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Foreword

Intelligent Audio Analysis unites methods of audio signal processing and machine
learning. Other terms exist for this field or sub-fields and might have been used
instead, such as Computer Audition or Machine Listening—each of which is being
used by partly different research communities with slightly different understanding
of the core application field and the inventory of methods.

Besides Automatic Speech Recognition being researched since more than half a
century, recently an increasing number of further speech and speaker character-
isation tasks have been pursued in the literature. In addition, the younger field of
Music Information Retrieval is growing and there is emerging interest in the
computationally ‘intelligent’ analysis of general sound events. Fields of applica-
tion comprise audio coding, edition, interaction, search, surveillance as well as
coaching and entertainment applications.

This book first propagates a unified view on the multiplicity of resulting tasks.
It further provides a broad overview of the field enriched by extensive recent
research application examples mostly based on the author’s latest work. The focus
thereby lies on realistic conditions and standardisation by open-source software
implementations and comparative evaluations. The main goal is to increase
robustness by temporary and innovative methods such as automated data-acquisition
by semi-supervised learning, audio signal enhancement by non-negative matrix
factorisation, systematic feature brute-forcing and application of memory-
enhanced learning algorithms—for example in combination with graphical model
structures. Machine-based recognition of speech, non-linguistic vocalisations
and para-linguistic speaker states and traits serve as examples of application in
the domain of speech processing. As for music processing, examples include
blind separation of instruments, determination of tempo, metre and ballroom dance
style, as well as analysis of musical key, chord progression and structure, next
to estimation of music mood and singer traits. Finally, examples are complemented
by the recognition of general sound events along with their emotional connotation.

In the outlook, avenues towards evolutionary, unsupervised and holistic audio-
signal analysis are shown.

It is thus hoped that the book may find interest by the very broad and interdis-
ciplinary range of researchers and practitioners in academia and industry reaching
from engineering and computer science to the fields of speech, language, music and
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general audio science with their manifold sub-fields. It further addresses levels from
early to very advanced level—obviously, though, not all details can be provided at
any time, and further reading will be of help where the reader finds it most helpful
for oneself.
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Preface

This book is based on my habilitation thesis and by that on selected essential
research application examples added by explanatory chapters made during the
period of my habilitation at the Institute for Human–Machine Communication of
the Technische Universität München (TUM) in Munich, Germany, to obtain the
German state doctorate (fakultas docendi) and private lectureship (venia legendi,
German PD) in the subject area of Signal Processing and Machine Intelligence.
A representative selection of application examples was made basing on coverage
of the broader field, scientific relevance and recency. The book further includes
knowledge and findings of research conducted and lectures held during this period
at TUM, the CNRS LIMSI’s Spoken Language Processing Group in Orsay,
France, the Imperial College London’s Department of Computing in London, UK,
the Università Politecinicà delle Marche in Ancona, Italy and the National ICT
Australia in Sydney, Australia.

The aim is to provide a handbook that can be read from the beginning to the
end, structured into methods and examples of their application. Reference to the
original research is repeatedly made throughout, such that the interested reader is
referred to these, as well as to further reading from myself and my colleagues or
further research in the field. By that, the book introduces a broader view on and
new avenues towards the computational and ‘intelligent’ analysis of audio aiming
at the higher goal of lending machines the ability to listen to and understand
arbitrary and complex compounds of speech, music and sound.

Gilching, December 2012 Björn W. Schuller
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Batliner, Elisabetta Bevacqua, Christoph Blaschke, Tobias Bocklet, Sebastian
Böck, Simon Bozonnet, Artur Braun, Mátyás Brendel, Bernardo José Brüning
Schmitt, Felix Burkhardt, Erik Cambria, Salman Can, Sydney D’Mello, Ellen-
Douglas Cowie, Roddy Cowie, Cate Cox, Etienne de Sevin, Jun Deng, Laurence
Devillers, Florian Dibiasi, Johannes Dorfner, Jean-Louis Durrieu, Jens Edlund,
Julien Epps, Nicholas Evans, Sebastian Ewert, Florian Eyben, Berthold Färber,
Jordi Feliu, Hubertus Feussner, Shimrit Fridenzon, Jürgen Gast, Jürgen Geiger,
Michael Geiger, Karla Geiss, Jort Gemmeke, Matteo Gerosa, Ofer Golan, Bene-
dikt Gollan, Masataka Goto, Art Graesser, Alex Graves, Michael Grimm, Peter
Grosche, Hatice Gunes, Benedikt Hörnler, Anja Höthker, Clemens Hage, Wenjing
Han, Alan Hanjalic, Simone Hantke, Helen Harris, Catherine Havasi, Michael
Hawellek, Dirk Heylen, Martin Hofmann, Encho Hristov, Antti Hurmalainen,
Amir Hussain, Raquel Jiménez Villar, Cyril Joder, Filip Jurcicek, Florian Kaiser,
Moritz Kaiser, Kostas Karpouzis, Athanasios Katsamanis, Nassos Katsamanis,
Christian Kern, Joseph Keshet, Loic Kessous, Nikolaj Klebert, Tobias Knaup,
Niels Köhler, Hitoshi Konosu, Christoph Kozielski, Jarek Krajewski, Matthias
Kranz, Michael Kranzfelder, Kristian Kroschel, Frank Kurth, Mohamed Anouar
Lakhal, Christian Landsiedel, Manfred Lang, Kornel Laskowski, Alexander
Lehmann, Nicolas Lehment, Haifeng Li, Cynthia Liem, Bing Liu, Atanas Ly-
utskanov, Lin Ma, Andreas Maier, Erik Marchi, Jean-Claude Martin, Matthias
Mauch, Stefan Mayer, Gregor McGlaun, Gary McKeown, Guenter Meier, Kinfe
Tadesse Mengistu, Angeliki Metallinou, Florian Metze, Christine Meyer, Ricardo
Minguez, Lorenz Mösenlechner, Gelareh Mohammadi, Tobias Moosmayr, Peter
Morguet, Christian Müller, Meinard Müller, Ronald Müller, Shrikanth Narayanan,
Clifford Nass, Daniel Neiberg, Robert Neuss, Nhu Nguyen-Thien, Ralf Nieschulz,
Elmar Nöth, Sathish Pammi, Maja Pantic, Geoffroy Peeters, Catherine Pelachaud,
Christian Peter, Stavros Petridis, Hannes Pirker, Tony Poitschke, Tim Polzehl,
Emanuele Principi, Dmytro Prylipko, Bernd Radig, Stefan Reifinger, Stephan
Reiter, Gaël Richard, Gerhard Rigoll, Luis Roalter, Nicolas Rollet, Irit Ronen,
Paolo Rosso, Rudy Rotili, Günther Ruske, Sonja Schaeffer, Joachim Schenk,
Christoph Scheuermann, Florian Schiel, Thomas Schindl, Sebastian Schnieder,
Sascha Schreiber, Marc Schröder, Dagmar Schuller, Dino Seppi, David Sommer,
Stefano Squartini, Andre Störmer, Jan Stadermann, Stefan Steidl, André Stuhlsatz,
Yang Sun, Shahar Tal, Jianhua Tao, Mark ter Maat, Benjamin Treffich, George
Tzimiropoulos, Stefan Ungruh, Michel Valstar, Rob van Son, Laurence Vidrascu,
Alessandro Vinciarelli, Ravichander Vipperla, David Virette, Tuomas Virtanen,
Bogdan Vlasenko, Thurid Vogt, Johannes Wagner, Frank Wallhoff, Dong Wang,
Haixun Wang, Benjamin Weiss, Andreas Wendemuth, Felix Weninger, Ian Wil-
son, Matthias Wimmer, Martin Wöllmer, Kazuyoshi Yoshii, Riccardo Zaccarelli,

xiv Acknowledgments



Stefanos Zafeiriou, Stefan Zettl, Xiaohua Zhang, Xiaopeng Zhang, Zixing Zhang,
Thomas Zielke, Martin Zobl and Enrico Zovato.

As for public funding, the research leading to these results has received funding
from the European Community’s Seventh Framework Programme (FP7/
2007–2013) under grant agreement nos. 211486 (SEMAINE) and 289021 (ASC-
Inclusion) and the ERASMUS Teaching Mobility Programme. This work was
further supported by the Federal Republic of Germany through the German
Research Foundation (DFG) under grant nos.SCHU2508/2-1 (‘‘Non- Negative
Matrix Factorization for Robust Feature Extraction in Speech Processing’’) and
SCHU 2508/4-1 (‘‘Context-Sensitive Automatic Recognition of Spontaneous
Speech by BLSTM Networks’’), the Chinese Research Council and the National
ICT Australia (NICTA).

In particular for their outstanding help with the preparation of the final version
of the book starting from my habilitation theses, I would like to thank Florian
Eyben and Felix Weninger.

For valuable discussions around the topics of the book I further express my
thanks to Dr. Cyril Joder and Martin Wöllmer.

For her constant support and understanding, I particularly thank my wife
Dagmar Maria.

Finally, I thank the publisher for the excellent co-operation during the finali-
sation of this book.

Acknowledgments xv



Contents

Part I Introduction

1 Intelligent Audio Analysis: A Definition. . . . . . . . . . . . . . . . . . . . 3
1.1 Intelligent Audio Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 In Real-life Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Motivation, Aims, and Solutions . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1 Motivation of Intelligent Audio Analysis. . . . . . . . . . . . . . . . 7
2.2 Aims of the Book. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.3 Solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3 Structure of the Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Part II Intelligent Audio Analysis Methods

4 Chain of Audio Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Audio Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.1 Audio Data Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Ground Truth and Gold Standard . . . . . . . . . . . . . . . . . . . . . 24
5.3 Exemplary Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5.3.1 Example in Speech: TUM AVIC . . . . . . . . . . . . . . . 26
5.3.2 Example in Music: NTWICM . . . . . . . . . . . . . . . . . 28
5.3.3 Example in Sound: FindSounds Database . . . . . . . . . 34

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6 Audio Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
6.1 Audio Chunking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

6.1.1 Digital Audio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xvii

http://dx.doi.org/10.1007/978-3-642-36806-6_1
http://dx.doi.org/10.1007/978-3-642-36806-6_1
http://dx.doi.org/10.1007/978-3-642-36806-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_1#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_1#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_1#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_2
http://dx.doi.org/10.1007/978-3-642-36806-6_2
http://dx.doi.org/10.1007/978-3-642-36806-6_2#sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_2#sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_2#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_2#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_2#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_3
http://dx.doi.org/10.1007/978-3-642-36806-6_3
http://dx.doi.org/10.1007/978-3-642-36806-6_4
http://dx.doi.org/10.1007/978-3-642-36806-6_4
http://dx.doi.org/10.1007/978-3-642-36806-6_4#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_5#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec2


6.1.2 Short Time Analysis . . . . . . . . . . . . . . . . . . . . . . . . 43
6.1.3 Audio Activity Detection. . . . . . . . . . . . . . . . . . . . . 45

6.2 Audio Low Level Descriptors . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.1 Speech Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 47
6.2.2 Music Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.2.3 Sound Descriptors . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.3 Textual Descriptors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.3.1 Bag of Words . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Bag of N-grams . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.3.3 Bag of Character N-grams . . . . . . . . . . . . . . . . . . . . 77
6.3.4 On-Line Knowledge . . . . . . . . . . . . . . . . . . . . . . . . 77

6.4 Supra Segmental Features . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.5 Audio Feature Extraction: The openSMILE Toolkit . . . . . . . . 83

6.5.1 openSMILE’s Architecture . . . . . . . . . . . . . . . . . . . 84
6.5.2 Available Feature Extractors . . . . . . . . . . . . . . . . . . 86
6.5.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.6 Reduction and Selection of Features . . . . . . . . . . . . . . . . . . . 90
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7 Audio Recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.1 Audio Recognition Requirements . . . . . . . . . . . . . . . . . . . . . 99
7.2 Static Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 99

7.2.1 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
7.2.2 Support Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.2.3 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 Dynamic Learning Algorithms . . . . . . . . . . . . . . . . . . . . . . . 118
7.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
7.3.2 Hierarchical Decoding. . . . . . . . . . . . . . . . . . . . . . . 121

7.4 Ensemble Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
7.4.1 Bootstrapping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4.2 Meta-Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
7.4.3 Tandem Learning . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
7.5.1 Partitioning and Balancing. . . . . . . . . . . . . . . . . . . . 130
7.5.2 Evaluation Measures . . . . . . . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

8 Audio Source Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
8.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
8.3 NMF Activation Features . . . . . . . . . . . . . . . . . . . . . . . . . . 144
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

xviii Contents

http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec25
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec25
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec26
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec26
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec27
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec27
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec28
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec28
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec30
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec30
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec35
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec35
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec36
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec36
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec37
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec37
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec38
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec38
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec39
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec39
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec40
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Sec40
http://dx.doi.org/10.1007/978-3-642-36806-6_6#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec18
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec18
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec19
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec19
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec20
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec20
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec21
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Sec21
http://dx.doi.org/10.1007/978-3-642-36806-6_7#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_8
http://dx.doi.org/10.1007/978-3-642-36806-6_8
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_8#Sec4


9 Audio Enhancement and Robustness . . . . . . . . . . . . . . . . . . . . . . 149
9.1 Audio Signal Preprocessing . . . . . . . . . . . . . . . . . . . . . . . . . 150

9.1.1 Advanced Front-End Feature Extraction . . . . . . . . . . 151
9.1.2 Unsupervised Spectral Subtraction . . . . . . . . . . . . . . 151

9.2 Feature Enhancement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
9.2.1 Feature Normalisation . . . . . . . . . . . . . . . . . . . . . . . 154
9.2.2 Model Based Feature Enhancement . . . . . . . . . . . . . 156

9.3 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
9.3.1 Conditional Random Fields . . . . . . . . . . . . . . . . . . . 159
9.3.2 Hidden Conditional Random Fields . . . . . . . . . . . . . 159
9.3.3 Audio Modelling in the Time Domain . . . . . . . . . . . 160

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

Part III Intelligent Audio Analysis Applications

10 Applications in Intelligent Speech Analysis . . . . . . . . . . . . . . . . . 169
10.1 Linguistics: Digits and Spelling . . . . . . . . . . . . . . . . . . . . . . 170

10.1.1 Automotive Digits and Spelling Database . . . . . . . . . 170
10.1.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
10.1.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.2 Linguistics: Spontaneous Speech . . . . . . . . . . . . . . . . . . . . . 176
10.2.1 The COSINE Corpus . . . . . . . . . . . . . . . . . . . . . . . 176
10.2.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
10.2.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

10.3 Non-Linguistics: Vocalisations . . . . . . . . . . . . . . . . . . . . . . . 180
10.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
10.3.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
10.3.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

10.4 Paralinguistics: States and Traits . . . . . . . . . . . . . . . . . . . . . 183
10.4.1 Sentiment and Opinion . . . . . . . . . . . . . . . . . . . . . . 185
10.4.2 Short-term States: Emotion and Interest . . . . . . . . . . 193
10.4.3 Long-term Traits: Age, Gender, Height . . . . . . . . . . . 198
10.4.4 Mid-term: Intoxication and Sleepiness . . . . . . . . . . . 204

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

11 Applications in Intelligent Music Analysis . . . . . . . . . . . . . . . . . . 225
11.1 Drum-Beat Separation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

11.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
11.1.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
11.1.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

11.2 Onsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
11.2.1 The Bello Database . . . . . . . . . . . . . . . . . . . . . . . . 235
11.2.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Contents xix

http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_9#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec10
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec10
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec11
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec11
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec18
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec18
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec23
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec23
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_10#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_11
http://dx.doi.org/10.1007/978-3-642-36806-6_11
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec9


11.2.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
11.2.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

11.3 Tempo, Metre, Ballroom Dance Style . . . . . . . . . . . . . . . . . . 239
11.3.1 BRD Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
11.3.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
11.3.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

11.4 Key. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252
11.4.1 Key Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
11.4.2 Parameter Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . 255
11.4.3 Correlation-Based Analysis . . . . . . . . . . . . . . . . . . . 257
11.4.4 Data-Driven Analysis . . . . . . . . . . . . . . . . . . . . . . . 259
11.4.5 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
11.4.6 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263

11.5 Chords . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264
11.5.1 ChoRD Database . . . . . . . . . . . . . . . . . . . . . . . . . . 265
11.5.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
11.5.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
11.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269

11.6 Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 269
11.6.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
11.6.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
11.6.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274

11.7 Mood . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
11.7.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
11.7.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
11.7.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

11.8 Singer Traits: Age, Gender, Height, Race . . . . . . . . . . . . . . . 283
11.8.1 UltraStar Singer Traits Database . . . . . . . . . . . . . . . 284
11.8.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 285
11.8.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288
11.8.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290

12 Applications in Intelligent Sound Analysis . . . . . . . . . . . . . . . . . . 299
12.1 Animal Vocalisations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

12.1.1 HU-ASA Database . . . . . . . . . . . . . . . . . . . . . . . . . 300
12.1.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
12.1.3 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
12.1.4 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

12.2 Acoustic Events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
12.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 305
12.2.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
12.2.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

xx Contents

http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec14
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec15
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec16
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec17
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec22
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec22
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec23
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec23
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec24
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec24
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec25
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec25
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec26
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec26
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec27
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec27
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec28
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec28
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec29
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec31
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec31
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec32
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec32
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec33
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec33
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec34
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec34
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec35
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec35
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec36
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec36
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec37
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec37
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec38
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec38
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec39
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec39
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec40
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec40
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec41
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec41
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec42
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec42
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec47
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec47
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec48
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec48
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec49
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec49
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec50
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec50
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec51
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec51
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec52
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec52
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec53
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Sec53
http://dx.doi.org/10.1007/978-3-642-36806-6_11#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_12
http://dx.doi.org/10.1007/978-3-642-36806-6_12
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec5
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec6
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec7
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec8
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec9
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec9


12.3 Emotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
12.3.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
12.3.2 Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
12.3.3 Summary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Part IV Conclusion

13 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
13.1 Picking Up on the Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
13.2 Best Practice Recommendations . . . . . . . . . . . . . . . . . . . . . . 320
13.3 Remaining Challenges. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326

14 Vision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
14.1 Summary of Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
14.2 Future Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 336
Reference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337

Appendix: openSMILE Standardised Feature Sets . . . . . . . . . . . . . . . 339

Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 343

Contents xxi

http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec10
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec10
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec11
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec11
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec12
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Sec13
http://dx.doi.org/10.1007/978-3-642-36806-6_12#Bib1
http://dx.doi.org/10.1007/978-3-642-36806-6_13
http://dx.doi.org/10.1007/978-3-642-36806-6_13
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec3
http://dx.doi.org/10.1007/978-3-642-36806-6_13#Sec4
http://dx.doi.org/10.1007/978-3-642-36806-6_14
http://dx.doi.org/10.1007/978-3-642-36806-6_14
http://dx.doi.org/10.1007/978-3-642-36806-6_14#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_14#Sec1
http://dx.doi.org/10.1007/978-3-642-36806-6_14#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_14#Sec2
http://dx.doi.org/10.1007/978-3-642-36806-6_14#Sec2


Acronyms

AAA Average Absolute Amplitude
ACF Auto Correlation Function
AEC Acoustic Event Classification
AED Acoustic Event Detection
AF Analytic Feature
AFE Advanced Frontend
ALC Alcohol Language Corpus
AM Acoustic Model
AMC Audio Mood Classification
AMDF Average Magnitude Difference Function
ANN Artificial Neural Network
API Application Programming Interface
AR Autoregressive
ARFF Attribute Relation File Format
ARMA Autoregressive Moving Average
ASE Audio Sub-Event
ASR Automatic Speech Recognition
AUC Area Under Curve
AVIC Audiovisual Interest Corpus
AWGN Additive White Gaussian Noise
BAC Blood Alcohol Concentration
BLSTM Bi-directional Long Short-Term Memory
BN Bayesian Network
BoW Bag of Words
BoNG Bag of N-Grams
BoCNG Bag of Character N-Grams
BPM Beats per Minute
BPTT Back Propagation Through Time
BRAC Breath Alcohol Concentration
BRD Ballroom Dance Style
BRNN Bi-directional Recurrent Neural Network
BASS Blind Audio Source Separation
CASA Computational Auditory Scene Analysis

xxiii



CAN Controller Area Network
CC Correlation Coefficient
CD Compact Disc
CENS Chroma Energy-Distribution Normalised Statistics
CI Computational Intelligence
CMS Cepstral Mean Subtraction
COSINE Conversational Speech In Noisy Environments
CPF Conditional Probability Function
CPT Conditional Probability Table
CPU Central Processing Unit
CRF Conditional Random Field
CSV Comma Separated Value
DAG Directed Acyclic Graph
DBN Dynamic Bayesian Network
DCT Discrete Cosine Transformation
DDR RAM Double Data Rate Random-Access Memory
DES Danish Emotional Speech Database
DF Document Frequency
DFT Discrete Fourier Transformation
DIN German Standardisation Institution (German: Deutsches Institut

für Normung)
DJ Disc Jockey
DT Determiner
Dom Dominant
DSR Distributed Speech Recognition
DT Decision Tree
DTW Dynamic Time Warping
EC Error Carousel or Expectation Correction
ED Euclidean Distance
EER Equal Error Rate
EM Expectation Maximisation
EMMA Extensible Multi Modal Annotation markup language
ETSI European Telecommunications Standards Institute
EWE Evaluator Weighted Estimator
F0 Fundamental Frequency
F1–7 Formant 1–7
FFT Fast Fourier Transformation
FMLLR Feature space Maximum Likelihood Linear Regression
FNN Feed-forward Neural Network
FPR False Positive Rate
FPS Frames per Second
GMM Gaussian Mixture Model
GPB Generalised Pseudo-Bayesian
GT Ground Truth
HCRF Hidden Conditional Random Field

xxiv Acronyms



HCS Hierarchical Classification System
HEQ Histogram Equalisation
HFC High Frequency Content
HFCC Human Factor Cepstral Coefficients
HMM Hidden Markov Model
HNR Harmonics-to-Noise Ratio
HTK Hidden Markov Model Toolkit
HU-ASA Humboldt University Animal Sound Archive
ICA Independent Component Analysis
ID3 Iterative Dichotomiser 3
IDCT Inverse Discrete Cosine Transformation
IDFT Inverse Discrete Fourier Transformation
IDF Inverse Document Frequency
IDSF International Dance Sport Federation
IEC International Electrotechnical Commission
IEEE Institute of Electrical and Electronics Engineers, Inc
IG Information Gain
IGR Information Gain Ratio
IIR Infinite Impulse Response
IOI Inter-Onset Interval
IP Internet Protocol
IS Itakura-Saito
ISA Independent Subspace Analysis
ISO International Organisation for Standardisation
ITU International Telecommunication Union
JJ Adjective
JPD Joint Probability Distribution
KL Kullback-Leibler
kNN k Nearest Neighbour
KSS Karolinska Sleepiness Scale
LDA Linear Discriminant Analysis
LDM Linear Dynamic Model
LLD Low-Level Descriptor
LM Language Model
LOO Leave One Out
LOSO Leave One Song/Speaker Out
LP Linear Prediction
LPC Linear Predictive Coding
LPCC Linear Prediction Cepstral Coefficient
LSP Line Spectral Pairs
LSTM Long Short-Term Memory
LoI Level of Interest
LPC Linear Prediction Coding
LVCSR Large Vocabulary Continuous Speech Recognition
MAP Maximum A-Posteriori

Acronyms xxv



MAE Mean Absolute Error
MC Matched Condition
MCELR Minimum Classification Error Linear Regression
MFB Mel Frequency Bands
MFCC Mel Frequency Cepstral Coefficient
MIDI Musical Instrument Digital Interface
MIML Multimodal Interaction Markup Language
MIR Music Information Retrieval
MIREX Music Information Retrieval Evaluation eXchange
ML Maximum Likelihood
MLE Maximum Likelihood Estimation or Mean Linear Error
MLLR Maximum Likelihood Linear Regression
MLP Multi-Layer Perceptron
MLR Multiple Linear Regression
MMC Mismatched Condition
MMI Man–Machine Interface
MMSE Minimum Mean Square Error
MP3 ISO MPEG 1 Audio-Layer-3
MPEG Motion Picture Expert Group
MSE Mean Square Error
MTV Music Television
MVN Mean and Variance Normalisation
NHR Noise-to-Harmonics Ratio
NIST National Institute of Standards and Technology
NMD Non-Negative Matrix Deconvolution
NMF Non-Negative Matrix Factorisation
NN Noun
NLL Negative Log-Likelihood
NP Noun Phrase or Non-deterministic Polynomial-time
NPP Non-pitched Percussive
NTWICM Now That’s What I Call Music
NWPD Normalised Weighted Phase Deviation
OKS Online Knowledge Source
openBliSSART open Blind Source Separation for Audio Retrieval Tasks
openEAR open Emotion and Affect Recognition toolkit
openSMILE open Speech and Music Interpretation

by Large space Extraction
OOV Out of Vocabulary
PC Principal Component
PCA Principal Component Analysis
PCM Pulse Code Modulation
PCP Pitch Class Profiles
PD Phase Deviation
PDA Pitch Detection Algorithm
PDF Probability Density Function

xxvi Acronyms



PESQ Perceptual Evaluation of Speech Quality
PLP Perceptual Linear Prediction
PMI Pointwise Mutual Information
PNP Pitched Non-Percussive
POS Part of Speech
PP Prepositional Phrase or Pitched Percussive
PSD Power Spectral Density
PTR Probe Tone Rating
RASTA RelAtive SpecTrA
RB Adverb
RBF Radial Basis Function
RCD Rectified Complex Domain
RF Random Forest
RIR Room Impulse Response
RMS Root Mean Square
RMSE Root Mean Square Error
RNN Recurrent Neural Network
ROC Receiver Operating Characteristic
ROI Region of Interest
RTF Real-Time Factor
SACF Summarised Auto Correlation Function
SAD Speech Activity Detection
SAR Switching Autoregressive
SCV Stratified Cross Validation
SD Spectral Difference
SF Spectral Flux
SFFS Sequential Floating Forward Search
SFS Speech Filing System
SHS Sub-Harmonic Summation
SI International System of Units (French: Système international

d’unités)
SIFT Simplified Inverse Filtering Technique
SLC Sleepy Language Corpus
SLDM Switching Linear Dynamic Model
SLDS Switching Linear Dynamic System
SMA Simple Moving Average
SMI Self Mutual Information
SMO Sequential Minimal Optimisation
SMOTE Synthetic Minority Oversampling TEchnique
SNR Signal-to-Noise Ratio
SPL Sound Pressure Level
SSK String Subsequence Kernel
STFT Short-Time Fourier Transformation
Sub Sub-Dominant
SVM Support Vector Machine

Acronyms xxvii



SVR Support Vector Regression
TF Term-Frequency, also Time-Frequency
TPR True Positive Rate
TT Total Time
TUM Technische Universität München
UA Unweighted Accuracy
USS Unsupervised Spectral Subtraction
VAD Voice Activity Detection
VB Verb
VP Verb Phrase
WA Weighted Accuracy
WA Weighted Accuracy or Word Accuracy
WDC World Dance Council
WGN White Gaussian Noise
XML eXtensible Markup Language
ZCR Zero Crossing Rate

xxviii Acronyms



Part I
Introduction

The first part of this book will motivate research in the field of Intelligent Audio
Analysis and set the aims of this book. Further, besides the definition of Audio
Analysis in the sense of this book, a solution statement will be provided and the
structure of the book will be presented.



Chapter 1
Intelligent Audio Analysis: A Definition

Joy, sorrow, tears, lamentation, laughter—to all these music
gives voice, but in such a way that we are transported from the
world of unrest to a world of peace, and see reality in a new
way, as if we were sitting by a mountain lake and contemplating
hills and woods and clouds in the tranquil and fathomless water.

—Albert Schweitzer

For a start, a short definition of Intelligent Audio Analysis shall be given. This will
be followed by an explanation and clarification of the focus chosen for this book:
real-life conditions.

1.1 Intelligent Audio Analysis

In general, audio is understood as a representation of sound. In this book, this rep-
resentation is in first given as analogue electrical signal, usually by voltage, then
numerically by digitalisation, i.e., transformation to a pulse-code modulated (PCM)
stream by regularly sampling at uniform intervals in time and quantising to the near-
est value in given digital steps. By that, and in the first place, we deal with mechanical
waves, i.e., a complex series of changes in or oscillation of pressure as compound of
frequencies within the acoustic range available to humans and at sufficiently intense
level to be perceived, i.e., audible by them. These waves may be transmitted by solid,
liquid, or gas—however, in this book practical examples are limited to air transmis-
sion. This goes, however, without general limitation of the methods presented in
other cases. Further, in this book, sound is broken down into speech, music, and
general sound. The latter—general sound—may from now on also be referred to as
‘sound’, omitting ‘general’ for the sake of simplification.

The analysis of audio aims at the extraction of information and—on a higher
level—attachment of semantic meaning to audio signals.

B. W. Schuller, Intelligent Audio Analysis, Signals and Communication Technology, 3
DOI: 10.1007/978-3-642-36806-6_1, © Springer-Verlag Berlin Heidelberg 2013



4 1 Intelligent Audio Analysis: A Definition

Finally, intelligent audio analysis refers to the involvement of computational intel-
ligence (CI) algorithms as provided by the means and methods of machine learning
going beyond mere signal processing. Such algorithms are often nature-inspired
such as neural networks and genetic algorithms or of statistical nature and aim at
the ability of reasoning and decision-making, usually in the form of generalisation
from exemplary learning material. This is also referred to as recognition. In a fur-
ther development, evolving intelligence tries to imitate self-learning abilities from
experience including self-made models and clustering and unsupervised and semi-
supervised adaptation. Besides parameters, also structures and even the learning
algorithm may be adapted by such systems, ideally on-line. While this field is still
at its very beginning, first attempts into this direction are given in this book.

1.2 In Real-life Conditions

With a focus on “real-life conditions”, lower recognition rates are accepted in order
to foster realism and allow for a realistic estimate of system performances as to be
expected for a running system in ‘real life’ rather than under lab conditions. The
according requirements made are as listed below:

Non-prototypical test data: An Intelligent Audio Analysis system ‘in the wild’ is
usually confronted with subtle nuances of audio phenomena. For speech, this means
non-prompted, but spontaneous speech. As for speaker states, these should ideally
not be acted, but realistic. In music, as an example, the down-beat may be played in
a rather subtle way than in an exaggerated one. In a similar manner, when producing
sounds such as a door shut, a door slam could be overly prototypical. Also in real-
life data, obviously, such more prototypical data may occur, but the test data should
consist of a representative collection of different facets and nuances.

