
Hardware Index to Set Partition Converter

Jon T. Butler1 and Tsutomu Sasao2,�

1 Naval Postgraduate School, Monterey, CA, 93921-5121, USA
jon_butler@msn.com

2 Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan
sasao@ieee.org

Abstract. We demonstrate, for the first time, high-speed circuits that
generate partitions on a set S of n objects. We offer two versions. In
the first, partitions are produced in lexicographical order in response to
successive clock pulses. In the second, an index input determines the set
partition produced. Such circuits are needed in the hardware implemen-
tation of the optimum distribution of tasks to processors. Our circuits
are combinational. For large n, they can have large delay. However, one
can easily pipeline them to produce one set partition per clock period.
We show 1) analytical and 2) experimental time/complexity results that
quantify the efficiency of our designs. Our results show that a hardware
partition generator running on a 100 MHz FPGA produces partitions at
a rate that is approximately 10 times the rate of a software implemen-
tation on a processor running at 2.26 GHz.

1 Introduction

A partition of a set S is the placement of elements of S into blocks. For exam-
ple, there are 15 partitions of four distinct elements 0, 1, 2, and 3. These are
{{3, 2, 1, 0}} (all elements in the same block), {{3, 2, 1}, {0}}, {{3, 2, 0}, {1}},
{{3, 2}, {1, 0}}, {{3, 2}, {1}, {0}}, {{3, 1, 0}, {2}}, {{3, 1}, {2, 0}}, {{3, 1}, {2},
{0}}, {{3, 0}, {2, 1}}, {{3}, {2, 1, 0}}, {{3}, {2, 1}, {0}}, {{3, 0}, {2}, {1}}, {{3},
{2, 0}, {1}}, {{3}, {2}, {1, 0}}, and {{3}, {2}, {1}, {0}} (all elements in separate
blocks). Neither the order of the blocks, nor the order of elements within each
block matters. For example, partitions {{3, 1}, {2, 0}} and {{0, 2}, {1, 3}} are
identical. The number of partitions increases rapidly as the number of ele-
ments increases, and are counted by the Bell numbers B(n). For example, for
sets of size n = 2, 3, 4, 5, 6, 7, and 8, the number of set partitions is
B(n) = 2, 5, 15, 52, 203, 877, and 4140. Bell numbers have the property
that, for large n, B(n) is approximated by (n

lnn)
n [8], p. 64.

Partitions are important combinatorial objects. For example, partitions on
n elements enumerate the equivalence relations on n elements [17]. Each block
represents all elements related by the equivalence relation.

� This research is supported by a Grant-in-Aid for Scientific Research of the Japan
Society for the Promotion of Science (JSPS).

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 72–83, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

jon_butler@msn.com

Hardware Index to Set Partition Converter 73

One way to generate all partitions is to generate all binary numbers, one
per clock, discarding those that are not partitions. However, only a few of these
numbers are partitions. This approach produces partitions at a rate that is much
slower than one partition per clock. Therefore, we seek a circuit that produces
one partition per clock, where the input is an index to the partitions.

The ability to generate partitions has important practical applications. Han-
kin and West [7] show how partitions are used to solve optimization problems
in bioinformatics, forensic science, and scheduling. For example, set partitions
can be used to specify the ways tasks are allocated to processors, from which
one seeks the partition that corresponds to the shortest computation time. This
last application especially requires high-speed enumeration of partitions. Recent
research in computational molecular biology has shown the importance of par-
titions in understanding the role of genes in determining global characteristics
of species. For example, Chen, Liu, Liu, and Jiang [4] have identified the im-
portance of solving the minimum common integer partition (MCIP) problem
in ortholog assignment and DNA fingerprint assembly. This problem requires
the enumeration of partitions at high speed, since so many partitions must be
considered. In multi-state distribution systems (packet, water, gas, etc.) [11],
the overall quality of service is dependent on attributes of the components, as
measured by variables. There is a need to quickly enumerate partitions of the
variables used in decision diagrams that model the system.

