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Preface

Reconfigurable computing platforms offer increased performance gains and en-
ergy efficiency through coarse-grained and fine-grained parallelism coupled with
their ability to implement custom functional, storage, and interconnect struc-
tures. As such, they have been gaining wide acceptance in recent years, span-
ning the spectrum from highly specialized custom controllers to general-purpose
high-end programmable computing systems. The flexibility and configurability
of these platforms, coupled with increasing technology integration, has enabled
sophisticated platforms that facilitate both static and dynamic reconfiguration,
rapid system prototyping, and early design verification. Configurability is emerg-
ing as a key technology for substantial product life-cycle savings in the presence
of evolving product requirements, standards, and interface specifications.

The growth of the capacity of reconfigurable devices, such as FPGAs, has
created a wealth of new research opportunities and intricate engineering chal-
lenges. Within the past decade, reconfigurable architectures have evolved from
a uniform sea of programmable logic elements to fully reconfigurable systems-
on-chip with integrated multipliers, memory elements, processors, and standard
I/O interfaces. One of the foremost challenges facing reconfigurable application
developers today is how to best exploit these novel and innovative resources to
achieve the highest possible performance-and energy-efficiency; additional chal-
lenges include the design and implementation of next-generation architectures,
along with languages, compilers, synthesis technologies, and physical design tools
to enable highly productive design methodologies.

The International Applied Reconfigurable Computing (ARC) Symposium se-
ries provides a forum for the dissemination and discussion of ongoing research
efforts in this transformative research area. The series of editions started in 2005
in Algarve, Portugal. The second edition of the symposium (ARCÕ06) took place
in Delft, The Netherlands, during March 1–3, 2006, and was the first edition of
the symposium to have selected papers published as a Springer LNCS (Lec-
ture Notes in Computer Science) volume. Subsequent editions of the symposium
have been held in Rio de Janeiro, Brazil (ARCÕ07), London, UK (ARCÕ08),
Karlsruhe, Germany (ARCÕ09), Bangkok, Thailand (ARCÕ10), Belfast, UK
(ARCÕ11), and Hong Kong, China (ARCÕ12).

This LNCS volume includes the papers selected for the ninth edition of the
symposium (ARCÕ13), held in Los Angeles, California, USA, during March
25–27, 2013. The symposium attracted a large number of very good papers,
describing interesting work on reconfigurable computing-related subjects. A
total of 41 papers were submitted to the symposium from 20 countries:
The Netherlands (4), France (3), Germany (4), Republic of South Korea (12),
Brazil (14), Republic of China (8), Denmark (1), Mexico (2), Portugal (2), South
Africa (1), Lebanon (1), Australia (1), Republic of Ireland (2), Puerto Rico (1),
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Spain (5), UK (2), India (2), Japan (5), Poland (1), and Greece (1). Submitted
papers were evaluated by at least three members of the Program Committee.
After a careful selection, 28 papers were accepted as full papers (acceptance rate
of 38.9%) and 10 as short papers (global acceptance rate of 52.8%). These ac-
cepted papers led to a very interesting symposium program, which we consider to
constitute a representative overview of ongoing research efforts in reconfigurable
computing, a rapidly evolving and maturing field.

Several persons contributed to the success of the 2013 edition of the sympo-
sium. We would like to acknowledge the support of all the members of this year’s
symposium Steering and Program Committees in reviewing papers, in helping
with the paper selection, and in giving valuable suggestions. Special thanks also
to the additional researchers who contributed to the reviewing process, to all
the authors that submitted papers to the symposium, and to all the symposium
attendees. Last but not least, we are especially indebted to Alfred Hofmann and
Anna Kramer from Springer for their support and work in publishing this book
and to Jüergen Becker from the University of Karlsruhe for the strong support
regarding the publication of the proceedings as part of the LNCS series.

January 2013 Philip Brisk
José Gabriel de Figueiredo Coutinho

Pedro C. Diniz
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Heterogeneous Reconfigurable System

for Adaptive Particle Filters in Real-Time
Applications

Thomas C.P. Chau1, Xinyu Niu1, Alison Eele3,
Wayne Luk1, Peter Y.K. Cheung2, and Jan Maciejowski3

1 Department of Computing, Imperial College London, UK
{c.chau10,niu.xinyu10,w.luk}@imperial.ac.uk

2 Department of Electrical and Electronic Engineering, Imperial College London, UK
p.cheung@imperial.ac.uk

3 Department of Engineering, University of Cambridge, UK
{aje46,jmm1}@cam.ac.uk

Abstract. This paper presents a heterogeneous reconfigurable system
for real-time applications applying particle filters. The system consists of
an FPGA and a multi-threaded CPU. We propose a method to adapt the
number of particles dynamically and utilise the run-time reconfigurability
of the FPGA for reduced power and energy consumption. An application
is developed which involves simultaneous mobile robot localisation and
people tracking. It shows that the proposed adaptive particle filter can
reduce up to 99% of computation time. Using run-time reconfiguration,
we achieve 34% reduction in idle power and save 26-34% of system energy.
Our proposed system is up to 7.39 times faster and 3.65 times more
energy efficient than the Intel Xeon X5650 CPU with 12 threads, and
1.3 times faster and 2.13 times more energy efficient than an NVIDIA
Tesla C2070 GPU.

1 Introduction

Particle filter (PF), also known as sequential Monte Carlo (SMC) method, is a
statistical method for dealing with dynamic systems having nonlinear and non-
Gaussian properties. PF has been applied to real-time applications including
object tracking [1], robot localisation [2], speech recognition [3] and air traffic
control [4]. However, PF operates on a large number of particles resulting in long
execution times, which limits the application of PF to real-time systems.

In this paper, an adaptive algorithmic and architectural approach using re-
configurable hardware is proposed for PF in real-time applications. An adaptive
PF algorithm is employed to dynamically adjust the size of particle set for re-
duced computation complexity. A heterogeneous reconfigurable system (HRS)
consisting of a multi-core CPU and an FPGA is developed for the adaptive PF
algorithm. As most of the PF operations can be performed independently, the
algorithm suits ideally for implementation in FPGA which consists of thousands
of customisable resources and dedicated digital signal processing units to exploit

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 1–12, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 T.C.P. Chau et al.

parallel processing. The challenge is to meet real-time requirement by organising
the operations in streaming manner to maximise throughput and hide latency.

The contributions of this paper include:

1. Adaptive PF algorithm: the computational complexity of PF is reduced
through adapting the size of particle set dynamically, and the algorithm
is optimised for hardware acceleration (Section 3).

2. Heterogeneous architecture: fully pipelined computations of the PF are
streamed through the FPGA kernel, while control-oriented computations
are handled by the host CPU (Section 4).

3. Energy saving by run-time reconfiguration: FPGA is reconfigured to low-
power mode dynamically (Section 4).

4. Prototype: a robot localisation application is implemented on an FPGA
based on the proposed adaptive PF approach. Compared to a non-adaptive
implementation, the idle power is reduced by 34% and the overall energy
consumption decreases for 26-34% (Section 5).

2 Background and Related Work

This section briefly outlines the PF algorithm. A more detailed description can
be found in [5]. PF estimates the state of a system by a sampled-based approx-
imation of the state probability density function. The state of a system in time
step t is denoted by Xt. Sequences of control information and observations are
denoted by Ut and Yt respectively. Three pieces of information about the sys-
tem are known a-priori: a) p(X0) is the probability of the initial state of the sys-
tem, b) p(Xt|Xt−1, Ut−1) is the state transition probability of the system’s current
state given a previous state and control information, c) p(Yt|Xt) is the observation
model describing the likelihood of observing the measurement at current state.
PF approximates the desired posterior probability p(Xt|Y1:t) using a set of P
particles {χi

t|i = 1, ..., P} with their associated weights {wi
t|i = 1, ..., P}. X0 and

U0 are initialised. This computation consists of three iterative steps.

1. Sampling: A new particle set χ̃i
t is drawn from the distribution

p(Xt|Xt−1, Ut−1), forming a prediction of the distribution of Xt.
2. Importance: Likelihood p(Yt|χ̃i

t) of each particle is calculated. The likeli-
hood indicates whether the current measurement Yt matches the predicted
state χ̃i

t. Then a weight wi is assigned to the particle. The higher the likeli-
hood, the higher the weight.

3. Resampling: Particles with higher weights are replicated and the number
of particles with lower weights are reduced. With resampling the particle
set has a smaller variance. The particle set is then used in the next time
step to predict the posterior probability subsequently. The distribution of
the resulting particles χi

t approximates p(Xt|Y1:t).

The parallelism of particles in PF means it can be accelerated using specialised
hardware with massive parallelism and pipelining. In [1], an approach for PF on a
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hybrid CPU/FPGA platform is developed. Using a multi-threaded programming
model, computation is switched between hardware and software during run-time
to react to performance requirements. Resampling algorithms and architectures
for distributed PFs are proposed in [6].

Adaptive PFs have been proposed to improve performance or quality of state
estimation by controlling the number of particles dynamically. Likelihood-based
adaptation controls the number of particles such that the sum of weights exceeds
a pre-specified threshold [7]. Kullback Leibler distance (KLD) sampling is pro-
posed in [8], which offers better quality results than likelihood-based approach.
KLD sampling is improved in [9] by adjusting the variance and gradient of data
to generate particles near high likelihood regions. The above methods introduce
data dependencies in the sampling and importance steps, so they are difficult
to be parallelised. An adaptive PF is proposed in [10] that changes the number
of particles dynamically based on estimation quality. Our previous work [11]
extends their techniques for multi-processor system on FPGA. The number of
particles and active processors change dynamically but the performance is lim-
ited by soft-core processors. In [12], a mechanism and a theoretical lower bound
for adapting the sample size of particles is presented.

3 Adaptive Particle Filter

This section introduces an adaptive PF algorithm where the size of the particle
set is changed in each time step. The algorithm is inspired by [12], and we
optimise the algorithm to exploit the capability of FPGAs to support streaming
and deep pipelines.

Algorithm 1 shows the processing step of PF. The first part is performed on
the FPGA because the operations can be scheduled sequentially to maximise
throughput. The second part is done on the CPU because the operations involve
non-sequential or random access of data, such as sorting and resampling, that
cannot be mapped efficiently to FPGA’s streaming architecture.

Sampling and Importance (line 4 to 5): In time step t − 1, the number of
particles is Pt−1 ≤ Pmax. A particle has dimensions d = 1, ..., dim. Particle set
{χi

d,t−1} is sampled to {χ̃i
d,t} and importance weight {w̃i} is assigned, where

i = 1, ..., Pt−1. For simplicity, we denote the set of Pd,t−1 particles {χ̃i
d,t} as a

vector X̃d,t = {χ̃1
d,t, χ̃

2
d,t, ...χ̃

Pt−1

d,t }. {X̃d,t} and {w̃i} give an estimation of the
current system state at dimension d.

Calculate the Lower Bound of Particle Set Size (line 6): This step derives
the smallest number of particles that are needed to bound the approximation
error. This number, denoted as P̃t, is referred to as the lower bound of sampling
size. It is calculated by Equation 1 to 5.

P̃t =
dim
max

d
P̃d,t (1)
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Algorithm 1. Adaptive PF algorithm
1: P0 ← Pmax, {X0} ←random set of particles, t = 1
2: for each step t do
3: —On FPGA—
4: Sample a new state {χ̃i

t} from {χi
t−1} where i = 1, ..., Pt−1

5: Calculate unnormalised importance weights w̃i and accumulate the weights as wsum

6: Calculate the lower bound of sample size ˜Pt by Equation 1 to 5
7: —On CPU—
8: Sort χ̃t in descending wi

9: if ˜Pt < Pt−1 then

10: Pt = max
(

� ˜Pt�, Pt−1/2
)

11: Set a = 2Pt − Pt−1 and b = Pt
12: –Do the following loop in parallel–
13: for i in P ′ do
14: χ̃t =

χa
t wa+χb

tw
b

wa+wb

15: wi = wa + wb

16: a = a+ 1 and b = b− 1
17: end for
18: else if ˜Pt ≥ Pt−1 then
19: a = 0 and b = 0
20: for i in Pt − Pt−1 do
21: if wa < wa+1 and a < Pt then
22: a = a+ 1
23: end if

24: χ̃
Pt−1+b
t = χ̃a

t /2
25: χ̃a

t = χ̃a
t /2

26: wPt−1+b = wa/2
27: wa = wa/2
28: b = b+ 1
29: end for
30: end if
31: Resample {χ̃i

t} to {χi
t} where i = 1, ..., Pt

32: end for

P̃d,t = σ2
d ·

Pmax

V ar(X̃d,t)
(2)

σ2
d =

1

(wsum)2
·
Pt−1∑
i=1

(
w̃i · χ̃i

d,t

)2 − 2 · E(X̃d,t) ·
Pt−1∑
i=1

(w̃i)2 · χ̃i
d,t

+
(
E(X̃d,t)

)2

·
Pt−1∑
i=1

(
w̃i

)2 (3)

V ar(X̃d,t) =
1

wsum
·
Pt−1∑
i=1

w̃i · (χ̃i
d,t)

2 −
(
E(X̃d,t)

)2
(4)

E(X̃d,t) =
1

wsum
·
Pt−1∑
i=1

w̃i · χ̃i
d,t (5)

w̃i is unnormalised. To calculate normalised weights wi, a trivial approach is to
stream data through the FPGA twice, one for accumulating the sum of weights
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wsum and one for dividing the weights w̃i by wsum. This method is inefficient as
it reduces the throughput of the FPGA by half. Without degrading the perfor-
mance, our design computes wsum and w̃i simultaneously as data stream through
the FPGA. As shown in Equation 3 to 5, correct values of σ2

d, V ar(X̃d,t) and

E(X̃d,t) appear at the last cycle by dividing the last piece of data by wsum.
Meanwhile, Equation 3 to 5 involve accumulation which requires feedback

of data in the previous cycle. If accumulation is performed in floating-point
representation, the feedback path would take multiple clock cycles and greatly
reduce throughput. Therefore, we use fixed-point data path such that the delay
of the feedback path is kept in one clock cycle. The precision is designed to
ensure that no overflow or underflow occurs.

Particle Set Size Tuning (line 8 to 30): The particle sample size is tuned to
fit the lower bound Pt.

First, the particles are sorted in descending order according to their weight.
Then, as the new sample size can increase or decrease, there are two cases.

– Case I: Particle set reduction when P̃t < Pt−1

The lower bound Pt is set to max
(
�P̃t�, Pt−1/2

)
. Since the new size is

smaller than the old one, some particles are combined to form a smaller par-
ticle set. Fig. 1 illustrates the idea of particle reduction. The first 2Pt−Pt−1

particles with higher weights are kept and the remaining 2(Pt−1 − Pt) par-
ticles are combined in pairs. As a result, there are Pt−1 − Pt new particles
injected to form the target particle set with Pt particles. To remove loop
dependency, we restrict that particles are combined deterministically. There-
fore, each iteration of the loop can be processed independently and acceler-

ated using multiple threads. The complexity of the loop is in O
(

Pt−1−Pt

Nparallel

)
,

where Nparallel indicates the level of parallelism.

Pt−1

2(Pt−1−Pt)2Pt−Pt−1

kept combined in pairs

(a) Combining the last 2(Pt−1 − Pt)
particles with lower weights

Pt−1−Pt

Pt−1

2Pt−Pt−1

Pt

kept droppedinjected

(b) Pt new particles are formed

Fig. 1. Particle set reduction

– Case II: Particle set expansion when P̃t ≥ Pt−1

The lower bound Pt is set to P̃t. Some particles are taken from the original set
and are incised to form a larger set. The particles with larger weight would
have more descendants. As shown in line 18 to 30, the process requires picking
the particle with the largest weight at each iteration of particle incision.
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Since the particle set is pre-sorted, the complexity of particle set expansion
is O(Pt − Pt−1).

Resampling (line 31): Resampling is performed to pick Pt particle from X̃t to
form Xt. The process has a complexity of O(Pt).

4 Heterogeneous Reconfigurable System

This section describes the proposed heterogeneous reconfigurable system (HRS)
which makes use of run-time reconfiguration for power and energy reduction. The
architectural diagram of HRS is shown in Fig. 2. The system consists of an FPGA
board and a multi-threaded host CPU. The FPGA resources are customised to a
deeply pipelined structure and the CPU performs coordination of particles. The
FPGA has its own on board dynamic random-access memory (DRAM) because
the amount of data is too large to be stored on-chip.

For the sampling and importance processes, the computation is independent
for every particle. Therefore, particles are organised in a stream that is fed to
the FPGA. In every clock cycle, one particle is taken from the FPGA’s onboard
DRAM. The FPGA kernel has a long pipeline that is filled with particles, and
therefore many particles are processed at once. Fixed-point data representation is
customised at each pipeline stage to reduce bit-widths and hence FPGA resource
usage. One particle is written back to the DRAM in every clock cycle.

For lower bound calculation, particle set size tuning and resampling processes,
the host CPU gathers all the particle data from the FPGA via PCI Express.

Memory

Onboard

Kernels

FPGA

Memory

CPU

Host

Host Program

OS

Pipeline stages

Data via PCI Express

Kernel parallelism

threads of execution

Instructions / Floating point data

Floating point data

Customised precision data

Customised precision data

Fig. 2. Heterogeneous reconfigurable system

We derive a model to analyse the total computation time of the proposed
system. The model helps us to design a configuration that can satisfy the real-
time bound and, if necessary, amend the real-time application’s specification.
The model is validated by experiments in Section 5.
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The total computation time of the system (Tcomp) consists of three components.

Tcomp = Tkernel + Thost + Tio (6)

Kernel Time: It describes the time spent on the FPGA kernel for the sampling
and importance processes. Pt denotes the number of particles at current time step
and freqkernel denotes the clock frequency of the FPGA kernel. The sampling
and importance processes can be repeated for Nsi times before going to the
resampling process. Nkernel denotes the level of parallelism as multiple kernels
can be instantiated in the FPGA. L is the latency due to pipelining.

Tkernel =
Pt ·Nsi

freqkernel ·Nkernel
+ L− 1 (7)

Host Time: It describes the time spent on the host CPU. The clock frequency
and number of threads of the host CPU are represented by freqhost and Nthread

respectively. par is an algorithm-specific parameter in the range of [0, 1] which
represents the ratio of CPU instructions that are parallelisable, and α is a scaling
constant derived empirically.

Thost = α · Pt

freqhost
·
(
1− par +

par

Nthread

)
(8)

IO Time: It describes the time of moving particle data between the FPGA’s
onboard DRAM and host memory. dim is the number of dimensions of a particle,
e.g. if a particle represents coordinate (x, y) and weight, dim = 3. bw is the bit-
width to represent one dimension. freqpcie is the clock frequency of PCI Express
bus and lane is the number of PCI Express lanes. Since PCI Express encodes
data during transfer, the effective data is denoted by eff (in PCI Express gen2
the value is 8/10). The constant 2 accounts for the movement of data in and out
of the FPGA.

Tio =
2 · Pt · dim · bw

freqpcie · lane · eff (9)

In real-time applications, the time for each step is fixed and is known as real-
time bound Trt. The derived model helps system designers to ensure that the
computation time Tcomp is shorter than Trt. An idle time Tidle is introduced to
represent the gap between finish time of computation and real-time bound.

Tidle = Trt − Tcomp (10)

Fig. 3(a) shows the timing of system operations. It illustrates that the FPGA
is still drawing power after the computation finishes. We propose a method to
reduce dynamic power by using run-time reconfiguration of FPGA. During idle
time, the FPGA is loaded with a low-power configuration which has minimal
active resources and runs at a very low clock frequency. The idea is shown in
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Fig. 3(b). Equation 11 describes the sleep time when the FPGA is idle and being
loaded with the low-power configuration. If the sleep time is positive, it is always
beneficial to load the low-power configuration.

Tsleep = Tidle − Tconfig (11)

Configuration Time (Tconfig): It describes the time needed to download a
configuration bit-stream to the FPGA. sizebs represents the size of bitstream in
bits. freqconfig is the configuration clock frequency in Hz and portconfig is the
configuration port width in bits.

Tconfig =
sizebs

freqconfig · portconfig (12)

Tcf Ti Tkn To

Tact Tidle

Trd

RTT

time

Output

power

InputConfig Kernel Host Idle

(a) Without reconfiguration

Tcf Ti Tkn To

Tact Tidle

RTT

Trd Tcf Tsleep

Config Input Output

time

power

Kernel Host Config Sleep

(b) With reconfiguration to low-power
mode during idle

Fig. 3. Timing of the system’s operations

5 Result and Evaluation

To evaluate the HRS and make comparison with other systems, a simultaneous
robot localisation and people-tracking application is implemented. Given a priori
learned map, a robot receives sensor values and moves at regular time intervals.
In each time step, M people are tracked by the robot. The state of the whole
system of robot and people is represented by a state vector Xt:

Xt = {Rt, Ht,1, Ht,2, ..., Ht,M} (13)

Rt denotes the robot’s pose at time t, andHt,1, Ht,2, ..., Ht,M denote the locations
of the M people.

The PF uses the following equation to represent the posterior of robot and
people locations:

p(Xt|Yt, Ut) = p(Rt|Yt, Ut)

M∏
m=1

p(Ht,m|Rt, Yt, Ut) (14)
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Yt is the sensor measurement and Ut is the control of the robot at time t. The
robot path posterior p(Rt|Yt, Ut) is represented by a set of robot particles. The
distribution of a person’s location p(Ht,m|Rt, Yt, Ut) is represented by a set of
people particles, where each people particle set is attached to one particular robot
particle. Therefore, if there are Pr robot particles representing the posterior over
robot path, there are Pr people particle sets, each has Ph particles.

In the application, the map has an area of 12m*18m. The robot makes a move-
ment of 0.5m every 5s, i.e. Trt = 5s. The robot can track 8 people at the same
time. The system supports a maximum of 8192 particles for robot-tracking and
each robot particle is attached with 1024 particles for people-tracking. Therefore,
the maximum number of kernel cycles is 8*8192*1024=67M.

Experiment Settings: For the evaluation of HRS, we use the MaxWorkstation
reconfigurable accelerator system from Maxeler Technologies. It has an FPGA
board equipped with a Xilinx Virtex-6 XC6VSX475T FPGA which has 297,600
lookup tables (LUTs), 595,200 flip-flops (FFs), 2,016 digital signal processors
(DSPs) and 1,064 block RAMs. The FPGA board is connected to an Intel i7-
870 quad-core CPU clocked at 2.93GHz through a PCI Express link with a
bandwidth of 2 GB/s. We develop the FPGA kernels using the MaxCompiler,
which adopts a streaming programming model. At each pipeline stage, the fixed-
point calculations are customised to different mantissa bit-widths.

There are two FPGA configurations: a) sampling and importance configuration
is clocked at 100MHz, with 115961 LUTs (39%), 169188 FFs (28%), 967 DSPs
(48%) and 257 block RAMs (24%) per kernel. b) Low-power configuration is
clocked at 10MHz, with 5962 LUTs (2%), 6943 FFs (1%) and 12 block RAMs
(1%). It uses the minimum amount of resources just to maintain communication
between the FPGA and CPU.

The CPU performance results are obtained from an Intel Xeon X5650 CPU
clocked at 2.66GHz. It is optimised by ICC with SSE4.2 and flag -fast enabled.
OpenMP is used to utilise 6 physical cores (12 threads) of the CPU.

For the GPU performance results, we use NVIDIA Tesla C2070 GPU which
has 448 cores running at 1.15GHz and has a peak performance at 1288GFlops.

Adaptive vs. Non-adaptive: Table 1 shows the breakdown of computation
time using our model and experimental data. Initially, the maximum number of
particles are instantiated for global localisation. For the non-adaptive scheme,
the particle set size does not change. The total computation time is estimated
to be 1.957s which is within the real-time bound. The remaining idle time is
enough to reconfigure to sleep mode, since Tsleep = (5− 1.957− 0.87)s = 2.173s.

For the adaptive scheme, the number of particles varies from 70 to 8192, and
the computation time scales linearly with the number of particles. Fig. 4 shows
how the number of particles varies versus time. Both the model and experiment
show 99% reduction in computation time.

Fig. 5 illustrates the localisation error of the mobile robot. The error is the
highest during initial global localisation and it is reduced when the robot moves.
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Table 1. Comparison of adaptive and non-adaptive PF on HRS (configuration with 1
FPGA kernel is used)

Non-adaptive Adaptive

Model Exp. Model Exp.

No. of particles 8192 70-8192

Kernel time Tkernel (s) 0.671 0.671 0.006-0.671 0.006-0.671
Host time Thost (s) 0.212 0.212 0.002-0.212 0.002-0.212
IO time Tio (s) 1.074 1.600 0.009-1.074 0.014-1.600
Total comp. time Tcomp 1.957 2.483 0.017-1.957 0.022-2.483

Comp. speedup (higher is better) 1x 1x 1-115.12x 1-112.86x
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Fig. 4. Variation of particle set size and computation time

It is observed that the localisation error is not adversely affected by reducing
the number of particles.

Performance Comparison:Table 2 shows the performance comparisonofCPU,
GPU and HRS. Considering the kernel computation only, which ignores the IO
time and host time, the HRS is up to 19.94 times faster than the CPU, and is 2.65
times faster than the GPU. If the overall system performance is considered, the
HRS is up to 3.26 times faster than the CPU, and is 1.74 times slower than the
GPU. Meanwhile, the CPU needs 7.002s to process a step, so the real-time con-
straint of 5s is violated. Currently the performance of HRS is limited by the PCI
Express bus between the FPGAandCPU,which has a bandwidth of 2GB/s. If PCI
Express gen3 x8 (7.88GB/s) is used, which has comparable bandwidth as that on
the GPU, the overall system performance of the HRS is 7.39 times faster than the
CPU, and is 1.3 times faster than the GPU.

In real-time applications, we need to consider the energy consumption within
the real-time bound. Fig. 6 shows the power consumption varies between compu-
tation and idle time, and a significant amount of energy is consumed during idle
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Table 2. Comparison of using CPU, GPU and HRS

CPU a GPU b HRS(1) c HRS(2) c

Clock freq. (MHz) 2660 1150 100 100

Number of threads 12 448 1+8 d 2+8 d

Kernel time (s) e 0.058-6.780 0.008-0.892 0.006-0.671 0.003-0.336
Kernel speedup 1x 7.53x 10.11x 19.94x

Comp. time (s) e 0.060-7.002 f 0.011-1.236
0.021-2.483 g 0.018-2.148 g

0.011-1.283 h 0.008-0.948 h

Overall speedup 1x 5.67x
2.82x g 3.26x g

5.46x h 7.39x h

Comp. power (W) 279 287 135 145
Comp. power eff. 1x 0.97x 2.07x 1.92x

Idle power (W) 133 208 95 95
Idle power eff. 1x 0.64x 1.40x 1.40x

Energy. (J) e 674-1954 1041-1138
489-587 g 489-595 g

489-539 h 489-535 h

Energy eff. 1x 0.64-1.72x
1.37-3.33x g 1.37-3.28x g

1.37-3.62x h 1.37-3.65x h

a Intel Xeon X5650 @2.66GHz with 12 threads.
b NVIDIA Tesla C2070 and Intel Core i7-950 @3.07GHz with 8 threads.
c Xilinx XC6VSX475T and Intel Core i7-870 @2.93GHz with 8 threads. HRS(1)

has one FPGA kernel while HRS(2) has two.
d Number of FPGA kernels and number of threads in the CPU.
e Cases for 70 and 8192 robot particles.
f Real-time bound is violated as the constraint is 5s.
g On our platform, the FPGA and CPU communicate through PCI Express

with bandwidth 2GB/s.
h Assume the FPGA and CPU communicate through PCI Express gen3 x8,

bandwidth 7.88GB/s.
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time. Run-time reconfiguration reduces the idle power consumption of the HRS
by 34%, from 135W to 95W. In other word, the energy consumption is reduced
by 26-34%. For the case of 8192 particles, the HRS is up to 3.65 times more
energy efficient than the CPU, and is 2.13 times more energy efficient than the
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GPU. For the case of 70 particles, the HRS is 1.37 times more energy efficient
than the CPU, and is 2.13 times more energy efficient than the GPU.

6 Conclusion

This paper presents an adaptive particle filter for real-time applications. The
proposed heterogeneous reconfigurable system demonstrates a significant reduc-
tion in power and energy consumption compared with the CPU and the GPU.
The adaptive particle filter reduces computation time while maintaining quality
of results. Ongoing and future work includes applying the adaptive approach to
larger systems with multiple FPGAs. Distributed resampling and data compres-
sion techniques are explored to mitigate the data transfer overhead between the
FPGA and the CPU. More compute-intensive applications using PF would be
of interest on the extended heterogeneous reconfigurable system.
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Abstract. Next generation DNA sequencing machines have been improving at
an exceptional rate; the subsequent analysis of the generated sequenced data
has become a bottleneck in current systems. This paper explores the use of re-
configurable hardware to accelerate the short read mapping problem, where the
positions of millions of short DNA sequences are located relative to a known ref-
erence sequence. The proposed design comprises of an alignment processor based
on a backtracking variation of the FM-index algorithm. The design represents a
full solution to the short read mapping problem, capable of efficient exact and
approximate alignment. We use reconfigurable hardware to accelerate the design
and find that an implementation targeting the MaxWorkstation performs consider-
ably faster and more energy efficient than current CPU and GPU based software
aligners.

1 Introduction

DNA contains a long sequence of pairs of nucleotide bases which can be abstracted into
a character string with an alphabet {‘A’, ‘C’, ‘G’, ‘T’}. DNA sequencing is the process
of identifying the order of the nucleotide bases in a DNA molecule. This process has
been utilised in a wide range of applications; for example in medicine, analysis of the
genetic information of a patient can be used in diagnosing hereditary diseases.

Next-generation sequencing (NGS) machines are able to rapidly and inexpensively
produce sequenced data. To improve the throughput and measurement accuracy of these
machines, shorter sequences are processed, allowing tens of billions of bases to be se-
quenced per day. These short sequences can be created by breaking the long DNA chain
randomly. As a consequence of this action, the position and orientation information of
the fragments with respect to the sample is lost. Based on the assumption that all DNA
sequences within a species are similar, the sample DNA can be reconstructed by de-
termining the location of the short fragments (the short reads) in a known reference
genome of the species. An aligner system is used to find the possible positions of these
short reads in the reference DNA. The performance of NGS machines has recently been
improving at a rate faster than Moore’s law. Large computer clusters are often used to
process short read data generated by a single sequencing machine. However, the pro-
cessing speed of computer clusters does not grow as fast as the speed of sequencing
machines. As a result the performance of a software based aligner is usually the bottle-
neck of a bioinformatic analysis flow.

FPGA technology is a promising candidate for accelerating this application, which
involves highly-parallel bit-oriented operations. However, irregular computation pat-
terns can affect the efficiency of FPGA accelerators. Most hardware designs overcome
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this problem by running large portions of the alignment algorithm on a CPU. For ex-
ample, in hardware designs based on Smith-Waterman local alignment, the traceback
step is either run on a CPU or ignored. As a result the performance and functionality of
these aligner designs are significantly reduced.

In this paper, we propose a hardware accelerated alignment processor based on a
backtracking FM-index algorithm. The design represents a full solution to short read
mapping, capable of both exact and approximate alignment. The design can be fully
mapped into hardware, maximising the hardware efficiency, while reducing the runtime
and costs. The major contributions of our work include:

– A hardware design for a novel sequence alignment processor based on a backtrack-
ing FM-index algorithm. Various optimisations, such as those for memory size,
memory bandwidth and latency and are discussed (Section 3).

– An implementation of the proposed design, showing how the design can be realised
on the Maxeler MAX3 board [1] (Section 4).

– Performance evaluation of the proposed design, with comparisons against some
of the fastest software solutions on multi-core processors and GPUs, as well as
hardware solutions on FPGAs (Section 5).

2 Background and Related Work

FM-Index. Our design is based on FM-index [2], a data structure that has inspired sev-
eral software tools for analysing genetic sequences such as Bowtie [3] and SOAP2 [4].
This index combines the properties of suffix array (SA) with the Burrows-Wheeler trans-
form (BWT) [5] , to provide an efficient method for finding all occurrences of a pattern
within a long reference sequence. First the BWT of the reference sequence is generated
using the following four steps:

1. Terminate the reference sequence R with a unique character: $, which has the small-
est lexicographical value.

2. Generate all rotations of R.
3. Sort the rotations lexicographically.
4. The BWT sequence is the last column of all the entries in the sorted list.

Table 1(a) illustrates an example of generating the BWT for the reference sequence
R = ACTAGCTA. The character strings preceding the ‘$’ symbol in the sorted ro-
tations column form a SA, which indicates the the starting position of each possible
suffix in R.

After generating the BWT sequence and the SA representation of the reference se-
quence, the functions c(x) and s(x, i) are defined. c(x) (frequency) is the number of
symbols in the BWT sequence that are lexicographically smaller than x and s(x, i) (oc-
currence) is the number of occurrences of the symbol x in the BWT sequence from
the 0th position to the ith position. These functions are usually implemented as lookup
tables using an array structure. Table 1(b) illustrates the c(x) and s(x, i) functions for
the reference sequence R = ACTAGCTA.
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Table 1. (a) BWT generation and SA representation of reference sequence R. (b) Values of
functions c(x) and s(x, i) functions for the reference sequence R.

(a) R = ACTAGCTA
Index Sorted Rotations: SA

0 $ACTAGCTA 8
1 A$ACTAGCT 7
2 AGCTA$ACT 3
3 ACTAGCTA$ 0
4 CTA$ACTAG 5
5 CTAGCTA$A 1
6 GCTA$ACTA 4
7 TA$ACTAGC 6
8 TAGCTA$AC 2
BWT (R) = ATT$GAACC

(b) BWT (R) = ATT$GAACC
s(x, i) x

i $ A C G T
0 0 1 0 0 0
1 0 1 0 0 1
2 0 1 0 0 2
3 1 1 0 0 2
4 1 1 0 1 2
5 1 2 0 1 2
6 1 3 0 1 2
7 1 3 1 1 2
8 1 3 2 1 2

c(x) 0 1 4 6 7

The Suffix Array (SA) interval of a pattern Q is defined as [k, l]. The pointers k and
l are respectively the smallest and largest indices in the suffix array which starts with Q.
To search for a pattern Q within a reference sequence, k and l are initialised to the first
and last indices of the suffix array table respectively. Using equations 1 and 2 the SA
interval is updated for each character in Q, moving from the last character to the first (a
backwards search).

knew = c(x) + s(x, kcurrent − 1) (1)

lnew = c(x) + s(x, lcurrent) − 1 (2)

Figure 1 shows an example of searching the pattern Q = GCT in the reference sequence
R = ACTAGCTA. First, k and l are initialised to 0 and 8 respectively. Then equations
1 and 2 are applied three times, corresponding to the number of characters in Q. After
the third iteration, k and l both become 6. Since k ≤ l, the pattern can be found in the
reference sequence. Note that if k > l for an iteration, the symbol cannot be aligned to
the reference sequence (a mismatch). The suffix array elements corresponding to each
index within the SA interval give the location of the pattern in the reference sequence.
Table 1(a) indicates that index 6 maps to position 4 in the reference sequence. Notice

R = ACTAGCTA Q = GCT

1st iteration: x = T 2nd iteration: x = C 3rd iteration: x = G
knew = c(T) + s(T, -1) knew = c(C) + s(C, 6) knew = c(G) + s(G, 3)

= 0 + 7 = 7 = 4 + 0 = 4 = 6 + 0 = 6
lnew = c(T) + s(T, 8) - 1 lnew = c(C) + s(C,8) - 1 lnew = c(G) + s(G, 5) - 1

= 2 + 7 - 1 = 8 = 4 + 2 - 1 = 5 = 6 + 1 - 1 = 6

∴ SA interval = [6, 6]

Fig. 1. Example of searching the pattern Q = GCT in the reference sequence R
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that the time complexity for finding all the matching locations is linear in length of the
pattern and independent of the length of the reference sequence.

Related Work. There are several hardware accelerators for genetic sequence analysis.
In [6], an FM-index based algorithm is proposed for FPGAs. It concludes that using a
single large table for FM-index is more area efficient than splitting into multiple smaller
tables. The performance is 1000 reads in 60.2 µs if mismatches are not allowed. In [7],
a short read mapper is developed using a direct comparison approach. A single LUT
is used to compare 2 bases from a streaming reference sequence and a stationary short
read. Using a Xilinx XC6V-LX550T FPGA, the system achieves 500000 reads in 212
seconds (i.e. 2.36K reads per second). In [8], the short read alignment is performed
by CPU and FPGA collaboratively. The indexing part is performed by CPU and then
the short reads, as well as the corresponding reference segments, are sent to the FPGA
for pairwise matching. The design achieves around 16 million reads in 110 seconds
(i.e. 145.4K reads per second) using a Xilinx XC5V-LX330 FPGA. In [9], an FPGA
based short read alignment accelerator is proposed based on indexing of the reference
sequence, with Smith-Waterman alignment performed in FPGA. The main optimisation
in this work is to reduce the size of the candidate alignment location (CAL) lookup table.
The system, and also the CAL table, is partitioned into 8 Pico M-503 boards each with
one XC6V-LX240T FPGA. This 8-FPGA system can map 50 million short reads in 34
seconds. Our work differs from previous designs since it is the first implementation of
a hardware accelerated short read aligner based on a backtracking version of the FM-
index. The proposed design represents a full solution to the short read mapping problem,
capable of efficient exact and approximate alignment.

3 Alignment Processor Design

We propose an alignment processor design with the following features:

– A backtracking version of the FM-index algorithm with a data structure that sup-
ports both forward and backward search, which is capable of exact and approximate
alignment (Section 3.1).

– A novel scheme to reduce the memory size of the FM-index occurrence array, al-
lowing it to be stored directly on the accelerator board (Section 3.2).

– A new method to reduce external memory access frequency, while maximising
memory bandwidth utilisation (Section 3.3).

– A novel scheme to process batches of short reads in parallel, maximising the
throughput of the design (Section 3.4).

3.1 Backtracking Design

As discussed in Section 2, FM-index provides a method for finding all the occurrences
of a pattern within a reference sequence. By incorporating backtracking into FM-index,
the method is extended to allow for permutations of the pattern to be matched to the
reference sequence. This allows the detection of Single Nucleotide Polymorphisms
(SNPs), which represent a mismatch in a single nucleotide between the short read and
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reference sequence. The alignment processor supports the approximate alignment of
short reads to a reference sequence within a permitted number of mismatches. This is
a depth first search, in which the algorithm attempts to align each symbol in the short
read to the reference sequence. When a symbol in the short read cannot be aligned (a
mismatch) a different symbol is attempted. Only when the number of mismatches ex-
ceeds the permitted number does the algorithm backtrack to the previous symbol and
attempts a different one. In the proposed design, only the first alignment solution (if
any) is reported. The algorithm can be revised to report more solutions at the expense
of performance.

The backtracking FM-index algorithm is extensively used in software aligners; how-
ever its use in hardware aligners is largely unexplored due to the complex mapping pro-
cess. Backtracking algorithms are typically expressed as recursive functions in software.
In hardware the circuit represents the entire computation, therefore recursive features
such as branching statements are difficult to implement. We overcome this difficulty by
using an iterative approach, where a stack is used to store the nodes in the current search
path. For the FM-index, the items that require storage in a stack are:

– The SA interval indices k and l.
– The current number of mismatches.
– The next symbol to attempt if matching fails.

For a short read of length |Q| and m permitted mismatches, the storage requirement for
the stack is:

(2 × |Q| × 32bits) + (|Q| × log2(m)bits) + (|Q| × 2bits)

For example, the storage requirement is 850 bytes when |Q| = 100 and m = 4. The
pseudo code in Figure 2 describes the stack operations for one iteration of the back-
tracking FM-index algorithm.

As discussed in Section 2, for exact pattern matching the alignment processor is run
for the same number of iterations as symbols in the short read. For approximate match-
ing, the number of iterations to run the processor for is non-trivial and depends on the
short read length, the number of mismatches and their position within the short read.
The position of the mismatches has the greatest impact on the number of iterations. For
example, if the mismatches are at the end of the short read, a large amount of the search
space must be explored, requiring a large number of iterations. The challenge here is to
reduce the number of iterations required for approximate matching, thus improving the
design performance. We address this challenge by adapting the bi-directional BWT [10]
for our purpose. This data structure allows searching in both directions (forward and
backward search) and allows switching in search direction during the alignment of a
pattern. As a result the impact of the mismatch position is minimised since the search
can proceed in both directions. In this approach the BWT of the reversed reference
sequence and the corresponding occurrence array, s[x][i], are stored, doubling the ex-
ternal memory requirement. In the proposed design, the short reads are processed in
stages. First, all the short reads are tested for exact alignment, then the unaligned reads
are tested for one mismatch using a larger number of iterations (the average number
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/ / b a c k t r a c k c o n d i t i o n
i f number o f mismatches > p e r m i t t e d mismatches
o r a l l symbols i n c u r r e n t node a t t e m p t e d

pop s t a c k ;

/ / g e t symbol f o r a l i g n m e n t
i f p r e v i o u s symbol s u c c e s s f u l l y a l i g n e d

g e t symbol from s h o r t r e a d ;
e l s e

g e t symbol from s t a c k and u p d a t e t o p e l e m e n t t o n e x t symbol ;

g e t k and l from t o p of s t a c k ;

/ / FM−i n d e x c o m p u t a t i o n ( u p d a t e k and l )
a p p l y e q u a t i o n s ( 1 ) and ( 2 )

i f symbol s u c c e s s f u l l y a l i g n e d and symbol from s t a c k
i n c r e m e n t number o f mismatches ;

i f symbol s u c c e s s f u l l y a l i g n e d
push k , l and number o f mismatches on s t a c k ;

Fig. 2. Pseudo code describing one iteration of the backtracking FM-index algorithm

of iterations required for the number of mismatches and short read length). This repro-
cessing of the unaligned reads is continued until the maximum permitted number of
mismatches is reached. Since approximately 70-80% of short reads in a typical data set
can be exactly matched to the reference sequence, and over 90% is covered by allowing
one mismatch, this method stops the processing of short read data from becoming the
bottleneck.

3.2 Memory Size Optimisation

The occurrence array, s[x][i], stores the number of occurrences of the symbol x in the
BWT sequence from the 0th position to the ith position. Since human DNA has an
alphabet of four symbols in approximately equal proportions, a 32 bit format is required
to represent the occurrences. The total size required to store the occurrence array for a
3.2G base genome is 4× 3.2G× 32bits = 51.2G bytes. This is too large for memories
in most FPGA platforms. The challenge here is to reduce the memory footprint of the
occurrence array such that a) it can fit on most FPGA board memories and b) multiple
independent copies of this array can be associated to multiple alignment processors.

We address this challenge by storing a full range value as a marker for every d el-
ements in the occurrence array. To reconstruct the occurrence value of s[x][i], the fol-
lowing components are summed: 1) the lower marker value relative to position i and 2)
the result from counting the occurrence of symbol x in the BWT sequence between the
lower marker position and i. In this approach we store the marker values and the BWT
sequence. The required memory storage is then signifcantly reduced to
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4 × 3.2G × 32bit

d
+ 3.2G × 2 bits

For example, the memory footprint is reduced to 1.6G bytes when d = 64.
This technique is used in software aligners such as SOAP2 [4], but its use in hard-

ware designs is largely unexplored. The cost of using this technique is having to count
the occurrence value directly from the BWT sequence. Counting the occurrences se-
quentially increases the latency of the design by d× l, where l is the latency of a single
add operation. For large values of d this additional latency reduces the design perfor-
mance. We can make use of the inherent parallelism of FPGAs to count the occurrences
in parallel using a binary adder tree. As a result the additional latency of the design is
reduced to log2 d × l.

Having a larger d value will further reduce the memory footprint. However, the rate
of reduction rapidly decreases as the marker array becomes smaller than the BWT se-
quence. On the other hand, the hardware resources and the latency of counting process
increase when the value of d becomes larger. The architecture allows users to trade-off
available external memory storage and available on-chip computation resources.

3.3 Memory Bandwidth Optimisation

By the nature of the FM-index algorithm, the indexing pattern to the occurrence array,
s[x][i], is random. So it is difficult to further reduce external memory access frequency
by caching. Applying the memory size optimisation, each indexing iteration requires
two 32-bit reads for the marker values and two 128-bit reads for the d-base sequence
segment. Many FPGA based accelerators place a limit on the number of connections
from the FPGA to external memory. The number of alignment processors that can pop-
ulate the FPGA is therefore limited by the number of connections to external memory
required by an alignment processor. Furthermore, many FPGA based accelerators, such
as the Maxeler MAX3 board, support burst memory access such that hundreds or thou-
sands of bits can be accessed from memory in a single read operation. Initial processor
designs extract only the desired bits, discarding the remaining bits in the burst. For
large burst sizes, this method of memory access results in poor utilisation of memory
bandwidth. The challenges here are to: a) reduce the number of connections to external
memory in order to allow a larger population of processors per FPGA and b) appropri-
ately layout the data in external memory in order to make efficient use of the available
memory bandwidth.

We address this challenge by interleaving the marker array and BWT sequence such
that the occurrence array markers and the corresponding BWT sequence segments are
grouped together in external memory. By interleaving, both the relevant marker and
corresponding BWT sequence segments can be accessed in a single memory access,
reducing memory access frequency and external memory connections by 50%. Further-
more, by adjusting the value of d, the size of interleaved segments can be optimised for
burst access. For example, by adjusting d so that one interleaved segment is exactly the
size of a burst, the memory bandwidth is fully utilised in each read operation.
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3.4 Latency Optimisation

For a human DNA sequence, the occurrence array, s[x][i], is so large that it must be
stored in memory outside the FPGA device. The access to external memory usually
increases the latency by many cycles. By the nature of FM-index, the computation for
each iteration of the algorithm is dependent on the results from the previous iteration.
This iteration interdependence, coupled with the design latency, creates a sub-optimal
pipeline. The challenge here is to minimise the effect of the latency to ensure design
performance is not limited by external memory access.

We address this challenge by interleaving the processing of multiple short reads. In
this approach, the alignment processor contains a buffer storing a batch of short reads.
For a design latency l, the buffer is able to store l short reads. In each clock cycle
a symbol from a different short read is selected and propagates through the pipeline.
After l cycles the result is available and the next symbol in the short read is processed.
As a result, the design is fully pipelined with a throughput of one aligned base per cycle.
This design achieves the equivalent of a multi-threaded program aligning multiple short
reads in parallel, but with zero thread switching overhead.

This latency optimisation comes at the cost of BRAM resources required to store
the additional short reads and stacks. By using only 2 bits to represent the four valid
symbols in the DNA sequence rather than the standard 8-bit ASCII characters, the ad-
ditional BRAM resources required for the short reads can be reduced. Furthermore, the
traffic between the host and the FPGA accelerator is significantly reduced.

4 Design Architecture

Our design architecture consists of an FPGA populated with alignment processors, con-
nected to the host processor through a software driver. Before alignment starts, the
software driver transfers the BWT sequence, s[x][i] and c[x], to the accelerator board,
where they are stored using on-chip BRAM or external DRAM. Short reads are then
streamed to the alignment processors in batches given by the design latency. Each batch
of short reads is processed for a number of iterations determined by the permitted num-
ber of mismatches and the short read length. The alignment results for each short read,
including the SA interval, the cost and a string representation of the alignment are re-
ported to the software driver. This architecture is illustrated in Figure 3.

Software Driver. The alignment processor design can be fully mapped to hardware,
therefore the software driver has a minimal role in the design architecture. The ref-
erence sequence changes infrequently, therefore we assume that the BWT sequence,
s[x][i] and c[x] are generated in advance. After transferring the data structures to the ac-
celerator board and configuring the number of mismatches permitted, the short reads are
streamed to the alignment processors populating the FPGA. The software driver then
pauses until all the accelerator output is received. If a short read can be matched to the
reference sequence the SA interval is mapped to positions in the reference sequence us-
ing a simple lookup table. This step can be performed in hardware, however we choose
to perform it using a CPU in order to reduce the number of memory controllers re-
quired by each alignment processor. If a short read is unaligned it is streamed again to
the alignment processors for testing with a higher number of permitted mismatches.
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Fig. 3. Design architecture

Hardware Circuit. The FPGA is populated with alignment processors based on the
backtracking FM-index algorithm described in Section 3.1. The challenge of designing
the hardware circuit is mapping the iterative backtracking algorithm into hardware.

We address this challenge by implementing the stack using an array structure. In this
approach, an array is used to hold the contents of the stack and the top of the stack is
tracked using a pointer. The four stack items are stored in separate arrays using on chip
BRAM. To implement the latency optimisation presented in Section 3.4, each array
must store the stacks for l short reads, where l is the design latency. In our implemen-
tation the design latency is 58 cycles, therefore the storage requirement for the stacks
is 50K bytes per processor. The pointer tracking the top element of the stacks (top), is
implemented as a circular buffer using shift registers, so that its value propagates into
the subsequent iteration. To push an item on the stack, top is incremented and to pop
the stack top is decremented.

Using the memory size optimisation presented in Section 3.2, the occurrence array is
stored in external memory with the marker values for every 64 bases. A binary tree adder
is implemented to minimise the additional design latency from counting the occurrence
directly from the BWT sequence. Without this optimisation the performance of the
design would be reduced, since the BRAM resources required to store the additional
short reads and stacks would limit the number of alignment processors able to populate
the FPGA.

We implement the FM-index circuit developed in [6] for our design. The SA interval,
cost and string representation of the alignment are output to the software driver when one
of the following conditions is true: 1) the processor has run for the number of iterations
determined by the number of mismatches permitted, 2) the entire search space has been
explored and no alignment is found, or 3) an alignment solution is found. After each
short read in the batch has been processed for the appropriate number of iterations, a
new batch of short reads is streamed from the software driver. When all short reads have
been processed, the hardware execution halts, returning control to the software driver.
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5 Evaluation

In this work, we use the Human Genome version 18 [11] and short reads sampled di-
rectly from the reference sequence. We insert noise in random positions in the short
reads to simulate mismatches between the short read and reference sequence. We imple-
ment the proposed design on the Maxeler MaxWorkstation containing a MAX3 dataflow
engine (DFE). The MAX3 contains a Xilinx Virtex-6 SX475T FPGA and 24GB of fast
DRAM. The system can also support up to 15 independent memory controllers. In
this platform a design is described using the MaxJ language, an extension of the Java
language. The MaxCompiler then maps the design into an FPGA implementation and
enables its use from a host application. Table 2 shows the resource usage for the pro-
posed design with three alignment processors implemented in the MaxJ language. The
implementation supports up to 100 bases for a single short read.

Table 2. Resource usage

Design Registers LUTs BRAM DSP

Proposed Design 20% 25% 53% 0%

The resource usage values indicate that BRAM is the critical resource in the proposed
design. The maximum number of alignment processors able to populate the FPGA is
seven, since a) each alignment processor uses two memory controllers and the platform
supports a maximum of 15 memory controllers per FPGA and b) the resource usage
values for a single alignment processor, including the resources for place and route,
indicate that only 7 alignment processors can fit on the FPGA, due to the large number
of BRAM resources used.

Since different packages report their performance using different data sets, it is diffi-
cult to directly compare designs using the raw results. To better assess the performance
of various designs, we define the bases aligned per second (baps) value as a normalised
performance merit.

baps = read size × read count/process time

In Table 3 we compare the performance of our design implemented on the MAX3 board
with existing software and hardware designs. In all our testing we process short reads
with 76 bases and allow up to 2 mismatches between the short read and reference se-
quence.

The baps values in Table 3 indicate that the proposed design is faster than current
software aligners. It is over 7 times faster than BWA on an Intel X5650 CPU and 3.5
times faster than SOAP3 on an NVDIA GTX 580 GPU. To make a fair comparison to
the design in [9], we estimate the performance of the proposed design implemented
on theMaxeler MPC-X Series rackmount system (8 FPGA devices). The baps values in
Table 3 indicate that the proposed design has a comparable performance to the design
in [9], even with fewer cores and a lower clock frequency. With further work into the
placement of the alignment processors on the FPGA, we could reach the upper bound
population and exceed the performance of the design in [9].
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Table 3. Aligner performance comparison

Design Platform Clock freq Devices Cores baps
(MHz) (millions)

Bowtie [3] Intel X5650 2670 1 20 1.04
BWA [12] Intel X5650 2670 1 20 1.76
SOAP2 [4] Intel Xeon X5650 2670 1 20 1.59

SOAP3 [13] NVIDIA GTX 580 900 1 512 3.84
Proposed Design on MaxWorkstation Xilinx Virtex-6 SX475T 150 1 3 13.5

Design in [9] Xilinx Virtex-6 LX240T 250 8 8 112
Proposed Design on MPC-X (estimate) Xilinx Virtex-6 SX475T 150 8 3 108

The energy consumption of our design is estimated using the XPower utility offered
by Xilinx. It allows power analysis and estimations based on FPGA resource usage and
configuration. In Table 4 the energy consumption of the proposed design is compared
with existing software and hardware designs when mapping 50 million short reads.

Table 4. Energy consumption comparison

Design/Platform Energy (W-hr)

Bowtie 19
BWA 11

SOAP2 13
SOAP3 6.3

Design in [9] 5.0
Proposed Design on MaxWorkstation (3 cores) 0.078

The values in Table 4 indicate that the proposed design consumes significantly less
energy than current software aligners. This is a result of the system only drawing a
small amount of power (7W) coupled with a much shorter runtime.

In addition to runtime and energy efficiency, another important attribute of an aligner
is sensitivity - the percentage of short reads able to be successfully mapped to the refer-
ence sequence.

For up to two mismatches our design has a comparable sensitivity (∼100%) to cur-
rent software aligners. For short reads with more than two mismatches, the sensitivity
of the software aligners sharply decreases (<20%). This is a result of the aligner being
unable to explore the large search space within the cut off time.

Since the number of iterations for which the alignment processors are run for is flex-
ible and the performance of the proposed design is better than the software aligners, we
are able to process short reads for a larger number of iterations and report better sensitiv-
ities than the software aligners. To estimate the appropriate number of iterations to run
the approximate matching for, we measure the average number of iterations required
to align short reads of a specific length with a specific number of randomly distributed
mismatches. Adjustments can be made according to the desired sensitivity.

6 Conclusion

In this work we demonstrate that an alignment processor based on the backtracking FM-
Index algorithm can achieve high throughput for short read alignment applications. The
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design is able to map short reads to a full genome faster than current software aligners,
without compromising the alignment sensitivity. Furthermore, it consumes significantly
less power than software aligners, making it a feasible alternative to computational
clusters. Current and future research includes further optimisation of our approach, and
its application in clinical procedures.
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Abstract. Photon mapping is a kind of rendering techniques which en-
ables depicting complicated light concentrations for 3D graphics. Search-
ing kd-tree of photons with k-near neighbor search (k-NN) requires a
large amount of computations. As k-NN search includes high degree of
parallelism, the operation can be accelerated by GPU and recent multi-
core microprocessors. However, memory access bottleneck will limit their
computation speed. Here, as an alternative approach, an FPGA imple-
mentation of k-NN search operation in kd-tree is proposed. In the pro-
posed design, we maximized the effective throughput of the block RAM
by connecting multiple Query Modules to both ports of RAM. Further-
more, an implementation of the discovery process of the max distance
which is not depending on the number of Estimate-Photons is proposed.
Through the implementation on Spartan6, Virtex6 and Virtex7, it ap-
pears that 26 fundamental modules can be mounted on Virtex7. As a
result, the proposed module achieved the throughput of approximately
282 times as that of software execution at maximum.

