
K. Mustofa et al. (Eds.): ICT-EurAsia 2013, LNCS 7804, pp. 223–232, 2013.
© IFIP International Federation for Information Processing 2013

A Data-Driven Approach toward Building
Dynamic Ontology

Dhomas Hatta Fudholi1,2, Wenny Rahayu1, Eric Pardede1, and Hendrik2

1 Department of Computer Science and Computer Engineering, La Trobe University, Australia
dfudholi@students.latrobe.edu.au,
{w.rahayu,e.pardede}@latrobe.edu.au

2 Department of Informatics, Universitas Islam Indonesia, Indonesia
{hatta.fudholi,hendrik}@fti.uii.ac.id

Abstract. Ontology has been emerged as a powerful way to share common un-
derstanding, due to its ability to chain limitless amount of knowledge. In most
cases, groups of domain expert design and standardize ontology model. Unfor-
tunately, in some cases, domain experts are not yet available to develop an on-
tology. In this paper, we extend the possibilities of creating a shareable
knowledge conceptualization terminology in uncommon domain knowledge
where a standardized ontology developed by groups of experts is not yet
available.

Our aim is to capture knowledge and behaviour which is represented by
data. We propose a model of automatic data-driven dynamic ontology creation.
The created ontology model can be used as a standard to create the whole
populated ontology in different remote locations in order to perform data
exchange more seamlessly. The dynamic ontology has a feature of a real-time
propagation from the change in the data source structure. A novel delta script is
developed as the base of propagation. In order to complete the model, we also
present an information of application support in the form of Jena API mapping
for propagation implementation.

Keywords : data-driven, dynamic ontology, propagation.

1 Introduction

Ontology has been used as a mechanism to share common knowledge and under-
standing [1]. Groups of domain experts have used ontology to represent certain know-
ledge into semantic structure of information, for instance, in medical health domain.
However, there are a large amount of domain knowledge is still untouched by domain
experts.

To save time, reduce manual work and facilitate communities who may not have
the technical understanding in constructing an ontology, a few researchers have pro-
posed some approaches to develop ontology from underlying data. Garcia et al. and
Bohring et al. have done similar research in creating the concept of XML (eXtensible
Markup Language) to OWL (Web Ontology Language) mapping, which can be found

224 D.H. Fudholi et al.

in [2] and [3]. Both research implement XSD (XML Schema) as the source of creat-
ing terminological ontology model. The XSD could be extracted from XML data.
XSLT (XML Stylesheet Language Transformation) is used as the tool to translate
XML-based information into ontology knowledge representation. Bohring et al. also
use XSLT to populate the terminological ontology model. Zhou et al. [4] had research
in automatic ontology creation from relational database (RDB). They create seven
rules to map the database structure into the terminological conceptualization in ontol-
ogy, and then populate the records as the ontology instance.

Data source knowledge can change very often. A method to propagate the ontology
can be used to keep the ontology dynamic and up-to-date. Sari et al. in [5] propose a
propagation model to update sub-ontology of SNOMED CT. This methodology prop-
agates sub-ontology extracted from the main SNOMED CT ontology based on the
change log in the SNOMED CT ontology.

Collective knowledge from communities can be extracted to form a formal stan-
dard of representation. When it becomes standard, any following knowledge represen-
tation could adopt the same terminology. It enables seamless knowledge sharing. The
main aim of this research is to create a model for dynamic ontology, derived from a
dynamic data source. The dynamic ontology is maintained through a systematic prop-
agation method triggered by changes in the data source structure. The propagation
method uses a delta script that contains the difference of the previous and the current
data structure. When the remote propagation is needed, the use of delta script can
save the resource rather than sending the whole new data source or the whole new
ontology. The novel concept of delta script is also proposed in this paper.

The paper is organized as follows. Section 1 is the introduction, capturing the
backgrounds, motivations and aims of the research. Section 2 states the related and
supporting works for the research. Section 3 elaborates the whole concept model of
the data-driven dynamic ontology. Section 4 focuses on the propagation features,
starts from the different types of data changes, the delta script construction and the
propagation process. Section 5 covers the application support for the propagation
process in term of delta script and programming framework mapping. It also elabo-
rates the case study as to show the implementation.

