of rule (Exp Split) for pair destruction introduces
the formulas A(x), B(y) into the typing environment. Since our type system does
not feature affine types and has no way to enforce a single deconstruction of a
pair, it conservatively forbids the previous type judgement, in that the premises
of rule (Val Pair) require an exponential typing environment.

Nevertheless, the following type judgement is allowed by our type system:

x : Un, y : Un;A(x), B(y), S1, S2 " (x, y) : {x : Un | A′(x)} ∗ {y : Un | B′(y)}

where A′(x) � !(P1(x) � A(x)) and B′(y) � !(P2(y) � B(y)) are the serialized
variants of A(x) and B(y) respectively, while S1 � !∀x.(A(x) � A′(x)) and
S2 � !∀y.(B(y) � B′(y)) are the corresponding serializers. Here, the main idea
for type-checking is to appeal to environment rewriting to consume the affine
formulas A(x) and B(y), and introduce their exponential counterparts A′(x) and
B′(y) into the environment before assigning a type to the pair components.

The interesting point now is that the pair (x, y) can be split arbitrarily often,
but the affine formulas A(x) and B(y) can be retrieved at most once, as long as
the control formulas P1(x) and P2(y) are assumed at most once in the application
code. In this way, we recover the expressiveness provided by affine types. We
actually even go beyond that, allowing for a liberal usage of the value itself, as
opposed to enforcing the affine usage of any data structure which contains an
affine component, as dictated by many earlier substructural frameworks.

5.8 Encoding Cryptography

Formal cryptography can be encoded inside RCF in terms of sealing [22,24]. A
seal k for a type T is a pair of functions: a sealing function T → Un and an
unsealing function Un → T . For symmetric cryptography, these functions model
encryption and decryption operations, respectively. A payload of type T can be



Logical Foundations of Secure Resource Management 119

Table 5. A variant of the EPMO protocol

B C M
enc((C,nC ,g,p),ek(kM )) ��

assume ∀y.(Pay(y, p,M, nM ) � Ship(M, g,C))

enc(sign((nC ,nM ,M,g,C,p),k′
M ),ek(kC))��

enc((C,nC ,nM ,p),ek(kB))��

assume ∀y.Pay(B, p, y, nM )

enc(sign((B,C,nC ,nB ,nM ,p),k′
B),ek(kC)) ��

assert Ship(M,g, C)

enc(sign((B,C,nC ,nB ,nM ,p),k′
B),ek(kM )) ��

enc(sign((B,M,nB ,nM ),k′
M ),ek(kB))��

sealed to type Un and sent over the untrusted network; conversely, a message
retrieved from the network with type Un can be unsealed to its correct type T .

The sealing/unsealing mechanism is implemented in terms of a list of pairs,
which is stored in a global reference that can only be accessed using the sealing
and unsealing functions. Upon sealing, the payload is paired with a fresh, public
value (the handle) representing its sealed version, and the pair is stored in the
list; conversely, the unsealing function looks for the handle in the list and re-
turns the associated payload. Different cryptographic primitives, like public key
encryptions and signature schemes, can be encoded following such a recipe.

One interesting benefit of our exponential serialization technique is that we can
directly leverage the sealing-based cryptographic library proposed by Bengtson et
al. [4]. The reason is that we never apply cryptography directly on messages with
affine refinements, but we rely on their exponentially serialized variants. Without
the serialization, we would need to define a different implementation of the seal-
ing/unsealing mechanism: namely, we would have to enforce that an affine payload
is never extracted more than once from the list stored in the global reference, i.e.,
the unsealing function would have to remove the payload from the list upon invo-
cation. This would complicate the sealing-based abstraction of cryptography and
require additional reasoning to justify its soundness.

6 Example: Electronic Purchase

We consider a variant of EPMO, a nonce-based e-payment protocol proposed by
Guttman et al. [20]. The protocol narration is reported in Table 5.

Initially, a customer C contacts a merchant M to buy some goods g for a given
price p; the request is encrypted under the public key of the merchant, ek(kM ),
and includes a fresh nonce, nC . If M agrees to proceed in the transaction by
providing a signed response, C informs her bank B to authorize the payment.
The bank replies by providing C a receipt of authorization, called the money
order, which is then forwarded to M . Now M can verify that C is entitled to
pay for the goods and complete the transaction by sending a signed request to
B to cash the money order. At the end of the run, the bank transfers the funds
and the merchant ships the goods.



120 M. Bugliesi et al.

A peculiarity of the protocol is that the identifier nC is employed by C to
authenticate two different messages, namely the replies by M and B. This pat-
tern cannot be validated by most existing type systems, since the mechanisms
hardcoded therein to deal with nonce-handshakes enforce the freshness of each
nonce to be checked only once. Our framework, instead, allows for a very natural
treatment of such authentication pattern, whose implementation can be written
mostly oblivious of the security verification process based on lightweight logical
annotations. For space reasons, we focus only on the aspects of the verification
connected to the guarantees provided to C.

We define two predicates used in the analysis: Pay(B, p,M, nM ) states that
B authorizes the payment p to M in reference to the order identified by nM ,
while Ship(M, g,C) formalizes that M can ship the goods g to C. The protocol
code for the customer, enriched with the most interesting type annotations, is
reported below3.

type MsgMC = MsgMC of (xnC: Un * xnM: Un * xM: Un * xg: Un * xC: Un * xp: Un)
{!(N1(xnC) --o forall y.(Pay(y,xp,xM,xnM) --o Ship(xM,xg,xC))}

type MsgBC = MsgBC of (yB: Un * yC: Un * ynC: Un * ynB: Un * ynM: Un * yp: Un)
{!(N2(ynC) --o forall y.(Pay(yB, yp, y, ynM))}

let (mkTid : unit -> {x: bytes | N1(x) times N2(x)}) () =
let xf = mkFresh () in assume (N1(xf) times N2(xf)); xf

let cust C addC M addM B addB g p kC ekM ekB
(vkM: (MsgMC, MsgMB) either VerKey) (vkB: MsgBC VerKey) =

let nC = mkTid () in
let msgCM1 = encrypt (C, nC, g, p) ekM in send addM msgCM1;
let signMC = decrypt (receive addC) kC in
let plainMC = verify signMC vkM in
match plainMC with MsgMC (=nC, xnM, =M, =g, =C, =p) ->

let msgCB = encrypt (C, nC, xnM, p) ekB in send addB msgCB;
let signBC = decrypt (receive addC) kC in
let plainBC = verify signBC vkB in

match plainBC with MsgBC (=B, =C, =nC, xnB, =xnM, =p) ->
assert Ship(M, g, C);
let msgCM2 = encrypt signBC ekM in send addM msgCM2

Initially, we let the customer call the library function mkTid, which generates
a fresh transaction identifier, corresponding to nC in the protocol specification,
and provides via its return type two distinct capabilities N1(nC) and N2(nC),
later employed to authenticate two different messages received by C. Since the
signing key of M is used to certify messages of two different types, at steps 2 and
6 of the protocol, the corresponding verification key available to the customer
through the variable vkM refers to a sum type. We present only the MsgMC
component of such type, since it is the one needed to type-check the code of C:
the corresponding refined formula in the type definition describes the promise by
M to ship the goods as soon as the requested payment has been authorized by
any bank. We then use vkB to convey the other formula which is needed to type-
check C, namely a statement that B authorizes the payment to any merchant to
whom C wishes to transfer the money order. The hypotheses collected by C are

3 For the sake of readability, we use F#- like syntax and some syntactic sugar like
tuples and pattern matching to present code snippets from our example: these can
be encoded in RCF using standard techniques [4].



Logical Foundations of Secure Resource Management 121

enough to prove her assertion, i.e., to be sure that the request by M has been
fulfilled and the goods will be shipped, hence the implementation is well-typed.

7 Algorithmic Typing

The type system presented in Section 5 includes several non-deterministic rules,
which make it hard to implement an efficient decision procedure. In this section,
we present an algorithmic version, which we prove sound and complete.

7.1 Algorithmic Type System

While standard sources of non-determinism like subtyping or refining value types
can be eliminated using type annotations, the rewriting of logical environments,
the distinctive source of non-determinism of our system, is harder to deal with.
The core idea underlying the algorithmic version of the type system is to dispense
with logical environments and to construct bottom-up a single logical formula
that characterizes all the proof obligations that would normally be introduced
along the type derivation. More in detail, every typing judgment of the form
Γ ;Δ " J is matched by an algorithmic counterpart of the form Γ "alg J ;F .
Intuitively, typing an expression algorithmically constitutes of two steps:

1. The expression (decorated with type annotations whenever needed) is type-
checked using the algorithmic type system. This process is fully deterministic
and in case of success yields one proof obligation F .

2. The proof obligation is verified, e.g., using an external theorem prover.

If both steps succeed, then the expression is well-typed.
In the remainder of this section we focus on selected rules for typing values

and expressions: the remaining rules follow along the same lines.

7.2 Typing Values and Expressions

We present some selected algorithmic typing rules in Table 6.
Following standard practice, we rely on typing annotations to deal with non-

structural rules. For instance, we explicitly annotate values that are expected to
be given a refinement type (cf. Val Ref (Alg)) and expressions whose type
should be derived using subtyping (cf. Exp Subsum (Alg)). In this way, every
possible syntactic form is matched exactly by a single type rule.

We now exemplify the general concepts underlying our technique by contrast-
ing the standard typing rule (Val Fun) with its algorithmic counterpart (Val
Fun (Alg)). The main source of non-determinism in (Val Fun) is the rewriting
ofΔ to !Δ′. As previously mentioned, our goal is to dispense with logical environ-
ments and their rewriting, by collecting a single proof obligation that accounts
for the proof obligations generated in the original type system. In the algorithmic
version, the proof obligation obtained by giving λx : T.E type V := x : T → U
in Γ is !∀x.(forms(x : T ) � F ′), where F ′ is the proof obligation collected
by giving E type U in Γ, x : ψ(T ). In the following, we briefly justify why this



122 M. Bugliesi et al.

Table 6. Selected algorithmic rules for typing values and expressions

(Val Var (Alg))
Γ �alg � (x : T ) ∈ Γ

Γ �alg x : T ;1

(Val Fun (Alg))
Γ, x : ψ(T ) �alg E : U ;F ′ fnfv(T ) ⊆ dom(Γ ) ∪ {x}
Γ �alg λx : T. E : (x : T → U); !∀x.(forms(x : T ) � F ′)

(Val Pair (Alg))
Γ �alg M : T ;F1

Γ �alg N : U{M/x};F2

Γ �alg (M,N) : x : T ∗ U ; !F1 ⊗ !F2

(Val Ref (Alg))
Γ �alg M : T ;F ′

fnfv(F ) ⊆ dom(Γ ) ∪ {x}
Γ �alg M{x:_ | F} : {x : T | F};F ′ ⊗ F{M/x}

(Exp Subsum (Alg))
Γ �alg E : T ;F1 Γ �alg T <: T ′;F2

Γ �alg E_<:T ′ : T ′;F1 ⊗ F2

(Exp Let (Alg))
E �∅ [Δ′ | E′]

Γ �alg E′ : T ;F1 Γ, x : ψ(T ) �alg D : U ;F2 x /∈ fv(U) fnfv(Δ′) ⊆ dom(Γ )

Γ �alg let x = E in D : U ;Δ′ � (F1 ⊗ ∀x.(forms(x : T ) � F2))

Notation: In logical formulas, we write F1, . . . , Fn to denote F1 ⊗ . . .⊗ Fn.

approach is sound, i.e., we argue why Γ ;Δ " λx.E : V for any Δ such that
Γ ;Δ " !∀x.(forms(x : T ) � F ′) (i.e., Δ entails !∀x.(forms(x : T ) � F ′) and
both are well-formed with respect to Γ ). From Γ ;Δ " !∀x.(forms(x : T ) �
F ′), using the rules of the logic, we can show that there exists Δ′ such that
Γ ;Δ ↪→ Γ ; !Δ′ and Γ ; !Δ′ " ∀x.forms(x : T ) � F ′. Intuitively, this means
that we can eliminate the exponential modality by rewriting the logical envi-
ronment in exponential form. Furthermore, the well-formedness of Γ ; !Δ′ en-
sures that x /∈ fv (!Δ′): in this case, we can further eliminate the universal
quantification, adding a type binding for x in order to keep the logical envi-
ronment well-formed (the actual type is not relevant from the logic point of
view), i.e., Γ, x : ψ(T ); !Δ′ " forms(x : T ) � F ′. Using rule (�-Left), we
can finally prove Γ, x : ψ(T ); !Δ′, forms(x : T ) " F ′. By inductive reasoning,
Γ, x : ψ(T ); !Δ′, forms(x : T ) " E : U . Finally, (Val Fun) allows us to derive
Γ ;Δ " λx.E : V . The algorithmic variant is similarly proved complete.

If a typing rule contains multiple premises, then we combine the proof obliga-
tions obtained from the premises conjunctively (cf. Val Pair (Alg)). Whenever
a typing rule relies on extraction (e.g., Exp Let) and adds the extracted envi-
ronment Δ′ to the environment before rewriting, the algorithmic variant of the
rule (e.g., Exp Let (Alg)) creates a proof obligation of the form Δ′ � F ,
where F is the proof obligation obtained by combining the proof obligations of
the premises using the techniques described above.

7.3 Main Results

Let 〈E〉 denote the expression obtained from E by erasing all typing annotations.



Logical Foundations of Secure Resource Management 123

Theorem 3 (Soundness and Completeness of Algorithmic Typing).

1. If Γ "alg E : T ;F and Γ ;Δ " F , then Γ ;Δ " 〈E〉 : T .
2. If Γ ;Δ " E : T , then there exists E′, F such that 〈E′〉 = E, Γ "alg E

′ : T ;F ,
and Γ ;Δ " F .

7.4 Typing the Example

The proof obligation assigned to the cust function in Section 6 is shown below.

∀C.∀M.∀B.∀G.∀p.
∀nC.((N1(nC) ⊗ N2(nC)) �

∀xnM.(!(N1(nC) � (∀y.Pay(y,p,M,xnM) � Ship(M,g,C))) �
!(N2(nC) � (∀z.Pay(B,p,z,xnM))) �
Ship(M,g,C)))

For the sake of readability we removed all unnecessary occurrences of 1 and
unused quantified variables.

In this example, as well as in all other protocols we considered, the problem
of solving equalities is reduced to the unification of variables4. This allows us to
use the llprover [27] theorem prover, which at the moment does not support
equality theories. The above formula is discharged in less than 20 ms.

8 Conclusion

We presented the first type system for statically enforcing the (robust) safety of
cryptographic protocol implementations with respect to authorization policies
expressed in affine logic. Our type system benefits from the novel concept of
exponential serialization to achieve a general and flexible treatment of affine re-
sources. We further proposed an efficient algorithmic variant of the type system.

We are currently working on the mechanization of our theory by implementing
a type-checker based on the algorithmic typing rules. We plan to facilitate type-
checking and reduce the need for manual type annotations by taking advantage
of recent research on type inference in intuitionistic linear logic [3].

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.
In: Proc. 28th Symposium on Principles of Programming Languages, POPL, pp.
104–115. ACM (2001)

2. Backes, M., Hriţcu, C., Maffei, M.: Union and Intersection Types for Secure Pro-
tocol Implementations. In: Mödersheim, S., Palamidessi, C. (eds.) TOSCA 2011.
LNCS, vol. 6993, pp. 1–28. Springer, Heidelberg (2012)

4 Equalities are introduced by pattern-matching, a syntactic sugar which we encode
in our system using standard techniques [4].



124 M. Bugliesi et al.

3. Baillot, P., Hofmann, M.: Type Inference in Intuitionistic Linear Logic. In: PPDP
2010, pp. 219–230. ACM (2010)

4. Bengtson, J., Bhargavan, K., Fournet, C., Gordon, A.D., Maffeis, S.: Refinement
Types for Secure Implementations. TOPLAS 33(2), 8 (2011)

5. Bhargavan, K., Corin, R., Deniélou, P.M., Fournet, C., Leifer, J.J.: Cryptographic
Protocol Synthesis and Verification for Multiparty Sessions. In: CSF 2009, pp.
124–140. IEEE (2009)

6. Bhargavan, K., Fournet, C., Gordon, A.D.: Modular Verification of Security Pro-
tocol Code by Typing. In: POPL 2010, pp. 445–456. ACM (2010)

7. Bhargavan, K., Fournet, C., Gordon, A.D., Tse, S.: Verified Interoperable Imple-
mentations of Security Protocols. TOPLAS 31(1) (2008)

8. Bierhoff, K., Aldrich, J.: Modular typestate checking of aliased objects. In: OOP-
SLA 2007, pp. 301–320. ACM (2007)

9. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: CSFW 2001, pp. 82–96. IEEE (2001)

10. Bowers, K.D., Bauer, L., Garg, D., Pfenning, F., Reiter, M.K.: Consumable Cre-
dentials in Linear-Logic-Based Access-Control Systems. In: NDSS 2007. Internet
Society (2007)

11. Bugliesi, M., Focardi, R., Maffei, M.: Dynamic Types for Authentication.
JCS 15(6), 563–617 (2007)

12. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Logical Foundations of
Secure Resource Management in Protocol Implementations (Long Version),
http://www.lbs.cs.uni-saarland.de/affine-rcf/

13. Bugliesi, M., Calzavara, S., Eigner, F., Maffei, M.: Resource-Aware Authorization
Policies for Statically Typed Cryptographic Protocols. In: CSF 2011, pp. 83–98.
IEEE (2011)

14. Chapin, P.C., Skalka, C., Wang, X.S.: Authorization in Trust Management: Fea-
tures and Foundations. ACM Computing Surveys 40(3) (2008)

15. Fournet, C., Kohlweiss, M., Strub, P.Y.: Modular Code-Based Cryptographic Ver-
ification. In: CCS 2011, pp. 341–350. ACM (2011)

16. Garg, D., Bauer, L., Bowers, K.D., Pfenning, F., Reiter, M.K.: A Linear Logic of
Authorization and Knowledge. In: Gollmann, D., Meier, J., Sabelfeld, A. (eds.)
ESORICS 2006. LNCS, vol. 4189, pp. 297–312. Springer, Heidelberg (2006)

17. Girard, J.Y.: Linear Logic: Its Syntax and Semantics. In: Advances in Linear Logic.
London Mathematical Society LNS, vol. 22, pp. 1–42. Cambridge University Press
(1995)

18. Gordon, A.D., Jeffrey, A.: Authenticity by Typing for Security Protocols.
JCS 11(4), 451–519 (2003)

19. Gordon, A.D., Jeffrey, A.: Types and Effects for Asymmetric Cryptographic Pro-
tocols. JCS 12(3), 435–484 (2004)

20. Guttman, J.D., Thayer, F.J., Carlson, J.A., Herzog, J.C., Ramsdell, J.D., Sniffen,
B.T.: Trust Management in Strand Spaces: A Rely-Guarantee Method. In: Schmidt,
D. (ed.) ESOP 2004. LNCS, vol. 2986, pp. 325–339. Springer, Heidelberg (2004)

21. Mandelbaum, Y., Walker, D., Harper, R.: An effective theory of type refinements.
In: ICFP 2003, pp. 213–225. ACM (2003)

22. Morris, J.: Protection in Programming Languages. CACM 16(1), 15–21 (1973)
23. Naden, K., Bocchino, R., Aldrich, J., Bierhoff, K.: A Type System for Borrowing

Permissions. In: POPL 2012, pp. 557–570. ACM (2012)
24. Sumii, E., Pierce, B.: A Bisimulation for Dynamic Sealing. TCS 375(1-3), 169–192

(2007)

http://www.lbs.cs.uni-saarland.de/affine-rcf/


Logical Foundations of Secure Resource Management 125

25. Sunshine, J., Naden, K., Stork, S., Aldrich, J., Tanter, E.: First-Class State Change
in Plaid. In: OOPSLA 2011, pp. 713–732. ACM (2011)

26. Swamy, N., Chen, J., Fournet, C., Strub, P.Y., Bhargavan, K., Yang, J.: Secure
Distributed Programming with Value-Dependent Types. In: ICFP 2011, pp. 266–
278. ACM (2011)

27. Tomura, N.: llprover - A Linear Logic Prover,
http://bach.istc.kobe-u.ac.jp/llprover/

28. Tov, J.A., Pucella, R.: Stateful Contracts for Affine Types. In: Gordon, A.D. (ed.)
ESOP 2010. LNCS, vol. 6012, pp. 550–569. Springer, Heidelberg (2010)

29. Troelstra, A.S.: Lectures on Linear Logic. CSLI Stanford, LNS, vol. 29 (1992)

http://bach.istc.kobe-u.ac.jp/llprover/


Keys to the Cloud: Formal Analysis and

Concrete Attacks on Encrypted Web Storage

Chetan Bansal1, Karthikeyan Bhargavan2,
Antoine Delignat-Lavaud2, and Sergio Maffeis3,


1 BITS Pilani-Goa
2 INRIA Paris-Rocquencourt
3 Imperial College London

Abstract. To protect sensitive user data against server-side attacks, a
number of security-conscious web applications have turned to client-side
encryption, where only encrypted user data is ever stored in the cloud.
We formally investigate the security of a number of such applications, in-
cluding password managers, cloud storage providers, an e-voting website
and a conference management system. We find that their security relies
on both their use of cryptography and the way it combines with com-
mon web security mechanisms as implemented in the browser. We model
these applications using the WebSpi web security library for ProVerif,
we discuss novel attacks found by automated formal analysis, and we
propose robust countermeasures.

Keywords: Web Security, Formal Methods, Protocol Verification.

1 Application-Level Cryptography on the Web

Many web users routinely store sensitive data online, such as bank accounts,
health records and private correspondence. Servers that store such data are a
tempting target for cybercrime: a single attack can yield valuable data, such
as credit card numbers, for millions of users. As websites move to using cloud-
based data storage, the confidentiality of user data and the trustworthiness of
the hosting servers has come further into question.

Transport layer security (TLS) as provided by HTTPS [21] does not fully
address these concerns. TLS protects sensitive data over the wire as it travels
between a browser and a website. However, it does not protect data at rest, when
it is stored on the client or the server, where it can be accessed by an attacker
stealing a laptop or hacking into a server. To protect from these risks, web
applications use a combination of application-level cryptography and browser-
based security mechanisms to securely handle user data. Our goal is to formally
investigate the effectiveness of these mechanisms and their concrete deployments.

Application-level cryptography. To protect data from hackers, websites like Drop-
box [2] systematically encrypt all files before storing them on the cloud. However,

� Maffeis is supported by EPSRC grant EP/I004246/1.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 126–146, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Keys to the Cloud 127

since the decryption keys must be accessible to the website, this architecture still
leaves user data vulnerable to dishonest administrators and website vulnerabil-
ities. A more secure alternative, used by storage services like SpiderOak and
password managers like 1Password, is client-side encryption: encrypt all data on
the client before uploading it to the website. Using sophisticated cryptographic
mechanisms, the server can still perform limited computations on the encrypted
data [19]. For example, web applications such as ConfiChair [7] and Helios [4]
combine client-side encryption with server-side zero-knowledge constructions to
achieve stronger user privacy goals.

These application-level cryptographic mechanisms deserve close formal anal-
ysis, lest they provide a false sense of security to their users. In particular, it is
necessary to examine not just the cryptographic details (i.e. what is encrypted),
but also how the decryption keys are managed on the the browser.

Browser-based security mechanisms. Even with client-side encryption, the server
is still responsible for access control to the data it stores. Web authentication
and authorization typically rely on password-based login forms. Some websites
use single sign-on protocols like OAuth [17] to delegate user authentication to
third parties. After login, the user’s session is managed using cookies known
only to the browser and server. JavaScript is then used to interact with the user,
make AJAX requests to download data over HTTPS, store secrets in HTML5
local storage, and present decrypted data to the user.

The security of the application thus depends on both the server and on
browser-based mechanisms like cookies and JavaScript. That is dangerous, con-
sidering the prevalence of web vulnerabilities such as Cross-Site Scripting (XSS),
Cross-Site Request Forgery (CSRF), open redirectors or phishing, even on ma-
jor websites. In previous work, our survey of encrypted storage services [11]
uncovered many such vulnerabilities and showed how can be exploited to bypass
both client-side and server-side cryptographic protections. However, these at-
tacks were found by manual inspection aided by tracing tools. Can we search for
such attacks systematically and exhaustively? More importantly, can we eval-
uate any proposed countermeasures to ensure that they are not vulnerable to
variations of the same attacks? In response to both these questions, we follow
[8] in advocating the automated formal analysis of web security mechanisms.

Formal analysis of cryptographic web applications. Standard cryptographic at-
tacker models employ a crude notion of compromise: if a client or server per-
forms any action outside the description of the protocol, it is considered com-
promised. This characterization is too strong for web applications which may
contain dozens of pages, among which only a few are security-sensitive. We need
a new attacker model that allows honest websites to have some vulnerable pages.

In previous work [8], we proposed WebSpi, a formal model of web attackers
and browser-based security mechanisms, written as a library for ProVerif [12].
We used WebSpi to analyze web authorization and single sign-on applications
against a limited set of web attacks including CSRF and open redirectors. Here,



128 C. Bansal et al.

Table 1. Example encrypted web storage applications

Name Key Derivation Encryption Integrity Metadata Integrity Sharing

Wuala PBKDF2 AES, RSA HMAC � �(PKI)

SpiderOak PBKDF2 AES, RSA HMAC � �

BoxCryptor PBKDF2 AES None � �

CloudFogger PBKDF2 AES, RSA None � �(PKI)

1Password PBKDF2-SHA1 AES None � �

LastPass PBKDF2-SHA256 AES, RSA None � �

PassPack SHA256 AES None � �

RoboForm PBKDF2 AES, DES None � �

Clipperz SHA256 AES SHA256 � �

ConfiChair PBKDF2 RSA, AES SHA1 � �(PKI)
Helios N/A El Gamal SHA256 Zero-Knowledge Proof N/A

we extend WebSpi to cover additional browser mechanisms such as local storage,
AJAX, and the associated same origin policy, as well as to account for new
attacks such as XSS, insecure cookies or JSONP-based CSRF.

The analysis of [8] did not address cryptographic issues. Here we extend Web-
Spi to study a series of commercial and academic cryptographic web applications.
Our analysis reveals several new web-based attacks that expose flaws in their
cryptographic designs, and formally reconstructs attacks previously reported
in [11]. These attacks have been responsibly disclosed, and most were fixed in
accordance with our suggestions. Our formal analysis suggests new countermea-
sures that are more robust in the face of web vulnerabilities. We verify these
designs against attackers modeled in WebSpi. In summary, our work extends the
state of the art by combining symbolic cryptographic protocol analysis with a
realistic web attacker model. All the WebSpi scripts referenced in this paper are
available online at http://prosecco.inria.fr/webspi/.

Related Work. A number of cryptographic protocols underlying real-world web
applications have been verified for sophisticated security properties. Closely re-
lated to this paper are the symbolic analyses of ConfiChair [7], Helios [4], and
Plutus [13]. However, none of these consider web attacks like CSRF and XSS, and
as we show for ConfiChair and Helios, their security guarantees can be broken
by such standard web vulnerabilities.

Various attacks have previously been found on encrypted storage applications:
on their cryptographic design [10], on their web deployment [5], and on combi-
nations of the two [11]. Such attacks are typically found using ad hoc tracing
tools, and these works do not offer any positive guarantees for countermeasures.
These attacks serve as motivation for our fomal analysis.

Several works propose formal models of browser-based security mechanisms
[24,15,6,16]. Closely related to our work are the models of [6], which capture
many of the same web vulnerabilities, and can be analyzed using Alloy [18]. How-
ever, they do not generally consider cryptography, whereas our use of ProVerif
enables a combination of cryptographic and web security analysis.

http://prosecco.inria.fr/webspi/


Keys to the Cloud 129

2 Encrypted Web Storage Applications

We study encrypted web storage, a
core functionality of many security-
conscious web applications. More
specifically, we evaluate the design,
implementation, and use of client-side
encryption in the web applications of
Table 1. The general architecture of
such applications is depicted on the
right. They fall in three categories:
File storage services, such as Wuala
and SpiderOak, offer a remote en-
crypted backup folder synchronized across various user devices with options to
share folders and files with non-registered users by sending web links.

Password managers, such as 1Password and LastPass, integrate with a browser
to store user login credentials for different websites. When the user browses to
a known website, the password manager offers to automatically fill in the login
form. The password database is kept encrypted on the client and backed up re-
motely, and can be synchronized across the user’s devices.

Privacy-conscious websites, such as ConfiChair for conference management and
Helios for electronic voting use client-side encryption to protect users against
powerful attackers who may obtain control over the website itself.

All these applications implement an encrypted storage protocol and then use
it to build more advanced features. We begin by describing one such protocol.

2.1 An Encrypted Storage Protocol

Suppose a user u has some sensitive data db with metadata m that she wishes to
backup on a storage server. For example, db may be a local file with name m, or
db may contain a password for the website m. u uses some client software a to
communicate with the server b. When u creates or modifies db, a encrypts the
data and sends it to the storage server. Periodically, a downloads and synchro-
nizes its local copy of the encrypted db with the storage server. u does not know
or trust the storage server, we assume it is somewhere in the cloud. We describe
these two protocols below.

Notation. The cryptographic primitives crypt and decrypt represent symmetric
encryption and decryption (e.g. AES in CBC mode); mac represents MACing
(e.g. HMAC with SHA256); kdf represents password-based key derivation (e.g.
PBKDF2). We model a TLS channel c with some server b as follows: an outgoing
messagem is denoted TLS→b

c (m) and an incoming message is denoted TLS←b
c (m).

Update and Synchronization protocols. Assume that u and b share a secret
secretu,b and that a has a local encryption key K and MAC key K ′ that it
never sends to the server. These three secrets are stored on the client and may
be encrypted under a password for additional security.



130 C. Bansal et al.

Update Cloud Storage: Update(u,m,db)

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a→ b TLS→b

c (Authenticate(u, secretu,b))
b verifies secretu,b and associates c with u
a updates encdb to (m,e=crypt K db,h=mac K ′ (m,e))

2. a→ b TLS→b
c (Upload(m, e, h))

b updates storage[u] to (m,e,h)

In the protocol above, Authenticate(a, secreta,b) denotes a tagged message re-
questing authentication of user u with password secretu,b. Similarly, message
Upload(m, e, h) requests to upload the metadata m with the encryption e of the
database db under the key K, and the MAC h of m and e under the MAC key
K ′. Hence, this protocol protects the confidentiality and ciphertext integrity of
db, and the metadata integrity of m. Some applications in Table 1 do not provide
metadata integrity; in Section 4.3 we show how this leads to a password recovery
attack on 1Password.

The user data db is stored encrypted on the client. If an authorized user
requests to read it, the client a will verify the MAC, decrypt encdb, and display
the plaintext. The synchronization protocol authenticates the user, downloads
the most recent copy of the encrypted database, and verifies its integrity.

Synchronize with Cloud Storage: Synchronize(u)

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a→ b TLS→b

c (Authenticate(u, secretu,b))
b verifies secretu,b and associates c with u
b retrieves storage[u] = (m,e,h)

3. b → a TLS←b
c (Download(m, e, h))

a checks that mac K ′ (m, e) = h

a updates encdb to (m,e,h)

Attacker Model. The protocols described above protect the user from com-
promised servers, network attackers and stolen devices. In particular: an attacker
gaining control of a storage server, or of a device on which the client applica-
tion is installed but not running, must be unable to recover any plaintext or
information about user credentials; a user must be able to detect any tampering
with the stored data; a network attacker must be unable to eavesdrop or tam-
per with communications through the cloud. Under reasonable assumptions on
the cryptographic primitives, one can show that the reference protocol described
above preserves the confidentiality of user data (see, for example [7]). However,
such proofs do not reflect the actual deployment of web-based encrypted storage
applications, leading to attacks that break the stated security goals, despite the
formal verification of their cryptographic protocols.



Keys to the Cloud 131

2.2 Deploying Encrypted Storage Protocols over the Web

Although encrypted storage protocols can be deployed using custom clients and
servers, a big advantage of deploying it through a website is portability. The
storage service may then be accessed from any device that has a web browser
without the need for platform-specific software. This raises the challenge that
the developer now needs to consider additional web-based attack vectors that
affect websites and browsers. Consider an encrypted storage protocol where the
client a is a browser and the server b is a website. We discuss the main design
questions raised by this deployment architecture.

Password-based Key Derivation. Browser a must be able to obtain the secret
secretu,b to authenticate to the server. Then it must be able to obtain the en-
cryption key K and MAC key K ′. The usual solution is that all three of these
secrets are derived from a passphrase, sometimes called a master password. The
key derivation algorithm (e.g. PBKDF2) typically requires a salt and an iteration
count. Choosing a high iteration count stretches the entropy of the passphrase by
making brute-force attacks more expensive, and choosing different salts for each
user reduces the effectiveness of pre-computed tables [20]. In the following, we
assume that each of the three secrets is derived with a different user-dependent
constant (Au, Bu, Cu) and a high iteration count (iter).

User Authentication and Cookie-based Sessions. To access a storage service a user
must log in with the secret secretu,b derived from her passphrase. Upon login,
a session is created on the server and associated with a fresh session identifier
sidu,b sent back to the browser as a cookie. The browser sends back the cookie
with every subsequent request, so the server can correlate all the user actions
on the website even if these actions were taken in separate tabs, over different
HTTPS connections. This login protocol can be described as follows.

Web Login and Key Derivation: Login(u,p,b)

user on browser a navigates to https://b/login

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a→ b TLS→b

c (Request(/login))
2. b → a TLS←b

c (Response(LoginForm))
user enters username u and passphrase p
a derives and stores K = kdf p Au iter, K ′ = kdf p Bu iter

a derives secretu,b = kdf p Cu iter

3. a→ b TLS→b
c (Request(/login, user = u&secret =secretu,b))

b verifies that secret = secretu,b
b generates a cookie sidu,b
b stores (sidu,b, u)

4. b → a TLS←b
c (Response[sidu,b](LoginSuccess()))

a stores (b, sidu,b)

We write Response[sidu,b](LoginSuccess()) to mean that the server sends an HTTP
response with a header containing the cookie sidu,b and a body containing the

/login
/login


132 C. Bansal et al.

page representing successful login. All subsequent requests from the browser to
the server will have this cookie attached to it, written Request[sidu,b](· · · ).
Browser-based Cryptography and Key Storage. The login protocol above and the
subsequent actions of the client role a of the encrypted storage protocol require
a to generate keys, store them, and use them in cryptographic operations. To
execute this logic in a browser, typical websites use JavaScript, either as a script
embedded in web pages or in an isolated browser extension. In some applications,
the cryptography is also implemented in JavaScript (e.g. LastPass). In others,
the cryptography is provided by a Java applet but invoked through JavaScript
(e.g. ConfiChair). In both cases, the keys must be stored in a location accessible
to the script. Sometimes such cryptographic materials are stored in the browser’s
localStorage which provides a private storage area to each website and to each
browser extension.

When the performance or reliability of JavaScript is considered inadequate,
a few storage applications (such as SpiderOak) instead cache decryption keys
on the server and perform all decryptions on the server side; these keys are
discarded upon logout. In the rest of this paper, we generally assume that all
cryptography is implemented on the client unless explicitly specified.

Releasing plaintext to authorized websites. In addition to update and synchro-
nize, some storage services offer advanced sharing mechanisms. For example,
password managers offer a form fill feature whereby user data is automatically
retrieved, decrypted, and released to authorized websites. This feature is imple-
mented by a browser extension or bookmarklet and activated when a user visits
a login page; the extension automatically fills the login form with the user’s cre-
dentials for that page. In the protocol description below, the encrypted storage
client holding the database and its decryption keys is the browser extension x.

Automatic Form Filling for Web Login: Fill(b)

user on browser a navigates to https://b/login

a and b establish TLS connection c: TLS→b
c (−), TLS←b

c (−)
1. a→ b TLS→b

c (Request(/login))
2. b → a TLS←b

c (Response(LoginForm))
a triggers browser extension x with the current page hostname

3. a→ x Lookup(b)
x looks up encdb for (b,e,h)
x checks that mac K ′ (b, e) = h

x computes (u, p) = decrypt K e
4. x → a Result(b, u, p)

a fills LoginForm with (u, p)

Sharing with a web link. File storage services often allow a user to share a file
or folder with others, even if they do not have an account with the service. This
works by sending the recipient a web link that contains within it the decryption
key for the shared file. The receiver can access the file by following the link.

https://b/login
/login


Keys to the Cloud 133

URL-based File Sharing: Share(u,m)

user u sends to v the link U=https://b/?user=u&file=m&key=K
user v on browser a navigates to U

1. a→ b TLS→b
c (Request[](U))

b retrieves storage[u] = (m, e, h)
b decrypts f = decrypt K e

2. b → a TLS←b
c (Response[](Download(f)))

Sending decryption keys in plaintext links is clearly a security risk since the key
can easily be leaked. As a result, even services that offer link-based sharing do
not use the same key for shared files as they do for private files. For instance,
SpiderOak creates a fresh encryption key for each shared folder and re-encrypts
its contents. When the owner needs to access and decrypt her own shared files,
she must first retrieve this shared key from the server. We model this protocol in
more detail in Section 4. Other applications such as Wuala or CloudFogger use
a more secure sharing scheme that relies on a public key infrastructure, allowing
the decryption key to be sent wrapped under the recipient’s public key.

2.3 Web Attacker Model

An encrypted storage application that uses JavaScript and cookie-based sessions
is exposed to, and must protect against, a range of web attack vectors.

Code delivery. In typical website deployments, the JavaScript code that performs
client-side encryption is itself downloaded from the web. If the attacker controls
the server hosting the JavaScript, he may corrupt the application code in order
to leak keys back to himself. Alternatively, if the code is downloaded over plain
HTTP, a network attacker may tamper with the script.

XSS. In its simplest form, an attacker may be able to exploit unsanitized user
input in the application to inject JavaScript that gets inlined in the website
HTML and run along with trusted JavaScript. This may give the attacker com-
plete control over a web page in the browser and to all cryptographic materials
available to that page. Even carefully written security-conscious applications,
such as Dropbox, LastPass, and ConfiChair, may still contain such weaknesses,
as we show in Section 5. New browser security mechanisms are being proposed
to address this issue [23].

Session Hijacking. Once a session is established, the associated cookie is the only
proof of authentication for further actions. If an attacker gets hold of the session
cookie, he can perform the same set of operations with the server as the user. In
Section 5 we describe attacks of this kind that we found in several applications
(including ConfiChair), even if they normally use HTTPS. A solution is for
applications to set the cookie in secure mode, disallowing the browser to send it
over an unencrypted connection.

CSRF. When an action can be triggered by accessing some URL, for example
changing the current user’s email address or his role in the session, a malicious

https://b/?user=
&file=
&key=


134 C. Bansal et al.

site can force its users to access this URL and perform the action on their
behalf, with attacker-controlled parameters. Although it is up to the application
to prevent these kind of attacks, various varieties of CSRF remain common, even
in security-oriented web services [9]. A common solution is to use an unguessable
authorization token bound to the user session and require it to be sent with every
security-sensitive request.

Phishing and Open Redirectors. Features involving third parties may introduce
new attack vectors. For instance, in the automatic form filling protocol above,
an untrusted website may try feeding the extension a fake URL instead of the le-
gitimate login URL, to trick the extension into retrieving the user’s password for
a different website. Similarly, open redirectors such as URL http://b/?redir=x,
that redirect the user to an external website x, facilitate phishing attacks where
the website x may fool users into thinking that they are visiting a page on b

when in fact they are on website x.
In summary, the design of cryptographic web applications must account for

prevalent web vulnerabilities, not just the formal cryptographic attacker of Sec-
tion 2.1. Next, we introduce our methodology for analyzing such applications.

3 Automated Verification of Web Cryptography

We describe the WebSpi library for ProVerif, and discuss how it is used to model
and verify web applications. We show our extensions to WebSpi to model new
JavaScript-based attacks. For details on ProVerif, see the official manual [14].

3.1 Processes

The language underlying ProVerif is a variant of applied pi-calculus [3]. Compu-
tations are described as the interaction of message-passing processes that com-
municate over asynchronous named channels. Knowing the name of a channel
is enough to be able to send or receive messages on it. The name of a channel
defined as private to a process cannot be guessed by other processes, so the cre-
ator controls its scope (that can be extended by sending the channel name to
other processes). Processes have access to local databases where they can store
and retrieve messages. Atomic messages, typically ranged over by a, b, c, h, k, ...
are tokens of basic types. Basic types are channels, bitstrings or user-defined.
Messages can be composed by pairing (M,N) or by applying n-ary data con-
structors and destructors f(M1, ...,Mn). Constructors and destructors are par-
ticularly useful for cryptography, as described below. Pattern matching = M is
extensively used to parse messages.

ProVerif models symbolic cryptography: cryptographic algorithms are treated
as perfect black-boxes whose properties are abstractly encoded using construc-
tors and destructors. Consider authenticated encryption:

fun aenc(bitstring,symkey): bitstring.
reduc forall b:bitstring,k:symkey; adec(aenc(b,k),k) = b.

http://b/?redir=x
x
x
b
x


Keys to the Cloud 135

Given a bit-string b and a symmetric key k, the term aenc(b,k) stands for the
bitstring obtained by encrypting b under k. The destructor adec, given an au-
thenticated encryption and the original symmetric key, evaluates to the original
bit-string b. ProVerif constructors are collision-free (one-one) functions and are,
by default, only reversible if equipped with a corresponding destructor. Hence,
MACs and hashes are modeled as irreversible constructors, and asymmetric cryp-
tography is modeled using public and private keys:

fun hash(bitstring) : bitstring.
fun pk(privkey):pubkey.
fun sign(bitstring,privkey): bitstring.
reduc forall b:bitstring,sk:privkey; verify(sign(b,sk),pk(sk)) = b.

These and other standard cryptographic operations are part of the ProVerif
library. Users can define other primitives where necessary. Such primitives can
be used for example to build detailed models of applications like ConfiChair [7].

The WebSpi library defines data types related to the HTTP protocol and
provides interfaces to the core functionality of browsers and web servers, in the
form of a set of private channels. Application-layer protocols are expressed as
processes linked to this channel interface. The rest of the network, including
potential attackers, can be thought of as arbitrary processes with access to net

and any other public channel.

3.2 WebSpi Architecture

In our model, users surf the web by interacting with web pages on browsers that
communicate on the public channel net over HTTP(S) with servers that host
web applications.

Users. Users are endowed with, or can acquire, username/password credentials
to access applications. Applications are identified by a host name and a path
within that host. The behaviour of specific web page users can be modeled by
defining a UserAgent process that uses the browser interface described below.

Servers. Servers possess private and public keys used to implement encrypted
TLS connections with browsers. These are stored in the serverIdentities table to-
gether with the server name (protocol and host) and a flag xdr specifying if cross-
domain requests are accepted. The WebSpi implementation of a server is given by
the HttpServer process below. HttpServer handles HTTP(S) messages (and encryp-
tion/decryption when necessary) and routes parsed messages to the correspond-
ing web applications on the channels httpServerRequest and httpServerResponse. To
model the server-side handler of a web application one needs to write a process
that uses this interface to send and receive messages.

let HttpServer() =
in(net,(b:Browser,o:Origin,m:bitstring));
get serverIdentities(=o,pk P,sk P,xdr) in
let (k:symkey,httpReq(u,hs,req)) = reqdec(o,m,sk P) in
if origin(u) = o then
let corr = mkCorrelator(k) in



136 C. Bansal et al.

out(httpServerRequest,(u,hs,req,corr));
in(httpServerResponse,(=u,resp:HttpResponse,cookieOut:CookiePair,=corr));
out(net,(o,b,respenc(o,httpResp(resp,cookieOut,xdr),k))).

Browsers. Each browser has an identifier b and is associated with a user. The
WebSpi implementation of a browser is given by the HttpClient process (we inline
some fragments below). Cookies and local storage are maintained in global tables
indexed by browser, page origin and, only for cookies, path. JavaScript running
on a page can access cookies and storage associated with the page origin using
the private channels getCookieStorage and setCookieStorage, in accordance to the
Same Origin Policy. Cookies can be flagged as secure or HTTP-only. Secure
cookies are sent only on HTTPS connections and HTTP-only cookies are not
exposed to pages via the CookieStorage channel. For example, the HttpClient code
that gets triggered when the JavaScript of page p on browser b wants to set
cookies dc and store ns in local storage is:

in (setCookieStorage(b),(p:Page,dc:Cookie,ns:Data));
get pageOrigin(=p,o,h,ref) in get cookies(=b,=o,=h,ck) in
insert cookies(b,o,h,updatedomcookie(ck,securejs(dc),insecurejs(dc)));
insert storage(b,o,ns)

Here, the function updatedomcookie prevents JavaScript from updating the HTTP-
only cookies of the cookie record ck.

The main role of the browser process is to handle requests generated by users
and web pages, and their responses. The location bar is modeled by channel
browserRequest, which can be used by to navigate to a specific webpage. Loca-
tion bar request have an empty referrer header. Hyperlink clicks or JavaScript
GET/POST requests are modeled by the pageClick channel. The browser attaches
relevant headers (referrer and cookies) and sends the request on the network.
When it receives the response, it updates the cookies and creates a new page with
the response data. Process HttpClient also takes care of encrypting HTTPS re-
quests, decrypting HTTPS responses, and handling redirection responses. AJAX
requests are sent to the browser on channel ajaxRequest. When the browser re-
ceives the response to an AJAX request it passes on the relevant data to the
appropriate web page. (Although we abstract away the tree-like structure of the
DOM, we do represent its main features salient to modeling web interactions:
cookies, hyperlinks, location bar, forms, etc.) We give the HttpClient code for
sending a request req to URI u from page p, with referrer ref and AJAX flag aj:

let o = origin(u) in let p = path(u) in
get cookies(=b,=o,=slash(),cs) in get cookies(=b,=o,=p,cp) in
let header = headers(ref, cookiePair(cs,cp), aj) in
get publicKey(=o,pk host) in
let m = httpReq(u,header,req) in
let (k:symkey,e:bitstring) = reqenc(o,m,pk host) in
out(net,(b, o, e));

The request header is obtained concatenating the referrer, the cookies cs for
path “/” and cp for path p and the AJAX flag aj. If needed one could extend



Keys to the Cloud 137

the model by including additional headers such as Origin [9]. Note how the
code retrieves the public key pk host of the destination server, which is used to
create the symmetric key k and the encrypted message e. The origin parameter o
passed to the encryption function reqenc specifies if the chosen protocol is HTTP
or HTTPS. In the former case, e equals m.

To model the client side of a web application, one needs to write a pro-
cess that can access the private browser interface channels pageClick, ajaxRequest,
getCookieStorage and setCookieStorage.

Web Attacker Model. Representing the network as a public channel net

enables the standard Dolev-Yao network attacker, that can intercept and inject
messages but is not able to break cryptography. To model a compromised server,
we simply release its private key on a public channel so that an arbitrary attacker
process can impersonate the server. We enable XSS and code injection attacks
by defining a process AttackerProxy that receives messages on a public channel
(available to the attacker) and forwards them on the browser’s private channels.
The parameters sent on these channels include the browser and page ids, which
are normally secret. We can selectively enable the compromise of a specific page
on a specific browser by releasing the corresponding ids to the environment.
CSRF attacks are enabled by the willingness of the user to visit attacker websites
and by the ability of our model to represent GET/POST requests and attach
the corresponding cookies.

Verification in WebSpi. The verification model of WebSpi is the same as in
ProVerif. Security goals in ProVerif are typically written as correspondence asser-
tions between events embedded in the code [12]. The command event e(M1,...,Mn)

inserts an event e(M1,...,Mn) in the trace of the process being executed. A script
in fact contains processes and queries of the form ∀M1, ...Mk. e(M1, ...Mk) ⇒ φ.
ProVerif tries to prove that whenever the event e is reachable, the formula φ
is true (φ can contain conjunctions or disjunctions). In Section 4 we will show
concrete security queries.

The soundness properties of ProVerif [12] also hold for our security policies.
If an expect is satisfied, then it is satisfied in all traces of running the applied-pi
processes defined in the script in parallel with any arbitrary attacker processes.
If ProVerif proves that an expect is not satisfied, it outputs a proof derivation
that explains how an attacker can trigger an event that violates the policy.

Although very expressive, WebSpi is not a complete model of the web. For
example, our model of the Same Origin Policy does not include <iframe> tags
from different origins within the same page, and we do not model several HTTP
headers such as Origin and ETag. Hence, our main focus is on discovering at-
tacks, which can be validated in the real world, rather than on providing positive
guarantees, which may be violated in practice due to omissions in our model.

4 Analyzing Encrypted Web Storage Services

In this section, we analyze three web applications that use the cloud to store
encrypted secrets. We show how to model these applications using WebSpi and



138 C. Bansal et al.

verify them using ProVerif against realistic web attackers. We show how web
vulnerabilities enable concrete attacks that leak secrets to a web attacker. It is
difficult to completely eradicate such vulnerabilities from complex, real-world
web applications. For that reason we propose countermeasures that harden such
applications even in the presence of vulnerabilities.

4.1 ConfiChair

ConfiChair [7] is a cloud-based conference management system that seeks to offer
stronger security and privacy guarantees than current systems like EasyChair
and EDAS. Each conference has a chair, authors, and a program committee
(of reviewers). Once a user logs in at
the login page, she is forwarded to
a Conferences page where she may
choose a conference to participate
in. The user may choose her role in
the conference by clicking on “change
role” which forwards her to the role
page. Papers and reviews are stored
encrypted on the web server, and each
user holds keys to all papers and reviews she is allowed to read in a keypurse.
For example, each paper has an encryption key (generated by the author) that
is stored in the author’s and conference chair’s keypurses. Each conference has a
private key stored only in the chair’s keypurse and a shared reviewer key that is
stored in each reviewer’s keypurse. Each user’s keypurse is also stored encrypted
on the web server under a key derived from her password. The password itself
is not stored there, instead a separate key derived from the password is used to
authenticate the user. The web server authenticates users before sending them
their keypurses and enforces role-based access control to conference actions and
per-user access control to papers and reviews. All the cryptography for decrypt-
ing and encrypting keypurses, papers, and reviews is performed in the browser
using a combination of JavaScript and a Java applet.

WebSpi Analysis. We model and evaluate paper downloads using WebSpi.

Login. We model the login page using two processes: LoginApp represents a
server-side webpage listening for requests on https://confichair.org/login, and
LoginUserAgent represents the client-side JavaScript and HTML downloaded from
this URL. These processes implement the web login protocol of Section 2.2, but
do not yet derive the encryption and MAC keys.

The process LoginUserAgent downloads a login form, waits for the user to type
her username and password, derives an authentication credential from the pass-
word and sends the username and credential to LoginApp over HTTPS (through
the network channel between the browser and HTTP server processes):

let loginURI = uri(https(), confichair, loginPath(), nullParams()) in
out(browserRequest(b),(loginURI, httpGet()));
in (newPage(b),(p:Page,=loginURI,d:bitstring));

https://confichair.org/login


Keys to the Cloud 139

get userData(=confichair, uid, pwd, paper) in
let cred = kdf1(pwd) in
in (getCookieStorage(b),(=p,cookiePair(cs,ch),od:Data));
out (setCookieStorage(b),(p,ch,storePassword(pwd)));
event LoginInit(confichair, b, uid);
out(pageClick(b),(p,loginURI,httpPost(loginFormReply(uid,cred))))

Notably, the process stores the password in the HTML5 local storage corre-
sponding to the current origin https://confichair.org, making it available to
any page subsequently loaded from this origin. When the user logs out, the local
storage is purged.

The server process LoginApp is dual to the LoginUserAgent. It checks that the
credential provided by the user in the login form is valid (by consulting a server-
side database modeled as a table) and creates a session id passed to the browser
as a cookie for all pages on the website, before redirecting the user to the con-
ferences page.

Paper Download. We model all the conference pages using a server-side pro-
cess ConferenceApp and a client-side process ConferenceUserAgent. The process
ConferencesUserAgent first makes an AJAX request to retrieve the encrypted key-
purse of the logged in user. It then decrypts the keypurse using a key derived
from the cached password and stores the decrypted keypurse in local storage for
the current origin (https://confichair.org).

let keypurseURI = uri(https(), confichair, keyPursePath(), nullParams()) in
out (ajaxRequest(b),(p,keypurseURI,httpGet()));
in (ajaxResponse(b),(=p,=keypurseURI,JSON(x)));
in (getCookieStorage(b),(=p,cookiePair(cs,ch),storePassword(pwd)));
let keypurse(k) = adec(x, kdf2(pwd)) in
out (setCookieStorage(b),(p,ch,storeKeypurse(k))))

For simplicity, the keypurse contains a single key, meant for decrypting the
current user’s papers. Subsequently, the user may at any point ask to download
a paper and decrypt the downloaded PDF with the keypurse.

let paperURI = uri(https(), h, paperPath(), nullParams()) in
out (ajaxRequest(b),(p,paperURI,httpGet()));
in (ajaxResponse(b),(=p,=paperURI,JSON(y)));
in (getCookieStorage(b),(=p,cookiePair(cs,ch),storeKeypurse(k)));
let paper = adec(y,k) in event PaperReceived(paper))

Security Goals. We model two simple security goals for our ConfiChair website
model. First, the login mechanism should authenticate the user. This is modeled
as a correspondence query:

event(LoginAuthorized(confichair,id,u,c)) =⇒event(LoginInit(confichair,b,id))

Second, that a user’s papers must remain syntactically secret. We model this
using an oracle process that raises an event when the attacker successfully guesses
the contents of a paper

in(paperChannel, paper:bitstring);
get userData(h, uId, k, =paper) in event PaperLeak(uId,paper).

https://confichair.org
https://confichair.org


140 C. Bansal et al.

We then ask whether the event PaperLeak is ever reachable. The queries writ-
ten here are quite simple. More generally, they must account for compromised
users whose passwords are known to the attacker. For the login and conferences
processes above, these queries do indeed hold against an adversary who controls
the network, some other websites that honest users may visit, and some set of
compromised users.

Attacker Model: XSS on Role Page. Our security analysis found a number of web
vulnerabilities. Here we describe how the change-role functionality on the Con-
fiChair webpage is vulnerable to an XSS attack. If an attacker can trick a user
into visiting the URL http://confichair.org/?set-role=<script>S</script> ,
ConfiChair returns an error page that embeds the HTML tag <script>S</script> ,
causing the tainted script S to run. We model this attack as part of the client-side
process RoleUserAgent for the role page: after loading the page, the process leaks
control of the page to the adversary by publicly disclosing its identifier:

let roleURI = uri(https(), h, changeRolePath(), roleParams(x)) in
out(browserRequest(b),(roleURI, httpGet()));
in (newPage(b),(p:Page,=roleURI,y:bitstring));
out(pub, p)

The attacker may subsequently use this page identifier p to make requests on
behalf of the page, read the cookies, and most importantly, the local storage for
the page’s origin.

Attacks on Authentication and Paper Secrecy. If we add this RoleUserAgent to our
ConfiChair model ProVerif finds several attacks against our security goals. First,
the XSS attacker may now read the current user’s password from local storage
and send it to a malicious website. This breaks our authentication goal since
from this point onwards the attacker can pretend to be the user. Second, the
XSS attacker may read the current user’s keypurse from local storage and send
it to a malicious website. This breaks our paper secrecy goal since the attacker
can decrypt the user’s papers.

These attacks have been experimentally confirmed on the ConfiChair website
(along with some others described in Section 5). They break the stated security
goals of ConfiChair by leaking the user’s papers and reviews to an arbitrary
website. The previous ProVerif analysis of ConfiChair [7] did not cover browser-
based key management or XSS attacks: its security proofs remain valid in the
cloud-based attacker model.

Mitigations and Countermeasures. An obvious mitigation is to eliminate the
XSS attack on the change-role functionality. A more interesting design question
is how to change the ConfiChair website to be more robust in the presence of
such XSS attacks. We focus on countermeasures that keep the current workflow.

First, there is no need for the website to store the cleartext password in local
storage, where an XSS attacker can obtain it. Storing just the decryption key
is enough. Second, we propose to use a fresh session-specific wrapping key to
encrypt both the decryption key and the keypurse before storing them in local
storage. The website can then decide which pages need access to these keys and

http://confichair.org/?set-role=<script>S</script>
<script>S</script>
S


Keys to the Cloud 141

expose the wrapping key in a secure cookie only for those pages. For example,
suppose all pages that need access to the wrapping key are served from the sub-
domain secure.confichair.org, whereas all other pages are served from the
parent domain confichair.org. The wrapping key can then be set as a cookie
for the sub-domain, pages in the parent domain will not be able to access it. In
this design, the website never has both the key and the encrypted data. During
login the browser has the password and the website has the encrypted data.
After login, the browser has a re-encrypted keypurse and the website has the
fresh encryption key. With these changes our secrecy and authentication queries
are verified by ProVerif. That is, if the login and conferences pages are hosted
on the secure sub-domain and are XSS-free, then XSS attacks on other pages
do not impact the security of the application. Whether this countermeasure is
practical or even resistant to more sophisticated iframe-based attacks requires
further investigation.

