
Chapter 9
Audio Enhancement and Robustness

Our view (. . . ) is that it is an essential characteristic of
experimentation that it is carried out with limited resources, and
an essential part of the subject of experimental design to
ascertain how these should be best applied; or, in particular, to
which causes of disturbance care should be given, and which
ought to be deliberately ignored.

—Sir Ronald A. Fisher

Once an audio recognition system that functions under idealistic conditions is
established, the primary concern shifts towards making it robust in a real-world.
The previous chapter touched this issue by illustrating how audio source separation
can be exploited to recover a clean speech signal from a mixture. Extraction of the
desired signal, however, is not a necessary pre-condition for robust audio recognition.
Rather, several options exist for system improvement along the chain of processing,
and have proved to be promising especially in the monaural case. Thus, we will next
have a look at this issue following the overview given in [1].

First, filtering or spectral subtraction of the signal before can be applied directly
after the audio capture. This is realised, for example, in the advanced front-end
feature extraction (AFE) or Unsupervised Spectral Subtraction (USS). Then, auditory
modelling can be introduced in the feature extraction process. The main influence
of noise on audio is irreversible loss of information caused by its random behaviour
and a distortion in the feature space that can be compensated by a suited audio
representation in the noise condition [2, 3]. Examples of features in this direction
include the MFCCs, PLP coefficients [4, 5] or RASTA-PLP features [6, 7] (cf.
Sect. 6.2.1). Next along the chain of processing is the option to enhance the extracted
features aiming at removal of effects as introduced by noise [8–10]. Exemplary
techniques are normalisation methods such as (Cepstral) Mean Subtraction (CMS)
[11], MVN [12], or HEQ [9]. Such feature enhancement can also be realised in
a model based way, such as by jointly using a Switching Linear Dynamic Model
(SLDM) for the dynamic behaviour of audio plus a Linear Dynamic Model (LDM)
for additive noise [13]. Later in the chain, one could tailor the learning algorithm to
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be able to cope with noisy signal input. Alternatives besides HMMs [14], such as
Hidden Conditional Random Fields (HCRF) [15], Switching Autoregressive Hidden
Markov Models (SAR-HMMs) [16], or other more general DBN structures provide
higher flexibility in modelling. For example, the extension of an SAR-HMM to an
Autoregressive Switching Linear Dynamical System (AR-SLDS) [17] allows for
an explicit noise model leading to higher noise robustness. Another solution is to
match the AM (or even LM) or feature space to noisy conditions. This requires a
recogniser trained on noisy audio [18]. However, the performance highly dependends
on how similar the noise conditions for training and testing are [19]. One can thus
distinguish between low to highly matched conditions training. Further, it can be
difficult to provide knowledge on the type of noisy condition. This can be eased
by so-called multi-condition training, where clean and noisy material with different
types of noise is mixed. This is usually not as good as perfectly matched condition
between the current test setting and the one learnt previously. However, it provides a
good compromise by improving on average over different noise conditions. Besides
using noisy material for training, model adaptation can be used to quickly adapt
the recogniser to a specific noise condition encountered in the test scenario. This
covers widely used techniques such as maximum a posteriori (MAP) estimation [20],
maximum likelihood linear regression (MLLR) [21], and minimum classification
error linear regression (MCELR) [22].

Given the multiplicity of developed techniques for noise robustness in Intelli-
gent Audio Analysis, a selection of relevant techniques and a good coverage of the
different stages along the chain of processing is aimed at in this section. As these
techniques are often also tailored to the specific type of noise at hand, relevant special
cases such as white noise or babble noise are covered, which are very challenging
for speech processing. In the ongoing, let us take a detailed look at the above men-
tioned options in particular for audio signal preprocessing, feature enhancement, and
audio modelling. For the sake of better readability, ‘audio of interest’ such as speech,
music, or specific sounds of interest as opposed to noise will partly simply be written
as ‘audio’ in this chapter.