Keywords: FPGA, Photon Mapping, kd-tree, Acceleration, k-NN.

1 Introduction

Photon mapping is a famous computer graphics methods proposed by Jensen as
an extension of the ray-tracing[1] to represent complex light environments. Since
the method requires large amount of computation which includes high degree of
parallelism, various acceleration methods have been researched[2][3][4][5].

Since the photon mapping repeatedly executes K-nearest neighbor search(k-
NN) by the number of pixels, the time to generate a 3D image is much influ-
enced by the throughput of k-NN. Generally the computational cost of k-NN is
reduced by a space-partitioning data structure called kd-tree[6] which organizes
points in a k-dimensional space. The kd-tree is adopted by various applications
including k-NN such as intersection computation in ray-tracing [7] [8], cluster-
ing images[9] [10], searching information [11], and machine learning[12]. Even

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 25–36, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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though iterations of k-NN with kd-tree can be executed in parallel because they
are independent of each other, frequency of memory access is increased to obtain
the data corresponding to the node of kd-tree. The acceleration techniques for
multi-core microprocessors and graphics processors will be suppressed by the ca-
pacity of cache memory which is generally smaller than the data size of kd-tree.
On the other hand, dedicated hardware by FPGA may be a useful solution by
following two reasons; (1) parallelized and pipelined memory architecture hides
the memory access latency by a lot of the distributed small memories and (2)
flexible design in response to the target application with various parameters.

In this paper, we propose a k-NN implementation using an FPGA, and eval-
uate that performance with some FPGA families. The rest of this paper is orga-
nized as follows. Section 2 overviews the photon mapping and kd-tree. Section 3
discusses relationship between the computation time of k-NN with kd-tree and
the parameters of searching. Section 4 is about design and implementation of the
k-NN for FPGA. Section 5 describes performance evaluation. Finally, Section 6
summarizes the paper with conclusion.

2 Photon Mapping and Kd-tree

2.1 Photon Mapping Algorithm

Photon mapping is a technique to generate an image which can be view the 3D
models from a viewpoint. Even though general ray-tracing method traces only
rays from the viewpoint, photon mapping adds the tracing photons from light
source. First, a predefined number of photons are emitted in random directions
from a light source with two data: position and light energy. The emitted photons
reach a point in the space after repeating reflection, refraction and diffusion in
several times. The reached point is stored in a database called photon map. kd-
tree is used as a data structure for photon map. Second, rays are emitted in the
space from a viewpoint. Similar to the photon, each emitted ray reaches a point
in the space called query. The image is generated by searching the photons near
the query to estimate color by density of photons and feature of the model. In
the rest of paper, the emitted photon is called Emit-Photon, and the photon
using estimation is called Estimate-Photon.

2.2 Kd-tree Algorithm

Kd-tree is a space-partitioning data structure for managing points in a k
-dimensional space. Space division is expressed by adding an axis information to
each node of tree. Fig. 1 shows how the photons distributed on the xy plane are
stored into the tree structure. The photons are numbered 0-6 from left to right.
KD-tree is built through circulating building a node of a binary tree based on
the axis value. First in Fig. 1, photon 3 is selected to divide the space with left
and right based on its value of axis x and stored as the root node of the kd-tree.
Similarly, photon 1 is selected in the left space, and left subtree is built based
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on its value of axis y. In the right space, photon 6 is selected, and left subtree is
rebuilt based on its value of axis x. By these steps, photon(0,2,4,5) become leaf
nodes, and manage finer divided spaces.

In photon mapping, photons are aggregated within a certain range of the
query by traversing kd-tree from the root node to a leaf node as following steps;

1. Photon p is obtained from kd-tree. At the start of travercing, the root node
is obtained.

2. Absolute distance D1 between p and query q is calculated.
3. If D1 is within a radius R, the p and D1 are stored into a list of Estimate-

Photons. Then, find the maximum value D1max from the list. If the list is
full and D1 is not larger than D1max, the photon with D1max is overwritten
by p and recalculate D1max.

4. If the list is full, R is updated by D1max.
5. The distance D2 between p and q on axis recorded in p is calculated.
6. If D2 is positive, the right child of p is adopted for the next traversal. Oth-

erwise, the left child of p will be adopted.
7. Repeating steps from 1. to 5. until p reaches a leaf node.

While R is initialized with a large value at the start of traversing, it is updated
with D1max when the list of Estimate-Photon becomes full to avoid unnecessary
search.

After reaching a leaf node, kd-tree is traversed again to obtain whether there
is a photon closer to the query through following steps;

1. Photon P , which is the parent node of the current node, is extracted from
kd-tree. At start of traversing, the current node is the leaf node.

2. Distance D3 between P and q with axis recorded in P is calculated.
3. If D3 is within R, traverse kd-tree to unsearched direction until leaf node.
4. Repeat steps from 1. to 3. until reaching the root node.

By these two traversing steps sequentially, the list of Estimate-Photon is
obtained.
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Fig. 2. Processing results versus # of query
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Fig. 3. Processing results versus # of Estimate-Photons and breakdown of processing
time of k-NN

3 Profiling of K-NN Search Using Kd-tree

We investigate relationship between processing times and some parameters for k-
NN using kd-tree, and breakdown of processing time of k-NN. Three parameters,
the number of queries, Emit-photons, and Estimate-photons were selected. The
program of kd-tree was written in C, and compiled with option -O3. Table 1
shows the profiling setup. Fig. 2 shows the processing results versus the number



An FPGA Acceleration for the Kd-tree Search in Photon Mapping 29

of queries. In Fig. 2, the number of Emit-Photons is fixed to be 0.1M, and the
number of Estimate-Photons are changed in three patterns. In Fig. 2, the bar
chart shows processing time while the line chart shows the average number of
processed photons per query. The bar chart shows that the processing time is
directly proportional to the number of queries in each pattern. The line chart
shows that the average number of processed photons almost keeps constant with
some variant. Fig. 3 shows the processing results versus the number of Estimate-
Photons and breakdown of processing time of k-NN. In Fig. 3, the number of
queries is fixed to be 0.1M, and the number of Emit-Photons are changed in
three patterns. In Fig. 3, the bar chart shows processing time while the line
chart shows the average number of processed photons per query. Moreover, the
stacked column chart shows breakdown of processing time of k-NN. In Fig. 3,
k-NN is classified into the four processes as following.

CalcAbsDistance
Calculate the distance between query and photon.

CalcAxisDistance
Calculate the distance between query and photon on axis.

DiscoverMaxDistance
Discovery max distance in the distance list.

ExtractPhoton
Extract the photon from the memory.

The bar chart and line chart show that the processing results are greatly changed
when the number of Estimate-Photons increases. On the other hand, these chart
also show that the processing results are not so changed, while the number of
Emit-Photons increases. Furthermore, the stacked column chart shows that most
of the processing time is occupied by the discovery process of max distance.

From these profiling results, it is summarized that the parameter which gives
the largest effect to the processing time is the number of Estimate-Photons. In
k-NN with kd-tree, after finding the required number of Estimate-Photons, the
number of processing photons can be reduced by shortening the search radius.
That is, if the number of Estimate-Photons is enough small, most of kd-tree
is pruned even with a large number of Emit-Photons, and processed time is
not largely increased. On the other hand, if the number of Estimate-Photons is
large, the search radius can not be easily shortened resulting in a large processing
time. Moreover, the processing time of discovery process of max distance will
be increased by increasing the number of Estimate-Photons. In addition, it is

Table 1. Profiling setup

CPU Core i7 2600K (3.4GHz)

Memory 8GB

OS Ubuntu 11.04 x86 64

CPU code Compiler gcc 4.4.5

Language C++
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summarized that the most of processing time of k-NN is discovery process of
max distance. In discovery process of max distance, time complexity increases
by O(N) where let the number of Estimate-Photons be N . On the other hand,
time complexity of the others processes is O(1) regardless of the parameters.

4 k-NN with kd-tree on an FPGA

4.1 Policies of Implementation

Our target is implementing kd-tree with fundamental k-NN functions on an
FPGA. Although our direct target application is the photon mapping, it can
be used in other applications. Since the FPGA is used as an off-loading engine,
the proposed hardware only manage the k-NN function, and other functions are
computed in a host computer connected with the FPGA.

In k-NN with kd-tree, since it is necessary to obtain data from the memory
frequently, throughput will be reduced if hardware is implemented to execute
memory access and search operations sequentially. Here, the throughput is mea-
sured by the number of processed photons per unit time. In order to improve
the throughput, maximizing memory access bandwidth is needed. For doing it,
the search operations are pipelined, and multiple queries are processed in paral-
lel. In addition, for the discovery process of maximum distance which is easy to
increase time complexity, we propose a sophisticated method for storing data in
the memory to reduce the time complexity.

4.2 Implementation of kd-tree on an FPGA

Fig. 4 shows an implementation of kd-tree on an FPGA. The photon data is
stored into embedded memory (Dualport BlockRAM) on the FPGA. For storing
RAM, the right child of the photon, stored in the address i is stored in the address
i× 2, and the left child of it is stored in the address i× 2 + 1. The bit width to
access kd-tree is fixed at 10 corresponding to the height of the kd-tree as shown
in Fig. 4. By this way of storing, we can judge whether the obtained photon is
a leaf node by checking the MSB of the address accessed.
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Here, the space of 1000× 1000× 1000 is used as the space emitted photons,
and so the coordinate information is setted 30 bits. Added with two bits for axis
information, 32 bits data is attached to a query. In this experimental implemen-
tation, unit size of kd-tree is a 32× 1024 BlockRAM.

4.3 Fundamental Structure

Fig. 5 shows a fundamental structure minimum functions of k-NN on an FPGA.
This circuit is mainly consisting of Query Module, Tree Module, and Traversal
Module. The following shows roles of these modules.

Query Module
Query Module is a controller module that manages the process of one query.
It has a query data, a Estimate-Photon list, a distance list and traversal
parameters. Estimate-Photon list has the address of Estimate-Photons, and
the distance list has the distance between photon and query. Each has the
depth corresponding to the number of Estimate-Photons.

Tree Module
Tree Module is a module with BlockRAM stored kd-tree. As an initial op-
eration, it receives photon data and builds kd-tree on BlockRAM.

Traversal Module
Traversal Module is a module that traversals kd-tree based on photon, query,
and traversal parameters. The traversal is executed through the internal
module, Axis Dist Module, Next Index Module, and Dist Module. Axis Dist
Module calculates distance between photon and query on axis. Next Index
Module calculates the next traversal parameters including the next pho-
ton address from the current parameters and a result of Axis Dist Module.
Dist Module calculates the distance between absolute distance and judges
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whether the processed photon is Estimate-Photon by comparing the absolute
distance with the search radius.

The following shows how traversal is done in the structure.

1. SendRequest: Query Module sends the read address and the read request
(Read Address) of photon to Tree Module on a fixed clock cycle. At the
same time, it sends the traversal parameters (Query, Read Address, Search
Radius, Traversal Direction) to Traversal Module.

2. ObtainPhoton: When Tree Module receives the request from Query Module,
it sends the photon data to Traversal Module on the next clock cycle.

3. Traversal: Traversal Module starts the traversal using received parameters.
4. SendAnswer: The traversal results (Next Photon Address, Next Traversal

Direction, Estimate Flag, Distance) are sent to Query Module.
5. PrepareTraversal: Estimate-Photon list and distance list are updated and the

next traversal parameters are set in Query Module. If the processed photon
is Estimate-Photon, the photon address and the distance will be stored in
the list of each. If the list is full, the maximum value of distance list is
overwritten by received result. Then, the maximum value of the distance list
is calculated, and set for using the next search radius. At the same time, the
index of maximum distance is also calculated and saved to use overwriting
maximum distance by the next traversal result. After all these processes are
finished, the next traversal is started from step 1.

By repeating these steps, traversal of kd-tree for a query is done. It sends
Estimate-Photon Addresses from the list after all of search about one query,
and starts the search for a new query.

4.4 Acceleration of Discovery Process of Maximum Distance

In the discovery process of max in Query Module, it is needed to compare dis-
tances for the number of Estimate-Photons. In photon mapping, time complexity
of this process easily increases, since the number of Estimate-Photons easily in-
creases. For instance, for generating high-quality images, more than 50 Estimate-
Photons are required. On the other hand, the bit width of distance is not radically
increased. For example, if the space size becomes from 1000 × 1000 × 1000 to
10000 × 10000 × 10000, bit width of distance will increase 12 bits to 15 bits.
Thus, we try to discover maximum distance by filtering bit sequence of the same
digit of each distance instead of comparing each distances. By this method, the
maximum distance and its index can be obtained in the number of the steps
same as the bit width of the distance. Fig. 6 shows this method. Through the
following steps, the maximum distance and its index are obtained.

1. RotateMemory: memory is rotated by 90 degrees, and each bit of distance
is stored in each stage of memory. In this way, input distance operation re-
quires clock cycles corresponding to the number of bit width of the distance,
however, output bit sequence operation can be done on one clock cycle.
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2. UpdateFilter: The bitwise AND of the Extraction Filter and a bit sequence
obtained from N stage of the memory is done. In first operation, N is the
top of memory. Extraction Filter is initialized with 1 for each bit. If all bits
of a result is not 0, Extraction Filter is updated with the result. Otherwise,
it is not updated.

3. CalcMaxBit: The bitwise OR of the result of step 2 is calculated and the
result is set to a N digit of maximum distance.

4. Increment N , and from step 2 to 3 are repeated until bottom of memory is
calculated.

As a result of these process, the digit of Extraction Filter, the value of which is
one, is the position which stores maximum distance in the memory. In Fig. 6,
the maximum value is stored in the third from the left in the memory. Fur-
thermore, by step 3, we can obtain the maximum distance during filter update.
It means that discovery maximum distance can be done regardless the number
of Estimate-Photons. When DualPort BlockRAM is used, these processes are
completed in 13 clock cycles.

4.5 Maximizing Memory Access by Multiple Connections Query
Module

In the hardware shown in Fig. 5, memory storing kd-tree is not frequently ac-
cessed. For example, in the waiting time of Query Module sending results, it is
not accessed at all. Thus, we connect multiple Query Modules to Tree Module
so that the photon can be read out continuously. Requests to Tree Module, ac-
cess with Traversal Module and output search result are assigned to each Query
Module per each clock cycle via a multiplexer. By making the number of Query
Modules same as the clock cycles of request interval of Query Module, the blank
of memory access can be filled. As a result of implementation, thirteen clock cy-
cles are needed for discovery maximum distance, five cycles for Traversal Module,
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and a cycle for multiplexor assignment, that is twenty cycles are needed in total.
The memory (DualPort BlockRAM) can manage two input/output in a clock
cycle. Thus, we connect a module which is consisting of twenty Query Modules
and one Traversal Module to each port of the memory. Fig. 7 shows this struc-
ture. By using this structure, two photons can be obtained and computed per a
clock cycle. This module is used as a fundamental structure of k-NN.

5 Evaluation

Here, evaluation results of the implementation are shown. Although the imple-
mented module is designed for the photon mapping, it can be applied to the other
applications by fitting the size or width of the tree. For using various applica-
tions, we tried to various family of FPGAs with different size. Three different size

Table 2. Resource usage of basic module in FPGA series

slice Registers slice LUTs BlockRAM Op. Freq.
Used Available Used Available Used Available [MHz]

Virtex7 8719(1%) 866400 13013(3%) 433200 42(2%) 1470 292.654

Virtex6 8713(1%) 595200 11913(4%) 297600 42(3%) 1064 284.131

Spartan6 8823(4%) 184304 12386(13%) 92152 82(30%) 268 155.885

Table 3. Resource usage of 26 basic modules in Virtex7

slice Registers slice LUTs BlockRAM Op. Freq.
Used Available Used Available Used Available [MHz]

Virtex7(×26) 217820(26%) 866400 375897(86%) 433200 1050(71%) 1470 260.865
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FPGAs, Virtex7(XC7VX550T), Virtex6(xc6vsx475t), and Spartan6(xc6vslx150)
are selected, and resource usage and maximum operating frequency are mea-
sured. FPGAs with a large size of memory are selected in each FPGA series.
Table 2 shows the results. All modules are implemented in verilog-HDL, and
simulated with NC-verilog 8.10. Designs are synthesized and place&routed by
using Xilinx ISE 13.4.

In Table 2, the usage of slice LUTs and BlockRAM is high in all devices. In
particular, since Spartan6 has only a small amount of BlockRAM, its usage be-
comes high. Since only tree modules can be implemented on Spartan6, and clock
frequency is not so high (155MHz), high degree of acceleration is not expected.
On the other hand, since Virtex7 and Virtex6 have a lot of resources, problems
with a large size node can be implemented. Twenty six basic modules can be
implemented on Virtex7. This system allows to obtain and calculate 52 photons
per a clock cycle. Table 3 shows the synthesis results. The throughput, which is
the number of photons that can be calculated per clock, is 13.564G[OPS].

We compared this result with the throughput of a software implementation
of k-NN with kd-tree. The number of Emit-Photons is 1023, and the number
of Estimate-Photons is 10, and the time required process to the 1M queries are
evaluated. The experimental setup is shown in Table 1. The program is described
in C language and complied with the option -O3. As a result, the processing time
is 1.63 seconds, the number of processed photons is 78.568M, and the throughput
is 48M[OPS]. It appears that the proposed module provides the throughput of
approximately 282 times as the software execution at maximum.

6 Conclusion and Future Work

An acceleration method of k-NN with kd-tree in photon mapping on an FPGA
is proposed. Prior to the design on an FPGA, the computation time is profiled
and influence of parameters is analyzed As a result, in k-NN with kd-tree in
photon mapping, it appears that the number of Estimate-Photons gives the
largest impact to the processing time, and a large part of processing time is
occupied by the discovery process of max distance.

In the proposed design, we maximized the effective throughput of the block
RAM by connecting multiple Query Modules to both ports of RAM. Further-
more, an implementation of the discovery process of the max distance which
is not depending on the number of Estimate-Photons is proposed. Through the
implementation on Spartan6, Virtex6 and Virtex7, it appears that 26 fundamen-
tal modules can be implemented on Virtex7. As a result, the proposed module
achieved the throughput of approximately 282 times as that of software execu-
tion at maximum.

In this research, as experimental implementation, we configure the node size
to 1024. However, many nodes are needed in the actual photon mapping. There-
fore, in future work, we should investigate the circuit performance of kd-tree with
more large size. At that time, it will be considered that the memory resources
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will be wasted by the concentrating access to the part of the large kd-tree. Thus,
we will consider that multiplexing nodes which access it are concentrated, or
placed in split trees.
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Abstract. Cryptographic algorithms play an important role in a broad
range of applications. Block cipher algorithms represent a popular choice
in many products and applications, where data needs to be handled in
a secure way. The wide application of the Data Encryption Standard
(DES) or its successor the Advanced Encryption Standard (AES) show
evidence for the adequacy of these ciphers, which is based on their se-
curity combined with a high data throughput. There are many studies
analysing and comparing different attributes of block cipher algorithms,
like implementation efficiency or security against attacks. The main con-
tribution of this work is the evaluation of the SEU resilience of different
algorithms by applying a SEU injection flow on FPGA implementations
of three popular block ciphers.

1 Introduction

Since the introduction of DES in 1977, data encryption was beginning to play
an increasing role in many different electronic applications. Whenever critical
data, like e.g. the readout of an electronic heat cost allocator or identification
data on an RFID card, are to be transmitted on an insecure channel encryption
needs to be considered. But also other applications like disc encryption or even
protected firmware updates require symmetrical data encryption.

Reconfigurable devices such as of FPGAs represent a very suitable choice for
the implementation of solutions in small- to medium-volume productions. It pro-
vides access to the benefits of modern nano scale production processes without
creating high non-recurring engineering costs. In addition to that, FPGAs pro-
vide a short time-to-marked and the possibility of in the field reconfiguration.
The reconfigurable nature of these devices makes it possible to react on protocol
changes or to correct errors in the initial design after product shipping.

Together with these advantages, SRAM based FPGAs have the disadvantage
of an increased SEU susceptibility. A SEU can be caused by high energy particles
entering the silicon substrate. Different sources of these high energy particles are
known [1]. One possible source of particles is cosmic radiation. But also pack-
aging material impurities like uranium and thorium can emit alpha particles as
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they decay. A third source can be low-energy particles interacting with insulator
materials on the substrate.

If a SEU occurs in the configuration memory of the FPGA, an unexpected
change in the configurable logic or routing can be induced. This can change the
behaviour of the application implemented on the device. When implementing
cryptographic algorithms on FPGA the effects of SEUs need to be considered.
One way of doing this is identifying the Failure In Time (FIT) rate or the directly
correlated Mean Time Between Failure (MTBF), which is facilitated for Xilinx
FPGA using the data from the Rosetta Experiment [2]. Within the Rosetta
Experiment groups of the same FPGA are tested on the occurrence of SEU in
order to provide the expected FIT rate per megabyte of configuration memory.
For getting the devices FIT rate this value from the Rosetta Experiment is typi-
cally multiplied by the configuration memory size, or for a more exact evaluation
the number of critical configuration bits. The number of critical configuration
bits can be found by multiplying the device size with the percentage of critical
bits of the given application, which was determined e.g. by an SEU injection
scheme.

The work is structured as follows: Section 2 introduces the three block ciphers
on which the SEU resilience evaluation is executed. In the following Section 3
the method of SEU injection is summarized. The different implementations of
the block ciphers and their attributes are presented in Section 4 followed by the
SEU resilience results in Section 5 and a final conclusion.

2 Tested Block Ciphers

2.1 DES – Data Encryption Standard

The Data Encryption Standard was developed in response to a call for proposals
issued by the National Bureau of Standards (NBS), which is the former name
of the National Institute of Standards and Technology (NIST). This call for
proposals was based on the need of encryption for the US governments sensitive
information. Winner of this call for proposals was an enhanced version of the
IBM cipher Lucifer developed by Horst Feistel, after whom the whole subclass
of Feistel ciphers are named today. In the year 1977 DES was published as FIPS
PUB 46-2, with the latest version being FIPS PUB 46-3 [3].

DES consists of 16 rounds of permutations and substitutions. The blocksize
and the keysize are 64 bits, whereas the effective keysize is reduced to 56 bits
because in each byte of the key a bit is used as parity. Each of the 16 cipher
rounds consists of the following steps: expansion, key mixing, substitution and
permutation. The substitution step uses eight s-boxes to produce a non-linear
function, which is the basis for the security of DES.

Because of its keysize of effectively only 56 bit, DES could be broken in 1997
by a brute force attack using multiple computers [4], later on also by special
architectures like the FPGA-based COPACOBANA [5] which is able to break
DES within days.
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2.2 AES – Advanced Encryption Standard

Due to the short key length of DES together with the continuous advances in
computation performance a need emerged to replace DES by a new algorithm
providing a bigger key length and higher security. A call for proposals was issued
in 1997 by the National Institute of Standards and Technology in order of finding
the AES, which was the name selected for the successor of DES. Out of fifteen
received proposals a subset of the Rijndael algorithm won the competition. This
decision was based on the fact that it fulfilled best the given requirements of
NIST, such as security, cost of implementation in terms of silicon area for hard-
ware implementations and calculation time for software implementations.

AES has a single blocksize of 128 bit and a keysize of either 128, 192 or 256
bit, whereas Rijndael allows both the key- and the blocksize to be a multiple
of 32bit which lays between 128 and 256 bit. The algorithm consists of 10-14
rounds depending on the keysize. A normal round consists of four steps, namely
SubBytes, ShiftRows, MixColumns and AddRoundKey. All these actions operate
on the so-called state, a 4 by 4 matrix of 8 bit values, which represents the block
data. The SubBytes step uses a s-box as a lookup table for substituting the state
bytes providing the non-linearity of AES. The complete algorithm is described
in FIPS PUB 197 [6]

AES is used in a wide range of applications such as wireless LAN, voice over
IP, disc encryption and file compression.

2.3 Twofish

The algorithm Twofish also participated in the Advanced Encryption Standard
contest and it reached the second round of the best five proposals. Twofish has a
blocksize of 128 bit and a keysize of 128, 192 or 256 bit. In contrast to Rijndael
it uses the feistel structure, which is also used by DES. The algorithm uses
four s-boxes and executes 16 rounds of encryption. The complete algorithm is
described in [7].

Twofish is used in a variety of disc encryption programs as well as in the GNU
Privacy Guard.

3 SEU Test Flow

The desired result of a SEU resilience study based on SEU injection is an esti-
mation on the percentage of critical bits, where a critical bit is one bit of the
FPGAs configuration memory, which when flipped alters the behavior of the de-
sign implemented on the FPGA. This percentage of critical bits can be converted
to the λ parameter giving the number of expected errors in one billion hours of
operation or to the Mean Time Between Failure (MTBF) using the following
equations:

λ = deviceSize ∗ ratiocritical ∗RTSER (1)

MTBF =
109

λ ∗ 365.24 ∗ 24 (2)
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Fig. 1. SEU injection and test-flow

The factor RTSER stands for Real Time Soft Error Rate as described in [2].
Due to the big device sizes and the size of the bitstreams it is not feasible to

test all bits of the configuration memory. Instead a subset of randomly chosen
bits is tested and the percentage of critical bits within this subset is assumed to
be equal to the percentage of critical bits on the whole device.

For SEU resilience evaluation the test flow from [8] is used together with the
adoptions made in [9]. Figure 1 summarizes this flow.

The flow consists of five sub-steps and the execution of the five steps is called
testrun. A testrun returns the result for one bit if it is critical or not.

3.1 Error Injection and Device Programming

The first two steps of the flow are used for determining the bit position, which
is to be tested and for setting up the FPGA for the behavioural test.

For injection of an SEU or a MBU into FPGA configuration memory for
emulation of SEU resilience it is necessary to analyse the bitstream of the appli-
cation of interest to a certain degree. Within this package oriented file consisting
of headers and payload only bits of the payload designated to the FDRI regis-
ter [10] may be altered, because this payload represents the data written to the
configuration SRAM. It also needs to be ensured that CRC checking is disabled
when generating the initial bitstream to avoid CRC errors when programming
the device with a modified bitstream.

After injection of a single- or multiple errors into the initial design(-bitstream),
the resulting modified configuration file gets programmed using the IMPACT
[11] programming tool. This tool features a command line interface allowing an
efficient automation of this step in the flow.
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Fig. 2. Chaining of blockcipher modules

3.2 Behaviour Validation

Succeeding the programming of the SEU or MBU affected bitstream the be-
haviour of the implemented design needs to be validated in order to categorize
the injected error bit positions as critical or uncritical in step (3) and (4) of
Figure 1.

Within this work a UART connection for communication with the design,
namely the sending of a plaintext for the cipher modules and the receiving of
the encrypted results is used. Although UART does not allow for very high
communication speeds it is a simple communication interface requiring only a
low amount of logic for its implementation. These small resource requirements
are highly beneficial for SEU resilience testing, because like this it is unlikely
that injected errors will affect the UART part of the design.

For each plaintext sent to the block cipher modules the correct output can
either be determined by using a software implementation of the same algorithm,
or by executing a so-called golden run, where the device gets programmed with
an unmodified bitstream. The data gained for the golden run serves as a reference
for determining correct device behaviour.

The validation routine consists of eight complete calculations of the cipher
chain. Eight different input vectors are supplied via UART and the eight corre-
sponding calculation results get checked against the golden run.

Sending a single input vector with subsequent testing of the chains results,
would not be a sufficient test, because like this the coverage of the s-boxes would
not be sufficient. For example an 8 by 8 s-box contains 256 different values, but
it gets accessed only 16 times in one encryption for the cases of the Twofish
implementation. Using multiple input vectors for testing as done in this work
tests the design to a higher degree. This higher test coverage causes a better
detection of critical bits.

3.3 Flow Control

Gaining significant SEU resilience data requires testing of a large number of bit
positions, which feeds the need of a completely automatic test flow control. In
this work a custom set of PHP scripts was developed for the flow control, the
error injection, the control of the device programming and the result logging.
The UART communication was implemented in C++ as well as the checking
against the golden run.
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Table 1. Implementation results on Xilinx XC5VFX70T

DES AES Twofish

Blocksize/Keysize [bit] 64/64 128/128 128/128

Chain size n [nr. of cipher modules] 91 22 30

Virtex-5 Slices 11008 (98%) 10976 (98%) 11187 (99%)

Virtex-5 LUTs 38546 (86%) 40658 (90%) 40297 (89%)

Virtex-5 Registers 18172 (40%) 17490 (39%) 21275 (47%)

cycles per encryption 16 16 73

fmax for single∗ [MHz] 256 318 91

Data throughput per module∗ [Mbit/s] 1024 2544 160

Accumulated data throughput∗∗ [Gbit/s] 93.2 56.0 4.8

4 Implementation Results

This work uses the Virtex-5 FPGA XC5VFX70T mounted on the Xilinx Evalu-
ation Platform ML507. Since each of the block cipher modules evaluated by this
work occupies just a fraction of the actual capacity available on the FPGA for
a single instance, multiple instances are chained in order to fill the FPGA to a
high degree. A high device utilization reduces the number of configuration bits
controlling unused resources, which are likely to be uncritical. The concept of
this chaining is summarized in Figure 2.

Providing data to the chain and receiving the chains output is realized using
RS232. Initially a 64 bit (for DES) or 128 bit register (for AES and Twofish)
receives 8 or 16 bytes of data.

The data of this register is connected to the data- and key-inputs of the first
encryption unit in the chain. For all following modules of the chain the encryption
key is fed by the output of the previous module and the data input is fed with
the output-data of the module two blocks ahead in the chain. Using different
inputs for key- and encryption-data inputs instead of using the output of the
previous module for the two inputs of the following module represents a more
realistic case and results in better data of the SEU testing. This improvement
is based on the prevention of unwanted design optimization by synthesis, which
otherwise could be possible due to the equivalent values on key- and data-inputs.
The ready signal of each module is registered and triggers the encryption of the
subsequent module in the following cycle.

After the last block cipher module has finished its calculations the sending of
the 64 or 128 bit of encryption result is executed. The 8 or 16 bytes of result are
send by a RS232 module to the connected host PC.

In the following a summary of the block cipher implementations used in this
work is given.
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4.1 DES

As an example for the DES cipher the implementation given by the company
Tetraedre [12] was selected. The style of this implementation requires the 64
bit data output of each module to be registered before feeding it to the next
module in the chain. This implementation needs 16 cycles for one encryption
and achieves a speed higher than 250 MHz on a Virtex-5 FPGA. The small size
of the implementation allowed the construction of a chain of 91 DES encryption
modules on the test board.

4.2 AES

The AES implementation of Hemanth Satyanarayana, available on OpenCores
[13], was implemented. It calculates one AES round in one cycle, but due to a 64
bit interface for key- and data-input it requires 16 cycles performing a complete
10 round AES encryption. The achievable operating frequency is 318 MHz and
22 encryption modules could be fitted onto the XC5VFX70T device.

4.3 Twofish

The Twofish implementation of this work was also taken from OpenCores [7].
For having a similar interface as the AES implementation, a slight statemachine
changes were implemented in order to get a single start signal per module instead
of a load key and a load data signal as originally implemented. An operation
frequency of 91 MHz and a chain size of 28 modules where achieved on the
ML507 board.

Table 1 compares the gained results for the implementations of the differ-
ent block ciphers. The values gained for fmax are marked with an asterisk to
emphasize that this value is the estimated value by the Xilinx XST tool in stan-
dard settings (optimization on speed, normal effort) implementing not the whole
chain, but a single module only. The row Accumulated cipher data throughput,
marked with two asterisks, represents a hypothetical value assuming that all ci-
pher modules are working in parallel, but the chain as used in this work operates
sequentially. Nevertheless this theoretical value represents a great estimation on
the throughput-area trade-off.

5 SEU Injection Results

For each of the three block cipher module chains the SEU test flow has been
executed flipping a single bit, two- and three bits of the configuration bitstream,
which emulates the occurrence of SEUs, 2-bit MBUs and 3-bit MBUs. For each
of the three error types and each of the three block cipher chains 20000 testruns
were executed giving an overall of 180000 error injections. Table 2 summarizes
the test results.

The AES implementation exhibits the lowest number of critical bits of all
three block ciphers against all three tested types of injected errors. Only slightly
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Table 2. Injection Results

DES AES Twofish

Errors in 20000 1-
bit SEU injections

2796
(13.98%)

2675
(13.38%)

3398
(16.99%)

Errors in 20000 2-
bit MBU injections

5233
(26.17%)

4977
(24.89%)

6471
(32.36%)

Errors in 20000 3-
bit MBU injections

7393
(36.97%)

7021
(35.11%)

8832
(44.16%)

elevated values compared to these of the AES were found for the DES imple-
mentation, whereas the Twofish chain showed a significant higher susceptibility
to SEU, 2-bit MBU and 3-bit MBU.

The obtained critical bit values of more than 13% are quite elevated. A Xilinx
study [14] states, that only a very low percentage of all applications will exhibit a
critical bit rate higher than 10%. There are two main reasons for the high critical
bit ratio of the cipher chains: firstly encryption algorithms have the nature of
permuting data to a high degree which enables a high degree of logic to be used at
the same time. This behaviour differs from other applications, like e.g. processor
cores where whole parts of logic (e.g. specific instructions) are implemented, but
in some cases never used. Secondly this work uses the given FPGA to a very
high degree. A big part of the device resources are used leaving a small amount
of unused configuration bits.

Using the Equation (2) allows the finding Mean Time Between Failure for
the corresponding percentage of critical configuration bits. Figure 3 shows the
resulting values for the different ciphers in the green bars. The MTBF for the
Twofish chain is 150 years, compared to 182 years for DES and 190 years for the
AES implementation.

Even though a time between two errors of hundreds of years seems to be a very
uncritical value (especially taking into consideration, that not all systems run
permanently), there are applications, where this value can already lead to issues.
If for example a hypothetical system consists of 1000 boards implementing the
same application and each board has a MTBF of 150 years, the time between
faults in any of the boards is only 0.15 years or 55 days.

Further conclusions can be drawn when comparing the results of the fault
injection campaign to data gained by the bitstream generation tool. Within
this tool there is an option for static evaluation, which generates a file (.ebd)
containing the information on critical configuration bits. Details on this static
evaluation can be found in [8]. Figure 3 also contains this estimation based
MTBF in the red bars. The estimation based robustness data is more pessimistic
than the actual value obtained by fault injection. It can also be observed, that the
robustness estimation found the AES and TwoFish chains to be equally robust
against SEU. This point underlines the advantage of robustness evaluation by
fault injection, because like this a significant difference between these two ciphers
could be detected.
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Fig. 3. MTBF for the test application and SEU type errors

The reason for the significantly inferior SEU resilience of Twofish is likely to
be caused by an efficient use of the FPGAs resources by synthesis. For example
focusing on the FPGA slice resources, when a high percentage of the available
resources is used, the corresponding configuration bits are likely to be critical.
An example of the contrary for e.g. Look Up Tables (LUT) would be, if synthesis
was only able to use the four or five inputs of the 6 input LUTs of Virtex-5.

No special influence of the fact that a cipher belonging to the group of Feistel
ciphers could be observed. AES is no Feistel cipher, but has a similar SEU
resilience as the Feistel cipher DES. In contrary the two Feistel ciphers DES and
Twofish have significantly differing SEU resiliences.

An interesting observation is, that the results for the AES implementation are
worse compared the results in [13], which uses the same AES implementation, the
same FPGA, the same idea of chaining the IP cores and the same number of IP
cores. The reason for this difference lies in the structure of the encryption chain.
In [13] the AES modules are chained in a way that both key- and data-input of
the n-th AES module are fed by the ciphertext-output of the (n-1)-th module.
The higher complexity of interconnection in the chain used by this work results
in a more complex configuration of the interconnect resulting in a worse SEU re-
silience.

6 Conclusion

This work uses three different block ciphers, each represented by an open source
VHDL design. For each block cipher implementation a chain of multiple cores
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was build using a high amount of FPGA resources. On the resulting cipher chains
an error injection testflow for one-, two- and three-bit errors was executed deter-
mining the SEU resilience of the corresponding block cipher. All block ciphers
were found to be highly susceptible to SEU or MBU giving an indication, that
the consequences of SEU are not negligible especially for applications using an
high amount of cipher operations.
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Abstract. This paper presents the design and implementation of a fast
Poisson solver on a reconfigurable hybrid system. Our hybrid solver in-
tegrates a FPGA-based FFT coprocessor to collaborate in the solution
of a numerical meteorological model involving one-dimensional shallow
water equations. The Poisson equation is solved using a singular value
decomposition associated with the Moore-Penrose inverse. The hybrid
fast Poisson solver is evaluated under different amount of data entry and
shows performance gains compared to the reference application.

Keywords: Fast Poisson Solver, HybridReconfigurable Systems, FPGA.

1 Introduction

The Poisson equation is an elliptic partial differential equation that may arise
in evolution models, as for example weather forecast models. The ability to ef-
ficiently solve such equation allows complex systems to be processed in time for
accurate forecasts. When solving the Poisson equation, an efficient technique is
using a Fast Fourier Transform (FFT). Besides the development of more efficient
algorithms, one can exploit different architectures for high performance comput-
ing. One of the promising architectures are hybrid systems, where heterogeneous
processing units cooperate to speed up computationally-intensive applications.

In this paper, we describe the design and implementation of a Fast Poisson
Solver in a hybrid reconfigurable system. Our target architecture incorporates
FPGAs as specialized coprocessors to accelerate applications. Our solver is ap-
plied to a numerical meteorological model involving one-dimensional shallow
water equations.

The rest of this paper is organized as follows. Section 2 provides some back-
ground on Fast Poisson Solver and Fast Fourier Transform. It also presents the
target computing system for this work and discusses some related work focused
on solving PDEs on hybrid reconfigurable systems. Section 3 presents our hybrid
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design and explain our FFT coprocessor architecture. It also presents some im-
plementation details. Section 4 describes our experimental analysis and discusses
the results, while Section 5 presents some final considerations.

2 Background and Related Work

2.1 Fast Poisson Solver

Algorithms that reduce the computational cost of O(N2) the solution of the
Poisson equation are called Fast Poisson Solver. One way to reduce the com-
plexity processing of this algorithm is the use of FFT, which provides a solution
with complexity O(NlogN). In this work, we use a singular value decomposition
(SVD) associated with the Moore-Penrose inverse.

Moore-Penrose Inverse. Let A be an m × n. Then a Xm×n matrix that
satisfies any or all of the following properties (Penrose conditions) is called a
generalized inverse

(1)AXA = A; (2)XAX = X ; (1)

(3)(AX)∗ = AX ; (4)(XA)∗ = XA. (2)

where (∗) is the conjugate transpose. A matrix satisfying all of the properties
above is called a Moore-Penrose Inverse (or M-P inverse) of A. Every matrix A
has an unique M-P inverse [1], which will be denoted by A+.

For computational purposes, the above definition is not practical. However,
there are many algorithms to find the M-P inverse [2]. In this work, we use a
matrix decomposition that is of great utility for the manipulation of rectangular
(or square) matrices. This is the singular value decomposition (SVD) of a scalar
matrix, as described below.

Let A be an m× n matrix with complex elements and of rank r. Then there
exists unitary matrices U , V of orders m and n, respectively, such that

A = UDV ∗; D =

[
D1 0
0 0

]
; (3)

where (∗) is the conjugate transpose, D is m × n and D1 = diag[d1, d2, . . . , dr]
is a nonsingular diagonal matrix of order r.

By using the SVD, it can be found a convenient formula for the M-P inverse
(A+). That is, if A = U∗DV ∗, where U and V are unitary matrices, then

A+ = V D+U ; D+ =

[
D−1

1 0
0 0

]
. (4)

For the matrix equation Ax = b, the solution: x = A+b is understood as the
least squares solution to the system [2].



Fast Poisson Solver for Hybrid Reconfigurable System 49

Circulant Matrices. When A is a circulant matrix, the M-P inverse can be
calculated in an easier way. A circulant matrix C of order n , or simply circulant,
is a matrix of the form

C = circ(c1, c2, . . . , cn) =

⎡⎢⎢⎢⎣
c1 c2 . . . cn
cn c1 . . . cn−1

...
...

...
c2 c3 . . . c1

⎤⎥⎥⎥⎦ ; (5)

and a circulant can be diagonalized using Fourier matrices F ∗
n e Fn [3]

C = F ∗
nΛFn; (6)

where Λ is the diagonal matrix

Λ =

n−1∑
k=0

ck+1(Ωn)
n;

Ω = diag[1, ω, ω2, . . . , ωn−1]; ω = e
2πi
n . (7)

Thus, if C is circulant its M-P inverse is the circulant [3, 2]

C+ = F ∗
nΛ

+Fn; (8)

where

Λ+ = diag[λ+
1 , λ

+
2 , . . . , λ

+
n ]; λ+

k =

{
1
λk

if λk �= 0

0 if λk = 0
. (9)

2.2 Fast Fourier Transform

Fourier transforms are linear transformations used in several scientific and engi-
neering applications. In their discrete formulation, these transforms are usually
the core of computational applications, from image processing to atmospheric
simulation. The Discrete Fourier Transform (DFT) of a sequence of N numbers
can be computed as

X(k) =

N−1∑
n=0

x(n)Wnk
N ; k = 0, 1, ..., N − 1; (10)

where WN = e−2π
√−1/N is a trigonometric coefficient known as the twiddle

factor. The Fast Fourier Transform algorithm (FFT) [4] computes DFT reducing
the complexity from O(N2) to O(NlogN).

There are many ways to structure the FFT algorithm. One variant is the
radix-2 algorithm: it takes a divide-and-conquer approach, which operates on
an N-point data set, where N is a power of 2. Its basic operation is known as
“butterfly” and consists of two complex additions and a complex multiplication.
The radix-2 algorithm yields the smallest butterfly unit, which allows for greater
flexibility in studying the design space [5, 6].
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Fig. 1. Cray XD1 blade architecture

2.3 Cray XD1

Our target architecture is a Cray XD1, which is one of the first commercial
hybrid systems combining CPUs and FPGAs. Our Cray XD1 system is made
up of six interconnected nodes (blades), each one containing two 2.4GHz AMD
Opteron general-purpose processors and one Xilinx Virtex II Pro FPGA. Figure
1 shows the architecture of an XD1 node (blade). The reconfigurable device has
direct access to four banks of QDR II SRAM. Through a RapidArray processor,
the FPGA can also access the DRAM of the processors [7]. While developing
hybrid programs for the XD1, two key issues are moving data between the FPGA
and the processors and efficiently using the memory hierarchy available to FPGA
designs.

2.4 Solving PDEs on Hybrid Reconfigurable Systems

As a computationally intensive application, solving PDEs is suitable for hard-
ware acceleration and FPGA-based implementation. However, few studies have
evaluated the use of FPGA in collaboration with the CPU for this type of ap-
plication. Studies on solving PDEs in these architectures are mainly focused on
GPUs and the Cell architecture [8]. Hybrid reconfigurable systems are usually
associated with image processing, molecular dynamics and mixed precision.

A recent work that deals with the solution of PDEs using reconfigurable com-
puting is [9]. This work discusses the implementation of Finite Difference and
Finite Element methods in software and hardware. These implementations vary
in the numerical representation used. Some use fixed point, while others use
floating-point, depending on the complexity of the solution and the available
hardware resources. The emphasis of this work is on solutions that can perform
well on low cost platforms. These platforms are characterized by low bandwidth
for communications between FPGA boards and the host. These solutions are
advantageous for embedded solutions, but provide limitations to their use in
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Fig. 2. Task mapping and data flow between FPGA and CPU

high performance hybrid reconfigurable systems. This is specially true for ap-
plications that constantly use the FPGA to perform critical kernels of intensive
processing, requiring continuous transfer of data between the devices.

To our knowledge, there is not yet a thorough investigation of hybrid designs
that leverages the power of using both the FPGA and the CPU to compute Fast
Poisson Solver. This approach is rather recent, due to the new reconfigurable
computing systems brought to the market over the past few years. Some related
work on hybrid designs address different computational kernels and are limited
to linear algebra operations and optimization problems [10, 11]

3 Hybrid Fast Poisson Solver

The design of the hybrid FFT Poisson solver aims to harness the computing
power of both the CPU and the FPGA, using the solution presented in section
2.1. After discretization of the elliptic equation (the case treated here is a Pois-
son equation with periodic boundary conditions), the steps of the solution are:
(a) factorization of coefficient matrix, see Eq. 6; (b) calculate the FFT of the in-
put Z; (c) multiply the result of (b) by the diagonal matrix Λ+; and (d) calculate
the inverse FFT of the result of (c), reaching the solution of the Poisson equa-
tion. Step (c) has computational complexity O(N), because only the elements
on the main diagonal of the matrix are nonzero.

In this solution of the Poisson equation, the Fourier transform is the critical
step and therefore was chosen to be processed in FPGA. The task mapping and
data flow between FPGA and CPU are illustrated in Figure 2. Because the FFT
is the most complex task in this work, subsection below shows the design details
of the FFT coprocessor.

3.1 FFT Coprocessor

Our architecture aims to maximize the use of reconfigurable hardware resources,
dealing with the costs of data transfer between CPU and FPGA and the various
memory levels. To do so, it aggressively explore multiple levels of parallelism,
latency hiding and computing pipeline opportunities in the hybrid system. To
deal with each of these issues, our architecture is structured into functional units
as shown in the block diagram in Figure 3.

The Communication Unit is an interface between the RapidArray processor,
that links the FPGA to the processors. This entity responsible for transferring
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Fig. 3. Block diagram of the FFT coprocessor

the data set from blade memory to FPGA QDR banks. To perform this, the
Communication Unit has two parallel processes that communicate directly with
the RapidArray processor. The first process is responsible for requesting the data
set. The requests are sequentially made at each clock cycle. The second process
is responsible for handling responses of the RapidArray processor that can come
out of order. The data organization is done using the internal memory of the
FPGA before being sent to the module responsible for memory management.

The Butterfly Unit is the computational core of our architecture. It is re-
sponsible for processing the butterfly operations. Because the butterfly is the
only FFT computational operation, the Butterfly Unit can perform the complex
multiplication and complex additions through a pipeline without the need for
advanced controls. Figure 4 shows the diagram of Butterfly Unit. In this Fig-
ure, a and b represents the inputs, tf is the Twiddle factor and vd is a signal
indicating a valid input data.

Arithmetic operations which compose the complex operations are performed
in parallel to reduce the total number of cycles required. Butterfly Unit com-
prises six floating-point adders and four multipliers. These modules allow the
construction of a butterfly core that requires 33 cycles to perform this compu-
tation.

With this architecture, the Butterfly Unit can deliver a result every clock
cycle after all stages of the pipeline are filled. However, this requires the data to
be available at this frequency. This is a challenge, since each operation requires
three 64 bits operands (two complex points and a complex twiddle factor) and
generates two new complex points that should be stored on this same rate.

To address these issues we designed two units – Twiddle Factor Unit and
Memory Controller – which also appear in the diagram of Figure 3.

The Twiddle Factor Unit is responsible for providing the trigonometric con-
stants used in the butterfly computing. This unit produces these constants at
runtime using N − 1 basic constants stored directly in hardware. The banks
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Fig. 4. Block diagram of the Butterfly Unit

of QDR memory are not used in this unit because they are necessary for the
Memory Controller presented following.

To ensure the delivery of a new twiddle factor each clock cycle, a buffer is
used at the output of this unit and the generation process is started during data
transfer, before processing.

The other unit responsible for providing data every clock cycle for Butterfly
Unity is the Memory Controller. This module provides access to four banks of
QDR memory connected to the FPGA. These memory banks allow reads and
writes completely independent. Thus there are several ways to organize reading
and writing in the QDR, which required the greatest effort in this project.

The biggest challenge is to store the data distributed in four banks of QDR
so they can be read and written two points per cycle. Each memory bank stores
64 bits per position which allows us to store a complex number (two 32 bits
floating-point elements). For reading and writing a pair of data points per cycle
we need, at least, two QDR banks. One technique that allows parallel reading
is data replication. Thus it is possible to read two complex numbers per clock
cycle. Nevertheless, the data recording is done sequentially, requiring two cycles,
which prevents its use in our case.

Another alternative that has been evaluated is the sequential distribution of
the blocks as used in the RAID-0 scheme. However, the sequence memory access
of FFT requires, in some cases, to read data from the same memory bank, thus
preventing the reading of parallel data.

As an alternative that avoids replication of data and distribute the data among
four banks of QDR, we developed an addressing scheme for FFT, where reading
and writing is always done in pairs. Subsection 3.1 describe the functioning of
this system in more detail.
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Table 1. Access sequence 16-point FFT

Step 1 Step 2 Step 3 Step 4

0 8 0 4 0 2 0 1
4 12 2 6 1 3 2 3
2 10 1 5 8 10 4 5
6 14 3 7 9 11 6 7
1 9 8 12 4 6 8 9
5 13 10 14 5 7 10 11
3 11 9 13 12 14 12 13
7 15 11 15 13 15 14 15

Generation of trigonometric constants and reading of memory data must
be synchronized for correct computation of the butterfly. The Control Unit is
responsible for this task, to control the stages of computation, enabling the
sending and receiving data by the Communication Unit. In addition, this unit
manages state registers that store hardware metrics and provide the state of the
hardware to software application.

Memory Controller Details. Addressing the memory for the FFT compu-
tation with high performance is a challenge. As mentioned above, the need for
reading and writing of a complex data pair in each cycle requires an assessment
of the pattern access memory used for computing the FFT. Table 1 shows the
sequence of addresses accessed in each step of a 16-point FFT.

In the first step, the access sequence is {0; 8}, {4; 12}, {2; 10}, {6; 14} to the
pair {7; 15}. In the second step, access is {0; 4}, {2; 6}, and so on. Observing
these sequences, we found that there is a pattern between two pairs of sequential
accesses and next accesses step. This pattern is exemplified by the different
shades of gray in the Table 1. The sequence that this form of access changes
between steps keeping a pattern.

Evaluating these patterns of memory access, we designed an addressing scheme
that keeps data in memory in order to be accessed, facilitating the process of
reading and writing. The addressing scheme used for data distribution between
the blocks during storing is shown in Figure 5.

In this Figure, the blocks are grouped in two pairs {QDR1; QDR3} and
{QDR2; QDR4}. Both pairs share aw(k − 1, 1) bits of address signal (k is the
address size) and the signal aw(0) is used to enable storing. The difference be-
tween the block pairs is that the enable signal enw is inverted. The input data
to be written (dw) is crossed between the pairs. In this case, QDR1 is connected
with QDR2 and QDR3 is connected with QDR4.

The addressing scheme for reading is shown in Figure 6. We can see that
this scheme is similar to the storing scheme. Pairs {QDR1, QDR3} and {QDR2,
QDR4} share an address signal generated by the concatenation of ar(k− 1) and
ar(k − 3, 1). The ar(k − 2) bit is connected to the multiplexer selection signal.

For both schemes, the address counters aw and ar are incremented sequentially
every clock cycle, addressing the data in the order required for correct FFT
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Fig. 5. Addressing scheme for storing

Fig. 6. Addressing scheme for reading

processing. Although there is sharing of address and data buses between the
blocks, there is no data replication.

3.2 Implementation

The units of the design used in the FFT coprocessor described in section 3.1 were
implemented using VHDL. The hardware description uses 64 bits to represent
each data item, comprised of two 32 bits floating-point elements representing the
real and imaginary parts of a complex number. For the floating-point operations,
we used the Xilinx Floating-Point Core providing a 32-bit IEEE754 compliant
implementation of adders and multiplies.

Our implementation of FFT in FPGA accepts a maximum of 214 points. This
limitation is due to the amount of internal memory available to the FPGA on
CRAY XD1 blade (Virtex2P XC2VP50-7) to store twiddle factors.

To synthesize, place and route the hardware description we used Xilinx ISE
10.1. Our hybrid design runs at 190MHz on the FPGA.
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4 Experimental Analysis: DYNAMO Model

DYNAMO [12] is a one-dimensional model that simulates various meteorological
phenomena in atmospheric dynamics. It is deduced from shallow-water equa-
tions, involving the evolution of the primitive variables (horizontal components,
wind and geopotential) or the evolution of the variables for the prognosis (vor-
ticity, divergence and geopotential).

The most intensive computation in DYNAMO is calculating the current func-
tion Ψ and the velocity potential χ, respectively related to the vorticity ζ and the
divergence δ. These variables are obtained through the solution of two Poisson
equations

∇2Ψ = ζ; ∇2χ = δ; (11)

employed in the calculation of the zonal and meridional velocities u and v [12]

u =
∂χ

∂x
; v =

∂Ψ

∂x
. (12)

By applying the classical form of the centered finite differences in (11), with
periodic boundary conditions, the equation becomes

AΔΨ = Z (13)

where Ψ = [ψ1, ψ2, . . . , ψNx ]
T , Z = [ζ1, ζ2, . . . , ζNx ]

T and

AΔ =

⎡⎢⎢⎢⎢⎢⎣
−2 1 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 1 −2

⎤⎥⎥⎥⎥⎥⎦ .

The original DYNAMO model is written in Fortran. Our work focused on a
subroutine named POIS1D, which solves the Poisson equation. To couple our
hybrid fast Poisson solver in this model, we developed two versions of this sub-
routine: a reference version implemented in C, which runs only on CPU, and a
hybrid version which performs simultaneous computations on CPU and FPGA.
We coupled our C code with the original Fortran application using the Intel
Fortran Compiler.

We compared the numerical results of DYNAMO using both versions of the
POIS1D subroutine. As expected, they produced the same results, since our
FPGA-based architecture performs floating-point operations using the same
IEEE-754 standard as used by the CPU. After these tests to make sure the solu-
tion integrated with the DYNAMO provided correct values, the function POIS1D
was isolated from the DYNAMO model for a series of performance tests. We per-
formed tests for different sizes of input vectors: 64, 128, 256, 512, 1024, 2048,
4096, 8192, and 16284 points. For each input vector, we performed 10 executions
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Table 2. Execution times for software and hybrid POIS1D

Points
Time (μs) Std. Dev.

Speedup
Software Hybrid Software Hybrid

64 58.00 23.70 1.52 0.64 2.45
128 104.30 32.60 1.60 1.50 3.20
256 183.80 54.90 1.89 0.70 3.34
512 365.80 105.10 1.92 2.77 3.48

1024 728.00 201.30 2.26 4.08 3.62
2048 1482.00 384.80 1.50 3.82 3.85
4096 3059.20 783.60 2.45 6.90 3.90
8192 6391.10 1595.70 3.47 13.83 4.01

16384 15040.10 3241.50 4.18 22.92 4.64

and calculated the average execution time. In Table 2 we present the results of
our tests. The first column lists the size of the input vector, while the second and
third columns shows the execution times for our reference POIS1D implemen-
tation in software and our hybrid version which runs in CPU and FPGA. The
fourth and fifth columns present the standard deviation from the 10 executions
we performed for each case. The last column present the speedup obtained with
our hybrid solver. The speedup is calculated as the ratio between the reference
implementation and the hybrid one.

In these experimental results, we observe that hybrid version is faster for all
data sizes. The smallest gain was obtained for the execution with 64 points, while
the highest gain was obtained for 16384-points experiment. In the most cases the
standard deviation was lower for the reference application. This behavior may
be related to data transfer between CPU and FPGA, which depends on several
factors of the system (OS, DMA, etc.).