This paper can be viewed as a companion to [2], which describes the high-
speed generation of combinations, as well as the generation of random combina-
tions for use in reconfigurable computers. It can also be viewed as a companion
to [3], which describes the high-speed generation of permutations, as well as the
generation of random permutations. Together these three papers cover a subset
of circuits that produce combinatorial objects. The advent of large programmable
logic circuits has allowed computations to be performed in hardware that previ-
ously could only be done in software, but at a much higher rate. Much has been
written about generating combinatorial objects in software (e.g. [6], [8] pp. 5-
6). Indeed, there are many papers on programs and algorithms for enumerating
partitions [6,9,10,12,14,16], including parallel algorithms [17]. However, as far as
we know, there has not been a hardware enumeration of partitions. This paper
addresses that deficiency.

2 Definitions

2.1 Introduction

Definition 1. Given an n-set S = {0, 1, . . . , n − 1}, {S0, S1, . . . , Sn−1} is a

partition of S iff 1) Si ⊆ S, 2) Si

⋂
Sj = ∅ for i �= j, and 3)

⋃n−1
i=0 Si = S.

For example, {{3, 1}, {2, 0}} is a partition on the 4-set S = {0, 1, 2, 3}. It is
convenient to represent a partition in its restricted growth string form, as follows.
Since a set partition is unchanged by a reordering of blocks, call the block in
which n− 1 is located block 0. Then, n− 2 is either in the same block, block 0,

74 J.T. Butler and T. Sasao

or in a different block. If it is in a different block, call that block 1. Then, n− 3
is either in block 0 or 1 or some other block. If it is in some other block, call
that block 2. Continue in this way until all elements are assigned a block. For
example, the partition {{3, 1}, {2, 0}} has the restricted growth string (0101).
Formally,

Definition 2. An n-element restricted growth string is a sequence (b0b1 . . .
bn−1) such that b0 ≤ bi ≤ max0≤j<i bj + 1, where b0 = 01.

The first element of a restricted growth string is always 0, signifying that element
n− 1 is always in block 0. A special characteristic of a restricted growth string
is that each element is between 0 and 1 plus the maximum of all lower elements.

Lemma 1. [13] There is a bijection between the set of partitions of an n-set
and the set of n-element restricted growth strings.

The one-to-one relation between partitions and restricted growth strings means
that we can enumerate the latter with a guarantee that we enumerate the former.
Especially, a circuit exists to convert restricted growth strings into partitions.
Table 1 shows the set of all 15 partitions on n = 4 elements {3, 2, 1, 0}. The
first column shows the index i, where 0 ≤ i ≤ 14. i indexes the set partitions
according to the increasing lexicographical order of the restricted growth strings.
The second column shows how the actual partition distributes the elements
{3, 2, 1, 0} into blocks. Here, commas separate blocks and elements within the
same block. The third column shows the restricted growth string. Each restricted
growth string begins in 0, indicating that 3 is (always) in the first (0-th) block.
The second element shows where element 2 is located (in the 0-th or 1-st block).
The third element shows where element 1 is located (in the 0-th, 1-st, or 2-nd
block). The fourth element shows where element 0 is located (in the 0-th, 1-st,
2-nd, or 3-rd block).

In order to deduce the circuit needed to produce a set partition from an
index, we introduce the set partition tree. Specifically, the methodology to design
a hardware index to set partition converter uses a tree structure to store all
partitions on a set {n− 1, n− 2, . . . , 1, 0} of n elements.

Definition 3. A set partition tree for n consists of three node-types

1. the single root node labeled 0,
2. internal nodes labeled i, for all i ∈ {0, 1, . . . , n− 2},
3. terminal nodes labeled i, for all i ∈ {0, 1, . . . , n− 1},
and one edge-type

1. an edge connects a node labeled i to a node labeled j iff along the path from
the root node to j, there is no more nodes than n, and, for all node labels k,
j ≤ max{k}+ 1.