4.2 SpiderOak

SpiderOak is a commercial cloud-based backup, synchronization and sharing ser-
vice. It advertises itself as “zero-knowledge”, that is, the SpiderOak servers only
store encrypted data, but never the associated decryption keys. Users typically
use downloaded client software to connect to SpiderOak and synchronize their
local folders with cloud-based encrypted backups. However, SpiderOak also pro-
vides its users with a web front end to access their data so that they can read
or download their files on a machine where they have not installed SpiderOak.

When a user logs into the SpiderOak website, her decryption keys are made
available to the web server so that it can decrypt a user’s files on her behalf.
These keys are to be thrown away when the user logs out. However, if the
user shares a folder using a web link with someone else, the decryption key is
treated differently. The key is embedded in the web link, and it is also stored on
the website for the file owner’s use. We focus on modeling this management of
shared folders (called shared rooms) on SpiderOak.

WebSpi Analysis. The SpiderOak login process is similar to ConfiChair, ex-
cept that besides the derived authentication credential it sends also the plaintext
password to the server. After login, the user is forwarded to his root directory,
from where he may choose to open one of his shared folders (called shared rooms).

The process SharedRoomUserAgent models the client-side JavaScript triggered
when the user accesses a shared folder. It makes an AJAX request to retrieve
the URL, file names, and decryption key for the folder. It then constructs a web
link consisting of the URL, file name, and the decryption key and uses the URL-
based sharing protocol of Section 2.2 to retrieve its files. The server-side process
SharedRoomApp responds to the AJAX request from the user: it authenticates
the user based on her login cookie, retrieves the folder URL, file names, and
decryption key from a database and sends it back in a JSON formatted message.
It also responds to GET requests for files, but in this case the user does not have
to be logged in; she can instead provide the name of the file and the decryption
key as parameters in the URI.

secure.confichair.org
confichair.org


142 C. Bansal et al.

Similarly to ConfiChair, we set two security goals: user authentication and
syntactic file secrecy. ProVerif is able to show that our SpiderOak model pre-
serves login authentication but it fails to prove file secrecy as we explain below.

JSONP CSRF Attack on Shared Rooms. The SpiderOak shared rooms page is
vulnerable to a CSRF attack on its AJAX call for retrieving shared room keys.
If a user visits a malicious website while logged into SpiderOak, that website
can trigger a cross-site request to retrieve the shared room key for the currently
logged-in user. The browser automatically adds the user’s login cookie to the
request and since the server relies only on the cookie for authentication, it will
send back the JSON response to the attacker. The attacker can then retrieve the
file by constructing a web link and making a GET request.

This CSRF attack only works if the target website explicitly enables cross-
domain AJAX requests, as we found to be the case for SpiderOak. In our Spi-
derOak model, the SharedRoomsApp page sets the xdr flag, and ProVerif finds the
CSRF attack (as a violation of file secrecy).

Mitigations and Countermeasures. We experimentally confirmed the attack on
the SpiderOak website and on our advice, SpiderOak removed cross-domain ac-
cess to shared rooms. As in ConfiChair, we consider whether a different design of
SpiderOak would make it resistant to attack even if it had a CSRF vulnerability.

One countermeasure is to encrypt the shared room key with the owner’s pass-
word. Hence, only the owner can decrypt the key, but that is adequate since
other shares are given the key in the web link anyway. ProVerif shows that with
this fix the attacker is no longer able to obtain the file, even though the CSRF
attack is still enabled. The attacker can get the file URL but not the key.

4.3 1Password

1Password is a password manager that uses the cloud only as an encrypted store.
Typically, it uses Dropbox to backup and replicate a user’s encrypted password
database. To protect these passwords in transit, on Dropbox, and on each device,
the password database is always encrypted on the client before uploading. Even
though 1Password does not host any website, we show that it is nonetheless
vulnerable to web-based attacks.

Password managers such as 1Pass-
word provide a browser extension that
makes it easier for users to manage
their passwords. The first time a user
visits a login page and enters his pass-
word, the browser extension offers to
remember the password. On future
visits, 1Password offers to automati-
cally fill in the password. Concretely, the extension looks at the origin of the
page and uses it to lookup its database. If a password is found, it is decrypted
and filled into the login form.

WebSpi Analysis. We model 1Password and its browser extension as a process
that waits for messages from a page on a channel extensionChannel; it then looks



Keys to the Cloud 143

Table 2. Web vulnerabilities in cloud storage websites

Name Alternate Login Insecure Cookie XSS CSRF Open Redirector Frameable

Dropbox OAuth � � � � �

SpiderOak HTTP Auth � � � � �

LastPass YubiKey � � � � �

PassPack YubiKey � � � � �

ConfiChair None � � � � �

Helios OAuth, OpenID � � � � �

for an entry for the current origin in the password database (called a keychain
store). If it finds an entry, it asks the user for a master password, uses it to
decrypt the username and password, and returns them on the extension channel
to the requesting page. This protocol corresponds to the automatic form filling
protocol of Section 2.2, except that 1Password does not include a MAC with
the encrypted data. We compose this extension process with a standard login
application, for example, as in the SpiderOak model, to obtain a simple model
for 1Password. Login authentication and password secrecy are the security goals.

Metadata Tampering on the Password Database. 1Password is designed to be
resistant to attacks on Dropbox and to an attacker who has stolen a user’s
device. We model an attacker with read/write access to the encrypted password
database. Each password entry in 1Password is stored as a separate text file in
Dropbox, so our model captures attackers who can read or write to these files.
When composed with this attacker and a malicious website, ProVerif finds that
password secrecy is violated (hence, so is login authentication).

The attack proceeds as follows: the attacker reads the entry for (say) Spi-
derOak from the database and replaces the hostname SpiderOak with the name
of his own server, Mallory. Since the origin is not encrypted or integrity-protected
in the database, this modification remains undetected. The next time the user
visits Mallory’s website, the page requests a password for Mallory and the 1Pass-
word extension instead provides the password for SpiderOak, which gets leaked
to Mallory. We call this attack a metadata tampering attack since the attacker
manages to modify the metadata surrounding an encrypted password. Similar
attacks are applicable in other storage services.

Mitigations and Countermeasures. The metadata tampering attack only applies
if the attacker has write access to the encrypted database. Hence, one counter-
measure is to make the database inaccessible to the attacker. A more robust
solution is to add metadata integrity protection to the password database. As
in the protocols of Section 2.2, we propose that both the ciphertext and all
metadata in a keychain should be MACed with a key derived from the master
password. ProVerif verified that this prevents metadata tampering, and hence
password leaks, even if the password database is stored in an insecure location.

5 Concrete Attacks on Encrypted Web Storage Services

We have shown how to formally analyze core components of three encrypted
web storage services using WebSpi and ProVerif. In each case, we found that



144 C. Bansal et al.

the security provided by cryptography was circumvented by a web-based attack.
For illustration, Table 2 summarizes vulnerabilities on storage websites found
by us and by others. Besides XSS and CSRF, this table notes websites that did
not use secure cookies and were thus vulnerable to session hijacking, those that
had open redirectors that may lead to phishing, and those that were framable
and thus vulnerable to clickjacking. These vulnerabilities are ubiquitous on the
web and seem difficult to avoid on realistic websites. We now explain the impact
of such vulnerabilities on our target applications. All the attacks below were
discovered and reported by us, either during this work, or in [11].

Metadata Tampering. Encrypted storage services such as BoxCryptor, Cloud-
fogger, and 1Password aim to be resilient to the tampering of encrypted data
on DropBox. However, these applications failed to protect metadata integrity,
so an attacker could confuse users about their stored data. For example, one
could rename an encrypted file in BoxCryptor and replace an encrypted file in
CloudFogger without these modifications being detected.

User Impersonation. Both ConfiChair and Helios can be attacked if a logged-in
user visits a malicious website. If a logged-in conference chair visits a malicious
website, the website may use a series of CSRF and clickjacking attacks to close
submissions or release referee reports to authors. On Helios, the problem is more
serious. If a user authenticates on Helios using Facebook (a common usage pat-
tern), any malicious website she subsequently visits may steal her authentication
token and impersonate her, even if she logged out of Helios. The attack relies
on an open redirector on Helios and the OAuth 2.0 protocol implemented by
Facebook, and corresponds to a token redirection attack previously found using
WebSpi [8]. This attack undermines voter authentication on Helios, and lets an
attacker modify election settings by impersonating the election administrator.

Password Phishing. Password managers are vulnerable to a variety of phishing
attacks where malicious websites try to fool them into releasing passwords for
trusted websites. Metadata tampering, as shown for 1Password, also applies to
Roboform. Another attack vector is to use carefully crafted URLs that are in-
correctly parsed by the password manager. A typical example is http://a:b@c:d,
which means that the user a with password b wants to access website c at port d,
but may be incorrectly parsed by a password manager as a user accessing web-
site a at port b. We found such vulnerabilities in 1Password and many popular
JavaScript URL parsing libraries. We also found that password managers like
LastPass that use bookmarklets are vulnerable to JavaScript rootkits [5].

6 Conclusions

In this paper, we formally analyzed 3 encrypted web storage applications, and
described concrete security attacks in 7 more. Our reports resulted in security
updates for Wuala, 1Password, LastPass, and SpiderOak, and security advisories
for the ConfiChair and Helios websites, others are being discussed. WebSpi is
a useful tool for evaluating web applications and for experimenting with their

http://a:b@c:d


Keys to the Cloud 145

design to make them more resilient to standard web vulnerabilities. As Web-
Spi is not complete, we leave the task of modeling even more attacks, such as
framing [22], JavaScript rootkits [5], and other scenarios [1], to future work.

References

1. Browser security handbook, http://code.google.com/p/browsersec
2. How secure is Dropbox?, https://www.dropbox.com/help/27/en
3. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication.

SIGPLAN Not. 36, 104–115 (2001)
4. Adida, B.: Helios: Web-based open-audit voting. In: USENIX Security Symposium,

pp. 335–348 (2008)
5. Adida, B., Barth, A., Jackson, C.: Rootkits for JavaScript environments. In: Work-

shop on Offensive Technologies, WOOT (2009)
6. Akhawe, D., Barth, A., Lam, P.E., Mitchell, J., Song, D.: Towards a formal foun-

dation of web security. In: CSF, pp. 290–304 (2010)
7. Arapinis, M., Bursuc, S., Ryan, M.: Privacy Supporting Cloud Computing: Con-

fiChair, a Case Study. In: Degano, P., Guttman, J.D. (eds.) POST 2012. LNCS,
vol. 7215, pp. 89–108. Springer, Heidelberg (2012)

8. Bansal, C., Bhargavan, K., Maffeis, S.: Discovering concrete attacks on website
authorization by formal analysis. In: CSF, pp. 247–262 (2012)

9. Barth, A., Jackson, C., Mitchell, J.C.: Robust defenses for cross-site request forgery.
In: CCS, pp. 75–88 (2008)

10. Belenko, A., Sklyarov, D.: “Secure Password Managers” and “Military-Grade En-
cryption” on Smartphones: Oh, Really? Technical report, Elcomsoft Ltd. (2012)

11. Bhargavan, K., Delignat-Lavaud, A.: Web-based attacks on host-proof encrypted
storage. In: Workshop on Offensive Technologies, WOOT (2012)

12. Blanchet, B.: Automatic verification of correspondences for security protocols.
Journal of Computer Security 17(4), 363–434 (2009)

13. Blanchet, B., Chaudhuri, A.: Automated formal analysis of a protocol for secure file
sharing on untrusted storage. In: IEEE Symposium on Security & Privacy (2008)

14. Blanchet, B., Smyth, B.: ProVerif: Automatic Cryptographic Protocol Verifier,
User Manual and Tutorial, http://www.proverif.inria.fr/manual.pdf

15. Bohannon, A., Pierce, B.C.: Featherweight Firefox: Formalizing the core of a web
browser. In: WebApps (2010)

16. Groß, T.R., Pfitzmann, B., Sadeghi, A.-R.: Browser Model for Security Analy-
sis of Browser-Based Protocols. In: De Capitani di Vimercati, S., Syverson, P.F.,
Gollmann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Hei-
delberg (2005)

17. Hammer-Lahav, E., Recordon, D., Hardt, D.: The OAuth 2.0 Authorization Pro-
tocol. IETF Internet Draft (2011)

18. Jackson, D.: Alloy: A Logical Modelling Language. In: Bert, D., Bowen, J.P., King,
S., Waldén, M. (eds.) ZB 2003. LNCS, vol. 2651, p. 1. Springer, Heidelberg (2003)

19. Kamara, S., Lauter, K.: Cryptographic Cloud Storage. In: Sion, R., Curtmola, R.,
Dietrich, S., Kiayias, A., Miret, J.M., Sako, K., Sebé, F. (eds.) FC 2010 Workshops.
LNCS, vol. 6054, pp. 136–149. Springer, Heidelberg (2010)

http://code.google.com/p/browsersec
https://www.dropbox.com/help/27/en
http://www.proverif.inria.fr/manual.pdf


146 C. Bansal et al.

20. Kelsey, J., Schneier, B., Hall, C., Wagner, D.: Secure Applications of Low-Entropy
Keys. In: Okamoto, E., Davida, G., Mambo, M. (eds.) ISW 1997. LNCS, vol. 1396,
pp. 121–134. Springer, Heidelberg (1998)

21. Rescorla, E.: HTTP over TLS. Request for Comments 2818, IETF (2000)
22. Rydstedt, G., Bursztein, E., Boneh, D., Jackson, C.: Busting frame busting: a study

of clickjacking vulnerabilities at popular sites. In: Web 2.0 S&P (2010)
23. Stearne, B., Barth, A. (eds.): Content Security Policy 1.0. W3C Working Draft

(2012)
24. Yoshihama, S., Tateishi, T., Tabuchi, N., Matsumoto, T.: Information-Flow-Based

Access Control for Web Browsers. IEICE Transactions E92-D(5), 836–850 (2009)



Lazy Mobile Intruders�

Sebastian Mödersheim, Flemming Nielson, and Hanne Riis Nielson

DTU Compute, Denmark

Abstract. We present a new technique for analyzing platforms that ex-
ecute potentially malicious code, such as web-browsers, mobile phones,
or virtualized infrastructures. Rather than analyzing given code, we ask
what code an intruder could create to break a security goal of the plat-
form. To avoid searching the infinite space of programs that the intruder
could come up with (given some initial knowledge) we adapt the lazy
intruder technique from protocol verification: the code is initially just a
process variable that is getting instantiated in a demand-driven way dur-
ing its execution. We also take into account that by communication, the
malicious code can learn new information that it can use in subsequent
operations, or that we may have several pieces of malicious code that can
exchange information if they “meet”. To formalize both the platform and
the malicious code we use the mobile ambient calculus, since it provides
a small, abstract formalism that models the essence of mobile code. We
provide a decision procedure for security against arbitrary intruder pro-
cesses when the honest processes can only perform a bounded number
of steps and without path constraints in communication. We show that
this problem is NP-complete.

1 Introduction

Mobile Intruder. With mobile intruder we summarize the problem of executing
code from an untrusted source in a trusted environment. The most common
example is executing code from untrusted websites in a web browser (e.g., in
Javascript). We trust the web browser and surrounding operating system (at
least in its initial setup), we have a security policy for executing code (e.g.,
on access to cookies in web-browsers), and we want to verify that an intruder
cannot design any piece of code that would upon execution lead to a violation
of our security policy [11]. There are many similar examples where code from an
untrusted source is executed by an honest host such as mobile phones or virtual
infrastructures.

Related Problems. The mobile intruder problem is in a sense the dual of the
mobile agents problem where “honest” code is executed by an untrusted envi-
ronment [3]. The mobile intruder problem has also similarities with the proof-
carrying-code (PCC) paradigm [15]. In PCC we also want to convince ourselves

� The research presented in this paper has been partially supported by MT-LAB, a
VKR Centre of Excellence for the Modelling of Information Technology. The authors
thank Luca Viganò and the anonymous reviewers for helpful comments.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 147–166, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



148 S. Mödersheim, F. Nielson, and H.R. Nielson

that a piece of code that comes from an untrusted source will not violate our
policy. In contrast to PCC, we do not consider a concrete given piece of code,
but verify that our environment securely executes every piece of code. Also, of
course, we do not require code to be equipped with a proof of its security.

The Problem and a Solution. The difficulty in verifying a given architecture for
running potentially malicious code lies in the fact that there is an infinite number
of programs that the intruder can come up with (given some initial knowledge).
Even bounding the size of programs (which is hard to justify in general), the
number of choices is vast, so that naively searching this space of programs is
infeasible.

Our key observation is that this problem is very similar to a problem in proto-
col verification and that one may use similar verification methods to address it.
The similar problem in protocol verification is that the intruder can at any point
send arbitrary messages to honest agents. Also here, we have an infinite choice of
messages that the intruder can construct from a given knowledge, leading to an
infinitely branching transition relation of the system to analyze. While in many
cases we can bound the choice to a finite one without restriction [4], the choice
is still prohibitively large for a naive exploration.

In order to deal with this problem of large or infinite search spaces caused by
the “prolific” intruder, a popular technique in model checking security protocols
is a constraint-based approach that we call the lazy intruder [12,13,16,6]. In a
state where the intruder knows the set of messages K, he can send to any agent
any term t that he can craft from this knowledge, written K " t. To avoid
this naive enumeration of choices, the lazy intruder instead makes a symbolic
transition where we represent the sent message by a variable x and record the
constraint K " x. During the state exploration, variables may be instantiated
and the constraints must then be checked for satisfiability. The search procedure
thus determines the sent message x in a demand-driven, lazy way.

A basic idea is now that code can be seen as a special case of a message and
that we may use the lazy intruder to lazily generate intruder code for us. There
are of course several differences to the problem of intruder-generated message,
because code has a dynamic aspect. For instance the code can in a sense “learn”
messages when it is communicating with other processes and use the learned
messages in subsequent actions. Another aspect is that we want to consider mo-
bility of code, i.e., the code may move to another location and continue execution
there. We may thus consider that code is bundled with its local data and move
together with it, as it is the case for instance on migration operations in vir-
tual infrastructures. As a result, when two pieces of intruder-generate code are
able to communicate with each other, then they can exchange all information
they have gathered. An example is that an intruder-generated piece of code is
able to enter a location, gather some secret information there, and return to the
intruder’s home base with this information.

Contribution. The key idea of this paper is to use the lazy intruder for the
malicious mobile code problem: in a nutshell, the code initially written by the



Lazy Mobile Intruders 149

intruder is just a variable x and we explore in a demand driven, lazy way what
this code could look like more concretely in order to achieve an attack.

Like in the original lazy intruder technique, we do not limit the choices of the
intruder, but verify the security for the infinite set of programs the intruder could
conceive. Also, like in the lazy intruder for security protocols, this yields only a
semi-decision procedure for insecurity, because there can be an unbounded num-
ber of interactions between the intruder and the environment; this is powerful
enough to simulate Turing machines. However by bounding the number of steps
that honest processes can perform, we obtain a decision procedure. We show
that this problem is NP-complete.

For such a result, we need to use a formalism to model the mobile intruder
code—or several such pieces of code—and the environment where the code is
executed. In this paper we choose the mobile ambient calculus, which is an ex-
tension of common process calculi with a notion of mobility of the processes and
a concept of boundaries around them, the ambients. The reason for this choice
is that we can develop our approach very abstractly and demonstrate how to
deal with each fundamental aspect of mobile code without committing to a
complex formalization of a concrete environment such as a web-browser running
Javascript or the like. In fact, mobile ambients can be regarded as a “minimal”
formalism for mobility. Moreover, it has a well-defined semantics which is nec-
essary to formally prove the correctness of our lazy mobile intruder technique.
We therefore avoid a lot of technical problems that are immaterial to our ideas,
and neither do we tie our approach to one particular application field.

2 The Ground Model

2.1 The Ambient Calculus

We use the ambient calculus as defined by Cardelli and Gordon [8]. There is a
basic version and an extension with communication primitives; we present the
ambient calculus right away with communication and only mention that our
method also works, mutatis mutandis, for the basic ambient calculus. Fig. 1
contains the syntax of the ambient calculus, and Fig. 2 and 3 give the semantics
by defining a structural congruence ≡ and reduction relation →, respectively. In
these figures, we have already omitted some primitives that we do not consider
in this paper, namely replication, name restriction, and path constraints; we
discuss these restrictions in Sec. 2.5.

The ambient calculus is an extension of standard process calculi with the
usual constructs 0 for the inactive process, P | Q for the parallel composition
of processes P and Q, as well as input (x).P—binding the variable x in P—
and output 〈M〉. In addition we have a concept of a process running within
a boundary, or ambient, denoted n[P ], and this ambient has the name n. For
instance one may model by m[P | v1[R] | v2[Q]] a situation where a process P
is running on a physical machine m together with virtual machines v1 and v2
that host processes R and Q, respectively. The communication rule (4) in Fig. 3



150 S. Mödersheim, F. Nielson, and H.R. Nielson

P,Q ::= processes M ::= capabilities
0 inactivity x variable
P | Q composition n name
M [P ] ambient in M can enter M
M.P capability action out M can exit M
(x).P input action open M can open M
〈M〉 output action

Fig. 1. Considered fragment of the ambient calculus

P ≡ P

P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R

P ≡ Q

P | R ≡ Q | R
P ≡ Q

M [P ] ≡ M [Q]

P ≡ Q

M.P ≡ M.Q

P ≡ Q

(x).P ≡ (x).Q P | Q ≡ Q | P
(P | Q) | R ≡ P | (Q | R) P | 0 ≡ P

Fig. 2. Structural congruence relation

for instance says that processes can communicate when they run in parallel, but
not when they are separated by ambient boundaries. Process can move with the
operations in n and out n according to rules (1) and (2); also one process can
dissolve the boundary n[·] of another parallel running ambient by the action
open n according to rule (3). In all positions where names can be used, we may
also use arbitrary capabilities M , e.g., one may have strange ambient names
like in in n, but this is merely because we do not enforce any typing on the
communication rules, and we will not consider this in examples.

We require that in all processes where two input actions (x).P and (y).P
occur, different variable symbols x 	= y are used. This is not a restriction since
we do not have the replication operator and can therefore make all variables
disjoint initially by α-renaming.

2.2 Transition Relation

The definition of the reduction relation → in Fig. 3 is standard, however there
is a subtlety we want to point out that is significant later when we go to a
symbolic relation ⇒. The point is that, to be completely precise, the symbols
n, m, P , Q, R, P ′, and Q′ in these rules are meta-variables ranging over names
and processes, respectively. When applying a rule, these variables are supposed
to be matched with the process they are applied to.

To work with the symbolic approach later more easily, let us reformulate this
and make explicit the matching by interpreting rules as rewriting rules. In this



Lazy Mobile Intruders 151

n[in m.P | Q] | m[R] → m[n[P | Q] | R] (1)

m[n[out m.P | Q] | R] → n[P | Q] | m[R] (2)

open n.P | n[Q] → P | Q (3)

(x).P | 〈M〉 → P{x �→ M} (4)

P ′ ≡ P P → Q Q ≡ Q′

P ′ → Q′

P → Q

n[P ] → n[Q]

P → Q

P | R → Q | R

Fig. 3. Reduction relation of the ambient calculus

view, the rules (1)–(4) of Fig. 3 define the essential behavior of the in, out, and
open operators and communication, while the other rules simply tell us to which
subterms of a process the rules may be applied. For instance, the process M.P
does not admit a reduction, even if the subterm P does. We can capture that
by an evaluation context defined as follows:

C[·] ::= context
· empty context
C[·] | P parallel context
M [C[·]] ambient context

We define that each rule r = L → R of the first four rules of Fig. 3 (where the
processes L and R have free (meta-) variables on the left-hand and right-hand
side) induces a transition relation on closed processes as follows: S →r S

′ holds
iff there is an evaluation context C[·] and a substitution σ for all the variables
of r such that S ≡ C[σ(P )] and S′ := C[σ(R)].1

2.3 Ground Intruder Theory

We now define how the intruder can construct processes from a given knowledge
K, which is simply a set of ground capabilities (i.e. without variables). This
model is defined in the style of Dolev-Yao models of protocol verification as the
least closure of K under the application of some operators. These operators are
encryption and the like for protocol verification, and here they are the follow-
ing constructors of processes and capabilities (written with their arguments for
readability):

Σp = {0 , P | Q , M [P ] , M.P , 〈M〉 , in M , out M , open M}

We here leave out the input (x).P because it is treated by a special rule.
Fig. 4 inductively defines the ground intruder deduction relation K "V T

where K is a set of ground capabilities, T ranges over capabilities and processes,

1 One may additionally allow here that S′ can be rewritten modulo ≡ to match the
rules of Fig. 3 precisely, but it is not necessary because when applying further tran-
sition rules, this is done modulo ≡.



152 S. Mödersheim, F. Nielson, and H.R. Nielson

K � M
M ∈ K (Axiom)

K � P P ≡ Q

K � Q
(Str.Cong.)

K �V1 T1 . . . K �Vn Tn

K �∪n
i=1

Vi f(T1, . . . , Tn)
f ∈ Σp (Public Operation)

K �{x} x
x ∈ V (Use variables)

K �V P

K �V \{x} (x).P
(Input)

Fig. 4. Ground intruder deduction rules

and V is a set of variables such that V = fv(T ) the free variables of T . We
require that the knowledge K of the intruder contains at least one name k0, so
the intruder can always say something. For V = ∅ we also write simply K " T .
Let V denote the set of all variable symbols. The (Axiom) and (Str.Cong.) express
that the derivable terms contain all elements of the knowledge K and are closed
under structural congruence. The (Public Operation) rule says that derivability
is closed under all the operators from Σp; here the free variables of the resulting
term are the union of the free variables of the subterms. The rule (Use variables)
and (Input) together allow the intruder to generate processes that read an input
and then use it.

As an example, given intruder knowledge K = {in n,m} we can derive for
instance K " m[(x).in n.out x.〈open m〉].

We use the common term “ground intruder” and later “ground transition
system” from protocol verification, suggesting we work with terms that contain
no variables. However, we allow the intruder to create processes like (x).P where
P may freely contain x, and only require that the intruder processes at the end
of the day are closed terms (without free variables). We may thus correctly call
it “closed intruder” and “closed transition system” but we prefer to stick to the
established terms.

2.4 Security Properties

We are now interested in security questions of the following form: given an honest
process and a position within that process where the intruder can insert some
arbitrary code that he can craft from his knowledge, can he break a security goal
of the honest process? This is made precise by the following definition:

Definition 1. Let us specify security goals via a predicate attack(P ) that holds
true for a process P when we consider P to be successfully attacked. We then also
call P an attack state. Let C[·] be an (evaluation) context without free variables
that represents the honest processes and the position where the intruder can
insert code. Let finally K0 be a set of ground capabilities. Then the question we
want to answer is whether there exist processes P0 and P such that K0 " P0,
C[P0] →∗ P and attack(P ).



Lazy Mobile Intruders 153

We generalize this form of security questions as expected to the case where the
intruder can insert several pieces of code P0, . . . , Pk in different locations, and
they are generated from different knowledges K0, . . . ,Kk, respectively.

There are many ways to define security goals for the ambient calculus, and
we have opted here for state-based safety properties rather than observational
equivalences. In fact, the most simple goal is that no intruder process may ever
learn a secret name s. We can thus describe an attack predicate that holds true
for states where a secret s has been leaked to the intruder. To do that, let us
label all output actions 〈M〉 that are part of the intruder generated code with
superscript i like 〈M〉i. We formalize that an intruder-generated process has
learned the secret s in a state S:

leaks(S) iff 〈s〉i � S.

Here � denotes the subterm relation.
Another goal is that the intruder code cannot reach a given position of the

honest platform. This can be reduced to a secrecy goal—at the destination waits
a process that writes out a secret. A more complex goal is containment: a sandbox
may host an intruder code and give that code some secret s to compute with,
but the intruder code should not be able to get s out of the sandbox. This can
again be reduced to secrecy (of another value s′) if outside the sandbox a special
ambient k0[open s.〈s′〉] is waiting. From this ambient an intruder process (who
initially knows the name k0) can obtain secret s′ if it was able to learn s and get
out of the sandbox.

Example 1. As an example let us consider the firewall example from [8]:

Firewall ≡ w[k[out w.in k′.in w] | open k′.open k′′.〈s〉]
The goal is that the firewall can only be entered by an ambient that knows
the three passwords k, k′, and k′′ (in fact having capability open k instead of
k is sufficient). Here the ambient k[·] acts as a pilot that can move out of the
firewall, fetch a client ambient (that needs to authenticate itself) and move it into
the firewall. Suppose we run Firewall | P for some process P that the intruder
generated from knowledge K and define as an attack a state in which leaks
holds. If K includes open k, k′, k′′, then we have an attack, since the intruder can
generate the process P ≡ k′[open k.k′′[(x).〈x〉i]] from K. An attack is reached
as follows:

Firewall | P
→ w[open k′.open k′′.〈s〉] | k[in k′.in w] | P
→ w[open k′.open k′′.〈s〉] | k′[k[in w] | open k.k′′[(x).〈x〉i]]
→ w[open k′.open k′′.〈s〉] | k′[in w | k′′[(x).〈x〉i]]
→ w[open k′.open k′′.〈s〉 | k′[k′′[(x).〈x〉i]]]
→ w[〈s〉 | (x).〈x〉i]
→ w[〈s〉i]

If the knowledge K from which the intruder process is created does not include
open k (or k), k′ and k′′, then no attack is possible. Also containment of the
secret s in the firewall holds.



154 S. Mödersheim, F. Nielson, and H.R. Nielson

2.5 The Considered Fragment

For the automation, we have made some restrictions w.r.t. the original ambient
calculus. The replication operator !P ≡ P | !P together with the creation of
new names allows for simulating arbitrary Turing machines and thus prevents a
decision procedure for security. Similar to the lazy intruder in protocol verifica-
tion, we thus bound the steps that honest processes can perform and do this by
simply disallowing the replication operator for honest processes. Without repli-
cation, one of the main reasons for the name restriction operator νn.P is gone,
since we can α-rename all restricted names so that they are unique throughout
the processes. Note that the name restriction is also useful for goals of observa-
tional equivalence, which are essential for privacy goals [1,2] but which we do
not consider in this paper.

Note that we do not bound the size of processes that the intruder creates: the
derivation relation K " P allows him to make arbitrary use of all constructors.
It may appear as if the intruder were bounded because K " P does not include
the replication operator either, but this is not true: an attack always consists of
a finite number of steps (as violation of a safety property) and thus every attack
that can be achieved by an intruder process with replication can be achieved by
one without replication (just by “unrolling” the replication as much as necessary
for the particular attack). The difference between unbounded intruder processes
and bounded honest processes thus stems from the fact that we ask questions
of the form: “can a concrete honest process (of fixed size) be attacked by any
dishonest process (of arbitrary size)?”

We do not need to give the intruder the ability to create arbitrary new names.
The reason is that we have no inequality checks in the ambient calculus, i.e., no
process can check upon receiving a capability n that it is different from all
names it knows (e.g. to prevent replays). Thus, whatever attack works when the
intruder uses different self-created names works similarly with always using the
same intruder name k0 that we give the intruder initially.

Finally, the extension of the mobile ambient calculus with communication
includes so-called path constraints of the form M.M ′ that can be communicated
as messages. Note that this is not ordinary concatenation of messages (which
the symbolic techniques we use can easily handle) but sequences of instructions
and only after the first has been successfully executed, the next one becomes
available, and so the paths cannot be decomposed. Since this includes several
problems that would complicate our method, we have excluded them.

3 Symbolic Ambients

We now introduce the symbolic, constraint-based approach that is at the core
of this paper. To efficiently answer the kind of security questions we formalized
in the previous paragraph, we want to avoid search the space of all processes
that an intruder can come up with. To that end, we use the basic idea of the
symbolic, constraint-based approach of protocol verification, also known as the
lazy intruder [12,13,16,6].



Lazy Mobile Intruders 155

When an agent in a protocol wants to receive a message of the form t—a
term that contains variables—we avoid enumerating the set of all messages that
the intruder can generate and that are instances of t (because this set is often
very large or infinite). Rather we remember the constraint K " t where K is
the set of messages that the intruder knows at the point when he sends the
instance of t. We then proceed with states that have free variables, namely the
variables of t (and of other messages as they sent and received). The allowed
values for these variables are governed by the constraints. For a fixed number of
agents and sessions, this gives us a symbolic finite-state transition system. An
important ingredient of this symbolic approach is checking satisfiability of the
K " t constraints. The complexity of the satisfiability problem has been studied
for a variety of algebraic theories of the operators involved, e.g. [9,10]; in the
easiest theory, the free algebra, the problem is NP-complete [16]. One can check
satisfiability of the constraints on-the-fly and prune the search tree when a state
has unsatisfiable constraints. Thus during the search messages get successively
instantiated with more concrete messages in a demand-driven, lazy way. Hence
the name.

Now we carry over this idea to the ambient calculus and apply it to the
processes that were written by the intruder, i.e. lazily creating the intruder-
generated processes during the search. Recall that in the previous section we
defined security problems as reachability of an attack state from C[P0] where
C[·] is a given honest agent and K0 " P0 is any intruder process generated from
a given initial knowledge K0. We could thus simply work with a symbolic state
C[x] where x is a variable and we have the constraint K0 " x.

There are some inconveniences attached to using variables like this for repre-
senting processes. First, with every transition the process changes and we there-
fore need to introduce new variables and relate them to the old ones. Second,
the processes can learn new information by communication with others, so the
available knowledge changes. For these two reasons we follow a more convenient

option and simply represent an intruder generated process by writing K where
K is the knowledge from which it was created. K is a set of capabilities and in-

tuitively K represents any process that can be created from K. If a process

contains two occurrences of K for the same K, they may represent different
processes. K may contain variables because we will also handle the communi-
cation between processes with the lazy intruder technique. We thus extend the

syntax of processes P,Q of Fig. 1 by K , and we consider symbolic security
problems as reachability of a symbolic attack state (defined in Section 3.2) from

an initial state C[ K ] where C[·] is an honest environment that the intruder
code is running in.

A symbolic process will also be equipped with constraints which have the
following syntax:

φ, ψ ::= constraints
K "M intruder deduction constraint
x = M substitution
φ ∧ ψ conjunction



156 S. Mödersheim, F. Nielson, and H.R. Nielson

Intuitively, K " M means that capability/message M can been generated by
the intruder from knowledge K. In fact, will not use in the symbolic constraints
K " P for a process P , since we have no construct for sending processes and all

processes the intruder generates are thus covered by the K notation.

Semantics. We define the semantics for pairs (S, φ) of symbolic processes and
constraints as a (usually infinite) set of closed processes. An interpretation I is a
mapping from all variables to ground capabilities. We extend this to a morphism
on capabilities, processes, and sets of processes as expected, where I substitutes
only free occurrences of variables. We define the model relation as follows:

I |= K "M iff I(K) " I(M)
I |= x = M iff I(x) = I(M)
I |= φ ∧ ψ iff I |= φ and I |= ψ

The semantics of (S, φ) is the set of possible instantiation of all variables and

intruder code pieces K with closed processes:

[[P, φ]] = {Q | I |= φ ∧Q ∈ ext(I(P ))}
ext( K ) = {P | K " P}

ext(x) = {x}
ext(n) = {n}

ext(f(T1, . . . , Tn)) = {f(T ′
1, . . . , T

′
n) | T ′

1 ∈ ext(T1) ∧ . . . ∧ T ′
n ∈ ext(Tn)}

Here the Ti range over capabilities and processes and f ranges over all construc-
tors of capabilities and processes. Note the case ext(x) can only occur when
processing a subterm of a process where x is bound, so no free variables occur
in any S0 ∈ [[P, φ]].

Lazy Intruder Constraint Reduction. A decision procedure for satisfiability
of K " M constraints can be designed straightforwardly in the style of [13,6],
since we just need to handle the constructors for capabilities, namely in, out, and
open, and we have no destructors (or algebraic properties). The only subtlety
here is that we have in general several intruder processes that may learn new
capabilities independent of each other and may be unable to exchange with each
other what they learned—a multi-intruder problem. That means we cannot rely
on the well-formedness assumption often used in the lazy intruder for protocol
verification. Suppose the knowledge K in a constraint contains a variable x, then
well-formedness says that there exists an constraint K0 "M0 with K0 ⊆ K and
M0 contains x, i.e., x is part of a term the intruder generated earlier. Without
this assumption, constraint satisfiability is more difficult to check in general [5],
however the main problem is the analysis of knowledge K in constraints. This
is not an issue because we have no analysis rules for the intruder here. For more
details, see the proof of Theorem 1.



Lazy Mobile Intruders 157

3.1 Symbolic Transition Rules

We now define a symbolic transition relation on symbolic processes with con-
straints of the form (S, φ) ⇒ (S′, φ∧ψ). Note that the constraints are augmented
in every step, i.e., all previous constraints φ remain and new constraints ψ may
be added.

We first want to lift the standard transition rules on ground processes of
Section 2.2 to the symbolic level. The idea is to replace the rule matching de-
fined above with rule unification. Recall that above we have essentially defined
a transition rule r = L → R to be applicable to state S if S = C[σ(L)] for some
substitution σ and evaluation context C[·]. For the symbolic level we have that S
may contain free variables that need to be substituted as well. Suppose the rule
r does not contain any variables that occur in the symbolic state (S, φ) (which is
achieved by α-renaming the rule variables). Thus define that (S, φ) ⇒r (S′, φ∧ψ)
holds iff there is an evaluation context C[·] and a term T such that:

– S ≡ C[T ];
– σ is a most general unifier of T and L modulo ≡, i.e., σ(T ) ≡ σ(L) and for

no generalization τ of σ it holds that τ(T ) ≡ τ(L); and
– S′ = σ(C[σ(R)]) and ψ = eq(σ)

where eq(σ) is the formula x1 = t1 ∧ . . . xn = tn if σ = [x1 �→ t1, . . . , xn �→ tn].
Observe σ may now replace also variables that occur in S and thus σ is applied
also to C[·]. Moreover for a given (S, φ) and rule r there can only be finitely
many most general unifiers σ as discussed in the proof of Theorem 1.

Example 2. Using the in rule, we can now make the following symbolic transi-
tion: (x[P ] | y[in z.Q], φ) ⇒ (z[P | y[Q]], φ ∧ x = z)

Similarly, also (x[P ] | y[in z. K ], φ) ⇒ (z[P | y[ K ]], φ ∧ x = z) is possible

for an intruder generated piece of code K .
So far, however, the rules do not allow us to make an in transition on the

following state: (x[P ] | y[ K ], φ) even if the intruder can generate a process of
the form in z.Q from knowledge K. We will see below how to add appropriate
rules for intruder-generated processes, so that for instance in the above state a
variant of the in-rule is applicable.

It is immediate that the described symbolic transitions are sound (i.e., all states
that are reachable in the symbolic model represent states that are reachable
in the standard ground model). There are however not yet complete: in the
condition S ≡ C[T ] above we restrict the application of rule r to contexts that

exist in S—without instantiating intruder code like K first. Giving a complete
set of rules for intruder processes is the subject of the rest of this subsection.

Intruder-written Code. We now come to the very core of the approach: lazily

instantiating a piece of code K that the intruder generated from knowledge
K with a more concrete term in a demand-driven way. This is basically what is



158 S. Mödersheim, F. Nielson, and H.R. Nielson

missing after the lifting of the ground rules that we have just described, namely

when an “abstract” piece of intruder-written code K prevents the application

of a rule that would be applicable when replacing K with some more concrete
process P such that K " P . Obviously we would like to identify such situations
without enumerating all processes P that can be generated from K.

In the example x[P ] | y[ K ] we discussed above, we have the following possi-

bility: if the intruder code marked K were to have the shape in x.Q, we could

apply the in rule and get to the state x[y[ K ] | P ], assuming K " in x. Note
the residual code (inside y[·] after the move) is again something generated from
knowledge K.

There is a systematic way to obtain all rules that are necessary to achieve
completeness, namely by answering the following question: given a symbolic
process with constraints (S, φ), any ground process S0 ∈ [[S, φ]], and a transition
S0 → S′

0 what rule do we need on the symbolic level to perform an analogous
transition? Thus, we want to reach an (S′, φ ∧ ψ) (in zero or more steps) such
that S′

0 ∈ [[(S′, φ ∧ ψ)]]. Of course, the rule should also be sound (i.e. all S′
0 ∈

[[(S′, φ∧ψ)]] are reachable with ground transition rules from some S0 ∈ [[(S, φ)]]).
Soundness is relatively easy to see, because we need to consider rules only in
isolation. We now systematically derive rules for each case of (S, φ), S0, and
S′
0 that can occur and thereby achieve a sound and complete set of symbolic

transition rules.
Recall that by the definition, for a transition from S0 to S′

0 with rule r = L →
R, we need to have an evaluation context C0[·] and a substitution σ of the rule
variables such that S0 = C[σ(L)] and S1 = C[σ(R)].

The symbolic transition rules we have defined above already handle the case
that the symbolic state S has the form S = C′[T ] where σ(C′[cot]) = C[·] and
σ(L) ≡ σ(T ) (as shown in the examples previously) where at a corresponding
position a similar rule (under renaming) can be applied without instantiating
intruder code. This includes the case that a rule variable P of type process is

unified with a piece K of intruder code.
Another case that does not require further work is when the rule match in S0

is for a subterm of intruder-generated code, i.e. that is subsumed by some K
in the symbolic term S. Here we use the fact that intruder deduction is closed
under evaluation: if K " P and P → P ′, then also K " P ′.

Therefore all remaining cases that we need to handle are where one or more
proper subterms of the redex σ(L) in S0 are intruder-written code that are not
trivial, i.e. represent a variable in L. We make a case distinction

– by the different transition rules for →, namely (1)–(4),
– and by how S relates to the matching subterm in S0.

In-Rule. Let us mark three positions in the in rule which could be intruder-
written code and that are not yet handled:



Lazy Mobile Intruders 159

p1︷ ︸︸ ︷
n[in m.P︸ ︷︷ ︸

p2

| Q] | m[R]︸ ︷︷ ︸
p3

→ m[n[P | Q] | R]

In fact, this notation contains a simplification: for instance looking at position p2,
we could also have the variant that the intruder code is of the form in m.P | P ′.

In such a case, the intruder code piece K in the symbolic state would not
exactly correspond to a subterm of the matched rule, but only after “splitting”

K into K | K . Such a splitting rule would obviously be sound, but we
do not want to include it, and rather perform such splits only in a demand
driven way (as the following cases show)—and to keep the notation simple for
the positions in the rules. So all positions indicated here are considered under
the possibility that the intruder code itself is a parallel composition; note also
we are matching/unifying modulo ≡.

In rule with intruder code at position p1. The first case we consider is when only
at p1 is intruder code, i.e., we have some intruder code running in parallel with
an ambient m[R]; then the intruder code may be able to enter m if it has the
capability in m. As said before, we could have the case that the intruder code
first splits into two parts and only one part enters m while the other part stays
outside. This can be helpful if the intruder code does not have the capability
out m. Since the intruder code can always be trivially 0 if there is nothing to do,
it is not a restriction to make the split, so we avoid giving two rules. We obtain:

K | m[R] ⇒ K | m[x[ K ] | R] and ψ = K " in m ∧K " x (5)

Here we denote with ψ the new constraints that should be added to the symbolic
successor state. x is a new variable symbol (that does not occur so far). The
reason for introducing this new symbol x is that a process cannot move without
being surrounded by an ambient n[·] construct; as the n[·] of the normal in rule

has now become part of the K code, we need to say that the intruder himself
created the ambient. As there is no obligation to pick a particular name for that
ambient, we simply leave it open and just require the intruder can construct
it from knowledge K. Note that it would be unsound in general to simplify

the right-hand side to m[ K | R] because the intruder cannot get rid of the
surrounding x[·] (even though self-chosen) without another process performing
open x.

To see the soundness of this rule, consider that the intruder code matched
on the left-hand side of the rule should have the form P1 | x[in m.P2] for some
processes P1 and P2 generated from knowledge K. These are then represented

by the two K pieces on the right-hand side of the rule.

In rule with intruder code at position p2. Here, intruder code is running inside
ambient n that runs in parallel with ambient m. The intruder code can move
ambient n into m, if it has the capability in m:

n[ K | Q] | m[R] ⇒ m[n[ K | Q] | R] and ψ = K " in m (6)



160 S. Mödersheim, F. Nielson, and H.R. Nielson

Note that we could have again the situation that the intruder code is a parallel
composition, i.e. of the form in m.P1 | P2. However, then after the move we still
have P1 | P2 and we thus do not make the split explicit, because this case is still

subsumed by K on the right-hand side.

In rule with intruder code at position p3. Now we consider the situation that an
honest ambient n[in m.P | Q] that wants to enter an ambient m that runs in
parallel with intruder code. If the intruder code has name m, it can provide the
ambient that the honest process can then enter:

n[in m.P | Q] | K ⇒ m[n[P | Q] | K ] | K and ψ = K " m (7)

Here we have again an explicit split of the intruder process into two parts. This is
because the concrete intruder process that is partially matched by the left-hand
side may have the form m[R1] | R2, i.e. not entirely running within m, and we
thus need to denote that residual process explicitly on the right-hand side.

In rule with intruder code at several positions. If the intruder code is at several
positions of the rule, we get the following situations. Obviously we do not need
to consider the combination (p1) + (p2) because (p2) is a sub-position of (p1).
The case (p1)+ (p3) means that we have two intruder processes (in general with

different knowledge) to run in parallel: K | K ′ . We will show below (when
we treat communication) that what they can achieve together is to pool their

knowledge and join to one process K ∪K ′ .
What is left is the combination (p2) + (p3) which means that one intruder

process runs inside an ambient n and that runs in parallel with another intruder
process. This case we can express by the following rule:

n[ K |Q] | K ′ ⇒ x[n[ K |Q] | K ′ ] | K ′ and ψ = K " in x∧K ′ " x (8)

Note that the two processes that we start with may not have the same knowledge
(hereK and K ′). Again, we have an explicit split on the side of the K ′-generated
process into a part that is entered by n[·] and one that remains outside. Also,
again, this rule has a new variable x for the name of the ambient that is entered
by n[·]; this name needs to be part of K ′ while K only needs to have the in x
capability.

This rule is a problem for the termination of our approach. Observe that the
left-hand side ambient n[·] occurs identically as a subterm on the right side; so
the rule “packs in” the n[·] ambient into another x[·] ambient. We will therefore
later show that we can limit the application of this rule without loosing attacks.

Out Rule. For the out rule we have two positions of intruder code to consider:

m[

p1︷ ︸︸ ︷
n[out m.P︸ ︷︷ ︸

p2

| Q] | R] → n[P | Q] | m[R]



Lazy Mobile Intruders 161

Out Rule with intruder code at position p1. Here we have the situation that the
intruder code is within an ambient m and has the capability out m. To move
parts of the code, the intruder must put it within some ambient x (where x is
again a new variable symbol):

m[ K | R] ⇒ x[ K ] | m[ K | R] and ψ = K " out m ∧K " x (9)

Out rule with intruder code at p2. This situation is similar except that the
intruder code is already contained within an ambient n. We then have:

m[n[ K | Q] | R] ⇒ n[ K | Q] | m[R] and ψ = K " out m (10)

This subsumes also the case that there is intruder code at both in m and in n
(i.e. also within what is matched as R here).

Open-Rule. The open rule has also just two positions for intruder code, the
opening code and the opened code:

open n.P︸ ︷︷ ︸
p1

| n[Q]︸︷︷︸
p2

→ P | Q

The rules for the intruder code at p1 and at p2, respectively are immediate:

K | n[Q] ⇒ K | Q and ψ = K " open n (11)

open n.P | K ⇒ P | K and ψ = K " n (12)

The case (p1) + (p2) is again the case of two parallel communicating processes
that is treated next.

Communication Rule. Again there are two possible positions where intruder
code could reside, namely as the sender or as the receiver:

(x).P︸ ︷︷ ︸
p1

| 〈M〉︸︷︷︸
p2

→ P [x �→M ]

Communication with the intruder receiving. The intruder can receive a message
M from an honest process running in parallel:

K | 〈M〉 ⇒ K ∪ {M} (13)

Here the resulting intruder process has the message M simply added to its
knowledge. The idea is that the remaining process can behave like any process
that the intruder could have created, if he initially knew K ∪ {M}. To see that
this is sound, consider that the intruder process would have the form (x).P for
a new variable x that can occur arbitrarily in P . Thus if this process reads M ,
the resulting P [x �→ M ] is is a process that can be generated from knowledge
K ∪ {M} if P was created from knowledge K.



162 S. Mödersheim, F. Nielson, and H.R. Nielson

Communication with the intruder sending. For the case that intruder code sends
out a message that is received by an honest process, we can be truly lazy:

(x).P | K ⇒ P | K and ψ = K " x (14)

Here, we do not instantiate the message x that is being received, we simply
add the constraint that x must be something the intruder can generate from
knowledge K. This is in fact the classic case of the lazy intruder—postponing
the choice of a concrete message that the intruder sends to an agent. Since the
intruder knowledge contains at least one name, there is always “something to
say”, but what it is will only be determined if the variable x gets unified later
upon applying some rule (which can render the K " x constraint unsatisfiable).

Communication with the intruder both sending and receiving. Finally we have
the rule that was mentioned above already: when two intruder processes meet
they can exchange their knowledge and work together further on:

K | K ′ ⇒ K ∪K ′ (15)

This is sound because every k ∈ K \K ′ can be sent from the first to the second

process until we have K | K ∪K ′ and then the second part subsumes the

first, so we can simplify it to K ∪K ′ . Observe that this rule can also be used
when we restrict ourselves to the pure ambient calculus without communica-
tion: we then simply have two processes in parallel with capabilities K and K ′,
respectively, and what they can achieve is anything a process with capabilities
K ∪K ′ can achieve (even without communication).

As part of the proof of Theorem 1, we formally show that the set of rules
we gave for the symbolic transition system are sound and complete, i.e., they
represent exactly the reachable states of the original ground transition system.
This proof is found in the extended version of this paper [14], but our systematic
development of the rules (i.e., covering each possible case) in this subsection
serves as a proof sketch for completeness (and the soundness is straightforward
to check for each rule).

3.2 Security Properties in the Symbolic System

Before we can state our main result, we need to formally define the properties
we can check for in the symbolic system. Right now, we limit ourselves to se-
crecy goals as a very basic property, and leave the extension to further security
properties for future work.

In general for any property that we want to check, we need to be able to
express them for both ground and symbolic states, and these definitions for
ground and symbolic states must correspond to each other:

Definition 2. We say that a predicate attack(S0) on closed processes S0 and
a predicate ATTACK(S, φ) on symbolic processes (S, φ) correspond iff for every
(S, φ) it holds that

ATTACK(S, φ) iff exists S0 ∈ [[S, φ]] such that attack(S0)



Lazy Mobile Intruders 163

Recall that the attack predicate for secrecy on the ground level was defined as
leaks(S0) iff 〈s〉i � S0. Define the corresponding predicate on the symbolic level:

LEAKs(S, φ) iff exists K such that K � S and K " s ∧ φ is satisfiable.

It is immediate that leaks and LEAKs correspond: given any (S, φ) then

LEAKS(S, φ) iff exist K, I. K � S, I |= K " s ∧ φ
iff exist K, I. K � S, I(K) " s, I |= φ
iff exist I, C[·]. C[〈s〉i] ∈ ext(I(S))
iff exists S0. S0 ∈ [[S, φ]] and leaks(S0)

3.3 Main Result

We can now use the symbolic transition system that we have developed using the
lazy intruder technique to give a decision procedure for secrecy in our fragment
of the ambient calculus without bounding the intruder.

Theorem 1. The following problem is NP-complete. Given

– a name s,
– a closed process C0[·] (in our the supported fragment),
– and a finite set K of ground capabilities as initial intruder knowledge;

exist P and S0 such that K " P , C0[P ] →∗ S0 and leaks(S0)?

The full proof is found in the extended version [14] and we give here only a
proof sketch. We can first show that symbolic transition system we have de-
fined is sound and complete, i.e., representing exactly the reachable states of
the standard ground transition system. It is immediate that satisfiability of the
constraints of our system is in NP (simple guess and check) and that we can poly-
nomially reduce satisfiability of Boolean formulae to satisfiability of constraints.
A similar reduction is possible from satisfiability of Boolean formulae to reacha-
bility of leak-states in the ground system, showing that this problem is NP-hard.
For containment in NP it remains to show that we can restrict the exploration
of the (still infinite-state) symbolic transition system such that the length of
explored traces is bounded by a polynomial and such that the explored space
contains a LEAKs state iff one is reachable at all. The idea for this termination
proof is that most rules “consume” an action of an honest agent (limiting their
applicability); the rules (5) and (9) can be seen as spreading intruder knowledge
and this can be bounded because there is an upper bound on what the intruder
can learn from honest agents; the application of the rule (8) can be bounded to
the number of actions that the honest agents can do (since all other applications
are covered by (5) and (9)); and finally the rules (6) and (10) alone cannot be
applied indefinitely often without producing a state repetition.



164 S. Mödersheim, F. Nielson, and H.R. Nielson

3.4 Examples

Let us reconsider the firewall example from before, and see how a lazy intruder
process would find the attack. In contrast to the original specification, we leave
open how the intruder process P exactly works, and rather specify that it is
some process generated from the initial knowledge K = {in k, k′, k′′}:

(Firewall | K , true)

⇒ (w[open k′.open k′′.〈s〉] | k[in k′.in w] | K , true) by rule (2)

⇒ (w[open k′.open k′′.〈s〉] | k′[k[in w] | K ] | K ,φ1) by rule (7)

⇒ (w[open k′.open k′′.〈s〉] | k′[in w | K ] | K ,φ2) by rule (11)

⇒ (w[open k′.open k′′.〈s〉 | k′[ K ]] | K ,φ2) by rule (1)

⇒ (w[open k′′.〈s〉 | K ] | K ,φ2) by rule (3)

⇒ (w[〈s〉 | K ] | K ,φ3) by rule (12)

⇒ (w[ K ∪ {s} ] | K ,φ3) by rule (13)

where we have collected the constraints φ1 = K " k′, φ2 = φ1 ∧ K " open w,
and φ3 = φ2 ∧ K " k′′. These constraints are satisfiable. This corresponds to
the attack we had described on the ground model, only here we found it lazily
during the search, rather than specifying the process up front. Another difference

to the original trace is that we have an intruder process K remaining at the
outermost level the entire time. This reflects that the intruder process could be
a parallel composition of two parts only one of which enters the firewall—the
position outside the does not have to be “given up” by the intruder.

Ambient in the Middle. The previous example has basically identified how an
honest client (authenticating itself by the knowledge of the keys k, k′, and k′′)
is supposed to behave, namely Client ≡ k′[open k.k′′[C0]] for some process C0.
We now consider the case that such an honest client and firewall execute in the
presence of an intruder process K:

(Firewall | Client | K , true)

⇒ (Firewall | k′[open k.k′′[C0] | x[ K ]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k[in k′.in w] | k′[open k.k′′[C0] | x[ K ]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k′[k[in w] | open k.k′′[C0] | x[ K ]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉] | k′[in w | k′′[C0] | x[ K ]] | K ,φ1)

⇒ (w[open k′.open k′′.〈s〉 | k′[k′′[C0] | x[ K ]]] | K ,φ1)

⇒ (w[open k′′.〈s〉 | k′′[C0] | x[ K ]] | K ,φ1)

⇒ (w[〈s〉 | k′′[C0] | K ] | K ,φ2)

where φ1 = K " in k′ ∧ K " x and φ2 = K " in k′ ∧ K " k′′. Note that in

the one but last step we apply the open action to the intruder ambient x[ K ]
(unifying x = k0). Thus, the intruder can inject code into the firewall (without
being isolated by x[·], and so he can obtain s) if he knows only in k′ and k′′.
The open k capability is not needed, since this is done by the client after the
intruder has infected it.



