
Chapter 12
Applications in Intelligent Sound Analysis

If you develop an ear for sounds that are musical it is like
developing an ego. You begin to refuse sounds that are not
musical and that way cut yourself off from a good deal of
experience.

—John Cage

Apart from the more specific types of sound considered so far—speech and music—
general sound can also carry relevant information. This is, however, a considerably
less researched field up to-date. Most prominent in this area are the tasks of acoustic
event detection (AED) and classification (AEC) [1] that can be subsumed under the
area of computational auditory scene analysis (CASA) [2]. For these tasks interna-
tional evaluation campaigns exist that have mostly seen HMM and SVM approaches
with various acoustic features [1]. Fields of application include media retrieval [3]
including affective content analysis [4] or human-machine and human-robot interac-
tion [5], animal vocalisation recognition [6], and monitoring of industrial processes
[7]. Mostly, closed-set recognition is addressed, i.e., training and testing classes are
the same. Recently, however, also open-set recognition is faced, the so-called novelty
detection [8, 9].

As before, examples of application have been chosen for illustration of obtainable
performances and methods employed. Three applications have been chosen to cover a
good variety of the above named use cases: Firstly, recognition of animal vocalisation
[10], then, acoustic event classification including unsupervised learning to exploit
the availability of sheer infinite amounts of sound on the Internet [11], and finally
prediction of the emotion evoked in human listeners of sound [12] in analogy to the
sections on speech and music.
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12.1 Animal Vocalisations

As a first example of application in more general sound analysis, we will consider
animal voices instead of human voices. The following application investigates the
recognition of animal vocalisations ‘in the wild’ [10].

In the field of bioacoustics, a multiplicity of approaches exists for classifying ani-
mal sounds, for example to monitor populations of certain species, such as whales
[13] or birds [14]. More recently, increasing efforts are invested in digitisation of
sound archives. Similarly as in the case of MIR, this demands for efficient index-
ing and retrieval methods. For example, in [15], an effective indexing algorithm for
animals with curve-like harmonic vocalisations, such as various species of birds,
was presented and evaluated on bird songs contained in the Animal Sound Archive
(“Tierstimmenarchiv”) of the Humboldt-University of Berlin [16]. This data set will
be referred to as ‘HU-ASA database’ in the ongoing. In the past, SVM-based static
classification using segment-wise functionals [17] (e.g., mean and standard devia-
tion) was proposed for animal sounds classification [18]. Alternatively, dynamic clas-
sification, e.g., by HMMs [19] or by suited neural networks [6] is reported successful
in the literature. Hence, we will consider SVMs, HMMs with different topologies,
and LSTM recurrent neural networks on the HU-ASA database in the ongoing.

12.1.1 HU-ASA Database

The evaluation database builds on the large HU-ASA database of animal vocali-
sations. It is annotated with the species and additional meta-data such as record-
ing conditions and the type of vocalisation for each audio file. 1 418 audio files
are available in MP3 encoding. These were obtained from the on-line archive.1

Per species, the audio files with (biological) class were automatically annotated
(e.g., Aves, Mammalia), order (e.g., Passeriformes, Primates), and family (e.g., Fel-
idae, Canidae) according to the Linnaean rank-based biological classification as
retrieved from Wikipedia.2 The majority of the HU-ASA’s instances consist of bird
(Aves) and mammal (Mammalia) sounds, as shown in Table 12.1. The class ‘Others’
include Sauropsida, Hexapoda, and recordings without automatic annotation, where
according information was missing in Wikipedia. The total audio duration is 20 423 s
(5 h 40 min 23 s). Amphibia, Insecta, and Reptilia were not included in the described
experiments given their sparseness (cf. Table 12.1).

Two tasks of practical interest were derived from the biological classification,
as shown in Table 12.2. The first (2-class) task aims at classification of songbirds
(Passeriformes) versus non-songbirds (Non-Passeriformes). Non-songbirds include
by number of instances the orders Anseriformes, Charadriiformes, Galliformes,
Psitacciformes, Gruiformes, and 24 other orders—often with sparse instances.

