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Abstract. Symbol recognition is important in many applications such
as the automated interpretation of line drawings and retrieval-by-content
search engines. This paper presents the use of geometric matching for
symbol recognition under similarity transformations. We incorporate this
matching approach in a complete symbol recognition/spotting system,
which consists of denoising, symbol representation and recognition. The
proposed system works for both isolated recognition and spotting sym-
bols in context. For denoising, we use an adaptive preprocessing algo-
rithm. For symbol representation, pixels and/or vectorial primitives can
be used, then the recognition is done via geometric matching. When
applied on the datasets of GREC’05 and GREC’11 symbol recognition
contests, the system has performed significantly better than other sta-
tistical or structural methods.

Keywords: Symbol Recognition, Symbol Spotting, Geometric
Matching.

1 Introduction

Graphics recognition is a challenging problem in the field of document image
analysis. It deals with graphical entities that appear in line drawings such as
architectural and electrical symbols. The localization and recognition of such
symbols are important for retrieval applications among others. Much valuable
work has been done on the recognition of isolated symbols, and the number of
methods for recognizing symbols in context is increasing. However, the solutions
proposed so far have not reached to the point where they can be reliably used
in real world applications like automatic analysis of technical drawings or query
based retrieval in a digital library.

In this paper, we present the usage of geometric matching techniques for
recognizing symbols both isolated and in context. The system starts by applying
an adaptive preprocessing algorithm inspired by the work in [14] for denoising.
After that, for symbol or line drawing representation, either pixels or vectorial
primitives can be used as features. For matching a pair of images – a query with
a database image –, the geometric matching framework of [1] is used.
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The authors have used similar techniques in a previous preliminary work [7] for
symbol spotting. In this paper, we largely extend our previous work as follows.

– The geometric matching framework is generalized to deal with vectorial
primitives such as lines and arcs, not only pixels. This gives the flexibil-
ity to use either a statistical or a structural representation for symbols. It
also speeds up the matching since the number of features as lines and arcs
is much smaller than in the pixel representation.

– The geometric matching framework is improved to deal with very similar
shapes. This is done by assigning penalties to the non-matched features,
which helps – for example – in recognizing symbols whose shapes are subsets
of other symbols’ shapes.

– An adaptive preprocessing module is added to the system to deal with dif-
ferent noise types including clean images.

– Large-scale experiments and benchmarks have been carried out for both
isolated symbol recognition and symbol spotting.

The rest of the paper is organized as follows: Section 2 presents the related
work. Section 3 describes the proposed recognition system. Section 4 presents
the performance evaluation, and Section 5 concludes the paper.

2 Related Work

Isolated symbol recognition approaches can be classified into structural [2], [5],
[15], statistical [6], [12], [13], [16] and hybrid [3], [11] approaches. We review here
the ones that use geometric techniques, whether for feature extraction or for
matching and recognition.

Coustaty et. al. [2] used an adapted Hough transform to extract the segments
of the symbol, and arrange them in a topological graph as a structural signature
of the symbols, and then, Galois Lattice classifier is used for recognition. Min
et. al. [6] presented a pixel distribution based method, and a similarity measure
called bipartite transformation distance. In their system, the symbols are aligned
by their angular distributions to achieve rotation invariance. They also presented
a denoising algorithm to deal with different noise types before applying the
recognition system. Wong et. al. [12] computed descriptors of symbols from a
modified Hough transform, which makes them invariant to scale and rotation,
after that, those descriptors were compared to find matching symbols.

In general, the methods in the structural approach rely on vectorial signatures
of the symbols, so the preprocessing and primitives extraction greatly affect the
matching results. The statistical approaches are more popular, but they are
sensitive to noise. More importantly, most of the methods from both approaches
are designed to recognize segmented (isolated) symbols, they cannot recognize
symbols in context.

As for spotting approaches, they usually find regions of interest in the draw-
ings and describe them using various descriptors, and then index them based
on the query symbol. The regions could be described in various ways: based
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on vectorial primitives as in Rusinol et. al. [10], or on graphs as in Qureshi et.
al. [9] and Locteau et. al. [4] or on local shape contexts [8]. Different indexing
techniques were used in those works as hashing and inverted file structures.

