
Chapter 8
Audio Source Separation

I just wondered how things were put together.
—Claude Elwood Shannon

In order to enhance the (audio) signal of interest in the case of added audio sources,
one can aim at their separation. Albeit being very demanding, Audio Source Sep-
aration of audio signals has many interesting applications: In Music Information
Retrieval (MIR), it allows for polyphonic transcription or recognition of lyrics in
singing after decomposing the original recording into voices and/or instruments such
as drums or guitars, or vocals, e.g., for ‘query by humming’ [1]. In ASR, the sepa-
ration of the target speaker from others, background noises or music [2] may help to
improve the accuracy. Given multiple microphone tracks, ICA [3] is usually among
the first choices. Traditional ICA, however, limits the number of sources that can
be separated to the number of available input channels, which makes basic ICA
unsuitable for many audio recognition and retrieval applications where only mono-
or stereophonic audio is available. To improve performance of ICA in challenging
scenarios, source localisation information can be integrated as a constraint, which is
promising for ASR in hands-free human-machine interaction [4]. However, this also
requires knowledge about the localisation of the microphones used for recording,
which is again not given in typical audio mining and retrieval tasks.

On the other hand, fully blind separation of multiple sources from mono- or
stereophonic signals is considered infeasible as of today. To summarise, in most
Intelligent Audio Analysis applications, prior knowledge has to be exploited in audio
source separation, as will be detailed in the following section. A general framework
for such ‘informed’ source separation has recently been presented in [5]. In the
light of Intelligent Audio Analysis, such informed methods are particularly inter-
esting, as they leverage machine intelligence for the highly challenging problem of
underdetermined source separation. Among the most promising approaches towards
separation of monophonic sources are those centred around NMF [6–11], which will
be the focus of this chapter. NMF can also be applied in different places along the
Intelligent Audio Analysis processing chain, e.g., for audio feature extraction and
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classification such as in noisy conditions [13–15]. This will be introduced towards
the end of this section.

Let us now introduce the theoretical foundations of NMF. For clarity, the following
notation will be used: For a matrix A, the notation Ai,: denotes the i-th row of A
(as a row vector), and let us analogously define A:, j for the j-th column of A (as a
column vector). Further, let A ⊗ B denote the elementwise product of matrices A
and B. The division of matrices is always to be understood as elementwise.

8.1 Methodology

Let us now discuss in detail how NMF can be used for source separation and NMF-
based feature provision. The basic procedure is the extraction of an arbitrary number
of sources—the ‘components’— from audio by non-negative factorisation of a spec-
trogram in matrix representation V ∈ R

M×N+ into a spectral basis W ∈ R
M×R+ and

activation matrix H ∈ R
R×N+ :

V = W H . (8.1)

This yields R component spectrograms V ( j), j = 1, . . . , R either by multiplication
of each basis vector w( j) := W :, j with its activations h( j) := H j,:, as in [7], or by a
more advanced ‘Wiener filter’ approach, as described in [6, 10]:

V ( j) = V ⊗ w( j)h( j)

W H
. (8.2)

The spectrograms can be obtained from short-time Fourier transformation (STFT)
and subsequent transformation to magnitude, power or Mel-scale spectrograms. Each
V ( j) is then transformed back to the time domain by inverse STFT, using the original
phase.

Several NMF algorithms can be used for the factorisation according to (8.1). These
minimise a distance function d(V |W H) by multiplicative updates of the matrices.
The starting point can be a random initialisation. d(V |W H) can be chosen as the
β-divergence or one of its special instances, the Itakura-Saito (IS) [10] divergence,
Kullback-Leibler (KL) divergence, or squared Euclidean distance (ED) [16]. Further,
to support overcomplete decomposition, i.e., choosing R such that R(M + N ) >

MN , sparse NMF variants [7] exist for either of the named distance functions, as
well as the sparse Euclidean NMF variant used in [17]. In addition, non-negative
matrix deconvolution (NMD) [6, 8] has been proposed as a context-sensitive NMF
extension. In NMD, each component is characterised by a sequence of spectra, rather
than by an instantaneous observation. Alternatively, sequences of spectral feature
vectors can be modelled as ‘supervectors’ in a sliding window approach to use
standard NMF for context-sensitive factorisation [13]. More precisely, the original
spectrogram V is transformed to a matrix V ′ such that every column of V ′ is the
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row-wise concatenation of a sequence of short-time spectra (in the form of row
vectors):

V ′ :=
⎡
⎢⎣

V :,1 V :,2 · · · V :,N−T +1
...

... · · · ...

V :,T V :,T +1 · · · V :,N

⎤
⎥⎦ , (8.3)

where T is the desired context length. That is, the columns of V ′ correspond to
overlapping sequences of spectra in V . If signal reconstruction in the time domain is
desired, the above named spectrogram transformations, including Mel filtering and
transformation according to (8.3), can be reversed.