1 The term restricted growth function is also used to describe this.

Hardware Index to Set Partition Converter 75

Table 1. Partitions on a set of n = 4 Versus Their Index i

i Partition Restricted

Growth String

0 {{3, 2, 1, 0}} (0 0 0 0)

1 {{3, 2, 1}, {0}} (0 0 0 1)

2 {{3, 2, 0}, {1}} (0 0 1 0)

3 {{3, 2}, {1, 0}} (0 0 1 1)

4 {{3, 2}, {1}, {0}} (0 0 1 2)

5 {{3, 1, 0}, {2}} (0 1 0 0)

6 {{3, 1}, {2, 0}} (0 1 0 1)

7 {{3, 1}, {2}, {0}} (0 1 0 2)

8 {{3, 0}, {2, 1}} (0 1 1 0)

9 {{3}, {2, 1, 0}} (0 1 1 1)

10 {{3}, {2, 1}, {0}} (0 1 1 2)

11 {{3, 0}, {2}, {1}} (0 1 2 0)

12 {{3}, {2, 0}, {1}} (0 1 2 1)

13 {{3}, {2}, {1, 0}} (0 1 2 2)

14 {{3}, {2}, {1}, {0}} (0 1 2 3)

A terminal node is simply the last node along a path from the root node. In a
set partition tree, the restricted growth string of a partition is represented by
the labels of edges along a path from the root node to a terminal node. Each
node in a path specifies a block in which the corresponding element is located.

Example 1. Fig. 1 shows the set partition tree for partitions with n = 4 ele-
ments. Following the leftmost path from the root node to a terminal node yields
the node labels (0000). This restricted growth string specifies that all elements,

0 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0

0

0

0 1

1

1 0 2

1

1 0 2

0 1 2 0 1 2 0 1 2 3

0 5

0 3 6 2 0

0 1 0 1 2 0 1 2 0 1 2 0 1 2 3

Index

Fig. 1. Example of a Set Partition Tree for Set Partitions on Four Elements

76 J.T. Butler and T. Sasao

3,2,1, and 0 belong to block 0. That is, this is the partition in which all elements
are in a single block. Following the rightmost path yields the node labels (0123).
This restricted growth string specifies the partition in which all elements are
in different blocks. Following the path with node labels (0102) yields a partition
with 3 and 1 in the same block and 2 and 0 each in separate blocks with just one
element. (End of Example)

The set partition tree is similar to a decision tree. Each node has children nodes
corresponding to all possible choices at that point. Each terminal node corre-
sponds to a partition. Fig. 1 shows, as (additional) terminal labels the index of
the partition. There are 15 partitions in this example, labeled 0, 1, . . . , and 14.

Note that edges are labeled by the part that each contributes to the index.
For example, the edge from the root node to the node labeled 1 has weight 5.
This is because the indices on the right side of the tree corresponding to the
latter node all have index 5 or greater. It follows that the index associated with
each node can be obtained by summing the weights in edges associated with the
path from the root node to the corresponding terminal node.

3 Circuit Implementations

3.1 Sequential Circuit Implementation

Fig. 2 shows a sequential circuit implementation of a set partition converter.
A clock comes in at the right. At each clock pulse, this circuit produces the
next set partition in increasing lexicographical order according to the restricted
growth string. Specifically, it first generates (b0 . . . bn−2bn−1) = (0 . . . 000), then
(0 . . . 001), etc.. At each stage, Counter counts up to a maximum value allowed
in a restricted growth string representation. At this point, it cycles back to 0,
just as is done in a conventional counter digit. The count finishes when bn−1 is
n− 1. At this point, Done is asserted. This could be used externally or it could
stop the clock, preventing the circuit from receiving further clock pulses.

3.2 Single-Stage Combinational Circuit Implementation

Fig. 3 shows the single-stage index to set partition circuit for partitions of size
n = 4. The index comes in on the left, and is tested by five comparators. These
test the range of the index, and determine the first three elements of the restricted
growth string. There are five possibilities, 000, 001, 010, 011, and 012. One
of these five is applied to the one-hot MUX that drives the output. Also, the
threshold is subtracted from the incoming index and the result applied to the
output as the LSD or least significant digit. The threshold values in Fig. 3 are
determined by the set partition tree shown in Fig. 1. They correspond to the
indices associated with the 0 terminal nodes in Fig. 1. The corresponding indices
are underlined in Fig. 1. There is only one stage in this implementation. As is
discussed later, the number of comparators grows is approximated by (n

ln(n))
n.