Non-preselected test data: In automatic speech recognition (ASR) normally, all
data have been employed apart from, for instance, non-linguistic vocalisations, etc.,
which are treated as ‘garbage’; but they are still treated and not removed from the
signal before processing. This is different in speaker state and trait classification,
when it comes to unreliable gold standard, such as emotion or personality analysis:
Often a subset of the full database is taken consisting of somehow clear, i.e., more
or less decided cases [1]. Using ‘realistic data’, thus means as well using all data.
The first, qualitative aspect, has been taken into account by several studies, yet, the
second, sort of ‘quantitative’ aspect, has still been neglected by and large. In research
challenges organised by the author of this book, it was dealt with this second aspect
by employing the full database independent of the inter-labeller agreement as is the
situation in real applications. In ASR, a rough estimate for the difference between
read and spontaneous data was that, at least to start with, one could expect an error rate
for spontaneous data twice the size than the one for read data [2]. One cannot simply
transfer this empirically obtained estimate onto other audio analysis problems—still,
we definitely will have to deal with a plainly lower classification performance. In
music analysis, an example could be to use a whole CD collection and not pick
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some ‘friendly cases’ where a system works well without transparency on how these
examples were selected. In a similar way, a whole archive of sounds should be
processed.

Independent test data: For intelligent speech analysis tasks, this usually refers
to speaker or speaker group independence, i.e., a speaker for testing of an intelligent
speech analysis system is ‘seen’ for the first time by it. In a similar way, music
should not be previously known. This holds in multiple senses, such as no music by
the same artist or group was seen before, or no variation of the same musical piece,
etc. Finally, as for sound, it needs to be produced by an independent sound source.
For example, when recognising a door shut, it should be produced by another door
in another building, best by another person in test condition.

No optimisation on test data: Besides the test data being independent from
learning data as described above, no optimisation whatsoever should ideally have
taken place on this data, and repeated measurement is only made for the sake of
illustration of system behaviour. To this end, (a partition of) disjoint learning material
is used for all kinds of system optimisation.

Meta-data is retrieved from the Internet: Whenever non-audio meta informa-
tion such as lyrics or genre tags for a piece of music are used in a system’s decision
making, this information needs to be retrieved automatically from the Internet. As
a consequence, the algorithms have to be able to deal with erroneous and missing
information also in this sense.

Monaural audio capture: In this book, no use is made of stereophonic or multi-
channel audio recording by intention. Using such information can of course be highly
beneficial in a real-life use-case, however, in order not to limit applicability of the
methods, this decision was made. In many situations, recordings are not given by
multiple channels, such as in telephone transmission or older monophonic music
recordings, etc.

These requirements are enforced wherever reasonably applicable in the results
presented in this book. Further, high emphasis is laid throughout experiments and
results on reproducibility of the findings by availability of data and transparent con-
figuration. One further requirement of a real-world system, however, has been partly
ignored for better focus on the task at hand:

Fully automatic chunking: In a working system, audio can be expected to be
recorded in a continuous stream. Thus, as opposed to most off-line test-beds for
Intelligent Audio Analysis, where audio is already end-pointed or ‘cut’ in the sense
of pre-segmented, this step needs to be carried out in a real system and can easily
become challenging when audio is blended or noisy, as for example when labelling
chunks of speech in the presence of background music, etc. This is not always given in
the exemplary results presented in this book, as this can make evaluation considerably
more difficult. Methods for chunking are, however, presented.

Certainly, other more or less significant limitations of realism are ever-present in
the respective literature and the results presented in this book for sheer practicability
and feasibility of research. An example is the additive superposition of noise for
robustness analysis. Such superposition simply allows controlled noise overlay in
different levels or the evaluation of audio separation quality as the clean original is
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available. Yet, is not realistic, as different reverberation occurs for the signals, and
for example speakers are not influenced by the overlaid noise such as in the Lombard
effect. To ease this fact, additional results with originally noisy data are presented in
parallel where appropriate.
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Chapter 2
Motivation, Aims, and Solutions

It is not knowledge, but the act of learning, not possession but
the act of getting there, which grants the greatest enjoyment.

—Carl Friedrich Gauss

2.1 Motivation of Intelligent Audio Analysis

There are numerous scenarios and fields for potential application of Intelligent Audio
Analysis that are commercially interesting and may help us in our daily lives. These
are detailed out in the application part of this book (Part III) that aims to give some
practical examples, but a more general perspective on use-cases of the whole field
is given for a motivational introduction at this point. Intelligent Audio Analysis is
currently used and holds future promises in particular for
Audio Encoding: Obviously, in an acoustic representation, highest bitrates are
required, which can be eased step-wise by going to partly or fully parametric rep-
resentation [1], and partly or fully symbolic representation (cf. Fig. 2.1). As for
speech, ‘symbolic’ could thereby be phones as acoustic realisations of phonemes,
which are “the smallest segmental unit of sound employed to form meaningful con-
trasts between utterances” [2]. In the case of music, ‘symbolic’ could refer to note
events or chords, etc. However, highest bit rate reduction is only reached by semantic
encoding—though obviously at the highest loss factor as, rather than preserving the
original audio, only its semantics are kept for storage or transmission via highly band
limited channels. This then requires to synthesise audio at the moment of decoding
based on these semantics. In music, an example would be note events and instrumen-
tation saved in symbolic representation for storage and later synthesis for play-back.
However, compromises can be made also at this level by combination with (few)
parameters or even highly compressed acoustics—the semantics can then touch cer-
tain aspects of the audio signal for good reproduction at the moment of decoding and
regeneration.

B. W. Schuller, Intelligent Audio Analysis, Signals and Communication Technology, 7
DOI: 10.1007/978-3-642-36806-6_2, © Springer-Verlag Berlin Heidelberg 2013



8 2 Motivation, Aims, and Solutions

Fig. 2.1 A rough overview
on obtainable audio bit-rates
by partly lossy compression
depending on the representa-
tion type.
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Audio Alteration: In a chain of analysis, edition, and synthesis, audio can be
modified and altered. Examples include voice transformation [3] including for exam-
ple the change of the emotional tone of a voice, and music alteration such as com-
bining drum tracks from one musical piece with the singer of another, etc.
Audio Retrieval: In audio search, manifold search tags are used today and can be
used in the future such as by speaker identity or emotion, music artist or genre and
positions of the chorus, sound type, etc. However, such information needs to be
provided at first and additionally stored. As this may involve considerable human
labelling effort and labelling may easily be erroneous if larger user groups of laymen
are involved, Intelligent Audio Analysis may help to assess such information fully
automatically off-line or even on-line.
Audio-based Interaction: In Human-Machine and Human-Robot communication,
machine listening and understanding capabilities beyond speech and sound recogni-
tion and interpretation can allow for injection of ‘social competence’. For example,
speaker state and trait analysis allows for improved socio-emotional contextual com-
prehension of a machine. In music analysis, powerful user-interfaces can be provided
to musicians, that allow for example for user input by clapping, singing, humming
or playing of real musical instruments for interaction with the machine.
Monitoring and Surveillance: In this domain, speaker states can be of interest,
such as sleepiness or intoxication of responsible persons in steering and control
tasks [4]. Another example in this respect is monitoring of a customer’s interest in
sales presentations [5]. Also terrorism and vandalism alert systems may be realised
by such systems—potentially combining speech and sound analysis [6]. An example
of a hardware product is the WhyCry®—a device that aims to indicate a new-born’s
annoyance, boredom, hunger, sleepiness, and stress to less experienced parents. In
music analysis, monitoring can for example be used for on-line auto mixing and
balancing. Sound monitoring can for example be used to ensure proper functionality
of bearings, pipelines, etc.
Coaching: Voice coaching includes training for public speeches or help in foreign
language acquisition [4], but also holds promises for empowerment and inclusion. In
the European ASC-Inclusion project,1 children with autism spectrum condition shall

1 http://www.asc-inclusion.eu

http://www.asc-inclusion.eu
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acquire improved socio-emotional skills by digital gaming including appropriate
interpretation and expression of emotion. This example also includes monitoring
and alteration, as their vocal expression is monitored in the game and the voice is
altered for exemplification. In the music domain, a learning software can notify a
student of an instrument if mistakes occur as by Fraunhofer’s “Songs2See”, or help
in training vibrato singing [7], etc.
Entertainment: As the entertainment sector can often be more forgiving if accu-
racies are not at perfection level, this domain has seen many products make it to
the market by now. Such software includes a console game around speech-based
deception recognition (“Truth or Lies—Someone Will Get Caught”, THQ® Enter-
tainment) already appeared on the market. Software centred around singing intona-
tion in Karaoke-style games such as “SingStar” and “RockBand” by Harmonix or
more recently Ubisoft®’s guitar learning game “Rocksmith®” based on real guitar
audio analysis are examples of huge market success.

Despite the appearance of first commercial and non-commercial usage of Intel-
ligent Audio Analysis products and solutions, the state-of-the-art today is often not
sufficient for the often very high requirements given by several of the above use-
cases. According research work is thus still urgently needed. In addition, standard
references in the literature that provide a broader perspective are just to appear given
the rather young age of the field and its more recent emergence on a broader level.

2.2 Aims of the Book

It is the aim of this book to help allow for improved and extended exploitation of
Intelligent Audio Analysis in the illustrated and further application scenarios. In
particular and by that, the goals are as follows:
1. To provide a unified perspective on audio analysis tasks and a broad overview
on recent advancements in the field exemplified primarily by work of the author
and his colleagues. The intention is to stimulate synergies arising from transfer of
methods and lead to a holistic audio analysis [8]—audio is usually highly complex
and blended in the real world, but research is usually focused on isolated aspects at
the present day.
2. To help approach improved robustness and reliability of today’s Intelligent Audio
Analysis systems by suited and innovative methods.
3. To stimulate extension of the range of Intelligent Audio Analysis applications by
showing its potential in new tasks that were not or hardly touched in the literature so
far, which, however, can be of broad commercial and technical interest.
4. To provide the reader with benchmark results and standardised test-beds for a
broader range of audio analysis tasks. The main focus thereby lies on the parallel
advancement of realism in audio analysis, as too often today’s results are overly
optimistic owing to idealised testing conditions.
5. To show deficiencies in current approaches and future perspectives in and for the
field.
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2.3 Solutions

From a technical point of view, the discussed solutions to the described ends fore-
mostly consist of the inventory provided by the methods of pattern recognition. This
includes advanced and recent methods of signal processing and machine learning.
In more detail, these are:

Audio enhancement and source separation as needed for emphasising the char-
acteristics and isolation of the signal part of interest.

Brute-forcing of large heterogenous audio feature spaces to provide a broad
feature basis for the space initialisation in the approach of new audio tasks.

Careful design of new audio feature types as systematic brute-forcing may have
its limitations.

Combination, adaptation, and application of recent learning methods to profit
from synergies and inject new paradigms such as graphical modelling aspects and
long short-term memory into the machine learning process and enable partly super-
vised self-learning.

As for the non-technical side, practical solutions include in the first place:
Establishment of unified test-beds and transparent benchmarks as this invites

the research community to compare results in a well-defined way and by that may
help to advance on the state-of-the-art. This includes or partly requires the following
two aspects worth mentioning in isolation.

Collection and annotation of suited audio data to consider new tasks of Intel-
ligent Audio Analysis or enrich the ever sparse data-base in the field.

Provision of standardised (open-source) software implementations where
such are currently missing to allow for comparability of findings and potentially
code additions by others.
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Chapter 3
Structure of the Book

Some people do best studying in structured, linear way, while
others do best jumping around, surrounding a subject rather
than traversing it.

—William “Bill” Henry Gates III

To provide a good overview for the reader, the book is divided into four main parts
as will follow.

Introduction (Part I): This part provides an introductory short motivation with
general aims and solutions towards reaching of these (Chap. 2), definition of audio
analysis per se (Chap. 1), and the current overview on the book (Chap. 3).

Audio Analysis Methods (Part II): The aim of this part is to provide the reader
with the knowledge necessary for comprehension of the application part thereafter.
Basic knowledge in information technology and in particular in the field of signal
processing is assumed. Additional knowledge in machine learning is of help, yet, not
mandatory. In order to keep focus on more recent advances in the field, well known
and well formulated standard techniques may be introduced only in short and recom-
mended reading reference is provided. The presentation line of methods follows that
of the typical Intelligent Audio Analysis chain as will be discussed first in this part
(Chap. 4) by going from audio data (Chap. 5) to audio features (Chap. 6), and audio
recognition (Chap. 7). Further, audio source separation (Chap. 8), and enhancement
and robustness (Chap. 9) will be discussed.

Audio Analysis Applications (Part III): In this part, selected applications will
be shown for the three types of audio: speech (Chap. 10), music (Chap. 11), and
general sound (Chap. 12). Each task will be shortly introduced, usually followed by
a description of the specific data and methods applied for illustration, experiments and
results, and a conclusion for this specific task. The idea is to illustrate the applicability
of the inventory of methods previously introduced in a broader range of tasks. The
transfer to further such tasks can often follow highly similar patterns. At the same
time, however, these tasks also demonstrate that unification will always find its limits
and ‘slightly’ task specific modifications will often be advantageous. Examples from
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many authors and publications could have been chosen—merely for the sake of
unification, it was, however, decided to pick all examples from research of the author
of the book and his colleagues. Obviously, the state-of-the-art is advancing quickly
in this young field and other solutions exist and may or do lead to partly better results.
Reference to such work is made throughout—while these cannot be complete, they
aim to provide good entry points for further reading on more specific questions.

For speech, these tasks include the recognition of speech and non-linguistic vocal-
isation such as laughter and sighs as well as classification of speakers by their states
and traits including sentiment in text and emotion, interest, age, gender, height, intox-
ication, and sleepiness, from the acoustic properties of the speech signal. These are
partly grouped by research challenges the author had organised in the field.

As for music, separation of drum beats, localisation of onsets, and tempo, metre
and ballroom dance style recognition deal fore mostly with the rhythmic section in
music. This is followed by the tonal analysis of the musical key, the chord progression,
and structural analysis in particular aiming at localisation of the chorus section. Many
of this information is then combined in the higher level analysis of mood in music
that bases on higher level features from the above listed extracted information of a
musical piece including linguistic cues from the lyrics of a song. Then, analysis of
singer traits is presented. To this end, the singing voice is enhanced before applying
similar methods as are presented in the speaker analysis. In the examples, the type
of music is limited to western music but covers different facets such as Classical,
Jazz or Popular and Rock music. However, most if not all methods should be directly
applicable or easily transferable to other genres of music.

As for sound, three illustrative application examples have been selected: First, the
recognition of animal sounds in up to five broader groups is presented, followed by
the classification of general sound events including animals into seven groups. For
this application, semi-supervised learning is exemplified. Finally, emotion in sound
is classified.
Conclusion (Part IV): At this point, goals of the book set at its beginning will be
discussed in light of the content presented (Chap. 13). This is followed by a general
discussion and vision for future research and application (Chap. 14).
Appendix:

The Appendix summarises the acoustic feature sets as were used throughout most
of the speech and sound analysis in a single table.
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Part II
Intelligent Audio Analysis Methods

The aim of this part is to provide a deep insight into the methods of audio analysis
following the chain of processing.



Chapter 4
Chain of Audio Processing

A complex system that works is invariably found to have evolved
from a simple system that works.

—John Gaule

In the following, let us have a look at the overall process of Intelligent Audio Analysis
as introduced in [1].

In Fig. 4.1, a unified overview on a typical Intelligent Audio Analysis system is
given. Its chain of processing is followed in the ongoing, and each component is
described in detail.

Preprocessing: Subsequently to capturing the audio by a single microphone or
array of microphones and digitalising it, the audio is preprocessed. This step usually
aims at enhancement of the audio signal of interest or (blind) separation of individual
sources which are mixed in the captured audio stream. Usually, de-noising is dealt
with in the literature more frequently than de-reverberation that aims at reducing
the influence of varying room impulse responses. Popular (blind) source separation
methods comprise Independent Component Analysis (ICA) [2] in the case of multiple
microphones/arrays, and Non-Negative Matrix Factorisation (NMF) [3] in the case
of single microphones (cf. Chap. 8). Popular audio enhancement algorithms include
Wiener filtering and unsupervised spectral subtraction (cf. Chap. 9).

Low Level Descriptor extraction: After the components of interest of the digi-
tal signal have been extracted, parameters must be extracted from the signal which
contain—ideally only—information for a given analysis task but discard other infor-
mation. Such parameters are, e.g., the signal energy and the pitch. Instead of the term
‘parameters’ we also find the names ‘features’. Since audio analysis is mostly based
on short-time analysis, i.e., analysis of short frames of audio, in which we can assume
the signal to be stationary, the specific set of parameters that are extracted at this stage
are called the Low-Level Descriptors (LLDs). This is detailed in Sect. 6.1.2.

LLDs are extracted at approximately 100 frames per second with typical frame
sizes of 10–30 ms. Typically multiple LLD are extracted per frame; we refer to
an LLD (feature) vector in this case. Windowing functions are usually rectangular
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Fig. 4.1 Unified overview of typical Intelligent Audio Analysis systems. Dotted boxes indicate
optional components. Dashed lines indicate steps carried out only during system training or adap-
tation phases, where s(k), x , y are the audio signal, feature vector and target (vector), respectively,
high comma indicates altered versions and subscripts indicate diverse vectors. The connection from
classification or regression back to the audio database indicates active and semi-supervised or unsu-
pervised learning. The fusion block allows for integration of other signals by late ‘semantic’ fusion

for extraction of a Low Level Descriptor (LLD) in the time domain and smooth
(e.g., Hamming or Hann) for extraction in the frequency or time-frequency (TF, e.g.,
Gaussian or general wavelets) domains. To compensate artefacts introduced by the
windowing function, typically a smoothing of the LLD with a moving average filter
of 3 frames length is done.

Many systems process features on the LLD level (also referred to as frame level)
directly, either to provide a frame-by-frame estimate, or by sliding windows of fea-
ture vectors of fixed length, or by dynamical approaches that provide some sort of
temporal alignment and warping such as Hidden Markov Models (HMMs) or general
Dynamic Bayesian Networks (DBNs).

Typical audio LLDs cover: intonation (pitch, etc.), intensity (energy, etc.), Lin-
ear Prediction Cepstral Coefficients (LPCCs), Perceptual Linear Prediction (PLP),
Cepstral Coefficients (MFCCs, etc.), formants (amplitude, position, width, etc.),
spectrum (Mel Frequency Bands (MFBs), NMF-based components, MPEG-7 audio,
roll-off, etc.), harmonicity (Harmonics-to-Noise Ratio (HNR), Noise-to-Harmonics
Ratio (NHR), etc.), perturbation (jitter, shimmer, etc.), pitch class profiles, etc.

Note that one can also introduce string-type LLDs to describe, e.g., linguistic
content. Their extraction usually requires chunking and speech recognition or similar.

Chunking: In most applications intelligent audio analysis algorithms have to con-
sider longer segments of audio, as attributes such as emotion, speaking style, music
mood, instruments, musical chord progression, or general sound events are charac-
terised by the dynamics of the signal over time. Depending on the task, the right seg-
ment of analysis, i.e., the chunking, has to be found. Methods for chunking comprise:
choosing a fixed number of frames, acoustic chunking (e.g., by Bayesian Information
Criterion), voiced/unvoiced parts, and for speech units such as phonemes, syllables,
words, or sub-turns in the sense of syntactically or semantically motivated chunkings
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below the turn level or complete turns, etc. [4]. For music, these can be beats, single
or multiple consecutive bars, and parts such as chorus or bridge, etc. Obviously,
higher level chunking requires suited pre-analysis such as audio activity detection,
voicing analysis, or complex structural analysis (see Sect. 6.1.3 for a discussion).

Supra segmental analysis and (hierarchical) functional extraction: Next, the
method of segment level analysis has to be defined. If—as mentioned in the previous
section—a classifier operates directly on the LLD frames, either dynamic approaches
have to be used, or the frame-wise results have to be combined to a single segment
level result (late fusion, cf. below). Alternatively, or additionally, LLD feature vectors
can be combined into a single feature vector per segment, and then only a single
classification result is obtained. We refer to this method as ‘supra-segmental’ analysis.
In case that the length of all segments is constant, we can concatenate all LLD
feature vectors within the segment to a single, higher-dimensional feature vector. If
the length varies (e.g., for sentences, beats or bars in music, etc.), this approach is not
feasible, as the dimensionality of the resulting high-dimensional vector will not be
constant—which is usually required by classifiers. In this case, it is common practice
to summarise the LLD feature vectors by applying ‘functionals’ to them. These can
be statistical descriptors such as mean or standard deviation; in this case, information
from a pre-trained Gaussian (mixture) model of the features can be used to obtain
more robust estimates (‘universal background model’ approach). Other commonly
used statistics of the feature distribution comprise percentiles and higher moments.
Furthermore, one can compute descriptors related to the temporal evolution of the
LLDs, such as statistics of peaks (number, distances, etc.), spectrum (e.g., DCT
coefficients) or autoregressive coefficients. The result is a feature vector per segment
with a constant dimensionality d = NLLD · Nfunc. Thereby NLLD and Nfunc are the
numbers of LLDs and functionals, respectively. This method of summarisation can
also be repeated on higher levels, i.e., ‘functionals of functionals’ can be computed,
etc. This leads to a hierarchical representation, referred to as analytical features [5]
and feature brute-forcing [6, 7].

Feature reduction: As in any other pattern recognition task, the reduction of
the parameter space to those parameters which are most highly correlated with the
classification problem of interest, is beneficial in terms of classification accuracy,
model complexity, and speed.

In this step the the feature space is transformed in order to reduce the covariance
between features in the new space—usually by a translation into the origin of the
original feature space and a rotation to reduce covariances outside the main diagonal
of the covariance matrix. This is typically achieved by the Principal Component
Analysis (PCA) [8]. Linear Discriminant Analysis (LDA) additionally employs target
information (usually discrete class labels) to maximise the distance between class
centres and minimise dispersion of classes. Next, a reduction by selecting a limited
number of features in the new space takes place—in the case of PCA and LDA,
by choosing the components with the highest according eigenvalues. These features
still require extraction of all features in the original space—in the case of principle
components, this comes as the features in the new space are linear combinations of
all original ones.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Feature selection/generation: To further reduce the feature space dimensional-
ity, in this step it is decided which features to keep in the feature space and which
to discard. This may be of interest if a new task—e.g., estimation of a speaker’s
weight, body surface, race or heart rate, playing effects on a Cajon or Blues harp or
mal-function of a technical system from acoustic properties—is not well known. In
such a case, a multiplicity of features can be ‘brute-forced’. From these, the ones
well suited for the task at hand can be kept. Typically, a target function is defined
first. In the case of ‘open loop’ selection, typical target functions are of information
theoretic nature such as IG or statistical nature such as correlation among features
and of features with the target of the task at hand. In the case of ‘closed loop’,
the target function is the learning algorithm’s accuracy to be maximised. Usually a
search function is needed in addition as an exhaustive search in the feature space is
computationally hardly feasible. Such a search may start with an empty set adding
features in ‘forward’ direction, with the full set deleting features in ‘backward’ direc-
tion or bi-directional starting ‘somewhere in the middle’. Often random is injected
or the search is based entirely on random selection guided by principles such as
evolutionary, i.e., genetic algorithms. As the search is usually based on accepting
a sub-optimal solution but reducing computation effort, ‘floating’ is often added to
overcome nesting effects [9, 10]. That is, in the case of forward search, (limited)
backward steps are added to avoid a too ‘greedy’ search. This ‘Sequential Forward
Floating Search’ is among the most popular in the field, as one typically searches a
small number of final features out of a large set. In addition, generation of further
feature variants can be considered within the selection of features, e.g., by apply-
ing single feature or multiple feature mathematical operations such as logarithm or
division which can lead to better representation in the feature space.

Parameter selection: Parameter selection ‘fine tunes’ the learning algorithm.
This can comprise optimisation of a learning algorithm’s topology, initialisation, the
type of functions, or step sizes in the learning phase, etc. Indeed, the performance
of a machine learning algorithm can be significantly influenced by optimal or sub-
optimal parametrisation. While this step is seldom carried out systematically apart
from varying expert-picked ‘typical’ values, the most popular approach is likely grid
search. As for the feature selection, it is crucial not to ‘tune’ on instances used for
evaluation as obviously this would lead to overestimation of performance.

Model learning: This is the actual training phase in which the classifier or regres-
sor model is built based on labelled data. There are classifiers or regressors that do
not need this phase (so-called ‘lazy learners’) as they only decide at run-time by
training instances’ properties which class to choose, e.g., by the training instance
with shortest distance in the feature space to the testing ones. However, these are
seldom used, as they typically do not lead to sufficient accuracy in the rather complex
tasks of Intelligent Audio Analysis and are usually slow and memory consuming at
run-time.

Classification/regression: This step assigns the actual target to an unknown test
instance. In the case of classification, these are discrete labels. In the case of regres-
sion, the output is a continuous value. In general, a high diversity exists in the field of
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Intelligent Audio Analysis on which types of classifiers or regressors are used, partly
owing to the diverse requirements arising from the variety of tasks (cf. Chap. 7).

Fusion: (optional): This stage exists if information is fused on the ‘late semantic’
level rather than on early feature level (cf., e.g., [11]).

Encoding: (optional): Once the final decision is made, the information needs to
be represented in an optimal way for system integration such as a music or sound
search or spoken language dialogue system [12]. Here, standards may be employed to
ensure utmost re-usability such as VoiceXML, Extensible MultiModal Annotation
markup language (EMMA) [13], Emotion Markup Language (EmotionML) [14],
Multimodal Interaction Markup Language (MIML) [15], ID3 tags, etc. Additional
information such as confidences can reasonably be added to allow for disambiguation
strategies or similar.

Audio databases: They comprise the stored audio of exemplary speech, music,
and sound for model learning and evaluation. In addition, a transcription of the spoken
content or note events, etc., may be given and/or the labelling of further target tasks.

Acoustic model (AM): consists of the learnt dependencies between acoustic
observations and classes, or continuous values in the case of regression.

Language model (LM): stores the learnt dependencies of linguistic observations
and according assignments.

In the following, all these steps (except for fusion and encoding) will be explained
in detail (remaining Part II), then practical applications are shown (Part III).
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hierarchical functionals for paralinguistics: a waste of feature space? In: Proceedings 33rd
IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2008,
pp. 4501–4504. IEEE, Las Vegas (2008)

7. Eyben, F., Wöllmer, M., Schuller, B.: Opensmile—the munich versatile and fast open-source
audio feature extractor. In: Proceedings of the 9th ACM International Conference on Multime-
dia, MM 2010, pp. 1459–1462. ACM, Florence (2010)

8. Jolliffe, I.T.: Principal Component Analysis. Springer, Berlin (2002)
9. Pudil, P., Novovicova, J., Kittler, J.: Floating search methods in feature selection. Pattern

Recogn. Lett. 15, 1119–1125 (1994)

http://dx.doi.org/10.1007/978-3-642-36806-6_7


22 4 Chain of Audio Processing

10. Ververidis, D., Kotropoulos, C.: Fast sequential floating forward selection applied to emotional
speech features estimated on des and susas data collection. In: Proceedings of European Signal
Processing Conference (EUSIPCO 2006), Florence (2006)

11. Bocklet, T., Stemmer, G., Zeissler, V., Nöth, E.: Age and gender recognition based on multiple
systems—early versus late fusion. In: Proceedings of Interspeech, pp. 2830–2833. Makuhari,
Japan (2010)

12. De Melo, C., Paiva, A.: Expression of emotions in virtual humans using lights, shad-
ows, composition and filters, volume 4738 LNCS of Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinfor-
matics). Springer, Heidelberg (2007)

13. Baggia, P., Burnett, D.C., Carter, J., Dahl, D.A., McCobb, G., Raggett, D.: EMMA: Extensible
MultiModal Annotation markup language (2007)

14. Schröder, M., Devillers, L., Karpouzis, K., Martin, J.-C., Pelachaud, C., Peter, C., Pirker, H.,
Schuller, B., Tao, J., Wilson, I.: What should a generic emotion markup language be able to
represent? In: Paiva, A., Picard, R.W., Prada, R. (eds.) Affective Computing and Intelligent
Interaction: Second International Conference, ACII 2007, Lisbon, Portugal. Proceedings, vol-
ume 4738/2007 of Lecture Notes on Computer Science (LNCS), pp. 440–451. Springer, Berlin,
12–14 Sept 2007

15. Mao, X., Li, Z., Bao, H.: An extension of MPML with emotion recognition functions attached,
volume 5208 LNAI of Lecture Notes in Computer Science (including subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Springer, Berlin (2008)



Chapter 5
Audio Data

It is a capital mistake to theorize before one has data. Insensibly
one begins to twist facts to suit theories, instead of theories to
suit facts.

—Sir Arthur Conan Doyle

5.1 Audio Data Requirements

In order to train and test intelligent audio systems, audio data is needed. In fact, this is
often considered as one of the main bottle necks and the common opinion is that there
is “no data like more data”. However, there are several pre-requisites apart from the
sheer quantity of the data, and in fact, obtaining considerable amounts of data can be
difficult and laboursome [1], also, as data usually also needs to be labelled. Table 5.1
provides an overview on the most relevant of these requirements when building an
(audio) database for learning and testing of classifiers and regressors.

To reach annotations with labels yn for instance n of the Intelligent Audio Analy-
sis task of interest with reduced cost, new methods for community or distributed
annotation such as crowd sourcing, e.g., by Amazon Mechanical Turk1 will be of
interest. If one further wants to reduce the amount of audio data prior to the labelling
to those instances that will likely result in the best gain for the system, the field of
active learning provides solutions to this end [2]. In addition, to obtain even larger
amounts of data without typically involved efforts in annotation, uniting of data-
bases for training [3] and semi-supervised learning techniques have recently been
shown beneficial [4, 5]. In particular the latter allows for exploitation of practi-
cally infinite amounts of data, such as on-line available audio and audiovisual video
streams. A more complex, yet also very promising alternative was shown in [6], where

1 https://www.mturk.com/mturk/

B. W. Schuller, Intelligent Audio Analysis, Signals and Communication Technology, 23
DOI: 10.1007/978-3-642-36806-6_5, © Springer-Verlag Berlin Heidelberg 2013
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Table 5.1 Requirements for database building

Requirement Example

Quantity “There’s no data like more data”
High diversity with respect to manifold influence factors
Reasonably balanced distribution of instances among classes / range
Knowledge of natural distribution among classes / range (‘priors’)

Quality Adequate data
Realistic data
Ideal capture conditions
Intended corruption

Modelling Reasonable categorisation
Well-defined mappings between models

Labelling Unique and additional labelling (text+events, labeller tracks, context, etc.)
High number of labellers
Provision of gold standard’s reliability

Release Documentation of side conditions
Additional perception tests
Free release of the data with high accessibility
Defined partitioning

synthesised training material was shown to be highly beneficial in cross-corpus test-
ing, i.e., using a different database for training then for testing.

5.2 Ground Truth and Gold Standard

Often in Intelligent Audio Analysis, the gold standard is not reliable, i.e., the training
and testing labels themselves may be erroneous. This highly depends on the task:
For example, the age of a speaker is usually known, but the emotion of a speaker is
usually difficult to assess. Similarly, the tempo of a musical piece can be determined
somewhat reliably by human annotators, while the ballroom dance style may be
ambiguous for a pop or rock song, as often several can fit, etc.