9.1 Audio Signal Preprocessing

The preprocessing of the audio signal for its enhancement shall compensate noise
influence prior to the feature extraction [23–25]. Apart from explicit BASS as was
shown in the last chapter, one of the frequently used audio and particular speech signal
preprocessing [26] standards is the advanced front-end feature extraction introduced
in [27] based on two-step Wiener filtering in the time domain. Spectral subtraction
such as USS [10] can lead to similar effects at lower computational requirements
in comparison to Wiener filtering [28, 29]. These techniques can also be subsumed
under broader audio signal preprocessing despite being carried out in the (magnitude)
spectogram domain. These two techniques will now be introduced in more detail.
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9.1.1 Advanced Front-End Feature Extraction

The processing in the AFE [27] is shown in Fig. 9.1: Subsequent to noise reduction
the denoised waveforms are processed and cepstral features are computed and blindly
equalised.

Preprocessing in the AFE is based on two-stage Wiener filtering. After denoising
in the first stage, a second one carries out additional dynamic noise reduction. In this
second stage a gain factorisation unit controls the intensity of filtering dependent on
the SNR. Figure 9.2 depicts the components of the two noise reduction cycles: First, a
framing takes place. Then, the linear spectrum is estimated per frame, and the power
spectral density (PSD) is smoothed along the time axis in the PSD Mean block. An
audio activity detection (or VAD in the special case of speech) discriminates between
audio and noise, and thus the estimated spectrum of the audio frames and noise are
used in the computation of the frequency domain Wiener filter coefficients. To obtain
a Mel-warped frequency domain Wiener filter, the linear Wiener filter coefficients
are smoothed along the frequency axis using a Mel-filterbank [1]. The Mel-warped
Inverse DCT unit (Mel IDCT) determines the impulse response of the Wiener filter
prior to the input signal’s filtering. The signal then passes through a second noise
reduction cycle using this impulse response. Finally, the DC offset removal block
eliminates the constant component of the filtered signal.

The Wiener filter approach in the AFE algorithm has the advantage that noise
reduction is carried out on the frame-level. Further, the Wiener filter parameters are
adapted to the current SNR. This allows to handle non-stationary noise. Important
is, however, an exact audio activity detection (or VAD). This can be particularly
demanding in the case of negative SNR levels (cf. e.g., Sect. 10.1.2). Overall, the
AFE is a rather complex approach sensible to errors and inaccuracies within the
individual estimation and transformation steps [1].

9.1.2 Unsupervised Spectral Subtraction

USS’s [10] spectral subtraction scheme bases on a two-mixture model approach of
noisy audio. It aims to distinguish audio and background noise at the magnitude
spectogram level. A probability distribution is used to model audio and noise. For
the modelling of background noise on silent parts of the time-frequency plane, one
usually assumes white Gaussian behaviour for the real and imaginary parts [30, 31].
This corresponds to a Rayleigh probability density function fN (m) for noise in the
magnitude domain:

Noise Reduction Waveform Processing Cepstrum Calculation Blind Equalisation

s(k) s'(k) x' x

Fig. 9.1 Feature extraction in the AFE according to ETSI ES 202 050 V1.1.5
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Fig. 9.2 Two-stage Wiener filtering for noise reduction in the AFE according to ETSI ES 202 050
V1.1.5

fN (m) = m

σ 2
N

e
− m2

2σ2
N (9.1)

For the two-mixture model, only an audio ‘activity’ model modelling large mag-
nitudes is needed besides the Rayleigh silence model. For the audio PDF fS(m) a
threshold δS is defined with respect to the noise distribution fN (m) such that only
magnitudes m > δS are modelled. In [10], a threshold δS = σN is used where σN is
the mode of the Rayleigh PDF. Consequently, magnitudes below σN are assumed as
background noise. Two additional constraints are needed for fS(m):

• The derivative f ′
S(m) of the ‘activity’ PDF may not be zero if m is just above δS ;

otherwise the threshold δS is meaningless as it could be set to an arbitrarily low
value.

• With m towards infinity the decay of fS(m) should be lower than the decay of the
Rayleigh PDF to guarantee fS(m) modelling large amplitudes.