Lazy Mobile Intruders 165

A Communication Example. As an example where capabilities are communi-

cated consider the process n1[ K1 | n2[in n3.〈in n4〉]] | n5[n4[ K2 | 〈out n5〉]]
where K1 = {n3, open n2} and K2 = {open n1}. Let the goal be that there is
no intruder process who will know both open n1 and open n2. The lazy mobile
ambient technique finds an attack as follows:

(n1[ K1 | n3[ K1 | n2[〈in n4〉]]] | n5[n4[ K2 | 〈out n5〉]], true)
⇒ (n1[ K1 | n3[ K1 | 〈in n4〉]] | n5[n4[ K2 | 〈out n5〉]], φ1) by rule (11)

⇒ (n1[ K1 | n3[ K1 ∪ {in n4} ]] | n5[n4[ K2 | 〈out n5〉]], φ1) by rule (13)

⇒ (n1[ K1 | K1 ∪ {in n4} ] | n5[n4[ K2 | 〈out n5〉]], φ2) by rule (11)

⇒ (n1[ K1 ∪ {in n4} ] | n5[n4[ K2 | 〈out n5〉]], φ2) by rule (15)

⇒ (n1[ K1 ∪ {in n4} ] | n4[ K2 ] | n5[0], φ2) by rule (2)

⇒ (n4[ K2 | n1[ K1 ∪ {in n4} ]] | n5[0], φ3) by rule (6)

⇒ (n4[ K2 | K1 ∪ {in n4} ] | n5[0], φ4) by rule (11)

⇒ (n4[ K2 ∪K1 ∪ {in n4} ] | n5[0], φ4) by rule (15)

where we the following satisfiable constraints: φ1 = K1 " open n2, φ2 = φ1∧K1 "
open n3, φ3 = φ2∧K1∪{in m4} " in m4, and φ4 = φ3∧K2 " open n1. We have
reached a state where an intruder process knows both open n1 and open n2.

4 Conclusions

We have transferred the symbolic lazy intruder technique from protocol verifica-
tion to a different problem: an intruder who creates malicious code for execution
on some honest platform. This gives us an efficient method to check whether the
platform achieves its security goals for any intruder code, because we avoid the
naive search of the space of possible programs that the intruder can come up
with. Instead we determine this code in a demand-driven, lazy way.

Our approach is closest to a model-checking technique. In contrast to static
analysis approaches, it works without over-approximation, but requires a bound-
ing of the number of steps that honest agents can perform. The symbolic nature
however allows to work without any bound on the size of programs that the
intruder can generate. This is similar to the original use of the lazy intruder in
protocol verification [12,13,16,6].

We have used a fragment of the mobile ambient calculus with communication
as a small and succinct formalism to model both the platform and the mobile
code [8]. We have omitted the replication operator in order to bound honest pro-
cesses (though not the intruder). We have omitted the path constraints because
they induce considerable complications for our approach and leave their integra-
tion for future work. We also plan to consider the extension of boxed ambients
introduced by Bugliesi et al. [7] which add interesting means for access control
and communication. Moreover it is possible to extend the ambient calculus and



166 S. Mödersheim, F. Nielson, and H.R. Nielson

our method to support cryptographic operators (like encryption and signing) in
the communication of processes.

We believe that the approach we have presented here is generally applicable
to the formal analysis of platforms that host mobile code. The key elements can
be summarized as follows. First, the code can be lazily developed by exploring
at each step which operations can be performed next and what data is needed.
This data is handled lazily as well. Second, the intruder code has a notion of
knowledge that it can use in further operations and communications, and every
received message adds to this knowledge. Third, the code may be able to move to
other locations; two pieces of intruder code that meet then pool their knowledge.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
ACM Symposium on Principles of Programming Languages, pp. 104–115 (2001)

2. Abadi, M., Fournet, C.: Private Authentication. Theoretical Computer Sci-
ence 322(3), 427–476 (2004)

3. Algesheimer, J., Cachin, C., Camenisch, J., Karjoth, G.: Cryptographic security
for mobile code. In: IEEE Symposium on Security and Privacy, pp. 2–11 (2001)

4. Arapinis, M., Duflot, M.: Bounding Messages for Free in Security Protocols.
In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp. 376–387.
Springer, Heidelberg (2007)

5. Avanesov, T., Chevalier, Y., Rusinowitch, M., Turuani, M.: Intruder deducibility
constraints with negation. CoRR, abs/1207.4871 (2012)

6. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for secu-
rity protocols. International Journal of Information Security 4(3), 181–208 (2005)

7. Bugliesi, M., Castagna, G., Crafa, S.: Access control for mobile agents: The calculus
of boxed ambients. ACM Trans. Program. Lang. Syst. 26(1), 57–124 (2004)

8. Cardelli, L., Gordon, A.D.: Mobile ambients. Theor. Comput. Sci. 240(1), 177–213
(2000)

9. Chevalier, Y., Küsters, R., Rusinowitch, M., Turuani, M.: Deciding the Security
of Protocols with Diffie-Hellman Exponentiation and Products in Exponents. In:
Pandya, P.K., Radhakrishnan, J. (eds.) FSTTCS 2003. LNCS, vol. 2914, pp. 124–
135. Springer, Heidelberg (2003)

10. Delaune, S., Lafourcade, P., Lugiez, D., Treinen, R.: Symbolic protocol analysis for
monoidal equational theories. Inf. Comput. 206(2-4), 312–351 (2008)

11. Groß, T., Pfitzmann, B., Sadeghi, A.-R.: Browser Model for Security Analysis of
Browser-Based Protocols. In: De Capitani di Vimercati, S., Syverson, P.F., Goll-
mann, D. (eds.) ESORICS 2005. LNCS, vol. 3679, pp. 489–508. Springer, Heidel-
berg (2005)

12. Huima, A.: Efficient infinite-state analysis of security protocols. In: Proc. FLOC
1999 Workshop on Formal Methods and Security Protocols (1999)

13. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: Proceedings of CCS 2001, pp. 166–175. ACM Press (2001)

14. Mödersheim, S., Nielson, F., Nielson, H.R.: Lazy mobile intruders (extended ver-
sion). Technical Report IMM-TR-2012-13, DTU Informatics (2012),
imm.dtu.dk/~samo

15. Necula, G.C.: Proof-carrying code. In: POPL, pp. 106–119 (1997)
16. Rusinowitch, M., Turuani, M.: Protocol insecurity with a finite number of sessions,

composed keys is NP-complete. Theor. Comput. Sci. 1(299), 451–475 (2003)

imm.dtu.dk/~samo


On Layout Randomization

for Arrays and Functions

Mart́ın Abadi1,2 and Jérémy Planul3

1 Microsoft Research Silicon Valley
2 University of California, Santa Cruz

3 Stanford University

Abstract. Low-level attacks often rely on guessing absolute or relative
memory addresses. Layout randomization aims to thwart such attacks.
In this paper, we study layout randomization in a setting in which ar-
rays and functions can be stored in memory. Our results relate layout
randomization to language-level protection mechanisms, namely to the
use of abstract locations (rather than integer addresses). They apply, in
particular, when each abstract location can hold an entire array which,
concretely, compilation implements with a memory buffer at a random
base address.

1 Introduction

Many attacks on software systems rely on predicting the absolute or relative lo-
cations of particular pieces of data in memory. For instance, in a system without
proper bounds checking, if an attacker has access to one buffer b in the heap and
can guess that an immediately contiguous buffer b′ contains some sensitive data,
then the attacker may try to tamper with the data in b′ by overflowing b. The
data in b′ might for example be an authentication flag that indicates whether the
attacker has been properly authenticated, and then the tampering may toggle
it from false to true (e.g., [4]). The data in b′ might also be a function (or a
function pointer), and then the tampering may replace it so that code of the
attacker’s choice is executed later, when control is transferred to b′.

Layout randomization aims to thwart attacks that guess locations in this
manner (e.g., [5, 6, 13]). Basically, layout randomization consists in placing data
in memory at random addresses, which may for example be chosen at load time,
and which will vary from system to system.

In practice, layout randomization is often an imperfect mitigation (e.g., [16]).
In particular, for performance or compatibility reasons, only parts of the memory
layout are randomized, typically at a fairly coarse granularity. Moreover, infor-
mation about the layout sometimes leaks to attackers through various channels.
Finally, layout randomization can prove ineffective against attacks that target
large regions of memory, such as heap-spraying attacks.

Despite these limitations, layout randomization is widely used in systems,
and it has been beneficial. Furthermore, layout randomization resembles other

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 167–185, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



168 M. Abadi and J. Planul

attractive forms of randomization [8] (such as in-place code randomization [12])
and also cryptographic protection (via the analogy between locations and en-
cryption keys). Therefore, we believe that there is value in trying to understand
its power, to characterize it precisely, and to compare it to other protection
techniques.

In this spirit, recent research [3, 9, 15] relates layout randomization to the
use of language-level protection mechanisms. In the present paper we aim to
contribute to this line of work. Specifically, we treat layout randomization in a
setting in which arrays and functions can be stored in memory—so overflows
on arrays can affect other arrays and modify functions, much as in the example
above.

We consider a high-level language with an abstract notion of location and
a lower-level language with integer memory addresses. Both languages support
functions and arrays. In the high-level language, a location can hold an entire
array, while in the lower-level language array elements are stored at consecutive
addresses in memory. We also consider a translation from the former language to
the latter one that maps locations to randomly chosen base addresses for memory
buffers. The choice is random but not necessarily uniform. For instance, all base
addresses may be chosen to satisfy alignment constraints. On the other hand,
the randomization is not done at the finer granularity of individual array entries,
nor is the layout within arrays randomized; although conceptually tractable, such
variants could have a disastrous impact on performance.

Our translation also embodies two additional precautions that complement
layout randomization:

– Even with a random memory layout, it is possible that two buffers are con-
tiguous in memory. Much as in some practical systems (e.g. [10, 17]), we can
eliminate this possibility entirely by imposing the introduction of “guard re-
gions” between buffers. Such guard regions contribute to the security guar-
antees that we establish.

– In the high-level language, an assignment such as l := M completely over-
writes the value in l. Therefore, in the low-level language, it is important
that a corresponding assignment do not leave any observable traces of that
value, even ifM is shorter. We introduce a dynamic check to treat this point;
other solutions (e.g., with special padding) may be viable.

We study the correctness and security of the translation. Viewing attackers as
contexts, we prove that low-level contexts (with integer addresses) correspond to
high-level contexts (with abstract locations), thus showing that the translation
does not enable any new attacks [1]. We also prove that the translation pre-
serves security properties that can be expressed as program equivalences. Both
of these results are probabilistic, with probabilities that approach 1 for suitable
distributions on memory layouts.

In the next section, Section 2, we discuss some small examples, informally. We
define the high-level language and the low-level language in Sections 3 and 4, re-
spectively. In Section 5, we consider probability distributions on memory layouts.
In Section 6, we define and study the translation. Throughout, our approach is



On Layout Randomization for Arrays and Functions 169

often analogous to that of Abadi and Plotkin [3]. We discuss this and other re-
lated work in Section 7, and then we conclude with brief comments on further
work. Because of space constraints, we leave auxiliary results and proofs to an
online version of this paper [2].

2 Examples

As a small introductory example, we consider the following program, which (to
first approximation) we can express in both the high-level language and the
low-level language defined below:

λx. l1 :=M ;
l2 := x;
N

This program inputs a value x, executesM and stores the result in the location l1,
then stores x in the location l2, and finally executes N . For instance, M might
be an array with two locations, the first location could hold a function f and
the second an integer n, and N could apply f to the input x and to n after
extracting f and n from l1 and x from l2. In that case, the program would be:

λx. l1 := [f ;n];
l2 := x;
(1 ith !l1)(!l2)(2 ith !l1)

Here, [f ;n] forms an array with two elements; !l1 and !l2 return the contents
of l1 and l2, respectively; and 1 ith and 2 ith extract the first and the second
elements of an array, respectively.

In the high-level language, we view l1 and l2 as two independent, abstract
locations, so (under call-by-value semantics) we would expect that this code
would behave just like the result of in-lining f , n, and x, namely:

λx. l1 := [f ;n];
l2 := x;
f(x)(n)

In the low-level language, on the other hand, the locations are integer addresses
in memory, so we need to worry about buffer overflows and similar errors. In
particular, when the value of x is too large to fit into the space allocated for l2,
the input may cause an error. If the error is not caught, it is possible that some
of the value of x will clobber the contents of memory including l1, and then
(1 ith !l1)(!l2)(2 ith !l1) may not behave like f(x)(n). In that case, an attacker
that chooses the value of x may well be able to execute a function of their choice
instead of f .

Layout randomization can however ensure that an overflow on l2 will clob-
ber the contents of l1 only with a small probability, thus countering the attack.
Thus, layout randomization can imply that properties that hold when l1 and l2



170 M. Abadi and J. Planul

are two independent, abstract locations continue to hold when they are mapped
to concrete memory addresses. Our theorems capture this preservation of prop-
erties. The properties could easily fail if instead l1 and l2 were mapped to fixed,
contiguous memory addresses, and if bounds checking was not done properly, as
the attack above indicates.

Some of the same themes appear in many other examples. For instance, con-
sider a piece of code where the location l1 holds a flag that indicates whether
some security check has been completed satisfactorily. For instance, l1 could hold
an authentication flag, as mentioned at the start of the Introduction, and much
as in the code of an SSH implementation that Chen et al. attacked [4]. The flag
is initially false. After some input x is stored in another location l2, the security
checks are performed, and the flag is set to true if the checks are successful.
Later, various sensitive operations may be permitted if the flag is true.

λx. l1 := false;
l2 := x;
if some checks then l1 := true;
. . .
if !l1 then do some sensitive operation

The security of this code depends on the integrity of the contents of l1. Layout
randomization can protect this integrity, thwarting direct writes to l1 by attack-
ers who would try to guess its absolute address in memory and also writes via
overflows on l2 and other locations. Our results account for this application of
layout randomization.

In the examples above, we are primarily concerned about an adversary that
may provide a dangerous input, but which need not modify locations such as l1
and l2 directly. In general, however, we are also interested in adversaries that
have direct access to some locations, which we call public locations. We refer
to other locations as private locations. At the high level, we restrict adversaries
so that they cannot refer to private locations; at the low level, we study the
protection of the private locations via layout randomization. For instance, letting
l be a private location and l′ a public location, we may consider the following
program:

λf. l := 0; l′ := 0; f(1)

At the high level, if an adversary provides an input function f , this function may
read or write l′, but it cannot read or write l since l is private. Therefore, when
f(1) terminates, l should hold the value 0. So, with respect to such adversaries,
the program is equivalent to:

λf. l′ := 0; f(1)

At the low level, l will be mapped to an integer memory address. If this mapping
is predictable, then the adversary may be able to read or write l, either via an
absolute address or via a relative address with an offset from l′. With proper
layout randomization, on the other hand, l will be mapped to a random address,



On Layout Randomization for Arrays and Functions 171

and the offset between l and l′ will be random as well, so the adversary will not
be able to find and to access l, with high probability. Therefore, the program
equivalence will be preserved, at least in a probabilistic sense.

Furthermore, adversaries may do more than provide a single input. They may
be contexts that interact with the systems that we wish to protect, for example
invoking them multiple times with different inputs, and accessing public locations
before and after those invocations. Our approach addresses such interactions.

3 The High-Level Language

In this section, we define our high-level language. In this language, memory
locations are symbolic names, and the semantics uses an abstract store to link
locations to values.

3.1 Syntax and Informal Semantics

The high-level language is a call-by-value λ-calculus with natural numbers, ar-
rays, and location-labeled dereference and assignment operations. For general
background on the λ-calculus, see [11, 14].

The terms of our language are defined by:

M ::= x | c | [M ; . . . ;M ] | λx.M | MM
c ::= ∗ | n | + |=nat | . . .

| ith | length
| !loclloc | lloc :=loc

where M and N range over terms, c ranges over a set of constants, and l ranges
over a finite set Loc of locations. The terms include variables, constants, ar-
rays, abstractions, and applications. The constants include ∗ (the “unit” value);
the usual arithmetic constants, operations, and relations (such as the numer-
als n, addition +, and equality =nat); array access ith and length measurement
length ; and constants for accessing locations !loclloc and lloc :=loc.

We adopt standard notions of free and bound variables, of closed terms, and
of the capture-avoiding substitutionM [N/x] of a term N for all free occurrences
of a variable x in a termM . We also adopt standard infix notations, for example
sometimes writing M ithN instead of ith M N .

Intuitively, !loclloc outputs the contents of location l and lloc :=loc writes its
argument in location l. Each location can hold arrays of a given length, and
writing produces an error if the argument is not an array of the appropriate
length. So, for simplicity, we do not allow storing integers and functions directly
into memory, but we do allow storing one-element arrays that contain integers
and functions, and in examples we may for instance write lloc :=loc 0 as an ab-
breviation for lloc :=loc [0]. We allow nested arrays (such as [[M ;N ]]) but con-
sider only the top level for calculating lengths, and do not differentiate “short”
vs. “long” elements in an array (so for example [0], [λx. x(x7)], and [[M ;N ]] all
have length 1). A more elaborate definition could be introduced, and would make
sense provided corresponding adjustments are made in the compilation function
(see Section 6).



172 M. Abadi and J. Planul

The subscript in !loclloc and lloc :=loc is intended to differentiate these con-
stants from the syntax of the low-level language of Section 4. We omit the sub-
scripts sometimes, when they are clear from context or when we wish to discuss
both the high-level and the low-level language, as in the examples of Section 2.

Note that lloc is not itself a term in this language, so locations are not first-
class values. This restriction constitutes a simplification (see [3, Section 2]), and
contributes to the gap between the high-level language and the low-level language
of the next section (in which addresses are first-class values). On the other hand,
functions for reading and writing locations can be passed as arguments, returned
as results, and stored in memory, so encodings of locations as first-class values
are straightforward.

Various other standard abbreviations and encodings are convenient. These
include encodings of booleans and other datatypes, and recursive function defini-
tions, as usual in untyped call-by-value lambda calculus. Using these, we can pro-
gram control constructs, including loops of the form for i = 1 to e do e′ done.
We sometimes write skip for ∗, and M ;N for letx beM inN (where x is not
free in N). We also use raise erroras syntactic sugar for an error-raising term,
for instance j k where j and k are integers.

For simplicity, this language does not support dynamic allocation, which could
perhaps be handled as in the work of Jagadeesan et al. [9], at least in the bounded
form that they consider. Treating more general memory-management and scop-
ing facilities remains a challenging subject for further research.

3.2 Values

We designate a subset of the expression of the programming language as values:

V ::= d | e | [V ; . . . ;V ] | λx.M
d ::= ∗ | n | + |=nat | . . .

| ith | length
| lloc :=loc

e ::= n + | n =nat | . . .
| n ith

Values can be thought of as (syntax for) completed computations. We include
all constants in the set of values, except for the constants for reading locations.
We also include partially evaluated binary operators. We write HV for the set
of values of the high-level language.

Values of the form [V1; . . . ;Vn] are array values. We define their length by:
|[V1; . . . ;Vn]| = n.

3.3 Memory Model

The semantics of the high-level language is based on a simple model of memory.
We assume a fixed mapping sig :Loc → N that, intuitively, gives the length of

each location. We call such a mapping a signature.



On Layout Randomization for Arrays and Functions 173

A store is a mapping s : Loc → HV that sends locations to values of the
high-level language, such that s(l) is an array value and |s(l)| = sig(l) for every
l ∈ Loc.

In order to consider security properties, we assume that the set of locations
Loc is the disjoint union of two sets, PubLoc and PriLoc, of public and private
locations. As explained in Section 2 and in Section 6.3, below, we model attackers
as programs that have direct access to public locations (but not, by default, to
private locations).

3.4 Operational Semantics

We define a small-step operational semantics of the high-level language in the
style of Felleisen and Friedman [7].

Redexes include terms of the forms:

(λx.M)V V ith [V ; . . . ;V ] length [V ; . . . ;V ]

!loclloc lloc :=loc V

and other redexes that involve the various arithmetic constants, operations, and
relations, such as 0 =nat 0. Redexes also include “ill-typed” constructions, such
as the application 00; these redexes will raise errors. (For brevity, we do not
list all these ill-typed constructions.) We define a reduction relation R → M
between redexes and terms, and an error property R ↓error on redexes:

(λx.M)V →M [V/x]

i ith [V1; . . . ;Vn] → Vi length [V1; . . . ;Vn] → n

i ith [V1; . . . ;Vn] ↓error for i = 0 and i > n

. . .

where the ellipses indicate missing arithmetic and error transitions, such as:

0 =nat 0 → true 0 + 1 → 1 00 ↓error

We define evaluation contexts by:

E ::= [−] | [V ; . . . ;V ;E; . . . ;M ] | EM | V E

We write E[M ] for the term obtained by replacing the “hole” [−] in an evaluation
context E with the term M . For every term M , either M is a value, or M can
be analyzed uniquely in the form E[R], with R a redex.

A configuration is a pair (s,M) with s a store and M a term. The small-step
semantics consists of a transition relation and two error properties on configu-
rations:

(s,M) → (s′,M ′) (s,M) ↓error (s,M) ↓lerror

The error property (s,M) ↓lerror distinguishes buffer-overflow errors, to which we
give a specific treatment below.



174 M. Abadi and J. Planul

For redexes, we set:

(s, !loclloc) → (s, V ) (if s(l) = V )
(s, lloc :=loc V ) → (s[l �→ V ], skip) (if |V | = sig(l))
(s, lloc :=loc V ) ↓error (if |V | < sig(l))
(s, lloc :=loc V ) ↓lerror (if |V | > sig(l))

and:
R →M ′

(s,R) → (s,M ′)

R ↓error
(s,R) ↓error

The general case follows via three rules:

(s,R) → (s′,M ′)

(s, E[R]) → (s′, E[M ′])

(s,R) ↓error
(s, E[R]) ↓error

(s,R) ↓lerror
(s, E[R]) ↓lerror

We can also define a corresponding big-step semantics by:

(s,M) ⇒ (s′, V ) ⇐⇒ (s,M) →∗ (s′, V )
(s,M) ⇓error ⇐⇒ ∃s′,M ′. (s,M) →∗ (s′,M ′) ↓error
(s,M) ⇓l

error ⇐⇒ ∃s′,M ′. (s,M) →∗ (s′,M ′) ↓lerror
(s,M) ⇑ ⇐⇒ ∀n. ∃s′,M ′. (s,M) →n (s′,M ′)

These relations and properties are mutually exclusive. The relation (s,M) ⇒
(s′, V ) holds if M evaluates to the value V with final store s′ when the initial
store is s; the property (s,M) ⇓l

error holds if the termM causes a buffer-overflow
error on location l when the initial store is s, and (s,M) ⇓error holds if M results
in a different error; the property (s,M) ⇑ holds if M diverges when the initial
store is s.

4 The Low-Level Language

Our low-level language, which we define in this section, mainly differs from the
high-level language in employing integer addresses.

4.1 Syntax and Informal Semantics

The syntax of the low-level language is a variant of that of the high-level language
in which we replace high-level constants for accessing locations by distinguished
locations and memory-access constants:

M ::= x | c | [M ; . . . ;M ] | λx.M | MM
c ::= ∗ | n | + |=nat | . . .

| ith | length
| lnat | !nat | :=nat

where l ranges over the finite set Loc of locations.



On Layout Randomization for Arrays and Functions 175

Informally, the constant lnat evaluates to the index of location l; it returns an
integer. The constant !nat, when applied to an integer n, reads the contents of
memory at address n. The constant :=nat, when applied to a first argument and
an integer n, writes the first argument at address n. (So, with infix notation, we
write N := M for := M N .)

Because each constant lnat is a first-class, legal expression on its own, we can
write programs that pass these constants and that store them in memory, such
as lnat :=nat l

′
nat. Moreover, !nat and :=nat are legal expressions even when they

are not applied to location constants (unlike the corresponding notations in the
high-level language). Thus, we can write not only !natlnat and lnat :=nat 0, but
also for example !natx, !nat(x + 1), (x+ 1) :=nat 8, or (x + lnat) :=nat (x+ l′nat),
where l is a location and x is a variable. As these small examples illustrate,
addresses can be the result of integer computations, on variables and constants
(including location constants). This flexibility could allow an attacker to try to
access memory at a computed offset from a known location, for instance.

We assume that each address in memory is either used to hold a value or
unused, and assume that access to an unused address results in an immedi-
ate fatal error. These assumptions are as in the “fatal-error model” of Abadi
and Plotkin [3]. It should be possible to adapt our work to the alternative
“recoverable-error model”.

Both the high-level language and the low-level language allow storing a pro-
gram in memory, retrieving it, then invoking it. In particular, an attacker may
be able to inject code into memory via a direct assignment. On the other hand,
neither language allows computing on the code of programs, nor confusing nat-
ural numbers with programs. In this respect, the low-level language remains
fairly high-level. For example, in the low-level language, after the assignment
lnat :=nat (λx. !natl

′
nat), an attacker that can read the contents of lnat would be

able to execute (λx. !natl
′
nat), but not extract l

′
nat from it, nor the syntax tree of

(λx. !natl
′
nat). It seems unlikely that one could obtain strong guarantee without

some such restrictions.

4.2 Values

As in the high-level language, we designate a subset of the expression of the
programming language as values. In particular, we take !nat and :=nat to be
values:

V ::= d | e | [V ; . . . ;V ] | λx.M
d ::= ∗ | n | + |=nat | . . .

| ith | length
| !nat | :=nat

e ::= n + | n =nat | . . .
| n ith

| :=nat V

We write LV for the set of values of the low-level language.



176 M. Abadi and J. Planul

4.3 Memory Model

Concretely, we let a memory be a mapping m :Mem → (LV+ {ε}), where:

– Mem is the set 0, . . . , κ of memory addresses, for a given κ ≥ 0,
– we assume that |

∑
l∈Loc sig(l)| ≤ κ+ 1,

– LV+ {ε} is the disjoint union of LV and {ε}, and
– m(a) = ε indicates that a is an unused address of m.

Since the low-level language contains location constants, its semantics depends
on how these are laid out in memory. A memory layout is an injective mapping
w : Loc ↪→ Mem. Such a memory layout connects the abstract and the concrete
memory models. A location that stores an array in the abstract model corre-
sponds to a range of memory addresses in the concrete model. For a location
l, that range starts at address w(l) and includes sig(l) consecutive address. We
restrict attention to those memory layouts that do not cause range overflows or
overlaps, that is, such that there exist no l1 ∈ Loc such that w(l1) ≤ κ < w(l1)+
sig(l1)− 1, and no distinct l1, l2 ∈ Loc such that w(l1) ≤ w(l2) < w(l1)+ sig(l1).
We let Ran(w) be the set {a ∈ Mem | ∃l. w(l) ≤ a < w(l) + sig(l)}.

A public layout wp : PubLoc ↪→ Mem maps public locations to addresses. We
assume that one public layout is fixed throughout, and we consider only those
memory layouts that extend it.

We also define stores for the low-level language; we call them low-level stores
to distinguish them from those of the high-level language, to which they are
directly analogous. Thus, a low-level store is a mapping s :Loc → LV that sends
locations to values of the low-level language, such that s(l) is an array value
and |s(l)| = sig(l) for every l ∈ Loc. For every low-level store s and memory
layout w, there is a corresponding memory mem(s, w) defined by:

mem(s, w)(a) =

{
s(l).(i) if there exists i ∈ 1..sig(l) such that w(l) + i− 1 = a
ε otherwise (a /∈ Ran(w))

where s(l).(i) is the ith element of the array value s(l). The mapping s �→
mem(s, w) is 1-1, from low-level stores to memories, but not onto. We say that
m has the form mem(s, w) if it equals mem(s, w) for some w. We abbreviate
mem(s, w) to sw.

4.4 Operational Semantics

The operational semantics resembles that of the high-level language in its treat-
ment of functions and numbers. In particular, the redexes and the reduction
relation between redexes and terms are both much as in the high-level language,
but with

lnat (for l ∈ Loc) !natV V :=nat V

as redexes. Evaluation contexts are as in the high-level language.



On Layout Randomization for Arrays and Functions 177

A configuration is a pair (m,M) of a memorym and a termM . The semantics
consists of a transition relation and two error properties on configurations, all
relative to the memory layout chosen:

w |= (m,M) → (m′,M ′)

w |= (m,M) ↓error w |= (m,M) ↓aerror

The error property w |= (m,M) ↓aerror distinguishes accesses to out-of-range or
unused addresses; in particular, if w |= (m,M) ↓aerror and m has the form sw,
then a /∈ Ran(wp).

For redexes, the transition relation and error properties are given by the rules:

R→M ′

w |= (m,R) → (m,M ′)

R ↓error
w |= (m,R) ↓error

together with:

w |= (m, lnat) → (m,w(l)) (for l ∈ Loc)

and:

w |= (m, !nata) → (m,V ) (if a ∈ Mem and m(a) = V )
w |= (m, !nata) ↓aerror (if a /∈ Mem or m(a) = ε)
w |= (m, a :=nat V ) → (m[a �→ V ], skip) (if a ∈ Mem and m(a) 	= ε)
w |= (m, a :=nat V ) ↓aerror (if a /∈ Mem or m(a) = ε)

The general case follows by the rules:

w |= (m,R) → (m′,M ′)

w |= (m,E[R]) → (m′, E[M ′])

and:

w |= (m,R) ↓error
w |= (m,E[R]) ↓error

w |= (m,R) ↓aerror
w |= (m,E[R]) ↓aerror

Much as in the high-level language, too, this small-step semantics induces a
big-step semantics:

w |= (m,M) ⇒ (m′, V ) ⇐⇒ w |= (m,M) →∗ (m′, V )

w |= (m,M) ⇓error ⇐⇒ ∃m′,M ′.w |= (m,M) →∗ (m′,M ′) ↓error
w |= (m,M) ⇓a

error ⇐⇒ ∃m′,M ′.w |= (m,M) →∗ (m′,M ′) ↓aerror
w |= (m,M) ⇑ ⇐⇒ ∀n. ∃m′,M ′. w |= (m,M) →n (m′,M ′)

These relations and properties are mutually exclusive.



178 M. Abadi and J. Planul

5 Layout Distributions

The effectiveness of layout randomization requires the use of unpredictable lay-
outs. In this section, we define distributions on layouts, and introduce several
quantities that below we employ in quantitative security bounds.

Let d be a probability distribution over the layouts that extend wp. When
ϕ(w) is a statement, we write Pd(ϕ(w)) for the probability that it holds with
respect to the distribution d. For example, ϕ(w) might be the assertion that, with
the layout w, an execution that starts from a particular low-level configuration
(m,M) will produce an error. In that case, Pd(ϕ(w)) is the probability that such
an execution will produce an error for a random layout chosen according to d.

For any n ∈ N, we write w#n as an abbreviation for n 	∈ (Ran(w)\Ran(wp)).
Informally, when we think of n as an address that an attacker is guessing (not
out of the memory bounds, and not at public locations, since the attacker knows
those), w#n means that the attacker does not guess the address of a private
location. Then Pd(w#n) is the corresponding probability, for w chosen according
to d. Furthermore, we define:

δd = min{Pd(w#n) | n ∈ Mem \Ran(wp)}

For example, suppose that l is the only private location and that sig(l) = 1. If
layouts chosen according to d always map l to the integer 5, then δd = 0, simply
because Pd(w#5) = 0. Obviously, such layouts enable an attacker to access the
contents of l, trivially, via the address 5. On the other hand, if layouts chosen
according to d map l to each of Mem \Ran(wp) with uniform probability, then
δd = 1− (1/|Mem \Ran(wp)|).

As these examples illustrate, a small value for δd indicates a lack of security.
Therefore, we consider lower bounds on δd for certain choices of d. These lower
bounds approach 1 as the size of memory grows, thus indicating that attacker
guesses should succeed with vanishing probability in the limit.

In particular, a system may map all public locations to contiguous addresses
starting at address 0, and all private locations to contiguous addresses start-
ing at some random base address in the remaining space. There are |Mem| −∑

l∈Loc sig(l) + 1 possible positions for the base address. Moreover, any address
is the image of a private location with at most

∑
l∈PriLoc sig(l) of those possible

positions. Hence, for this simple distribution, we can show that:

δd ≥ 1−
∑

l∈PriLoc sig(l)

|Mem| −
∑

l∈Loc sig(l) + 1

assuming
∑

l∈Loc sig(l) ≤ |Mem|. Even with such a coarse scheme, δd approaches
1 as |Mem| grows. For example, if there is no public location, the private locations
have total length 232 (which represents a reasonable volume to hold in an actual
memory), and the size of memory is 264 (as in a large virtual address space),
then this bound is δd ≥ (1− (232/(264 − 232 + 1))), roughly (1− 2−32).

Much more sophisticated arrangements are possible, in particular ones that
map each private location independently. Overall, it is fairly easy to pick dis-
tributions on layouts that ensure that δd approaches 1. Basically, with such



On Layout Randomization for Arrays and Functions 179

distributions, when an attacker looks for private locations in a large enough
memory, getting only one try, the attacker is almost certain to miss provided the
memory is large enough.

Similarly, for any l ∈ Loc, we write w#l as an abbreviation for w(l) + sig(l) 	∈
Ran(w). Thus, w#l holds precisely when the end of the array located in l is not
contiguous to any other location in use. When this property holds, direct buffer
overflows from l will raise an error in the implementation, even without proper
bounds checking. We define:

�d = min{Pd(w#l) | l ∈ Loc}

As for δd, we would like �d to be large. Fortunately, assuming that memory is
large enough, we can easily focus attention on layouts w such that w#l for all l,
so �d = 1. In such layouts, all arrays are separated by unused locations. These
unused locations are analogous to the “guard zones” or “guard regions” that
appear in practical systems (e.g. [10, 17]).

Moreover, the wishes for δd that approaches 1 and for �d = 1 are compatible.
For instance, a systemmay keep all public memory together starting at address 0,
and private memory together at some random base address in the remaining
space, but separate any two arrays with one unused location.

Our results hold for any probability distribution d. For the rest of the paper,
we fix a choice of d, and write P(ϕ(w)), δ, and � as abbreviations for Pd(ϕ(w)),
δd, and �d, respectively.

6 Compilation and Its Properties

In this section we define the translation discussed in the introduction. We then
prove its correctness and its security.

6.1 The Translation

We translate terms M of the high-level language to terms M↓ of the low-level
language. Crucially, this translation maps abstract locations to their low-level
counterparts. Since these are interpreted relatively to a memory layout, and
since this memory layout is chosen according to a probability distribution, the
translation embodies layout randomization.

The translation is trivial for all constructs of the high-level language with the
exception of the constants !loclloc and lloc :=loc, which we compile as follows:

(!loclloc)
↓ = [!natlnat; !natlnat + 1; . . . ; !natlnat + sig(l)− 1]

(lloc :=loc)
↓ = λx. for i = 1 to lengthx do lnat + i− 1 :=nat i ithx; done;

if i < sig(l) then raise error

Both (!loclloc)
↓ and (lloc :=loc)

↓ employ the signature sig(l). In the case of
(!loclloc)

↓, this signature indicates how much to read from memory. In the case
of (lloc :=loc)

↓, it serves to ensure that what is being written to memory is



180 M. Abadi and J. Planul

not too short. Alternatively, as suggested in the Introduction, we could add
distinguished padding values to fill the space available.

However, (lloc :=loc)
↓ does not check whether its argument (the data being

written to memory) is too long. This absence of bounds checking leads to the
possibility of buffer overflows. Although the absence of bounds checking is de-
liberate in this definition, it models common mistakes (poor design decisions
or implementation blunders). In general, without layout randomization or other
mitigations, such mistakes could jeopardize security. Nevertheless, our security
results (presented below) apply despite these buffer overflows. (Note that, in ad-
dition to the buffer overflows that the translation may introduce, contexts may
attempt other problematic operations, such as accessing memory at an offset
from a known location, as in (lnat + 256) :=nat 0; our results still apply.)

Since high-level stores may contain functions, and those may contain occur-
rences of the constructs !loclloc and lloc :=loc, we extend the translation so that
it maps each high-level store s to a low-level store s↓. We define s↓ by setting,
for every l ∈ Loc,

s↓(l) = s(l)↓

Given a layout w, we can then obtain a memory s↓w.

6.2 Correctness

The translation is correct in the sense that M↓ simulates M , under the corre-
sponding big-step semantics:

Proposition 1. Suppose that M is a term of the high-level language, and w a
layout. Then:

1. If (s,M) ⇒ (s′, V ) then, w |= (s↓w,M
↓) ⇒ (s′↓w , V

↓).
2. If (s,M) ⇓error then w |= (s↓w,M

↓) ⇓error.

3. If (s,M) ⇓l
error then, if w(l) + sig(l) /∈ Ran(w), w |= (s↓w,M

↓) ⇓w(l)+sig(l)
error .

4. If (s,M) ⇑ then w |= (s↓w,M
↓) ⇑.

Fixing a distribution on layouts, we can derive a probabilistic statement from
Proposition 1:

Proposition 2. Suppose that M is a term of the high-level language. Then:

1. If (s,M) ⇒ (s′, V ), then, for every w, w |= (s↓w,M
↓) ⇒ (s′↓w , V

↓).
2. If (s,M) ⇓error then, for every w, w |= (s↓w,M

↓) ⇓error.

3. If (s,M) ⇓l
error then P(w |= (s↓w,M

↓) ⇓w(l)+sig(l)
error ) ≥ �.

4. If (s,M) ⇑ then, for every w, w |= (s↓w,M
↓) ⇑.

Further, we can restate the correctness of compilation in terms of a coarse
notion of evaluation. For any store s and term M of the high-level language, we
define Eval(M, s) by:

Eval(M, s) =

⎧⎨⎩
� if (s,M) ⇒ (s′, V ) for some (s′, V )
E if (s,M) ⇓u

error

Ω if (s,M) ⇑



On Layout Randomization for Arrays and Functions 181

Here, (s,M) ⇓u
error means that (s,M) ⇓error or (s,M) ⇓l

error for some l, and
�, E, and Ω are tokens that indicate normal termination, error, and divergence,
respectively. Similarly, for any low-level term M , memory m, and layout w, we
define Evalw(M,m) by:

Evalw(M,m) =

⎧⎨⎩
� if w |= (m,M) ⇒ (m′, V ) for some (m′, V )
E if w |= (m,M) ⇓u

error

Ω if w |= (m,M) ⇑

where w |= (m,A) ⇓u
error means that w |= (m,A) ⇓error or w |= (m,A) ⇓a

error for
some a. We obtain:

Proposition 3. Let M be a high-level term and s a high-level store. Then:

P(Eval(M, s) = Evalw(M
↓, s↓w)) ≥ �

This statement is simpler and weaker than those above. It expresses that eval-
uating M from a store s and M↓ from a corresponding memory s↓w lead to the
same outcome with probability at least �. Here, an outcome is, coarsely, normal
termination, error, or divergence. Note that the probability does not depend
on δ; since (as explained in Section 5) we can often take � = 1, we can then have
that evaluating M from a store s and M↓ from a corresponding memory s↓w lead
to the same outcome with probability 1.

6.3 Security: Mapping Contexts

Although we cannot hope to establish that every program of the high-level lan-
guage is secure in some absolute sense, we would like to argue that compiling
a program from the high-level language to the low-level language does not in-
troduce vulnerabilities. In other words, we regard programs of the high-level
language as security specifications, and expect that the corresponding programs
of the low-level language conform to those specifications.

Our notion of security relies on the distinction between public and private
locations (much as in [3]). As stated in Section 3, we assume that the set of
locations Loc is the disjoint union of two sets, PubLoc and PriLoc, of public and
private locations. We then say that a high-level (respectively low-level) term is
public if all its occurrences of !loclloc and lloc :=loc (respectively lnat) are with
l ∈ PubLoc. We model attackers as public contexts, that is, as programs of our
languages that interact with the programs that we aim to protect, and that have
direct access to public locations.

Contexts (both public contexts and general contexts) have different capabili-
ties in each language. In particular, in the high-level language, contexts can refer
to abstract locations, while in the low-level language contexts can use integer ad-
dresses, and this might permit exploits that rely on guessing integer addresses,
perhaps using offset calculations. So, if the contexts of the low-level language
were much more expressive than those of the high-level language, security might



182 M. Abadi and J. Planul

be jeopardized. We aim to show that, in fact, the extra flexibility of the low-level
language does not affect security, at least with high probability.

Therefore, we show that a low-level term M↓ is as secure as its high-level
counterpart M by arguing that the behavior M↓ in each public context C of
the low-level language corresponds to the behavior of M in some correspond-
ing public context C↑ of the high-level language. Since we model attackers as
public contexts, this result indicates that, for every low-level attack, there is a
corresponding high-level attack with the same effect.

In order to relate behaviors at the two levels, we introduce pure stores. A
store is pure if it contains no location, assignment, or dereference. Therefore,
every pure store is both a high-level and a low-level public store. For simplicity,
in what follows, we consider only pure initial stores.

We obtain the following theorem:

Theorem 1. Suppose that M is a high-level term and C is a public low-level
term. Then CM↓ is a public low-level term, and there exists a public high-level
term C↑ such that one of the following three mutually exclusive statements holds
for any pure store s:

– there exist s′, s′′, V ′, and V ′′ such that, for all w, w |= (sw, CM
↓) ⇒ (s′w, V

′)
and (s, C↑M) ⇒ (s′′, V ′′),

– P(w |= (sw, CM
↓) ⇓u

error) ≥ min(δ, �) and (s, C↑M) ⇓u
error, or

– for all w, w |= (sw, CM
↓) ⇑ and (s, C↑M) ⇑.

The probability bound as a function of δ and � arises, basically, because a non-
public, low-level memory access is made independently of the layout.

Using the coarse evaluation function again, we derive a weaker but simpler
statement:

Corollary 1. Suppose that M is a high-level term and C is a public low-level
term. Then there exists a public high-level term C↑ such that, for any pure
store s, we have:

P(Eval(C↑M, s) = Evalw(CM
↓, sw)) ≥ min(δ, �)

Intuitively, for every attack (represented by C) on M↓ there is a correspond-
ing attack (represented by C↑) on M that leads to the same outcome (normal
termination, error, or divergence).

6.4 Security: Preservation of Equivalences

We introduce a relation≈h,p of public (contextual) operational equivalence for the
high-level language, and a relation ≈l,p of public (contextual) operational partial
equivalence for the low-level language. These two relations refine the correspond-
ing standard relations of operational equivalence. Much as in other settings, they
can be used for capturing security properties, such as those discussed informally
in Section 2. Therefore, we aim to show that compilation preserves equivalences,
at least in a probabilistic sense.



On Layout Randomization for Arrays and Functions 183

We define ≈h,p by setting, for any two high-level terms M0 and N0:

M0 ∼h,p N0 ⇐⇒ ∀pure s.Eval(M0, s) = Eval(N0, s)

and then, for any two high-level terms M and N :

M ≈h,p N ⇐⇒ ∀public high-level C.CM ∼h,p CN

Thus, M0 ∼h,p N0 means that M0 and N0 yield the same outcome from all pure
high-level stores, and M ≈h,p N means the same in an arbitrary public context.

Although Eval produces only a coarse outcome, and although the definition
of ∼h,p focuses on pure stores, the quantification over all public contexts leads
to fine distinctions between terms. For instance, when n and n′ are two different
numbers, we have n ∼h,p n

′, but we do not have n ≈h,p n
′, simply because a

context C may compare its argument to n, terminate if the comparison succeeds,
and diverge otherwise. Similarly, we do not have (lloc :=loc n) ≈h,p (lloc :=loc n

′)
if l is a public location, because a context C may read from lloc, compare the
result to n, terminate if the comparison succeeds, and diverge otherwise. On the
other hand, the equivalence (l′loc :=loc n) ≈h,p (l′loc :=loc n

′) does hold when l′

is a private location, and captures a secrecy property.
Note that this equivalence would not hold if we had quantified over arbi-

trary stores rather than pure stores in the definition of M0 ∼h,p N0. Let s be
a store that maps the public location l to the function λx. !locl

′
loc. Let C be a

context that consumes an argument, reads from lloc, applies its contents to ∗,
compares the result to n, terminates if the comparison succeeds, and diverges
otherwise. Then Eval(C(l′loc :=loc n), s) and Eval(C(l′loc :=loc n

′), s) yield dif-
ferent outcomes (� and Ω, respectively).

As this small example illustrates, the quantification over pure stores (rather
than arbitrary stores) in the definition of M0 ∼h,p N0 is crucial because stores
may contain functions. In particular, in an arbitrary store, a public location l
could contain functions that, when invoked, read or write private locations; a
context could then read from l and use those functions to access private loca-
tions. Thus, assuming that there is at least one public location l, removing the
restriction to pure stores would effectively erase the distinction between public
and private locations, and would yield a standard relation of contextual equiva-
lence.

Analogously, for the low-level language, for any M0 and N0, we say that
M0 ∼l,p N0 holds if and only if, for every pure store s, at least one of the
following three possibilities holds:

– there exist s′, s′′, V ′, and V ′′ such that, for all w, w |= (sw,M0) ⇒ (s′w, V
′)

and w |= (sw, N0) ⇒ (s′′w, V
′′),

– P(w |= (sw,M0) ⇓u
error) ≥ min(δ, �) and P(w |= (sw, N0) ⇓u

error) ≥ min(δ, �),
or

– for all w, w |= (sw,M0) ⇑ and w |= (sw, N0) ⇑.

This relation is a partial equivalence; as in [3], reflexivity may fail (because
terms that branch on the concrete addresses of private locations do not behave



184 M. Abadi and J. Planul

identically for all layouts). If δ > 0 and � > 0 then the three possibilities are
mutually exclusive; also, if the first of them holds, then s′, s′′, V ′, and V ′′ are
uniquely determined. Further, for any two low-level terms M and N , we set:

M ≈l,p N ⇐⇒ ∀public low-level C.CM ∼l,p CN

The following theorem shows that compilation preserves and reflects equiva-
lences:

Theorem 2. Let M and N be high-level terms. If M ≈h,p N , then M↓ ≈l,p N
↓.

The converse holds as well if δ > 0 and � > 0.

7 Related and Further Work

The pioneering work of Pucella and Schneider treats a small C-like language
with arrays, and relates obfuscation and type systems [15]. Their theorems focus
on integrity properties, and do not explicitly mention probabilities. As explained
by Abadi and Plotkin, those theorems basically pertain to protection from a po-
tentially dangerous input, while we consider more general attackers, represented
by arbitrary contexts, and also treat program equivalences that can express in-
tegrity and secrecy properties.

Our approach is most similar to that of Abadi and Plotkin (specifically, in
their “fatal error” model) [3], though with several substantial differences. In par-
ticular, we treat a dynamically typed language (rather than a statically typed
language), which gives us additional flexibility in the typing of memory. Fur-
thermore, we allow arrays and functions to be stored in memory (rather than
just integers). This extension enables the formulation of examples suggested by
practical attacks. It also entails a number of complications and opportunities,
such as the compilation of array operations, the quantification over pure stores
in defining equivalences, and the consideration of guard regions.

The choice of an untyped language and the possibility of storing functions in
memory appear also in the work of Jagadeesan et al. [9]. Their programming
languages include not only functions but also continuations, a bounded form of
local state, and some novel, non-standard constructs. In particular, they do not
view addresses as integers even in low-level systems, but pointer arithmetic is
available via encodings. On the other hand, the languages do not include arrays,
nor the resulting concerns about overflows that appear prominently in this paper.

Despite these distinctions, all these works aim to contribute to the under-
standing of randomization in the context of programming languages and their
implementations. There remain opportunities for research towards this goal. In
particular, further work may treat additional constructs and models of compu-
tation, such as concurrency. It may also consider combinations of layout ran-
domization with other techniques. Our use of guard regions, in this paper, is a
small step in that direction. Other relevant techniques include stack canaries for
protecting return addresses and various inline reference monitors that aim to
guarantee control-flow integrity. All these techniques may be used in concert in
practical systems; a principled study may be able to shed light on their synergies
and overlaps.



On Layout Randomization for Arrays and Functions 185

Acknowledgments. We are grateful to Úlfar Erlingsson and to Gordon Plotkin
for discussions on this work. Jérémy Planul’s work is supported by DARPA
PROCEED.

References

1. Abadi, M.: Protection in Programming-Language Translations. In: Larsen, K.G.,
Skyum, S., Winskel, G. (eds.) ICALP 1998. LNCS, vol. 1443, pp. 868–883. Springer,
Heidelberg (1998)

2. Abadi, M., Planul, J.: On layout randomization for arrays and functions (2013),
Long version of this paper, at
http://www.msr-inria.inria.fr/~jplanul/libraries-long.pdf

3. Abadi, M., Plotkin, G.D.: On protection by layout randomization. ACM Transac-
tions on Information and System Security 15(2), 8:1–8:29 (2012)

4. Chen, S., Sezer, E.C., Xu, J., Gauriar, P., Iyer, R.K.: Non-control-data attacks are
realistic threats. In: Proceedings of the Usenix Security Symposium, pp. 177–192
(2005)

5. Druschel, P., Peterson, L.L.: High-performance cross-domain data transfer. Techni-
cal Report TR 92-11, Department of Computer Science, The University of Arizona
(March 1992)

6. Erlingsson, Ú.: Low-Level Software Security: Attacks and Defenses. In: Aldini, A.,
Gorrieri, R. (eds.) FOSAD 2007. LNCS, vol. 4677, pp. 92–134. Springer, Heidelberg
(2007)

7. Felleisen, M., Friedman, D.P.: Control operators, the secd-machine, and the
lambda-calculus. In: 3rd Working Conference on the Formal Description of Pro-
gramming Concepts, pp. 193–219 (1986)

8. Forrest, S., Somayaji, A., Ackley, D.H.: Building diverse computer systems. In: 6th
Workshop on Hot Topics in Operating Systems, pp. 67–72 (1997)

9. Jagadeesan, R., Pitcher, C., Rathke, J., Riely, J.: Local memory via layout ran-
domization. In: Proceedings of the 24th IEEE Computer Security Foundations
Symposium, pp. 161–174 (2011)

10. McCamant, S., Morrisett, G.: Evaluating SFI for a CISC architecture. In: Proceed-
ings of the 15th USENIX Security Symposium, pp. 209–224 (2006)

11. Mitchell, J.: Foundations for Programming Languages. MIT Press (1996)
12. Pappas, V., Polychronakis, M., Keromytis, A.D.: Smashing the gadgets: Hindering

return-oriented programming using in-place code randomization. In: IEEE Sym-
posium on Security and Privacy, pp. 601–615 (2012)

13. PaX Project. The PaX project (2004), http://pax.grsecurity.net/
14. Pierce, B.: Types and Programming Languages. MIT Press (2002)
15. Pucella, R., Schneider, F.B.: Independence from obfuscation: A semantic frame-

work for diversity. Journal of Computer Security 18(5), 701–749 (2010)
16. Sotirov, A., Dowd, M.: Bypassing browser memory protections: Setting back

browser security by 10 years (2008),
https://www.blackhat.com/presentations/bh-usa-08/

Sotirov Dowd/bh08-sotirov-dowd.pdf

17. Wahbe, R., Lucco, S., Anderson, T.E., Graham, S.L.: Efficient software-based fault
isolation. In: Proceedings of the Fourteenth ACM Symposium on Operating Sys-
tems Principles, pp. 203–216 (1993)

http://www.msr-inria.inria.fr/~jplanul/libraries-long.pdf
http://pax.grsecurity.net/
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf
https://www.blackhat.com/presentations/bh-usa-08/Sotirov_Dowd/bh08-sotirov-dowd.pdf


A Theory of Agreements and Protection

Massimo Bartoletti1, Tiziana Cimoli1, and Roberto Zunino2

1 Università degli Studi di Cagliari, Italy
2 Università di Trento and COSBI, Italy

Abstract. We present a theory of contracts. Contracts are interacting
processes with an explicit notion of obligations and objectives. We model
processes and their obligations as event structures. We define a general
notion of agreement, by interpreting contracts as multi-player concur-
rent games. A participant agrees on a contract if she has a strategy to
reach her objectives (or make another participant chargeable for a viola-
tion), whatever the moves of her adversaries. We then tackle the problem
of protection. A participant is protected by a contract when she has a
strategy to defend herself in all possible contexts, even in those where
she has not reached an agreement. We show that, in a relevant class of
contracts, agreements and protection mutually exclude each other. We
then propose a novel formalism for modelling contractual obligations:
event structures with circular causality. Using this model, we show how
to construct contracts which guarantee both agreements and protection.

1 Introduction

The lack of precise guarantees about the reliability and security of cloud services
is a main deterrent for industries wishing to move their applications and busi-
ness to the cloud [1]. A key problem is how to drive safe and fair interactions
among distributed participants which are possibly mutually distrusted, and have
possibly conflicting individual goals. In addition to the well-known difficulties of
distributed software systems (distribution, concurrency, heterogeneity, mobility,
etc.), cloud components and infrastructures are often under the governance of
different providers, possibly competing among each other. Analysis and verifi-
cation techniques can be applied only on the software components under one’s
control, while no assumptions can be made about the components made avail-
able by other providers. Therefore, standard compositional techniques have to
be adapted to cope with the situation where providers fail to keep the promises
made, or even choose not to.

We envision a contract-oriented computing paradigm [3], where reliable in-
teractions are driven by contracts which formalise Service-Level Agreements.
Contracts specify the behavior of a software component, from the point of view
of the interactions it may participate in, and the goals it tries to reach. Differ-
ently from most of the approaches based on behavioural types [15], which use
contracts only in the “matchmaking” phase, a contract-oriented component is
not supposed to be honest, in that it may not keep the promises made.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 186–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



A Theory of Agreements and Protection 187

In a contract-oriented application, participants advertise their contracts to
some contract brokers, which are the contract-oriented analogous of service repos-
itories in the Web Service paradigm. Then, participants wait until the contract
broker finds an agreement among the contracts in its hands. When this happens,
a session is created among the participants involved in the contract, so that they
can interact. Agreement is a property of contracts which guarantees that each
honest participant may reach her objectives, provided that the other participants
cooperate honestly. Moreover, if an honest participant does not reach her goals,
then some other participant can be blamed. An external judge may then inspect
the contract and the status of the session. In case a violation is found, the judge
will eventually provide the prescribed compensations/punishments.

The underlying assumption of this view is that participants trust in the con-
tract broker. In a context populated by attackers, it may happen that a dishonest
contract broker creates a fraudulent session, making participants interact in the
absence of an agreement. In this way, the contract broker may allow an accom-
plice to swindle an unaware participant. Note that the accomplice may perform
his scam while adhering to his contract, and so he will not be liable for violations.

A crucial problem is how to devise contracts which protect participants from
malicious contract brokers, while at the same time allowing honest brokers to
find agreements. A good contract should allow a participant to reach her goals in
contexts where the other participants are cooperative, and prevent her from per-
forming imprudent actions which could be exploited by malicious participants.

In this paper we propose a foundational model for contracts. We specify the
behaviour of participants as event structures [21], a basic semantic model for
interactive systems. We then provide a formal definition for the two key no-
tions intuitively introduced above, i.e. agreement and protection. To do that, we
borrow techniques from game theory, by interpreting contracts as multi-player
concurrent games. By abstracting away from the concrete details of contract
languages, our model is a first step towards a unifying framework for reason-
ing about contracts, in the same spirit that event structures can be used as an
underlying semantics for a variety of concrete models of concurrency.

A first result is that agreement and protection cannot coexist for a broad class
of objectives. That is, if we are given the objectives of a set of participants, it
is impossible to construct a contract which protects them all, and at the same
time admits an agreement. Roughly, the problem is that, when the offers of the
participants mutually depend on their requests, the participant which risks in
doing the first step is not protected.

To overcome this negative result, we extend event structures with a new no-
tion of causality. While in classical event structures an action a which causally
depends on an action b can only be performed after b, in our extension we also
consider a relaxed version of causality, which allows a to happen before b, under
the (legally binding) promise that b will be eventually performed.

The main result of the paper is that, using this model for contracts, it is
possible for a wide class of objectives to construct a set of contracts which
protect their participants and still admit an agreement.



188 M. Bartoletti, T. Cimoli, and R. Zunino

2 Contracts

At an abstract level, contracts are concurrent systems, enriched with a notion
of obligation (what I must do in a given state) and objective (what I expect to
obtain in a given state). Event structures (ES) are one of the classical models for
concurrency [21]. Notwithstanding the variety of formalisations, ES are at least
equipped with an enabling relation modelling causality (usually written "), and
another relation modelling non-determinism (usually written #). ES can provide
a basic semantic model for contractual clauses, by interpreting the enabling
{b} " a as: “I am obliged to do a after you have done b”.

2.1 Event Structures

Event structures [21] have a deep theory. Here we only report some basic defini-
tions, which are needed in our technical development. We assume an enumerable
universe of events, ranged over by a, b, e, . . .. For a set of events X , the predicate
CF (X) is true iff X is conflict-free, i.e. CF (X) � (∀e, e′ ∈ X : ¬(e#e′)).

Definition 1 (Event structure [21]). An event structure E is a triple 〈E,#,"〉,
where (1) E is a set of events, (2) # ⊆ E × E is an irreflexive and symmetric
conflict relation (3) " ⊆ {X ⊆fin E | CF (X)} × E is the enabling relation,
which is saturated, i.e. ∀X ⊆ Y ⊆fin E. X " e ∧ CF (Y ) =⇒ Y " e.

