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Epigenomic and Noncoding RNA Regulation

in Addictive Processes

John S. Satterlee

Abstract The phenotypic effects of drugs of abuse are partially mediated by

transcriptional and epigenetic regulatory mechanisms. This chapter will provide a

brief overview of substance abuse and then focus on the roles of three epigenetic

regulatory mechanisms in addictive processes: histone modifications, DNA

modifications, and noncoding RNAs. This chapter will conclude with a focus on

three other important areas: (1) the potential for long-lasting epigenetic effects due

to drugs of abuse, (2) obstacles and opportunities in this scientific area as they

pertain to addiction biology, and (3) the potential for translating epigenomic and

noncoding RNA discoveries into improvements in human health and the treatment

of substance use disorders.
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ADAR Adenosine deaminase

Ago2 Argonaute 2
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BDNF Brain-derived neurotrophic factor

BRD4 Bromodomain-containing protein 4

Brg1 Brahma-related Gene 1

caC 5-carboxylcytosine

CBP CREB-binding protein
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Cdk5 Cyclin-dependent kinase 5

CHD Chromodomain helicase DNA-binding protein

ChIA-PET Chromatin interaction analyses – paired end tags

ChIP-seq Chromatin immunoprecipitation-sequencing assay

CPP assay Conditioned place preference assay

CREB cAMP-response element-binding protein

D1R Dopamine 1 receptor

DARPP-32 Dopamine- and cyclic-AMP-regulated phosphoprotein 32

DAT Dopamine transporter

DNMT DNA methyltransferase

DOHaD Developmental origins of health and disease

EMX2OS EMX2 opposite strand

ENCODE Encyclopedia of DNA elements

eRNA Enhancer RNA

EWAS Epigenome-wide association studies

fC 5-formylcytosine

GABA Gamma-aminobutyric acid

GAD67 Glutamic acid decarboxylase 67

GFP Green fluorescent protein

GluR2 Glutamate receptor 2

GWAS Genome-wide association studies

HAT Histone acetyltransferase

HDAC Histone deacetylase

Hi-C Chromatin conformation capture assay

Histone

modifications

Example H3K4me3 ¼ histone H3 with trimethylated lysine-4

hmC 5-hydroxymethylcytosine

HOTAIR HOX antisense intergenic RNA

HOTTIP HOXA transcript at the distal tip

IGFBP-3 Insulin-like growth factor binding protein 3

JARID1C Jumonji AT-rich interactive domain 1C protein

lincRNA Large intervening noncoding RNA

LINE Long interspersed nuclear element

MBD Methyl-CpG-binding domain protein

mC 5-methylcytosine

MeCP2 Methyl CpG-binding protein 2

MEG3 Maternally expressed Gene 3 ncRNA

methylC-seq 5-methylcytosine sequencing assay

mGluR5 Metabotropic glutamate receptor 5

MGMT Methyl guanine DNA methyltransferase

MIAT Myocardial infarction associated transcript

miRNA MicroRNA

MOR Mu opioid receptor

mPFC Medial prefrontal cortex
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MSK1 Mitogen and stress-activated protein kinase 1

NAc Nucleus accumbens

nAChR Nicotinic acetylcholine receptor

ncRNA Noncoding RNA

NEAT1 Nuclear paraspeckle assembly transcript 1 ncRNA

NEAT2 Nuclear paraspeckle assembly transcript 2 ncRNA

PET Positron emission tomography

PFC Prefrontal cortex

PHD Pleckstrin homology domain

piRNA Piwi-interacting RNA

PRC2 Polycomb repressive complex 2

RIP-seq RNA immunoprecipitation sequencing assay

SAHA Suberoylanilide hydroxamic acid

SINE Short interspersed nuclear element

siRNA Small interfering RNA

SIRT1 Sirtuin 1

SNP Single-nucleotide polymorphism

SPRED1 Sprouty-related EVH1 domain containing 1 protein

SUD Substance abuse disorder

TORC Transducers of regulated CREB

TPH2 Tryptophan hydroxylase-2

Uhrf1 Ubiquitin-like containing PHD and RING finger domains

1 protein

VTA Ventral tegmental area

WD40 domain WD dipeptide-containing domain

7.1 Introduction

7.1.1 The Environment and Epigenomic Regulation

With certain exceptions, an individual’s genome is believed to be more or less

identical in every cell. However, the epigenomes of different cell types within an

individual appear to differ significantly from one another (Hawkins et al. 2010).

This is consistent with the distinct phenotypes, functions, and gene expression

profiles of particular cell types. There have been a number of reviews indicating

that our epigenomes may be sensitive to “environmental” influences which can be

broadly defined to include diet, toxins, stressors, and psychosocial influences (Jirtle

and Skinner 2007; Zhang and Meaney 2010; Caldji et al. 2011). It has been

hypothesized that environmental exposures may lead to changes in signaling in

specific cell or tissue types. These changes may in turn impact epigenetic regulation
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of gene expression, ultimately leading to transient or long-lasting changes in gene

expression and cellular or organismal phenotypes. In some cases, these changes

appear to be passed on through mitosis or even to subsequent generations

(Youngson and Whitelaw 2008).

7.1.2 Epigenetic Regulation in the Nervous System

Epigenetic regulation has been shown to be important in neurogenesis, neural fate

specification, neuronal development, behavioral plasticity, synaptic plasticity, cir-

cadian regulation, and learning and memory (Day and Sweatt 2011; Haggarty and

Tsai 2011; Ma et al. 2010; Zocchi and Sassone-Corsi 2010; Bellet and Sassone-

Corsi 2010; Maze and Nestler 2011; Nelson and Monteggia 2011; Ma et al. 2010;

Dulac 2010; Namihira et al. 2008). Additionally, misregulation of epigenetic

processes has been implicated in a number of human disorders including

neurodevelopmental disorders (e.g., Rett and Prader-Willi syndromes) and psychi-

atric disorders (e.g., schizophrenia, depression) (Horsthemke and Wagstaff 2008;

Graff and Mansuy 2009; Moretti and Zoghbi 2006; Tsankova et al. 2007; Pidsley

and Mill 2011; Renthal and Nestler 2009a). Epigenetic regulation has also been

implicated in response to early childhood abuse associated with suicide completion

(McGowan et al. 2009). For the remainder of this chapter, I will focus on what is

known about the role of epigenetic regulation in substance use and abuse.

7.2 Substance Abuse

7.2.1 Substance Use and Abuse

Our brains are inherently plastic, possessing connections and signaling processes

that can change in response to distinct environmental exposures. Brains exposed to

drugs of abuse on a continuing basis develop changes in particular neuronal regions,

including those involved in the reward system. In addicted individuals, these brain

changes can lead the individual to seek out drugs of abuse despite serious negative

consequences. The definition of drug addiction has evolved over the years.

According to Drs. Koob and Volkow: “Drug addiction is a chronically relapsing

disorder that has been characterized by (1) compulsion to seek and take the drug,

(2) loss of control in limiting intake, and (3) emergence of a negative emotional

state (e.g. dysphoria, anxiety, irritability) reflecting a motivational withdrawal

syndrome when access to drug is prevented” (Koob and Volkow 2010; American

Psychiatric Association 2000; Koob and Le 1997). Common addictive substances

include nicotine, alcohol, caffeine, cocaine, methamphetamine, opioids, certain

prescription medications, inhalants, and cannabis. Food and sex are sometimes
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referred to as “natural rewards” and can exhibit effects similar to those caused by

drugs of abuse (Olsen 2011; Avena et al. 2008). There are also compulsive

“behavioral addictions” such as gambling or internet addiction that have some of

the hallmarks of drug addiction (Grant et al. 2010; Ambermoon et al. 2011).

In broad strokes, exposure to addictive substances, such as alcohol, opiates,

cannabinoids, and nicotine, leads to increased levels of dopamine within the

mesolimbic dopamine system (Sulzer 2011; Justinova et al. 2009). For example,

cocaine inhibits dopamine reuptake such that more dopamine remains at the

synapse (Newman and Kulkarni 2002; Fleckenstein et al. 2007). Continued drug

exposure ultimately leads to adaptations in the strength of circuit connections

between different brain regions including the nucleus accumbens (NAc). These

changes in circuit strength are mediated in part by alterations in signaling by the

neurotransmitters dopamine and glutamate in specific types of neurons with con-

comitant gene expression changes (Luscher and Malenka 2011; Kalivas et al. 2009;

Gardner 2011). A strengthening of the reward connections leads to changes such

that an individual craves the drug of abuse more, even if substance use leads to

adverse consequences. A weakening of the inhibitory influence of the prefrontal

cortex (PFC) on the reward circuitry can also decrease the ability of the individual

to resist substance use (Van den Oever et al. 2010).

Not all individuals exposed to drugs of abuse become addicted. Based on

heritability measurements, this complex disease appears to have an important

genetic component with some individuals particularly susceptible to addiction,

while others are resistant to it (Johnson et al. 1996; Kendler et al. 1999; Uhl et al.

2008; Buckland 2008). Individuals that are particularly impulsive or have an

enhanced propensity for risk taking are more likely to explore the use of drugs,

and this impulsivity phenotype may have a genetic component (Perry and Carroll

2008; Dalley et al. 2011). Environmental influences are important in the develop-

ment of substance abuse disorder (SUD); access to drugs of abuse, early life

adversity, poverty, or exposure to drugs during critical periods such as adolescence

can all influence the potential of individuals to develop substance abuse disorder

(Caspi et al. 2005; Buka et al. 2003; Hill et al. 2005).