2 Related Work

The automation of data-driven ontology creation can be very useful for community to
share their knowledge in the form of ontology. This also addresses the limitation of
technical capability in ontology building. In general, there are two kinds of data
sources that are used widely as a data repository, a structured database and semi-
structured XML. A number of researchers have explored the techniques to support
ontology creation from these two data sources.

Garcia et al. proposes the XSD2OWL. XSD2OWL contains packages based on an
XSL (XML Stylesheet Language) that performs a partial mapping from XML Schema
to OWL [2]. Even though it consists only of partial mapping that transform XML
Schema to OWL, XSD2OWL covers most of ontology semantic structure. The full

 A Data-Driven Approach toward Building Dynamic Ontology 225

mapping table of XSD2OWL is described in [2]. To perform a complete XML-based
ontology creation, XSD2OWL cannot be used as a single tool. It needs to be collabo-
rated with XSD extraction tools to extract XSD from its XML data source, e.g. Trang
[6] and oXygen XML Editor [7].

Bohring et al. [3] creates a similar mapping concept to translate extracted XSD
from XML into OWL ontology. This work explicitly states the way to populate the
ontology using the XSLT and the way to perform a mapping of domain and range in
ontology properties.

An approach of semi-automatic ontology creation from RDB schema is introduced
by Zhou et al. in [4]. The concept is originally created to overcome time consuming
and tedious work in creating hand-built ontology. Zhou et al. give an extension in
their concept using WordNet to handle similarities in word term. Zhou et al. made
seven rules to map the RDB into ontology. All rules can be seen in [4].

Table 1 summarizes works in ontology mapping from XML and RDB. For in-
stance, class or concept in ontology is generated from a complexType element in
XML and from table or fixed instance value in RDB.

Table 1. General ontology mapping from XML and Relational Database based on Garcia et al.
[2], Bohring et al. [3] and Zhou et al. [4] works

Ontology XML Relational Database

Class/Concept complexType element table, fixed instance value

ObjectProperty complexType element table relation

DatatypeProperty
simpleType element,

attribute
column

Cardinality (Max, Min)
occurrence (maxOccurs,

minOccurs)
constrain (NOT NULL, primary key)

Property
Domain and Range

element, XSD datatype
table relation, column,

column data type

3 System Design and Concept

The whole system scenario for a data-driven dynamic terminological ontology devel-
opment can be seen in Fig. 1. The data source is dynamic, shown by the dashed arrow
from the old data to the new data. The data source could be an XML data source or
RDB data source. The data source consists of data records and data schema. Basical-
ly, there are two main parts of the whole concept scenario, the initial ontology crea-
tion process and dynamic ontology propagation process.

The initial ontology creation process is depicted using a solid line in Fig. 1. The
aim of this process is to create a base dynamic ontology as the very first ontology
model to be shared. Schema to ontology translator performs the creation by mapping

226 D.H. Fudholi et al.

the data schema inside the data source into ontology. The dynamic ontology propaga-
tion process handles the update of dynamic shared ontology and it will be updated
directly when there is a change in the data source.

Fig. 1. Conceptual model for creating data-driven dynamic shared ontology to share communi-
ty knowledge

The dashed lines in Fig. 1. represents the propagation process. The difference of
the current and old data schema is stored as delta schema script. Since there would be
different representation in XML-based schema and RDB schema representation, delta
ontology is derived from the delta schema to create a common representation, which
maps directly to the ontology changes. There are two ways of retrieving the current
terminological ontology from the shared ontology: (i) by requesting directly the cur-
rent ontology or (ii) by requesting the delta ontology script followed by propagating
the ontology locally using propagation application. In addition, there will be only one
application needed to use the delta ontology script when updating the ontology, since
it will be data source type independent. The dynamic ontology propagation process
and related tools will be elaborated in Section 4.

4 Dynamic Ontology Propagation

4.1 Changes in Data

Propagation is proposed as the solution to update the common terminological ontolo-
gy based on the dynamic changes in the data source structure. The structures changes
basically consist of delete, insert, rename and move. For XML-based data, all of
changes operation could happen in every element and attribute. The move change
operation of element is the changes in tree structure position of parent and child.
RDB’s table and column could also have the same change operation; however the
move operation might be happening only in table column.