An ES is finite when E is finite; it is conflict-free when the conflict relation is
empty. We shall often use the following shorthands: X " Y for ∀e ∈ Y. X " e,
a " b for {a} " b, and " e for ∅ " e.

Definition 2 (Persistent conflict). An event e ∈ E is persistently con-
flictable in E iff the set {ē ∈ E | e#ē} is infinite. A set X ⊆ E is persistently
conflictable iff some e ∈ X is persistently conflictable.

For a sequence σ = 〈e0 e1 · · ·〉 in E (possibly infinite), we write σ for the set of
elements in σ; we write σi for the subsequence 〈e0 · · · ei−1〉. If σ = 〈e0 · · · en〉, we
write σ e for the sequence 〈e0 · · · en e〉. The empty sequence is denoted by ε. For
a set S, we denote with S∗ the set of finite sequences over S, and with Sω the
set of finite and infinite sequences over S.

A configuration C is a “snapshot” of the behaviour of the system modeled by
an ES, where for each event e ∈ C it is possible to find a finite justification, i.e.
a sequence of events containing all the causes of e.

Definition 3 (Configuration [21]). For an ES E = 〈E,#,"〉, a set C ⊆ E is
a configuration of E iff CF (C), and

∀e ∈ C. ∃σ = 〈e0 · · · en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n. σi " ei

The set of all configurations of E is denoted by FE.



A Theory of Agreements and Protection 189

Definition 4 (LTS of an ES). For an ES E, the labelled transition system
LTSE = 〈℘fin(E), E,→E〉 is defined as follows:

C
e−→E C ∪ {e} iff C " e, e 	∈ C and CF (C ∪ {e})

Definition 5. For two ES E,E′, we define E�E′ as the pointwise union of E,E′.

2.2 An Event-Based Model of Contracts

A contract (Def. 6) specifies the obligations and the objectives of a set of par-
ticipants. The atomic entities of a contract are the events, which are uniquely
associated to participants through a labelling π. Obligations are modelled as an
event structure. Intuitively, an enabling X " e models the fact that, if all the
events in X have happened, then e is an obligation for π(e). Such obligation
may be discharged only by performing e, or any event in conflict with e. For in-
stance, consider an internal choice between two events a and b. This is modelled
by an ES with enablings " a, " b and conflict a#b. After the choice (say, of a),
the obligation b is discharged. Objectives are modelled as a function Φ, which
associates each participant A and each trace of events σ to a payoff ΦAσ. We
assume a rather coarse notion of payoffs: we only have three possible outcomes
which represent, respectively, success (1), failure (-1), and tie (0).

Definition 6 (Contract). A contract C is a 4-tuple 〈E,A, π, Φ〉, where:

– E = 〈E,#,"〉 is an event structure;
– A is a set of participants (ranged over by A,B, . . .);
– π : E → A associates each event with a participant;
– Φ : A⇀ Eω → {−1, 0, 1} associates each participant and trace with a payoff.

Hereafter, we shall assume that contracts respect two basic requirements. For
all X " e in E, we ask that (i) Φ(π(e)) 	= ⊥, and (ii) e is not persistently
conflictable in E. Notice that Φ is a partial function (from A to functions), hence
a contract does not need to define payoffs for all the participants in A (typically,
when A advertises her contract, she will not speculate about the objectives of B).
Constraint (i) asks that if a contract defines some obligations for A, then A must
also declare in C her payoffs. Constraint (ii) rules out those ill-formed contracts
where some obligations can be persistently discharged.

Example 1. Suppose there are two kids who want to play together. Alice has a
toy airplane, while Bob has a bike. Both kids are willing to share their toys, but
they do not trust each other. Thus, before starting to play they advertise the
following contracts. Alice will lend her airplane only after Bob has allowed her
ride his bike. Bob will lend his bike without conditions. We model the events
“Alice lends her airplane” and “Bob lends his bike” as a and b, respectively. The
obligations of Alice and Bob are modelled by the following event structures:

EA : {b} " a EB : ∅ " b



190 M. Bartoletti, T. Cimoli, and R. Zunino

The objectives of the two kids are modelled by the functions ΦA (which estab-
lishes Alice’s payoff) and ΦB (for Bob). Alice has a positive payoff in those traces
where b has been performed, while she has a negative payoff when she performs
a while not obtaining b in return. The payoffs of Bob are dual. Formally:

ΦAA = λσ.

⎧⎪⎨⎪⎩
1 if b ∈ σ

0 if a, b 	∈ σ

−1 otherwise

ΦBB = λσ.

⎧⎪⎨⎪⎩
1 if a ∈ σ

0 if b, a 	∈ σ

−1 otherwise

Summing up, the contracts of Alice and Bob are CA = 〈EA,A, π, ΦA〉 and CB =
〈EB,A, π, ΦB〉, respectively, where A = {A,B}, π(a) = A, and π(b) = B. ��

Observe that the definition of payoff functions in Def. 6 is quite liberal. Indeed, it
also allows for uncomputable functions, which are of little use in doing anything
with a contract. One may then be interested in considering relevant subclasses of
payoff functions, in the same spirit of the rich classification of winning conditions
in game theory [9].

Assume that participant A has a sequence 〈O0O1 · · ·〉 of sets of events, and
a sequence 〈R0R1 · · ·〉 of the same cardinality. The sets Oi are called offers,
while Ri are the requests. A function Φ is an Offer-Request (O-R) payoff for
A if, whenever A performs in σ some offer Oi (in whatever order), then σ also
contains the corresponding request Ri. For instance, the payoff functions ΦA and
ΦB in Ex. 1 are O-R payoffs for A and B. The offers and the requests of A and
B are, respectively O0

A = {a} = R0
B and, dually, O0

B = {b} = R0
A.

Definition 7 (Offer-Request payoff). Let π : E → A. We say that Φ is a
Offer-Request payoff for A iff there exist (possibly infinite) sequences (Oi)i, (R

i)i
of equal cardinality such that for all i, Oi ⊆ π−1(A), ∅ 	= Ri ⊆ E \ π−1(A), and

ΦA = λσ.

⎧⎪⎨⎪⎩
1 if (∃i. Ri ⊆ σ) ∧ (∀j. Oj ⊆ σ =⇒ Rj ⊆ σ)

0 if (∀i. Ri 	⊆ σ ∧ Oi 	⊆ σ)

−1 otherwise

A contract C = 〈E,A, π, Φ〉 has O-R payoffs iff Φ is a O-R payoff for all A ∈ A.
If, additionally, all the sets Oi (resp. Ri) are finite for all A ∈ A, we say that C
has finite offers (resp. finite requests). If Φ has a finite number of finite offers-
request, then Φ is finite.

Example 2. In [8] contracts are modelled in a variant of CCS which includes
prefixing, internal/external choice, and recursion. Consider e.g. a server A which
repeatedly offers to her clients a choice between two actions a and b. The client
B internally chooses one of his (co-)actions a and b. This is modelled in [8] as:

cA = rec X. (a.X + b.X) cB = rec Y. (a.Y ⊕ b.Y )

In our theory we model cA and cB as the contracts CA and CB, defined below.
For all i ≥ 0, let ai, bi be events of A, and let ai, bi be events of B. The event
structures of A and B have the following enablings and conflicts, for all i ≥ 0:



A Theory of Agreements and Protection 191

EA : ai " ai, bi " bi, ai#bi

EB : " a0, " b0, ai " ai+1, ai " bi+1, bi " ai+1, bi " bi+1, ai#bi

The payoff of a A is positive in a play σ if A has no obligations; similarly for B.

ΦPP = λσ.

{
1 if �e ∈ π−1(P). σ

e−→EP

−1 otherwise
��

Given two contracts C,C′, we denote with C | C′ their composition. If C′ is the
contract written by an adversary of C, then a näıve composition of the two
contracts could easily lead to an attack, e.g. when Mallory’s contract says that
Alice is obliged to give him her airplane. To prevent from such kinds of at-
tacks, contract composition is a partial operation. We do not compose contracts
which assign payoffs to the same participant, neither those which disagree on
the association between events and participants.

Definition 8 (Composition of compatible contracts). Two contracts C =
〈E,A, π, Φ〉 and C′ = 〈E′,A′, π′, Φ′〉 are compatible whenever:

∀e ∈ E ∩ E′. e = e′ =⇒ π(e) = π′(e) (1)

∀A ∈ A ∪A′. Φ(A) = ⊥ ∨ Φ′(A) = ⊥ (2)

If C, C′ are compatible, we define their composition as:

C | C′ = 〈E � E′,A ∪A′, π � π′, Φ � Φ′〉

Two contracts which both assign obligations to A are not compatible.

Lemma 1. If C = 〈E,A, π, Φ〉 and C′ = 〈E′,A′, π′, Φ′〉 are compatible, then:

X " e ∈ E ∧ X ′ " e′ ∈ E′ =⇒ π(e) 	= π′(e′) ∧ e 	= e′

Example 3. The contracts CA and CB in Ex. 1 are compatible, and their compo-
sition is the contract C = CA | CB = 〈E,A, π, Φ〉 defined as follows:

E : {b} " a, ∅ " b
A : {A,B}
π : π(a) = A, π(b) = B

ΦP =

{
ΦAA if P = A

ΦBB if P = B
��

2.3 Agreements

A crucial notion on contracts is that of agreement. Intuitively, when Alice agrees
on a contract C, then she can safely initiate an interaction with the other par-
ticipants, and be guaranteed that the interaction will not “go wrong” — even
in the presence of attackers. This does not mean that Alice will always succeed
in all interactions: in case Bob is dishonest, we do not assume that an external



192 M. Bartoletti, T. Cimoli, and R. Zunino

authority (e.g. Bob’s mother) will lend the bike to Alice. We intend that Alice
agrees on a contract where, in all the interactions where she does not succeed,
then some other participant must be found dishonest. That is, we consider Alice
satisfied if she can blame another participant. In real-world applications, a judge
may provide compensations to Alice, or impose a punishment to the participant
who has violated the contract. Here, we shall not explicitly model the judge, and
we shall focus instead on how to formalise the agreement property.

We interpret a contract C = 〈E,A, π, Φ〉 as a nonzero-sum concurrent multi-
player game. The game involves the players in A concurrently performing events
in order to reach the objectives defined by Φ. A play of C is a (finite or infinite)
sequence of events of E. We postulate that the permitted moves after a (finite)
sequence of steps σ are exactly the events enabled by E in σ, i.e. e is permitted
in σ iff σ

e−→E. A strategy Σ for A is a function which associates to each finite
play σ a set of events of A (possibly empty), such that if e ∈ Σ(σ) then σe is
still a play. A play σ = 〈e0 e1 · · ·〉 conforms to a strategy Σ for A if, for all i ≥ 0,
if ei ∈ π−1(A), then ei ∈ Σ(σi).

As usual in concurrency, we shall only consider those fair plays where an
event permanently enabled is eventually performed. Indeed, contracts would
make little sense in the presence of unfair plays, because an honest participant
willing to perform a promised action could be perpetually prevented (by an
unfair scheduler) from keeping her promise.

Definition 9 (Fair play). A play σ = 〈e0 e1 · · ·〉 is fair w.r.t. strategy Σ iff:

∀i ≤ |σ|.
(
∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

)
=⇒ ∃h ≥ i. eh = e

Our notion of agreement takes into account whether participants behave honestly
in their plays. Informally, a participant is innocent in a play if she always keeps
the promises made. An innocent participant has no persistently enabled events,
i.e. all her enabled events are either performed or conflicted.

Definition 10 (Innocence). We say that A is innocent in σ iff:

∀i ≥ 0. ∀e ∈ π−1(A).
(
σi

e−→E =⇒ ∃j ≥ i. ej#e ∨ ej = e
)

If A is not innocent in σ, then we say she is culpable.

There always exist strategies which guarantee A to be innocent in every (fair)
play. The greatest of such strategies is the eager strategy, which prescribes A to
do all her enabled events.

Lemma 2. Say a strategy Σ for A is innocent iff A is innocent in all fair plays
which conform to Σ. The eager strategy Σe

A = λσ. {e ∈ π−1(A) | σ e−→E } is the
greatest innocent strategy for A.

We now define when a participant wins in a play. If A is culpable, then she loses.
If A is innocent, but some other participant is culpable, then A wins. Otherwise,
if all participants are innocent, then A wins if she has a positive payoff in the
play. This is formalised as the function W in Def. 11 below.



A Theory of Agreements and Protection 193

Definition 11 (Winning play). Define W : A⇀ Eω → {1, 0,−1} as:

WAσ =

⎧⎪⎨⎪⎩
ΦAσ if all participants are innocent in σ

−1 if A is culpable in σ

+1 otherwise

For a participant A and a play σ, we say that A wins (resp. loses) in σ iff
WAσ > 0 (resp. WAσ < 0).

We can now define when a participant agrees on a contract. Intuitively, A is
happy to participate in an interaction regulated by contract C when she has a
strategy Σ which allows her to win in all fair plays conform to Σ. More formally,
we say that Σ is winning (resp. losing) for A iff A wins (resp. loses) in every fair
play which conforms to Σ.

Definition 12 (Agreement). A participant A agrees on a contract C if and
only if A has a winning strategy in C. A contract C admits an agreement whenever
all the involved participants agree on C.

Example 4. The contract C of Ex. 3 admits an agreement. The winning strategies
for A and B are, respectively:

ΣA(σ) =

{
{a} if b ∈ σ and a 	∈ σ

∅ otherwise
ΣB(σ) =

{
{b} if b 	∈ σ

∅ otherwise

For A, the only fair plays conform to ΣA are ε and 〈b a〉. B is culpable in ε, while
in 〈b a〉 the payoff of A is positive. For B, the only fair plays conform to ΣB are
〈b〉 and 〈b a〉. A is culpable in 〈b〉, while in 〈b a〉 the payoff of B is positive. ��

Example 5. The contracts in Ex. 2 above admit an agreement. The winning
strategies for A and B are the eager strategies Σe

A and Σe
B, respectively. ��

Example 6. Note that Σe
A is not necessarily winning for A. For instance, consider

the contract with " a, " b, a#b, π−1(A) = {a, b}, and ΦAσ = 1 iff a ∈ σ. We
have that Σe

A(ε) = {a, b}, but A is losing in the fair play σ = 〈b〉. However, A
agrees on C, because the strategy (λσ. if σ

a−→ then {a} else ∅) is winning for A.

Example 7. The union of two winning strategies is not necessarily a winning
strategy. For instance, consider the contract with enablings " a, " b, {a} " a′,
{b} " b′, and conflicts a#b′, a′#b (all the events are of participant A). Let:

Σa(σ) =

⎧⎪⎨⎪⎩
{a} if σ

a−→
{a′} if σ

a′
−→

∅ otherwise

Σb(σ) =

⎧⎪⎪⎨⎪⎪⎩
{b} if σ

b−→
{b′} if σ

b′−→
∅ otherwise

and let ΦAσ be positive if either a, a′ ∈ σ, or b, b′ ∈ σ. Both Σa and Σb are
winning strategies for A in C, but their union Σ = λσ.Σa(σ) ∪ Σb(σ) is not.
Indeed, Σ(a) = {a′, b}, and so σ = 〈a b〉 is a fair play w.r.t. Σ such that ΦAσ ≤ 0.



194 M. Bartoletti, T. Cimoli, and R. Zunino

We now define the composition � of a set of strategies. Unlike for the union of
winning strategies, their �-composition is guaranteed to be winning (Lemma 3).

Definition 13. For a set of strategies S, we define the strategy
⊔
S as:

(
⊔

S)(σ) =
⋃

{Σ(σ) | Σ ∈ S ∧ σ conforms to Σ}

Lemma 3. Let S = {Σ1, . . . , Σn} be a set of strategies. Then:

(a) A play σ conforms to
⊔
S iff σ conforms to Σi, for some i.

(b) If all Σi are winning for A in C, then
⊔
S is a winning strategy for A in C.

The following lemma gives a necessary condition for reaching an agreement on
a contract with O-R payoffs. The ES must have a configuration containing at
least a request set, and all the offers are matched by the respective requests.

Lemma 4. Let C = 〈E,A, π, Φ〉 be a contract with O-R payoff ΦA = λσ. φ(σ)
for A. If A agrees on C, then there exists C ∈ FE such that φ(C) > 0.

The following theorem establishes a sufficient condition for reaching agreements
in conflict-free contracts with O-R payoffs. If there exists a configuration C in
C which contains all the requests of A, then A agrees on C. Since the ES of C
is conflict-free, if the strategy of A prescribes to do all her enabled events in C,
then the other participants are obliged to do their events in C. Eventually, either
some participant B 	= A is culpable, or a state is reached where the payoff of A
is positive.

Theorem 1. Let C be a contract with O-R payoff for A. If E is conflict-free and⋃
iR

i
A ⊆ C for some C ∈ FE, then A agrees on C.

Example 8. Note that conflict-freeness is necessary in Theorem 1. Consider e.g.
the contract C with O-R payoff for A given by O0

A = {a} and R0
A = {b}. Assume

that π−1(A) = {a}, and π−1(B) = {b, b′}. The ES of C has enablings " a, " b,
" b′, and conflict b#b′. The set {a, b} is a configuration, but A does not agree
on C. Indeed, either A does no events, or she performs a. In the first case, A is
culpable, while in the second one she will have a negative payoff if B does b′. ��

2.4 Protection

In contract-oriented interactions [3], mutually distrusted participants advertise
their contracts to a contract broker. The broker composes contracts which admit
an agreement, and then establishes a session among the participants involved in
such contracts. When a participant agrees on a contract, she is guaranteed that
— even in the presence of malicious participants — no interaction driven by the
contract will ever go wrong. At worst, if A does not reach her objectives, then
some other participant will be found culpable of an infringement.

This model of interaction works fine under the hypothesis that contract bro-
kers are honest, i.e. they never establish a session in the absence of an agreement



A Theory of Agreements and Protection 195

among all the participants. Suppose Alice is willing to lend her airplane in ex-
change of Bob’s bike. In her contract, she could promise to lend the airplane
(unconditionally), and declare that her objective is to obtain the bike. A mali-
cious contract broker could construct an attack by establishing a session between
Alice and Mallory, whose contract just says to take the airplane and give nothing
in exchange. Mallory is not culpable, because her contract declares no obliga-
tions, and so Alice loses.

Formally, a contract CA protects A if, whatever contract C is composed with
CA, A has a way to non-lose in the composed contract.

Definition 14 (Protection). A contract CA protects participant A if and only
if, for all contracts C compatible with CA, A has a non-losing strategy in CA | C.

Notice that if A agrees with C, then not necessarily C protects A. For instance,
Mallory could join C with her contract CM, and prevent Alice from borrowing
Bob’s bike in C | CM. A sufficient (yet hardly realistic) criterion for protection
is to declare nonnegative payoffs for all σ. Less trivially, the following example
shows a contract with possible negative payoffs which still offers protection.

Example 9. The contract CB of Ex. 1 does not protect Bob. To prove that,
consider e.g. the attacker contract C′ = 〈E′,A, π, ΦC′〉, where A and π are as in
Ex. 1, while we define E′ with no enablings, and ΦC′ is immaterial except for
being undefined on B (otherwise C′ and CB are not compatible). Consider then
the contract C′ | CB. There are only two possible strategies for B:

ΣB = λσ. ∅ Σ′
B = λσ.

{
{b} if b 	∈ σ

∅ otherwise

The strategyΣB is losing for B, because B is not innocent under ΣB. The strategy
Σ′

B is losing as well, because in the fair play σ = 〈b〉 we have that ΦBσ = −1,
but no participant is culpable in σ. By Def. 14, B is not protected by CB.

On the other hand, the contract CA protects Alice. To show that, consider a
contract C compatible with CA. Let ΣA be the following strategy for A:

ΣA = λσ.

{
{a} if b ∈ σ and a 	∈ σ

∅ otherwise

Let σ be a fair play in C | CA conforming to ΣA. There are two cases:

– b ∈ σ. Then, since σ is fair, by definition of ΣA there must exist i such that
a ∈ σi, and so A is innocent in σ. Furthermore, we have that ΦAσ = 1.

– b 	∈ σ. By definition of CA, A is not culpable in σ. Also, since b 	∈ σ and
a 	∈ σ, then ΦAσ = 0.

In both cases, ΣA is non-losing for A. Therefore, CA protects A. ��

The following theorem establishes sufficient conditions for protection in contracts
with O-R payoffs. Essentially, A is protected if, whenever she enables an offer
Oi

A, the corresponding request Ri
A has been already satisfied.



196 M. Bartoletti, T. Cimoli, and R. Zunino

Theorem 2. A contract CA = 〈E,A, π, Φ〉 with O-R payoffs for A protects A if
∀i, Y. Y " Oi

A =⇒ Ri
A ⊆ Y .

We now consider a relevant subclass of Offer-Request payoffs, where the requests
of all participants mutually depend on their offers. An O-R payoff is circular
when it is not possible to satisfy requests from all participants without each
participant doing some offer (item (3)), and each combination of the requests is
covered by a set of offers (item (4)). For instance, the payoffs of Alice and Bob
in Ex. 1 are circular, because their requests (e.g. a and b, respectively) match
exactly their offers.

Definition 15. An O-R payoff Φ for participants A is circular when:

∀J : A → N. ∃L : A → N.
⋃

A∈AO
LA
A ⊆

⋃
A∈AR

JA
A (3)

∀J : A → N. ∃L : A → N.
⋃

A∈AO
LA
A ⊇

⋃
A∈AR

JA
A (4)

Example 10 (Dining retailers [5]). Around a table, n cutlery retailers are about
to have dinner. At the center of the table, there is a large dish of food. Despite the
food being delicious, the retailers cannot start eating right now. To do that, and
follow the proper etiquette, each retailer needs a complete cutlery set, consisting
of n pieces of different kinds. Each of the n retailers owns a distinct set of n piece
of cutlery, all of the same kind. The retailers start discussing about trading their
cutlery, so that they can finally eat.

We formalise this scenario as follows. Each retailer Ai initially owns n pieces
of kind i. For all j 	= i, the event ei,j models Ai giving a piece of cutlery to
retailer Aj . Thus, π

−1(Ai) = {ei,j | j 	= i}. Retailer Ai offers n− 1 pieces of his
cutlery of kind i in exchange for n− 1 pieces of cutlery of the other kinds.

Oi = {ei,j | j 	= i} Ri = {ej,i | j 	= i}

By Def. 15, the payoff Φi of each retailer is a finite O-R circular payoff. ��

Agreement and protection can coexist in contracts with infinite circular O-R
payoffs (see Ex. 11). Intuitively, when an infinite offer OA has to match an infinite
request RB, participants A and B may take turns in doing event in OA∪RB. This
strategy is winning for both participants (hence they have an agreement), and
protection follows because no participant completes her offer before receiving
the corresponding request.

Example 11. Let CA = 〈EA,A, π, ΦA〉 and CB = 〈EB,A, π, ΦB〉 be contracts with
circular O-R payoffs (with infinite offers/requests) defined as follows:

OA = {ei | i ∈ N} = RB RA = {ei | i ∈ N} = OB

and let A = {A,B}, π(ei) = A, π(ei) = B for all i ∈ N. Let the ES EA and EB be
defined by the following enablings (and empty conflicts):

EA : {" e0} ∪ {ei " ei+1 | i ≥ 0} EB : {ei " ei | i ≥ 0}



A Theory of Agreements and Protection 197

The contract C = CA | CB admits an agreement. We prove separately that A
and B agree on C. Let Σe

A be the eager strategy for A. Let σ be a fair play of C
conform to Σe

A. We prove that A wins in σ. By Lemma 2, the strategy Σe
A makes

A innocent in σ. There are two subcases. If B is not innocent in σ, then A wins.
Otherwise, the play σ must be infinite, i.e. σ = {ei}i∈N ∪ {ei}i∈N. Therefore,
RA ⊆ σ, and so A wins. To prove that B has a winning strategy in C we proceed
similarly, by choosing the eager strategy Σe

B for B.
We now show that CA protects A. Let C′ be compatible with CA. The eager

strategy Σe
A is non-losing for A. Indeed, in every fair play σ conform to Σe

A, if
there exists ei ∈ RA 	⊆ σ then ei+1 ∈ OA 	∈ σ, and so ΦAσ ≥ 0. To prove that CB

protects B, we proceed similarly, by choosing the eager strategy Σe
B for B. ��

A remarkable feature of finite circular payoffs is that, in each play where all
participants win, at some point there exists a participant A which has performed
all the offers in Oi

A before having obtained all the requests in Ri
A. Intuitively, the

participant A which makes this “first step” is not protected. The proof technique
exploited by Lemma 5 is similar to that used in [11] to prove that fair exchange
is impossible without a trusted third party.

Lemma 5. Let C be a contract with finite circular O-R payoffs. If σ is a winning
play for all participants in A, then there exists a prefix η of σ and a participant
A ∈ A such that ΦAη < 0.

Our main result in this section is Theorem 3 below. It states that if a set of
contracts with finite circular O-R payoffs admits an agreement, then some of the
participants are not protected, and vice versa.

Theorem 3. Let C1, . . . ,Cn be contracts with circular finite O-R payoffs for
A1, . . . ,An, respectively. Then, at most one of the following statements is true:

(a) C1 | · · · | Cn admits an agreement;
(b) for all i ∈ 1..n, Ci protects Ai.

3 Reconciling Agreement with Protection

In the previous section we have shown that agreement and protection cannot
coexist in a relevent class of contracts (Theorem 3). As made evident by Theo-
rem 2, to protect herself A must obtain all her requests Ri

A before doing all her
offers Oi

A. If all participants adhere to this principle, agreement is not possible.
For instance, Alice and Bob in Ex. 1 would be protected by contracts with en-
ablings a " b and b " a, but no agreement would be possible because nobody
risks doing the first step.

To reconcile agreements with protection, A could relax her contract, i.e. she
could do a in change of the promise of B to do b. In this case A can safely do the
first step, because either B does b, or he will be culpable of a contract violation.

To model this kind of “conditional” enabling, we propose an extension of
Winskel’s event structures with a new circular causality relation (	). The en-
abling b 	 a (intuitively, “I will do a if you promise to do b”) together with the



198 M. Bartoletti, T. Cimoli, and R. Zunino

other prescription a 	 b has a configuration where both a and b have happened,
despite of the circular dependencies. We call our extension ES with circular
causality (CES in short).

In Sect. 3.1 we introduce CES and we state some basic properties. In Sect. 3.2
we reformulate our theory of contracts by using CES in place of ES. Finally, in
Sect. 3.3 we show how CES allow for reconciling agreement with protection.

3.1 Event Structures with Circular Causality

Definition 16. An event structure with circular causality is an ES enriched
with a (saturated) circular enabling relation 	 ⊆ {X ⊆fin E | CF (X)} × E.

We conservatively extend the notion of configuration in [21] to deal with circular
causality. Intuitively, for all events ei in the sequence 〈e0 · · · en〉, ei can either be
"-enabled by its predecessors, or 	-enabled by the whole sequence. Note that if
C is a finite configuration, and {e0 . . . en} is an enumeration of C which satisfies
all the enablings, not necessarily {e0 . . . en−1} is a configuration as well (see e.g.,
E2 in Fig. 1). To reason compositionally about configurations, Def. 17 defines a
slightly more general notion of configurations.

In an X-configuration C, the set C can contain an event e even in the absence
of a justification of e through a standard/circular enabling — provided that e
belongs to X . This allows, given an X-configuration, to add/remove any event
and obtain an Y -configuration, possibly with Y 	= X . We shall say that the
events in X have been taken “on credit”, to remark the fact that they may have
been performed in the absence of a causal justification. Configurations (i.e.,
∅-configurations) play a crucial role, as they represent sets of events where all
the credits have been honoured.

Definition 17 (Configuration). Let E = (E,#,",	) be a CES. A conflict-
free sequence σ = 〈e0 . . . en〉 ∈ E∗ without repetitions is an X-trace of E iff:

∀i ≤ n. (ei ∈ X ∨ σi " ei ∨ σ 	 ei)

For all C,X ⊆ E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃σ X-trace. e ∈ σ ⊆ C

The set of all X-configurations of E is denoted by FE(X), or just FE when X = ∅.

Example 12. Consider the four CES in Fig. 1.

(1) E1 has enablings ∅ " a, ∅ 	 b, and conflict a#b. By Def. 17 we have
∅, {a}, {b} ∈ FE1 , but {a, b} 	∈ FE1 .

(2) E2 has enablings {a} " b and {b} 	 a. Here ∅, {a, b} ∈ FE2 , {b} ∈ FE2({b})
and {a} ∈ FE2({a}), while neither {a} nor {b} belong to FE2(∅).

(3) E3 has enablings {a} " b, {a} " c, {b} 	 a, {c} " a, and conflict b#c. The
only non-empty configuration of E3 is {a, b}.



A Theory of Agreements and Protection 199

a b

E1

a b

E2

a

c

b

E3

c

db

a

E4

Fig. 1. CES are denoted as directed hypergraphs, where nodes stand for events. An
hyperedge from a set of nodes X to node e denotes an enabling X ◦ e, where ◦ = � if
the edge has a single arrow, and ◦ = 	 if the edge has a double arrow. A conflict a#b
is represented by a dotted line between a and b.

(4) E4 has enablings {a, b} 	 c, {a, b} 	 d, {c} " a, and {d} " b. We have that
{a, b, c, d} ∈ FE4 . Note that, were one (or both) of the 	 turned into a ",
then the only configuration would have been the empty one. ��

According to Winskel’s axiom of finite causes, all events in a configuration (ex-
cept those taken on credit) have a finite justification. Thus, an event cannot
be justified through an infinite chain of events, i.e. in the CES with enablings
{ei+1} 	 ei for all i ≥ 0, the set {ei | i ≥ 0} is not a configuration.

The configurations of CES do still enjoy the finiteness and coherence proper-
ties of classical ES, though they are not coincidence-free, which is correct from
our point of view because of the presence of circular dependencies. A subset A
of a set F is pairwise compatible iff ∀e, e′ ∈

⋃
A. ∃C ∈ F. e, e′ ∈ C.

Theorem 4. For all CES E, and for all X ⊆ E, the set FE(X) satisfies:

– (Coherence) If F is a pairwise compatible subset of FE(X), then
⋃
F ∈ F.

– (Finiteness) ∀C ∈ F. ∀e ∈ C. ∃C0 ∈ F. e ∈ C0 ⊆fin C

We define below an operational semantics of CES. This is given in terms of an
LTS, the states of which are pairs (C,X). The first element is the set of events
occurred so far; the second element is a set of events taken “on credit”.

Definition 18 (LTS of a CES). For a CES E, we define LTSE = 〈S,E,→E〉,
where S = ℘fin(E)× ℘fin(E), and →E is defined by the following rule:

e /∈ C CF (C ∪ {e})
(C,X)

e−→E (C ∪ {e}, Δ(C,X, e))

where for all C,X ⊆ E and for all e ∈ E, we define:

Δ(C,X, e) = (X \ {x ∈ X | C ∪ {e} 	 x}) ∪
{
{e} if C ∪ {e} 		 e ∧ C 	" e
∅ otherwise

The set Δ(C,X, e) defines how credits change when firing e in a play where the
current credits are X , and the events C have already been performed.

The following theorem relates traces of LTSE to configurations of E.

Theorem 5. For all CES E, for all C,X ⊆ E:

C ∈ F(X) ⇐⇒ ∀D ⊆fin C. ∃X0 ⊆ X. ∃C0. D ⊆ C0 ⊆ C ∧ (∅, ∅) →∗ (C0, X0)



200 M. Bartoletti, T. Cimoli, and R. Zunino

3.2 Agreement in CES-Based Contracts

In this section we conservatively extend the contract theory of Sect. 2, by allow-
ing the component E of a contract to be a CES.

By Def. 18, a conflict-free sequence 〈e0 e1 · · ·〉 without repetitions uniquely

identifies a trace (∅, ∅) e0−→E (C1, X1)
e1−→E · · · in LTSE. We denote with (Cσ

k , X
σ
k )

the state of LTSE reached after k steps of the sequence σ. A play of a contract
C is a (finite or infinite) sequence σ of events such that (∅, ∅) σ−−→E. The notions
of strategy and conformance to a strategy are as in Sect. 2.

The key difference between ES-based and CES-based contracts is the notion
of innocence. In the ES-based model, a participant A is culpable in a play σ when
some event e of A is enabled in σ. Here, in addition to enabled events, we consider
obligations those events which can be done “on credit”, under the guarantee that
they will be eventually honoured, whatever events are done later on by the other
participants. These events are said prudent. The definition of prudent strategies
and of innocent participants is mutually coinductive. A participant A is innocent
in σ when she has no persistently prudent events. Hence, if the strategy of A
tells to do all her prudent events, then in all fair plays these events must either
become imprudent, or be fired, or be conflicted. Formally (although a bit counter-
intuitively), fired and conflicted events are imprudent: therefore, A is innocent
when all her prudent events eventually become imprudent.

Definition 19 (Prudence). A strategy Σ for A is prudent if, for all finite
plays σ, for all e ∈ Σ(σ) such that σ e conforms to Σ, and for all fair plays
σ′ = σeη conform to Σ where all B 	= A are innocent,

∃k > |σ|. Xσ′
k ∩ π−1(A) ⊆ Xσ′

|σ|

An event e is prudent in σ if there exists a prudent strategy Σ such that σ
conforms to Σ and e ∈ Σ(σ).
A participant A is innocent in σ = 〈e0 e1 · · ·〉 iff:

∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. e is imprudent in σj

Example 13. Recall the CES from Ex. 12. In E1, both a and b are prudent in the
empty play ε, because they are enabled in ∅. In E2, a is prudent in ε, while b is
not prudent in ε, yet it is prudent in 〈a〉. Now consider the CES E3, and assume
that π(a) = A and π(b) = π(c) = B. We have that a is not prudent in ε, because
if B chooses to do c, then the credit a can no longer be honoured. Instead, both
b and c are prudent in 〈a〉.
Notice that, after Lemma 6 below, the new definition of innocence conservatively
extends that in Def. 10. That is, an event enabled in σ is prudent.

Lemma 6. For all σ and e 	∈ σ, if σ " e or σ ∪ {e} 	 e then e is prudent in σ.

Lemma 7. Let S be a finite set of prudent strategies. Then,
⊔
S is prudent.

Lemma 8. For a contract C = 〈E, · · ·〉, where E is a finite CES, the strategy
Σp

A = λσ. {e ∈ π−1(A) | e is prudent in σ} is the greatest prudent strategy for A.



A Theory of Agreements and Protection 201

Lemma 9. Σp
A is an innocent strategy for A.

For a CES E and a set of events C, we say that e is reachable from C iff there

exists η such that e ∈ η and (C, ∅) η−→ (C′, ∅). Theorem 6 states that in conflict-
free CES which have only circular enablings, the set of prudent events in σ
coincides with the set Rσ

E of events reachable from σ.

Theorem 6. If E is conflict-free and "-free, then for all plays σ of C = 〈E, · · ·〉:
e ∈ Rσ

E ⇐⇒ e prudent in σ

We now refine the notion of winning strategy given in Def. 11. The items are
similar to the corresponding items in Def. 11, except that the definitions of
innocence now takes into account the events performed on credit.

Definition 20 (Winning play). Define the function W̃ as follows:

W̃Aσ =

⎧⎪⎨⎪⎩
ΦAσ A is credit-free and all participants are innocent in σ

+1 if A is innocent, and some B 	= A is culpable in σ

−1 otherwise

where we say that A is credit-free in σ iff

∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. e 	∈ Xσ
j

The notions of winning/losing play/strategy, agreement and protection are the

same as in Sect. 2, except that W̃ is now used in place of W.

Lemma 10. Let ΣA be a prudent strategy for A. For all fair plays σ conform
to ΣA, either A is credit-free in σ, or some B 	= A is culpable in σ.

Example 14. In Ex. 9 we have shown that the contract CA protects Alice, while
CB does not protect Bob. Suppose now to change Bob’s contract into a contract
C′
B where Bob relaxes his requirements. The contract C′

B differs from CB only in
the event structure E′

B, which contains exactly one circular enabling: {a} 	 b.
Similarly to Ex. 4, the contract CA | C′

B admits an agreement. To show that, let
ΣA and ΣB be the following strategies for A and B, respectively:

ΣA(σ) =

{
{a} if b ∈ σ and a 	∈ σ

∅ otherwise
ΣB(σ) =

{
{b} if b 	∈ σ

∅ otherwise

Roughly, the only fair play which conforms to ΣA and ΣB where both A and B
are innocent is σ = 〈ba〉, which gives rise to the following trace in LTSE:

(∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, ∅)

We have that A and B win in σ, because W̃Aσ = 1 = W̃Bσ. Thus, ΣA and ΣB are
winning strategies for A and B, respectively, and so C admits an agreement. ��

3.3 Protection in CES-Based Contracts

In this section we show that CES-based contracts allow for both agreements and
protection in contracts with circular finite O-R payoffs. Before presenting the
formal results, we give some intuition through our working example.



202 M. Bartoletti, T. Cimoli, and R. Zunino

Example 15. Differently from the contract CB in Ex. 9, the contract C′
B in Ex. 14

protects Bob. Let C′ be a contract compatible with C′
B. Consider the strategy

Σp
B for B, as defined in Lemma 9. Let ν be a fair play of C′

B | C′ conform to
Σp

B. By contradiction, assume that B loses in ν. By Lemma 9, B is innocent in
ν, and so it must be ΦBν < 0. By definition, the payoff of B is negative only
when b ∈ ν and a 	∈ ν. Assume that ν = η b η′. By definition of Σp

B, the event

b was prudent in η, and we have the transition (η,X0)
b−→ (η ∪ {b}, X0 ∪ {b}).

After B has performed b, its only strategy is the empty one. By Def. 19, for all
plays e0e1 · · · starting from (η ∪ {b}, X0 ∪ {b}), there exists some k > 0 such
that b 	∈ Xk. This means that b has been honoured, and the only way to do that
is to perform a. Therefore, a ∈ ν — contradiction. ��

We now construct a CES from an O-R payoff with finite responses. For all
clauses (O,R), the CES contains the enablings R 	 O. Lemma 11 below reveals
a key feature of circularity: the CES obtained from a circular O-R payoff has
a configuration which comprises all the responses of all participants. Together
with Theorem 7, this will allow for constructing a contract which admits an
agreement. Theorems 7 and 8 are the CES counterpart of Theorems 1 and 2 for
ES-based contracts, respectively.

Definition 21. For an O-R payoff Φ with clauses (Oi, Ri)i and finite Ri, define
E(Φ) as the conflict-free CES with (saturated) enablings {Ri 	 Oi}i.

Lemma 11. Let Φ be a finite circular O-R payoff for A such that ΦA = λσ. φAσ
for all A ∈ A. Then, ∃C ∈ FE(Φ). ∀A ∈ A.

⋃
iR

i
A ⊆ C.

Theorem 7. Let C be a contract with O-R payoff for A. If E is conflict-free and
"-free, and

⋃
iR

i
A ⊆ C for some C ∈ FE, then A agrees on C.

Theorem 8. For a finite CES E and an O-R payoffs Φ for A, the contract
〈E,A, π, Φ〉 protects A if: ∀i, Y. (∀e ∈ Oi

A. Y " e ∨ Y 	 e) =⇒ Ri
A ⊆ Y .

Theorem 9 below states that agreements and protection can coexist in CES-based
contracts with circular finite O-R payoffs. Recall that Theorem 3 excluded this
possibility for ES-based contracts. Condition (5) in Theorem 9 is technical, yet it
makes the theorem applicable to a broad class of contracts with O-R payoffs (e.g.
the dining retailers scenario, see Ex. 17). Ex. 16 shows that when condition (5)
is not satisfied, Theorem 9 does not hold in general.

Theorem 9. Let Φ1, . . . , Φn be finite circular O-R payoffs for A1, . . . ,An, re-
spectively, and such that, for all A ∈ {A1, . . . ,An}:

∀P ⊆ N. ∀j. Oj
A ⊆

⋃
i∈P O

i
A =⇒ Rj

A ⊆
⋃

i∈P R
i
A (5)

Then, there exist contracts Ci = 〈Ei,A, π, Φi〉 for i ∈ 1..n such that:

(a) C1 | · · · | Cn admits an agreement;
(b) for all i ∈ 1..n, Ci protects Ai.
(c) for all plays σ of C1 | · · · | Cn, ∀e ∈ σ. ∃i. e ∈ Oi

π(e).



A Theory of Agreements and Protection 203

Example 16. Consider the O-R payoff ΦA of participant A defined by:

O0 = {a0, a1} O1 = {a1, a2} O2 = {a0, a2}
R0 = {b0} R1 = {b1} R2 = {b0, b1}

Condition (5) of Theorem 9 is satisfied, hence the contract with CES E(ΦA)
protects A, and allows A to reach an agreement with other participants whenever
the overall payoff satisfies the conditions of the theorem.

Suppose now to change ΦA, by requiring R2 = {b2}. Notice that such modified
payoff no longer satisfies condition (5). Indeed, by choosing P = {0, 1} and j = 2
we have that {a0, a2} = O2 ⊆ O0∪O1, but {b2} = R2 	⊆ R0∪R1. So, Theorem 9
does not apply. The CES E(ΦA) contains the enablings {b0} 	 {a0, a1}, {b1} 	
{a1, a2}, and {b2} 	 {a0, a2}. Now A is not protected. Indeed, an attacker B
could perform b0 and b1 to oblige A to do a0, a1, a2. A would lose, because to be
innocent she has to do all the offers in O2, but doing so she is not guaranteed
to obtain R2. As a matter of facts, there exists no CES which guarantees both
agreement and protection for the payoff ΦA. ��

Example 17. Recall the dining retailers scenario from Ex. 10. The payoff Φi

of each retailer is a finite O-R circular payoff, and condition (5) is trivially
satisfied. Therefore, Theorem 9 allows for constructing contracts which admit
an agreement and protects all retailers. The CES of contract Ci of retailer Ai has
enablings {ej,i | i 	= j} 	 {ei,j | i 	= j}. The idea is simple: A1 offers his pieces
of cutlery, in exchange of the commitment of the other retailers to do the same.
Since all retailers commit to the analogous contract, we have an agreement. ��

4 Related Work and Conclusions

We have studied contracts from a foundational perspective. Our formalisation
of contracts builds upon a very abstract model of concurrent computations,
namely event structures, to provide general notions of agreement and protection.
We expect that specific formalisations of agreement, e.g. the one in [8], can be
interpreted as instances of our general notion, in the same spirit that event
structures can provide semantics to more concrete models of concurrency, e.g.
CCS, π-calculus and Petri nets [21].

An abstract model of contracts is fundamental for the development of the
contract-oriented paradigm. In addition to the possibility of relating different
formalisations of contracts, such an abstract model would also allow for reason-
ing uniformly about the properties of contract-based systems. For instance, the
static/dynamic notions of honesty of a process, which in [4] were specific for the
contracts of [8], could be generalised to a broader class of contracts.

Aiming at generality, we have almost neglected some relevant issues, e.g. de-
vising efficient decision procedures for agreements. Although in the most general
setting (infinite event structures, arbitrary payoff functions) we come up against
the problem of undecidability, such kind of results can be obtained by consider-
ing suitable subclasses of event structures/payoff functions (e.g. model checking
temporal logic on finite representations of infinite event structures, as in [18]).



204 M. Bartoletti, T. Cimoli, and R. Zunino

A heterogeneous ecosystem of formalisms for contracts has appeared in the
literature. Citing a few recent approaches, these formalisms include logics [5,19],
behavioural types [6,8], Petri nets [20], multi-player games [13], domain-specific
languages [16], c-semirings [7], etc.

Most of the existing models do not explicitly deal with the circularity issue,
which instead has been a main subject of study in this paper. An exception
is [5], where circularity is dealt with at a proof-theoretic level. The logic PCL
presented in [5] extends propositional intuitionistic logic with a new connective,
that weakens the standard implication →, somehow similarly to the way our 	
weakens the standard enabling ". CES and PCL are strongly related: preliminary
results suggest that finite conflict-free CES correspond to Horn PCL formulae.

In [2] some preliminary work on event structures with circular causality is
presented. In the simplified model of [2], where event structures are finite and
conflict-free, and the goals are O-R payoffs without offers, it is shown how to
decide agreements through an encoding of event structures into PCL formulae.

In [14] event structures are extended with a response relation. A relation
a •→ b models the fact that, whenever event a is present in a trace, then b must
eventually occur after a. This is quite different from a circular enabling a 	 b,
which instead does not impose any ordering between a and b (it suffices that b is
honoured somehow). Also, augmenting the number of 	-enablings increases the
number of configurations, while adding more response relations reduces it.

Liability issues are the focus of [16,12]. Given a contract and an execu-
tion trace, the problem is to establish evidence about the occurrence of a con-
tract violation, and in particular to assign blame to misbehaving participants.
While [16,12] are not concerned about how an agreement is found (they just
consider the contract as already agreed upon), they explore issues not explicitly
modelled in our framework. The notion of liability in [16] takes into account time
constraints. Extending our contract model with temporal deadlines and, more in
general, with quantitative aspects (like e.g. probabilities) seems to be feasible,
along the lines of analogous extensions of events structures [17].

Our model adopts a draconian notion of innocence, in that a participant omit-
ting to perform a single due event in a play is considered culpable, regardless of
the fact that the other participants could equally be satisfied with that play. Es-
tablishing finer-grained notions of causality between a violation and the resulting
failure, as done e.g. in [12], seems a plausible extension of our work.

Our notion of winning play (Def. 11 and Def. 20) is a sort of lexicographic
objective, similarly to those in [10]. The secure equilibria introduced in [10]
require that a player cannot increase her payoff while decreasing the payoff of
the other player. This is stronger than our notion of agreement, where we just
require that strategies exist which yield a positive payoff for all players. Indeed,
such strategies do not even have to form a Nash equilibrium.

Acknowledgments. Work partially supported by Aut. Region of Sardinia un-
der grants L.R.7/2007 CRP2-120 (TESLA), CRP-17285 (TRICS), P.I.A. 2010
Project “Social Glue”, and by MIUR PRIN 2010-11 project “Security Horizons”.



A Theory of Agreements and Protection 205

References

1. Armbrust, M., et al.: A view of cloud computing. Comm. ACM 53(4), 50–58 (2010)
2. Bartoletti, M., Cimoli, T., Pinna, G.M., Zunino, R.: An event-based model for

contracts. In: Proc. PLACES (2012)
3. Bartoletti, M., Tuosto, E., Zunino, R.: Contract-oriented computing in CO2. Sci-

entific Annals in Computer Science 22(1), 5–60 (2012)
4. Bartoletti, M., Tuosto, E., Zunino, R.: On the Realizability of Contracts in Dis-

honest Systems. In: Sirjani, M. (ed.) COORDINATION 2012. LNCS, vol. 7274,
pp. 245–260. Springer, Heidelberg (2012)

5. Bartoletti, M., Zunino, R.: A calculus of contracting processes. In: LICS (2010)
6. Bravetti, M., Zavattaro, G.: Towards a Unifying Theory for Choreography Con-

formance and Contract Compliance. In: Lumpe, M., Vanderperren, W. (eds.) SC
2007. LNCS, vol. 4829, pp. 34–50. Springer, Heidelberg (2007)

7. Buscemi, M.G., Montanari, U.: CC-Pi: A Constraint-Based Language for Specify-
ing Service Level Agreements. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421,
pp. 18–32. Springer, Heidelberg (2007)

8. Castagna, G., Gesbert, N., Padovani, L.: A theory of contracts for web services.
ACM Transactions on Programming Languages and Systems 31(5) (2009)

9. Chatterjee, K., Henzinger, T.A.: A survey of stochastic ω-regular games. J. Com-
put. Syst. Sci. 78(2), 394–413 (2012)

10. Chatterjee, K., Henzinger, T.A., Jurdzinski, M.: Games with secure equilibria.
Theor. Comput. Sci. 365(1-2), 67–82 (2006)

11. Even, S., Yacobi, Y.: Relations among public key signature systems. Technical
Report 175, Computer Science Department, Technion, Haifa (1980)

12. Gössler, G., Le Métayer, D., Raclet, J.-B.: Causality Analysis in Contract Violation.
In: Barringer, H., Falcone, Y., Finkbeiner, B., Havelund, K., Lee, I., Pace, G., Roşu,
G., Sokolsky, O., Tillmann, N. (eds.) RV 2010. LNCS, vol. 6418, pp. 270–284.
Springer, Heidelberg (2010)

13. Henriksen, A.S.: Adversarial Models for Cooperative Interactions. PhD thesis, De-
partment of Computer Science, University of Copenhagen (2011)

14. Hildebrandt, T.T., Mukkamala, R.R.: Declarative event-based workflow as dis-
tributed dynamic condition response graphs. In: Proc. PLACES (2010)

15. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
POPL (2008)

16. Hvitved, T., Klaedtke, F., Zălinescu, E.: A trace-based model for multiparty con-
tracts. JLAP 81(2), 72–98 (2012)

17. Katoen, J.-P.: Quantitative and qualitative extensions of event structures. PhD
thesis, University of Twente (1996)

18. Penczek, W.: Model-Checking for a Subclass of Event Structures. In: Brinksma, E.
(ed.) TACAS 1997. LNCS, vol. 1217, pp. 145–164. Springer, Heidelberg (1997)

19. Prisacariu, C., Schneider, G.: A Formal Language for Electronic Contracts. In:
Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007. LNCS, vol. 4468, pp. 174–
189. Springer, Heidelberg (2007)

20. van der Aalst, W.M.P., Lohmann, N., Massuthe, P., Stahl, C., Wolf, K.: Multi-
party contracts: Agreeing and implementing interorganizational processes. Com-
put. J. 53(1), 90–106 (2010)

21. Winskel, G.: Event Structures. In: Brauer, W., Reisig, W., Rozenberg, G. (eds.)
APN 1986. LNCS, vol. 255, pp. 325–392. Springer, Heidelberg (1987)



Computational Soundness of Symbolic

Zero-Knowledge Proofs:
Weaker Assumptions and Mechanized

Verification

Michael Backes1,2, Fabian Bendun1, and Dominique Unruh3

1 Saarland University, Saarbrücken, Germany
{backes,bendun}@cs.uni-saarland.de

2 MPI-SWS, Saarbrücken, Germany
3 University of Tartu, Tartu, Estonia

unruh@ut.ee

Abstract. The abstraction of cryptographic operations by term alge-
bras, called symbolic models, is essential in almost all tool-supported
methods for analyzing security protocols. Significant progress was made
in proving that symbolic models offering basic cryptographic operations
such as encryption and digital signatures can be sound with respect
to actual cryptographic realizations and security definitions. Even ab-
stractions of sophisticated modern cryptographic primitives such as zero-
knowledge (ZK) proofs were shown to have a computationally sound
cryptographic realization, but only in ad-hoc formalisms and at the cost
of placing strong assumptions on the underlying cryptography, which
leaves only highly inefficient realizations.

In this paper, we make two contributions to this problem space. First,
we identify weaker cryptographic assumptions that we show to be suffi-
cient for computational soundness of symbolic ZK proofs. These weaker
assumptions are fulfilled by existing efficient ZK schemes as well as generic
ZK constructions. Second, we conduct all computational soundness proofs
in CoSP, a recent framework that allows for casting computational sound-
ness proofs in a modular manner, independent of the underlying symbolic
calculi. Moreover, all computational soundness proofs conducted in CoSP
automatically come with mechanized proof support through an embed-
ding of the applied π-calculus.

1 Introduction

Proofs of security protocols are known to be error-prone and, owing to the
distributed-system aspects of multiple interleaved protocol runs, awkward for
humans to make. Hence work towards the automation of such proofs started
soon after the first protocols were developed. From the start, the actual crypto-
graphic operations in such proofs were idealized into so-called symbolic models,
following [18, 19, 29], e.g., see [23, 33, 1, 26, 11]. This idealization simplifies proof
construction by freeing proofs from cryptographic details such as computational
restrictions, probabilistic behavior, and error probabilities. It was not at all clear

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 206–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Computational Soundness of Symbolic Zero-Knowledge Proofs 207

whether symbolic models are a sound abstraction from real cryptography with its
computational security definitions. Existing work has largely bridged this gap for
symbolic models offering the core cryptographic operations such as encryption
and digital signatures, e.g., see [2, 9, 24, 30, 16, 14].

While symbolic models traditionally comprised only basic cryptographic op-
erations, recent work has started to extend them to more sophisticated prim-
itives with unique security features that go far beyond the traditional goal of
cryptography to solely offer secrecy and authenticity of communication. Zero-
knowledge (ZK) proofs1 constitute arguably the most prominent such primitive.
This primitive’s unique security features, combined with the recent advent of
efficient cryptographic implementations of this primitive for special classes of
problems, have paved the way for its deployment in modern applications. For
instance, ZK proofs can guarantee authentication yet preserve the anonymity
of protocol participants, as in the Civitas electronic voting protocol [15] or the
Pseudo Trust protocol [27], or they can prove the reception of a certificate from a
trusted server without revealing the actual content, as in the Direct Anonymous
Attestation (DAA) protocol [13]. More recently, ZK proofs have been used to
develop novel schemes for anonymous webs of trust [5] as well as privacy-aware
proof-carrying authorization [28].

A symbolic abstraction of (non-interactive) ZK proofs has been put forward
in [7]. The proposed abstraction is suitable for mechanized proofs [7, 4] and
was already successfully used to produce the first fully mechanized proof of cen-
tral properties of the DAA protocol. A computational soundness result for such
symbolic ZK proofs has recently been achieved as well [10]. However, this work
imposes strong assumptions on the underlying cryptographic implementation
of zero-knowledge proofs: Among other properties, the zero-knowledge proof is
required to satisfy the notion of extraction zero-knowledge; so far, only one (inef-
ficient) scheme is known that fulfills this notion [22]. Thus the vast number of re-
cently proposed, far more efficient zero-knowledge schemes, and particularly those
schemes that stem from generic ZK constructions, are not comprised by this result.
Hence they do not serve as sound instantiations of symbolic zero-knowledgeproofs,
leaving all actually deployed ZK protocols without any computational soundness
guarantee. In addition, the result in [10] casts symbolic ZKproofs within an ad-hoc
formalism that is not accessible to existing formal proof tools.

1.1 Our Contribution

In this paper, we make the following two contributions to this problem space:

• First, we identify weaker cryptographic assumptions that we show to be suffi-
cient for obtaining a computational soundness result for symbolic ZK proofs.

1 A zero-knowledge proof [20] consists of a message or a sequence of messages that
combines two seemingly contradictory properties: First, it constitutes a proof of a
statement x (e.g, x = ”the message within this ciphertext begins with 0”) that cannot
be forged, i.e., it is impossible, or at least computationally infeasible, to produce a
zero-knowledge proof of a wrong statement. Second, a zero-knowledge proof does not
reveal any information besides the bare fact that x constitutes a valid statement.



208 M. Backes, F. Bendun, and D. Unruh

Essentially, we show that the strong notion of extraction zero-knowledge
required in [10] can be replaced by the weaker notion of simulation-sound
extractability. In contrast to extraction zero-knowledge, simulation-sound
extractability constitutes an established property that many existing crypto-
graphic constructions satisfy. In particular, there exist generic constructions
for transforming any non-interactive ZK proof into a ZK proof that satisfies
simulation-sound extractability (and the remaining properties that we im-
pose for computational soundness) [31], as well as several efficient schemes
that are known to satisfy simulation-sound extractability (and the remaining
properties), e.g., [25, 21, 32]. Thus requiring simulation-sound extractabil-
ity instead of extraction zero-knowledge greatly extends the pool of crypto-
graphic constructions for ZK proofs that constitute sound implementations,
and it for the first time enables the computationally sound deployment of
efficient ZK realizations.

• Second, we conduct all computational soundness proofs in CoSP [3], a re-
cent framework that allows for casting computational soundness proofs in a
conceptually modular and generic way: proving x cryptographic primitives
sound for y calculi only requires x + y proofs (instead of x · y proofs with-
out this framework), and the process of embedding calculi is conceptually
decoupled from computational soundness proofs of cryptographic primitives.
In particular, computational soundness proofs conducted in CoSP are auto-
matically valid for the applied π-calculus, and hence accessible to existing
mechanized verification techniques.

The conduction in CoSP has the drawback that the computational sound-
ness is shown for trace properties. However, trace properties are sufficient to
verify weak anonymity. Consequently, we can show central properties of the
DAA protocol.

1.2 Outline of the Paper

First, we introduce our symbolic abstraction of (non-interactive) ZK proofs
within CoSP in Section 2. Section 3 contains the weaker cryptographic assump-
tions that we show to be sufficient for achieving computational soundness of ZK
proofs. Our main theorem is presented in Section 4 for which we give a proof
overview in Section 5. Section 6 concludes and outlines future work.

2 Symbolic Model for Zero-Knowledge

In this section, we describe our symbolic abstraction of zero-knowledge proofs.