1 http://www.tierstimmenarchiv.de, accessed mid 2010.
2 http://www.wikipedia.org

http://www.tierstimmenarchiv.de
http://www.wikipedia.org
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Table 12.1 Number of instances, as well as min(imum), mean, max(imum), and total recording
length (�) of the audio files by the biological class of the species in the HU-ASA database

(Biological) Class # Instances Duration [s]
Min Mean Max Sum

Aves 868 2.4 14.8 64.7 12 210
Mammalia 487 1.0 14.7 37.7 6 954
Amphibia 27 1.8 19.6 65.9 529
Reptilia 7 11.2 22.5 39.6 157
Insecta 19 2.3 16.0 30.1 287
Other 10 133
Sum 1 418 20 423

Table 12.2 Distribution of
instances in the 2-class
(Passeriformes / Non-
Passeriformes) and 5-class
tasks as defined on the
HU-ASA database

Class # Instances

Passeriformes 282
Non-Passeriformes 586
Sum 868

Primates 90
Canidae 43
Felidae 62
Sum 1 063

The more complex 5-class task adds mammals (Mammalia) of the families Felidae
and Canidae, as well as the instances of the biological order Primates (cf. Table 12.2).
A particular challenge arises from the real-world nature of the database: vocalisations
of the same species often vary considerably, depending on the situation and stance
(i.e., aggression or warning calls), and age of the animals, from young to full-grown.
The recordings are further corrupted by background noises—even of other animal
species.

12.1.2 Methodology

Static classification by SVMs bases on linear kernel SVM. For dynamic classification,
two topologies of HMMs and LSTM RNNs are compared. A typical HMM topology
in audio (and general sequence) classification is a linear (left-right) layout: With N as
the number of states in total, state transitions are allowed from state i = 1, . . . , N −1
to states i and i + 1. However, animal vocalisations are often highly repetitive,
motivating the usage of a cyclic topology. In such a layout a transition from state N
to the first state is added. In the following experiments the number of states is fixed
to N = 8 basing on a series of evaluations.
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As for neural networks, e.g., a feedforward MLP was used for classifying animal
vocalisations in [6]. To enhance the neural network paradigm by extended memory
capabilities, LSTM networks are considered here with one hidden layer of 100 LSTM
memory cells. The size of the input and output layers was equal to the number of
features and classes to discriminate. Softmax functions were applied to the output
activations, and the resulting values were normalised to the sum one to provide
posterior class probabilities.

MFCCs 1–12 along with energy and their first (δ) and second order (δδ) regres-
sion coefficients were chosen as features for frame-level classification due to their
suitability across a multiplicity of Intelligent Audio Analysis tasks [17–19]. In [19],
these features were found superior to the MPEG-7 spectral projection features as used
in [15] for sound classification with HMMs. The overall 39-dimensional feature set
will be denoted by ‘MFCC’.

For static classification of larger audio chunks, functionals are applied. In [17],
mean and standard deviation were proposed. The functionals considered in the ongo-
ing also include extremes and higher-order moments [20]. Additional LLDs for
include HNR, pitch and ZCR by using openSMILE’s (cf. Sect. 6.5, [21]) INTER-
SPEECH 2009 Emotion Challenge set [20], as described in Table A.1. This choice
could allow to discriminate between animals with voiced and unvoiced sounds. The
functionals of the 32 LLD will be denoted by ‘IS09-func’. For better comparability
of classifier paradigms less dependent of the acoustic features used, the function-
als listed in Table A.1 were also computed only from the MFCCs 1–12 along with
energy; this feature set will be called ‘MFCC-func’. The IS09-func and MFCC-func
feature sets consist of 384 and 312 features, respectively.

12.1.3 Performance

Ten-fold SCV is used for evaluation with partitioning by the Weka toolkit [22] with
the default random seed of 0 for easy reproducibility. 10 % of the data were used
for evaluation, and 10 % for validation whenever needed, e.g., for neural network
training. HMMs were trained by the EM algorithm: Gaussian mixtures were consec-
utively added and re-estimated after six initial iterations until 16 Gaussian mixtures
were reached for each state. For network training, supervised learning with early
stopping and MVN was used. The network weights were initialised randomly from a
Gaussian distribution (μ = 0, σ = 0.1). Then, each training sequence was presented
frame by frame. For improved generalisation ability, the order of the input sequences
was determined randomly, and Gaussian noise (μ = 0, σ = 0.3) was added to the
input activations. The network weights were iteratively updated by resilient propaga-
tion. Further, the performance (in terms of WA) on the validation set was evaluated
after each training epoch. Training was stopped in case of no improvement over
20 epochs or after a total of 100 training epochs. Then, the network with the best
performance on the validation set was selected as the final network. SVMs were
trained using SMO and a complexity constant of 0.1 on MVN processed features.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 12.3 Results of the 2-class and 5-class tasks of the HU-ASA database with various classifiers
and feature sets