The ‘shifted Erlang’ PDF with h = 2 [32] fulfils these two criteria. It can thus be
used to model large amplitudes assumed to be audio of interest:

fS(m) = 1m>σN · λ2
S · (m − σN ) · e−λS(m−σN ) (9.2)

with 1m>σN = 1 if m > σN and 1m>σN = 0 otherwise.
The overall PDF for the spectral magnitudes of the noisy audio signal is

f (m) = PN · fN (m) + PS · fS(m), (9.3)

where PN is the prior for ‘silence’ and background noise, and PS is the prior for
‘activity’ and audio of interest. The parameters of the derived PDF f (m) summarised
in the set
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Λ = {PN , σN , PS, λS} (9.4)

are independent of time and frequency, and can be trained by the EM algorithm (cf.
Sect. 7.3.1) [33]. In the expectation step, posteriors are estimated as

p(sil|m f,t ,Λ) = PN · fN (m f,t )

PN · fN (m f,t ) + PS · fS(m f,t )
(9.5)

p(act|m f,t ,Λ) = 1 − p(sil|m f,t ,Λ). (9.6)

For the Maximisation step, the moment method is used: An update σN employing
all data takes place before all data with values above the new σN help to update λS .
Two update equations describe the method as follows:

σ̂N =
[ ∑

f,t m2
f,t · p(sil|m f,t ,Λ)

] 1
2

[
2

∑
f,t p(sil|m f,t ,Λ)

] 1
2

(9.7)

λ̂S =
∑

m f,t >σ̂N
(m f,t − σ̂N )−1 · p(act|m f,t ,Λ)

∑
m f,t >σ̂N

p(act|m f,t ,Λ)
. (9.8)

Subsequent to the training of all mixture parameters Λ = {PN , σN , PS, λS} USS
with the parameter σN as floor value is applied:

mUSS
f,t = max

(
1,

m f,t

σN

)
(9.9)

Flooring to a non-zero value is required for MFCC or similar features, as zero
magnitude values after spectral subtraction can result in unfavourable dynamics.
Overall, USS is a simple and efficient preprocessing method that allows for unsuper-
vised EM fitting on observed data. As a downside, it requires reliable estimation of
an audio magnitude PDF which is rather challenging. With the PDFs not depending
on frequency and time, USS only handles stationary noises. Further, it only mod-
els large magnitudes of the audio of interest. Low audio magnitudes thus cannot be
distinguished from background noise.

9.2 Feature Enhancement

In feature enhancement, enhancement takes place after the extraction of features to
reduce a potential mismatch between test and training conditions. Popular methods
include CMS [11], MVN [12], HEQ [9], and the Taylor Series approach [34] able
to cope with the non-linear effects of noise. There are some further methods tai-
lored to specific types of features, such as in the cepstrum-domain, where a feature

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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compensation algorithm to decompose audio of interest and noise is introduced in
[35]. To enhance noisy MFCCs, a SLDM can also be used to model the dynamics of
audio of interest and those of additive noise by a LDM [13]. An observation model
then describes how audio and noise produce the noisy observations to reconstruct
the features of clean audio. An extension [36] includes time-dependencies among
the discrete state variables of the SLDM. Further, a state model for the dynamics
of noise can help to model non-stationary noise sources [37]. Finally, incremental
on-line adaptation of the feature space is possible as by feature space maximum
likelihood linear regression (FMLLR) [38]. Again, we will now take a detailed look
at selected popular approaches.

9.2.1 Feature Normalisation

9.2.1.1 Cepstral Mean Subtraction

To ease the influence of noise and transmission channel transfer functions in cepstral
features, CMS [11, 39] provides a simple approach. Its basic principle of mean
subtraction can also be applied to practically any other audio LLD. Often, the noise
can be considered as comparably stationary when opposed to the rapidly changing
characteristics of the audio signal of interest. Thus, a subtraction is carried out of the
long-term average cepstral or other feature vector

μ = 1

T

T∑
t=1

xt (9.10)

from the observed noise corrupted feature vector sequence of length T :

X = {x1, x2, . . . , xt , . . . , xT } (9.11)

By that, a new estimate x̃t of the signal in the feature domain results:

x̃ t = xt − μ, 1 ≤ t ≤ T (9.12)