Terms and Constructors. We model nonces, probabilistic public-key encryption
and signatures, pairs, strings, and zero-knowledge proofs. Except for the latter,
our modeling closely follows that of [3]. The following grammar describes the set
T of all terms that may occur in the symbolic model:



Computational Soundness of Symbolic Zero-Knowledge Proofs 209

T ::=enc(ek(N), t, N) | ek(N) | dk(N) | sig(sk(N), t, N) | vk(N) | sk(N) |
crs(N) | ZK(crs(N), t, t, N) | pair(t, t) | S | N |
garbage(N) | garbageEnc(t, N) | garbageSig(t, N) | garbageZK(t, t, N)

S ::= empty | string0(S) | string1(S)

Here N represents nonces and ranges over NP ∪NE , two disjoint infinite sets of
nonces, the protocol nonces and adversary nonces, respectively. ek(N), dk(N),
vk(N), sk(N) represent encryption, decryption, verification, and signing keys.
enc(ek(N1), t, N2) represents an encryption under public key ek(N1) of plain-
text t using algorithmic randomness N2. (Symbolically, the algorithmic ran-
domness just allows to distinguish different encryptions of the same plaintext;
computationally, it will actually be the randomness used by the encryption al-
gorithm.) sig(sk(N1), t, N2) is a signature of t under signing key sk(N1) with
algorithmic randomness N2. Bitstrings can be expressed using terms matching
the nonterminal S. garbage(N) represents invalid terms, garbageEnc(t, N) and
garbageSig(t, N) represent invalid encryptions and signatures (but which at a
first glance seem to be valid encryptions/signatures with public key t).

Zero-Knowledge Proofs. The interesting part are the zero-knowledge proofs. To
understand the meaning of a term ZK(crs(N), x, w,M), we first need to intro-
duce the relation Rsym

adv . This relation is part of the symbolic modeling, but all
our results are parametric in Rsym

adv . (I.e., our result holds for any choice of Rsym
adv ,

as long as Rsym
adv satisfies certain constraints.) Rsym

adv specifies what a valid wit-
ness for a particular statement would be. For example, if we wish to show that
we know a decryption key w that decrypts a given ciphertext x, then we de-
fine Rsym

adv := {(x,w) : ∃N,M, t.x = enc(ek(N), t,M), w = dk(N)}.2 The term
ZK(crs(N), x, w,M) then represents a zero-knowledge proof constructed with
respect to a common reference string crs(N) with statement x and witness w
and using algorithmic randomnessM . A valid proof satisfies (x,w) ∈ Rsym

adv . Note
that our symbolic model does not ensure that any term ZK(crs(N), x, w,M) is a
valid proof. Instead, we provide a destructor verifyZK below that allows to check
the validity. As we will see below, the statement x can be extracted from a proof,
but the witness w is hidden.

Destructors. Protocol operations on terms are described by a set of destructors.
These are partial functions from Tn to T (where n depends on the destructor).
The destructors are specified in Figure 1. Note that there are a number of de-
structors that do not modify their input (isek, iszk, equals, . . . ). These are useful
for testing properties of terms: The protocol can, e.g., compute isek(t) and then
branch depending on whether the destructor succeeds. We only describe the de-
structors related to ZK proofs. getPub(t) returns the statement x proven by a
ZK proof t. getPub does not check whether the proof is actually valid; for this,
we have verifyZK(t1, t2) which checks whether t2 is a valid proof with respect to

2 Notice that it is no restriction that we use the same relation for all ZK-proofs:
To encode relations R1, . . . , Rn, we define a relation R := {((a, x), w) : ∃i.a =
ai ∧ (x,w) ∈ Ri} where ai are distinct terms.



210 M. Backes, F. Bendun, and D. Unruh

dec(dk(t1), enc(ek(t1),m, t2)) = m

verifysig(vk(t1), sig(sk(t1),t2, t3)) = t2

isek(ek(t)) = ek(t)

isvk(vk(t)) = vk(t)

isenc(enc(ek(t1), t2, t3)) = enc(ek(t1), t2, t3)

isenc(garbageEnc(t1, t2)) = garbageEnc(t1, t2)

issig(sig(sk(t1), t2, t3)) = sig(sk(t1), t2, t3)

issig(garbageSig(t1, t2)) = garbageSig(t1, t2)

iscrs(crs(t1)) = crs(t1)

iszk(ZK(t1, t2, t3, t4)) = ZK(t1, t2, t3, t4)

iszk(garbageZK(t1, t2, t3))

= garbageZK(t1, t2, t3)

ekof(enc(ek(t1), t2, t3)) = ek(t1)

ekof(garbageEnc(t1, t2)) = t1

crsof(ZK(crs(t1), t2, t3, t4)) = crs(t1)

crsof(garbageZK(t1, t2, t3)) = t1

vkof(sig(sk(t1), t2, t3)) = vk(t1)

vkof(garbageSig(t1, t2)) = t1

fst(pair(t1, t2))) = t1

snd(pair(t1, t2)) = t2

unstring0(string0(s)) = s

unstring1(string1(s)) = s

getPub(ZK(t1, t2, t3, t4)) = t2

getPub(garbageZK(t1, t2, t3)) = t2

equals(x, x) = x

verifyZK(crs(t1),ZK(crs(t1),t2, t3, t4))

= ZK(crs(t1), t2, t3, t4) if (t2, t3) ∈ Rsym
adv

Fig. 1. Definition of destructors. If no rule matches, a destructor returns ⊥.

the CRS t1. If so, t2 is returned (and can, e.g., be fed into getPub); otherwise
⊥ is returned. iscrs(t) and iszk(t) allow us to test if t is a CRS or a (possibly
invalid) zero-knowledge proof.

Protocols. We use the protocol model from the CoSP framework [3]. There, a pro-
tocol is modeled as a (possibly infinite) tree of nodes. Each node corresponds to a
particular protocol action such as receiving a term from the adversary, sending a
previously computed term to the adversary, applying a constructor or destructor
to previously computed terms (and branching depending on whether the applica-
tion is successful), or picking a nonce. We do not describe the protocol model in
detail here, but it suffices to know that a protocol can freely apply constructors
and destructors (computation nodes), branch depending on destructor success,
and communicate with the adversary. Despite the simplicity of the model, it is
powerful enough to embed powerful calculi such as the applied π-calculus (shown
in [3]) or RCF, a core calculus for F# (shown in [8]). (In the Appendix C, we
present our computational soundness result in the applied π-calculus.)

Protocol Conditions. The protocols we consider are subject to a number of condi-
tions, listed in Figure 2. The most interesting protocol condition is valid proofs
condition: During the symbolic execution of the protocol, whenever the proto-
col constructs a ZK proof ZK(c, x, w,N) we have (x,w) ∈ Rsym

honest. Here R
sym
honest

is some fixed but arbitrary relation with Rsym
honest ⊆ Rsym

adv (like in Rsym
adv , our re-

sults are parametric in Rsym
honest). In the simplest case, we would have Rsym

honest :=
Rsym

adv . Then the valid proofs condition simply requires that the protocol never
tries to construct a ZK-proof with an invalid witness. (We only impose this con-
dition on the honest protocol, not on the adversary.) In some cases, however,
it may be advantageous to let Rsym

honest be strictly smaller than Rsym
adv . This per-

mits us to model a certain asymmetry in guarantees given by a zero-knowledge



Computational Soundness of Symbolic Zero-Knowledge Proofs 211

proof system: To honestly generate a valid proof, we need a witness with (x,w) ∈
Rsym

honest, but given a malicious prover, we only have the guarantee that the prover
knows a witness with (x,w) ∈ Rsym

adv . We call Rsym
honest the usage restriction.

The Adversary. The capabilities of the adversary are described by a deduction
relation ". S " t means that from the terms S, the adversary can deduce t. " is
defined by the following rules:
m ∈ S

S " m
N ∈ NE

S " N

S " t1, . . . , tn t1, . . . , tn ∈ T
F constructor or destructor F (t1, . . . , tn) ∈ T

S " F (t1, . . . , tn)

Note that the adversary cannot deduce protocol nonces. These are secret until
explicitly revealed. The capabilities of the adversaries with respect to the net-
work (intercept/modify messages) are modeled explicitly by the protocol: if the
adversary is allowed to intercept a message, the protocol explicitly communicates
it through the adversary.

Protocol Execution. Given a particular protocol Π (modeled as a tree), the set
of possible protocol traces is defined by traversing the tree: in case of an input
node the adversary nondeterministically picks a term t with S " t where S are
the terms sent so far through output nodes; at computation nodes, a new term is
computed by applying a constructor or destructor to terms computed/received
at earlier nodes; then the left or right successor is taken depending on whether
the destructor succeeded. The sequence of nodes we traverse in this fashion is
called a symbolic node trace of the protocol. By specifying sets of node traces,
we can specify trace properties for a given protocol. We refer to [3] for details
on the protocol model and its semantics.

3 Computational Implementation

We now describe how to implement the constructors and destructors from the
preceding section computationally. Following [3], we do so by specifying a partial
deterministic function AF : ({0, 1}∗)n → {0, 1}∗ (the computational implementa-
tion of F ) for each constructor or destructor F : Tn → T. Intuitively, AF should
behave as F , only on bitstrings, e.g., Aenc(ek ,m, r) should encrypt m using en-
cryption key ek and algorithmic randomness r. The distribution AN specifies the
distribution according to which nonces are picked. InAppendix A.1 we give the full
list of implementation conditions that the computational implementationmust ful-
fill. These are mostly simple syntactic conditions (such as Afst(Apair(x, y)) = x).
Furthermore, we require that Aenc andAsig correspond to an IND-CCA secure en-
cryption scheme and a strongly unforgeable signature scheme. These conditions
are essentially the same as in [3]. Here, we will only discuss the cryptographic prop-
erties the implementation of ZK proofs should satisfy.

Properties of ZK Proofs. In [10], it was shown that for getting computational
soundness of (non-interactive) zero-knowledge proofs, we need at least the fol-
lowing properties:3 Completeness (if prover and verifier are honest, the proof is

3 It was not shown that these are the minimal properties, but it was shown that none
of these properties can be dropped without suitable substitute.



212 M. Backes, F. Bendun, and D. Unruh

accepted), extractability (given a suitable trapdoor, one can get a witness out
of a valid proof – this models the fact that the prover knows the witness), zero-
knowledge (given a suitable trapdoor and a true statement x, a ZK-simulator
can produce proofs without knowing a witness that are indistinguishable from
normally generated proofs for x), unpredictability (two proofs are equal only with
negligible probability), length-regularity (the length of a proof only depends on
the length of statement and witness), and some variant of non-malleability (see
below). Furthermore, they required for convenience that the verification and the
extraction algorithm are deterministic.

The interesting property is non-malleability: Intuitively, non-malleability
means that given a proof for some statement x, it is not possible to derive a
proof for some other statement x′, even if x logically entails x′. (For example,
given a proof that the ciphertext c contains a plaintext i < 5 it should not be
possible to construct a proof that c contains i < 6.) There are several variants
of non-malleability; [10] used the notion of extraction zero-knowledge which is a
strong variant of extractability (we are aware of only one scheme in the literature
that has this property [22]). They left it as an open problem whether weaker vari-
ants also lead to computational soundness. We answer this question positively.
We use the weaker and more popular notion of simulation-sound extractability. In
a nutshell, this notion guarantees that the adversary cannot produce proofs from
which no witness can be extracted, even when given access to a ZK-simulator.

We actually need an even weaker property: honest simulation-sound ex-
tractability. Here the adversary may ask the ZK-simulator to produce a simulated
proof for x if he knows a witness w for x.

In the symbolic model, we have distinguished two relations Rsym
adv and Rsym

honest,
the first modeling what the adversary is able to do, the secondmodeling what hon-
est participants are allowed to do. Similarly, our definition of weakly symbolically-
sound zero-knowledge proof distinguishes two relations Rcomp

adv ⊇ Rcomp
honest. All

conditions assume that honest participants use (x,w) ∈ Rcomp
honest. (“Weakly”

distinguishes our notion from that in [10] which requires extraction ZK.)

Definition 1 (Weakly Symbolically-Sound ZK Proofs). A weakly
symbolically-sound zero-knowledge proof system for relations Rcomp

honest, R
comp
adv is a

tuple of polynomial-time algorithms (K,P,V) such that there exist polynomial-
time algorithms (E,S) and the following properties hold:

• Completeness: Let a polynomial-time adversary A be given. Let
(crs, simtd, extd) ← K(1η). Let (x,w) ← A(1η, crs). Let proof ←
P(x,w, crs). Then with overwhelming probability in η, it holds (x,w) 	∈ Rcomp

adv

or V(x, proof, crs) = 1.
• Zero-Knowledge: Fix a polynomial-time oracle adversary A. For given
crs, simtd, let OP(x,w) := P(x,w, crs) if (x,w) ∈ Rcomp

honest and OP(x,w) := ⊥
otherwise, and let OS(x,w) := S(x, crs, simtd) if (x,w) ∈ Rcomp

honest and
OS(x,w) := ⊥ otherwise. Then

|Pr[AOP(1η, crs) = 1 : (crs, . . . ) ← K(1η)]−
Pr[AOS(1η, crs) = 1 : (crs, . . . ) ← K(1η)]|

is negligible in η.



Computational Soundness of Symbolic Zero-Knowledge Proofs 213

• Honest simulation-sound extractability: Let a polynomial-time oracle ad-
versary A be given. Let (crs, simtd, extd) ← K(1η). Let O(x,w) :=
S(x, crs, simtd) if (x,w) ∈ Rcomp

honest and ⊥ otherwise. Let (x, proof) ←
AO(1η, crs). Let w ← E(x, proof, extd). Then with overwhelming probability,
if V(x, proof, crs) = 1 and proof was not output by O then (x,w) ∈ Rcomp

adv .
• Unpredictability: Let a polynomial-time adversary A be given. Let
(crs, simtd, extd) ← K(1η). Let (x,w, proof ′) ← A(1η, crs, simtd, extd). Then
with overwhelming probability, it holds proof′ 	= P(x,w, crs) or (x,w) 	∈
Rcomp

honest.
• Length-regularity: Let two witnesses w and w′, and statements x and x′ be
given such that |x| = |x′|, and |w| = |w′|. Let (crs, simtd, extd) ← K(1η).
Then let proof ← P(x,w, crs) and proof′ ← P(x′, w′, crs). Then we get
|proof| = |proof′| with probability 1.

• Deterministic verification and extraction: The algorithms V and E are de-
terministic.

(We do not explicitly list soundness because it is implied by honest simulation-
sound extractability.) )

We then require that Acrs, AZK, AverifyZK
correspond to the key generation K,

prover P, and verifier V of a weakly symbolically-sound ZK proof system for
some relations Rcomp

honest, R
comp
adv . We stress that using the the construction in [31]

on a length-regular and extractable NIZK leads to weakly symbolically-sound
ZK proof system. The proof is postponed to the Appendix B.

The Relations. It remains to specify what conditions we place on the rela-
tions Rcomp

honest, R
comp
adv . Obviously, we cannot expect computational soundness if

we allow arbitrary Rcomp
honest, R

comp
adv . Instead, we need to formulate the fact that

Rcomp
honest, R

comp
adv somehow correspond to the symbolic relations Rsym

honest, R
sym
adv . We

thus give minimal requirements on the relationship between those relations. Es-
sentially, we want that whenever (x,w) ∈ Rsym

honest then for the corresponding
computational bitstrings mx,mw we have (mx,mw) ∈ Rcomp

honest; this guarantees
that if symbolically, we respect the usage restriction Rsym

honest, then computation-
ally we only use witnesses the honest protocol is allowed to use. And whenever
(mx,mw) ∈ Rcomp

adv we have (x,w) ∈ Rsym
adv ; this guarantees that a computational

adversary will not be able to prove statements mx that do not also correspond
to statements x that can be proven symbolically. (Formally, these conditions are
used to show Lemmas 4 and 6 in the computational soundness proof below.)
To model correspondence between the symbolic terms x,w and the bitstrings
mx,mw, we define a function imgη that translates a term to a bitstring (essen-
tially by applying AF for each constructor F ). The function imgη depends on an
environment η, a partial function T → {0, 1}∗ that assigns bitstrings to nonces
and adversary-generated terms. We use the definition of a consistent environ-
ment that lists various natural properties an environment will have (such as
mapping ZK-terms to bitstrings of the right type); the definition of consistent
environments is deferred to Appendix C.1. Given these notions, we can formalize
the conditions Rcomp

honest, R
comp
adv should satisfy:



214 M. Backes, F. Bendun, and D. Unruh

Definition 2 (Implementation of Relations). A pair of relations
Rcomp

honest, R
comp
adv on {0, 1}∗ implement a relation Rsym

adv on T with usage restric-
tion Rsym

honest if the following conditions hold for any consistent η ∈ E:
(i) (x,w) ∈ Rsym

honest and imgη(x) 	= ⊥ 	= imgη(w) =⇒ (imgη(x), imgη(w)) ∈
Rcomp

honest

(ii) (imgη(x), imgη(w)) ∈ Rcomp
adv =⇒ (x,w) ∈ Rsym

adv

(iii) Rsym
honest ⊆ Rsym

adv and Rcomp
honest ⊆ Rcomp

adv )

In the Appendix C.5 we give some practical examples satisfying this definition.

Protocol Execution. The CoSP framework specifies semantics for executing a
given protocol in the computational model given a computational implemen-
tation AF . The execution is analogous to the symbolic execution, except that
computation nodes apply functions AF instead of constructors and destructors

(with branching depending on AF (. . . )
?
= ⊥). Input and output nodes receive

and send bitstrings to a probabilistic polynomial-time adversary. This proba-
bilistic process yields a trace of nodes, the computational node trace. Details are
specified in [3].

4 Computational Soundness

Using the definitions from Section 2 and 3, we can finally state our main result. A
trace property is a prefix-closed, efficiently decidable set P of node traces. We say
a protocol Π symbolically satisfies P if every symbolic node trace (see page 211)
of Π is in P . We say Π computationally satisfies P if the computational node
trace (see page 214) is in P with overwhelming probability.

Theorem 1 (Computational Soundness of ZK Proofs). Let Π be a proto-
col satisfying the protocol conditions listed in figure 2. Let AF be a computational
implementation satisfying the implementation conditions from Section 3. Then
for any node trace P, if Π symbolically satisfies P, then Π computationally
satisfies P. )

We describe the proof in Section 5.

5 The Proof

In this section, we describe our proof of computational soundness (Theorem 1).
First, we describe how the computational soundness proof for encryptions and sig-
natures is done in the CoSP framework (Section 5.1). To understand our proof
it is essential to understand that proof first. Then, we sketch how computational
soundness of zero-knowledge proofs that have the extraction zero-knowledge prop-
erty was shown in [10] (Section 5.2). It is instructive to compare their approach to
ours. In Section 5.3, we describe the idea underlying our proof (using simulation-
sound extractability instead of extraction-zero knowledge). Finally, in Section 5.4
we give an overview of our proof. The full proof is given in appendix C.3. The
lemmas in this overview are simplified for readability and informal.



Computational Soundness of Symbolic Zero-Knowledge Proofs 215

1. The annotation of each crs-node, each key-
pair (ek, dk) and (vk, sk) is a fresh nonce.
which does not occur anywhere else.

2. There is no node annotated with
a garbage, garbageEnc, garbageSig,
garbageZK, or N ∈ NE constructor
in the protocol.

3. The last argument of a enc, sig,ZK con-
structor are fresh nonces. These nonces are
not used anywhere else except in case of enc
and sig as part of a subterm of the third ar-
gument in a ZK-node.

4. A dk-node is only used as first argument
for dec-node or as subterm of the third ar-
gument in a ZK-node.

5. A sk-node is only used as first argument
for sig-node or as subterm of the third ar-
gument in a ZK-node.

6. The first argument of a dec-computation
node is a dk-node.

7. The first argument of a sig-computation
node is a sk-node.

8. The first argument of a ZK-computation is
a crs-computation node which is annotated
by a nonce N ∈ NP . This nonce is only
used as annotation of this crs node and
nowhere else.

9. The first argument of a verifyZK-
computation is a crs-computation node
which is annotated by a nonce N ∈ NP .
This nonce is only used as annotation of
this crs node and nowhere else.

10. The protocol respects the usage restriction
Rsym

honest in the following sense:
In the symbolic execution of the proto-
col, whenever a ZK-computation-node ν
is reached, then (f(νx), f(νw)) ∈ Rsym

honest
where f is the function mapping nodes to
terms (cf. the definition of the symbolic exe-
cution in [3]) and νx and νw are the second
and third argument of ν.

11. For the relation Rsym
adv it holds: There is an

efficient algorithm SymbExtr, that given
a term M together with a set S of terms
, outputs a term N , such that S � N and
(N,M) ∈ Rsym

adv or outputs ⊥ if there is no
such term N . We call a relation satisfying
this property symbolically extractable.

12. The relation Rsym
adv is efficiently decidable.

Fig. 2. Protocol conditions

5.1 Computational Soundness Proofs in CoSP

Remember that in the CoSP framework, a protocol is modeled as a tree whose
nodes correspond to the steps of the protocol execution; security properties are
expressed as sets of node traces. Computational soundness means that for any
polynomial-time adversary A the trace in the computational execution is, except
with negligible probability, also a possible node trace in the symbolic execution.
The approach for showing this is to construct a so-called simulator Sim. The
simulator is a machine that interacts with a symbolic execution of the protocol
Π on the one hand, and with the adversary A on the other hand; we call this a
hybrid execution. The simulator has to satisfy the following two properties:

• Indistinguishability: The node trace in the hybrid execution is computation-
ally indistinguishable from that in the computational execution with adver-
sary A.

• Dolev-Yaoness: The simulator Sim never (except for negligible probability)
sends terms t to the protocol with S � t where S is the list of terms Sim
received from the protocol so far.

The existence of such a simulator then guarantees computational soundness:
Dolev-Yaoness guarantees that only node traces occur in the hybrid execution
that are possible in the symbolic execution, and indistinguishability guarantees
that only node traces occur in the computational execution that can occur in
the hybrid one.



216 M. Backes, F. Bendun, and D. Unruh

How to Construct a Simulator? In [3], the simulator Sim is constructed as fol-
lows: Whenever it gets a term from the protocol, it constructs a corresponding
bitstring and sends it to the adversary, and when receiving a bitstring from the
adversary it parses it and sends the resulting term to the protocol. Constructing
bitstrings is done using a function β, parsing bitstrings to terms using a func-
tion τ . The simulator picks all random values and keys himself: For each protocol
nonce N , he initially picks a bitstring rN . He then translates, e.g., β(N) := rN
and β(ek(N)) := Aek(rN ) and β(enc(ek(N), t,M)) := Aenc(Aek(rN ), β(t), rM ).
Translating back also is natural: Given m = rN , we let τ(m) := N , and if
c is a ciphertext that can be decrypted as m using Adk(rN ), we set τ(c) :=
enc(ek(N), τ(m),M). However, in the last case, a subtlety occurs: what nonce
M should we use as symbolic randomness in τ(c)? Here we distinguish two cases:
If c was earlier produced by the simulator: Then c was the result of computing
β(t) for some t = enc(ek(N), t′,M) and some nonce M . We then simply set
τ(c) := t and have consistently mapped c back to the term it came from.

If c was not produced by the simulator: In this case it is an adversary generated
encryption, andM should be an adversary nonce to represent that fact. We could
just use a fresh nonce M ∈ NE , but that would introduce the need of additional
bookkeeping: If we compute t := τ(c), and later β(t) is invoked, we need to make
sure that β(t) = c in order for the Sim to work consistently (formally, this is
needed in the proof of the indistinguishability of Sim). And we need to make sure
that when computing τ(c) again, we use the same M . This bookkeeping can be
avoided using the following trick: We identify the adversary nonces with symbols
Nm annotated with bitstrings m. Then τ(c) := enc(ek(N), τ(m), N c), i.e., we
set M := N c. This ensures that different c get different randomness nonces
N c, the same c is always assigned the same N c, and β(t) is easy to define:
β(enc(ek(N),m,N c)) := c because we know that enc(ek(N),m,N c) can only
have been produced by τ(c). To illustrate, here are excerpts of the definitions of
β and τ (the first matching rule counts):

• τ(c) := enc(ek(M), t, N) if c has earlier been output by β(enc(ek(M), t, N))
for some M ∈ N, N ∈ NP

• τ(c) := enc(ek(M), τ(m), N c) if c is of type ciphertext and τ(Aekof (c)) =
ek(M) for some M ∈ NP and m := Adec(Adk(rM ), c) 	= ⊥

• β(enc(ek(N), t,M)) := Aenc(Aek(rN ), β(t), rM ) if M ∈ NP

• β(enc(ek(M), t, Nm)) := m if M ∈ NP

Bitstringsm that cannot be suitably parsed are mapped into terms garbage(Nm)
and similar that can then be mapped back by β using the annotation m.

Showing Indistinguishability. Showing indistinguishability essentially boils down
to showing that the functions β and τ consistently translate terms back and forth.
More precisely, we show that β(τ(m)) = m and τ(β(t)) = t. Furthermore, we
need to show that in any protocol step where a constructor or destructor F is ap-
plied to terms t1, . . . , tn, we have that β(F (t1, . . . , tn)) = AF (β(t1), . . . , β(tn)).
This makes sure that the computational execution (where AF is applied) stays in
sync with the hybrid execution (where F is applied and the result is translated us-
ing β). The proofs of these facts are lengthy (involving case distinctions over all



Computational Soundness of Symbolic Zero-Knowledge Proofs 217

constructors and destructors) but do not providemuch additional insight; they are
very important thoughbecause they are responsible formost of the implementation
conditions that are needed for the computational soundness result.

Showing Dolev-Yaoness. The proof of Dolev-Yaoness is where most of the actual
cryptographic assumptions come in. In this sketch, we will slightly deviate from
the original proof in [3] for easier comparison with the proof in the present paper.
The differences are, however, inessential. Starting from the simulator Sim, we
introduce a sequence of simulators Sim4, Sim5, Simf . (We start the numbering
with 4 because we later introduce additional simulators.)

In Sim4, we change the function β as follows: When invoked as
β(enc(ek(N), t,M)) withM ∈NP , instead of computing Aenc(Aek(rN ), β(t), rM ),
β invokes an encryption oracle ON

enc to produce the ciphertext c. Similarly,
β(ek(N)) returns the public key provided by the oracle ON

enc. The hybrid ex-
ecutions of Sim and Sim4 are then indistinguishable. (Here we use that the
protocol conditions guarantee that no randomness is used in two places.) Also,
the function τ is changed to invokeON

enc whenever it needs to decrypt a ciphertext
while parsing. Notice that if c was returned by β(t) with t := enc(. . . ), then τ(c)
just recalls the term t without having to decrypt. Hence ON

enc is never asked to
decrypt a ciphertext it produced.

In Sim5, we replace the encryption oracle ON
enc by a fake encryption oracle

ON
fake that encrypts zero-plaintexts instead of the true plaintexts. Since ON

enc is
never asked to decrypt a ciphertext it produced, IND-CCA security guarantees
that the hybrid executions of Sim4 and Sim5 are indistinguishable. Since the
plaintexts given to ON

fake are never used, we can further change β(enc(N, t,M))
to never even compute the plaintext β(t).

Finally, in Simf , we additionally change β to use a signing oracle in order to
produce signatures. As in the case of Sim4, the hybrid executions of Sim5 and
Simf are indistinguishable.

Since the hybrid executions of Sim and Simf are indistinguishable, in order
to show Dolev-Yaoness of Sim, it is sufficient to show Dolev-Yaoness of Simf .

The first step to showing this is to show that whenever Simf invokes β(t),
then S " t holds (where S are the terms received from the protocol). This
follows from the fact that β is invoked on terms t0 sent by the protocol (which
are then by definition in S), and recursively descends only into subterms that
can be deduced from t0. In particular, in Sim5 we made sure that β(t) is not
invoked by β(enc(ek(N), t,M)); t would not be deducible from enc(ek(N), t,M).
Next we prove that whenever S � t, then t contains a visible subterm tbad with
S � tbad such that tbad is a protocol nonce, or a ciphertext enc(. . . , N) where N
is a protocol nonces, or a signature, or a few other similar cases. (Visibility is
a purely syntactic condition and essentially means that tbad is not protected by
an honestly generated encryption.)

Now we can conclude Dolev-Yaoness of Simf : If it does not hold, Simf sends
a term t = τ(m) where m was sent by the adversary A. Then t has a visible
subterm tbad . Visibility implies that the recursive computation of τ(m) had a
subinvocation τ(mbad) = tbad . For each possible case of tbad we derive a con-



218 M. Backes, F. Bendun, and D. Unruh

tradiction. At this point we use the cryptographic arguments like for example
unforgeability of signature schemes. Thus, Simf is Dolev-Yao, hence Sim is in-
distinguishable and Dolev-Yao. Computational soundness follows.

5.2 Computational Soundness Based on Extraction ZK

We now describe how computational soundness for zero-knowledge proofs was
shown in [10], based on the strong assumption of extraction zero-knowledge. Our
presentation strongly deviates from the details of the proof in [10]; we explain
what their proof would be like if recast in the CoSP framework. This makes it
easier to compare the proof to our proof and the proof described in the preceding
section.

Extraction zero-knowledge is a strong property that guarantees the following:
It is not possible to distinguish a prover-oracle from the a simulator-oracle, even
when given access to an extraction oracle that extracts the witnesses from ar-
bitrary proofs except the ones produced by the prover/simulator-oracle. Notice
that there is a strong analogy to IND-CCA secure encryption. The prover-oracle
corresponds to an encryption-oracle, the witness to the plaintext, the simulator-
oracle to a fake encryption-oracle encrypting zero-plaintexts, and the extractor-
oracle to a decryption-oracle.

This analogy allows us to adapt the idea for proving computational soundness
of encryptions to the case of ZK proofs. As in the proof described in Section 5.1,
we construct a simulator Sim with translation functions τ and β. We extend β
and τ to deal with ZK proofs analogue to the cases of encryptions in Section 5.1.

The proof of indistinguishability is analogous to that in Section 5.1, except
that we use the extractability property of the proof system to make sure that the
simulator does not abort when invoking the extraction algorithm while trying
to parse a ZK proof z in τ(z). Notice that plain extractability (as opposed to
simulation-sound extractability) can be used here since we do not use a ZK-
simulator in the construction of Sim.

To prove Dolev-Yaoness, we proceed as in Section 5.1, except that we intro-
duce three more intermediate simulators Sim1, Sim2, and Sim3. (See Figure 3.)
In Sim1, we invoke a prover-oracle ON

ZK with statement β(t) and witness β(t′)
in β(ZK(crs(N), t, t′,M)) instead of computing AZK(Acrs(rN ), β(t), β(t′), rM ).
(This is analogous to Sim4 above.) ON

ZK aborts if the witness is not valid.

Sim Sim1 Sim2 Sim3 Sim4 Sim5 Simf

DY DY
DY,
ZK

DY,
ZK

DY,
ZK

DY,
ZK

original

simulator
use proof oracle

check witness
use simulation oracle

check witness
do not

check witness
use encryption

oracle
use fake

encryption oracle
use signing

oracle

Fig. 3. Simulators used in the proof. An arrow marked DY means Dolev-Yaoness is
propagated from one simulator to the other. An arrow marked ZK means ZK-breaks
are propagated (needed in Section 5.4).

In Sim2, we replace the prover-oracle ON
ZK by a ZK-simulator-oracle ON

sim.
That oracle runs the ZK-simulator (after checking that the witness is valid).



Computational Soundness of Symbolic Zero-Knowledge Proofs 219

Extraction zero-knowledge guarantees that this replacement leads to an indistin-
guishable hybrid execution. (We need that the witness is checked before running
the simulator because extraction zero-knowledge gives no guarantees in the case
of invalid witnesses, even if the witness is not actually used by the ZK-simulator.)
Finally, in Sim3 we modify the ZK-simulator-oracle ON

sim such that it does not
check the witness any more. A protocol condition guarantees that this check
would succeed anyway, so this change leads to an indistinguishable hybrid execu-
tion. Furthermore, since witnesses given to ON

sim are never used, we can further
change β(ZK(crs(N), t, t′,M)) to never even compute the witness β(t′).

The rest of the proof is analogous to that in Section 5.1. I.e., we continue
with the simulator Sim3, Sim4, Simf as described there and show that Simf is
Dolev-Yao.

Note that this computational soundness proof crucially depends on the ex-
traction ZK property. We need to use the extractor in the construction of τ , and
we need to replace the prover-oracle by a ZK-simulator-oracle in order to make
sure that β does not descend into witnesses. And that replacement takes place
in a setting where the parsing function τ and thus the extractor is used.

5.3 Proof Idea

We now describe the idea of our approach that allows us to get rid of extraction
ZK. As explained in Section 5.2, we cannot use the extractor as part of the
parsing function τ if we do not have extraction ZK. However, the following
observation shows that we might not need to run the extractor: Although in the
computational setting, the only way to compute a witness is to extract it (unless
the relation is trivial), in the symbolic setting, given a symbolic statement x, it
is typically easy to compute a corresponding symbolic witness w. (E.g., when
proving the knowledge of a secret key that decrypts a term c = enc(ek(N), t,M),
then the witness is dk(N) which can just be read off c.) We stress that we do
not claim that the witness can be deduced (in the sense of ") from x, only that
its symbolic representation can be efficiently computed from the statement.

Thus, for an adversary-generated proof z with CRS Acrs(rN ) and statement
mx and that passes verification, we define τ(z) as follows: We run w :=
SymbExtr(S, x) and return τ(z) := ZK(crs(N), x, w,Nz). Here S is the list of
terms send by the protocol so far,SymbExtr(S, x) denotes an arbitrarywitnessw
satisfying the following two conditions:w is a validwitness forx (i.e., (x,w) ∈ Rsym

adv )
and S " w. (Our result assumes that w = SymbExtr(S, x) is efficiently com-
putable whenever w exists, this will be the case for most natural relations.)

The condition S " w is necessary since otherwise the simulator Sim would
produce a proof that the adversary could not have deduced (since he could not
have deduced the witness), and thus the simulator would not be Dolev-Yao.

Assume for the moment that SymbExtr(S, x) always succeeds (i.e., in the
hybrid execution, there always is a w with (x,w) ∈ Rsym

adv and S " w). In this
case, we can finish the proof analogously to that in Section 5.2: Indistinguisha-
bility of Sim follows by carefully checking all cases, and the Dolev-Yaoness by
the same sequence of simulators as in Section 5.2. We do not need extraction



220 M. Backes, F. Bendun, and D. Unruh

zero-knowledge when going from Sim1 to Sim2, though, because in Sim1, no ex-
tractor is used (we use symbolic extraction instead). Thus the zero-knowledge
property is sufficient instead of extraction zero-knowledge.

But how to show that SymbExtr(S, x) always succeeds? Two things might
go wrong. First, no valid witness w with (x,w) ∈ Rsym

adv might exist. Note that
the extractability property only guarantees that computationally, a valid witness
for the computational statement mx exists. This does not necessarily imply that
translating that witness into a term (e.g., using τ) yields a valid symbolic witness.
Second, there might be a valid witness w, but that witness is not deducable
(S � w). Again, extractability only guarantees that the adversary “knows” a
witness in the computational setting, this does not imply deducability in the
symbolic setting.

In essence, to show that SymbExtr(S, x) succeeds, we need a kind of com-
putational soundness result: Whenever computationally, the adversary knows a
valid witness, then symbolically, the adversary knows a valid witness. This seems
problematic, because it seems that we need to use a computational soundness
result within our proof of computational soundness – a seeming circularity. Fortu-
nately, this circularity can be resolved: The fact that SymbExtr(S, x) succeeds
is used only when proving that Sim is indistinguishable (i.e., mimics the compu-
tational execution well). But the fact that SymbExtr(S, x) succeeds does not
relate to the computational execution at all. In fact, it turns out to be closely
related to the Dolev-Yaoness and can be handled in the same proof. And that
proof does not use the fact that symbolic extraction succeeds.

5.4 Proof Overview

We now give a more detailed walk-through through our proof. This exposition
can also be seen as a guide through the full proof in appendix C.3.

The Simulator. The first step is to define the simulator Sim, i.e., the translation
function β and τ . Here, we only present the parts of the definition related to ZK
proofs (the first matching rule counts):

1. τ(z) := ZK(crs(N1), t1, t2, N2) if z has earlier been output by
β(ZK(crs(N1), t1, t2, N2)) for some N1, N2 ∈ NP

2. τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-knowledge proof and τ(z)
was computed earlier and has output ZK(crs(N), x, w,Nz)

3. τ(z) := ZK(crs(N), x, w,Nz) if z is of type zero-knowledge proof,
τ(Acrsof(z)) = crs(N) for some N ∈ NP , AverifyZK

(Acrsof(z), z) = z,
mx := AgetPub(z) 	= ⊥, x := τ(mx) 	= ⊥ and w := SymbExtr(S, x) where
S is the set of terms sent to the adversary so far.

4. τ(z) := garbageZK(c, x,Nz) if z is of type zero-knowledge proof, c :=
τ(Acrsof(z)) and x := τ(AgetPub(z)).

5. β(ZK(crs(N1), t1, t2, N2)) := AZK(Acrs(rN1), β(t1), β(t2), rN2) if N1, N2 ∈
NP

6. β(ZK(crs(t0), t1, t2, N
s)) := s

7. β(garbageZK(t1, t2, N
z)) := z



Computational Soundness of Symbolic Zero-Knowledge Proofs 221

Here SymbExtr(S, x) returns a witness w with (x,w) ∈ Rsym
adv and S " w if such

w exists, and ⊥ otherwise. A key point is what to do when SymbExtr(S, x) fails.
We will later show that this happens with negligible probability only, but for now
we need to specify the behavior in this case: When SymbExtr(S, x) returns ⊥
in the rule 3), we say an extraction failure occurred. In this case, the simulator
runs the extractor (using the extraction trapdoor corresponding to Acrs(rN )) to
get a (computational) witness mw for mx. Then Sim computes w := τ∗(mw)
where τ∗ is defined like τ , except that the rule 3) is dropped (hence τ∗ will
map an adversary-generated ZK-proof always to a garbageZK-term). Then the
simulator aborts. If (x,w) 	∈ Rsym

adv , we say a ZK-break occurred.
The reader may wonder why we let the simulator compute a symbolic witness

w in case of an extraction failure even though w is never used. The reason
is that we later show that this w always has (x,w) ∈ Rsym

adv and S " w, which
contradicts the fact that we get an extraction failure in the first place. The reason
for using τ∗ instead of τ is that we have to avoid getting extraction failures within
extraction failures. We use the same sequence of simulator modifications as in
Section 5.2 (see Figure 3). The only difference is that the simulator Sim handles
zero-knowledge proofs as defined above.

We can now show that Simf is Dolev-Yao. The proof of this fact is analogous
to the case the proof sketched in Section 5.2. We even show something slightly
stronger, namely that neither τ nor τ∗ outputs an undeducable term:

Lemma 1 (Simf is Dolev-Yao). For any invocation t := τ(m) or t := τ∗(m),
we have S " t where S are the terms sent to the simulator so far. In particular,
Simf is Dolev-Yao. )

As in Section 5.2, we show Sim is Dolev-Yao iff Simf is Dolev-Yao. We will
also need preservation of the property that ZK-breaks occur with negligible
probability.

Lemma 2 (Preservation of Simulator-Properties). • Sim is Dolev-Yao iff
Simf is. • In the hybrid execution of Sim extraction failures occur with negligible
probability iff the same holds for Simf . • In the hybrid execution of Sim2 (not
Sim!) ZK-breaks occur with negligible probability iff the same holds for Simf . )

Dolev-Yaoness, extraction failures, and ZK-breaks carry over from Sim3 to Sim4

and from Sim5 to Simf because the randomness used in encrypting and signing
is not re-used by protocol condition 3. (Notice that randomness might have
occurred within a witness, but due to the change in Sim3, we do not invoke
β(w) on witnesses any more.) Dolev-Yaoness, extraction failures, and ZK-breaks
carry over from Sim4 to Sim5 due to the IND-CCA property. Dolev-Yaoness and
extraction failures carry over from Sim to Sim1 because the randomness used for
constructing ZK-proofs is not reused by protocol condition 3.

Furthermore, Dolev-Yaoness and extraction failures carry over from Sim1 to
Sim2 because of the zero-knowledge property of the proof system. There is a
subtlety here: Sim1 does use the extractor (namely after an extraction failure).
So usually, we would not be allowed to apply the zero-knowledge property (we



222 M. Backes, F. Bendun, and D. Unruh

would need extraction ZK). But fortunately, after an extraction failure, no terms
are sent by the simulator. Thus, anything that happens after an extraction failure
has no impact on whether the simulator is Dolev-Yao or not. Thus, for analyzing
whether Dolev-Yaoness carries over from Sim1 to Sim2, we can assume that those
simulators abort directly after incurring an extraction failure (without invoking
the extractor afterwards). Then no extractions occur in the simulator, and we
can use the zero-knowledge property. Analogously, extraction failures carry over
from Sim1 to Sim2.

Notice that we cannot use the same trick to show that ZK-breaks carry over
from Sim1 to Sim2: Whether ZK-breaks occur is determined after the invocation
of the extractor. Fortunately, we only need that ZK-breaks carry over from Sim2

to Simf .
To show Lemma 2, it remains to show that Dolev-Yaoness, extraction failures,

and ZK-breaks carry over from Sim2 to Sim3. The only difference between these
simulators is that Sim3 does not check whether the witness mw given to the
ZK-simulation-oracle is valid (i.e., (β(t1), β(t2)) ∈ Rcomp

honest in rule 5). Thus, to
conclude the proof of Lemma 2, we need to show that the probability that the
ZK-simulation-oracle is called with an invalid witness is negligible.

No Invalid Witnesses. To show that the ZK-simulation-oracle is only called by
Sim2 with valid computational witnesses β(t1), we need to show two things:

Lemma 3 (No Invalid Symbolic Witnesses). If Sim3 is Dolev-Yao, then
in rule 5), we have (t1, t2) ∈ Rsym

honest with overwhelming probability. The same
holds for Sim. )

Lemma 4 (Relating the Relations, Part 1). In an execution of Sim3

the following holds with overwhelming probability: if (x,w) ∈ Rsym
honest then

(β(x), β(w)) ∈ Rcomp
honest. The same holds for Sim. )

Once we have these lemmas, Lemma 2 follows: We know from Lemma 1 that
Simf is Dolev-Yao. We have already shown that this property carries over to
Sim3. Thus by Lemmas 3 and 4, (β(t1), β(t2)) ∈ Rcomp

honest in rule 5).
To show Lemma 3, we observe the following: If the simulator sends only terms

that are deducible (i.e., that a symbolic adversary could also have sent), then in
the hybrid execution, no execution trace occurs that could not have occurred in
the symbolic execution either. By protocol condition 10, in a symbolic execution,
(t1, t2) ∈ Rsym

honest whenever the protocol constructs an ZK(crs(N), t1, t2,M)-term.
Since rule 5) only applies to such protocol-generated terms (ZK-terms from τ
have M ∈ NE), it follows that (t1, t2) ∈ Rsym

honest in rule 5). Lemma 3 follows.
Lemma 4 follows because we required that Rcomp

honest, R
comp
adv implement Rsym

adv with
usage restriction Rsym

honest; Definition 2 was designed to make Lemma 4 true.
Thus, Lemmas 3 and 4 hold, thus Lemma 2 follows. Since Simf is Dolev-Yao

by Lemma 1, it follows with Lemma 2 that Sim is Dolev-Yao. It remains to show
that Sim is indistinguishable.

Indistinguishability of Sim. As described in Section 5.1, to show indistin-
guishability of Sim, the main subproof is to show (a) that β(F (t1, . . . , tn))



Computational Soundness of Symbolic Zero-Knowledge Proofs 223

= AF (β(t1), . . . , β(tn)) when the protocol computes F (t1, . . . , tn). And, of
course, we need (b) that the simulator does not abort. The proof of (a) is,
as before, done by careful checking of all cases. The only interesting case is
F = verifyZK. Here we need that an honestly-generated ZK proof with statement
x and witness w passes verification symbolically (x,w ∈ Rsym

honest) iff it passes ver-
ification computationally ((β(x), β(w) ∈ Rcomp

honest). Fortunately, we have already
derived all needed facts: By Lemmas 1 and 3, (x,w) ∈ Rsym

honest with overwhelming
probability. And then by Lemma 4, (β(x), β(w)) ∈ Rsym

honest.
To show (b), we need to show that extraction failures occur with negligible

probability. The approach for this is a bit roundabout, we first analyze Sim2:

Lemma 5 (No ZK-Breaks). In the hybrid execution of Sim2, ZK-breaks occur
with negligible probability. )

To show this, we use the simulation-sound extractability property of the proof
system to show that the values mx,mw extracted by the extractor after an
extraction failure satisfy (mx,mw) ∈ Rcomp

adv . And then it follows that (x,w) ∈
Rsym

adv with x := τ(mx), w := τ∗(mw) by the converse of Lemma 4:

Lemma 6 (Relating the Relations, Part 2). In an execution of Sim2

the following holds with overwhelming probability: if (mx,mw) ∈ Rcomp
adv then

(τ(mx), τ
∗(mw)) ∈ Rsym

adv . )

Thus Lemma 5 is shown. From this, with Lemma 2 we get that ZK-breaks occur
with negligible probability also for Simf . Based on this fact, we can show the
following lemma:

Lemma 7 (No Extraction Failures). In the hybrid execution of Simf , ex-
traction failures occur with negligible probability. )

To see this, we use that ZK-breaks only occur with negligible probability in the
execution of Simf . Thus, by definition of ZK-breaks, this means that (x,w) ∈
Rsym

adv for the terms x := τ(mx) and w := τ(mw) computed after the extraction
failure. Furthermore, by Lemma 1, it follows that S " w. But then, by definition,
SymbExtr(x, S) would have output a w or another witness, but not ⊥. Thus
the extraction failure would not have occurred. This shows Lemma 7.

Finally, from Lemmas 5 and 2 we get that extraction failures occur with
negligible probability in the execution of Sim, too. Thus property (b) also holds,
thus we have shown Sim to be indistinguishable.

Notice that the roundabout way through Sim2 and Simf to show that extrac-
tion failures occur with negligible probability in the execution of Sim is necessary:
We cannot directly show Lemma 5 for Simf because Simf uses the simulator to
prove untrue statements (e.g., it may prove that a ciphertext contains a certain
value, but since we use a fake encryption oracle, that ciphertext actually contains
a zero-plaintext), so simulation-sound extractability cannot be applied. Also, we
cannot use the fact S " τ∗(x) directly on Sim because this fact cannot be prop-
agated from Simf to Sim (since τ∗ is executed after the extractor is used, we
would need extraction ZK to bridge from Sim2 to Sim1).



224 M. Backes, F. Bendun, and D. Unruh

Concluding the Proof. We have shown that Sim is Dolev-Yao and indistinguish-
able. From [3, Thm. 1] we then immediately get Theorem 1.

6 Conclusions

In this paper, we have shown that computational soundness of symbolic ZK
proofs can be achieved under realistic cryptographic assumptions for which effi-
cient realizations and generic constructions are known. The computational sound-
ness proof has been conducted in CoSP, and hence it holds independent of the
underlying symbolic calculi and comes with mechanized proof support.

We conclude by highlighting two open questions that we consider as future
work. First, current abstractions model non-interactive ZK proofs, i.e., a ZK
proof constitutes a message that can forwarded, put into other terms, etc. De-
veloping a symbolic abstraction to reflect (the more common) interactive ZK
proofs thus requires a conceptually different approach, as such proofs cannot be
replayed, put into other terms, etc. We plan to draw ideas from a recently pro-
posed symbolic abstraction for (interactive) secure multi-party computation [6]
to reflect this behavior. Second, soundness proofs of individual primitives have
typically been proved in isolation, without a guarantee that the soundness re-
sult prevails when composed. We plan to build on recent work on composable
soundness notions [17] to establish a composable soundness result for ZK proofs.

References

1. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
In: ACM CCS (1997)

2. Abadi, M., Rogaway, P.: Reconciling two views of cryptography (the computational
soundness of formal encryption). Journal of Cryptology 15(2) (2002)

3. Backes, M., Hofheinz, D., Unruh, D.: Cosp: A general framework for computational
soundness proofs. In: ACM CCS (2009)

4. Backes, M., Hriţcu, C., Maffei, M.: Type-checking zero-knowledge. In: ACM CCS
(2008)

5. Backes, M., Lorenz, S., Maffei, M., Pecina, K.: Anonymous Webs of Trust. In: Atal-
lah, M.J., Hopper, N.J. (eds.) PETS 2010. LNCS, vol. 6205, pp. 130–148. Springer,
Heidelberg (2010)

6. Backes, M., Maffei, M., Mohammadi, E.: Computationally sound abstraction and
verification of secure multi-party computations. In: FSTTCS (2010)

7. Backes, M., Maffei, M., Unruh, D.: Zero-knowledge in the applied pi-calculus and
automated verification of the direct anonymous attestation protocol. In: IEEE S&P
(2008)

8. Backes, M., Maffei, M., Unruh, D.: Computationally sound verification of source
code. In: ACM CCS (2010)

9. Backes, M., Pfitzmann, B.: Symmetric encryption in a simulatable Dolev-Yao style
cryptographic library. In: IEEE CSFW (2004)

10. Backes, M., Unruh, D.: Computational soundness of symbolic zero-knowledge
proofs. Journal of Computer Security 18(6) (2010)



Computational Soundness of Symbolic Zero-Knowledge Proofs 225

11. Basin, D., Mödersheim, S., Viganò, L.: OFMC: A symbolic model checker for se-
curity protocols. International Journal of Information Security (2004)

12. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules.
In: 14th IEEE CSFW (2001)

13. Brickell, E.F., Camenisch, J., Chen, L.: Direct anonymous attestation. In: ACM
CCS (2004)

14. Canetti, R., Herzog, J.: Universally Composable Symbolic Analysis of Mutual Au-
thentication and Key-Exchange Protocols. In: Halevi, S., Rabin, T. (eds.) TCC
2006. LNCS, vol. 3876, pp. 380–403. Springer, Heidelberg (2006)

15. Clarkson, M.R., Chong, S., Myers, A.C.: Civitas: Toward a Secure Voting System.
In: IEEE S&P (2008)

16. Cortier, V., Warinschi, B.: Computationally Sound, Automated Proofs for Security
Protocols. In: Sagiv, M. (ed.) ESOP 2005. LNCS, vol. 3444, pp. 157–171. Springer,
Heidelberg (2005)

17. Cortier, V., Warinschi, B.: A composable computational soundness notion. In: Proc.
18th ACM CCS (2011)

18. Dolev, D., Yao, A.C.: On the security of public key protocols. IEEE Transactions
on Information Theory 29(2) (1983)

19. Even, S., Goldreich, O.: On the security of multi-party ping-pong protocols. In:
IEEE CSF (1983)

20. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive
proof systems. SIAM Journal on Computing 18(1) (1989)

21. Groth, J.: Simulation-Sound NIZK Proofs for a Practical Language and Constant
Size Group Signatures. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS,
vol. 4284, pp. 444–459. Springer, Heidelberg (2006)

22. Groth, J., Ostrovsky, R.: Cryptography in the Multi-string Model. In: Menezes, A.
(ed.) CRYPTO 2007. LNCS, vol. 4622, pp. 323–341. Springer, Heidelberg (2007)

23. Kemmerer, R., Meadows, C., Millen, J.: Three systems for cryptographic protocol
analysis. Journal of Cryptology 7(2) (1994)

24. Laud, P.: Symmetric encryption in automatic analyses for confidentiality against
active adversaries. In: IEEE S&P (2004)

25. Li, H., Li, B.: An Unbounded Simulation-Sound Non-interactive Zero-Knowledge
Proof System for NP. In: Feng, D., Lin, D., Yung, M. (eds.) CISC 2005. LNCS,
vol. 3822, pp. 210–220. Springer, Heidelberg (2005)

26. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

27. Lu, L., Han, J., Liu, Y., Hu, L., Huai, J.-P., Ni, L., Ma, J.: Pseudo trust: Zero-
knowledge authentication in anonymous p2ps. IEEE Trans. Parallel Distrib. Syst.
(2008)

28. Maffei, M., Pecina, K.: Position paper: Privacy-aware proof-carrying authorization.
In: PLAS (2011)

29. Merritt, M.: Cryptographic Protocols. PhD thesis, Georgia Tech (1983)
30. Micciancio, D., Warinschi, B.: Soundness of Formal Encryption in the Presence of

Active Adversaries. In: Naor, M. (ed.) TCC 2004. LNCS, vol. 2951, pp. 133–151.
Springer, Heidelberg (2004)

31. Sahai, A.: Non-malleable non-interactive zero knowledge and adaptive chosen-
ciphertext security. In: FOCS (1999)

32. Sahai, A.: Simulation-sound non-interactive zero knowledge. Technical report, IBM
Research Report RZ 3076 (2001)

33. Schneider, S.: Security properties and CSP. In: IEEE S&P (1996)



Proving More Observational Equivalences

with ProVerif

Vincent Cheval1 and Bruno Blanchet2

1 LSV, ENS Cachan & CNRS & INRIA Saclay Île-de-France, France
2 INRIA Paris-Rocquencourt, France

Abstract. This paper presents an extension of the automatic protocol
verifier ProVerif in order to prove more observational equivalences.
ProVerif can prove observational equivalence between processes that
have the same structure but differ by the messages they contain. In
order to extend the class of equivalences that ProVerif handles, we
extend the language of terms by defining more functions (destructors)
by rewrite rules. In particular, we allow rewrite rules with inequalities as
side-conditions, so that we can express tests “if then else” inside terms.
Finally, we provide an automatic procedure that translates a process
into an equivalent process that performs as many actions as possible in-
side terms, to allow ProVerif to prove the desired equivalence. These
extensions have been implemented in ProVerif and allow us to au-
tomatically prove anonymity in the private authentication protocol by
Abadi and Fournet.

1 Introduction

Today, many applications that manipulate private data incorporate a crypto-
graphic protocol, in order to ensure that such private information is never dis-
closed to anyone but the entitled entities. However, it has been shown that some
currently used cryptographic protocols are flawed, e.g., the e-passport proto-
cols [5]. It is therefore essential to obtain as much confidence as possible in the
correctness of security protocols. To this effect, several tools have been developed
to automatically verify security protocols. Until recently, most tools focused on
reachability properties (or trace properties), such as authentication and secrecy,
which specify that the protocols cannot reach a bad state. However, privacy-type
properties cannot be naturally formalised as reachability properties and require
the notion of behavioural equivalence, in order to specify the indistinguishabil-
ity between several instances of the protocols. In the literature, the notion of
may-testing equivalence was first introduced in [16] and has been studied for
several calculi, e.g., the spi-calculus [3,13]. Typically, two processes P and Q
are may-testing equivalent if for any process O, the processes P | O and Q | O
can both emit on the same channels. However, the high difficulty of deciding
this equivalence led to the introduction of stronger equivalences such as obser-
vational equivalence that additionally checks the bisimilarity of the process P
and Q. This notion was the focus of several works, e.g., [7,12]. In this paper, we
focus on the automation of the proofs of observational equivalence.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 226–246, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Proving More Observational Equivalences with ProVerif 227

Related Work. The first algorithms to verify equivalence properties for security
protocols dealt with a bounded number of sessions, a fixed set of basic primitives,
and no else branches [14,13], but their complexity was too large for practical im-
plementations. [6] showed that diff-equivalence, a strong equivalence between
processes that have the same structure but differ by the terms they contain, is
also decidable for bounded processes without else-branches; this result applies
in particular to the detection of off-line guessing attacks against password-based
protocols and to the proof of strong secrecy. However, the procedure does not
seem to be well-suited for an implementation. Recently, a more practical algo-
rithm was designed for bounded processes with else branches, non-determinism,
and a fixed set of primitives [9] but there is no available implementation. These
techniques rely on a symbolic semantics [8,12,15]: in such a semantics, the mes-
sages that come from the adversary are represented by variables, to avoid an
unbounded case distinction on these messages.

To our knowledge, only three works resulted in automatic tools that ver-
ify equivalence properties for security protocols: ProVerif [7], SPEC [17],
and AKiSs [10]. The tool SPEC provides a decision procedure for observational
equivalence for processes in the spi-calculus. The tool AKiSs decides a weaker
equivalence close to the may-testing equivalence for a wide variety of primitives.
The scope of these two tools is limited to bounded determinate processes with-
out non-trivial else branches, that is, processes whose executions are entirely
determined by the adversary inputs. At last, the tool ProVerif was first a
protocol analyser for trace properties but, since [7], it can also check the diff-
equivalence between processes written in the applied pi calculus [1]. Although the
diff-equivalence is stronger than observational equivalence, it still allows one to
express many interesting properties such as anonymity and unlinkability, and it
is much easier to prove than observational equivalence. Furthermore, ProVerif
is the only tool that accepts unbounded processes with else branches and any
cryptographic primitives that can be represented by an equational theory and/or
rewrite rules. Even if it does not always terminate, it was shown very efficient for
many case studies (e.g., proving the absence of guessing attacks in EKE, proving
the core security of JFK [7] or proving anonymity and unlinkability of the Active
Authentication protocol of the electronic passport [4]). Hence the present paper
focuses on the tool ProVerif.

