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Abstract. Document images may exhibit some blurred areas due to a wide 
number of reasons ranging from digitalization, filtering or even storage 
problems. Most de-blurring algorithms are hard to implement, slow, and often 
try to be general, attempting to remove the blur in any kind of image. In the 
case of text document images, the transition between characters and the paper 
background has a high contrast. With that in mind, a new algorithm is proposed 
for de-blurring of textual documents; there is no need to estimate the PSF and 
the filter proposed can be directed applied to the image. The presented 
algorithm reached an improvement rate of 17.08% in the SSIM metric.  
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1 Introduction 

Noise is any phenomenon that degrades information. A taxonomy for noises in 
document images is proposed in reference [9] which besides providing an explanation 
of how different noises appeared in the final image, it gives pointers to the literature 
that show ways of avoiding or removing them. In the classification proposed [9], there 
are four kinds of noise: 

1. The physical noises – whatever “damages” the physical integrity and readability 
of the original information of a document. It may be further split into the two sub-
categories proposed in as internal and external. 

2. The digitization noises – introduced by the digitization process. Several problems 
may be clustered in this group such as: inadequate digitization resolution, 
unsuitable palette, framing noises, skew and orientation, lens distortion, 
geometrical warping, out-of-focus digitized images, motion noises. 

3. The filtering noise – unsuitable manipulation of the digital file may degrade the 
information that exists in the digital version of the document (instead of increasing it). 

4. The storage/transmission noise – the noise that appears either from storage 
algorithms with losses or from network transmission. JPEG artifact is a typical 
example of this kind of undesirable interference. 
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The blur noise has the effect of unsharpening images. Depending on how it arises it 
may be included in any of the four categories above. The physical blur may be the 
result of document “washing”, for instance, in which a document, printed with water 
soluble ink, gets wet. Blur may also be the result of unsuitable digitization, due to 
several reasons: non-flat objects, digitization errors, out of focus, motion etc. The 
presence of blur may be an indicator of low quality digitization, but can also be 
associated with other problems such as the scanning of hard-bound volumes. Blur 
may be the result of unsuitable filtering, such as a Gaussian or low-pass filter. And 
finally, blur may appear as the result of storing images in a file format with losses that 
perceptually degrades the image. 

The technical literature points at several approaches proposed for de-blurring images 
in general. To list a few of them: Demoment [2] uses statistics, Neelamani, Choi, and 
Baraniuk [3] use Fourier and wavelet transforms, references [4] and [5] apply 
variational analysis, and Roth and Black [6] use total variation and Field of experts. 
Most of times, the computational complexity of those algorithms is prohibitively high 
and can yield undesirable artifacts such as ringing [7] as presented in Figure 1. 

 

 

Fig. 1. Ringing artifact [7] 

The most successful approaches to blur removal focus at one specific kind of blur. 
For instance, the literature presents several algorithms [11, 12, 13, 14, 15, 16, 17] that 
address the problem of motion blur, an specific kind of digitization noise. 

In this paper, to increase the chances of better de-blurring, the application domain 
is restricted to monochromatic scanned documents with book binding warping [10]. 
The resulting image has uneven blur and illumination. The document images treated 
here are basically constituted by text and plain paper background. The transition 
between them in the original physical document is sharp. Using this fact a new 
algorithm is proposed by using nearby pixels to increase the difference between them. 
No Point Spread Function (PSF) [18] estimation is done and blur is minimized into a 
direct application of the image. 

2 The New Method 

The study performed here focus on the compensation of the blur noise which appears 
in scanning hardbound documents. Patterns were arranged in an elevated plane model 
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In Figures 3 and 4, as the paper is further away from the scanner flatbed, the blur 
increases and illumination is fades out; as the scanning device is calibrated to digitize 
documents at a pre-defined distance, which is exactly the flatbed surface. 

These figures also present several cross sections at different parts of the calibration 
grid images. They show regions without blur (cross sections “1” and “3”) and regions 
with blur kernel size larger than the grid thickness. The line labeled with number “4” 
is the limit when is not possible to remove the blur totally. 

In the case of characters, corners of the strokes are vulnerable regions to the blur. 
The kernel area in this region is dominated by the information not related to the given 
point. Figure 5 shows two kinds of corners in the letter “M” that can be irrecoverable. 

 

Fig. 5. Corners of upper case “M” which are vulnerable to the blur noise 

2.1 Reconstruction Function 

Thoulin and Chang [21] identify document background and foreground locally for the 
resolution expansion of document images. Proposed method obtains these colors by 
searching the maximum and minimum on the pixel neighborhood and uses it into the 
reconstruction function. 

