
Chapter 7
Audio Recognition

Learning without thought is labor lost; thought without learning
is perilous.

—Confucius

We will now deal with methods towards the actual classification or regression of
audio data. A good overview on these is also found in [1].

7.1 Audio Recognition Requirements

A number of requirements speak for the consideration of diverse learning algorithms.
In Table 7.1 typical such requirements are summarised.

According to these requirements, a number of learning algorithms were picked as
examples in the next sections. These have proven to be reasonable choices through-
out many applications as presented later in this book. They can be roughly divided
into static and dynamic learners. This categorisation can best be understood by con-
sidering the chain of audio processing (cf. Chap. 4): Static learners operate on single
feature vector basis (which means that multivariate time series of variable length
have to be mapped to fixed size vectors), whereas their dynamic counterparts are
able to handle such time series directly.

7.2 Static Learning Algorithms

7.2.1 Decision Trees

As a first learning algorithm, let us consider decision trees (DT). In principle, a
DT produces a human-readable set of rules, which makes it very transparent and
intuitive to understand. In case of numeric feature information, these are typically
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Table 7.1 Requirements for
machine learning algorithms

Requirement Example

Adequate modeling Static /(async.)dynamic modeling
Data-/Knowledge-driven
Handling of missing features
Handling of uncertainty
Learning stability
Model-/Instance-based
Transparency

Optimal accuracy Non-linear problem handling
Discriminative learning
Auto-weighting of features
Tolerance wrt. dimension
Adaptability
Allowance for diverse spaces

Efficiency Real-time recognition
Short learning/adaptation time

Economic factors Low computational cost
Low memory requirement
Low HW realization costs
Space optimization w/o training

Optimal integration N-best provision
Confidence provision
Class-wise confidences
Distributable

comparisons with constants to decide to which next comparison to branch, until the
class labels are reached as terminals. A DT is thus a specific directed acyclic graph
(DAG). As such, it can be defined by a set of nodes V and a set E ⊆ V × V of edges,
where each element e = (v1, v2) ∈ E represents a connection from node v1 to node
v2. A path of the length P through the tree is a sequence of v1, . . . , vP , vk ∈ V with
(vk, vk+1) ∈ E, k = 1, . . . , P − 1. Starting from an undirected graph, conditions of
a tree are that the graph is acyclic and connected, i.e., each node needs to be reachable
by a path from each other node. By that, each tree has exactly |V |−1 edges. Further,
there is exactly one ‘root’ w in the sense of a node that possesses no incoming edges,
i.e., E contains no element of the form (v, r), v ∈ V . The ‘leaves’ are the nodes b
without an outgoing edge, i.e., for which in E there exists no (b, v) with v ∈ V . All
remaining nodes are referred to as ‘inner’ nodes [1, 2].

In the learning process, features are assigned to the inner nodes: Given a feature
space of the dimension N a mapping

a : V → {1, . . . , N }

is defined. In this process, the edges are assigned the values on which the branch
decisions are based upon. The values of the features as seen in the training are
quantised to Jn values per feature n to reach a finite number of edges. Each inner
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Fig. 7.1 Exemplary DT: A
two-class problem is shown
with three features. Circles
represent the root and inner
nodes, rectangles represent
the leaves with the class labels
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node v then has Ja(v) outgoing edges. The leaves are assigned the according class
labels.

In the recognition phase of an unknown pattern vector x = (x1, . . . , xN )T , one
starts at the root w and follows the path through the tree as follows: At each node v

along the path choose the edge for which xa(v) is within this edge’s interval until a
leave is reached. The class to decide for is then this leave’s class.

An example of a DT is shown in Fig. 7.1. In this example, quantisation of feature
values was chosen as binary. This results in a simple threshold decision at each node.

An optimisation criterion is now to maximise the information gain in view of the
correct classification and with the remaining features at each node. The Shannon
entropy H(Y ) of the distribution of the class probabilities (Y1, . . . , YM ) can be used
to this end:

H(Y1, . . . , YM ) = −
M∑

i=1

Yi ld(Yi ). (7.1)

For a training set L of pattern vectors x with known class attribution y, the needed
average information H(L) to assign an instance in L to a class i ∈ {1, . . . , M} is
determined according to:

H(L) = −
M∑

i=1

Ŷi ld(Ŷi ), Ŷi = |Li |
|L| , (7.2)

where Li is the set of elements in L with class attribution i .
In order to determine the contribution of each individual feature n to the aimed at

class assignment, for each n the set L is divided into the subsets Ln, j , j = 1, . . . , Jn

based on the different values of n. The remaining average information H(L|n) needed
after observation of the feature n for the class assignment results as the weighted
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average of the information H(Ln, j ), as required to classify an element of the subset
Ln, j :

H(L|n) =
Jn∑

j=1

|Ln, j |
|L| H(Ln, j ). (7.3)

By this equation the IG can be defined. It describes how the entropy, i.e., the
information needed for the assignment, is reduced by addition of the feature n:

IG(L, n) = H(L) − H(L|n). (7.4)

However, this definition tends to favour features with a high number of different
values Jn : If all elements in L, whose features n have the same value belong to the
same class—this is in particular the case, if a feature has a different value for each
element inL—, then H(L|n) equals zero, and by that one obtains a maximal IG(L, n).
By introduction of the Information Gain Ratio (IGR) this can be compensated:

IGR(L, n) = IG(L, n)

H
( |Ln,1|

|L| , . . . ,
|Ln,Jn |

|L|
) . (7.5)

The term in the denominator is called split information and is computed according
to Eq. (7.1). This is the information one obtains by the described split of the set L
according to the values of the feature n.

A popular method for the training of a DT based on a training set L is the iterative
dichotomiser 3 (ID3) algorithm [3]. ID3 constructs the DT recursively for the overall
feature set by concatenation of sub-trees for each subset of the features. For a given
set of features M ⊆ {1, . . . , N } and training set L, the steps are as follows:

1. If all elements in L belong to class i return a leaf labelled i .
2. If M is empty, return a leaf labelled by the most frequent class in L.
3. Else search for the feature n′ with the highest IG(R), i.e.,

n′ = arg maxn∈M IG(L, n).

4. For all j = 1, . . . , Jn′ construct a DT by ID3 on the feature set M − {n′} and
the training set Ln′, j . Return a tree with the root labelled by the feature n′ whose
edges lead to the constructed DTs (cf. Fig. 7.2)

ID3 is a greedy algorithm as in every step a feature is selected by a local optimisa-
tion criterion. A global optimum is not guaranteed. Further, ID3 always terminates,
as with every recursive call the remaining set of features decreases and the case of
an empty feature set is handled separately.

An extension of ID3 are the C4.5 or J48 variants that introduce pruning of sub-trees
[2, 4] for increased efficiency. During pruning, a whole sub-tree can be replaced by
a leaf, if the error probability is not significantly increased by this substitution. Note
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Fig. 7.2 Recursive call of the ID3 algorithm for a feature n′ that maximises the IG(R) with respect
to the classification of L within M [1]

that this reduces the number of features, i.e., an inherent feature selection by IG(R)
is given. DTs are able to handle missing features both in training and recognition.
Further, if both, the feature set and the training set are randomly sub-sampled for
construction of an ensemble (cf. Sect. 7.4) of DTs, one speaks of Random Forests
(RF), which are known as competitive classifier [5], e.g., to the further introduced
classifiers.

7.2.2 Support Vectors

Support Vector Machines (SVM) and Support Vector Regression (SVR) were intro-
duced in [6]. In principle, they base on statistical learning theory, and their theo-
retic foundation can be interpreted as analogon to electrostatics: Thereby, a training
instance corresponds to a charged conductor at a given place in space, the decision
function corresponds to an electrostatic potential function and the learning target
function to Coulomb’s energy [7].

The concept of SVM and SVR unites several theories of machine learning and
optimisation: At first, a linear classifier or regressor—similar to a perceptron with
linear activation function —is combined with a non-linear mapping into a higher
dimensional decision space in order to be able to solve more complex decision tasks.
The linear classifier is thereby built based on a subset of the learning instances—the so
called ‘support vectors’. By that, the danger of overfitting to the learning instances
as a whole is limited. The choice of support vectors is achieved by a quadratic
optimisation problem.

7.2.2.1 Support Vector Machines

In general, SVM are by that capable to discriminate between two classes, i.e., solve
binary decision problems. We will at first focus on this task—the solving of multiple
class problems can then be reached by diverse strategies such as one-versus-one pair-
wise decisions, one-versus-all decisions, or binary-tree-based grouping of decisions.