The terms ‘ground truth’ and ‘gold standard’ are often used more or less as
synonyms in the literature—here, we want to define ‘ground truth’ as the actual truth
as measured on the ground as compared to the ‘gold standard’ that might ideally be
identical with the ground truth, however, it might also be the (slightly) error-prone
labelling as seen from the ‘sky above’.2 When interpreting results, one thus has to
bear in mind that the reference is usually the gold standard and not necessarily the
ground truth. This has a double impact: On the one hand side the learnt models
are error-prone—on the other hand side, the test results might be over- or under-
interpretations.

2 The term ground truth indeed originated in the fields of aerial photographs and satellite imagery.
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Thus, in order to achieve a reliable gold standard close to the ground truth, usually
several annotators (or labellers, raters) are used—the less certain the task is, the more.
There are a couple of measures to identify the agreement among labellers. If the task
is modelled continuously, such as likability of a speaker on a continuous scale or
tempo in beats per minute (BPM), correlation or mean linear/absolute error (MLE,
MAE) among labellers are frequently used.

Further, labellers can be weighted individually in order to reach highest consent
among these with the gold standard. The justification is that labellers may lack in
concentration if they have to label huge amounts of data, or do not take labelling
seriously at any time. The evaluator weighted estimator (EWE) as described in [7]
provides an elegant model to reach a weighted gold standard yEWE,n :

yEWE,n = 1
∑K

k=1 rk

K∑

k=1

rk yn,k, (5.1)

where the subscript k represents the rater with k = 1, . . . , K , yn,k is the label of rater
k for the instance n, and rk is an evaluator-dependent weight. The EWE’s average of
the individual evaluators’ responses thus takes the fact that each evaluator is subject
to an individual amount of disturbance during evaluation into account:
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ȳn − 1

N

∑N
n′=1
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These weights measure the correlation between the listener’s estimations yn,k and
the average ratings of all evaluators, ȳn , where

ȳn = 1

K

K∑

k=1

yn,k . (5.3)

The inter-evaluator agreement can be described by the correlation coefficients
(CCs) rk using Eq. (5.2) and by the standard deviations σn of the assessments,

σn =
√
√
√
√ 1

K − 1

K∑

k=1

(
yn,k − yEWE,n

)2
. (5.4)

The standard deviation indicates how similar an audio instance is perceived by the
human listeners. The inter-evaluator correlation measures the agreement among the
individual evaluators and thus focuses on the more general evaluation performance
[7]. If the weights are chosen constant among raters, the gold standard is the simple
mean of the raters’ continuous labels yn,k .
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In the case of categorical modelling, usually majority votes among the individ-
ual ratings yn,k of the raters are used. A variety of measures can be employed for
agreement evaluation such as Krippendorff’s alpha [8], or (Cohen’s) kappa [9]. As a
continuum can be discretised, the latter statistics can also be used in this case—often
with a linear or quadratical weighting. In the ongoing, we will consider exclusively
kappa, which is defined as follows:

κ = p0 − pc

1 − pc
, (5.5)

where p0 is the measured agreement among two labellers and pc is the chance-level
of agreement. If labellers agree throughout, κ equals 1. If they agree only on the same
level as chance would, then κ equals 0. Negative values indicate systematic disagree-
ment. According to [10], values of 0.4–0.6 indicate moderate agreement, such above
are considered as good to excellent agreement. This is known as Cohen’s kappa [9]—
the extension to several raters is known as Fleiss’s kappa, and linear and quadratic
weighting are commonly used in the case of ordinal-scaled class properties [11].

In order to demonstrate typical data collection for Intelligent Audio Analysis,
three examples are picked in the ongoing: One from speech, music, and general
sound data, each.

5.3 Exemplary Databases

5.3.1 Example in Speech: TUM AVIC

Let us first exemplify the collection of speech data in the context of determin-
ing speaker interest. This task particularly demonstrates the difficulty of collecting
diverse data: Various levels of interest need to be captured in a realistic setting.

In TUM’s Audiovisual Interest Corpus (TUM AVIC) as described in detail in [12],
an experimenter and a subject are sitting on opposite sides of a desk. The experimenter
plays the role of a product presenter and leads the subject through a commercial
presentation. The subject’s role is to listen to explanations and topic presentations of
the experimenter, ask several questions of her/his interest, and actively interact with
the experimenter considering his/her interest in the addressed topics. The subject
was explicitly asked not to worry about being polite to the experimenter, e.g., by
always showing a certain level of ‘polite’ attention. Voice data was recorded by two
microphones—one headset and one far-field microphone. Recordings were stored
with 44.1 kHz, 16 bit. 21 subjects took part in the recordings, three of them Asian,
the remaining European. The language throughout experiments is English, and all
subjects are non-native, yet very experienced English speakers.

More details on the subjects are summarised in Table 5.2.
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Table 5.2 Details on subjects contained in the TUM AVIC database

Group Subjects [#] Mean age (years) Rec. time (h)

All 21 29.9 10:22:30
Male 11 29.7 5:14:30
Female 10 30.1 5:08:00
Age <30 11 23.4 5:13:10
Age 30–40 7 32.0 3:37:50
Age >40 3 47.7 1:31:30

To acquire reliable labels of a subject’s ‘Level of Interest’ (LoI), the collected
material was first segmented into speaker- and sub-speaker-turns. Then, it was
labelled by four male annotators, independently from each other. The annotators
were undergraduate students of psychology. The intention was to annotate observed
interest in the ‘common sense’. A speaker-turn thereby was defined as a contin-
uous speech segment produced solely by one speaker. Back channel interjections
(“mhm”, etc.) were ignored, i.e., every time there is a speaker change, a new speaker-
turn begins. This is in accordance with the common understanding of ‘turn-taking’.
By that, speaker-turns can contain multiple and partially long sentences. In order
to provide LoI analysis on a finer time scale, the speaker-turns were additionally
segmented at grammatical phrase boundaries. A turn lasting longer than 2 s is split
by punctuation and syntactical and grammatical rules, until each remaining segment
is shorter than 2 s. The segments resulting from this ‘chunking’ are referred to as
‘sub-speaker-turns’.

The LoI is annotated per such sub-speaker-turn. To familiarise the annotators with
a subject’s character and behaviour patterns prior to the actual annotation task, the
annotators had to watch approximately five minutes of a subject’s video at first. Each
sub-speaker-turn had to be viewed at least once to label the LoI displayed by the
subject. Five LoI were distinguished as follows:

• LoI − 2: Disinterest (the subject is tired of listening and talking about the topic,
is totally passive, and does not follow)

• LoI − 1: Indifference (the subject is passive, does not give much feedback to the
experimenter’s explanations, and asks unmotivated questions, if any)

• LoI0: Neutrality (the subject follows and participates in the discourse; it cannot
be recognised if she/he is interested or indifferent in the topic)

• LoI + 1: Interest (the subject wants to discuss the topic, closely follows the expla-
nations, and asks questions)

• LoI + 2: Curiosity (there is a strong wish of the subject to talk and learn more
about the topic).

In addition to the LoI annotation, the spoken content has been transcribed by
one annotator and counter-checked by another. In this process, long pauses, short
pauses, and additionally various types of non-linguistic vocalisations have been
labelled. These vocalisations are breathing (452), consent (325), hesitation (1 147),
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Fig. 5.1 Mean Level of Interest (LoI, divided by 2) histograms for the train and develop partitions
of TUM AVIC [12]

laughter (261), and coughing, other human noise (716). There is a total of 18 581
spoken words, and 23 084 word-like units including 2 901 non-linguistic vocalisa-
tions (19.5 %). The overall annotation thus contains per sub-speaker-turn information
on the spoken content, non-linguistic vocalisations, individual LoI annotator tracks,
and the mean LoI across annotators.

The gold standard is established either by majority vote on discrete ordinal classes
or by shifting to a continuous scale obtained by averaging over the single annotators’
LoI. The histogram for this mean LoI is shown in Fig. 5.1. As can be seen in the
figure, the subjects had a tendency to be rather polite: Almost no negative average
LoI was annotated. Note that here the original LoI scale reaching from LoI − 2 to
LoI + 2 is mapped to [−1, 1] by division by 2 in accordance with the scaling as is
adopted in other corpora in this field, e.g., [13]. Apart from a higher resolution of LoI,
the continuous representation form allows for subtraction of a subject’s long-term
interest profile to adapt to the mood or personality of the individual.

The overall 21 speakers (and 3 880 sub-speaker-turns) were partitioned speaker-
independently in the best achievable balance with priority on gender, next age, and
then ethnicity into three partitions: Train (1 512 sub-speaker-turns in 51:44 min of
speech of 4 female, 4 male speakers), Develop (1 161 sub-speaker-turns in 43:07 min
of speech of 3 female, 3 male speakers), and Test (1 207 sub-speaker-turns in
42:44 min of speech of 3 female, 4 male speakers).

5.3.2 Example in Music: NTWICM

In the second example, we emphasise more on the problem of choosing an appropriate
model and measuring reliability of labellers. A particularly ambiguous task was
chosen for illustration—the mood in music. The data set was introduced in [14] for
a classification task, which was later extended to fully continuous modelling [15].

For building a music database annotated by mood, the compilation “Now That’s
What I Call Music!” (U.K. series, volumes 1–69, double CDs, each) was selected
for the following reasons: No audio needed to be recorded—only the process of
its annotation was needed. The choice of a commercially available series allows
reproducibility by other researchers at a reasonable cost—the annotation can be dis-
tributed freely. Further, the decision to include a complete series ensures transparent
‘non-prototypicality’, i.e., no music pieces were pre-selected for example by choos-
ing the ‘easy cases’—this reflects a realistic database management setting.
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The overall series contains 2 648 titles—roughly a week of continuous play time. It
covers the time span from 1983 until 2008 and represents music styles popular today
ranging from Pop and Rock music over Rap, R&B to electronic dance music such
as Techno music or House music. The original stereo sound files were ‘ripped’ from
CD and MPEG-1 Audio Layer 3 (MP3) encoded using a sampling rate of 44.1 kHz
and a variable bit rate of at least 128 kBit/s. This simulates universal use-cases of
an automatic mood classification system, as these are likely faced with compressed
music if stored in large digital archives.

For training and testing, a suitable mood representation needs to be decided on,
next. Two different approaches are currently utilised predominantly in this field: a
discrete [14] and a dimensional description [15].

A discrete model relies on a list of adjectives with each describing a state of
mood such as happy, sad or depressed. Hevner [16] was the first to suggest a col-
lection of eight word clusters overall consisting of 68 words. Later, Farnsworth
[17] regrouped these into ten labelled groups which were used and expanded to 13
groups more recently [18]. Also the popular Music Information Retrieval Evaluation
eXchange (MIREX) uses word clusters for its Audio Mood Classification (AMC)
task [19]. However, the labelling by adjective groups can easily suffer from being
overly ambiguous for a concise estimation of mood in music. In addition, one runs
the risk that different adjective groups are increasingly correlated with each other
when increasing their number [20]. This implies that a less redundant representation
of mood can be found.

Dimensional mood models assume that different mood states are composed by
linear combinations of a low number (i.e., two or three) of basic moods. Likely the best
known model is the circumplex model of affect presented by Russell [21] consisting
of a “two-dimensional space of pleasure-displeasure and degree of arousal”. It allows
to identify emotional tags as points in the ‘mood space’ as shown in Fig. 5.2. Thayer
[22] divided this mood space into four quadrants as depicted in Fig. 5.2. This model is
frequently encountered [23–25], probably because it leads to two binary classification
problems with comparably low complexity.

A mood model based on the two dimensions valence (=: ν) and arousal (=: α)
was used to annotate the music in the NTWICM set. Thayer’s mood model is slightly
extended, as only four possible values (ν, α) ∈ (1, 1), (−1, 1), (−1,−1), (1,−1)

seem not to be capable to cover musical mood satisfyingly [24]. To refine the model,
first, a pseudo-continuous annotation was considered, i.e., (ν, α) ∈ [−1, 1]×[−1, 1].
However, after the annotation of 250 songs this approach was considered to be too
complex to achieve a coherent rating. The final model during annotation thus uses
five discrete values per dimension. With D := {−2,−1, 0, 1, 2} all songs receive a
rating (ν, α) ∈ D2 as is visualised in Fig. 5.3.

Some implementations have used excerpts of songs to investigate characteristic
song parts. This requires an algorithm to locate relevant parts as presented, e.g., in
[26–29] and later in this book. Instead of performing any selection, the songs are
considered in full length in this section. Mood may well change within a song, such
as change of more and less lively passages or change from a sad song to a positive
resolution, etc. Annotation in such detail is particularly time-intensive. It was thus
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Fig. 5.2 Dimensional mood model development: multidimensional scaling of emotion-related tags
as by Russell (left) and Thayer’s model with four mood clusters (right) [14]

Fig. 5.3 Dimensional mood
model with five discrete values
for arousal and valence [14]

decided in favour of a large database where changes in mood during a song are
‘averaged out’ in the annotation process, i.e., assignment of the connotative mood
one would overall have on mind. In fact, this can be sufficient in many applications,
such as for automatic music suggestion by the mood that best fits a listener’s mood.
A different question is whether a learning model would benefit from a ‘cleaner’ repre-
sentation without change of mood over the length of a musical piece. For NTWICM,
one can assume the contained mainstream popular and commercially oriented music
to be less affected by such variation as might be found, e.g., in longer arrangements
of classical music. In fact, an analogon can be found in human emotion recognition:
Up to less than half of the duration of a spoken utterance may portray the perceived
emotion when annotated on isolated word level [30]. Yet, state-of-the-art emotion
recognition from speech usually ignores this fact by using turn-level labels rather
than word-level based labels [31].
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Table 5.3 Overview on the raters (A–D) by age, gender, ethnicity, professional relation to music,
instruments played, and ballroom dance abilities, as well as CC between arousal (A) and valence
(V ) for each rater’s annotations

Rater Age (years) Gender Ethnicity Prof. Relation Instruments Dancing CC(V, A)

A 34 m European club DJ guitar, drums Standard/Latin 0.34
B 23 m European – piano Standard 0.08
C 26 m European – piano Latin 0.09
D 32 f Asian – – – 0.43

As mood perception is generally known to be highly subjective [19], it was decided
for four labellers. Details on these (three male, one female, aged between 23 and
34 years, average: 29 years) and their relation to music are provided in Table 5.3.
Raters A–C stated that they listen to music several hours per day and have no distinct
preference of musical style, while rater D stated to listen to music every second day
on average and prefers Pop music.

As can be seen, they were picked to form a well-balanced set. They were asked to
make a forced decision assigning values in {−2,−1, 0, 1, 2} for arousal and valence.
They annotated by the perceived mood, i.e., the ‘represented’ mood, not by the
induced mood, i.e., the ‘felt’ one, which could have resulted in too high labelling
ambiguity: One may know the represented mood, but it is not mandatory that the
intended or equal mood is actually felt by the raters. Indeed, depending on per-
ceived arousal and valence, different behavioural, physiological, and psychological
mechanisms are involved and contextual associations are often highly decisive [32].

The labellers listened via external sound proof headphones in an isolated and
silent laboratory environment. Labelling was carried out independently of the other
raters within a period of maximum 20 consecutive working days. Each session took
a maximum time of two hours. Each song was fully listened to with a maximum of
three times forward skipping by 30 s, followed by a short break. Playback of songs
was allowed, and the annotation could be reviewed. For the annotation a plugin3 to
the open-source audio player Foobar4 was provided. It displays the valence-arousal
plane in colour code as is shown in Fig. 5.3 and allows for selecting a class by clicking.

Based on each rater’s labelling, Table 5.3 depicts the CC of valence and arousal
(rightmost column).5 Clear differences are indicated looking at the variance among
these correlations. The distribution of labels per rater as depicted in Fig. 5.4 further
visualises these differences in individual perception of music mood.

To establish a gold standard that considers also songs that do not possess a majority
agreement in label, a new strategy has to be found: In the literature such instances
are usually discarded, which does not reflect a real world usage where any musical

3 Available at http://www.openaudio.eu.
4 http://www.foobar2000.org
5 The complete annotation by the four individuals is available at http://www.openaudio.eu to ensure
reproducibility by others.

http://www.openaudio.eu
http://www.foobar2000.org
http://www.openaudio.eu
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(a) (b) (c) (d)

Fig. 5.4 5×5 class distributions of the music database (2,648 total instances) for the annotation of
each rater (A–D) [14]. a Rater A, b Rater B, c Rater C, d Rater D

piece needs to be handled. Introduction of an additional ‘garbage’ class [33] was
found unsuitable in this case, as the perception among the raters differs considerably,
and a learnt model may be affected too strongly by such a garbage class that may
easily ‘consume’ the majority of instances due to the lack of a sharp definition. Two
strategies that both benefit from the fact that these ‘classes’ are ordinal in nature
may help: Usage of the mean of each rater’s label or the median, which is known to
better cope with outliers. To match from mean or median back to classes, a binning
is needed, if one does not want to introduce novel classes ‘in between’ (for example,
if two raters judge ‘0’ and ‘1’, one would obtain the new class ‘0.5’). A simple round
operation was thus chosen to preserve the original five ‘classes’. To find the better
suited representation among these two types of gold standard calculation, Table 5.4
shows mean kappa values with none, linear, and quadratic weighting over all raters.
In addition to the five classes (in the ongoing abbreviated as A5 for arousal and V5
for valence), it considers a clustering of the positive and negative values resulting
in three classes per dimension (A3 and V3, respectively). The observed increase in
kappa going from no weighting to linear weighting to quadratic weighting indicates
that confusions between a rater and the established gold standard favourably occur
more frequently between neighbouring classes. As stated, kappa values larger 0.4
are considered as moderate agreement, while such larger 0.7 can be considered as
good agreement [34]. As can be seen, the median is the better choice for NTWICM.
Further, three classes show better agreement except when considering quadratic
weighting—this comes as less confusions with far spread classes can occur in the
case of less classes. The choice of gold standard for NTWICM thus is the (rounded)
median after clustering to three classes. The preference of three over five classes
is further motivated by the lack of sufficient instances for the ‘extreme’ classes in
the case of five classes. This becomes obvious looking at the resulting distribution
of instances by the rounded median gold standard for the original five classes per
dimension as provided in Fig. 5.5.

For partitioning, all 2 648 songs in the NTWICM database are used in a dataset
named AllInst. For evaluation of ‘true’ learning success, training, development, and
test partitions are constructed. As stated, a transparent definition allows easy repro-
ducibility and is not optimised in any respect: Training and development sets are
obtained by selecting all songs from odd years, whereby development is assigned
by choosing every second odd year. By that, the test set is defined using every even



5.3 Exemplary Databases 33

Table 5.4 Mean kappa values over the raters (A–D) for four different calculations of gold standard
obtained either by employing rounded mean or median of the labels per song

# Classes Gold Standard κ κ1 κ2

Arousal
5 mean 0.328 0.477 0.634
5 median 0.415 0.518 0.626
3 mean 0.475 0.496 0.533
3 median 0.526 0.545 0.578
Valence
5 mean 0.307 0.453 0.602
5 median 0.411 0.510 0.604
3 mean 0.440 0.461 0.498
3 median 0.519 0.535 0.561

Fig. 5.5 5×5 class distrib-
ution of the music database
(2,648 total instances) after
annotation based on rounded
median of all raters [14]

year. The distributions of instances per partition are displayed in Fig. 5.6 following
the three degrees per dimension.

To reveal the impact of limiting to musical pieces with clear agreement by a
majority of raters, one can additionally consider the sets Min2/4 for the case of
agreement of two out of four raters, while the other two have to disagree among each
other, resembling unity among two and draw between the others, and the set Min3/4,
where three out of four raters have to agree. Note that the minimum agreement is
based on the original five degrees per dimension and that this sub-set is only used
for the testing instances, to keep training conditions fixed for better transparency of
effects of such ‘prototypisation’. The numbers of instances per degree of agreement
are shown in 5.7.

For 1 937 of 2 648 songs in the NTWICM database lyrics can automatically be
collected from two on-line databases: In a first run LyricsDB6 was applied, which

6 LyricsDB (http://lyrics.mirkforce.net)

http://lyrics.mirkforce.net
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(a) (b) (c) (d)

Fig. 5.6 3×3 class distribution of the music database (2 648 total instances) after annotation based
on rounded median of all raters and clustering of positive and negative instances. Shown are all,
train, development, and test instances [14]. a All, b Train, c Development, d Test

Fig. 5.7 Distributions of
test instances in dependence
of prototypicality: AllInst,
Min2/4 (minimum 2 of 4
raters agree), and Min3/4
(minimum 3 of 4 raters agree)
[14]. a Valence, b Arousal
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delivered lyrics for 1 779 songs, then LyricWiki7 was searched automatically for the
remaining songs. By this, lyrics for 158 additional songs could be retrieved. Retriev-
ing such additional information fully automatically—even at the risk of incomplete-
ness or faultiness—emphasises high realism.

5.3.3 Example in Sound: FindSounds Database

The final example of the collection and annotation of audio data stems from the
domain of general sound. It includes another example related to affect—just as in
the two examples above. Further, audio is retrieved from the web rather than recorded
or based on a commercial series and annotator weighting is applied.

5.3.3.1 FindSounds Database

For the modelling and recognition of sound events, audio data was first retrieved
from the web via the FindSounds site.8 This site provides a large amount and variety
of sound events from real life recordings. These sounds are readily categorised into
16 cover classes and 365 sub-categories [35]. For the creation of the FindSounds

7 http://www.lyricwiki.org
8 http://www.findsounds.com/types.html, accessed 25 July 2011.

http://www.lyricwiki.org
http://www.findsounds.com/types.html
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Database, it is generally sticked with this schema. However, categories without suffi-
cient audio instances were discarded, or, in the case of the sound type ‘birds’, clustered
(with ‘animals’). This procedure leaves the following seven common categories out
of 16 original cover classes [5]:

• People: 45 different human behaviours, such as biting, baby’s crying, coughing,
laughing, moaning, kissing, etc.

• Animals (including birds): 69 different non-bird animals (such as cat, frog, bear,
lamb, etc.) and 16 kinds of birds (such as blackbird, etc.)

• Nature: 19 kinds of sounds from nature environment, for instance, earthquake,
ocean waves, flame, rain, wind, etc.

• Vehicles: 34 different types of vehicles and their behaviours, such as motorcycling,
braking, helicopter, closing (vehicle) door, etc.

• Noisemakers: 13 various events in this domain such as alarm, bell, whistle, horn,
etc.

• Office: office space sound events including keyboard typing, printing, telephoning,
mouse clicking, etc.

• Musical Instruments: 62 various musical instruments such as bass, drum, synthe-
siser, etc.

All audio files were converted into raw 16 bit encoding, mono-channel, at 16 kHz
sampling rate. This was needed to unify the various formats and rates used in the
original version as retrieved from the web. Each of the sound clips lasts between 1 s
to 10 s. Roughly 15 hours of recording time and 16 937 instances were obtained in
total, covering 276 sub-categories of real-life sound events. This set will be referred
to as FindSounds database in the ongoing. Details on the distribution of FindSound’s
instances and total play time per category are summarised in Table 5.5. Note that,
owing to the sheer size of the database, categorisation was not counter-checked, i.e.,
the gold standard is based on the categorisation found on the web which has been
created by experts according to [35].

5.3.3.2 Emotional FindSounds Database

As was shown in the last section, the FindSounds database is well suited for sound
event classification. If one additionally aims at recognising the emotion evoked in
a listener of a sound, an additional annotation is needed, as described in [36]. As
we had seen for the annotation for music mood above, a typical problem in general
emotion recognition is the selection of a suited emotion representation model [37,
38]. For the recognition of emotion evoked in a human listener by sound, Thayer’s
frequently encountered 2-D model [22] with valence and arousal as dimensions is
again adopted. Respecting the divergence between individual labellers, the EWE
as gold standard can improve the robustness of sound emotion recognition (here
regression) results by making the gold standard more consistent.

To build the ‘Emotional FindSounds Database’, instances were chosen from the
rather huge FindSounds database as was described above. 390 sound files were
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Table 5.5 Quantitative description of the FindSounds database

Category # Subsets # Clips Duration (h)

People 45 2 540 2 h 9 min
Animals+Birds 85 2 841 2 h 42 min
Nature 19 937 1 h 17 min
Vehicles 34 2 166 2 h 47 min
Noisemakers 13 2 010 1 h 56 min
Office 18 1 769 1 h 01 min
Musical Instruments 62 4 674 3 h 49 min
Total 276 16 937 15 h 41 min

Table 5.6 Details on the Emotional FindSounds database

Class Clips Duration Arousal Valence
total mean CC κ κ1 κ2 CC κ κ1 κ2

All 390 24:53.55 3.50 0.584 0.386 0.411 0.436 0.796 0.490 0.601 0.699
Animals 90 6:06.53 4.05 0.524 0.350 0.364 0.378 0.685 0.448 0.507 0.569
Musical Instruments 75 3:41.17 2.57 0.659 0.392 0.458 0.529 0.712 0.435 0.505 0.592
Nature 30 2:43.65 5.29 0.541 0.355 0.360 0.356 0.759 0.430 0.511 0.575
Noisemakers 30 1:58.12 3.56 0 .569 0.409 0.406 0.415 0.869 0.522 0.650 0.747
People 60 3:20.55 3.21 0.629 0.344 0.386 0.414 0.823 0.495 0.622 0.722
Sports 30 1:37.63 3.17 0.550 0.389 0.390 0.396 0.607 0.347 0.363 0.384
Tools 30 2:09.48 4.20 0.621 0.435 0.454 0.474 0.738 0.480 0.543 0.607
Vehicles 45 3:16.43 4.22 0.473 0.357 0.322 0.281 0.688 0.414 0.459 0.518

Times in (minutes:) seconds. milliseconds. Human agreement: mean CC and majority kappa values
over the labellers

selected out of the overall 16 937 different sound clips. It was decided to use the
following eight categories and sub-categories from FindSounds’ taxonomy: Animals,
Musical Instruments, Nature, Noisemaker, People, Sports, Tools and Vehicles. With
this choice of cover classes, the database represents a broad variety of frequently
occurring sounds in every day environments. More details on the used part of the
FindSounds database are given in Table 5.6. The corpus size of this ‘Emotional
FindSounds’ database is well in line with first datasets of emotional speech (such as
the Berlin or Danish emotional speech databases) or music (such as the first MIREX
mood classification task set).

The Emotional FindSounds database was annotated by four labellers, just as
NTWICM (by ID: A: male, 25 years; B: female, 28 years; C: male, 27 years, plays
guitar; D: male, 26 years, plays Chinese DiZi flute). They were all post graduate
students working in the field of Intelligent Audio Analysis. All labellers are of
Southeast-Asian origin (Chinese and Japanese) in order not to introduce strong cross-
cultural differences—such questions need to be left for further investigations. For
the annotation, these four listeners were asked to make their decision again assign-
ing values on a five-point scale in {−2,−1, 0, 1, 2} for arousal and valence using
the same tool as was introduced for the NTWICM corpus’s annotation. In further
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Table 5.7 Overview on the labellers’ (ID A–D) agreement: CC of the individual labellers and
mean, and κ and weighted κ for labellers’ agreement with the majority vote for arousal and valence

ID CC κ κ1 κ2

Arousal Valence Arousal Valence Arousal Valence Arousal Valence

A 0.343 0.769 0.265 0.442 0.186 0.544 0.099 0.635
B 0.701 0.869 0.445 0.590 0.505 0.702 0.566 0.794
C 0.542 0.744 0.399 0.477 0.435 0.582 0.474 0.683
D 0.749 0.800 0.435 0.454 0.519 0.575 0.604 0.684

analogy to NTWICM, they were instructed to annotate the perceived emotion and
could repeatedly listen to the sounds that were presented in random order across
categories. Annotation was also carried out individually and independently by each
of the labellers.

Due to the novelty of the task, it has to be investigated whether it is well-defined,
or, how to deduce a gold standard from the individual human labels that is to be
used as target for learning algorithms. Taking into account the ordinal scale nature
of the dimensional emotion ratings, weighted kappa (κ) statistics are of particular
interest. Further, CC is considered for the measurement of inter-labeller agreement.
It is computed by the mean rating for each instance, followed by calculating the CC
of each labeller with this mean. Inter-labeller agreement in terms of κ is calculated
per labeller with the majority vote of the labellers. The results of this agreement
analysis are shown in Table 5.7. Interestingly, the agreement is considerably higher
(κ2 = 0.699) for valence than for arousal (κ2 = 0.436). Furthermore, a more
detailed analysis by sound category reveals that the human agreement—particularly,
on valence—strongly dependends on the sound category. For instance, the valence
of noisemakers is highly agreed upon (κ2 = 0.747) while sounds from sports are
not agreed as consistently upon (κ2 = 0.384). For arousal, the strongest agree-
ment is found for the group of musical instruments (κ2 = 0.529), and vehicles
(κ2 = 0.281) are observed at the lower end of the agreement scale. Self agree-
ment in a complete repetition (in shuffled order) of the labeller’s original annota-
tion was also taken into account to measure the consistency of labelling. This was
done after one full week of pause. It was highest for labeller B (κ2 = 0.554 for
arousal, κ2 = 0.772 for valence) who also displayed highest agreement with the
gold standard (cf. Table 5.7). Considering the ‘reliability’ of individual labellers,
i.e., their agreement with the ‘consensus’, one can observe differences especially
for arousal: Here, CC ranges from 0.343 (labeller A) to 0.749 (labeller D). This is
also reflected in the κ statistics (κ2 = 0.099 for labeller A, κ2 = 0.604 for labeller
D). For valence, less pronounced differences can be observed. Labeller B shows
the strongest agreement with the ‘consensus’. Overall, the EWE provides a robust
estimate of the desired labeller-independent emotion rating in addition to the arith-
metic mean. This finding is backed up by regression results on the corpus [36].
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Fig. 5.8 Boxplots of the EWE per sound category: arousal (left) and valence (right) [36]

The distribution of the EWE for each sound category is shown in Fig. 5.8 as box-
and-whisker plot.
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Chapter 6
Audio Features

The ability to focus attention on important things is a defining
characteristic of intelligence.

—Robert J. Shiller

To represent the information contained in the audio (stream) in a compact way
focussing on the task of interest, a parametrised form is usually chosen.These para-
meters describe properties of the audio usually in a highly information reduced form
and typically at a considerably lower rate, such as the mean energy or pitch over
a longer period of time. As different Intelligent audio analysis tasks are often best
represented by different such ‘features’, a broad selection of the most typical ones
will be presented in the ongoing—these will be the ones that are later also used in
the application examples in this book. The determination of the features will include
the digitalisation and segmentation of the audio prior to their actual calculation or
extraction.

6.1 Audio Chunking

This section describes the digitalisation of audio and subsequent chunking in order
to go from an analogue stream to digitised chunks as ‘units of analysis’ that can be
processed computationally.

6.1.1 Digital Audio

In order to process the audio signal in a digital way, the analogue signal sana(t) with t
representing continuous time is represented by a sequence of equidistant (interval �t)
with index k at the times t = f (k�t) [1]. The area of these impulses is proportional to

B. W. Schuller, Intelligent Audio Analysis, Signals and Communication Technology, 41
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the analogue value sana(k�t). If the sample impulse a(t) is chosen very narrow and
with the area equalling one, the sampling can be described by a discrete convolution
of sana(t) and a(t) in time steps �t [2]:

sana,T (t) =
+∞∑

k =−∞
�t · sana(k�t) · a(t − k�t). (6.1)

For ideally short sampling impulses the function a(t) can be approximated by a
Dirac impulse [1]:

a(t) =
{

0 for |t| > τ
2

1
τ

for |t| ≤ τ
2 ,

(6.2)

lim
τ → 0

a(t) = δ(t).