Hardware Index to Set Partition Converter 77

0

Reset

B A

MAX

0

 +1 Reset

B A

MAX

 +1

bn-1 bn-2 b0 b1 b2

Counter

Clock

Reset

Done

Reset

B A

MAX

1

 +1
Counter Counter

1 0 0 1 1

 A B A B A B =n-1

Fig. 2. Sequential Set Partition Generator

2

ou
tp

ut
 –

 S
et

 P
ar

tit
io

n

in
de

x

X-Y X

Y

> 8

>

>

>

8 5 2 0

012
011
010
001
000

0

5

11
11

O
ne-H

ot M
U

X

One-Hot MUX

>

Fig. 3. Single-Stage Index to Set Partition Circuit for n = 4

3.3 Multi-stage Combinational Circuit Implementation

Fig. 4 shows the multi-stage index to set partition converter. Here, the index
comes in on the left and is modified as it passes through the stages. At each
stage, an element in the restricted growth string of the set partition is computed.
For example, in the left stage, b1 is determined. From Fig. 1, it can be seen that,
if the index is 4 or less, b1 is 0. Conversely, if the index is 5 or greater b1 is 1.
It follows that the threshold A in Fig. 4 is 5. Also, if the index is 5 or more,
5 is subtracted from the index and is passed to the next stage. Recall that the

78 J.T. Butler and T. Sasao

thresholds against which the index is compared vary according to the maximum
value in the restricted growth string computed so far. In the leftmost stage, the
output value of MAX is 0 or 1. This is passed to the next stage, which uses it to
determine the two threshold values A and B.

B

in
de

x

B A

Y

X X-Y

1

0

A

A

MAX

0B A

Y

X X-Y

0

1

2

B

A

A

MAX 0

0

Z

b1

bn-1

b0 0

0B A

Y

X X-Y

0

n-1
B

A

B A

MAX

n-2

b2

One-
Hot MUX

One-
Hot MUX

One-
Hot MUX

O
ne-

H
ot M

U
X

O
ne-

H
ot M

U
X

O
ne-

H
ot M

U
X

Mapper Mapper Mapper

>

>

>

>

0 >

>

>

0 >

Fig. 4. Multi-Stage Index to Set Partition Circuit

Note that, in a multi-stage index to set partition converter for n = 4, there
are nine comparators. The single-stage index to set partition converter has five.
This raises the question of which circuit is the more compact for general n. This
is addressed in the next section.

3.4 Circuit Complexity and Delay

Note that all three circuits use comparators. Further, the complexity of the other
parts of the circuit is proportional to the number of comparators. For example,
the number of AND gates is nearly the same as the number of comparators,
and the one-hot MUX circuits have about as many inputs as the number of
comparators. Therefore, it will be convenient to measure the circuit’s complexity
by the number of comparator it contains. Note that, in making this assumption,
we assume that the delay and circuit complexity for comparators and multipliers
remains constant as n varies.

Lemma 2. The number of comparators Ci used in a set partition generator is

1) sequential (Fig. 2): C1 = O (n),

2) single-stage (Fig. 3): C2 = O
((

n
ln(n)

)n)
, and

3) multi-stage (Fig. 4): C3 = O(n2).

Hardware Index to Set Partition Converter 79

Proof
In the case of the sequential set partition generator, each stage has one com-
parator, and there are n− 1 stages.

In the case of the set partition tree, the number of comparators is just the
number of set partitions on n − 1, which is C2 = B(n − 1), where B(n − 1)
is the n − 1-th Bell number. From Berend and Tassa [1], we have B(n − 1) <
(

0.792(n−1)
ln(n)

)n−1

. Thus,

C2 = O

((
n

ln(n)

)n)

. (1)

In the case of the set partition tree, the first (leftmost) block has 2 comparators.
The next block has 3, the next 4, etc.. There are a total of n− 2 blocks. Thus,

C3 =
∑n−2

i=2 i = n(n+1)
2 − 2n+ 4, and we can write

C3 = O(n2). (2)

It is clear from Lemma 2 that the multi-stage index to set partition converter
has many fewer comparators than the single-stage converter, especially in the
case of set partitions on many elements. Thus, the case for n = 4 discussed at
the end of Section 3.3 is an aberration. We can also compare the circuits on the
basis of their delay.