The subtraction of the long-term average is particularly interesting in the cepstral
domain. Since the audio spectrum is multiplied by the channel transfer function (cf.
Sect. 6.2.1.4), by the logarithm application in the MFCC calculation, this multipli-
cation turns into an addition, and this part can be eliminated by subtraction of the
cepstral mean from all input vectors. A disadvantage of CMS, as opposed to HEQ,
is the disability to treat non-linear noise effects.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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9.2.1.2 Mean and Variance Normalisation

The subtraction of the mean per feature vector component corresponds to an equali-
sation of the first moment of the vector sequence probability distribution. If noise has
also an influence on the variance of the features, according variance normalisation
of the vector sequence can be applied and by that an equalisation of the first two
moments. This is known as MVN. The processed feature vector is obtained by

x̃ t = xt − μ

σ
. (9.13)

The division by the vector σ of the standard deviations per feature vector com-
ponents is computed out element-by-element. The new feature vector’s components
have zero mean and unity variance.

9.2.1.3 Histogram Equalisation

HEQ is a popular technique in digital image processing [40] where it helps raise
the contrast of images and alleviates the influence of the lighting conditions. In
audio processing, HEQ can improve the temporal dynamics of noise-affected feature
vector components. HEQ extends the principle of CMS and MVN to all moments
of the probability distribution of the feature vector components [9, 41], and by that
compensates non-linear distortions caused by noise.

In HEQ, the histogram of each feature vector component is mapped onto a refer-
ence histogram. The underlying assumption is that noise influence can be described
as a monotonic partly reversible feature transformation. With success depending
on meaningful histograms, HEQ requires several frames for their reliable estima-
tion. A key advantage lending to HEQ’s independence of the noise characteristics
is that no assumptions are made on the statistical properties (e.g., normality) of the
noise process.

For HEQ, a transformation
x̃ = F(x) (9.14)

needs to be found for the conversion of the PDF p(x) of an audio feature into a
reference PDF p̃(x̃) = pref (x̃). If x is a unidimensional variable with PDF p(x),
a transformation x̃ = F(x) modifies the probability distribution, such that the new
distribution of the obtained variable x̃ can be expressed as

p̃(x̃) = p(G(x̃))
∂G(x̃)

∂ x̃
(9.15)

with G(x̃) as the inverse transformation corresponding to F(x). For the cumulative
probabilities based on the PDFs, let us consider:
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C(x) =
∫ x

−∞
p(x ′)dx ′

=
∫ F(x)

−∞
p(G(x̃ ′))∂G(x̃)

∂ x̃ ′ dx̃ ′ (9.16)

=
∫ F(x)

−∞
p̃(x̃ ′)dx̃ ′

= C̃(F(x))

By that, the transformation converting the distribution p(x) into the ‘target’ dis-
tribution p̃(x̃) = pref (x̃) can be expressed as

x̃ = F(x) = C̃−1[C(x)] = C−1
ref [C(x)], (9.17)

where C−1
ref (. . . ) is the inverse cumulative probability function of the reference distri-

bution [1]. Further, C(. . . ) is the feature’s cumulative probability function. To obtain
the transformation per feature vector component, a ‘rule of thumb’ is to use 500 uni-
form intervals between μi − 4σi and μi + 4σi for the derivation of the histograms.
μi and σi are the mean and standard deviation of the i th feature vector element.
A Gaussian probability distribution with zero mean and unity variance can be used
per element as a reference probability distribution, then, however, ignoring higher
moments.

From the feature normalisation strategies discussed above, CMS is the simplest.
Together with MVN, it is used most frequently. MVN usually leads to better results at
slightly increased computational effort. However, these two techniques both provide
a linear transformation. This is different for HEQ, which is able to compensate non-
linear effects, but requires sufficient audio frames for good results. HEQ further
corrects only monotonic transformations. This can cause an information loss, given
that random noise behaviour renders the needed transformation non-monotonic.