Classifier [%] 2-class 5-class
Features UA WA UA WA

SVM IS09-func 69.0 72.0 46.4 57.2
SVM MFCC-func 73.9 75.6 42.2 56.0
Left-right HMM MFCC 79.0 79.8 47.3 63.4
cyclic HMM MFCC 79.0 79.6 49.5 64.0
LSTM MFCC 80.0 81.3 41.1 62.3

The training set was up-sampled for each fold for the LSTM-RNN and SVM classi-
fiers. This was done by copying training instances of minority classes until a near-
uniform class distribution is achieved. This step was not necessary in the case of
HMMs, as each class is learnt by an individual model, and classification is per-
formed with HMMs and the maximum likelihood criterion, i.e., class priors, were
not used in the decision rule. For classification with the LSTM RNN each sequence
in the test set was presented frame by frame to the input layer, and each frame was
assigned to the class with the highest probability as indicated by the output layer.
Then, a majority vote over the frame-level decisions was made to label the sequence.

Table 12.3 depicts results by UA and WA for the 2-class and 5-class tasks of the
HU-ASA database, as defined in Table 12.2. Always deciding for the majority class
leads to WA and UA of 55.1 % and 20.0 % (5-class task), and 67.5 % and 50.0 %
(2-class task).

In SVM classification on the 2-class task, the MFCC-func feature set outperforms
the IS09-func set in terms of WA by 3.6 % absolute, being significant at the 5 % level
(one-tailed z-test). However, the IS09-func feature leads to a significantly higher UA
(4.4 % absolute improvement) for the 5-class task. Both types of HMMs outperform
static classification by SVM. Further, the cyclic HMM is superior to the left-right
HMM justifying the made assumption of partly quasi-periodic vocalisations. Yet,
this observation is not significant on the 5 % level. To explain this, the estimated
‘cycle probability’ aN ,1 of the HMMs is shown for each class, on average across the
ten folds, in Table 12.4. There, the cycle probabilities are around 28 % in the models
for songbirds (Passeriformes) and primates, but below 10 % for Felidae.

The additional LLDs from Table A.1 as input features for the HMMs could not
improve the above results. The impact of a varying number of Gaussian mixtures

Table 12.4 Cycle
probabilities aN ,1 after
training of the cyclic HMMs
for comparison among each
other given for each class in
the 5-class task, averaged
over ten folds

Class aN ,1 [%]

Passeriformes 28.1
Non-Passeriformes 17.2
Canidae 14.2
Felidae 9.9
Primates 28.0
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(a) (b)

Fig. 12.1 UA and WA on the HU-ASA database by 8-state HMMs with left-right and cyclic
topologies, depending on the number of mixtures per state. Solid line: WA, dashed line: UA [10]
a left-right HMM, 2-class task, b cyclic HMM, 2-class task

for the HMMs is selectively shown in Fig. 12.1 for the 2-class task. Interestingly,
the cyclic HMM performs better than the left-right HMM for a small numbers of
mixtures. Further, the UA on the 5-class task seems to be largely unaffected by the
number of mixtures. This is surprising given that, ML classification partially compen-
sates for the unequal class distribution. LSTM RNNs outperform—not significantly
(p > 5 %)—the HMMs on the 2-class task. Yet, they have the lowest UA for the
5-class task. Additional variation of the network layout may change this behaviour.
However, the lower performance for the 5-class is likely partly owing to the sparse-
ness of the non-bird classes as LSTM RNN have a comparably high demand of
training data.

12.1.4 Summary

In this section, an evaluation framework was shown for a challenging real-world
database of animal vocalisations. The performances of static and dynamic classifiers,
including LSTM networks, were compared. Dynamic classification provided higher
accuracy. In the comparison of ‘standard’ MFCC features with an enhanced feature
set containing pitch and voicing information no clear preference could be determined.
Further evaluations in this direction are needed to reveal the relevance of different
LLD and functional types for the classification of animal vocalisations.