SVM are trained based on a set L of L learning instances, where each of the
instances is accordingly labelled with its class. For l = 1, . . . , L the assignment
of a pattern instance xl to its class is denoted by yl ∈ {−1,+1}. By definition the
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patterns xl with yl = +1 are the ‘positive’ instances, i.e., xl ∈ X1. If yl = −1, xl is
a ‘negative’ instance, i.e., xl ∈ X2. By this we can denote L as:

L = {(xl , yl) | l = 1, . . . , L} where yl ∈ {+1,−1}. (7.6)

The assignment yl ∈ {−1,+1} simplifies the mathematical handling. In order
to be able to strictly separate the according instances in the following, the normal
vector w and the scalar bias b define the hyper plane H(w, b) given as

H(w, b) = {x | wT x + b = 0}. (7.7)

The task is now to find the hyper plane in such a way that the conditions

yl = +1 ⇒ wT xl + b ≥ +1,

yl = −1 ⇒ wT xl + b ≤ −1 (7.8)

are fulfilled. Under the condition that a hyper plane exists by which the separation
of the (two) classes is possible without misclassification, a normalisation of the side
conditions (7.8) can be realised by appropriate scaling of w and b [8]. Next, by
application of the signed distance D(x) of a point x to the hyper plane H

D(x) = wT x + b

||w|| (7.9)

the margin of separation μL is defined as the minimum of the magnitude of the
distances of all points x1 . . . xl in L to H :

μL(w, b) = min
l=1,...,L

|D(xl)|. (7.10)

In order to reach maximum discriminativity between the two classes, this margin
needs to be maximised. To this end, we seek the hyper plane H∗ = H(w∗, b∗) with
maximal value μ∗

L(w∗, b∗) to separate the training instances set L. The according
instances xsv

l ∈ L, which satisfy (7.10), are closest to the hyper plane H∗ and are
called support vectors of H∗ with respect to L. Their distance D∗(xsv

l ) to the hyper
plane H∗ is—owing to the normalisation of the separation condition:

D∗(xsv
l ) = ±1

||w|| . (7.11)

As a consequence, a corridor between the positive and negative instances results
of the width 2 ||w||−1. Its border is given by the support vectors which are shown in
Fig. 7.3.

Instead of the maximisation of the width of the corridor one can minimise the
expression 1

2wT w. The resulting funtion to be minimised is strictly convex and



7.2 Static Learning Algorithms 105

Fig. 7.3 Example of an
optimal hyper plane H∗(w, b)

(lighter shaded) in two dimen-
sional space with maximum
margin of separation μ∗
(dashed parallel lines). “x”
and “o” indicate exemplary
instances of the two classes to
be separated
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posseses a unique minimum w∗. From (7.8) result linear side conditions for the
optimisation:

yl (wT xl + b) − 1 ≥ 0 with l = 1, . . . , L . (7.12)

To solve this boundary value problem one can use Langrange multipliers. In [6]
this is explained in detail.

In the general, non-trivial case, there does not exist—as opposed to the previously
made assumption—a hyper plane to separate a training instances set L flawlessly. In
this case the equations in (7.8) are extended by so called slack variables ξl ≥ 0, l =
1, . . . , L . This allows to stay with the approach, as vectors which cross the hyper
plane may be placed on the ‘wrong side’:

yl = +1 ⇒ wT xl + b ≥ +1 − ξl ,

yl = −1 ⇒ wT xl + b ≤ −1 + ξl . (7.13)

By that, the expression

1

2
wT w + G ·

L∑

l=1

ξl (7.14)

needs to be minimised, where G is a free error weighting factor that needs to be
determined. It can be shown that this optimisation—also called a ‘primal problem’—
is equivalent to a ‘dual problem’ of the maximisation of

L∑

l=1

al − 1

2

L∑

k=1

L∑

l=1

ak al yk yl(xT
k xl), (7.15)
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with the side conditions

0 ≤ al ≤ C, l = 1, . . . , L , (7.16)
L∑

l=1

al yl = 0. (7.17)

The hyper plane is then defined by

w =
L∑

l=1

al yl xl , (7.18)

b = yl∗(1 − ξl∗) − xT
l∗wl∗ . (7.19)

Thereby l∗ represents the index of the vector xl with the largest coefficient al .
The normal vector w is thus represented as weighted sum of training instances with
the coefficients al ≤ C, l = 1, . . . , L , where C is another free parameter to be
determined. By the introduction of the weighting coefficients the slack variables
ξl disappear in the optimisation problem. The support vectors are then the training
instances xl that satisfy al > 0.

By this, L2 terms of the form xT
k xl result, which can be summarised as a matrix.

One of the frequently used and highly efficient methods for the recursive computation
of this matrix and by that solving of the dual problem is the Sequential Minimal
Optimisation (SMO), which is introduced in detail in [9]. The classification by SVM
is now given by the function dw,b : X → {−1,+1},

dw,b(x) = sgn(wT x + b) (7.20)

where

sgn(u) =
{

1 u ≥ 0

−1 u < 0.
(7.21)

So far, we are only able to solve pattern recognition problems that assign the
instances belonging to the (two) different classes with a certain acceptable error by a
hyper plane in the space X . This is referred to as linear seperation problem. Aiming at
classes that can only be separated non-linearly, one applies the so called ‘kernel trick’
[10]. Figure 7.4 depicts an exemplary two-class problem in one-dimensional space,
which can only be solved linearly by a mapping into a higher (two-)dimensional
space—without error in the given example.

In general, such a transformation is given by the mapping

Φ : X → X
′
, dim(X

′
) > dim(X). (7.22)
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Fig. 7.4 Solving of an exemplary two-class problem by mapping into higher dimensional space:
While in the one-dimensional (original) space the problem cannot be solved linearly, mapping
by the function Φ : x1 
→ (x1, x2

1 ) allows for error-free separation in the new two-dimensional
space [1]

The normal vector w then results in

w =
∑

l:al>0

al yl Φ(xl). (7.23)

The decision function dw,b(x) results—applying Φ—in:

dw,b(x) = sgn(wT Φ(x) + b). (7.24)

As
wT Φ(x) =

∑

l:al>0

al yl Φ(xl)
T Φ(x), (7.25)

the transformation Φ is explicitly neither needed for the estimation of the parame-
ters of the classifier, nor for the classification. Instead a so called ‘kernel function’
K Φ(x, x ′) is being defined, with the condition

K Φ(x, x ′) = Φ(x)T Φ(x ′). (7.26)

The kernel function additionally needs to be positively semi-definite, symmetric,
and fulfil the Cauchy-Schwarz inequality. The optimal kernel function for a given
classification or regression problem can only be found empirically. However, recently
so called multi kernels try to overcome the search for optimal kernel functions [11].
Most frequently used kernel functions comprise:

• Polynomial kernel:
K Φ

p (x, x ′) = (xT x ′ + 1)p, (7.27)

where p is the polynomial order,
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• Gaussian kernel (radial basis function, RBF):

K Φ
σ (x, x ′) = e

||x−x ′ ||2
2σ2 , (7.28)

where σ is the standard deviation of the Gaussian, and
• Sigmoid kernel:

K Φ
k,Θ(x, x ′) = tanh(k(xT x ′) + Θ), (7.29)

where k is the amplification, and Θ the off-set.

The application of the kernel function K Φ instead of the transformation Φ consid-
erably reduces the required computation effort and allows for practical application
of SVM and SVR when coping with high dimensional problems, as can be seen by
the example of the polynomial kernel: to compute a polynomial of the order p in the
space X , (

dim(X) + p

p

)
≈ dim(X)p

p! (7.30)

terms would need to be calculated, while the computation employing the polynomial
kernel independently of p requires only approximately dim(X) operations. There
exist manifold further kernels for special requirements, such as the KL divergence
kernel frequently used in Gaussian Mixture Model (GMM)-SVM ‘super vector’
construction.

The last kernel that is introduced is a special solution for symbolic, i.e., non-
numeric input: The recent string subsequence kernel (SSK) approach [12] makes
use of a mapping from text information to a high dimensional feature space without
explicit calculation of features. Based on the theory of Support Vector Machines, the
idea of kernel mapping is extended for strings as input parameters. Thus, a special
kernel for text information is provided. The idea behind is to observe small substrings
in a given string. For a predefined substring length, all possible substrings form a
feature space in which a string can be represented. The numeric value of each feature
depends on the substring occurrence frequency in the string and on the degree of
contiguity. For example, the substring “ser” exists in the word “serene” as well as
in “superb”, but with a different degree of contiguity. This degree is weighted by
a decay factor λ ∈ [0, 1] which penalises non-contiguous substrings. Taking non-
continuous substrings into account is a specific characteristic of the string kernel
method.

The transformation of a string s into the feature space is done by a mapping Φ(s)
which can be calculated numerically as described in [12]. Analog to the Support
Vector Machines’ theory, this mapping does not have to be done explicitly. An implicit
calculation is done by using a kernel function:

K Φ(s, t) = 〈Φ(s),Φ(t)〉 . (7.31)
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This kernel function is part of the decision function for SVM or SVR. The inner
product calculated by the kernel can be seen as a numeric measure of similarity
between two strings s and t . The calculation of this string subsequence kernel can
further be simplified due to recursive computation [12], making the procedure
practicable.