The basic NMF method as explained above is entirely unsupervised. In many
practical applications, such as speech or music separation, prior knowledge about
the problem structure can be exploited. A simple yet very effective method to integrate
a-priori knowledge into NMF-based source separation is to perform supervised or
semi-supervised NMF. This means that parts of the first NMF factor are predefined
as a set of spectra characteristic for the sources to be separated rather than choosing
random initialisations of both factors. This can be useful in audio enhancement, e.g.,
in a ‘cocktail party’ situation with several simultaneous speakers [6, 17], or noise
versus a speaker of interest [18]. The initialisation spectra may themselves stem
from NMF decomposition of training material or can be based on simpler methods
such as median filtering or simply random sampling of training spectrograms. This
procedure is outlined in Fig. 8.1 as a flowchart. An alternative supervised NMF
method, depicted in Fig. 8.2, is to assign components computed by unsupervised
NMF to classes such as ‘drums’ and ‘non-drums’ by means of a supervisedly trained
classifier as in [19]. This allows dealing with observations that cannot be described as
a linear combination of pre-defined spectra, but assumes that unsupervised NMF by
itself can extract meaningful units, such as notes of different instruments. Given an
assignment of NMF components to sources as described above, it is straightforward
to synthesise the audio signals of interest by overlaying component spectrograms.

Fig. 8.1 Supervised NMF: A set of spectral components (which can themselves be computed by
NMF from training audio) serve as constant basis for NMF; the activations can be exported as
features or be used to synthesise audio signals for the sources [12]
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Fig. 8.2 Unsupervised NMF followed by supervised component classification, as in musical instru-
ment separation: A classifier is built from labelled separated components. Steps required to train
the classifier are gray shaded [12]

Besides using source separation as pre-processing for Intelligent Audio Analysis, the
activations computed by NMF can be used directly for classification, as indicated by
the flowchart in Fig. 8.1. This approach will be presented in more detail in Sect. 8.3.

8.2 Performance

To get an idea of the separation performance by basic NMF in a challenging task, let
us consider the separation of two simultaneously speaking speakers from a monaural
signal in the ongoing. Fig. 8.3 visualises the separation quality in terms of source-
distortion ratio (SDR) depending on the targeted RTF. SDR, as introduced by [20], can
be considered as the most popular objective metric for the evaluation of audio source
separation as of today. In the considered scenario of speaker separation, it takes into
account the suppression of the interfering speaker but also penalizes the introduction
of artifacts due to signal separation, i.e., information loss in the target speech—note
that perfect interference reduction can be trivially achieved by outputting a zero
signal. These experiments are based on the procedure proposed in [6] and the results
correspond to those reported in [12]. NMF is used over NMD based on the finding
in [6] of no significant difference in separation quality by either of these two bases.
The effect of using different numbers of iterations, DFT window sizes and the NMF
cost function is assessed; the importance of these parameters on separation quality
and computational complexity has been pointed out in [6, 12]. 12 pairs of male
and female speakers—ensuring that the speech spectra do not fully overlap—were
selected randomly from the TIMIT database (cf. also Sect. 10.4.3). Per pair, two
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(a) (b) (c)

Fig. 8.3 Benchmark results for monaural speaker separation by supervised NMF, in terms of RTF
and signal-to-distortion ratio (SDR) [20]. Mixed signals from pairs of male/female speakers (24
speakers total) from the TIMIT database. The open-source openBliSSART toolkit is used, and
computation is performed on a consumer grade GPU (NVIDIA GeForce GTX 560). The number
of NMF iterations (20–320), the DFT window size (16, 64, 256 ms) and the NMF cost function are
adjusted. a Euclidean distance. b KL divergence. c Itakura-saito divergence

randomly selected sentences of roughly equal length were mixed, and a NMF basis
W was computed from the other sentences spoken by each speaker. To this end,
unsupervised NMF (250 iterations) was applied to the concatenated spectrograms
of these sentences and only the first factor was kept. Separated signals for both
speakers were obtained by supervised NMF with W , by summing up component
spectra corresponding to either speaker, and applying inverse STFT as discussed
above. Computations base on a 2.4 GHz desktop PC with 4 GB of RAM, using a
consumer grade GPU (NVIDIA GeForce GTX 560) with 336 CUDA cores. The
NMF implementation from the open-source toolkit openBliSSART [12] is used.
RTFs are computed by the elapsed GPU time over the length of the mixed signals.
The number of separation iterations was chosen from {20, 40, 80, 160, 320} due to
the quick saturation of the convergence of multiplicative update NMF algorithms in
audio source separation [9]. The different DFT window sizes considered are powers
of two, ranging from 26 to 212, or 8–256 ms assuming 16 kHz sample rate. From
Fig. 8.3, it can be seen that the best average results are obtained by using the KL
divergence as cost function. The Euclidean distance allows faster separation at the
expense of quality, but here, reasonable results are only achieved for long window
sizes (256 ms), which limits the practical applicability in contexts where real-time
operation is required. Finally, the IS divergence enables robust separation, but is
inferior to KL divergence both in terms of separation quality and RTF. Generally,
it can be observed that in case of inadequate modeling of the sources (indicated by
overall low SDR), more iterations do not necessarily improve separation quality,
despite the fact that they linearly increase computational complexity; in fact, more
iterations sometimes degrade quality, e.g., for the Euclidean cost function and 16 or
64 ms window size.
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8.3 NMF Activation Features