From a classifier point of view, a hierarchical classification framework, e.g., by
combining the songbird / non-songbird classifier with a bird song recogniser could
be attempted.
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12.2 Acoustic Events

In the next application of sound analysis, baseline results for the recognition of sound
events are given. At the same time, this shall serve as an example of the usage of
unlabelled data—sound event archives exist in masses on the Internet and can be
exploited in semi-supervised learning even if no labels are given [11].

Recently, there is increasing interest in sound event classification in the field of
acoustic signal analysis. This comes, apart from interest for application in multimedia
search based on sound, as it is one of the key components to acoustically analyse
environments, e.g., in surveillance [23, 24], monitoring of people in need of care,
or detecting, and classifying sources of interest in real time [25]. There is also a
benefit for humanoid and general robots [26] if they are able to better understand
their acoustic environment. Finally, speech and music enhancement may be improved
given a reliable identification of disturbing sound events. So far, most of research
efforts in this direction base on rather prototypical and small databases with less than
or around 1 000 instances (e.g., as in [24, 27–32]), or a few thousands of instances
[26, 32, 33].

In this section, we will focus on sound events classification in a large scale
database, covering sound classes that reach from nature (such as animals) over
human beings (i.e., people) to artificial sounds (i.e., office, musical instruments,
noise makers, and vehicles) as was introduced in Sect. 5.3.3.

Semi-supervised learning will be used to have the machine by itself label addi-
tional data instances as “there is no data like more data” and human labelling can
easily become tedious and is expensive. Given a sufficiently robust automatic sound
event classification system, unlabelled data can be classified and used in an itera-
tive re-training process. Unlabelled sound data is practicably available in ‘infinite’
amounts: Recordings of real-life audio can be easily collected and typically con-
tain various kinds and huge numbers of sound events [34]. Further, audio data can
be added from the Internet. The semi-supervised adaptation of AMs and LMs in
ASR [35, 36] and affective speech analysis [37] demonstrates that addition of unla-
belled training data can lead to improvements in accuracy of classification systems.
However, typically at least twice or sometimes up to around ten times as much unla-
belled data is needed as compared to labelled data. Thus, AEC is shown in this book
as an example for semi-supervised learning to improve a sound event classifier.

12.2.1 Methodology

openSMILE’s (cf. Sect. 6.5, [21]) ‘AVEC 2011’ set as shown in Table A.1 in the
Annex is used for AEC. It consists of 1 941 features, composed of 25 energy and
spectral related LLD x 42 functionals, 6 voicing related LLD x 32 functionals, 25
delta coefficients of the energy/spectral LLD x 23 functionals, 6 delta coefficients of
the voicing related LLD x 19 functionals, and 10 voiced/unvoiced durational features.

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_6
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As classifier, Random Forests as ensemble of decision trees are used. This choice is
motivated by their good ability to cope with large feature spaces, as feature sub-spaces
are randomly assigned to the trees in the forest. A good configuration proved to be 30
trees, and 150 randomly assigned features for each tree. For further reproducibility
besides using an open-source feature extractor and the FindSounds database (cf.
Sect. 5.3.3) that can be retrieved from the Internet, the classifier implementation
provided by the Weka toolkit [22] is chosen again.

12.2.2 Performance

Considering the imbalance of instances among the classes, UA will be the mea-
sure of primary interest. Further, WA is partly provided in addition, as well as recall,
precision, and F1-measure. The experiments base on random partitioning of the Find-
Sounds database into three stratified folds to provide two training and one completely
disjoint testing set. The first fold (F1, 5 646 instances) is always used with its original
manually assigned labels for training. The second fold (F2, 5 646 instances) is used
either without its original labels (F2U ) or with these labels (F2) to be able to compare
to using this fold in a semi-supervised or supervised manner for training. The third
and last fold (5 645 instances) is always used for testing. Random partitioning is
carried out with Weka’s default random seed.

Table 12.5 shows the occurred confusions for seven categories of sound event
classification using the original labels training on fold one and two and testing on
the third fold. This is the ‘best case’ given the entirely supervised learning with
utmost data and serves as upper benchmark. Most confusions can be explained well
by common sense, such as those of sounds from people with sounds of animals or
sounds from vehicles with sounds of noise makers.