5 Conclusions and Future Work

In this paper, we have proposed an hybrid architecture to perform a fast Poisson
solver in a hybrid reconfigurable computing system. In our design, both the
CPU and the FPGA cooperate to compute the fast Poisson solver coping with
data transfer costs. Fast Fourier transform was implemented as an specialized
coprocessor to accelerate the critical kernel of fast Poisson solution. Our key
design issue were to address efficiently four memory banks of FPGA to perform
parallel read and write operations every clock cycle. The proposed schemes are
efficient because they avoid data replication and do not require many resources
of the FPGA to be implemented.

Our results show that the hybrid approach achieves speedups for all tested in-
put data sizes and is able to harness the overall computing power of the hybrid
system. Furthermore, the performance gains compared to the reference appli-
cation grows with the number of input points, indicating that potentially may
provide better results for computing meshes with many points.
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As future work, we plan to evaluate ways to reduce the use of the internal
memory of FPGA by Communication and Twiddle Factor Units to enable the
implementation of FFT on higher input set. In addition, we plan to harness the
computational power of the CPU while the FPGA performs the FFT compu-
tation. Therefore, it is necessary to evaluate the workload partitioning between
the devices and the data processing dependency.
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Abstract. This paper shows an area-efficient and high-speed architecture for
IPv6 lookup using a parallel index generation unit (IGU). To reduce the size
of memory in the IGU, we use a liner transformation and a row-shift decom-
position. Also, this paper shows a design method for the parallel IGU. A single
memory realization requires O(2n) memory size, where n denotes the length of
prefix, while the IGU requires O(nk) memory size, where k denotes the number
of prefixes. In IPv6 prefix lookup, since n is at most 64 and k is about 340 K,
the IGU drastically reduces the memory size. Since the parallel IGU has a simple
architecture compared with existing ones, it performs lookup by using complete
pipelines. We loaded more than 340 K IPv6 pseudo prefixes on the Xilinx Virtex 6
FPGA. Its lookup speed is higher than one giga lookups per second (GLPS). As
for the normalized area and lookup speed, our implementation outperforms exist-
ing FPGA implementations.

1 Introduction

1.1 Demands for Lookup Architecture in IPv6 era

The core routers forward packets by IP-lookup using longest prefix matching (LPM).
With the rapid growth of the Internet, LPM has become the bottleneck in the network
traffic management. The following conditions must be satisfied to solve the problems:

High Speed Lookup: When a core router works at more than 40 Gbps link through-
put (OC-768), it requires more than 125 million lookups per second (MLPS) for a min-
imum packet size (40 bytes). Now, a 100 Gbps link requires more than 320 MLPS, and
the next generation router requires 400 Gbps link.

Low-Power Consumption: R. Tucker predicted that, with the rapid increase of traffic,
core routers would dissipate the major part the total network power dissipation [14].
Thus, we cannot use power-hungry ternary content addressable memories (TCAMs).
Le et al. proposed the memory-based IP lookup architecture on the FPGA, which dis-
sipate lower power than the TCAM [5]. This paper also considers a method that uses a
memory-based architecture.

Reconfigurability: On Feb. 3, 2011, IPv4 addresses maintained by Internet Assigned
Numbers Authority (IANA) are depleted. Since transition from IPv4 addresses to IPv6
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Fig. 1. Numbers of IPv6 prefixes in the routing table for border gateway protocol (BGP)

addresses are encouraged, IPv6 addresses are widely used in core routers. However, since
it is a transition period, specifications for IPv6 address are changed frequently1. Thus,
reconfigurable architecture is necessary to accomodate the changes of specifications.

Large-Capacity: As shown in Fig.1, on Nov. 3, 2012, the number of raw IPv6 address
in the border gateway protocol (BGP) was about 10 K. The number of IPv4 addresses
increased by 25-50 K prefixes per year [2]. Also, the number of IPv6 addresses increases
with the rapid growth. Thus, large-capacity routers are necessary for the future IPv6.

1.2 Proposed Architecture and Contributions of the Paper

This paper proposes a memory-based architecture satisfying the four conditions. When
IPv6 prefixes with length n are loaded in a single memory, the amount of memory
would be O(2n), which is too large to implement. In this paper, we use a parallel index
generation unit (IGU) that reduces the total amount of memory to O(kn), where k de-
notes the number of prefixes [9]. Also, since the parallel IGU has a simpler architecture
than existing ones, it performs a fast lookup by using pipelines. Our contributions are
as follows:

1. We loaded more than 340 K pseudo IPv6 prefixes on the parallel IGU implemented
on a single FPGA. Its performance is more than 1 GLPS (Giga lookups per second)
lookup. As far as we know, this is the first implementation of 1 GLPS engine on a
single FPGA.

2. We reduced the total amount of memory for IGUs by using both a linear transforma-
tion and a row-shift decomposition. This paper reports of the first implementation
of LPM architecture using the parallel IGU.

3. We compared the parallel IGU with existing implementations on FPGA, and showed
that the parallel IGU outperforms others.

The rest of the paper is organized as follows: Chapter 2 introduces an architecture for
LPM; Chapter 3 shows the IGU and its memory reduction method; Chapter 4 shows
the design method for the parallel IGU; Chapter 5 shows the experimental results; and
Chapter 6 concludes the paper.

1 IPv4-compatible IPv6 addresses are abolished. Also, site-local addresses would be abolished.
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2 Architecture for IPv6 Prefix Lookup

2.1 IPv6 Prefix

The IPv6 address (128 bits) is an extension of the IPv4 address (32 bits). This extension
accommodates much larger number of addresses than IPv4. An IPv6 address consists
of 64 bits network prefix (prefix) and 64 bits interface ID. Since only prefixes are used
by the core routers to make forwarding decisions, this paper considers an architecture
for the IPv6 prefix lookup. Similar to IPv4 prefix, an IPv6 prefix follows the variable-
length subnet masking (VLSM) rule. It consists of n bits network ID and (64− n) bits
sub-network ID. The prefix consists of the following information with bit length:

– FP (Fixed Prefix): 3 bits represented by “001”. It means a global unicast accepting
route aggregation.

– TLA (Top-Level Aggregation) ID: 13 bits
– sub-TLA: 13 bits
– RES (Reserved for future use): 6 bits
– NLA (Next-Level Aggregation) ID: 13 bits
– SLA (Site-Level Aggregation) ID: 16 bits

Fig. 2 shows the distribution of raw IPv6 prefixes (Nov. 3, 2012) [6]. We observe that
variance of the numbers of prefixes with different lengths are quite large. In this paper,
we utilize this property to reduce the amount of hardware.

Index Generation Unit
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Fig. 3. Architecture for an LPM function

2.2 Longest Prefix Matching (LPM) Function [12]

Definition 2.1. The LPM table stores ternary vectors of the form V EC1 · V EC2,
where V EC1 consists of 0′s and 1′s, and V EC2 consists of ∗′s (don’t cares). The
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length of prefix is the number of bits in V EC1. To assure that the longest prefix ad-
dress is produced, entries are stored in descending prefix length. The LPM function
is the logic function f : Bn → Bm, where f(x) is a minimum address whose V EC1

corresponding to x. Otherwise, f (x) = 0m.

Let Pl be the subset of the prefixes with length l, and P = {P1, P2, . . . Ps} be a set of
subsets of the prefixes. Each Pl is represented by an index generation function [10].

Definition 2.2. [10] A mapping F (X) : Bn → {0, 1, . . . , k}, is an index generation
function with weight k, where F (ai) = i (i = 1, 2, . . . , k) for k different regis-
tered vectors, and F = 0 for other (2n − k) non-registered vectors, and ai ∈ Bn

(i = 1, 2, . . . , k). In other words, an index generation function produces unique indices
ranging from 1 to k for k different registered vectors, and produces 0 for other vectors.

Example 2.1. Table 1 shows an index generation function with weight seven.

An LPM function can be decomposed into a set of index generation functions. Thus,
this paper focuses on a compact realization of an index generation function.

2.3 Architecture for an LPM Function

Fig. 3 shows an architecture for an LPM function realized by index functions with
weight k for Pl and a priority encoder, where k equals to the number of prefixes in Pl.
When we realized an index generation function for Pl by a single memory, the memory
size becomes O(2l), which is too large for large l. This paper uses an index generation
unit (IGU) with O(k) memory size.

Table 1. Example of an index generation function f

x1 x2 x3 x4 x5 x6 f

0 0 0 0 1 0 1
0 1 0 0 1 0 2
0 0 1 0 1 0 3
0 0 1 1 1 0 4
0 0 0 0 0 1 5
1 1 1 0 1 1 6
0 1 0 1 1 1 7

Table 2. Decomposition chart for f(X1, X2)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x5
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x3
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x2

00 0 0 0 0 0 0 0 0 1 2 3 0 0 0 4 0
01 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 5 0 0 0 0 0 0 0 0 0 0 0 0 7 0 0
11 0 0 0 0 0 0 0 0 0 0 0 6 0 0 0 0

x6, x1

Main
memory AUX

memory

Comparator

ANDp

n-p

n-p

  )1(log2 +k

X1

X2 X'2

q=

Fig. 4. Index Generation Unit (IGU)
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3 Index Generation Unit (IGU)

Table 2 is a decomposition chart for the index generation function f shown in Table 1.
The columns labeled by X1 = (x2, x3, x4, x5) denotes the bound variables, and rows
labeled by X2 = (x1, x6) denotes the free variables. The entry denotes the function
value. We can represent the non-zero elements of f by the main memory f̂ whose input
is X1. The main memory realizes a mapping from a set of 2p elements to a set of k+ 1
elements, where p = |X1|. The output for the main memory does not always represent
f , since f̂ ignores X2. Thus, we must check whether f̂ is equal to f or not by using
an auxiliary (AUX) memory. To do this, we compare the input X2 with the output
for the AUX memory by a comparator. The AUX memory stores the values of X2

when the value of f̂(X1, X2) is non-zero. Fig. 4 shows the index generation unit (IGU).
First, the main memory finds the possible index corresponding to X1. Second, the AUX
memory produces the corresponding inputs X ′

2 (n − p bits). Third, the comparator
checks whether X ′

2 is equal to X2 or not. Finally, the AND gates produce the correct
value of f .
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Fig. 5. IGU for Table 1

Example 3.2. Fig. 5 shows an example of the IGU realizing the index generation func-
tion shown in Table 1. When the input vector is X(x1, x2, x3, x4, x5, x6) = (1, 1, 1,
0, 1, 1), the corresponding index is “6”. First, the main memory produces the index.
Second, the AUX memory produces the corresponding value of X ′

2. Third, the com-
parator checks whether X2 and X ′

2 are equal. Since the corresponding input X2 is
equal to X ′

2, the AND gates produces the index. In this case, n = 6, p = 4, and q = 3.

Example 3.3. To realize the index generation function f shown in Table 1, a single
memory realization requires 26 × 3 = 192 bits. On the other hand, in the IGU shown
in Fig. 5, the main memory requires 24 × 3 = 48 bits, and the AUX memory requires
23 × 2 = 16 bits. Thus, the IGU requires 64 bits in total. In this way, we can reduce the
total amount of memory by using the IGU.

Example 3.2. is an ideal case. Actually, a column may have two or more than non zero-
elements. In such a case, the column has a collision. When a collision occurs, a main
memory cannot realize a function.

Example 3.4. Table 4 shows a decomposition chart for an index function f ′ shown in
Table 3. In Table 4, the first column has a collision for elements “5” and “6”.
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Table 3. An index generation function
f ′ causing a collision

x1 x2 x3 x4 x5 x6 f ′

0 0 0 0 0 1 1
0 0 0 0 1 0 2
0 0 0 1 0 0 3
0 0 1 0 0 0 4
0 1 0 0 0 0 5
1 0 0 0 0 0 6

Table 4. Decomposition chart for f ′(X1, X2)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 x3
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 x4
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 x6

00 1 2 3 4
01 5
10 6
11

x1, x2

Table 5. Decomposition chart for f̂ ′(Y1, X2)

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 y1 = x3 ⊕ x1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1 y2 = x4 ⊕ x1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1 y3 = x5
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 y4 = x6

00 1 2 3 4
01 5
10 6
11

x1, x2

3.1 Linear Transformation [8]

Let f̂(Y1, X2) be the function whose variables X1 = (x1, x2, . . . , xp) are replaced
by Y1 = (y1, y2, . . . , yp), where yi = xi ⊕ xj , xi ∈ {X1}, xj ∈ {X2}, and p ≥
�log2(k + 1)�. This replacement is called a linear transformation, which can avoid a
collision.

Example 3.5. Let f ′ be an index generation function shown in Table 3. Table 5 shows
the decomposition chart for f̂ ′(Y1, X2), where Y1 = (x3⊕x1, x4⊕x1, x5, x6), and the
column labels denote Y1, and the row labels denote X2. In Table 5, since no collision
occurs, it can be realized by the IGU shown in Fig. 4.

The linear transformation for p variables is realized by p copies of two-input EXORs. In
an FPGA, since these can be realized by p LUTs, their amount of hardware is negligible
small.

As shown in Example 3.5., index generation functions often can be represented with
fewer variables than original functions. By increasing the number of inputs p for the
main memory, we can store virtually all vectors.

Conjecture 3.1. [9] Consider a set of uniformly distributed index generation functions
with weight k (≥ 7). If p ≥ �log2(k + 1)� − 3, then, more than 95% of the functions
can be represented by an IGU with the main memory having p inputs.

Thus, for the IPv6 prefix lookup problem, a linear transformation of p variables can
reduce the amount of memory O(2n) into O(2p).

3.2 Row-Shift Decomposition [7]

In this part, we introduce a row-shift decomposition to further reduce of memory size
for the IGU. Table 6 shows a decomposition chart for the index generation function
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Table 6. Decomposition chart for f̂ ′(Y1)

0 0 0 0 1 1 1 1 y1
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 1
y4

Table 7. Decomposition chart for f̂ ′ after row-shift

0 0 0 0 1 1 1 1 y1
0 0 1 1 0 0 1 1 y2
0 1 0 1 0 1 0 1 y3

0 5 2 3 4 6
1 → → → 1
y4

f̂ ′(Y1, Y2), where Y1 = (x3 ⊕ x1, x4 ⊕ x1, x5) and Y2 = (x6). In Table 6, the first
column has a collision for the entries “1” and “5”. Consider the decomposition chart
shown in Table 7 that is obtained from Table 6 by shifting the rows for y4 = 1 by three
bit to the right. Table 7 has at most one non-zero element in each column. Thus, the
modified function can be realized by a main memory with inputs Y1.

HX1

X2

G

h(X1)

h(X1)+X2

g(h(X1)+X2)+

Fig. 6. Row-shift decomposition

Let X1 be the row variables, and X2 be the column variables. In Fig. 6, assume that
the memory for H stores the number of bits to shift (h(X1)) for each row specified by
X1, while the memory for G stores the non-zero element of the column after the shift
operation: h(X1) +X2, where “+” denotes an unsigned integer addition. We call this
a row-shift decomposition.
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Fig. 7. IGU using a linear transformation and a row-shift decomposition

Example 3.6. Fig. 7 shows the IGU using a linear transformation and a row-shift de-
composition realizing f ′ shown in Table 3. Let Y = (Y1, Y2), where Y1 = (x3⊕x1, x4⊕
x1, x5), and Y2 = (x6). First, EXOR gates generates Y . Second, the first memory for
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h produces the shift value h(Y1). Third, the adder produces h(Y1) + Y2. In this imple-
mentation, since we realize both the main memory and the AUX memory by a single
memory, the second memory g produces the index and the corresponding (y4, x1, x2)
simultaneously. Next, the comparator checks if they are equal or not. Finally, the AND
gates produces the correcting index.

Example 3.7. To realize f ′ shown in Table 3, a single memory realization requires
26 × 3 = 192 bits. On the other hand, in the IGU shown in Fig. 7, the first memory for
H requires 21 × 3 = 6 bits, and the second memory for G requires 23 × (3 + 3) = 48
bits. Thus, the IGU requires 54 bits in total. In this way, we can reduce the total amount
of memory by using a linear transformation and a row-shift decomposition.

4 Design of Parallel IGU

4.1 Method to Find Linear Transformation

From here, we present a method to find a linear transformation. We assume that the
prefix lookup architecture updates its prefix patterns. In this case, it is impractical to
find an optimum solution by spending much computation time. To find a reasonably
good setting of the EXOR gates, we use the following heuristic algorithm [10], which
is simple and efficient.

Algorithm 4.1. Let f(X1, X2) be the index generation function of n variables with
weight k, and let p = �log2((k + 1)/3)�+ 1 be the number of the bound variables in
the decomposition chart.

1. Let {X1} = (x1, x2, . . . , xp) be the bound variables, and X2 = (xp+1, xp+2, . . . ,
xn) be the free variables.

2. While |X1| ≤ p, find variables xi ∈ {X2} that makes the following value minimum.

|(# of vectors withxi = 0)− (# of vectors withxi = 1)|.

Let X1 ← X1 ∪ {xi}.
3. For each pair of variables (xi, xj), where xi is a bound variables, and xj is a free

variables, if the exchange of xi with xj decreases the number of collision, then do
it, otherwise discard it.

4. For each pair of variables (xi, xj), if the replacement of xi with yi = xi ⊕ xj

decreases the number of collisions, then do it, otherwise discard it.
5. Terminate.

4.2 Design of IGU Using Row-Shift Decomposition [7]

For Table 7, we could represent the function without increasing the columns. However,
in general, we must increase the columns to represent the function. Since each column
has at most one non-zero element after the row-shift operations, at least k columns are
necessary to represent a function with weight k. We use the first-fit method [13], which
is simple and efficient.
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Algorithm 4.2. (Find row-shifts)

1. Sort the rows in decreasing order by the number of non-zero elements.
2. Compute the row-shift value for each row at a time, where the row displacement

r(i) for row i has the smallest value such that no non-zero element in row i is in
the same position as any non-zero element in the previous rows.

3. Terminate.

When the distribution of non-zero elements among the rows is uniform, Algorithm 4.2.
reduces the memory size effectively. To reduce the total amount of memories, we use
the following:

Algorithm 4.3. (Row-shift decomposition)

1. Reduce the number of variables by the method [9]. If necessary, use a linear trans-
formation [8] to further reduce the number of the variables. Let n be the number
of variables after reduction.

2. Let q1 ← �n
2 �. From t = −2 to t = 2, perform Steps 3 through 6.

3. Partition the inputs X into (X1, X2),where X1 = (xp, xp−1, . . . , x1) denotes the
rows, and X2 = (xn, xn−1, . . . , xp+1) denotes the columns.

4. p ← q1 + t.
5. Obtain the row-shift value by Algorithm 4.2..
6. Obtain the maximum of the shift value, and compute the total amount of memories.
7. Find t that minimizes the total amount of memories.
8. Terminate.
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21100
30000

0
0
x2
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1100
fx4x3x1

21100
30000

0
0
x2

2010
1100
fx4x3x1Prefix

Expansion

Fig. 8. Example of prefix expansion

4.3 Prefix Expansion

Let Pl be the set of the prefixes with length l, and let P = {P1, P2, . . . Ps} be the set of
the set of the prefixes. As shown in Fig. 3, the parallel IGU consists of s IGUs and a pri-
ority encoder whose size is proportional to s. Thus, the straightforward implementation
requires large amount priority encoder and many IGUs.

To reduce the number of required IGUs, we merge multiple Pl into a group. By
expanding the prefixes in Pl to ones with length l + 1, we can make a group including
Pl+1 and Pl. We call this prefix expansion. The next example shows it.

Example 4.8. The left-hand side Table in Fig. 8 stores {P2, P3, P4}, where P2 = {00∗
∗}, P3 = {001∗}, P4 = {0001}. By performing prefix expansion to P2, we have P ′

3 =
{000∗, 001∗}. By the longest prefix matching (LPM) rule, the prefix {001∗} that is
equal to {001∗} in P3 is ignored. Also, by performing prefix expansion to P ′

3, we have
P ′
4 shown in the right-hand side Table in Fig. 8.
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Table 8. The number BRAMs to realize IGUs with non-uniform grouping (BRAMs marked with
“*” were realized by distributed RAMs in the actual implementation)

Group #prefixes Memory H Memory G # of 36Kb
in a group #In #Out #In #Out BRAMs

(15,16,17,18) 102 4 6 7 18 2 *
(19,20,21,22) 225 7 7 8 22 2 *
(23,24,25,26) 1,571 10 11 11 26 3 *
(27,28) 806 6 11 11 28 3 *
(29,30) 1,240 6 12 12 30 5 *
(31) 2,824 9 12 12 31 5 *
(32) 8,474 9 14 14 32 16
(33) 1,469 8 11 11 33 3 *
(34) 4,408 10 12 12 34 5 *
(35) 2,318 10 11 13 35 9
(36) 6,957 11 13 13 36 9
(37) 4,079 13 12 12 37 8
(38) 12,237 14 14 14 38 24
(39) 6,592 12 12 13 39 11
(40) 19,776 13 14 14 40 22
(41) 6,874 13 13 13 41 12
(42) 20,623 14 15 15 42 42
(43) 9,451 14 14 14 43 27
(44) 28,354 13 15 15 44 47
(45) 8,522 13 14 14 45 24
(46) 25,569 14 15 15 46 48
(47) 42,768 14 16 16 47 92
(48) 128,305 14 17 17 48 179
(49,50) 929 10 10 10 50 3*
(51,52) 1,048 11 11 11 52 4*
(53,54) 594 9 10 10 54 3*
(55,56) 421 8 9 9 9 2*
(57,58) 530 9 9 9 58 2*
(59,60,61,62) 289 7 8 9 62 2*
(63,64) 386 8 9 9 64 2*
Total 347,749 616

Table 9. Comparison of non-uniform grouping with uniform ones

Grouping #prefixes #groups #BRAMs #Slices
Non-uniform (Table 8) 347,749 30 616 2,299
without grouping (direct realization of P) 348,877 50 655 3,979
Uniform for two subsets 382,132 25 785 1,899
Uniform for four subsets 1,250,695 13 2,512 939

Fig. 2 shows that the variance of the numbers of prefixes with different lengths Pl is
quite large. When the prefix expansions to Pl consisting of a small number of prefixes
is applied, they can be stored into a single BRAM 2. On the other hand, when the prefix
expansion to Pl consisting of a large number of prefixes is applied, in the worst case,
the size would exceed that of the available BRAMs. Thus, we make a non-uniform
grouping Gi G = {G1, G2, . . . , Gr}, where Gi is generated from the different number
of Pl. To find an optimal grouping without increasing BRAMs, we use the following:

Algorithm 4.4. (Non-uniform grouping) Let Pl be the set of the prefixes with length l,
P = {P1, P2, . . . , Ps} be the set of the prefixes, Gj consists of single or several Pls, r
be the number of groups, and G = {G1, G2, . . . , Gr}, where r ≤ s.

2 For Xilinx Virtex 6 FPGA, the BRAM stores 36Kbits.
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1. Apply Algorithms 4.1. and 4.3. to Pl (1 ≤ l ≤ s) to generate the IGU. Let Bl be
the number of BRAMs to realize the IGU.

2. r ← 1, and i ← 1.
3. Gr ← Pi, and B ← Bi.
4. i ← i+ 1. If i > s, then go to Step.7.
5. Perform a prefix expansion to Gr∪Pi, then apply Algorithms 4.1. and 4.3. to them

to generate the IGU. Let Btemp be the number of BRAMs to realize the IGU.
6.1. If B +Bi ≥ Btemp, then Gr ← Gr ∪ Pi, B ← Btemp, and go to Step.4.
6.2. r ← r + 1, and go to Step.3.

7. Terminate.

Table 10. Comparison with existing FPGA implementations

Architecture #prefixes #Slices # of 36Kb Off-chip Normalized area Throughput
BRAMs SRAM [Mb] #Slices #BRAMs [MLPS]

Baboescu et al. 80 K 1,405 530 — 17.5 6.6 125
(ISCA2005) [1]
Fadishei et al. 80 K 14,274 254 — 178.4 3.1 263
(ANCS2005) [3]
Le et al. 249 K 16,617 473 — 66.7 1.8 340
(FCCM2009) [5]
2-3-tree-IPv6 330 K 15,358 580 32.5 46.5 4.5 373
(IEEE Trans.2012) [4]
BST-IPv6 330 K 14,096 1,025 3.2 42.7 3.3 390
(IEEE Trans.2012) [4]
Parallel IGU 340 K 5,577 575 — 16.4 1.7 1,002

5 Experimental Results

5.1 Implementation of the Parallel IGU

We designed the parallel IGU using Xilinx’s PlanAhead 14.2, and implemented it on the
Roach2 board (FPGA: Xilinx Virtex-6 (XC6VSX475T), 74,400 Slices,1,064 BRAMs
(36Kb)). Pseudo IPv6 prefixes were generated from the present raw 340 K IPv4 pre-
fixes (Nov. 3, 2012) using a method [15]. Since the present IPv6 uses prefixes with
length 15 or more, we generated such prefixes only.

Table 8 shows the number of BRAMs in IGUs to load 340 K pseudo IPv6 prefixes
generated by Algorithm 4.4. Table 9 compares non-uniform grouping with uniform one.
In Table 9, #Slices includes the number of slices for both IGUs and the priority encoder.
Table 9 shows that, the number of BRAMs for the non-uniform grouping is smaller than
that for the uniform grouping. Although the non-uniform grouping requires more slices
than the uniform one, it consumes less than 10% of the FPGA available resources.

Since we implemented small memory part (marked with “*” in Table 8) by dis-
tributed RAMs instead of BRAMs, they consumed 3,288 slices. Thus, the parallel IGU
used 5,577 slices and 575 BRAMs. Since we implemented a complete pipeline archi-
tecture, the maximum clock frequency was 501.4 MHz. By using a dual port BRAM,
the lookup speed for the parallel IGU was 1,002 MLPS (mega lookups per second).
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5.2 Comparison with Existing Implementations

Table 10 compares the parallel IGU with existing implementations. Since existing im-
plementations store different numbers of prefixes to compare the efficiency, we used
the normalized area, which shows the number of primitives (# of slices or BRAMs)
per a prefix. As for the off-chip SRAMs, we converted them to the equivalent of 36Kb
BRAM numbers. Table 10 shows that, as for the lookup speed, the parallel IGU is 2.56-
8.01 times faster than existing implementations. As shown in Fig. 7, the parallel IGU
has a simple architecture which is suitable for pipelined implementation to increase the
throughput. Also, as for the normalized area, the parallel IGU has the smallest imple-
mentation. Therefore, the parallel IGU outperforms existing FPGA realizations.

6 Conclusion

This paper showed the parallel IGU for IPv6 Lookup. To reduce the memory size of
the IGU, we used linear transformation and row-shift decompositions. Also, this paper
showed a design method for the parallel IGU. We implemented the parallel IGU on the
Xilinx Virtex 6 FPGA, it loaded more than 340 K IPv6 prefixes, and its lookup speed is
1,002 MLPS. Experimental results showed that our implementation outperforms exist-
ing FPGA realizations.
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Abstract. We demonstrate, for the first time, high-speed circuits that
generate partitions on a set S of n objects. We offer two versions. In
the first, partitions are produced in lexicographical order in response to
successive clock pulses. In the second, an index input determines the set
partition produced. Such circuits are needed in the hardware implemen-
tation of the optimum distribution of tasks to processors. Our circuits
are combinational. For large n, they can have large delay. However, one
can easily pipeline them to produce one set partition per clock period.
We show 1) analytical and 2) experimental time/complexity results that
quantify the efficiency of our designs. Our results show that a hardware
partition generator running on a 100 MHz FPGA produces partitions at
a rate that is approximately 10 times the rate of a software implemen-
tation on a processor running at 2.26 GHz.

1 Introduction

A partition of a set S is the placement of elements of S into blocks. For exam-
ple, there are 15 partitions of four distinct elements 0, 1, 2, and 3. These are
{{3, 2, 1, 0}} (all elements in the same block), {{3, 2, 1}, {0}}, {{3, 2, 0}, {1}},
{{3, 2}, {1, 0}}, {{3, 2}, {1}, {0}}, {{3, 1, 0}, {2}}, {{3, 1}, {2, 0}}, {{3, 1}, {2},
{0}}, {{3, 0}, {2, 1}}, {{3}, {2, 1, 0}}, {{3}, {2, 1}, {0}}, {{3, 0}, {2}, {1}}, {{3},
{2, 0}, {1}}, {{3}, {2}, {1, 0}}, and {{3}, {2}, {1}, {0}} (all elements in separate
blocks). Neither the order of the blocks, nor the order of elements within each
block matters. For example, partitions {{3, 1}, {2, 0}} and {{0, 2}, {1, 3}} are
identical. The number of partitions increases rapidly as the number of ele-
ments increases, and are counted by the Bell numbers B(n). For example, for
sets of size n = 2, 3, 4, 5, 6, 7, and 8, the number of set partitions is
B(n) = 2, 5, 15, 52, 203, 877, and 4140. Bell numbers have the property
that, for large n, B(n) is approximated by ( n

lnn )
n [8], p. 64.

Partitions are important combinatorial objects. For example, partitions on
n elements enumerate the equivalence relations on n elements [17]. Each block
represents all elements related by the equivalence relation.
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One way to generate all partitions is to generate all binary numbers, one
per clock, discarding those that are not partitions. However, only a few of these
numbers are partitions. This approach produces partitions at a rate that is much
slower than one partition per clock. Therefore, we seek a circuit that produces
one partition per clock, where the input is an index to the partitions.

The ability to generate partitions has important practical applications. Han-
kin and West [7] show how partitions are used to solve optimization problems
in bioinformatics, forensic science, and scheduling. For example, set partitions
can be used to specify the ways tasks are allocated to processors, from which
one seeks the partition that corresponds to the shortest computation time. This
last application especially requires high-speed enumeration of partitions. Recent
research in computational molecular biology has shown the importance of par-
titions in understanding the role of genes in determining global characteristics
of species. For example, Chen, Liu, Liu, and Jiang [4] have identified the im-
portance of solving the minimum common integer partition (MCIP) problem
in ortholog assignment and DNA fingerprint assembly. This problem requires
the enumeration of partitions at high speed, since so many partitions must be
considered. In multi-state distribution systems (packet, water, gas, etc.) [11],
the overall quality of service is dependent on attributes of the components, as
measured by variables. There is a need to quickly enumerate partitions of the
variables used in decision diagrams that model the system.

This paper can be viewed as a companion to [2], which describes the high-
speed generation of combinations, as well as the generation of random combina-
tions for use in reconfigurable computers. It can also be viewed as a companion
to [3], which describes the high-speed generation of permutations, as well as the
generation of random permutations. Together these three papers cover a subset
of circuits that produce combinatorial objects. The advent of large programmable
logic circuits has allowed computations to be performed in hardware that previ-
ously could only be done in software, but at a much higher rate. Much has been
written about generating combinatorial objects in software (e.g. [6], [8] pp. 5-
6). Indeed, there are many papers on programs and algorithms for enumerating
partitions [6,9,10,12,14,16], including parallel algorithms [17]. However, as far as
we know, there has not been a hardware enumeration of partitions. This paper
addresses that deficiency.

2 Definitions

2.1 Introduction

Definition 1. Given an n-set S = {0, 1, . . . , n − 1}, {S0, S1, . . . , Sn−1} is a

partition of S iff 1) Si ⊆ S, 2) Si

⋂
Sj = ∅ for i �= j, and 3)

⋃n−1
i=0 Si = S.

For example, {{3, 1}, {2, 0}} is a partition on the 4-set S = {0, 1, 2, 3}. It is
convenient to represent a partition in its restricted growth string form, as follows.
Since a set partition is unchanged by a reordering of blocks, call the block in
which n− 1 is located block 0. Then, n− 2 is either in the same block, block 0,
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or in a different block. If it is in a different block, call that block 1. Then, n− 3
is either in block 0 or 1 or some other block. If it is in some other block, call
that block 2. Continue in this way until all elements are assigned a block. For
example, the partition {{3, 1}, {2, 0}} has the restricted growth string (0101).
Formally,

Definition 2. An n-element restricted growth string is a sequence (b0b1 . . .
bn−1) such that b0 ≤ bi ≤ max0≤j<i bj + 1, where b0 = 01.

The first element of a restricted growth string is always 0, signifying that element
n− 1 is always in block 0. A special characteristic of a restricted growth string
is that each element is between 0 and 1 plus the maximum of all lower elements.

Lemma 1. [13] There is a bijection between the set of partitions of an n-set
and the set of n-element restricted growth strings.

The one-to-one relation between partitions and restricted growth strings means
that we can enumerate the latter with a guarantee that we enumerate the former.
Especially, a circuit exists to convert restricted growth strings into partitions.
Table 1 shows the set of all 15 partitions on n = 4 elements {3, 2, 1, 0}. The
first column shows the index i, where 0 ≤ i ≤ 14. i indexes the set partitions
according to the increasing lexicographical order of the restricted growth strings.
The second column shows how the actual partition distributes the elements
{3, 2, 1, 0} into blocks. Here, commas separate blocks and elements within the
same block. The third column shows the restricted growth string. Each restricted
growth string begins in 0, indicating that 3 is (always) in the first (0-th) block.
The second element shows where element 2 is located (in the 0-th or 1-st block).
The third element shows where element 1 is located (in the 0-th, 1-st, or 2-nd
block). The fourth element shows where element 0 is located (in the 0-th, 1-st,
2-nd, or 3-rd block).

In order to deduce the circuit needed to produce a set partition from an
index, we introduce the set partition tree. Specifically, the methodology to design
a hardware index to set partition converter uses a tree structure to store all
partitions on a set {n− 1, n− 2, . . . , 1, 0} of n elements.

Definition 3. A set partition tree for n consists of three node-types

1. the single root node labeled 0,
2. internal nodes labeled i, for all i ∈ {0, 1, . . . , n− 2},
3. terminal nodes labeled i, for all i ∈ {0, 1, . . . , n− 1},
and one edge-type

1. an edge connects a node labeled i to a node labeled j iff along the path from
the root node to j, there is no more nodes than n, and, for all node labels k,
j ≤ max{k}+ 1.

1 The term restricted growth function is also used to describe this.
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Table 1. Partitions on a set of n = 4 Versus Their Index i

i Partition Restricted

Growth String

0 {{3, 2, 1, 0}} (0 0 0 0)

1 {{3, 2, 1}, {0}} (0 0 0 1)

2 {{3, 2, 0}, {1}} (0 0 1 0)

3 {{3, 2}, {1, 0}} (0 0 1 1)

4 {{3, 2}, {1}, {0}} (0 0 1 2)

5 {{3, 1, 0}, {2}} (0 1 0 0)

6 {{3, 1}, {2, 0}} (0 1 0 1)

7 {{3, 1}, {2}, {0}} (0 1 0 2)

8 {{3, 0}, {2, 1}} (0 1 1 0)

9 {{3}, {2, 1, 0}} (0 1 1 1)

10 {{3}, {2, 1}, {0}} (0 1 1 2)

11 {{3, 0}, {2}, {1}} (0 1 2 0)

12 {{3}, {2, 0}, {1}} (0 1 2 1)

13 {{3}, {2}, {1, 0}} (0 1 2 2)

14 {{3}, {2}, {1}, {0}} (0 1 2 3)

A terminal node is simply the last node along a path from the root node. In a
set partition tree, the restricted growth string of a partition is represented by
the labels of edges along a path from the root node to a terminal node. Each
node in a path specifies a block in which the corresponding element is located.

Example 1. Fig. 1 shows the set partition tree for partitions with n = 4 ele-
ments. Following the leftmost path from the root node to a terminal node yields
the node labels (0000). This restricted growth string specifies that all elements,
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3,2,1, and 0 belong to block 0. That is, this is the partition in which all elements
are in a single block. Following the rightmost path yields the node labels (0123).
This restricted growth string specifies the partition in which all elements are
in different blocks. Following the path with node labels (0102) yields a partition
with 3 and 1 in the same block and 2 and 0 each in separate blocks with just one
element. (End of Example)

The set partition tree is similar to a decision tree. Each node has children nodes
corresponding to all possible choices at that point. Each terminal node corre-
sponds to a partition. Fig. 1 shows, as (additional) terminal labels the index of
the partition. There are 15 partitions in this example, labeled 0, 1, . . . , and 14.

Note that edges are labeled by the part that each contributes to the index.
For example, the edge from the root node to the node labeled 1 has weight 5.
This is because the indices on the right side of the tree corresponding to the
latter node all have index 5 or greater. It follows that the index associated with
each node can be obtained by summing the weights in edges associated with the
path from the root node to the corresponding terminal node.

3 Circuit Implementations

3.1 Sequential Circuit Implementation

Fig. 2 shows a sequential circuit implementation of a set partition converter.
A clock comes in at the right. At each clock pulse, this circuit produces the
next set partition in increasing lexicographical order according to the restricted
growth string. Specifically, it first generates (b0 . . . bn−2bn−1) = (0 . . . 000), then
(0 . . . 001), etc.. At each stage, Counter counts up to a maximum value allowed
in a restricted growth string representation. At this point, it cycles back to 0,
just as is done in a conventional counter digit. The count finishes when bn−1 is
n− 1. At this point, Done is asserted. This could be used externally or it could
stop the clock, preventing the circuit from receiving further clock pulses.

3.2 Single-Stage Combinational Circuit Implementation

Fig. 3 shows the single-stage index to set partition circuit for partitions of size
n = 4. The index comes in on the left, and is tested by five comparators. These
test the range of the index, and determine the first three elements of the restricted
growth string. There are five possibilities, 000, 001, 010, 011, and 012. One
of these five is applied to the one-hot MUX that drives the output. Also, the
threshold is subtracted from the incoming index and the result applied to the
output as the LSD or least significant digit. The threshold values in Fig. 3 are
determined by the set partition tree shown in Fig. 1. They correspond to the
indices associated with the 0 terminal nodes in Fig. 1. The corresponding indices
are underlined in Fig. 1. There is only one stage in this implementation. As is
discussed later, the number of comparators grows is approximated by ( n

ln(n) )
n.
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3.3 Multi-stage Combinational Circuit Implementation

Fig. 4 shows the multi-stage index to set partition converter. Here, the index
comes in on the left and is modified as it passes through the stages. At each
stage, an element in the restricted growth string of the set partition is computed.
For example, in the left stage, b1 is determined. From Fig. 1, it can be seen that,
if the index is 4 or less, b1 is 0. Conversely, if the index is 5 or greater b1 is 1.
It follows that the threshold A in Fig. 4 is 5. Also, if the index is 5 or more,
5 is subtracted from the index and is passed to the next stage. Recall that the
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thresholds against which the index is compared vary according to the maximum
value in the restricted growth string computed so far. In the leftmost stage, the
output value of MAX is 0 or 1. This is passed to the next stage, which uses it to
determine the two threshold values A and B.
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Note that, in a multi-stage index to set partition converter for n = 4, there
are nine comparators. The single-stage index to set partition converter has five.
This raises the question of which circuit is the more compact for general n. This
is addressed in the next section.

3.4 Circuit Complexity and Delay

Note that all three circuits use comparators. Further, the complexity of the other
parts of the circuit is proportional to the number of comparators. For example,
the number of AND gates is nearly the same as the number of comparators,
and the one-hot MUX circuits have about as many inputs as the number of
comparators. Therefore, it will be convenient to measure the circuit’s complexity
by the number of comparator it contains. Note that, in making this assumption,
we assume that the delay and circuit complexity for comparators and multipliers
remains constant as n varies.

Lemma 2. The number of comparators Ci used in a set partition generator is

1) sequential (Fig. 2): C1 = O (n),

2) single-stage (Fig. 3): C2 = O
((

n
ln(n)

)n)
, and

3) multi-stage (Fig. 4): C3 = O(n2).
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Proof
In the case of the sequential set partition generator, each stage has one com-
parator, and there are n− 1 stages.

In the case of the set partition tree, the number of comparators is just the
number of set partitions on n − 1, which is C2 = B(n − 1), where B(n − 1)
is the n − 1-th Bell number. From Berend and Tassa [1], we have B(n − 1) <(

0.792(n−1)
ln(n)

)n−1

. Thus,

C2 = O

((
n

ln(n)

)n)
. (1)

In the case of the set partition tree, the first (leftmost) block has 2 comparators.
The next block has 3, the next 4, etc.. There are a total of n− 2 blocks. Thus,

C3 =
∑n−2

i=2 i = n(n+1)
2 − 2n+ 4, and we can write

C3 = O(n2). (2)

It is clear from Lemma 2 that the multi-stage index to set partition converter
has many fewer comparators than the single-stage converter, especially in the
case of set partitions on many elements. Thus, the case for n = 4 discussed at
the end of Section 3.3 is an aberration. We can also compare the circuits on the
basis of their delay.

Lemma 3. The delay Di in a set partition generator is

1) sequential (Fig. 2): D1 = O(n),
2) single-stage (Fig. 3): D2 = O(1), and
3) multi-stage (Fig. 4): D3 = O(n).

Proof
In the case of the sequential set partition generator, there are n−1 stages through
which a signal must pass. In the case of the set partition tree, there is exactly
one stage, and the delay is independent of n. Thus, this circuit has delay O(1).
In the case of the compact set partition tree, the index must propagate through
n− 2 stages. Thus, the delay is O(n).

Note that, in these calculations, we considered the multi-stage index to set parti-
tion converter to be combinational. When n is large, this circuit has large delay.
In order to improve the throughput, we will create a pipelined circuit by inserting
registers between stages. In the next section, we compare the experimental delay
of a pipelined version of the multi-stage circuit with the combinational circuit of
the single-stage circuit. As a result, the time comparisons will be (significantly)
different from the derived delay.
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3.5 Experimental Data

In the analysis above, we used the number of comparators as a measure for the
complexity. In this section, we use actual FPGA resources. We synthesized the
three circuits discussed above on the Altera Stratix IV EP4SE530F43C3NES
FPGA. Table 2 shows the resource usage for the sequential version.

Table 2. Frequency/resources used to realize the sequential set partition generator on
the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

5 52 6 15 236.2 4.234 42 1 1 12 8 20 22(0%)

6 203 8 18 172.6 5.793 60 2 5 19 13 21 34(0%)

7 877 10 21 156.4 6.393 58 3 1 15 9 30 31(0%)

8 4,140 13 24 130.8 7.643 63 3 3 13 11 33 35(0%)

16 1.05× 1010 34 64 122.1 8.190 245 5 28 87 61 64 135(0%)

32 1.28× 1026 88 160 53.0 18.863 741 3 231 221 94 192 459(0%)

64 1.72× 1065 217 384 25.9 38.584 1923 10 477 659 298 479 1146(0%)

128 1.12 × 10158 526 896 11.0 91.278 3847 13 727 1666 427 1014 2134(1%)

From Table 2, for all values of n ≤ 16, the achieved frequency exceeds 100
MHz. Thus, the sequential partition generator produces one partition per clock
period for all n ≤ 16, where the clock period is 10 ns.. To compare this rate to a
software implementation of a sequential partition generator, we adapted Orlov’s
[13] program and ran it on an Intel�CoreTM2 Duo P8400 processor running at
2.26 GHz. For 8 and 16 element partitions, we achieve a rate of partitions of
one per 94 ns. and 156 ns., respectively. This represents a 9.4 and 15.6 times
speed-up realized by the hardware version over the software version.

The first column in Table 2 shows n. The second column shows the number
of set partitions, the third column shows the number of input bits, and the
fourth column shows the number of output bits. All remaining columns show
circuit parameters provided by the synthesis tool, Synplify Pro. The fifth column
shows the frequency specified by Synplify Pro. The corresponding delay is shown
in the sixth column. The seventh column shows the number of combinational
functions used in the realization. This is an overall measure of the logic resources
used; it is generated in the first step of the synthesis, prior to the technology
mapping process. The eighth through twelfth columns show the number of the
various lookup tables (LUTs) that were used. The thirteenth column shows the
number of packed ALMs used in the realization. The columns that represent
general characteristics, including the number of combinational functions and the
number of packed ALMs, show an approximate doubling of resources used with
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each doubling of n. This suggests a linear relationship between these resources
and n. It correlates with the observed linear relationship between the number of
comparators measure used in the previous section and n. Because of the large
number of partitions, for moderate n (e.g., n = 32), it will be too time consuming
to enumerate all partitions at typical FPGA clock frequencies (e.g., 100 MHz).
However, such designs are useful in understanding the complexity/delay of these
circuits. For index to set partition generators, however, even large n is useful,
for example, if the index is random and the partitions are used in Monte Carlo
simulations.

Table 3 shows the FPGA resources and frequency achieved on the Altera
Stratix IV EP4SE530F43C3NES FPGA by the single-stage combinational logic
index to set partition converter shown in Fig. 3. As discussed, this has short
delay paths. This is indicated by the frequency, which has a relatively shallow
decline as n, the number of elements, increases. Also, as discussed, this circuit
has high complexity. This can be seen in Table 3 by the near 5-fold increase
in the number of combinational logic circuits and by the nearly 5-fold increase
in the number of ALMs as n increases by 1. For the single-stage circuit, it was
possible to achieve an n of only 8, which is significantly smaller that the values of
n achieved for the sequential and multi-stage circuits. In comparing the delay of
the single-stage combinational logic index to the set partition converter with the
multi-stage circuit below, it is important to recall that, unlike the multi-stage
circuit, the single-stage circuit is not pipelined. Thus, the multi-stage circuit will
achieve a higher clock speed. However, its latency will be larger.

Table 3. Frequency/resources used to realize the single stage index to set partition
converter on the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

4 15 4 8 406.3 2.461 5 0 0 0 5 - 3(0%)

5 52 6 15 406.3 2.461 22 0 3 12 4 3 12(0%)

6 203 8 18 250.8 3.988 161 3 10 83 34 31 87(0%)

7 877 10 21 113.2 8.836 882 5 54 538 183 102 469(0%)

8 4,140 13 24 100.5 9.954 4100 32 1416 1223 652 777 2628(1%)

Table 4 shows the FPGA resources and frequency achieved on the Altera
Stratix IV EP4SE530F43C3NES FPGA by the multi-stage index to set partition
circuit shown in Fig. 4. This uses fewer resources than the single-stage circuit in
Fig. 3, but its latency is greater. In the design of the multi-stage circuit, registers
were placed between each stage. As a result, the delay figures shown are reduced,
approximating the delay of one stage. The first index comes out of this circuit
n− 1 clock periods.
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Table 4. Frequency/resources used to realize the multi-stage index to set partition
converter on the Altera Stratix IV EP4SE530F43C3NES FPGA

n # Set In Out Freq. Delay # # LUTs vs # inputs Est. # of

Par- # # (MHz) ns. Comb 7- 6- 5- 4- 3- Packed

titions Bits Bits Fnc ALMs

5 52 6 15 403.5 2.478 57 0 4 19 20 14 35(0%)

6 203 8 18 275.0 3.636 100 1 7 36 38 18 63(0%)

7 877 10 21 227.8 4.389 203 0 8 82 71 42 121(0%)

8 4,140 13 24 203.0 4.926 326 3 20 124 107 72 196(0%)

16 1.05 × 1010 34 64 101.4 9.859 3842 35 718 1524 1130 435 2339(0%)

32 1.28 × 1026 88 160 55.6 17.973 38305 87 3671 19768 8016 6763 21206(9%)

The data shown comes from Verilog code that was written to implement each
of the three circuit types. Synplify Pro was used to design each circuit. Further,
ModelSim was used to simulate each circuit. In the case of the multi-stage circuit,
a MATLAB program was written to produce a header file that was called from
the Verilog code to provide threshold values for the comparators.

4 Concluding Remarks

To the best of our knowledge, our circuits are the first hardware implementations
of set partition generators. The generation of set partitions by hardware has im-
portant practical applications. The challenge is to generate set partitions at one
per clock period. We show two ways to accomplish this. The first is a sequential
circuit that generates the partitions in lexicographical order according to their
restricted growth string. This circuit is fast and can produce partitions of large
sets. The second circuit is an index to set partition converter. In this circuit, an
up counter on the index input produces set partitions in increasing lexicographical
order, while a down counter produces set partitions in decreasing lexicographical
order. Also, a random number generator at the index produces random set parti-
tions. It is combinational, but can be pipelined to produce a set partition at one
per clock. An analysis of the complexity of these two circuits show that the com-
plexity of both grow polynomially with n, the number of elements in the partition,
while the delay grows linearly with n. Also, for both circuits, we show experimen-
tal results that confirm these predictions. Specifically, small to large circuits were
implemented on the Altera Stratix IV EP4SE530F43C3NES FPGA. Our experi-
mental results show that an FPGA running at 100 MHz produces partitions at a
rate that is about 10 times the rate of a software implemented partition generator
on a processor that runs at 2.26 GHz.

Acknowledgements. We thank six referees for comments that improved this
paper.
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17. Stojmenovič, I.: An optimal algorithm for generating equivalence relations on a
linear array of processors. BIT 30(3), 424–436 (1990)

http://www.inwap.com/pdp10/hbaker/hakmem/hacks.html#item175
http://www.jstatsoft.org/
http://www.cs.bgu.ac.il/~orlovm/papers/partitions.pdf


Teaching SoC Using Video Games

to Improve Student Engagement

Christopher J. Martinez

University of New Haven, West Haven CT 06516, USA

Abstract. This paper introduces a project-based course for the emerg-
ing field of system-on-chip (SoC). SoC is allowing for a new perspective
on embedded system education. Previous undergraduate embedded sys-
tem courses have always based around the use of low-end 8-bit/16-bit mi-
crocontrollers (e.g. PIC, Freescale, AVR). The low-end microcontrollers
are good at teaching input/output interface but do not fully explore the
connection of designing the hardware and software interface. SoC allows
for a student to design an embedded system that bridges the two ar-
eas of computer science and engineering. This paper will describe how
a new course in SoC uses an engaging assignment of creating a video
game system. A student will appreciate the hardware and software side
of todays embedded computer systems after completing this course since
the course will require the design of hardware and the design of a soft-
ware system. The paper will show the layout of the current SoC course
and offer suggestions on how the course can be modified to meet the
academic rigor for different programs in computer engineering.

1 Introduction

Computer engineering programs strive to develop a curriculum that will allow
their students to have a deep understanding of hardware and software. There
are hardware focused courses such as circuits, digital logic, etc. that only expose
the students to hardware and do not mention software. Similarly the computer
science courses give a strong foundation in software but will not make a connec-
tion to hardware. The one area where students can see the connection between
hardware and software is embedded systems.

Embedded systems is the hands-on course in a curriculum that can provide in-
sight into the hardware and software interface. Embedded systems are normally
taught as a sequence of courses in most computer engineering programs around
the country. It is common that the embedded systems are two parts: one part
that introduces the student to embedded systems with assembly language and
a second part that has the student create designs using hardware and program-
ming. The embedded systems courses have always been based around the use of
low-end 8-bit or 16-bit microcontrollers, commonly used microcontrollers from
companies such as Microchip, Freescale and Atmel. Embedded system education
has begun to change in recent years with the emergence of system-on-chip (SoC)
technology.
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c© Springer-Verlag Berlin Heidelberg 2013



Teaching SoC Using Video Games to Improve Student Engagement 85

In the past, the University of New Haven had a traditional embedded system
course sequence but has now been redesigned with SoC technology being included
as a part of embedded systems. The first course is now a combination of the old
two-sequence course that now looks at assembly language and industry standard
buses. The SoC course aims to have a course that explores the hardware and
software interface in depth. The SoC course is project-based to encourage student
engagement. The course has the student design a 2D video game system. The
project is a semester long project with hardware and software components.

2 Course Objectives

The course was set out to meet the following educational objectives: 1) Have
an understanding of the EDA tools used in an FPGA SoC, 2) Have an under-
standing of IP cores used in SoC, 3) Have a more in-depth understanding of
the hardware and software interface, 4) Be able to design custom IP cores using
VHDL, 5) Be able to design a complex software application that requires hard-
ware interaction, 6) Have an understanding on the importance of threads in an
embedded system, and 7) Be able to troubleshoot a system with both hardware
and software components.

The first offering of the course occurred in the Fall of 2010. The course was run
with lectures and a number of independent projects that connected with topics
discussed in class. The students would write software using prebuilt IP cores and
not fully understand the connection being made at the hardware level. For the
second offering of the course, the instructor changed the structure of the course
to focus on a semester long project that was larger in scope and complexity. The
previous offering in the Fall of 2010 had 6 projects spread across a 14 week term
and the new offering had 8 projects in the same 14 week term. There were many
examples of SoC courses that used real-world examples [1], [2], [3]. The courses
discussed in [1], [2], [3] were successful and very engaging for the students. All
the courses used robotics to explore the topics of SoC, the instructor decide to
go in a different direction and focus on a video game. Video games have been
explored be used in courses and instructors had great success in engaging the
students [5], [6].

3 Course Project

The course is designed around a 2D video game project. The course has a sched-
uled three-hour lecture and uses the project assignments for assessment of the
students progress. The project was done in pairs and used practical quizzes to
assess each student individually. The course is a heavy workload with 8 projects
so the working in pairs is essential in order to make the course manageable for
the students.

The project requires a mixture of hardware and software components. The
project requires the student to design the hardware for the joystick controller,
VGA interface, and sprite logic in VHDL. The software requires the writing of a
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very simplistic 2D game engine. Figure 1 shows a block diagram of the 2D video
game system.

Fig. 1. SoC block diagram of 2D game system

Laboratory One: Introduction to EDA Tools – The first laboratory assignment
is used to introduce the students to the Xilinx design tools. The students create
a basic SoC that includes a number of Xilinx IP cores (GPIO IP, Timer IP,
UART IP) using the XPS tool. The SDK is used for the students to develop
a simple program that shows how to interface with IP cores and download the
programs to the development board. The students write the same program using
the Timer in two different ways, polling and interrupt in order to make LEDs
blink on and off and have messages written to the UART interface.

Laboratory Two: Hardware for the NES Controller – This laboratory assign-
ment is meant to be a refresher for the students in VHDL. The joystick to control
the video game is from the 1st generation Nintendo (NES). The controller has
8 digital switches for Up, Down, Left, Right, Select, Start, A button and B but-
ton. The controller sends the information using a serial transmission. The goal of
assignment is for the students to read the NES controller by writing the VHDL
for serial communication.

Laboratory Three: Hardware for the Graphics Processor Part 1 – The labora-
tory assignment will focus on creating parts of the 2D graphic processor. The
students learn about the VGA interface and how to design the digital circuit.
The students implement a 640x480 resolution screen and must define the timing
to generate the hsync and vsync signals. Creating the VGA circuit is only part
of the assignment. Students also learn about memory limits in the FPGA chip
and that it will not be possible to define each of the 307,200 pixels in memory.
To reduce the memory footprint the video game system will be sprite-based.
Sprite-based games represent video games using sprite-maps and tile-maps. The
sprite-map is used to store all the elements that will appear on screen. The
tile-map is a 2D array that stores an index to sprite to display on the screen.
The sprites are defined to be 8 pixels by 8 pixels and a tile can hold one sprite.
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A tile is made up of 64 pixels using a screen resolution of 320x240 a total of
1,200 tiles will be needed.

Laboratory Four: Hardware for the Graphics Processor Part 2 – The fourth
laboratory assignment is for students to express their creative side by creating
the graphics for their game and place in the sprite-map. The sprite-map is stored
in the BRAM memory on the FPGA. The students will create enough BRAM
memory space for 32 8x8 pixel sprites. The assignment also creates the back-
ground (walls, floor) and foreground (player and enemies) for the game. This
requires two separate tile-maps, one for the background and one for the fore-
ground. The blending of the two tile-maps is done by the introduction of an
alpha bit for color. If the alpha bit on a foreground sprite is set the foreground
is shown otherwise the foreground becomes transparent.