The Dirac impulses at the positions t = k�t cause that sana(t) is only analysed
at the positions t = k�t . In the discrete convolution one can thus exchange the
function sana(k�t) by sana(t) and change the order:

sana,T (t) = sana(t) ·
+∞∑

k =−∞
�t δ(t − k�t). (6.3)

The process of sampling can then be represented as a product of the function
sana(t) with a sampling function. This sampling function is an infinite series of Dirac
impulses multiplied with the constant �t [1].

The Fourier transform Sana,T (f ) of the sampled signal with the continuous fre-
quency f is an overlap of single spectra that result from the original spectrum Sana(f )
by shift of integer multiples of Sana,0 [3]. This may result in aliasing spectra [4].
If, however, the signal sana(t) was band-limited to −B < f < B, the spectra of the
analogue signal sana(t) and the sampled signal sana,T (t) are identical in the region
[−B,+B]. In other words, the sampling theorem applies for the choice of the sam-
pling frequency fsample:

fsample = 1

�t
≥ 2B. (6.4)

The perfect inverse transformation and reconstruction of the original signal is
possible if the periodic spectral parts are cut by an ideal Küpfmüller low-pass filter [3].
The according convolution in the time domain can be interpreted as an interpolation
with sinc-functions, which in their sum reconstruct the orignial signal:

sana(t) =
+∞∑

k =−∞
sana,T (k�t) si(π

t − k�t

�t
). (6.5)
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To ease the requirements on the edge steepness of the band-limiting filters, the
sampling frequency can be chosen accordingly higher than the cutoff frequency. Tak-
ing the highest frequency audible to the human ear and the requirement of doubling
this frequency given by the sampling theorem into consideration, one arrives at the
typical value of 44.1 kHz as used in CD audio. For speech digitisation, lower values
of 16 kHz (broad-band telephony) or even 8 kHz (narrow-band ‘standard’ telephony)
are typically chosen.

In addition to the time discretisation by sampling, the continuous analogue values
need to be discretised to digital (binary) values [5]. The word length w of the binary
number is usually limited (mostly 16 bit as in CD audio, or 8 bit as in narrow-band
telephone speech). In the case of binary representation the number Q of quantisation
steps is:

Q = 2w. (6.6)

This limited number of steps results in a quantisation error which is the devia-
tion between the original value and its quantised counter part. This error leads to
quantisation noise. For linear quantisation, i.e., in case of equally sized quantisation
intervals, this quantisation noise can be estimated in terms of signal-to-noise ratio
(SNR) rq as:

rq = 10 lg
PS

PN
� 20 lgQ = 20 lg2w [dB], (6.7)

where PS is is the standard power of the preferred signal, and PN is the according
power of the unwanted noise. For longer word lengths this means [2]:

rq � 6 dB/bit. (6.8)

Better values can be reached by adapting the quantisation steps to the signal
characteristics such as by the ITU’s A-law as primarily used in Europe or the μ-law
as primarily used in Northern America and Japan for telephony in the ITU G.711
standard for Pulse Code Modulation (http://www.itu.int/rec/T-REC-G.711/e).

6.1.2 Short Time Analysis

Audio signals change over time, i.e., they are time variant [6]. Thus, the main para-
meters are also time-dependent. However, one can make the assumption that these
parameters change relatively slower than the signal frequencies. The evolution over
time of the parameters are thus new signals which are, however, sampled with a
considerably lower frequency as compared to the original signal [7]. Their sampling
frequency will be referred to as parameter sampling frequency in the ongoing in
contrast to the signal sampling frequency as was introduced above.

The short time analysis considers the signal in a given short interval within which
the audio signal is considered to be stationary [6]. To this end, a weighting of the

http://www.itu.int/rec/T-REC-G.711/e
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signal in the time domain by a weighting ‘window’ function w(τ ) is carried out. The
window emphasises the audio signal’s values around the time instant t and suppresses
distant values [5]. The faded signal part at time t can be described by a multiplication
with the window as:

sana(τ )w(t − τ). (6.9)

In particular two opposing considerations influence the choice of the window
length T : Most importantly, the window needs to be sufficiently long in order to allow
for reliable determination of the parameter of interest. At the same time, however,
it needs to be short enough to ensure that the measurement is still valid, i.e., the
audio signal is ‘quasi-stationary’ within the window. As a result, a compromise has
to be made that leads to a certain uncertainty in analogy to Heisenberg’s uncertainty
principle. For spectral transformation, for example, holds the Heisenberg-Gabor limit
that a function cannot be both time limited and band limited:

�τ · �f ≥ 1

4π
(6.10)

Thereby, �τ and �f are the uncertainty in time and frequency.
Further, the sampling theorem (Eq. 6.4) holds for the choice of the parameter

sampling instants t. Typical window lengths for speech analysis are 20–40 ms. In
music analysis the length is sometimes chosen longer, around 50–80 ms. However,
the windows are usually chosen to be overlapping if the window function is a soft
function and not a rectangular one. Typical audio parameter sampling frequencies are
thus around 100 Hz, i.e., the window shift (also referred to as step size) is typically
around 10 ms. As the windowed audio signal is usually referred to as ‘audio frame’,
the parameter sampling frequency is often measured in frames per second (FPS).
Usually, the audio signal values outside the window are set to zero. This is known as
the ‘stationary’ approach. The non-stationary approach assumes the signal outside
of the window as undefined [2]. Other approaches consider the window’s content
as periodic, i.e., the signal is continued periodically outside of the window and the
period length is usually equal to the window length T . This is known as the ‘periodic’
approach [2]. In addition, for periodic signals one could attempt to synchronise the
window T with the audio signal’s fundamental period T0 in order to benefit from the
signal’s inherent periodicity and reduce windowing distortions to a minimum.

A crucial factor thus is the choice of the optimal window function. In fact, this
choice depends on the audio parameter to be determined. For parameters in the time
domain, rectangular windows are often sufficient. For time frequency transformation,
one desires narrow and rectangular windows in the frequency domain, which do,
however, also decay rapidly in the time domain (cf. the Heisenberg-Gabor limit Eq.
(6.10)). A compromise are thus comparably ‘soft’ window functions which rise and
fall slowly in time and by that also in frequency. In addition, one wishes to avoid
side maxima in the respectively other domain. Consider the rectangular window,
for example: In the frequency domain it corresponds to the wavy sinc-function.
The Gaussian function at the other extreme has no side maxima, neither in time
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nor frequency domain, but is of infinite length. The reduction of side maxima in
general comes at the cost of a wider main maximum. Common window functions
(represented for the ‘open’ region [−T

2 ,+T
2 ]) include:

• The rectangular window: It is characterised by having the narrowest main max-
imum in the frequency domain, i.e., the smallest bandwidth. However, this comes
at the cost of large side maxima—the first one still having an amplitude of −16 dB.
The rectangular window is given by:

wRect(τ ) =
{

1 for τ = −T
2 , . . . ,+T

2

0 otherwise.
(6.11)

• The Hamming window: This window is most frequently encountered in audio
signal analysis for parameters in the frequency domain. Its side maxima are the
smallest at −42 dB almost independent of their frequency [2]. It is given by:

wHam(τ ) = 0.54 + 0.46 cos
(

2π
τ

T

)
and τ = −T

2
, . . . ,+T

2
. (6.12)

• The Hanning window: It can be represented as a cos2 window or as a Ham-
ming window with different constants. In comparison to the Hamming window,
it reaches zero at the side ends in the time domain. It is further the narrowest
in the time domain of these three windows and thus often preferred for analysis
in this domain, in particular for pitch or harmonic analysis. Moreover, due to its
symmetries it is preferred for audio signal processing where a time domain signal
is transformed into the frequency domain, modified, and transformed back to the
time domain. It is given by:

wHan(τ ) = cos2
(
π

τ

T

)
and τ = −T

2
, . . . ,+T

2
. (6.13)

These window functions are shown in Fig. 6.1 within the interval [−T
2 ,+T

2 ] – out-
side, they are set to zero following the stationary approach. Other window functions
include the family of Kaiser windows based on Bessel functions. Their advantage is
that side maxima can be further lowered, but again by broadening the main maximum
[2]. However, these types are hardly encountered in practical solutions.

6.1.3 Audio Activity Detection

For many applications, one can analyse a continuous audio stream directly frame-
by-frame, i.e., make decisions on the frame level. If information that is contained
in the dynamics of frame-level parameters is of interest, so-called ‘supra-segmental’
features can be used. These are summaries of the frame-level features over a given
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Fig. 6.1 Commonly used audio windowing functions: rectangular, Hamming, and Hanning. Shown
is the value over time in the window region t ∈ [− T

2 + T
2 ]

time span of frames, i.e., a segment. The choice of these segments or chunks, also
known as the ‘chunking’, is important. In the case of speech analysis, such chunks
may be voiced or unvoiced segments, syllables, words, or larger entities, such as
sentences or paragraphs. In the case of music analysis, the unit of analysis may be
beats, bars, sections such as verse, bridge, or chorus. A simple alternative is fixed
length chunks in analogy to the short time windows [8, 9].

In many cases—in particular for speech or general sound analysis—audio events
in between ‘silences’ (= pauses) are analysed. These silences may be filled with
background noise, and the acoustic events of interest could be words or other events,
such as animal sounds, for example.

We will call this discrimination between pauses and audio events audio activity
detection in the ongoing as a short form for detection of activity of the ‘audio signal
of interest’. E.g., when searching for speech or singing voice activity, background
noise or music are also present, but not of interest. In the specific case of speech,
one generally speaks of voice activity detection (VAD) or—more recently—speech
activity detection (SAD). The simplest method is the use of a threshold for the
audio signal energy. Usually, a hysteresis is used with two thresholds. Once the first
threshold is exceeded, a second, lower threshold may not be under-run during a given
time length in order to detect a speech, music, or sound onset. If one can assume the
background noise to change less quickly than the audio signal of interest, one can
use an adaptive algorithm based on histograms: One determines the histogram of the
signal level. In the described case, this results in a significant maximum at the level
of the background noise. This level plus a certain delta can then be used for audio
onset determination. The histogram then needs to be updated on-line. In addition,
the histogram of the derivative of the signal level can be used analogously.

More complex solutions are based on multi-dimensional feature information such
as spectral analysis with a trained classifier. Such approaches can be trained very well
to the signal of interest and thus usually allow for better results—however, at the cost
of higher effort. In addition, these two approaches can be efficiently combined: Only
when an audio onset is expected based on signal level characteristics, the classifier-
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trained decision is made to assure that the audio onset belongs to the type of signal
one is interested in. Some standard methods are found in [10–14].

6.2 Audio Low Level Descriptors

This section introduces a variety of important acoustic low-level descriptors (LLDs)
which are commonly used in the fields of speech, music, and general sound analysis.

The following description of audio LLDs is based on the assumption of digitised
audio. By that, the signal is represented as s(k) in the discrete time domain with
the discrete time index k as the index of the k-th sample. Further, the sampling of
parameters by windowing of the signal requires the use of a second time variable: a
time n for the instant of measurement of parameters over a window of length N (see
Sect. 6.1 for details on digital audio signal representations and windowing).

6.2.1 Speech Descriptors

Among the most important descriptors for speech signals are the intensity, the fun-
damental frequency F0 together with the probability of voiced/unvoiced speech, the
formants, i.e., resonance frequencies FX of the vocal tract, with X typically between
1 and 7, together with anti-formants. Further, the voice quality parameters jitter
and shimmer are often of interest—these are micro perturbations of the fundamen-
tal frequency period lengths and intensities, respectively. Parameters describing the
structure of the spectrogram are thereby particularly coined by the characteristics of
the vocal tract.

6.2.1.1 Intensity

Rather than modelling the psycho-acoustically perceived intensity which usually
depends on the energy, pitch, duration, and the spectral shape of a stimulus [15],
just the physical energy E of the signal s(k) is used as a approximate measure of
intensity. It is defined as [16]:

E =
+∞∑

k =−∞
s2(k). (6.14)

With short time analysis, the energy E(n) at time n is determined as

E(n) =
n + N

2 − 1∑

k = n − N
2

[s(k)w(n − k − 1)]2, (6.15)
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assuming a window function being different from zero for k = n− N
2 , . . . , n+ N

2 −1.
This same assumption is made for all the following LLDs.

The square operation emphasises differences between softer and louder parts in
the signal and is physically motivated. A more commonly used alternative of E is
the root means square (RMS) amplitude, signal power, or RMS energy Erms:

Erms(n) =

√
√
√
√
√
√

1

N

n + N
2 −1∑

k = n − N
2

[s(k)w(n − k − 1)]2, (6.16)

A linear alternative is the average absolute amplitude (AAA, also average magnitude)
A(n) at time instant n (assuming a time limited window) [2]:

A(n) = 1

N

n + N
2 − 1∑

k = n − N
2

|s(k)w(n − k − 1)|. (6.17)

The typical window function w(τ ) in the time domain is a rectangular window
wRect(τ ) (Eq. 6.11).

6.2.1.2 Zero Crossings

The number of zero crossings per frame, i.e., the Zero Crossing Rate (ZCR) [6], is
defined as:

ZCR(n) =
n + N

2 − 1∑

k = n− N
2

s0(k) with s0(k) =
{

0 if sgn[s(k)] = sgn[s(k − 1)]
1 if sgn[s(k)] �= sgn[s(k − 1)].

(6.18)

While the signal energy does not provide any information on the frequency distribu-
tion, the zero crossing rate does [17]. For a pure sine tone, for example, the number
of zero crossings is twice the tone’s frequency. Since the general audio signal is usu-
ally a complex compound of different frequency components, the ZCR only roughly
indicates whether the signal contains high frequency components—in this case ZCR
would also be high—or not. This is very useful to see if a speech signal is voiced or
not, for example. A voiced/harmonic signal usually has a low ZCR, as it is periodic
at a lower frequency, whereas unvoiced speech signal parts or noisy parts are char-
acterised by high frequency components. Together, energy and ZCR are therefore
suited to realise a basic speech / pause detector [2].
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6.2.1.3 Auto Correlation

Another important basic descriptor is the auto correlation function (ACF) R(d), here
the short time ACF [5]. For signals that are infinite in time it is defined as:

R(d) =
+∞∑

k =−∞
s(k)s(k + d) (6.19)

or normalised as:

r(d) = R(d)

R(0)
, (6.20)

where d is the delay parameter. An integration is performed over the product of the
function and the function shifted by d. The ACF is axis-symmetric:

R(−d) = R(d). (6.21)

For time variant signals, the short time ACF can be defined in two ways: First, by
the stationary approach using a weighted part of the signal at time instant n [2]:

R(n, d) =
+∞∑

k =−∞
s(k)w(n − k − 1)s(k + d)w(n − k − 1 − d). (6.22)

This definition is in accordance with the ACF for signals infinite in time. The finite
limits result from setting values outside the window to zero. Some important char-
acteristics of the ACF R(d) are as follows [7]:

• At the origin, i.e., R(0), there is a global maximum identical to the energy of the
analysed signal.

• The ACF of a periodic signal is periodic itself.
• Scaling of the amplitude by x results in a scaling of R(d) by x2.
• In the case of a (quasi-)periodic signal structure, a shift of the window has a

comparably mild influence on the ACF, i.e., a certain phasing invariance is given.

The disadvantage, however, of the stationary approach is, that with increasing delay d
less values are available for the ACF’s computation: for d → T the ACF approaches
zero, i.e., fades out. The non-stationary approach overcomes this problem. In this
case, the time signal is weighted only ‘once’, i.e., one computes the product of the
weighted time signal with the non-weighted infinite delayed version of the time
signal [2]:

R(n, d) =
+∞∑

k =−∞
s(k)s(k + d)w(n − k − 1). (6.23)
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Strictly speaking, this is a cross-correlation and the result is not axis-symmetrical.
Further, negative values may result, as opposed to the normal ACF. It is, however,
better suited in the case of short analysis windows as in this case the effect of fading is
particularly significant for the stationary approach. Overall, however, the stationary
approach is preferred.

6.2.1.4 Spectrum and Cepstrum

With the speech and most audio signals generally being a non-stationary process that
can be considered ‘quasi-stationary’ only for short time periods, one determines short
time spectra instead of transforming the whole signal into the spectral domain [2, 18].
From the time signal s(k) with a suitable window function w(k) we can determine
the short time spectrum at time k with n as variable for the Fourier transformation.
The short time spectrum by that is a function of time n and frequency m.

With the DFT given as

S(m) =
N − 1∑

k = 0

s(k)e
−j2πmk

N , (6.24)

the complex short time spectrum S(m, n) is obtained by [3]:

S(m, n) =
n + N

2 − 1∑

k = n − N
2

s(k)w(n − k − 1)e
−j2πmk

N . (6.25)

Note that, implementation wise the Fast Fourier Transform (FFT)—is commonly
used for DFT calculation.

To improve readability, in the following consideration we switch back to an ana-
logue frequency description with f as the continuous frequency; still, the described
concept is valid also for the discrete time and frequency domain.

According to the simplified linear source filter model of speech production, the
speech signal can be modelled by the convolution of the excitation/source signal
E(f ) with,

• the excitation transfer function G(f ),
• the transfer function of the vocal tract H(f ),
• and a transfer function R(f ), which describes the sound wave propagation into the

space outside the human body

weighted by an amplitude factor A[6, 19].
If the influence of the source is to be eliminated, a deconvolution of the source

and the transfer functions is required. This can be easily achieved in the frequency
domain where the convolution is expressed as product of the signal and all transfer
functions:
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S(f ) = E(f ) · G(f ) · H(f ) · R(f ) · A. (6.26)

In the logarithmic domain, this product turns into a summation. The signal part that
is owed to E(f ) can be eliminated by high- or band-pass filtering. In the case of
high-pass filtering this requires that these parts are indeed low-frequent, in order
not to cut away formants (cf. Sect. 6.2.1.8). This high-pass can be best realised on
the back-transformation of the logarithmised powers of the spectrum into the time-
domain. This leads to the so-called cepstrum, with the independent variable d, the
‘quefrency’ [7]. These names have been artificially created from the terms ‘spec-
trum’ and ‘frequency’ by re-ordering of characters. The variable d is a unit of time
that corresponds to the delay in the ACF, which is the reason for the choice of the
same identifier. By applying the logarithm to the power spectrum, the product rela-
tionship of the source signal and the transfer functions turns into a sum relationship.
After the back-transformation to the time domain (i.e., in the cepstrum) the additive
concatenation of the linear source filter model components remains [2]:

x(d) = IDFT [log|S(f )|2] (6.27)

= IDFT [log|E(f )|2 + log|G(f )|2 + log|H(f )|2 + log|R(f )|2 + log|A|2]
(6.28)

= e(d) + g(d) + h(d) + r(d) + A, (6.29)

where (I)DFT is the (Inverse) Discrete Fourier Transformation, and e(d), g(d), h(d),
and r(d) are the equivalents of their capitalised frequency domain counterparts E(f ),
G(f ), etc. The cepstrum is real valued, if computed from the amplitude or power spec-
trum, as these are both axis-symmetrical [6]. The desired high-pass can be obtained
by trimming the cepstrum after the first fundamental period, i.e., at T0.

Variations of the classical cepstrum use other back-transformations such as the
Discrete Cosine Transformation (DCT) or PCA for de-correlation.

If one maps the power spectrum onto Mel-frequency scale bands, then takes the
logarithms of the powers of each band, and applies a DCT transformation to the
resulting values, one obtains the Mel-frequency cepstral coefficients (MFCCs). The
mapping onto Mel-frequency scale bands is typically performed by triangular filters
which are equidistantly spaced on the Mel-frequency scale. This scale takes the
physiology of human hearing into account: the frequency resolution of the human
ear is higher for low frequencies and lower for high frequencies; an approximately
logarithmic relationship of the frequency resolution to the absolute frequency exists
[5]. The Mel-frequency scale Mel(f ) is given by:

Mel(f ) = 2595 · log

(

1 + f

700

)

. (6.30)

MFCCs are among the most popular audio features. Usually coefficients 0 up to 16
are used. For speech recognition in particular, coefficients 0–12 are applied most
frequently.
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6.2.1.5 Linear Prediction

A simple model for the production of speech bases on the assumption that voiced
sounds—in particular vowels—can be well modelled by a few resonance frequencies,
which are referred to as formants [6]. Therefore, one can assume that subsequent
samples of a speech signal are not independent, but correlated to some degree, i.e.,
linear dependencies exist among consecutive frames [6]. By that, it should be possible
to predict a sample value s(k) by its predecessors [5].

Given a digital speech signal s(k), with k from −∞· · · + ∞, we may assume the
long term average to equal zero [2]. To estimate and model the linear dependencies,
the method of Linear Predictive Coding (LPC) applies. The principle behind LPC
is a linear system, which describes an output value s(k) as a weighted sum, i.e., as
linear combination of a limited number of preceding values s(k − i) [17]:

ŝ(k) = −
p∑

i = 1

ais(k − i). (6.31)

The minus sign is chosen to simplify further calculations. In practice, one can only
expect an error-prone estimation ŝ(k) of the actual value s(k). The error e(k) between
these two is:

e(k) = s(k) − ŝ(k). (6.32)

With Eq. (6.31):

s(k) = −
p∑

i = 1

ais(k − i) + e(k). (6.33)

The weights ai are the so-called predictor coefficients. The summation delimiter p is
the order of the predictor. The predictor coefficients now have to be determined such
that—within a given interval—the values k conform well with the actual values of
s(k), i.e., the prediction error is minimal. The optimisation criterion is the squared
error. In addition, the order p should be minimal in order to require as few coefficients
as possible [17]. Just like spectral parameters, the predictor coefficients need to be
computed for short segments, as speech signals vary over time.

It can be seen that the predictor polynomial represents a digital filter of the order p
which can be used either to produce the speech signal s(k) or the error signal e(k) by
using e(k) or s(k) as input signal. The weights ai completely describe the according
linear system. If one uses the speech signal as input to the predictor, the system is a
digital transversal filter and one obtains the error signal:

e(k) = s(k) +
p∑

i = 1

ais(k − i). (6.34)
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In the following, we will use z-transformation for the mathematical derivation. The
(two-sided) z-transformation is given by:

S(z) =
+∞∑

k =−∞
s(k)z−k . (6.35)

With the z-transformations E(z) and S(z) of the signals e(k) and s(k), respectively,
and obeying the rule of the z-transformation that s(k − i) corresponds to S(z)z−i in
the z-domain, holds:

E(z) = S(z)(1 +
p∑

i = 1

aiz
−i), (6.36)

and for the transfer function H(z):

H(z) = E(z)

S(z)
= 1 +

p∑

i = 1

aiz
−i. (6.37)

In the inverse case the system is excited by the error signal and produces the speech
signal—the filter then is a mere recursive filter and the transfer function the reciprocal.
This is a simple model for speech production, where the vocal tract is seen as linear
filter which is excited by regular pulses by the vocal chords. The excitation pulses
are not linearly predictable at a low number of predictor coefficients within a short
analysis interval and thus produce the prediction error. In the case of unvoiced sounds,
excitation is given by white noise. The transfer function in this case has only poles
and no zeros, i.e., the system is an all-pole model [6]. These poles can be determined
directly from the predictor coefficients ai. One now has to determine these for a given
order p such that the deviation between the estimated signal and the real signal is
minimal.

The squared error α within the interval of analysis (for the moment running from
k = −∞ to +∞; later within the open window region) is:

α =
∑

k

e(k)2 (6.38)

α =
∑

k

[ p∑

i = 0

ais(k − i)

]2

. (6.39)

Note that, for simplification a coefficient a0 was introduced that equals one. In order
to determine the minimum of this error, one differentiates the error partially per
predictor coefficient and sets the derived error equal to zero:
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dα

dai
=
∑

k

⎡

⎣2s(k − i)
p∑

j = 0

ajs(k − j)

⎤

⎦ != 0. (6.40)

The order of summations may be exchanged:

p∑

j = 0

aj

∑

k

s(k − i)s(k − j)

︸ ︷︷ ︸
ri, j

!= 0. (6.41)

One can now substitute by the correlation coefficients ri,j as shown in the above Eq.
(6.41). This results in a linear system of equations

p∑

j = 0

ajri, j = 0 for i = 1 . . . p. (6.42)

which can be solved for the p predictor coefficients aj with diverse standard methods,
which will not be detailed here. For more details please see [2].

It is interesting to note that the predictor error αm, within an interval of analysis,
monotonously decreases with increasing predictor length m because the estimated
signal ŝ(k) improves [2]:

αm ≤ αm−1. (6.43)

The linear prediction is also of relevance in the frequency domain and in fact, it is
closely related to the ACF [2]. According to Parseval’s theorem, the minimisation of
the prediction error in the time domain results in an according minimisation in the
frequency domain. It can be shown that by that, the filter has a tendency to result in
the smooth envelope of the fine-grained spectrum [7]. At the same time the digital
filter tends to whiten the spectrum of the error signal which means that its time signal
either results more or less in a series of dirac pulses (such as the pulse train excitation
in case of voiced sounds), or in white noise (e.g., in the case of unvoiced excitation)
[19].

Let us first determine the LPC spectrum of the inverse filter denoted by the sub-
script ‘inv’. As it is a mere transversal filter (cf. above), its impulse response is
identical with the LPC coefficients ai (extended by a0 = 1):

hinv(k) ≡ 1, a1, a2, . . . , ap. (6.44)

The discrete complex spectrum is obtained directly by application of the DFT as:

Hinv(m) ≡ DFT(hinv(k)) with: m = m�f , (6.45)

�f = 1

N�t
= fsample

N
and N = p + 1. (6.46)
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With the DFT:

Hinv(m) =
p∑

k = 0

hinv(k)e−j2πm k
N . (6.47)

The DFT thus has
[

p + 1
2

]
+ 1 significant real values and p + 1

2 significant imaginary

values. By computation of the absolute value and squaring of the complex spectrum

the power spectrum with
[

p + 1
2 + 1

]
values is obtained.

For the recursive all-pole model holds (denoted by the subscript‘rec’):

Hrec(z) = 1

Hinv(z)
(6.48)

and

Hrec(m) = 1

Hinv(m)
. (6.49)

or logarithmised:
log[Hrec(m)] = −log[Hinv(m)]. (6.50)

In logarithmic scaling, one thus only has to invert the sign in order to obtain the
spectrum of the recursive filter from the inverse one.

As the LPC filter can only have poles, one can well model formants of vowels [2]
but not zeros in the spectrum. The latter would be characteristic for nasal sounds. As
an advantage over short time spectra obtained by Fourier transform, the spectra are
very smooth and do not show the waviness due to the presence of the fundamental
frequency. This comes, however, at the cost that for noisy patterns, such as fricative
sounds, LPC modelling is not well suited because the spectrum is still approximated
by only p poles.

As typical speech spectra fall by around 6 dB per octave [2], the efficiency of the
LPC analysis can be improved by emphasising higher frequencies by a first order
‘pre-emphasis’ high pass with the following transfer function [7]:

Hpre(z) = 1 − μz−1, (6.51)

where the pre-emphasis factor μ is usually chosen between 0.9 and 0.95.
In order to best model the vocal tract transfer function H(z), the formants need to

be well captured. Per formant, a pole pair is needed [19], which results in a minimum
order of Pmin = 2 ·number of the formants. Usually, one adds two to three additional
poles to ensure that all formants are captured [2].

As stated above, the error in the analysis interval α falls monotonously with
increasing predictor order p. For a small p it falls rapidly at first. Once all formants
are captured, approximately around p = 16, it remains almost constant. Another
significant decrease takes place once the fine-grained structure of the spectrum caused
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by the fundamental frequency and its harmonics is modelled. A small error always
remains, however, due to non-linearities, zeros, etc.

The linear predictor coefficients an can be converted to a cepstrum representation
xn (see Sect. 6.2.1.4) by the following recursion starting at n = 0 (cf. [20]):

xn = −an − 1

n

∑
i = 1n − 1 (n − i) aixn − i (6.52)

6.2.1.6 Line Spectral Pairs

Line spectral pairs (LSP) or frequencies (LSF) are often employed for channel trans-
mission of LPC due to their reduced sensitivity to quantisation noise, stability, and
ability to be interpolated. The basic principle is the decomposition of the LP poly-
nomial for H(z) as given in Eq. (6.37) [21] into:

P(z) = H(z) + z−(p + 1)H(z−1), (6.53)

and
Q(z) = H(z) − z−(p + 1)H(z−1), (6.54)

where P(z) and Q(z) correspond to the vocal tract with the glottis closed and opened,
respectively. These two have roots only on the unit circle as opposed to H(z), which
can have them anywhere in the z-plain. By that, they are palindromic and anti-
palindromic polynomials, respectively [21]. For the determination of the LSP, one
evaluates P(ejω) and Q(ejω) in a grid search for ω = 0, . . . , π , i.e., the roots of the
two polynomials of order p + 1 need to be determined. These roots are all complex
symmetrical pairs ±ω – hence the name Line Spectral Pairs [17]. Two roots are found
at 0 and p, and p/2 further roots need to be determined for P(z) and Q(z). Overall,
the result is p roots, i.e., the same number as LPC coefficients.

6.2.1.7 Perceptual Linear Prediction

While the LP coefficients are well suited to focus on the phonetic content by good
approximation of high-energy regions and filtering of the more speaker-specific fine
harmonic structure of the speech spectrum owed to the source, they violate principles
of human hearing. PLP thus extends LP by psychophysics of human hearing to derive
an auditory spectrum estimate. The principles incorporated are

• Critical-band spectral-resolution: LP coefficients have equal treatment of all
frequencies, whereas human spectral resolution is only roughly linear up to 800 or
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1 000 Hz, but decreases thereafter. PLP overcomes this by remapping the frequency
axis according to the Bark scale and integrating the energy in the critical bands for
a critical-band spectrum approximation.

• Equal-loudness hearing curve: To simulate human hearing’s higher sensitivity
to the middle frequency range of the audible spectrum at normal conversational
speech sound pressure levels, the critical-band spectrum is multiplied by an equal
loudness curve that suppresses frequency ranges that are either relatively low or
relatively high in comparison to the range from 400 to 1 200 Hz.

• Intensity-loudness power law of hearing: The non-linear relation of a sound’s
physical intensity and its human perceived loudness sensation is approximated by
the power-law of hearing. A cube-root amplitude-compression of the loudness-
equalised critical band spectrum estimate is applied.

The psychoacoustically derived spectrum shows less detail and is characterised by a
smaller dynamic range. This allows for good modelling by a low-order all-pole model
to weaken speaker characteristics: After estimation of the auditory-like spectrum it
is converted to ACF values. Then, the autocorrelations are input to a standard LPC
analysis, to output PLP coefficients [22]. These can be further be converted to cepstral
coefficients by standard recursion (Eq. 6.52).

Interestingly, PLP allows for a smaller order as compared to LP coefficients. This
reduces the number of features and by that the parameters needed in a learning
algorithm.