7.2.2.2 Support Vector Regression

Let us now have a very short introduction to SVR. Again, we first consider a set of
training patterns L, but now with numeric values yl ∈ R. The goal of SVR is to find
a regression function f (x) that has at the most a deviation of ε from the actually
obtained targets and, at the same time, is as flat as possible. For a linear regression
function,

f (x) = wT x + b (7.32)

described by a vector w and a scalar b, this flatness can be achieved by minimising
the dot product wT w under the conditions:

yl − wT xl − b ≤ ε,

wT xl + b − yl ≤ ε.
(7.33)

Because there are only few cases where all yl can be linearly estimated within a
range between ±ε, non-negative slack variables ξl and ξ∗

l are introduced in analogy
to SVM, allowing vectors to lie outside this range of ±ε:

yl − wT xl − b ≤ ε + ξl ,

wT xl + b − yl ≤ ε + ξ∗
l .

(7.34)

As in the case of SVM, the optimisation is done with Lagrangian multipliers,
leading to:

1

2
wT w + C

L∑

l=1

(ξl + ξ∗
l ) −

L∑

l=1

(ηlξl + η∗
l ξ∗

l )

−
L∑

l=1

αl(ε + ξl − yl + wT xl + b) (7.35)

−
L∑

l=1

α∗
l (ε + ξ∗

l + yl − wT xl + b).

The optimisation problem is to minimise the Lagrangian multiplier with respect
to w, b and the Lagrangian multipliers αl , α∗

l , ηl , η∗
l (l = 1, . . . , L). The complexity

parameter C > 0 determines the penalty for regression errors larger than ε.
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As a further analogy to SVM, the solution of the optimisation problem shows
that the vector wo for the regression function searched for can be written as a linear
combination of vectors in the test set [13]:

wo =
L∑

l=1

(αl − α∗
l )xl , (7.36)

and thus, the linear regression function becomes

f (x) =
L∑

l=1

(αl − α∗
l )xT

l x + b. (7.37)

In consequently analogous manner to SVM theory, the algorithm for SVR is
described by dot products between training vectors xl and the new, unseen pattern
vector x , whereas only those training vectors are relevant for which the Lagrangian
multipliers (αl − α∗

l ) �= 0. These are the support vectors for SVR. Geometrically
interpreted these are the training vectors which have an absolute estimation error of
exactly ε.

As in the SVM case, the model is extended to solve non-linear regression tasks.
This is done by applying the same kernel trick. The kernel function can be built into
the regression function in Eq. (7.37), where it substitutes the dot product xT

l x :

f (x) =
L∑

l=1

(αl − α∗
l )K Φ(xl , x) + b. (7.38)

The function in this form makes SVR an efficient algorithm for regression tasks.

7.2.3 Neural Networks

This section gives a short introduction to Artificial Neural Networks (ANN) with a
focus on (bidirectional) Long-Short-Term Memory (BLSTM) networks.

ANNs are capable of learning practically arbitrary functions [14], and belong to the
most popular learning algorithms, since McCulloch’s and Pitts’s first mathematical
models in the year 1943 [15] that still provide the basis for today’s ANN [16]. Their
inspiration is given by neural networks in the central nervous system of vertebrates.
The central information processing unit thereby is the neuron. Via its axon the neuron
emits a certain activity by electrical pulses [17]. These impulses are propagated to the
synaptic connection of other neurons via a branched network. The activity of a neuron
is based on its cumulative input activation. In the nature, a higher activity results in a
higher impulse frequency. Decisive is in general a threshold—usually approximated
by a non-linear transfer function. Overall, a neural network consists of neurons and
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Fig. 7.5 Exemplary neuron

their directed connections. It is fully described by the network topology and weights,
the computation type of its units and the encoding of the output. Figure 7.7 shows
an example of an ANN. At the N input neurons the values of the feature vector
x = {xi } with i = 1, . . . , N are input. These values are weighted by the weights wi

with i = 0, . . . , N that can be written as w = {wi }. The weight w0 is the ‘bias’—
a permanent additive offset. In the next part, a summation of the weighted inputs
takes place. Its result u is then input into the—as stated usually non-linear—transfer
function T (u). The output of this function is v at the output of the neuron. In most
cases, one aims at a steep decision function. An according visualisation of a neuron
is given in Fig. 7.5.

Popular transfer functions are in particular the sigmoid function (cf. Fig. 7.6)

T (u) = 1

1 + e−αu
, (7.39)

0
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-2.5 -1.5 -0.5 0.5 1.5 2.5
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infinity 10 2 1

Fig. 7.6 Sigmoid function with different values for the steepness parameter α. In the case α → ∞
the function approximates a threshold decision
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where α is the steepness parameter, the hyperbolic tangent function as special case
of the sigmoid function with additive offset, and the unit step

T (u) =
{

0 if u < 0
1 if u ≥ 0

. (7.40)

The sigmoid function is particularly popular owing to its approximation of an
ideal threshold decision (cf. Fig. 7.6) while being differentiable. The latter will be
needed throughout the training of the network.

A multiplicity of different network topologies exist, of which the most important
will be introduced next.

7.2.3.1 Feed Forward Neural Networks

The most commonly used form of feed forward neural networks (FNN) is the mul-
tilayer perceptron (MLP) [18]: It consists of a minimum of three layers, one input
layer—typically without processing—, one or more hidden layers, and an output
layer. All connections feed forward from one layer to the next without any back-
ward connections. MLPs classify all input feature vectors over time independently.
In general, encoding of the outputs ŷ j with j = 1, . . . , M of the last layer that can
be written as vector ŷ is required. A popular way is to provide one output neuron
for regression and one per class in the case of classification. As an advantage, this
provides a measure of confidence of the network: The ‘softmax’ function as a transfer
function normalises the sum of all outputs to one in order to allow for interpretation
as posterior probability P( j |x) of the final output:

P( j |x) = ŷ j = eu

∑M
j=1 eu

. (7.41)

In the recognition phase the computation is processed step-wisely from the input
layer to the output layer. Per layer the weighted sum of the inputs from the previous
layer is computed for each neuron and weighted by the non-linearity. Using the soft-
max function at the outputs, and the named encoding, the recognised class is assigned
by maximum search. As an alternative, one can choose, e.g., a binary encoding of
the classes with the network’s outputs.

7.2.3.2 Back Propagation

Among the multiplicity of learning algorithms for ANNs, the gradient descent-based
back propagation algorithm [19] is among the most popular ones and allowed for
the break-through of ANN. Let W = {w j } summarise the weight vectors w j of a
layer with j = 1, . . . , J and J being the number of neurons in this layer. As target
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function to measure the progress of (supervised) learning, the MSE E(x, W ) between
the gold standard y and the network output ŷ = f (x, W ) is used—for simplification
we consider the case of a single output as in regression—an extension to multiple
outputs is straight forward:

E(x, W ) = |y − ŷ|2 (7.42)

Other target functions are frequently used, such as McClelland error or cross-
entropy. After an initialisation of weights, e.g., by random, three steps follow for the
back propagation:

1. Forward pass as ‘normal’ pass as in the recognition phase.
2. Computation of the MSE according to Eq. (7.42).
3. Backward pass with weight adaptation by the corrective term:

wi → wi + 
wi = wi − β · δE(x, W )

δwi
, (7.43)

where β is the step size, which is to be determined empirically, and wi is an
individual weight within a neuron.

As a stopping criterion of the iterative updating of the weights one can either use
a maximum number of iterations or a minimal change of the error [20]. A ‘good’
parameter set can only be determined empirically and based on experience. However,
approaches exist to learn these. To avoid over fitting, a sufficient number of training
instances is required as compared to the number of parameters in the network and
the dimensionality of the feature vector. An alternative is resilient propagation that
incorporates the last change of weights into the current change of weights [21]. By
learning the weights, ANNs are able to cope with redundant feature information.
The learning process is further discriminative as the information over all classes is
learnt at a time [17]. Their highly parallel processing is one of the main advantages
for efficient implementation. If the temporal context of a feature vector is relevant,
this context must be explicitly fed to the network, e.g., by using a fixed width sliding
window that combines several feature vectors to a ‘super vector’, as in [22].

7.2.3.3 Recurrent Neural Networks

Another technique for introducing past context to neural networks is to add backward
(cyclic) connections to FNNs. The resulting network is called a recurrent neural
network (RNN). RNNs can theoretically map from the entire history of previous
inputs to each output. The recurrent connections implicitly form a kind of memory,
which allows input values to persist in the hidden layer(s) and influence the network
output in the future. RNNs can be trained by back propagation through time (BPTT)
[23]. In BPTT, the network is first unfolded over time. The training then is similar as
if training a FNN with back propagation. However, each epoch must run through the
output observations in sequential order. Details are found in [23]. If in a RNN future
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Fig. 7.7 A RNN with two hidden layers and a single output neuron for regression or binary
classification. Dashed connection are an example of an architectural variation. The blue connections
are examples of recurrent connections. Other popular ways of recurrent connections include such
from the output nodes of a layer to its own input nodes

Fig. 7.8 Structure of a bidi-
rectional network with input i ,
output o, as well as two hidden
layers that processes the input
sequence forwards (h f ) and
backwards (hb) over time t
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context is also required, a delay between the input values and the output targets can
be introduced. An example is shown in Fig. 7.7.