Motivation. Since the notion of equivalence proved by ProVerif is stronger
than observational equivalence, it may yield false attacks. Indeed, ProVerif
proves equivalences P ≈ Q in which P andQ are two variants of the same process
obtained by selecting different terms for P and Q. Moreover, ProVerif requires
that all tests yield the same result in both processes, in particular the tests of
conditional branchings. Thus, for a protocol that does not satisfy this condition,
ProVerif will fail to prove equivalence. Unfortunately, many indistinguishable
processes do not satisfy this condition. Consider for example the processes:

P
def
= c(x).if x = pk(skA) then c〈{s}pk(skA)〉 else c〈{Np}pk(skA)〉

Q
def
= c(x).if x = pk(skB) then c〈{s}pk(skB)〉 else c〈{Nq}pk(skB)〉



228 V. Cheval and B. Blanchet

where all names but c are private and the public keys pk(skA) and pk(skB)
are public. The protocol P is simply waiting for the public key of the agent A
(pk(skA)) on a channel c. If P receives it, then he sends some secret s encrypted
with A’s public key; otherwise, he sends a fresh nonce Np encrypted with A’s
public key on channel c. On the other hand, the protocol Q does similar actions
but is waiting for the public key of the agent B (pk(skB)) instead of A. Assuming
that the attacker does not have access to the private keys of A and B, then the
two protocols are equivalent since the attacker cannot differentiate {s}pk(skA),
{Np}pk(skA), {s}pk(skB), and {Nq}pk(skB).

However, if the intruder sends the public key of the agentA (pk(skA)), then the
test of the conditional branching in P will succeed (pk(skA) = pk(skA)) whereas
the test of the same conditional branching in Q will fail (pk(skA) 	= pk(skB)).
Since this test does not yield the same result in both processes, ProVerif will
fail to prove the equivalence between P and Q. This false attack also occurs in
more realistic case studies, e.g., the private authentication protocol [2] and the
Basic Access Control protocol of the e-passport [5].

Our Contribution. Our main contribution consists in addressing the issue of false
attacks due to conditional branchings. In particular, we allow function symbols
defined by rewrite rules with inequalities as side-conditions, so that we can ex-
press tests of conditional branchings directly inside terms (Section 2). There-
fore, we still consider equivalences between processes that differ by the terms
they contain, but our term algebra is now richer as it can express tests. Hence,
we can now prove equivalences between processes that take different branches
in internal tests, provided that what they do after these tests can be merged
into a single process. We show how the original Horn clauses based algorithm
of ProVerif can be adapted to our new calculus (Sections 3 and 4). Moreover,
we provide an automatic procedure that transforms a process into an equivalent
process that contains as few conditional branchings as possible, which allows
ProVerif to prove equivalence on a larger class of processes. In particular, the
implementation of our extension in ProVerif allowed us to automatically prove
anonymity of the private authentication protocol for an unbounded number of
sessions (Section 5). Anonymity was already proven by hand in [2] for the private
authentication protocol; we automate this proof for a slightly simplified model.
We eliminated some false attacks for the Basic Access Control protocol of the e-
passport; however, other false attacks remain so we are still unable to conclude
for this protocol. Our implementation is available as ProVerif 1.87beta, at
http://proverif.inria.fr. A long version with additional details and proofs
is available at http://www.lsv.ens-cachan.fr/~cheval/(BC)POST13.pdf.

2 Model

This section introduces our process calculus, by giving its syntax and semantics.
As mentioned above, our work extends the behaviour of destructor symbols, so
our syntax and semantics of terms change in comparison to the original calculus
of ProVerif [7]. However, we did not modify the syntax of processes thus the

http://proverif.inria.fr
http://www.lsv.ens-cachan.fr/~cheval/(BC)POST13.pdf


Proving More Observational Equivalences with ProVerif 229

M ::= message
x, y, z variables
a, b, c names
f(M1, . . . ,Mn) constructor application

U ::= may-fail message
M message
fail failure
u may-fail variable

D ::= term evaluation
U may-fail message
eval h(D1, . . . , Dn) function evaluation

P,Q,R ::= processes
0 nil
M(x).P input

M〈N〉.P output
P | Q parallel composition
!P replication
(νa)P restriction
let x = D in P else Q term evaluation

Fig. 1. Syntax of terms and processes

semantics of processes differs only due to changes coming from the modifications
in the semantics of terms.

2.1 Syntax

The syntax of our calculus is summarised in Fig. 1. The messages sent on the
network are modelled using an abstract term algebra. We assume an infinite set
of names N and an infinite set of variables X . We also consider a signature Σ
consisting of a finite set of function symbols with their arity. We distinguish two
categories of function symbols: constructors f and destructors g. Constructors
build terms; destructors, defined by rewrite rules, manipulate terms, as detailed
below. We denote by h a constructor or a destructor. Messages M are terms
built from variables, names, and constructors applied to terms.

We define an equational theory by a finite set of equations M = N , where
M,N are terms without names. The equational theory is then obtained from
these equations by reflexive, symmetric, and transitive closure, closure under
application of function symbols, and closure under substitution of terms for
variables. By identifying an equational theory with its signature Σ, we denote
M =Σ N an equality modulo the equational theory, and M 	=Σ N an inequality
modulo the equational theory. We write M = N and M 	= N for syntactic
equality and inequality, respectively. In this paper, we only consider consistent
equational theories, i.e., there exist terms M and N such that M 	=Σ N .



230 V. Cheval and B. Blanchet

Destructors. In [7], the rewrite rules describing the behaviour of destructors
follow the usual definition of a rewrite rule. However, as previously mentioned,
we want to introduce tests directly into terms and more specifically into the
definition of destructors. Hence, we introduce formulas on messages in order to
express these tests. We consider formulas φ of the form

∧n
i=1 ∀x̃i.Mi 	=Σ Ni,

where x̃ stands for a sequence of variables x1, . . . , xk. We denote by - and ⊥
the true and false formulas, respectively corresponding to an empty conjunction
(n = 0) and to x 	=Σ x, for instance. Formulas will be used as side conditions
for destructors. We denote by fv (φ) the free variables of φ, i.e., the variables
that are not universally quantified. Let σ be a substitution mapping variables to
ground terms. We define σ � φ as follows: σ �

∧n
i=1 ∀x̃i.Mi 	=Σ Ni if and only if

for i = 1, . . . n, for all σi of domain x̃i, σσiMi 	=Σ σσiNi.
In [7], destructors are partial functions defined by rewrite rules; when no

rewrite rule can be applied, we say that the destructor fails. However, this for-
malism does not allow destructors to succeed when one of their arguments fails.
We shall need this feature in order to include as many tests as possible in terms.
Therefore, we extend the definition of destructors by defining may-fail messages,
denoted by U , which can be messages M , the special value fail, or a variable u.
We separate fail from ordinary messages M so that the equational theory does
not apply to fail. May-fail messages represent the possible arguments and result
of a destructor. We differentiate variables for may-fail messages, denoted u, v, w
from variables for messages, denoted x, y, z. A may-fail variable u can be instan-
tiated by a may-fail term while a message variable x can be instantiated only by
a message, and so cannot be instantiated by fail.

For two groundmay-fail messages U1 and U2, we say that U1 =Σ U2 if and only
if U1 = U2 = fail or U1, U2 are both messages, denoted M1,M2, and M1 =Σ M2.
Given a signature Σ, a destructor g of arity n is defined by a finite set of rewrite
rules g(U1, . . . , Un) → U || φ where U1, . . . , Un, U are may-fail messages that do
not contain any name, φ is a formula as defined above that does not contain
any name, and the variables of U and fv (φ) are bound in U1, . . . , Un. Note that
all variables in fv (φ) are necessarily message variables. Variables are subject to
renaming. We omit the formula φ when it is -. We denote by defΣ(g) the set of
rewrite rules describing g in the signature Σ.

Example 1. Consider a symmetric encryption scheme where the decryption func-
tion either properly decrypts a ciphertext using the correct private key, or fails.
To model this encryption scheme, we consider, in a signature Σ, the constructor
senc for encryption and the destructor sdec for decryption, with the following
rewrite rules:

– sdec(senc(x, y), y) → x (decryption succeeds)
– sdec(x, y) → fail || ∀z.x 	=Σ senc(z, y) (decryption fails, because x is not a

ciphertext under the correct key)
– sdec(fail, u) → fail, sdec(u, fail) → fail (the arguments failed, the decryption

also fails)

Let U1, . . . , Un be may-fail messages and g be a destructor of arity n. We say
that g rewrites U1, . . . , Un into U , denoted g(U1, . . . , Un) → U , if there exist



Proving More Observational Equivalences with ProVerif 231

g(U ′
1, . . . , U

′
n) → U ′ || φ in defΣ(g), and a substitution σ such that σU ′

i =Σ Ui

for all i = 1 . . . n, σU ′ = U and σ � φ. At last, we ask that, given a signature Σ,
for all destructors g of arity n, defΣ(g) satisfies the following properties:

P1. For all ground may-fail messages U1, . . . , Un, there exists a may-fail message
U such that g(U1, . . . , Un) → U .

P2. For all ground may-fail messages U1, . . . , Un, V1, V2, if g(U1, . . . , Un) → V1
and g(U1, . . . , Un) → V2 then V1 =Σ V2.

Property P1 expresses that all destructors are total while Property P2 expresses
that they are deterministic (modulo the equational theory). By Property P2, a
destructor cannot reduce to fail and to a message at the same time.

In Example 1, the destructor sdec follows the classical definition of the sym-
metric decryption. However, thanks to the formulas and the fact that the argu-
ments of a destructor can fail, we can describe the behaviour of new primitives.

Example 2. We define a destructor that tests equality and returns a boolean by:

eq(x, x) → true eq(x, y) → false || x 	=Σ y

eq(fail, u) → fail eq(u, fail) → fail

This destructor fails when one of its arguments fails. This destructor could not be
defined in ProVerif without our extension, because one could not test x 	=Σ y.

From Usual Destructors to our Extension. From a destructor defined, as in [7],
by rewrite rules g(M1, . . . ,Mn) → M without side conditions and such that
the destructor is considered to fail when no rewrite rule applies, we can build a
destructor in our formalism. The algorithm is given in Lemma 1 below.

Lemma 1. Consider a signature Σ. Let g be a destructor of arity n described
by the set of rewrite rules S = {g(M i

1, . . . ,M
i
n) → M i | i = 1, . . . ,m}. Assume

that g is deterministic, i.e., S satisfies Property P2. The following set defΣ(g)
satisfies Properties P1 and P2:

defΣ(g) = S ∪ {g(x1, . . . , xn) → fail || φ}
∪{g(u1, . . . , uk−1, fail, uk+1, . . . , un) → fail | k = 1, . . . , n}

where φ =
∧m

i=1 ∀ỹi.(x1, . . . , xn) 	=Σ (M i
1, . . . ,M

i
n) and ỹi are the variables of

(M i
1, . . . ,M

i
n), and x1, . . . , xn are message variables.

The users can therefore continue defining destructors as before in ProVerif; the
tool checks that the destructors are deterministic and automatically completes
the definition following Lemma 1.

Generation of Deterministic and Total Destructors. With our extension, we
want the users to be able to define destructors with side conditions. However,
these destructors must satisfy Properties P1 and P2. Instead of having to verify
these properties a posteriori, we use a method that allows the user to provide



232 V. Cheval and B. Blanchet

precisely the destructors that satisfy P1 and P2: the user inputs a sequence of
rewrite rules g(U1

1 , . . . , U
1
n) → V 1 otherwise . . . otherwise g(Um

n , . . . , U
m
n ) → V m

where U i
k, V

i are may-fail messages, for all i, k. Intuitively, this sequence indicates
that when reducing terms by the destructor g, we try to apply the rewrite rules
in the order of the sequence, and if no rule is applicable then the destructor
fails. To model the case where no rule is applicable, we add the rewrite rule
g(u1, . . . , un) → fail where u1, . . . , un are distinct may-fail variables, at the end
of the previous sequence of rules. Then, the obtained sequence is translated into
a set S of rewrite rules with side conditions as follows

S def
=

{
g(U i

1, . . . , U
i
n) → V i ||

∧
j<i ∀ũj .(U i

1, . . . , U
i
n) 	=Σ (U j

1 , . . . , U
j
n)
}
i=1..m+1

where ũj are the variables of U j
1 , . . . , U

j
n. We use side-conditions to make sure

that rule i is not applied if rule j for j < i can be applied. Notice that, in the
set S defined above, the formulas may contain may-fail variables or the constant
fail. In order to match our formalism, we instantiate these variables by either a
message variable or fail, and then we simplify the formulas.

Term Evaluation. A term evaluation represents the evaluation of a series of
constructors and destructors. The term evaluation eval h(D1, . . . , Dn) indicates
that the function symbol h will be evaluated. While all destructors must be
preceded by eval, some constructors might also be preceded by eval in a term
evaluation. In fact, the reader may ignore the prefix eval since eval h and h
have the same semantics with the initial definition of constructors with equa-
tions. However, eval becomes useful when we convert equations into rewrite
rules (see Section 4.1). The prefix eval is used to indicate whether a term has
been evaluated or not. Even though we allow may-fail messages in term evalu-
ations, since no construct binds may-fail variables in processes, only messages
M and fail may in fact occur. In order to avoid distinguishing constructors and
destructors in the definition of term evaluation, for f a constructor of arity n,
we let defΣ(f) = {f(x1, . . . , xn) → f(x1, . . . , xn)} ∪ {f(u1, . . . , ui−1, fail, ui+1, . . . ,
un) → fail | i = 1, . . . , n}. The second part of the union corresponds to the
failure cases: the constructor fails if, and only if, one of its arguments fails.

Processes. At last, the syntax of processes corresponds exactly to [7]. A trailing
0 can be omitted after an input or an output. An else branch can be omitted
when it is else 0.

Even if the condition if M = N then P else Q is not included in our calcu-
lus, it can be defined as let x = equals(M,N) in P else Q, where x is a fresh
variable and equals is a binary destructor with the rewrite rules {equals(x, x) →
x, equals(x, y) → fail || x 	=Σ y, equals(fail, u) → fail, equals(u, fail) → fail}. The
destructor equals succeeds if and only if its two arguments are equal messages
modulo the equational theory and different from fail. We always include this
destructor in the signature Σ. An evaluation context C is a closed context built
from [ ], C | P , P | C, and (νa)C.



Proving More Observational Equivalences with ProVerif 233

Example 3. We consider a slightly simplified version of the private authentica-
tion protocol given in [2]. In this protocol, a participant A is willing to engage
in communication and reveal its identity to a participant B, without revealing
it to other participants. The cryptographic primitives used in this protocol are
the asymmetric encryption and pairing. Expressed in ProVerif syntax, the
participants A and B proceed as follows:

A(ska, sk b)
def
= (νna)c〈aenc(〈na, pk(ska)〉, pk(sk b))〉.c(x).0

B(sk b, ska)
def
= (νnb)c(y).let x = adec(y, sk b) in

let xna = proj1(x) in
let z = equals(proj2(x), pk(ska)) in
c〈aenc(〈xna, 〈nb, pk(sk b)〉〉, pk(ska)))〉.0

else c〈aenc(nb, pk(sk b)))〉.0
else c〈aenc(nb, pk(sk b)))〉.0

else c〈senc(nb, pk(sk b)))〉.0

System(ska, sk b)
def
= A(ska, sk b) | B(sk b, ska)

where ska and sk b are the respective private keys of A and B, proj1 and proj2
are the two projections of a pairing denoted by 〈 , 〉, aenc and adec are the
asymmetric encryption and decryption, and pk(sk ) is the public key associated
to the private key sk .

In other words, A first sends to B a nonce na and its own public key pk(ska)
encrypted with the public key of B, pk(sk b). After receiving this message, B
checks that the message is of the correct form and that it contains the public
key of A. If so, B sends back to A the “correct” message composed of the nonce
na he received, nb a freshly generated nonce, and his own public key (pk(sk b)),
all this encrypted with the public key of A. Otherwise, B sends back a “dummy”
message, aenc(nb, pk(sk b)). From the point of view of the attacker, this dummy
message is indistinguishable from the “correct” one since the private keys ska

and sk b are unknown to the attacker, so the attacker should not be able to tell
whether A or another participant is talking to B. This is what we are going to
prove formally.

2.2 Semantics

The semantics of processes and term evaluations is summarised in Fig. 2. The
formula D ⇓Σ U means that D evaluates to U . When the term evaluation corre-
sponds to a function h preceded by eval, the evaluation proceeds recursively by
evaluating the arguments of the function and then by applying the rewrite rules
of h in defΣ(h) to compute U , taking into account the side-conditions in φ.

The semantics of processes in ProVerif is defined by a structural equiva-
lence, denoted ≡, and some internal reductions. The structural equivalence ≡
is the smallest equivalence relation on extended processes that is closed under
α-conversion of names and variables, by application of evaluation contexts, and



234 V. Cheval and B. Blanchet

U ⇓Σ U
eval h(D1, . . . , Dn)⇓Σ σU

if h(U1, . . . , Un) → U || φ is in defΣ(h) and σ is such
that for all i, Di ⇓Σ Vi, Vi =Σ σUi and σ � φ

N〈M〉.Q | N ′(x).P →Σ Q | P{M/x} if N =Σ N ′ (Red I/O)

let x = D in P else Q →Σ P{M/x} if D ⇓Σ M (Red Fun 1)
let x = D in P else Q →Σ Q if D ⇓Σ fail (Red Fun 2)

!P →Σ P | !P (Red Repl)
P →Σ Q ⇒ P | R →Σ Q | R (Red Par)
P →Σ Q ⇒ (νa)P →Σ (νa)Q (Red Res)
P ′ ≡ P, P →Σ Q, Q ≡ Q′ ⇒ P ′ →Σ Q′ (Red ≡)

Fig. 2. Semantics of terms and processes

satisfying some further basic structural rules such as P | 0 ≡ P , associativity
and commutativity of |, and scope extrusion. However, this structural equiva-
lence does not substitute terms equal modulo the equational theory and does not
model the replication. Both properties are in fact modelled as internal reduction
rules for processes. This semantics differs from [7] by the rule (Red Fun 2) which
previously corresponded to the case where the term evaluation D could not be
reduced whereas D is reduced to fail in our semantics.

Both relations ≡ and →Σ are defined only on closed processes. We denote by
→∗

Σ the reflexive and transitive closure of →Σ , and by →∗
Σ≡ its composition

with ≡. When Σ is clear from the context, we abbreviate →Σ to → and ⇓Σ

to ⇓.

3 Using Biprocesses to Prove Observational Equivalence

In this section, we recall the notions of observational equivalence and biprocesses
introduced in [7].

Definition 1. We say that the process P emits on M (P ↓M) if and only if
P →∗

Σ≡ C[M ′〈N〉.R] for some evaluation context C that does not bind fn(M)
and M =Σ M ′.

Observational equivalence, denoted ≈, is the largest symmetric relation R
between closed processes such that P R Q implies:

1. if P ↓M , then Q ↓M ;
2. if P →∗

Σ P ′, then Q →∗
Σ Q′ and P ′ R Q′ for some Q′;

3. C[P ] R C[Q] for all closed evaluation contexts C.

Intuitively, an evaluation context may represent an adversary, and two processes
are observationally equivalent when no adversary can distinguish them. One
of the most difficult parts of deciding the observational equivalence between
two processes directly comes from the second item of Definition 1. Indeed, this



Proving More Observational Equivalences with ProVerif 235

N〈M〉.Q | N ′(x).P → Q | P{M/x} (Red I/O)
if fst(N) =Σ fst(N ′) and snd(N) =Σ snd(N ′)

let x = D in P else Q → P{diff[M1,M2]/x} (Red Fun 1)
if fst(D)⇓Σ M1 and snd(D)⇓Σ M2

let x = D in P else Q → Q (Red Fun 2)
if fst(D)⇓Σ fail and snd(D)⇓Σ fail

Fig. 3. Generalized rules for biprocesses

condition indicates that each reduction of a process has to be matched in the
second process. However, we consider a process algebra with replication, hence
there are usually infinitely many candidates for this mapping.

To solve this problem, [7] introduces a calculus that represents pairs of pro-
cesses, called biprocesses, that have the same structure and differ only by the
terms and term evaluations that they contain. The grammar of the calculus
is a simple extension of the grammar of Fig. 1 with additional cases so that
diff[M,M ′] is a term and diff[D,D′] is a term evaluation.

Given a biprocess P , we define two processes fst(P ) and snd(P ), as fol-
lows: fst(P ) is obtained by replacing all occurrences of diff[M,M ′] with M and
diff[D,D′] withD in P , and similarly, snd(P ) is obtained by replacing diff[M,M ′]
with M ′ and diff[D,D′] with D′ in P . We define fst(D), fst(M), snd(D), and
snd(M) similarly. A process or context is said to be plain when it does not
contain diff.

Definition 2. Let P be a closed biprocess. We say that P satisfies observational
equivalence when fst(P ) ≈ snd(P ).

The semantics of biprocesses is defined as in Fig. 2 with generalized rules (Red
I/O), (Red Fun 1), and (Red Fun 2) given in Fig. 3.

The semantics of biprocesses is such that a biprocess reduces if and only if
both sides of the biprocess reduce in the same way: a communication succeeds on
both sides; a term evaluation succeeds on both sides or fails on both sides. When
the two sides of the biprocess reduce in different ways, the biprocess blocks. The
following lemma shows that, when both sides of a biprocess always reduce in the
same way, then that biprocess satisfies observational equivalence.

Lemma 2. Let P0 be a closed biprocess. Suppose that, for all plain evaluation
contexts C, all evaluation contexts C′, and all reductions C[P0] →∗ P ,

1. if P ≡ C′[N〈M〉.Q | N ′(x).R] then fst(N) =Σ fst(N ′) if and only if snd(N)
=Σ snd(N ′);

2. if P ≡ C′[let x = D in Q else R] then fst(D)⇓Σfail if and only if snd(D)⇓Σfail.

Then P0 satisfies observational equivalence.

Intuitively, the semantics for biprocesses forces that each reduction of a process
has to be matched by the same reduction in the second process. Hence, verifying
the second item of Definition 1 becomes less problematic since we reduce to one
the number of possible candidates Q′.



236 V. Cheval and B. Blanchet

Example 4. Coming back to the private authentication protocol detailed in Ex-
ample 3, we want to verify the anonymity of the participant A. Intuitively, this
protocol preserves anonymity if an attacker cannot distinguish whether B is talk-
ing to A or to another participant A′, assuming that A, A′, and B are honest
participants and furthermore assuming that the intruder knows the public keys
of A, A′, and B. Hence, the anonymity property is modelled by an observational
equivalence between two instances of the protocol: one where B is talking to A
and the other where B is talking to A′, which is modelled as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(ska, sk b)

≈ (νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(sk ′
a, sk b)

Since the “dummy” message and the “correct” one are indistinguishable from the
point of view of the attacker, this equivalence holds. To prove this equivalence
using ProVerif, we first have to transform this equivalence into a biprocess.
This is easily done since only the private keys ska and ska′ change between the
two processes. Hence, we define the biprocess P0 as follows:

(νska)(νsk
′
a)(νsk b)c〈pk(ska)〉.c〈pk(sk ′

a)〉.c〈pk(sk b)〉.System(diff[ska, sk
′
a], sk b)

Note that fst(P0) and snd(P0) correspond to the two protocols of the equivalence.
For simplicity, we only consider two sessions in this example but our results also
apply to an unbounded number of sessions (for the definition of anonymity of [5]).

4 Clause Generation

In [7], observational equivalence is verified by translating the considered bipro-
cess into a set of Horn clauses, and using a resolution algorithm on these clauses.
We adapt this translation to our new destructors.

4.1 From Equational Theories to Rewrite Rules

Equational theories are a very powerful tool for modeling cryptographic primi-
tives. However, for a practical algorithm, it is easier to work with rewrite rules
rather than with equational theories. Hence in [7], a signature Σ with an equa-
tional theory is transformed into a signature Σ′ with rewrite rules that models
Σ, when Σ has the finite variant property [11]. These rewrite rules may rewrite a
term M into several irreducible forms (the variants), which are all equal modulo
Σ, and such that, when M and M ′ are equal modulo Σ, M and M ′ rewrite
to at least one common irreducible form. We reuse the algorithm from [7] for
generating Σ′, adapting it to our formalism by just completing the rewrite rules
of constructors with rewrite rules that reduce to fail when an argument is fail.

4.2 Patterns and Facts

In the clauses, the messages are represented by patterns, with the following
grammar:



Proving More Observational Equivalences with ProVerif 237

p ::= pattern
x, y, z, i variables
f(p1, . . . , pn) constructor application
a[p1, . . . , pn] name

mp ::= may-fail pattern
p pattern
u, v may-fail variables
fail failure

The patterns p are the same as in [7]. The variable i represents a session identi-
fier for each replication of a process. A pattern a[p1, . . . , pn] is assigned to each
name of a process P . The arguments p1, . . . , pn allow one to model that a fresh
name a is created at execution of (νa). For example, in the process ! c′(x).(νa)P ,
each name created by (νa) is represented by a[i, x] where i is the session iden-
tifier for the replication and x is the message received as input in c′(x). Hence,
the name a is represented as a function of i and x. In two different sessions,
(i, x) takes two different values, so the two created instances of a (a[i, x]) are
different.

Since we introduced may-fail messages to represent the possible failure of a
destructor, we also define may-fail patterns to represent the failure in clauses.
As in messages and may-fail messages, a may-fail variable u can be instantiated
by a pattern or fail, whereas a variable x cannot be instantiated by fail.

Clauses are built from the following predicates:

F ::= facts
att′(mp,mp′) attacker knowledge
msg′(p1, p2, p

′
1, p

′
2) output message p2 on p1 (resp. p′2 on p′1)

input′(p, p′) input on p (resp. p′)
formula(

∧
i ∀z̃i.pi 	=Σ p′i) formula

bad bad

Intuitively, att′(mp,mp′) means that the attacker may obtain mp in fst(P )
and mp′ in snd(P ) by the same operations; the fact msg′(p1, p2, p

′
1, p

′
2) means

that message p2 may be output on channel p1 by the process fst(P ) while p′2
may be output on channel p′1 by the process snd(P ) after the same reductions;
input′(p, p′) means that an input is possible on channel p in fst(P ) and on chan-
nel p′ in snd(P ). Note that both facts msg′ and input′ contain only patterns and
not may-fail patterns. Hence channels and sent terms are necessarily messages
and so cannot be fail. The fact formula(φ) means that φ has to be satisfied. At
last, bad serves in detecting violations of observational equivalence: when bad is
not derivable, we have observational equivalence.

4.3 Clauses for the Attacker

The capabilities of the attacker are represented by clauses adapted from the ones
in [7] to fit our new formalism. We give below the clauses that differ from [7].

att′(fail, fail) (Rfail)



238 V. Cheval and B. Blanchet

For each function h, for each pair of rewrite rules

h(U1, . . . , Un) → U || φ and h(U ′
1, . . . , U

′
n) → U ′ || φ′

in defΣ′(h) (after renaming of variables),

att′(U1, U
′
1) ∧ . . . ∧ att′(Un, U

′
n) ∧ formula(φ ∧ φ′) → att′(U,U ′)

(Rf)

input′(x, x′) ∧msg′(x, z, y′, z′) ∧ formula(x′ 	=Σ y′) → bad (Rcom)

att′(x, fail) → bad (Rfailure)

plus the symmetric clauses (Rcom′) and (Rfailure′) obtained from (Rcom) and
(Rfailure) by swapping the first and second arguments of att′ and input′, and
the first and third arguments of msg′.

Clauses (Rf) apply a constructor or a destructor on the attacker’s knowledge,
given the rewrite rules in defΣ′(h). Since our destructors may return fail, by
combining (Rf) with (Rfailure) or (Rfailure′), we can detect when a destructor
succeeds in one variant of the biprocess and not in the other. We stress that, in
clauses (Rfailure) and (Rcom), x, x′, y, y′ are message variables and so they can-
not be instantiated by fail. (The messages sent on the network and the channels
are never fail.)

4.4 Clauses for the Protocol

To translate the protocol into clauses, we first need to define evaluation on open
terms, as a relation D ⇓′ (U, σ, φ), where σ collects instantiations of D obtained
by unification and φ collects the side conditions of destructor applications. More
formally, the relation D ⇓′ (U, σ, φ) specifies how instances of D evaluate: if D ⇓′

(U, σ, φ), then for any substitution σ′ such that σ′ � φ, we have σ′σD ⇓Σ′ σ′U .
There may be several (U, σ, φ) such that D ⇓′ (U, σ, φ) in case several instances
of D reduce in a different way. This relation is defined as follows:

U ⇓′ (U, ∅,-)

eval h(D1, . . . , Dn) ⇓′ (σuV, σuσ
′, σuφ

′ ∧ σuφ)
if (D1, . . . , Dn) ⇓′ ((U1, . . . , Un), σ

′, φ′),
h(V1, . . . , Vn) → V || φ ∈ defΣ′(h) and
σu is a most general unifier of (U1, V1), . . . , (Un, Vn)

(D1, . . . , Dn) ⇓′ ((σnU1, . . . , σnUn−1, Un), σnσ, σnφ ∧ φn)
if (D1, . . . , Dn−1) ⇓′ ((U1, . . . , Un−1), σ, φ) and σDn ⇓′ (Un, σn, φn)

The most general unifier of may-fail messages is computed similarly to the most
general unifier of messages, even though specific cases hold due to may-fail vari-
ables and message variables: there is no unifier of M and fail, for any message
M (including variables x, because these variables can be instantiated only by
messages); the most general unifier of u and U is {U/u}; the most general unifier
of fail and fail is the identity; finally, the most general unifier of M and M ′ is
computed as usual.

The translation [[P ]]ρsH of a biprocess P is a set of clauses, where ρ is an
environment that associates a pair of patterns with each name and variable, s



Proving More Observational Equivalences with ProVerif 239

is a sequence of patterns, and H is a sequence of facts. The empty sequence is
written ∅; the concatenation of a pattern p to the sequence s is written s, p; the
concatenation of a fact F to the sequence H is written H ∧ F . Intuitively, H
represents the hypothesis of the clauses, ρ represents the names and variables
that are already associated with a pattern, and s represents the current values
of session identifiers and inputs. When ρ associates a pair of patterns with each
name and variable, and f is a constructor, we extend ρ as a substitution by
ρ(f(M1, . . . ,Mn)) = (f(p1, . . . , pn), f(p

′
1, . . . , p

′
n)) where ρ(Mi) = (pi, p

′
i) for all

i ∈ {1, . . . , n}. We denote by ρ(M)1 and ρ(M)2 the components of the pair
ρ(M). We let ρ(diff[M,M ′]) = (ρ(M)1, ρ(M

′)2).
The definition of [[P ]]ρsH is directly inspired from [7]. We only present below

the case [[let x = D in P else Q]]ρsH .

[[let x = D in P else Q]]ρsH =⋃
{[[P ]]((σρ)[x �→ (p, p′)])(σs, p, p′)(σH ∧ formula(φ))

| (ρ(D)1, ρ(D)2) ⇓′ ((p, p′), σ, φ)}

∪
⋃

{[[Q]](σρ)(σs)(σH ∧ formula(φ)) | (ρ(D)1, ρ(D)2) ⇓′ ((fail, fail), σ, φ)}

∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((p, fail), σ, φ)}
∪ {σH ∧ formula(φ) → bad | (ρ(D)1, ρ(D)2) ⇓′ ((fail, p′), σ, φ)}

This formula is fairly similar to the one in [7]: when both ρ(D)1 and ρ(D)2
succeed, the process P is translated, instantiating terms with the substitution
σ and taking into account the side-condition φ, to make sure that ρ(D)1 and
ρ(D)2 succeed; when both fail, the process Q is translated; and at last when one
of ρ(D)1, ρ(D)2 succeeds and the other fails, clauses deriving bad are generated.
Since may-fail variables do not occur in D, we can show by induction on the
computation of ⇓′ that, when (ρ(D)1, ρ(D)2) ⇓′ ((mp1,mp2), σ, φ), mp1 andmp2
are either fail or a pattern, but cannot be a may-fail variable, so our definition
of [[let x = D in P else Q]]ρsH handles all cases.

4.5 Proving Equivalences

Let ρ0 = {a �→ (a[ ], a[ ]) | a ∈ fn(P0)}. We define the set of clauses that cor-
responds to biprocess P0 as RP0 = [[P0]]ρ0∅∅ ∪ {(Rfail), . . . , (Rfailure′)}. The
following theorem enables us to prove equivalences from these clauses.

Theorem 1. If bad is not a logical consequence of RP0 , then P0 satisfies ob-
servational equivalence.

This theorem shows the soundness of the translation. The proof of this theorem
is adapted from the proof of Theorem 3 of [7]. Furthermore, since we use almost
the same patterns and facts as in [7], we also use the algorithm proposed in [7] to
automatically check if bad is a logical consequence of RP0 , with the only change
that we use the unification algorithm for may-fail patterns.



240 V. Cheval and B. Blanchet

5 Automatic Modification of the Protocol

In this section, we first present the kind of false attack that we want to avoid
and then propose an algorithm to automatically generate, from a biprocess P ,
equivalent biprocesses on which ProVerif will avoid this kind of false attack.

5.1 Targeted False Attacks

We present a false attack on the anonymity of the private authentication protocol
due to structural conditional branching.

Example 5. Coming back to the private authentication protocol (see Example 4),
we obtained a biprocess P0 on which we would ask ProVerif to check the
equivalence. Unfortunately, ProVerif is unable to prove the equivalence of P0

and yields a false attack. Indeed, consider the evaluation context C defined as
follows:

C
def
= | (νni)c(xska

).c(xska′ ).c(xskb
).c〈aenc(〈ni, xska

〉, xskb
)〉

The biprocess C[P0] can be reduced as follows:

C[P0]→∗
Σ (νni)(νska)(νska′)(νsk b)(

c〈aenc(〈ni, pk(ska)〉, pk(sk b))〉 | System(diff[ska, ska′ ], sk b)
)

→∗
Σ (νni)(νska)(νska′)(νsk b)(A(diff [ska, ska′ ], sk b) |

let z = equals(proj2(〈ni, pk(ska)〉)), pk(diff[ska, ska′ ])) in
c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′ ]))〉

else c〈aenc(nb, pk(sk b))〉)

However from this point, the biprocess gets stuck, i.e., no internal reduction
rule is applicable. More specifically, neither the internal rule (Red Fun 1) nor
(Red Fun 2) is applicable. Indeed, if we denote D = equals(proj2(〈ni, ska〉)),
pk(diff[ska, ska′ ])), we have that snd(D)⇓Σ fail and fst(D)⇓Σ pk(ska), which con-
tradicts Item 2 of Lemma 2. So ProVerif cannot prove the equivalence. But,
although a different branch of the let is taken, the process outputs the message
aenc(〈nb, 〈na, pk(sk b)〉〉, pk(ska)) in the first variant (in branch of the let) and
the message aenc(nb, pk(sk b)) in the second variant (else branch of the let). In-
tuitively, these two messages are indistinguishable, so in fact the attacker will
not be able to determine which branch of the let is taken, and observational
equivalence still holds.

In order to avoid the false attacks similar to Example 5, we transform term eval-
uations let x = D in c〈M1〉 else c〈M2〉 into a computation that always succeeds
let x = D′ in let m = D′′ in c〈m〉. The term evaluation D′ will correspond to the
value of the evaluation of D when the latter succeeds and a new constant cfail
when D fails. Thus we ensure that D′ never fails. Moreover, the term evaluation
D′′ computes either M1 or M2 depending on the value of D′, i.e., depending
on whether D succeeds or not. The omitted else 0 branches are never taken.



Proving More Observational Equivalences with ProVerif 241

Since the same branch is always taken, the false attack disappears. To do that,
we introduce three new destructors catchfail, letin, notfail and a constant cfail,
which rely on the side conditions that we have added to destructors. These new
destructors are defined as follows:

defΣ(catchfail) = defΣ(letin) = defΣ(notfail) =
catchfail(x) → x letin(x, u, v) → u || x 	=Σ cfail notfail(x) → fail
catchfail(fail) → cfail letin(cfail, u, v) → v notfail(fail) → cfail

letin(fail, u, v) → fail

One can easily check that defΣ(catchfail), defΣ(letin), and defΣ(notfail) satisfy
Properties P1 and P2. Intuitively, the destructor catchfail evaluates its argu-
ment and returns either the result of this evaluation when it did not fail or
else returns the new constant cfail instead of the failure constant fail. The de-
structor letin will get the result of catchfail as first argument and return its
third argument if catchfail returned cfail, and its second argument otherwise.
Importantly, catchfail never fails: it returns cfail instead of fail. Hence, let x =
D in c〈M1〉 else c〈M2〉 can be transformed into let x = eval catchfail(D) in letm =
eval letin(x,M1,M2) in c〈m〉: if D succeeds, x has the same value as before, and
x 	= cfail, so letin(x,M1,M2) returns M1; if D fails, x = cfail and letin(x,M1,M2)
returnsM2. The destructor notfail inverts the status of a term evaluation: it fails
if and only if its argument does not fail. This destructor will be used in the next
section.

Example 6. Coming back to Example 5, the false attack occurs due to the fol-
lowing term evaluation:

let z = equals(proj2(x), pk(diff[ska, ska
′])) in

c〈aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′ ]))〉
else c〈aenc(nb, pk(sk b))〉

We transform this term evaluation as explained above:

let z = letin(catchfail(equals(proj2(x), pk(diff[ska, ska
′]))),M,M ′) in c〈z〉

where M = aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(diff[ska, ska′ ])), M ′ = aenc(nb, pk(sk b)).
Note that with x = 〈ni, pk(ska)〉 (see Example 5), if D is the term evaluation
D = letin(catchfail(equals(proj2(x), pk(diff[ska, ska

′]))),M,M ′), we obtain that:

– fst(D)⇓ aenc(〈ni, 〈nb, pk(sk b)〉〉, pk(ska))

– snd(D)⇓ aenc(nb, pk(sk b))

which corresponds to what fst(P0) and snd(P0) respectively output. Thanks to
this, if we denote by P ′

0 our new biprocess, we obtain that fst(P0) ≈ fst(P ′
0)

and snd(P0) ≈ snd(P ′
0). Furthermore, ProVerif will be able to prove that

the biprocess P ′
0 satisfies equivalence, i.e., fst(P ′

0) ≈ snd(P ′
0) and so fst(P0)

≈ snd(P0).



242 V. Cheval and B. Blanchet

The transformation proposed in the previous example can be generalised to
term evaluations that perform actions other than just a single output. However, it
is possible only if the success branch and the failure branch of the term evaluation
both input and output the same number of terms. For example, the biprocess
let x = D in c〈M〉.c〈M ′〉 else c〈N〉 cannot be modified into a biprocess without
else branch even with our new destructors. On the other hand, the success or
failure of D can really be observed by the adversary, by tracking the number of
outputs on the channel c, so the failure of the proof of equivalence corresponds
to a real attack in this case.

5.2 Merging and Simplifying Biprocesses

To automatically detect and apply this transformation, we define two functions,
merge and simpl . The function merge, defined in Fig. 4, is partial. It takes two
biprocesses as arguments and detects if those two biprocesses can be merged
into one biprocess. If the merging is possible, it returns the merged biprocess.
This merged biprocess is expressed using a new operator branch, similar to diff:
branch[D,D′] is a term evaluation and we introduce functions fst′ and snd′ such
that fst′(P ) (resp. snd′(P )) replaces each branch[D,D′] with D (resp. D′) in P .

Case (Mout) detects that both biprocesses output a message while case (Min)
detects that both biprocesses input a message. We introduce a let for the chan-
nels and messages so that they can later be replaced by a term evaluation.
Case (Mpar) uses the commutativity and associativity of parallel composition
to increase the chances of success of merge. Cases (Mres) and (Mres′) use
Q ≈ (νa)Q when a /∈ fn(Q) to allow merging processes even when a restric-
tion occurs only on one side. Case (Mrepl2) is the basic merging of replicated
processes, while Case (Mrepl1) allows merging ! !P with !P ′ (case n = 0) be-
cause !P ≈ ! !P , and furthermore allows restrictions between the two replica-
tions, using Q ≈ (νa)Q. Case (Mlet1) merges two processes that both contain
term evaluations, by merging their success branches together and their failure
branches together. On the other hand, Cases (Mlet2), (Mlet2′) also merge two
processes that contain term evaluations, by merging the success branch of one
process with the failure branch of the other process. Cases (Mlet3), (Mlet3′),
(Mlet4), (Mlet4′) allow merging a term evaluation with another process P ′, by
merging P ′ with either the success branch or the failure branch of the term
evaluation. This merging is useful when ProVerif can prove that the resulting
process satisfies equivalence, hence when both sides of the obtained let succeed
simultaneously. Therefore, rule (Mlet3) is helpful when D always succeeds, and
rule (Mlet4) when D always fails. When no such case applies, merging fails.

The function simpl is total. It takes one biprocess as argument and simplifies
it by replacing all subprocesses of the form let x = D in P else P ′, where
merge(P, P ′) succeeds, with

let x = eval catchfail(D) in Q{eval letin(x,D1,D2)/branch[D1,D2]} else 0

for some Q = merge(P, P ′). This replacement is performed bottom up, so that
P and P ′ have already been simplified when we transform let x = D in P else P ′.



Proving More Observational Equivalences with ProVerif 243

merge(0, 0)
def
= 0 (Mnil)

merge(M〈N〉.P,M ′〈N ′〉.P ′)
def
=

let x = branch[M,M ′] in let x′ = branch[N,N ′] in x〈x′〉.merge(P, P ′)

where x and x′ are fresh variables

(Mout)

merge(M(x).P,M ′(x′).P ′)
def
=

let y = branch[M,M ′] in y(y′).merge(P{y′
/x}, P ′{y′

/x′})
where y and y′ are fresh variables

(Min)

merge(P1 | . . . | Pn, P
′
1, | . . . | P ′

n)
def
= Q1 | . . . | Q′

n

if (i1, . . . , in) is a permutation of (1, . . . , n)

and for all k ∈ {1, . . . , n}, Qk = merge(Pk, P
′
ik
)

(Mpar)

merge((νa)P,Q)
def
= (νa)merge(P,Q)

after renaming a such that a �∈ fn(Q)
(Mres)

merge(! (νa1) . . . (νan)!P, !P
′)

def
= ! (νa1) . . . (νan)merge(!P, !P ′)

after renaming a1, . . . , an such that a1, . . . , an �∈ fn(P ′)
(Mrepl1)

merge(!P, !P ′)
def
= !merge(P, P ′)

if there is no P1, a1, . . . , an such that P = (νa1) . . . (νan)!P1

and no P ′
1, a

′
1, . . . , a

′
m such that P ′ = (νa′

1) . . . (νa
′
m)!P ′

1

(Mrepl2)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = branch[D,D′] in Q1 else Q2 if y is a fresh variable,

Q1 = merge(P1{y/x}, P ′
1{y/x′}), and Q2 = merge(P2, P

′
2)

(Mlet1)

merge(let x = D in P1 else P2, let x
′ = D′ in P ′

1 else P ′
2)

def
=

let y = branch[D, notfail(D′)] in Q1 else Q2 if y is a fresh variable,

x′ �∈ fv(P ′
1), Q1 = merge(P1{y/x}, P ′

2), and Q2 = merge(P2, P
′
1)

(Mlet2)

merge(let x = D in P1 else P2, P
′)

def
= let y = branch[D, cfail] in Q else P2

if y is a fresh variable and Q = merge(P1{y/x}, P ′)
(Mlet3)

merge(let x = D in P1 else P2, P
′)

def
= let y = branch[D, fail] in P1{y/x} else Q

if y is a fresh variable and Q = merge(P2, P
′)

(Mlet4)

plus symmetric cases (Mres′), (Mrepl1′), (Mlet2′), (Mlet3′), and (Mlet4′) obtained
from (Mres), (Mrepl1), (Mlet2), (Mlet3), and (Mlet4) by swapping the first and second
arguments of merge and branch.

Fig. 4. Definition of the function merge



244 V. Cheval and B. Blanchet

The notation Q{eval letin(x,D1,D2)/branch[D1,D2]} means that we replace in Q ev-
ery instance of branch[D1, D2], for some D1, D2, with eval letin(x,D1, D2). The
function simpl performs the transformation of term evaluations outlined in Sec-
tion 5.1, when we can merge the success and failure branches.

Both functions are non-deterministic; the implementation may try all possi-
bilities. In the current implementation of ProVerif, we apply the rules (Mlet3)
and (Mlet4) only if the rules (Mlet1) and (Mlet2) are not applicable. Moreover,
we never merge 0 with a process different from 0. This last restriction is crucial
to reduce the number of biprocesses returned by merge and simpl . Typically, we
avoid that 0 and let x = M in P else 0 are merged by the rule (Mlet4).

5.3 Results

Lemma 3 below shows that observational equivalence is preserved by the func-
tions merge and simpl . In this lemma, we consider biprocesses P and P ′ that
are not necessarily closed. We say that a context C is closing for P when C[P ]
is closed. Moreover, given two biprocesses P and Q, we say that P ≈ Q if, and
only if, fst(P ) ≈ fst(Q) and snd(P ) ≈ snd(Q).

Lemma 3. Let P and P ′ be two biprocesses. If merge(P, P ′) = Q then, for all
contexts C closing for P , C[P ] ≈ C[fst′(Q)] and, for all contexts C closing for
P ′, C[P ′] ≈ C[snd′(Q)]. For all contexts C closing for P , C[P ] ≈ C[simpl (P )].

From the previous lemma, we can derive the two main results of this section.

Theorem 2. Let P be a closed biprocess. If simpl(P ) satisfies observational
equivalence, then fst(P ) ≈ snd(P ).

From Theorem 2, we can extract our algorithm. Given a biprocess P as input,
we compute simpl(P ). Since simpl is total but non-deterministic, we may have
several biprocesses as result for simpl(P ). If ProVerif proves equivalence on
at least one of them, then we conclude that fst(P ) ≈ snd(P ).

Theorem 3. Let P and P ′ be two closed processes that do not contain diff.
Let Q = merge(simpl (P ), simpl (P ′)). If the biprocess Q{diff[D,D′]/branch[D,D′]}
satisfies observational equivalence, then P ≈ P ′.

The previous version of ProVerif could only take a biprocess as input. How-
ever, transforming two processes into a biprocess is usually not as easy as in the
private authentication example. Theorem 3 automates this transformation.

6 Conclusion

In this paper, we have extended ProVerif with destructors defined by rewrite
rules with inequalities as side-conditions. We have proposed a procedure relying
on these new rewrite rules to automatically transform a biprocess into equiva-
lent biprocesses on which ProVerif avoids the false attacks due to conditional



Proving More Observational Equivalences with ProVerif 245

branchings. Our extension is implemented in ProVerif, which is available
at http://proverif.inria.fr. Experimentation showed that the automatic
transformation of a biprocess is efficient and returns few biprocesses. In par-
ticular, our extension automatically proves anonymity as defined in [5] for the
private authentication protocol for an unbounded number of sessions.

However, ProVerif is still unable to prove the unlinkability of the UK e-
passport protocol [5] even though we managed to avoid some previously existing
false attacks. This is a consequence of the matching by ProVerif of traces with
the same scheduling in the two variants of the biprocesses. Thus we would like
to relax the matching of traces, e.g., by modifying the replication identifiers on
the left and right parts of biprocesses. This would allow us to prove even more
equivalences with ProVerif and in particular the e-passport protocol.

Another direction for future research would be to define equations with in-
equalities as side-conditions. It may be possible to convert such equations into
rewrite rules with side-conditions, like we convert equations into rewrite rules.

Acknowledgments. This work has been partially supported by the ANR
projects PROSE (decision ANR 2010-VERS-004) and JCJC VIP no 11 JS02
006 01, as well as the grant DIGITEO API from Région Île-de-France. It was
partly done while the authors were at Ecole Normale Supérieure, Paris.

References

1. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In:
POPL 2001, pp. 104–115. ACM, New York (2001)

2. Abadi, M., Fournet, C.: Private authentication. Theoretical Computer Sci-
ence 322(3), 427–476 (2004)

3. Abadi, M., Gordon, A.D.: A calculus for cryptographic protocols: The spi calculus.
Information and Computation 148(1), 1–70 (1999)

4. Arapinis, M., Cheval, V., Delaune, S.: Verifying privacy-type properties in a mod-
ular way. In: CSF 2012, pp. 95–109. IEEE, Los Alamitos (2012)

5. Arapinis, M., Chothia, T., Ritter, E., Ryan, M.: Analysing unlinkability and
anonymity using the applied pi calculus. In: CSF 2010, pp. 107–121. IEEE, Los
Alamitos (2010)

6. Baudet, M.: Sécurité des protocoles cryptographiques: aspects logiques et calcula-
toires. Ph.D. thesis, LSV, ENS Cachan (2007)

7. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equiva-
lences for security protocols. Journal of Logic and Algebraic Programming 75(1),
3–51 (2008)

8. Borgström, J., Briais, S., Nestmann, U.: Symbolic Bisimulation in the Spi Calculus.
In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp. 161–176.
Springer, Heidelberg (2004)

9. Cheval, V., Comon-Lundh, H., Delaune, S.: Trace equivalence decision: Negative
tests and non-determinism. In: CCS 2011, pp. 321–330. ACM, New York (2011)

10. Ciobâcă, Ş.: Automated Verification of Security Protocols with Applications to
Electronic Voting. Ph.D. thesis, LSV, ENS Cachan, France (2011)

http://proverif.inria.fr


246 V. Cheval and B. Blanchet

11. Comon-Lundh, H., Delaune, S.: The Finite Variant Property: How to Get Rid of
Some Algebraic Properties. In: Giesl, J. (ed.) RTA 2005. LNCS, vol. 3467, pp.
294–307. Springer, Heidelberg (2005)

12. Delaune, S., Kremer, S., Ryan, M.D.: Symbolic Bisimulation for the Applied Pi
Calculus. In: Arvind, V., Prasad, S. (eds.) FSTTCS 2007. LNCS, vol. 4855, pp.
133–145. Springer, Heidelberg (2007)

13. Durante, L., Sisto, R., Valenzano, A.: Automatic testing equivalence verification
of spi calculus specifications. ACM TOSEM 12(2), 222–284 (2003)

14. Hüttel, H.: Deciding framed bisimilarity. In: INFINITY 2002, pp. 1–20 (2002)
15. Liu, J., Lin, H.: A Complete Symbolic Bisimulation for Full Applied Pi Calculus. In:

van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný, J., Rumpe, B. (eds.) SOFSEM
2010. LNCS, vol. 5901, pp. 552–563. Springer, Heidelberg (2010)

16. Nicola, R.D., Hennessy, M.: Testing equivalences for processes. Theoretical Com-
puter Science 34, 83–133 (1984)

17. Tiu, A., Dawson, J.E.: Automating open bisimulation checking for the spi calculus.
In: CSF 2010, pp. 307–321. IEEE, Los Alamitos (2010)



Formal Verification of e-Auction Protocols

Jannik Dreier, Pascal Lafourcade, and Yassine Lakhnech

Université Grenoble 1, CNRS, Verimag, France
firstname.lastname@imag.fr

Abstract. Auctions have a long history, having been recorded as early as 500
B.C.. With the rise of Internet, electronic auctions have been a great success and
are increasingly used. Many cryptographic protocols have been proposed to ad-
dress the various security requirements of these electronic transactions. We pro-
pose a formal framework to analyze and verify security properties of e-Auction
protocols. We model protocols in the Applied π-Calculus and define privacy
notions, which include secrecy of bids, anonymity of the participants, receipt-
freeness and coercion-resistance. We also discuss fairness, non-repudiation and
non-cancellation. Additionally we show on two case studies how these properties
can be verified automatically using ProVerif, and discover several attacks.

1 Introduction

Auctions are a simple method to sell goods and services. Typically a seller offers a good
or a service, and the bidders make offers. Depending on the type of auction, the offers
might be sent using sealed envelopes which are opened at the same time to determine
the winner (the “sealed-bid” auction), or an auctioneer could announce prices decreas-
ingly until one bidder is willing to pay the announced price (the “dutch auction”). Ad-
ditionally there might be several rounds, or offers might be announced publicly directly
(the “English” or “shout-out” auction). The winner usually is the bidder submitting the
highest bid, but in some cases he might only have to pay the second highest offer as a
price (the “second-price”- or “Vickrey”-Auction). In general a bidder wants to win the
auction at the lowest possible price, and the seller wants to sell his good at the highest
possible price. For more information on different auction methods see [1].

Depending on the type of auction and the application different security properties
might be interesting to realize in an auction protocol and have been discussed in the
literature. We identify the following main security properties of auction protocols:

– Fairness: We propose the three following fairness properties: Firstly a fair auction
protocol should not leak any information about the other participants and their of-
fers until the bidding phase is over (so as to prohibit unfair tactics based on leaked
information). We call this Weak or Strong Noninterference, depending on if the
number of bidders is leaked or not. Thirdly a protocol should not allow anybody
to win although they did not submit the highest price, i.e. ensure that the Highest
Price Wins. Otherwise a losing bidder could try to cheat to win.

– Authentication: For the seller it is crucial to ensure Non-Repudiation, i.e. that – af-
ter the winner has been announced – the winning bidder cannot claim that he did not
submit the winning bid. Additionally we might want to ensure Non-Cancellation,

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 247–266, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



248 J. Dreier, P. Lafourcade, and Y. Lakhnech

i.e. that a bidder cannot cancel a submitted offer before the winner is announced, to
have binding bids.

– Privacy: We distinguish several different notions: Secrecy of Bids, Anonymity of
Bidders, Receipt-Freeness and Coercion-Resistance. Secrecy of Bids guarantees
that the losing bids remain secret, or at least cannot be linked to the participants.
Anonymity of Bidders means that the participants, in particular the winner, remain
anonymous. Privacy is important in sealed-bid auctions to also prevent information
leakage after the auction is over, for example if an auction is organized in several
rounds. Receipt-Freeness ensures that bidders are unable to prove to an attacker
(which might be another bidder trying to force them to submit a low bid so that he
wins) that they bid a certain offer, and Coercion-Resistance means that even when
interacting with a coercer, the bidders can still bid a price of their choice.

– Verifiability: A verifiable protocol should allow the bidders to verify that the win-
ner was correctly determined, in particular if they lost. Additionally it might be
desirable to give the bidders the ability to contest if they think that their offers were
not taken into account correctly. We do not consider verifiability in this paper.

Related Work: Many electronic auction (e-Auction) protocols have been proposed in
the literature (see e.g. [2–5] for an overview). As case studies, we use the protocol by
Curtis et al. [6], which uses a trusted registrar and pseudonyms, and the protocol by
Brandt [3], which is entirely distributed using secure multi-party computation.

The different security properties have been discussed since the early publications on
e-Auctions, e.g. Franklin and Reiter [7] discuss secrecy of bids, anonymity of bidders,
fairness, non-repudiation and non-cancellation. Further publications [8–11] have used
and refined these notions, also adding verifiability. Abe and Suzuki [12] introduced and
motivated Receipt-Freeness for e-Auctions. Cancellation of bids was also discussed by
Stubblebine and Syverson [13] who proposed a protocol implementing cancellation as
a feature, and another protocol ensuring non-cancellation. Still, all definitions given in
these papers are informal.

Although there has been much work on developing auction protocols and discussing
properties, there is considerably less work on their formal definition and analysis. Sub-
ramanian [14] proposed an auction protocol and analyzed it using a BAN-style logic to
show some security properties. In particular he showed the atomicity of the transaction,
weak secrecy of private keys and a form of anonymity modeled as weak secrecy of the
public key of the bidder. More recently Dong et al. [15] analyzed a receipt-free auction
protocol in the Applied π-Calculus. They only considered privacy, in particular secrecy
of the bidding price and receipt-freeness, but only for losing bidders. Verifiability and
accountability was formalized by Kuesters et al. [16].