The overall economic cost of substance abuse in the USA has been estimated to

be greater than $600 billion per year (Table 7.1). For illicit drugs alone, the cost is

estimated to be $193 billion, while for alcohol and tobacco, the costs are estimated

to be $235 billion and $193 billion, respectively. In addition to the serious eco-

nomic cost to society from SUD, the consequences of addiction are extraordinarily

destructive to the addicted individuals and their families. Behavioral therapies can

be used to improve outcomes in substance abusers, and in some cases, therapy in

concert with medication can improve outcomes (Carroll and Onken 2005). Despite

ongoing efforts to develop safe and effective medications for the treatment of

SUDs, only limited success has been achieved. Currently, approved medications

exist to aid in smoking cessation as well as to treat opiate and alcohol dependence,

including therapies for the initiation of and maintenance of abstinence (e.g.,

nicotine replacement therapy, buprenorphine, varenicline, naltrexone), to alleviate

symptoms of withdrawal (e.g., varenicline, diazepam), and to prevent relapse
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(e.g., naltrexone, bupropion). However, with that said, no approved medications

exist for the treatment cocaine, methamphetamine, or cannabis addiction

even though efforts to develop these are ongoing (Montoya and Vocci 2008;

McCann 2008). Unfortunately in the absence of good treatment options for the

various SUD-related indications, addicted individuals will continue to struggle with

this devastating disease.

In order to advance the development of effective medications and therapies to

treat SUDs, it is critical that we understand the molecular and neurobiological

mechanisms that lead to the development of addiction. Since exposure to drugs of

abuse leads to long-lasting brain changes, it is not surprising that molecular studies

exploring changes in gene expression in the nervous system have been very

illuminating. For the rest of this chapter, I will focus on the role of transcriptional

regulation in substance abuse with a focus on epigenomic regulation.

7.2.2 Transcriptional Regulation and Substance Abuse

Because exposure to drugs of abuse can lead to long-lasting brain changes including

changes in neurotransmission in specific brain circuits, it has been proposed that

alterations in gene expression via transcriptional regulation play a significant role

(Nestler et al. 2001). The role of transcriptional changes in response to drugs of

abuse has been well studied and reviewed (Nestler 2008; Nestler and Malenka

2004). Several transcription factors have been shown to play a role in addictive

processes. For example, the cAMP-response element-binding protein (CREB),

which has a well-established role in learning and memory, can alter drug abuse

behaviors (Briand and Blendy 2010; Carlezon et al. 2005). In many ways addiction

is an example of learning and memory gone seriously awry, so the identification of

CREB is perhaps not so surprising.

Probably the most well-characterized transcription factor involved in drug

addiction is the delta-FosB protein. Delta-FosB can be induced in the nucleus

accumbens by opiates, cocaine, nicotine, other drugs of abuse, and natural rewards

(such as sucrose and sex), and the targets of delta-FosB (e.g., GluR2, dynorphin,

Cdk5) are congruent with the signaling molecules previously implicated in addic-

tive processes (Nestler 2008). It has been proposed that significant delta-FosB

Table 7.1 The estimated yearly economic cost of licit and illicit abused substances

Substance

Estimated economic

cost per year Reference

Illicit drugs $193 billion (National Drug Intelligence Center [NDIC] 2010)

Alcohol $235 billion (Rehm et al. 2009)

Tobacco $193 billion (Centers for Disease Control and Prevention [CDC] 2007)

All >$600 billion
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induction can lead to “excessive sensitization of the nucleus accumbens circuitry”

and ultimately lead to compulsive drug taking (Nestler 2008).

Transcription factors bind to and can alter the properties of chromatin, and

conversely chromatin state may impact transcription factor binding and function

(Birney 2011; Adrian et al. 2010; Koche et al. 2011). Although the role of

transcription factors in mediating long-term changes to gene expression in the

brain has been fairly well studied, the role of epigenetic regulation in addictive

processes had not been investigated to a significant extent until recently.

7.2.3 Epigenetic Regulatory Mechanisms in Substance Abuse

Of the major epigenetic regulatory mechanisms, histone posttranslational modifi-

cations including histone acetylation, histone methylation, and histone phosphory-

lation have been the best studied in the area of substance abuse. For DNA

modifications, DNA methylation has been recently investigated, while the role of

the recently discovered DNA hydroxymethylation has not been investigated to date.

The roles of ATP-dependent chromatin remodeling and nucleosome position have

not been well characterized in substance abuse as yet. Noncoding RNAs can be

important regulators of gene expression. While microRNAs have been investigated

with respect to substance abuse, other noncoding RNA types including lincRNAs

(long intergenic noncoding RNAs) have not been well characterized to date.

7.3 Histone Modifications and Addictive Processes

More than 100 distinct posttranslational histone modifications have been identified

and more are likely to be discovered in the future. While some modifications are

associated with active chromatin and others are associated with silenced chromatin,

the function of the majority of these modifications is currently unknown (Campos

and Reinberg 2009). It is also unclear whether histone modifications at particular

chromatin regions cause chromatin structural changes or are simply a consequence of

these changes (Henikoff and Shilatifard 2011). The enzymes that are responsible for

the deposition and removal of posttranslational histone modifications, such as histone

acetyltransferases (HATs), histone deacetylases (HDACs), histone methylases, and

histone demethylases, are sometimes referred to as the “writers” and “erasers” of the

histone code. Additionally, there are proteins that bind to histone posttranslational

modifications, which are important for functions relevant to the modification. These

molecules are sometimes referred to as “readers” of the histone code. Some of these

“readers” contain protein domains such as PHD, Tudor, or WD40 that bind to

methylated lysines or arginines, bromodomains that can bind to acetylated lysines,

or 14-3-3 domains which can bind to phosphorylated residues (Gardner et al. 2011;

Musselman and Kutateladze 2009; Sanchez and Zhou 2011; Kim et al. 2006;
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Bonasio et al. 2010). There has been limited work studying histone modification

“readers” in the nervous system, although the little information that exists is

tantalizing. For example, the JARID1C protein is involved in X-linked mental

retardation and in addition to being an H3K4 demethylase (a “writer”); it also

appears to bind to H3K9me3 residues (Jensen et al. 2005; Iwase et al. 2007).

One of the most informative assays for detecting histone modifications is

chromatin immunoprecipitation (ChIP) in which an antibody specific for a particu-

lar histone modification is used to immunoprecipitate cross-linked chromatin. The

DNA regions associated with the histone modification can then be analyzed using

either microarray analysis (ChIP-chip) or high-throughput sequence analysis

(ChIP-seq) (Park 2009). Many genome-wide histone modification datasets for a

diversity of cell or tissue types have been generated, enabling one to look at

similarities and differences in histone modifications across cell types (Bernstein

et al. 2010; Myers et al. 2011; Ernst et al. 2011). These datasets are accessible

through a variety of web links including http://www.roadmapepigenomics.org/data

and http://www.ncbi.nlm.nih.gov/epigenomics. In addition, a few cell types have

been mapped genome-wide for up to 24 different histone modifications to reveal the

extent to which histone posttranslational modifications co-occur with one another

and with other genomic features as well as to identify chromatin states associated

with particular sets of modifications (Heintzman et al. 2009; Hawkins et al. 2010;

Ernst and Kellis 2010). Unfortunately, ChIP-quality affinity reagents do not exist

for many histone modifications, and so their genomic pattern and function remain

mysterious.

Histone acetylation has been the most well-studied histone modification in the

nervous system. Histone acetyl marks are covalently attached to histone tails via

HATs which include a variety of structurally distinct enzymes including the well-

characterized CREB-binding protein (CBP) which has important functions in the

nervous system (Dekker and Haisma 2009; Hallam and Bourtchouladze 2006). The

HDAC enzymes that can remove these modifications comprise three classes: Class

I, Class II, and Class III (sirtuins) (Thiagalingam et al. 2003). Histone acetylation

tends to be associated with actively expressed genes, while deacetylated regions

tend to be associated with gene silencing (Thiagalingam et al. 2003).

In the nervous system, histone modifications are known to have important

functions (Miller 2011; Akbarian and Huang 2009; Tsankova et al. 2007; Bredy

et al. 2010; Morris et al. 2010; Haggarty and Tsai 2011). For example, disruption of

the HAT enzyme CBP leads to memory defects (Korzus et al. 2004). Mutations in

CBP are associated with Rubinstein-Taybi syndrome, which has an intellectual

disability phenotype (Petrij et al. 1995). Histone deacetylases have been implicated

in depression (HDAC5), regulation of dendritic spine density and memory forma-

tion (HDAC2), negative regulation of long-term memory formation (HDAC3),

cognition (the Class III HDAC SIRT1), and synaptic transmission (Tsankova

et al. 2006, 2007; Guan et al. 2009; McQuown et al. 2011; Gao et al. 2010; Morris

et al. 2010).

Chromatin modifications, such as histone acetylation, mediate some of the

neuronal and behavioral changes induced by cocaine. As can be seen in Table 7.2,
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histone acetylation has been the best studied class of histone modifications for

addictive processes, although no doubt much more remains to be learned about its

functions. Histone acetylation is particularly interesting from a translational point

of view since certain medications that inhibit HDAC activity are clinically

approved for treating seizure disorders and particular types of cancer (Sharma

et al. 2010). The effects of these inhibitors on nervous system function and drug-

taking behaviors are discussed in more detail in the Therapeutics section.

The role of histone acetylation and deacetylation in addictive processes in

rodents has been recently reviewed; therefore, I will focus on a few of the key

studies related to cocaine responses (Renthal and Nestler 2009b; McQuown and

Wood 2010; Laplant and Nestler 2011; Wong et al. 2011). This will be followed by

descriptions of some recent work on the role of the Class III HDACs (sirtuins) and

then studies on tolerance to benzyl alcohol in a Drosophila model of inhalant

exposure which helps delineate some of the detailed molecular events that may

be occurring. I will then touch on several other histone modifications of particular

interest including histone dimethylation, histone trimethylation, and histone

phosphorylation.

7.3.1 Histone Acetylation and Cocaine Responses

Acute, but not chronic, cocaine exposure is known to induce expression of the

mRNA that encodes the cFOS transcription factor. Using ChIP Dr. Eric Nestler and

colleagues found that acute, but not chronic, cocaine exposure led to increased

acetylation of histone H4 at the cFOS gene promoter, but had no significant effect

on histone H3 acetylation (Kumar et al. 2005). Conversely chronic, but not acute,

cocaine exposure induces the BDNF and Cdk5 genes. Chronic cocaine exposure led

to increased acetylation of histone H3 but had no significant effect on histone H4

acetylation. These data suggest that a chromatin state (acetylation of histones H4 or

H3 near the promoters of particular genes) may in part indicate which genes are

modulated in response to acute or chronic cocaine administration. Taking these

experiments one step further, the investigators showed that administration of the

HDAC inhibitor trichostatin A to rodents prior to cocaine administration enhanced

the reward response to cocaine, while overexpression of the HDAC4 gene in the

striatum using herpes simplex virus decreased the reward response to cocaine.