4.2 Delta Script

The differences of data source structure are gathered in a delta script. The purpose of
the delta script is to patch or upgrade the dynamic ontology. The use of delta script

 A Data-Driven Approach toward Building Dynamic Ontology 227

can be useful when the source or the original version is not present in the same loca-
tion and the ontology needs to be updated without sending the original file, which can
be very big. Cobena et al. in [8] give four main benefits for using DIFF (difference)
method as change detection: version and querying the past, learning about changes,
monitoring changes, and indexing. In addition, Cobena et.al. in [9] proposes about a
set of important criterias for a good delta script. Those aspects are Completeness,
Minimality, Performance and Complexity, “Move” Operation, and Semantics. All
aspects mentioned are considered and applied in the proposed delta script.

4.3 Delta Schema Script

Delta schema script consists of the difference between the current data schema with
the previous version of the schema. It lists all of the difference structure from edit
operations. The list includes delete, insert, rename, and move list.

Definition DS-1. ΔS ≡ D, I, R, M . Delta schema script comprise of 4 set of list,

which are delete (D), insert (I), rename (R) and move (M).

The list is proposed to keep up with the completeness and minimality of the operation.
Even though command DELETE and INSERT (we use the all capital words to
describe the programming command and to differentiate them from the delta script’s
list and their general common usage words) are the primitive operation and the delete
and insert list could be used to represent rename and move, but the list will keep the
minimality aspect and can be directly performed to some programming framework.
Therefore, that list can potentially reduce the complexity and yet it is complete. The
sequence of listed difference in the delta schema script should be as mentioned in the
Definition DS-1 to avoid the possible name duplication of the new inserted data and
the need to state all inserted and renamed component in order to be the target of
moved component. Therefore the sequence should be as follow:

Delete(D)  Insert(I)  Rename(R)  Move(M)

To maintain the semantic information of the data, the following rules need to be
applied in delta schema script’s list:

─ DS-Rule 1 - For all type list: There should be an initial sign to differentiate com-
plexType element, simpleType element and attribute name in XML, also table and
column name in RDB. In XML, sign “(c)” can be used to indicate complexType
element. As for the attribute, sign “@” can be used as the initial. In RDB, sign “(t)”
could be used to indicate table. To simplify the representation of each component,
as an example, it could be written as follows:

<initial><s><component name>

where <s> is separator sign.

228 D.H. Fudholi et al.

─ DS-Rule 2 - For insert list: The information of data type, constrains and loca-
tion/path (if becomes the child or the part of other component) of the inserted com-
ponent should be stated clearly. As an example, it could be written as follows:

<initial><s><component name><s><datatype><s><constrain>
<initial><s><component’s parent>/<initial><s><new component name>

Since the RDB mapping has some additional information to add when there exist
relations in two tables as foreign key. Those relations will create an inverse object
property between two concepts. Additional information in the insert list of RDB
should be added, such as:

<initial><s><component name> <initial><s><new component name>

─ DS-Rule 3 - For rename list: The list should contain the path or location of the
renamed component along with the new component name. As an example, it could
be written as follows:

<initial><s><component’s parent>/<initial><s><component name>
<initial><s><component’s parent>/<initial><s><new component name>

─ DS-Rule 4 - For move list: The list should contain the path or location of the
moved component along with the new component’s parent name. For the new loca-
tion path, information about data type and constrains need to be incuded to main-
tain the whole semantic information. As an example, it could be written as follows:

<initial><s><component’s parent>/<initial><s><component name>
<initial><s><component’s new parent>/<initial><s><component
name><s><datatype><s><constrain>

4.4 Delta Ontology Script

Delta ontology script consists of the list of ontology structure change, which is de-
rived from the delta schema script based on the mapping in Table 1. There are three
types of list in delta ontology script; delete, insert and rename list respectively. The
move operation of column in RDB will affect in changing domain and range of
property in ontology. Since there is no move operation for domain and range in the
ontology, it will trigger the insert and delete operation instead. The move element
operation in XML will affect in the ontology restriction. It will not move the
restriction to other ontology class but it will trigger a delete and insert operation of the
restriction. These two conditions are some reasons why the move list is absence in
delta ontology. The following is the proposed syntax in writing delta ontology list:

─ Delete List :