Let us now move on to describe how NMF can be used directly for audio recognition,
instead of performing signal pre-processing by audio source separation. The core idea
is to use supervised or semi-supervised NMF (cf. above), and then directly exploit the
matrix H for classification. In this case, NMF seeks a minimal-error representation of
the signal (in terms of the cost-function) with only a set of given spectra. As outlined
in Sect. 8.1, the H matrix measures the contribution of spectra to the original signal.
Thus, by using a matrix W that contains spectra of different target classes, the rows
of H provide information whether the original signal consists of components of these
target classes. Furthermore, in this framework, additive noise can be modelled by
simply introducing additional NMF components corresponding to noise.

For discrimination of C different audio signal classes c ∈ {1, . . . , C}, the matrix
W is built by column-wise concatenation:

W := W 1|W 2| · · · |W C |W N .

where each W c contains ‘characteristic’ spectra of class c and the optional matrix
W N contains noise spectra. Similarly to the source separation application, there are
a variety of methods for computing W c and W N , such as base learning by NMF as in
the supervised speaker separation example above, or simply by randomly sampling
training spectrograms.

Based on this, NMF activation features can be derived from H . In the example
shown in Fig. 8.4, an exemplary scheme for static audio classification based on NMF
activations is shown that delivered remarkable performance in discrimination of
linguistic and non-linguistic vocalisations [15]. In this scheme, it is supposed that
base learning by NMF is used. An activation feature vector a ∈ R

R is calculated such
that ai is the Euclidean length of the i-th row of H . For independence of the length
and power of the signal, ai is normalised such that |a|1 = 1. The ‘NMF activation
features’ then are the components of the vector a. This vector can be passed on
to a suited classifier, or the activations per class can be summed up to derive class
posteriors. In dynamic classification, e.g., the index of the most likely class per frame
can be used as in [14, 21].

Let us now conclude the discussion of audio source separation and feature extrac-
tion by NMF by showing an exemplary application to keyword recognition in highly
non-stationary noise [21]. This example is based on the CHiME (Computational
Hearing in Multisource Environments) challenge task of recognising command
words in a reverberated indoor domestic environment with multiple noise sources
and interfering speakers [22].

NMD bases are learnt for each of the 51 words in the vocabulary, and an additional
NMD noise base is computed from a set of noise samples in the training data. Speech
separation is performed in a procedure similar to the speaker separation example
above. Additionally, NMF activation features are computed using a base matrix W
assembled from spectrogram ‘patches’ in the training data, in a ‘sliding window
NMF’ framework (cf. above) with T = 20. As each speech spectrogram patch is
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Fig. 8.4 Exemplary block diagram for extraction of NMF activation features for discrimination of
C classes in N input signals [15]. Matrices denoted by V are spectrograms. The matrix W consists
of spectra computed from training data for supervised NMF. Activation features are the resulting
H (activation) matrices. || · ||2 indicates that the Euclidean norm of each matrix row is computed,
and

∑ = 1 is a normalisation for the components of each vector ai sum up to 1

associated with word likelihoods, the index of the most likely word per frame can be
computed from the frame-wise activations of each spectrogram patch and used as a
discrete feature. In this calculation of NMF activation features, W N is pre-defined by
training noise samples. Table 8.1 shows the WAs on the 35 keywords by SNR and on
average, obtained by a baseline HMM recogniser adapted to noisy speech features,
the results achieved by considering NMD speech separation as pre-processing, the
results by usage of NMF activation features in HMM decoding, and combination
of both. From the results, it is evident that both methods are complementary—the
interested reader is referred to [21] for a more in-depth discussion.

Table 8.1 Effect of NMD speech separation and NMF activation features on speech recognition
results (WA) reported in [21] on the Computational Hearing in Multisource Environments (CHiME)
task [22]

WA [%] SNR [dB] Average
−6 −3 0 3 6 9

Baseline 54.5 61.1 72.8 81.7 86.8 91.3 74.7
NMD speech separation 75.6 79.2 84.1 87.7 88.3 90.6 84.2
NMF activation features 67.2 75.1 85.0 89.8 92.0 93.4 83.7
Combination 79.1 82.8 88.7 91.2 92.7 93.5 88.0
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