In a second paper further exploring the roles of HDACs in drug responses,

several HDACs were found to be expressed in the NAc, with HDAC3 and

HDAC5 having the highest expression levels (Renthal et al. 2007). Viral

overexpression of HDAC5 in the NAc led to a reduction in the rewarding properties

of cocaine using a conditioned place preference assay, while HDAC5 knockout

animals were found to have the converse phenotype, with increased preference for

the cocaine-paired chamber. HDAC5 was required specifically in the NAc to

regulate this behavioral response, since viral expression of HDAC5 in the NAc of

HDAC5 knockout animals reduced the preference for the cocaine-paired chamber.
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Interestingly, the investigators also looked at the role of HDAC5 in chronic stress

using a social defeat behavioral assay. While acute stress had no effect on HDAC5

levels in the NAc, chronic stress was associated with reduced levels of the HDAC5

mRNA, and HDAC5 knockouts exhibited hypersensitivity to chronic stress.

HDAC5 modulation of behavioral responses to cocaine reward and chronic stress

responses is quite significant given the important role of stress in drug abuse

relapse.

7.3.2 Histone Acetylation, Sirtuins, and Cocaine Responses

In experiments described in the previous section, Dr. Renthal and coworkers

characterized genome-wide levels of histone acetylation from the nucleus

accumbens (NAc) brain region of rodents treated chronically with cocaine. These

studies revealed that many genes previously known to be upregulated by cocaine

exposure also have increased acetylation of histone H3 and H4. The investigators

then looked genome-wide to identify the binding sites of the cocaine-induced

transcription factors delta-FosB and CREB in the NAc of cocaine-treated animals

(Renthal et al. 2009a). Cross comparison of these datasets identified many genes

that had not previously been implicated in response to cocaine, including the Sirtuin

genes (Sirt1 and Sirt2) which function as NAD-dependent histone deacetylases

(Vaquero et al. 2007). While these genes function in many biological processes,

including circadian and metabolic regulation and aging, their role in the nervous

system is not well understood (Haigis and Sinclair 2010; Herranz and Serrano

2010). The investigators used pharmacological activators and inhibitors of sirtuins

to look at their function in cocaine responses. Interestingly, systemic pharmacolog-

ical activation of sirtuins dramatically enhanced the rewarding effect of cocaine,

while inhibition of sirtuins had the opposite effect. Pharmacological modulation of

sirtuin function may be a fruitful future avenue to explore in the development of

therapeutic agents to treat cocaine addiction.

7.3.3 Histone Modifications and Inhalant Exposure
in Drosophila

Dr. Nigel Atkinson and coworkers exploited the genetically powerful fruit fly

model system to investigate the molecular basis of inhalant tolerance. It has been

observed that adult flies become tolerant to sedation by organic solvents (which

sometimes are abused as inhalants) and this reduced sensitivity to inhalant requires

increased expression of the slowpoke potassium channel gene which in turn alters

neuronal function (Wang et al. 2007a).
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In order to investigate the molecular mechanism behind this observation,

Dr. Atkinson and coworkers found that a single exposure to inhalant led to

epigenetic changes in regulatory regions of the slowpoke gene leading to altered

expression of the slowpoke gene and reduced sensitivity (tolerance) to additional

inhalant exposure. Specifically, they observed that the pattern of acetylation of

histone H4 was altered across the slowpoke gene, which likely led to a more open

localized chromatin structure and subsequent increased expression of the slowpoke
gene. Exposure of the animals to a pharmacological inhibitor of histone

deacetylases, the class of enzymes responsible for the histone H4 acetylation, also

led to similar epigenetic and gene expression change as well as tolerance of the

animals to inhalant.

Interestingly, Dr. Atkinson and colleagues found DNA elements within the

slowpoke promoter that could be bound by the CREB transcription factor. A

number of labs have shown that the CREB transcription factor is important in the

responses of organisms to illicit substances, as well as in other neuroplastic

processes such as learning and memory (Han et al. 2007). Using a genetic manipu-

lation to “turn off” CREB, the researchers found that the epigenetic and expression

changes to slowpoke gene and the development of behavioral tolerance no longer

occurred. These results indicated that the CREB transcription factor is required for

these processes.

Dr. Atkinson and coworkers also found that sedation with benzyl alcohol leads

to increased expression of positively acting CREB isoforms and reduced expression

of negatively acting CREB isoforms (including dCREB2). Specifically the

dCREB2 isoform shows increased occupancy at the slowpoke promoter immedi-

ately after benzyl alcohol sedation in a chromatin immunoprecipitation assay.

Animals with a knockout in dCREB2 no longer have increased benzyl alcohol-

induced slowpoke gene expression and also no longer develop tolerance to this

organic solvent.

Overall, this work clearly shows that exposure to an organic solvent can alter

future sensitivity to the solvent via epigenetic regulatory mechanisms. It also

provides insight into the precise mechanisms by which exposure to an inhalant

can lead to epigenetic and expression level changes for a single gene, resulting in

altered neuronal function and altered behavioral responses of an animal to future

inhalant exposure. Although this work was performed using model inhalant, similar

mechanisms may well be utilized for responses to other drugs of abuse.

7.3.4 Histone Dimethylation (H3K9me2) and Cocaine
Responses

Histone dimethylation (H3K9me2) is normally associated with gene silencing

(Wen et al. 2009; Barski et al. 2007). In an article published in Science, Dr. Maze

and colleagues observed that histone methylation levels are reduced in the nucleus
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accumbens (NAc) of rodents (Maze et al. 2010). To further explore this phenome-

non, the researchers investigated the gene expression levels of the histone dimethyl-

transferases and demethylases that regulate this chromatin modification and found

that levels of the G9a and GLP histone dimethyltransferases are downregulated

upon cocaine administration. The investigators then looked at the effect of G9a

manipulation in the NAc on the behavioral effects of cocaine and found that

overexpression of G9a decreased the rewarding properties of cocaine, while knock-

down of G9a increased the rewarding properties of cocaine. The researchers

showed that these behavioral changes were correlated with concomitant changes

in G9a levels and global histone dimethylation. Looking upstream of G9a, repeated

cocaine exposure increased the levels of the transcription factor delta-FosB, leading

to decreased G9a levels. Looking downstream, many of the genomic targets of

histone dimethylation are known to play roles in the regulation of dendritic plastic-

ity, and in fact dendritic spine density was shown to be altered by G9a levels.

Overall Dr. Nestler and colleagues have elucidated an elegant multistep molecular

pathway in which repeated cocaine exposure leads to delta-FosB activation,

downregulation of G9a, and reduction in global histone dimethylation levels.

Histone dimethylation is normally associated with gene silencing, so decreased

histone dimethylation likely leads to increased expression of genes that regulate

dendritic plasticity. This change in gene expression leads to increased dendritic

spine density and ultimately increased behavioral preference for cocaine. Thus,

small molecules that target the activities of histone demethylases or histone

dimethyltransferases could have potential efficacy as therapeutic agents for treating

cocaine addiction.

7.3.5 Histone Trimethylation (H3K9me3) and Cocaine Effects
on Heterochromatin

Histone H3 Lysine 9 trimethylation (H3K9me3) is associated with silencing of

heterochromatic regions of the genome (Schotta et al. 2004; Yamada et al. 2005).

Work by Dr. Maze and colleagues found that cocaine exposure results in changes in

H3K9me3 levels in the NAc but not in brain regions such as the caudate putamen or

medial prefrontal cortex (Maze et al. 2011). When ChIP-seq assays were performed

on the NAc from cocaine-treated animals, thousands of repetitive elements (e.g.,

LINEs, SINEs) were associated with increased H3K9me3 binding, while thousands

of other sites had decreased binding. Overall, “repeated cocaine decreases

H3K9me3 binding and un-silences several specific retrotransposons (e.g. LINE-1)”

in the NAc (Maze et al. 2011).
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7.3.6 Histone Trimethylation (H3K4me3) Changes Associated
with Cocaine and Alcohol Exposure

Histone trimethylation (H3K4me3) tends to be associated with gene promoters

(Guenther et al. 2007; Bernstein et al. 2005). Work by Drs. Goldman and Mash

and coworkers have shown that histone trimethylation is important in chronic

exposure to cocaine and to alcohol (Zhou et al. 2011a). Genome-wide ChIP-seq

for H3K4me3 was performed on postmortem hippocampal samples from chronic

cocaine addicts, alcoholics, and controls. The investigators found that chronic

cocaine use was associated with H3K4me3 changes at >1,100 gene promoters,

while chronic alcohol use was associated with changes at >700 promoters. The

authors indicate that “there was significant overlap of the changes between the

cocaine and alcohol exposure groups” (Zhou et al. 2011a). Interestingly, these

H3K4me3 changes did not correlate well with gene expression changes measured

in parallel, suggesting that perhaps additional chromatin or transcriptional regula-

tion is important in mediating gene expression changes in response to cocaine and

alcohol exposure.

7.3.7 Histone H3S10 Phosphorylation and Cocaine Responses

Phosphorylation of H3S10 has previously been shown to be important in chromatin

condensation and transcriptional activation (Nowak and Corces 2004; Crosio et al.