9.2.2 Model Based Feature Enhancement

In model based audio enhancement one usually models audio and noise individually
plus how these two produce the observation. Then, the features are enhanced to
benefit the audio of interest by use of these models. An example is a SLDM to
model the dynamics of clean audio of interest [13] that will next be introduced by
the mentioned three models for noise, audio, and the combination.
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Fig. 9.3 LDM for the mod-
elling of noise

xt-3 xt-2 xt-1 xt

9.2.2.1 Modelling of Noise

Noise is modelled by a simple LDM with the system equation

xt = A xt−1 + b + g
t ′, (9.18)

where the matrix A and the vector b simulate the noise process’s evolution over
time. Further, g

t
is a Gaussian noise source that drives the system. A graphical

model representation of this LDM is given in Fig. 9.3. In this and the following
visualisations in this section, squares again indicate observations. With LDMs being
time-invariant, they can model signals such as coloured stationary Gaussian noises.
The LDM is expressed by

p( xt |xt−1) = N ( xt ; A xt−1 + b, C ) (9.19)

p( x1:T ) = p( x1)

T∏
t=2

p( xt |xt−1), (9.20)

where N ( xt ; Axt−1 + b, C) is a multivariate Gaussian with the mean vector
Axt−1 + b and the covariance matrix C , and T is the input sequence’s length.

9.2.2.2 Modelling of Audio of Interest

The SLDM models the audio signal of interest passing through states as in a HMM.
It further enforces a continuous state transition in the feature space conditioned on
the state sequence. This more complex dynamic model has a hidden state variable st

at each time t . Like this, A and b depend on the state variable st :

xt = A(st )xt−1 + b(st ) + g
t
. (9.21)

Likewise, the possible state sequences s1:T describe a non-stationary LDM, as A
and b change with time as do the audio features. In Fig. 9.4 the SLDM is shown as
graphical model. As one sees, time dependencies are assumed between the continuous

Fig. 9.4 SLDM for the mod-
elling of audio of interest

xt-2 xt-1 xtxt-3

st-2 st-1 stst-3
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Fig. 9.5 Observation model
for noisy audio

xt ntyt

variables xt , but not between the discrete state variables st [13]. An extension in
[36] includes time dependencies between the hidden state variables, similar as in
enhancing a GMM to a HMM. A SLDM as in Fig. 9.4 is described by

p( xt , st |xt−1) = N ( xt ; A(st )xt−1 + b(st ), C(st )) · p(st ) (9.22)

p( x1:T , s1:T ) = p( x1, s1)

T∏
t=2

p( xt , st |xt−1). (9.23)

The EM algorithm can be used for the learning of the parameters of the SLDM,
namely A(s), b(s), and C(s). If one sets the number of states to one the SLDM
turns into a LDM to compute the parameters A, b, and C required for the noise
modelling LDM.

9.2.2.3 Observation Model

The observation model describes the relationship of the noisy observation y
t

and the
hidden audio and noise features. In Fig. 9.5, the graphical model representation of
such a model is given by the zero variance observation model with SNR inference as
in [42]. It is assumed that audio of interest xt and noise nt mix linearly in the time
domain. In the cepstral domain, for example, this corresponds to a non-linear mixing.

9.2.2.4 Posterior Estimation and Enhancement

To reduce the computational complexity of the posterior estimation, an approxima-
tion is given by the restriction of the search space size by the generalised pseudo-
Bayesian (GPB) algorithm [43]. It neglects distinct state histories with differences
more than r frames in the past. Thus, with T as the sequence length, the infer-
ence complexity reduces from ST to Sr where r � T . In the GPB algorithm, one
‘collapses’, ‘predicts’, and ‘observes’ for each of the audio frames. Estimates of the
moments of xt representing the de-noised audio features are computed based on
the Gaussian posterior as calculated during the ‘observation’ in the GPB algorithm.
In this process, clean features are assumed to be the Minimum Mean Square Error
(MMSE) estimate E[xt |y1:t ]. SLDM feature enhancement can lead to outstanding
results including the case of coloured Gaussian noise and negative SNR. This comes
by the effort of modelling noise. The audio model’s linear dynamics model the the
smooth time evolution of typical audio of interest such as speech, music, or cer-
tain sound types. The switching states express the piecewise stationarity typical in
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such audio. However, noise frames are assumed to be independent over time. As
a consequence, non-stationary noises are not modelled adequately. Even with the
restrictions made in the GPB algorithm, feature enhancement by SLDM is compu-
tationally more demanding than the techniques discussed above. Further, as in the
AFE (cf. Sect. 9.1), accurate audio activity detection is required to provide correct
estimation of the noise LDM.