Laboratory Five: Generating an SoC IP Core – The hardware the students
have created for the joystick and graphics are now combined into the SoC. The
Xliinx XPS tool is used to create a custom IP Core that connects to the processor
bus.

Laboratory Six: Software for the 2D Game Engine Building the Playing Field
– The focus of the class shifts to developing the embedded software for the SoC.
Building the video game requires the creation of a 2D game engine. The game
engine controls what should be placed on the screen, controlling the enemies
& player, game physics, etc. The first part of the game engine is to display
the background for the game. The students create a low-level device driver to
interface with the video IP core. The low-level driver allows the programmer to
select if where data is written to the foreground tile-map, background tile-map,
or sprite-map.

The game is made up of a number of screens that scroll as the player moves
through the game. The games that will be produced are a platform side-scroller,
e.g. Super Mario Brothers. The side-scroller is made up of worlds and levels. In
this assignment the students will create a data structure that can implement
the worlds, levels, and screens. The drawing of a screen is the basic element that
must be developed first. A background screen is made up of elements that repeat
a sprite multiple times. For example, when drawing the floor a programmer will
want to draw a floor sprite 10 times in a horizontal direction. A data structure is
developed to explain how to draw the screen. The screen is represented by an x
and y coordinate that corresponds to a tile on the tile-map. The deliverable for
this project is all the data structures and a demonstration showing the movement
between worlds, levels, and screens.

Laboratory Seven: Software for the 2D Game Engine Building the Player –
The next item that will be added to the 2D game engine is the moveable player.
The side scrolling game will require that a player can traverse the screen in the
horizontal and vertical direction. The horizontal direction will only require the
player to run in both the left and right direction. The game engine will need to
monitor the background and have the player interact with the environment. The
player must stop moving when it encounters a wall, determines it has fallen into
a pit that results in death, or encounters a moveable object in the environment.
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The vertical direction requires the player to be able to jump and climb ladders.
The addition of jumping requires a basic modeling of physics. The game engine
requires a data structure to monitor the player.

In addition this project will require the students to develop a producer and
consumer thread that is time multiplex with the frame rate of the video display.
The producer is the game engine that determines the interaction on the screen.
The producer manipulates the tile-maps. The consumer is executed on a timer
interrupts that transfer data from the C program to the video buffer on the
graphic hardware.

Laboratory Eight: Software for the 2D Game Engine Building the Enemies –
The last laboratory assignment is adding enemies to the 2D game engine. The
students will modify the data structure created for the player and adapt it to fit
the needs of an enemy. The assignment required the creation of three types of
enemies: ground enemy, flying enemy, and final boss. The game engine was also
modified to allow for both the player and enemy to fire bullets at each other.
Figure 2 shows a screen shot of the final game.

Fig. 2. Screenshot of final game from laboratory 8

4 Student Improvement

At the end of the course the instructor asks the students for their feedback using
the common end of course student survey. The students rated their achievement
of the seven course outcomes very highly with an average of 4.25 out of 5.0.
The average improved by 0.14 from the student survey the previous year. The
instructor was able to see that the video game did improve the student engage-
ment in the course. In the Fall 2010 offering of the course (did not use the video
game) the number of late submissions by the students was 45%. In contrast the
introduction of the video game project in the Fall 2011 offering the number of
late assignments were 15%, all late assignments came for a single team pair out
of seven total team pairs. The students final grades had a large improvement due
to the reduction in late submissions. The final grades improved by 6.86 points
(half a letter grade).
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5 Potential Modifications

The eight laboratory assignments described in this paper are guidelines as to
how to create a 2D video game system. Modifications that could be included as
other potential laboratory assignments include: 1) adding sound by creating an
IP-core to access a DAC (music can be done using the karplus-strong algorithm
is hardware or software), 2) a real-time embedded operating system can be used,
and 3) a more advance graphic engine could be created (sprite transformation,
eg. rotation, color change, etc., done in hardware).

6 Conclusion

An example of using a 2D video game system for a project based SoC senior level
course has been presented. The eight laboratory assignments help to reinforce
both hardware and software aspects of computer engineering that students have
gained knowledge of in previous classes. The hardware and software required to
develop is of moderate difficultly and the integration of the two is used to explain
SoC technology and the hardware/software interface. Student comments show
that the course was a positive experience and students were fully engaged in the
course. The material covered in this paper is a foundation to a SoC course and
will be improved in the years to come.
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Abstract. We are applying bandwidth compression to enhance perfor-
mance of FPGA-based custom computing. This paper presents and eval-
uates hardware design of a bandwidth compressor and decompressor for
a floating-point data stream of various bit width. We show their struc-
tures parameterized for a bit width of an input word. Through FPGA-
based prototype implementation, we evaluate the resource utilization,
frequency, and compression ratio. The expermental results show that
the compressor and decompressor for 32-bit and 64-bit floating-point
numbers achieve bandwidth reduction at a ratio of 3.1 and 1.8 for 2D
data of fluid dynamics computation, while they require only small area
and operate at higher than 200MHz.

Keywords: bandwidth compression, floating-point data stream, custom
computing, parameterized design.

1 Introduction

Stream computation is one of the useful and promising models to accelerate
scientific computations with a custom computing machine. It can exploit a
memory bandwidth with a successive and regular access pattern, achieving high-
performance computation efficiently. Moreover, pipelining in stream computa-
tion allows higher performance to be obtained by using more hardware stages
with a limited memory-bandwidth [9, 13]. However, memory bandwidth is still
important to fundamentally increase achievable performance of stream compu-
tation. Since it is not easy to drastically increase the bandwidth of off-chip I/O
pins, present and future semiconductor chips are perpetually suffering from the
insufficiency of I/O bandwidth, while on-chip computing resources can be in-
creased easily by technology scaling.

To handle the problem, we have proposed hardware for bandwidth compres-
sion of numerical data in stream computation [8,14,20]. The hardware performs
high-throughput lossless compression of a floating-point data stream.With band-
width compression, we can enhance an available memory bandwidth for com-
putation by compressing data on the fly. The physical bandwidth of memory
can efficiently be utilized with compressed data streams where redundancy of
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Fig. 1. Stream computation with/without bandwidth compression

bits is reduced. The lossless feature guarantees the complete reconstruction of
original data, so that stream computation is not collapsed by bandwidth com-
pression. Fig. 1 shows the stream computation with and without bandwidth
compression. If the compressor reduces the data size to 1/r of the original size
on average, we can substantially use the physical stream bandwidth as r times
wider bandwidth. Since stream computation is inherently tolerant to the num-
ber of its pipeline stages, the delay cycles increased by the decompressor and
compressor do not affect the overall performance of the stream computation as
long as a throughput is maintained. Therefore, we require only high-throughput
processing for compression and decompression.

So far, we have presented algorithms for lossless compression of a floating-
point data stream, and designed high-throughput compressor and decompressor
only for 32-bit single-precision floating-point numbers [8,20]. They demonstrated
that the prediction-based algorithm achieves the compression ratio of about 3.5
for results of scientific computation, such as computatonal fluid dynamics (CFD).
This means that the stream bandwidth can be enhanced to 3.5 times wider for
CFD computation. Moreover, they also demonstrated that the compressor and
decompressor are very small. Since the compressor and the decompressor are
auxiliary hardware for computation itself, they should be implemented in small
area, as long as high-throughput compression is available.

However, we also use different bit widths other than the 32-bit single-precision
in actual computations. Most of scientific computations are based on operations
of the 64-bit double-precision, and some of them may require higher precision
such as the 128-bit quad-precision or more. Difference in the bit width can change
the hardware area and the compression ratio. Moreover, each of the components
in the compressor and decompressor has different complexity to the bit width,
and therefore a critical-path can be found in a different stage depending on the
bit width, while the hardware is designed to easily be pipelined. For practical
usage of bandwidth compression, we should know trade-offs among a bit width,
area, frequency and a compression ratio.

In this paper, we present and evaluate a parametrized design of the compressor
and decompressor for various bit widths. We design components as parametrized
hardware modules, and then put them together to build the compressor and
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decompressor. With an FPGA-based prototype system, we evaluate resource
utilization, operating frequency, and a compression ratio of the compressor and
decompressor for a different bit width.

This paper is organized as follows. Section 2 gives related work. Section 3
briefly describes the prediction-based algorithm for floating-point lossless data-
compression, and the design of the compressor and decompressor. And then we
show their parametrized structure for a given bit width. In Section 4, we verify
and evaluate the compressor and decompressor implemented with a prototype
system on FPGA. Finally, Section 5 gives conclusions and future work.

2 Related Work

Since bandwidth compression requires high-throughput, hardware implementa-
tion is necessary. So far, hardware-based bandwidth compression techniques have
been researched for audio [10], video [5], and arbitrary data in a main mem-
ory [19] or in streaming transfer [4,15]. However, these techniques cannot directly
compress floating-point data at a high compression ratio because they don’t well
exploit characteristics of floating-point numerical data.

Several lossless compression algorithms have been proposed to directly com-
press floating-point data. Lindstorm et al. [11] proposed a compression algorithm
that combines prediction and entropy coding. They achieved high compression
ratios for 2D and 3D data sets by using 2D or 3D prediction functions. Ratana-
worabhan et al. [12] proposed compression for double-precision floating-point
numbers using a hash table for context-based prediction. Their algorithm also
achieved high compression ratio when using a sufficiently large table. These tech-
niques achieve a better ratio than that of the other algorithms, however, they
are designed for software implementation that provides insufficient throughput
for bandwidth compression.

Tomari et al. [18] proposed an algorithm for hardware-based high-throughput
decompression of double-precision floating-point data stream. They perform com-
pression by software. Their FPGA-based implementation achieves high through-
put decompression with a simple structure to look up a history table. However,
the throughput of the software-based compression is limited. Their target is data
transfer between a host node in a PC cluster and its accelerator, while we aim at
bandwidth compression of data stream in a custom computing machine. In addi-
tion, their compression ratio is not high, which is at most 1.21, because only the
sign and exponent bits are encoded while the significand bits are output as they
are. Furthermore, they did not design and evaluate hardware for other precisions
such as the single precision.

We design hardware to directly compress and decompress a floating-point
data stream in stream computation. The hardware compressor and decompressor
achieve a better compression ratio than that by general-purpose compressors
such as bzip2. The design is parameterized for floating-point data with various
precisions including 32-bit single, 64-bit double, 128-bit quad, and 256-bit octa-
precision. We evaluate compression ratio, area, and frequency of FPGA-based
prototype implementation for the parametrized design.
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3 Algorithm and Design of Bandwidth Compressor

3.1 Requirements

To select an algorithm and design hardware, we considered the following require-
ments of bandwidth compression applied to stream computation with floating-
point operations: 1) lossless compression, 2) as high compression ratio as possi-
ble, 3) single-pass compression, and 4) high-throughput, but small hardware cost.
First, we have to guarantee the same data are reconstructed from compressed
data because additional errors should not be introduced in scientific computa-
tion. Therefore, compression must be lossless. Second, compression ratio should
be as high as possible to improve memory bandwidth. Third, compression has to
be performed locally because entire data are not available in advance of stream
computation. Single pass means that entire data are traversed only once.

So far, several prediction-based lossless algorithms have been proposed [2,6,7,
11, 12], to directly compress floating-point data. The algorithms achieve higher
compression ratios than general-purpose compressors such as bzip2 [1]. They are
single-pass algorithms because each datum is locally compressed based on data
prediction. In these algorithms, a value of the next input is predicted by using
previous input values, and it is encoded with a difference between the prediction
and the actual value. Since they satisfy the requirements 1 to 3, we focus on the
prediction-based compression algorithms.

The prediction-based algorithms are classified into two groups for the way
of prediction: arithmetic-based one [6, 7, 11] and context-based one [2, 12]. The
arithmetic-based algorithm uses an arithmetic predictor to obtain the prediction
by computation. The context-based algorithm uses a hash table to look up pre-
vious input phrases that is the same as the present phrase to predict the next
input. For the fourth requirement, we select the arithmetic-based algorithm be-
cause it allows hardware to be faster and smaller than that for the context-based
algorithm. The hash table requires a large on-chip memory and update of the
memory for every prediction limits an operating frequency. Especially, we pro-
posed to use 1D polynomial for arithmetic prediction [8, 14] to reduce a buffer
memory that is used to store the previous input data.

3.2 Prediction-Based Compression Algorithm

We compress a data stream S = {..., fi−1, fi, ...} of IEEE754 floating-point num-
bers. Such a data stream is made by traversing a 2D or 3D grid. For fi, the com-
pressor computes its prediction pi with some of the previous inputs stored in a
buffer memory. When prediction is made with good accuracy, difference between
fi and pi has many zeros from MSB because pi has a closer bit pattern to that
of fi. By encoding these zeros with their length, we represent the difference with
fewer bits than fi.

Predictors. The computational results of scientific simulation such as CFD
typically have some spatial continuity because they are solutions of the partial
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differential equations governing the physical phenomena. For prediction, we ap-
proximate them locally with a polynomial function, which is called a polynomial
predictor. This is similar to the idea given in [3].

Suppose that a numerical sequence S = {..., fi−1, fi} is a set of regularly
sampled values of a 1D function f(x), so that fi = f(xi) = f(iΔx) for integer i.
Assuming that f(x) is locally approximated by the (n− 1)-th order polynomial
function f(x) = a0 + a1x + a2 + x2 + ... + an−1x

n−1, we can predict the next
value fi = f(iΔx) by determining all ak and computing f(x) for x = iΔx. We
can determine the n parameters, ak, by evaluating the Lagrange polynomial [3]
with the n previous values, {fi−n, ..., fi−1}. Considering Δx = 1 for simplicity,
we obtain polynomial predictions, pi, as follows:

pi = 4fi−1 − 6fi−2 + 4fi−3 − fi−4 for n = 4. (1)

We refer to this predictor as a 1D cubic polynomial-predictor or simply a Cubic.

Difference Encoders. We encode the difference between pi and fi with number
of successive zeros fromMSB, called leading-zero count (LZC), and the remaining
bits. We refer to the remaining bits as a residual, and denoted it with r. To obtain
the difference, we adopt integer subtraction [11] instead of XOR difference [2,12]
because subtraction generally gives better compression ratios [14]. For integer
subtraction, we transform a floating-point number f to an unsigned integer F
by flipping the sign bit of f for a positive number or all the bits for a negative
number with magnitude scale maintained after the transformation [11]. As a
result, positive and negative floating-point numbers are mapped continuously
to the higher and lower space of unsigned integers, respectively, allowing closer
numbers to always give smaller difference in bits. After pi and fi are transformed
to their mapped integers, P and F , we compute D = P − F for P > F , or
D = F −P for P ≤ F . We also output whether P > F or not, with an exchange
bit, ex, where ex = 1 for P > F and 0 for P ≤ F .
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Then we obtain LZC of D. The raw LZC can be recorded directly, however we
adopt 4-bit coding [2,12,14] for easier handling of a variable length of the residual.
Here suppose that a floating-point number has 32 bits for single precision. In
this case, the raw LZC can be 0 to 31, which is represented in 5 bits. The
residual has (32 − LZC) bits. On the other hand, the 4-bit coding represents
LZC with a multiple of 4. For example, LZC=15 naively gives 17 residual-bits.
In the 4-bit coding, the LZC is truncated to 12, and the residual becomes 20
bits being padded with 0s. The 4-bit coding is expected to have the advantage
of 4-bit alignment that allows us to more simply output residuals with variable
bit-length. Finally, we output a compressed datum that consists of the exchange
bit ex, 3-bit �LZC/4�, and the variable-length residual r.

3.3 Overview of Hardware Compressor and Decompressor

Based on the compression algorithm mentioned above, we designed hardware
compressor and decompressor for a single stream of single-precision floating-
point numbers [8]. Figs.2a and b show the overviews of the compressor and the
decompressor, which are pipelined with four and three stages. Datum from a
floating-point data stream, {fi}, is input to the compressor one by one every
cycle, and then the compressor outputs a compressed bit-stream {(ex,LZC, r)i}.
The compressor is composed of a binary transform unit (BTU), a predictor with a
buffer, a difference-computing unit (DCU), an LZC unit (LZCU) and a variable-
to-fixed length converter (VFCONV).

The input floating-point datum f is firstly transformed to an unsigned inte-
ger F by BTU as discribed in section 3.2. The obtained integers are stored in the
buffer while it is also sent to DCU in the next pipeline stage. The buffer stores
a necessary number of previous inputs. Then the predictor computes Eq.(1) to
give prediction P for the current input F . Fig.3 shows the cubic predictor and the
shift buffer, which requires the four inputs from the shift buffer in parallel. The
integer transformation allows us to use integer operators for prediction instead of
floating-point operators with high hardware costs and longer delays. Our prelim-
inary experiments show that the prediction in mapped integers provides almost
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the same compression performance as the floating-point prediction, especially for
floating-point numbers whose exponents rarely change [8].

DCU computes the difference, D, between P and F by subtracting the smaller
from the larger after swapping P and F if necessary. DCU also outputs the ex-
change signal, ex, which is asserted when P and F are swapped. LZCU computes
(LZC) of D. Finally VFCONV outputs words of compressed data, which are of
{r,LZC, ex}.

The decompressor consists of a fixed-to-variable length converter (FVCONV),
the predictor with the buffer, a data-reconstruction unit (DRU) and an inverse
binary transform unit (IBTU). The predictor and the buffer are the same as those
of the compressor. The decompressor outputs the original floating-point data
stream processing the compressed data stream. FVCONV generates D with ex,
LZC and r. The predictor gives prediction P with the previously decompressed
numbers stored in the buffer. DRU reconstructs mapped integers of the original
data, F , with D, P and ex by inversed operation of the difference-computation.
Finally IBTU transforms F to its original floating-point number f .

3.4 Parametrized Design

For the compressor and decompressor to process various bit width w, we pa-
rameterize their design. Here we describe structures of the major components:
the predictor, VFCONV, FVCONV, and the LZCU. The other components are
simple, and easy to be parameterized.

As shown in Fig. 3, the width of the buffer and operators in the predictor is
parameterized with w. Fig. 4 shows a structure of the VFCONV. The VFCONV
converts variable-length inputs to w-bit fixed-length outputs by using the pointer
and the buffer. The pointer manages the MSB position of the data in the buffer.
According to the pointer, the left barrel shifter adjusts the bit position where the
input is inserted in the buffer. The VFCONV is composed of the two data-paths to
update the pointer and the buffer, respectively. Here we define three parameters,
w0, w1, and w2, which are the length of the raw LZC, width of the buffer, and the
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length of concatenated data of D, and LZC/4, and ex. They are obtained by the
following equations: w0 = log 2w, w1 = 2w + w0 − 1, and w2 = w + w0 − 1.

Fig. 5 shows the FVCONV in the decompressor, which also has the pointer
and buffer for conversion. The pointer is updated according to the update status
of the buffer. The data in the buffer is shifted by the right barrel shifter when a
datum is output from the buffer. The FVCONV is also parameterized with the
parameters, w, w0, w1, and w2.

Figs. 6 and 7 show the LZCUs for 16-bit and 32-bit inputs, respectively. We
designed LZCUs for various bit width by using a 4-bit LZC unit, called LZCU4.
The LZCU4 has a 4-bit input and outputs of 2-bit lzc and 1-bit non-zero (nZero)
signal. We built an LZCU for a 16-bit input, called LZCU16, with five LZCU4s
as shown in Fig. 6. In the LZCU16, we also have the leading-segment selector
for 4 (LSS4) to select one from four lzc from the four LZCU4s. The 4-bit lzc
of the LZCU16 is generated by concatenating the 2-bit lzc from the second-
stage LZCU4 and the LSS4. Thus we can compose a four times wider LZCU by
combining four LZCUs. Note that we can also compose two times wider LZCU
by combining two LZCUs with LSS2 as shown in Fig. 7.

4 Implementation and Results

4.1 Implementation

To evaluate area, frequency, and compression ratio of the compressor and
decompressor for various bit width, we implemented them in the FPGA-based
prototype system as Fig. 8 shows. We used a Terasic DE4 board [16], which has
ALTERA Stratix IV EP4SGX230 FPGA, two DDR2 memories, and PCI-Express
Gen 2.0. The FPGA is from the high-end 40-nm FPGA series, which has 182400
ALUTs (adaptive lookup tables). The system is designed by using the ALTERA
Qsys development tool. We implemented four systems with the compressor and
decompressor for 32-bit, 64-bit, 128-bit, and 256-bit floating-point data streams,
respectively. In addition to the compressor and decompressor shown in Fig. 2,
we also implemented controllers for them to have Avalon-ST interface, which is
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Table 1. Latency of pipeline stages in compressor and decompressor

Module Bit width
Latency [nsec]

Stage 1 Stage 2 Stage 3 Stage 4

Compressor

32 3.286 3.377 3.296 3.735

64 3.527 3.857 3.385 4.077

128 5.042 4.223 4.097 4.684

256 7.041 5.84 5.886 6.089

Decompressor

32 3.232 4.103 3.3 -

64 3.361 4.641 3.926 -

128 5.042 5.044 4.084 -

256 7.262 7.036 5.898 -

ALTERA’s stream bus standard in Qsys. We wrote a parametrized Verilog-HDL
codes for the compressor and decompressor, and compiled them using Quartus II
compiler ver.11.1 with “speed” option. The compressor and decompressor operat-
ing at 125MHz in the system are connected to the DDR2 memories via the DMA
controllers, so that we can stream data into them from the memories.

4.2 Area

Fig. 9 shows resource utilization for the compressor and decompressor of differ-
ent bit width. The “others” means the pipeline registers and some glue logics to
connect the modules. For both of the compressor and decompressor, the number
of ALUTs increases almost linearly. In the case of 32-bit width, the compressor
and decompressor consume 764 and 689 ALUTs, respectively, which corresponds
to only 0.42% and 0.38% of the total ALUTs on the FPGA. This means that they
can be implemented in very small area. In the case of 64-bit width, the compres-
sor and decompressor are still small, consuming only 1.01% and 0.89% of the to-
tal ALUTs, while the 256-bit designs require 3.87% and 4.33% ALUTs for the
compressor and decompressor, respectively. The FVCONV and VFCONV occupy
more than half area in the compressor and decompressor, respectively, because of
their barrel shifters. The predictor is smaller than the FVCONV and VFCONV.
This is because the constant multipliers are actually implemented with bit shift.

The number of registers also increases as bit width increases, however, their
consumption is not so high. The predictor consumes more registers than those of
the VFCONV and FVCONV for its shift buffer. The registers for the others of
the compressor much more than those of the decompressor because the pipeline
registers require more bits in the compressor. No DSP block and no block memory
are utilized in the compressor and decompressor, so that these units can be used
by major hardware modules for computation.
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4.3 Frequency

Fig. 10 shows maximum operating frequency for different bit width. The com-
pressor and decompressor can operate at higher than 232MHz and 201MHz for
both 32-bit and 64-bit, respectively, while the frequency decreases as bit width
increases. However, frequency higher than 120MHz is still available for both 256-
bit compression and decompression. Table 1 shows latencies of pipeline stages.
The compressor has a critical path in the stage 4 including VFCONV for 32-bit
and 64-bit, while the stage 1 including the predictor becomes a critical path for
128-bit and 256-bit. This is because the latency of the adders in the predictor gets
longer than that of the barrel shifter in VFCONV for wider bits.

On the other hand, the decompressor has a critical path in the stage 2 with
the predictor for shorter bits, while the stage 1 including FVCONV gets to have
a critical path for 256-bit. This is because the stage 2 has a long critical-path for
the DRU, buffers, and the predictor. The path from the pointer to the buffer in
the VFCONV gets long for large bit width due to the left barrel shifter and w-bit
right shifter in the path.
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4.4 Compression Ratio

We evaluated a compression ratio, which is defined with (Size of original data)
(Size of compressed data) , for

different bit width. For evaluation, we used the test data and the CFD data shown
in Figs. 12 and 13, respectively. The test data are obtained by sampling a function,

fi = sin
(

2παx2

327682

)
+ β, at 32768 points.We used GNU MPFR (multiple-precision

floating-point computations with correct rounding) library [17] to compute it for
32-bit and 64-bit floating-point numbers. The CFD data are obtained by comput-
ing fluids in the 2D Laval nozzle. The data are of a 101× 301 orthogonal grid in
generalized curvilinear coordinates, which contains velocity, pressure, tempera-
ture and specific heat value at constant pressure.

Fig. 11 shows the compression ratio. The compression ratios of the test data
tend to be higher for smaller α and β, because such parameters make smaller pre-
diction errors between adjacent samples in compressing the test data. As a result,
the 32-bit and 64-bit compressions achieve the maximum compression ratio of 3.9
and 5.2, respectively. This means that they can reduce bandwidth at a degree of
3.9 and 5.2, respectively, for 32-bit and 64-bit compressions. On the other hand,
the CFD data gave lower compression ratios than those of the test data, which are
3.1 and 1.8 for 32-bit and 64-bit compressions. This is due to the less continuity
in the CFD data than the test data, however, the results show that bandwidth
compression is also available for such computational data. In all cases, our com-
pressor achieves equal or better ratios than those by the bzip2, a general-purpose
software compressor.

Considering hardware utilization, compression performance per area is high for
narrower bit width such as 32-bit and 64-bit. When we compress the computa-
tional data of Fig. 13, we can reduce bandwidth at a degree of 3.1 and 1.8 by
consuming only 0.4% to 1.0% ALUTs. Since these bit widths are commonly used
in scientific computation, our hardware-based compressor is especially useful for
bandwidth compression in typical computation with single-precision or double-
precision floating-point operations.

5 Conclusions

This paper presents the hardware designs and the evaluation of the bandwidth
compressor and decompressor for a floating-point data stream in various bit width.
We show the structure of these modules parametrized for a bit width of input
word. By implementing the compressor and decompressor with FPGA, we eval-
uated the resource utilization, frequency, and compression ratio. The compressor
allows to compress the 32-bit and 64-bit CFD data at a ratio of 3.1 and 1.8, respec-
tively, operating at higher than 200MHz and consuming only small logic resources.
These results mean that the bandwidth compressor for single and double-precision
floating-point numbers is very useful for bandwidth compression at a low hard-
ware cost. The hardware for wider bit width requires much more resources, and
therefore it should be used when bandwidth compression is significantly required.

In our future work, we will evaluate the hardware for other numerical data types
inclusing integer and fixed-point numbers. we will also develop a comrpessor and
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decompressor for multiple floating-point data streams, which are applied to our
FPGA-based custom computing machine for fluid dynamics simulation.
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Abstract. Dense matrix-matrix multiplication over small finite fields
is a common operation in many application domains, such as cryptog-
raphy, random numbers, and error correcting codes. This paper shows
that FPGAs have the potential to greatly accelerate this time consum-
ing operation, and in particular that systolic array based approaches are
both practical and efficient when using large modern devices. A number
of finite-field specific architectural optimisations are introduced, allow-
ing n × n matrices to be processed in O(n) cycles, for matrix sizes up
to n = 350. Comparison with optimised software implementations on a
single-core CPU shows that an FPGA accelerator can achieve between
80x and 700x speed-up over a Virtex-7 XC7V200T for GF (2k), but for
GF (3) and larger finite fields can provide practical speed-ups of 1000x
or more.

Keywords: Galois Fields, Matrix Multiplication, Finite Fields, FPGA,
Hardware Acceleration, Systolic Arrays.

1 Introduction

Matrix multiplication over finite fields (FF) is a common operation in many fields
of science and engineering. One example is in cryptanalysis, where chained oper-
ations described as matrices must be multiplied together before being analysed
for flaws [1]. Another is in the design of random-number generators, where expo-
nentiation (i.e. repeated multiplication) of dense matrices is used to determine
the period and quality of random number generators [2]. However, since ma-
trix exponentiation is built on top of the matrix-matrix multiplication (MMM)
kernel, performing fast MMM operations is the primary concern of this paper.

Current work published on the topic of MMM hardware acceleration has pri-
marily been focused on the ring of real numbers (R), represented as floating
point and fixed point number representations such as in [3] and [4]. The research
presented here hopes to expand upon this by investigating how this operation
can be instead accelerated over FFs through use of an FPGA.

This paper explores how best to use FPGAs for MMM over finite fields, both
in theoretical terms and practical terms. Our key contributions are:

– An analysis of the different available time-resource complexity trade-offs,
showing that a large systolic array using O(n) steps and O(n2) parallel com-
puter resources is most appropriate for modern FPGAs.

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 103–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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– A flexible architecture for implementing MMM in current FPGA fabrics,
which allows a single hardware description to be specialised for both matrix
size and field size without any code changes.

– Evaluation of the hardware accelerator against existing software libraries,
showing that while moderate speedup is achievable over GF (2) and GF (2k),
i.e. bits and strings of bits, it is possible to achieve speedups upwards of
1000× for larger field sizes.

2 Background

Finite Fields: A finite field consists of a set of finite elements and two oper-
ations, addition and multiplication. They are often refered to as Galois Fields,
GF (p) where p is the number of elements within the field also known as the field
size and is prime. For the purposes of this paper the number of bits b required to
represent all p elements of the field is known as the field width. Certain properties
also need to be satisfied in order to be classified as a finite field, as outlined by
Shoup[5]. It is also possible to create finite fields for field sizes GF (pk) where k is
a positive integer, these are sometimes referred to as extension fields. However,
performing multiplication and addition is slightly more involved as each element
is represented as unique polynomial expressions. The designs in this paper will
deal with operations over GF (p) and GF (pk) where p is a prime number, as it
is possible to represent the fields as integers or polynomials and construct tables
for multiplication and addition[6].

MMM Algorithms: The naive MMM operation computes the dot product of
the corresponding row of the first operand matrix with the corresponding column
of the second operand matrix for every element of the resultant. Therefore for
square matrices of size n the asymptotic time complexity of the operation is
O(n3).

More sophisticated algorithms improve this asmyptotic complexity, such as
Strassens algorithm [7] or the Coppersmith-Winograd algorithm [8]. Strassens
algorithm trades fewer multiplication operations for cheaper addition operations,
reducing the complexity to ≈ O(n2.8074), while the Coppersmith-Winograd al-
gorithm reduces the time complexity of the operation to O(n2.3727).

The reduced complexity often comes at the expense of numerical stability
which is a problem when using floating-point, but in the case of FFs all operations
are exact[8]. However, these methods require large matrices that are outside the
scope of what this paper aims to investigate.

3 Analysis

Both GPUs and FPGAs lend themselves readily to exploiting data parallelism.
In this case FPGAs are preferred since the operation is being performed over
finite fields and FPGAs are capable of performing functions using customised
bit-widths, allowing the architecture to be tailored to the field size. In contrast,
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GPUs have fixed bit-widths meaning that some parts of the databus and func-
tional units would be unused for most field sizes which typically only equire a
few bits to represent them.

FPGA primitives are called Look-Up-Tables (LUTs) which are typically ar-
rays of SRAM cells. Li is used to specify the maximum number of LUT inputs
available on a particular FPGA. Each combination of the Li inputs has a corre-
sponding SRAM cell, which means that these LUTs can be used to build complex
computational functions.

It is possible to construct finite field multiplication and addition hardware as
a table in LUTs. For small field sizes this will save a lot of resources compared
to expensive modulo p, addition and multiplication hardware. However as the
field size increases there will come a point where traditional hardware will start
to be less resource intensive than using tables.

Due to the nature of this problem a direct tradeoff between the FPGA hard-
ware usage and the time complexity exists. This section proposes four hardware
algorithms that explore this tradeoff. Three metrics are used to analyse each al-
gorithm, the resource complexity which is the rate the hardware resources usage
increases as the problem size increases; time complexity which is the number of
cycles that the operation takes to complete as the problem size increases and
space complexity which is the rate that the amount of working memory (RAM)
required to store the matrices increases as the problem size increases.

On top of these core metrics other factors also need to be considered for each
design. The locality and complexity of routing between logical units is also im-
portant, as the longest connection, known as the critical path, will determine
the maximum clock rate that the device can operate at. For all the algorithms
it is assumed that the required matrices are all stored in block RAM, within
the FPGA device, as the bandwidth to external memory is typically an order
of magnitude lower than the bandwidth to block RAM. We assume that the
number of MMMs executed on the FPGA will be large, with movement to and
from main memory relatively infrequent. This is true in the case of MMM ex-
ponentiation, as well as blocked MMM operations which is where matrices are
partitioned into submatrices, such as in Strassens algorithm.

Algorithms: Figure 1 shows diagrams for the sequential, vector parallel, systolic
array and fully parallel algorithms. For all the algorithms analysed, the space
complexity was never a limiting factor so will not be considered when comparing
the various algorithms since FPGAs have a lot of BRAMs.

The sequential algorithm in Figure 1(a) has one multiplier, one adder and an
accumulation register. This gives it a low (constant) resource complexity however
it has a high time complexity of O(n3) for a n× n MMM operation.

The vector parallel algorithm in Figure 1(b) has nmultipliers and n−1 adders.
This architecture has a poorer resource complexity compared to the sequential
implementation however since this computes a dot product in parallel, the time
complexity is reduced to O(n2).
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A systolic array (SA), seen in Figure 1(c), is a mesh topology of processing
elements (PEs) that are all locally connected to their immediate neighbours [9].
Data is fed into the PEs at the edges of the array and each PE passes data
along to its immediate neighbours on the right and beneath. Each PE works in
parallel to compute the dot product required for each element of the resultant.
To compute each dot product requires n cycles so the overall algorithm has a
time complexity of O(n). However each PE requires an adder and multiplier, and
since there are n2 elements of the resultant the resource complexity is O(n2).

Finally Figure 1(d) shows a fully parallel implementation where every oper-
ation of every dot product is computed in parallel. This operation requires a
large amount of resources with a complexity of O(n3), but it has constant time
complexity.
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Fig. 1. Diagrams of MMM algorithms

For each of the algorithms presented in this section the amount of FPGA
resources used in terms of LUTs and the number of cycles taken to perform each
operation were estimated and graphed shown in Figure 2. For all estimates it is
assumed that the operation is being performed over GF (2) and that the data
required is already present on the FPGA device, i.e. zero data transfer time, for
measured results in real devices see Section 5. These graphs demonstrate the
tradeoff between hardware usage and the number of cycles required to complete
the operation.
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Figure 2 demonstrates that the largest matrices that could be processed on
an XC7V2000T for the fully parallel algorithm operating over GF (2) is approx-
imately 70 × 70, and it would take considerable synthesis effort to reach this
already quite small size. This algorithms is also 3D and would be difficult to
place and route since FPGAs are physically 2D structures. To supply inputs to
this algorithm also requires an unrealistically high bandwidth of data and for
these reasons this design was not considered. In the vector parallel architecture
the adder chain grows as the problem grows. This produces a long critical path
and routing complications for large n. The sequential algorithm has a very poor
time complexity and will definitely not be able to outperform standard software
techniques.

This leaves the systolic array (SA) as the chosen design. This algorithms
provides a middle ground between the fully parallel implementation and vector
parallel. Figure 2 shows that on a XC7V2000T matrices of up to ≈ 400 × 400
for GF (2) should be supported. However, these are not the only motivating
factors behind choosing the SA design. It has the same data bandwidth as the
vector parallel architecture yet a much higher performance and every connection
between the PEs are local and highly structured which makes the critical paths
small and device placement easier.
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4 Proposed Solution

Systolic Array: When designing a SA (systolic array) two important things
need to be considered: how does data flow from PE (processing element) to PE,
and how are the hundreds of PEs controlled in order to ensure that data is sent
and received at the correct point in time.

Figure 3 shows how data moves through a SA. Each processing element mul-
tiplies and accumulates data present at both its inputs. At the same time input
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data is passed across to the PE’s direct neighbour on the right and passed down
to the direct neighbour below.

Each PE calculates an element of the resultant and in order to do this each
must perform a dot product operation. This dot product occurs sequentially
using single cycles multiply-add-accumulates and a total of n cycles is required.
To ensure that the correct elements of the operands rows and columns appear
at each PE at the appropriate time the inputs need to be skewed in the fashion
demonstrated in Figure 3. This has two effects: first, since the SA needs to fill
and drain it increases the number of execution cycles by a constant factor; and
second, since the inputs need to be skewed it either increases the amount of
BRAM used to store the inputs, or increases the logic resources used to form
delay logic to skew the input.

Figure 3 shows how the two input matrices pass through the SA as two wave-
fronts that combine to form a wavefront of computation. Once the computation
wavefront has fully passed through a PE, the value of the corresponding element
of the resultant is contained in the PEs internal accumulation register. This is
shown as the PE being filled with a pattern in Figure 3.

t=1

....

t=3

....

t=5

....

t=7

Fig. 3. Diagram to show how data flows through the processing elements of a 2 × 2
systolic Array

The Processing Element: The PE is the most fundamental part of the SA.
Any small reduction in the resource requirements of the PE design will result in
a large reduction for the overall SA, as they are unrolled n2 times. This section
explains how the size of the PE was kept as small as possible through optimising
the required control signals and the arithmetic hardware.

Figure 4(a) shows the internals of a processing element, where data is fed
into the left and the top inputs and multiplied. The result of this multiplication
is then accumulated and stored inside a central register. Multiplexers A and B
control the result outputs, which are either assigned the value of the result inputs
or the value stored in the accumulation register, as discussed further later.

Since this design is for small finite fields, the multiplication and the addi-
tion are performed by generating a look-up table for all the possible inputs of
each operation across the entire finite field which is then stored in LUTs. This
makes multiplication and addition faster and smaller but limits the design to
small prime fields. If we define ML as the number of LUTs required to build a
multiplication circuit, p as a prime number of field elements (field size) and b
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as the number of bits required to represent all p elements (field width), where
b = �log2(p)� then this method only pays off when the condition b� b

Li
� < ML is

satisfied.
Before an MMM operation occurs the accumulation register of every PE needs

to be reset. Each PE also needs to be aware of when it has completed a full dot-
product operation. A symbol can be propagated through the inputs of the PE
to perform both of these tasks. Since this architecture is operating over a prime
finite field, p, all the numerical operations occur on numbers in the range of 0
to p − 1. With the exception of a special case where p = 2 the size of all the
prime fields will be odd numbers. This means that not all the combinations of
the b bits will be used. In particular the numerical value of p can be represented
by b bits but does not represent a valid field element. The value p can be used
as the control signal since it is unused and does not require any extra bits to
represented it.

The multiplication and addition results will not entirely fill the LUTs except
for the case when operating over GF (2k). This extra space can be used to add
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reset functionality. Figure 5(b) shows how the reset signal takes up space in the
LUT. It can be seen that for GF (2k) this method is identical to having an extra
reset wire between the PEs. However for the case when operating overGF (p > 2)
this is an improvement as no extra wires are required. So this method is at worst
the same as having an extra reset wire, and in the best (and most common) case
reset functionality is achieved for free.

In order to realise this the LUTs need to be adapted in the following manner:
when a value p appears at either input of the multiplication LUT the output is
the value p thus passing the reset signal onto the addition LUT. By modifying
the addition LUT so that any number added to p returns 0, it is possible set the
accumulation register to 0 regardless of that register’s current state. An example
of how the multiplication and addition tables are extended for GF(3) can be seen
in Figure 5(a).

Extracting Data from PEs: Every element of the resultant is calculated and
stored in the corresponding PEs accumulation register, so there needs to be a
method for extracting these results once the multiplication is complete. The value
p is fed into each PE once it has completed to reset the accumulation register, so
this value can also be used to indicate that the PE should stream out its result.
Figure 4(a) has four wires, rin bottom, rin right, rout top and rout left which are
used to stream out the result in the opposite direction of the input data. The
following simple rules demonstrate how data can be extracted from the SA in
the same skewed format as it’s input. Figure 6 demonstrates these rules for one
row or column of a 3×3 SA. If a p (reset signal) is detected at the input of a PE
then the rout ports are assigned the value of the accumulation register, otherwise
they are assigned the values present at the rin ports. This method preserves the
same staggered data format as the input and allows it to be fed straight back
into the SA even if the previous result has not yet completed, giving the system
an effective throughput of n cycles. Figure 6 also demonstrates that if p is fed
into the rin ports of the PEs along the bottom and right edges of the SA then
there is a reset signal present at the start and end of the output data.

5 Results

The previous sections present an argument for using a systolic array based ar-
chitecture for MMM over finite fields, and provide a parametrisable concrete
architecture designed for modern FPGAs. In this section we measure the achiev-
able performance of the architecture in terms of resource utilisation, execution
time, and speedup over software for a range of matrix and field sizes. The target
use-case for the MMM architecture is as a building-block in applications such
as exponentiation and blocked matrix multiplication where the IO to compute
rate is low. Therefore due to the large number of operations performed on the
device the main focus is on the performance of the MMM kernel, with less engi-
neering attention given to IO. The SA architecture was placed and routed onto
a XC7V200T device for various field and matrix sizes. In each case the execu-
tion time for matrix exponentiation was calculated based on the clock rate and
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Fig. 6. Diagram showing how results are extracted from the SA

the known throughput of the device. Transfer time was measured on an actual
device using an Alpha-Data ADM-XRC-5T2 acceleration card. This was then
compared to single core execution using LinBox [10] the fastest known library
for MMM over GF (p > 2) and M4RI [11] the fastest known library over GF (2).
These software results were also comparable to results produced by SAGE which
is a mathematical operations package that under the hood tries to automati-
cally select optimal algorithms and in this case it makes use of the LinBox and
NTL libraries. The fastest results were produced by SAGE on a single Intel(R)
Core(TM) i7-3770 CPU @ 3.40GHz and were ultimately used for the execution
time comparison.

Figure 7 shows the place and route (PaR) results for SAs with a variety of
bit widths b and matrix sizes n on a large Virtex7 XC7V200T device. The result
for b = 2 is for an SA that can operate over both GF (2) and GF (3) since each
requires two bits to represent the field, with the only actual difference being
the values stored in the generated multiplication and addition LUTs which are
calculated at synthesis time.

ForGF (2) andGF (3) the largestSA that canbemapped andPaR in a few hours
is approximately 360×360, any larger than this and the required time increases by
an order of magnitude. This is very close to the estimated resource usage of 400×
400, but it is slightly lower since it is very difficult to fully utilise all the logical
resources on an FPGA device due to the time required to optimally pack slices.

As the number of bits required to represent the field increases, the LUT usage
increases at a faster rate the matrix size increases. This makes sense as the
size of each of the n2 PEs increases since more LUTs are required for addition
and multiplication. Unfortunately this means that the SA is only effective when
operating in the region of finite fields that can be represented by 2 ≤ b ≤ 5.
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Fig. 7. Post place and route LUT usage of an SA for various bit widths on a Virtex 7
XC7V2000T device1

Implementing the SA was a direct implementation of the architecture de-
scribed in Section 3. The main engineering hurdle was synthesising for n > 120
because the array had to be partitioned into multiple black boxes that were con-
nected together. A Virtex FPGA connected via PCIe using a ADM-XRC-5T2
alpha-data card to a host computer was used to obtain accurate data transfer
times for sending the matrix data to the device, which is slow and could be
greatly improved upon.

In order to perform Aq where A is an n×n matrix, the SA requires n cycles to
fill for the first MMM, n cycles to perform each subsequent operation and n cycles
to drain the array after the last operation. Using a naive “square and multiply”
for exponentiation this gives an execution time of TSA = 2TIO(n) + (qn + n) 1f
where TSA is the execution time for the entire kernel operation, TIO(n) is the
time to upload the matrix to the device and f is the clock rate of the device.

To calculate the speedup results a 3-point geometric moving average of the
clock rate was taken to show the overall trend. Virtex-7 FPGA devices have a
very high number of resources, which is due to a manufacturing processes known
as Stacked Silicon Interconnect (SSI) technology. This technology is where mul-
tiple Super Logic Regions (SLR) are connected using a Silicon Interposer. Con-
nections between theses SLR regions are made over what is called a Super Long
Line (SLL) routes that are located within the Silicon Interposer [12]. It is these
connections that seem to limit the clock rate as the SA grows in size, however the
clock rate never drops below 85MHz. This also means that floorplanning was not
attempted to further improve performance as improving clock rate would only
lead to a two or three times improvement in performance.

1 The reason for the lower LUT count at n = 340 is currently unknown. Reports
produced by the tools provided no insight and more investigation is required.
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Figure 8 shows the speedup of the SA against SAGE. When operating over
GF (2) an initial speedup of over ×100 was observed which then settles to ≈ ×40.
As a higher speedup could be observed for operations over GF (22) and GF (23).
This is due to it being a slightly more complex process that involves strings
of bits instead of just single bit-wise operations. For GF (p > 2) a much larger
speedup is observed, and this grows as the problem size increases. A very large
speedup is observed for GF (32) however this is not a fair comparison as it has
obviously not been optimised in software.

The marked difference between GF (2k) and GF (p > 2) is because GF (2k)
has specific properties, which are aggressively exploited in software by M4RI
through the use of fast parallel bit-wise instructions via SIMD instructions. They
are not exploited by the FPGA SA which uses the same code for all fields. In
principle this FPGA design could be further optimised for GF (2), for example by
processing blocks of four bits in parallel, but the more interesting practical case
is actually for GF (p > 2), as this is currently the slowest operation in software.

6 Conclusion

This paper has demonstrated that FPGAs can be used to greatly accelerate the
time consuming MMM operation over GF (p > 2) where p is prime, moderately
accelerate for GF (2k) and less but still significantly so for GF (2). Through
examining a number of various algorithms it has shown that a systolic array
design, which is a 2D mesh of processing elements, was most suitable. Design
details were given and optimisations aiming to reduce the resource requirements
were shown. These optimisations included, packing the multiplication and addi-
tion operations into look-up tables and reducing the resource requirements for
resetting and controlling the system over GF (p > 2).
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The design was then placed and routed onto a target Virtex-7 XC7V2000T
device, and the total execution time including IO transfers was measured. This
was compared to the software package SAGE for GF (p = 2), GF (p > 2) and
GF (2k) on a single Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz.

Speedups up to ×100 were shown for operations overGF (2), while for GF (2k)
and GF (p) speedups of up to ×300 and upwards of ×1000 were observed respect-
fully. Limitations in the design were shown by the maximum realisable field width
supported being 2 < b ≤ 5 and the maximum matrix size being 360 × 360 for
b = 2 and decreasing to 60× 60 for b = 5.

Further work could be, investigating the expansion of using this as an MMM
kernel for Strassens algorithm with allowing the ability to perform the MMM
operation for any sized matrix, and examining large sparse blocked MMM opera-
tions where dense blocks are computed on the SA and sparse blocks are computed
on the host computer. Ultimately this design could be integrated with the SAGE
package to improve the performance of these operations.
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Abstract. In this paper we present a flexible hardware design for
performing Simultaneous Exponentiations on embedded platforms. Simul-
taneous Exponentiations are often used in anonymous credentials proto-
cols. The hardware is designed with VHDL and fit for use in embedded
systems. The kernel of the design is a pipelined Montgomery multiplier.
The length of the operands and the number of stages can be chosen be-
fore synthesis. We show the effect of the operand length and number of
stages on the maximum attainable frequency as well as on the FPGA re-
sources being used. Next to scalability of the hardware, we support differ-
ent operand lengths at run-time. The design uses generic VHDL without
any device-specific primitives, ensuring portability to other platforms. As
a test-case we effectively integrated the hardware in a MicroBlaze embed-
ded platform. With this platform we show that simultaneous exponen-
tiations with our hardware are performed 70 times faster than with an
all-software implementation.

Keywords: Montgomery Multiplier, Simultaneous Exponentiation,
Pipelining, VHDL, Embedded System.

1 Introduction

Making high-performance implementations of Public-Key Cryptosystems (PKCs)
on embedded and mobile devices is a daunting task. PKCs are often used for
privacy-friendly identity management, but also in access control or mobile pay-
ment applications. Especially for RSA-based protocols, the required multi-base
modular exponentiations pose a problem when it comes to execution times on
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resource-constrained devices (e.g. stand-alone terminals or access points). This
specific operation is presented in (1).

j∏
i=0

geii mod m . (1)

For this kind of computations, we designed an open source VHDL IP core for use
in embedded platforms.1 This IP core is designed with several requirements in
mind. First of all, the design should be deployable on a wide range of platforms.
We achieved this by writing as much generic VHDL code as possible. We have
specifically opted not to use device-specific FPGA primitives to ensure portabil-
ity to other platforms. The design is described in a structural and modular way
so changing particular parts can be done with relative ease. The length of the
operands can be chosen before synthesis and to some extent at runtime. Fur-
thermore, the design parameters can be changed to achieve the desired operating
frequency.

On the other hand, flexibility should not be an excuse for low performance,
both in resource usage (silicon) as in timing. To achieve this we used a pipelined
version of a Montgomery multiplier as the kernel of our design. The result is a
flexible, yet practical design.

This paper is organized as follows. We start with an explanation of our im-
plementation strategy (Sec. 2). This is done for the complete design as well as
for the pipelined Montgomery multiplier. The timing results and resource usage
are presented in Sec. 3. Conclusions and proposals for future work can be found
in Sec. 4.

2 Implementation Strategy

Simultaneous Exponentiation. The most straightforward way of performing
modular exponentiation is by repeated squarings and multiplications to get the
final result [1, 2]. The square and multiply step can be performed either in
parallel [3] or sequentially [4]. The exponentiation can be extended to an efficient
simultaneous exponentiation algorithm. The case with 2 bases is presented in
Algorithm 1, where Mont() designates a Montgomery multiplication.

The modulus m and the bases g0 and g1 all have a length of n bits, whereas
the length of the exponents e0 and e1 is t bits. Furthermore, it can be seen that
the algorithm requires R2 mod m which is 22n mod m. We assume R2 can be
provided or precomputed.

Looking at Algorithm 1, a logical design choice is to only implement a multi-
plier and to implement the control logic in such a way that it can either run a
single multiplication or run the main loop automatically.

Following a standard design method, we implemented the IP core as a mem-
ory mapped peripheral. The software on the embedded processor can manage the

1 The design is published online on OpenCores; project page:
http://opencores.org/project,mod_sim_exp

http://opencores.org/project,mod_sim_exp
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Algorithm 1. Montgomery simultaneous exponentiation

Input: g0, g1, e0 = (e0t−1 · · · e00)2, e1 = (e0t−1 · · · e00)2, R2 mod m, m
Output: ge00 · ge11 mod m
1: g̃0 := Mont(g0, R

2), g̃1 := Mont(g1, R
2), g̃01 := Mont(g̃0, g̃1)

2: a := Mont(R2, 1) � This is the same as a := R mod m.
3: for i ← (t− 1) downto 0 do
4: a := Mont(a, a)
5: switch e1i , e0i
6: 0, 1 : a := Mont(a, g̃0)
7: 1, 0 : a := Mont(a, g̃1)
8: 1, 1 : a := Mont(a, g̃01)

9: a := Mont(a, 1)
10: return a

core’s behavior by writing to a control register (Fig. 1). Memory is provided to
store the required operands. The hardware can signal the processor of certain
events using an interrupt line (IRQ).

Fig. 1. Block diagram of the Modular Simultaneous Exponentiation IP core

Montgomery Multiplication. As mentioned before, the kernel of our circuit
is a pipelined Montgomery multiplier which relies on the popular Montgomery’s
algorithm (2) [5–11] to perform modular multiplications. This algorithm allows
for very efficient hardware implementations, which is an advantage when we
strive for a flexible and generic design.

R = x · y ·R−1 mod m (2)
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Nedja and Mourelle [3] have shown that for operands larger than 512 bits, a
systolic array implementation improves the time× area product over other im-
plementations. We take their work as a starting point. With their modified al-
gorithm, every bit of the (intermediate) result is driven by just a multiplexer
and an adder. Together they form a systolic array cell. A right shift operation –
inherent to the Montgomery algorithm – ensures that the intermediate result is
never larger than n+ 2 bit (final carry included).

In our design, systolic array cells are grouped into k stages. This has two
advantages. First of all it brakes up the long carry-chain in the adders, so we can
achieve higher clock frequencies.2 Secondly, this approach allows for pipelining,
further speeding-up the design. A drawback is that, by increasing the number
of stages, more flip-flops will be used.

Pipeline Operation. Because of the right-shift operation, a stage can only
compute a step every 2 τs, where τs is the time it takes a stage to actually
complete a step. In this case τs is 1 clock cycle. For one multiplication, the total
computation time Tk,n for an n-bit operand with a k-stage pipeline is given by
(3).

Tk,n = [k + 2(n− 1)] τs . (3)

Complete Multiplier. The complete multiplier design is shown in Fig. 2. For
every bit of x the multiplier computes an intermediate result. The final result
is then reduced to ensure that it is smaller than m. An extra adder computes
m+ y which is required by the systolic array cells.
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Fig. 2. Multiplier structure. For clarification the my adder and reduction logic are
depicted separately, whereas in practice they are internal parts of the stages.

3 Core Performance

Resource Usage. The number of flip-flops and LUTs for the multiplier is given
by (4) and (5). Note that while the number of FFs is also determined by k, the

2 The path of the carry in the adders is the critical timing path.
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number of LUTs is only dependent on the length of the operands. Because we use
RAM to store the operands, the complete IP core uses about the same amount
of LUTs and flip-flops as the multiplier.

FFs = 5 + 2 · n+ 6 · k + �log2(n)�+ �log2(k)� (4)

LUTs =

{
8 · n for 4-input LUTs

6 · n for 6-input LUTs
(5)

Timing. For the multiplication, execution time is given by (3), where τs is
defined by the operating frequency. Since the maximum frequency is highly in-
fluenced by the latency in the critical path, we can expect to achieve higher
frequencies for shorter stage lengths (see Fig. 3(a)). We obtained this figure
from the static timing analysis during the synthesis step in the design process.
For s ≤ 4, we see that fmax saturates to a maximum. This is probably due to
the slice architecture which, for the Virtex-6, contains 4 LUT-FF pairs. Maxi-
mum execution speed will hence be at s = 4 (Fig. 3(b)). We can also see that
fmax is as good as independent of n. Furthermore, when knowing the operating
frequency (fop.) beforehand, one can choose s in such a way that the number of
FFs is minimal while fmax ≥ fop..
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Practical Implementation. If we exclude precomputation and postcomputa-
tion, the average execution time for simultaneous exponentiation is 7

4 · t · Tk,n

and 3
2 · t · Tk,n for a single base exponentiation.

We made a practical setup [12] with our IP core connected to a MicroBlaze
processor. Both the processor and the IP core run at the same clock frequency of
100 MHz. To illustrate the execution speed of our implementation, we compared
it with a software implementation on the same system.3

In theory, for a simultaneous exponentiation with n = 1536, t = 1024 and
s = 16 it will take 56.73 ms @ 100 MHz. In practice it takes 68 to 72 ms. This

3 The software is implemented using the GMP library – Online: http://gmplib.org/

http://gmplib.org/
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comprises of 57 ms for the main computation, 5 ms for computing R2 in software,
6 ms for precomputation and postcomputation and about 1 ms for reading and
writing data to the core’s memory.

The same computation takes 4800 to 4900 ms in software. This means that
this hardware implementation is roughly 70 times faster than software on the
same platform.

4 Conclusions and Future Work

In this paper we have presented a flexible VHDL design of a modular expo-
nentiation core for embedded platforms. The hardware supports simultaneous
exponentiation and is designed for implementation in an embedded processor sys-
tem on configurable hardware. Furthermore, it does not use any device-specific
primitives e.g. multipliers, making it suitable for use across different platforms.
Only RAM is used for storing operands.

We provided insight in how the pipelining is implemented, and in how the
stage length affects the operating frequency and resource usage. We also com-
pared the hardware implementation with a software implementation on the same
embedded platform.