2003). The DARPP-32 protein (dopamine-regulated and cyclic-AMP-regulated

phosphoprotein) has been a well-characterized role in responses to cocaine and

other drugs of abuse (Svenningsson et al. 2005). Interestingly, Stipanovich and

colleagues have identified a regulatory cascade whereby DARPP-32 leads to altered

Histone H3 phosphorylation (Stipanovich et al. 2008). Exposure to drugs of abuse

via dopamine 1 receptor (D1R) regulation leads to the accumulation of DARPP-32

in the nuclei of D1R-expressing striatal neurons. This nuclear accumulation appears

to be regulated by phosphorylation of Ser-97 of DARPP-32, such that when Ser-97

is unphosphorylated, DARPP-32 is primarily nuclear. The dephosphorylation of

Ser-97 is mediated by protein phosphatase 2A. The researchers then looked at the

effects on histone phosphorylation and found that cocaine exposure led to increased

levels of H3S10 phosphorylation. This pathway reveals a mechanism by which

drugs of abuse, via dopamine signaling, can influence chromatin and presumably

impact gene expression.
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7.4 DNA Modifications and Addictive Processes

Methylation of cytosine nucleotides (mC) has long been thought to be the only

covalent mammalian DNA modification and is often referred to as the “fifth base”

(Lister and Ecker 2009; Miranda and Jones 2007). DNA methyltransferases

(DNMTs) are the enzymes that methylate DNA; this methylation frequently occurs

at cytosines that occur as dinucleotides followed by guanine (CpG) (Turek-Plewa

and Jagodzinski 2005). DNA methylation appears to be a dynamic rather than a

static process, especially in the nervous system (Guo et al. 2011; Ma et al. 2009).

The enzymes responsible for active DNA demethylation have been difficult to pin

down despite significant efforts, and a number of candidate enzymes and

mechanisms have emerged (Wu and Zhang 2010; Ooi and Bestor 2008). There

have been recent discoveries addressing DNA methylation reversal mechanisms

which involve conversion of mC to an intermediate molecular form which can then

be excised by thymine DNA-glycosylase (He et al. 2011; Cortellino et al. 2011).

DNA methylation has been traditionally associated with gene silencing, but the

context of DNA methylation (methylation in CpG islands, CpG island shores, in

promoters, or in gene bodies) appears to be important in mediating the functional

effects of mC (Ndlovu et al. 2011). Interestingly, genome-wide single-base resolu-

tion DNA methylation maps reveal that human embryonic stem cells and

reprogrammed induced pluripotent stem cells contain high levels of DNA methyla-

tion in a non-CpG context, although the function of non-CpG methylation is not

clear (Lister et al. 2009, 2011). As more whole methylome datasets are generated

for different cell/tissue types and this information is compared to histone modifica-

tion, gene expression, and other data, the precise role of mC and the cross talk

between DNA methylation and other regulatory mechanisms will become more

clear.

Additional covalent DNA modifications were known to occur in other organisms

such as plants and bacteriophage (Vanyushin 2006; Fleischman et al. 1976). How-

ever, in 2009 a “sixth base” was discovered in mammalian cells: hydromethylcytosine

(hmC) (Kriaucionis and Heintz 2009; Tahiliani et al. 2009). Hydroxymethylcytosine

was discovered in Purkinje cells in the cerebellum, and an independent paper showed

that the TET1 enzyme can convert mC to hmC. Since then, researchers have been

working to discover putative functions for hmC and have identified likely roles for

hmC in transcriptional regulation and regulation of pluripotency (Pastor et al. 2011b;

Ndlovu et al. 2011; Ficz et al. 2011; Wu and Zhang 2011; Stroud et al. 2011;

Wossidlo et al. 2011; Szulwach et al. 2011). A very exciting publication indicates

that TET proteins can catalyze the in vitro formation of 5-carboxylcytosine (caC) and

5-formylcytosine (fC) from mC (Ito et al. 2011). These new DNA modifications may

be intermediates in a TET-mediated DNA demethylation pathway or perhaps could

have unexpected regulatory properties of their own. Only time will tell whether these

or other novel DNA modifications will be discovered in the genomes of nervous

system cells.
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As described earlier, specific proteins can bind to different histone modifications

and may play an important role in mediating their effects. Similarly for DNA

modifications, proteins in the MBD and Kaiso families have been shown to bind

to mC, while a recent report indicates that the Uhrf1 protein can bind to hmC

(Bogdanovic and Veenstra 2009; Frauer et al. 2011). Methyl CpG-binding protein-

2 (MeCP2), a member of the MBD family discussed below, can bind to mC and

presumably plays a role in mediating the effects of DNA methylation, perhaps by

recruiting additional proteins or protein complexes to a particular region of

chromatin.

There are a number of useful assays to determine DNA methylation status

including MethylC-seq, which provides genome-wide DNA methylation informa-

tion at single-base resolution (Lister et al. 2009; Harris et al. 2010). Unfortunately,

bisulfite-based sequencing strategies do not distinguish between mC and hmC, but

the development of new assays to detect and distinguish between hmC and mC

should help us to elucidate the function of hmC in the nervous system (Pastor et al.

2011b). In fact a recently developed Tet-based bisulfite sequencing protocol (TAB-

Seq) in combination with traditional bisulfite sequencing enables base resolution

mapping of hmC and confirms widespread distribution of 5hmC in embryonic stem

cells (Yu et al. 2012).

There is now a substantial body of work showing that DNA methylation has

multiple roles in the nervous system, including a significant role in memory

formation (Day and Sweatt 2010; Feng and Fan 2009). Mutations in the DNA

methyltransferase DNMT1 lead to neurodegeneration (Klein et al. 2011), while the

GABAergic neurons of some human schizophrenics show increased DNMT levels

(Klein et al. 2011; Zhubi et al. 2009; Mill et al. 2008). In addition, the methyl CpG-

binding protein-2 (MeCP2) is a transcriptional regulator originally identified as a

protein that can bind to mC (Lewis et al. 1992). Work by Dr. Huda Zogbhi and

colleagues have indicated that defects in MeCP2 function are associated with the

neurodevelopmental disorder Rett syndrome (Amir et al. 1999).

As can be seen in Table 7.2, there have been a number of studies investigating

the effects of drugs of abuse on DNA methylation. I will discuss the role of DNA

methylation with respect to cocaine and nicotine exposure as well as the role of the

mC-binding protein MeCP2 in addictive processes.

7.4.1 DNA Methylation and Cocaine Responses

Work by Dr. Laplant and coworkers in the Nestler group shows that both chronic

cocaine exposure and chronic social defeat stress can lead to changes in the

expression of the DNMT3a DNA methyltransferase gene. DNA methylation was

found to be required for the cocaine-induced formation of thin dendritic spines in

the NAc. To functionally test the role of DNMT3a in cocaine reward, DNMT3a was

conditionally knocked down in the NAc, and the treated animals preferred the
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cocaine-paired chamber in a CPP assay. In the converse experiment, DNMT3a was

overexpressed in the NAc using a herpes simplex virus vector, and the preference of

the animal for the cocaine-paired chamber was reduced. NAc injection of the DNA

methylation inhibitor RG108 led to increased cocaine CPP, while administration of

methionine, which promotes DNA methylation, led to a decrease in cocaine CPP.

The authors conclude from these pharmacological and genetic manipulations of

DNMT3a that “increased Dnmt3a expression in NAc negatively regulates cocaine

reward, whereas decreased Dnmt3a enhances cocaine reward” (Laplant et al. 2010).

7.4.2 DNA Methylation and Nicotine Responses

DNA methylation appears to also play a role in mediating responses to nicotine.

Mice injected with nicotine had decreased levels of DNMT1 in the frontal cortex

and the hippocampus, but had normal DNMT1 levels in the GABAergic neurons of

the striatum (Satta et al. 2008a). Pharmacological experiments were used to show

that nicotinic acetylcholine receptor (nAChR) function was required to achieve the

change in DNMT levels in the frontal cortex. Further experiments revealed that

nicotine exposure led to upregulation of GAD67 (glutamic acid decarboxylase 67)

protein in the frontal cortex, but not in the striatum, and that this upregulation was

associated decreased CpG methylation in the GAD67 promoter. Overall this study

identifies a potential mechanism of action by which nicotine could mediate neuro-

nal gene expression changes via DNA methylation. This study also suggests that

therapeutic agents that modulate DNA methylation changes in the appropriate brain

regions could be of potential use in treating nicotine addiction or perhaps

schizophrenia.

7.4.3 A Role for MeCP2, a Methyl-C-Binding Protein,
in Substance Abuse

MeCP2 is known to play a role in the neurodevelopmental disorder Rett syndrome;

however, the neurobiological functions of MeCP2 are not completely understood

and are under active investigation. MeCP2 can bind to methylated cytosine residues

and presumably can recruit additional proteins or protein complexes to a particular

region of chromatin to regulate transcription or other molecular processes. Some

studies have suggested that MeCP2 regulates alternative splicing, can bind

promoters that are not methylated, or may regulate neuronal genome function

through histone acetylation in a more global fashion (Yasui et al. 2007; Young

et al. 2005; Skene et al. 2010). Neuronal activity is known to stimulate CaMKII

phosphorylation of MeCP2 Serine 421 to modulate “dendritic patterning, spine

morphogenesis, and the activity-dependent induction of Bdnf transcription”
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(Zhou et al. 2006; Chen et al. 2003). Functional work indicates that disruption of

MeCP2 specifically in GABA-releasing neurons leads to behavioral phenotypes,

including compulsive grooming, reminiscent of phenotypes characteristic of Rett

syndrome patients (Chao et al. 2010). MeCP2 is not just required during a specific

developmental window but is required in adult animals for proper brain function

(McGraw et al. 2011). Recent studies suggest that MeCP2 loss stimulates L1

transposition (Muotri et al. 2010).

Several publications point to a role for MeCP2 in regulation of responses to

drugs of abuse. Work by Dr. West and colleagues has shown that MeCP2 knock-

down in the NAc leads to increased preference of mice for amphetamine using a

CPP assay, while animals no longer had preference for the amphetamine-paired

chamber when MeCP2 was overexpressed in the NAc (Deng et al. 2010). Interest-

ingly, in a strain of MeCP2 mutant mice, the authors found an almost twofold

increase in GABAergic synapses in the NAc as compared to control animals,

indicating that MeCP2 is required for the developmental wiring of this brain

structure. Furthermore, MeCP2 mutant mice did not show normal amphetamine-

induced changes in dendritic spine density of medium spiny neurons, nor did they

show normal amphetamine-induced changes in immediate early gene expression in

the striatum, both of which correlate with impaired amphetamine-induced behav-

ioral changes in this strain.