A more elegant incorporation of future temporal context is provided by a bidi-
rectional recurrent neural network (BRNN). Two (sets of) separate hidden layers
are used instead of one, both connected to the same input and output layers. The
first processes the input sequence forwards and the second backwards. The network
therefore has always access to the complete past and the future temporal context in a
symmetrical way, without bloating the input layer size or displacing the input values
from the corresponding output targets. Figure 7.8 visualises this principle.
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However, they must have the complete input sequence at hand before it can be
processed.

7.2.3.4 Long Short-Term Memory

Although BRNNs have access to both past and future information, the range of
temporal context is limited to a few frames due to the ‘vanishing gradient’ problem
[24]. The influence of an input value decays or blows up exponentially over time, as it
cycles through the network with its recurrent connections and gets dominated by new
input values. To overcome this deficiency, a method called Long Short-Term Memory
(LSTM) was introduced in [25]. In a LSTM hidden layer, the non-linear units are
replaced by LSTM memory blocks (cf. Fig. 7.10). Each block contains one or more
self connected linear memory cells. By that, they are able to overcome the vanishing
gradient problem and can learn the optimal amount of contextual information relevant
for the learning task. Figure 7.9 depicts this vanishing gradient problem for RNN and
how it is overcome by LSTM (right).

A LSTM layer is composed of recurrently connected memory blocks, each of
which contains one or more memory cells, along with three multiplicative ‘gate’
units: the input, output, and forget gates. The gates perform functions analogous to
read, write, and reset operations. More specifically, the cell input is multiplied by
the activation of the input gate, the cell output by that of the output gate, and the
previous cell values by the forget gate (cf. Fig. 7.10). Usually, one can employ the
same non-linear transfer function for these gates, denoted as Tg in the ongoing. A
popular choice is a hyperbolic tangent function. The transfer function of the ‘original’
neuron (top neuron Fig. 7.10) is often chosen as a sigmoid function and referred to
by Ti in the ongoing, as it functions as the actual input neuron of a LSTM cell. The
output transfer function of the LSTM cell after the ‘error carousel’ (EC) is denoted as
To from now on. Sigmoid or softmax functions are popular choices for this function.
The outgoing weight of the EC is chosen as 1 to realise the storage effect by an
auto-transition of one.
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Fig. 7.9 Vanishing gradient problem of a RNN (left) and overcoming it by use of LSTM (right).
Lighter shading indicates decreased memory of past events. it , ht , ot represent the input, hidden,
and output layers at time t , respectively
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Fig. 7.10 LSTM memory block consisting of one memory cell: input, output, and forget gate
collect activations from inside and outside the block which control the cell through multiplicative
units (depicted as small circles); input, output, and forget gate scale input, output, and internal state
respectively; a recurrent connection of fixed weight 1.0 maintains the internal state
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Fig. 7.11 An exemplary layout of a RNN with LSTM cells

The overall effect is to allow the network to store and retrieve information over
long periods of time. For example, as long as the input gate remains closed, the
activation of the cell will not be overwritten by new inputs and can therefore be
made available to the net much later in the sequence by opening the output gate.

Figure 7.11 depicts LSTM cells’ exemplary integration in a RNN. If αin,t denotes
the activation of the input gate at time t before the activation function Tg has been
applied and βin,t represents the activation after application of the activation function,
the input gate activations (forward pass) can be written as

αin,t =
I∑

i=1

wi,inxi,t +
H∑

h=1

wh,inβh,t−1 +
C∑

c=1

wc,insc,t−1 (7.44)

and
βin,t = Tg(αin,t ), (7.45)
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respectively. The variable wi, j corresponds to the weight of the connection from unit
i to unit j while ‘in’, ‘for’, and ‘out’ refer to input gate, forget gate, and output gate,
respectively (cf. Eqs. 7.46 and 7.50). Indices i , h, and c count the inputs xi,t , the cell
outputs from other blocks in the hidden layer, and the memory cells, while I , H , and
C are the number of inputs, the number of cells in the hidden layer, and the number
of memory cells in one block. Finally, sc,t corresponds to the state of a cell c at time
t , meaning the activation of the linear cell unit.

Similarly, the activation of the forget gates before and after applying Tg can be
calculated as follows:

αfor,t =
I∑

i=1

wi,forxi,t +
H∑

h=1

wh,forβh,t−1 +
C∑

c=1

wc,forsc,t−1 (7.46)

βfor,t = Tg(αfor,t ). (7.47)

The memory cell value αc,t is a weighted sum of inputs at time t and hidden unit
activations at time t − 1:

αc,t =
I∑

i=1

wi,cxi,t +
H∑

h=1

wh,cβh,t−1. (7.48)

To determine the current state of a cell c, the previous state is scaled by the activation
of the forget gate and the input Ti (αc,t ) by the activation of the input gate:

sc,t = βfor,t sc,t−1 + βin,t Ti (αc,t ). (7.49)

The computation of the output gate activations follows the same principle as the
calculation of the input and forget gate activations, however, this time the current
state sc,t is considered, rather than the state from the previous time step:

αout,t =
I∑

i=1

wi,outxi,t +
H∑

h=1

wh,outβh,t−1 +
C∑

c=1

wc,outsc,t (7.50)

βout,t = Tg(αout,t ). (7.51)

Finally, the memory cell output is determined as

βc,t = βout,t To(sc,t ). (7.52)

Note that the initial version of the LSTM architecture contained only input and output
gates. Forget gates were added later [26] in order to allow the memory cells to reset
themselves whenever the network needs to forget past inputs.
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LSTM networks can be trained by BPTT. They have shown remarkable perfor-
mance in a variety of pattern recognition tasks, including phoneme classification
[27], handwriting recognition [28], keyword spotting [29], affective computing [30],
and driver distraction detection [31]. Combining bidirectional networks with LSTM
leads to bidirectional LSTM (BLSTM). Further details on the LSTM technique can
be found in [28].

7.3 Dynamic Learning Algorithms

Audio is sequential, and an endpointed audio stream X = {x1, x2, . . . , xT } accord-
ingly yields a series of T feature vectors. So far, however, we mostly dealt with
classification of single feature vectors without use of temporal context. One excep-
tion were the different types of RNN that modelled such context, as discussed above.
But even these are not able to ‘warp’ in time, i.e., to handle different tempo deviations
between, e.g., two musical pieces or stretching or shortening, e.g., of vowels while
speaking. The most frequently encountered algorithm for audio sequence classifica-
tion are HMMs [32] as a simple form of DBNs. This property is owed to their ability
of dynamic modelling throughout different hierarchy levels and a well-formulated
stochastic framework. In ASR, for example, the extracted feature stream is first mod-
elled on the phoneme level. On a higher level, these phonemes are then used to form
words. Each class i is modelled by a HMM that represents the probability P(X |i),
where X is called the ‘observation’, which is generated by the HMM.

A Markov model can be seen as finite state automaton that may change its state
at any step in time. In a HMM, at each step in time t a feature vector xt is being
generated depending on the current state s and the emission probability bs(x). The
probability of a transition from state j to state k is expressed by the state transition
probability a j,k [33]. The probabilities a0, j are needed to enter the model in a state
j with a certain probability. In order to simplify calculation, a non-emitting initial
state s0 and a non-emitting final state sF can be defined [1]. In Fig. 7.12 the structure
of such a model is depicted. In the example, the most frequently used type of HMM
for audio processing is depicted—the so-called left-right model. In this model type,
the state number cannot decrease over time. In the ‘linear’ model, no state can be
skipped. Other topologies allow for a state skip, such as the Bakis model in which
one state may be skipped. If any state can be reached from any other state with a
probability above zero, the topology is referred to as ‘ergodic’.

One speaks of a ‘hidden’ Markov model, as the sequence of states remains
unknown—only the observations sequence is known [32]. Note the ‘Markov prop-
erty’ that the conditional probability distribution of the hidden variable s(t) at time
step t , given the values of the hidden variable s at all times, depends only on the
hidden variable s(t − 1), i.e., values at earlier steps in time have no influence [34].
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Fig. 7.12 Example of an instantiated linear left-right HMM with three emitting states. Squares
indicate observations, circles represent switching states, arrows denote conditional dependencies

Further, the observation x(t) only depends on the value of the current state’s hidden
variable s(t).1

The needed probability P(X |i) can be computed by summation over all possible
state sequences:

P(X |i) =
∑

Seq

as0,s1

T∏

t=1

bst (xt )ast ,st+1 , (7.53)

where Seq stands for the set of all possible state sequences. For the efficient compu-
tation of this probability, the forward algorithm is typically applied as is introduced
in Sect. 7.3.1. Instead of a summation over all state sequences, the Viterbi algorithm
considers only the most probable state sequence, which results in a speed-up at the
cost of the global optimum [34]:

P̂(X |i) = max
Seq

{
as0,s1

T∏

t=1

bst (xt )ast ,st+1

}
. (7.54)

In the recognition phase the class i is decided for according to the model that
is assigned the highest probability P(X |i). This requires the parameters a j,k and
bs(xt ) to be known for each model. Just as for the previous static classifiers, these
are determined in a training phase given a large set of training instances. The popular
method to this end is the forward-backward algorithm which is also described in
Sect. 7.3.1.