9.3 Model Architectures

The most frequently used data-driven model representation of audio are HMMs
[14]. Beyond the so far described optimisation options along the chain of Intelligent
Audio Analysis, extending HMM topologies to more general DBN layouts can also
help to increase noise robustness [15, 17, 44]. Generative models such as HMMs
assume conditional independence of the audio feature observations, thus ignoring
long-range dependencies as given in most audio of interest [45]. To overcome this,
Conditional Random Fields (CRF) [46–48] model a sequence by an exponential
distribution given the observation sequence. The HCRF [15, 49] further includes
hidden state sequences for the estimation of the conditional probability of a class
over an entire sequence. Another interesting option is to model the raw audio signal
in the time domain [16]. For example, SAR-HMM [16] provide good results in clean
audio conditions. To cope with noise, these can be extended to a Switching Linear
Dynamical System (SLDS) [17] to model the dynamics of the raw audio signal and
the noise. These alternatives will now be shortly presented.

9.3.1 Conditional Random Fields

As mentioned above, CRF [46] use an exponential distribution to model a sequence
given its observation and by that also non-local dependencies among states and
observations. Further, unnormalised transition probabilities are possible. Owing to
the ability to enforce a Markov assumption as in HMMs, dynamic programming is
applicable for inference. CRFs were also shown beneficial as LM [50].

9.3.2 Hidden Conditional Random Fields

An extension to HCRF is needed to make the CRF paradigm suited for general audio
recognition tasks. This comes, as CRF provide a class prediction per observation
and frame of a time sequence rather than for an entire sequence. HCRF overcome
this by adding hidden state sequences [49]. Reports of superiority over HMM in
the Intelligent Audio Analysis domain include the recognition of phones [15] and
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non-linguistic vocalisations [51] or the segmentation of meeting speech [52]. A par-
ticular strength is the possibility to use arbitrary functions for the observations without
complication of the parameter learning.

The HCRF models the conditional probability of a class c, given the sequence of
observations X = x1, x2, . . . , xT :

p(c|X , λ) = 1

z( X , λ)

∑
Seq∈c

eλ f (c,Seq,X), (9.24)

where λ is the parameter vector and f the ‘vector of sufficient statistics’, and Seq =
s1, s2, . . . , sT is the hidden state sequence run through during the computation of
this conditional probability. The probability is normalised by the ‘partition function’
z( X , λ) to ensure a properly normalised probability [15]:

z( X , λ) =
∑

c

∑
Seq∈c

eλ f (c,Seq,X). (9.25)

The vector f determines the probability to model. With a suited f a left-right
HMM can be imitated [15]. Let us now now restrict the HCRF to a Markov chain,
but without the requirements of the transition probabilities to sum to one and real
probability densities for the observations. In analogy to a HMM a parametrisation
by transition scores ai, j and observation scores b j ( xt ) can then be reached with the
parameters λ, where and i and j are states of the model (cf. Sect. 7.3.2). Forward
and backward recursions (cf. Sect. 7.3.1) as for a HMM can then further be used.

9.3.3 Audio Modelling in the Time Domain

Modelling of the raw signal in the time domain is a sparsely pursued option, but can
offer easy explicit noise modelling [16]. We will look at SAR-HMMs to this end
first, and then at the extension to SLDS.