Our future goal is to further maintain the core and add some enhancements,
including support for different types of adders (e.g. Carry-Select adders) and
bus interfaces. Also the core’s resistance against side-channel attacks should be
examined. To that extent, implementing countermeasures against differential
power analysis is “on the todo list”.

The core has been made open source. All developments can be followed at
http://www.opencores.org/project,mod_sim_exp
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Abstract. This paper presents an extension to a hardware/software sys-
tem architecture in which repetitive instruction traces, called Megablocks,
are accelerated by a Reconfigurable Processing Unit (RPU). This scheme
is supported by a custom toolchain able to automatically generate a RPU
tailored for the execution of one or more Megablocks detected offline.
Switching between hardware and software execution is done transpar-
ently, without modifications to source code or executable binaries. Our
approach has been evaluated using an architecture with a MicroBlaze
General Purpose Processor (GPP) softcore. By using a memory sharing
mechanism, the RPU can access the GPP’s data memory, allowing the
acceleration of Megablocks with load/store operations. For a set of 21
embedded benchmarks, an average speedup of 1.43× is achieved, and a
potential speedup of 2.09× is predicted for an implementation using a
low overhead interface for communication between GPP and RPU.

Keywords: reconfigurable processor, memory access, Megablock, in-
struction trace, MicroBlaze, hardware acceleration, FPGA.

1 Introduction

The use of dedicated hardware co-processors is an often-adopted solution to
accelerate demanding computational kernels. However, the hardware/software
(HW/SW) partitioning steps required to implement such co-processor based
systems are time consuming, requiring hardware expertise and integration with
a host system. Runtime reconfigurable coprocessor-based systems aim to resolve
these issues by automatically and transparently accelerating demanding soft-
ware kernels [1]. As a vast majority of such kernels operate on one or several
input/output data arrays, often of unknown size at compile time, which may
have random access patterns and data dependencies, it is important to focus on
co-processors capable of performing memory access efficiently.

HW/SW partitioning approaches differ in terms of where the partitioning
effort is applied. Typically, HW/SW partitioning applies high-level synthesis
techniques to source code, e.g. analysis/modification, to exploit more powerful
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optimizations to generate HW components. We, however, address a low level
approach, usually referred to as binary acceleration, which attempts to find
(either online or offline) suitable candidate instruction traces for acceleration
when mapped to reconfigurable co-processors [2–5].

Several approaches have considered the use of RPUs acting as co-processors
and providing memory operations. Kim et al. use an RPU with local memo-
ries and address operation scheduling to reduce access conflicts to the available
ports [6]. Data arrays can be distributed among memories to optimize accesses.
This requires a code analysis step to determine access patterns. Other authors
specifically focus on binary acceleration. Beck et al. propose an approach to
transparently map at runtime basic blocks of instruction traces into an RPU [7].
There can be as many concurrent memory accesses as available memory ports.
Data access patterns can be random and known only at runtime. Paek et al.
propose an offline binary dissassembly step to generate RPU configurations [3].
Acceleration is considered for data-dominant loops with the number of iterations
known at compile time. Sequential memory accesses are supported, and data are
passed to/from the RPU via a shared memory mechanism.

As an extension of previous work [8], this paper proposes an architecture for
transparent binary acceleration which allows for an RPU to have transparent
access to a shared main memory. In our approach, kernels to be mapped to the
RPU are automatically identified from program execution traces, and are used
to generate a dedicated RPU supporting up to two concurrent memory accesses,
and including the Functional Units (FUs) needed to exploit the operation-level
parallelism of the kernels. This dedicated RPU is then used to accelerate program
execution transparently at runtime.

This paper is organized as follows. An overview of the proposed architecture is
presented in Section 2. Section 3 details the RPU architecture and the handling
of memory operations. Section 4 describes the module for transparent access to
data memory by the RPU. Section 5 explains the tool flow, the experimental
setup, and presents experimental results. Finally, Section 6 concludes the paper.

2 General Architecture Overview

The architecture and tools described in this paper are extensions of the ones
presented in [8] in order to provide RPU support for memory accesses. They
support the same four-step dynamic partitioning approach: (1) Loops within
computational kernels are identified from execution traces and represented as
Megablocks [9]; (2) Selected Megablocks (repeating code patterns) are trans-
formed into a RPU specification and corresponding configurations by a custom
toolchain, resulting in a specialized reconfigurable accelerator; (3) during run-
time, mapped Megablocks are identified at the start of their execution when the
GPP reaches the Megablock code; (4) execution of the mapped Megablocks is
migrated transparently to the RPU.

The present work addresses the lack of support for memory accesses by our
previous RPUs. Fig. 1 shows the enhanced system architecture, which is
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composed of a program/data Block RAM (BRAM) with two ports, each con-
nected to a Local Memory Bus (LMB), a GPP, an RPU connected to the GPP
via a Processor Local Bus (PLB), two LMBMultiplexer modules, each connected
to an LMB, and an LMB Injector module attached to the GPP’s instruction bus.

Fig. 1. Architecture overview. The RPU shares BRAM access with the GPP through
the LMB Multiplexer.

As in the previous version of our architecture, the MicroBlaze executes un-
modified program code from local memories. The LMB Injector is responsible
for the migration step, which is accomplished by monitoring and modifying the
contents of the instruction bus. If the start address of a region of code mapped
to the RPU is detected, the Injector branches the GPP to a special subroutine
that handles the communication between the GPP and the RPU.

The Communication Routine (CR) sends operands from the GPP’s register
file to the RPU through the peripheral bus, followed by a start signal. The
RPU then gains control of the Local Memory Bus and accesses the BRAM by
asserting the switch signals of the LMB Multiplexers. Each such module allows
for two master devices to access a single-master LMB, sharing the entire address
space of a BRAM without incurring any overhead, and without introducing data
coherency issues. No memory address translation steps are necessary (cf. Sect. 4).

Once RPU execution ends, control of the LMBs is handed back to the GPP,
which executes the remainder of the CR, recovering results to its register file and
resuming software execution from the memory address where it was migrated.

The RPU can perform up to two simultaneous write/read accesses. Memory
accesses can be random with addresses being calculated in the RPU. As multiple
independent memory accesses occur in a wide range of Megablocks, access to
both ports of the memory by the RPU allows for the exploration of this latent
parallelism, with considerable potential speedups.

3 RPU Architecture

Fig. 2 shows the Reconfigurable Processing Unit (RPU) architecture (omitting
the PLB interface). The RPU contains an array of Functional Units (FUs) tai-
lored for a specific set of Megablocks [8]. Each row contains a number of FUs
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able to execute in parallel. The FU layout shown in Fig. 2 represents a synthetic
example with 3 rows (details are omitted for clarity). Data are received from
the preceding row and propagated to the next. Passthrough components are in-
serted to enable connections between FUs on non-adjacent rows. An iteration
completes when all rows have computed their results, and data is fed back to the
first row. FUs are reused between configurations, and the depth (no. of rows) of
the RPU equals the longest Critical Path Length (CPL) of the dataflow graphs
representing all the implemented Megablocks.

Fig. 2. Simplified diagram of the RPU’s internal architecture, including the memory
access handling mechanisms

The RPU executes the equivalent of single path instructions traces that cross
control-flow boundaries, and so it has one entry point and several exit points.
This is exemplified in Fig. 2 by the bne operation which triggers a Done signal.
When any of these exit operations is triggered, the current iteration is discarded
and software execution is resumed.

Memory operations are implemented by special FUs. These special FUs are
not single-cycle and may have a variable latency. To support multi-cycle opera-
tions, each row of the array generates a ready signal which is asserted when all
multi-cycle FUs on that row assert their individual ready signals. The Iteration
Control module issues an Enable signal per row, and checks the status of that
row’s Ready signal immediately after issuing the enable. If the row is not ready,
the control logic waits until it can issue the enable, thereby stalling the array
while memory requests are handled Memory accesses are managed by the Mem-
ory Access Manager (MAM) shown on the left in Fig. 2. This module and details
about the load/store FUs are presented in Section 3.2. The MAM receives data
and addresses from all load/store FUs in the array. To determine the width of



126 N. Paulino, J.C. Ferreira, and J.M.P. Cardoso

some ports, the number of memory operations the MAM can handle is specified
at synthesis time. Actual memory accesses are performed via the RPU’s two
LMB ports, which interface with the LMBs through the LMB Multiplexers. As
we currently use a dual-port BRAM, the number of ports in this implementation
is limited to two.

3.1 Reconfiguration

Reconfiguration of the RPU is done by re-routing operands and by enabling
or disabling FUs. To select a configuration before activation of the RPU, a
configuration register is written to during CRs execution by the MicroBlaze.

The toolchain produces per-row HDL specifications of the connections be-
tween FUs of adjacent rows, thus minimizing the required resources to support
all configurations. Each FU input is driven by a selector which is tailored at
synthesis time to output one of a number of sources equal to the number of con-
figurations. The Megablock extraction performs constant propagation, leading
to some FU inputs remaining constant for all iterations during an execution. In-
stead of feeding the RPU with constant values at runtime, they are specified in
the configuration. The inter-row selectors can either fetch values from any one of
the outputs of the previous row or feed the input they drive with synthesis-time
specified constants. These row interconnections are omitted for clarity from the
example of Fig. 2, except for the one associated with the add FU in the first row,
which exemplifies three configurations . In this case, for two configurations, the
first input of the add is fed with a value from the N inputs available to the ar-
ray (either values from the input registers or feedback values), and for the third
configuration a constant value is supplied to the FU. There is one such selector
per FU input. If only one configuration is present, the inter-row connections are
optimized into wires.

Not all FUs in the RPU are actually used by each specific configuration.
Although data may be fed to operations such as additions and other arithmetic
even when their outputs are not used during execution, unused memory and exit
FUs must be disabled. Thus, each FU is also driven by an enable signal. One
of the load operations in Fig. 2 shows the enable signal being driven high by
the selected configuration. The following excerpts from the RPU specification
generated for the chgBrghtB benchmark illustrate how the inter-row selectors
and enable signals are specified by tool-generated parameters at synthesis time.

parameter [0:32*(N_ROWS*N_COLS)-1]

FU_ENABLES = {

{32’b11, (...) },

{32’b11, (...) },

{32’b01, (...) },

(...)

{32’b01, (...) }

}; // bit encoded enable signals

parameter [0:(33*9*N_CONFIGS)-1]

ROW3_CONFIGS = {

// Config. 1 //Config. 2

{32’h0, 1’b0}, {32’h0, 1’b0},

{32’hffff, 1’b1}, {32’h0, 1’b0},

(...)

{32’h0, 1’b0}, {32’hff,1’b1}

}; // configurations per FU input
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The left excerpt shows the enable bits for the FUs of the first column. The first
two FUs are used in both configurations, while the third only in the first. This
scheme of configuration specification limits the number of possible configurations
to 32. The right excerpt shows the specification for 3 selectors of one of the rows
of the RPU. Each row of defines one selector and each column represents a
configuration. A 32-bit parameter specifies either a constant value or output
index of the previous row. A 33rd bit distinguishes between each case. In this
example, the second selector feeds a constant (32’hFFFF) to its associated input
in configuration 1 and the first output of the previous row in configuration 2.

3.2 Memory Access Management

The RPU supports up to two simultaneous memory accesses by using the LMB
Mux to interface with the BRAM ports. The RPU supports read/write opera-
tions of bytes, half-words or 32-bit words by using the byte enable signals of the
LMB. The byte size of a memory operation is specified at runtime by one of the
inputs to the load/store FUs. Since the architecture is not restricted by different
address spaces for RPU and GPP, and because the RPU may receive memory
addresses as operands from the GPP at runtime, access to heap allocated data
is also possible.

Execution of a memory operation on the FU array is decoupled from the
memory access itself. That is, store and load FUs only issue memory access
requests to the MAM. Thus, more than two memory accesses can be issued in
the same clock cycle. The RPU may or may not stall execution until they are
processed, depending on the combination of operations and the current state.

If the concurrent memory operations are stores, the values to be written out
are either immediately sent to memory (if both ports are free), or are instead.
Since stores produce no data for use in the FU array, they introduce no latency,
and only stall the RPU if execution reaches their row before any buffered data
has not been written. For instance, two store operations occurring every 3 cycles
can be written to memory using only one memory port without stalling. Once
execution on the RPU ends, no more store operations are issued and buffered
data are flushed out to memory before the RPU releases the LMB Mux switches,
and allows the MicroBlaze to continue execution. Since the last iteration must
be discarded and executed in software, stores must not be scheduled before the
first enabled exit operation to maintain coherency. So, we adopt an As Late
as Possible (ALAP) scheduling scheme for stores. If dependent loads occur a
sufficient number of clock cycles after the issuing of the corresponding stores,
no problems occur. The number of cycles required varies with the number of
stores to be performed, and with the availability of the LMB ports on the MAM
when they are issued. The placement mechanism does not yet analyze RAW
dependencies.

Load operations behave differently, because they have no slack (due to the way
Megablocks are generated): the loaded value is always required by the following
row. When a load operation is issued, the RPU stalls until it is handled. Two
load operations in the same row can be handled simultaneously, introducing a
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latency of 1 clock cycle. If more are present, each one must be handled in order for
execution to advance. There is currently no restriction on the number of allowed
loads per row. The evaluated benchmarks have a maximum of 3 concurrent loads
(perimeter benchmark).

The order in which the memory operations are treated is dictated by a selec-
tion logic performed by the MAM. Memory operations are treated in the same
clock cycle they are issued, if a port is available. Each port is assigned a memory
operation to handle in a round-robin fashion, which skips operations that do not
have their request signal asserted in order to reduce latency. Both ports can-
not choose the same operation simultaneously. For load operations, the selection
logic directs the read data bus of a given port to the respective load FU.

Although this architecture allows for the minimum possible latency for both
loads and stores, the selection logic can introduce critical path delays, if the
FU array contains many memory operations. For the tested benchmarks fft and
perimeter, which have 8 and 6 memory operations, respectively, the maximum
operating frequency of each RPU is comparable to the delay introduced by using
one hardware multiplier on our target FPGA.

4 The LMB Multiplexer

The LMB Multiplexer, shown in Fig. 3, is a peripheral with three LMB ports.
Two ports connect to bus masters and a third connects to the actual Local
Memory Bus. This allows for two masters to access a single LMB and its slave
devices. The multiplexer is completely transparent. It does not add signals to
the bus interfaces or clock cycles to data exchanges between the bus and a
master. The transaction behavior on the bus is unaltered, and no modifications
are required to either the bus or the master devices.

Fig. 3. Two port LMB Multiplexer. Each master device is treated by a handler.

Both ports of the LMB Multiplexer are bidirectional. The module uses the
bus signals to perform synchronization and allow for a gracious handover of
bus control between the two masters. When a switch is requested, it occurs
immediately only if there is no unfinished bus transaction or if a response to the
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last transaction is already present on the bus lines (so as not to issue another
request untimely). When switching, the outputs from the newly selected master
are immediately connected to the bus; the bus response signals are only sent to
the newly-selected master in the next clock cycle, so that the response to the
previous transaction is sent to the previously selected master.

When a master is not selected, its requests are sent to a handler module which
buffers up to one access request. The handler buffers all master downstream
signals when an address strobe is asserted. This is sufficient, since the LMB
interface is blocking. If a request is buffered, the handler module holds the LMB
Ready signal low, which halts the master. When a handler has a buffered request
and the master of that handler is reselected a one-cycle delay is added. The
buffered request must be strobed to the bus first. The master reads back the bus
response and is then ready to perform more transactions. Since the MicroBlaze
does not timeout when attempting to access the LMB it can wait indefinitely.
Switching between bus masters requires no additional handshaking. Each LMB
Mux also includes the same address mask as the memory controller of the bus
it interfaces with, ignoring any requests that do not match the address range.

5 Experimental Evaluation

The toolchain that supports the presented approach is an extension of the tools
described in detail in [8]. The Megablock Extractor processes the executable files,
simulates them, and uses the trace information to identify candidate Megablocks.
These are passed to the RPU synthesis tool, which generates a parameterized
HDL description of the RPU along with the configuration information. A second
tool produces additional HDL specifications for the LMB Injector and CR code.

The CRs are added to the executable by being packed into arrays and com-
piled along with the benchmark, and then linked to predefined memory positions.
The toolchain can produce CRs and HDL for a system in which the GPP/RPU
communication is done through the PLB, or for a variant where modules are con-
nected by low-overhead point-to-point Fast Simplex Links (FSLs). The results
presented here were obtained with a PLB-based implementation.

5.1 Benchmark Results

The RPU’s memory access mechanism was tested with 18 benchmarks selected
from Texas Instrument’s IMGLIB, from the SNU-RT Benchmark Suite and other
assorted sources [10–12]. For most of these benchmarks, only one Megablock was
implemented. Three additional synthetic benchmarks were written to produce
RPUs implementing several Megablocks, for the sake of validation. The resulting
RPUs have at least one memory operation.

The test bed was a Digilent Atlys board with a Xilinx Spartan 6 LX45 FPGA.
Xilinx EDK 12.3 was used for synthesis and bitstream generation, the system
clock was set to 66MHz, and the MicroBlaze processor was synthesized for min-
imum instruction latency. Benchmarks were compiled by mb-gcc 4.1.2 with the
-O2 flag.
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The chosen kernels operate on data arrays of various sizes. For the SNU-
crc benchmark there are two load operations, one which performs a load of a
half-word and another, a byte addressed load. The RPU often receives operands
which are memory positions of data arrays, and the addresses for data accesses
are computed during execution. The number of concurrent memory accesses
allows for a good use of the RPU’s memory ports, as most generated RPU con-
figurations have at most two simultaneous loads/stores. Synthetic benchmarks
synt1, synt2 and synt3 are sequences of calls to routines belonging to other
benchmarks. Benchmarks synt1 and synt2 have 6 configurations, and synt3 has
3. To evaluate the worst case scenario, the benchmarks were written so that each
set of kernels is called 500 times with an RPU reconfiguration on every call.

Table 1 summarizes the characteristics of the generated RPUs, the Instruc-
tions per Clock (IPC) achieved by hardware and the software IPC, for com-
parison. The #Lds/Sts column contains the number of load/store FUs in the
RPU (not necessarily concurrent). The #Ops and #Passes columns specify
how many FUs are actual operations (loads/stores included) and how many
are passthroughs. The #Rows column refers to the number of rows of the RPU.

The Hw. IPC is the ratio between the number of enabled FUs (excluding pass-
through components) and the number of cycles required to execute all of the rows
of the RPU (i.e. one loop iteration). The number of cycles required does not equal
the number of rows due to the multi-cycle memory operations (whose latency
depends on their concurrency). For the tested benchmarks (excluding synthetic
examples), memory operations introduce an average latency of 2.33 clock cycles.
For cases with more than one configuration, the Sw. IPC was computed as
the average of the IPCs for all corresponding Megablocks. The Hw. IPC was
computed from the average number of enabled FUs per configuration and the
average number of clock cycles required to complete an iteration.

The number of execution clock cycles was measured using a custom timer
peripheral. The following measurements were made: 1) number of cycles during
which the RPU is stalled; 2) number of cycles spent executing operations on
the RPU (stall cycles included); 3) number of cycles required to execute the
mapped Megablocks (in hardware or software) including communication and
other overheads introduced by the migration mechanism; and 4) number of the
cycles spent executing the entire benchmark, again including all overheads. Mea-
surements for both hardware and software execution can be taken from the same
implementation as the migration step can be easily disabled.

The Spd. column refers to the overall benchmark speedup, computed from 4).
Overhead introduced by the execution of the CRs (i.e. GPP-RPU communica-
tion over the PLB) was derived from 2) and 3). The last column contains the
potential overall speedup were this overhead completely removed. For the chosen
benchmarks, the overhead accounts for an average of 32.9% of the time required
for migration and RPU execution. Each call of the RPU takes an average of 193
clock cycles. Even so, the average speedup achieved for the Megablocks alone is
1.52×. The overall speedup (with overhead included) is 1.41×. In some cases the
overhead imposed an overall slowdown, although the mapped Megablocks were



Architecture for Transparent Binary Acceleration of Loops 131

Table 1. RPU Characteristics and achieved Speedups

Benchmark #Lds/Sts #Ops #Passes #Rows Hw.IPC Sw.IPC Spd. Spd.(no OH)

blit1 1/1 10 17 3 2.50 0.92 1.45 1.47
chgBrght1 1/1 11 31 7 1.38 0.92 0.97 1.20
chgBrght2 1/1 11 20 5 1.83 0.91 0.54 1.80
quantize 1/1 11 35 6 1.57 0.92 1.90 2.14
SNU crc 2/0 16 29 9 1.45 0.92 1.01 1.02

blit1* 1/2 14 27 4 2.10 0.92 2.38 2.48
boundary1 1/2 12 18 3 3.00 0.93 1.17 3.73
dotprod1 2/0 9 11 4 1.80 0.88 1.77 1.80
fir21 2/1 12 17 4 2.00 0.91 1.40 1.78
perimeter1 5/1 19 12 3 3.17 0.94 1.82 2.51
bob hash2 1/0 11 24 8 1.22 0.91 1.53 1.55

chgBrghtB2* 1/2 16 31 7 1.38 0.92 0.47 2.22
fft2 4/4 30 78 7 3.00 0.96 0.52 2.27
motEstim2 2/1 13 48 7 1.63 0.93 0.54 1.75
sad 8x8 2 2/0 14 39 8 1.56 0.92 0.52 1.73
checkbits3 1/1 64 169 16 3.65 0.98 3.56 3.94
compositing3 2/1 18 78 10 1.64 0.95 2.09 2.27
pop array13 1/0 22 94 15 1.38 0.96 1.86 2.11

synt1 6/3 36 27 4 2.36 0.91 2.09 2.52
synt2 6/5 53 88 8 1.79 0.92 0.68 1.64
synt3 4/3 93 180 16 2.00 0.97 1.85 1.97
1Included in synt1 2Included in synt2 ; 3Included in synt3.
*Benchmark has two Megablocks.

accelerated. By eliminating this overhead (for instance, using a FSL between
the GPP and the RPU) the average potential speedup is 2.10×, and a speedup
occurs for all cases. These averages do not include synthetic benchmarks.

5.2 Discussion

The benchmarks for which the Hw. IPC is largest are the ones with the greatest
potential speedup. Memory operations reduce the IPC because of the latency
they introduce, which accounts for stall cycles. Stalls only occur when more
than 2 simultaneous memory operations are issued. Even then, this depends
on the type of memory operation, since stores can be buffered and handled
in later cycles. Therefore, latency above the minimum possible memory access
time is only introduced when a load operation cannot be handled in the cycle
it is issued. This occurs for the perimeter benchmark, but its execution still
achieves the third best speedup (w/o overhead) of all the tested benchmarks.
The slowdowns that occur are due to the small number of iterations performed
in hardware, which do not make up for the communication overhead.

Stall cycles account for an average 19.5% of the total number of cycles spent
on the RPU, excluding synthetic benchmarks. The largest stall time (57.1%
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of the total execution time) occurs for the perimeter benchmark due to two
consecutive rows with 3 concurrent accesses each. Execution of the checkbits
benchmark stalls only 5.91% of the time, because it has only one load operation.
Although the compositing benchmark contains two loads and one store, only the
two loads occur in the same row, introducing only the minimum latency of one
clock cycle and resulting in the third lowest stall time of 9.12%.

Regarding resources, the generated RPUs use on average 6.3% of the available
27288 Lookup Tables (LUTs) and 4.3% of 54576 Flip Flops (FFs). Maximum
utilization for these resources is, respectively, 15.1% (pop array1 benchmark)
and 8.5% (fft benchmark), while the minimum values are 2.1% and 1.8% (both
for the dotprod benchmark). The average synthesis frequency of the individual
RPU was 114MHz. The lowest frequency, 62MHz, occurs for the fft RPU. The
associated critical path delay is due to the MAM selection logic. The highest
frequency is 170MHz for, chgBrght1. Although the frequency of all RPUs, save
for fft, exceeds the base 66MHz system clock used for most benchmarks, the clock
frequency had to be lowered to 50MHz (for the perimeter, fft benchmarks) and
synt3 benchmarks) or 33MHz (for benchmarks synt1 and synt2 ).

Some of the FUs are reused between configurations. Specifically, a total of
36, 37 and 10 FUs were reused for synt1, synt2 and synt3, respectively. This
does not account for pass-through components, of which 96, 170 and 216 were
reused between configurations for the 3 synthetic benchmarks. With respect to
the total FPGA resources, the LUT usage for the three synthetic benchmark
RPUs is 25%, 40% and 49%; FF usage is 6%, 12% and 17%.

Benchmarks synt1 and synt3 achieve considerable speedups, incurring com-
munication overheads of 17.1% and 5.7%. Benchmark synt2 exhibits a slowdown
as expected, since the same occurs for the individual implementations. The over-
head for this case is 59.4%. In the overhead-free scenario, the three synthetic
cases show good speedups. These benchmarks show that a good average speedup
can be achieved when Megablocks have similar CPLs and significant parallelism.

6 Conclusion

This paper presented a general-purpose computing architecture based on a Gen-
eral Purpose Processor (GPP) and a Reconfigurable Processing Unit (RPU)
automatically generated offline from instruction traces. In this architecture, a
multiplexer module transparently interfaces with standard memory buses, al-
lowing the RPUs to access the GPP’s data memory. We use a two-port data
memory to allow parallel memory accesses and to achieve the acceleration of
instruction traces with load/store operations. Data memory accesses are easily
handled by our RPU through the transparent bus multiplexer, allowing shared
access to the entire address space. The RPU can thus operate on any num-
ber of data arrays at any address regardless of their size. This allows an effi-
cient memory access scheme that does not introduce costly data transfers be-
tween the data memory and the RPU. Future work will focus on extensions to
the RPU execution model to enable both pipelining and multipath Megablock
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execution, and on developing efficient scheduling memory operations in the RPU,
including the handling of RAW and WAR dependencies.
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Parametric Optimization of Reconfigurable

Designs Using Machine Learning
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Abstract. This paper presents a novel technique that uses meta-
heuristics and machine learning to automate the optimization of design
parameters for reconfigurable designs. Traditionally, such an optimiza-
tion involves manual application analysis as well as model and param-
eter space exploration tool creation. We develop a Machine Learning
Optimizer (MLO) to automate this process. From a number of benchmark
executions, we automatically derive the characteristics of the parameter
space and create a surrogate fitness function through regression and classi-
fication. Based on this surrogate model, design parameters are optimized
with meta-heuristics. We evaluate our approach using two case studies,
showing that the number of benchmark evaluations can be reduced by up
to 85% compared to previously performed manual optimization.

Keywords: optimization, surrogate modeling, PSO, GP, SVM, FPGA.

1 Introduction

Field programmable gate arrays (FPGAs) allow designs that are customized
to the requirement of the application. Reconfiguration is an additional benefit
which allows the designer to modify designs at run time, potentially increasing
performance and efficiency. Unfortunately, the optimization of reconfigurable de-
signs often requires substantial effort from designers who have to analyze the
application, create models and benchmarks and subsequently use them to opti-
mize the design. This process often involves adjusting multiple design parameters
such as numerical precision, degree of pipelining or number of cores. One could
proceed with automated optimization based on an exhaustive search through de-
sign parameters which are derived from application benchmarks; however, this is
unrealistic since benchmark evaluations involve bitstream generation and code
execution which often takes hours of compute time.

It has been shown useful to construct surrogate models of fitness functions
representing design quality for computationally expensive optimization problems
in various fields [1–5]. As these models are orders of magnitude faster to evaluate
than the actual fitness function, they can substantially accelerate optimization
thus allowing for an automated approach. This is the motivation behind our
development of the MLO tool which we apply to the problem of reconfigurable
designs parameter optimization. In [6] we present initial concepts on optimiz-
ing parameter configuration of reconfigurable designs using surrogate models.

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 134–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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We now present the formalism and experimental evaluation for our approach.
The contributions of this paper are:

• A mathematical characterization of the parameter space for reconfigurable
designs as well as a definition of a fitness function based on application
benchmarks (Section 3).

Generic surrogate models to approximate the fitness function using regres-
sion and classification. We combine surrogate models with meta-heuristics to
provide a new MLO algorithm for automated optimization of reconfigurable
designs (Section 4).

•• An evaluation of our MLO approach in two case studies: (a) execution time
of a run-time reconfigurable software-defined radio with varied degree of
parallelism, and (b) and a previously used [6] throughput of a quadrature
based financial application with varied precision (Section 5).

2 Background

When developing reconfigurable applications, designers are often confronted with
a very large parameter space. As a result the parameter space exploration can
take an immense amount of time. A number of researchers approach the problem
of high-cost fitness functions and large design spaces in various fields [1–5] by
having fitness functions combined with fast-to-compute surrogate models pro-
vided by a Gaussian Process (GP) for decreasing evaluation time. However most
current surrogate models only consist of a regressor and do not take into account
possible invalid configurations within the design space. Furthermore, all of them
are evaluated using artificial benchmarks spanned by continuousRn spaces, while
parameter spaces for reconfigurable applications usually also involve discrete di-
mensions (e.g. number of cores). Surrogate models approximating fitness func-
tions by substituting lengthy evaluations with estimations based on closeness in
a design space have been investigated in reconfigurable computing [7]. The work
covers surrogate models for circuit synthesis from higher level languages (HLL),
rather than parameter optimization.

GP is a machine learning technology based on strict theoretical fundamentals
and Bayesian theory [8, 9]. GP does not require a predefined structure, can ap-
proximate arbitrary function landscapes including discontinuities, and includes
a theoretical framework for obtaining the optimum hyper-parameters [4]. An ad-
vantage of GP is that it provides a predictive distribution, not a point estimate.

A Gaussian process is a collection of random variables, any finite set of which
have a joint Gaussian distribution. A Gaussian process is completely specified
by its mean function m(x) and the covariance (kernel) function k(x,x′):

f̂(x) ∼ GP(m(x), k(x,x′)) (1)

The k(x,x′) expresses the covariance between pairs of random variables, and
in regression analysis it expresses the relation between input-output pairs. This
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is based on a training set D of n observations, D = (xi, yi)|i = 1, ...n, where x
denotes an input vector, y denotes a scalar output. The column vector inputs
for all n cases are aggregated in the D × n design matrix X , and the outputs
are collected in the vector y. The goal of Bayesian forecasting is to compute the
distribution p(f̂ |x∗,y, X) of the function f̂ at unseen input x∗ given a set of
training points D. Using Bayes rule, the predictive posterior for the Gaussian
process f̂ and the predicted scalar outputs f̂(x∗) = y∗ can be obtained.

Support Vector Machine (SVM) is a maximum margin classifier, which con-
structs a hyperplane used for classification (or regression) [10]. SVMs use kernel
functions k(x,x′) to transform the original feature space to a different space
where a linear model is used for classification. SVMs are a class of decision ma-
chines and so do not provide posterior probabilities. There is a training set D
of n observations, D = (xi, ti)|i = 1, ...n, where x denotes an input vector, t
denotes a target value. The column vector inputs for all n cases are aggregated
in the D × n design matrix X , and the targets in the vector t. The goal is to
classify an unseen input x∗ based on X and t by computing a decision boundary.

Particle Swarm Optimization (PSO) is a population-based meta-heuristic
based on the simulation of the social behavior of birds within a flock [11]. The
algorithm starts by randomly initializing N particles where each individual is
a point in the X = R × ... × R search space. The population is updated in an
iterative manner where each particle is displaced based on its velocity vid. The
criteria for termination of the PSO algorithm can vary, and usually are deter-
mined by a time budget. The xid represents the dth coordinate of particle i from
the set X∗ of N particles, where particle is a point within X . In the most basic
form of PSO Eq. 2-3 govern movement of particles. r1 ∼ U(0, 1) and r2 ∼ U(0, 1)
are two independent uniformly distributed random numbers, c1 and c2 are ac-
celeration coefficients and pgd and pid are dth coordinates of the global best and
personal best positions. pgd is updated when a new global best fitness is found
and pid is updated when a particle improves over its best fitness.

vid = vid + c1r1(pid − xid) + c2r2(pgd − xid) (2)

xid = xid + vid (3)

3 Optimization Approach

Traditionally, optimization of reconfigurable applications is carried out by build-
ing benchmarks and relevant tools, and the associated analytical models [12, 13].
This involves the following steps:

1. Build application and a benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Create analytical models for the design.
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4. Create tools to explore the parameter space.
5. Use the tools to find optimal configurations, guided by the models in step 3.
6. If result is not satisfactory, redesign.

In our approach the user supplies a benchmark along with constraints and goals,
and the MLO automatically carries out the optimization (Algorithm 1). Our
approach consists of the following steps:

1. Build application and benchmark returning design quality metrics.
2. Specify search space boundaries and optimization goal.
3. Automatically optimize design with MLO.
4. If result is not satisfactory, redesign or revised time budget and search space.

Our idea of surrogate modeling is illustrated in Fig. 1. The MLO algorithm
explores the parameter space by evaluating different benchmark configurations
as presented in the left figure. The results obtained during evaluations are used
to build a surrogate model which provides a regression of the fitness function
and identifies invalid regions of the parameter space. A meta-heuristic (currently
PSO) guides the exploration of the parameter space using the surrogate model.

Fig. 1. Benchmark evaluations, surrogate model and model guided search

3.1 Parameter Space

The parameter space X of a reconfigurable design is spanned by discrete and
continuous parameters determining both the architecture and physical settings
of FPGA designs. A vector x represents a parameter configuration within the
parameter space X = X1 × ... × XD such that any Xd ⊆ R. If Xd ⊆ Z, its
discretization level is independent of other dimensions. Xd can be bounded with
upper and lower limits Ud, Ld such that for all xd, Ld ≤ xid ≤ Ud. An example of
a continuous parameter is core frequency and an example of a discrete parameter
is the number of compute cores. For all discrete dimensions the step size, which
we define as smallest distance between any two xid’s, can vary. We might only
be able to increase memory width in 16 bits increments.

A discrete parameter space has important implications on the PSO algorithm,
as the equations governing movements of particles Eq. 2-3 are defined for a con-
tinuous Rn space. In Eq. 2 both r1 and r2 are random real numbers, which means
that the resulting velocity component used to update position x cannot be used
if xd is discrete. To discretize the position value of a particle after its movement,
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we round its value and randomize its rounding error (dithering) presented in Eq.
4. By using dithering instead of truncation PSO particles maintain their velocity
component which results in a more thorough exploration.

xdi =

{
�xid� U(0, stepsize) < (xdi mod stepsize )

�xid� U(0, stepsize) ≥ (xdi mod stepsize )
(4)

3.2 Fitness Function

Given a parameter setting x, the benchmark b(x) returns a fitness metric which
constitutes two values: y, the scalar metric of fitness and t, the exit code of
the application. Execution time and power consumption are examples of fitness
measures. There are be many possible exit codes t, with 0 indicating valid x’s.
The designer can choose to extend the benchmark to return additional exit
codes depending on the failure cause, such as configurations producing inaccurate
results or failing to build.

We distinguish three different types of exit codes. The first type is exit code 0
indicating a valid design. The second type of exit codes indicate configurations
that produce results yet fail at least one constraint making them undesirable.
The third type of exit codes is used for configurations that fail to produce any
results. The region of X that defines configurations x that produce y and satisfy
all constraints is defined as valid region V , regions with designs failing at least one
constraint yet producing y are part of failed region F , and the region with designs
failing to produce y is the invalid region I. If x∗ does not produce a valid result,
we assign a value that the designer assumes to be the most disadvantageous.
Depending on whether we face a minimization/maximization problem,s either a
high maxval or low minval value will be assigned.

f(x) =

{
y x ∈ V
maxval ∨minval otherwise

(5)

4 MLO Surrogate Model

We integrate a Bayesian regressor f̂ and a classifier to create a novel surrogate
model for a given fitness function f . As illustrated in Fig 1, the problem we
face is regression of f over V and F as well as classification of X . We make
use of Bayesian regressors to access the probability of prediction of f̂(x∗) of
non-examined parameter configurations x∗. We use classifiers to predict exit
codes of X∗ across X . Regressions are made using the training set obtained from
benchmark execution Dr, while classification is done using the training set Dc.
We invoke regressor(Dr ,x∗) for every particle in x∗ to obtain the regression y∗
and its probability p(y∗|x∗,Dr), which we denote as ρ for simplicity. Class label
t∗ of particle x∗ is predicted by the classifier classifier(Dc,x∗).
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Algorithm 1. MLO

1: for x∗ ∈ X∗ do
2: x∗.fit ← f(x∗) � Initialize with a uniformly randomized set X∗.
3: end for
4: repeat
5: for x∗ ∈ X∗ do
6: y∗, ρ ← regressor(Dr,x∗)
7: t∗ ← classifier(Dc,x∗)
8: if ρ < minρ and t∗ = 0 then
9: x∗.fit ← y∗
10: else
11: if t∗ = 0 then
12: x∗.fit ← f(x∗)
13: else
14: x∗.fit ← maxval or minval

15: end if
16: end if
17: end for
18: X∗ ← Meta(X∗) � Iteration of the meta-heuristic
19: until Termination Criteria Satisfied

We present our MLO in Algorithm 1. The algorithm’s main novelty with re-
spect to surrogate-based algorithms is the integration of a classifier to account
for invalid regions of X . We initialize the meta-heuristic of our choice with N
particles X∗ uniformly randomly scattered across X . Each particle has an asso-
ciated fitness x.f it and a position x. For all x∗ predicted to lie in V we proceed
as follows. Whenever ρ returned by the regressor is smaller than the minimum
required confidence minρ we use the y∗; otherwise we assume the prediction to
be inaccurate and evaluate f(x∗). The meta-heuristic will avoid I and F regions
as they are both assigned unfavorable maxval or minval values. We construct
the training sets Dc and Dr as described in Algorithm 2. Whenever b(x∗) is
evaluated, (x∗, t∗) is included within the classifier training set Dc. If exit code is
valid (t∗ = 0), then (x∗, y∗) is added to Dr.

Although the MLO will converge towards an optimum, it is limited by heuris-
tic search restrictions and as such it cannot guarantee to find the global opti-
mum. Hence, it is crucial to specify the termination criteria. Determining MLO
termination criteria is based on the optimization scenario and we present three
possibilities where the user:

1. Has a limited compute time budget.

2. Requires only certain design quality.

3. Needs maximum performance, with a large budget.

A user can have a limited compute time budget when optimizing an application
and the MLO can terminate once the budget has been reached. For example, we
could allocate a number of machines for a 24 hour period. Alternatively, if the
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user only requires a certain performance, the MLO can be run until a config-
uration x is found that meets the required performance, and the optimization
can be terminated. Lastly, if the MLO is used to maximize performance without
a limited compute time budget, the MLO will terminate when the best found
solution does not improve during a pre-defined amount of time.

Algorithm 2. f(x)

1: t, y ← b(x)
2: Dc ← (x, t) � Update the classifier’s training set
3: if t ∈ F or t ∈ V then
4: Dr ← (x, y) � Update the regressor’s training set
5: end if
6: if t ∈ V then
7: return y
8: else
9: return maxval or minval

10: end if

5 Evaluation

We use our approach to optimize two designs which are previously optimized
with custom analytical models. The first application is a run-time reconfigurable
software-defined radio with variable degree of parallelism [13]. The second is a
quadrature-based financial application with variable precision [12], for which we
show how known analytical models can be used to reduce the number of dimen-
sions that need to be explored. We use GPs utilizing an anisotropic exponential
kernel with additive Gaussian noise. We choose SVMs as our classifier with a
Radial Basis Function (RBF) kernel. Due to its simplicity and effectiveness we
use a velocity clamping version of PSO with c1 and c2 set to 2.0. All presented re-
sults are averaged over 20 trials. To evaluate the MLO performance in our three
scenarios, we terminate when the global optimum is reached. We determine the
globally optimal configuration with analytic methods, run the MLO to achieve
the same value and then compare the complexity of both approaches.

As shown in Fig. 2 we create a surrogate model of the fitness function. We
also classify the design space using SVM as shown in the right figure. We see
regions of X with colour distinguishing different exit codes; dark gray for valid
and light gray for inaccurate designs. Black x marks drawn over the design
space represent configurations x which have been evaluated and used to build
the surrogate model. The design space includes white circles which represent
positions of the particles of the PSO algorithm during the iteration when the
image was created.

5.1 Reconfigurable Software-Defined Radio

We construct a benchmark based on studies conducted in [13]. The designer faces
a trade-off between reconfiguration time and number of processing elements p.
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Larger values of p correspond to designs with higher compute throughput; how-
ever, the chip takes longer to reconfigure and our aim is to find the optimal value
of p. The reconfigurable radio can run at two different chip reconfiguration band-
widths Φconfig of 5MB/s or 300MB/s.

Fig. 2. Reconfigurable radio f (Φconfig = 5MB/s) and its surrogate model

Fig. 3. Reconfigurable radio f (Φconfig = 300MB/s) and its surrogate model

Our parameters are p, Φconfig and core frequency freq. We define the design
space as X = {1−112}×{5, 300}×{freqmin−300}. We change X by varying the
minimum frequency freqmin. Although the problem is three-dimensional, due
to low discretization level of Φconfig we treat it as two separate two-dimensional
optimizations. For the I region constituting timing and FPGA resource over-
mapping regions, we mark the execution time as undesirable. MLO terminates
when x is evaluated within 2MHz range of globally optimal solution.

In Fig. 2 we see how the SVM classifies a fraction of the parameter space as
V and how the surrogate model closely matches the fitness function. We also see
how particles collapse and explore the optimal region p ≈ 4 for Φconfig = 5MB/s.
In Fig. 3 we observe a similar situation but for Φconfig = 300MB/s with the
optimal region p ≈ 20. Again, the surrogate model resembles the fitness function.
The collapse of particles is equivalent to the fine-tuning of the design parameters.
We present a visualization of the optimization in Fig. 4, each pair of figures
representing subsequent iterations. The top figures show the surrogate model,
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Fig. 4. Optimization of f (Φconfig = 300MB/s) after 13, 14 and 22 f evaluations

while the bottom figures represent corresponding visualization of the design space
and its classification. During several initial iterations and f evaluations, the
particles (shown as white circles) are misled by the surrogate model to explore
p ≈ 4 region. In the last figure we see particles guided by an improved surrogate
model moving towards the optimum p ≈ 20 region.

We use the reconfigurable radio benchmark to determine the impact of design
space size on the convergence of the MLO algorithm. In Tab. 1 we see a tendency
of the number of f evaluations to decrease along with the design space size. We
trim design space by increasing the lower limit of admissible frequency freqmin.
This shows that the designer should select a small parameter range as small
design space improves MLO convergence. One outlier of f = 54 in the case
of Φconfig=300MB/s and freqmin=200MHz can be explained with the overall
small sample size. Manual optimization is replaced by MLO, which works with
nearly no manual input but for the initial design space specification.

Table 1. Average number of f evaluations - Reconfigurable radio optimization

Φconfig freqmin 150MHz 200MHz 220MHz
5MB/s 44 37 31

300MB/s 47 54 45

5.2 Quadrature Method-Based Application

In [12] the designer explores trade-off between accuracy and throughput in an
application with three parameters. The first two parameters are mantissa width
mw of the floating point operators and the number of computational cores
cores. Larger number of mw bits increases computation accuracy, but limits the
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maximum number of cores that can be implemented on the chip due to the
increased size of the individual core. The third parameter is the density factor
df which specifies the density of quadratures used for integral estimation. It is a
software parameter and is independent of the generated bitstream. Density factor
df increases computation time per integration while improving the accuracy of
the results due to finer estimation of the integral.

Fig. 5. Quadrature-based application f and its surrogate model

The optimization goal is to find the design offering the highest throughput
given a required minimum accuracy defined in terms of root mean square er-
ror εrms. The error is defined with respect to results obtained by calculating
a set of reference integrals at the highest possible precision. The MLO termi-
nates when the globally optimal configuration for a given εrms is found. The
F region contains the inaccurate result class, as these benchmark evaluations
can be reused for regression. The design space X is defined as mw × cores× df :
{11−53}×{1−16}×{4−32}.We can explore the whole X in a three-dimensional
scheme or we can reduce the three-dimensional problem into two dimensions us-
ing an analytical resource usage estimation model. Resource usage is linearly
related to cores, and after generating a single core bitstream we can create a
simple analytical resource model which reduces the parameter space to two di-
mensions. Density factor df is a software parameter while mw and cores affect
the bitstream. Varying df only involves software execution, as long as a bitstream
for the given mw is already generated. If we evaluate a design with mw (or mw,
cores) that has not been evaluated before, we generate a new bitstream.

We present a visualization of the two-dimensional optimization in Fig. 5,
where the εrms limit is set to a value of 0.1. The bottom-left corner of V contains
the global optimum which is difficult to determine without additional benchmark
evaluations, as the maximum number of possible cores and therefore throughput
is limited by FPGA resources and as a result is chip dependent. Regions of space
with low df or mw are correctly predicted to offer low accuracy (light gray area).

To measure the algorithms convergence the MLO terminates when the design
with the highest throughput at the specified precision is found. The number of
required f evaluations is shown in Tab. 2. The previously suggested optimization
scheme [12] involves generating bitstreams for the full mw range. Using our MLO
combined with the analytical resource model, we reduce the number of bitstream



144 M. Kurek, T. Becker, and W. Luk

Table 2. Average number of f evaluations - Quadrature application optimization

cores εrms 0.1 0.01 0.001
three-dimensional 138 67 47
two-dimensional 71 43 28

generations as we avoid exploring cores and thus decrease the design space.
Around 20-50% of f evaluations involve bitstream generation. The number has
a high variance between individual runs as the swarm either skips undesirable
configurations or thoroughly explore the whole design space.

The optimization scheme presented in [12] involves generating all possible
bitstreams with cores = 1, and a binary search of the df values. Once the op-
timal (df ,mw) tuple is found, the number of cores can be determined. It also
requires the generation of bitstreams for all mw resulting in 53-11=42 distinct
bitstreams. Furthermore, the number of bitstreams is nearly doubled since af-
ter the first generation, usually a second bitstream generation follows to adjust
cores. Binary search is performed on the df range of 32-4=28 distinct values per
bitstream, which yields on average 2 × �log2 (28)� = 10 benchmark evaluations
per bitstream.

In comparison the MLO performance can be measured both in terms of f eval-
uations and bitstream generations. Using the optimization approach from [12]
we perform a binary search on df range for all mw values resulting on average
10×42 = 420 f evaluations regardless of the εrms limit. As presented in Tab. 2 for
εrms = 0.1 the MLO requires 75 evaluations (85 % less) in the two-dimensional
scheme and 138 (67 % less) in the three-dimensional scheme. The number be-
comes more favorable for the MLO when εrms is reduced as V is decreased and
the MLO needs to explore a smaller area, while average number of f evaluations
in their optimization approach stays constant. Not all f evaluations involve bit-
stream generations: for εrms = 0.1, 50% of f evaluations involve two bitstream
generations resulting in 71 bitstreams compared to 82 bitstreams in [12]. In the
three-dimensional scheme, MLO further decreases number of bitstream genera-
tions, to an average of 69. Our automated approach clearly outperforms manual
design both in terms of f evaluations and bitstream generations, although in the
second case the results are less dominant.

6 Conclusions and Future Work

We have proposed MLO, a novel tool which can determine optimized parameter
configuration of a reconfigurable FPGA design. The MLO can offer superior per-
formance, while reducing effort on analysis and application-specific tool develop-
ment. The main advantage of using the MLO is a shift from manual optimization
to automatic computation. The MLO requires multiple benchmarks for further
evaluation, and there are many opportunities for future work; an example is the
development of new surrogate models that would allow the reduction of required
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benchmark samples and efficiently address high dimensional examples. There are
numerous cases where level of parallelism, timing and other parameters span tens
of dimensions and would benefit from an effective automated approach.
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Abstract. The potential design space of FPGA accelerators is very large. The
factors that define the performance of a particular implementation include the ar-
chitecture design, number of pipelines, and memory bandwidth. In this paper we
present a mathematical model that, based on these factors, predicts the compu-
tation time of pipelined FPGA accelerators. This model can be used to quickly
explore the design space without any implementation or simulation. We evaluate
the model, its usefulness, and ability to identify the bottlenecks and improve per-
formance. Being the core of many compute-intensive applications, linear algebra
computations are the main contributors to their total execution time. Hence, five
relevant linear algebra computations are selected, analyzed, and the accuracy of
the model is validated against implemented designs.

1 Introduction

Compute intensive applications, when implemented in a standard CPU, may not achieve
an acceptable level of performance for their required purpose. Some of these, including
medical diagnosis[1], weather prediction[2], or stock market analysis show great po-
tential in their respective fields, but often require alternative hardware solutions such as
GPU or FPGA accelerated implementations to operate within an available time budget.

The core of these applications is very often composed of linear algebra computations
such as dot product, matrix-vector multiplication, matrix-matrix multiplication, matrix
inverse and matrix decomposition. When implementing some of these on an FPGA,
making a sound design decision can be highly time consuming due to the size of the de-
sign space. Initially, an architecture must be selected and given the area and bandwidth
constraints, the number of pipelines or pipeline size determined. Tools that facilitate
this process are highly desired.

In this paper we present a mathematical model that allows us to calculate the per-
formance of several pipelined linear algebra designs and assists in the configuration
of the size or number of pipelines. Out of the literature [3–6], successful architectures
for these computations are selected and discussed. Then, model parameters for these
architectures are defined and are used to calculate the execution time. The mathemati-
cal model is based on factors such as the number of pipelines and memory bandwidth
limitations. The accuracy of our mathematical model is verified by comparing against
the actual simulated hardware implementations. We discuss the results and identify the
performance limiting factors such as computational ability or memory bandwidth.
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The main contributions of this work are:

• A novel mathematical model that provides the execution time of pipelined FPGA
accelerators.

• Examples of pipelined architectures decomposed into equations.
• Evaluation of the approach on accelerator designs, showing that the model provides

clear indicators of performance limitations due to system design factors.

2 Related Work

Performance optimized source code for Linear Algebra (LA) computations is found in
two commonly used software libraries: Basic Linear Algebra Subprograms (BLAS)[7]
and Linear Algebra PACKage (LAPACK)[8]. Parallel versions of these libraries are also
available for GPUs in the form of Compute Unified BLAS (CUBLAS)[9] and Matrix
Algebra on GPU and Multicore Architectures (MAGMA)[10].

FPGA implementations of these computations have been studied extensively with
various design goals in mind. Akella et al. [11] designed a sparse matrix-vector mul-
tiplication architecture for a single FPGA. Lin et al. [12] designed and evaluated a
design for matrix-matrix multiplication that is optimized for the extra control required
for sparse matrices. In their subsequent work, Lin et al. [13] presented a model specifi-
cally designed for sparse matrix-vector and matrix-matrix multiplication and considered
dense matrices only as a special case of sparse matrices. Prasanna et al. [14] evaluate
various computations including matrix-vector multiply for dense and sparse matrices
but don’t investigate different pipeline sizes.

Zhuo et al. [3] designed architectures for dot product and matrix-vector multiplica-
tion and analyzed the trade-offs using architecture parameters for high performance.
This work also presented a lower bound for latency of these computations for both the
memory and pipeline usage. Matrix-matrix multiplication has been researched by many
including [3, 4, 12] among others. Sotiropoulos et al. [4] designed a fast block-based
matrix-matrix multiplication architecture that accelerated the computation using digital
signal processing (DSP) units. An architecture for Cholesky decomposition by Yang
et al. [6] modified the standard calculation to remove square roots and divisions from
the pipelines. This design shares a single divider among all of the pipelines efficiently
regardless of the number of pipelines. Edman et al. [5] studied a linear array design
for matrix inversion using a single stage pipeline and multiple stage pipelines for a
4x4 input matrix. This matrix inverse design improved upon existing systolic arrays by
converting to a linear structure that used less resources, yet still performed just as well
given that the array length is fixed to the matrix size.

In modeling of FPGA architectures for design space exploration prior to architec-
ture design, Holland et al. [15] presented a method to analyze the amenability of an
algorithm for implementation in an FPGA. They further expanded the model for multi-
FPGA systems in [16]. Their goal was to predict the performance without any archi-
tectural design details of the algorithm. In their verification, they presented modeling
error rates up to 15% compared to their baseline performance. We argue that, for appli-
cations that are iterative in nature such as heterogeneous computing simulators where
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Fig. 1. Embedded System Diagram

error compounds, a more accurate model is required. Furthermore, once the architec-
tural details are known we can more accurately model the performance of the design.

3 FPGA Pipeline Model

Before development of the model, we made a few assumptions based on the memory
systems available for FPGAs [12, 17]. First, we assume that the memory controllers
abstract out the control necessary to utilize any bursting or other performance enhancing
aspects. Second, we assume these interfaces handle the issues such as reading/writing
individual elements, avoiding bank conflicts, and buffering up accesses [18]. Finally,
we assume that the data stored in memory is organized such that the operands required
by the pipelines are able to be read out in sequential fashion.

We consider an embedded system with a memory interface, compute pipelines, and
start/finish control logic. The start and finish logic represent any data ordering or pre-
computing that must be done to all data before or after the compute pipeline(s). The
compute pipelines are made up of stages connected together, each containing one or
more functional units that perform operations such as adding, subtracting or multi-
plying. Computations can be performed using one or more pipelines by cycling data
through them. The architectures are classified into two types: multiple pipelines and
scalable pipelines. Multiple pipeline structures are defined as a single pipeline repli-
cated one or more times. Example architectures of this type are dot product and matrix-
vector multiply. On the other hand, scalable pipeline structures are those architectures
that have data dependencies or reuse results iteratively . Examples of scalable pipelined
architectures are matrix-matrix multiply, matrix inverse, and matrix decomposition.

(a) Multiple Pipeline Structure (b) Scalable Pipeline Structure

Fig. 2. Types of pipelined architectures
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The size of the pipeline can be represented as the size of some basic block (BB ) size or
number of processing elements (NPE ).

The total execution time (t) for a given computation is determined by: t = nc/fp
where nc is the total number of cycles required and fp is the pipeline’s frequency.

3.1 Determining the Total Number of Cycles

Let Lp be the pipeline latency, which is the number of cycles starting from when the
first data is ready at the input until the first result is available at the output. Lp can
be computed as the sum of each stage’s individual latencies (LStage), for all stages
(NStages) in the pipeline. Let Opmax be the speed of reading operands from memory
given the usable memory bandwidth MemBW , and the size of each operand, Opsize:

Lp =

NStages∑
i=1

LStage,i Opmax =
MemBW

Opsize
(1,2)

Let Opreq be the required number of operands per pipeline. We calculate Memratio,
the ratio of Opreq at the frequency of fp to Opmax as shown in Equation 3. This ratio
determines the percentage of the bandwidth a single pipeline will consume. The inverse
of this gives the maximum number of pipelines Mp, that can be provided with new data
at every cycle:

Memratio =
Opreq × fp
Opmax

Mp =
1

Memratio
(3,4)

The number of pipelines that can be used to compute a particular operation will be lim-
ited by either area (hardware resources) or memory bandwidth. Let Ap be the number
of available pipelines that can be implemented on a particular FPGA. Let Mp be the
number of pipelines that can be provided with new data from memory every cycle. Let
Up be the number of usable pipelines given by the minimum of Mp and Ap:

Up = min {Mp, Ap} cc =

⌈
U

Up

⌉
× I (5,6)

Given a particular pipeline architecture, a computation can be represented as some
amount of reuse of the pipeline, and the cost for each use. The amount of reuse, denoted
as uses (U ) can be spread over a number of pipelines for efficient parallel computation.
The number of cycles required for each use is referred to as the number of iterations (I).
With these variables, we define the number of compute cycles cc as shown in Equation
6. Let nc be the total number of cycles required to complete a single computation. nc

can be calculated as the sum of the cc and Lp plus the control latency Lctrl that re-
sults from the start and finish logic (see Figure 1) and twice the memory access latency
Lmem for each: reading the first set of values, and writing the last result.

nc = cc + Lp + Lctrl + 2Lmem (7)
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3.2 Determining the Pipeline’s Operating Frequency

The calculation of the pipelines’ required bandwidth is based upon the number of usable
pipelinesUp,Opreq andOpsize running at the frequency fp as shown in Equation 8. The
ratio between the pipeline’s required bandwidth and the available memory bandwidth,
BWratio is:

BWreq = Opreq ×Opsize × Up × fp BWratio =
MemBW

BWreq
(8,9)

This ratio is used to determine the maximum frequency of the FPGA pipelines, fp. This
value can be limited by two factors, the memory bandwidth or the max post place and
route frequency fmax. It is computed as the minimum of these two factors:

fp = min {fmax, BWratio × fmax} (10)

If fmax is not known an estimated value can be used. Once known the actual value
can be substituted and used for any input data size. This maximum frequency takes
into account all of the system variables including memory, resources, computation, and
architecture design.