In most Intelligent Audio Analysis application scenarios the emission probabil-
ities bs(xt ) are modelled by Gaussian mixtures. Such mixtures are linear super-
positions of Gaussian functions. With the number of mixture components M and
the ‘mixture weight’ of the m-th component cs,m the emission probability density
function (PDF) can be determined as [34]:

bs(xt ) =
M∑

m=1

cs,mN (xt ;μ
s,m

, s,m), (7.55)

1 Note that for better readability, the time t is in this section used in the subscript or argument
following [32].
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where N (·;μ,) is a multivariate Gaussian density with mean vector μ and the
covariance matrix . Apart from such ‘continuous’ HMMs, also ‘discrete’ HMMs
are used. These use conditional probability tables for discrete observations bs(xt ).

7.3.1 Estimation

The parameters of HMMs can be determined by the Baum-Welch estimation [35]—
a case of generalised Expectation Maximisation (EM). If the ML estimates of the
means and covariances per state s are to be computed, one has to take into account
that each observation vector x contributes to the parameters of a state. This comes,
as the overall probability of an observation bases on the summation of all possible
state sequences. Thus, the Baum-Welch estimation assigns each observation to each
state in proportion to the state probability at the observation of the respective feature
vectors. With Ls,t as the probability to be in state s at time step t , the Baum-Welch
estimation for the means and covariances of a single Gaussian PDF is obtained as
(the hat symbol marks estimated parameters in the following equations):

μ̂
s

=
∑T

t=1 Ls,t x t∑T
t=1 Ls,t

(7.56)

̂s =
∑T

t=1 Ls,t (xt − μ
s
)(xt − μ

s
)T

∑T
t=1 Ls,t

. (7.57)

The ‘up-mixing’ to several mixture components is reached in a simple way by con-
sidering the mixture components as sub-states. In these sub-states, the state transition
probabilities correspond to the mixture weights. The state transition probabilities are
estimated by the relative frequencies

â j,k = A j,k∑S
s=1 A j,s

, (7.58)

where A j,k denotes the number of transitions from state j to state k, and S denotes
the number of states of the HMM.

For the computation of the probability Ls,t the forward-backward algorithm is
applied. The ‘partial’ forward probability αs(t) for a HMM that represents the class
i is defined as:

αs(t) = P(x1, . . . , xt , st = s|i). (7.59)

This can be interpreted as the joint probability of the observation of the first t
feature vectors and being in state s at time step t . The following recursion allows
for an efficient computation of the forward probability, where S is the number of
emitting states:



7.3 Dynamic Learning Algorithms 121

αs(t) =
[ S∑

j=1

α j (t − 1)a j,s

]
bs(xt ) (7.60)

The according backward probability represents the joint probability of the obser-
vation from time step t + 1 to T :

βs(t) = P(xt+1, . . . , xT |st = s, i). (7.61)

It can be determined by the recursion:

β j (t) =
S∑

s=1

a j,sbs(xt+1)βs(t + 1). (7.62)

To compute the probability to be in a state at a given time step, one has to multiply
the forward and backward probabilities:

P(X , st = s|i) = αs(t) · βs(t). (7.63)

By that, Lst can be determined by:

Lst = P(st = s|X , i) = P(X , st = s|i)
p(X |i) = 1

p(X |i) · αs(t) · βs(t). (7.64)

Assuming the last state S at the moment in time of the last observation xT needs to
be taken, the probability P(X |Mt ) equalsαS(T ). By that, the Baum-Welch estimation
can be executed as described.

The Viterbi algorithm is usually applied in the recognition phase. It is similar to
the forward probability. However, the summation is replaced by a maximum search
to allow for the following forward recursion:

φs(t) = max
j

{φ j (t − 1)a j,s}bs(xt ), (7.65)

where φs(t) is the ML probability of the observation of the vectors x1 to xt and being
in state s at time step t for a given HMM representing class i . Thus, the estimated
ML probability P̂(X |i) equals φS(T ).

7.3.2 Hierarchical Decoding

HMM are in particular suited for decoding, i.e., segmenting and recognising con-
tinuous audio streams. In addition, their probabilistic formulation allows for elegant
hierarchical analysis in order to unite knowledge at different levels as stated. Typical
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tasks include continuous speech recognition or chord labelling in music. Let S be
a ‘sequence’ such as a spoken sentence or musical phrase. Then, the sequence X
of T feature vectors stems from the phrase S [36]. The classifier now provides an
estimate Ŝ for the sequence aiming at the best match with the actual sequence S.
According to Bayes’ decision rule a decision is optimal if the classifier picks the
class which—based on the current observation—has the highest probability. For the
optimal decision it thus needs to hold:

p(Ŝ|X) = max
S j

p(S j |X), (7.66)

where S j are the possible observed sequences. It is thus required to determine the
probability for all possible sequences S j . As in practice it is hardly possible to
determine these, Bayes’ law is applied for re-formulating as follows:

p(S j |X) = p(X |S j )
p(S j )

p(X)
(7.67)

As the probability p(X) depends only on the feature vector series X and thus is
independent of S j , it can be neglected within the maximum search over all sequences
S j :

p(X |S j )︸ ︷︷ ︸
AM

· p(S j )︸ ︷︷ ︸
LM

!= max, (7.68)

where the AM and LM represent the acoustics and semantics or syntax, and can be
modelled by the sequence of audio events—in the example of continuous speech
recognition these would be words, in the case of chord recognition, these would be
the chords. In order to weight the influence of the LM, an exponential factor Λ—the
so-called LM scaling factor—can additionally be introduced leading to:

p(Ŝ|X) = max
S j

p(X |S j ) · p(S j )
Λ. (7.69)

The LM scaling factor is usually determined empirically or can be learnt in semi-
supervised manner [37] and is often in the range of 10 ± 5.

The sequence that maximises the expression is output as best estimation Ŝ:

Ŝ = arg maxS∈U p(X |S) · p(S)Λ, (7.70)

where U represents all allowed sequences. Let us now assume that every sequence S j

is a sequence of audio events a1, a2, a3, . . . , aA. In the following a single sequence
S j is highlighted. For this sequence then holds:

p(S j ) = p(a1, a2, . . . , aA) (7.71)
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If we further assume that the acoustic realisations of the audio events are inde-
pendent of each other, the audio events can be modelled individually:

p(X |S j ) = p(x1, . . . , xi )p(xi+1, . . . , x j ) . . . p(xk+1, . . . , x A) (7.72)

It is assumed that these audio events occur without pauses and pauses are treated
as audio events. Note that the audio event boundaries i, j, . . . , k and audio event
number A are unknown and need to be determined by the classifier.

In the same way each audio event can be constructed by a sequence of audio
sub-events (ASE) one level lower in hierarchy again assuming independence. In the
case of speech these could be phonemes, triphones, or syllables, etc. In the case of
chord arpeggios, these could be note events. If the ASE are modelled by HMM, the
Viterbi algorithm can be applied on all three layers [36]: for the search of the state
sequence within the HMMs, for the sequence of the individual ASE HMMs in each
audio event, and for the sequence of the audio events, i.e., Ŝ .

At the audio event transitions the LM can be applied to model higher level infor-
mation by transition probabilities [38]. These can for example be N-grams that model
the conditional probability of a sequence of consecutive audio events, e.g., two or
three. The Viterbi path determines the optimal path through all layers and by that
the optimal sequence recognition with the optimal sequence of audio events—for an
illustrative example see 7.13 where an according ‘Trellis’ is shown [32].

If the number of audio events—the ‘vocabulary’ size—is very large, the Viterbi
search can become very computationally demanding and thus slow. Though at time
step t only a single column needs to be analysed in the Trellis diagram (cf. Fig. 7.13),
all emission probabilities in all states for all ASE in all audio events need to be com-
puted. In the case of large vocabulary continuous speech recognition (LVCSR) this
may easily require computation of more than 100 000 normal distributions in 10 ms
[36]. One can thus make use of the fact that usually many paths in the Trellis are not
promising in the sense that they lead to the overall best path, which is searched for.
The ‘beam search’ thus prunes these candidates accepting a sub-optimal solution
(usually less then one percentage point increase in error probability) at consider-
able speed-up and reduced memory consumption. This is reached by a smart list
management in five consecutive steps [39]:

First, at time step t a list of all active states is set-up. This contains all the points
in the Trellis diagram whose validation exceeds a given threshold. Each element in
the list is stored by the audio event number, the ASE number, the state number, and
its validation.

Then, from this list all possible subsequent states are computed that can be reached
by the Viterbi path-diagram. To this end, the path diagram is applied in forward
direction by overwriting the place-holders in the transition from (t − 1) to (t) each
according to higher validation. The algorithm works in a recursive manner as usual
and the effect is the same as when applying the path diagrams as in the usual case in
backward direction.