Table 12.5 ‘Best case’ confusions when automatically classifying seven sound categories on the
FindSounds database with original labels for both training folds F1 and F2 (cf. line ‘supervised
F1+F2’ in Table 12.6)

Truth [#] Classified as
People Animals Nature Vehicles Noisemakers Office Instruments

People 564 153 11 26 17 25 50
Animals 126 717 7 35 23 20 18
Nature 18 35 157 42 44 10 6
Vehicles 37 37 26 476 86 15 45
Noisemakers 22 43 36 77 372 72 48
Office 29 37 1 16 111 364 31
Instruments 32 33 6 31 47 16 1 395
Confusions 264 338 87 227 328 158 198

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Table 12.6 Recall for seven sound categories and UA / WA with un-/supervised learning on the
FindSounds database

[%] UA WA People Animals Nature Vehicles Noisemakers Office Instruments

supervised F1 61.1 67.0 61.7 68.2 39.7 60.2 52.7 57.9 87.2
semi- 2·F1 + F21

U 63.1 68.5 61.7 72.5 47.4 61.8 51.9 58.4 87.9
supervised
supervised F1 + F2 66.5 71.7 66.7 75.8 50.3 65.9 55.5 61.8 89.4

To establish a reference if the fold two data is not used at all, let us now consider
exclusively fold one with its original labels for training (line “supervised F1” shown
in Table 12.6) and fold three for testing. Then, for semi-supervised learning, fold
one with the original manually assigned labels and fold two without the original
labels, but labelled automatically by a system which was trained on fold one with
application of diverse strategies (line “semi-supervised” in the same table). Testing
is again carried out on fold three. Finally, the upper benchmark of using both folds
with the original labels is shown in the table (line “supervised F1+F2”)—again with
fold three for testing.

For semi-supervised learning, the confidence of the Random Forests—the per-
centage of trees agreeing on the class—is taken into account. Evaluated confidence
levels are > 0.7 and > 0.8. This is needed to suppress data likely labelled wrong by
the machine. Two additional strategies are investigated: up-sampling of the originally
labelled data to emphasise more on definitely correctly labelled data and repeated
iteration of the semi-supervised learning process. Table 12.7 shows the UA of up to
three iterations of semi-supervised learning, i.e., repeated re-labelling of the unla-
belled data in fold two using all fold one data and selected fold two data in training
with labels from the last iteration, and only using instances with sufficient confidence
level. Without up-sampling (1·F1), a gain is also obtained (62.0 % vs. 61.6 % UA
for confidence level > 0.7, and 63.0 % vs. 62.1 % UA for confidence level > 0.8).
However, one notices that the benefit of iteration is limited, as UA partly begins to
decrease after the third iteration. A larger number of iterations did not lead to improve-
ments (not shown in numbers). Finally, the up-sampling and iterating strategies are

Table 12.7 UA of iterative semi-supervised learning on the FindSounds database with minimum
confidence values 0.7 and 0.8 combined with up-sampling or not up-sampling of originally labelled
data

UA [%] Confidence level
>0.7 >0.8
F1 2·F1 F1 2·F1

F21
U 61.6 63.1 62.1 62.5

F22
U 62.0 62.2 63.0 62.6

F23
U 62.0 61.7 62.6 63.2

2·F1: up-sampling (doubling up) fold 1 instances; F21
U , F22

U , F23
U : first, second, and third iteration

of semi-supervised learning
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combined expecting synergies. Looking at line “2·F1” in Table 12.6, up-sampling
improves over the baseline setting in four out of six cases. Table 12.6 also shows
detailed results for the case up-sampling by copying (2·F1) and confidences higher
than 0.7.

Looking again at UA values in Table 12.7, as one would expect, the best average
result is obtained using the original labels and data of fold one and fold two for
training (66.5 % UA). Then, semi-supervised learning significantly (one-sided z-test,
p < 0.05) boosts the performance of sound event classification by an increase in UA
of 2 % absolute over not using fold two data at all. This boost is almost half the
one achieved by supervised training (5.4 %) with all data over only using fold one.
The nature class being the most sparse one, benefited most from semi-supervised
learning. This effectively demonstrates the potential gain of semi-supervised learning
for exploitation of unlabelled audio data.