In the context of electronic voting there has been much more work on formal verifi-
cation, in particular in the area of privacy [17–23]. Some notions are similar, yet there
are some fundamental differences to auctions: In the case of voting the published re-
sult is the sum of all votes, hence there is a certain leakage of information about all
voters. For example if a candidate received no votes at all, this increases the attackers
knowledge about the voters’ votes as he can exclude this previously possible option.
Yet ideally there should always be some uncertainty about the votes, i.e. no voter’s pri-
vacy should entirely compromised (apart from pathological cases such as an unanimous



Formal Verification of e-Auction Protocols 249

vote). In the case of auctions, the public outcome is the winning bid(der), who loses all
privacy. In some cases he might stay anonymous, e.g. the well known “bidder on the
phone”, but at least the winning price will be public. The other bid(der)s however can
remain completely private/anonymous – we only know that the offers are inferior. Fair-
ness also is a requirement in electronic voting as well as e-Auctions, but properties such
as Non-Repudiation and Non-Cancellation are specific to e-Auctions.

There has been a lot of work on Non-Repudiation in the context of contract signing
protocols (e.g. [24, 25]). We rely on the work by Klay et al. [24] who propose many
different flavors of non-repudiation based on agent knowledge or authentication. We
only consider “Non-Repudiation of Origin”, i.e. that the bidder cannot deny that he
made an offer, implemented as a form of authentication.

Contributions: We provide the following main contributions: i) We give a formal
framework in the Applied π-Calculus [26] to model and analyze e-Auction protocols.
ii) We define the discussed fairness, privacy and authentication properties in our model
and analyze their relationship. iii) We provide two case studies: The protocol by Cur-
tis et al. [6] and a protocol by Brandt [3]. We show how both can be modeled in the
Applied π-Calculus and verified using Proverif [27–29]. We discover several flaws on
these protocols and explain how some of their shortcomings can be addressed. Due to
the space limitations we cannot give the full proofs here, they are available in [30], and
the ProVerif code used in the case studies is available in [31].

Outline: In Section 2, we recall the Applied π-Calculus and model auction protocols.
In Section 3, we formally define the security properties. In Section 4, we analyze two
protocols in our model before concluding in the last section.

2 Preliminaries

We recall the Applied π-Calculus and introduce our model of auction protocols.

2.1 Applied π-Calculus

The Applied π-Calculus [26] is a formal language to describe concurrent processes. The
calculus consists of names (which typically correspond to data or channels),
variables, and a signature Σ of function symbols which can be used to build terms.
Functions typically include encryption and decryption – for example enc(message,
key), dec(message, key) – hashing, signing etc. Terms are correct (i.e. respecting ar-
ity and sorts) combinations of names and functions. We distinguish the type “channel”
from other base types. To model equalities we use an equational theory E which de-
fines a relation =E . A classical example which describes the correctness of symmetric
encryption is dec(enc(message, key), key) =E message. Processes are constructed
using the grammars detailed in Figure 1.

The substitution {M/x} replaces the variable x with term M . We denote by fv(A),
bv(A), fn(A), bn(A) the free variables, bound variables, free names or bound names
respectively. A process is closed if all variables are bound or defined by an active sub-
stitution. The frame Φ(A) of an active process A is obtained by replacing all plain



250 J. Dreier, P. Lafourcade, and Y. Lakhnech

P , Q, R := plain processes
0 null process
P |Q parallel composition
!P replication
νn.P name restriction (“new”)
ifM =N then P conditional

else Q
in(u, x).P message input
out(u, x).P message output

(a) Plain process

A, B, C := active processes
P plain process
A|B parallel composition
νn.A name restriction
νx.A variable restriction
{M/x} active substitution

(b) Extended process

Fig. 1. Grammars for plain and extended or active processes

processes in A by 0. This frame can be seen as a representation of what is statically
known to the exterior about a process. The domain dom(Φ) of a frame Φ is the set of
variables for which Φ defines a substitution. An evaluation context C[ ] denotes an ac-
tive process with a hole for an active process that is not under replication, a conditional,
an input or an output. In the rest of the paper we use the following usual notions of
equivalence and bisimilarity based on the original semantics [26].

Definition 1. Two terms M andN are equal in the frame φ, written (M = N)φ, if and
only if φ ≡ νñ.σ, Mσ = Nσ, and {ñ} ∩ (fn(M) ∪ fn(N)) = ∅ for some names ñ
and some substitution σ.

Definition 2. Two closed frames φ and ψ are statically equivalent, written φ ≈s ψ,
when dom(φ) = dom(ψ) and when for all terms M and N we have (M = N)φ if
and only if (M = N)ψ. Two extended processes A and B are statically equivalent
(A ≈s B) if their frames are statically equivalent.

The intuition is that two processes are statically equivalent if the messages exchanged
with the environment cannot be distinguished by an attacker (i.e. all operations on both
sides give the same results). This idea can be extended to labeled bisimilarity.

Definition 3. Labeled bisimilarity is the largest symmetric relation R on closed active
processes, such that A R B implies: i) A ≈s B, ii) if A → A′, then B →∗ B′ and
A′ R B′ for some B′, iii) if A

α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅,
then B →∗ α−→→∗ B′ and A′ R B′ for some B′.

In this case each interaction on one side can be simulated by the other side, and the
processes are statically equivalent at each step during the execution, thus an attacker
cannot distinguish both sides.

2.2 Modeling Auction Protocols

We model auction protocols in the Applied π-Calculus as follows.

Definition 4. An auction protocol is defined by a tuple (B, S, A1, . . . , Am, ñ) where
B is the process that is executed by the bidders, S is the process executed by the seller,



Formal Verification of e-Auction Protocols 251

and the Aj ’s are the processes executed by the authorities (for example an auctioneer,
a registrar etc.), and ñ is a set of private channels. We also assume the existence of a
particular public channel res that is only used to publish the winning bid(der).

Note that we have only one process for the bidders. This means that different bidders
will execute the same process, but with different variable values (e.g. the keys, the bids
etc.). To reason about privacy, we talk about instances of an auction protocol, which we
call auction processes.

Definition 5. An instance of an auction protocol (B, S, A1, . . ., Am, ñ) is called an
auction process, which is a closed process νñ′.(Bσid1σb1 | . . . |Bσidk

σbk |S|A1| . . . |Al),
where l ≤ m, ñ′ includes the secret channel names ñ, Bσidiσbi are the processes exe-
cuted by the k bidders, σidi is a substitution assigning the identity to the i-th bidder1,
σbi specifies the i-th bid and Aj’s are the auction authorities which are required to be
honest. In our definitions we use the context AP ′[·] which allows us to reason about
bidders inside the auction process AP , for example if we want to explicit bidders l and
o, we rewrite AP as AP ′[Bσidl

σbl |Bσidoσbo ].

The restricted channel names model private channels. Note that we only model the
honest authorities as unspecified parties are subsumed by the attacker.

By abuse of notation we write bl > bo to express that the bidding price determined
by the substitution σbl is greater than the one assigned by σbo , and maxi{bi} denotes
the maximal price assigned by any substitution σbi .

In order to reason about reachability and authentication properties we will use events.
Events are annotations, hence we extend the above plain process grammar as follows:
P = event e(M1, . . . ,Mn).P where e is the name of the event, and the terms
M1, . . . ,Mn are parameters. These events do not change the behavior of the processes,
but allow us to verify properties such as “event bad is unreachable” or “on every trace
event a is preceded by event b”. We use the following events: bid(p,id): When a
bidder id bids the price p the event bid(p,id) is emitted. recBid(p,id): When
a bid at price p by bidder id is recorded by the auctioneer/bulletin board2/etc. the event
recBid(p,id) is called. This will be used to model Non-Cancellation, i.e. from this
point on a bid is considered binding. won(p,id): When a bidder id wins the auction
at price p, the event won(p,id) is emitted.

We use the following transformation introduced in [18] that turns a process P into
another process P ch that reveals all its inputs and secret data on the channel ch.

Definition 6. Let P be a plain process and ch be a channel name. P ch is defined by:

– 0ch =̂ 0,
– (P |Q)ch =̂ P ch|Qch,
– (νn.P )ch =̂ νn.out(ch, n).P ch if n is a name of base type, (νn.P )ch =̂ νn.P ch

otherwise,
– (in(u, x).P )ch =̂ in(u, x).out(ch, x).P ch if x is a variable of base type,

(in(u, x).P )ch =̂ in(u, x).P ch otherwise,

1 This determines for example the secret keys.
2 A bulletin board is a central append-only noticeboard that is often used for communication in

protocols.



252 J. Dreier, P. Lafourcade, and Y. Lakhnech

– (out(u,M).P )ch =̂ out(u,M).P ch,
– (ifM = N then P elseQ)ch =̂ ifM = N then P ch elseQch.
– (!P )ch =̂ !P ch,

In the remainder we assume that ch /∈ fn(P )∪ bn(P ) before applying the transforma-
tion. We need another transformation of [18] that does not only reveal the secret data,
but also takes orders from an outsider before sending a message or branching. This
models a completely corrupted party.

Definition 7. Let P be a plain process and c1, c2 be channel names. P c1,c2 is defined
as follows:

– 0c1,c2 =̂ 0,
– (P |Q)c1,c2 =̂ P c1,c2 |Qc1,c2 ,
– (νn.P )c1,c2 =̂ νn.out(c1, n).P

c1,c2 if n is a name of base type, (νn.P )c1,c2 =̂
νn.P c1,c2 otherwise,

– (in(u, x).P )c1,c2 =̂ in(u, x).out(c1, x).P
c1,c2 if x is a variable of base type,

(in(u, x).P )c1,c2 =̂ in(u, x).P c1,c2 otherwise,
– (out(u,M).P )c1,c2 =̂ in(c2, x).out(u, x).P

c1,c2 where x is a fresh variable,
– (!P )c1,c2 =̂ !P c1,c2 ,
– (if M = N then P else Q)c1,c2 =̂ in(c2, x).if x = true then P c1,c2 else

Qc1,c2 where x is a fresh variable and true is a constant.

To hide the output of a process, we use the following definition of [18].

Definition 8. LetA be an extended process,A\out(ch,·) is defined by νch.(A|!in(ch, x)).

3 Security Requirenments

3.1 Fairness Properties

A fair auction protocol should not leak any information about any participant until the
bidding phase is over and the winning bid is announced, and hence some information
is inevitably leaked. We propose the following two definitions:

Definition 9. An auction protocol ensures Strong Noninterference (SN) if for any two
auction processes APA and APB that halt at the end of the bidding phase (i.e. where
we remove all code after the last recBid event) we have APA ≈l APB .

This notion is very strong: Any two instances, independently of the participants and
their offers, are required to be bisimilar until the end of the bidding phase. This would
also require two instances with a different number of participants to be bisimilar, which
will probably not hold on many protocols. A more realistic notion is the following:

Definition 10. An auction protocol ensures Weak Noninterference (WN) if for any two
auction processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al) and

APB = νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) that halt at the end of
the bidding phase (i.e. where we remove all code after the last recBid event) we have
APA ≈l APB .



Formal Verification of e-Auction Protocols 253

This only requires any two instances with the same participants Bσidi to be bisimilar,
however bids may still change. It is easy to see that (SN) implies (WN).

Another important fairness property is that there is no strategy that allows a malicious
participant to win the auction at a chosen price, independently of the other bids.

Definition 11. An auction protocol ensures Highest Price Wins (HPW) if for any auc-
tion process AP we have for AP ′[BσidAσbA | (BσidBσbB )

c1,c2 ] where bA is the high-
est bid, there is no trace containing the event won for bidder idB with a lower bid.

The idea is the following: We have an honest bidder BσidA who submits the highest
bid. The attacker has completely corrupted another bidder BσidB and should be unable
to win the auction on his behalf on a lower bid.

Note that these definitions can be applied independently of trust assumptions, and
that different assumptions can lead to different results: For example, a protocol might
ensure (HPW) if the auctioneer is trusted, but not otherwise.

3.2 Authentication Properties

The first authentication property we want to define is Non-Repudiation, i.e. that – once
the winner has been announced – a winning bidder cannot claim that the winning bid
was not send by him. As discussed in [24], Non-Repudiation can be expressed as form
of authentication.

Definition 12. An auction protocol ensures the property of Non-Repudiation (NR) if
for every auction process AP on every possible execution trace the event won(p,id)
is preceded by a corresponding event bid(p,id).

The intuition is simple: If there was a trace on which a bidder would win without sub-
mitting the winning bid, he could try to claim that he did not submit the winning bid
even in a case where he rightfully won.

Note two subtleties with this definition: Firstly, since only honest parties are explic-
itly modeled, it is clear that only honest parties can emit events. Hence one could think
that our definition implicitly assumes some parties to be honest – however, this is not
the case: If we do not trust the party that would normally emit for example the event
won, we can simply remove this party from the model and replace it with a new party
that receives the parameters on a special channel, and then emits the event using these
parameters. This gives the adversary total control about the events, as it would be the
case for a distrusted authority. Secondly we need to have session-dependent identifiers
for the bidders in our events. This is to ensure that the protocol only accepts bids that
were submitted in a the same instance, and that an attacker cannot submit a bid from a
different session.

The second authentication property we model is Non-Cancellation, i.e. that a bidder
cannot cancel a submitted bid before the winner is announced.

Definition 13. An auction protocol ensures the property of Non-Cancellation (NC) if
for any auction process AP which contains a bidder (Bσidiσbi)

chc, i.e. a bidder which
reveals his secret data on channel chc (see Def. 6), and which submits the highest bid,
i.e. ∀j 	= i : bi > bj , there is no trace containing the events recBid(b i,id i) and
won(b w,id w) for another, lower bid, i.e. bw < bi.



254 J. Dreier, P. Lafourcade, and Y. Lakhnech

The idea is the following: The bidder idi submits the highest bid, so he should win. If
however there is the possibility that even though his bid was correctly received he did
not win, this would mean that the intruder was able to cancel the bidder’s bid even after
reception. We require the bidder to reveal all his secret data to the intruder to capture
the fact that the bidder himself might want to cancel his offer, in which case he could
use his private data (keys etc.) to do so.

Note that technically we only defined Non-Cancellation for the winning bidder. This
is sufficient since in a first-price auction the other bids do not influence the outcome.
Additionally it can be generalized to other auction types by simply requiring that the
winning price must be correct on all traces. This is to ensure that no other bids that
influence the result can be canceled.

Both properties are independent: A protocol may implement the cancellation of bids
as an official feature, for example after all bids have been submitted, bidders could
be allowed to cancel their bids for a certain period of time, before the winner is finally
announced. At the same time, such a protocol may ensure non-repudiation of the winner
using e.g. signatures. Similarly a protocol may ensure Non-Cancellation but no Non-
Repudiation if the submitted bids cannot be canceled, but are not authenticated, so
that the winner can successfully claim not having submitted the winning bid. Again, a
protocol might ensure Non-Cancellation or Non-Repudiation for a certain trust setting,
but not for another.

3.3 Privacy Properties

BPU WA

SASBPS[15] P

SRF[15]

FPSBA

RF-U RF-WA

RF-SARF-BPS RF
FPSBA

CR-U CR-WA

CR-SACR-BPS CR
FPSBA

Fig. 2. Relations among the privacy notions. A
C−→ B

means that under the assumption C a protocol ensuring
A also ensures B.

We consider Privacy, Receipt-
Freeness and Coercion-Resistance,
and at each level two indepen-
dent axes: i) the winner may stay
anonymous or not, ii) the bids
may stay completely private or
there might be list of all bids,
which are however unlinkable to
the bidders.

These definitions are expressed
for protocols implementing a first-
price sealed-bid auction. We also
provide the generalized notions
(P), (RF) and (CR), which can
also be applied to other types
of auctions such as second-price
auctions. We show that if a pro-
tocol correctly implements a First-Price Sealed-Bid Auction (FPSBA), these notions
coincide with the corresponding Strong Anonymity-notions (SA), (RF-SA) and (CR-
SA). Figure 2 provides an overview of the different notions.

Privacy. The first privacy notion we consider was proposed by Dong et al. [15].



Formal Verification of e-Auction Protocols 255

Definition 14. An electronic auction protocol ensures Strong Bidding-Price Secrecy
(SBPS) if for an auction process AP and any bids bA, bB < bC we have

AP ′ [BσidAσbA |BσidCσbC ] ≈l AP
′ [BσidAσbB |BσidCσbC ]

The intuition is the following: If the losing bids are private, a losing bidder may change
his bid for another losing one without this being noticeable to an attacker. This is ex-
pressed as an observational equivalence between two situations where a losing bidder
changes his bid. Note that BσidC does not necessarily win since in AP ′ there might be
a bidder offering a higher price, but bA, bB < bC guarantees that BσidA loses.

We propose the following, weaker notion of Bidding-Price Unlinkability, which al-
lows the losing bids to be public, however their link to the bidders have to be secret.

Definition 15. An e-Auction protocol ensures Bidding-Price Unlinkability (BPU) if for
an auction process AP and any bids bA, bB < bC we have

AP ′ [BσidAσbA |BσidBσbB |BσidCσbC ] ≈l AP
′ [BσidAσbB |BσidBσbA |BσidCσbC ]

In this definition we require two situations in which two losing bidders swap their bids
to be bisimilar. This might be the case if the bids are public, but the real identity of the
bidders is hidden, e.g. through the use of pseudonyms.

Note that the previous two notions only concern the losing bids, yet we might also
want to preserve the anonymity of the winning bidder.

Definition 16. An electronic auction protocol ensures Strong Anonymity (SA) if for an
auction process AP and any bids bA, bB ≤ bC we have

AP ′ [BσidAσbA |BσidCσbC ] ≈l AP
′ [BσidAσbC |BσidCσbB ]

Here we require two situations to be bisimilar where two different bidders win using
the same offer, and the losing bidders may also use different bids in the two cases. This
is stronger than Strong Bidding-Price Secrecy (SBPS).

A slightly weaker notion is Weak Anonymity, which allows the bids to be public,
however their link to the bidders have to be secret, even for the winner.

Definition 17. An electronic auction protocol ensures Weak Anonymity (WA) if for an
auction process AP and any bids bA ≤ bC we have

AP ′ [BσidAσbA |BσidCσbC ] ≈l AP
′ [BσidAσbC |BσidCσbA ]

Here again two different bidders win using the same bid, but the losing bidder cannot
choose his bid freely as above - the two bidders swap their bids. This corresponds
for example to a situation with a public list of bids in clear, but where it is private
which bidder submitted which bid. Weak Anonymity (WA) is stronger than Bidding-
Price Unlinkability (BPU) as even the winner remains anonymous. All these definitions
are only meaningful for first-price auctions. To also deal with second-prices sealed-bid
auctions, we can use the following generalization based on the published result.

Definition 18. Let P |c = νc̃h.P where c̃h are all channels except for c, i.e. we hide all
channels except for c.



256 J. Dreier, P. Lafourcade, and Y. Lakhnech

Definition 19. An electronic auction protocol ensures Privacy (P) if for any two auction
processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al) and APB =

νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) we have

AP1|res ≈l AP2|res ⇒ AP1 ≈l AP2

The intuition is quite simple: any two instances (consisting of the same bidders) which
give the same result, i.e. the same winning bid, have to be bisimilar.

It turns out that for a correct first-price sealed-bid auction protocol which only pub-
lishes the winning price, this coincides with Strong Anonymity.

Definition 20. An electronic auction protocol implements a First-Price Sealed-Bid Auc-
tion (FPSBA) if for any auction processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A

| S | A1 | . . . | Al) and APB = νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al)
we have

APA|res ≈l APB|res ⇔ max
i
bi,A = max

i
bi,B

This definition requires the protocol to announce the same result if and only if the max-
imum among the submitted bids is the same, independently of which bidder submitted
which bid. It is easy to see that this is true in the case of a correct first-price sealed-bid
auction protocol. This allows us to prove the equivalence of (P) and (SA).

Theorem 1. If an electronic auction protocol implements a First-Price Sealed-Bid Auc-
tion (FPSBA), then Privacy (P) and Strong Anonymity (SA) are equivalent.

Proof. Sketch: Assume we have two instances that give the same result, by (FPSBA)
they have the same maximal bid. This bid may have been submitted by another bidder,
and the other bids might have changed, butAP1 ≈l AP2 can be proved using successive
applications of (SA). Similarly if we assume two instances as in the definition of (SA),
it is easy to see that they have the same maximal offer. Hence the result will be the
same, and we can apply (P) to conclude. ��

Receipt-Freeness. A first Receipt-Freeness definition for auction protocols was pro-
posed by Dong et al. [15]. It is a generalization of Strong Bidding-Price Secrecy (SBPS).

Definition 21. An electronic auction protocol ensures Simple Receipt-Freeness (SRF)
if for an auction process AP and any bids bA, bB < bC there exists a process B′ such
that B′\out(chc,·) ≈l BσidAσbB and

AP ′
[
(BσidAσbA)

chc |BσidCσbC

]
≈l AP

′ [B′|BσidCσbC ]

The intuition behind this definition is a follows: If the protocol is receipt-free, an at-
tacker cannot distinguish between a situation where a losing bidder bids bA and reveals
all his secret data on a channel chc, and a situation where the bidder bids bB and only
pretends to reveal his secret data (the fake strategy, modeled by process B′). Note that
Simple Receipt-Freeness (SRF) implies Strong Bidding-Price Secrecy (SBPS).



Formal Verification of e-Auction Protocols 257

This definition has several shortcomings: Firstly, it ensures receipt-freeness only for
one losing bidder, whereas in reality several bidders might be under attack. Secondly, it
does not necessary ensures the privacy of other bidders: Consider for example a proto-
col that allows a losing bidder to create a fake receipt for himself (e.g. using a trapdoor
to generate a different decryption key), and that reveals all submitted bids to the partic-
ipating bidders (e.g. to enable verifiability). Such a protocol would be secure according
to above definition, but it would imply that a coercer can ask to a bidder to reveal the
other participants bids, violating their privacy. To address these issues, we propose the
following notions, inspired by some definitions developed for electronic voting [20] and
the above privacy notions.

Definition 22. An electronic auction protocol ensures RF-XXX if for any two auction
processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al) and APB =

νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) such that

– if XXX=BPS (Bidding-Price-Secrecy), there exists a j with bj,A = bj,B =maxi bi,A
= maxi bi,B and for any subset I ⊂ {1, . . . , j − 1, j + 1, . . . k},

– if XXX=U (Unlinkability), there exists j with bj,A = bj,B = maxi bi,A = maxi bi,B
and a permutation Π with ∀i : bi,B = bΠ(i),A, and for any subset I ⊂ {1, . . . , j −
1, j + 1, . . . k},

– if XXX=SA (Strong Anonymity), maxi bi,A = maxi bi,B and for any subset I ⊂
{1, . . . , k},

– if XXX=WA (Weak Anonymity), here exists a permutation Π with ∀i : bi,B =
bΠ(i),A, and for any subset I ⊂ {1, . . . , k},

there exist processes B′
i such that we have ∀i ∈ I : B

′\out(chci,·)
i ≈l Bσidiσbi,B and

AP ′
A

[
|

i∈I

(Bσidiσvi,A)
chci

]
≈l AP

′
B

[
|

i∈I

B′
i

]
Consider the first case, (RF-BPS): In this definition any subset of losing bidders may
create fake receipts at the same time, and the other bidders can also change their bids.
It is easy to see that this definition implies Simple Receipt-Freeness (SRF).

Similarly to our privacy definitions, we can also weaken (RF-BPS) and only con-
sider cases where the bids are merely unlinkable to the bidders, by only considering
permutations of the bids: We obtain (RF-U).

The third notion (RF-SA) is stronger in the sense that we also allow the winning
bidder to be under attack, i.e. a winner needs to be able to create a fake receipt that
proves that he lost, and a losing bidder needs to be able to create a fake receipt that
proves that he won. Note that an attacker might ask a losing bidder to prove that he bid
a certain price before the auction is over. If the bidder decides to bid less and create
a fake receipt, the attacker may notice that he got a fake receipt if for example the
winning bid is less than the price on the receipt. This is however an inherent problem
of auctions, but our definition guarantees that a losing bidder can create a fake receipt
for the winning price once the auction is over and the winning price is known.

Again, we can define a weaker version where the list of prices may be public, but it
has to be unlinkable to the bidders, even for the winner: (RF-WA). It is easy to see that



258 J. Dreier, P. Lafourcade, and Y. Lakhnech

(RF-SA) implies (RF-BPS) and (RF-WA), and that both (RF-BPS) and (RF-WA) imply
(RF-U). Note that this definition implicitly assumes that all bidders not under attack are
honest. If one also wants to consider corrupted bidders, this can be modeled by replacing
some of the honest bidders Bσidiσbi,X by corrupted bidders (Bσidiσbi,X )c

i
1,c

i
2 .

Finally, the following definition is a generalization of Receipt-Free Strong Anony-
mity (RF-SA) (analogous to (P) and (SA)): Any two instance giving the same result
have to be bisimilar, even if bidders are under attack.

Definition 23. A auction protocol ensures Receipt-Freeness (RF) if for any two auction
processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al) and APB =

νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) and any subset I ⊂ {1, . . . , k},

there exist processes B′
i such that we have ∀i ∈ I : B

′\out(chci,·)
i ≈l Bσidiσbi,B and

APA|res ≈l APB |res ⇒ AP ′
A

[
|

i∈I

(Bσidiσvi,A)
chci

]
≈l AP

′
B

[
|

i∈I

B′
i

]
.

Similarly to Privacy (P), we prove that for protocols implementing a First-Price Sealed-
Bid Auction (First-Price Sealed-Bid Auction), Receipt-Free Strong Anonymity (RF-
SA) and Receipt-Freeness coincide.

Coercion-Resistance. Coercion-Resistance is a stronger property than receipt-freeness:
The intruder may not only ask for a receipt, but is also allowed to interact with the bid-
der during the bidding process and to give orders. We can generalize the previously
discussed Receipt-Freeness notions to Coercion-Resistance as follows.

Definition 24. An electronic auction protocol ensures CR-XXX if for any two auction
processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al) and APB =

νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) such that

– if XXX=BPS (Bidding-Price Secrecy): there exists a j with bj,A = bj,B =maxi bi,A
= maxi bi,B and for any subset I ⊂ {1, . . . , j − 1, j + 1, . . . k},

– if XXX=U (Unlinkability): there exists a j with bj,A = bj,B =maxi bi,A =maxi bi,B
and there exists a permutation Π with ∀i : bi,B = bΠ(i),A and for any subset
I ⊂ {1, . . . , j − 1, j + 1, . . . k},

– if XXX=SA (Strong Anonymity): maxi bi,A = maxi bi,B and for any subset I ⊂
{1, . . . , k},

– if XXX=WA (Weak Anonymity): there exists a permutation Π with ∀i : bi,B =
bΠ(i),A and for any subset I ⊂ {1, . . . , k},

there exist processes B′
i such that for any contexts Ci, i ∈ I with Ci = νc1.νc2.( |Pi),

ñ∩ fn(C) = ∅ and AP ′
A

[
|

i∈I

Ci

[
(Bσidiσbi,A)

c1,c2
]]

≈l AP
′
A

[
|

i∈I

(Bσidiσbi,A)
chci

]
we have ∀i ∈ I : Ci [B

′
i]
\out(chci,·) ≈l Bσidiσvi,B and

AP ′
A

[
|

i∈I

Ci

[
(Bσidiσvi,A)

c1,c2
]]

≈l AP
′
B

[
|

i∈I

Ci [B
′
i]

]
The difference to the previous receipt-freeness definitions is that the attacked bidders do
not only reveal their data on channel c1, but also take orders on channel c2. The context



Formal Verification of e-Auction Protocols 259

Ci models the attacker that tries to force them to bid the price bi,A (this is expressed by
the condition on Ci). The protocol is hence coercion-resistant if there exists a counter-
strategy B′ which allow the bidders to bid bi,B instead without the attacker noticing.
For non sealed-bid first-price auction, we obtain the following definition.

Definition 25. An auction protocol ensures Coercion-Resistance (CR) if for any two
auction processes APA = νñ′.(Bσid1σb1,A | . . . | Bσidk

σbk,A
| S | A1 | . . . | Al)

and APB = νñ′.(Bσid1σb1,B | . . . | Bσidk
σbk,B

| S | A1 | . . . | Al) and any subset
I ⊂ {1, . . . , k}, there exists processes B′

i such that for any contexts Ci, i ∈ I with
Ci = νc1.νc2.( |Pi), ñ ∩ fn(C) = ∅ and

AP ′
A

[
|

i∈I

Ci

[
(Bσidiσbi,A)

c1,c2
]]

≈l AP
′
A

[
|

i∈I

(Bσidiσbi,A )
chci

]
we have ∀i ∈ I : Ci [B

′
i]
\out(chci,·) ≈l Bσidiσvi,B and

APA|res ≈l APB|res ⇒ AP ′
A

[
|

i∈I

Ci

[
(Bσidiσvi,A )

c1,c2
]]

≈l AP
′
B

[
|

i∈I

Ci [B
′
i]

]
Again we can prove that for protocols implementing a First-Price Sealed-Bid Auction
(FPSBA), Coercion-Resistant Strong Anonymity (CR-SA) and Coercion-Resistance
(CR) coincide.

4 Case Studies

We applied the previously explained definitions on two case studies using ProVerif [27–
29]: the protocol by Curtis et al. [6], and the protocol by Protocol by Brandt [3].

4.1 Protocol by Curtis, Pierprzyk and Seruga [6]

The protocol by Curtis et al. [6] was designed to support sealed-bid first- and second
price auctions while guaranteeing fairness, privacy, verifiability and non-repudiation.

Informal Description. The main idea of the protocol is the following: The bidders
register with a trusted Registration Authority (RA) using a Public-Key Infrastructure
(PKI), which issues pseudonyms that will then be used for submitting bids to the Seller
(S). It is split into three phases: Registration, Bidding, and Winner determination.

– Registration: Each bidder sends his identity, a hash of his bidding price bi and a
signature of h(bi) to the RA. The RA checks the identity and the signature using
the PKI, and replies with an encrypted (using the bidder’s public key) and signed
message containing a newly generated pseudonym p and the hashed bid h(bi).

– Bidding: The RA generates a new symmetric key k. Each bidder will send c =
EncpkS (bi), his bid bi encrypted with the seller’s public key, and a signature of c,
together with his pseudonym to the RA. The RA will reply with a signature on c,
and encrypts the bidders message, together with the hashed bid h(bi) from phase
one, using the symmetric key k. This encrypted message is then send to the seller.



260 J. Dreier, P. Lafourcade, and Y. Lakhnech

– Winner determination: After all bids have been submitted, the RA will reveal the
symmetric key k to the seller. The seller can then decrypt the bids, verify the cor-
rectness of the hash and determine the winner. To identify the winner using the
pseudonym he can ask the RA to reveal the true identity.

Formal Model. We modeled the protocol in ProVerif using a standard equational
theory for symmetric encryption (functions senc and sdec), asymmetric encryption
(functions enc, dec and pubkey – which generates the public key corresponding to
a secret key) and signatures (functions sign, checksign and getmessage):

sdec(senc(m, key), key) = m
dec(enc(m, pubkey(sk)), sk) = m

checksign(sign(m, sk), pubkey(sk)) = m
getmessage(sign(m, sk)) = m

Due to space limitations we cannot include the full model here, the ProVerif code is
available on our website [31].

Analysis. We assume a honest RA and an honest seller.

Non-Repudiation (NR): To prove (NR), we have to show that on each possible trace
the event won(p,id) is preceded by the event bid(p,id). ProVerif can verify such
properties using queries, in this case using the query

query p:price,id:identity;
event(won(p,id)) ==> event(bid(p,id)).

This query means that for any value p of type price and any id of type identity, if
the event won(p,id) is recorded, it is preceded by the event bid(p,id). ProVerif
finds the following attack: Since the channel between the Registration Authority and
the Seller is not protected, anybody can pretend to be the RA and submit false bids,
encrypted with a self-chosen symmetric key. After all false bids are submitted, the at-
tacker reveals the symmetric key and the seller will decrypt the bogus bids. Hence the
event won(p,id) can be emitted on a trace without any event bid(p,id). We pro-
pose a solution to address this problem: If the messages from the RA to the seller are
signed, the attacker cannot impersonate RA any more and ProVerif is able to prove
Non-Repudiation for the accordingly modified protocol.

Non-Cancellation (NC): Here we have to show that even if a bidder reveals his secret
data to the intruder, the intruder cannot cancel a submitted bid, i.e. there is no trace
with the events recBid(p 1,id a) and won(p 2,id b) where p 1 > p 2. To
verify this we need to model at least two distinct prices, which can be implemented
using constants, i.e. by setting p 1 = max price and p 2 = smaller price,
where max price and smaller price are two constants such that max price >
smaller price3. Then we want to test the conjunction (not the precedence as above)

3 Note that most auction protocols assume a finite number of possible prices anyway, which we
can model using a list of constants.



Formal Verification of e-Auction Protocols 261

of two events, which is not possible directly in ProVerif. A well-known solution is to
replace the underlying events with messages over a private channel to a newly added
processes which will call a conjunction event recBid and won once he received all
the messages. Then we can use the following query:

query event(recBid and won(max price, id a,
smaller price, id b)).

where the first two parameters are from the event recBid(p 1,id a) and the second
from the event won(p 2,id b), here instantiated with price constants as explained
above and two constants for two different bidders. For the original protocol, ProVerif
finds a similar attack to the one described above: An attacker can delete the messages
sent by the the RA to the seller, and choose a symmetric key and send bogus messages
containing prices of his choice instead. When he reveals the symmetric key, a bidder of
his choice will win, hence there will be an event won(smaller price,id b) for
a smaller price than the one recorded by recBid(max price,id a). Even if we
add signatures as proposed above, ProVerif still comes up with an attack: A dishonest
bidder might submit a first bid triggering the event recBid for this bid, delete the
forwarded message to the seller, and then submit a second bid at a different price. A
first attempt to fix this issue would be – as proposed in the original paper – by including
the number of bids in the message where the RA reveals the symmetric key. This would
allow the seller to verify if he received the correct number of bids. However the attack
still works if two auctions take place in parallel: Since the RA uses the same PKI in
both cases, he will use the same keys. The malicious bidder could register in the second
auction, obtain the signed bid and replace his original bid with this message. The new
message will include a different pseudonym, but the seller has no means of verifying if
a pseudonym corresponds to the current auction. A solution would be to use different
keys for different auctions (which need to be set up in a secure way), but we were unable
to verify the resulting protocol because of some limitations of ProVerif: For example
the counting of messages requires to maintain state information for the RA.

Noninterference: It is clear that the protocol does not ensure Strong Noninterference
(SN) since an attacker can simply count the number of messages to determine the num-
ber of participants. However we can check Weak Noninterference (WN), i.e. that any
two instances containing the same bidders and only differing in the bids are bisimilar
up to the end of the bidding phase, using the following query in ProVerif:

noninterf b 1, ..., b n.

This query will ask ProVerif to verify strong secrecy of the variables b 1, ...,
b n., i.e. to check that any two instances of the protocol that only differ in these vari-
ables are bisimilar. For the original protocol ProVerif finds an attack which is based on
the first message, which includes the hashed bidding price. An attacker simply hashes
the possible values and compares the result. If we encrypt this message using the RA’s
public key, ProVerif is able to prove Weak Noninterference (WN). This modification
was proposed in the original paper to achieve anonymity of bidders, but turns out to be
also necessary to ensure fairness.



262 J. Dreier, P. Lafourcade, and Y. Lakhnech

Highest Price Wins (HPW): Here we have to show that a malicious bidder cannot win
the auction at a chosen price, even if another bidder submitted a higher bid. Again, we
will assume that we have a finite number of possible prices. Then we can check the
property using ProVerif by modeling two bidders, the first one bidding max price, and
the second one is corrupted by the adversary (according to Def. 7). To prevent the ad-
versary from just winning using the highest possible price (which would not necessarily
correspond to an attack), we declare the constant max price private4. We also have to
be sure that the protocol does not leak max price before the end of the bidding phase
(which would contradict the intention of declaring it private). As we already showed
Weak Noninterference (WN), we can be sure that this is not the case. Hence we can
check if the event won is reachable for the corrupted bidder id B using the following
query

query p:price; event(won(p, id B)).

Since bidder id A submitted the highest possible price and the attacker cannot access
and submit this value, he should be unable to make id B win the auction. For the orig-
inal protocol – only corrected with added encryption of the first bid to ensure Weak
Noninterference –, ProVerif finds an attack again using the fact that the messages from
the RA to the Seller are not authenticated, hence an attacker can pretend to be RA and
submit bids of his choice to win the auction at a price of his choice. If we add signatures
again, ProVerif still comes up with an attack: A dishonest bidder might register twice
and then replace the message from the RA to the seller containing the correct bid with
his own, bogus bid obtained using the second registration. As above, this could prob-
ably be circumvented by counting the messages and using different keys for different
auction, but we hit again the limitations of ProVerif when trying to model and verify
the resulting protocol.

Privacy: The authors claim in the original paper that if the first message is encrypted,
their protocol ensures anonymity of the bidders. Yet we can see that it does not en-
sure Strong Anonymity (SA) since after the symmetric key has been published, an at-
tacker can obtain a list with hashes of all bids, which allows to distinguish h(bA), h(bC)
from h(bB), h(bC). Hence we checked Weak Anonymity (WA) using the choice[]
operator in ProVerif, which verifies if the processes obtained by instantiating a vari-
able with two different values are bisimilar. More precisely, we can check if for two
swapping bidders (the first bidder bids b A = choice[b 1,b 2], the second b B
= choice[b 2,b 1]) the resulting processes are bisimilar. This query leads to an-
other possible attack: The intruder might delay the messages from the second bidder.
He waits until the first bidder sent his final message and this was relayed to the seller by
the RA. This allows the attacker to link this message to the first bidder and distinguish
both cases based on the hash after decrypting the message using the published symmet-
ric key. This type of attack is well-known in electronic voting [18]. As a solution, we
have to ensure that both messages to the seller are sent at exactly the same time using

4 In the definition we did not require A to submit the highest possible bid, but only a higher
bid than anybody else. We could model the existence of higher prices by defining additional
private constants, but this would not change the verification task since they are never used by
any honest participants and are not accessible to the attacker.



Formal Verification of e-Auction Protocols 263

synchronization. Inspired by some techniques used in ProSwapper [32], we prove that
the accordingly modified protocol ensures Weak Anonymity (WA).

It is also clear that the protocol is neither Receipt-Free nor Coercion-Resistant for
any of the proposed notions since the hashed bidding price in the first message can be
used as a receipt. Even if this message is encrypted, the data used to encrypt (keys,
random values) can be used as a receipt. Note that for all properties ProVerif responds
in less than a second on a standard PC.

4.2 Protocol by Brandt [3]

The protocol by Brandt [3] was designed to ensure full privacy in a completely dis-
tributed way. It exploits the homomorphic properties of a distributed El-Gamal Encryp-
tion scheme for a secure multi-party computation of the winner.

Informal Description. The participating bidders and the seller communicate using
a bulletin board, i.e. an append-only memory accessible for everybody. The bids are
encoded as bit-vectors where each entry corresponds to a price. The protocol then uses
linear algebra operations on the bid vectors to compute a function fi, which returns a
vector containing one zero if the bidder i submitted the highest bid, and only random
numbers otherwise. To be able to compute this function in a completely distributed
way, and to guarantee that no coalition of malicious bidders can break privacy, these
computations are performed on the encrypted bids using homomorphic properties of a
distributed El-Gamal Encryption.

In a nutshell, the protocol realizes the following steps:

1. Firstly, the distributed key is generated: each bidder chooses his part of the secret
key and publishes the corresponding part of the public key on the bulletin board.

2. Each bidder then computes the joint public key, encrypts his offer using this key
and publishes it on the bulletin board.

3. Then the auction function f is calculated for every bidder using some operations
exploiting the homomorphic property of the encryption scheme.

4. The outcome of this computation (n encrypted values) are published on the bulletin
board, and each bidder partly decrypts each value using his secret key.

5. These shares are posted on the bulletin board, and can be combined to obtain the
result.

Formal Model. Modeling the exchanged messages is straightforward (see [31] for the
ProVerif code). Modeling the distributed encryption scheme and the distributed compu-
tations is a more challenging task since a too abstract model might miss attacks, whereas
a too fine-grained model can lead to non-termination or false attacks.

The protocol assumes a finite set of possible prices, which we will model as constants
p 1,...,p n. Assuming q bidders, we can define the following equational theory to
model steps 3 and 4 of the protocol:

f(enc(b 1, pkey, r 1), ..., enc(b q, pkey, r q), sk i)
= share((maxi{b i}, argmaxi{b i}), (b 1, ..., b q), pkey, sk i, g(r 1, .., r q))



264 J. Dreier, P. Lafourcade, and Y. Lakhnech

This equation models the following properties of the function f: If we have bids b 1,
..., b q encrypted using the same joint public key pkey, some random values r 1,
... ,r q, and a part sk i of the secret key we obtain a share of the function outcome,
i.e. the tuple (winning price, id of the winner), for the same public and secret keys and
a function of the used random values. Since the share will look slightly different de-
pending on the bids even if winning bid is the same, we also include b 1,...,b q in
the share. This is necessary to avoid false attacks in ProVerif. The next equation cor-
responds to step 5 of the protocol and uses the function combine(pk(k 1), ...,
pk(k q)) which models the computation of the joint public key based on the individ-
ual ones.

dec(share(m, x 1, combine(pk(k 1), ..., pk(k q)), k 1, r 1), ...,
share(m, x q, combine(pk(k 1), ..., pk(k q)), k q, r q)) = m

The equation models that knowing all shares of the function outcome allows to decrypt
it, if

– all shares have been constructed using the same joint public key, which was com-
puted using the function combine from the individual public keys, and

– the individual public keys were computed from the same secret keys that were used
to compute the shares.

Since the number of different prices n and the number of participants q are finite, we
can enumerate all possible equations. In particular we can list all possible parameters
of the function f, which allows us to enumerate all instances and replace the max and
argmax functions which their actual values. This yields a convergent equational theory,
which allows ProVerif to verify all the tested properties in less than one second.

Analysis. We use the same ProVerif techniques we discussed in the previous section.
Essentially the protocol ensures none of the defined properties, mainly due the lack of
authentication, even if all parties are trusted. The attacker can simulate a completely
different protocol execution towards the seller (i.e. setting up keys, encrypting bids of
his choice, doing the calculation, and publishing the shares), which allows attacks on
Non-Repudiation (a trace with event won, but without event bid), Non-Cancellation
(a trace with event recBid and event won with a different, lower bid from the same
bidder) and Highest Price Wins (the eventwonwith a lower bid from a corrupted bidder
is reachable).

Although the protocol claims to be fully private, ProVerif finds an attack that allows
to completely uncover a bidder’s bid: Since there is no authentication, an intruder can
simulate all other parties with respect to a participant. He will generate secret keys,
publish the according public keys and on reception of the attacked bidder’s bid, simply
copy it and claim that it is his own bid. Then the joint computation and decryption will
take place, and the announced winning price will be attacked bidder’s offer, which is
hence public. Note that this is not an attack on the security of the computation, but on
the structure of the protocol.

It is also clear that the protocol does not ensure Strong Noninterference since the
number of participants is public, which allows to distinguish instances with different
number of participants. However we prove Weak Noninterference using choice[]
(the use of noninterf leads to false attacks). The ProVerif-code is available in [31].



Formal Verification of e-Auction Protocols 265

5 Conclusion and Future Work

We provided a framework to formally verify security properties in e-Auction protocols.
In particular we discussed how protocols can be modeled in the Applied π-Calculus and
how security properties such as different notions of Privacy, Fairness and Authentica-
tion can be expressed. We analyzed the relationship between the different notions and
detailed a hierarchy of privacy notions (Fig. 2).

Using two case studies [3, 6], we showed how our definitions can be applied on
existing protocols and are suitable for automated analysis using ProVerif. The results
were surprising: One of the two protocols provided none of our security notions with-
out modifications, the other protocol only one. It was particularly interesting to see that
even the protocol by Brandt did not ensure privacy, although it was especially designed
with privacy in mind. The discovered flaw is however not an attack on the cryptographic
primitive used, but on the protocol architecture. This underlines again the complexity
of designing secure protocols: A combination of secure building blocks can be inse-
cure. In case of the protocol by Curtis et al. we also subsequently discussed several
modifications to improve security.

As future work, we would like to verify Non-Cancellation and Highest Price Wins
on the modified protocol by Curtis et al., which was not possible directly in ProVerif.
There exist extensions which allow to model states, e.g. StatVerif [33] which might be
used in this case.

References

1. Krishna, V.: Auction Theory. Academic Press (2002)
2. Brandt, F.: A verifiable, bidder-resolved auction protocol. In: Proceedings of the 5th AAMAS

Workshop on Deception, Fraud and Trust in Agent Societies, pp. 18–25 (2002)
3. Brandt, F.: How to obtain full privacy in auctions. International Journal of Information Se-

curity 5, 201–216 (2006)
4. Brandt, F., Sandholm, T.: On the existence of unconditionally privacy-preserving auction

protocols. ACM Trans. Inf. Syst. Secur. 11, 6:1–6:21 (2008)
5. Passch, C., Song, W., Kou, W., Tan, C.-J.: Online Auction Protocols: A Comparative Study.

In: Kou, W., Yesha, Y., Tan, C.J.K. (eds.) ISEC 2001. LNCS, vol. 2040, pp. 170–186.
Springer, Heidelberg (2001)

6. Curtis, B., Pieprzyk, J., Seruga, J.: An efficient eauction protocol. In: ARES, pp. 417–421.
IEEE Computer Society (2007)

7. Franklin, M., Reiter, M.: The design and implementation of a secure auction service. In:
Proceedings of the 1995 IEEE Symposium on Security and Privacy, pp. 2–14 (May 1995)

8. Harkavy, M., Tygar, J.D., Kikuchi, H.: Electronic auctions with private bids. In: Proceedings
of the 3rd USENIX Workshop on Electronic Commerce, pp. 61–74 (1998)

9. Kikuchi, H., Harkavy, M., Tygar, J.D.: Multi-round anonymous auction protocols. In: Pro-
ceedings of the First IEEE Workshop on Dependable and Real-Time E-Commerce Systems,
pp. 62–69. Springer (1998)

10. Lee, B., Kim, K., Ma, J.: Efficient Public Auction with One-Time Registration and Public
Verifiability. In: Pandu Rangan, C., Ding, C. (eds.) INDOCRYPT 2001. LNCS, vol. 2247,
pp. 162–174. Springer, Heidelberg (2001)

11. Omote, K., Miyaji, A.: A Practical English Auction with One-Time Registration. In: Varad-
harajan, V., Mu, Y. (eds.) ACISP 2001. LNCS, vol. 2119, pp. 221–234. Springer, Heidelberg
(2001)



266 J. Dreier, P. Lafourcade, and Y. Lakhnech

12. Abe, M., Suzuki, K.: Receipt-Free Sealed-Bid Auction. In: Chan, A.H., Gligor, V.D. (eds.)
ISC 2002. LNCS, vol. 2433, pp. 191–199. Springer, Heidelberg (2002)

13. Stubblebine, S.G., Syverson, P.F.: Fair On-Line Auctions without Special Trusted Parties. In:
Franklin, M.K. (ed.) FC 1999. LNCS, vol. 1648, pp. 230–240. Springer, Heidelberg (1999)

14. Subramanian, S.: Design and verification of a secure electronic auction protocol. In: Pro-
ceedings of the 17th IEEE Symposium on Reliable Distributed Systems, SRDS 1998, pp.
204–210. IEEE Computer Society (1998)

15. Dong, N., Jonker, H., Pang, J.: Analysis of a Receipt-Free Auction Protocol in the Applied
Pi Calculus. In: Degano, P., Etalle, S., Guttman, J. (eds.) FAST 2010. LNCS, vol. 6561, pp.
223–238. Springer, Heidelberg (2011)

16. Küsters, R., Truderung, T., Vogt, A.: Accountability: definition and relationship to verifi-
ability. In: Proceedings of the 17th ACM Conference on Computer and Communications
Security, CCS 2010, pp. 526–535. ACM (2010)

17. Backes, M., Hritcu, C., Maffei, M.: Automated verification of remote electronic voting pro-
tocols in the applied pi-calculus. In: CSF 2008, pp. 195–209 (2008)

18. Delaune, S., Kremer, S., Ryan, M.: Verifying privacy-type properties of electronic voting
protocols. Journal of Computer Security 17, 435–487 (2009)

19. Dreier, J., Lafourcade, P., Lakhnech, Y.: Vote-Independence: A Powerful Privacy Notion for
Voting Protocols. In: Garcia-Alfaro, J., Lafourcade, P. (eds.) FPS 2011. LNCS, vol. 6888,
pp. 164–180. Springer, Heidelberg (2012)

20. Dreier, J., Lafourcade, P., Lakhnech, Y.: Defining Privacy for Weighted Votes, Single and
Multi-voter Coercion. In: Foresti, S., Yung, M., Martinelli, F. (eds.) ESORICS 2012. LNCS,
vol. 7459, pp. 451–468. Springer, Heidelberg (2012)

21. Dreier, J., Lafourcade, P., Lakhnech, Y.: A formal taxonomy of privacy in voting protocols.
In: First IEEE International Workshop on Security and Forensics in Communication Sys-
tems, ICC 2012 WS - SFCS (2012)

22. Küsters, R., Truderung, T.: An Epistemic Approach to Coercion-Resistance for Electronic
Voting Protocols. In: S&P 2009, pp. 251–266. IEEE Computer Society (2009)

23. Smyth, B., Cortier, V.: Attacking and fixing helios: An analysis of ballot secrecy. In: CSF
2011, pp. 297–311. IEEE (2011)

24. Klay, F., Vigneron, L.: Formal aspects in security and trust, pp. 192–209. Springer (2009)
25. Liu, J., Vigneron, L.: Design and verification of a non-repudiation protocol based on receiver-

side smart card. Information Security, IET 4(1), 15–29 (2010)
26. Abadi, M., Fournet, C.: Mobile values, new names, and secure communication. In: POPL

2001, pp. 104–115. ACM, New York (2001)
27. Blanchet, B.: An Efficient Cryptographic Protocol Verifier Based on Prolog Rules. In: CSFW

2001, pp. 82–96. IEEE Computer Society, Cape Breton (2001)
28. Blanchet, B.: From Secrecy to Authenticity in Security Protocols. In: Hermenegildo, M.V.,

Puebla, G. (eds.) SAS 2002. LNCS, vol. 2477, pp. 342–359. Springer, Heidelberg (2002)
29. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of selected equivalences for

security protocols. Journal of Logic and Algebraic Programming 75(1), 3–51 (2008)
30. Dreier, J., Lafourcade, P., Lakhnech, Y.: Formal verification of e-auction protocols. Technical

Report TR-2012-17, Verimag Research Report (October 2012),
http://www-verimag.imag.fr/TR/TR-2012-17.pdf

31. Dreier, J.: The proverif code used to automatically verify the examples is available at
http://www-verimag.imag.fr/˜dreier/papers/post-code.zip (2012)

32. Klus, P., Smyth, B., Ryan, M.D.: Proswapper: Improved equivalence verifier for proverif
(2010), http://www.bensmyth.com/proswapper.php

33. Arapinis, M., Ritter, E., Ryan, M.D.: Statverif: Verification of stateful processes. In: CSF
2011, pp. 33–47. IEEE Computer Society (2011)

http://www-verimag.imag.fr/TR/TR-2012-17.pdf
http://www-verimag.imag.fr/~dreier/papers/post-code.zip
http://www.bensmyth.com/proswapper.php


Sessions and Separability in Security Protocols�

Marco Carbone1 and Joshua D. Guttman2

1 IT University of Copenhagen
carbonem@itu.dk

2 Worcester Polytechnic Institute
guttman@wpi.edu

Abstract. Despite much work on sessions and session types in non-
adversarial contexts, session-like behavior given an active adversary has
not received an adequate definition and proof methods. We provide a
syntactic property that guarantees that a protocol has session-respecting
executions. Any uncompromised subset of the participants are still guar-
anteed that their interaction will respect sessions. A protocol transfor-
mation turns any protocol into a session-respecting protocol.

We do this via a general theory of separability. Our main theorem
applies to different separability requirements, and characterizes when we
can separate protocol executions sufficiently to meet a particular require-
ment. This theorem also gives direct proofs of some old and new protocol
composition results. Thus, our theory of separability appears to cover
protocol composition and session-like behavior within a uniform frame-
work, and gives a general pattern for reasoning about independence.

Keywords: Sessions, Security Protocols, Strand Spaces.

1 Introduction

A transaction or protocol respects sessions if the local runs of the individual par-
ticipants always match up globally in a compatible way. When one participant
receives any message in a session σ, it should have been sent by another par-
ticipant acting within the same session σ. Session-respecting behavior is often
studied using session types [21,22]. However, most work in this tradition studies
sessions within a benign execution environment.

We adapt those ideas to environments containing active adversaries, who may
control the medium of communication [28,15,4]. We define session-respecting
behavior in an adversarial environment, offering syntactic conditions that ensure
a protocol’s behavior respects sessions. We exhibit a transformation that, given
any protocol, yields one with session-respecting behavior.

Our central idea is separability. In an execution, an adversary may receive a
message from one session and deliver it, or its fragments, into another session. In
this case, we would like to separate the sessions by removing the connection that

� Carbone thanks the Danish Agency for Science, Technology and Innovation, and
Guttman thanks the US National Science Foundation under grant CNS-0952287.
Extended version at http://www.cs.wpi.edu/~guttman/pubs/CG13_long.pdf.

D. Basin and J.C. Mitchell (Eds.): POST 2013, LNCS 7796, pp. 267–286, 2013.
© Springer-Verlag Berlin Heidelberg 2013

http://www.cs.wpi.edu/~guttman/pubs/CG13_long.pdf


268 M. Carbone and J.D. Guttman

the adversary has created. Separability means we can do this, possibly applying
a renaming to one of them so that they involve different parameters. Although
the adversary can create connections between different session, these connec-
tions are inessential. They can be removed modulo renaming. Hence, anything
the adversary can achieve in a session, he can also do without relying on any
other session. No successful attack requires unwitting support from participants
engaged in a different session.

Session separability clarifies the real world effects of a protocol. Suppose a
protocol allows a customer to buy merchandise through a broker, who receives
a commission from a manufacturer. Can the broker manipulate the protocol so
one interaction with the customer allows two interactions with the manufacturer?
Can the broker receive his commission for the same transaction twice?

Suppose a compliant customer and manufacturer interact with a dishonest
broker in a separable protocol. If messages from the single customer run reach
local runsM1,M2 for the manufacturer, they will belong to the same session. Al-
ternatively one runM belongs to no session, i.e. it occurs with no involvement of
a customer. These conditions are easy for a protocol designer to analyze. To pro-
tect against the first, the manufacturer should contribute a fresh random value
(“nonce”) to help define the session. Then distinct manufacturer runs always
belong to different sessions. To protect against the second, some authentication
is needed between manufacturer and customer, a familiar and well-understood
problem. Thus, separability reduces the no-double-commission property to sim-
ple characteristics of the protocol.

Strand spaces offer a partially ordered model; protocol executions (“bundles”)
are annotated directed acyclic graphs [30,20,18]. The edges represent causal rela-
tions. We interpret separation properties in terms of the absence of causal paths
in these graphs, or the ability to find a related graph without them.

Contributions. Our main result, the Separability Theorem (Thm. 16), tells
how to take an execution of a protocol and modify it into another execution that
satisfies separability. It applies to a range of different separability specifications.
Each separability specification is a partial order that says which kinds of events
are allowed to causally affect which others.

Our result about sessions, Thm. 17, says that the syntactic conditions in
Def. 8—mainly concerning “session nonces” that serve to define sessions—entail
the premise of Thm. 16. Thus, executions can be made to satisfy a separability
specification defined in terms of these nonces. We also provide a transformation
that strengthens any protocol to one that satisfies these conditions (Thm. 10).

Thm. 16 also applies to other separability specifications. We apply it to pro-
tocols with “disjoint encryption” in three slightly different senses (Thms. 19–
21), thereby yielding variants, sometimes sharpenings, of a number of results
on preserving security goals under protocol composition [19,1,9,8,11]. Thus,
the Separability Theorem formalizes a pattern of reasoning with wide appli-
cability in protocol design and analysis. It unites session-oriented reasoning
with protocol composition. All proofs are relegated to the extended version
http://www.cs.wpi.edu/~guttman/pubs/CG13_long.pdf.

http://www.cs.wpi.edu/~guttman/pubs/CG13_long.pdf


Sessions and Separability in Security Protocols 269

Related Work. Various flavors of sessions and separability have already played
roles within protocol analysis and design. Among approaches based on compu-
tational methods, a session notion is often used to define the local runs that au-
thentication should connect, as with Bellare and Rogaway [4]; in some models the
sessions are defined by a bitstring that may be chosen by the adversary or built
out of random contributions from the participants (e.g. Canetti-Krawczyk [7]).
The Universal Composability model also assumes a random value that con-
tributes to each cryptographically prepared unit and acts as a session identi-
fier [6]; for a recent and more flexible alternative, see Küsters and Tuengerthal [24].