Next, the list of subsequent states is reduced by deleting those states below the
threshold—this is the actual pruning. This threshold is best constantly adapted to the
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Fig. 7.13 Viterbi search of the optimal audio event sequence, Trellis diagram for the hierarchical
recognition of audio events that consist of audio sub-events (ASE). The backtracking path is shown
over time, and squares represent feature vector observations. HMMs (one per ASE) are shown
schematically in Bakis topology. After backtracking the sequence of audio events 2, 1, 3 is recognised

current step in time. By that, the ‘beam width’ is broadened or narrowed according
to the validation of the concurring paths’ ascent or decline. This width is decisive for
the trade-off between higher accuracy (broadened width) and higher speed (narrowed
width).

Subsequently, at audio event transitions the value of the LM is added in the
computation and it is jumped to the first state of the first model of the new audio
event. In addition the required back-tracking information is stored.

Finally, the best audio event sequence is obtained at its end by the usual back-
tracking, and the recognised audio events and their boundaries are output.

In practical applications, this particularly efficient search algorithm can reach
reductions of the number of states to be computed of 1:1 000 [36]. The overall
approach integrates knowledge of information on different levels in hierarchy to
avoid early wrong decisions.

7.4 Ensemble Learning

Up to now, a number of learning algorithms was presented. In order to benefit from
diverse advantages of these, one can aim at a synergistic heterogeneous combina-
tion of these. Alternatively, or in addition, homogeneous combination of the same
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learning algorithms, but instantiated differently, can help overcome training instabil-
ity [40]. Examples of training unstable classifiers include ANNs, DTs or rule-based
approaches. Overall, such combinations are known as ‘ensembles’ or ‘committees’
of learning algorithms. Owing to the increased computation effort, often so-called
‘weak’ classifiers are preferred in the construction of ensembles.

The aim is to reach a minimum mean square error (MSE) E of the algorithm. If
the MSE is interpreted as expectation value E over all instances’ feature vectors x ,
one obtains:

E = E{(ŷ − y)2}
= Var{ŷ − y} + E{ŷ − y}2

= Var{ŷ} + E{ŷ − y}2, (7.73)

where ŷ is the output of the learning algorithm and y is the target output.
The term E{ŷ − y}2 is known as square bias. It resembles the systematic deviation

of the learning algorithm from the target. Var(ŷ) is the variance of the output of the
learning algorithm. For the minimisation of E one thus has to ideally reduce bias and
variance. However, in practice, mostly only one of these two is significantly reduced
in the majority of ensemble methods.

The task is thus now to construct ensembles and find a mechanism for the final
decision. A simple solution for this decision is majority voting—the example in
the ongoing for this type will be Bootstrap-Aggregating or Bagging for short that
mainly reduces the variance. In addition, one can introduce weights for individual
instances or results. This will be exemplified by Boosting, which in principle reduces
both—bias and variance—however, variance to a significantly lower extent [41].
More elaborately, but requiring additional training partitions and more computational
effort, one can also use a learning algorithm to train this weighting. To this end,
Stacking will be introduced and an efficient example of a Tandem architecture will
be shown.

7.4.1 Bootstrapping

Bagging [40] constructs ensembles of the same learning algorithm that is trained on
different sub-sets of the training set L. These sub-sets are sampled by sampling with
replacement. This is the actual bootstrapping process. The cardinality of the samples
is usually chosen as |L|. Following a sampling with replacement strategy, on average
63.2 % of the training instances are covered in each sub-set, whereas the remaining
percentage consists of duplicates. A variant that ensures that all samples are contained
in each sub-set is called Wagging. The final decision is made by unweighted majority
vote over the ‘class votes’ per classifier. As for regression, the mean over the results
of the re-instantiated instances of the regressor is computed as final decision.
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Boosting or Arcing [42] introduces a weighting for the voting (or averaging)
process. Weights are chosen indirectly proportional to the error probability in order
to emphasise the ‘difficult cases’ [43]. An option of realising weighting is to sam-
ple these instances repeatedly according to the weight. By that, the construction of
ensembles follows an iterative procedure wherein the observed error probabilities
are chosen by individual learning algorithms. Usually, one obtains better results as
in Bagging, however, downgrades may also occur [5]. In any case, the computational
effort is higher owing to the iterative procedure. One of the most popular Boosting
algorithms is Adaptive Boosting, or AdaBoost for short. Adaptive refers to the itera-
tive focus on the cases producing errors. Let xl , l = 1, . . . , L be the feature vectors
in the training set L, L = |L|. As for SVMs or DTs, the original AdaBoost algorithm
is suited only for two classes. The variant AdaBoost.M1, however, is an extension
suited multiple classes M . By that, the class assignment for the instance xl is given
by yl ∈ {1, . . . , M}. To each instance xl ∈ L weights wl are assigned. These are all
initialised as wl = 1/L and are—as indicated—considered during computation of a
weighted error measure and the training of the classifier. The core of the algorithm
is now the determination of the weights βt for the classifier with index t , where βt

depends on the error probability εt of the classifier.
Given the training set L and a number T of time steps t = 1, . . . , T the following

steps are carried out:

1. A classifier with the decision ŷt : X → {1, . . . , M} is trained on L considering
the weights wl . As indicated, this can be realised by sampling a sub-set according
to the weights as probability distribution.

2. The weighted classification error εt is computed:

εt =
∑

l:ŷt,l �=yl

wl . (7.74)

3. If εt > 1/2, then repeat steps 1–3; terminate after N repetitions.
4. Else compute classifier βt as

βt =
{

10−10 if εt = 0
εt

1−εt
else , (7.75)

where the constant 10−10 is arbitrarily chosen to avoid division by zero in
Eq. (7.77) below.

5. If εt �= 0, then the new weights w
′
l as used in the following iterations result in:

w
′
l =

{
wlβt if ŷl = yl

wl else.
(7.76)

6. The weights w
′
l are normalised for their sum to be one.

The decision ŷAda of the ensemble classifier is then
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ŷAda(x) = arg maxy

∑

t :ŷt (x)=y

log
1

βt
. (7.77)

Looking at Eq. (7.77), the decisions of the classifiers considered as ‘strong’—i.e.,
those with a small βt —is weighted higher than those of the classifiers accordingly
considered as ‘weak’. In particular, classifiers with a recognition rate merely above
chance level will benefit most form boosting. If εt ≤ 1/2 for t = 1, . . . , T , one can
show that for the average error εAda of ŷAda holds [43]:

εAda ≤ exp

(
−2

T∑

t=1

γ 2
t

)
, γt = 1/2 − εt . (7.78)

The condition εt ≤ 1/2 can always be met for a two-class problem, however, for
multi-class problems this is a strong limitation for weak classifiers. This can be
overcome by reducing multi-class problems to multiple binary decisions such as
one-versus-all, one-versus-one, half-versus-half or other groupings. An alternative
is provided by the AdaBoost.M2 algorithm which integrates this formulation of
multi-class problems by binary decisions—for details refer to [43].

A downside of Boosting is its susceptibility to noisy data, as mis-classified
instances owing to noise may be classified correctly by chance, but are still assigned
a high weight. This is for example given for problems with uncertain ground truth.
Further, a high number of learning instances is usually required.

To benefit from the better minimisation of variance as in Bagging and the reduc-
tion of bias as in Boosting, these two can be combined sequentially: Usually, sub-
ensembles built by AdaBoost are extended by Bagging to turn sub-ensembles into
ensembles. This is often done with Wagging instead of Bagging and known as Multi-
Boosting [41]—often the most efficient approach. The parameters of choice are the
number and size of sub-ensembles. Usually K sub-ensembles of size K are built,
resulting in K 2 instantiations of the classifier. A parallel combination is, however,
not possible owing to the diverse weighting strategies of these two algorithms.

7.4.2 Meta-Learning

The principle of meta-learning is to unite strengths of several heterogeneous learn-
ing algorithms—now usually on the same training set. In Stacking [44], a higher
level learning algorithm—the meta learner—learns literally speaking ‘whom to trust
when’: After seeing the decisions of each lower level learning algorithm’s—the base
learner’s— result, it comes to the final decision [45]. The meta-level is also known
as level-1 and the base-level as level-0— this holds also for the type of data on these
levels. On level-1, only pre-decisions are seen as input data. On level-0, the original
data is seen. In order to train the level-1 learning algorithm, a J -fold cross-validation
is needed (cf. Sect. 7.5.1) to assure disjoint data from training of the level-0 learning
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algorithms. The choice of learning algorithms for these two levels is often based
on experience and exploration, as a full comprehension is still missing in the liter-
ature. However, statistical classifiers, DTs, and SVMs as introduced previously can
be reasonably combined on level-0 [46]. In contrast, these seem to be less suited on
level-1, where mostly Multiple Linear Regression (MLR) is chosen. MLR is different
from simple linear regression only by use of multiple input variables. In the case of
regression, confidences Pk,i (x) ∈ [0; 1] are assumed per base learner k = 1, . . . , K ,
and each class i = 1, . . . , M . If the level-0 classifier k only decides for exactly one
class i without provision of its confidence, i.e., ŷk = i , the level-1 decision by MLR
is as follows:

Pk,i (x) =
{

0 if ŷk(x) �= i
1 else.