Most pixels that belong to the paper background have their intensities values closer 
to the background intensity. Similarly, for blurred stokes values are closer to the 
foreground intensity.  In this way an S-function can be built, with input and output 
varying from 0 to 1, whereas the output is below the line of the identity function 
between 0 and 0.5, and above it between 0.5 and 1.0. 

In this work the function ܵሺݐሻ is defined by equation 1 with the fixed parameter p 
that varies between 0 and 1.0, which controls how strong the correction will be. For p 
values closer to 0, the function shape looks similar to a step function with higher 
transitions; for values closer to 1.0, the shape gets closer to a sin function scaled by π. 
Figure 6 shows two plots for ݌ ൌ 0.06 and ݌ ൌ 1.00. ܵሺݐሻ ൌ 0.5 െ 0.5 ൈ ሺcos݊݃݅ݏ ሻߨݐ ൈ |cos ௣ (1)|ߨݐ

To apply the S-shape function, two reference values must be determined for the paper 
background and character stroke. This is done by looking out in a window for the 
pixel with largest and lowest intensity. The un-blurred value is obtained by eq. (2), 
where Iୠ is the blurred intensity value (i.e. original image); ݉݅݊ and ݉ܽݔ are the 
lowest and the highest intensity values in the given window, respectively. ܫ௨  ൌ ൤ܵ ൬ ሺܫ௕ െ ݉݅݊ ሻሺ݉ܽݔ െ ݉݅݊ሻ൰ ൈ ሺ݉ܽݔ െ ݉݅݊ሻ൨ ൅ ݉݅݊ (2)
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The de-blurring method proposed herein was applied to the blurred images. Images 
corrected and without blur were compared using SSIM [19] index. It measures how 
images are perceptually different with values between 0 (different) and 1 (the same). 

Tables 2 and 3 provide at each cell average SSIM between the ground truth and the 
de-blurred images of the chess and letters pattern, respectively. Cells in the same row 
represent the de-blurring of the same input but with different window sizes. The 
values in parenthesis are the amount of information “gain” computed by eq. (3).  
Table 1 shows the values of the average SSIM between de-blurred and without blur 
images. Value 0.1 was set to ݌ in all tests. One may notice that the proposed 
algorithm could improve the SSIM metric by 17.08% at most. SSIM gain ൌ Average of SSIM between ܌܍ܚܚܝܔ܊܍܌ and without blur imagesAverage of SSIM between ܌܍ܚܚܝܔ܊ and without blur images െ 1 (3)

Table 1. Average of SSIM between blurred and without blur images 

Blur kernel size 1 2 3 4 5 
Average of Chess pattern SSIM 0.999 0.965 0.926 0.888 0.852 

Avgerage  of Letters SSIM 0.999 0.976 0.954 0.932 0.910 

Table 2. Average of SSIM between de-blurred and without blur chess pattern images 

5 
0.923 

(+8.41%) 
0.970 

(+13.94%) 
0.989 

(+16.16%) 
0.996 

(+16.96%) 
0.997 

(+17.08%) 

4 
0.961 

(+8.25%) 
0.991 

(+11.68%) 
0.997 

(+12.36%) 
0.998 

(+12.47%) 
0.999 

(+12.50%) 

3 
0.988 

(+6.75%) 
0.998 

(+7.86%) 
0.999 

(+7.96%) 
0.999 

(+7.96%) 
0.999 

(+7.96%) 

2 
0.999 

(+3.55%) 
1.000 

(+3.64%) 
1.000 

(+3.64%) 
1.000 

(+3.64%) 
1.000 

(+3.64%) 

1 
1.000 

(+0.08%) 
1.000 

(+0.08%) 
1.000 

(+0.08%) 
1.000 

(+0.08%) 
1.000 

(+0.08%) 

Blur  
1 2 3 4 5 

Win 

Table 3. Average of SSIM between de-blurred and without blur letters pattern images 

5 
0.942 

(+3.56%) 
0.947 

(+4.06%) 
0.940 

(+3.30%) 
0.941 

(+3.38%) 
0.942 

(+3.53%) 

4 
0.968 

(+3.85%) 
0.973 

(+4.37%) 
0.970 

(+4.09%) 
0.971 

(+4.17%) 
0.972 

(+4.27%) 

3 
0.987 

(+3.44%) 
0.991 

(+3.85%) 
0.991 

(+3.82%) 
0.990 

(+3.78%) 
0.991 

(+3.80%) 

2 
0.999 

(+2.30%) 
0.998 

(+2.25%) 
0.998 

(+2.23%) 
0.998 

(+2.23%) 
0.998 

(+2.22%) 
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Fig. 10. Result with 5x

a. 

b. 

c. 

x5 window: original image (a); ݌ ൌ 0.50 (b); ݌ ൌ 0.06 (c) 
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a. b. c.

Fig. 11. Result with 0.5=݌: original image (a); 3x3 window (b); 7x7 window (c) 
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