9.3.3.1 Switching Autoregressive Hidden Markov Models

The SAR-HMM models the audio signal of interest as an autoregressive (AR)
process. The non-stationarity is realised by switching between different AR parame-
ter sets [17] by a discrete switch variable st similar to the HMM states. At a time
step t—referring to the sample-level in this case—, exactly one out of S states is
occupied. The state at time step t depends exclusively on its predecessor with the
transition probability p(st |st−1). The sample vt at this time step is assumed as a
linear combination of its R preceding samples superposed by a Gaussian distributed
‘innovation’ η(st ). η(st ) and the AR weights cr (st ) are the parameter set given by
the state st :

http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Fig. 9.6 SAR-HMM as DBN
structure st-2 st-1 stst-3

vt-3 vt-2 vt-1 vt

vt = −
R∑

r=1

cr (st )vt−r + η(st ) with η ∼ N (η; 0, σ 2(st )). (9.26)

There, η(st ) models variations from pure autoregression rather than an indepen-
dent additive noise process. The joint probability of a sequence of length T is

p(s1:T , v1:T ) = p(v1|s1)p(s1)

T∏
t=2

p(vt |vt−R:t−1, st )p(st |st−1). (9.27)

Figure 9.6 visualises the SAR-HMM as DBN structure. Switching of the different
AR models is forcedly ‘slowed down’ by introducing an constant K . The model then
needs to remain in a state for an integer multiple of time steps. This is needed, as
considerably more sample values usually exist than features on the frame level.

The EM algorithm can be used for learning of the AR parameters. Based on the
forward-backward algorithm (cf. Sect. 7.3.1) the distributions p(st |v1:T ) are learnt.
The fact that an observation vt depends on R predecessors makes the backward pass
more complicated than in the case of an HMM. A ‘correction smoother’ [53] can
thus be applied such that the backward pass calculates the posterior p(st |v1:T ) by
‘correcting’ the forward pass’s output.

9.3.3.2 Autoregressive Switching Linear Dynamical Systems

With the extension of the SAR-HMM to an AR-SLDS, a noise process can explicitly
be modelled [17]. The observed audio sample vt of interest is then modelled as a
noisy version of a hidden clean sample that is obtained from the projection of a
hidden vector ht with the dynamic properties of a LDS:

ht = A(st )ht−1 + ηH
t

, with ηH
t

∼ N (
ηH

t
; 0,ΣH(st )

)
. (9.28)

The transition matrix A(st ) describes the dynamics of the hidden variable that
depends on the state st at time step t . A Gaussian distributed hidden ‘innovation’ vari-
able ηH

t
models variations from ‘pure’ linear state dynamics. As for ηt in Eq. (9.26)

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Fig. 9.7 AR-SLDS as DBN
structure

ht-2 ht-1 htht-3

st-2 st-1 stst-3

vt-3 vt-2 vt-1 vt

in the case of the SAR-HMM, ηH
t

is not modelling an independent additive noise
source. For the determination of the observed sample at time step t , the vector ht is
projected onto a scalar vt :

vt = B ht + ηV
t , with ηV

t ∼ N (ηV
t ; 0, σ 2

V ), (9.29)

where ηV
t models independent additive white Gaussian noise (AWGN) assumed to

modify the hidden clean sample Bht . The DBN structure of the SLDS that models
the hidden clean signal and an independent additive noise is found in Fig. 9.7.

The parameters A(st ), B and ΣH(st ) of the SLDS can be chosen to mimic the
SAR-HMM (cf. Sect. 9.3.3.1) for the case σV = 0 [17]. Likewise, if σV �= 0 a noise
model is included but no training of a new model is needed. With determination of the
exact parameters of the AR-SLDS having a complexity of O(ST ), the Expectation
Correction (EC) approximation [54] provides an elegant reduction to O(T ).

In practice, the AR-SLDS is particularly suited to cope with white noise dis-
turbance, as the variable ηV

t incorporates an AWGN model. It is, however, usually
inferior to frame-level feature-based HMM approaches in clean conditions. This may
be explained by the difference of the approach to human perception which is not per-
formed in the time-domain. In coloured noise environment the AR-SLDS usually
also leads to lower performance than frame-level feature modelling as by SLDMs.
A limitation for practical use is the high computational requirement, even with the
EC algorithm: As an example, for audio at 16 kHz, T is 160 times higher than for a
feature vector sequence operated on 100 FPS.

Obviously, further model architectures exist that were not shown here, but are well
suited to cope with noises, in particular also for non-stationary noise. An example
are the LSTM networks as shown in Sect. 7.2.3.4 [55, 56].

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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