4 Computations and Pipelines

The five computations selected for this work (dot product, matrix-vector multiplication,
matrix-matrix multiplication, matrix inversion, and Cholesky decomposition) represent
types of algorithms that are constrained by different factors: memory bandwidth de-
pendent, high computational complexity, and complex control flow. Out of the various
FPGA pipelined architectures that have been designed, one was selected [3–6] for each
computation and analyzed using the model. Other architectures can be analyzed with
this model as well.

We have derived the equations representing the number of uses U and iterations I
required to complete a single computation for all of the computations. The results of
these equations are based on the size of the input matrices (MxN and NxP ) or vector
(N ). Due to space constraints, only the derivation of the equations for matrix inverse
are presented. The calculation for matrix inverse is based on the number of processing
elements (NPE ) which defines the maximum amount of parallelism available due to
hardware resources. The equations for matrix inverse are shown in Table 1.

Matrix Inversion. The matrix inversion pipeline [5] is composed of processing ele-
ments (PE s) that each contain all the required components to perform the function of
either an edge cell or an internal cell from previously designed systolic array based
architectures. A PE contains a subtractor, multiplier, and divider functional units that
are multiplexed as needed. One PE can be used to complete an entire computation,
but more can be used for increased performance. The pipeline of PE (s) computes the
inversion of one row of a matrix at a time for square NxN matrices. This means that
the total number of uses of the pipeline is equal to the number of rows, N . Intermedi-
ary values are stored within the PE s and used for the remaining rows. In the equations



Performance Modeling of Pipelined Linear Algebra Architectures on FPGAs 151

Table 1. Computation Uses and Iteration Equations

Computation Uses (U) Iterations (I)
M-V Multiply U = N I = M

M-M Multiply U = M×P
BB2 I = N

Matrix Inverse U = N I = 4
∑S−1

i=1

⌈
i

NPE

⌉
+

[
Nops−(2×S×(S−1))

S

]
×

⌈
S

NPE

⌉
Nops = N × N+1

2 ; S =
⌈
N
2

⌉
Cholesky U = 1 I =

[∑S−1
i=1 i×NPE

]
+

⌊
N
S

⌋× S ; S =
⌈

N
NPE

⌉

for matrix inverse in Table 1, S represents the number of stages and thus the amount
of parallelism present in the computation given a particular number of PE s. However,
since this design passes values between cells a schedule is needed and the number of
operations to compute (Nops) is based on the matrix size.

5 Verification and Results

The model presented in Section 3 is used to predict the performance of pipelined FPGA
accelerators. The model requires the following factors to calculate execution time: ma-
trix/vector size, number of pipelines, memory bandwidth, and maximum clock fre-
quency of the design. The linear algebra computational architectures presented in Sec-
tion 4 were examined in detail to optimize each of the designs for high performance. All
of the designs were implemented for a wide range of pipelines, BBs, and PE s limited
by the resources of the device. Each was evaluated using 5x1 to 8000x1 vectors and
5x5 to 8000x8000 square matrices. We used square matrices without loss of general-
ity by using a block-based approach for matrix computation. The post place and route
clock frequencies for each of these designs in a Virtex-6 240T and Virtex-7 485T device
were recorded and used in the pipeline model calculations. We evaluated the designs for
both single and double precision floating point in a device with an 800Mbps memory
bandwidth (configurations: Virtex-6, SP 800 and DP 800) and a device with a 1.6Gbps
memory bandwidth (configurations: Virtex-7, SP 1600 and DP 1600).

Verification of the model’s accuracy was confirmed by comparing simulations of
the hardware designs to the model’s predictions. A linear regression analysis of the ex-
perimental data from implementation with the model’s estimated performance resulted
in a coefficient of determination (R2) of 1 for all computations. This result confirms
the validity of our model’s ability to accurately predict the performance of pipelined
architecture designs.

Results of modeling the five selected linear algebra computations are displayed in
two parts each. The first graph (a) shows the estimated best execution times of the four
system configurations for a range of data sizes. The second graph (b) shows the number
of pipelines or pipeline sizes used to achieve that best execution time.

Matrix Inverse. The matrix inverse computation was implemented using PE counts
from 1 to 128. This design only requires one new operand from memory per cycle for
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(a) Execution Times for NxN matrices (b) Pipeline sizes to achieve max. perf.

Fig. 3. Matrix Inverse Performance Results

any number of PE s. The memory bandwidth was not a limiting factor since it was
never fully utilized for this computation. The performance was exclusively reliant on
the number of computational units and speed. For single precision, the larger data sizes
from 200 to 8000 used 128 PE s for optimal performance. For double precision, the
associated clock frequencies were much lower and for data sizes from 20 to 8000 used
only 16 PE s for optimal performance. The results in Figure 3 show that the trend lines
for SP and DP have the same pipeline sizes. This clearly illustrates that the performance
of matrix inverse is much more dependent on the computational ability of the hardware
than any other computation in our comparison. The saturation of the number of PE s
for the larger data sizes shows all hardware resources being used.

Other Computations’ detailed results have been omitted due to space constraints.
A summary of those results follows. We found that with an increase in the data size the
optimal number of pipelines may be less than for the smaller data size. This was due
to a mismatch of the data size to the number pipelines. The source of this stems from
Equation 6, where the division of the number of uses by the number of usable pipelines
is rounded up. This increase in the number of cycles coupled with a reduction in overall
FPGA clock frequency for a larger number of pipelines can result in reduced perfor-
mance. A smaller number of pipelines offer a finer granularity than that of the larger
designs, and this allows designs with less pipelines to better compute a wider range
of data sizes. In many cases we found that the optimal match between computational
ability, memory bandwidth, and the FPGA clock frequency produced the highest per-
forming designs. Once a design with a particular number of pipelines fully utilizes the
memory bandwidth, any increase in the number of pipelines will reduced performance.

6 Conclusions

We have presented a model that can accurately predict the performance of pipelined
FPGA architectures. Our results show that the performance of a computation depends
on the implementation’s efficient use of available resources. Through the model calcula-
tions, the factors that constrain the performance are identified. We concluded that each
of the five linear algebra computations require a different combination of system fac-
tors to achieve best performance. We validated the predicted performance of the model
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with implementations of each architecture and accurately correlated the experimental
results with the predicted results. Compared to the previous FPGA models [15, 16] our
model achieves better accuracy by incorporating elements from the architecture through
the uses, iterations, and latency of each stage, LStage . The performance across a wide
range of data sizes and pipline sizes were displayed. We showed that the size of the
pipeline is a critical parameter that must be tuned to achieve maximum performance.
Using the model, we can compute the time required given the particular matrix size. For
different computations, the best accelerator can be configured to meet the needs of the
application. New pipelined architectures can be added and evaluated using this model
to compare performance without implementation. This model can be extended by using
cost-benefit analyses to compare different design strategies for optimal performance,
resource and power utilization.
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Abstract. Our contribution lies in offering a fast and parametrized
domain-space exploration to the designer, whose expertise drives the
whole process while staying the actor of added-value creation. In this
paper, we present two new features and two important improvements
of our H-MPSoC synthesis framework. The first one is a new template-
based approach for automated design space exploration and synthesis.
A template describes an architecture model for a specific domain and
has three levels of specifications each representing a different level of de-
sign expertise. We also rely on the Model-Driven Architecture (MDA)
paradigm to provide flexibility, reusability and code generation for dif-
ferent FPGA targets. We have refined the communication models to
get more accurate performance estimations. Finally, we also improved
our mapping decision algorithm that drastically reduces the simulation
time. The output is the synthesizable code of the hardware architecture,
the adapted C code of the application and the project files for FPGA
design tools. We use an MJPEG decoder as a case-study to validate our
framework on a Xilinx FPGA.

1 Introduction

Current trend in embedded systems development is to clearly increase the com-
plexity of the system while keeping size and power consumption low. This trend
has lead to the development of Heterogeneous MPSoCs, which provide the nec-
essary energy efficiency for embedded systems. The heterogeneous nature of
MPSoCs makes their design complex since it has to deal with processing units
of various kinds including General Purpose Processors (GPP) and specialized
co-processors. The key issue to reach a high quality standard in hardware design
is to unleash the unbeatable skills of experienced designers. Our contribution
lies in combining state-of-the-art tools to set up a full ESL flow that promotes
usability i.e. designers needs, simplicity to avoid unnecessary information, au-
tomation of tedious tasks with no added value, and incremental improvements
since practice makes success. As a consequence, the designer is put at the center
of the value-added process, while being freed from tasks that do not deserve
his/her expertise. Fast and parametrized domain-space exploration is offered as
a facility to the designer. Besides, interesting subsets can be further implemented
including specific coprocessors.
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Software design often relies on Model-driven approach, typically combining
UML models with object-oriented programming languages. This approach is
widely used in the software industry, and has proven its efficiency on the field. Such
an approach allows for correct-by-construction code generation and can also be
used to apply automated design verifications by checking predefined design rules.
It thus leads to a huge boost in productivity by ensuring the validity of the de-
sign thus reducing time consuming debug tasks. In this work such an approach is
applied to H-MPSoC synthesis. Considering the strategic importance of system-
level design reuse, offering a library of architecture templates makes sense. Each
template targets a specific application domain (DSP, video, etc.). A template is
an architecture model made of two types of components (processor, communica-
tion link, memory, peripheral). The first ones are pre-instantiatedwhile the second
ones are available and may or may not be implemented. The designer can specify
design constraints and, if needed, tweak the design for its own application. The
objective of the framework is to automatically explore the design space, to fill the
template blanks and to generate the complete system. The use of templates thus
relieves designers from tedious tasks with no compromise on the ability for the de-
signers to provide manual choices according to their level of expertise. Jointly, the
MDA approach also provides a solution for design reusability, which is actually
limited due to the lack of standards in FPGA design.

Given these templates, along with the designer constraints and annotations,
it is possible to perform real-life design space exploration, with, as a result, a
restricted range of tradeoffs between cost and performances. The final system
selected by the designer is then generated including the synthesizable code of
the hardware platform, the adapted software code of the input application, and
the project files corresponding to the FPGA backend tools.

Efficient and useful design space exploration also requires fast and accurate
performance and cost estimators. It has to take into account the two main fac-
tors that impact the performances. The first one is the model of processing units
(either general purpose processors or dedicated hardware accelerators). The sec-
ond one is the model of interconnects and memory architectures that may reflect
possible contentions and bottlenecks.

The paper is structured as follow: we first compare our approach to exist-
ing solutions in Section 2 and give an overview of our framework in Section 3.
We then present our first contribution, namely the template-based solution in
Section 4. We introduce our improved communication model and its validation
in Section 5. In Section 6 we present our new data and task mapping strategy
which achieves significant DSE time speedup compared to our previous work.
Finally a case study of an MJPEG video decoder is presented in Section 7 and
we conclude in Section 8.

2 Related Work

Several tools and languages exist for modeling of system platforms. Compared
to other approaches such as MARTE, our modeling-driven approach is domain-
specific and focuses on H-MPSoC for embedded systems.
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In [1] a DSE method is proposed for MPSoC using Model Driven Engineering.
Descriptions of the application and platform are given in the form of UML
models and are then used for DSE. DSE is implemented as a heuristic which
explores the following dimensions: communication, memory, performance and
power consumption. The mapping is then performed, relying on model-based
estimates. While this approach is quite similar to ours, our framework also takes
into consideration the automated exploration of hardware accelerators and the
exploitation of data parallelism.

In [2] is presented an MDE-based DSE for MPSoC. The tool starts from the
MARTE description of a system and the DSE process is performed through suc-
cessive simulations at different granularity. At first, a lot of solutions are quickly
estimated with a fast coarse granularity simulation, then from these estimations
a selection is made which is then evaluated more accurately with a slower finer
grained simulator. MDE is here used for automated model-to-model transforma-
tions, more specifically from theMARTE description to the simulation description
language.We also use model transformations, but we use it as well for architecture
generation. This framework is not as complete as ours, since they do not imple-
ment an automated hardware accelerators exploration and synthesis, nor do they
generate the final implementation files to feed FPGA backend tools.

Our framework is partly based on the Daedalus framework [3] and borrows
its performance simulation tool as well as its automatic transformation of the
application into Kahn Process Network (KPN) [4]. This implies that we use
the same formalism as input. However we have added several improvements,
which are the automated exploration, based on HLS, of the possible hardware
accelerators, the exploration of the data parallelism and a faster DSE algorithm.

3 Overview of the Framework

Our framework includes original contributions over a set of existing tools, using
standards in order to maximize modularity and flexibility. A number of tools
have been considered in order to deal with already solved problems. The Figure
1.a shows an overview of our framework flow.

The inputs of our tool are the architecture template, which is detailed in sec-
tion 4 and the C code of an application, which must be a static affine nested loop
program [6], i.e. the loop indexes must remain static through the execution and
its values must evolve following an affine function. The application must be split
into tasks to express the parallelism of the programwith a granularity at the func-
tion level. This splitting decision is up to the designer. Then, the code is automati-
cally transformed into tasks following a Kahn Process Network [4] formalism. This
is achieved by using the KPNGen [7] tools from the Daedalus framework. KPN-
Gen produces several C code source files corresponding to the task-based appli-
cation. Design Space Exploration requires to score performances of every task.
Hence, the code is automatically adapted in order to perform a profiling on a single
softcore target implemented on the FPGA target. Each task of the application is
transformed into a POSIX thread and is run on the Xilinx’ kernel, Xilkernel [8].
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Fig. 1. a) Flow of our framework: our tools are in blue, Xilinx tools in green and the
Daedalus tools in yellow. b) DSE flow: Our contributions are in blue, borrowed tools or
formalisms from the Daedalus frameworks are in yellow and the HLS tool (GAUT, [5])
is in red

Additionally, APIs controlling the timers responsible for profiling performances
are also inserted to the code. This was done by modifying the code generation
part of ESPAM. The collected information is then used to sort the tasks in re-
source consumption order. The obtained accurate values are used to calibrate the
performance estimation of software implementation during DSE.

A detailed explanation of the DSE algorithm that mainly deals with architec-
ture exploration is given in [9]. The DSE flow is also illustrated in Figure 1.b.
In this paper, we introduce a new data and task mapping algorithm which is
explained in section 6. DSE is based on a scalable algorithm, allowing to bal-
ance the necessary speed to produce a satisfying result versus the size of the
explored design space. The scalability covers the full range of possibilities from
a depth-first search returning the first result satisfying the designer’s constraints
to an exhaustive search that will return the optimal solution. The DSE algorithm
explores several dimensions such as the number of processors, the number and
type of dedicated co-processors, hardware specialization, communication links
and memories as well as mapping and scheduling. Several pruning decisions
are also introduced in the DSE algorithm. In addition to these typical design
dimensions two additional dimensions are explored in order to improve the per-
formance of the system. The use of dedicated co-processors is introduced by
means of High-Level Synthesis (HLS) and the possible data-parallelism through
task duplications. Since not all tasks can be accelerated into hardware or can
benefit from data-parallelism, the designer has to specify which tasks are eligible
to such optimizations. The integration of HLS in the DSE loop allows to gener-
ate several hardware accelerators for the same function, thus offering a tradeoff
between area and performance during design decision. Another important point
is that communication through data buffers are based on a zero-copy mechanism.
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The architecture exploration provides N1 architecture candidates for the fol-
lowing steps. The same exploration strategy is then followed, data mapping
produces N2 solutions based on the N1 candidates. Then task mapping pro-
duces N3 solutions based on the N2 candidates. The idea is to launch the greedy
scheduling simulation step on a limited number of N3 solutions. Once the explo-
ration is over, the architecture that fits the designer’s constraints is selected and
the corresponding synthesizable hardware code is generated. The C code of the
application is also adapted to the architecture, by adding calls to accelerators
and API for synchronization and communication routines.

4 MDA for H-MPSoC Design

In order to provide maximum flexibility, a Model Driven Architecture approach
(MDA) has been adopted. This method, widely used in software industry, pro-
vides an easy way to adapt design to different target architectures and thus
provides an easy way for portability and adaptation to target evolutions.

4.1 Template-Based Systems Design

There is no underlying platform architecture on FPGA and therefore no standard
interfaces [10]. It means that the development of FPGA-based embedded systems
remains a tedious task for usual designers. This situation explains the weak
penetration of FPGA on the embedded system market. We propose to solve this
issue by means of architecture models specified as templates. Our model-driven
approach relies on templates that provide pre-parametrized designs according to
the target domain (DSP, video, etc.). Such an approach favors reusability, code
generation and performance estimations. By allowing reusability, our template-
based approach avoids some tedious design steps and thus relieves designers from
repetitive and potentially error-prone tasks.

Fig. 2. An example of a graphical representation of an architecture template for an
MJPEG decoder and a detailed view of the processor template. Solid lines indicate fixed
part (level 1) of the architecture while dotted lines represent potential instantiations
(levels 2 and 3) that are decided by our tool during DSE.
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In order to let designers focus their expertise on high added value points,
we have divided our template into three levels of specifications. A first (static)
level represents domain-specific elements that are fixed and cannot be modified
during DSE.

A second level (DSE bounds) is where the designer has to provide information
needed for the DSE. These specifications provide the constraints that will bound
the design space:

– architecture template choice;
– minimum and maximum numbers of processors as well as the available types;
– available memories and their maximal size;
– mapping of input and output data;
– mapping of specific task(s) (input and output tasks typically);
– specification of application tasks that can be accelerated through hardware

accelerators and/or that can be duplicated for data parallelism exploitation.

A third level (expert) of specifications targets all the decisions that are taken by
the framework during DSE. If needed, the designer can force some attributes of
these specifications to fixed values that will thus not be changed during DSE.
These specifications include:

– task and memory mappings;
– number and type of processors;
– HW accelerators exploration, synthesis and integration with SW calls;
– task duplication for data-parallelism exploitation;
– scheduling.

Templates must be created by first specifying the fixed parts of the system,
corresponding to the level one specifications. It is possible to use templates of
components such as processor, memory or external peripherals of the system.
An example of a processor template is given in Fig.2.b. These templates can be
stored in a template database for future reuse. Once the designer has specified
the parts of the template that needs to be completed (level two and possibly
level three), the template is used as an input for DSE.

A graphical representation of an example architecture template for a video-
decoder design is presented in Fig.2.a. In this example, the input (e.g. reading
a video file on a flash drive) and the output (e.g. writing to the frame buffer)
will most likely be the same from one design to another of the decoder. Hence
the template pre-instantiates in the architecture the components necessary for
the input and output operations. In a video-decoder, the writing of the decoded
output video is done in real-time and since it is in a raw uncompressed format,
it requires a large bandwidth. It is thus also required to specify the instantiation
of a dedicated bus to the frame buffer.

4.2 Architecture Modeling

To model the system architecture, AADL is used (Architecture Analysis & De-
sign Language, [11]). This is a domain model language for embedded systems,
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including both software and hardware representations. AADL provides base com-
ponents categories for representing processors, buses, memories, devices, sys-
tems, processes, threads, thread groups, data and subprograms. Since in our
case it is not needed to model software, only hardware components are consid-
ered. Each component is described with two distinct types of declaration:

– a type declares the external interface of the component through which it can
be connected to other components (I/O ports, data/bus access, etc.);

– an implementation represents the internal composition of the component. It
can include one or several subcomponents, and also specify properties.

A set of properties are predefined in the AADL standard to specify configuration
parameters of components. For example, for a generic memory component, the
predefined properties are the size, the access rights, the word size, read and write
times, etc. These predefined properties can be extended by the addition of other
property sets for representing properties of more specific components such as a
MicroBlaze processor. This is illustrated in Fig. 3 where an excerpt of the AADL
representation of a MicroBlaze processor is presented.

AADL component and property sets declarations are used to constitute a li-
brary of components to be used in FPGA-based designs. Declarations for Xilinx-
specific components such as MicroBlaze, buses, controllers, etc. have been added
to the library. This is necessary to specify the values for parameters specific to
Xilinx IPs.

From AADL models, we are able to generate the necessary files for implement-
ing the solution architecture in synthesis and implementation tools such as Xilinx
XPS or Altera’s Quartus. The Xilinx tools have been selected to demonstrate the
proposed approach, so the generated files representing the system are the .mhs
and .mss files. The first one describes the synthesized hardware platform with its
components, their parameters and their connections. The second one describes the
drivers specifications in order to call the hardware components from the software

Package x i l inx components
pub l i c
with mic roBlazeProper t i e s ;

p ro c e s s o r microb laze
f e a t u r e s

r e s e t : in event port ;
i n t e r r up t : in data port ;
data p lb : r e qu i r e s bus a c c e s s ;
i n s t p l b : r e qu i r e s bus ac c e s s ;
data lmb : r e qu i r e s bus ac c e s s ;
in s t lmb : r e qu i r e s bus ac c e s s ;
debug : r e qu i r e s bus ac c e s s ;
ma s t e r f s l : r e qu i r e s bus ac c e s s ;
s l a v e f s l : r e qu i r e s bus ac c e s s ;

p r op e r t i e s
−−de f au l t va lues

mi c rob l a z ePrope r t i e s : : FSL l inks => 0 ;
end microb laze ;
end x i l inx components ;

Fig. 3. Excerpt of the AADL model of the MicroBlaze
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code. The selected architecture resulting from the DSE algorithm, is represented
by an instantiation of the AADL model, which contains the instantiated compo-
nents with their associated parameters and the connections between them. This
representation is then automatically transformed, into the corresponding project
files for the targeted FPGA design tools for an immediate implementation on the
FPGA. Using this MDE technique, only the grammar and the model transfor-
mations used for code generation need to be changed to target a different FPGA
design tool.

5 Model of Communication and Estimation

Since communications have a major impact on system performances, we have
refined their modeling in order to detect early memory and bus possible bot-
tlenecks. The template-based approach allows a precious improvement of this
estimation, which mainly rely on the modeling of the underlying architecture.

5.1 Memory Model

Since communication can be a bottleneck, it is important to minimize its cost.
Hence it is necessary to explore data mapping on available memory components
along with task mapping and coprocessor instantiation. In the template-based
approach, input and output data mappings are specified as parts of the input
constraints. In the domain of embedded systems, local memories (e.g. BRAM)
can be considered to store tasks binaries, this is for example a possible level
one specification. However the mapping of the transferred data between the
tasks of the application comes from the DSE algorithm. In order to perform
data mapping, models must be provided, one per type of memory. They are
characterized with the following parameters:

– Type: DDR, SRAM, BRAM, Flash.
– CommunicationInterface: The available communication interface to reach

the memory (e.g. PLB bus).
– ReadLatency & WriteLatency: number of cycles necessary to prepare data

before a burst.
– Bandwidth: transfer capacity of the memory in Mbyte/s.
– MaximumSize: maximum memory size, this is necessary for instance to

evaluate the cost of synthesized memories such as BRAM.

Using these parameters, it is possible to compute the capacity for each kind
of memory. For example for a DDR2 memory targeting on the Xilinx XUPV5
FPGA board, the set of specifications would be {DDR2, {PLB, XCL}, 14, 8,
337, 256000000} (the specifications are in the same order as in the list above).

5.2 Communication Model

The communication model has to reflect the real communication cost in order
to accurately estimate the global performance. This is a key point to find the
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best mapping. Our communication model takes into account the bus type, the
memory mapping (i.e. in which memory data is stored) and the use of a DMA.

The communication cost thus depends on the used interconnects between the
processing unit and other peripherals. In Xilinx designs, these possible intercon-
nects are for instance:

– Shared Bus: PLB (Processor Local bus);
– Point to point connections: LMB (Local Memory Bus), FSL (Fast Simplex

Link), XCL (Xilinx Cache Link).

Each interconnect is characterized by two properties: the bandwidth in bits per
cycle and the latency in cycles. For example, the set of specifications for a PLB
bus would be {PLB, 32, 3}. During the mapping decision phase, the intercon-
nects as well as the types of memories used are taken into account in order to
compute performances and cost of mappings. Such an approach does not make
sense unless it has been validated experimentally to reliably reflect the perfor-
mances of the final circuit.

During our first experimentation, we have observed that the performances of
the final implementation did not match the estimated processing performances
by an order of magnitude. After investigation, we found out that this was due
to contentions in the accesses to buses and memories. These contentions were
not precisely taken into account during the first performance estimation phase.
Consequently, we have adapted our framework and added communication models
to check during DSE that buses and memories have enough transfer capacity
according to requirements. Our DSE algorithm can now detect if, for a given
mapping, the buses and memories have a sufficient capacity so that estimated
performance will correspond to the final FPGA implementation. The details of
the data mapping algorithm is given in section 6.

6 Data-Task Mapping Decision Algorithm

The faster the DSE run, the larger the explored solution space is. In our pre-
vious implementation, for all candidate architectures, mappings were generated
exhaustively and then trimmed following a set of rules. Moreover the data map-
ping, which has a great impact on performance, was a consequence of the task
mapping. The remaining mappings were then all evaluated. Since simulation
was the most time consuming part of the DSE, we have implemented a different
approach. The new strategy is firstly to produce exactly one mapping by archi-
tecture. It means that the chosen mapping must follow a set of guidelines so that
it provides an acceptable level of performances. Secondly, we apply data-mapping
before task mapping. The mapping algorithm is described as a pseudo-code in
Fig. 4.

First of all, some mapping decisions are the results of prior decisions in the
DSE: tasks that are accelerated through hardware are automatically mapped
on the processor linked to the corresponding co-processor. Then for each of the
N1 architecture, several data mappings are generated. Data are mapped onto
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TaskClusters = Set of tasks to be mapped gathered
as clusters of independent tasks
ProcSet = Set of processors in the architecture
DataSet = Set of data representing communication
between two tasks sorted by decreasing size
MemorySet = Set of memories sorted in decreasing
order of speed

All hardware accelerated Tasks T are mapped on
Acceleratori
//Make data mapping with randomized latency values
for all N1 architecture solutions do

//Generate N2 data mappings
//Map biggest data on fastest memories first
//Consider several sizes for synthesized memories
(e.g. BRAM)
//Randomize memories latencies
for all Data D in DataSet do

for all Memory M in MemorySet do
while M has enough space for D do

mapDataOnMem(D, M)
end while

end for
end for
//Map smallest data on fastest memories first
for all Data D in ReverseDataSet do

for all Memory M in MemorySet do
while M has enough space for D do

mapDataOnMem(D, M)
end while

end for
end for

//Selection of the N2 best data-mappings
for all N2 selected mapping solutions do

//Make first task mapping with less loaded
processors
for all Task T in T C1, the first element of
T askClusters do

for all Processor P in ProcSet do
if P is the less loaded proc then

mapTaskOnProc(T, P)
end if

end for
end for
//Hungarian Algorithm
for all Task cluster T Ci of T askClusters do

for all Task T in T Ci do
for all Processor P in P rocSet do

for all Memory M in MemorySet
do

costMatrix = computeCostMa-
trix()

end for
end for

end for
applyHungarianAlgorithm(T Ci, costMa-
trix)
checkForCongestion()

end for
end for
//Selection of the N3 best task-mappings

end for

Fig. 4. Task and data mapping algorithm

the fastest memory as long as it has enough space to store the data. If the
fastest memory cannot stored the data then, it is tested on the second fastest
and if it still does not fit then it is tested on the next fastest and so on, until
a memory with sufficient remaining storage capacity is found. Two strategies
are implemented for the mapping of the data: largest data first and smallest
data first. Data size is computed by multiplying the size of of the data exchange
two tasks by the number of times they should be called within a second, with
respect to the performance objective. In order to provide several varieties in
data mapping we also randomize the latencies of each memories (with a modifier
coefficient within 0.5 and 2). Since some memories can also a variable size since
they are synthesize (typically BRAM), we considered several size values for those
memories. The result is N2 data mappings which are pruned of possible doubles.

These data mappings are then used to consider task mappings. The tasks that
are not already mapped are then clustered into independent tasks, i.e. tasks that
do not communicate directly. This is done in order to maximize the probability
of two communicating tasks to be mapped onto the same processor, thus reduc-
ing the communication cost. Then each task of the first cluster is mapped on
processors having the less load and among those the fastest one for the current
task. Load of processors are updated each time a task is mapped. Then for the
tasks of the remaining clusters, the Hungarian method [12] is applied. It is thus
necessary to compute the cost matrix for each task in the cluster and the avail-
able processors. The cost is for a Task T and a coupling of Processor P and a
memory M is given by this formula: (α×execT ime(T,P )+β×comm(T,M))×γ×
procLoad(P ) × δ ×MemLoad(M), where α, β, γ and δ are coefficients that can
be set by designer sto choose which parameters to favor. The result is that each
task is mapped on a processor and its communication with a previously mapped
task are also mapped on a task.



164 Y. Corre et al.

Once the task mapping is done, data that are mapped in ”dynamic” memory,
such as BRAM, are assigned to a processor. Depending on the task mapping,
if data that corresponds to a communication between two tasks mapped on
the same processor, then the BRAM is implemented as a local memory of the
processor (as seen as in Figure 2.b). Otherwise the BRAM is implemented as a
shared memory associated with the processor that produces the data. Finally a
check is performed that computes the load of the buses and other interconnects
in order to detect possible congestions.

Fig. 5. Selection of results of the DSE algorithm sorted by increasing performances.
The horizontal red line shows the 24 FPS objective.

7 Case Study

To validate the performances of our tools, we used an MJPEG decoder as a case
study. We used the template previously mentioned (cf. Figure 2). The decoder
was split into five tasks: Decode, IQZZ, IDCT, YUV, Display. The target FPGA
board was a XUPV5. During the DSE, the explored options were the acceleration
of the IDCT and YUV tasks, resulting in five versions of the IDCT IP and one of
the YUV IP. The IDCT task was also considered for duplication. In the template,
some design decisions are specified for the data mapping: the code of the binary
is mapped in SRAM, the heap and stack of each task is mapped into the local
memory of the processor the task was mapped on.

The communication model was validated and during DSE several designs that
were not respecting the design constraint due to poor communication perfor-
mances were detected. For example, the case of an architecture with two proces-
sors, where Decode and IQZZ are mapped on the first processor and the other
tasks are on the second. The data buffer for the communications between the
two processors (i.e. between IQZZ and IDCT) was mapped on the DDR memory
and connected through a dedicated PLB bus. In addition to the data buffers, the
frame buffer was also mapped on the DDR and thus the raw data of the decoded
video must be written and read from there. Without the communication model,
the given estimated performance respected the 24 FPS constraint, however the
estimation provided by the communication model reveals that the final perfor-
mance would be 15 FPS. Here the bottleneck is not due to the DDR or to the
PLB bus, but to the load in the processor induced by the communications which
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slows down the program execution. This more accurate communication estima-
tion is possible thanks to the template approach we use, which is more precise
than the high-level communication models classically used in codesign tools. The
observed performance of the generated architecture after implementation on the
FPGA was 15 FPS, which confirms that the estimation was correct.

A selection of the results of the exploration is shown in Figure 5. The best solu-
tion is the one with two MicroBlaze processors, with two hardware accelerators:
one for the YUV and one for the IDCT. Our new mapping algorithm brought
a massive improvement over the previous technique. For a total of 35 evaluated
architectures, the performance simulation before our improvement took around
40 minutes since over 3000 mappings were estimated, whereas now it only takes
around 30 seconds, which is 80 times faster. This is due to the fact that only
one mapping par architecture is generated, i.e. in this case 35 mappings. For this
case study, this brings the overall time taken by our tool for the DSE to a time
under one minute to get the final implementation.

8 Conclusion

In this paper we have presented our template-based design framework that fits
usual practices and real-life needs in embedded systems. It brings in the domain
of FPGA, expected features such as flexibility, reliability and design reuse while
using standard formalisms well-known from designers. It also targets several
levels of expertise: the designer can choose between letting the framework make
all the design exploration or relying on his own expertise by specifying extra-
constraints. Additionally, we have detailed some important improvements of our
H-MPSoC design framework. Firstly we have refined our communication model
to accurately detect possible memory and bus contentions. Secondly we have
significantly improved (x80) the speed of our mapping decision algorithm and
get extremely fast DSE and consequently large solution exploration.
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Abstract. This paper presents the design and implementation of con-
figurable fault-tolerance techniques for a configurable VLIW processor.
The processor can be configured for 2, 4, or 8 issue-slots with differ-
ent types of execution functional units (FUs), and its instruction set
architecture (ISA) is based on the VEX ISA. Separate techniques are
employed to protect different modules of the processor from single event
upsets (SEU) errors. Parity checking is utilized to detect errors in the
instruction and data memories and the general register file (GR), while
triple modular redundancy (TMR) approach is employed for all the syn-
chronous flip-flops (FFs). At design-time, a user can choose between the
standard non fault-tolerant design, a fault-tolerant design where the fault
tolerance is permanently enabled, and a fault-tolerant design where the
fault tolerance can be enabled and disabled at run-time. These options
enable a user to trade-off between hardware resources, performance, and
power consumption. A simulation based technique is utilized for testing
purposes. The processor is implemented in a Xilinx Virtex-6 FPGA as
well as synthesized to a 90 nm ASIC technology. Compared to the per-
manently enabled fault-tolerance, in scenarios, where fault-tolerance is
not required at some point in time, considerable power savings (up to
25.93% for the FPGA and 70.22% for the ASIC) can be achieved by
disabling the fault-tolerance at run-time.

Keywords: Softcore, VLIW processor, SEU error, Configurable fault-
tolerance.

1 Introduction

Very long instruction word (VLIW) processors exploit instruction level paral-
lelism (ILP) by means of a compiler. A VLIW processor can execute multiple
operations (a long instruction) per cycle to increase performance [5]. When the
data path of a processor gets larger and complex, the probability of errors (such
as radiation-induced soft errors) also increases. Because VLIW processors can
provide high performance at low power, they are gaining wide-spread utiliza-
tion not only in general-purpose embedded systems but also in safety-critical
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systems such as biomedical, space, military, communication, industrial, and au-
tomotive systems. Therefore, it is important to employ fault-tolerant techniques
in these processors for guaranteeing high reliability and dependability of the
safety-critical systems. Run-time detection plays an important role in depend-
able systems, where it is needed that the computed data is either correct or an
error signal is generated whenever there is a possible error.

In this paper, we present configurable fault-tolerant techniques for a softcore
VLIW processor (ρ-VEX) [21]. The processor is parameterized and different
parameters such as the issue-width, the number and types of different FUs,
number of registers, memory buses, and latencies for the FUs can be chosen
at design-time. The processor is implemented in VHDL and the fault-tolerance
techniques are implemented at hardware level. The processor employs different
fault-tolerance techniques such as parity checking and TMR to increase the
reliability and dependability of the system. The processor is implemented in
a Xilinx Virtex-6 FPGA as well as synthesized to a 90 nm ASIC technology.

Apart from the general parameters such as the issue-width, number of FUs,
etc., the fault-tolerance is also configurable. At design-time, a user can choose
to implement a processor with no fault-tolerance, a processor with the fault-
tolerance permanently enabled, or run-time configurable. The permanently en-
abled and the run-time configurable designs consume almost similar dynamic
power. The advantage of the latter design is that the fault-tolerance can be dis-
abled at run-time, resulting in reduced dynamic power consumption (25.93%,
12.43%, and 5.55% for the FPGA and 65.92%, 67.30%, and 70.22% for the
ASIC for the 2-, 4-, and 8-issue processors, respectively). The fault-tolerance
can be enabled/disabled by executing an instruction on the processor. For ap-
plications which can tolerate some bit flips such as audio/video decoding, the
fault-tolerance can be disabled at run-time to reduce the dynamic power con-
sumption. On the other hand, applications which are susceptible to even a single
bit flip such as sending/receiving DTMF tones on a mobile device, can enable
the fault-tolerance at run-time. The configurable processor provides a trade-off
for hardware resources, performance, and power consumption.

The remainder of the paper is organized as follows. Related work is discussed
in Section 2. Section 3 briefly introduces our configurable ρ-VEX softcore VLIW
processor. The fault-tolerant design of the ρ-VEX processor is presented in Sec-
tion 4. Experimental results are presented in Section 5. Finally, Section 6 con-
cludes the paper.

2 Related Work

Recently, fault-tolerance for microprocessor systems is gaining increasing impor-
tance. Transient errors are considered as the main source of errors in proces-
sor systems. Different on-line detection and mitigation techniques are proposed
for detecting and correcting transient error faults. These techniques are mainly
based on the redundancy approaches. In these techniques, instructions are repli-
cated and computed, and then the results of the original and the duplicated
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instructions are compared to check for errors. Mainly, there are two approaches
for redundancy; software-based and hardware-based.

A software-based redundancy approach utilizes a compiler to generate dupli-
cate/triplicate instructions. This approach increases code size and power con-
sumption and reduces performance [13]. The advantage is that no hardware
modification is needed. Compiler-based software redundancy schemes with the
effect of increased code size and performance degradation are presented in [3][10].
Similar techniques to detect errors in VLIW and superscalar processors are dis-
cussed in [9][2][14]. A software method to detect transient and common-mode
faults in statically-scheduled VLIW processor in presented in [18].

A hardware-based redundancy approach requires changes to the architecture
and additional hardware for managing replication, re-computation, and compar-
ing results to detect errors. The advantage is that there is no need to change the
code or the compiler, and that there is little or no performance degradation and
no code size overhead. At the hardware level, one solution is to replicate the com-
plete processor system, and then implement a majority voter to select between
the three results [11][20]. In that case, there is no need to change the processor
architecture, with the disadvantage that a fine-grain control over instruction-
level checking is not possible. Another solution is to modify the architecture,
implement additional FUs and other control hardware units to perform the exe-
cution of replicated instructions [7][15][16]. A technique that utilizes additional
FUs to detect and correct transient errors generated in combinational logic is
presented in [4]. The author in [8] triplicates the sequential elements in the pro-
cessor to detect and correct SEU errors. Recently, hybrid approaches (software
and hardware) for error detection and correction were presented in [4][17].

3 The Configurable ρ-VEX VLIW Processor

The VEX ISA, developed by the Hewlett-Packard (HP) and STMicroelectronics
[6] is a 32-bit clustered VLIW ISA that is scalable and customizable to individual
application domains. The ISA is loosely modeled on the ISA of the HP/ST Lx
(ST200) family of VLIW embedded cores [5]. Based on trace scheduling, the
VEX C compiler is a parameterized ISO/C89 compiler. A flexible programmable
machine model determines the target architecture, which is provided as input to
the compiler. The compiler reads a machine configuration file and schedules the
code according to it. A VEX software toolchain including the VEX C compiler
and the VEX simulator is made freely available by HP Laboratories [1].

The ρ-VEX is a configurable (design-time) open-source softcore VLIW pro-
cessor [21]. The ISA is based on the VEX ISA [6]. Different parameters of the
processor such as the issue-width, the number and type of different FUs, sup-
ported instructions, memory-bandwidth, register file size etc., can be chosen at
design time. The processor is a 5-stage pipelined processor consisting of fetch,
decode, execute0, execute1/memory, and writeback stages. Regular functional
units include arithmetic logic units (ALUs), multiplier units (MULs), branch or
control unit (CTRL), and load/store or memory unit (MEM ). The fetch stage
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Fig. 1. Methodology to generate a ρ-VEX VLIW processor

fetches a VLIW instruction from the attached instruction memory, and splits
it into syllables that are passed on to the decode stage. Here, instructions are
decoded and register contents used as operands are fetched from the GR register
file. Branch operations take place in the CTRL unit located in the decode stage.
The ALU/MUL operations take place in either the execute0 (1-cycle latency)
and execute1 (2-cycle latency) stages. Load/store operations takes place in the
MEM units in the execute1/memory stage. All write activities are performed
in the writeback stage to ensure that all targets are written back at the same
time. The processor has a 64×32-bit multiported general register file (GR) and
an 8×1-bit multiported branch register file (BR). The number of GR and BR
registers can be changed at design time (maximum 64 for GR and 8 for BR).
Figure 1 depicts the methodology to generate a ρ-VEX processor. The user can
profile an application to determine a suitable processor, and then quickly imple-
ment it along with the executable (instruction and data memories). The only
difference between the FPGA and ASIC implementations is that, for FPGA, the
GR register file is implemented with dual-port synchronous RAMs (DP RAMs),
while for ASIC it is implemented with flip-flops (FFs).

4 The Fault-Tolerant ρ-VEX VLIW Processor

Single event upset (SEU) effects a memory cell or FF. It is a bit flip caused by a
charged particle. The noise induced by a radiation when exceeds the threshold
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voltage, a bit flip may occur. Due to wire process shrinking, the threshold voltage
is decreasing, and hence, electronic systems are becoming more susceptible to
SEUs. When an SEU occurs in a memory (storage or configuration), it is called
as permanent error. When it occurs in a flip-flop, it is referred to as a transient
error. To recover from the permanent error, reconfiguration or re-loading of
the configuration data to the configuration memory is required. For a memory
used as a general storage (e.g., instruction memory), the permanent error could
be checked and corrected by parity checking and some error correcting code
(ECC). TMR technique is used widely to recover from a transient error. When
TMR mitigation techniques are adopted, the same circuit is triplicated and a
majority voter is implemented between the three computed results. In this way,
a single fault occurring in one part of the TMR circuit is protected as the result
is obtained from the other two circuits.

For this paper, we consider SEU errors that occur due to a direct hit in a
flip-flop or a memory element used as a general storage (instruction and data
memories, and the GR register file). We do not consider the FPGA configuration
memory, and assume that it is protected by other techniques. According to [12],
the probability that SEU errors in combinational logic can propagate to a register
on a clock is very low, therefore, we do not consider such permanent SEU errors in
combinational logic. The ρ-VEX processor utilizes two types of sequential cells
for its implementation: synchronous DP RAMs for instruction/data memories
and the GR register file (in case of FPGA implementation), and synchronous
FFs used for other storage such as general registers, pipeline registers, state
machines, and status/control functions. We employ different SEU protection
techniques for the DP RAMs and FFs. The hardwired DP RAMs in the Xilinx
and Altera FPGAs provide an extra bit per byte of data which can be used
as a parity bit. Hence, for a 32-bit word, up to 4 parity bits are available and
can be used without increasing the number of DP RAMs. In case of an ASIC,
additional area is required to implement parity bits in instruction and data
memories. Following, we discuss different modules of the fault-tolerant ρ-VEX
processor which utilize different error protection techniques.

4.1 Instruction Memory

For the ρ-VEX processor, each operation called syllable is encoded in a 32-
bit word. Multiple syllables are combined to make a long instruction which is
executed every clock cycle. The instruction width for a 2-, 4-, or 8-issue ρ-
VEX processor is 64-bit, 128-bit, and 256-bit, respectively. Our design provides
configurable number of parity bits (1, 2, and 4) per 32-bit instruction (syllable).
Hence, for every 8 bits of instruction, a parity bit is available. The parity bits are
statically calculated by XOR operations in the assembler tool and stored along
with the instructions in the dedicated parity bits of the memory. Instructions are
read and passed through the fetch stage to the decode stage. The parity bits are
checked in the decode stage in parallel with instruction decoding to minimize the
timing overhead. If a parity error is detected for an instruction, the decode and
the fetch stages are flushed, and the pipeline is halted. The correct instruction



172 F. Anjam and S. Wong

can then be copied from the higher level memory (Flash card, on-board memory,
etc.) to the local instruction memory, and the pipeline can then be restarted.

4.2 Data Memory

The data width of the ρ-VEX processor is 32-bit whatever the issue-width may
be. The data memory is implemented with DP RAMs. Additional bits are uti-
lized as parity bits. Because the ISA has memory operations that can operate
on words, half-words, and bytes, therefore, we utilized 1 parity bit per byte of
the data. Initially, parity bits are generated statically in the assembler tool and
placed along with data in the external memory. During initialization, the data
and the parity bits are copied from the external memory to the local data mem-
ory. During a store operation, the parity bits are calculated and written to the
data memory together with the new data. The parity bits are generated in the
MEM unit which resides in the execute0 stage. During a load operation, a data
word is read from the data memory along with the parity bits. The parity of
the data word is checked in the writeback stage before writing the word to the
GR register file. If there is a parity error, a data error trap is generated and the
pipeline is halted. The simplest method to recover from this error is to reload
the whole data memory for the program from the external memory and start the
program from the beginning. Other complex error recovery methods such as roll
back to the instruction which modified the data location may also be considered
but implementing such methods are out of scope of this paper.

4.3 GR Register File (FPGA Implementation)

The 2-, 4-, and 8-issue ρ-VEX processors require 64×32-bit GR register files
with 2-write-4-read (2W4R) ports, 4W8R ports, and 8W16R ports, respectively.
The hardware resource requirement for these register files grows large when
implemented with an FPGA’s configurable look-up tables (LUTs), therefore,
the register files are implemented with 18 Kbits DP RAMs. Each DP RAM is
configured in simple dual port (SDP) mode with 1W1R port, and for multiple
ports, DP RAMs are organized into multiple banks and data is duplicated across
various DP RAMs. In this design, the number of write ports defines the number
of banks and the number of read ports defines the number of DP RAMs per
bank. Figure 2 depicts the GR register file for a 2-issue ρ-VEX processor with
2 banks each having 4 DP RAMs. The direction table is a small register table
having the same number of ports as the original register file. For the 2W4R,
4W8R, and 8W16R ports register files, the direction table is 64×1-bit, 64×2-bit,
and 64×3-bit, respectively. The direction table is implemented with FFs, and to
provide SEU error protection, TMR approach is utilized as discussed in Section
4.4. Each FF is triplicated and a majority voter is implemented. Hence, an SEU
error in a single FF can be tolerated.

Each write port is associated with a bank and all the DP RAMs in a bank
are simultaneously updated. Each DP RAM is organized in a 32-bit wide aspect
ratio and parity bits are design-time configurable (1, 2, or 4 for each 32-bit word).
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Fig. 2. 64×32-bit 2W4R ports GR register file for 2-issue ρ-VEX processor imple-
mented with FPGA’s DP RAMs

The parity bits are generated in the writeback stage and written together with
the data. The register data is accessed in the decode stage but the parity check
is done in the execute0 stage to avoid the timing overhead. If a parity error
is detected on the read data on a register file port, the pipeline is flushed and
the error correction procedure is started. We implemented a simple mechanism
to correct the corrupted data. For each write port, the written data is already
duplicated in multiple DP RAMs each associated with a read port (4, 8, and 16
DP RAMs for 2-, 4-, and 8-issue processors, respectively). When a parity error
is detected in a data on a read port, the same data is read on another port from
a different DP RAM in the same bank. The parity for this data is also checked.
If the parity is correct, it is assumed that this data is correct. This data is then
written to all the DP RAMs in the bank where the corrupted data was present in
a DP RAM. The pipeline is then restarted at the point of the failing instruction
and normal execution resumes. Currently, we check only one neighbor DP RAM
for the correct data instead of all the DP RAMs in a bank to simplify the design.
If a data word cannot be corrected in this way (e.g., if the same location in all
the DP RAMs in a bank is corrupted at the same time), an unrecoverable error
trap is generated.

4.4 TMR Approach for Flip-Flops

In the ρ-VEX processor, flip-flops are used for different purposes such as data
holding registers, status registers, pipelines latches/registers, state machine reg-
isters, etc. The VEX ISA specifies a 1-bit 8-element multiported branch register
file (BR) for a multi-issue VLIW processor. For 2-, 4-, and 8-issue ρ-VEX pro-
cessors, the ISA requires BR register files with 2W2R ports, 4W4R ports, and
8W8R ports, respectively. In case of ASIC implementation, the GR, BR, and
link register (LR) files for the processors are implemented with FFs. TMR ap-
proach is utilized to protect against the SEU errors in all the FFs used in the
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processors. Each FF is triplicated and a majority voter is implemented for it,
and hence, an SEU error in a single FF can be tolerated. Because the FFs are
continuously clocked, any SEU error can be removed within one clock cycle with
the output of the voter providing the correct (glitch-free) value. The robustness
of the TMR scheme can further be increased by providing a separate clock tree
for each lane of the TMR FFs. In this way, all of data errors resulting from an
SEU hit on one clock tree can be tolerated and automatically corrected on the
next clock edge.

4.5 Working of the Configurable Fault-Tolerant System

We implemented fault-tolerance techniques that can be configured to be enabled
or disabled at run-time. The user can specify to include or not include the fault-
tolerance in the processors at design-time. Additional to this, the user can specify
at design-time to implement a fault-tolerant design of a processor in which the
fault-tolerance is permanently enabled. Figure 3(a) depicts the TMR scheme
and the majority voter for the permanently enabled fault-tolerant design. If an
application requires that fault-tolerance should always be enabled, this design
has the advantage of requiring less hardware resources, consuming less dynamic
power, and running at higher clock frequency.

On the other hand, if an application requires fault-tolerance only at specific
instances of time (e.g., to execute certain specific modules or when the device
has to be used in an increased radiations environment) and does not require
fault-tolerance at other times, the system should be able to turn off the fault-
tolerance circuit to avoid consuming additional dynamic power due to triplication
of the FFs. In our case, at design-time, the user can also specify to implement a
processor in which the fault-tolerant circuit can be enabled and disabled at run-
time. The fault-tolerance can be enabled and disabled be executing an instruction
on the processor and this control can be given to the user or to a program.
Figure 3(b) depicts the TMR scheme and the majority voter for the run-time
enabled/disabled fault-tolerant design. In this case, the additional two FFs and
the majority voter can be enabled/disabled by controlling the EN1 and EN2
signals. This design slightly increases the hardware resources and the critical
path. The advantage is that dynamic power consumption can be reduced at
run-time if an application does not require fault-tolerance at some point in time.

4.6 Test Methodology

To test our fault-tolerant design, we utilized the simulation-based fault-injection
method presented in [19]. The advantage of this method is that it does not
require any additional hardware setup and allows fast and easy implementation
of the fault injection platform but limits the number of experiments due to its
high computational requirements and long simulation time. Using the VHDL
description of the ρ-VEX processor, we can perform realistic emulation of the
faults and detailed monitoring of the system. We utilized ModelSim simulation
tool (version 64-bit SE 6.6e) to perform fault injection and record the results.
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Fig. 3. Two approaches used for TMR

We have written special non-synthesizable routines that generate faults in
different regions of the processor at different clock edges, and then record the
results. Single bit errors are induced in the pipeline registers and other sequential
elements of the processors. Injecting errors in FFs does not require stalling a
processor and the execution can continue as normal. To inject errors in the GR
register file (FPGA implementation) of a processor or the instruction or data
memory requires stalling the processor. We injected 3000 single bit errors in the
2-, 4- and 8-issue ρ-VEX processors running matrix multiplication and sorting
applications. All the errors in the TMR structure (FFs) were corrected. Errors in
the instruction and data memories were detected and the processor was stopped
to correct these errors. All of the correctable errors in the GR register file (FPGA
implementation) were corrected and the non-correctable errors generated a trap
halting the processor execution.

5 Experimental Results

Figure 4 depicts the hardware resources, critical path delay, and dynamic power
consumption results for the base and the fault-tolerant ρ-VEX processors with-
out instruction and data memories. For the FPGA implementation, we utilized
the Xilinx ISE (version 13.3) and the Virtex-6 XC6VLX240T-1FF1156 FPGA,
whereas for the ASIC, we utilized the Synopsis Design Compiler (version G-
2012.06-SP2) and targeted a 90 nm technology. The GR and BR register files
in all cases are 64×32-bit and 8×1-bit, respectively. The 2-, 4-, and 8-issue cores
have 2, 4, and 8 ALUs, and 2, 2, and 4 MULs, respectively. Each type of core has
a single load/store (MEM ) unit. In Fig. 4, D1 and D2 represent the base non
fault-tolerant and the permanently enabled fault-tolerant designs, respectively.
D3 and D4 (both having same area in terms of hardware resources) represent the
processor design in which fault-tolerance can be enabled/disabled at run-time.
D3 represents the fault-tolerance enabled scenario, while D4 represents the fault-
tolerance disabled scenario. The parity bits are design-time configurable, i.e., 1,
2, or 4 bits per 32-bit of word. The results presented in Fig. 4 are for 4 bits of
parity per 32-bit word, i.e., 1 bit per byte of data.
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Fig. 4. Hardware resource utilization, critical path delay, and dynamic power consump-
tion for the ρ-VEX VLIW processors for the Xilinx Virtex-6 FPGA and 90 nm ASIC
technology. In addition to the mentioned resources, the 2-, 4-, and 8-issue cores utilize
4, 16, and 64 RAMB36s for GR register files, and 4, 4, and 8 DSP48E1s modules,
respectively, in the FPGA implementation

As can be observed from Fig. 4(a), adding fault-tolerance to a processor re-
quires more hardware resources especially the FFs (which are triplicated for
TMR approach) and the additional logic gates for implementing majority vot-
ers. For the FPGA implementation, the number of DP RAMs for the GR register
files and instruction and data memories remain the same because we utilize the
available extra parity bits in the DP RAMs. For the ASIC, the area required for
implementing additional parity bits for instruction and data memories increases.
In terms of bits increase, it is 1, 2, or 4 bits per 32-bit of word for instruction
and data memories depending upon the desired number of parity bits. Designs
D3/D4 utilize slightly more hardware resources and runs at less frequency com-
pared to D2. The additional logic gates utilized for majority voters in D3/D4
may be accommodated in the already utilized LUTs (FPGA implementation),
therefore, the critical path delay remains almost the same as that for D2. It is
also to note that the critical path delay in FPGAs is also dependent upon the
placement and routing congestion. In case of the ASIC, the increase in the crit-
ical path delay can be clearly observed when moving from D1 to D2 to D3/D4
due to adding additional logic gates in the path (majority voters).

Instead of measuring the absolute power consumption for certain applications,
we measure the average dynamic power at typical operating conditions utiliz-
ing 10% switching activities, as presented in Fig. 4(b). We utilized the Xilinx
XPower Analyzer tool and the Synopsis Design Compiler to measure the power
consumption for the XC6VLX240T-1FF1156 FPGA and the 90 nm technology,
respectively. As can be observed from the figure, implementing fault-tolerance in
the processors increases the dynamic power consumption due to increased hard-
ware resources. Designs D2 and D3 (fault-tolerance enabled) consume almost
similar dynamic power, while D4 (fault-tolerance disabled) consumes consider-
ably less power compared to D2. In case of the FPGA implementation, the D4
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consumes 25.93%, 12.43%, and 5.55% less dynamic power compared to the 2-,
4-, and 8-issue D2 designs, respectively. In the larger issue-width cores, the GR
register files require increased number of DP RAMs due to increased number of
ports. In FPGAs, DP RAMs contribute more to the dynamic power compared
to FFs, therefore, for the 8-issue processors in our case, the dynamic power con-
sumption does not reduce considerably when moving from D2 to D4. This effect
is not visible in the ASIC results, as the GR register files are implemented with
FFs, not DP RAMs. For the ASIC implementation, the D4 consumes 65.92%,
67.30%, and 70.22% less dynamic power compared to the 2-, 4-, and 8-issue D2
designs, respectively. This is considerable power reduction, and if fault-tolerance
is not required at some point in time, it can be turned off to reduce the dynamic
power consumption.