A further variant are RASTA (RelAtive SpecTrA) PLP coefficients [23]. These
aim at easing mismatches between training and testing data’s recording conditions
by linear filtering of the data. In the RASTA method, a bandpass filter is applied per
spectral component in the critical band spectrum estimate to emphasise modulations
in the range of the speech syllable rate. By that, frame-to-frame spectral changes
between 1 and 10 Hz are emphasised by the following filter:

H(z) = 0.1 · 2 + z−1 − z−3 − 2z−4

z−4 · (1 − 0.98z−1)
. (6.55)

The authors in [23] stress, however that other filters could be used and that these
could be adapted to the frequency.

The idea behind the RASTA method is that speech is modulated at a different rate
as compared to channel effects, background noise, or non-linguistic vocalisations.
Moreover, human hearing seems to be less sensitive to slowly varying stimuli [22].

In detail, the processing steps for RASTA PLP cepstral coefficients are: (1) DFT,
(2) logarithm, (3) RASTA band-pass filtering, (4) equal loudness curve, (5) power-
law of hearing, (6) inverse logarithm, (7) inverse DFT, (8) solving linear equations
for LPC, (9) cepstral recursion.
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6.2.1.8 Formants

The term ‘formants’ refers to resonance frequencies of the human vocal tract. In
particular the lower resonance frequencies of the vocal tract, i.e., formants F1 and
F2, are highly correlated with the phonetic content and allow for mapping of vowels
and diphthongs (specific concatenation of two vowels) in the F1, F2 plane. In several
languages such as Dutch F3 also plays an important role for the spoken content,
whereas the higher formants are usually more coined by speaker characteristics [2].

For vowels and non-nasal consonants the transfer function of the vocal tract H(z)
can be approximated as an all-pole transfer function (cf. Sect. 6.2.1.5). This corre-
sponds to a mere recursive digital filter as realised by linear prediction. The poles
of H(z) are referred to as the formants of the speech signal. When determining the
formants, one usually aims at—in order of relevance—the centre frequency, the band-
width, and the amplitude. Formants are mostly assessed by linear prediction analysis.
Alternative methods based on short time spectra also exist. Thereby, the formants are
can be identified as dominant maxima, e.g., in the spectral envelope or even directly
from the speech signal [24]. There are, however, a number of difficulties when using
a spectral representation as starting point for formant determination—most domi-
nantly single spikes may exist that exceed the vocal tract’s resonance frequencies in
amplitude—e.g., by the fundamental frequency or by noise. Next, these resonance
frequencies or formants can be too close to each other, resulting in them being joined
to a single spectral envelope maximum. These fundamental problems can be eased
by LPC analysis.

Let us now consider formant analysis by linear prediction [2, 25]. The purely
recursive filter of the linear prediction fits the smooth envelope of the short time
spectra. Spectral maxima are modelled well—areas of low spectral energy are not.
In the linear model, speech production is modelled by the chain of generation (cf.
Sect. 6.2.1.4) starting with the excitation E(z) (periodic or noise), excitation spectrum
G(z), vocal tract H(z) and radiation R(z) [1, 19]. However, we model the poles
of the spectral function S(z) of the speech signal. This means, we do not know
of which of the components G(z), H(z), or R(z) the poles found in the transfer
function HLP(z) of the prediction filter do originate from. HLP(z) can thus not directly
be assumed as the optimal approximation for H(z). Rather, one has to determine
which of the poles of HLP(z) belong to formants [26]. The poles of HLP(z) can
first be determined by suitable algorithms such as the Newton-Raphson method:
the algorithm is initiated by an estimate for the first pole and then calculates the
polynomial value and its derivative. Then, in an iterative manner, improved estimates
are calculated. This iteration terminates once the delta of subsequent solutions is
smaller than a set threshold. The polynomial can then be divided by this pole and the
algorithm starts over for the now reduced polynomial until all-poles are determined.
A re-iteration per pole with the overall polynomial helps to ease limited precision in
the first round. One can speed-up this process by using the poles from the last speech
frame for initialisation, as the vocal tract position and by that the poles change
comparably slowly over time. Now, a frequency range validation criterion could be
applied to discard poles which do not belong to formants.
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Another option to determine formants is by smoothing short time spectra based on
DFT or FFT [2]. The idea is to obtain a smooth spectrum just as in the case of linear
prediction, which is freed from the waviness caused by the fundamental frequency.
This waviness results in maxima at a distance of F0 apart due to the harmonics of
the fundamental frequency. Obviously, these maxima can easily be confused with
formants if the spectrum is not smoothed. Smearing of the maxima can be obtained
by convolution with a smoothing function—however, this method is usually not very
precise [2].

If analysis is based on the spectral appearance, peak-picking starting from a list
of extreme values is needed to decide for the ‘right’ maxima. This holds for spectral
smoothing or linear prediction spectra. Usually, candidates are first found per speech
frame, then, the evolution over time is taken into consideration by also looking at
neighbouring frames.

Overall, formant tracking is not solved to full satisfaction to the present day [27].
Among the main difficulties one can name unfavourable signal conditions, in partic-
ular insufficient spectral resolution in the case of neighbouring formants of similar
amplitude. Further, formants are—strictly speaking—only defined for vowels radi-
ated via the mouth. The shunt of the nasal cavity changes the frequency response
of the vocal tract significantly, as novel nasal formants are added and formants may
be compensated by anti-formants, i.e., zeros in the transfer function [6]. Such com-
pensation may also occur due to zeros in the excitation spectrum G(z). In addition,
depending on the speaker and the phonemes—in particular dark vowels—the upper
formants as of F3 are too weak in comparison to surrounding noise. And finally, there
exists no ground truth—only gold standards—if algorithms are tested with sponta-
neous human speech. There are, however, some sets as a partition of the TIMIT
corpus—the MSR-UCLA VTR database—that are manually labelled by expert pho-
neticians [28]. Another standard approach to validity measurement is the usage of
synthesised speech, where formant positions are known [29]. Obviously, this is less
realistic than comparing performance on real human speech. In a similar way, this
last problem of lacking ground truth also holds for fundamental frequency detection
algorithms.

Due to these problems, formant tracking is still an active field of research, and
new approaches are still introduced, such as biologically inspired algorithms basing
on gammatone filter banks [27].

The tracking of anti-formants on the other hand is hardly pursued. As these are
also not further considered in this book, we only refer to a few methods that aim to
commonly describe formants and anti-formants. First is the autoregressive moving
average (ARMA) method [30]: The auto regressive part deals with the recursive part
of the filter to be determined, i.e., the poles, whereas the moving average part handles
the non-recursive part, i.e., the zeros. A more common method, however, is to use the
reciprocal or logarithmic transfer function and to apply the same methods as for the
poles [31].
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6.2.1.9 Fundamental Frequency and Voicing Probability

The fundamental frequency F0 or the fundamental period length T0 have a key role
among speech parameters and the prosodic information. The human ear is consider-
ably more sensitive to changes in the fundamental frequency as to changes in other
parameters of the speech signal [15]. This makes it evident that high precision is
required for its determination, and in fact, the correct determination of F0 has sig-
nificant influence on intelligent speech analysis as shown, e.g., in the author’s work
on emotion recognition in speech [32].

It may seem an easy task at first, as one has only to determine the period length of
a quasi-periodic signal [33]. However, a number of factors makes it more challenging
than that, and in fact one of the most difficult tasks of speech signal analysis [2]:
As stated, in principle, speech production is a non-stationary process. The position
of the vocal tract during articulation may change very quickly leading to significant
changes of the structure of the time-signal of speech. This may occur already from
one fundamental period to the following one [16]. Further, the multiplicity of used
articulator positions of the human vocal tract in combination with the multiplicity of
human voices result in huge variety of possible time structures of the speech signal.
Then, narrow-band lower formants can easily be confused with the fundamental
frequency. In particular the first formant can easily be confused with F0 for female
voices, where it is typically found around 200–1 400 Hz [2]. The excitation signal of
the human voice itself is not always regular. This holds also in normal conditions, i.e.,
in the absence of pathological affects. The voice can further switch into the ‘strohbass’
register with a very low frequent and irregular excitation as low as 25 Hz. Across
speakers, the fundamental frequency can further vary among almost four octaves (50 –
800 Hz). Finally, the transmission channel may lead to distortions or band limitations,
such as in the case of (narrow-band) telephone speech (300–3 400 Hz).

This led to a considerable amount of Pitch Detection Algorithms (PDAs), of
which none works to full satisfaction in arbitrary conditions [34]. Some of these aim
at determination of the fundamental period T0, which is equivalent to F0 by:

F0 = 1

T0
. (6.56)

If T0 is to be determined, it is considered as momentary value, i.e., the time from the
beginning of one period to the beginning of the subsequent one. If the speech signal
was strictly periodic, both definitions would lead to the same result.

Each PDA can be sub-divided into three steps:

• the pre-processing that aims at a data reduction to focus on the problem at hand
• the actual extraction,
• and the post-processing that usually aims to smooth the overall pitch track and

corrects minor errors, e.g., by Viterbi smoothing (cf. Sect. 7.3.2) [33].

Independent of these steps, PDAs can be parted into two families [7]: First are
those operating in the short-time domain, i.e., windowing has taken place and a

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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number of two to three consecutive fundamental periods are typically observed at
a time. Second are the ones that operate in the time domain, i.e., input signal and
extraction stage operate on the same time basis [2].

We will now first deal with the short-time PDAs. Direct determination of F0 by
localising the first spectral maximum is not sufficiently robust. Better results are
obtained by looking at the sub-harmonic structure of the power spectrum [35]. This
can be obtained by spectral compression: F0 results as the largest common divisor
of the frequencies of all harmonics. To this end, the power spectrum is compressed
affinely along the frequency axis in the ratios 1:2, 1:3, etc. and then added to the
original spectrum. By the coherent contribution of all higher order harmonics of F0 a
maximum at the actual frequency of F0 is emphasised. This principle is known as sub-
harmonic summation (SHS). Another approach is the measurement of neighbouring
maxima in the power spectrum to determine the fundamental frequency. According to
[15], these harmonics-based approaches are well justified by human pitch perception.
They will even work well in cases where the actual fundamental frequency is missing
due to band-limiting properties of the channel, for example. The human hearing is
able to identify the correct pitch of a complex tone where the actual fundamental
frequency is missing in the signal, but the structure of the higher harmonics of the
fundamental is present. In such a case the actual perceived pitch is lower than the
actual lowest frequency in the signal. This effect is known as virtual pitch [15].

A different PDA approach is based on the cepstrum [36]—the fundamental period
T0 can then be determined as significant maximum at the right end along the quefrency
axis (cf. Sect. 6.2.1.4). At the left end close to the origin, the formants are located.
Further, in the case of unvoiced sounds the excitation function is noise-like, i.e.,
non-periodic, such that no peaks occur in the cepstrum and the spectral energy is
lower. By a simple threshold decision one can thus distinguish between voiced and
unvoiced sounds. This decision can be added by the use of the ZCR as previously
described. In general, the cepstral method can be considered as relatively robust.

Another method based on short-time analysis in the spectral domain makes use of
the maximum likelihood (ML) principle [37]. For a limited segment in time, a periodic
signal of unknown period length T0 is by this method separated optimally from
Gaussian-distributed noise. However, neither is the speech signal ideally periodic,
nor the background noise Gaussian-distributed, which requires adjustments for the
application to speech signals. As this method is not used in the ongoing, no further
details are given at this point.

Let us now switch to PDAs based on correlation methods. The most straight-
forward approach is based on the ACF, as a periodic signal has a periodic ACF
with distinct maxima at the beginning of each period. In order to ease the influence
of the first formant, the spectrum can be flattened at first. This can be reached by
LPC analysis: The signal is first band-limited to around 800 Hz. Next, it is inserted
into an inverse filter with a low predictor order, e.g., of four. By that, computational
effort remains small and a low order further ensures that the fundamental frequency
is well preserved in the error or ‘residual’ output signal, whereas the first formant
is already eliminated. This is also known as Simplified Inverse Filtering Technique
(SIFT) [38]. Using the LPC error signal however gives best results only in the case
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of non-disturbed speech with sufficient presence of higher frequencies. For dark
vowels, the error signal is usually rather weak. Noise will usually be forwarded
without dampening into the error signal.

In the ACF-based PDAs, F0 is then determined by the first peak after the one at the
origin [39]. Erroneous period-values need to be eliminated or interpolated in this stage
and potential changes in the period need to be foreseen. In addition, the ACF method
can be used to determine the harmonicity of the speech signal—the Harmonics to
Noise Ratio (HNR): The ACF’s first peak at the origin reflects the overall signal’s
energy. HNR is then obtained by setting the peak at the origin in relation to the next
occurring distinct peak. If this peak is considerably lower, one has a clear indication
of a non-periodic signal, as self-similarity is low in case of higher delays in the ACF.
The ratio can thus either be used as ‘voicing probability’ or by thresholding a hard
decision between voiced / unvoiced can be made. Throughout this book, we calculate
the logarithmic HNR by

HNR(n) = 10 · log
ACF(T0)

ACF(0) − ACF(T0)
, (6.57)

where T0 is the fundamental period.
A faster alternative to the ACF is the average magnitude difference function

(AMDF) [40]. AMDF can be seen as anti correlation similar to comb-filtering where
the resonance frequencies are determined by the delay d:

AMDF(d) =
∑

k

|s(k) − s(k + d)|. (6.58)

If the delay d equals the fundamental period T0, a significant minimum is observed
as opposed to the maximum in the case of ACF. AMDF’s speed is based on the
substitution of ACF’s multiplications by subtractions. AMDF is usually applied either
directly on the speech signal, the LPC error signal or in combination with a non-
linear pre-processing and band pass filtering (‘centre clipping’) of the signal at first.
Further, AMDF follows the principle of non-stationary analysis and thus allows for
analysis of rather short segments [2]. These characteristics have helped to make
AMDF-based PDAs popular.

Overall, PDAs based on short-time analysis are typically robust against noise,
bandwidth limitation at the lower frequency end, and phase distortion. They do,
however, not allow to provide a period-by-period determination of T0 which is needed
if one aims to measure the micro-perturbations of pitch and energy.

We thus now consider the PDAs that operate in the time domain. These can be
differentiated by the amount of effort put on pre-processing. In fact, two extremes
dominate which will both be exemplified by one PDA: First, to have all data reduction
in the pre-processing stage. This may go as far as filtering all but the first partial
oscillation. Second, in the other extreme, there is no pre-processing, but the extraction
stage operates on the original signal directly.
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The PDAs in the time domain analyse the signal period by period and set markers
at periods’ boundaries [33]. This makes them usually more susceptible to local devi-
ations and by that less reliable than the majority of the short-time PDAs. In the case
of highly non-periodic excitation signals, however, they usually provide the better
results [2].

We will now first discuss the analysis of the time structure of a speech signal. The
fundamental period is the response of the vocal tract to a single pulse of the excitation.
Given the vocal tract to be a lossy and passive linear system, the impulse response
is a sum of exponentially dampened oscillations. One can thus expect maxima and
minima at the beginning of each period to be more significant as towards the end. This
allows to search for maxima and minima in order to determine T0. Problems in doing
so include the momentary values of the formants which may change comparably
quickly and dominate the frequencies of the relevant dampened oscillations. Further,
F1 is dampened only weakly whereas the signal envelope changes comparably faster.
In case of a phase distorted signal the formants may appear as if excited at different
moments in time. This makes analysis rather complex—however, computationally
usually only comparisons and decisions are needed which makes these PDAs rather
fast. The overall processing is as follows: The influence of higher order formants is
eased by low-pass filtering. Then, all maxima and minima are determined. Such that
are not significant are eliminated until a single extreme value per period remains. A
final correction can take care of obviously error-prone candidates [2].

Low-pass filtering can go as far as attempting to preserve only the first partial
oscillation. In this case, only zero-crossings need to be counted. Obviously, this is
not trivial as we do not know a-priori in which range to expect T0. Thus, to allow
for less aggressive low-pass filtering, we can introduce a threshold above zero in the
case of the preservation of more than one partial. This can be further extended by
introduction of a hysteresis: A marker is set once an upper threshold is exceeded and
only reset once a second lower threshold is under run. The requirement of severe low
pass filtering demands for different frequency ranges of operation in any of these
cases [2]. Further, the first partial needs to actually exist, which is, not the case in
narrow-band telephone speech, for example.

6.2.1.10 Jitter and Shimmer

Jitter and shimmer are referred to as micro-prosodic descriptors as opposed to the
prosodic descriptors intensity and intonation dealt with above. Like HNR, they
describe the voice quality.

Jitter is the deviation of the fundamental period length from period to period.
This information is, particularly suited in speaker age or pathology determination,
for example. With increasing age or certain pathology the irregularity of the periodic
excitation decreases. Further, the heart rate can have an influence on jitter [41]. One
can distinguish between the cycle-to-cycle or local jitter Jcc – the deviation from one
period to the next—given as:

Jcc = T0(n) − T0(n − 1), (6.59)



64 6 Audio Features

and the period or cycle jitter Jc of the deviation of the current fundamental period and
the ‘ideal’ fundamental period T0 as obtained by averaging in the analysis interval:

Jc = T0(n) − T0. (6.60)

Jitter is known to be particularly high at the beginning and end of a sustained voiced
sound.

In a similar way, shimmer is the deviation of amplitude—usually in dB—from
period to period. A healthy speaker’s shimmer is usually between 0.05 and 0.22 dB
[42].

To end this section, Fig. 6.2 gives some example plots of speech LLDs as discussed
above.

6.2.2 Music Descriptors

In this section we will deal with LLDs tailored in particular to the analysis of music.
However, many of the previously discussed features are also used for music analysis.
We will first look at basic Pitch Class Profiles (PCP)—in particular by CHROMA-
type features. These are suited for the tonal analysis of music. We will then take a look
at the music theoretic and human perception based variants as were first introduced
in [44]. Rhythmic features are discussed at a later stage in Sect. 11.3.

6.2.2.1 Pitch Class Profiles

In music theory, ‘notes’ are characterised and named by their pitch class and their
octave, where an octave is an ‘interval’ between two notes. An increase by one octave
resembles a doubling of a note’s frequency. It is further a special interval: Two notes
played in different octaves sound nearly equal to human listeners and thus share the
same name with different octave number. In western music, the octave interval is
divided into twelve equally sized intervals with the tempered scale. These intervals
are called semi-tones. Their names in western music are shown in Fig. 6.3 that also
visualises the discussed principle.

PCP features are based on the principle of providing the spectral energy per semi-
tone band. They are computed using a DFT with a suitable window length, window
function, and a window overlap—typically around 0.5. Human loudness sensation
can be taken into account, e.g., by applying the A-weighting according to DIN EN
61672-1:2003-10 to the DFT magnitudes. The weighting is given by:

HA(f ) = 122002 · f 4

(f 2 + 20.62) · (f 2 + 122002)
· 1
√

f 2 + 107.72 ·√f 2 + 737.92
. (6.61)

http://dx.doi.org/10.1007/978-3-642-36806-6_11
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Fig. 6.2 Exemplary speech wave form over time in ms: laughter (0.0–150 ms) followed by “I
take my mind off” taken from the Sensitive Artificial Listener (SAL) database (male speaker) and
selected LLDs [43]

Then, the audio signal is decomposed into frequency bands. These represent the
semi-tones which are defined for equal temperament as

fi = f0 · 2i/12 f0 = f (A0) = 27.5 Hz, (6.62)
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Fig. 6.3 The pitch helix as
presented in [45]. The height
axis is associated with a note’s
frequency and the rotation
correspondsto the pitch class
of a note. Here, Bn is one
octave below Bn + 1 [46]

typically with 15 ≤ i ≤ 110 (corresponding to the notes C2–B9) and therefore
covering 96 semitones (8 octaves). In order to overcome ‘tape speed variation’ or
intentionally different tunings, pitch correction can be applied as was suggested
in [47]: a long term frequency analysis computes the prominent frequency fp and
determines a factor c

c = fp
fr

(6.63)

with

fr = arg min
fi

∥
∥
∥
∥

fp
fi

− 1

∥
∥
∥
∥ . (6.64)

Next, all semitones fi are multiplied with this correction factor c for pitch adjust-
ment. For mapping of frequencies to the semitones, band-filters with Gaussians gi(x)
centred at fi given by

gi(x) = 1

σ
√

2π
· e−

(
x−fi

fi−fi − 1

)2

2σ2 σ = 0.125 (6.65)

can be used. The resulting sub-bands si are normalised by dividing each one belonging
to the same octave O by the sum of these sub-bands according to

ŝi = si,O
∑

si,O
si,O = si ∈ O. (6.66)
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These raw energies per semi-tone interval can then be re-grouped by summing up
energies of octaves of a semi-tone to reduce the feature vector size to, e.g., 36, 24, or
12 bands. This will be now exemplified for the most frequently encountered choice
of 12 dimensional ‘CHROMA’ features.

6.2.2.2 CHROMA

Rather than storing and analysing each individual musical semi-tone’s energy for
analysis of the chordal structure (a musical chord is defined as two or more simul-
taneously played notes) or the key, the feature vector x can be reduced to a limited
number of octaves up to a single one, i.e., 12 features, as for CHROMA features [48].
This may be performed by addition of all bands belonging to the same semi-tone in
different octaves. Finally the vector x is normalised by the number of merged bands.
A 12 dimensional CHROMA vector x thus provides the cumulative spectral energies
per semitone A, A#, . . . , G# over all octaves:

x = [
A, A#, B, C, C#, D, D#, E, F, F#, G, G#

]T (6.67)

by adding up—as a final step to the previous PCP calculation—all sub-bands corre-
sponding to the same relative pitch class.

In some implementations the length of the CHROMA vector is normalised to
1 in order to have energy independent CHROMA information. This is, however,
problematic for low energy signals, as the noise (e.g., quantisation noise) present
in this signal will dominate the CHROMA features instead of the desired harmonic
information. To avoid this problem, the CHROMA values can be forced to 0, if the
energy of the signal falls below a chosen threshold.

6.2.2.3 CENS

CHROMA-features provide only short-time information for an individual frame of
analysis. CENS (CHROMA Energy-distribution Normalised Statistics) features are
suggested in [49, 50] to provide a perspective beyond individual frames. The under-
lying principle resembles averaging CHROMA features over time. Yet, differing
from a sheer prolongation of window-size, quantisation and temporal weighting of
harmonic information are better modelled. As the local chroma features may be too
sensitive concerning articulation effects and local tempo deviations, to each compo-
nent of x = (x1, . . . , x12) a quantisation function Q defined as
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Fig. 6.4 Harmonic representation of the first 20 s of “Abba—Mamma Mia”. The light curves
illustrate the local CHROMA energy distribution, and the dark bars the CENS features [51]

Q(a) :=

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

4 for 0.4 ≤ a ≤ 1

3 for 0.2 ≤ a < 0.4

2 for 0.1 ≤ a < 0.2

1 for 0.05 ≤ a < 0.1

0 for 0 ≤ a < 0.05

(6.68)

is applied. In the next step, one convolves 11 consecutive quantised CHROMA vec-
tors Q(x) component-wise with a Hanning window. This results in a smoothing/low-
pass filtering of the CHROMA components over time. Given the low-pass
characteristics of the resulting components, temporal down-sampling by a factor
of four is performed as the final step of CENS computation. A visual comparison of
CENS and CHROMA features is provided in Fig. 6.4.

In the following, the creation of higher level features based on CHROMA features
(CHROMA-based in the ongoing) will be described. The key ‘C major’ will be used
as an example. These features are based on music theory and human perception.
They were suggested in [44].

6.2.2.4 Scale-based

The first type of CHROMA-based features are scale-based descriptors that base on
the principle of matching the pattern of a major key in all possible 12 combinations
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(a) (b)

(c) (d)

Fig. 6.5 Pattern for the basic feature types. The vertical axis label “validation” was taken over for
all types from Krumhansl’s Probe Tone Ratings, where human listeners rated how well a heard note
fits a previously heard chord-progression and thus reflects the ‘weight’ of a semitone within a scale
[44]. a Scale based pattern b chord based pattern c PTR-major pattern d PTR-minor pattern

to the CHROMA vector by correlation. In doing so, one obtains the pattern shown
in Fig. 6.5a by labelling the notes appearing in the scale beginning with the root as
semitone 1. In this ‘hard’ template the seven notes associated to the key are set to 1
and the remaining five notes outside the key are set to 0. Based on this pattern, one can
construct an according template for each root note. For the feature type scale s and
the root note C one obtains the following template ts(C) (the index of the templates
abbreviates the respective feature in the ongoing, and the root note is underlined in
the vectors that always start with A as in ( 6.67)):

ts(C) = [
1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0

]T
. (6.69)

To create corresponding templates for other keys, the same pattern is simply shifted
(i.e., ‘transposed’) by multiplication with the shifting matrix M (6.70). The shifting
matrix rotates the template vector and keeps the pattern but starts on base of the target
root.

M =

⎡

⎢
⎢
⎢
⎣

0 0 0 . . . 0 0 1
1 0 0 0 0 0
...

. . .
...

0 0 0 . . . 0 1 0

⎤

⎥
⎥
⎥
⎦

(6.70)

For the creation of the particular templates ts(k) with k = {A, A#, . . . , G#}, the
basic template of A major ts(A) is used which is then shifted by the matrix M to the
respective root:

ts(C) = M3 ts(A). (6.71)
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To build the scale based feature vector s element-wise, the CHROMA vector x is
next correlated with the particular key pattern ts(k):

s =

⎡

⎢
⎢
⎢
⎣

xT ts(A)

xT ts(A#)
...

xT ts(G#)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

xT ts(A)

xT M ts(A)
...

xT M11 ts(A)

⎤

⎥
⎥
⎥
⎦

. (6.72)

This operation is repeated for every root and the derived pattern by multiplying the
template with the shifting matrix M. This provides a ‘confidence’ for each of the 12
possible keys, which reflects the intensity and at the same time the probability of the
respective key.

6.2.2.5 Chord-based

For the next type of CHROMA-based features, only a key’s main four chords’ notes
are considered. These chords are: tonic, sub-dominant, dominant, and the relative
minor chord of the tonic. Again, only notes in the respective key are allowed. Now,
however, these are weighted differently: according to their number of appearance
in the key’s main four chords. Obviously, other definitions can be thought of, such
as including the relative minor chords of the sub-dominant and dominant. Again, a
12 dimensional ‘chord vector’ c is created by repeated correlation of the CHROMA
vector x with accordingly shifted chord templates tc(k) for each root k (exemplified
is the root C):

tc(C) = [
2, 0, 1, 3, 0, 1, 0, 2, 1, 0, 2, 0

]T
. (6.73)

In [52] a similar method is suggested. Their approach bases on templates related
to the chord by use of the histogram of semi-tones and additional overlay of all
triads belonging to a scale. These templates also tend to have values close to zero at
semi-tones outside the scale.

6.2.2.6 PTR Major/Minor-Based

Alternatively to these music theory motivated templates, one can consider templates
based on human perception, such as the Probe Tone Ratings (PTR) [53]. PTR were
collected in listening experiments as follows: A chord-progression within a given
key was played, then a note was presented to the participating subjects. These had
to rate how well the note fits the progression. The observed validations show good
correlation with hard templates consisting exclusively of semi-tones belonging to the
scale and thus can be considered as histogram of the intensities of semi-tones within
a key. As an advantage, PTR templates allow scale external semi-tones such as ‘blue
notes’. Fig. 6.5c, d depict the PTR templates for major and minor keys starting from
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the tonic. In this book ‘minor’ refers to the natural minor scale as is most prominent in
popular music, in contrast to harmonic or melodic minor scales. These minor scales
differ in their semitones used as compared to the respective relative major scale.

Given the difference of the major and minor PTR ratings, both are considered
in the ongoing. As before, 12 dimensional vectors p

maj
and p

min
are obtained by

repeated correlation of the CHROMA vector x with accordingly shifted PTR tem-
plates tPmaj(k) and tPmin(k) for each root k, leading to (exemplified is again the root
C):

tPmaj(C) = [
3.8, 2.4, 3.3, 6.6, 2.2, 3.5, 2.4, 4.8, 4.2, 2.6, 5.5, 2.0

]T (6.74)

tPmin(C) = [
3.0, 3.5, 3.0, 6.5, 2.7, 3.0, 5.2, 2.8, 3.3, 2.6, 4.8, 4.1

]T
. (6.75)

6.2.2.7 Derived Features

The root’s neighbouring keys in the circle of fifths are now also considered. Starting
for example with C major, the fifth above is G major, and the fifth below F major.
The first such new type will be obtained by adding the dominant. Hence, every
possible root is added by its corresponding fifth in order to reduce confusion with the
dominant. A template is used also this time. However, this template is not applied
to the CHROMA vectors directly. Instead, in a second step the previously computed
feature vectors s, c, p

maj
, and p

min
are repeatedly correlated with the accordingly

shifted template tdom(k) for each root k (exemplified is C):

tdom(C) = [
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0

]T
. (6.76)

E.g., the scale dominant feature vector sdom is obtained as follows:

sdom =

⎡

⎢
⎢
⎢
⎣

sT tdom(A)

sT tdom(A#)
...

sT tdom(G#)

⎤

⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎣

sT tdom(A)

sT M tdom(A)
...

sT M11 tdom(A)

⎤

⎥
⎥
⎥
⎦

. (6.77)

Another option is to furthermore add the fifth below the root to the search mask and
thus regard the whole cadence. As for the last feature type, a secondary repeated
correlation with the template tcad(k) for each root k is executed (root C in our
example), where:

tcad(C) = [
0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0

]T
. (6.78)

The presented set of CHROMA-derived features could be further extended. However,
it has been shown that the already described features are sufficient and other features
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Fig. 6.6 Overview on the creation of music theoretically inspired and perception based features
for tonal analysis [44]

decrease the performance in anaylsis systems. E.g., an exclusive combination of
the tonic and the sub-dominant, showed the tendency of false decisions towards the
dominant in chord and key determination tasks. The enlargement of the search mask
to the sub-dominant on the other hand would increase the risk of favouring dominant
keys [44].

Overall, 13 feature groups for tonal analysis were shown (cf. Fig. 6.6), each con-
taining 12 features: CHROMA (or alternatively CENS), four basic, and eight further
derived feature types.

6.2.3 Sound Descriptors

For the intelligent analysis of general sounds, most of the features as described for
speech analysis are often used, including intensity, ZCR, linear prediction-based
and cepstral coefficients as well as specialised spectral features. Apart from features
designed for the specific task at hand, some examples of statistical spectral features
are given in this section. These features are often used for general sound and sound
quality analysis. On the other hand they can also be of used in speech or music
analysis tasks.

Starting with the centre of gravity mc, the i-th central moment is next introduced
as

Mi := 1

E

∞∑

0

(m − mc)
i|S(n, m)|2. (6.79)

Examples of statistical spectral features comprise:

• The spectral standard deviation which is a measure for how much the frequencies
in a spectrum can deviate from the centre of gravity. It is equal to

√
M2.

• The spectral skewness as a measure on how much the shape of the spectrum below
the centre of gravity frequency is different from the shape above this frequency. It
is calculated as M3/(M2)

1.5.
• The kurtosis as a measure of how much the shape of the spectrum around the

centre of gravity differs from a Gaussian shape. It is equal to M4/
√

M2 − 3.
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• Spectral band energies and energy densities such as for the following seven
octave based frequency intervals: 0–200 Hz, 200–400 Hz, 400–800 Hz, 800Hz–
1.6 kHz, 1.6–3.2 kHz, 3.2–6.4 kHz, and 6.4–12.8 kHz.