The scheme followed in these spotting methods is unrelated to our proposed
matching framework, since our proposed algorithm searches for matching sym-
bols in an image whether it contains an isolated symbol or a complete line
drawing, without identifying or locating regions of interest first.

3 Description of the Recognition System

3.1 Adaptive Preprocessing and Feature Points

Although independent of the actual matching; preprocessing has an important
effect on matching results, specially when the problem has extremely different
noise types. As a preprocessing module, we use a largely modified version of the
adaptive noise reduction algorithm by Zhang et. al. [14].

Zhang’s algorithm [14] is based on the assessment of noise distributions and
line widths, and then, according to this automatic assessment, different median
and morphological filters are applied on an image. Inspired by the idea of the
assesment of the image noise to automatically infer the noise type, we develop our
adaptive preprocessing algorithm. It is called “adaptive” since it automatically
adapts to the noise type and deals with it accordingly.

Fig. 1. Preprocessing; input: images in the first row, output: corresponding images in
the second row

In many cases, the noise components are large, and its density distribution
is higher than foreground symbols. Hence, instead of using actual median fil-
ters, we simply remove the small connected components that are smaller than
a certain size. This size is adaptively and automatically determined based on
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noise distribution. This operation has the same effect as a median filter, but it
removes noise components of different sizes with the same filter template.

Moreover, a smoothing step is needed to get better results in the subsequent
feature extraction step, so we apply a Gaussian smoothing step followed by
binarization. This operation is also adaptive based on the previously mentioned
criteria. Fig. 1 shows the results of applying the preprocessing algorithm on
different cases from the GREC’05 dataset.

For getting the feature points; equidistant points or line segments are sampled
along the edges. Those feature points are the geometric primitives used as input
for matching.

3.2 Recognition Using Geometric Matching

Geometric matching is concerned about simultaneously finding the pose and the
correspondences between two sets of feature points using geometric relations.
The two sets of features are usually extracted from two images. An example of
such matching is shown in Fig. 2. In this section, we show how we use geometric
matching to solve the problems of symbol recognition and symbol spotting.

Fig. 2. Geometric matching: The model features (blue square points) are transformed
by a certain transformation T (green curve) to match a subset of image features (red
circle points). This matching gives us the correspondences between the two feature
sets. For clarity of showing, we show only few feature points along the edges, and how
some of them match.
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Geometric Matching. First we define the problem of matching a pair of
images: the model which is an isolated query symbol, and the image (an image
of an isolated symbol or an image of a complete line drawing). This definition is
adapted from [1].

Assume that the images have been preprocessed, so, the model M and the
image I are defined as two sets of features. The features could be pixels, line
segments or arcs. The matching solution is defined for any kind of geometrically
parameterized features. The model M = p1, p2, ..., pm has m features, and the
image I = f1, f2, ..., fn has n features.

A certain instance of the query symbol M can be inside the image I, but
in that image, this symbol instance can be transformed with a certain trans-
formation T which belongs to similarity transformations, so the symbol in the
image can be a translated, rotated and/or scaled version of the query symbol
M . Further more, the symbol instance inside image I could be surrounded by
lots of clutter, for example, in non-isolated symbols, or complete line drawings,
a certain symbol occupies just a small region within an image, the clutter in this
case is the connecting lines and the other symbols in the image.

The goal is to find the transformation Tmax that maps a maximal subset
of the model features to maximal subset(s) of image features, with minimal
error as defined by some error function.

First, the quality of a mapping two sets of features using a certain transfor-
mation T is calculated as:

Q(T ) =
∑

p∈M

max
f∈I

�‖T (p)− f‖ < ε� . (1)

where �boolean expression� gives the value 1 if the boolean expression is true, and
0 otherwise, and ε is a user-defined error threshold that defines the maximum
distance between two features to be considered matching to each other, we have
experimentally chosen the ε parameter to be set to 6.0. Eq. (1) means that the
quality is the count of the model feature points that match a subset of image
features using a certain transformation.