6 Conclusions

In this paper, we presented configurable fault-tolerance techniques for the ρ-
VEX softcore VLIW processor. The issue-width of the processor can be con-
figured to be 2-issue, 4-issue, or 8-issue with different mix of functional units.
The fault-tolerance designs can detect and correct SEU errors. The designs are
implemented in a Xilinx Virtex-6 FPGA, as well as synthesized to a 90 nm
ASIC technology. Parity checking is utilized to detect errors in the instruction
and data memories, and the general register files (FPGA implementation). For
all other sequential elements, the TMR technique with majority voting is im-
plemented. Different designs for fault-tolerance scheme such as permanently en-
abled at design-time or with run-time options for enabling and disabling, were
presented. These options enable a user to trade-off between hardware resources,
performance, and power consumption. When fault-tolerance is not required at
some point in time, disabling the fault-tolerance at run-time results in consider-
able dynamic power reduction (up to 25.93% for the FPGA and 70.22% for the
ASIC) compared to the permanently enabled fault-tolerant design.
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Abstract. The Networks-on-Chip paradigm has been seen as an interconnect 
architecture solution for complex systems. However, performance and energy 
issues still represent limiting factors for Multi-Processors System-on-Chip. 
Moreover, the execution of different applications requires flexible and transpa-
rent interconnection solutions, and this feature is best provided by a self-
adaptable system. In this paper we propose HASIN, an architecture that ex-
plores the suitable switching architecture according to the traffic in each region 
of the system, in a hierarchical manner. The proposed interconnection allows 
adapting the network at runtime using three switching possibilities to reconfi-
gure itself according to the floorplan information. HASIN allows increasing the 
throughput up to 77% and reducing the power consumption up to 76% when 
compared to a packet-switched mesh network-on-chip.   

Keywords: NoC, Hierarchy, Adaptability Switching, Circuit Switching. 

1 Introduction 

Technology scaling has allowed a large integration capacity. In such context, a single 
chip can be composed by many processing elements (PEs), the called Multi-Processors 
System-on-Chip (MPSoCs) [1]. Several heterogeneous elements can integrate these 
systems, presenting different bandwidths and quality-of-service (QoS) requirements 
[2].  

Over the past years, Network-on-Chip (NoC) designs have been studied as an  
appropriate solution for such complex hardware systems due to their scalability, paral-
lelism and QoS [1, 7]. However, as the complexity of current and future MPSoC  
designs increases at a fast pace, current systems are requiring other interconnection 
alternatives.  

One current requirement of complex systems is to provide different levels of com-
munications in a hierarchical manner since, in heterogeneous systems, there are regions 
with specific requirements in terms of bandwidth [3, 8]. In this work we propose the 
use of a hierarchical interconnection in order to explore the communication locality, 
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while ensuring the communication rates required by the processing elements. The clus-
ters of our hierarchical NoC were implemented by crossbar switches and each one can 
be designed with a specific number of ports. However, the use of this approach is not 
suitable for systems that can present changes at runtime in the system communication 
pattern. Consequently, in this scenario, the network-on-chip must also be able to adapt 
itself. As one solution for this problem, we integrated on the global level of the hie-
rarchy, the possibility to adapt at runtime the switching mechanism.  

In this paper we propose a new architectural concept called HASIN (Hierarchical 
Adaptive Switching Interconnection Network). This proposal combines both concepts 
of hierarchical topology organization and adaptive switching. The HASIN network 
topology uses crossbars switch in the local level and a mesh topology in the global 
level. On the global level, our strategy allows three switching configurations: packet 
switching (PS), buffered circuit switching (BCS) and unbuffered circuit switching 
(UCS). The definition of the switching mode considers the current status of the net-
work and it does not use the conventional initial setup, as proposed by other architec-
tures. Moreover, this adaptability is dynamic and considers the floorplan parameters to 
define the circuit-switching mode. 

Many recent proposed routers show a complex architecture with virtual channels 
(VCs), tables, and expensive controls in order to increase the interconnection perfor-
mance [4-7]. However, with the addition of such resources, the router power consump-
tion could be impracticable for the embedded domain [3]. In our proposal the power 
consumption is reduced since small crossbar switches are used to compose the clusters. 
As the crossbars present a simple architecture and do not require buffers, the power 
consumption is much smaller than a conventional router architecture. This hierarchical 
NoC topology not only reduces the number of hops and explores the communication 
locality, but is also able to provide low power consumption. Our proposal still differs 
from the others since HASIN allows three switching possibilities that are dynamically 
reconfigurable to avoid long interconnections.   

2 HASIN Architecture  

Thanks to its hierarchical approach, HASIN can cope with specific communication 
behaviors. However, it also presents flexible features to support different traffic pat-
terns. An example of the HASIN topology is illustrated in Fig. 1.  

 

Fig. 1. HASIN topology example composed with 28 cores 
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HASIN local level is basically a crossbar interconnected in the local channel of a 
NoC router. In this case, each class of applications needs to have an appropriate map-
ping and crossbar granularity to compose the clusters. The HASIN architecture is 
composed by three main elements, the adaptive router, the crossbar switch - SWIX 
(Switching Interconnection Crossbar) and the bridges that interconnect the two hierar-
chical levels.  

On the top level, HASIN presents configurable mesh routers. The router architecture 
is illustrated in Fig. 2. Each router port is composed by Input Channel, Output Channel 
and Operation Mode Controller. There is a multiplexer to select if the data will be send 
by packet, unbuffered or buffered circuit. Each router port uses a control called Long 
Link Controller (LLC) to identify the wire length between two routers according to the 
floorplan information. This mechanism uses the knowledge of the wire length from the 
first router defined as UCS mode until the last router crossed over. This information is 
stored in a specific field of the packet header, generating total wire length estimation. 
Then, the control checks if the estimated delay for this total wire length is higher than 
the clock period, indicating the need to change the UCS to BCS mode.   

 

Fig. 2. HASIN Router Architecture 

Operation Mode Controller (OMC) is responsible to define the packet or circuit 
switching modes, managing the bypass enable signal of each input port. The OMC 
architecture takes into account three issues: if the input channel has flits to receive 
(in_val), if the selected arbiter is free (xbar_free) and if the input port of the destination 
router can receive data (circuit_allowed). Therefore, if the conditions above are met, 
the circuit switching mode can be enabled. However, there are some more considera-
tions in the CS enable managing. The first consideration is related to the fact that the 
router needs one cycle to define the output port destination, which makes it impossible 
to know whether the crossbar is free or not. To deal with this, our router assumes all 
output ports are initially free. In this case, the incoming data through the circuit path 
are accepted, applying a speculative strategy. If this situation is true, the bypass contin-
ues set. Otherwise, the bypass is deactivated, and the multiplexer from input port rece-
ives the data. The first flit is not lost because it was previously stored in a buffer. There 
is no latency penalty in a prediction mistake, because it uses an internal buffer to re-
cover the data in time to use in a packet switching flow. 
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The SWIX architecture aims at allowing the communication among the cores by 
multiplexer switches. Parallel communications can occur if the data are sent for differ-
ent output ports. However, if there is a conflict for the same port, a Round Robin (RR) 
arbiter is used to avoid starvation. A handshake flow control is applied for each port, 
by the requisition signal (REQ) and the granted signal (GNT). The control unit is com-
posed by RR arbiter which takes only two cycles to verify the requisition of each port, 
independently of the crossbar switch size. As only small crossbars are used in this 
topology, the maximum operating frequency is guaranteed.                

Bridges are used in the connection between the global and local levels, leaving this 
boundary transparent for each hierarchical level. The reader flit contains the informa-
tion of the XY routing algorithm, the local header (with the identification of the SWIX 
destination) and the information of long links used by the adaptive router. The bridges 
adapt the handshake protocol between SWIX and router and vice versa. When a mes-
sage arrives in a cluster, the global reader is removed and only the SWIX destination 
identification is considered to transmit the message to the destination core.  

3 Experimental Results  

The performance results were obtained with a cycle-accurate traffic simulator de-
scribed in Java. We have considered two benchmarks for these experiments: TVOPD 
[9], and the NCS [10]. Besides, we considered a tool to define the appropriate mapping 
for each application considering the floorplanning for the hierarchical architecture [11].  

Simulations were performed for NoC with 16-bit link wide, 4-flit deep buffers, 5-flit 
packets for a total of 100 packets/ node and considering the operation frequency equal to 
1GHz for all experiments. As the cores are heterogeneous, the results were obtained in-
creasing the injection rate of the communications in the same proportion. Thus, the injec-
tion rate plotted in the graphs take into account the core with higher communication rate 
of each application.  Analyses of long wires interconnections to define the circuit 
switching mode were considered and, in the average, the BCS is set to each 2 routers.  

Throughput results are depicted in Fig. 3 for the NCS and TVOPD benchmarks. 
This figure shows the comparison results among HASIN, a conventional mesh topolo-
gy with 5 pipeline stages and a network with the same adaptive router switching, but 
without the use of the hierarchical topology.   

 

Fig. 3. Throughput results comparison for NCS and TVOPD benchmark 
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For these experiments, HASIN allows to increase the throughput up to 77% for 
NCS benchmark and up to 75% for TVOPD benchmark, when compared with a 
conventional mesh topology. When it is compared with the adaptive swiching NoC, the 
throughput is increased up to 18% for NCS and up to 44% for TVOPD. As expected, 
the hierarchical adaptive switching NoC presents much better results than a mesh NoC. 
These gains are possible thanks to the communication locality allowed by the 
hierarchical NoC combined with a suitable mapping for the application and by the 
dynamic adaptability in the top level. As we can observe, only the use of the adaptive 
switching strategy is not enough to reach these optimal results. It is clear the use of  
different techniques need to be considered to increase the throughput.  

Synthesis results for 65nm of process technology were analyzed for the complete 
system of each application considered in this paper. In order to obtain accurate link 
lengths, we have considered the core areas as black boxes in the synthesis. In this case, 
the correct wire information and architectural costs were considered in the logical syn-
thesis (obtained with the RTL Compiler tool) from the parasitic extraction in the physi-
cal synthesis (obtained with the First Encounter tool). 

Average power and area results are presented in Table 1. According to these synthe-
sis results it is possible to observe a large reduction in the power dissipation when 
compared to a conventional mesh NoC or to a NoC with adaptive switching strategy. 
In this comparison, the packet switching mode of the different architectures has the 
same number of pipeline stages.  

The main gains of our strategy are obtained from the adaptive NoC combined with a 
very low cost architecture, like the use of SWIXs and smart routers to compose the hie-
rarchical proposal.  Moreover, with the proposed topology, the performance of the sys-
tem is improved, since when the cores are in the same cluster, the latency to transfer the 
packets for many routers is removed, and, in this case, a simple switch protocol is used. 

Table 1. Area and Power comparison results for the NCS and VOPD applications 

  NCS TVOPD 

Average 
Power (mW) 

mesh NoC 58.08 173.44 

adaptive switching NoC  92.87 259.59 
HASIN 15.17 41.28 

Power  
reduction (%) 

HASIN x mesh NoC 73.88 76.20 

HASIN x adaptive switching NoC 83.67 84.10 

Area (mm²) 
mesh NoC 0.56 1.62 
adaptive switching NoC 0.57 1.64 

HASIN 0.12 0.32 

Area  
reduction (%) 

HASIN x mesh NoC 78.41 80.04 

HASIN x adaptive switching NoC 78.65 80.26 

4 Conclusions 

In this work we have shown the HASIN architecture which explores hierarchy with 
adaptability. The hierarchy is composed by routers and crossbar switches. The cluster 



184 D. Matos 

performance is increased thanks the direct communications among the cores and the 
reduction in power is obtained due to the use of a simple cluster architecture crossbar-
based. The relevant consideration of our strategy is that both application mapping and 
switching mode selection consider floorplan information. The adaptability is provided 
at the top level, where a NoC mesh is used, supporting three dynamic switching mod-
es. Two of these modes were defined for the circuit switching (buffered or unbuffered) 
and the possibility to use these strategies together is new in the literature. The appro-
priate selection of each mode takes onto account the long link interconnections. In our 
design, the resources are widely reused in the router, reducing the extra circuitry to a 
minimum, but with extensive configuration possibilities. With this architecture was 
possible to obtain a large improvement in throughput and reduction in power dissipa-
tion when compared with other NoC architectures. 
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Abstract. Partial reconfiguration (PR) enables shared FPGA systems to non-
intrusively time multiplex hardware tasks in partially reconfigurable regions 
(PRRs). To fully exploit PR, higher priority tasks should preempt lower priority 
tasks and preempted tasks should resume execution in any PRR. This preemp-
tion/resumption requires saving/restoring the preempted task’s execution con-
text and relocating the task to another PRR, however, prior works only provide 
partial solutions and impose limitations and/or overheads. We propose on-chip 
hardware task relocation (HTR) software, which enables a task’s execution state 
to be saved, relocated to, and restored in any PRR with sufficient resources. The 
HTR software executes on a soft-core processor in the FPGA’s static region, 
and is thus portable across any system/application. Experimental results eva-
luate HTR execution times, enabling designers to tradeoff task/PRR granularity 
and HTR execution times based on application requirements. 

1 Introduction 

Partial reconfiguration (PR) of FPGAs improves a shared system’s functionality and 
performance via enhanced, fine-grained device reconfigurability and hardware mul-
tiplexing. The FPGA’s fabric is partitioned into one static region and multiple partial-
ly reconfigurable regions (PRRs). Hardware tasks can be scheduled to execute in any 
PRR with sufficient resources—any candidate PRR—and if the scheduled PRR is 
executing a lower priority task, task preemption/resumption enables the lower priority 
task’s execution state—context—to be paused (i.e., context save (CS)) and resumed 
(i.e., context restore (CR)) in another PRR. CS reads the task’s execution state and 
saves the context to a CS bitstream, and CR merges the CS bitstream with the task’s 
initial partial bitstream (created at synthesis) using bitstream manipulations and re-
configures the scheduled PRR with this merged bitstream. 

There exists little prior work on CS and CR—context save and restore (CSR), col-
lectively—to the same PRR [8][9], which forces a preempted task to resume execu-
tion in only the task’s originally scheduled PRR, rather than any candidate PRR. 
Hardware task relocation (HTR) enables preempted tasks to be relocated and resumed 
in any candidate PRR, which can improve system performance, task throughput, and 
maximizes device resource utilization for application domains such as target tracking, 
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dynamic load balancing, shared servers, etc. Since HTR is more challenging than 
CSR and must consider the task’s physical relocation on the fabric, prior CSR work is 
not directly applicable. HTR is relatively easy between homogenous PRRs—PRRs 
with the same size, shape, and resources, but different fabric locations—requiring 
simple bitstream manipulations to specify the new fabric location [11][14]. HTR be-
tween heterogeneous PRRs—PRRs with different sizes, shapes, resources, and/or 
fabric locations—is more challenging, requiring complex bitstream manipulations to 
specify the new fabric location and relocate the task’s functionality to this location’s 
resources and/or resource layout. Similar to HTR, bitstream (core/module) relocation 
(BR) [1][2][3][4][5][7][16][18] enables a task to be relocated to any PRR, however, 
BR does not save/restore/resume the task’s execution state, thus requiring the task to 
be restarted, which may incur seconds/minutes/hours of re-execution.  

HTR can be implemented either off- or on-chip. In off-chip HTR, an attached CPU 
executes HTR software, which incurs significant overhead due to lengthy communi-
cation delays between the CPU and FPGA. Alternatively, on-chip HTR hardware can 
eliminate off-chip communication overhead, but introduces device resource overhead, 
lacks task/system portability, and reduces the tasks’ maximum operating frequencies. 
To alleviate these overheads, we propose on-chip HTR software for heterogeneous 
PRRs that executes on a soft-core processor in the FPGA’s static region, which, as 
compared to prior work, eliminates off-chip communication overhead and PRR over-
head/constraints, is application/system independent, and does not alter the applica-
tion/system design flow. Our HTR software uses the FPGA’s internal configuration 
access port (ICAP) for reconfiguration. We detail HTR constructs and methodologies, 
which enables designers to incorporate HTR into their systems, and present imple-
mentation results for a Virtex-5 LX110T with a MicroBlaze (we note that the funda-
mentals of our HTR software is portable to newer Xilinx device families). Results 
show that HTR execution times are on the order of milliseconds, and vary based on 
the tasks’/PRRs’ sizes. These analyses enable designers to tradeoff HTR execution 
times and task/PRR granularity based on application requirements.  

2 Related Work 

There exists little prior work in CSR, of which few leverage PR. Landaker et al. [15] 
and Simmler et al. [17] presented off-chip CSR software but since these works did not 
leverage PR, CSR reconfigured the entire FPGA. Joswik et al. [9] presented off-chip 
CSR software for PR FPGAs and reduced CSR times using direct memory access 
(DMA) for the ICAP, but this work only performed CSR to the same PRR. Kalte et al. 
[11] and Koester et al. [14] augmented the off-chip CSR software to include on-chip 
custom hardware for relocating tasks to different, homogeneous PRRs, however, both 
methods were for one-dimensional PR on older Xilinx devices, and are not applicable 
to newer Xilinx devices that support two-dimensional PR. 

Koch et al. [13] and Jovanovic et al. [8] eliminated off-chip communication over-
head with on-chip CSR hardware for both non-PR [13] and PR FPGAs [8], and re-
duced CSR times using different versions of scan-path chains of flip-flops (FFs), 
which is a technique used in design for testability (DFT) for very large scale inte-
grated (VLSI) circuits. However, the CSR hardware incurred device overhead, lacked 
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portability, reduced the system’s maximum operating frequency, and required 
changes in the design tool flow. On-chip CSR software would alleviate these draw-
backs, but would not include task relocation.  

BR enables task relocation, but prior works did not relocate the task’s context.  
Horta et al. [7] and Blodget et al. [3] presented off-chip BR software and Kalte et al. 
[10][12] presented on-chip BR hardware for homogeneous PRRs, however, these 
methods still incurred the same drawbacks as off- and on-chip CSR, respectively.  

Becker et al. [1][2] and Carver et al. [4] presented on-chip BR software for hetero-
geneous and homogeneous PRRs, respectively, however, these methods constrained 
the static region’s logic routing from passing through the PRRs. Where as this con-
straint reduced the number of partial bitstreams to one per task, as opposed to one 
partial bitstream for each task-to-PRR mapping, the constraint introduced area and 
performance overheads [4][6]. Corbetta et al. [5], Sudarsanam et al. [18], and San-
tambrogio et al. [16] presented custom on-chip BR hardware for homogeneous PRRs, 
which was orchestrated using an on-chip soft-core processor.  

 

Fig. 1. Virtex-5 LX110T FPGA fabric layout 

3 Virtex-5 FPGA Architecture 

Since CSR and HTR are complex processes that require detailed device knowledge, 
we review the Xilinx Virtex-5 FPGA architecture (complete details are available in 
[19]), which will assist designers in incorporating HTR into their systems.  

3.1 Device Architecture 

Fig. 1 depicts the Virtex-5 LX110T fabric layout, the device used in our experiments, 
with four sample PRRs: PRR1 and PRR2 are homogeneous and PRR3 and PRR4 are 
heterogeneous. The device supports two-dimensional PR, which allows PRRs to oc-
cupy a rectangular fabric area. Device resources (CLBs, BRAMs, IOBs, DSPs, CLK)  
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are distributed in a row/column organization. The device is logically divided into two 
halves—top and bottom—and each half contains four rows and each row contains the 
same number of columns. Columns contain groups of frames and the number of 
frames per column depends on the type of resource in that column. A frame is the 
minimum unit of information used to write/read to/from the device, and a Virtex-5 
frame contains 41 32-bit words.  

3.2 Device Configuration 

The Virtex-5 can be configured using external interfaces, such as JTAG (serial) or 
SelectMAP (parallel), or the internal ICAP interface (parallel). Full or partial bit-
streams configure the entire device or a single PRR, respectively. The bitstream’s 
configuration information is organized in configuration frames and is stored in the 
FPGA’s internal configuration memory. A configuration frame establishes a particu-
lar column’s resource configuration and the routing information to access the re-
sources. CLB, BRAM, DSP, IOB, and CLK columns have 36, 30, 28, 54, and 4 con-
figuration frames, respectively [19]. 

 

Fig. 2. Initial partial bitstream used in HTR for Virtex-5 FPGAs 

Since HTR uses the ICAP, all partial bitstreams must be 32-bit word aligned. Fig. 
2 depicts the initial partial bitstream structure used in HTR for the Virtex-5, which is 
the same as the bitstream generated by the Xilinx tools except that the initial com-
ments (the name of the native circuit description file (*.ncd) from which the bitstream 
was generated and the bitstream creation date) are removed, resulting in a 32-bit word 
aligned file that can be used with the ICAP. The initial partial bitstream consists of a 
sequence of initial register writes, including the bus width words (0x000000BB and 
0x11220044), the synchronization word (0xAA995566), RCRC, IDCODE 
(0x02AD6093), WCFG, FAR (specifies the first frame address of a PRR), and FDRI, 
followed by the configuration words (number of which is specified by the FDRI), and 
ending with the final register writes, which include MASK, CTL1, LFRM, CRC, and 
DESYNCH. [19] contains a complete description of these commands and special 
words. Note that the FAR included in the final register writes (0x00EF8000) is not 
associated with any PRR and is specific for the Virtex-5 LX110T. 

For CS, the type 1 registers COR0 and CMD GCAPTURE are sent to the device 
via the ICAP to capture the FFs’ values on a single edge transition of the main clock. 
After capturing the PRR’s FFs’ values, CMD RCAP is sent via the ICAP to enable 
future CSs [19]. CR requires initializing the PRR’s FFs’ values with the saved FFs’ 
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values without interrupting the static region or the other PRRs’ execution. In order to 
initialize a PRR with new FF values, the internal global set reset (GSR) signal in the 
Xilinx user primitive STARTUP_VIRTEX5 [19] must be toggled, which forces the 
startup sequence [19]. Since this toggle would re-initialize the entire device with the 
initial values defined in the full bitstream, a protection/unprotection mechanism must 
be provided. A PRR/FPGA can be protected using the block type ‘010’ and a special 
frame, sent to all PRR/FPGA columns [19]. Protecting the entire FPGA only needs to 
be done once, while unprotection/protection of the PRRs is required for each CR. 

4 On-Chip Hardware Task Relocation (HTR) Software 

Since the main contribution of our work is the HTR software, we assume that prior to 
execution, the applications have already been synthesized and partitioned into hard-
ware tasks, the PRRs and soft-core processor have been created, the system contains a 
scheduler that maps and schedules incoming tasks to PRRs, and all full and initial 
partial bitstreams, including all task and candidate PRR combinations, and necessary 
files have been generated. We refer to a task executing in a PRR as a PR module 
(PRM). Even though a PRR may contain a mixture of resources, we detail HTR for 
PRMs that use CLBs only, however, our HTR is fundamentally applicable to hetero-
geneous PRRs that contain BRAMs, DSPs, and/or IOBs not in use by the PRM.  

4.1 HTR Overview 

We explain HTR using two heterogeneous PRRs and three PRMs: PRR1 is a candi-
date PRR for PRM1 and PRM2, and PRR2 is a candidate PRR for PRM2 and PRM3. 
Fig. 3 depicts the CSR and HTR flows (for resumption to the same or different PRR, 
respectively) assuming that PRM2 has already executed in PRR1, PRM2 was 
preempted and PRM2’s context was saved, PRM3 is currently executing in PRR2, 
and PRR1 is ready to execute in PRM1. Tx denotes each step’s execution time.  

 

Fig. 3. On-chip context save and restore (CSR) and hardware task relocation (HTR) flows 
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Initialization reconfigures PRR1 with PRM1 and enables FPGA protection to pre-
vent re-initialization of the static region’s and PRRs’ FFs and BRAMs (Section 3.2). 

When PRM2 is ready to resume execution, PRM2 can either be resumed in PRR1 
or relocated to PRR2. Since CSR is faster than HTR, PRM2 will first attempt to 
resume execution in PRR1. For example, if PRR1 is free or PRR1 is executing a low-
er priority task and can be preempted by PRM2 (i.e., PRM1 is lower priority than 
PRM2), CSR will resume PRM2 in PRR1 by: 1) CS of PRM1; 2) merging PRM2’s 
saved context (CS bitstream) with PRM2’s initial partial bitstream to create the 
merged bitstream for PRR1; and 3) CR of PRM2 on PRR1. If PRR1 is not free or is 
executing a higher priority task (i.e., PRM1 is higher priority than PRM2), and PRR2 
is available or executing a lower priority task (i.e., PRM3 is lower priority than 
PRM2), HTR will relocate PRM2 to PRR2 by: 1) CS of PRM3; 2) relocate PRM2’s 
saved context to PRR2; and 3) CR of PRM2 on PRR2. Since CSR is not a contribu-
tion of this paper, the following subsections detail HTR only. 

4.2 Context Save (CS) 

Before reading a PRM’s FFs’ values, the PRR’s clock is stopped to avoid potential 
setup/hold violations. Next, the capture process is initiated (Tpre_CS) and an HTR soft-
ware loop captures/reads the PRM’s FFs’ values on a frame-by-frame basis (TCS_ICAP), 
releases the ICAP (Tpost_CS), and saves these values (i.e., the PRM’s context) in the CS 
bitstream (TCS_bitstream). The CS bitstream size in 32-bit words is 1+N+N*41, where N 
is the number of frames read and that contain the PRM’s FFs’ values and relative 
position inside the frame. The first word in the CS bitstream specifies N’s value, the 
following N words specify the N different frame address values that contain the FFs’ 
values, and the final N*41 words are the contents of the N frames. Thus, the total 
execution time required for CS is: TCS = Tpre_CS + TCS_ICAP + Tpost_CS + TCS_bitstream. 

 

Fig. 4. Bitstream manipulations for context relocation (HTR) 

4.3 Saved Context Relocation—HTR 

HTR’s bitstream manipulations are similar to CSR’s merge except that HTR must 
update the PRM’s FFs’ values in the scheduled PRR with the PRM’s FFs’ values 
from the CS bitstream. Fig. 4 depicts the HTR bitstream manipulations, which merge 
the CS and initial partial bitstreams at the 32-bit word level based on whether a single 
or multiple FF values need to be updated. Fig. 4 a) and b) show the update of a single 
or multiple FF values for HTR, respectively. All examples have been reduced to five 
bits for clarity. A single FF update for CSR’s merge can be expressed as f =cap*msk 
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+ ini*(/msk), where cap is the captured value, ini is the FF’s value in the initial partial 
bitstream, and msk denotes if the bit is part of the saved context where msk = 1 up-
dates ini with cap and msk = 0 retains ini’s value. However, f cannot be used for HTR 
because HTR requires two msk’s: one for the saved context and the other for the ini-
tial partial bitstream in the scheduled PRR.  

HTR’s context relocation is expressed as g = cap*ms + inid*(/md), where cap is the 
captured value, ms denotes if the bit is part of the saved context, inid is the FF’s value 
in the scheduled PRR’s initial partial bitstream, and md is the bit to be updated in the 
merged bitstream. md = 1 updates inid with cap, provided that ms = 1, and md = 0 
retains inid’s value. In Fig. 4 a) and b), bitms and bitmd denote the bit position of ms 
and md and the expression (bitms - bitmd) denotes the bit-distance between these bits’ 
positions in a 32-bit word. If (bitms - bitmd ≥ 0), cap*ms is right-shifted (bitms - 
bitmd) bit positions using shr(cap*ms), else cap*ms is left-shifted (bitmd - bitms) bit 
positions using shl(cap*ms). Updating multiple FFs in a word boundary in the merged 
bitstream (Fig. 4 b)) is done sequentially, and each update does not have the same cap 
and ms words as shown. An HTR software loop executes this merge and relocation 
process and saves the merged bitstream to a file with a total execution time denoted 
by Trelocate.  

4.4 Context Restore (CR) 

Before CR, the scheduled PRR must be unprotected (Tunprotect_PRR) to allow the PRR’s 
FFs to be initialized with the new values in the merged bitstream, but the rest of the 
FPGA must remain protected. Next, the scheduled PRR is reconfigured (Tupdate_PRR) by 
interleaving the initial register writes (Fig. 2), the merged bitstream (Section 4.3), and 
the final register writes (Fig. 2). After the scheduled PRR is reconfigured with the 
PRM’s relocated context (Tstartup), the scheduled PRR is protected (Tprotect_PRR) to pre-
vent future startup sequence phases for another PRR from re-initializing the scheduled 
PRR’s FFs’ values. Thus, the total execution time required for CR is: TCR = Tunpro-

tect_PRR + Tupdate_PRR + Tstartup + Tprotect_PRR. 

5 Experimental Results 

5.1 Experimental Setup 

We used the Xilinx XUPV5-LX110T board and the Xilinx ISE 12.4, XPS 12.4, and 
PlanAhead 12.4 tools. We partitioned the fabric into two heterogeneous PRRs and the 
static region executed a 100 MHz MicroBlaze soft-core processor running a Linux-
like OS 2.6.37 based on BusyBox. We generated the executable binaries for the Mi-
croBlaze using the GNU tools. A XPS HWICAP interfaced the MicroBlaze and the 
ICAP, the SDRAM provided external storage for the bitstreams, binaries, and the 
HTR files. The XPS timer was used to measure the Tx execution times and we aver-
aged the execution times over five executions. Two XPS GPIOs provided parallel 
interfaces between the MicroBlaze and the two PRRs (one XPS GPIO per PRR). 

We note that the MicroBlaze’s configuration (e.g., instruction and data cache pa-
rameters), the XPS HWICAP’s configuration, and the memory controller used to 
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access the SDRAM files introduce overheads that affect the results, however, these 
components’ configurations do not impact HTR’s functionality, and in our analysis 
we note the impacts of different component configurations and hardware overheads 
on the results’ trends. 

We verified HTR’s correct operation using two interfaces per PRR: one connected 
to the MicroBlaze and one in the PRM for transferring the PRM’s FFs’ values to the 
MicroBlaze. For testing purposes, PRM1, PRM2, and PRM3 implemented a 32-bit up 
counter, down counter, and pipelined adder/accumulator, respectively. We tested 
HTR using the flow in Fig. 3, verifying that the first value of each register in PRM2 
after CR on a different PRR (i.e., the task was relocated) corresponded to the last 
value of each register in PRM2 prior to CS. 

In order to generate thorough results for various PRR sizes in a timely manner 
(manual creation and testing for our experiments would have required an exorbitant 
amount of time), we used the following process, which did not affect the validity of 
our results and analyses. We created a project with two small heterogeneous PRRs 
containing CLBs and selected two empty areas (areas with no CLBs and routing re-
sources in use) on the fabric. In these empty areas, we created pseudo-PRRs, pseudo 
initial partial bitstreams, and pseudo logic location files (*.ll) for pseudo-PRMs.  

Our experiments evaluate small-to-large and large-to-small PRR HTR. We denoted 
the pseudo-PRR with the PRM’s context as the source PRR and the pseudo-PRR with 
the relocated context as the destination PRR. The pseudo-PRRs’ sizes contained one 
row and multiple columns ranging from one to twelve, which is the largest number of 
contiguous CLB columns on the Virtex-5 LX110T. Since the number of experimental 
combinations given our pseudo-PRR sizes is 144, we subset the results to show the 12 
combinations where the small pseudo-PRR had half the number of columns as the 
large pseudo-PRR, which is sufficient to show the execution times’ trends. In the 
large pseudo-PRRs, we evenly distributed the PRM’s FFs across the CLB columns, 
which simulated the effects of the Xilinx tool’s FF distribution done during placement 
and provided realistic execution times.  

5.2 Execution Times 

Table 1 through Table 3 show the execution times in milliseconds for the significant 
HTR steps. The tables contain two ranges of number of PRM FFs: a fine-grained 
range spanning 20 to 160 FFs in a single CLB column in 20 FF increments, and a 
coarse-grained range increasing the number of CLB columns, resulting in 160 FF 
increments. Fig. 5 plots the coarse-grained range tables’ results, where each point is 
identified by a box with the number of rows, columns, and PRR/PRM frames depend-
ing on the graph’s reported execution time. 

Table 1 and Fig. 5 a) summarize Treconfig_PRR, which depends on the number of PRR 
frames (36 per CLB column). In the fine-grained range, Treconfig_PRR is constant (there 
is only one CLB column). In the coarse-grained range, Treconfig_PRR shows a linear be-
havior up to 960 PRM FFs. We discuss the trend above 960 FFs later in this section. 

The execution time for Tprotect_FPGA is constant and depends on the number of rows 
and columns in the device, which is 67.72 ms for the test device. 
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Table 1. Execution times (ms) for Treconfig_PRR 

 

Table 2. Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for 
small-to-large HTR 

 

Table 3. Execution times (ms) for CS (TCS), context relocation (Trelocate), and CR (TCR) for 
large-to-small HTR 

 

Table 2 and Table 3 summarize the execution times for TCS, Trelocate, and TCR for 
small-to-large and large-to-small HTR, respectively, and Fig. 5 b), c), and d) plot 
these execution times. For brevity, we omit the detailed breakdown of TCS and TCR, 
which depends on the number of PRM frames that contain used FFs in the source 
pseudo-PRR and the number of PRR frames in the destination PRR, respectively. 

Capturing and saving the context in a small PRR shows a nearly linear increase in 
TCS. Tpre_CS and Tpost_CS for both small-to-large and large-to-small HTR are 0.54 and 
1.39 ms, respectively. For small-to-large HTR, TCS_ICAP ranges from 0.85 to 3.53 ms 
and TCS_bitstream ranges from 2.01 to 3.02 ms, and for large-to-small HTR, these values 
range from 1.15 to 6.91 ms and from 2.13 to 4.21 ms, respectively. Trelocate depends on 
the number of PRM FFs used in the PRR. The CS and merged bistreams are randomly 
accessed, resulting in high data cache miss rates and overheads for accessing 
SDRAM, which explains Trelocate’s non-linear behavior above 160 PRM FFs. Finally, 
TCR depends on the interleaved creation of the new initial partial bitstream (Fig. 2 and 
Section 4.4) and sequential reconfiguration, thus TCR is larger than Treconfig_PRR for the 
same number of PRM FFs and PRR frames. Tstartup is fixed and is 0.70 ms. For small-
to-large HTR, Tunprotect_PRR, Tupdate_PRR, and Tprotect_PRR ranges from 2.01 to 3.36 ms, 
2.07 to 7.87 ms, and 1.47 to 2.81 ms, respectively, and for large-to-small HTR, these 
values range from 1.87 to 2.63 ms, 1.54 to 4.34 ms, and 1.36 to 2.01 ms, respectively. 
These results also reveal that large-to-small HTR is faster than small-to-large HTR 
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(i.e., Trelocate and TCR are faster). Even though TCS is slower for large-to-small HTR as 
compared to small-to-large HTR, Trelocate is slower than TCS and TCR. 

The resources required by the static region, including the MicroBlaze, XPS 
HWICAP and GPIOs, and SDRAM controller are 12,898, 44, and 4 FFs, BRAMs, 
and DSPs, respectively, which represent 19%, 30%, and 6%, respectively, of the test 
device. We note that this area overhead is reduced for devices with a dedicated on-
chip hardcore processor. 

 

 

 

 

Fig. 5. Execution times (ms) for a) Treconfig_PRR b) CS (TCS), c) context relocation (Trelocate), and 
d) CR (TCR) with respect to the number of PRM FFs. The adjacent rectangles indicate the num-
ber of rows, columns, and PRR/PRM frames, respectively. 

Increasing the PRR’s number of rows and reducing the number of columns while 
maintaining the same number of PRM FFs would reveal similar results as shown in 
the tables and figures. However, for PRRs using more than 960 PRM FFs, high data 
cache miss rates, SDRAM overheads when accessing the bitstreams, and the XPS 
HWICAP’s configuration introduce a non-linear increase in the growth rate of these 
execution times. All HTR times may be improved by adding a custom DMA and en-
larging the internal storage to the XPS HWICAP, saving the CS and initial partial 
bitstreams in BRAMs, or increasing/modifying the data cache size/configuration. 
However, BRAMs are limited and these options incur hardware overhead that may 
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affect the system’s performance, and some of these modifications would not be porta-
ble to other systems. Therefore, at design time, a system designer can consider these 
factors and make appropriate tradeoffs between PRR granularity, hardware overhead, 
and HTR execution times when partitioning the application into tasks based on the 
application’s requirements. 

6 Conclusions and Future Work 

In this paper, we introduced the first, to the best of our knowledge, on-chip hardware 
task relocation (HTR) software for two-dimensional relocation between heterogene-
ous PRRs, which has no off-chip communication overhead, imposes no design/system 
constraints, is application/system independent, and does not require changes to the 
design tool flow. Our HTR maximizes shared resource utilization, performance, and 
throughput via task preemption and resumption between heterogeneous PRRs, which 
preserves the task’s execution state and eliminates seconds/minutes/hours/days of re-
execution time. Experimental results analyze HTR execution time, which enables 
system designers to guide application task granularity and partitioning decisions 
based on application requirements. Our future work will extend HTR’s functionalities 
to include DSP, BRAM, and IOB resources. 
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Abstract. A Tree-based 3D Multilevel FPGA architecture that unifies
two unidirectional programmable interconnection network is presented
in this paper. In a Tree-based FPGA architecture, the interconnects
are arranged in a multilevel network with the switch blocks placed at
different tree levels using Butterfly-Fat-Tree network topology. Two di-
mensional layout development of a Tree-based multilevel interconnect
is a major challenge for Tree-based FPGA. A 3D interconnect network
technology leverage on Through Silicon Via (TSVs) to re-distribute the
Tree interconnects, based on network delay and thermal considerations
into multiple silicon layers is discussed. The impact of of Through Sil-
icon Vias and performance improvement of 3D Tree-based FPGA are
analyzed. We present an optimized physical design technology leverage
on TSV, Thermal-TSV (TTSV), and thermal analysis. Compared to 3D
Mesh-based FPGA, the 3D Tree-based FPGA design reduces the number
of TSVs by 29% and leads to a performance improvement of 53% based
on our place and route experiments.

1 Introduction

Three Dimensional integration is a promising technology to manufacture high
density and high performance Field Programmable Gate Array (FPGA). 3D inte-
gration involves stacking of multiple silicon wafers interconnected with Through
Silicon Vias (TSVs) [2]. Vertical stacking of multiple chips reduces interconnect
delays and increases overall integration density. Advances in 3D integration and
vertical interconnect (TSVs) technologies are undoubtedly gaining momentum
and have become the critical interest of the semiconductor community today.
FPGA is a flexible and reusable architecture with a symmetrical array of logic
blocks interconnected by routing resources. To support the growing demands,
FPGAs must be built with higher logic density and interconnection networks.
In such huge FPGA systems, 3D integration technology and the use of through-
silicon vias (TSVs) for inter-layer communication is emerging as an effective
solution to reduce the impact of increasing the interconnect delays.

For the past several years, industry and research institutions conducted major
studies and research on 3D Mesh-based FPGA design and integration. A survey
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of existing design methods and tools for 3D integration is presented in [2] and
the details of the existing 3D manufacturing technologies are presented in [3].
A 3D place and route tool (TPR) is presented in [4] to investigate the wire
length and delay associated to 3D Mesh-based FPGA. In order to support the
implementation of an application on such a device, VPR tools [5] are used.
TPR [4] is flexible on deciding the number of vertical channels compared to
horizontal channels, however it assumes all switch blocks to be 3D. This may lead
to large number of unused TSV resources, which increase manufacturing cost.
Furthermore, TPR also assumes the number of TSVs are electrical equivalent of
the horizontal channel width. In 3D integration technology, the TSVs are much
thicker than horizontal wires [9], which makes this assumption impractical.

A design framework for 3D Mesh-based FPGA architecture exploration
methodology was presented in [6]. It includes an additional feature to explore
the vertical interconnect distribution, however this leads to usage of 2D and 3D
switch blocks intermittently, which may lead to number of design and manufac-
turing issues. A dynamically reconfigurable 3D Mesh-based FPGA was presented
in [7], which consisted of three physical layers: logic block and local interconnect
layer, routing layer, and memory layer. Recently [8] analyzed the performance
benefits of a monolithically stacked 3D Mesh-based FPGA. However they used
very fine TSVs 3D integration, which allowed them to stack the configuration
memory on top of the of the FPGA layers.

Fundamental understanding of the electrical, mechanical, and thermal prop-
erties of vertical interconnects (TSVs) is essential in successful physical design
of TSV-based 3D ICs [9]. The major challenges facing 3D integration technology
today are high inter-layer temperature and limited number of TSVs. We pro-
pose architecture level solutions to optimize the number of TSV and inter-layer
temperature. A detailed thermal analysis of heterogeneous Mesh-based FPGA
discussed in [12], which considers functional units likes LBs, BRAM, DSP units
etc. Nevertheless the programmable interconnect network of FPGA consumes
a lot of power as well. In contrast, the methodology we propose, considers the
power consumption of logic blocks and interconnect sections separately to in-
vestigate the temperature variations in FPGA. The rest of paper is organized
as follows. Section 2 presents the Tree-based FPGA and the 3D exploration
methodology elaborated in section 3. Section 4 discusses the performance anal-
ysis experiments and section 5 illustrates TSV count optimization methodology
and results. Section 6 explains the thermal analysis of 3D Tree-based FPGA and
section 7 conclude the paper.

2 Tree-Based Multilevel FPGA Interconnect
Organization

Mesh is the most studied and used industrial topology. Considerable amount of
research work [1] and industrial applications have been implemented in the case
of mesh architecture. Mesh is a regular island style structure with an array of logic
blockswith input pins on each side. A new re-programmableTree-basedMultilevel
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Fig. 1. Tree-based Multilevel FPGA architecture with upward and downward Mini-
Switch network (Rent Parameter p=1)

FPGA architecture was proposed in [10]. The main motivation for the Tree-based
FPGA architecture is to achieve the best performance and density by balancing
interconnect and logic block utilization, where logic blocks and routing resources
are sparsely partitioned into a multilevel clustered structure [11]. In a Tree-based
FPGAarchitecture, theLBs (LogicBlocks) are grouped into clusters located at dif-
ferent levels of the Tree. Each cluster contains a switch block to connect local LBs.
A switch block is divided into Mini Switch Blocks (MSBs). The Tree-based FPGA
architecture unifies two unidirectional upward and downward interconnection net-
works using a Butterfly-Fat-Tree topology to connect Downward MSBs (DMSBs)
and Upward MSBs (UMSBs) to LBs inputs and outputs.

Figure 1 illustrates 2 level arity 4 Tree-based Multilevel FPGA architecture.
The number of DMSBs of a cluster located at level � is equal to the number of
inputs of a cluster located at level � − 1. The upward UMSB network connects
LBs outputs to the DMSBs at each level. As illustrated in Figure 1, the UMSBs
are used to allow LBs outputs to reach a large number of DMSBs and to reduce
fanout on feedback lines. The number of UMSBs of a cluster located at level
� is equal to the number of outputs of a cluster located at level � − 1. UMSBs
are organized in a way allowing LBs belonging to the same “owner cluster” to
reach exactly the same set of DMSBs at each level. Thus positions, inside the
same cluster, are equivalent, and LBs can negotiate with their siblings about
the use of a larger number of DMSBs depending on their fanout. The input and
output pads are grouped into specific clusters and are connected to UMSBs and
DMSBs, respectively as presented in Figure 1. Thus, all input and output pads
can reach any LBs of the architecture.

3 Exploration Methodology for 3D Tree-Based FPGA

The proposed methodology for design and exploration of 3D Tree-based
FPGA architecture is illustrated in figure 2. The HDL generator is designed to
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Fig. 2. 3D Tree-based Multilevel FPGA performance evaluation flow

generate VHDL code based on a hierarchical approach that partitions the design
into smaller sections, implement them separately and assemble them together
at the final design phase. The VHDL code is generated based on architecture
description file, which is used directly for design evaluation and analysis. The
thermal model [15] is used to extract the thermal profile of the multi-layer chip
based on layout geometrical features and power consumption of the functional
unites. The 3D Tree-based FPGA evaluation module includes a top-down recur-
sive partitioning tool. A negotiation-based iterative “Pathfinder” [11], approach
is used to implement the routing algorithm. The physical design experiments are
performed on the layout generated using ST Micro‘s 130nm technology node.
Mentor’s Spice accurate circuit simulator Eldo is used to estimate the wire delay
and power consumption of switches and interconnection networks at different
tree levels. Physical design of multilevel tree interconnect is a major challenge
for Tree-based FPGA. In order to maintain the hierarchy of Tree-based FPGA,
a special layout methodology is used. We propose two ways to organize the
Tree-based Multilevel FPGA layouts.

3.1 2-Dimensional Tile-Based Multilevel FPGA Design

The physical design experiments revealed the wire length increases exponentially
as the Tree grows to higher levels, is considered as a major disadvantage of
Tree-based architecture compared to Mesh, where the largest wiring distance is
fixed. The layout experimentation was performed based on the layout generated
using ST microelectronics 130nm technology node. The 2D Tile-based layout
illustrated in Figure 3 is developed to spread the congestion and wire density over
the Tree-based Multilevel FPGA surface. The switch box belonging to various
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levels may be coalesced in the same tile. However this layout is not comparable
to industrial Mesh layout in terms of speed and performance due to larger wire
delay at higher levels of the Tree network [11].

3.2 3-Dimensional Tree-Based Multilevel FPGA Design

To mitigate the wire length issue in 2D Tile-based layout, we designed a new
Tree-based 2D layout with 3D adaptability illustrated in Figure 4. The intercon-
nect organization in Tree-based layout is arranged in way to bring together every
cluster and its corresponding interconnect in order to form level wise sections to
enable the study of 2 layer 3D Tree-based FPGA. Figure 4 illustrates the cus-
tom designed VLSI layout of Tree levels 0 to 3 [16]. This layout design offers the
possibility to re-distribute the Tree interconnect at certain level called the break
point level based on wire delay estimation from the timing characterization and
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thermal analysis data. However this is not possible with 2D Tile-based layout
since the switches from different levels are coalesced in the same tile.

The subpath timing characterization is performed for both 2D Tile-based
and Tree-based layout using the layout generated in ST Micro’s 130nm Tech-
nology node. Maximum wire length at different levels are evaluated from the
layout and used Mentor’s spice accurate circuit simulator Eldo to investigate de-
lay and power consumption. An accurate ST 130nm transistor level technology
models are used to investigate switch, interconnect delay and power estimation
at each level separately. A model used for timing characterization with 2 level
Tree architecture illustrated in Figure 5, in which, the upward, downward and
feedback interconnect networks are marked. We performed delay estimation and
power consumption analysis on all three interconnection networks. Figure 6 il-
lustrate the upward interconnection network delay measured up to 7 levels of
the Tree-based multilevel FPGA architecture. Similar delays measured for other
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interconnect networks as well. The interconnect delay investigation substantiate
the exponential increase in wire delay as the tree grows to higher levels.

Based on the measured delay and thermal data, the 2D Tree-based layout
design is re-distributed into 2 silicon layers at a higher interconnect Tree level
called the break point level. The decision to choose the break point level is based
on measured delay and thermal data. In this study the interconnect network
is partitioned between level 3 and 4 as the average delay is above 2ns to form
a two layer 3D Tree-based Multilevel FPGA. To illustrate the design process
a 7 level Tree-based FPGA architecture is presented in Figure 7, where the
break point is shown between levels 3 and 4. For this study the communication
is realized with Through Silicon Via (TSV) and electrical characterization of
TSVs was performed based on the approach from [14]. The electrical model and
parasitic components for each TSV was realized using the electrical model of TSV
interconnect presented in [14]. The interconnect length of levels above the break
point level for 3D Tree-based FPGA timing characterization was extracted from
the re-designed floorplan shown in Figure 7. The 2 layer 3D Tree-based FPGA
architecture presented in Figure 7 used for experimentation and comparison.
Nevertheless as Tree grows to higher levels, the multiple layer 3D Tree-based
FPGA can be designed.
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4 3D Tree-Based Multilevel FPGA Experimental
Evaluation

To evaluate the performance of the proposed 3D architecture, we place and
route the largest set of MCNC1 benchmark circuits, and compare with the 3D
Mesh-based FPGA architecture [6]. The netlist is partitioned into tree based
cluster nets attributing randomly to each cluster a position inside the owner. An
iterative negotiation-based PathFinder approach [11] is used to implement the
placement and routing algorithm which is able to deal with any graph represent-
ing the interconnection routing resources. The 3D routing tool was adapted to
handle the performance analysis of 2D and 3D layout with TSV interconnections,
based on the 2 layer Tree-based FPGA.

Table 1. 3-Dimensional Multilevel FPGA detailed performance evaluation

Delay(×10−9sec) Performance Gain(%) Previous Work

circuits arch 2DTile 2DTree 3DFulL 2DTile 2DTree 3D Mesh Gain

MCNC Configuration Tile-based Tree-based 3DTSV Vs 3DTSV Vs 3DTSV Vs 2D [6]

alu4 4x4x4x4x4x4x4 53 63 24 54.7 62 37
apex2 4x4x4x4x4x4x4 48 58 19 60.4 67.2 50
apex4 4x4x4x4x4x4x4 53 65 17 68 73.8 46
bigkey 4x4x4x4x4x4x4 18 22 8 55.5 63.6 39
clma 4x4x4x4x4x4x4 175 198 43 76.3 78.2 33
des 4x4x4x4x4x4x4 34 42 16 53 62 32

diffeq 4x4x4x4x4x4x4 42 51 23 45.3 55 -1.6
disp 4x4x4x4x4x4x4 23 28 7 69.6 75 29

elliptic 4x4x4x4x4x4x4 73 90 31 57.5 65.6 6
ex1010 4x4x4x4x4x4x4 188 212 38 79.7 82 12
ex5p 4x4x4x4x4x4x4 54 66 18 66.7 72.7 55
frisc 4x4x4x4x4x4x4 89 108 40 55.1 63 -10

misex3 4x4x4x4x4x4x4 40 48 15 62.5 68.8 54
pdc 4x4x4x4x4x4x4 174 198 37 78.7 81.3 47
s298 4x4x4x4x4x4x4 97 118 34 65 71.2 50

s38417 4x4x4x4x4x4x4 94 106 26 72.3 75.5 29
s38584 4x4x4x4x4x4x4 113 129 28 75.2 78.3 38

seq 4x4x4x4x4x4x4 40 49 15 62.5 69.4 28
spla 4x4x4x4x4x4x4 53 69 18 66 74 50

tseng 4x4x4x4x4x4x4 40 49 22 45 55.1 16
ava 4x4x4x4x4x4x4 215 248 125 41.9 49.6

average 21 81.71 96.06 28.76 62.4 68.7 32

The detailed performance analysis of 2D and 3D designs presented in Table 1.
An arity 4 Tree-based FPGA architecture with tree level 0 to 6 is presented in
Table 1. The critical path delay comparison between 2D and 3D layout shows
that the small and big designs outperform in 3D implementation of Tree-based
FPGA compared to the 2D counterpart. The place and route experiment records

1 http://er.cs.ucla.edu/benchmarks/ibm-place

http://er.cs.ucla.edu/benchmarks/ibm-place
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an average speed improvement of 68.7% compared to our 2D design. The gain
obtained in performance is due the optimized wire delay at higher levels of
the Tree interconnect by re-arranging them in the 2 layer 3D chip with the
Tree interconnection between level 3 and 4 is realized using TSVs. Similarly the
comparison with 3D Mesh-based FPGA [6] with 32% gain shows, 3D Tree-based
FPGA outperform in all benchmarks and an overall performance gain of 53%
recorded in the experiment.

5 Vertical Interconnect (TSV) Optimization

To make 3D Tree-based Multilevel FPGA more effective in terms of design and
manufacturing, its essential to minimize the TSV count. The vertical intercon-
nect optimization is be done using Rent’s parameter “p” defined for the an
architecture as follows. The Tree level is represented as � and m is the cluster
arity, c is the number of in/out pins of an LB and IO is the number of in/out
pins of a cluster located at level �.

IO = c.m�.p (1)

A Rent’s parameter based random level vertical interconnect minimization pro-
gram developed on 3D Tree-based router is used to find the smallest number of
vertical interconnects to implement MCNC netlist using a binary search method-
ology. The optimization program consider the same architecture level, in this case
the break point level with different p values to estimate the minimum TSV re-
quirement for a particular netlist. An example of two level Tree-based FPGA
with p=0.73 illustrated in Figure 8, in which a 27% reduction of interconnects re-
quirement achieved. The optimization of Tree-based interconnect network based
on Rent’s parameter as follows.
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Table 2. 3-Dimensional Multilevel FPGA Vertical Interconnect (TSV) Optimization

Design Names Architecture Optimized 3DTSVGain Rent=“p” Rent=1 Speed

MCNC Configuration Rent’s “p” (%) speed(nS) speed(nS) degradation(%)

alu4 4x4x4x4x4x4x4 0.47 53 25.4 24 5.5
apex2 4x4x4x4x4x4x4 0.72 28 20.7 19 8.3
apex4 4x4x4x4x4x4x4 0.77 23 17.2 17 1.1
bigkey 4x4x4x4x4x4x4 0.61 39 8.6 8 6.9

des 4x4x4x4x4x4x4 0.77 23 17.2 16 6.9
diffeq 4x4x4x4x4x4x4 0.66 34 25.5 23 9.8
dsip 4x4x4x4x4x4x4 0.65 35 7.6 7 7.8
ex5p 4x4x4x4x4x4x4 0.76 24 19.4 18 8.7
frisc 4x4x4x4x4x4x4 0.74 26 42.7 40 3.9

misex3 4x4x4x4x4x4x4 0.64 36 16.1 15 6.8
pdc 4x4x4x4x4x4x4 0.77 23 38.5 37 3.8
s298 4x4x4x4x4x4x4 0.76 24 36.2 34 6.8
seq 4x4x4x4x4x4x4 0.76 24 16.2 15 7.4
spla 4x4x4x4x4x4x4 0.78 22 19.4 18 7.2

tseng 4x4x4x4x4x4x4 0.65 35 24.4 22 9.8
ava 4x4x4x4x4x4x4 0.79 21 128.1 125 2.4

average 16 0.704 29.6 28.95 27.4 6.4

5.1 The Tree-Based Multilevel FPGA Interconnect Network Model

In downward interconnection network, a cluster situated at level � contain

Nin(� − 1) DMSB with k outputs and Nin(�)+kNout(�−1)
Nin(�−1) inputs. DMSBs being

full crossbar devices, total number of downward switches at level � cluster is
k(Nin(�) + kNout(� − 1)). In upward interconnection network, every cluster at
level � contain Nout(�− 1) UMSBs with k inputs and outputs. UMBSs are also
full crossbar devices with k2 × Nout(� − 1) switches at a level � cluster. Since
we have N

k� clusters at each level �, and the total number of switches in Tree
network can be calculated by equation 2.