(7.79)

Applying non-negative weighting coefficients αk,i per class and learner, the com-
putation of the MLR per class i is obtained by:

MLRi (x) =
K∑

k=1

αk,i Pk,i (x). (7.80)

During the recognition phase the class i with the highest MLRi (x) is chosen for
an observed unknown feature vector x , i.e., the decision ŷ is:

ŷ = arg maxi MLRi (x). (7.81)

A high value of αk,i thus shows a high confidence in the performance of learner
k for the determination of class i [40]. For the determination of the coefficients αk,i

the Lawson- and Hanson method of the least squares can be used, which will not
be described here. The optimisation problem to be solved results per each learner
k = 1, . . . , K in the minimisation of the following expression, in which j represents
the index of the training sub-set of the J -fold cross-validation:

J∑

j=1

L∑

l=1

(yl −
M∑

i=1

αk,i Pk,i, j (x))2. (7.82)

In [45] it is shown that the meta-classification on the basis of the actual confidences
of the level-0 learners results in an improvement in the majority of cases as opposed
to Eq. (7.79). This is known as StackingC—short for Stacking with Confidences [46].
In [45] a description on obtaining confidence values for diverse learners is given.

Simpler alternatives use either an unweighted majority vote or one based on the
mean confidences. This can also be applied in the case of regression.

Overall, ensemble learning linearly increases the computation effort. Whereas
Bagging and Stacking methods can be distributed on several CPUs for parallelisation,
this is not possible in the iterative Boosting process. The lowest error rate is usually
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obtained by StackingC, which, however, requires an extra training set for the meta-
learner. It is further also suited for ‘strong’ learners. Finally, one can integrate Bagging
and Boosting in Stacking.

7.4.3 Tandem Learning

The strengths of diverse learning algorithms can also be combined in sequential man-
ner. An example is Tandem learning, here exemplified by a static learner that incor-
porates LSTM and discriminative learning abilities—namely a BLSTM RNN—,
with a dynamic learner —a multi-stream HMM—that has warping abilities and
‘sees’ the BLSTM predictions and the original feature vectors. The structure of this
multi-stream decoder can be seen in Fig. 7.14: st and xt represent the HMM state
and the audio feature vector, respectively, while bt corresponds to the discrete frame-
level prediction of the BLSTM network (shaded nodes). Squares denote observed
nodes and white circles represent hidden nodes. In every time frame t the HMM
uses two (not statistically) ‘independent’ observations: The audio features xt and the
BLSTM prediction feature bt . The vector xt also serves as input for the BLSTM,
whereas the size of the BLSTM input layer it corresponds to the dimensionality of
the audio feature vector. The vector ot contains one probability score for each of the
P different audio target classes at each time step. bt is the index of the most likely
class:

Fig. 7.14 Architecture of the
multi-stream BLSTM-HMM
decoder: st : HMM state,
xt : acoustic feature vector,
bt : BLSTM class prediction
feature, it , ot , h f,t /hb,t : input,
output, and hidden nodes of
the BLSTM network; squares
correspond to observed nodes,
white circles correspond to
hidden nodes, shaded circles
represent the BLSTM network

HMM

HMM stream 1

BLSTM RNN

HMM stream 2

it-1

hb,t-1

ot-1

it

hb,t

ot

hb,t+1

hf,t-1 hf,t hf,t+1

st st+1st-1

xt-1 xt xt+1

bt-1 bt bt+1

it+1

ot+1
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bt = arg max j (ot,1, . . . , ot, j , . . . , ot,P ) (7.83)

In every time step the BLSTM generates a class prediction according to Eq. (7.83)
and the HMM models x1:T and b1:T as two independent data streams. With y

t
=

[xt ; bt ] being the joint feature vector consisting of continuous audio features and
discrete BLSTM observations and the variable a denoting the stream weight of
the first stream (i.e., the audio feature stream), the multi-stream HMM emission
probability while being in a certain state st can be written as

p(y
t
|st ) =

[ M∑

m=1

cst mN (xt ;μ
st m

, st m)

]a

× p(bt |st )
2−a . (7.84)

Thus, the continuous audio feature observations are modelled via a mixture of
M Gaussians per state while the BLSTM prediction is modelled using a discrete
probability distribution p(bt |st ). The index m denotes the mixture component, cst m

is the weight of the m’th Gaussian associated with state st , and N (·;μ,) represents
a multivariate Gaussian distribution with mean vector μ and covariance matrix .
The distribution p(bt |st ) is trained to model typical class confusions that occur in
the BLSTM network.

7.5 Evaluation

7.5.1 Partitioning and Balancing

We now deal with typical ways of evaluating audio recognition systems’ performance.
We thereby focus on measurements that judge the reliability of the recognition result
as these are of major interest in the extensive body of literature on intelligent speech,
music, and sound analysis. However, as shown in the requirements section, a number
of further aspects could be considered, such as real-time ability.

Evaluation should ideally be based on test partition(s) of suited audio databases
that have not been ‘seen’ during system optimisation. Such optimisation includes
data-based tuning of any steps in the chain of audio analysis including enhancement,
feature extraction and normalisation, feature selection, parameter selection for the
learning algorithm, etc. Thus, besides a training partition, a ‘development’ partition
is needed for the above named optimisation steps. During the final system training,
however, training and development partitions may be united in order to provide
more learning material to the system. In general, one wishes all partitions to be
somewhat large. For test, this is needed in order to provide significant results. Popular
‘percentage splits’ are thus 40 %:30 %:30 % for training, development, and test. In
case of very large databases, as often given in ASR, the test partition is often chosen
smaller, as around 10 %.
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A solution to use as much data as possible for all partitions is the cross-validation.
The overall corpus is thereby partitioned into J sets of equal size. These should be
stratified, i.e., each set should show the same distribution of instances among classes
or the continuum in case of numeric labels. If this is given, one speaks of J -fold
stratified cross-validation (SCV). The evaluation is repeated J times with changing
‘role’ of the partitions. In each cycle i = 1, . . . , J partition i can for example be
used as test set and the remaining ones are united for training. After J cycles, each
partition has then been used for testing once, and at the same time the maximum
amount of training data was provided in each cycle. The final result is then usually
provided as mean of the cycles. In addition, one can provide the standard deviation
or similar measures to provide an impression on the ‘stability’ of the alteration of the
learning material and the dependence on the test partition. If one needs an additional
development partition, this could, e.g., be partition (i + 1) mod J . Popular values
for J are three—this allows for transparent swapping of train, develop, and test sets
without too high computational effort—or ten, which is reasonable if the database
is very small, and too little training data would be provided by a third of the data. In
general, one usually obtains better results with increasing J , as increasingly more
training material is provided. This is, however, non-linear. In the extreme case, a
single instance is left out at each cycle. This is known as leave-one-out (LOO).

A number of further criteria need to be respected for partitioning of a database:
For example, independence of speakers, interprets, or sound sources, i.e., in the test
partition the audio should be as independent as possible depending on the task of
interest. In the case of cyclic iteration, this leads to a variant of LOO, where all
instances of one aspect are clustered and left out at a time. An example is Leave
One Speaker Out (LOSO) in intelligent speech analysis. Next, one wishes to keep
good balance of all factors throughout the partitions. In particular the development
partition should be similar in its characteristics to the test one in order to optimise
the system in the right way. Next, partitioning should ideally be transparent and easy
to reproduce. Thus, random partitioning can be a sub-optimal choice, as one has
to provide the instance list or random seed and random function in order to allow
for others to reproduce the partitions. As evaluation results depend on the (optimal)
partitioning, one should make the choice also straight forward, such as by partitioning
by sub-sequent speaker or song ID or similar.

In many cases, instances will be highly imbalanced across classes or the number
scale. This can lead to preference of the ‘majority class’ which is reasonable if one
wants to recognise as many instances correctly as possible. However, this comes
at the cost of the under-represented class, and in extreme cases, such classes are
completely ignored. If it is thus of higher importance to have a good balance in the
recognition, balancing of the training set instances is advisable. Note that this is not
required for all learning algorithms, as many can explicitly or implicitly model the
class priors in the decision process. An example is the maximum a-posteriori (MAP)
strategy for statistic learners such as HMMs, where the class priors are by intention
multiplied with the model’s generation probability to favour the majority class. As
opposed to this, the maximum likelihood estimation (MLE) principle does not use
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priors. For other learning algorithms shown so far, such as SVMs or DTs, this is not
directly possible and balancing of instances can be the preferred option.