Lemma 3. The delay Di in a set partition generator is

1) sequential (Fig. 2): D1 = O(n),
2) single-stage (Fig. 3): D2 = O(1), and
3) multi-stage (Fig. 4): D3 = O(n).

Proof
In the case of the sequential set partition generator, there are n−1 stages through
which a signal must pass. In the case of the set partition tree, there is exactly
one stage, and the delay is independent of n. Thus, this circuit has delay O(1).
In the case of the compact set partition tree, the index must propagate through
n− 2 stages. Thus, the delay is O(n).

Note that, in these calculations, we considered the multi-stage index to set parti-
tion converter to be combinational. When n is large, this circuit has large delay.
In order to improve the throughput, we will create a pipelined circuit by inserting
registers between stages. In the next section, we compare the experimental delay
of a pipelined version of the multi-stage circuit with the combinational circuit of
the single-stage circuit. As a result, the time comparisons will be (significantly)
different from the derived delay.

80 J.T. Butler and T. Sasao

3.5 Experimental Data

In the analysis above, we used the number of comparators as a measure for the
complexity. In this section, we use actual FPGA resources. We synthesized the
three circuits discussed above on the Altera Stratix IV EP4SE530F43C3NES
FPGA. Table 2 shows the resource usage for the sequential version.

Table 2. Frequency/resources used to realize the sequential set partition generator on
the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

5 52 6 15 236.2 4.234 42 1 1 12 8 20 22(0%)

6 203 8 18 172.6 5.793 60 2 5 19 13 21 34(0%)

7 877 10 21 156.4 6.393 58 3 1 15 9 30 31(0%)

8 4,140 13 24 130.8 7.643 63 3 3 13 11 33 35(0%)

16 1.05× 1010 34 64 122.1 8.190 245 5 28 87 61 64 135(0%)

32 1.28× 1026 88 160 53.0 18.863 741 3 231 221 94 192 459(0%)

64 1.72× 1065 217 384 25.9 38.584 1923 10 477 659 298 479 1146(0%)

128 1.12 × 10158 526 896 11.0 91.278 3847 13 727 1666 427 1014 2134(1%)

From Table 2, for all values of n ≤ 16, the achieved frequency exceeds 100
MHz. Thus, the sequential partition generator produces one partition per clock
period for all n ≤ 16, where the clock period is 10 ns.. To compare this rate to a
software implementation of a sequential partition generator, we adapted Orlov’s
[13] program and ran it on an Intel�CoreTM2 Duo P8400 processor running at
2.26 GHz. For 8 and 16 element partitions, we achieve a rate of partitions of
one per 94 ns. and 156 ns., respectively. This represents a 9.4 and 15.6 times
speed-up realized by the hardware version over the software version.

The first column in Table 2 shows n. The second column shows the number
of set partitions, the third column shows the number of input bits, and the
fourth column shows the number of output bits. All remaining columns show
circuit parameters provided by the synthesis tool, Synplify Pro. The fifth column
shows the frequency specified by Synplify Pro. The corresponding delay is shown
in the sixth column. The seventh column shows the number of combinational
functions used in the realization. This is an overall measure of the logic resources
used; it is generated in the first step of the synthesis, prior to the technology
mapping process. The eighth through twelfth columns show the number of the
various lookup tables (LUTs) that were used. The thirteenth column shows the
number of packed ALMs used in the realization. The columns that represent
general characteristics, including the number of combinational functions and the
number of packed ALMs, show an approximate doubling of resources used with

Hardware Index to Set Partition Converter 81

each doubling of n. This suggests a linear relationship between these resources
and n. It correlates with the observed linear relationship between the number of
comparators measure used in the previous section and n. Because of the large
number of partitions, for moderate n (e.g., n = 32), it will be too time consuming
to enumerate all partitions at typical FPGA clock frequencies (e.g., 100 MHz).
However, such designs are useful in understanding the complexity/delay of these
circuits. For index to set partition generators, however, even large n is useful,
for example, if the index is random and the partitions are used in Monte Carlo
simulations.