12.2.3 Summary

The potential of semi-supervised learning on a large scale AEC task was investigated.
In the result, adding unlabelled data with high classifier confidence level to the
human-labelled training data can enhance recognition performance. Up-sampling
of originally labelled data and iterating the semi-supervised learning process both
boosted classification accuracy in the experiments by emphasising on originally
labelled data. Combining both strategies gradually increases the advantage of semi-
supervised learning. As one would expect, accuracy of semi-supervised learning is
below the gain that can be expected when adding labelled data of the same amount.
Yet, given the considerable efforts and costs involved in human labelling of thousands
of instances and the large amounts of sound event data publicly available makes
consideration of semi-supervised learning a promising approach in future machine-
based sound analysis.

Future efforts could continue to focus on agglomeration of huge amounts of unla-
belled sound event data and its application in analysis of real-life sound streams—
ideally in combination with blind audio source separation.

12.3 Emotion

Similarly to the analysis of speech and music, where we first looked at ‘what’ was
being said or played before looking at the affective side of speech and music, one
can also attempt to automatically predict the emotion a sound event is likely to evoke
in a listener. This will be the last application example presented in this book. It was
first introduced in [12].

In fact, literature on emotion recognition from the acoustic channel—be it the
emotion a listener thinks is contained or that she or he feels when listening—, is
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dominated by studies dealing with speech [20, 38], and next follows music [39].
However, as shown in the last two sections, there is a rich variety of sounds besides
speech and music in a real acoustic environment. These sounds certainly are also
loaded with emotional connotation for a human listener. As an example, the shrill
sound of a fire alarm would be less pleasant than the gentle sound of waves drilling
the sand beach to the majority of listeners. In fact, listeners feed back emotion to
any sound they are listening to in their daily life. This is independent of the kind of
sound and its subjective or objective nature. Sound perception is thus linked with
emotional response: New-borns’ first attempts to overcome anxiety are centred on
sound making [40]. Thus, for future intelligent systems it may be useful or relevant to
understand emotion connotated with general sound. In ‘sound information retrieval’
emotional content may help in the design and dubbing of audio plays and films. For
example, one might look for a furious door slam or a spooky door creek, etc. Research
in this direction is utmost limited up to the present day: The only work besides the
work by Schuller et al. is the very recent one presented in [41] basing on 120 clips of
the BBC Sound Effects Library labelled in three affective dimensions. The approach
uses mean and standard deviation per one second of 12 MFCC features as acoustic
feature information. In this section, the focus is set on sound emotion recognition in
realistic conditions.

A crucial problem is the lack of specialised sound databases for emotion research.
There some freely accessible sound databases [42], but usually without emotional
labelling. The Emotional FindSounds database, which was described in Sect. 5.3.3
solves these issues. In emotion recognition from speech, emphasis is usually put on
the subject’s expressed emotion rather than listeners’ emotions evoked by sound.
This is more mixed for music emotion recognition. In fact, knowledge upon the
emotion elicited on the listener side may help identify human reaction ahead. In this
section, ‘sound emotions’ refer to the listeners’ induced emotions.

12.3.1 Methodology

The audio feature set used is the openSMILE toolkit’s ‘AVEC 2011’ set with 1 941
features as shown in Table A.1 in the Annex and as was used in the last section
for AEC. For recognition, random subspace meta-learning is used again owing to
its good generalisation properties—the sounds are highly varied and require this
feature. The base classifier is a decision tree. Based on experience, trees are not
pruned. A subspace size of 0.05 is chosen, which means that 97 features out of the
1 941 are assigned by random to each tree in the forest. The forest is grown from
500 trees [12]. The labelling and the feature extractor including the configuration are
available for reproduction.3 This principle was kept by again deciding for Weka for
the implementation of the trees.