Nswitch(Tree) = N × (kpcin + 2kcout)×
logk(N)∑

�=1

k(p−1)(�−1) (2)

The effectiveness of TSV optimizer was evaluated by using 16 largest MCNC
benchmark circuits. During the optimization process each netlist is passed
through a 3D router based TSV optimizer to find the minimum number of TSVs
required to implement the function with the 2 layer 3D Tree-based multilevel
FPGA. The advantage in this type of optimization is to provide a realistic count
of TSVs requirement for each netlist cases whereas the 3D Mesh-based FPGA
design methodology [6] assumed a random value of 30% of the actual architec-
ture TSVs count for circuit implementation and it produced counterproductive
results for few circuits like diffeq, frisc etc as shown in Table 1. The Tree-based
FPGA experimental study revealed an average reduction of 29.6% in TSV count
and corresponding speed degradation of 6.4% is presented in Table 2. With the
current 3D process technologies, it is impossible to manufacture high amount of
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Fig. 9. Thermal profile of 3D Tree-based Multilevel FPGA, with layer 1(left) with level
1 2 and 3 and layer 2 (right) with level 4, 5 and 6

TSVs and this makes the proposed TSVs reduction methodology a more feasible
technology approach. The technological approach and results confirm that 3D
Tree-based FPGA is a consistent architecture to build high density and high
performance FPGA, which is unlikely to be attained in Mesh-based FPGA ar-
chitecture.

6 3D Tree-Based Multilevel FPGA Thermal Analysis

Thermal analysis of FPGA architecture is essential as the power dissipation and
leakage expected to increase as we scale the technology below 100nm node [9,12].
The absence effective heat removal solutions may lead to performance and reli-
ability degradation of the 3D chip and an effective thermal conduction among
multiple layers of 3D chip is essential to maintain the performance of the 2 layer
3D Tree-based Multilevel FPGA. The thermal model used in this work is sim-
ilar to the model presented in [15] and it considers the temperature-dependent
thermal conductivity of silicon. The 3D thermal model is modified to include
the impact of effective thermal conductivity of thermal interface material (TIM)
through which the vertical interconnections (TSVs) pass through. The TIM layer
is a thermally inactive layer and it is used to attach layer 1 and 2 on top of each
other. Nevertheless the thermal conductivity of TIM increases due to the cu
TSVs from layer 1 to 2. The effective thermal conductivity of TIM and the ac-
tive layer 2 is calculated based on the equation 3. TSV density is computed based
on number of optimized TSVs count, TSV dimensions, and pitch constraints [14]
between TSVs of layer 1 and 2.

keff = kcu × (TSVArea) +Kth × (LevelBreakPointArea − TSVArea) (3)

Another feature included in 3D thermal model is to place additional block of
thermal TSVs at a specific hotspot location to re-distribute heat from a hotspot
to coldspot. The thermal profile of layer 1 and 2 is presented in Figure 9 and
temperature analysis presented in Figure 10. The measured maximum temper-
ature of 2 layer 3D Tree-based FPGA chip without thermal TSVs (TTSV) is
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Fig. 10. Temperature extracted for different sections of the 3D Tree-based FPGA chip
before and after Thermal TSV insertion

371oC and average temperature is 361oC. With addition of 2% TTSVs at the
hotspot location resulted in balancing the temperature of the chip. The maxi-
mum temperature measured is 341oC and average temperature is 335oC. The
3D experimental chip had only 2 active layers and 1 TIM layer, which explains
the dramatic improvement in temperature, nevertheless the improvement varies
with number of layers in a 3D chip.

7 Conclusion

We have demonstrated that 3D Tree-based Multilevel FPGA provides significant
advantages over 2D Mesh-based FPGA by improving the performance by 53%
and a reduction of 29% in overall TSV count of 3D Tree-based FPGA. Also
addressed the 2D physical design issues of Tree-based Multilevel interconnect
architecture and demonstrated our alternative 3D physical design and vertical
interconnect optimization solutions. However the 3D integration increases the
inter-layer temperature. Our 3D experimental setup for thermal analysis indicate
the the peak temperature of 2 layer 3D chip increased to 371oC. However the heat
transfer solution by placing thermal TSVs blocks at specified locations helped
the 3D Tree-based Multilevel FPGA to balance the temperature uniformly across
multiple layers of the 3D chip.

References

1. Betz, V., Marquardt, A., Rose, J.: A New Packing Placement and Routing Tool
for FPGA Research. In: Intl. Workshop on FPGA, pp. 213–222 (1997)

2. De Micheil, G., Pavlidis, V., Atienza, D., Leblebici, Y.: Design Methods and Tools
for 3D integration. In: Symposium on VLSI Tech Digest of Technical Papers, pp.
182–183 (2011)

3. Beyne, E.: 3D Interconnection and Packaging: Impending reality or still a Dream?
In: Proc. of IEEE Intl. Solid-state Circuits Conf (ISSCC 2004), CA, vol. 1, pp.
138–139 (February 2004)

4. Ababei, C., Feng, Y., Goplen, B.: “Placement and routing in 3D integrated cir-
cuits”. IEEE Design & Test of Computers 22(6), 520–531 (2005)



Performance Analysis and Optimization of 3D Multilevel FPGA 209

5. Betz, V., Rose, J., Marquardt, A.: Architecture and CAD for Deep-Submicron
FPGAs. Kluwer Academic Publishers, Dordrecht (1999)

6. Siozios, K., Bartzas, A., Soudris, D.: Architecture Level Exploration of Alternative
schemes Targeting 3D FPGAs: A Software Supported Methodology. Intl. Journal
of Reconfigurable Computing (2008)

7. Chiricescu, S., Leeser, M., Vai, M.M.: Design and analysis of a dynamically recon-
figurable three-dimensional FPGA. IEEE Trans. Very Large Scale Integr (VLSI)
Syst. 9(1), 186–196 (2001)

8. Lin, M., Gamal, A., Lu, Y., Wong, S.: Performance Benefits of Monolithically
Stacked 3D-FPGA. In: Int. Symp. Field-Program. Gate Arrays, Monterey, CA
(2006)

9. Lim, S.: TSV-Aware 3D Physical Design Tool Needs for Faster Mainstream Ac-
ceptance of 3D ICs. In: ACM DAC Knowledge Center (dac.com) (2010)

10. Marrakchi, Z., Mrabet, H., Amouri, E., Mehrez, H.: Efficient tree topology for
FPGA interconnect network. In: ACM Great Lakes Symp. on VLSI 2008, pp. 321–
326 (2008)

11. Marrakchi, Z., Mrabet, H., Farooq, U., Mehrez, H.: FPGA Interconnect Topologies
Exploration. Int. J. Reconfig. Comp. (2009)

12. Gayasen, A., Narayanan, V., Kandemir, M., Rahman, A.: Designing a 3-D FPGA:
Switch Box Architecture and Thermal Issues. IEEE Trans. on VLSI Syst. 16(7),
882–893 (2008)

13. Pistorius, J., Hutton, M.: Placement rent exponent calculation methods, tempo-
ral behaviour and FPGA architecture evaluation. In: Proc. of the Intl. Workshop
on System Level Interconnect Prediction, Monterey, Calif, USA, pp. 31–38 (April
2003)

14. Jang, D.M., Ryu, C., Lee, K.Y., et al.: Development and evaluation of 3-D SiP
with vertically interconnected Through Silicon Vias (TSV). In: Proc. of the 57th
Electronic Components and Technology Conf (ECTC 2007), USA, pp. 847–852
(May-June 2007)

15. Ayala, J., Sridhar, A., Pangracious, V., Atienza, D., Leblebici, Y.: Through Silicon
Via-Based Grid for Thermal Control in 3D Chips. NanoNet (2009)

16. Emna, A., Hayder, M., Zied, M., Habib, M.: Improving the Security of Dual Rail
Logic in FPGA Using Controlled Placement and Routing ReConFig 2009, Mexico
(2009)



Iterative Routing Algorithm

of Inter-FPGA Signals
for Multi-FPGA Prototyping Platform

Mariem Turki1, Zied Marrakchi2, Habib Mehrez1, and Mohamed Abid3

1 Laboratoire d’Informatique de Paris 6
Universite de Pierre et Marie Curie, Paris France

2 Flexras Technologies, Paris France
3 CES Laboratory

Sfax University, Tunisia

Abstract. Over the last few years, multi-FPGA-based prototyping be-
comes necessary to test System On Chip designs. However, the most
important constraint of the prototyping platform is the interconnection
resources limitation between FPGAs. When the number of inter-FPGA
signals is greater than the number of physical connections available on
the prototyping board, signals are time-multiplexed which decreases the
system frequency. We propose in this paper an advanced method to route
all the signals with an optimized multiplexing ratio. Signals are grouped
then routed using the intra-FPGA routing algorithm: Pathfinder. This al-
gorithm is adapted to deal with the inter-FPGA routing problem. Many
scenarios are proposed to obtain the most optimized results in terms
of prototyping system frequency. Using this technique, the system fre-
quency is improved by an average of 12.8%.

1 Introduction

With the ever increasing complexity of system on chip circuits, the software and
hardware developers can no longer wait for the fabrication phase to test their
designs[3]. Currently, it is estimated that 60 to 80 percent of an ASIC design is
spent performing verification [13]. FPGA-based prototyping is an important step
in the creation of the final product and it is the key to the success of marketing
in time.

Because the silicon area overhead of FPGA versus ASIC technology has been
measured to be about 40x [14], FPGA programming technology requires that an
ASIC logic design be partitioned across multiple FPGA devices to achieve the
necessary device logic capacity. The number of FPGAs depends on the size of
the prototyped system, ranging from a few [4] up to 60 FPGAs [5].

In order to map the design into a multi-FPGA board, a partitioning tool
decomposes the design into pieces that will fit within the logic resources of
individual FPGA devices. For some systems, partitioning must be performed
so that routing restrictions in terms of available FPGA pin count and system
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topology are taken into account. Indeed, the number of I/Os is increasing for each
new FPGA generation, but the ratio FPGA I/Os over FPGA logic capacity is
decreasing. Thus, the number of signals which appear at the interface and which
should be transmitted between FPGAs, is significantly higher than the number
of available traces between those FPGAs.

The communication of interpartition signals between FPGAs is based on rout-
ing algorithms. In this paper, we propose a new approach to route all the inter-
FPGA signals, based on signal multiplexing technique. To reach this goal, we
use an iterative routing algorithm called Pathfinder [6]. This algorithm was used
to route the intra-FPGA signals. We extend it for the inter-FPGA signals in
order to obtain the best routing results.

The rest of the paper is organized as follows. Section 2 is dedicated to the
related works which addressed this problem. In section 3 we present the iterative
routing algorithm used initially to route the intra-FPGA signals. Section 4 ex-
plains the scenarios we propose to test the performance of the routing algorithm.
These scenarios includes the inter-FPGA signal form and also the routing graph
direction. In section 5 we describe the multiplexing IP that we use to transfer
the multiplexed signals. section 6 is dedicated to the experimental results and
to the evaluation of the the proposed methods. Finally, section 7 concludes the
paper.

2 Related Works

To address the inter-FPGA signal routing problem, authors in [8] proposed
heuristic algorithms to solve multiterminal routing signals in partial crossbar
architectures. In [9], multiterminal signals are decomposed into two-terminal
nets. Therefore, routing algorithm is applied to these nets.

Bab et al [1] introduced time multiplexing of I/O pins. Multiplexing means
that multiple design signals are assembled and serialized through the same board
connection and then de-multiplexed at the receiving FPGA. In [2], the authors
proposed a new multiplexing approach based on the Integer Linear Program-
ming. The main objective of this study is to select which signals must be multi-
plexed and those which must not. Using this technique, all signals are transmitted
on each phase, but only those with updated values are considered. Since all the
signals are transmitted in each phase, the number of slot per phase is very large,
and the system frequency is decreased.

3 Inter-FPGA Signals Routing Strategy

To route inter-FPGA signals, it is necessary to find an algorithm that can assign,
in an optimized manner, signals to the available resources. The technique men-
tioned in the section II uses constructive routing algorithm. This algorithm keeps
track of the reserved and available physical connections between FPGAs. The
router applies Dijkstra’s shortest path algorithm [7] to determine the shortest
path between the source and destination FPGAs. If the shortest path exists, the
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Fig. 1. Modelling routing resources as a routing graph

capacity of all used resources is decremented, then they can not be used to route
the next signals. Else, router returns unsuccessfully. The main disadvantage of
this method is: when a signal is already routed, it can not be rerouted to leave
the routing resources currently used to another signal that has the greatest need
for these resources. To avoid this problem, we route the inter-FPGA signals by
an iterative routing algorithm. Among existing techniques, The Pathfinder rout-
ing algorithm seems to be best suited to our problem as it offers a compromise
between performance and routability goals.

3.1 Routing Graph

Since we have chosen Pathfinder to route all inter-FPGA signals, our interest
was about the modeling of the multi-FPGA board. Therefore, we chose to model
all the routing resources by an oriented routing graph G(V, E). Like shown on
Figure 1, the set of vertices V=v1, ....vn in the graph represents the I/O pins
of all FPGAs, but also, each FPGA is represented by a top vertex. The set of
edges E=e1, ...., en represents all the inter-FPGA connections. An unidirectional
connection is modeled by a directed edge while a bidirectional connection(for
example between a vertex and a top vertex) is represented by two directed edges.

3.2 Routing Algorithm: Pathfinder

Pathfinder is used primarily for routing intra-FPGA signals. We adapt it to deal
with the inter-FPGA signals. Pathfinder uses an iterative, negotiation-based ap-
proach to successfully route all the signals. During the first routing iteration,
the signals are freely routed without paying attention to resource sharing. In-
dividual signals are routed using Dijkstra’s shortest path algorithm [7]. At the
end of the first iteration, resources may be congested because multiple signals
have used them. During subsequent iterations, the cost of using a resource is in-
creased, based on the number of signals that share the resource, and the history
of congestion on that resource. Thus, signals are forced to negotiate for routing
resources. If a resource is highly congested, nets which can use lower congestion
alternatives are forced to do so. On the other hand, if the alternatives are more
congested than the resource, then a signal may still use that resource.
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Observing the final routing results, we notice that inter-FPGA signals can be
directly routed between source and destination FPGAs, or intermediate through-
hops may be necessary.

4 Routing Algorithm Adaptation

Taking into account some problems to be detailed later, we adapt our routing
approach to the new routing topology. In this section, we discuss the proposed
solutions and the various changes we make.

4.1 Signal Direction Conflicts

The Pathfinder routing algorithm processes each signal independently. Each
routing resource (node) should be shared by more than one signal. Signals that
share the same resource are multiplexed together. As mentioned above, we model
our architecture by a bidirectional routing graph. This causes direction conflicts
since the signals sharing the same resources can have different directions.

Unidirectionnal Routing Graph. To avoid this problem, we apply the
Pathfinder routing algorithm on a unidirectional graph. The idea is to assign
a definite direction to all physical wires. In the routing graph, this is translated
by a single edge between each pair of nodes.

Figure 2-(a) represents the routing flow on a unidirectionnal graph. The first
generates the unidirectionnal graph depending on the number of inter-FPA sig-
nals between each pair. The number of physical wires that transmit direct (re-
spectively indirect) signals between two FPGAs, is proportional to the number of
direct (respectively indirect) signals between these two FPGAs. After calculat-
ing the multiplexing ratio, the capacity of all nodes is set to mux ratio. Finally,
Pathfinder routing algorithm tries to route all the signals. If a feasible solution
exists, the mux ratio parameter is decremented and the router tries to re-route
the signals with the new value of mux ratio. Otherwise, the router stops with
the best solution found.

Bidirectionnal Routing Graph. The selection of the unidirectionnal wires
proportionally to the number of signal between each pair of FPGA is not opti-
mized at all. For this reason we keep the bidirectionnal graph and we combine
signals into groups. Indeed, signals that have the same source and the same
destinations are grouped together in ”GSignals” and are considered as a single
signal. Each GSignal contains a maximum of mux ratio signals. Therefore, the
capacity of all resources in the routing graph is set to 1. The bidirectional graph
allows a better use for available routing wires of the multi-FPGAs prototyping
board.Figure 2-(b) presents the steps to route inter-FPGA signals on a bidirec-
tional routing graph. The first step creates the graph using two arcs of opposite
direction to represent each physical wire. Next, the initial mux ratio parameter
is calculated the same way as in the unidirectional graph. This parameter de-
termines the number of signals to be grouped together into one GSignal. The
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Fig. 2. Routing flows

pathfinder algorithm tries to route all the GSignals. Finally, the router retains
the routing solution with the best mux ratio.

This method avoids conflict management, since the Pathfinder algorithm pre-
vents congestion; at the end of every iteration, no node is used by more than
one group of signals or GSignals, which all have the same direction.

4.2 Signal Representation

For better routing results, we notice that the choice of signal form is essential
with two possibilities to consider the signal shape: a multiterminal or a two-
terminal signal.

Multiterminal Signal. The Pathfinder routing algorithm can route multiter-
minal nets. In fact, the algorithm starts by selecting the source and the list of all
destinations. After routing the first one, Pathfinder moves to the next destina-
tion and so on. Although the routing of multiterminal signals can be the optimal
solution considering the number of used I/O pins, the design is considered non
flexible especially when grouping those signals into GSignals. Indeed, in some
cases, signals with the same source and the same destinations are not numer-
ous so that some GSignals do not contain the max number of signals, equal to
mux ratio.

Two-Terminal Signal. In order to make the design more flexible, we decom-
pose the multiterminal signals into branches with one source each and only one
destination. The Pathfinder routing algorithm tries to find separately a routing
path to each branch.



Iterative Routing Algorithm of Inter-FPGA Signals 215

Table 1. Comparison of routing strategies effects on prototyping system performance

Benchmark scenario1 scenario2 scenario3 scenario4

mux ratioR hop Freq mux ratioR hop Freq mux ratioR hop Freq mux ratioR hop Freq
(MHz) (MHz) (MHz) (MHz)

Circuit A 12 2 17.85 15 2 16.66 4 2 20.83 4 1 26.31
Circuit B 18 3 13.88 24 2 14.7 4 3 17.24 7 1 23.8
Circuit C 24 3 12.82 44 2 11.36 11 3 15.15 11 1 21.73
Circuit D 50 3 9.61 50 2 10.63 15 3 14.28 20 1 18.51
Circuit E 119 6 4.9 116 4 5.55 57 2 9.8 56 4 8.33
Circuit F 160 3 4.67 168 3 4.5 68 3 8.19 68 1 9.8
Circuit G 220 5 3.4 256 1 3.44 89 2 7.46 86 3 7.14

Table 2. Comparison between OAR and NCR strategies on system performance

Benchmarks OAR NCR Gain

R hop mux ratio Freq(MHz) R hop mux ratio Freq(MHz)

CPU50 occ30 0 9 29.41 0 9 29.41 0%
CPU125 occ50 2 16 16.66 1 16 20 20.04%
CPU150 occ30 3 24 12.82 1 29 15.62 21.84%
CPU150 occ50 2 51 10.41 1 51 11.62 11.65%
CPU375 occ80 2 51 10.41 1 51 11.62 11.65%
CPU375 occ85 2 79 8.06 2 69 8.77 8.8%
CPU700 occ80 2 134 5.61 2 109 6.49 15.68%

5 Experimental Results

We use our benchmark generator [11] to generate several synthetic designs.
The targeted multi-FPGA prototyping board we use for the experiments is a
DNV6F6PCIe from the DINI group [12]. The inter-FPGA clock frequency is set
to 500MHz. To map the designs into this board, we use the WASGA partitioning
flow provided by Flexras Technologies [10]. WASGA partitions the designs and
outputs the list of inter-FPGA signals that shoud be routed. After routing these
signals, WASGA generates a netlist for each FPGA. The resulting netlists are
re-entered into the FPGA flow to execute the place and route and the bitstream
generation individulally for each FPGA.

Table 1 shows the results for each routing scenarios described in section 4.
These scenarios are defined depending on the signal shape and the routing graph.

– In the scenario 1, multiterminal signals are routed on a unidirectional routing
graph.

– In scenario 2, two-terminal branchs are routed into a unidirectional routing
graph.

– In scenario 3, Signals are grouped into GSignals and routed into a bidirec-
tional graph.

– In scenario 4, Branches are combined into groups and routed into a bidirec-
tional graph.
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In this experiment, we used benchmarks where 70% of signals are multiterminal
ones. Results show that routing on a bidirectional graph gives much better results
since the router is more free to select the routing path. On the other hand,
routing multiterminal signals is not always optimized even if the mux ratio of
scenario 3 is sometimes less than the one of scenario 4, but using more routing
hop penalizes the system frequency.

Since we have demonstrated that Senario 4 gives usually the best results, we
apply Pathfinder and the obstacle avoidance routing algorithms to route inter-
FPGA signals, all with one source and one destination (branch) and grouped
into GSignals. Table 2 shows the results of comparison. OAR means Obstacle
Avoidance Routing and NCR refers to Negotiated Congestion Routing. Results
show the important impact of the NCR iterative routing and its efficiency to
improve system performance. The frequency is increased on average by 12.8%
and the impact of NCR is important for highly congested partitioning results. In
fact thanks to its iterative aspect, it avoids easily local minima and reduces the
path length from a source FPGA to a destination FPGA. In addition, it leads
to a good tradeoff between maximum multiplexing ratio and routing hops.

6 Conclusion

Prototyping is no longer optional due to the cost of chips and difficulty to
simulate huge designs. To get a design for prototype more efficient, the high-
est frequency should be reached. The system frequency depends on the way the
inter-FPGA signals are routed. n this paper, we presented our approach to route
these inter-FPGA signals. We extend the Pathfinder routing algorithm to deal
with the inter-FPGA signals. These signals are grouped into GSignals where
each one has 1 source and only 1 destination. Compared to common obstacle
avoidance algorithms, we obtain a significant prototyping system frequency im-
provement of 12.8%.
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Optically reconfigurable gate arrays (ORGAs) can be reconfigured using error-inclusive
configuration contexts under a radiation-rich space environment. Therefore, the ORGA
presents an important benefit: the allowable amount of configuration data damage is
greater than that by field programmable gate arrays (FPGAs) with error-checking and
correction. However, the ORGA’s programmable gate array itself is never as robust
against space radiation as that of an application-specific integrated circuit (ASIC) be-
cause the programmable architecture of its gate array is the same as that of FPGAs.
Therefore, to achieve a drastic increase in the robust capability of a fine-grained pro-
grammable gate array on an ORGA-VLSI, this paper presents a proposal of a novel
dynamic module multiple redundancy scheme based on a mono-instruction set com-
puter architecture exploiting high-speed dynamic reconfiguration.

An ORGA can realize nanosecond-order reconfiguration and numerous reconfigura-
tion contexts, thereby allowing clock-by-clock dynamic reconfiguration. Such dynamic
reconfiguration enables the implementation of mono-instruction set computers (MISCs)
onto programmable devices. If the MISCs are used, then the number of processors for
majority voting can be increased, thereby enhancing its robust capability.

Here, 11 kinds of 32-bit MISC processors of five-module redundancies were im-
plemented onto a Cyclone IV EP4CE115 FPGA. The five-module redundancy of each
MISC processor incorporates the same five 32-bit MISC processors and five majority
voting circuits. Here, to compare the performance of the MISCs with that of conven-
tional RISC processors, a triple-module redundancy of 32-bit original soft-core RISC
processors including all 11 instructions was designed. Average implementation areas
of MISC processors were 1,612 logic elements, although conventional triple-module
redundancy RISC processor consumed 9,236 logic elements. Under MISC implemen-
tation, the implementation area of five-module redundancy was 5.7 times lower than
that of the triple-module redundancy conventional soft-core RISC processor. Further-
more, the average clock frequency of MISC processors is 35 times greater than that
of a conventional soft-core RISC processor. Therefore, its performance has also been
improved in addition to its dependability. Consequently, using MISC processors, the
dependability of a fine-grained programmable gate array can be increased.
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Coarse-grained reconfigurable array (CGRA) is an efficient architecture in dig-
ital signal processing domain. It is one of the best candidate architectures to
exploit instruction level and loop level parallelism in the computation intensive
applications while maintaining a certain degree of flexibility. The performance
of CGRA is greatly reliant on the mapping algorithm which associate operations
with PE and the time slot to execute.

The mapping problem for both data acyclic and cyclic application kernels
have been proved to be NP-complete. Iterative improvement algorithms such
as simulated annealing (SA) and genetic algorithm (GA) have been adopted in
mapping loops onto CGRA [1]. However, little work has been done on map-
ping data acyclic kernels onto CGRA efficiently. In our work, the ant colony
optimization (ACO) is applied to map applications kernel represented by data
acyclic graph (DAG) onto CGRA.

In ACO, ants construct a solution by deciding operation i in the DAG to be
executed on PE j step by step. The probability of choosing a decision p(i, j) is
calculated by the global pheromone τ(i, j) and the local expectation η(i, j), the
benefit of mapping i to j at current step. The η(i, j) is related to the earliest
time that operation i can be executed on PE j. We use maze route technique
to find the routing path from data producer to consumer. τ(i, j) is updated at
the end of exploration according to the quality of solutions. Thus, the algorithm
will converged to an optimized result after serval iterations.

We also present a heuristic which confines the exploration space to reduce
mapping time with little performance loss. It was showed that the affinity be-
tween 2 operations greatly influence the result of mapping. So, if a decision causes
two operations which have parent-child relationship or common offsprings too
far from each other, it won’t be chosen. Experiments shows our method gen-
erates high quality solutions (11% improved compared to GA and SA). 70%
compilation time is saved due to the heuristic we proposed.
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Stream processing is becoming an important application field for reconfigurable
architectures due to its two trends: 1) data rate and power consumption of a
stream processing system is rapidly increasing, and 2) data streams have wide
characteristics that should be dealt with different hardware architectures. How-
ever, utilizing reconfigurable processors requires hardware development skills
which software engineers who develop algorithms do not have in general.

In our research, we consider window join, one of the operators of stream pro-
cessing, as a case study and illustrate the current situation in two viewpoints:
a) how a software engineer in this field can facilitate hardware acceleration uti-
lizing a reconfigurable hardware with a C-level programming environment, and
b) how adaptiveness is achieved in stream processing in such a solution. We use
a dynamically reconfigurable architecture that features a state-of-the-art high
level synthesis tool which compiles C source code into a hardware configuration.

We carried out a step-by-step optimization starting from a simple and ordi-
nary software code. As a result, we achieved throughput improvement by two
orders of magnitude compared to the first step, and roughly 50 times greater
throughput/power efficiency than a pure software solution running on an Intel
Core i5 CPU. We also evaluated two different architectures with each specialized
in high/low match rate data streams. The architecture specialized in low match
rate scored 45% higher throughput than the other when the match rate was
0.01%, while the latter scored 62% higher when the match rate was 10%.

We conclude that: i) a stream processing system with a dynamically reconfig-
urable hardware acceleration can be developed entirely in C, and achieve much
higher throughput at a higher power efficiency, and ii) dynamically reconfigurable
hardware is an efficient way to deal with streams with changing characteristics.
However, there were still occasions that hardware design skills were required
during the optimization steps. Therefore, we suggest that establishing a stream-
oriented programming model which further hides hardware details and provides
a relatively high performance without optimizing the code is necessary.
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Abstract. Field-Programmable Gate Array (FPGA) is widely used for
implementing digital circuits due to its moderately high level of integra-
tion and rapid turnaround time. As the cost of masks in IC fabrication
is increasing and the performance gap between FPGA and ASIC is re-
ducing, more and more systems will be implemented with FPGAs. A
multi-FPGA board, which is a collection of FPGAs, is used in case that
the logic capacity of a single FPGA is insufficient.

Nowadays, creating a custom multi-FPGA board is mainly a manual
process. In this paper, an automatic design flow is proposed to create
a multi-FPGA board netlist which is tailored to a specific design. In
order to propose an automatic design flow, we assume for this study:
1) All the FPGAs used in the board to implement logic elements of the
designs have the same FPGA type (vendor, family, device and package).
2) No information about the position of the FPGAs in the board and
no PCB layout generated. The proposed design flow has three steps: the
design partitioning, the interconnect synthesis and the design routing.
The design partitioning and the design routing can be done respectively
by commercial tools provided by Flexras Technologies. An algorithm is
developed to do the interconnect synthesis which distributes the inter-
FPGA connections according to cut signals of the partitioned design.

For the purpose of this study, a testbench generator has been devel-
oped. In the experiments, several designs are generated by the testbench
generator and several board netlists are generated for each design by
varying the used FPGA type. Therefore, the automatic design flow could
lower the entry barrier for new board designer. Results show that the pro-
posed automatic design flow reduces significantly the development time,
and accelerates the time-to-market of new products with the optimized
first-chip cost and improved system frequency. Pareto-optimal solutions
for a given design can be selected instantly among the generated board.
Then, the most adapted one can be chosen according to specifications of
board designers among the Pareto-optimal solutions. When comparing
with an off-the-shelf board, the best case achieves a 150% increase in the
system frequency with less number of FPGA in the board.

Due to that there are many different existing FPGAs in the market,
the FPGA type used in the board influences the system frequency. The
future work will predict the most adapted custom multi-FPGA board
for a given hierarchical design.
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Abstract. Pipelining is an effective technique to improve the perfor-
mance of a loop by overlapping the execution of several iterations, par-
ticularly on the reconfigurable platform, which is more coarse-grained. In
this paper, we use reconfigurable platform to accelerate loop based ap-
plications by reconstructing the pipeline structure during the execution
of application. Based on this concept, the optimized strategies such as
duplexing and splitting of function unit are applied from instruction level
to task level. First, a loop is abstracted as a weighted data flow graph
(WDFG), where nodes represent tasks while edges stand for inter-task
dependencies. The weights of nodes and edges indicate task execution
times and communication overheads respectively. Based on the abstrac-
tion, we propose an algorithm which automatically maps the pipelined
loops onto reconfigurable hardware and select whether the duplexing or
splitting is more appropriate. The algorithm is based on profiling in-
formation of WDFG, such as execution times and communication over-
heads. Then several test cases from EEMBC benchmark are selected
to evaluate our approach. The evaluation is demonstrated in two ways.
First, we operate some software simulations to appraise the effectiveness
of the algorithms. Second, a prototype system is implemented on state-
of-the-art FPGA board to evaluate the practicability of our approach
on reconfigurable platform. Performance indicators of pipeline such as
speedup, throughput and efficiency are measured in both ways. More-
over, in software simulation, the speedup and throughput rate of opti-
mized pipeline achieved to 2 times at least and the efficiency increased
by 1.1-1.5 times, whilst in hardware platform, the speedup and efficiency
increase by 1.5 times due to the communication cost and reconfiguration
delay, the throughput rate also increases by 1.5 to 2 times. Experimental
results demonstrate that our approach can achieve satisfactory perfor-
mance both on effectiveness and practicality.

Acknowledgements. This work was supported by the National Science Foun-
dation of China under grants (No. 61272131, No. 61202053), China Postdoctoral
Science Foundation (No. BH0110000014), and Jiangsu Provincial Natural Sci-
ence Foundation (No. SBK201240198).

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, p. 222, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



FPGA-Based Adaptive Data Acquisition

Scheduler-on-Chip (SchoC)
for Heterogeneous Signals

Mohammed Abdallah

State University of New York Institute of Technology, NY, USA

Abstract. Data acquisition (DAQ) is a crucial component in instru-
mentation and control. It typically involves the sampling of multiple
analog signals, and converting them into digital formats so that they
can be processed. DAQ systems also involve microprocessors, microcon-
trollers, digital signal processing, and/or storage devices. Many multi-
channel DAQs, which utilize some sort of processing for simultaneous
input channels, are found in various applications. In this research, for
heterogeneous multi-channel signals, different sampling rates are identi-
fied for each channel, and optimized for best data quality with minimal
storage requirement. Accordingly, power consumption and transmission
times can be reduced. The fidelity of the proposed Scheduler-on-Chip
(SchoC) is increased by using reconfigurable chip technology, where flex-
ibility, concurrency, speed and reconfiguration can be achieved in hard-
ware. Therefore, SchoC can be utilized in various real world applications
especially hazardous environments, or for remote architecture reconfigu-
ration, while keeping the cost of the device low. Preliminary performance
evaluations show improvements in the speed and memory requirements
of the proposed SchoC over a comparable software-based scheduler.

The proposed SchoC can be utilized in many applications since dif-
ferent applications need to schedule multi-rate tasks on a single core
processor. The proposed SchoC can be used in a low cost, high perfor-
mance multi-channel DAQ system for custom sensing applications which
have a matrix of different analog sensors. Alongside with analog sensors
(voltage, current or charge output), quasi-digital sensors and transducers
(frequency, period, PWM output) can use the proposed SchoC. Moreover,
in the environmental measurements, the operational satellite synthetic
radar was used to acquire different data at different frequencies in order
to estimate the soil moisture in different sites on the earth. The system
needs to acquire many signals within a short period of time due to the
uncontrollable changing site conditions. In addition, it can be used in a
versatile instrument that can be the base of developing a spectroscopic
imaging.
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A high-level Field Programmable Gate Array (FPGA) prototype for a JPEG image en-
coder has been developed by the Structures, Pointing, and Control Engineering (SPACE)
University Research Center (URC). The FPGA prototype uses MathWorks Simulink
and Xilinx System Generator for deployment on its Virtex-5 FPGA board. The FPGA
module serves as a co-processor of a real-time Ubiquitous Video Conferencing (UVC)
software package. The project objective is to: 1) study the high-level synthesis method
for FPGA design, and 2) provide the digital signal processing necessary to offload
computationally-intensivevideo processing data from a host computer running the UVC
application [1]. The project uses a Xilinx XUPV5-LV110T FPGA Development Sys-
tem. The image compression utilizes the JPEG standard. Each module for the JPEG
encoder is designed in Simulink. To reduce computation time on the FPGA due to
floating-point Discrete Cosine Transform (DCT) calculations, a table containing DCT
cosine product values was computed in Excel, accurate to two decimal digits. These
values are shifted 6 bits to the left to maintain accuracy and loaded onto the FPGA. The
product of 8-bit YCbCr channel data and tabulated values is accumulated into a register,
then scaled and shifted 6 bits to the right to complete the DCT.

Efficiency of the design is measured against an open-source encoder from Open-
Cores.com, which does not rely on proprietary IP cores. The use of proprietary IP cores
by System Generator utilizes one tenth the Slice Registers and occupied Slices, and
1/20th the Slice LUTs as the open source encoder. Based on the specifications of the
two encoders, System Generator encoder speed outperforms the open source encoder
after processing 1.44 blocks of image data. Based on the complexity of the problem
and the resource availability on the targeted FPGA board, this encoder can produce
1080p video at 50 frames per second in real-time. The encoder that uses the System
Generator demonstrates appreciable gains in space and speed over the open-source en-
coder. System Generator demonstrates a significant advantage to hardware design that
can be a viable alternative to traditional HDL programming. Future work may include
the parallel implementation of the quantization phase.
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Abstract. Deep Belief Networks (DBNs) are state-of-art Machine
Learning techniques and one of the most important unsupervised learn-
ing algorithms. Training DBNs is computationally intensive which natu-
rally leads to investigate FPGA acceleration. Fixed-point arithmetic can
be used when implementing DBNs in FPGAs to reduce execution time,
but it is not clear the implications for accuracy. Previous studies have
focused only on accelerators using some fixed bit-widths. A contribution
of this paper is to demonstrate the bit-width effect on various config-
urations of DBNs in a comprehensive way by experimental evaluation.
Our work is inspired by the original DBN built on a subset of neural
networks known as Restricted Boltzmann Machine (RBM) and the idea
of Stacked Denoising Auto-Encoder (SDAE). We modified the floating-
point versions of the original DBN and the denoising DBN (dDN) into
fixed-point versions and compared their performance. Explicit perfor-
mance changing points are found using various bit-widths. The results
indicate that different configurations of DBNs have different performance
changing points. The performance variations of three layers DBNs are
a little larger than one layer DBNs because of the better sensitivity of
deeper DBN. Sigmoid function approximation methods must be used
when implementing DBNs in FPGA. The impacts of Piecewise Linear
Approximation of nonlinearity algorithms (PLA) with two different pre-
cisions are evaluated quantitatively in our experiments. Modern FPGAs
supply built-in primitives to support matrix operations including multi-
plications, accumulations and additions, which are the main operations
of DBNs. A solution of mixed bit-widths DBN is proposed that a nar-
rower bitwidth can be used for neural units and a wider one can be used
for weights, thus fitting the bit-widths of FPGA primitives and gaining
similar performance to the software implementation. Our results provide
a guide to inform the design choices on bit-widths when implementing
DBNs in FPGAs documenting clearly the trade-off in accuracy.

Keywords: deep belief network, fixed-point arithmetic, bit-width, FPGA.
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In the context of the REFLECT project[1] we have developed an aspect-oriented
compilation and synthesis toolchain that aims at facilitating the mapping of ap-
plications described in high-level imperative programming languages, such as C,
to heterogeneous and configurable computing systems. More specifically, we have
designed an aspect-oriented domain-specific language, called LARA[2], that al-
lows programmers to convey application-specific and domain-specific knowledge
as a way to capture non-functional concerns. The LARA specifications and the
subsequent control of the tools via a code weaver allows a seamless exploration
of alternative designs and run-time adaptive strategies, in effect enabling design-
space exploration (DSE).

Figure 1 depicts a specific instantiation of the REFLECT aspect-oriented
design-flow, which generates resource-efficient Xilinx designs from C kernels and
LARA descriptions. This design-flow operates as follows. There are 3 main in-
puts: (1) C application sources, (2) input parameters that control which and
how kernels are synthesized to hardware, and (3) LARA aspects that capture
the DSE strategy that derives the final designs. The DSE weaver invokes the Har-
monic weaver to compute the word-lengths of variables based on user-provided
parameters, such as input ranges and required output accuracy. The results of
the word-length analysis are captured as a LARA aspect and passed down to the
Reflectc weaver, which controls the CoSy [3] engines. The word-length informa-
tion contains the precision of each variable, including the minimum number of
bits for the integer, fraction and signal that satisfy the target output accuracy.
The Reflectc weaver receives the LARA aspect with the word-length informa-
tion and the C kernel, and uses the weaveshrink CoSy engine [3] to change
data-types from floating-point to fixed-point using the specified word-length in-
formation. Next, the weaver invokes the DWARV code generator to derive the
optimized design in VHDL. Finally, the DSE weaver invokes the Xilinx ISE tools
to generate the corresponding hardware design.

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 226–228, 2013.
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Fig. 1. The REFLECT Aspect-Oriented Design-Flow

Next we present a LARA aspect description that captures a word-length strat-
egy that operates on the design-flow shown in Fig. 1. This aspect receives a list
of target accuracies (line 6), and generates a set of FPGA implementations that
satisfy the computation requirements of each element of the list, given a set of
C sources and a function name (line 4):

1 import xilinx_opts , store_results;
2 aspectdef wlot_strategy
3 input // k e r n e l params
4 csource , cflags , kernel_name ,
5 input_ranges , // e . g . { x : { min : −1, max : 10} }
6 targetAccs , // e . g . [ 3 e−1, 9e−4, 9e−9] ,
7 targetVar , maxFreq ,
8 end
9 for (t in targetAccs) {

10 var targetAcc = targetAccs[t];
11 run(tool:’harmonic ’, args:[’-aspLARA =wlot_harmonic.lara ’, ...]);
12 run(tool:’reflectc ’, args:[’wlot.lara ’,’kernel.c’,’-gen=vhdl ’]);
13 call xilinx_opts(folder :"VHDL", opt:4, ctrMaxFreq: maxFreq );
14 println ("MaxFreq : "+ @design .CCU.maxFreq + " (MHz)");
15 dir = ’wcode ’ + t;
16 call store_results(dir);
17 }
18 end

Table 1 presents the results obtained with the REFLECT design-flow using
Xilinx ISE tools [4] on a 3D path planning kernel [1], and targeting a Virtex-5
FPGA-based platform. The results compare the original single precision version
of the kernel against 3 automatically derived fixed-point designs using the above
aspect strategy with target accuracies of 7.0e-9, 6.0e-4 and 1.0e-1. These target
accuracies generated the Q3.29, Q3.13 and Q3.5 fixed-point designs respectively.
Qx.y represents a fixed-point representation with x integer bits and y fractional
bits. Considering the single floating-point precision design as the reference, we
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achieve area savings from 27.54% to 34.09% by dropping the computation accu-
racy from 5.58e-9 to 9.4e-2. Regarding the power savings, we achieve dynamic
power savings from 21.14% to 35.02% by dropping the computation accuracy
from 5.58e-9 to 9.4e-2, when running the design at 300 MHz.

Table 1. FPGA resources reported for various data type representations

 
 accuracy area power 

target 
accuracy 

computation 
accuracy slices reduction 

slices (%) 
dynamic power 
@300Mhz (mW) 

reduction 
dynamic power 
@300Mhz (%) 

single 
precision  - 4.2e-7 748 - 142.93 - 

Q3.29 
(unsigned)  7.0e-9 5.58e-9 542 27.54% 112.72 21.14% 

Q3.13 
(unsigned)  6.0e-4 3.6e-4 498 33.42% 98.9 30.81% 

Q3.5 
(unsigned) 1.0e-1 9.4e-2 493 34.09% 92.87 35.02% 

These results show a clear trade-off between accuracy and resource utiliza-
tion, and between accuracy and dynamic power. By decoupling non-functional
concerns (expressed in LARA) with functional concerns (implemented in C), we
can easily revise the computational requirements and even the strategy itself to
automatically derive new solutions. Furthermore, this approach allows the de-
velopment of compilation strategies that can be re-used and applied to different
applications and possibly different target architectures, thus increasing design
productivity for the same target as well as code portability across multiple and
very distinct target architectures.

Acknowledgements. This work was partially supported by the European Com-
munity’s Framework Programme 7 (FP7) under contract No. 248976, 257906
and 287804, and UK EPSRC. The authors are grateful to the members of the
REFLECT project for their support.
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Abstract. ERA (Embedded Reconfigurable Architectures) is a 3-year
project funded by the EU under the FP7 framework programme (starting
January 2010)1. The ERA project addresses issues rising from a scenario
in which the complexity and diversity of embedded systems is rising and
causing extra pressure in the demand for performance at the lowest pos-
sible power budget and in which designers face the challenges brought by
the power and memory walls in the production of embedded platforms.
The focus of the ERA project is to investigate and propose new method-
ologies in both tools and hardware design to break through these walls
and help design the next-generation embedded systems platforms. The
proposed strategy is to utilize adaptive hardware to provide the highest
possible performance with limited power budgets. The envisioned adap-
tive platform employs a structured design approach that allows integra-
tion of varying computing elements, networking elements, and memory
elements. More precisely, we focused on the dynamic adaptation of our
platform (of the computing, networking and memory elements) to the
software requirements and the operating environment targeting perfor-
mance, power/energy, and resource availability.

1 The Technical Approach

In detail, the ERA project focuses on three hardware components (processor
core, memory hierarchy, and network-on-chip) in the design of an em-
bedded system platform without losing sight of the requirements posed by the
(embedded) applications. The adaptability of the envisioned platform opens
up new compilation strategies and scheduling techniques (either in hard-
ware or by an operating system) to deal with this increased freedom. In the
following, we summarize the major results within the ERA project:

– the development of a new dynamically reconfigurable parameterized proces-
sor core that can adapt itself to the application needs or the power budget
at hand through parameters such as issue width, register file size, type and

1 The partners are: (1) Delft Univ. of Technology (NL) - coord., (2) Industrial Systems
Institute (GR), (3) Universita’ degli Studi di Siena (IT), (4) Chalmers Univ. (SE),
(5) Univ. of Edinburgh (UK), (6) Evidence (IT), (7) ST Micro (IT), (8) IBM (IL),
(9) Universidade do Rio Grande do Sul (BR), and (10) Uppsala University (SE).

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 229–230, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.era-project.eu/


230 S. Wong

number of functional units, and memory bandwidth. For example, when an
application (thread) exhibits a high level of parallelism, more issue slots,
a larger register file, and more functional units are instantiated to better
execute the application (thread).

– the definition of a dynamically adjustable memory hierarchy that can be
tailored to the application behavior in order to improve the utilization of
the available memory bandwidth and perform these adjustments through
smooth transitions. Example parameters include: cache size, cache line size,
and set associativity.

– the development of a dynamically reconfigurable network-on-chip (NoC) that
can adjust itself to the traffic that is flowing through its nodes. In more
detail, the NoC allocates more resources to the nodes when it determines
that certain paths in the network are more frequently taken.

– the characterization of embedded applications (working on top of an OS) and
mapping of these characteristics to the parameters of the hardware compo-
nents. This work is performed by identifying phases within applications that
will benefit from different hardware configurations and therefore, require the
need for dynamic reconfiguration. In this characterization, we used addi-
tional tools such as COTSon, McPAT, Paraver, and QEMU.

– the development of new compilation techniques to deal with the dynamic
behavior of the hardware components in order to better utilize the available
resources without losing generality in generating application software.

– the development of an OS environment to work in conjunction with a hard-
ware scheduler to manage the hardware resources and schedule a given set
of applications that need to be executed.

2 Results and Conclusions

These results have been integrated into two fully functional toolchains (for
the computing elements) and three independent hardware platforms. The first
toolchain is based on the VEX compiler from HP - as the ρ-VEX follows the VEX
ISA - that contains both a compiler (based on Multiflow) and a simulator. We
developed an assembler and linker that can convert the output of this compiler
to actual binaries to be used by the actual softcore or by the xSTsim simulator
(developed within the ERA project). The second toolchain is based on GCC and
using the same assembler and linker we can generate executables. Moreover, the
xSTsim simulator also simulates the memories and network-on-chip employing
the new algorithms we developed within ERA. The first platform comprises a
ρ-VEX processor with its own memory hierarchy. The second platform comprises
several ρ-VEX processors connected together using an NoC. The third platform
comprises a MicroBlaze running a Linux distribution controlling several ρ-VEX
processors acting as accelerators.We have demonstrated in our ERA project that
with with new techniques in dynamic adaptation, a more refined and gradual
trade-off can be achieved between performance, power, and resource utilization.
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Abstract. Power efficiency is a critical constraint for embedded sys-
tems. To address this many technological innovations are being proposed
by the community. However, leveraging such advances also requires algo-
rithmic solutions to handle the potential for run-time errors due to near
threshold computing. In this work we plan to develop algorithmic inno-
vations and optimizations for power efficiency in the emerging landscape
of embedding computing platforms. We also plan to develop resilient
run-time systems and incorporate resiliency in algorithmic solutions. In
this paper we briefly describe our design methodology employed in the
TAPAS (Tunable Algorithms for PERFECT Architectures) project. The
TAPAS project is funded under the DARPA PERFECT (Power Effi-
ciency Revolution for Embedded Computing Technologies) program.

1 Introduction

Many technological advances are being proposed by the community, which must
be effectively exploited at the software and application layers to achieve and sus-
tain the power envelope of a given application. Optimization at the algorithmic
level has a much higher impact on total energy dissipation than microarchitec-
ture or circuit level. Some recent studies have shown that the impact ratio is
20:2.5:1 for algorithmic, register, and circuit level energy optimizations. In this
work we plan to develop algorithmic innovations and optimizations for power ef-
ficiency in the emerging landscape of embedding computing platforms. We plan
to achieve the following objectives :

– Develop algorithmic optimizations for latency, throughput and energy per-
formance,

– Identify opportunities (“knobs”) to integrate these into the compilation ca-
pability and also enable overall application composition, and

– Demonstrate improved energy and resilience performance for signal process-
ing kernels on next generation embedded computing platforms.

� This work has been funded by DARPA under grant number HR0011-12-2-0023.

P. Brisk, J.G. de Figueiredo Coutinho, P.C. Diniz (Eds.): ARC 2013, LNCS 7806, pp. 231–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



232 K.K. Matam and V.K. Prasanna

2 Technical Approach

We plan to develop model-based algorithmic techniques [1] in which the de-
sign space can be explored for a given target embedded platform by considering
various novel design time optimizations, coarse performance modeling and hier-
archical design space exploration.

– Tunability: Our parallel algorithms for kernels will be specified using a
small number of parameters including latency, energy, resiliency, input (prob-
lem) size, and number of processors. The methodology will permit the al-
gorithm space to be explored by the designer by varying the parameters.
Thus, we obtain tunable performance by varying these parameters and the
algorithm execution specifies a surface in the three dimensional space of
execution latency, energy consumed and achieved resiliency.

– High level coarse performance modeling: The space of embedded plat-
forms is rather large. We do not expect one model to capture the key fea-
tures of all target platforms or the features of a specific target platform to
sufficient accuracy to explore the performance tradeoffs when mapping to
that platform. Rather, we define a high level performance model called In-
tegrated Computational Model (ICOM) which will be customized for each
architecture-algorithm pair and a target platform. The model is static in the
sense that the parameters are known and are estimated at design time. Also,
it is a high level (coarse grained) model, by which we mean few parameters
are used to get a coarse estimate of performance.

– Exploring algorithm design space: For a given kernel, many parallel
techniques can be explored. Several parallel implementations for Discrete
Fourier Transform (DFT) such as radix-2, radix-4, decimation in time or
frequency can be specified as an architecture-algorithm pair. In our design
methodology, each pair is explored for possible mappings onto the target
platform by using ICOM. Thus, given a problem size and target platform
resources, we explore the design space and generate a set of design choices for
each value of latency, energy and resiliency. Detailed implementation or sim-
ulation is performed for these designs to choose an energy optimal one. We
generate a surface of feasible solutions by varying performance parameters:
latency, energy and resiliency.

– Exploring various target architectures: Our methodology is intended to
model various target architecture features and explore them at the software
layer. The features to be modeled can also depend on the characteristics of
the architecture-algorithm pair. Thus, we will not develop a single model
to capture all target embedded platforms or space of parallelizations, but
rather use a customized model specific to a target embedded platform with
parameters identified for that platform and the architecture-algorithm pair.
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Abstract. Utilization of emerging WSN technologies in the field of de-
manding medical applications comprise one of the most critical and chal-
lenging objectives of the ARMOR project. However, contemporary WSN
node implementations are notorious for the resource limitations e.g. in
terms of processing and memory capabilities. Therefore, significant ef-
fort is devoted in hardware based implementations of critical compo-
nents with respect to the project objectives that can alleviate respective
re-source limitations drawback.

1 Introduction

WSN communication paradigm offers high value features making respective plat-
forms very appealing for a wide range of applications. Additionally, over the last
few years platforms and technologies have emerged offering enhanced perfor-
mance making them adequate candidates for demanding applications [1]. In the
ARMOR project such an application is the primary focus in terms of both com-
munication requirements as well as security [2]. The main goal of the ARMOR
project is to enable accurate, reliable and non-intrusive monitoring and analy-
sis of epilepsy-relevant multi-parametric data including EEG and ECG signals.
Consequently on one hand aiming to study epilepsy requires a high number of
sensors being able to acquire and transfer very high amount of data (especially
concerning EEG measurements) and one the other hand, it is of paramount
importance to offer high security services. The latter aspect requires the effi-
cient execution of state of the art cipher algorithms. Considering the resource
limitation exhibited by today’s prominent platforms effort has been devoted in
designing and implementing an ultra-low power AES hardware based cipher im-
plementation in order to enhance the functionality of existing WSN platforms
while not compromising required performance. Furthermore, in the context of
the ARMOR project all aspects of an end-to-end EHR system (as depicted in
Fig. 1) will be addressed including real time analysis at local site as well as
off-line analysis through an EHR system offering advanced services.
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Fig. 1. ARMOR Toolset Overview

2 Proposed Hardware Encryption Module

The hardware encryption module IP Core implements the 128-bit block size
NIST FIPS-197 Advanced Encryption Standard (AES) algorithm [3]. High con-
figurability is exhibited enabling the use of a 128/192/256 bit key, various oper-
ational modes (ECB, CBC, CFB, OFB and CTR) and optional key expansion.
Effort has been devoted in minimum logic resources requirements rendering it
as adequate solution for low power applications. It offers AES IP core solution
exhibiting enhanced performance-silicon area ratio compared to relative to avail-
able industry implementation as well as efficient algorithm mapping techniques.

3 On-going and Future Hardware Based Implementations

Focusing on hardware based advancements on-going efforts are devoted to secu-
rity aspects (i.e. decryption module) as well as the performance domain through
compression algorithm design and implementation.

Acknowledgements. This study is partially funded by the European Com-
mission under the Seventh Framework Programme (FP7/2007-2013) with grant
ARMOR, Agreement Number 287720.
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Abstract. In this paper, the coarse grained parallelism optimization
step of the ALMA EU FP7 project is discussed. The current results look
promising, as the possibility to use Integer Programming and provide
optimal results to the problem model seems feasible and efficient.

Keywords: Coarse grain parallelization, Scliab, Integer Programming.

1 The ALMA Toolset

The ALMA toolset, major product of the ALMA EU FP7 project [1], as pre-
sented in Figure 1, provides an end-to-end solution from Scilab to embedded
Multi Processor System-on-Chip (MPSoC) code. The ALMA Architecture De-
scription Language (ADL) provides tools and description for the MPSoC plat-
form and allows the toolset to be agnostic of specific platforms. The ALMA
project driver platforms are based on Recore’s reconfigurable DSP cores or KIT’s
Kahrisma cores. The ALMA-specific Scilab dialect source code is converted to
C and then is loaded into the GeCoS open source compiler framework. The fine-
grain parallelism extraction step targets the exploitation of the Single Instruc-
tion, Multiple Data (SIMD) instruction set of the underlying MPSoC architec-
tures, addressing the data type selection and memory access aware vectorization
problems. The coarse-grain parallelism optimization step analyzes and modifies
the Control and Data Flow Graph (CDFG) in order to expose task level paral-
lelism using the platform ADL description as well as feedback from the ALMA
Multi-Core Simulator interface.

2 Coarse Grain Parallelism Optimization

The coarse-grain parallelism optimization step attempts to expose task level par-
allelism with respect to a global view of the program. A combination of loop fu-
sion and tiling are employed to expose available tasks. The process that follows is
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iterative and uses feedback from the platform simulator. Clustering combines ba-
sic blocks into composite structures, named hyperblocks, in order to control search
space size. These hyperblocks are further combined to produce tasks, with vir-
tual input and output blocks that aggregate data and control dependences of the
internal blocks. The tasks are then mapped and scheduled to processing cores.

Fig. 1. ALMA Toolset Overview

The CDFG is transformed to a Hierarchical
Task Graph (HTG) Intermediate Representa-
tion (IR). Each layer of this graph is a set of
Directed Acyclic Graphs (DAGs). Each DAG
is modeled as an Integer Programming (IP)
problem, optimizing the critical path execu-
tion time. The IP model inputs are the set
of processors, the set of tasks, the estimated
running times for each task on each processor
and the communication costs between every
pair of dependent tasks. The IP model has
been used to find optimal solutions for small
problems available in the relevant literature.
It should be mentioned that optimal solution
to the HTG does not necessarily imply opti-
mal solution of the original program.

The planned approach is to produce a se-
quence of IP problem solutions for each level
of the HTG for all cardinalities of available
processors. Lower-level solutions are used as
alternative options for the higher-level HTG
IP models. As we move higher in the HTG hi-
erarchy, the problems grow bigger, so in order
to control solution time and complexity, for

bigger programs, lower levels of the solution may use heuristic algorithms.

3 Conclusions

In this paper, the coarse grained parallelism optimization step of the ALMA EU
FP7 project is discussed. The current results look promising, as the possibility
to use Integer Programming and provide optimal results to the problem model
seems feasible and efficient.

Acknowledgements. This work is co-funded by the European Union under
the 7th Framework Programme under grant agreement ICT-287733.
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