• For Class/Concept  c(name)
• For ObjectProperty  op(name)
• For DatatypeProperty  dp(name)

 A Data-Driven Approach toward Building Dynamic Ontology 229

─ Insert List :

• For Class/Concept  c(name, superClass name)
• For ObjectProperty  op(name, domain, range, minC**, maxC**)
• For DatatypeProperty  dp(name, domain, range, minC**, maxC**)
• For ObjectProperty domain and range change  opdr(property name, domain, range,

minC**, maxC**)
• For DataTypeProperty domain and range change  dpdr(property name, domain, range,

minC**, maxC**)

**minC and maxC is an optional minimum cardinality and maximum cardinality information.

─ Rename List :

• For Class/Concept  c(previous name, current name)
• For ObjectProperty  op(previous name, current name)
• For DatatypeProperty  dp(previous name, current name)

When transformed to delta ontology, a first character “C”, “op” and “dp” is used to
stated Class, ObjectProperty and DatatypeProperty respectively. The following
example is about the translation process in RDB. The sample from XML is stated
along the case study in Section 5.

Example. RDB. There is an additional column created named “author” in “book”
table. The data type of “author” is string. The “author” column has NOT NULL
constrain. This change could be listed in delta schema and delta ontology as follows:

DELTA SCHEMA

INSERT
 author | string | min-1
 (t)book/author

DELTA ONTOLOGY

INSERT
 dp(dpauthor, Cbook, string, 1)

5 Application Support

To demonstrate the application support, especially in the dynamic ontology
propagation concept using delta script, the OWL propagation mapping into Apache
Jena™ [10] API within a Semantic Web application is developed. The application is
used to update OWL ontology from changed data structure. The pattern to apply the
Jena API in the application is shown in Fig. 2.

There are three main parts of the Jena programming command block that is ap-
plied. (1). Call/open the base OWL ontology model. First, createOntologyModel()
method is used to create a new ontology model which will be processed in-memory
and it is expressed in the default ontology language (OWL). Then read() method will
call/open OWL file path. (2). Apply and execute Jena API for the propagation. This

230 D.H. Fudholi et al.

part can be filled with any method needed to do the propagation. The types of method
are shown in Table 2. (3). Write output of the updated OWL ontology. The write()
method is used to perform this operation.

Fig. 2. Jena API Pattern for Propagation Implementation

Table 2. Delta ontology mapping to Jena API

Process Delta Ontology Jena API

DELETE

- Class/Concept
- DatatypeProperty
- ObjectProperty
- MinCardinality
- MaxCardinality

- getOntClass() then remove()
- getDatatypeProperty() then remove()
- getObjectProperty() then remove()
- listRestrictions() then remove()
- listRestrictions() then remove()

INSERT

- Class/Concept
- DatatypeProperty
- ObjectProperty
- Set Property Domain
- Set Property Range
- MinCardinality
- MaxCardinality

- createClass()
- createDatatypeProperty()
- createObjectProperty()
- setDomain()
- setRange()
- createMinCardinalityRestriction()
- createMaxCardinalityRestriction()

RENAME
Class/Concept or
DatatypeProperty or
ObjectProperty

renameResource()

As a study case, a section of the version 2012 of PubMed/MEDLINE [11] citation
XML sample1 is used. The PubMed/MEDLINE citation XML for the case study and
the sample of change in the data can be seen in Table 3. Afterwards, the delta schema
and delta ontology script could be generated as mentioned in Table 4. Fig. 3 depicts a
JSP page for the ontology propagation built using Jena API. The input ontology
model path, the propagation process step and the output file path can be seen in Fig. 3.
Finally, Fig. 4. depicts the Protégé visualization for the propagated ontology based on
the change stated in Table 3. It consists of the Class, DatatypeProperty,
ObjectProperty and Restriction in the ontology. Due to the limitation of the page, it
shows the Restriction for “PubDate” only. From the result, it can be said that the delta
is complete and holds enough semantic information.