Further, a set of LLD is standardised in the MPEG-7 standard for audio analysis.1 This
set is also often used for music analysis, but well suited for general sound analysis.
The LLD are audio power, spectrum centroid and spread, fundamental frequency,
harmonics, log attack time, harmonic spectral centroid with deviation, spread, and
variation, temporal centroid, spectral centroid, and spectrum envelope with flatness,
projection, and bias.

6.3 Textual Descriptors

For some tasks, especially recognition of emotion and speaker states and traits,
the spoken content is of importance. The acoustic LLDs described in the previous
sections only contain information on ‘how’ something is said and not on ‘what’
is being said. To obtain the chain of spoken words, automatic speech recognition
(ASR) algorithms have to be used in real applications. For assessing the maximum
gain in recognition performance that a system can reach when the textual content is
considered, in most experiments often a manually transcribed ground truth is used.

Some of such studies have shown that methods of linguistic analysis of spoken (or
sung) text can complement the acoustic information and thus enhance the combined
recognition performance, e.g., in emotion recognition from speech [54–57] or music
mood recognition [58].

This section presents different approaches for linguistic analysis. While they
are mostly established for the processing of textual strings such as words or chord
sequences in music, any other information that may be represented as string by sym-
bolic entities can be modelled in a similar fashion [59]. In the ongoing—for the sake
of simplification—we will speak of ‘words’ consisting of ‘characters’ representing
the basic string units of analysis.

Often, only a fraction of these words convey relevant information about the target
task of interest and many words are similar and related in their meaning. In order
to reduce the information in a meaningful way, two methods are usually applied:
stopping and stemming.

Stopping is the exclusion of words from the vocabulary for their low relevance in
the context of the analysis. It is usually executed by expert rules such as exclusion of
function words or a data-driven evaluation. A popular data-driven method is using
a minimum word frequency fmin for a word in the database to become part of the
vocabulary. Rare words are thus discarded. However, frequently appearing function
words which may be irrelevant in many search tasks are left over. Therefore, an
additional data-based feature selection by suitable criteria such as information gain
can be used.

1 ISO/IEC JTC 1/SC 29/WG 11 N7708.
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Stemming on the other hand reduces different morphological forms of a word to its
base form, i.e., the ‘stem’. Thus, different flexions of the same word are clustered—
e.g., “loved”, “loving”, “loves” is stemmed to “love”. There exist a number of
popular stemming algorithms such as Porter’s stemmer [60] that shall serve as an
example of the underlying principle here: Each (English) word can be represented in
the form [C](VC)m[V ], where C (V ) denotes a sequence of one or more consecutive
consonants (vowels) and m is called the measure of the word.2 Then, in five steps,
replacement rules are applied to the word: First is the removal of plural and participle
endings. Then, in steps two to five common word endings are replaced such as ATION
→ ATE or IVENESS → IVE. Usually, these rules contain conditions under which
they may be applied. For example, the rule “(m > 0) TIONAL → TION” is only
applied if and only if the remaining stem has a measure greater than zero. This
leaves, for example, the word “rational” unmodified while “occupational” is being
replaced. Should more than one rule match in a step, only the rule with the longest
matching suffix is applied.

A very compact approach to stemming is part of speech (POS) tagging. This
technique is also known as grammatical tagging or word-category disambiguation.
Examples of ‘open’ word classes are adjectives, adverbs, nouns, verbs without auxil-
iary verbs, and interjections [61]. In addition, ‘closed’ word classes contain auxiliary
verbs, clitics, coverbs, conjunctions, determiners (articles, quantifiers, demonstrative
adjectives, and possessive adjectives), particles, measure words, adpositions (prepo-
sitions, postpositions, and circumpositions), preverbs, pronouns, contractions, and
cardinal numbers, of which sometimes only auxiliary verbs and particles are tagged
[62]. As this task is ambiguous and depends on the context in which a word appears,
techniques such as dynamic programming or HMMs are applied for automatic POS
tagging. Also sememes, i.e., semantic units represented by lexemes, can be clustered
into higher semantic concepts. Examples would be generally positive or negative
terms [62]. As an advantage, the stemming of words to their base forms allows for
out of vocabulary (OOV) words replacement to some extent. Furthermore, words
may be clustered to the correct corresponding lexemes even if some small recogni-
tion errors from the speech or lyrics recognition appear.

When dealing with processing of spoken or sung language, the linguistic analysis
is often based on the correct transcription by humans for higher level analysis. There-
fore, it describes the performance under perfect speech or sung lyrics recognition
conditions. This allows for direct comparability of results [62] for the higher level
semantic analysis: A corpus comes with its transcription, while speech or singing
recognition results usually differ. However, in the real world spoken or sung content
has to be determined by an ASR engine first. Though recognition of speech or singing
can be a rather difficult problem if it comes to spontaneous speech or even singing
[63–65], this may lead to smaller differences for further linguistic analysis in special
cases, as reported, e.g., in [66, 67] for paralinguistic analysis. The reason is that the
perfect word chain is not always being needed as opposed to, e.g., ASR. Few minor
mistakes may be caught by stemming and not all words are necessarily needed for

2 (VC)m here means an m-fold repetition of the string VC
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all further analysis if some should be deleted. As for insertions and substitutions,
these are only critical if they change the ‘tone’ of the content.

For the alternative processing of written text, some text pre-processing will usually
be needed. First, delimiters such as punctuation can be used for segmentation. Then,
capital letters are often de-capitalised to avoid double entries for same words. Finally,
it may be reasonable to allow for some word replacement rules or calculation of edit
distance between written words and their counterparts in the vocabulary. This may
cover misspelling of words or varieties such as in British English, American English,
or Australian English (e.g., [68]).

We will next look at different methods for generating linguistic features.

6.3.1 Bag of Words

The basic idea behind Bag of Words (BoW) is the representation of symbolic infor-
mation in a numeric feature space. Each feature thereby represents the occurrence
of a specific ‘word’, i.e., symbolic entity, in the string of analysis. BoW, originally
developed for document retrieval [69], was successfully applied to the fields of emo-
tion [57] and interest (cf. [70, 71]) recognition from text and speech. BoW became a
popular approach for these fields [62, 72]. The recognition is often based on speech
turns or larger segments, such as paragraphs or the entire lyrics of a song. Every
such sequence S can be described by the set of its contained word entities wi, i.e.,
S = {w1, . . . , wS}, where S = |S| is the sequence length. The BoW method consid-
ers these words wi as units of interest. For a given training set L, all different words
build the word inventory—the ‘vocabulary’ V = {w1, . . . , wV }, with V = |V| being
the size of this vocabulary. Particularly in spoken or sung language analysis, also
non-linguistic vocalisations like sighs and yawns [73], laughs [74, 75], cries [76],
and coughs [77] can be integrated into such a vocabulary [62, 70] in speech [78] or
singing decoding.

For each word wi with i ∈ {1, . . . , V} in the vocabulary a corresponding feature
xi is created. This may easily lead to a high dimensional feature vector space. Each
sequence Sj can then be mapped to a vector xj in this feature space. Ways to determine
the value of each feature xi first include counting the number of occurrences of a
word wi in the sentence Sj, resulting in the word frequency fi, j. As a simplification,
the binary general occurrence (or non-occurrence) can be used. The ‘term frequency’
can also be transformed in other ways (cf.[69]), for example by application of the
logarithm—the term frequency transformation (TF):

TFi, j = log
(
c + fi, j

)
, (6.80)

where the offset parameter c prevents definition problems in case of fi, j = 0. It is
often set to c = 1. Another measure is the inverse document frequency transformation
(IDF). For |L| as the number of sequences in the training set L, and Li as the number
of sentences where the word wi appears, the IDF transformation is given by:
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IDFi,j = fi, j · log

[ |L|
Li

]

. (6.81)

The motivation for IDF is that words used in almost every sentence are often less
informative. Combining the TF and the IDF transformations results in the TFIDF
approach:

TFIDFi, j = log
(
1 + fi, j

) · log

[ |L|
Li

]

. (6.82)

After setting the components xi to TF, IDF, TFIDF, or other term frequency represen-
tations, the final feature vector xj for a sentence Sj can additionally be normalised,
for example to the same Euclidean length:

xnorm
j =

1
|L|
∑L

k = 1

∣
∣xk

∣
∣

∣
∣
∣xj

∣
∣
∣

· xj. (6.83)

This length is usually not chosen to be one in order to avoid very small numbers and
potential arithmetic underflow. A good option is the average length of the |L| feature
vectors.

A disadvantage of the BoW method is the modelling of isolated words without
their ‘left’ and ‘right’ neighbouring context in a string. Thus, BoW ignores word
positions or word dependencies. N-grams partly overcome this. In the next section,
a simple extension combines these BoW and N-grams.

6.3.2 Bag of N-grams

The Bag of N-grams (BoNG) approach also represents text in a numeric feature space.
The main difference when compared to BoW is the observation of a series of N con-
secutive words as semantic units of interest—i.e., ‘N-grams’ of words. The approach
in general allows to combine N-grams of different number N of consecutive words
similarly to ‘backing-off’. By that, if a longer sequence of words is not observed,
several shorter ones may replace the longer one. This leads to the parameters of
the minimum N-gram length gmin and the maximum N-gram length gmax . For each
N-gram, numeric features are computed as in BoW (cf. Sect. 6.3.1). Stopping and
stemming need to be applied for single words, not for N-grams. Then, frequencies of
N-grams are counted, and the features are optionally transformed and normalised as
for BoW. Because of the combinatorial explosion of created N-grams—the number
of combinations equals VN —with increasing vocabulary size V or N-gram length
N , the feature space dimension is in most cases considerably higher than the num-
ber of available training instances. This makes stopping and stemming particularly
important to provide sufficient observations per N-gram. At the same time, larger
amounts of irrelevant data have to be discarded by the feature selection, and it is
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more likely that a heuristic feature selection gets stuck in a local optimum given a
larger feature space. Compared to BoW, the requirements on the automatic speech or
singing recognition system are higher, as it has to recognise more consecutive words
accurately.

6.3.3 Bag of Character N-grams

N-grams can also be created on the character level by observing N-grams of characters
instead of words. This leads to Bag of Character N-grams (BoCNG). Like BoW and
BoNG, these base on mapping from text to a numeric feature space. Successes of
BoCNG was reported in the field of (spoken) document retrieval [79] and affect
recognition [80]. As for BoNG, observation of N-grams with different lengths is
possible in combination, determined by a minimum string length of cmin characters
and a maximum string length of cmax characters. Word boundaries can optionally be
ignored. For each character N-gram, a mapping to a numeric feature is realised as for
words in BoW. Because observation of N-grams at character level naturally results in
considerably more possible features than for BoW, more ‘aggressive’ stopping can
be used to discard rare strings.

BoCNG has some interesting characteristics: Stemming on word level is implic-
itly modelled by using N-grams of characters: one or even more words can be mapped
to a base form if they contain similar character substrings. The BoCNG approach—
in contrast to BoW—has a finer resolution by observing the character level. Given
successful feature selection, only strings of relevant lengths are kept in the feature
space. Further, BoCNG can handle unseen compound words if these consist of sub-
strings contained in the feature space. This may be relevant for ‘open-vocabulary’
languages such as German, which allow the formation of long compound words.
Instead of characters in the sense of graphemes, phonemes from the ASR engine can
be used, which may lead to an improvement [79].

In fact, other variants of features can be thought of and are used, such as
N-grams of syllables. Compared to character N-grams the vocabulary size, and thus
the number of combinations for higher N, are significantly reduced.

6.3.4 On-Line Knowledge

Apart from the data-driven approaches for linguistic analysis introduced so far, open-
domain methods can be applied which base on knowledge sources (e.g., [81, 82]).
On-line knowledge sources are publicly available on the Internet. In natural lan-
guage processing such databases provide linguistic knowledge, such as information
on words, concepts, or phrases, as well as on connections among them. Connections
among such entities—again referred to as words or terms in the ongoing indepen-
dently of their type—include common-sense knowledge, or lexical relations.Various
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representational schemes provide the information in a suitable and efficient way. In
semantic networks, words or concepts are represented as nodes in a graph. Relations
are represented by named links [83]. Another form of on-line knowledge sources
in the linguistic domain are annotated dictionaries. There, properties of a term are
stored as tags. However, dictionaries usually do not contain relations between terms.
Some well-known examples of such linguistic open-domain information sources are
now introduced and an approach for using these sources for content and sentiment
analysis based on linguistic cues is described.

6.3.4.1 ConceptNet

ConceptNet is a semantic network of concepts, such as “actor” or “to watch a
movie”. It is freely available for download3 and provides commonsense knowl-
edge in a machine-readable format. Knowledge is added by crowd-sourcing of non-
specialised humans. The interface for edition by users4 is capable to a certain extent
to avoid false claims and other mistakes [84]. ConceptNet’s storage format does not
contain syntactic category information. Thus, it has no support for word sense dis-
ambiguation. This can, however, be overcome by formulating sufficiently specific
concepts, since a concept can consist of an arbitrary amount of words. Concepts are
stored in a normalised format. This format aims at ignoring minor syntactic varia-
tions that do not affect the meaning of the concept. A concept is normalised by [84]:
removal of punctuation and stop words, running each word through Porter’s stemmer,
alphabetise the stems, such that the order of words does not matter. Figure 6.7 shows
the histogram of concept size in ConceptNet. As can be seen, multi-word concepts
form the largest part of the database.

Twenty one relations that encode the meaning of the connection between concepts
interlink these. Relations names aim at intuitiveness, such as in IsA or PartOf. The
unit of meaning representation is the predicate. Figure 6.8 shows an exemplary stor-
age of predicates in ConceptNet.

Each predicate consists of two concepts and a relation, e.g., “actor” PartOf
“movie” (“An actor is part of a movie”). Further, a concept can be part of many rela-
tions. In the example in Fig. 6.8, “movie” is also connected to “fun” by a HasProperty
relation. Relations are always unidirectional, as in the majority of cases predicates
are not invariant to order (cf. e.g., “A movie is part of an actor” for a non-sense
inversion of order). Predicates may be negated, such as in “A car cannot travel at the
speed of light”. Furthermore, each predicate has a confidence score on its reliability
initialised at one. It can then be increased/decreased by users. Confidence values
equal to or below zero indicate unreliable ones [84]. The current version ConceptNet
3 contains 250 556 concepts, and 390 885 predicates for the English language.

3 http://conceptnet.media.mit.edu/
4 http://commons.media.mit.edu/en/

http://conceptnet.media.mit.edu/
http://commons.media.mit.edu/en/
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Fig. 6.7 Concept size in words and concept occurrence frequency in ConceptNet 3 [82]
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6.3.4.2 General Inquirer

General Inquirer [85] is a lexical database. Each entry consists of the term and a
number of tags to characterise a specific property of the term. For example, there
are 1 915 terms in the Positiv category—e.g., “adore”, “master”, or “intriguing”—,
and 2 291 in the Negativ counterpart—e.g., “accident”, “lack”, or “boring”. There
is partial support for POS information. General Inquirer also contains definitions and
occurrence frequencies for rudimentary word sense disambiguation.

6.3.4.3 WordNet

WordNet is a database that organises lexical concepts in sets of synonymous words.
These are called synsets. Its design is inspired by current psycholinguistic and compu-
tational theories of human lexical memory [86]. Entries are strictly separated by syn-
tactic category membership. These categories include nouns, verbs, adjectives, and
adverbs. Unlike ConceptNet, synsets are not linked by relations expressing common-
sense knowledge. Synsets are rather connected by lexical or semantic relatedness,
such as hyponymy (a word is a specific instance of a more general word), meronymy
(a word is a constituent part of another word), or antonymy (a word is the opposite
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Fig. 6.9 Flowchart for open domain on-line knowledge source-based linguistic analysis.

of another word). These relations are partially also found in ConceptNet, e.g., the
complement of meronymy is PartOf.

6.3.4.4 Methodology

Based on the on-line knowledge sources as described, this section now introduces an
open domain approach towards linguistic analysis. Figure 6.9 visualises the principle
of the algorithm and the incorporation of the on-line knowledge sources at two steps.
The flow is as follows: First is preprocessing of the input sequence. Then, two parallel
steps extract words that convey information on a task of interest, as well as theses
task’s targets—the words. This information is next combined into expressions. The
expressions are filtered aiming at discarding irrelevant ones. Finally, a score value
is obtained from the remaining expressions that can be used as linguistic feature for
classification or regression.

First, the text is split into sequences S of words or similar entities. The sequences
S are then analysed by a syntactic parser for POS tagging. The POS classes include
adjective (JJ),5 adverb (RB), determiner (DT), verb (VB), and noun (NN), and are
attached to the words by “/” in examples in the ongoing. If it is not necessary to
have comprehensive knowledge of the syntax, a chunker suffices for the chunking of
longer sequences. The chunks equal phrases, such as a noun phrase (NP), verb phrase
(VP), or prepositional phrase (PP). An additional benefit is the flat structure produced
by a chunker, which is better suited for the processing steps that follow. As a unit of
representation, ternary expressions (T-expressions) are extracted on a per-sentence
basis. T-expressions were introduced for automatic question answering in [87] and
adapted to product review classification [88]. Here, a T-expression is formatted as:
<target, verb, source>. The ‘target’ thereby refers to a feature term of the subject of
the sequence, e.g., a movie in the case of movie critic valence estimation. The verb is
picked from the same phrase as the target. Should the verb not provide information of
interest for the target, another according information source—mostly an adverb—is
selected instead. By this logic, the T-expression of the sequence “a/DT carefully/RB
designed/VB plot/NN” would be <plot, designed, carefully>. If no verbs exist in

5 openNLP notation is followed for POS classes.
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a sequence, T-expressions cannot be built, and a fall back strategy is applied: This
second form is the binary expression (B-expression) [88] and is a co-occurrence of
adjective plus target in the sequence. As an example, the B-expression for “an/DT
excellent/JJ setting/NN” would be <setting, excellent>. The candidates for targets
are identified from NPs. This stems from the observation of feature terms being
nouns, as in [88] for sentiment analysis. NPs in the following form are considered
for target identification: NN ; NN, NN ; JJ, NN ; NN, NN, NN ; JJ, NN, NN ; JJ, JJ, NN.
Words of other POS classes (DT, RB) not contributing to the target identification and
punctuation are removed. The personal pronoun “it” is considered as reference to
the subject of the sequence and accordingly used as target.

Next, target sources need to be identified for each target, i.e., words conveying
the actual information of interest such as affect, gender, or personality, etc.To ensure
that a given target source is being directed to the target in question, the search space
needs to be restricted. This can be accomplished by finding border indications that
appear between clauses or phrases within a sequence. These border indications are
subordinating conjunctions, prepositional phrases, coordinating conjunctions, and
punctuation such as commas or colons. The sequence is thus broken down into units
of statements, and a target source is only associated to a given target if and only if
both occur in the same section without a border indication separating them.

In the ongoing, an arbitrary target is exemplified by the concept of valence, such
as in the review of movie critics shown later on. However, this target can be easily
exchanged by other semantic concepts such as personality of a speaker or mood in
music analysis, etc. All verbs and adjectives are selected from the target section,
and General Inquirer is used to determine its value v. A word wi is assigned a value
v(wi) = 1 if it has the General Inquirer tag Positiv, and a value v(wi) = −1 if it is
tagged Negativ. Should a word not exist in General Inquirer, WordNet synsets are help
to lookup its synonyms, until a match is found. Words for which a valence was found
then are the target words. If a target word is an adjective, a B-expression is built from
it and stored in the result set. If it is a verb, its siblings—the direct neighbours—are
first scanned for target adverbs. Given a match, a T-expression of the form <target,
verb, adverb> is generated. If no match was found, the adverb part is left out. Non-
target verbs are processed in the same fashion, and a T-expression is built if a target
adverb is located within its siblings. Thus, e.g., “a/DT carefully/RB designed/VB
plot/NN”, with “designed” not being a target verb, also results in an expression.
According to the POS class of the target word, T-expressions and B-expressions are
generated. It seems intuitive to use the distance between the target word and the target
of an expression as measure for the strength of their relation. A maximum distance
can be enforced to decide upon overall relation [89, 90], but [91] showed that this
can degrade the performance. As an alternative, following [92], feature-opinion pairs
similar to B-expressions are extracted. Then, the output value per pair is computed
by the multiplicative inverse of the distance between the two words. Then, only the
expression with the shortest distance between the target word and its target is kept
for further processing. By this, one assumes a target word mostly being directed at
the ‘closer’ target. This choice also reduces the probability of associating a target
word with an unrelated target. Note that multiple expressions can exist per target,
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to catch all target words in sentences containing more than one. Two target adverbs
are, e.g., contained in “a/DT carefully/RB designed/VB/, superbly/RB executed/VB
plot/NN”: “carefully” and “superbly”. Following the principle above, this result in
two corresponding T-expressions:
<plot, designed, carefully> and <plot, executed, superbly>. The word distance
further boosts or lowers the score of an expression employing a decay function. The
weighted score s of an expression that contains the target ti and the word source wi

is thereby calculated as:

s(wi, ti) = c · v(wi) · 1

D(wi, ti)e
, (6.84)

where the value of wi taken from General Inquirer is denoted by v(wi), and D(wi, ti)
is the distance of words between wi and ti. As in [92], the function is based on the
multiplicative inverse of the distance, yet, with an additional constant factor c, and
an exponent e needed for fine-tuning. With

1

D(wi, ti)e
= 1 (6.85)

holding for any e if D(wi, ti) = 1, i.e., wi and ti are adjacent, c > 1 boosts the score.
As opposed to this, c has little effect for D(wi, ti) � 1, i.e., words occur further
apart. If choosing e > 1, the score decreases more rapidly for greater D(wi, ti). This
allows to weight the influence of the word distance. In the opposite case, e < 1 leads
to a slower decrease of the score. A fallback mechanism takes place if no target,
and no target words could be found in a sentence. In this case, the score is set to
s = 1 for the class with a-priori higher count of instances as a last resort. Failure to
extract target words can be caused by very short sequences, or colloquial language:
Colloquial terms are sparsely contained in general purpose dictionaries.

The final step of the proposed algorithm—filtering and classification—determines
if the expressions that were found earlier are actually directed at the the target of
interest, such as a movie in movie valence estimation. It is assumed that an expression
refers to the target in question, if its target word is a feature of the term that names
the target of interest, such as “movie”. As building a manually assembled list of
features to use limits domain-independence and is labour intensive, ConceptNet is
used to identify features. As a drawback, however, ConceptNet does not contain
named entities. An even larger scale encyclopedia such as Wikipedia could thus be
additionally given that it contains such domain-specific knowledge. Feature terms
are selected by the predicates: <feature> PartOf <subject>, <feature> AtLocation
<subject>, and <subject> HasProperty <feature>. Expressions for a sequence S
with no target in the feature list are filtered out, except if this leaves none at all.
The final output of a sequence—the accumulated score S of the N expressions it
contains—is:

S =
N∑

i = 1

s(wi, ti). (6.86)
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A binary class can be chosen by the signum of S, or S serves as feature for classifi-
cation or regression in combination with data-driven analysis.

6.4 Supra Segmental Features

After having discussed and introduced various types of acoustic and symbolic LLD,
in this section we will have a look at the principle of supra segmental analysis by
feature brute-forcing.

The basis is provided by statistical ‘functionals’, which are applied to an audio
chunk and map each LLD’s time series of varying length to a single value per func-
tional. Examples of functionals are the mean, minimum, maximum, or standard devi-
ation or the ones shown in Table 6.2. Such mappings are also referred to as aggregate
features or feature summaries. Further, delta coefficients, moving average, or vari-
ous filter types are commonly applied to low-level descriptors. Hierarchies of such
post-processing steps have proven to lead to more robust features, e.g., in [9], hierar-
chical functionals, i.e., ‘functionals of functionals’ are used. This consequently leads
to the novel principle of Analytic Feature (AF) generation [93]: A large number of
LLD derivations and subsequent functional application in a systematic manner, i.e.,
applied to each LLD, results in brute-forcing of up to several thousands of audio
features.

The principle of feature brute-forcing together with LLD extraction will be illus-
trated in the next section based on the open-source Speech and Music Interpretation
by Large-space Extraction (openSMILE6) toolkit, a fast feature extractor and signal
processing tool [94].

6.5 Audio Feature Extraction: The openSMILE Toolkit

openSMILE’s aim is to unite features typically used fro the different types of audio
signals—speech, music, and sound—as were introduced so far. This shall enable
research in either domain to benefit from features from the other domains and to
facilitate general Intelligent Audio Analysis.

A strong focus is put on fully supporting real-time, incremental processing.
openSMILE provides a simple, scriptable console application where modular feature
extraction components can be freely configured and connected via configuration files.
Most of the individual feature extraction functions are usable as library functions and
can be integrated into existing applications. Both incremental on-line processing for
live applications and off-line batch processing is supported. Unit tests are provided
for developers to ensure exact numeric compatibility with future versions.

6 Available at: http://opensmile.sourceforge.net/.

http://opensmile.sourceforge.net/
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Other related feature extraction tools used for speech research include, e.g., the
Hidden Markov Model Toolkit (HTK) [20], the PRAAT Software [95], the Speech Fil-
ing System7 (SFS), the Auditory Toolbox,8 a MatlabTM toolbox9 by Raul Fernandez
[96], the Tracter framework [97], and the SNACK10 package for the Tcl scripting
language. However, not all of these tools are distributed under a permissive open-
source license, e.g., HTK and SFS. The SNACK package is without support since
2004.

For Music Information Retrieval many feature extraction programs under a per-
missive open-source license exist, e.g., the lightweight ANSI C library libXtract,11

the Java based jAudio extractor [98], the Music Analysis, Retrieval and Synthesis
Software Marsyas,12 the FEAPI framework [99], the MIRtoolbox,13 and the CLAM
framework [100]. As for sound, there are hardly any dedicated extractors available.
In general, very few feature extraction utilities exist that unite features from all audio
domains, i.e., speech, music, and sound.

6.5.1 openSMILE’s Architecture

This section introduces openSMILE’s architecture as seen in Fig. 6.10.14

To provide comprehensive and standardised cross-domain feature sets, flexibility
and extensibility, and incremental processing support, a number of requirements
had to be met: First, incremental processing demands for the ability of sample-
wise pushing of audio data from arbitrary input streams such as files or the sound
card through the chain of processing (cf. Fig. 6.11). Then, a ring-buffer memory for
features is needed and provides temporal context modelling and/or buffering. For an
efficient design, re-usability of data is required to avoid duplicate computation by
multiple feature extractors such as FFT spectra (cf. Fig. 6.11). Algorithms ideally are
fast and ‘lightweight’ and were implemented in this respect in C and C++ without
third-party dependencies for the core functions. A modular basis further enables
arbitrary combination of features and invites the research community to add new
feature extractor components, given an application programming interface (API)
and a run-time plug-in interface. To handle asynchronous feature streams, universal
timing information is available for processing of feature frames. Finally, to ensure
high distribution and acceptance, platform independence seems mandatory. Apart

7 http://www.phon.ucl.ac.uk/resource/sfs/
8 http://cobweb.ecn.purdue.edu/malcolm/interval/1998-010/
9 http://affect.media.mit.edu/publications.php
10 http://www.speech.kth.se/snack/
11 http://libxtract.sourceforge.net/
12 http://marsyas.sness.net/
13 https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
14 A more detailed description can be found in the openSMILE documentation available in the
download package at http://sourceforge.net/projects/opensmile/.

http://www.phon.ucl.ac.uk/resource/sfs/
http://cobweb.ecn.purdue.edu/malcolm/interval/1998-010/
http://affect.media.mit.edu/publications.php
http://www.speech.kth.se/snack/
http://libxtract.sourceforge.net/
http://marsyas.sness.net/
https://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox
http://sourceforge.net/projects/opensmile/
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Fig. 6.10 openSMILE’s architecture

from ensuring easy compilation on standard platforms, pre-compiled binaries are
provided for standard Linux distributions, and newer Windows platforms.

Let us now look at openSMILE’s modular architecture tailored towards incre-
mental processing, and the features currently implemented. In Fig. 6.10 of the overall
data-flow architecture of openSMILE, the Data Memory is the central link between
all Data Sources (writing from external sources to the data memory), Data Proces-
sors (reading from the data memory, modifying it, and writing it back), and Data
Sinks (reading from the data memory and writing to external devices).

The principle of the ring-buffer based incremental processing can be seen in the
example in Fig. 6.11 by the three levels wave, frames, and pitch. The ‘cWaveSource’
component writes samples to the ‘wave’ level, with the write positions shown by
vertical arrows. The ‘cFramer’ produces non-overlapping frames of size three from
the wave samples. It then writes the produced frames to the ‘frames’ level. Finally,
the ‘cPitch’ component (simplified in the example) calculates a pitch LLD from the
frames. It then writes the LLD to the ‘pitch’ level. Since all boxes in the plot contain
values (ie data), the buffers have been filled, and the write pointers have been warped.
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-

Fig. 6.11 Incremental data-flow in openSMILE’s ring-buffer memories on LLD level. The (light)
arrows pointing in between the columns depict the current write pointer [94]

Figure 6.12 next shows this incremental processing of higher order features such
as functionals to project the time series to single feature values. Shown are two exem-
plary functionals, namely ‘max’ and ‘min’. These are calculated over two overlapping
frames from the pitch LLD. Then, they are saved to the level ‘func’. The buffers-size
is matched to the block-size of the reader or writer. In the pitch functionals example
the read block-size of the functionals component thus would be two because two pitch
frames are read at once. openSMILE supports multi-threading for fast computation.
For utmost parallelisation on multi-core computers, each component can be run in a
separate thread. Individual components can further be freely instantiated, configured,
and connected to the Data Memory via a central configuration file. Further, on-line
audio recording and live feature extraction is possible.

6.5.2 Available Feature Extractors

openSMILE provides a number of LLDs (cf. Table 6.1) for automatic extraction
and the application of several filters, functionals, and transformations to these. Mel-
spectra, MFCCs, and PLPs can be computed exactly in full compliance with the
popular Hidden Markov Toolkit (HTK) [20], fostering compatibility and compara-
bility. PLP computation can be carried out as in original works [22] or in modification
(eg leaving out processing steps).
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…

…

Fig. 6.12 Incremental data-flow in openSMILE’s ring-buffer memories on functional level. The
(light) arrows pointing in between the columns depict the current write pointer [94]

The spectral centroid C(n) at time n for N FFT bins is obtained by

C(n) =
∑N

m = 1 m · S(m, n)
∑N

m = 1 S(m, n)
, (6.87)

where S(m, n) is the spectral magnitude at time n in bin m. Spectral flux F(n) is
computed via

F(n) =
√
√
√
√ 1

N

N∑

m = 1

(
S(m, n)

E(n)
− S(m, n − 1)

E(n − 1)

)2

, (6.88)

where E(n) is the energy of the frame at time n.
The p percent spectral roll-off is determined as the frequency or FFT bin below

which p percent of the total signal energy are contained. Frequencies for centroid
and roll-offs are normalised to 1 kHz.