As mentioned previously, the transformation T belongs to similarity transfor-
mations, so we calculate T (p) in Eq. (1) as follows. Assume the feature p is a
pixel feature defined by its coordinates (x, y) in the image, then:

T (p) = s ∗
[

cosα sinα
− sinα cosα

] [
x
y

]
+

[
dx
dy

]
. (2)

where s is the scale parameter, α is the rotation angle, and dx, dy are the
translation parameters in the horizontal and vertical directions respectively.

Similarly, assume that the feature p is a line segment feature defined by the
coordinates of its two end points (x1, y1) and (x2, y2), in order to transform this
line segment with a certain transformation T , we simply apply Eq. (2) on each
of the two end points.
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We want to find Tmax among all transformations Tall that maximizes this
quality of match function for a certain matching problem:

Tmax(M, I, ε) = arg max
T∈Tall

Q(T ;M, I, ε) . (3)

Finding Tmax in Eq. (3) can be achieved using a search algorithm. The search
is done in the 4D transformation space (2D translations, rotation and scale).
We have set the transformation space parameters as follows: dx ∈ [−dmx, dix],
dy ∈ [−dmy, diy], α ∈ [0, 2π] and s ∈ [0.5, 3.0], where dmx is the horizontal
dimension of the model and dmy is the vertical dimension of the model, and
similarly dix and diy are the horizontal and vertical dimensions of the image
respectively.

For each of the possible transformations in the search space, the algorithm
transforms the model features M using that possible transformation T , and
then calculates the quality of mapping those transformed model features to a
subset(s) of the image features I using Eq. (1). The transformation that achieves
the maximum quality of mapping is the transformation Tmax that we are looking
for according to Eq. (3).

Of course, a full search is not possible, so we use the branch and bound
search algorithm described in our previous work [7]. The search algorithm can
recognize/spot multiple instances of the query in an image as follows: once the
algorithm finds one Tmax result, it proceeds to find the next best mapping with
the next Tmax, until it stops according to a user-defined minimum quality of
mapping. For example, if the model M has m features, the user can define the
minimum quality of mapping to be 75% of the model features, this means at least
75% of the model M will always be matched to each of the model instances that
exist in the image I. If the algorithm does not find any mapping that achieves
the minimum quality, it will announce that there are no instances of the model
inside the image. We have set the minimum quality parameter to 70% of the
model features.

Penalizing Non-matched Features. In this subsection, we show how the
recognition accuracy of our geometric matching framework can be improved by
dealing with the problem of symbols that are very similar to each other.

Assume that we want to recognize the symbol in Fig. 3(a), so we will match it
against the different available library symbols, among those symbols, there are
some symbols that are very similar to each other like the two symbols in Fig. 3(b)
and Fig. 3(d). Since the geometric matching aligns the points of the model on
the points of the image, the test symbol in Fig. 3(a), will match both images in
Fig. 3(b) and Fig. 3(d) with the same quality of match. The matching results
are marked in red in Fig. 3(c) and Fig. 3(e). It is clear that the same number
of model features were matched to both images, simply because the shape of
symbol (b) is a subset of the shape of symbol (d). This might cause the problem
of recognizing the test symbol in Fig. 3(a) to be the symbol in Fig. 3(d) instead
of what it truely is (Fig. 3(b)).
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Fig. 3. Matching similar symbols shapes: (a) query test symbol (b) library symbol-1
(c) result of matching (red) the query symbol in “a” to the library symbol-1 (d) library
symbol-2 (e) result of matching (red) the query symbol in “a” to the library symbol-2,
some features (blue zig-zag) are not matched, because they do not exist in the query

We solve this problem by adding a quality value for each of the image features.
This quality is calculated as the number of model points matched with this
feature. This means, after the matching is done, we examine the model-image
feature correspondences found by the algorithm. For each image feature, if it
does not have a certain minimum number of model points matched with it,
the quality of the overall match is penalized. This results in a higher quality
of matching for the correct symbol. This is illustrated in Fig. 3(e), the image
features marked with a zig-zag blue line, were not matched to any of the model
points, we call those features the “non-matched features”.