1 Downloaded from
 http://www.nlm.nih.gov/databases/dtd/medsamp2012.xml

 A Data-Driven Approach toward Building Dynamic Ontology 231

Table 3. Data sample changes

Previous Data Current Data

<Journal>
<ISSN IssnType="Print">0950-382X</ISSN>
 <JournalIssue CitedMedium="Print">
 <Volume>34</Volume>
 <Issue>1</Issue>
 <PubDate>
 <Year>1999</Year>
 <Month>Oct</Month>
 </PubDate>
 </JournalIssue>
 <Title>Molecular microbiology</Title>
 <ISOAbbreviation>M.M./ISOAbbreviation>
</Journal>

<Journal>
<ISSN IssnType="Print"
CitedMedium="Print">0950-382X</ISSN>
 <JournalIssue>
 <Vol>34</Vol>
 <Issue>1</Issue>
 <PubDate>
 <Year>1999</Year>
 <Month>Oct</Month>
 <Date>4</Date>
 </PubDate>
 </JournalIssue>
 <Title>Molecular microbiology</Title>
</Journal>

Table 4. Delta script from sample data changes

Delta Schema Delta Ontology

DELETE
 ISOAbbreviation
INSERT
 Date | int | min-1 | max-1
 (c)PubDate/Date
RENAME
 (c)JournalIssue/Volume  (c)JournalIssue/Vol
MOVE
 (c)JournalIssue/@CitedMedium 
(c)ISSN/@CitedMedium | string | min-1 | max-1

DELETE
 dp(dpISOAbbreviation)
INSERT
 dp(dpDate,CPubDate,int, 1, 1)
dpdr(dpCitedMedium,CISSN,string,
1,1)
RENAME
 dp(dpVolume,dpVol)

Fig. 3. JSP page for ontology propagation built using Jena API

232 D.H. Fudholi et al.

Class
Restriction

(CPubDate only)
Object Property Datatype Property

Fig. 4. Protégé visualization of the updated ontology

6 Conclusion

The need to create a common conceptualization from dynamic knowledge has moti-
vated us to create a model for a data-driven dynamic ontology with propagation sup-
port. The propagation process updates the base ontology based on the underlying data
structure changes. The use of delta script gives an advantage in updating remote on-
tology by sending the minimum source that can provide complete updates. A simple,
minimized yet complete delta script is designed, and the mapping of the delta script
list into a Jena API method within a Semantic Web application is demonstrated.

References

1. Calegari, S., Ciucci, D.: Integrating Fuzzy Logic In Ontologies. In: ICEIS (2006)
2. García, R.: A Semantic Web Approach to Digital Rights Management. PhD Thesis. Un-

iversitat Pompeu Fabra, Barcelona, Spain (2006)
3. Bohring, H., Auer, S.: Mapping XML to OWL Ontologies. In: Leipziger Informatik Tage.

LNI, vol. 72 (2005)
4. Zhou, X., Xu, G., Liu, L.: An Approach for Ontology Construction Based on Relational

Database. International Journal of Research and Reviews in Artificial Intelligence 1(1)
(2011)

5. Sari, A.K., Rahayu, W., Bhatt, M.: An Approach For Sub-Ontology Evolution In A Distri-
buted Health Care Enterprise. Information Systems Journal (2012)

6. Thai Open Source Software Center Ltd: Trang, Multi-format schema converter based on
RELAX NG, http://www.thaiopensource.com/relaxng/trang.html
(accessed November 20, 2012)

7. SyncRO Soft SRL, http://oxygenxml.com (accessed November 20, 2012)
8. Cobéna, G., Abiteboul, S., Marian, A.: Detecting Changes in XML Documents. In: Pro-

ceedings of the 18th International Conference of Data Engineering (2002)
9. Cobéna, G., Abdessalem, T., Hinnach, Y.: A comparative study of XML diff tools (2004),

http://citeseerx.ist.psu.edu/viewdoc/
summary?doi=10.1.1.91.5366

10. The Apache Software Foundation: Apache Jena, http://jena.apache.org/
(accessed November 20, 2012)

11. U.S. National Library of Medicine: MEDLINE®/PubMed® Resources Guide,
http://www.nlm.nih.gov/bsd/pmresources.html
(accessed November 20, 2012)

	A Data-Driven Approach toward Building
Dynamic Ontology
	Introduction
	Related Work
	System Design and Concept
	Dynamic Ontology Propagation
	Changes in Data
	Delta Script

	Delta Schema
Script
	Delta Ontology
Script

	Application Support
	Conclusion
	References