LLDs can be processed frame by frame with the filters: weighted differential
and raised-cosine lowpass as in [101], first order infinite impulse response (IIR)
lowpass/highpass, comb-filter bank (cf. Sect. 11.3) with arbitrary number of filters,
moving average smoothing filter, and regression (delta) coefficients (xt) of arbitrary
order t. These are computed from any feature contour x(n) again in HTK-style [20]

http://dx.doi.org/10.1007/978-3-642-36806-6_11
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Table 6.1 openSMILE’s LLDs

Group LLDs

Waveform ZCR, extremes, DC
Signal energy RMS and logarithmic
Loudness Intensity and approximated loudness
FFT spectrum Phase, magnitude (lin, dB, dBA)
ACF, Cepstrum ACF, Cepstrum
Mel/Bark spectrum Bands 0-Nmel

Semitone spectrum FFT based and filter based
Cepstral Cepstral features, e.g., MFCC, PLP-CC
Pitch F0 via ACF and SHS methods, probability of voicing
Voice quality HNR, jitter, shimmer
LPC LPCC, reflection coefficients, residual, LSP
Auditory Auditory spectra and (RASTA-)PLP coefficients

Model-based auditory loudness, Sharpness
Formants Centre frequencies and bandwidths
Spectral Energy in N user-defined bands, multiple roll-off points,

centroid, entropy, flux, and relative positions of extrema
Tonal CHROMA, CENS, CHROMA-based features

with the parameter W :

d(n) =
∑W

i = 1 i · (x(n + i) − x(n − i))

2
∑W

i = 1 i2
. (6.89)

Additional arithmetic operations include add, multiply, and power, for creation of
custom features by combining existing operations.

Supported functionals comprising statistical, polynomial regression coefficients,
and transformations are found in Table 6.2. They can be applied to LLDs or func-
tionals in a hierarchical structure with unbounded depth as described in [9]. Their
choice follows the CEICES standard of seven sites [62, 72]. This scheme is also
employed for feature name assignment. The modular architecture allows to use any
implemented processing functionality in arbitrary combination. For example, one
may use a Mel-band filter-bank as functionals. This enables brute-forcing of unre-
stricted feature spaces of several thousands. The idea is not to compute more features
than data points, but rather to provide a broad basis of new features for self-adaptation
of feature spaces for new Intelligent Audio Analysis tasks where little is known on
representative feature bases [93]. For exchange with other popular software modules,
supported file formats include Weka’s Attribute Relation File Format (ARFF) [102],
the LibSVM format, Comma Separated Value (CSV), HTK [20] parameter files, and
raw binary files.
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Table 6.2 openSMILE’s functionals

Group Functionals

Extremes Extreme values, positions, ranges
Means Arithmetic, quadratic, geometric
Moments Standard deviation, variance, kurtosis, skewness
Percentiles Percentiles and percentile ranges
Regression Linear and quadratic approximation coefficients, regression

error, and centroid
Peaks Number of peaks, mean peak distance, mean peak amplitude

mean and standard deviation of rising/falling slopes
Segments Number of segments by delta thresholding, mean segment

length
Sample values Values of the contour at configurable relative positions
Times/durations Up- and down-level times, rise/fall times, duration
Onsets Number of onsets, relative position of first/last on-/offset
DCT DCT coefficients
LPC Linear prediction (autoregressive) coefficients
Zero-crossings Zero- and mean-crossing rate

A built-in audio activity detection can be used for audio stream chunking in
real-time. For noise robustness, on-line mean and variance normalisation (MVN, cf.
Chap. 9), can be used.

6.5.3 Performance

Given openSMILE’s focus on real-time and on-line processing even when brute-
forcing large feature spaces, algorithmic complexity and run-time benchmarks are
of interest.

For the first, the extraction of LLD is always of linear asymptotic complexity
(O(n)) when n is the number of frames. Since the number of frames is proportional
to the length of the input, the asymptotic complexity wrt. the input length is also linear.
This is independent of the complexity of the individual LLD extraction algorithms.
E.g., a Fast Fourier Transform (FFT) is of O(n · log(n)), however n in this case is the
number of samples per frame, which is a constant throughout the processing.

The asymptotic algorithmic complexity of the functionals extraction (wrt. the
input length) depends on the types of functionals. Descriptors which can be calcu-
lated in a single pass, or a constant number of passes, such as mean (single pass),
standard deviation (two pass), higher moments, peaks, segments, etc. take time O(n).
Descriptors such as percentiles, however, require the inputs to be sorted by value.
This is implemented using the Quick Sort algorithm [103], which takes an expected
time of O(nlog(n)).

http://dx.doi.org/10.1007/978-3-642-36806-6_9
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Run-time benchmarks were carried out under Ubuntu (11.10) Linux on an AMD
FX-8120 at 3.1 GHz with 16 GB dual-channel DDR3-1866 RAM using only one of
the eight available cores (i.e., running all openSMILE components in a single thread).
Real-time factors (RTF) were computed by timing the CPU time required for extract-
ing features from 30 min of monaural 16 kHz PCM (uncompressed) audio data similar
to the benchmark in [94]. We used the latest SVN revision 822 (Dec/11/2012) for
this benchmark. 12 MFCC coefficients with first and second order delta coefficients
were extracted with an RTF of 0.008 12 MFCC 0.008. The INTERSPEECH 2011
Speaker State Challenge baseline feature set was extracted with an RTF of 0.037,
and the INTERSPEECH 2012 Speaker Trait Challenge baseline feature set with an
RTF of 0.041.

To conclude, openSMILE was introduced as an example of a feature extractor
tailored to be an efficient, on-line as well as batch scriptable, open-source, cross
platform, and extensible tool implemented in C++ with a well structured API. Despite
being rather new, it is increasingly turning into a standard toolkit—in particular in
the field of computational paralinguistics.15 Moreover, the openEAR project [104]
builds on openSMILE and extends it by integrated classification algorithms and data-
trained models for various Intelligent Audio Analysis tasks [104]. Development of
openSMILE is still active and even more features and signal processing components
such as TEAGER energy, TOBI pitch descriptors, Gabor filterbanks, and modulation
spectra are considered for integration.

Figure 6.13 gives a final overview on the principle of feature extraction.

6.6 Reduction and Selection of Features

Having discussed the principle of feature brute-forcing in the last section, it is next
important to be able to reduce these to the most relevant ones. Otherwise, the ratio
between parameters to be trained for a machine learning algorithm—which usually
increases with increasing number of features—may become to large in comparison
to the available amount of data.

Feature selection usually first requires a measure for the evaluation of a feature’s
merit. In terms of the quality of the resulting set of selected features, this is best
solved by employing the target classifier or regressor in a ‘wrapper’ manner and its
accuracy as evaluation measure [18, 102]. In order to save computation time as highly
repeated training of and testing with a machine learning algorithm can easily become
computationally expensive, one can chose an alternative learning algorithm that can
be trained and evaluated faster. This comes, however, at the risk of introducing a
bias as the feature set is not optimised for the exact learning algorithm that will be
used later in a system. An alternative are ‘filter’ methods for the determination of

15 openSMILE was awarded third place in the ACM Multimedia 2010 Open-Source Software
Competition. It was further used as standard feature extractor for baseline computation and use by
participants in six research challenges.
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Fig. 6.13 Overview on the principle of audio feature brute forcing in several hierarchical lay-
ers.These are generally divided into LLD and the subsequent (optional) Functional level. Shown
are further acoustic and linguistic features

the value or contribution of features or feature groups. Examples of filter functions
are statistic and information theoretic measures such as CC or IGR.

Given the size of the data set and the feature space, a search algorithm and simple
evaluation or ranking functions may additionally become mandatory, as exhaustive
search of all possible feature combinations can become computationally prohibitive.
A simple, yet highly efficient search method is ‘conservative hill climbing’, i.e.,
sequentially deciding for the best feature at the time starting from one and adding the
‘next best’, each. As this obviously is prone to nesting effects, one usually adds a back
stepping option whether ‘another previous candidate’ would have better suited. This
is known as ‘floating search’, and with the described forward addition as Sequential
Forward Floating Search. A backward search starting from the full feature set as
well as bi-directional searches are alternatives depending on the ratio of the feature
inventory and the target space size. As a result of a typical search, one obtains a mixed
view as for the brute-forced features, which is usually hard to interpret: Features in
the ‘optimal’ set, are usually a mixture of all groups. Yet, it is not clear whether these
are the best due to the suboptimal nature inherent in any search function and the
fact that it de-correlates the space rather than ranks. By that, the value of a feature
is unclear, as is whether a picked feature does not have a counter-part of similar
characteristics that was not picked, as only one of a sort is needed. An alternative is
a systematic ‘scan’ by feature groups, for examples per LLD type and per functional
type.
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A number of further measures and search functions exist, and one can also add
additional combinations or alterations of features throughout search, usually by ran-
dom injection or genetic algorithms to limit the search space [93, 105–107].

If one aims at mere compression of the feature space in the sense of a reduction
rather than selection, i.e., the original feature space still needs to be extracted, PCA,
LDA or similar can be employed (cf. [108]).
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hierarchical functionals for paralinguistics: a waste of feature space? In: Proceedings of the
33rd IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP
2008, (IEEE) pp. 4501–4504, Las Vegas, NV, April 2008

10. Sohn, J., Kim, N.: A statistical model-based voice activity detection. IEEE Signal Process.
Lett. 6(1), 1–3 (1999)

11. Ramirez, J., Segura, J., Benitez, M., De La Torre, A., Rubio, A.: Efficient voice activity
detection algorithms using long-term speech information. Speech Commun. 42(3), 271–287
(2004)

12. Ramirez, J., Segura, J., Benitez, C., Garcia, L., Rubio, A.: Statistical voice activity detection
using a multiple observation likelihood ratio test. IEEE Signal Process. Lett. 12(10), 689–692
(2005)

13. R. Gemello, F. Mana, and R. D. Mori. Non-linear esimation of voice activity to improve
automatic recognition of noisy speech. In: Proceedings of INTERSPEECH, 2005, ISCA pp.
2617–2620, Lisbon, Sept 2005

14. Mousazadeh, S., Cohen, I.: AR-GARCH in presence of noise: parameter estimation and its
application to voice activity detection. IEEE Trans. Audio Speech Lang. Process. 19(4), 916–
926 (2011)

15. Zwicker, E., Fastl, H.: Psychoacoustics—Facts and Models, 2nd edn. Springer, Berlin (1999)
16. Kießling, A.: Extraktion und Klassifikation prosodischer Merkmale in der automatischen

Sprachverarbeitung. Berichte aus der Informatik. Shaker, Aachen (1997)
17. Furui, S.: Digital Speech Processing: Synthesis, and Recognition. Signal Processing and

Communications, 2nd edn. Marcel Denker Inc, New York (1996)
18. Schuller, B.: Automatische Emotionserkennung aus sprachlicher und manueller Interaktion.

Doctoral thesis, Technische Universität München, Munich, Germany, June (2006)
19. Fant, G.: Speech Sounds and Features. MIT Press, Cambridge (1973)



References 93

20. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Olla-
son, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (v3.4). Cambridge University
Press, Cambridge, (2006)

21. Kabal, P., Ramachandran, R.P.: The Computation of Line Spectral Frequencies Using Cheby-
shev Polynomials. IEEE Trans. Acoust. Speech Signal Process. 34(6), 1419–1426 (December
1986)

22. Hermansky, H.: Perceptual linear predictive (PLP) analysis of speech. J. Acoust. Soc. Am.
87, 1738–1752 (1990)

23. Hermansky, H., Morgan, N., Bayya, A., Kohn, P.: RASTA-PLP speech analysis technique. In:
Proceedings of International Conference on Acoustics, Speech, and Signal Processing, vol.
1, pp. 121–124 (1992)

24. Rigoll, G.: A new algorithm for estimation of formant trajectories directly from the speech
signal based on an extended Kalman-filter. In: Proceedings of IEEE International Conference
on Acoustics, Speech, and Signal Processing (ICASSP), vol. 11, pp. 1229–1232. Tokyo (1986)

25. Broad, D.J., Clermont, F.: Formant estimation by linear transformation of the LPC cepstrum.
J. Acoust. Soc. Am. 86, 2013–2017 (1989)

26. McCandless, S.: An algorithm for automatic formant extraction using linear prediction spectra.
IEEE Trans. Acoust. 22, 134–141 (1974)

27. Gläser, C., Heckmann, M., Joublin, F., Goerick, C.: Combining auditory preprocessing and
bayesian estimation for robust formant tracking. IEEE Trans. Audio Speech Lang. Process.
18(2), 224–236 (2010)

28. Deng, L., Cui, X., Pruvenok, R., Huang, J., Momen, S., Chen, Y., Alwan A.: A database of vocal
tract resonance trajectories for research in speech processing. In: Proceedings IEEE Interna-
tional Conference on Acoustics, Speech, and Signal Processing (ICASSP), p. 1. Toulouse
May 2006.

29. Fulop, S.A.: Accuracy of formant measurement for synthesized vowels using the reassigned
spectrogram and comparison with linear prediction. J. Acoust. Soc. Am. 127, 2114–2117
(2010)

30. Miyanaga, Y., Miki, N., Nagai, N.: Adaptive identification of a time-varying ARMA speech
model. IEEE Trans. Acoust. 34, 423–433 (1986)

31. Steiglitz, K.: On the simultaneous estimation of poles and zeros in speech analysis. IEEE
Trans. Acoust. 25, 229–234 (1977)

32. Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Devillers, L., Vidrascu, L., Amir,
N., Kessous, L., Aharonson, V.: The impact of f0 extraction errors on the classification of
prominence and emotion. In: Proceedings 16th International Congress of Phonetic Sciences,
ICPhS 2007, pp. 2201–2204. Saarbrücken, Aug 2007

33. Hess, W.: Pitch Determination of Speech Signals. Springer, Berlin (1983)
34. Heckmann, M., Joublin, F., Nakadai, K.: Pitch extraction in human-robot interaction. In:

Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS),
IEEE/RSJ, Taipei (2010)

35. Hermes, D.J.: Measurement of pitch by subharmonic summation. J. Acoust. Soc. Am. 83(1),
257–264 (1988)

36. Ahmadi, S., Spanias, A.S.: Cepstrum-Based Pitch Detection Using a New Statistical V/UV
Classification Algorithm. IEEE Trans. Speech Audio Process. 7(3), 333–338 (May 1999)

37. Botros, N.: Speech-pitch detection using maximum likelihood algorithm. In: Proceedings of
the First Joint BMES/EMBS Conference, vol. 2. (1999)

38. Markel, J.: The SIFT algorithm for fundamental frequency estimation. IEEE Trans. Audio
Electroacoust. 20, 367–377 (1972)

39. Boersma, P.: Praat, a system for doing phonetics by computer. Glot Int. 5, 341–345 (2001)
40. Ross, M., Shaffer, H., Cohen, A., Freudberg, R., Manley, H.: Average magnitude difference

function pitch extractor. IEEE Trans. Acoust. Speech Signal Process. 22, 353–362 (1974)
41. Orlikoff, R.-F., Baken, R.: The effect of the heartbeat on vocal fundamental frequency per-

turbation. J. Sport Health Res. 32(3), 576–582 (1989)



94 6 Audio Features

42. Haji, T., Horiguchi, S., Baer, T., Gould, W.: Frequency and amplitude perturbation analysis
of electroglottograph during sustained phonation. J. Acoust. Soc. Am. 80(1), 58–62 (1986)

43. Schuller, B.: Voice and speech analysis in search of states and traits. In: Salah, A.A., Gevers,
T. (eds.) Computer Analysis of Human Behavior, Advances in Pattern Recognition, chapter
9, pp. 227–253. Springer, Heidelberg (2011)

44. Schuller, B., Gollan, B.: Music theoretic and perception-based features for audio key deter-
mination. J. New Music Res. 41(2), 175–193 (2012)

45. Harte, C.A., Sandler, M.: Automatic chord identification using a quantised chromagram. In:
Proceedings of the 118th Convention of the AES, May 2005

46. Schuller, B., Dorfner, J., Rigoll, G.: Determination of non-prototypical valence and arousal
in popular music: Features and performances. EURASIP J. Audio Speech Music Process.
(Special Issue Scalable Audio Content Anal.) 735854, 19 (2010)
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107. Schuller, B., Wallhoff, F., Arsić, D., Rigoll, G.: Musical signal type discrimination based on
large open feature sets. In: Proceedings of 7th IEEE International Conference on Multimedia
and Expo, ICME 2006, IEEE, pp. 1089–1092. Toronto, July 2006

108. Kroschel, K., Rigoll, G., Schuller, B.: Statistische Informationstechnik, 5th edn. Springer,
Berlin (2011)



Chapter 7
Audio Recognition

Learning without thought is labor lost; thought without learning
is perilous.

—Confucius

We will now deal with methods towards the actual classification or regression of
audio data. A good overview on these is also found in [1].

7.1 Audio Recognition Requirements

A number of requirements speak for the consideration of diverse learning algorithms.
In Table 7.1 typical such requirements are summarised.

According to these requirements, a number of learning algorithms were picked as
examples in the next sections. These have proven to be reasonable choices through-
out many applications as presented later in this book. They can be roughly divided
into static and dynamic learners. This categorisation can best be understood by con-
sidering the chain of audio processing (cf. Chap. 4): Static learners operate on single
feature vector basis (which means that multivariate time series of variable length
have to be mapped to fixed size vectors), whereas their dynamic counterparts are
able to handle such time series directly.

7.2 Static Learning Algorithms

7.2.1 Decision Trees

As a first learning algorithm, let us consider decision trees (DT). In principle, a
DT produces a human-readable set of rules, which makes it very transparent and
intuitive to understand. In case of numeric feature information, these are typically

B. W. Schuller, Intelligent Audio Analysis, Signals and Communication Technology, 99
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Table 7.1 Requirements for
machine learning algorithms

Requirement Example

Adequate modeling Static /(async.)dynamic modeling
Data-/Knowledge-driven
Handling of missing features
Handling of uncertainty
Learning stability
Model-/Instance-based
Transparency

Optimal accuracy Non-linear problem handling
Discriminative learning
Auto-weighting of features
Tolerance wrt. dimension
Adaptability
Allowance for diverse spaces

Efficiency Real-time recognition
Short learning/adaptation time

Economic factors Low computational cost
Low memory requirement
Low HW realization costs
Space optimization w/o training

Optimal integration N-best provision
Confidence provision
Class-wise confidences
Distributable

comparisons with constants to decide to which next comparison to branch, until the
class labels are reached as terminals. A DT is thus a specific directed acyclic graph
(DAG). As such, it can be defined by a set of nodes V and a set E ⊆ V × V of edges,
where each element e = (v1, v2) ∈ E represents a connection from node v1 to node
v2. A path of the length P through the tree is a sequence of v1, . . . , vP , vk ∈ V with
(vk, vk+1) ∈ E, k = 1, . . . , P − 1. Starting from an undirected graph, conditions of
a tree are that the graph is acyclic and connected, i.e., each node needs to be reachable
by a path from each other node. By that, each tree has exactly |V |−1 edges. Further,
there is exactly one ‘root’ w in the sense of a node that possesses no incoming edges,
i.e., E contains no element of the form (v, r), v ∈ V . The ‘leaves’ are the nodes b
without an outgoing edge, i.e., for which in E there exists no (b, v) with v ∈ V . All
remaining nodes are referred to as ‘inner’ nodes [1, 2].

In the learning process, features are assigned to the inner nodes: Given a feature
space of the dimension N a mapping

a : V → {1, . . . , N }

is defined. In this process, the edges are assigned the values on which the branch
decisions are based upon. The values of the features as seen in the training are
quantised to Jn values per feature n to reach a finite number of edges. Each inner
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Fig. 7.1 Exemplary DT: A
two-class problem is shown
with three features. Circles
represent the root and inner
nodes, rectangles represent
the leaves with the class labels
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node v then has Ja(v) outgoing edges. The leaves are assigned the according class
labels.

In the recognition phase of an unknown pattern vector x = (x1, . . . , xN )T , one
starts at the root w and follows the path through the tree as follows: At each node v

along the path choose the edge for which xa(v) is within this edge’s interval until a
leave is reached. The class to decide for is then this leave’s class.

An example of a DT is shown in Fig. 7.1. In this example, quantisation of feature
values was chosen as binary. This results in a simple threshold decision at each node.

An optimisation criterion is now to maximise the information gain in view of the
correct classification and with the remaining features at each node. The Shannon
entropy H(Y ) of the distribution of the class probabilities (Y1, . . . , YM ) can be used
to this end:

H(Y1, . . . , YM ) = −
M∑

i=1

Yi ld(Yi ). (7.1)

For a training set L of pattern vectors x with known class attribution y, the needed
average information H(L) to assign an instance in L to a class i ∈ {1, . . . , M} is
determined according to:

H(L) = −
M∑

i=1

Ŷi ld(Ŷi ), Ŷi = |Li |
|L| , (7.2)

where Li is the set of elements in L with class attribution i .
In order to determine the contribution of each individual feature n to the aimed at

class assignment, for each n the set L is divided into the subsets Ln, j , j = 1, . . . , Jn

based on the different values of n. The remaining average information H(L|n) needed
after observation of the feature n for the class assignment results as the weighted
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average of the information H(Ln, j ), as required to classify an element of the subset
Ln, j :

H(L|n) =
Jn∑

j=1

|Ln, j |
|L| H(Ln, j ). (7.3)

By this equation the IG can be defined. It describes how the entropy, i.e., the
information needed for the assignment, is reduced by addition of the feature n:

IG(L, n) = H(L) − H(L|n). (7.4)

However, this definition tends to favour features with a high number of different
values Jn : If all elements in L, whose features n have the same value belong to the
same class—this is in particular the case, if a feature has a different value for each
element inL—, then H(L|n) equals zero, and by that one obtains a maximal IG(L, n).
By introduction of the Information Gain Ratio (IGR) this can be compensated:

IGR(L, n) = IG(L, n)

H
( |Ln,1|

|L| , . . . ,
|Ln,Jn |

|L|
) . (7.5)

The term in the denominator is called split information and is computed according
to Eq. (7.1). This is the information one obtains by the described split of the set L
according to the values of the feature n.

A popular method for the training of a DT based on a training set L is the iterative
dichotomiser 3 (ID3) algorithm [3]. ID3 constructs the DT recursively for the overall
feature set by concatenation of sub-trees for each subset of the features. For a given
set of features M ⊆ {1, . . . , N } and training set L, the steps are as follows:

1. If all elements in L belong to class i return a leaf labelled i .
2. If M is empty, return a leaf labelled by the most frequent class in L.
3. Else search for the feature n′ with the highest IG(R), i.e.,

n′ = arg maxn∈M IG(L, n).

4. For all j = 1, . . . , Jn′ construct a DT by ID3 on the feature set M − {n′} and
the training set Ln′, j . Return a tree with the root labelled by the feature n′ whose
edges lead to the constructed DTs (cf. Fig. 7.2)

ID3 is a greedy algorithm as in every step a feature is selected by a local optimisa-
tion criterion. A global optimum is not guaranteed. Further, ID3 always terminates,
as with every recursive call the remaining set of features decreases and the case of
an empty feature set is handled separately.

An extension of ID3 are the C4.5 or J48 variants that introduce pruning of sub-trees
[2, 4] for increased efficiency. During pruning, a whole sub-tree can be replaced by
a leaf, if the error probability is not significantly increased by this substitution. Note
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Fig. 7.2 Recursive call of the ID3 algorithm for a feature n′ that maximises the IG(R) with respect
to the classification of L within M [1]

that this reduces the number of features, i.e., an inherent feature selection by IG(R)
is given. DTs are able to handle missing features both in training and recognition.
Further, if both, the feature set and the training set are randomly sub-sampled for
construction of an ensemble (cf. Sect. 7.4) of DTs, one speaks of Random Forests
(RF), which are known as competitive classifier [5], e.g., to the further introduced
classifiers.

7.2.2 Support Vectors

Support Vector Machines (SVM) and Support Vector Regression (SVR) were intro-
duced in [6]. In principle, they base on statistical learning theory, and their theo-
retic foundation can be interpreted as analogon to electrostatics: Thereby, a training
instance corresponds to a charged conductor at a given place in space, the decision
function corresponds to an electrostatic potential function and the learning target
function to Coulomb’s energy [7].

The concept of SVM and SVR unites several theories of machine learning and
optimisation: At first, a linear classifier or regressor—similar to a perceptron with
linear activation function —is combined with a non-linear mapping into a higher
dimensional decision space in order to be able to solve more complex decision tasks.
The linear classifier is thereby built based on a subset of the learning instances—the so
called ‘support vectors’. By that, the danger of overfitting to the learning instances
as a whole is limited. The choice of support vectors is achieved by a quadratic
optimisation problem.

7.2.2.1 Support Vector Machines

In general, SVM are by that capable to discriminate between two classes, i.e., solve
binary decision problems. We will at first focus on this task—the solving of multiple
class problems can then be reached by diverse strategies such as one-versus-one pair-
wise decisions, one-versus-all decisions, or binary-tree-based grouping of decisions.

SVM are trained based on a set L of L learning instances, where each of the
instances is accordingly labelled with its class. For l = 1, . . . , L the assignment
of a pattern instance xl to its class is denoted by yl ∈ {−1,+1}. By definition the
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patterns xl with yl = +1 are the ‘positive’ instances, i.e., xl ∈ X1. If yl = −1, xl is
a ‘negative’ instance, i.e., xl ∈ X2. By this we can denote L as:

L = {(xl , yl) | l = 1, . . . , L} where yl ∈ {+1,−1}. (7.6)

The assignment yl ∈ {−1,+1} simplifies the mathematical handling. In order
to be able to strictly separate the according instances in the following, the normal
vector w and the scalar bias b define the hyper plane H(w, b) given as

H(w, b) = {x | wT x + b = 0}. (7.7)

The task is now to find the hyper plane in such a way that the conditions

yl = +1 ⇒ wT xl + b ≥ +1,

yl = −1 ⇒ wT xl + b ≤ −1 (7.8)

are fulfilled. Under the condition that a hyper plane exists by which the separation
of the (two) classes is possible without misclassification, a normalisation of the side
conditions (7.8) can be realised by appropriate scaling of w and b [8]. Next, by
application of the signed distance D(x) of a point x to the hyper plane H

D(x) = wT x + b

||w|| (7.9)

the margin of separation μL is defined as the minimum of the magnitude of the
distances of all points x1 . . . xl in L to H :

μL(w, b) = min
l=1,...,L

|D(xl)|. (7.10)

In order to reach maximum discriminativity between the two classes, this margin
needs to be maximised. To this end, we seek the hyper plane H∗ = H(w∗, b∗) with
maximal value μ∗

L(w∗, b∗) to separate the training instances set L. The according
instances xsv

l ∈ L, which satisfy (7.10), are closest to the hyper plane H∗ and are
called support vectors of H∗ with respect to L. Their distance D∗(xsv

l ) to the hyper
plane H∗ is—owing to the normalisation of the separation condition:

D∗(xsv
l ) = ±1

||w|| . (7.11)

As a consequence, a corridor between the positive and negative instances results
of the width 2 ||w||−1. Its border is given by the support vectors which are shown in
Fig. 7.3.

Instead of the maximisation of the width of the corridor one can minimise the
expression 1

2wT w. The resulting funtion to be minimised is strictly convex and



7.2 Static Learning Algorithms 105

Fig. 7.3 Example of an
optimal hyper plane H∗(w, b)

(lighter shaded) in two dimen-
sional space with maximum
margin of separation μ∗
(dashed parallel lines). “x”
and “o” indicate exemplary
instances of the two classes to
be separated

x2

w*

μ*>μ

b*
μ*>μ

H*(w*,b*)

x1

posseses a unique minimum w∗. From (7.8) result linear side conditions for the
optimisation:

yl (wT xl + b) − 1 ≥ 0 with l = 1, . . . , L . (7.12)

To solve this boundary value problem one can use Langrange multipliers. In [6]
this is explained in detail.

In the general, non-trivial case, there does not exist—as opposed to the previously
made assumption—a hyper plane to separate a training instances set L flawlessly. In
this case the equations in (7.8) are extended by so called slack variables ξl ≥ 0, l =
1, . . . , L . This allows to stay with the approach, as vectors which cross the hyper
plane may be placed on the ‘wrong side’:

yl = +1 ⇒ wT xl + b ≥ +1 − ξl ,

yl = −1 ⇒ wT xl + b ≤ −1 + ξl . (7.13)

By that, the expression

1

2
wT w + G ·

L∑

l=1

ξl (7.14)

needs to be minimised, where G is a free error weighting factor that needs to be
determined. It can be shown that this optimisation—also called a ‘primal problem’—
is equivalent to a ‘dual problem’ of the maximisation of

L∑

l=1

al − 1

2

L∑

k=1

L∑

l=1

ak al yk yl(xT
k xl), (7.15)
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with the side conditions

0 ≤ al ≤ C, l = 1, . . . , L , (7.16)
L∑

l=1

al yl = 0. (7.17)

The hyper plane is then defined by

w =
L∑

l=1

al yl xl , (7.18)

b = yl∗(1 − ξl∗) − xT
l∗wl∗ . (7.19)

Thereby l∗ represents the index of the vector xl with the largest coefficient al .
The normal vector w is thus represented as weighted sum of training instances with
the coefficients al ≤ C, l = 1, . . . , L , where C is another free parameter to be
determined. By the introduction of the weighting coefficients the slack variables
ξl disappear in the optimisation problem. The support vectors are then the training
instances xl that satisfy al > 0.

By this, L2 terms of the form xT
k xl result, which can be summarised as a matrix.

One of the frequently used and highly efficient methods for the recursive computation
of this matrix and by that solving of the dual problem is the Sequential Minimal
Optimisation (SMO), which is introduced in detail in [9]. The classification by SVM
is now given by the function dw,b : X → {−1,+1},

dw,b(x) = sgn(wT x + b) (7.20)

where

sgn(u) =
{

1 u ≥ 0

−1 u < 0.
(7.21)

So far, we are only able to solve pattern recognition problems that assign the
instances belonging to the (two) different classes with a certain acceptable error by a
hyper plane in the space X . This is referred to as linear seperation problem. Aiming at
classes that can only be separated non-linearly, one applies the so called ‘kernel trick’
[10]. Figure 7.4 depicts an exemplary two-class problem in one-dimensional space,
which can only be solved linearly by a mapping into a higher (two-)dimensional
space—without error in the given example.