In related work Dr. Kenny and colleagues showed that lentiviral knockdown of

MeCP2 in the striatum leads to decreased cocaine consumption (Im et al. 2010).

Interestingly, MeCP2 was found to repress expression of the miR-212 microRNA

involved in regulation of cocaine-taking (discussed in more detail in the microRNA

section of this chapter) (Im et al. 2010; Hollander et al. 2010). Furthermore, miR-

212 can repress MeCP2 expression, while cross talk between miR-212 and MeCP2

regulates the impact of cocaine on brain-derived neurotrophic factor (Bdnf ) levels
in the striatum. Interestingly, Dr. Sadri-Vakili and colleagues found that cocaine

self-administration was associated with decreased MeCP2 binding to brain-derived

neurotrophic factor (Bdnf ) promoter IV in the medial prefrontal cortex (mPFC)

(Sadri-Vakili et al. 2010). The medial prefrontal cortex (mPFC) is one of several

brain regions that has dopaminergic inputs from the ventral tegmental area (Le et al.

2005). Based on this study and the two publications above, it appears that MeCP2

has an important role in addictive processes and may have special functions in

distinct brain regions.

Work by Teresa Reyes and colleagues has shown that in an animal model of diet-

induced obesity, animals on a chronic high-fat diet were found to have epigenetic

changes in the mu opioid receptor (MOR) promoter in reward areas of the brain

(VTA, NAc, PFC). These epigenetic changes included increased H3K9me2,

decreased H3ac, increased DNA methylation, and increased MeCP2 binding to

the MOR promoter (Vucetic et al. 2011). Related work revealed that high-fat diet

influenced dopamine reuptake transporter (DAT) gene expression in the VTA,

NAc, and PFC (Vucetic et al. 2010). DNA methylation changes were also observed

in DAT and other reward-related genes in the hypothalamus, NAc, and PFC. These

molecular changes associated with exposure to high-fat diet suggest that epigenetic
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regulation in response to diet and to drugs of abuse could have significant overlap

and raises the possibility of whether or not specific dietary regimens, in combina-

tion with other therapeutic interventions, could influence addictive processes.

7.4.4 MeCP2 and Epigenomic Regulation of Genomic
Structure

As mentioned earlier, MeCP2 was found to play a role in regulation of transposition

of L1 retrotransposons (Muotri et al. 2010). Dr. Muotri and colleagues found that

there is increased L1 retrotransposition in neural precursor cells derived from

patients with MeCP2 mutations. Additionally in a mouse strain designed to detect

L1 transposition events using a fluorescent reporter, there were higher numbers of

GFP-positive cells in brain tissue from MeCP2 knockout animals as compared to

wild type. The results from this paper suggest a possible scenario in which L1

retrotransposons may be methylated and bound by MeCP2, inhibiting retrotran-

sposition. In the absence of MeCP2, retrotransposition becomes more frequent.

This study raises the intriguing possibility that our somatic genomes may be much

more diverse than we previously expected and that epigenomic regulation may play

an important role in regulating somatic genomic diversity.

Could drugs of abuse impact somatic genomic structure via epigenomic regula-

tion? Work by Dr. Maze and colleagues described earlier showed that cocaine

exposure leads to changes in Histone H3 Lysine 9 trimethylation (H3K9me3) in the

NAc but not two other brain regions (Maze et al. 2011). H3K9me3 is associated

with heterochromatin silencing (Schotta et al. 2004; Yamada et al. 2005). The

authors indicate that overall “repeated cocaine decreases H3K9me3 binding and

unsilences several specific retrotransposons (e.g. LINE-1)” in the NAc (Maze et al.

2011).

LINE-1 retrotransposition during neurodevelopment and neurogenesis could

contribute to genomic diversity within the somatic genomes of neurons (Singer

et al. 2010). Taken together, the effects of MeCP2 mutation on LINE-1 retrotran-

sposition and the H3K9me3 work suggest the testable hypothesis that repeated

cocaine administration could lead to unsilencing and retrotransposition of LINE-1

elements in the NAc leading, in some cases, to permanent gene disruption or long-

lasting alterations in gene expression (Muotri et al. 2010). Obviously animal and

postmortem brain studies of cocaine-exposed individuals would be needed to assess

whether cocaine exposure induces LINE-1 retrotransposition in the NAc and, if so,

what the functional consequences of retrotransposition might be.
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7.5 Noncoding RNAs and Addictive Processes

Many large and small noncoding RNAs (ncRNAs) have been identified in recent

years, and some of these have significant regulatory functions. In particular, small

ncRNAs (approximately 20–30 nucleotides) play key roles in gene transcription

and translation. For example, Piwi-interacting RNAs (piRNAs) are involved

in transposon silencing, and small interfering RNAs (siRNAs) are involved in

regulating mRNA levels and chromatin formation (in plants and yeast) and

in antiviral responses (in animals), while microRNAs (miRNAs) can simulta-

neously regulate the mRNA levels and translational efficacy for tens to hundreds

of genes (Kaikkonen et al. 2011; Hannon et al. 2006; Czech and Hannon 2011;

Marques and Carthew 2007). In the nervous system, a recent paper shows that

piRNAs and the piRNA-associated protein MIWI are found in the hippocampus and

may play a role in the morphogenesis of spines (Lee et al. 2011). miRNAs have

been shown to play diverse roles in processes including neural development,

survival, and degeneration, synaptic plasticity, dendritic spine morphology, and

memory formation (Olde Loohuis et al. 2011; Saba and Schratt 2010; Davis et al.

2008; Schratt 2009; Schaefer et al. 2007; Schratt et al. 2006; St. Laurent et al. 2009;

pp. 81–88; Lin et al. 2011). In mammalian cells miRNAs have important cytoplas-

mic functions, although as yet they have not been shown as yet to have epigenetic

regulatory function (Khraiwesh et al. 2010). Some miRNAs have a profound effect

on addictive behaviors and for this reason have been included in this chapter.

In addition to small RNAs, some of the longer ncRNA species include enhancer

RNAs (eRNAs) and large intergenic noncoding RNAs (lincRNAs). eRNAs are

associated with enhancer regions of the genome that likely play a role in transcrip-

tional regulation (Wang et al. 2011). Recent work utilizing a specific chromatin

signature identified more than 1,000 mammalian lincRNAs, and some lincRNAs

have been shown to be involved in regulation of cellular differentiation (Guttman

et al. 2009; Guttman et al. 2011). The lincRNAHOTAIR seems to be able to impact

chromatin remodeling by binding to multiple enzymes which are able to modify

histones, while the lincRNA HOTTIP seems to be able to “transmit information

from higher order chromosomal looping into chromatin modifications” in order to

regulate gene expression (Tsai et al. 2010; Wang et al. 2011). Some lincRNAs form

complexes with proteins such as polycomb repressive complex 2 (PRC2), and the

development of assays such as RIP-seq has allowed the identification of RNAs

associated with PRC2 (Zhao et al. 2010). Assays enabling the identification of

genomic regions associated with lincRNAs will be an important future tool needed

to help uncover regulatory cross talk that may occur between lincRNAs and other

epigenetic regulatory mechanisms. Some lincRNAs are expressed in brain and may

play a role in the specification of glial and neuronal fates (Mercer et al. 2008, 2010).

For example, the RCNR2 RNA has been show to play a role in specification of

retinal cell fate (Rapicavoli et al. 2010). Future research is likely to uncover

additional roles for lincRNAs in the nervous system.
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As shown in Table 7.2, investigations into the role of noncoding RNA regulation

in addictive processes have been quite limited to date, and only one study has

investigated any role for lincRNAs. This section of this chapter will focus on an

emerging role for lincRNAs in heroin abuse followed by a more complete story on

microRNA regulation in cocaine-taking behavior.

7.5.1 lincRNAs and Heroin Use

Drs. Bannon and Lipovich and colleagues found that 23 lincRNAs were represented

on microarrays being used to characterize gene expression changes in postmortem

NAc tissue from heroin and non-heroin users (Michelhaugh et al. 2011). These

investigators found that five of these lincRNAs (MIAT, MEG3, NEAT1, NEAT2,

and EMX2OS) were expressed in the NAc and further that all five were upregulated

in the heroin users as compared to non-heroin users. Thus, a potential lincRNA

function may be to regulate widespread gene expression, and this regulation may be

disrupted in the NAc of drug-abusing individuals. Further exploration of the role of

lincRNAs in neuroplastic and addictive processes is an important area of investiga-

tion for the future.

7.5.2 miRNAs and Cocaine

The role of miRNAs in addictive processes has recently been reviewed (Li and van

der Vaart 2011; Pietrzykowski 2010). As indicated in Table 7.2, roles have been

described for microRNA regulation of the dopamine 1 receptor involved in nicotine

dependence and for microRNA regulation of response to alcohol exposure (Huang

and Li 2009; Pietrzykowski et al. 2008). There have been several projects that have

successfully identified miRNAs involved in cocaine responses (Eipper-Mains et al.

2011; Chandrasekar and Dreyer 2011). Another study shows that rodents with an

Argonaute 2 (Ago2) protein deficiency in the dopamine receptor 2 expressing

neurons have altered intravenous cocaine self-administration in mice (Schaefer

et al. 2010). Ago2 is known to play an important role in miRNA biogenesis and

function, supporting a role for miRNAs in cocaine reinforcement (O’Carroll et al.

2007).

A major discovery in this area has been made regarding miRNA regulation of

cocaine-taking behavior. Dr. Paul Kenny and coworkers have identified a 21-

nucleotide microRNA, miR-212, that is found at higher levels in the dorsal striatal

brain region of animals that self-administer cocaine (Hollander et al. 2010). In rats

with extended access to cocaine, reduction of miR-212 levels in the striatum leads

to increased cocaine intake, while overexpression of miR-212 leads to decreased

cocaine intake. Further molecular experiments revealed that miR-212 achieves its

effects via simultaneous reduction in expression of several mRNAs encoding
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regulatory proteins that impinge upon the Raf1 protein kinase signaling pathway

(including the SPRED1 repressor of Raf1). Overall these gene expression changes

lead to increased levels of Raf1 protein kinase activity, increased expression of the

CREB regulatory protein TORC, and ultimately increased activity of the transcrip-

tion factor CREB. In a separate publication, miR-212 was found to regulate and be

regulated byMeCP2 (see MeCP2 section of this chapter for details) (Im et al. 2010).