Table 3 shows the FPGA resources and frequency achieved on the Altera
Stratix IV EP4SE530F43C3NES FPGA by the single-stage combinational logic
index to set partition converter shown in Fig. 3. As discussed, this has short
delay paths. This is indicated by the frequency, which has a relatively shallow
decline as n, the number of elements, increases. Also, as discussed, this circuit
has high complexity. This can be seen in Table 3 by the near 5-fold increase
in the number of combinational logic circuits and by the nearly 5-fold increase
in the number of ALMs as n increases by 1. For the single-stage circuit, it was
possible to achieve an n of only 8, which is significantly smaller that the values of
n achieved for the sequential and multi-stage circuits. In comparing the delay of
the single-stage combinational logic index to the set partition converter with the
multi-stage circuit below, it is important to recall that, unlike the multi-stage
circuit, the single-stage circuit is not pipelined. Thus, the multi-stage circuit will
achieve a higher clock speed. However, its latency will be larger.

Table 3. Frequency/resources used to realize the single stage index to set partition
converter on the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

4 15 4 8 406.3 2.461 5 0 0 0 5 - 3(0%)

5 52 6 15 406.3 2.461 22 0 3 12 4 3 12(0%)

6 203 8 18 250.8 3.988 161 3 10 83 34 31 87(0%)

7 877 10 21 113.2 8.836 882 5 54 538 183 102 469(0%)

8 4,140 13 24 100.5 9.954 4100 32 1416 1223 652 777 2628(1%)

Table 4 shows the FPGA resources and frequency achieved on the Altera
Stratix IV EP4SE530F43C3NES FPGA by the multi-stage index to set partition
circuit shown in Fig. 4. This uses fewer resources than the single-stage circuit in
Fig. 3, but its latency is greater. In the design of the multi-stage circuit, registers
were placed between each stage. As a result, the delay figures shown are reduced,
approximating the delay of one stage. The first index comes out of this circuit
n− 1 clock periods.

82 J.T. Butler and T. Sasao

Table 4. Frequency/resources used to realize the multi-stage index to set partition
converter on the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

5 52 6 15 403.5 2.478 57 0 4 19 20 14 35(0%)

6 203 8 18 275.0 3.636 100 1 7 36 38 18 63(0%)

7 877 10 21 227.8 4.389 203 0 8 82 71 42 121(0%)

8 4,140 13 24 203.0 4.926 326 3 20 124 107 72 196(0%)

16 1.05 × 1010 34 64 101.4 9.859 3842 35 718 1524 1130 435 2339(0%)

32 1.28 × 1026 88 160 55.6 17.973 38305 87 3671 19768 8016 6763 21206(9%)

The data shown comes from Verilog code that was written to implement each
of the three circuit types. Synplify Pro was used to design each circuit. Further,
ModelSim was used to simulate each circuit. In the case of the multi-stage circuit,
a MATLAB program was written to produce a header file that was called from
the Verilog code to provide threshold values for the comparators.

4 Concluding Remarks

To the best of our knowledge, our circuits are the first hardware implementations
of set partition generators. The generation of set partitions by hardware has im-
portant practical applications. The challenge is to generate set partitions at one
per clock period. We show two ways to accomplish this. The first is a sequential
circuit that generates the partitions in lexicographical order according to their
restricted growth string. This circuit is fast and can produce partitions of large
sets. The second circuit is an index to set partition converter. In this circuit, an
up counter on the index input produces set partitions in increasing lexicographical
order, while a down counter produces set partitions in decreasing lexicographical
order. Also, a random number generator at the index produces random set parti-
tions. It is combinational, but can be pipelined to produce a set partition at one
per clock. An analysis of the complexity of these two circuits show that the com-
plexity of both grow polynomially with n, the number of elements in the partition,
while the delay grows linearly with n. Also, for both circuits, we show experimen-
tal results that confirm these predictions. Specifically, small to large circuits were
implemented on the Altera Stratix IV EP4SE530F43C3NES FPGA. Our experi-
mental results show that an FPGA running at 100 MHz produces partitions at a
rate that is about 10 times the rate of a software implemented partition generator
on a processor that runs at 2.26 GHz.