Assume the features marked with zig-zag blue in Fig. 3(e) are represented
as 4 line segments, that means there are 4 non-matched features in the found
match, the score of the whole match will be penalized by a certain amount. The
penalty is calculated as follows. Each of the non-matched features has a feature
size, in the case of line segments, the size is the length of the line segment, so
for each non-matched feature we subtract half the feature size from the overall
quality of match.

Note that the problem of similar shapes, does not arise in the following case: if
the symbol we want to recognize is the same as the symbol in Fig. 3(d), then the
quality of matching it to Fig. 3(d) will be higher than matching it to Fig. 3(b).
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That is because each extra matching feature increases the overall quality of
match.

The penalizing procedure easily generalizes to the non-isolated cases as fol-
lows. Having a number of candidate matching regions in a line drawing, we
apply the same penalizing procedure by examining the features that are inside
the region of a match.

(a) (b)

Fig. 4. Penalizing non-matched features for non-isolated cases (spotting): (a) query
symbol (b) The algorithm finds the matching region (marked in green) with the feature
correspondences, some of the features inside the region match to the query (marked in
red), and some features do not match (marked in blue zig-zag lines), this match will
be penalized

This is illustrated in Fig. 4. It is important to mention that we only examine
the features that are inside the matching area (the bounding box that includes
the matched features). That means we do not penalize the non-matched features
that are outside this area. This is important for this procedure to work on non-
isolated symbols, so the background and the lines connected to a symbol will
not play any role in this penalization procedure.

3.3 Recognition

For the case of isolated recognition, the task is to recognize a certain query
symbol. The query symbol is matched against a predefined set of library symbols.
The query symbol is recognized to be the one that achieves the highest matching
score among the library symbols. Fig. 5 shows a query symbol and its three best
matches.
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(a) (b) (c) (d)

Fig. 5. Recognition results: (a) A test symbol (b) 1st best match (c) 2nd best match
(d) 3rd best match

For the case of recognition in context –i.e. spotting–, the system spots all
the regions that match the query symbol in all the drawings. Fig. 6 shows the
spotted instances of two query symbols. In the figure, we draw shaded bounding
boxes around the spotted instances of the query.

Fig. 6. Recognition results: (a) query symbol (b) spotting output
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4 Performance Evaluation

4.1 The Datasets

We have used the publicly available GREC’051 and the GREC’11-contests
datasets2 for evaluation. Both datasets have a symbol library of 150 symbols
segmented from architectural and electrical drawings. The symbols are com-
posed of lines and circular arcs.

The test images in GREC’05 dataset are for isolated recognition, and they
are degraded with 6 different noise types and different transformation (rotation
and/or scaling).

The GREC’11 dataset has tests for both the isolated recognition and the
spotting. In the isolated recognition tests, the test images are also transformed
and degraded. There are 3 noise types with up to 25 levels of degradation in each
type, the noise types simulate real world noise (due to scanning or otherwise).

The spotting training sets in GREC’11 dataset have 20 architectural drawings
and 20 electrical drawings, also corrupted by 3 different noise types. The task
is to spot query symbols in these drawings. There are 16 architectural and 21
electrical queries, we use only a subset of them.

4.2 Experimental Results

We present first the isolated recognition performance. We have evaluated our
system on all of the tests of GREC’05 dataset, and also a random subset of
the GREC’11 tests. Tables 1 and 2 show the results of testing with GREC’05
and GREC’11 datasets respectively. The recognition accuracy metric is used for
evaluation.

Table 1. ISOLATED recognition results on all the tests of GREC’05 dataset (6000 im-
ages). The results are divided according to the degradation and transformation models
used in the test images.

noise1 noise2 noise3 noise4 noise5 noise6

no transformation 100 100 100 98.2 91.0 96.2

rotation 98.0 99.0 97.2 98.7 94.0 73.7

scaling 98.5 96.5 96.0 94.0 87.5 58.5

rotation+scaling 97.0 91.5 92.0 92.0 72.5 41.5

In general; the recognition accuracies decrease with scaling more than with
rotation, because the scaled down versions of the models are severely corrupted
even with simple degradation models, and they do not have much information
about the symbol at the first place. Examples of such images are shown in Fig 7,
those images are hard to recognize even by humans.