The identification of novel miRNA regulatory pathways that control cocaine

intake, as well as responses to other drugs of abuse, could reveal new and unex-

pected targets for the development of potential therapeutic agents to treat addiction.

Two key areas for future research in the miRNA arena are the identification and

characterization of the target mRNAs regulated by these miRNAs as well as studies

investigating whether or not these and/or other miRNAs are associated with addic-

tive behaviors in human populations.

7.6 The Perdurance of Epigenomic Changes

While some chromatin changes are transient and occur as a normal part of tran-

scriptional regulation, others are more long lasting and could be particularly

important in the case of terminally differentiated post-mitotic neurons (Miller

et al. 2010). There is also evidence for mitotically heritable chromatin changes

that may impact progeny cells (Ng and Gurdon 2008). In some cases, epigenomic

changes may even be meiotically heritable and affect the next generation

(Youngson and Whitelaw 2008). The occurrence and perdurance of some types of

epigenetic changes is likely to be influenced by factors including the nature of any

environmental exposures involved, the cell type involved, and whether or not that

cell type is exposed during a particular developmental window. There is increasing

evidence that certain environmental exposures during critical developmental

periods such as prenatal development, adolescence, or periods of germline matura-

tion are associated with disease consequences. This concept has been captured in

the developmental origins of health and disease (DOHaD) hypothesis which

“proposes that during critical periods of prenatal and postnatal mammalian devel-

opment, nutrition and other environmental stimuli influence developmental

pathways and thereby induce permanent changes in metabolism and chronic disease

susceptibility” (Waterland and Michels 2007). In the following two sections, we

will discuss the limited literature concerning the stability of epigenomic changes

associated with exposure to drugs of abuse during particular developmental periods.

7.6.1 Somatic Effects of Drugs of Abuse

The stability of epigenomic changes is a particularly difficult problem to investigate

in the brain. For animal studies, individuals need to be sacrificed, and thus, only a
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single time point can be generated per animal. Surprisingly few studies have been

performed looking at how long epigenomic changes can last within the nervous

system. Work by Dr. Courtney Miller and colleagues indicates that fear

conditioning-associated DNA methylation changes in the Calcineurin gene can

last for at least 30 days in the dorsal medial PFC (Miller et al. 2010). Researchers in

the Nestler laboratory found H3K9me2 changes in the nucleus accumbens that last

for at least 28 days using a social defeat behavioral paradigm (Wilkinson et al.

2009). Investigations into the stability and dynamics of somatic epigenomic

changes in response to drugs of abuse and potential drug abuse therapeutics will

be important for the future.

7.6.2 Multigenerational and Transgenerational Effects
of Drugs of Abuse

There is evidence that exposure to certain chemical toxins, social environments, or

nutrient levels can, in some cases, lead to specific phenotypes in subsequent

generations. These phenotypes can be transmitted without an apparent DNA change

through multiple generations even when these generations have not been exposed to

the inducing factor (Youngson and Whitelaw 2008; Skinner et al. 2010; Cham-

pagne 2008). The phenotypic consequences can in part be dependent upon when the

exposure occurred. When an individual encounters an environmental exposure such

as a drug of abuse, the exposure could potentially impact the individual, any fetuses

present, and any germ cells or gametes present. Effects on progeny derived from the

exposed parent can be referred to as multigenerational phenotypic effects, while

transgenerational effects usually refer to phenotypes observed in progeny that were

not exposed in utero or derived from exposed germ cells (Skinner et al. 2010).

For example, there is evidence that caloric restriction can lead to impaired

glucose tolerance in subsequent generations (Zambrano et al. 2005). Exposure to

certain chemical toxins or social environments can also impact phenotypes across

generations (Skinner et al. 2008; Champagne and Meaney 2007). Several groups of

researchers have shown that early life stress or adversity can lead to a number of

important phenotypic effects including altered transcription factor binding to and

histone acetylation of the glucocorticoid receptor (which plays a critical role in

stress responses), altered DNA methylation of the BDNF gene in the adult prefron-

tal cortex, altered serotonin signaling in the dorsal raphe nucleus, depressive-like

phenotypes, and changes to energy metabolism and feeding behavior (Weaver et al.

2004; Roth et al. 2009; Franklin et al. 2010; Dietz et al. 2011; Pankevich et al. 2009;

Weiss et al. 2011). The mechanism for phenotypic transmission in all of these cases

has not been fully elucidated, although the potential involvement of epigenetic

processes is an important avenue of investigation.

There are several lines of evidence suggesting that it would be worthwhile to

explore whether or not exposure to drugs of abuse could lead to multigenerational
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or transgenerational effects. Human epidemiological studies by Dr. Marcus

Pembrey and colleagues indicate that preadolescent paternal smoking is associated

with greater body mass indices in sons (at 9 years of age), with no significant effects

observed in daughters (Pembrey et al. 2006). There is also preliminary evidence

that paternal cocaine exposure in mice could lead to phenotypic consequences in

the progeny. In this study, mice were exposed to cocaine via inhalation in an animal

model of crack cocaine use (He et al. 2006). Cocaine-exposed males were mated to

unexposed females and the progeny characterized morphologically and behavior-

ally. The progeny had reduced head diameters, perhaps reflecting reduced cerebral

volume, and also had impaired spatial working memory and attention. Interestingly,

the investigators did not observe significant DNA breaks in the sperm of cocaine-

exposed fathers, but did observe “reduced levels of expression of Dnmt1, together

with increased levels of expression of Dnmt-3a, in the germ cell-rich seminiferous

tubular tissue” of cocaine-exposed males which may mean that cocaine exposure

could impact progeny phenotypes through DNA methylation changes in the sperm

(He et al. 2006). Related work indicates that cocaine exposure of pregnant female

mice can lead to altered DNA methylation patterns in the hippocampus of progeny

(Novikova et al. 2008).

In 1972, an article published in Science indicated that maternal morphine

exposure prior to fertilization was associated with a decrease in body weight in

the progeny (Friedler and Cochin 1972; Friedler 1978). Further studies indicated

that male adolescent morphine exposure could impact endocrine responses in

offspring (Cicero et al. 1991). More recent work by Dr. Elizabeth Byrnes and

colleagues indicates that maternal morphine exposure prior to conception can

lead to phenotypic effects on the progeny (Byrnes et al. 2011; Byrnes 2005;

Johnson et al. 2011). Female rats were exposed to multiple doses of morphine

during adolescent development, drug exposure was halted for at least 20 days, and

the animals were mated to males not exposed to morphine (Byrnes et al. 2011). The

adult female, but not male, progeny from morphine-exposed mothers had decreased

anxiety as measured by the open-field assay. However, adult male, but not female,

offspring of morphine-exposed mothers had increased sensitivity to morphine. The

potential phenotypic consequences of adolescent or young adult morphine exposure

on the next generation are particularly significant given the recent sharp increase in

prescription opioid use among adolescents (Sung et al. 2005).

Genomic imprinting is an “epigenetically regulated process that causes genes to

be expressed in a parental-origin-specific manner rather than from both chromo-

some homologues” (Ferguson-Smith 2011). In at least one case, the parental origin

of a single genetic variant has been associated with disease protection and disease

risk, depending upon whether the variant came from the mother or father (Kong

et al. 2009). Imprinting could play a very interesting role in nervous system

function and is known to be important in certain neurodevelopmental disorders

such as Prader-Willi syndrome (Allen et al. 1995; Gregg et al. 2010; Gurrieri and

Accadia 2009). There has been some work suggesting a role for imprinting in

alcohol dependence, and it has been reported that the imprinting control region

H19-IGF2 may play a role in specification of dopaminergic precursor neurons
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(Strauch and Baur 2005; Freed et al. 2008). However, overall, little is known about

the role of parental imprinting in drug abuse resilience or susceptibility.

It is clear from this section that additional research, including extremely well-

controlled studies, need to be carried out in order to prove unequivocally whether or

not any drugs of abuse have authentic transgenerational effects. If substance use/

abuse were conclusively shown to lead to deleterious transgenerational phenotypic

effects, this new knowledge would have significant public health implications and

would likely influence the development of future drug prevention programs. If

exposure to drugs of abuse were shown to lead to transgenerational phenotypes,

then the mechanism for such transmission would need to be elucidated. There have

been a number of mechanisms proposed for transmission of transgenerational

effects including (1) viral, microbiome, or prion transmission, (2) neurobehavioral

or societal transmission, and (3) altered epigenomic states of germ cells or gametes

via altered parental imprinting, or other epigenetic effects (Youngson andWhitelaw

2008).

7.7 Challenges and Opportunities in Epigenomics

and Addiction Research

As research proceeds in the area of transcriptional and epigenomic regulation in

human disease, there are a number of scientific challenges and opportunities that

present themselves. These include investigations into less well-studied chromatin

features, renewable affinity reagents, addressing cell-type heterogeneity in the

nervous system, epigenomic maps of brain tissues or cell types, epigenome-wide

association studies (EWAS), and manipulation of epigenetic changes to understand

function and mechanism. These challenges and opportunities are discussed in the

following section with an emphasis on their impact on neuroscience and addiction

research.

7.7.1 Underexplored Areas: From Novel Modifications
to Higher Order Chromatin Structure

There are a number of research areas that have the potential to be quite exciting but

have received very limited attention with respect to neuroplasticity and drugs of

abuse. Several of these are discussed below including new DNA, histone, and RNA

modifications; histone variants; RNA editing; ATP-dependent chromatin remodeling;

and higher order chromatin structure.