Three different strategies are usually employed to balance the instances in the
training set [47–49]: The first is down-sampling, in which instances from the over-
represented classes are randomly removed until each class contains the same number
of instances. This procedure usually withdraws a lot of instances and with them
valuable information, especially in highly unbalanced situations: It always outputs
a training dataset size equal to the number of classes multiplied with number of
instances in the class with least instances. In highly unbalanced experiments this
procedure thus leads to a pathologically small training set. The second method used
is up-sampling, in which instances from the classes with proportionally low numbers
of instances are duplicated to reach a more balanced class distribution. This way no
instance is removed from the training set and all information can contribute to the
trained classifier. To not falsify the classification results, it is important that only the
training instances are upsampled. Naturally, one never balances test set instances.
Likewise, replacement of instances is allowed so that equal class distribution is also
achievable in highly unbalanced experiments. At the same time, it is ensured that
each original instance is preserved in the training material. A mixed up-, and down-
sampling strategy can be also be followed where instances from the majority class
are deleted and from the minority class(es) are multiplied. This compromise keeps
the overall number of instances at reasonable size, as with sheer up-sampling the
problem of learning may become computationally too expensive. A third variant is
assignment of different weighting of instances for the computation of the classifier
objective function. In practice, this is often actually often solved by classifier internal
up-sampling, and may lead to less stable results, while not providing any advantage
in our respect, as obtainable performances are not higher, which is why this variant is
not further pursued in this book. However, this may be well of interest in an on-line
system which needs to be adapted, e.g., when a user labels a new song to adapt his
audio-playing device. The latter are known as ‘cost-sensitive’ approaches where one
‘punishes’ confusions that should not occur in the case of discrete classes.

The question remains, how to pick the instances that are multiplied in the training
set or deleted from it. While one can inject random into the selection process, this
contradicts the above requested transparency and reproducibility of experiments by
others. An easy strategy that does, however, not provide perfect balance, is thus the
use of integer up-sampling factors for the minority classes. In addition, there are
specialised algorithms that attempt to balance instances in an intelligent way. The
idea is to up- or downsample those instances which are of particular relevance, as
they are the ‘hard’ and ‘interesting’ cases and should not be emphasised on or at least
not lost. An example of such an approach is the Synthetic Minority Over-sampling
Technique [50].
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7.5.2 Evaluation Measures

In the following, evaluation criteria for classifiers are considered at first. These will be
followed by such for regressors where a continuous relation between the output of the
learning algorithm and the target needs to be evaluated. In the case of classification,
however, we need to compare discrete predicted class labels and compare these with
the ground truth target. For simplification— without limitation of the general case—
let the rejection class be assumed to be inherently modelled, i.e., rejection is one
of the target classes. By that, we can consider the classification task as a mapping
X → {1, . . . , C}, x 
→ ŷ.

Evaluation criteria are defined as related to the test set’s T instances, and the
individual instances are each assigned to exactly one target class i ∈ {1, . . . , C}:

T =
C⋃

i=1

Ti =
C⋃

i=1

{xi,n | n = 1, . . . , Ti }, (7.85)

where Ti is the number of instances in the test set that belong to class i . By that, the test
set has the size |T | = ∑C

i=1 Ti . Note, however, that attempts exist to find evaluation
criteria where several classes may be assigned to one instance. This requirement is
for example given in the case of the classification of a speaker’s emotion, where one
is not only ‘surprised’, but e.g., ‘happily surprised’ or ‘angrily surprised’ which led
to the introduction of soft emotion profiles [51]. Similarly, music genre or ballroom
dance style are often ambiguous in music analysis, cf. musical pieces that allow for
either Rhumba or Foxtrott as choice of dance.

We will first consider evaluation measures for classification in the general case of
two or more classes (i.e., M ≥ 2) [1]. The most common measure is the probability
that an instance of the test set is classified correctly. This is usually referred to as
(weighted) accuracy WA, or weighted average recall or recognition rate.

WA = # correctly classified test instances

# test instances

=
∑M

i=1

∣∣{x ∈ Ti | ŷ = i
}∣∣

|T | . (7.86)

If this rate is given per class i , one speaks of the class-specific recall REi :

REi =
∣∣{x ∈ Ti | ŷ = i

}∣∣
Ti

. (7.87)

With pi = Ti/|T | as the prior probability of class i in the test set further holds:

WA =
M∑

i=1

pi REi . (7.88)
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The weighting by pi in Eq. (7.88) leads to the name weighted accuracy. A spe-
cial case of the calculation of accuracy is the word accuracy as encountered in the
recognition of continuous speech. This accuracy is calculated by consideration of
three types of errors: deletion, insertion, and substitution of words. With D, I , and
S being the numbers for each type of these errors and N being the number of words
in the test set, the word accuracy WAwords is obtained by:

WAwords = N − D − I − S

N
. (7.89)

Note that, N − (S + D) would be the number of correctly recognised words.
Further, dynamic alignment of the recogniser output string and the reference tran-
scription is needed to decide on the minimal number of errors, as a substitution could
be counted as a deletion plus an insertion. This is also known as shortest Levenshtein
distance. As word accuracy is also a type of WA—the accuracy depends on the fre-
quency of occurrence of a specific word in the test set—it is also referred to as WA
in the ongoing. However, from the context it will be clear that it is computed as word
accuracy.

If balance of instances among classes is (highly) unbalanced, one can prefer to
exchange the priors pi for all classes by the constant weight 1

M . This is known as
unweighted accuracy UA or unweighted average recall:

UA =
∑M

i=1 REi

M
. (7.90)

The numerator in Eq. (7.87) equals the number of instances in T , for which the
decision was correctly made for class i . This is the number of ‘true positives’ TPi as
opposed to the false positives FP for class i :

FPi = ∣∣{x ∈ T − Ti | ŷ = i
}∣∣ . (7.91)

With TP and FP we can define the precision PR:

PRi = TPi

TPi + FPi
. (7.92)

As increasing REi may come at the cost of decreasing PRi , as many instances are
assigned by mistake to class i , the wish for a measure that unites these two arises.
This is given by their harmonic mean, known as F1-measure (the subscript ‘1’ is used
for equal weighting of recall and precision—other common weights are doubling one
up, i.e., F2- or F1

2
-measure:

F1,i = 2
REi PRi

REi + PRi
. (7.93)
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Considering decisions against class i , one can further introduce ‘true negatives’
TNi and ‘false negatives’ FNi :

TNi = ∣∣{x ∈ T − Ti | ŷ �= i
}∣∣ , (7.94)

FNi = ∣∣{x ∈ Ti | ŷ �= i
}∣∣ . (7.95)

It is further of interest to investigate which classes are ‘confused’ with which. The
according ‘confusion matrix’ C = (ci, j ) thus has the entries:

ci, j = ∣∣{x ∈ Ti | ŷ = j
}∣∣ . (7.96)

This matrix C contains all named measures as follows:

WA = tr(C)

|T | , (7.97)

REi = ci,i

Ti
= ci,i∑M

j=1 ci, j
, (7.98)

PRi = ci,i∑M
j=1 c j,i

, (7.99)

TPi = ci,i , (7.100)

FPi =
∑

i �= j

c j,i . (7.101)

In the case of binary decisions, the term TP1/T1 corresponds to the detection
probability or ‘true positive rate’ (TPR), and FP1/T2 to false alarm probability or
‘false positive rate’ (FPR). Graphical evaluation often makes use of the Receiver
Operating Characteristic (ROC, TPR vs. FPR) or its alternative, the Detection Error
Trade-off (DET, false negative rate vs. FPR) curve. Such a plot demands for multi-
ple evaluations of the learning algorithm’s model or knowledge of confidences per
instance in order to adjust a threshold for curve plotting. Popular measures to repre-
sent the plots in a single number are the ‘area under the curve’ (AUC) or the ‘equal
error rate’ (EER). In case of more than two classes, i.e., M > 2, these measures are
usually given as per one-versus-all.

We now shift to evaluation criteria for continuous value estimation, i.e., regression.
Again, these are defined as related to the test set’s T instances, and the individual
instances are now each assigned to a continuous value ŷ ∈ R. The test set has the
size |T |. In the case of regression, the common evaluation measure is the Pearson’s
correlation coefficient CC :

CC =
∑|T |

n=1

(
ŷn − ŷ

)
(yn − y)

√
∑|T |

n=1

(
ŷn − ŷ

)2 · ∑|T |
n=1 (yn − y)2

, (7.102)
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with the averages

ŷ = 1

|T |
|T |∑

n=1

ŷn, (7.103)

and

y = 1

|T |
|T |∑

n=1

yn . (7.104)

In addition, the the Mean Linear Error (MLE)—often referred to as Mean Absolute
Error MAE—can be given:

MAE = 1

|T |
|T |∑

n=1

|ŷn − yn|, (7.105)

MAE can be very intuitive, such as in the case of age determination in years of a
speaker. Then, the MAE would be the absolute error in years, by which the regressor
is mistaken ‘on average’. However, in case of tasks where relative difference is more
important than absolute numbers and the gold standard is less certain, such as for
likability of a speaker or interest of a speaker on a continuous scale, CC is usually
more representative and has a minimum and maximum independent of the task. CC is
thus written without a leading zero in this book for better readability. This is different
for MLE and MAE, as the number range varies.

As a general remark, it is important to note that all these evaluation measures
naturally depend on the choice of the test instances. Apart from that, meaningful
significance analyses should be considered as the difference between two results
also depends on the quantity of test instances [52, 53]. Frequently employed tests
contain, e.g., the one-sided z-test [54], which is the preferred choice in this book, and
the common level of 0.05 is the minimum requirement for the claim of significance.
Note that usually significance tests base on the independence assumption of tests
[55]. As a consequence, this would require different data-sets for testing. However,
as the test set is typically kept fixed in this field of research, the premise to reject the
null hypothesis is comparably strict [55].
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