Acknowledgements. We thank six referees for comments that improved this
paper.

Hardware Index to Set Partition Converter 83

References

1. Berend, D., Tassa, T.: Improved bounds on Bell numbers and on moments of sums
of random variables. Probability and Mathematical Statistics 30(2), 185–205

2. Butler, J.T., Sasao, T.: Index to Constant Weight Codeword Converter. In: Koch,
A., Krishnamurthy, R., McAllister, J., Woods, R., El-Ghazawi, T. (eds.) ARC 2011.
LNCS, vol. 6578, pp. 193–205. Springer, Heidelberg (2011)

3. Butler, J.T., Sasao, T.: Hardware index to permutation converter. In: 19th Re-
configurable Architectures Workshop (RAW 2012), Proc. of the 26th IEEE Inter-
national Parallel and Distributed Processing Symposium, Shanghai, China, May
21-22, pp. 424–429 (2012)

4. Chen, X., Liu, L., Liu, Z., Jiang, T.: On the minimum common integer partition
problem. ACM Trans. on Computational Logic V, 1–19 (2008)

5. Debnath, D., Sasao, T.: Fast Boolean matching under permutation by efficient
computation of canonical form. IEICE Trans. Fundamentals (12), 3134–3140 (2004)

6. Beeler, M., Gosper, R.W., Schroeppel, R.: HAKMEM. MIT Artificial In-
telligence Laboratory, Cambridge, MA, Memo AIM-239 (February 1972),
http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item175

7. Hankin, R.K.S., West, L.J.: Set partitions in R. J. of Statistical Software 23, Code
Snippet 2 (December 2007), http://www.jstatsoft.org/

8. Knuth, D.E.: Volume 4 Generating all combinations and permutations. In: The
Art of Computer Programming, Fascicle 3. Addison-Wesley ISBN: 0-321-58050-8

9. Kawano, S., Nakano, S.: Constant time generation of set partitions. IEICE Trans.
Fundamentals E88-A(4), 930–934 (2005)

10. McKay, J.K.S.: Algorithm 263, Partition Generator. Communications of the
ACM 8(8), 493 (1965)

11. Nagayama, S., Sasao, T., Butler, J.T.: Analysis of multi-state systems with multi-
state components using EVBDDs. In: Proc. 42nd International Symposium on
Multiple-Valued Logic, Victoria, Canada, May 14-16, pp. 122–127 (2012)

12. Oommen, B.J., Ng, D.T.H.: On generating random partitions with arbitrary dis-
tributions. The Computer Journal 33(4), 368–374 (1990)

13. Orlov, M.: Efficient generation of set partitions (March 2002),
http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf

14. Reingold, E., Nivergelt, J., Deo, N.: Combinatorial Algorithms, Theory and Prac-
tice. Prentice-Hall (1977)

15. Sasao, T.: Memory Based Logic Synthesis, 1st edn. Springer (2011) ISBN: 978-1-
4419-8103-5

16. Semba, I.: An efficient algorithm for generating all partitions of the set {1,2,..., n}.
Journal of Information Processing 7(1) (1984)

17. Stojmenovič, I.: An optimal algorithm for generating equivalence relations on a
linear array of processors. BIT 30(3), 424–436 (1990)

http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item175
http://www.jstatsoft.org/
http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf

	Hardware Index to Set Partition Converter
	Introduction
	Definitions
	Introduction

	Circuit Implementations
	Sequential Circuit Implementation
	Single-Stage Combinational Circuit Implementation
	Multi-stage Combinational Circuit Implementation
	Circuit Complexity and Delay
	Experimental Data

	Concluding Remarks
	References