Histone posttranslational modifications and DNA modifications have both been

shown to be important in regulation of gene function, and it is likely that our catalog

of these modifications is not complete. Histone variants are known to be important
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in a number of biological processes including regulation of transcription; however,

little is known about whether they have any special roles in post-mitotic neurons

(Talbert and Henikoff 2010). RNAs have a surprising number of posttranscriptional

modifications (e.g., 6-methyladenine, 1-methyladenine), but the functional roles of

these modifications have not been carefully explored in the nervous system

(Cantara et al. 2011; He 2010).

Some mRNAs are modified through the process of A-I RNA editing in which an

adenosine in the RNA is converted to inosine by adenosine deaminases (ADARs).

The inosine can be translated as a guanosine by the ribosome which can result in the

presence of an amino acid in the protein product that was not encoded by the

original DNA sequence (Mattick and Mehler 2008). RNA editing may serve to

increase the diversity of proteins that can be produced, but it could also enable

neurons to modify their properties in response to particular environmental changes.

The extent to which RNA editing occurs in noncoding RNAs is poorly

characterized but could impact their regulatory functions. mRNAs that have been

shown to be edited include the serotonin biosynthetic enzyme TPH2 and the

serotonin 2C receptor mRNA (Grohmann et al. 2010; Iwamoto et al. 2009;

Dracheva et al. 2008). Little work has been done looking at the role of RNA editing

in addictive processes, although Dr. Stella Dracheva and colleagues have found

higher serotonin 2C editing in the prefrontal cortex associated with rats that exhibit

high locomotor response to novelty (Dracheva et al. 2009).

The ATP-dependent chromatin remodeling proteins, such as members of the

SNF2, ISWI, or CHD families, are able to “disrupt nucleosome DNA contacts,

move nucleosomes along DNA, and remove or exchange nucleosomes”

(Hargreaves and Crabtree 2011; Gkikopoulos et al. 2011). These nucleosome

changes regulate access to genomic DNA which can have consequences in terms

of gene expression. Some of these chromatin remodeling proteins have been shown

to function in neural development and differentiation (Yoo and Crabtree 2009;

Brown et al. 2007; Pirotte et al. 2010). When neurons exit from mitosis, there is a

switch in the subunit composition of the BAF chromatin remodeling complexes that

appears to be important in regulating dendritic morphogenesis, and this switch is

regulated by the microRNAs miR-9* and miR-124 (Yoo et al. 2009). For

neuroplasticity and substance abuse, investigations into chromatin remodeling has

been limited; however, it has been reported that increased levels of the ATP-

dependent chromatin remodeling protein Brg1 are found at the Cdk5 promoter in

response to chronic cocaine exposure (Kumar et al. 2005).

Higher order chromatin structure within the nucleus may play an extremely

important role in regulation of gene expression and in mediating other cellular

functions (Eskiw et al. 2010; Li and Reinberg 2011). Technologies have recently

been developed that enable the characterization of higher order chromatin (e.g.,

Hi-C, ChIA-PET) (Lieberman-Aiden et al. 2009; Fullwood et al. 2009; Espinoza

and Ren 2011). Studies investigating the role of higher order chromatin structure in

the nervous system, or in response to neuroplastic changes or drugs of abuse, are a

very interesting area for future investigation.
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7.7.2 Renewable Affinity Reagents for Epigenomic Research

Chromatin immunoprecipitation (ChIP) assays can provide extremely valuable

information concerning the chromatin landscape of particular cells and tissues.

These assays have only become possible due to the development of very low-cost

and very high-throughput sequencing (Zhang and Pugh 2011; Park 2009). The

continued reduction in the cost of sequencing DNA will improve the ability of

researchers to apply this technique to important biological processes and disease

studies. However, one of the key needs for successful ChIP assays is a high-quality

antibody or other affinity reagent that binds specifically to the target of interest

enabling chromatin enrichment of DNA regions in the vicinity of that particular

epitope. Unfortunately some commercially available antibodies do not have appro-

priate specificity or are not useful for ChIP assays (Egelhofer et al. 2011). Efforts

have been made to begin validating commercially available antibodies through

Western blot, dot blot, or ChIP-seq analyses (http://compbio.med.harvard.edu/

antibodies/). Even if an antibody is found to be useful for ChIP assays, the supplies

are finite unless the antibody is monoclonal. Thus, there is a great need to develop a

renewable resource of ChIP-grade antibodies (such as monoclonal antibodies) or

affinity reagents (using recombinant affinity technologies) so that the scientific

community has an unlimited supply of these reagents. A ChIP affinity reagent

resource would allow researchers to compare ChIP experiments performed in

different labs using identical antibodies, which is not always possible when the

ChIP assays are performed with polyclonal antibodies. The development of a panel

of one or more renewable ChIP-grade affinity reagents for each posttranslational

histone modification, DNA modification, and ultimately each transcriptional regu-

latory protein would be an extremely valuable resource for the scientific community

as a whole.

7.7.3 Addressing Cell-Type Heterogeneity in the Nervous
System

One of the major barriers impeding epigenetic studies in the nervous system, as well

as other organ systems, is cellular heterogeneity. The mixture of neurons, glia,

microglia, and cardiovascular tissue in different brain regions may mask or con-

found epigenomic changes that may be taking place. One strategy to address this

problem includes the sorting of labeled nuclei from specific brain regions or other

clinically relevant tissue to enrich for cell types of interest while preserving the

relevant epigenomic information (Cheung et al. 2010). Genetically tractable

systems have been used to label ribosomes from specific cell types for purification

and molecular identification of cell-specific mRNAs (Heiman et al. 2008; Doyle

et al. 2008). In recent years, our ability to epigenomically characterize smaller and

smaller numbers of cells has improved significantly, and in the future it might even
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be possible to assay the epigenomes of single cells (Gu et al. 2010; Goren et al.

2010; Geng et al. 2011; Cipriany et al. 2010).

7.7.4 Epigenomic Maps of Brain Cell/Tissue Types

Scientific consortia such as the NIH Roadmap Epigenomics program are generating

comprehensive maps of chromatin from a wide variety of “normal” human cell and

tissue types (Bernstein et al. 2010). These maps typically include DNA methylation

information, ChIP assays for several highly informative histone modifications

(H3K4me1, H3K4me3, H3K9me3, H3K27me3, H3K36me3, H3K9ac, or

H3K27ac), chromatin accessibility information using the DNAse1 hypersensitivity

assay, and gene expression information. At the moment there are 65 epigenomic

maps of cells that have all of these data types, while partial datasets are available for

around 180 additional cell or tissue types. For brain researchers there are currently

partial datasets for fetal brain from six time points between 85 and 142 days, as well

as postmortem adult brain from anterior caudate, cingulate gyrus, hippocampus,

inferior temporal lobe, midfrontal lobe, and substantia nigra (http://www.

roadmapepigenomics.org/). Other epigenomic datasets for human and model

organisms cells/tissues can be found at the NCBI Epigenomics gateway (http://

www.ncbi.nlm.nih.gov/epigenomics) or produced by the ENCODE consortium

(http://www.genome.gov/10005107).

One goal for the future would be to develop a comprehensive atlas of chromatin

maps for a wider variety of brain regions and brain-specific cell types for both

human and mouse. It will be important to link these epigenomic features with other

molecular phenotypes such as mRNA and ncRNA expression, transcription factor

binding sites, and higher order chromatin structure information. It will also be

important to link molecular phenotypes to other cellular phenotypes such as

morphology, connections with other neuronal or support cells, and the electrophys-

iological properties of the cells. These maps would be an important aid to

researchers studying neuropsychiatric, neurodevelopmental, and cognitive

disorders and may also yield neuronal cell type-specific targets for developing

small molecular probes and therapeutic compounds.

For drug abuse researchers, the systematic generation of an “addiction

epigenomics” data resource cataloging molecular phenotypes for drug abuse rele-

vant brain regions with and without exposure to different drugs of abuse would

provide an invaluable resource. Researchers would be able to mine this data to

identify novel candidate loci to test for their involvement in addictive processes.

They would also be able to compare profiles of molecular phenotypes responses for

different drugs of abuse to begin to identify loci and networks common to addictive

processes in general as well as those that might be unique for a particular drug of

abuse.

Genome-wide datasets for DNA methylation, histone modifications, chromatin

accessibility, ncRNAs, and transcription factor binding sites can be harnessed to
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interpret data from genome-wide association studies (GWAS) for various diseases.

Of particular interest, recent investigations reveal that disease SNPs identified by

GWAS frequently fall in regions of accessible chromatin or in enhancer elements of

cell types relevant to the disease (Maurano et al. 2012; Pennisi 2011; Ernst et al.

2011). Overall these studies “can facilitate the interpretation of GWAS data sets by

predicting specific cell types and regulators related to specific diseases and

phenotypes” (Ernst et al. 2011). Application of this strategy to polymorphisms

associated with addictive behaviors could help to shed light on the function of some

of these SNPs, particularly those in noncoding genomic regions, help flesh out the

gene networks involved, as well as to confirm or generate new hypotheses

concerning the brain regions and cell types involved in addiction to particular

drugs of abuse.

7.7.5 Epigenome-Wide Association Studies (EWAS) for Drug
Abuse Research

Although GWAS have been valuable in identifying unexpected genes and loci

involved in particular human diseases, some diseases have a significant environmen-

tal component. If certain epigenomic states are indeed influenced by environmental

exposures, then EWAS, which look at the epigenomic states of disease-relevant

tissues in a case/control design, could be of great value in identifying loci involved in

particular environmental exposures (Rakyan et al. 2011). Identification of genes and

loci using EWAS approach could point the way to new therapeutic targets to treat

disease. As scientists begin to perform EWAS using readily accessible human

tissues, it will be interesting to see how the genes and loci identified compare and

contrast with those identified in GWAS. At this time, EWAS for an addiction

phenotype would be difficult to implement since this would necessitate the ability

to monitor brain epigenomic regulation either through in vivo imaging techniques or

through the use of an accessible surrogate tissue type that accurately reflects

epigenomic changes that occur within the relevant brain regions.