3 Available at http://www.openaudio.eu

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://www.openaudio.eu
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Table 12.8 Automatic regression results by CC with different types of gold standard

CC # trees
100 200 500

Arousal EWE 0.611 0.608 0.606
median 0.553 0.555 0.548
mean 0.558 0.563 0.559

Valence EWE 0.458 0.469 0.473
median 0.446 0.449 0.454
mean 0.467 0.484 0.485

EWE, median, and mean in ten-fold SCV. The number of trees is varied

12.3.2 Performance

A ten-fold SCV—again with reproducible partitioning by Weka’s default random
seed—is carried out on the emotionally tagged partition of the FindSounds data-
base as introduced in Sect. 5.3.3. Table 12.8 shows the CCs for arousal and valence
employing the Evaluator Weighted Estimator (EWE), median, and mean to establish
a gold standard by merging the evaluation results of the four evaluators. In this table,
numbers of trees in the forest are additionally varied. Visibly, the regression of sound
emotion performs well with CCs of around 0.61 (arousal) and up to 0.49 (valence)
when evaluating on the EWE. The tendency that arousal is the ‘easier’ task is well
in line with experience from speech and music emotion analysis based on acoustics
[20, 43]. CC as evaluated on EWE usually exceeds the other two methods of gold
standard establishment—mean and median. Median is found on the other end of the
scale probably due to its instability when evaluators show huge disagreement. In
Table 12.9 the CC and its relation to sound category is highlighted for one exemplary
configuration. There, arousal prediction is roughly stable across sound categories. As
for valence, especially Noisemakers and Nature can be identified well above others in

Table 12.9 Automatic regression results by CC per sound category for EWE and 500 trees in
ten-fold SCV

Class CC
Arousal Valence

0.601 0.474
Animals 0.643 0.448
Musical instruments 0.516 0.217
Nature 0.688 0.589
Noisemaker 0.579 0.778
People 0.604 0.048
Sports 0.682 0.198
Tools 0.590 −0.057
Vehicles 0.579 0.279

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Fig. 12.2 Boxplots of the
30 highest absolute CCs
of features with the EWE.
Features are grouped in four
cover classes for arousal
(top) and valence (bottom).
The ‘Quality’ group contains
voicing probability, log HNR,
jitter, and shimmer based
features. ‘Prosody’ groups
loudness, F0, and ZCR [12]

Prosody

 Quality

Spectral

Cepstral

Prosody

 Quality

Spectral
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0.1 0.2 0.3 0.4 0.5 0.6

Absolute CC with EWE

terms of CC. In comparison with the gold standard as was shown in Fig. 5.8, one may
argue that the regressor is not only implicitly recognising the sound category. In fact,
the values of valence for Noisemakers are rather widespread despite considerable
differences in the mean valence.

As there exists practically no experience on feature relevance for this particular
task, it seems worth to have a look at this issue. The 30 best features were ranked by
their CC with the EWE as gold standard. The result is shown as boxplots per dimen-
sion for the groups cepstral, spectral, ‘sound quality’ in analogy to voice quality,
and prosody in Fig. 12.2. Independent of arousal or valence, spectral features are the
most relevant group. Interestingly, the best single feature is prosody-related for these
two dimensions. From the full list of the 30 best features (not shown) the following
is found: Arousal is highly correlated with loudness, and loudness features almost
reach the CC with the EWE of the learnt regressor. The highest CC is observed for
the root quadratic mean of loudness (0.587).

Next, valence is correlated with loudness as well, but not as strongly and neg-
atively, which seems intuitive, as loud sounds are likely unpleasant. The highest
absolute CC with the EWE can be reported for the third quartile of loudness (−0.316).
Spectral flux also shows good (negative) CC, i.e., large spectral variations seem to
be perceived as unpleasant: The CC of the inter quartile range 1–2 of spectral flux
is −0.292. Finally, spectral harmonicity is negatively correlated: Apparently quasi-
sinusoidal sounds are unpleasant. The CC of 50 % up-level time of harmonicity is
−0.241.

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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12.3.3 Summary

Automatic recognition of emotion evoked by general sound events was shown and
found in the rough range of typical dimensional speech and music emotion recog-
nition when operating in high realism comparable to the results in Sect. 10.4.2 and
Sect. 11.7. The sound events considered here were completely independent of each
other and often of lower acoustic quality. Spectral features were shown to be most
important as a group after individual prosodic features for this task.

Future efforts may aim at creation of larger sound emotion resources, e.g., by
crowd sourcing or similar. Deeper analysis of feature relevance per sound category
will also shed more light on optimal acoustic feature spaces. Finally, multi-task
learning of the sound category and the evoked emotion seems a promising approach
to improve both tasks as was suggested in speech and music processing before.
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