1 http://iapr-tc10.univ-lr.fr/index.php/symbolrecognitionhome
2 http://symbcontestgrec05.loria.fr/
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Table 2. ISOLATED recognition results on GREC’11 dataset. N is the number of test
images in each different case, total=3150.

Noise type noise A noise B noise C
(no transformation) (N=750) (N=750) (N=750)

Recognition accuracy % 98.6 94.0 97.0

Transformation
& random
degradation

rotation
(N=300)

scaling
(N=300)

rotation
& scaling
(N=300)

Recognition accuracy % 97.0 96.4 97.0

Fig. 7. Examples of scaled down corrupted images. The system fails to recognize those
symbols.

Fig. 8 shows that the system scales well as the number of models increases.
The scalability test is applied on the GREC’05 dataset.

Fig. 8. Recognition system scalability

Table 3 shows the spotting performance of the system. Each of the recall and
precision values is the average of spotting a number of different queries in all the
drawings. As for the running time for matching a pair of images – both isolated
and in context –, it ranges from a fraction of a second to few seconds.
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Table 3. SPOTTING results on GREC’11 training datasets. Average recall and pre-
cision for 14 queries in 20 electrical drawings, and for 12 queries in 20 architectural
drawings

Dataset Noise # of instances of average average
type queried symbols Recall Precision

architectural random 366 98.1 98.9

electrical random 223 98.7 94.1

Table 4 shows a comparison with previous methods for both recognition and
spotting. The comparison is shown for the methods that use the same datasets.
Note that the methods that have higher overall accuracy than our method, have
used a much smaller set of models and test images, also with simpler noise types
and only a subset of the transformations.

Table 4. Comparison with previous methods. Note that some methods have
used different numbers of models and test images, with different noise types and
transformations.

Isolated Symbol Recognition - only for GREC’05 dataset

Method Accuracy Models Dataset - no. of tests Noise Transform

Our method 90.1 25 - 150 GREC’05 - 6000 Yes (all types) Yes

Min et. al [6] 83.3 25 - 150 GREC’05 - 6000 Yes (all types) No

Zhang et. al [16] 82.8 25 - 150 GREC’05 - 6000 Yes (all types) Only rotation

Luqman et. al [5] 94.5 20 - 100 GREC’05 - 40 Yes (their own noise) No

Wong et. al. [12] 94.0 25 GREC’05 - 100 yes (random) Yes (random)

Symbol Spotting - for GREC’11 and similar datasets

Method Recall Precision Dataset (architectural) Noise

Our method 98.1 98.9 12 queries, 20 drawings (8 backgrounds) Yes

Nguyen et. al [8] 88.0 70.0 6 queries, 15 drawings No

5 Conclusions and Future Work

The proposed system provides a practical and highly accurate solution for both
isolated and non-isolated symbol recognition. The paper has shown that the use
of geometric matching techniques can solve symbol recognition in context with
interfering strokes, and can also perform competitively on isolated recognition
tasks. The paper has also shown that adaptive preprocessing can be an important
part of symbol recognition methods, specially in the case of extreme variability
in images noise.
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The methods that the system uses can be a basis for future work on applica-
tions like symbol retrieval and automatic analysis of line drawings. For example,
using a set of known models, the spotting method can be used to spot symbols
off-line, and then for on-line retrieval, the previously spotted symbols can be
quickly indexed and retrieved.

References

1. Breuel, T.M.: Implementation techniques for geometric branch-and-bound match-
ing methods. CVIU 90(3), 258–294 (2003)

2. Coustaty, M., Guillas, S., Visani, M., Bertet, K., Ogier, J.-M.: On the Joint Use of
a Structural Signature and a Galois Lattice Classifier for Symbol Recognition. In:
Liu, W., Lladós, J., Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 61–70.
Springer, Heidelberg (2008)
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