7.7.6 Pharmacological and Molecular Manipulation
of Epigenetic Changes to Understand Function

As correlative hypotheses are generated, it becomes essential to determine the

functional role of a particular epigenetic or ncRNA regulatory pathway on a

phenotype. Small-molecule probes that activate or inhibit specific epigenetic

regulators provide an invaluable resource for testing the function of specific

regulation for substance abuse phenotypes. As interest in epigenomic and ncRNA

regulation unfolds, more small-molecule modulators are being made available to
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the scientific community. The NIH Molecular Libraries Program has several

projects to identify epigenetic modulators underway (http://mli.nih.gov/mli/) as

does the Structural Genomics Consortium (http://www.thesgc.org/chemical_probes/

epigenetics/) (Austin et al. 2004). These small-molecule modulators could be used as

probes to confirm whether or not a given pathway is functionally important and

should be further investigated. These small molecules could also serve as the

foundation for developing therapeutic agents. As small-molecule reagents become

more readily available, it will become easier to determine which epigenetic regu-

latory pathways have the most impact on drug abuse phenotypes and might be useful

to target therapeutically.

Molecular genetic approaches can also be useful for investigating the function of

epigenomic and noncoding RNA regulation. Unfortunately most small molecules

and molecular genetic manipulations impact epigenetic function on a global level.

Efforts have been made to manipulate chromatin states in a locus-specific manner,

typically by using fusion proteins to target epigenetic modifying enzymes to

particular DNA loci (Hansen et al. 2008). These techniques will need further

development to enable robust locus-specific manipulation of chromatin states in

the future.

7.8 Translating Epigenomic Discoveries into Improvements

in Human Health

Although a deeper understanding of the biological mechanisms of drug abuse is of

great significance, this understanding has the potential to be translated into

improvements in human health. Most substance abuse studies to date have

investigated epigenomic regulation in the brain regions of rodents since the level

of drug exposure can be readily quantitated and tissues from the exposed brains are

accessible to the investigator. However, it will be important to pursue epigenomic

studies on postmortem brain samples from substance users and abusers to begin to

determine the extent to which the elegant discoveries in rodents are recapitulated in

humans. In addition to these types of studies, some of the fundamental discoveries

that have been made in addiction epigenomics could have future impact on addic-

tion diagnosis, prevention, and therapy.

7.8.1 Future Substance Use Disorder Diagnostics?

Epigenetic changes have been identified that could serve as potentially useful

cancer biomarkers or diagnostics. For example, promoter methylation of a panel

of genes may be useful for early detection of colorectal cancer, a DNA methylation

phenotype has been used to identify a glioma subgroup, DNA methylation of the
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promoter of the MGMT DNA repair enzyme can be used as a biomarker to predict

glioblastoma chemotherapy outcome, and promoter methylation of the IGFBP-3

growth factor binding protein may predict cisplatin chemotherapy outcome in non-

small lung cancer (Lind et al. 2011; Noushmehr et al. 2010; Weller et al. 2010;

Ibanez et al. 2010). In the realm of brain disorders, DNA methylation information

can be useful for predicting the efficacy of treatment of Fragile X using an mGluR

inhibitor, suggesting the potential for epigenomically informed personalized medi-

cine (Jacquemont et al. 2011).

A significant barrier to developing diagnostic tools for substance abuse based on

epigenomic changes is our current inability to assess the epigenomic state of tissue

types within the human brain. Unlike genomic studies which can readily be carried

out using blood samples, different cell types within the brain express different

suites of genes and are thus expected to have epigenomes that differ from one

another (Doyle et al. 2008). Thus, to study epigenomic dysregulation in disease, one

would ideally investigate the cell or tissue type of most relevant to the disease. In

the case of substance abuse, epigenomic studies would thus focus on postmortem

human or animal brain tissue. There has been speculation that epigenomic changes

in human samples such as specific blood cell types, olfactory neurons, or other more

accessible tissues could serve as a surrogate for epigenomic changes in particular

brain regions, but to date there has been little compelling evidence that surrogate

tissues are of significant utility in studying epigenomic processes in psychiatric

diseases.

The ability to image epigenomic processes or changes within the nervous system

in a noninvasive manner would be a major technological advance that could help

bring epigenomic studies of substance abuse and other psychiatric diseases into

living humans. One could imagine using this technology in future clinical settings

for diagnosis, monitoring of disease progression, or monitoring of therapeutic

efficacy. To date, only limited efforts have been made to image epigenomic

processes in vivo. As a good first step, Dr. Joanna Fowler and colleagues have

generated reagents to visualize the levels of histone deacetylases in vivo using

positron emission tomography (PET) (Hooker et al. 2010; Reid et al. 2009). These

and related strategies could eventually be used to image gross changes in the levels

and/or activity of epigenetic modifying enzymes relevant to substance abuse and

other diseases in vivo.

Measurement of epigenomic regulatory changes in brain using in vivo imaging

techniques, or perhaps through assay of more accessible tissues that serve as a

surrogate for the brain, might one day be used to help predict susceptibility to

substance use disorder, to diagnose disease progression, or perhaps to provide

biomarkers that accurately reflect levels and duration of chronic drug use. Future

development of substance use disorder diagnostics will require us to more fully

understand what epigenomic changes truly mean with respect to addictive pro-

cesses as well as how long these changes persist.
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7.8.2 Preventing Substance Use Disorder?

As mentioned earlier, there is evidence that exposure to certain chemical toxins,

social environments, or nutrient levels can occasionally lead to organismal

phenotypes in subsequent generations. Whether or not this phenomenon is also

true for any drugs of abuse remains unclear. However, if particular drugs of abuse

were shown to have phenotypic effects on subsequent generations, then this scien-

tific information could be used to strengthen public health messages documenting

the known adverse health consequences of drug abuse for public dissemination to

facilitate scientifically informed choices on the use of licit and illicit drugs.

7.8.3 New Therapeutics for Substance Use Disorder?

Epigenetic changes are fundamentally more plastic than genetic changes and thus

appear to be more amenable to therapeutic intervention (Haberland et al. 2009).

Epigenetic therapeutics have shown great potential in cancer and other diseases. For

example, DNA methyltransferase inhibitors have been approved by the FDA to

treat myelodysplastic syndromes and may be useful for treating certain leukemias

(Sharma et al. 2010). There are also HDAC inhibitors such as SAHA that have been

approved to treat T-cell lymphoma (Sharma et al. 2010). Other HDAC inhibitors

have been previously approved to treat urea cycle disorders, while the HDAC

inhibitor valproic acid has been used to treat seizures, migraines, and bipolar

disorder (Mack 2006; Bialer and Yagen 2007). HDAC inhibitors have also shown

very promising effects in certain animal models of neurodegeneration, depression,

and cognitive disorders (Fischer et al. 2010).

There is interest in testing FDA approved compounds for efficacy in treatment of

a wider variety of diseases. As one example, clinicians have been investigating

whether HDAC inhibitors can be used to activate latent HIV within the genome

making the cells susceptible to antiretroviral therapy (Margolis 2011). If successful

for all the tissue reservoirs that contain the latent virus, this strategy could point the

way to a possible cure for HIV/AIDS. In another very exciting example, the HDAC

inhibitor SAHA was used to successfully treat a patient with seizure disorder likely

due to a genetic mutation, suggesting that in some cases epigenetic therapies may

have the potential to treat genetic diseases (Almeida et al. 2007).

Scientists are also developing new compounds that impact epigenetic targets

other than HDACs and DNMTs, such as histone methyltransferases and histone

demethylases (Grant 2009; Hamada et al. 2010; Fiskus et al. 2009). There have

even been efforts to target proteins that bind to histone modifications. For example,

a molecule that can inhibit the BRD4 protein, which can bind to acetylated lysines,

has potential for treating acute myeloid leukemia (AML) (Zuber et al. 2011).

The effects of small-molecule modulators of HDACs and other epigenetic

regulatory enzymes suggest an important role for histone posttranslational
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regulation in the nervous system (Haggarty and Tsai 2011). For example, Class I

HDAC inhibitors have been shown to ameliorate cognitive defects in an

Alzheimer’s rodent model system, while environmental enrichment and HDAC

inhibitors have been shown to enable “the recovery of impaired learning and lost

long-term memories after animals had developed severe neurodegeneration and

synaptic loss” (Kilgore et al. 2010; Fischer et al. 2007).

Histone acetylation is particularly interesting from a translational point of view

since, as described above, certain medications based on inhibition of HDAC

activity are clinically approved for treating seizure disorders and particular types

of cancer (Sharma et al. 2010). Administration of nonspecific inhibitors of HDACs

has yielded mixed results with respect to responses to drugs of abuse (Table 7.2). In

some cases these inhibitors led to an increase in the rewarding properties of cocaine

or an increase in cocaine intake (Kumar et al. 2005; Renthal et al. 2007; Sun et al.

2008a; Wang et al. 2010a). In other cases, these compounds have led to decreased

cocaine intake (Romieu et al. 2008). The precise timing of HDAC inhibitor

administration may play a crucial role in determining the effects of the compound.

For example, in work by Dr. Marcelo Wood and colleagues, the HDAC inhibitor

sodium butyrate was found to “facilitate extinction and prevent reinstatement of

drug-induced behavioral changes” (Malvaez et al. 2010). In aggregate, these studies

suggest that epigenetic therapies should be further explored as a potential treatment

for addictive disorders.

As described earlier, despite ongoing efforts to develop safe and effective

medications for the treatment of substance use disorders (SUDs), only limited

success has been achieved, and no approved medications exist for the treatment

of cocaine, methamphetamine, or cannabis addiction even though efforts are

ongoing. It is possible that future epigenetic therapies could serve to complement

current gaps in the treatment of individuals who are addicted to these drugs of

abuse. In this chapter, several possible new avenues of inquiry for possible thera-

peutic intervention are indicated, including the development of isoform-specific

HDAC inhibitors, sirtuin modulators, H3K9me2 demethylase inhibitors, DNA

methylation inhibitors, and MeCP2 modulators. In addition, targeting of miRNAs

or components of the pathways they regulate (Raf1 protein kinase, SPRED1,

TORC, and CREB) could be of therapeutic value.
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