If different sessions of a protocol can never affect one another, then this sim-
plifies analysis. The designer can explore the outcomes possible with a single
instance of each role in the protocol. Indeed, Lowe’s original proof that his
changes to Needham-Schroeder were correct used a separability argument. He
proved that any run could involve at most two non-separable instances of either
role, and then model-checked the possible two-instance runs [25]. Lowe and Al-
laa Kamil [23] use separability to establish properties of TLS, such as that the
adversary cannot divert application data from one TLS session to another. Their
path-based methods within the strand space framework motivated some of the
techniques used below in §4.

Cortier et al. [10] propose a protocol transformation, which they prove correct
using session separability. Given a protocol satisfying any security property in
an environment with a passive adversary, their transformation returns a new
protocol that satisfies that property despite an active adversary. Their trans-
formation adds freshly-generated nonces to the original protocol; this suggested
our treatment of nonces in Thm. 10. Their transformation then inserts all of
these nonces in with each message of the original protocol, which is signed and
then encrypted. Our transformation does not add any additional cryptographic
operations, but simply inserts the nonces into any pre-existing cryptographic
units. This simpler treatment suffices because we are here exclusively concerned
with separability, rather than any particular security goals. Another contrast
concerns the adversary model. Their result concerns only sessions in which ev-
ery participant is compliant, whereas our separability holds for the compliant
participants, even in sessions with non-compliant participants.

Arapinis, Delaune, and Kremer [2] also offer a separability argument, leading
to a protocol transformation which guarantees secrecy. The transformation adds
nonces to each encrypted or signed term, although, together with nonces, it
also adds principal names. Only the former is needed for separability; the latter
helps with secrecy. Their transformation appears to generalize Lowe’s fix to
Needham-Schroeder. A subsequent paper with Ryan [12] investigates tagged
password-based protocols, where the “tags” are tuples of session parameters
hashed in with the key. They show that their composition is resistant to guessing
attacks. Their proofs appear to establish particular instances of our Separability
Theorem. We conjecture that our methods reconstruct their results, although
proving this would require reformulating behavioral equivalences (in addition to
trace properties) within our framework.



270 M. Carbone and J.D. Guttman

Deniélou et al. in [5] provide a compiler for generating ML code from mul-
tiparty protocol specifications. Their main result (Session Integrity Theorem)
shows that there is no interference between multiple instances of the same pro-
tocol. Such a result could also be modeled in our framework as a variant of
protocol independence. As we have mentioned, our approach also seems to cap-
ture the essence of several protocol composition results [19,1,9,8,11].

Separability also allows full verification within the bounded-session model of
protocol analysis [29,26,3], rendering many classes of problems decidable.

In [17] we offer a logical language that can formalize the security goals that
are preserved when omitting separable local runs.

2 Strand Spaces, with a Session Protocol

We first summarize the strand space terminology we will use in this paper.
See [30,18] for more detail on strand spaces and our terminology.

We also introduce an example to illustrate separability, the Trusted Broker
Service, in which a server S acts as a broker to match clients C1 and C2, who
are executing different roles. S provides them with a key K to use to initiate an
exchange. Clients trust the broker to generate a fresh key; to distribute it only
to compliant principals; and to choose an appropriate pairing of clients.

Messages. Let Alg0 be an algebra equipped with some operators and a set of
homomorphisms η : Alg0 → Alg0. We call the members of Alg0 basic values.

Alg0 is the disjoint union of infinite sets of nonces, basic keys, names, and
texts. The operators sk(a) and pk(a) map names to signature keys and public
encryption keys. K−1 maps an asymmetric basic key to its inverse, and a sym-
metric basic key to itself. Homomorphisms η are maps that that respect sorts and
the operators sk(a), pk(a), and K−1. An infinite set X disjoint from Alg0—the
indeterminates—act like unsorted variables.

The algebra Alg of messages is freely generated from Alg0 ∪X by two oper-
ations: encryption {|t0|}t1 and tagged concatenation tag t0 , t1. The tags tag are
drawn from some set TAG . For a distinguished tag nil, we write nil t0 , t1 as
t0 , t1. In {|t0|}t1 , a non-basic key t1 is a symmetric key. To reduce cases in proofs,
we do not introduce digital signature and hashing as separate operations. We can
encode hashes hash(t) as encrypting t with a public key Kh, where no principal
holds the inverse decryption key K−1

h . A digital signature [[ t ]]K is encoded as
the concatenation t , {|hash(t)|}K .

A homomorphism α = (η, χ) : Alg → Alg pairs a homomorphism η on basic
values and a function χ : X → Alg; α(t) is defined by the conditions:

α(a) = η(a), if a ∈ Alg0 α({|t0|}t1) = {|α(t0)|}α(t1)
α(x) = χ(x), if x ∈ X α(tag t0 , t1) = tag α(t0) , α(t1)

We call these homomorphisms substitutions, and use them to plug in values
for parameters. Indeterminates x are blank slots, to be filled by any χ(x) ∈ Alg.

Messages t1, t2 have a common instance when there exist substitutions α, β
that identify them: α(t1) = β(t2). Alg has the most general unifier property. That
is, suppose that for v, w ∈ Alg, there exist any α, β such that α(v) = β(w). Then



Sessions and Separability in Security Protocols 271

there are α0, β0, such that α0(v) = β0(w), and for all α1, β1, if α1(v) = β1(w),
then α1 and β1 are of the forms γ ◦ α0 and γ ◦ β0.

Strands, Ingredients, and Origination. A strand is a sequence of local
actions called nodes, each of which is either a message transmission, written
• →, or else a message reception, written • ←. Strands may be written vertically,
or horizontally as in Fig. 1. This figure shows the behaviors of an initiating client
C1 and a responding client C2 with a broker or server S. The protocol, which
we call tbs, allows the broker to pair requests from suitable pairs of clients, and
distribute a session key to them.

If n is a node, and the message t is transmitted or received, then we write
t = msg(n). Double arrows indicate successive events on the same strand, e.g.
• ⇒ • ⇒ •. Each role in Fig. 1, and each column in Figs. 3,5 is a strand.

We write s ↓ i to mean the ith node along s, starting at s ↓ 1. The parameters
of s are the basic values and indeterminates in any msg(s ↓ i).

The ingredients of a message are those subterms that may be reached by
descending through concatenations, and through the plaintext but not the en-
cryption keys. The values that occur in it descend also through encryptions.
We write � (“is an ingredient of”) and / (“occurs in”), resp., for the smallest
reflexive, transitive relation such that

t1 � (t1 , t2) t2 � (t1 , t2) t1 � {|t1|}t2
t1 / (t1 , t2) t2 / (t1 , t2) t1 / {|t1|}t2 t2 / {|t1|}t2 .

We say that t originates on a node n if n is a transmission node, and t � msg(n),
and for all n0, if n0 ⇒+ n, then t 	� msg(n). A basic value a is freshly chosen
if it originates just once. We call it uniquely originating. In this case, a was
chosen by a participant, without the bad luck of any other principal selecting the
same value independently. A key is regarded as uncompromised if it originates
nowhere. We call a basic value a non-originating in a set of nodes B if there
is no n ∈ B such that a originates at n. It may still be used in B even if it does
not originate anywhere, since the regular strands may receive and send messages
encrypted by K or K−1, thus using K for encryption and decryption, resp.

A message t0 lies only inside encryptions in t with keys S iff, in t’s
abstract syntax tree, every path from the root to an occurrence of t0 traverses
an encryption, and if that occurrence is in the plaintext, then the key is in S.

Protocols. A protocol Π is a finite set of strands, called the roles of the
protocol. A regular strand for Π is any instance of one of the roles of Π , i.e. the
result α(ρ) of some substitution α on the parameters of a role ρ ∈ Π . Fig. 1 is an
example protocol. A protocol may also specify some parameters of a role that are
always non-originating or uniquely originating. We will also formalize adversary
behavior by strands (which use inverse). We stipulate a syntactic constraint:

Assumption 1. If ρ ∈ Π, then the key inverse symbol does not appear in any
message msg(ρ ↓ i). Moreover, sk(A) 	� msg(ρ ↓ i). If {|t|}K / msg(ρ ↓ i) for
ρ ∈ Π, then K is either a basic value or an encryption (not a concatenation).



272 M. Carbone and J.D. Guttman

c11, C1, N1 {|[[c12, N1, N2, K]]sk(S)|}pk(C1)

��
{|Hello, C1, N1, N2|}K

C1 • ��
��

• �� •
��

S • �� • ��
��

•
��

c11, C1, N1, c21, C2, N2

��
{|[[c12, N1, N2, K]]sk(S)|}pk(C1) {|[[c22, N1, N2, K]]sk(S)|}pk(C2)

C2 • ��
��

• �� •

c21, C2, N2 {|[[c22, N1, N2, K]]sk(S)|}pk(C2)

��
{|Hello, C1, N1, N2|}K

��

Fig. 1. Trusted Broker Service Protocol, tbs

• a→ t1
��

t2
��

{|t1|}t2
• �� • �� •

��

• �� • �� •
��

{|t1|}t2
��

t2
−1

��

t1

t1
��

t2
��

tag t1 , t2

• �� • �� •
��

• �� • ��
��

•
��

tag t1 , t2

��

t1 t2

. . . . . . . . . . . . . . . . . . . . . . . .

◦
{|A ,Na|}pk(C) �� •

��
•
��

•
��

•
��

•
pk(B)��•

pk(C)−1

�� •
��

•
��

A 		

•
��

•
��•

A ,Na





• Na

		

•

A ,Na





•
{|A ,Na|}pk(B)�� ◦

Fig. 2. Part I: Adversary roles to generate basic value a; encrypt and decrypt; con-
catenate and separate. Part II: A compound adversary activity

The Adversary. Adversary strands consist of zero or more reception nodes
followed by one transmission node. The adversary obtains the transmitted value
as a function of the values received; or creates it, if there are no reception nodes.
The adversary can choose basic values, and operate on complex values using
the strands shown above in Fig. 2. These are often used in patterns, e.g. as in
Fig. 2 Part II, which transport information along paths. Six strands are shown.
Two are of length 1, in which the adversary transmits keys, namely his own
private decryption key pk(C)−1 and B’s public encryption key pk(B). Two are
a (leftmost) decryption strand and a (rightmost) encryption strand. The second
node on a decryption or encryption strand is called the key node, since it
receives the key used to perform the cryptographic operation.

In the middle are a separation strand that breaks A , Na into its two parts,
followed by a concatenation strand that puts them back together. These strands
are unnecessary here. We include them here to illustrate that the adversary can
always break a concatenation down to non-concatenated parts, i.e., either basic
values or encryptions (see Assumption 3).



Sessions and Separability in Security Protocols 273

•

c11,N1,C1

��
c11,N1,C1

��
��

S

��
•

c21,N2,C2

��
c21,N2,C2

��

��

S′
��

•

��

•
��

�� •
��

{|[[c12,N1,N2,K′]]sk(S)|}pk(C1) ��

• �� •
��

•
{|[[c22,N1,N2,K′]]sk(S)|}pk(C2)

��

•
{|Hello,C1,N1,N2|}K

�� •

Fig. 3. A bundle of protocol tbs

Adversary strands are closed under substitutions along the strand, as they
comprise all the instances of the roles in Fig. 2, Part I. Indeed, this also holds
for regular strands, which are all the substitution instances of the roles ρ ∈ Π :

Lemma 1. If α is a substitution and s is an adversary strand or a regular strand
of Π, then so is α(s).

Bundles. An execution is pieced together from a finite set of strands (or their
initial segments), where these may be regular strands of Π or adversary strands.
Two nodes are connected with a single arrow • → • when the former transmits
a message, and the latter receives that same message directly from it. A bundle
is a causally well founded graph built using strands by →:

Definition 2. Let B = 〈N ,→E ∪ ⇒E〉 be a finite, directed acyclic graph where
(i) n1 ⇒E n2 implies n1 ⇒ n2, i.e. that n1, n2 are successive nodes on the
same strand; and (ii) n1 →E n2 implies that n1 is a transmission node, n2 is a
reception node, and msg(n1) = msg(n2). B is a bundle if:

1. If n1 ⇒ n2, and n2 ∈ N , then n1 ∈ N and n1 ⇒E n2; and
2. If n2 is a reception node, there exists a unique n1 ∈ N such that n1 →E n2.

B is an open bundle if, in condition 2, there is at most one n1 ∈ N such that
n1 →E n2, rather than exactly one.

We write nodes(B) for the nodes of B, and regnodes(B) for its regular (non-
adversary) nodes; edges(B) is the set ⇒E ∪ →E of edges of B. 0B is the causal
partial order (→E ∪ ⇒E)

∗, and ≺B = (→E ∪ ⇒E)
+.

A node n is realized in an open bundle B iff n is a transmission node, or else
n is a reception node and has an incoming → edge, i.e. n′ → n.

(B, unique, non) is an annotated bundle (resp. open bundle) if B is a bundle
(resp. open bundle), unique is a finite set of basic values each originating at most
once in B, and non is a finite set of basic values each originating nowhere in B.

The causal partial order 0 is well-founded, since B is finite.

Example: The session-oriented protocol TBS. Fig. 3 is a bundle. tbs de-
fines a session via a nonce from each client, and the server-generated session
key. It gathers the two incoming messages to the broker in a single reception,



274 M. Carbone and J.D. Guttman

•
c11,N1,C1 ��

��
S

��
•

c21,N2,C2��

��

S′
��

c11,N′
1,C1,c21,N′

2,C2��

•

��

•
��

�� •
��

{|[[c12,N′
1,N′

2,K′]]sk(S)|}pk(C1) ��

• �� •
��

•
{|[[c22,N′

1,N′
2,K′]]sk(S)|}pk(C2)

��

•
{|Hello,C1,N1,N2|}K

�� •

Fig. 4. Open bundle separating Fig. 3

allowing some (untrusted) auxiliary process to propose a matching. In Fig. 3, the
adversary reuses the nonces N1, N2 to start a second server strand. However, we
can fix this, separating the second server strand, just by renaming these nonces to
new values N ′

1, N
′
2. This yields the new bundle in Fig. 4, in which the adversary

can supply the message coming from the upper right. Fig. 4 is an open bundle,
as shown without adversary activity.

These figures are annotated (possibly open) bundles with various choices of
unique, non. An interesting choice would be unique = {N1, N2,K,N

′
1, N

′
2} for

Fig. 4 and unique = {N1, N2,K} for Fig. 3. A relevant choice for both non =

{sk(S), pk(C1)
−1, pk(C2)

−1, pk(S)−1}.
In studying separability we are interested in bundles equipped with a choice of

fresh and uncompromised values. Hence, we will assume that all bundles are an-
notated with sets of uniquely originating and non-originating values unique, non.
When using “bundle” and B, we will mean “annotated bundle” as defined above.

The core pattern for separating a session is:

– removing dependence on an existing session;
– renaming some freshly chosen items in one or more local runs;
– allowing the adversary to supply incoming messages in these runs.

When a protocol ensures that this pattern will succeed in separating behaviors,
it has session behavior.

However, this is not always possible. As an example, consider the protocol
tbsMinus, which is just like tbs, except that the session nonces N1, N2 are
omitted in all the messages. Here we can have the essentially inseparable bundle
Fig. 5. No amount of renaming and pruning edges will produce a bundle in which
C2 and C′

2 do not both depend on the same strand C1.
We assume (i) public encryption keys may be freely sent or used by anyone,

including the adversary; and (ii) when a value a originates uniquely, and is used
on a different regular strand as part of a key for encryption, then it has been
received as an ingredient on that strand. When a � msg(m1), this conclusion
follows from the definition of unique origination. We also assume (iii) that a
basic value is not received from a later transmission when it could be received
from an earlier one. If a bundle violates this property, we can fix it by rerouting
arrows to start from earlier nodes.



Sessions and Separability in Security Protocols 275

C1 S C2

•
c11,C1 ��

��

•
��
•
��

•
c21,C2��

��
•

��

•
��

{|[[c12,K]]sk(S)|}pk(C1)��

C′
2 •

{|[[c22,K]]sk(S)|}pk(C2)

��

{|[[c22,K]]sk(S)|}pk(C2)
��

•

��

•
c21,C2

��

��
•
��
•

•

{|Hello,C1|}K
�

{|Hello,C1|}K
�� •

Fig. 5. An inseparable execution of tbsMinus

Assumption 2. Let (B, unique, non) be an annotated bundle.

1. pk(A) 	∈ unique ∪ non for all names A.
2. Suppose a ∈ unique, a originates on n0, and for some transmission node m1,

a / K and {|t|}K originates at m1. If n0,m1 lie on different strands, then
there is a reception node m0 ⇒+ m1 such that a � msg(m0).

3. If a = msg(n0) = msg(n1) = msg(n2) is a basic value, where n0, n1 are
transmission nodes, with n0 0 n1 0 n2. Then it is not the case that n1 → n2.

Lemma 3. Suppose B is a bundle with n0,m1 ∈ nodes(B). If a ∈ unique origi-
nates at n0 and a/ msg(m1), then n0 0 m1.

The “Lies-below” Relation. We now define a relation between bundles (or
open bundles) of reducing information. We say that one (open) bundle lies below
another when the latter results by adding information to the ordering relation 0
and adding equations between parameters. The key idea is reducing the ordering
relation in a bundle B, possibly renaming some occurrences of parameters, so
as to “rename them apart” in a simpler bundle C. We actually formalize this in
the other direction, by considering a homomorphism from C into the richer B.
We call this a local renaming, because restricted to portions of C it acts like a
renaming. It acts injectively on each portion separately.

Definition 4 (Local Renaming). Suppose C is an open bundle.
The sets S1, . . . , Sn partition nodes(C) by strands if (i) the Si are disjoint;

(ii)
⋃
Si = nodes(C); and (iii) any two nodes on the same strand are in the same

partition class Si.
A substitution α is a local renaming of C with respect to S1, . . . , Sn if the

sets partition nodes(C) by strands, and moreover, for every j ≤ n, α restricted
to the parameters of the strands in Sj is a renaming, i.e. an invertible map from
parameters to parameters.

For instance, in Fig. 4, the part to the left of the white space S1 and the part
to the right S2 form a partition by strands. The map which sends N ′

1 �→ N1



276 M. Carbone and J.D. Guttman

and N ′
2 �→ N2, and is elsewhere the identity, is a local renaming, which we will

write [N ′
1 �→ N1, N

′
2 �→ N2]. It is a renaming (the identity) when restricted to

the parameters that appear in S1, the left half, since N ′
1, N

′
2 do not appear on

the left. Moreover, it is a renaming when restricted to S2, the right half, too,
since N1, N2 do not appear as parameters on the right. Thus, it is injective on
the parameters appearing in S2.

Every renaming is a local renaming, but a local renaming α is not a true
(“global”) renaming when α(x) = α(y) holds for parameters x, y to nodes in
different partition classes Sj , Sk. We often think of the action of a local renaming
backward, viewing its source as the result of “renaming apart” values that are
equated in its target. If we view [N ′

1 �→ N1, N
′
2 �→ N2] as if it were acting on

Fig. 3 to yield Fig. 4, then it is “renaming apart” different occurrences of N1, N2.
One open bundle lies below another if, after applying a local renaming forward,

their regular nodes are the same, as are their uniquely originating and non-
originating values, but one precedence order is a suborder of the other:

Definition 5. 1. C lies below B via α iff, for some S1, . . . , Si, α is a local
renaming for C with respect to S1, . . . , Si, and:
(a) α(regnodes(C)) = regnodes(B);
(b) For all n0, n1 ∈ regnodes(C), n0 0C n1 implies α(n0) 0B α(n1);
(c) α−1(unique(B)) = unique(C); and
(d) α−1(non(B)) = non(C)

2. C lies below B if it does so via some α.
3. B and C are equivalent iff each lies below the other via renamings α, β, and

α ◦ β is the identity on the parameters involved.

For instance, Fig. 4 lies below Fig. 3 via [N ′
1 �→ N1, N

′
2 �→ N2], given the choices

of unique, non mentioned after Defn. 2.
If C lies below B, then C differs from B only in having a sparser ordering,

and in not yet having equated some parameters that have been equated in B.
We can think of C as a simplified version of B. It is less informative in that the
information that these parameters are equal has not yet been added.

Lemma 6. “Lies below” is a well-founded partial order to within isomorphism:

1. “Lies below” is reflexive and transitive.
2. C and B each lie below the other iff their regular parts are isomorphic.
3. If 〈Bi〉i is an infinite sequence of bundles such that i < j implies Bj lies

below Bi, then for some i, k, i < k and Bi lies below Bk.

3 Formalizing Sessions

We now turn to defining when tbs and similar session-oriented protocols are
separable. Suppose that Π is a protocol, and P : Π → Nonce∪Key is a function
that chooses a parameter for each role. As an example, if Π is tbs, we would
be interested in the function P that assigns N1 to the first client role; N2 to the
second client role; and K to the server (broker) role.



Sessions and Separability in Security Protocols 277

We say that x is a session parameter if x ∈ range(P ). P associates each
role to the session parameter that it chooses. We call P (ρ) ρ’s proper session
parameter, and we require that P (ρ) originates on ρ.

If x is a session parameter, x is acquired at step i if x/ ρ ↓ i but x 	/ ρ ↓ j
for j < i. It is acquired by step k if it is acquired at step i for some i ≤ k. A
parameter x is key material at step i if x/ K and {|t|}K / msg(ρ ↓ i).

As a convention, we will assume that the parameters of each role have been
chosen (by a renaming if necessary) so that corresponding session parameters
on different roles have the same name. We could of course avoid this convention
at the cost of added notation, in the form of a function which would supply the
necessary correlations.

No Ambiguity. tbs uses the session parameters unambiguously in each en-
cryption. No encryption in the protocol could be misinterpreted by a receiver so
as to interchange the session parameters. For instance, N1 and N2 always appear
in the same order, and K always appears after them or in key position.

No Ambiguity: If encryptions {|t|}K / msg(ρ ↓ i) and {|t′|}K′ / msg(σ ↓ j)
have a common instance α({|t|}K) = β({|t′|}K′), then ρ and σ have acquired
the same session parameters by steps i and j resp., and α(x) = β(x) for each
of those session parameters.

We here follow our convention that corresponding session parameters on different
roles have been given the same parameters names.

Contribution. Every encrypted unit involves the session parameters. This is
akin to the tagging property [12], except that the session parameters do not
have to contribute to the key. The last message of tbs is {|Hello, C1, N1, N2|}K .
Two session parameters are in the plaintext, while K is the encryption key. All
the session parameters could be concentrated in the key; {|Hello, C1|}hash(N1,N2,K)

would also work. Alternatively, they could all be concentrated in the plaintext,
with some public key used for encryption.

In this protocol, the participants agree on all of the session parameters at the
start. They then use them throughout the remainder of the protocol. A protocol
can also have some participants agree on their session parameters, while other
participants join the session later. These “late arrivals” allow for an attractive
flexibility in the session-type literature [13]. Of course, the encrypted units before
the late arrivals are expected to contain only the session parameters that have
already been seen at that point.

Contribution to Encryptions: If {|t|}K / msg(ρ ↓ i) and session parameter
x is acquired by step i, then x/ {|t|}K .

The No-V s Property. The observation that session parameters may be ac-
quired piecemeal is an important insight. It implies that “same session,” which
sounds like an equivalence relation, is in fact misleading. A partially defined ses-
sion with session parameters x1, . . . , xi may affect any of its possible extensions
with an additional session parameter x1, . . . , xi, xi+1. However, any one of those



278 M. Carbone and J.D. Guttman

extensions is incompatible with those having a different value x′i+1. Indeed, mes-
sages from a step with extended session parameters x1, . . . , xi, xi+1 should not
affect an event with session parameters x1, . . . , xi. If they did, the latter could
also affect a distinct extension x1, . . . , xi, x

′
i+1. Thus, transitively, there could be

effects from an event with parameters x1, . . . , xi, xi+1 to one with parameters
x1, . . . , xi, x

′
i+1. That would be contrary to the session discipline.

For this reason, we regard the “may influence” relation on partially defined
sessions as a partial order (on the sessions) or as a pre-order (on the transmission
and reception events within the sessions). We will write n1 � n2 when an event
n1 may influence an event n2.

We require non-influence to persist, specifically when n1 selects a fresh value
that is a parameter to n2. We formulate this as a “no V s” condition. Whenever
we have a V in the may-influence relation, this is not an open V , but a closed
triangle-like configuration, for any n3 1 n2:

n1 �������� n1 ��������
��
��

n3 implies n3.
n2

�������
n2

�������
(1)

A node n2 that I cannot influence cannot influence a later node that I can
influence, at least when I have uniquely originated a value found in that node.
This no V s property turns out to be crucial to proving the Separability Theorem,
whose proof tries to create new bundles by local renamings.

To see what could go wrong, suppose the tbs server received the two parts
of its first incoming message on separate nodes: (c11, C1, N1) ⇒ (c21, C2, N2) ⇒
. . .. Then an adversary could deliver C2’s nonce N2 as if it were from C1, to
the first server node n2. C2’s first node n1 should not influence n2, since n1 has
the C2 nonce defined, whereas n2 does not; n2 has only the C1 nonce parameter
defined. However, if the adversary re-delivers the same nonce on the server’s
second node n3, then C2’s first node n1 can influence this second server node n3.
Node n3 has the same value for the only session parameter defined on n1. This
is precisely the open V situation, where n1 	� n2 � n3, and n1 � n3.

Acquisition. In order to ensure the no-V s property syntactically, some prop-
erties are needed, constraining how session parameters are acquired. First, some
session parameters x are received in a principal’s first reception. These may be
transported without encryption, such as N1 and N2 in tbs. This is why S re-
ceives both N1 and N2 in a single message in its first node. Second, there are
no transmissions after a reception and before transmitting a strand’s proper
session nonce. Third, when a session includes late-arriving participants, values
freshly chosen after a late arrival in the session will be transmitted under encryp-
tions that cannot be compromised. Various techniques are available for proving
this [20,18], but here we will just use a simple sufficient condition, namely that
the decryption key is non-originating. These messages will be received by partic-
ipants that have already joined the session; i.e. their proper nonces have already
been chosen, and must also appear in this encryption by the Contribution re-
quirement. This is a per-bundle requirement, for a bundle B.



Sessions and Separability in Security Protocols 279

Parameter Acquisition: Session parameters divide into two groups, x and y.
1. If x in x is acquired on reception node ρ ↓ i, then i is the earliest reception

node on ρ.
2. If x in x is acquired on transmission node ρ ↓ i, and ρ ↓ k is any reception

node with k < i, then there is no transmission node between them.
3. Let y in y be acquired (by reception or transmission) on ρ ↓ i, and let

k ≥ i. There is a set LAK(B) of late-arrival protection keys of B such
that: (a) If α(ρ ↓ k) ∈ nodes(B), then α(y) lies only inside encryptions
in msg(α(ρ ↓ k)) with keys K where α(K−1) ∈ LAK(B).
(b) If a ∈ uniqueB is any value acquired on α(ρ ↓ k), α(y) lies only inside
encryptions in msg(α(ρ ↓ k)) with keys K where α(K−1) ∈ LAK(B).

Condition 3 ensures that y always appears together with all previously de-
fined session parameters. We focus on bundles in which, for any late arrivals
to the session in a bundle B, the strands still active then are all uncompromised,
i.e. LAK(B) ⊆ nonB. In tbs, all session parameters belong to the first group x, as
all of the roles acquire them from their peers on their first reception. For protocol
design, it is desirable that the session key can double as S’s session parameter,
traveling in the encrypted messages from the server.

May-Influence Relations. Curiously, the Separability Theorem, Thm. 16 de-
pends only on two properties of a reflexive, transitive may-influence relation,
namely, the no V s property, and the fact that forward influence on a strand is
always permitted. Because of this generality, we sought to specify various degrees
of separability, i.e. to specify how sparse a bundle we would like to obtain in the
“lies below” ordering. To parametrize our reasoning, we define a may-influence
relation to be a pre-ordering n1 � n2 on regular nodes with these two properties.
It specifies the upper bound on which nodes of Π may influence each other.

Definition 7. Let B be an (annotated) bundle for protocol Π. Then a preorder
� is a may-influence relation for B iff for all n1, n2, n3 ∈ regnodes(B),

1. if n1 ⇒ n2 then n1 � n2; and
2. “No Vs,” Eqn. 1: Suppose (i) a ∈ uniqueB originates at n1 and a/ msg(n2)

and (ii) n2 � n3 and n2 0B n3. If n1 � n3, then n1 � n2.

B obeys � iff, for all m,n ∈ regnodes(B), m 0B n implies m� n.
Π obeys � subject to Φ if, for every Π-bundle B satisfying Φ, there is a

Π-bundle C satisfying Φ such that C lies below B and C obeys �.

When m� n, we say that m is permitted to influence n.
When m ⇒ n, m must be allowed to influence n, since it is impossible to

prevent the influence; hence condition 1 on influence functions. Condition 2
prohibits open, V-shaped configurations. One leg of the V starts at a’s origin
n1, and the other at n2, and the legs join at a jointly influenced n3. When
a/ msg(n2), then n1 must be permitted to influence n2. If a’s origin n1 cannot
influence n2, then their causal consequences must remain separated thereafter.
Π obeys � if Π-bundles either already obey the ordering constraint, or some

bundle lying below is sparse enough to obey it. In weakening the order 0, we



280 M. Carbone and J.D. Guttman

are allowed to select preimages under local renamings. We use the constraints Φ
to record assumptions about freshly chosen nonces and uncompromised keys.

Protocols with Session Parameters. We can now define:

Definition 8. A bundle B satisfies Φs, the session constraint, if the late
arrival protection keys LAK(B) ⊆ nonB and, for every node α(ρ ↓ i) ∈ nodes(B),
where ρ acquires its proper session nonce at step i, α(P (ρ)) ∈ uniqueB.
Π has session parameters P for B if No ambiguity, Contribution to en-

cryptions, and Parameter acquisition hold for Π, P , and B.
The session may-influence relation �s holds between Π-nodes n1 and n2,

written n1 �s n2, iff (i) n1 = α(ρ ↓ i) and n2 = β(σ ↓ j) where ρ, σ ∈ Π; (ii)
every session parameter x that has been acquired by step i on ρ has been acquired
by step j on σ; and (iii) α(x) = β(x) for each session parameter x acquired by
step i on ρ.

Essentially, n1 �s n2 means that the partial function assigning session param-
eters to values in node n1 is a subfunction of the partial function assigning
session parameters to values in node n2. The may-influence relation is fixed by
the ordering of definedness on these partial functions.

Lemma 9. If B is a Π-bundle satisfying Φs, and Π has session parameters P
in B, then �s is a may-influence relation for B.

A Transformation Yielding Protocols with Session Parameters. A sim-
ple transformation can produce protocols with session parameters.

The transformation has two parts. The first part prepends before σ a node
that transmits a session parameter, and a node that receives a concatenated
tuple containing session nonces from each of the other roles:

+Ni ⇒ −(N1 , . . . , Ni−1 , Ni+1 , . . . , Nk) ⇒ σ

In the second part, we transform all encrypted units {|t|}K contained in σ, to
{|t , Ñ |}K , where Ñ is the sequence of all the session nonces introduced in the
first step. Thus, letting TÑ be this transformation,

Theorem 10. TÑ (Π) has session parameters for each TÑ (Π)-bundle B.

It is easy to very that No Ambiguity, Contribution to Encryptions, and Parameter
Acquisition are all true, where the late-arriving parameters y are vacuous.

4 The Separability Theorem

Penetrator Paths. The ways that adversary strands manipulate messages are
tightly constrained by their syntactic forms. We introduce penetrator paths to
be able to express these relations conveniently.



Sessions and Separability in Security Protocols 281

Definition 11. A key node is the middle node on an adversary encryption or
decryption strand, which receives the key to be used (Fig. 2).

A penetrator path in B is a sequence p = 〈n0, n1, . . . , nk〉 with k > 0 and
each ni ∈ nodes(B), such that:

1. n1, . . . , nk−1 are all penetrator nodes;
2. if ni is a reception node and i < k, then ni+1 is a transmission node and

ni ⇒+ ni+1;
3. if ni is a transmission node, then ni → ni+1 in B.

We often focus on the penetrator paths that stretch from a regular node to
a regular node, traversing penetrator strands. These represent activities of the
adversary that extract useful materials from regular transmissions, and use them
to construct messages to satisfy regular receptions.

We write p(i) for the node ni, and |p| for k, the number of arrows traversed
by p, so p(|p|) is the last node on p. Two paths are shown in Fig. 2. In both
cases, p(0) is the hollow circle at the upper left, indicating an unshown regular
node, and p(9) is the hollow circle at lower right. One path traverses the edge A
in the middle, and the other traverses Na. We generally write first(p) and last(p)
for p(0) and p(|p|).

Definition 12. The penetrator path p is direct if no key node appears in p,
except possibly as last(p).

B is normal if, on every direct penetrator path, each destructive penetrator
strand (decryption, separation) appears before any constructive strand (encryp-
tion, concatenation).

The penetrator paths in Fig. 2 are direct. We speak of an extended path when
we wish to emphasize that it may not be direct.

Lemma 13 ([20]). Every bundle B has a normal bundle C lying below B via
the identity Id. If C is any normal bundle, and p is a direct penetrator path in
C, then there is a pair of nodes pj → pj+1 such that, for all i ≤ j ≤ k:

1. msg(p(i)) � msg(first(p)) and msg(p(k)) � msg(last(p));
2. If p(i) is an adversary node, then p(i) lies on a destructive strand (decryp-

tion, separation); and
3. If p(k + 1) is an adversary node, then p(k + 1) lies on a constructive strand

(encryption, concatenation).

This lemma still holds in our current context, which includes compound keys,
because it is restricted to direct paths p. Since a key node in p must be the last
node, and we never continue along its encryption or decryption strand, we never
encounter any case different from those already shown in the proof in [20].

By this lemma, when proving that there exists a bundle lying below B with a
particular property, it is sound to silently assume that B is normal.

The bridge term of a direct penetrator path p in a normal B is the mes-
sage msg(p(j)) on the edge that follows all destructive penetrator strands and



282 M. Carbone and J.D. Guttman

precedes all constructive penetrator strands. We will write bt(p) to refer to the
bridge term of p. A single communication edge first(p) → p(1), with no adver-
sary strands in between, is a direct path of length 1; bt(p) = msg(first(p)) =
msg(p(1)). The two edges leading to n1 and n2 in Fig. 3 are examples with the
concatenated bridge terms c11, N1, C1 and c21, N2, C2. The bridge terms for the
two direct paths shown in Fig. 2 are A and Na. The adversary can always break
concatenations down in this way:

Assumption 3. If p(i) → p(i+1) is a bridge term in bundle B, then msg(p(i))
is either an encryption or a basic value, but not a concatenation.

For any bundle C, there is an equivalent B in which the adversary separates
every concatenated value to its basic or encrypted parts, and then subsequently
reconcatenates these parts, as in Fig. 2, Part II [20, Prop. 9]. Assumption 3
restricts our attention to these equivalent but more convenient B.

The direct paths form a framework that supports the extended paths:

Lemma 14. Let B be a bundle, and p an extended penetrator path in B that is
not direct. Let p(i) be the earliest key node along p.

1. The part of p leading to p(i) forms a direct path.
2. Let p(j) be any key node along p, lying on an encryption or decryption strand

s, m1 ⇒ p(j) ⇒ m3. There are direct paths q such that m1,m3 lie on q.
3. If s is an encryption strand, then msg(p(j)) / msg(last(q)). If s is a decryp-

tion strand, then msg(p(j)) / msg(first(q)).

The Separability Theorem. An extended path p is critical iff its source
first(p) is not permitted to influence its target last(p).

We wish to remove the critical paths, since this will reduce a bundle to one
that obeys the influence specification. If the adversary uses a path to influence
a node, contrary to our �, we want to clip this path. If we can always remove
these paths, and replace a Π-bundle containing critical paths with one with no
critical paths, then even the adversary gets no advantage from critical paths. No
violation of the influence specification is essential. Everything that can happen
in Π can happen without violating the influence specification. If this is true in
Π , we can assume � when analyzing Π ; nothing that matters will be left out.

A sufficient condition for this to hold is that Π ’s executions be “reparable:”

Definition 15. A path p is �-critical in B iff first(p) 	� last(p).
B is �-reparable iff � is a may-influence relation for B, and every �-critical

path p has a bridge p(i) → p(i+ 1) where msg(p(i)) = a is a basic value.

When � is understood, we omit it and write “critical” or “reparable.” We can
assume no bridge term of p is a concatenation by Assumption 3. Thus, when p
is reparable, bt(p) is a basic value. In Fig. 3, the most interesting bridge terms
are N1 and N2, which are the uniquely originating values.

Theorem 16 (Separability). For every �-reparable Π-bundle B, there is a
Π-bundle C lying below B such that C obeys �.



Sessions and Separability in Security Protocols 283

Separability for Protocols with Session Parameters. We will first apply
Thm. 16 to the main case of protocols with session parameters, and �s. The key
thing is to show that every critical path is reparable. The main reason why this
is true is that—unless first(p) �s last(p) and last(p) �s first(p)—all encryptions
at the two ends contain different sets of session parameters. Thus, the bridge
terms are basic values.

Theorem 17. If Π is a protocol with session parameters, then every Π-bundle
satisfying Φs is �s-reparable. Hence, by Thm. 16, Π obeys �s subject to Φs.

If each strand succeeds in choosing its session parameter freshly, then no two
instances of the same role are related by the causal order in a reduced bundle,
i.e. one obeying �s. This holds because any two instances supply different values
for the session parameter, which are thus incompatible in �s.

Theorem 18. Suppose that Π is a protocol with session parameters, and B
obeys �s and satisfies Φs. Then s1 ↓ i 	0 s2 ↓ j when (i) s1 = α(ρ) and
s2 = β(ρ); and (ii) P (ρ) is acquired on ρ by step min(i, j).

5 Protocol Independence

We turn now from our focus on sessions to combining protocols. We organize
the results by the choice of may-influence relation.

The Discrete May-Influence Relation. Let Π1 andΠ2 be protocols, i.e. sets
of strands satisfying the assumptions mentioned in 2–3. For simplicity assume
that the protocols are disjoint, in the sense that no strand (or initial segment) is
an instance of a role of Π1 and also an instance of a role of Π2. Let Π = Π1∪Π2

be the protocol that contains all the roles of Π1 and Π2.
Define n1 �1 n2 to hold for n1, n2 ∈ regnodes(Π) just in case n1, n2 ∈

regnodes(Π1) or n1, n2 ∈ regnodes(Π2). That is, nodes of the two source protocols
may not influence each other.

We can use this may-influence relation to infer a protocol independence result,
à la [1,9]. Define Π1, Π2 to have sharply disjoint encryption if

1. every key used for encryption on any node of either is a basic value; and
2. if e1 is any encryption occurring in Π1 and e2 is any encryption occurring

in Π2, then e1 and e2 have no common instance.

The two conditions here are essentially syntactic. Condition 2 says that unifica-
tion fails for the two encryptions. One way to satisfy condition 2 is using tags.
If Π1, Π2 may have distinct tags τ1, τ2, such that every encryption in Πi begins
with tag τi, then condition 2 is certainly satisfied.

Theorem 19. If Π1, Π2 have sharply disjoint encryption, then all Π1∪Π2 bun-
dles are �1-reparable. Hence, by Thm. 16, Π1 ∪Π2 obeys �1.



284 M. Carbone and J.D. Guttman

This is the essential idea behind [1,9]. The clever extension to algebras with
convergent subterm rewrite rules in Ciobaca and Cortier’s [8] appears to involve
related ideas.

In our formalism, condition 1 is in fact unnecessary:

Theorem 20. Let Π1, Π2 satisfy Condition 2 of sharply disjoint encryption,
and let B be any bundle of Π1 ∪Π2. There is a bundle C lying below B such that
C is �1-reparable. Hence, by Thm. 16, Π1 ∪Π2 obeys �1.

This shows a pitfall in interpreting strand-based results in the applied pi-calculus.
In applied pi, letting w = hash(k1, k2), the two protocols P1 and P2:

P1 = ν k1s . 〈k1〉 . 〈{|t1, s|}w〉 P2 = ν k2s . 〈k2〉 . 〈{|t2, s|}w〉

compose to yield ν k1k2s . P1 | P2. In strands, by contrast, parameters in in-
dividual roles are essentially locally bound, since their possible instances are
all substitution instances. Thus, there is no sense in which the two roles share
the “same” k1, k2. Moreover, ν-binding expresses a notion of local choice that
is somewhat different from both our unique origination and non-origination. It
appears to be that the adversary never originates the ν-bound value. Thus, this
result appears to be strong, but not truly comparable to results such as [9].

Another limitation of our result is that it is proved for a particular message
algebra, and an adversary model for that, rather than for a class of algebras. We
conjecture that there is a substantial class for which the lemmas of §§2, 4 hold,
and that our results will hold throughout that class.

A One-Way Influence Relation. Here we consider an asymmetric relation
between the protocols Π1, Π2. Our goal is to ensure that adding the auxiliary
protocol cannot undermine the main protocol Π1. In many cases, Π2 consumes
cryptographically prepared units such as digital signatures or encrypted tickets
(as in Kerberos), for instance, when it resumes sessions created by the main
protocol. Thus, the main protocol may influence the auxiliary, but the reverse
should not occur [19]. Let Π = Π1 ∪ Π2, and define n1 �2 n2 to hold for
n1, n2 ∈ regnodes(Π) just in case n1 ∈ regnodes(Π1) or n2 ∈ regnodes(Π2).

With a more delicate definition of disjoint encryption, and stipulating the
condition Φ that no uniquely originating value is contributed by Π2, we obtain:

Theorem 21. Let Π1, Π2 satisfy disjoint encryption, and let B be any bundle
of Π1 ∪ Π2 satisfying Φ. There is a bundle C lying below B such that C is �2-
reparable. Hence, by Thm. 16, Π1 ∪Π2 obeys �2.

We may also use this second form of protocol independence to explain the “se-
quential composition” of Datta et al. [11]. Here, the nodes of the auxiliary proto-
col are placed after nodes of the primary protocol, but on the same strands; the
formalization is unchanged. In particular, h maps nodes of the primary protocol
to π1 and nodes of the secondary protocol to π2. The Clause 1 in Defn. 7 allows
this to work when nodes of the secondary protocol never appear before a node
of the primary protocol on any strand.



Sessions and Separability in Security Protocols 285

Vertical Composition. Suppose that a protocol achieves a goal, assuming that
it uses channels that provide particular kinds of protection against the adversary,
e.g. that the adversary cannot spoof messages on these channels, or cannot snoop
on their contents. Does that yield a secure protocol when these channels are
replaced by subprotocols that ensure that the assumptions are met? This is the
“vertical composition problem” [14,16,27]. Our methods seem highly relevant
to this problem, but they require a way to express the channel assumptions as
restrictions on the set of relevant bundles. We plan to explore this.

Conclusion. Two further main areas of future work remain. The more sub-
stantial is to adapt this approach to cover a notion of observational equivalence.
This appears to involve enriching the adversary model to include a strand that
detects the equality of two basic values. We also intend to soften the no V s
condition, which is tighter than necessary. For instance, it permits a tuple of
messages to be received in a unit, but prohibits these same messages from being
received successively, even when there are no intervening transmissions. More
careful methods should relax this condition.

Acknowledgments. We are extremely grateful to Véronique Cortier, John
Ramsdell, Paul Rowe, and the anonymous referees at POST.

References

1. Andova, S., Cremers, C., Gjøsteen, K., Mauw, S., Mjølsnes, S., Radomirović, S.:
Sufficient conditions for composing security protocols. Information and Computa-
tion (2007)

2. Arapinis, M., Delaune, S., Kremer, S.: From One Session to Many: Dynamic Tags
for Security Protocols. In: Cervesato, I., Veith, H., Voronkov, A. (eds.) LPAR 2008.
LNCS (LNAI), vol. 5330, pp. 128–142. Springer, Heidelberg (2008)

3. Armando, A., Basin, D., Boichut, Y., Chevalier, Y., Compagna, L., Cuellar, J.,
Hankes Drielsma, P., Heám, P.C., Kouchnarenko, O., Mantovani, J., Mödersheim,
S., von Oheimb, D., Rusinowitch, M., Santiago, J., Turuani, M., Viganò, L., Vi-
gneron, L.: The AVISPA Tool for the Automated Validation of Internet Security
Protocols and Applications. In: Etessami, K., Rajamani, S.K. (eds.) CAV 2005.
LNCS, vol. 3576, pp. 281–285. Springer, Heidelberg (2005)

4. Bellare, M., Rogaway, P.: Entity Authentication and Key Distribution. In: Stinson,
D.R. (ed.) CRYPTO 1993. LNCS, vol. 773, pp. 232–249. Springer, Heidelberg
(1994)

5. Bhargavan, K., Corin, R., Deniélou, P.-M., Fournet, C., Leifer, J.J.: Cryptographic
protocol synthesis and verification for multiparty sessions. In: IEEE Computer
Security Foundations Symposium (2009)

6. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. Technical Report 2000/067, IACR (October 2001), appeared in FOCS
(2001)

7. Canetti, R., Krawczyk, H.: Analysis of Key-Exchange Protocols and Their Use
for Building Secure Channels. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS,
vol. 2045, pp. 453–474. Springer, Heidelberg (2001)

8. Ciobâcă, Ş., Cortier, V.: Protocol composition for arbitrary primitives. In: CSF,
pp. 322–336. IEEE Computer Society Press (July 2010)



286 M. Carbone and J.D. Guttman

9. Cortier, V., Delaune, S.: Safely composing security protocols. Formal Methods in
System Design 34(1), 1–36 (2009)

10. Cortier, V., Warinschi, B., Zălinescu, E.: Synthesizing Secure Protocols. In: Biskup,
J., López, J. (eds.) ESORICS 2007. LNCS, vol. 4734, pp. 406–421. Springer,
Heidelberg (2007)

11. Datta, A., Derek, A., Mitchell, J.C., Pavlovic, D.: A derivation system and compo-
sitional logic for security protocols. Journal of Computer Security 13(3), 423–482
(2005)

12. Delaune, S., Kremer, S., Ryan, M.D.: Composition of password-based protocols. In:
Proceedings of the 21st IEEE Computer Security Foundations Symposium (CSF
2008), pp. 239–251. IEEE Computer Society Press (June 2008)

13. Deniélou, P.-M., Yoshida, N.: Dynamic multirole session types. In: POPL, pp. 435–
446 (2011)

14. Dilloway, C., Lowe, G.: Specifying secure transport channels. In: CSF, pp. 210–223.
IEEE (2008)

15. Dolev, D., Yao, A.: On the security of public-key protocols. IEEE Transactions on
Information Theory 29, 198–208 (1983)

16. Groß, T., Modersheim, S.: Vertical protocol composition. In: CSF, pp. 235–250.
IEEE (2011)

17. Guttman, J.D.: Security Goals and Protocol Transformations. In: Mödersheim,
S., Palamidessi, C. (eds.) TOSCA 2011. LNCS, vol. 6993, pp. 130–147. Springer,
Heidelberg (2012)

18. Guttman, J.D.: Shapes: Surveying crypto protocol runs. In: Cortier, V., Kremer, S.
(eds.) Formal Models and Techniques for Analyzing Security Protocols. Cryptology
and Information Security Series, IOS Press (2011)

19. Guttman, J.D., Thayer, F.J.: Protocol independence through disjoint encryption.
In: Computer Security Foundations Workshop. IEEE CS Press (2000)

20. Guttman, J.D., Thayer, F.J.: Authentication tests and the structure of bundles.
Theoretical Computer Science 283(2), 333–380 (2002)

21. Honda, K., Vasconcelos, V.T., Kubo, M.: Language Primitives and Type Discipline
for Structured Communication-Based Programming. In: Hankin, C. (ed.) ESOP
1998. LNCS, vol. 1381, pp. 122–138. Springer, Heidelberg (1998)

22. Honda, K., Yoshida, N., Carbone, M.: Multiparty asynchronous session types. In:
Proc. of POPL, vol. 43(1), pp. 273–284. ACM (2008)

23. Kamil, A., Lowe, G.: Analysing TLS in the strand spaces model. Journal of Com-
puter Security 19(5), 975–1025 (2011)

24. Küsters, R., Tuengerthal, M.: Composition theorems without pre-established ses-
sion identifiers. In: CCS, pp. 41–50. ACM (2011)

25. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. In: Margaria, T., Steffen, B. (eds.) TACAS 1996. LNCS, vol. 1055, pp. 147–
166. Springer, Heidelberg (1996)

26. Millen, J.K., Shmatikov, V.: Constraint solving for bounded-process cryptographic
protocol analysis. In: CCS, pp. 166–175. ACM (2001)

27. Mödersheim, S., Viganò, L.: Secure Pseudonymous Channels. In: Backes, M., Ning,
P. (eds.) ESORICS 2009. LNCS, vol. 5789, pp. 337–354. Springer, Heidelberg (2009)

28. Needham, R., Schroeder, M.: Using encryption for authentication in large networks
of computers. CACM 21(12) (December 1978)

29. Rusinowitch, M., Turuani, M.: Protocol insecurity with finite number of sessions is
NP-complete. In: Computer Security Foundations Workshop, pp. 174–187 (2001)

30. Thayer, F.J., Herzog, J.C., Guttman, J.D.: Strand spaces: Proving security proto-
cols correct. Journal of Computer Security 7(2/3), 191–230 (1999)



Author Index

Abadi, Mart́ın 167
Arapinis, Myrto 21

Backes, Michael 206
Bansal, Chetan 126
Bartoletti, Massimo 186
Bendun, Fabian 206
Bhargavan, Karthikeyan 126
Blanchet, Bruno 63, 226
Bugliesi, Michele 105

Cadé, David 63
Calzavara, Stefano 105
Carbone, Marco 267
Chatzikokolakis, Konstantinos 41
Cheval, Vincent 226
Chrétien, Rémy 1
Cimoli, Tiziana 186
Cortier, Véronique 21

Delaune, Stéphanie 1
Delignat-Lavaud, Antoine 126
Dreier, Jannik 247

Eigner, Fabienne 105
ElSalamouny, Ehab 41

Guttman, Joshua D. 267

Kremer, Steve 21

Lafourcade, Pascal 247
Lakhnech, Yassine 247

Maffei, Matteo 105
Maffeis, Sergio 126
Mödersheim, Sebastian A. 147

Nguyen, Binh Thanh 83
Nielson, Flemming 147
Nielson, Hanne Riis 147

Palamidessi, Catuscia 41
Planul, Jérémy 167

Ryan, Mark 21

Sprenger, Christoph 83

Unruh, Dominique 206

Zunino, Roberto 186


	Title
	Foreword
	Preface
	Organization
	Table of Contents
	Invited Talks
	Computer-Aided Cryptographic Proofs
	An Implementation of TLS 1.2 with Verified Cryptographic Security

	Regular Papers
	Formal Analysis of Privacy for Routing Protocols in Mobile Ad Hoc Networks
	Introduction
	Messages and Attacker Capabilities
	Messages
	Attacker Capabilities

	Models for Protocols
	Syntax
	Example: ANODR
	Configuration and Topology
	Execution Model
	Extension and Equivalence of Traces

	Indistinguishability
	Formalizing Indistinguishability
	Analysis of ANODR

	Unlinkability
	Augmented Process
	Formalising Unlinkability
	Analysis of ANODR

	Anonymity
	Formalising Anonymity
	Anonymity versus Indistinguishability/Unlinkability
	Analysis of ANODR

	Conclusion
	References

	Practical Everlasting Privacy
	Introduction
	The Applied Pi Calculus
	Syntax
	Semantics
	Equivalence Relations for Processes

	Forward and Everlasting Indistinguishability
	Definitions of Forward and Everlasting Indistinguishability
	Examples

	Application to Practical Everlasting Privacy
	Definition of Practical Everlasting Privacy
	Examples

	Modeling Commitments
	Modeling Hiding and Binding Cryptographic Primitives
	Applications: Electronic Voting Protocols and Everlasting Privacy

	Tool Support for Everlasting Indistinguishability
	Conclusion
	References

	A Differentially Private Mechanism of Optimal Utility for a Region of Priors
	Introduction
	Preliminaries
	Differential Privacy
	Utility Model

	-Regular Priors
	Upper Bounds for Utility and Min-mutual Information
	Utility
	Min-mutual Information
	Quantifying the Leakage about the Database

	Tight-Constraints Mechanisms
	Properties

	Case-Study: Sum and 2-Count Queries
	Conclusion and Future Work
	References

	Proved Generation of Implementations from Computationally Secure Protocol Specifications
	Introduction
	The CryptoVerif Input Language
	The OCaml Language
	Translation
	Correctness of the Translation of Oracle Bodies
	Simulation of OCaml Code
	Correctness of the Simulation
	Security Result
	Conclusion
	References

	Sound Security Protocol Transformations
	Introduction
	Security Protocol Model
	Term Algebra
	Protocols
	Attacker Model and Operational Semantics
	Type System

	Protocol Transformations
	Message Transformations
	Deducibility Preservation
	Type-Based Protocol Transformations
	Well-Definedness and Simulation

	Property Language and Soundness
	Security Properties
	Soundness
	Experimental Results

	Related Work
	Conclusions
	References

	Logical Foundations of Secure Resource Management in Protocol Implementations
	Introduction
	Overview of the Framework
	Exponential Serialization

	Metatheory of Exponential Serialization
	Review of RCF
	The Type System
	Types, Typing Environments, and Base Judgements
	Environment Rewriting
	Kinding and Subtyping
	Typing Values
	Typing Expressions
	Formal Results
	Encoding Affine Types
	Encoding Cryptography

	Example: Electronic Purchase
	Algorithmic Typing
	Algorithmic Type System
	Typing Values and Expressions
	Main Results
	Typing the Example

	Conclusion
	References

	Keys to the Cloud: Formal Analysis and Concrete Attacks on Encrypted Web Storage
	Application-Level Cryptography on the Web
	Encrypted Web Storage Applications
	An Encrypted Storage Protocol
	Deploying Encrypted Storage Protocols over the Web
	Web Attacker Model

	Automated Verification of Web Cryptography
	Processes
	WebSpi Architecture

	Analyzing Encrypted Web Storage Services
	ConfiChair
	SpiderOak
	1Password

	Concrete Attacks on Encrypted Web Storage Services
	Conclusions
	References

	Lazy Mobile Intruders
	Introduction
	The Ground Model
	The Ambient Calculus
	Transition Relation
	Ground Intruder Theory
	Security Properties
	The Considered Fragment

	Symbolic Ambients
	Symbolic Transition Rules
	Security Properties in the Symbolic System
	Main Result
	Examples

	Conclusions
	References

	On Layout Randomization for Arrays and Functions
	Introduction
	Examples
	The High-Level Language
	Syntax and Informal Semantics
	Values
	Memory Model
	Operational Semantics

	The Low-Level Language
	Syntax and Informal Semantics
	Values
	Memory Model
	Operational Semantics

	Layout Distributions
	Compilation and Its Properties
	The Translation
	Correctness
	Security: Mapping Contexts
	Security: Preservation of Equivalences

	Related and Further Work
	References

	A Theory of Agreements and Protection
	Introduction
	Contracts
	Event Structures
	An Event-Based Model of Contracts
	Agreements
	Protection

	Reconciling Agreement with Protection
	Event Structures with Circular Causality
	Agreement in CES-Based Contracts
	Protection in CES-Based Contracts

	Related Work and Conclusions
	References

	Computational Soundness of Symbolic Zero-Knowledge Proofs: Weaker Assumptions and Mechanized Verification
	Introduction
	Our Contribution
	Outline of the Paper

	Symbolic Model for Zero-Knowledge
	Computational Implementation
	Computational Soundness
	The Proof
	Computational Soundness Proofs in CoSP
	Computational Soundness Based on Extraction ZK
	Proof Idea
	Proof Overview

	Conclusions
	References

	Proving More Observational Equivalences with ProVerif
	Introduction
	Model
	Syntax
	Semantics

	Using Biprocesses to Prove Observational Equivalence
	Clause Generation
	From Equational Theories to Rewrite Rules
	Patterns and Facts
	Clauses for the Attacker
	Clauses for the Protocol
	Proving Equivalences

	Automatic Modification of the Protocol
	Targeted False Attacks
	Merging and Simplifying Biprocesses
	Results

	Conclusion
	References

	Formal Verification of e-Auction Protocols
	Introduction
	Preliminaries
	Applied -Calculus
	Modeling Auction Protocols

	Security Requirenments
	Fairness Properties
	Authentication Properties
	Privacy Properties

	Case Studies
	Protocol by Curtis, Pierprzyk and Seruga Curtis07
	Protocol by Brandt Brandt06

	Conclusion and Future Work
	References

	Sessions and Separability in Security Protocols
	Introduction
	Strand Spaces, with a Session Protocol
	Formalizing Sessions
	The Separability Theorem
	Protocol Independence
	References


	Author Index