In general, such a transformation is given by the mapping

Φ : X → X
′
, dim(X

′
) > dim(X). (7.22)
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Fig. 7.4 Solving of an exemplary two-class problem by mapping into higher dimensional space:
While in the one-dimensional (original) space the problem cannot be solved linearly, mapping
by the function Φ : x1 
→ (x1, x2

1 ) allows for error-free separation in the new two-dimensional
space [1]

The normal vector w then results in

w =
∑

l:al>0

al yl Φ(xl). (7.23)

The decision function dw,b(x) results—applying Φ—in:

dw,b(x) = sgn(wT Φ(x) + b). (7.24)

As
wT Φ(x) =

∑

l:al>0

al yl Φ(xl)
T Φ(x), (7.25)

the transformation Φ is explicitly neither needed for the estimation of the parame-
ters of the classifier, nor for the classification. Instead a so called ‘kernel function’
K Φ(x, x ′) is being defined, with the condition

K Φ(x, x ′) = Φ(x)T Φ(x ′). (7.26)

The kernel function additionally needs to be positively semi-definite, symmetric,
and fulfil the Cauchy-Schwarz inequality. The optimal kernel function for a given
classification or regression problem can only be found empirically. However, recently
so called multi kernels try to overcome the search for optimal kernel functions [11].
Most frequently used kernel functions comprise:

• Polynomial kernel:
K Φ

p (x, x ′) = (xT x ′ + 1)p, (7.27)

where p is the polynomial order,
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• Gaussian kernel (radial basis function, RBF):

K Φ
σ (x, x ′) = e

||x−x ′ ||2
2σ2 , (7.28)

where σ is the standard deviation of the Gaussian, and
• Sigmoid kernel:

K Φ
k,Θ(x, x ′) = tanh(k(xT x ′) + Θ), (7.29)

where k is the amplification, and Θ the off-set.

The application of the kernel function K Φ instead of the transformation Φ consid-
erably reduces the required computation effort and allows for practical application
of SVM and SVR when coping with high dimensional problems, as can be seen by
the example of the polynomial kernel: to compute a polynomial of the order p in the
space X , (

dim(X) + p

p

)

≈ dim(X)p

p! (7.30)

terms would need to be calculated, while the computation employing the polynomial
kernel independently of p requires only approximately dim(X) operations. There
exist manifold further kernels for special requirements, such as the KL divergence
kernel frequently used in Gaussian Mixture Model (GMM)-SVM ‘super vector’
construction.

The last kernel that is introduced is a special solution for symbolic, i.e., non-
numeric input: The recent string subsequence kernel (SSK) approach [12] makes
use of a mapping from text information to a high dimensional feature space without
explicit calculation of features. Based on the theory of Support Vector Machines, the
idea of kernel mapping is extended for strings as input parameters. Thus, a special
kernel for text information is provided. The idea behind is to observe small substrings
in a given string. For a predefined substring length, all possible substrings form a
feature space in which a string can be represented. The numeric value of each feature
depends on the substring occurrence frequency in the string and on the degree of
contiguity. For example, the substring “ser” exists in the word “serene” as well as
in “superb”, but with a different degree of contiguity. This degree is weighted by
a decay factor λ ∈ [0, 1] which penalises non-contiguous substrings. Taking non-
continuous substrings into account is a specific characteristic of the string kernel
method.

The transformation of a string s into the feature space is done by a mapping Φ(s)
which can be calculated numerically as described in [12]. Analog to the Support
Vector Machines’ theory, this mapping does not have to be done explicitly. An implicit
calculation is done by using a kernel function:

K Φ(s, t) = 〈Φ(s),Φ(t)〉 . (7.31)
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This kernel function is part of the decision function for SVM or SVR. The inner
product calculated by the kernel can be seen as a numeric measure of similarity
between two strings s and t . The calculation of this string subsequence kernel can
further be simplified due to recursive computation [12], making the procedure
practicable.

7.2.2.2 Support Vector Regression

Let us now have a very short introduction to SVR. Again, we first consider a set of
training patterns L, but now with numeric values yl ∈ R. The goal of SVR is to find
a regression function f (x) that has at the most a deviation of ε from the actually
obtained targets and, at the same time, is as flat as possible. For a linear regression
function,

f (x) = wT x + b (7.32)

described by a vector w and a scalar b, this flatness can be achieved by minimising
the dot product wT w under the conditions:

yl − wT xl − b ≤ ε,

wT xl + b − yl ≤ ε.
(7.33)

Because there are only few cases where all yl can be linearly estimated within a
range between ±ε, non-negative slack variables ξl and ξ∗

l are introduced in analogy
to SVM, allowing vectors to lie outside this range of ±ε:

yl − wT xl − b ≤ ε + ξl ,

wT xl + b − yl ≤ ε + ξ∗
l .

(7.34)

As in the case of SVM, the optimisation is done with Lagrangian multipliers,
leading to:

1

2
wT w + C

L∑

l=1

(ξl + ξ∗
l ) −

L∑

l=1

(ηlξl + η∗
l ξ∗

l )

−
L∑

l=1

αl(ε + ξl − yl + wT xl + b) (7.35)

−
L∑

l=1

α∗
l (ε + ξ∗

l + yl − wT xl + b).

The optimisation problem is to minimise the Lagrangian multiplier with respect
to w, b and the Lagrangian multipliers αl , α∗

l , ηl , η∗
l (l = 1, . . . , L). The complexity

parameter C > 0 determines the penalty for regression errors larger than ε.
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As a further analogy to SVM, the solution of the optimisation problem shows
that the vector wo for the regression function searched for can be written as a linear
combination of vectors in the test set [13]:

wo =
L∑

l=1

(αl − α∗
l )xl , (7.36)

and thus, the linear regression function becomes

f (x) =
L∑

l=1

(αl − α∗
l )xT

l x + b. (7.37)

In consequently analogous manner to SVM theory, the algorithm for SVR is
described by dot products between training vectors xl and the new, unseen pattern
vector x , whereas only those training vectors are relevant for which the Lagrangian
multipliers (αl − α∗

l ) �= 0. These are the support vectors for SVR. Geometrically
interpreted these are the training vectors which have an absolute estimation error of
exactly ε.

As in the SVM case, the model is extended to solve non-linear regression tasks.
This is done by applying the same kernel trick. The kernel function can be built into
the regression function in Eq. (7.37), where it substitutes the dot product xT

l x :

f (x) =
L∑

l=1

(αl − α∗
l )K Φ(xl , x) + b. (7.38)

The function in this form makes SVR an efficient algorithm for regression tasks.

7.2.3 Neural Networks

This section gives a short introduction to Artificial Neural Networks (ANN) with a
focus on (bidirectional) Long-Short-Term Memory (BLSTM) networks.

ANNs are capable of learning practically arbitrary functions [14], and belong to the
most popular learning algorithms, since McCulloch’s and Pitts’s first mathematical
models in the year 1943 [15] that still provide the basis for today’s ANN [16]. Their
inspiration is given by neural networks in the central nervous system of vertebrates.
The central information processing unit thereby is the neuron. Via its axon the neuron
emits a certain activity by electrical pulses [17]. These impulses are propagated to the
synaptic connection of other neurons via a branched network. The activity of a neuron
is based on its cumulative input activation. In the nature, a higher activity results in a
higher impulse frequency. Decisive is in general a threshold—usually approximated
by a non-linear transfer function. Overall, a neural network consists of neurons and
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Fig. 7.5 Exemplary neuron

their directed connections. It is fully described by the network topology and weights,
the computation type of its units and the encoding of the output. Figure 7.7 shows
an example of an ANN. At the N input neurons the values of the feature vector
x = {xi } with i = 1, . . . , N are input. These values are weighted by the weights wi

with i = 0, . . . , N that can be written as w = {wi }. The weight w0 is the ‘bias’—
a permanent additive offset. In the next part, a summation of the weighted inputs
takes place. Its result u is then input into the—as stated usually non-linear—transfer
function T (u). The output of this function is v at the output of the neuron. In most
cases, one aims at a steep decision function. An according visualisation of a neuron
is given in Fig. 7.5.

Popular transfer functions are in particular the sigmoid function (cf. Fig. 7.6)

T (u) = 1

1 + e−αu
, (7.39)

0
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T(u)

infinity 10 2 1

Fig. 7.6 Sigmoid function with different values for the steepness parameter α. In the case α → ∞
the function approximates a threshold decision
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where α is the steepness parameter, the hyperbolic tangent function as special case
of the sigmoid function with additive offset, and the unit step

T (u) =
{

0 if u < 0
1 if u ≥ 0

. (7.40)

The sigmoid function is particularly popular owing to its approximation of an
ideal threshold decision (cf. Fig. 7.6) while being differentiable. The latter will be
needed throughout the training of the network.

A multiplicity of different network topologies exist, of which the most important
will be introduced next.

7.2.3.1 Feed Forward Neural Networks

The most commonly used form of feed forward neural networks (FNN) is the mul-
tilayer perceptron (MLP) [18]: It consists of a minimum of three layers, one input
layer—typically without processing—, one or more hidden layers, and an output
layer. All connections feed forward from one layer to the next without any back-
ward connections. MLPs classify all input feature vectors over time independently.
In general, encoding of the outputs ŷ j with j = 1, . . . , M of the last layer that can
be written as vector ŷ is required. A popular way is to provide one output neuron
for regression and one per class in the case of classification. As an advantage, this
provides a measure of confidence of the network: The ‘softmax’ function as a transfer
function normalises the sum of all outputs to one in order to allow for interpretation
as posterior probability P( j |x) of the final output:

P( j |x) = ŷ j = eu

∑M
j=1 eu

. (7.41)

In the recognition phase the computation is processed step-wisely from the input
layer to the output layer. Per layer the weighted sum of the inputs from the previous
layer is computed for each neuron and weighted by the non-linearity. Using the soft-
max function at the outputs, and the named encoding, the recognised class is assigned
by maximum search. As an alternative, one can choose, e.g., a binary encoding of
the classes with the network’s outputs.

7.2.3.2 Back Propagation

Among the multiplicity of learning algorithms for ANNs, the gradient descent-based
back propagation algorithm [19] is among the most popular ones and allowed for
the break-through of ANN. Let W = {w j } summarise the weight vectors w j of a
layer with j = 1, . . . , J and J being the number of neurons in this layer. As target
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function to measure the progress of (supervised) learning, the MSE E(x, W ) between
the gold standard y and the network output ŷ = f (x, W ) is used—for simplification
we consider the case of a single output as in regression—an extension to multiple
outputs is straight forward:

E(x, W ) = |y − ŷ|2 (7.42)

Other target functions are frequently used, such as McClelland error or cross-
entropy. After an initialisation of weights, e.g., by random, three steps follow for the
back propagation:

1. Forward pass as ‘normal’ pass as in the recognition phase.
2. Computation of the MSE according to Eq. (7.42).
3. Backward pass with weight adaptation by the corrective term:

wi → wi + 
wi = wi − β · δE(x, W )

δwi
, (7.43)

where β is the step size, which is to be determined empirically, and wi is an
individual weight within a neuron.

As a stopping criterion of the iterative updating of the weights one can either use
a maximum number of iterations or a minimal change of the error [20]. A ‘good’
parameter set can only be determined empirically and based on experience. However,
approaches exist to learn these. To avoid over fitting, a sufficient number of training
instances is required as compared to the number of parameters in the network and
the dimensionality of the feature vector. An alternative is resilient propagation that
incorporates the last change of weights into the current change of weights [21]. By
learning the weights, ANNs are able to cope with redundant feature information.
The learning process is further discriminative as the information over all classes is
learnt at a time [17]. Their highly parallel processing is one of the main advantages
for efficient implementation. If the temporal context of a feature vector is relevant,
this context must be explicitly fed to the network, e.g., by using a fixed width sliding
window that combines several feature vectors to a ‘super vector’, as in [22].

7.2.3.3 Recurrent Neural Networks

Another technique for introducing past context to neural networks is to add backward
(cyclic) connections to FNNs. The resulting network is called a recurrent neural
network (RNN). RNNs can theoretically map from the entire history of previous
inputs to each output. The recurrent connections implicitly form a kind of memory,
which allows input values to persist in the hidden layer(s) and influence the network
output in the future. RNNs can be trained by back propagation through time (BPTT)
[23]. In BPTT, the network is first unfolded over time. The training then is similar as
if training a FNN with back propagation. However, each epoch must run through the
output observations in sequential order. Details are found in [23]. If in a RNN future
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Fig. 7.7 A RNN with two hidden layers and a single output neuron for regression or binary
classification. Dashed connection are an example of an architectural variation. The blue connections
are examples of recurrent connections. Other popular ways of recurrent connections include such
from the output nodes of a layer to its own input nodes

Fig. 7.8 Structure of a bidi-
rectional network with input i ,
output o, as well as two hidden
layers that processes the input
sequence forwards (h f ) and
backwards (hb) over time t

it-1 it it+1

hf,t-1 hf,t hf,t+1

hb,t-1

o -
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context is also required, a delay between the input values and the output targets can
be introduced. An example is shown in Fig. 7.7.

A more elegant incorporation of future temporal context is provided by a bidi-
rectional recurrent neural network (BRNN). Two (sets of) separate hidden layers
are used instead of one, both connected to the same input and output layers. The
first processes the input sequence forwards and the second backwards. The network
therefore has always access to the complete past and the future temporal context in a
symmetrical way, without bloating the input layer size or displacing the input values
from the corresponding output targets. Figure 7.8 visualises this principle.
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However, they must have the complete input sequence at hand before it can be
processed.

7.2.3.4 Long Short-Term Memory

Although BRNNs have access to both past and future information, the range of
temporal context is limited to a few frames due to the ‘vanishing gradient’ problem
[24]. The influence of an input value decays or blows up exponentially over time, as it
cycles through the network with its recurrent connections and gets dominated by new
input values. To overcome this deficiency, a method called Long Short-Term Memory
(LSTM) was introduced in [25]. In a LSTM hidden layer, the non-linear units are
replaced by LSTM memory blocks (cf. Fig. 7.10). Each block contains one or more
self connected linear memory cells. By that, they are able to overcome the vanishing
gradient problem and can learn the optimal amount of contextual information relevant
for the learning task. Figure 7.9 depicts this vanishing gradient problem for RNN and
how it is overcome by LSTM (right).

A LSTM layer is composed of recurrently connected memory blocks, each of
which contains one or more memory cells, along with three multiplicative ‘gate’
units: the input, output, and forget gates. The gates perform functions analogous to
read, write, and reset operations. More specifically, the cell input is multiplied by
the activation of the input gate, the cell output by that of the output gate, and the
previous cell values by the forget gate (cf. Fig. 7.10). Usually, one can employ the
same non-linear transfer function for these gates, denoted as Tg in the ongoing. A
popular choice is a hyperbolic tangent function. The transfer function of the ‘original’
neuron (top neuron Fig. 7.10) is often chosen as a sigmoid function and referred to
by Ti in the ongoing, as it functions as the actual input neuron of a LSTM cell. The
output transfer function of the LSTM cell after the ‘error carousel’ (EC) is denoted as
To from now on. Sigmoid or softmax functions are popular choices for this function.
The outgoing weight of the EC is chosen as 1 to realise the storage effect by an
auto-transition of one.
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Fig. 7.9 Vanishing gradient problem of a RNN (left) and overcoming it by use of LSTM (right).
Lighter shading indicates decreased memory of past events. it , ht , ot represent the input, hidden,
and output layers at time t , respectively
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Fig. 7.10 LSTM memory block consisting of one memory cell: input, output, and forget gate
collect activations from inside and outside the block which control the cell through multiplicative
units (depicted as small circles); input, output, and forget gate scale input, output, and internal state
respectively; a recurrent connection of fixed weight 1.0 maintains the internal state
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Fig. 7.11 An exemplary layout of a RNN with LSTM cells

The overall effect is to allow the network to store and retrieve information over
long periods of time. For example, as long as the input gate remains closed, the
activation of the cell will not be overwritten by new inputs and can therefore be
made available to the net much later in the sequence by opening the output gate.

Figure 7.11 depicts LSTM cells’ exemplary integration in a RNN. If αin,t denotes
the activation of the input gate at time t before the activation function Tg has been
applied and βin,t represents the activation after application of the activation function,
the input gate activations (forward pass) can be written as

αin,t =
I∑

i=1

wi,inxi,t +
H∑

h=1

wh,inβh,t−1 +
C∑

c=1

wc,insc,t−1 (7.44)

and
βin,t = Tg(αin,t ), (7.45)
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respectively. The variable wi, j corresponds to the weight of the connection from unit
i to unit j while ‘in’, ‘for’, and ‘out’ refer to input gate, forget gate, and output gate,
respectively (cf. Eqs. 7.46 and 7.50). Indices i , h, and c count the inputs xi,t , the cell
outputs from other blocks in the hidden layer, and the memory cells, while I , H , and
C are the number of inputs, the number of cells in the hidden layer, and the number
of memory cells in one block. Finally, sc,t corresponds to the state of a cell c at time
t , meaning the activation of the linear cell unit.

Similarly, the activation of the forget gates before and after applying Tg can be
calculated as follows:

αfor,t =
I∑

i=1

wi,forxi,t +
H∑

h=1

wh,forβh,t−1 +
C∑

c=1

wc,forsc,t−1 (7.46)

βfor,t = Tg(αfor,t ). (7.47)

The memory cell value αc,t is a weighted sum of inputs at time t and hidden unit
activations at time t − 1:

αc,t =
I∑

i=1

wi,cxi,t +
H∑

h=1

wh,cβh,t−1. (7.48)

To determine the current state of a cell c, the previous state is scaled by the activation
of the forget gate and the input Ti (αc,t ) by the activation of the input gate:

sc,t = βfor,t sc,t−1 + βin,t Ti (αc,t ). (7.49)

The computation of the output gate activations follows the same principle as the
calculation of the input and forget gate activations, however, this time the current
state sc,t is considered, rather than the state from the previous time step:

αout,t =
I∑

i=1

wi,outxi,t +
H∑

h=1

wh,outβh,t−1 +
C∑

c=1

wc,outsc,t (7.50)

βout,t = Tg(αout,t ). (7.51)

Finally, the memory cell output is determined as

βc,t = βout,t To(sc,t ). (7.52)

Note that the initial version of the LSTM architecture contained only input and output
gates. Forget gates were added later [26] in order to allow the memory cells to reset
themselves whenever the network needs to forget past inputs.
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LSTM networks can be trained by BPTT. They have shown remarkable perfor-
mance in a variety of pattern recognition tasks, including phoneme classification
[27], handwriting recognition [28], keyword spotting [29], affective computing [30],
and driver distraction detection [31]. Combining bidirectional networks with LSTM
leads to bidirectional LSTM (BLSTM). Further details on the LSTM technique can
be found in [28].

7.3 Dynamic Learning Algorithms

Audio is sequential, and an endpointed audio stream X = {x1, x2, . . . , xT } accord-
ingly yields a series of T feature vectors. So far, however, we mostly dealt with
classification of single feature vectors without use of temporal context. One excep-
tion were the different types of RNN that modelled such context, as discussed above.
But even these are not able to ‘warp’ in time, i.e., to handle different tempo deviations
between, e.g., two musical pieces or stretching or shortening, e.g., of vowels while
speaking. The most frequently encountered algorithm for audio sequence classifica-
tion are HMMs [32] as a simple form of DBNs. This property is owed to their ability
of dynamic modelling throughout different hierarchy levels and a well-formulated
stochastic framework. In ASR, for example, the extracted feature stream is first mod-
elled on the phoneme level. On a higher level, these phonemes are then used to form
words. Each class i is modelled by a HMM that represents the probability P(X |i),
where X is called the ‘observation’, which is generated by the HMM.

A Markov model can be seen as finite state automaton that may change its state
at any step in time. In a HMM, at each step in time t a feature vector xt is being
generated depending on the current state s and the emission probability bs(x). The
probability of a transition from state j to state k is expressed by the state transition
probability a j,k [33]. The probabilities a0, j are needed to enter the model in a state
j with a certain probability. In order to simplify calculation, a non-emitting initial
state s0 and a non-emitting final state sF can be defined [1]. In Fig. 7.12 the structure
of such a model is depicted. In the example, the most frequently used type of HMM
for audio processing is depicted—the so-called left-right model. In this model type,
the state number cannot decrease over time. In the ‘linear’ model, no state can be
skipped. Other topologies allow for a state skip, such as the Bakis model in which
one state may be skipped. If any state can be reached from any other state with a
probability above zero, the topology is referred to as ‘ergodic’.

One speaks of a ‘hidden’ Markov model, as the sequence of states remains
unknown—only the observations sequence is known [32]. Note the ‘Markov prop-
erty’ that the conditional probability distribution of the hidden variable s(t) at time
step t , given the values of the hidden variable s at all times, depends only on the
hidden variable s(t − 1), i.e., values at earlier steps in time have no influence [34].
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x1

s1

x2

s2

x3

s3s0 sF

a1,1 a2,2 a3,3

a1,2 a2,3a0,1 a3,F

b1 b2 b3

Fig. 7.12 Example of an instantiated linear left-right HMM with three emitting states. Squares
indicate observations, circles represent switching states, arrows denote conditional dependencies

Further, the observation x(t) only depends on the value of the current state’s hidden
variable s(t).1

The needed probability P(X |i) can be computed by summation over all possible
state sequences:

P(X |i) =
∑

Seq

as0,s1

T∏

t=1

bst (xt )ast ,st+1 , (7.53)

where Seq stands for the set of all possible state sequences. For the efficient compu-
tation of this probability, the forward algorithm is typically applied as is introduced
in Sect. 7.3.1. Instead of a summation over all state sequences, the Viterbi algorithm
considers only the most probable state sequence, which results in a speed-up at the
cost of the global optimum [34]:

P̂(X |i) = max
Seq

{

as0,s1

T∏

t=1

bst (xt )ast ,st+1

}

. (7.54)

In the recognition phase the class i is decided for according to the model that
is assigned the highest probability P(X |i). This requires the parameters a j,k and
bs(xt ) to be known for each model. Just as for the previous static classifiers, these
are determined in a training phase given a large set of training instances. The popular
method to this end is the forward-backward algorithm which is also described in
Sect. 7.3.1.

In most Intelligent Audio Analysis application scenarios the emission probabil-
ities bs(xt ) are modelled by Gaussian mixtures. Such mixtures are linear super-
positions of Gaussian functions. With the number of mixture components M and
the ‘mixture weight’ of the m-th component cs,m the emission probability density
function (PDF) can be determined as [34]:

bs(xt ) =
M∑

m=1

cs,mN (xt ;μ
s,m

, s,m), (7.55)

1 Note that for better readability, the time t is in this section used in the subscript or argument
following [32].
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where N (·;μ,) is a multivariate Gaussian density with mean vector μ and the
covariance matrix . Apart from such ‘continuous’ HMMs, also ‘discrete’ HMMs
are used. These use conditional probability tables for discrete observations bs(xt ).

7.3.1 Estimation

The parameters of HMMs can be determined by the Baum-Welch estimation [35]—
a case of generalised Expectation Maximisation (EM). If the ML estimates of the
means and covariances per state s are to be computed, one has to take into account
that each observation vector x contributes to the parameters of a state. This comes,
as the overall probability of an observation bases on the summation of all possible
state sequences. Thus, the Baum-Welch estimation assigns each observation to each
state in proportion to the state probability at the observation of the respective feature
vectors. With Ls,t as the probability to be in state s at time step t , the Baum-Welch
estimation for the means and covariances of a single Gaussian PDF is obtained as
(the hat symbol marks estimated parameters in the following equations):

μ̂
s

=
∑T

t=1 Ls,t x t
∑T

t=1 Ls,t
(7.56)

̂s =
∑T

t=1 Ls,t (xt − μ
s
)(xt − μ

s
)T

∑T
t=1 Ls,t

. (7.57)

The ‘up-mixing’ to several mixture components is reached in a simple way by con-
sidering the mixture components as sub-states. In these sub-states, the state transition
probabilities correspond to the mixture weights. The state transition probabilities are
estimated by the relative frequencies

â j,k = A j,k
∑S

s=1 A j,s
, (7.58)

where A j,k denotes the number of transitions from state j to state k, and S denotes
the number of states of the HMM.

For the computation of the probability Ls,t the forward-backward algorithm is
applied. The ‘partial’ forward probability αs(t) for a HMM that represents the class
i is defined as:

αs(t) = P(x1, . . . , xt , st = s|i). (7.59)

This can be interpreted as the joint probability of the observation of the first t
feature vectors and being in state s at time step t . The following recursion allows
for an efficient computation of the forward probability, where S is the number of
emitting states:
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αs(t) =
[ S∑

j=1

α j (t − 1)a j,s

]

bs(xt ) (7.60)

The according backward probability represents the joint probability of the obser-
vation from time step t + 1 to T :

βs(t) = P(xt+1, . . . , xT |st = s, i). (7.61)

It can be determined by the recursion:

β j (t) =
S∑

s=1

a j,sbs(xt+1)βs(t + 1). (7.62)

To compute the probability to be in a state at a given time step, one has to multiply
the forward and backward probabilities:

P(X , st = s|i) = αs(t) · βs(t). (7.63)

By that, Lst can be determined by:

Lst = P(st = s|X , i) = P(X , st = s|i)
p(X |i) = 1

p(X |i) · αs(t) · βs(t). (7.64)

Assuming the last state S at the moment in time of the last observation xT needs to
be taken, the probability P(X |Mt ) equalsαS(T ). By that, the Baum-Welch estimation
can be executed as described.

The Viterbi algorithm is usually applied in the recognition phase. It is similar to
the forward probability. However, the summation is replaced by a maximum search
to allow for the following forward recursion:

φs(t) = max
j

{φ j (t − 1)a j,s}bs(xt ), (7.65)

where φs(t) is the ML probability of the observation of the vectors x1 to xt and being
in state s at time step t for a given HMM representing class i . Thus, the estimated
ML probability P̂(X |i) equals φS(T ).

7.3.2 Hierarchical Decoding

HMM are in particular suited for decoding, i.e., segmenting and recognising con-
tinuous audio streams. In addition, their probabilistic formulation allows for elegant
hierarchical analysis in order to unite knowledge at different levels as stated. Typical
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tasks include continuous speech recognition or chord labelling in music. Let S be
a ‘sequence’ such as a spoken sentence or musical phrase. Then, the sequence X
of T feature vectors stems from the phrase S [36]. The classifier now provides an
estimate Ŝ for the sequence aiming at the best match with the actual sequence S.
According to Bayes’ decision rule a decision is optimal if the classifier picks the
class which—based on the current observation—has the highest probability. For the
optimal decision it thus needs to hold:

p(Ŝ|X) = max
S j

p(S j |X), (7.66)

where S j are the possible observed sequences. It is thus required to determine the
probability for all possible sequences S j . As in practice it is hardly possible to
determine these, Bayes’ law is applied for re-formulating as follows:

p(S j |X) = p(X |S j )
p(S j )

p(X)
(7.67)

As the probability p(X) depends only on the feature vector series X and thus is
independent of S j , it can be neglected within the maximum search over all sequences
S j :

p(X |S j )
︸ ︷︷ ︸

AM

· p(S j )
︸ ︷︷ ︸

LM

!= max, (7.68)

where the AM and LM represent the acoustics and semantics or syntax, and can be
modelled by the sequence of audio events—in the example of continuous speech
recognition these would be words, in the case of chord recognition, these would be
the chords. In order to weight the influence of the LM, an exponential factor Λ—the
so-called LM scaling factor—can additionally be introduced leading to:

p(Ŝ|X) = max
S j

p(X |S j ) · p(S j )
Λ. (7.69)

The LM scaling factor is usually determined empirically or can be learnt in semi-
supervised manner [37] and is often in the range of 10 ± 5.

The sequence that maximises the expression is output as best estimation Ŝ:

Ŝ = arg maxS∈U p(X |S) · p(S)Λ, (7.70)

where U represents all allowed sequences. Let us now assume that every sequence S j

is a sequence of audio events a1, a2, a3, . . . , aA. In the following a single sequence
S j is highlighted. For this sequence then holds:

p(S j ) = p(a1, a2, . . . , aA) (7.71)
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If we further assume that the acoustic realisations of the audio events are inde-
pendent of each other, the audio events can be modelled individually:

p(X |S j ) = p(x1, . . . , xi )p(xi+1, . . . , x j ) . . . p(xk+1, . . . , x A) (7.72)

It is assumed that these audio events occur without pauses and pauses are treated
as audio events. Note that the audio event boundaries i, j, . . . , k and audio event
number A are unknown and need to be determined by the classifier.

In the same way each audio event can be constructed by a sequence of audio
sub-events (ASE) one level lower in hierarchy again assuming independence. In the
case of speech these could be phonemes, triphones, or syllables, etc. In the case of
chord arpeggios, these could be note events. If the ASE are modelled by HMM, the
Viterbi algorithm can be applied on all three layers [36]: for the search of the state
sequence within the HMMs, for the sequence of the individual ASE HMMs in each
audio event, and for the sequence of the audio events, i.e., Ŝ .

At the audio event transitions the LM can be applied to model higher level infor-
mation by transition probabilities [38]. These can for example be N-grams that model
the conditional probability of a sequence of consecutive audio events, e.g., two or
three. The Viterbi path determines the optimal path through all layers and by that
the optimal sequence recognition with the optimal sequence of audio events—for an
illustrative example see 7.13 where an according ‘Trellis’ is shown [32].

If the number of audio events—the ‘vocabulary’ size—is very large, the Viterbi
search can become very computationally demanding and thus slow. Though at time
step t only a single column needs to be analysed in the Trellis diagram (cf. Fig. 7.13),
all emission probabilities in all states for all ASE in all audio events need to be com-
puted. In the case of large vocabulary continuous speech recognition (LVCSR) this
may easily require computation of more than 100 000 normal distributions in 10 ms
[36]. One can thus make use of the fact that usually many paths in the Trellis are not
promising in the sense that they lead to the overall best path, which is searched for.
The ‘beam search’ thus prunes these candidates accepting a sub-optimal solution
(usually less then one percentage point increase in error probability) at consider-
able speed-up and reduced memory consumption. This is reached by a smart list
management in five consecutive steps [39]:

First, at time step t a list of all active states is set-up. This contains all the points
in the Trellis diagram whose validation exceeds a given threshold. Each element in
the list is stored by the audio event number, the ASE number, the state number, and
its validation.

Then, from this list all possible subsequent states are computed that can be reached
by the Viterbi path-diagram. To this end, the path diagram is applied in forward
direction by overwriting the place-holders in the transition from (t − 1) to (t) each
according to higher validation. The algorithm works in a recursive manner as usual
and the effect is the same as when applying the path diagrams as in the usual case in
backward direction.

Next, the list of subsequent states is reduced by deleting those states below the
threshold—this is the actual pruning. This threshold is best constantly adapted to the
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Audio Event 3

Audio Event 1

Audio Event 2

ASE 1

ASE 2

ASE 1

ASE 2

ASE 1

ASE 2

ASE 3

t

Fig. 7.13 Viterbi search of the optimal audio event sequence, Trellis diagram for the hierarchical
recognition of audio events that consist of audio sub-events (ASE). The backtracking path is shown
over time, and squares represent feature vector observations. HMMs (one per ASE) are shown
schematically in Bakis topology. After backtracking the sequence of audio events 2, 1, 3 is recognised

current step in time. By that, the ‘beam width’ is broadened or narrowed according
to the validation of the concurring paths’ ascent or decline. This width is decisive for
the trade-off between higher accuracy (broadened width) and higher speed (narrowed
width).

Subsequently, at audio event transitions the value of the LM is added in the
computation and it is jumped to the first state of the first model of the new audio
event. In addition the required back-tracking information is stored.

Finally, the best audio event sequence is obtained at its end by the usual back-
tracking, and the recognised audio events and their boundaries are output.

In practical applications, this particularly efficient search algorithm can reach
reductions of the number of states to be computed of 1:1 000 [36]. The overall
approach integrates knowledge of information on different levels in hierarchy to
avoid early wrong decisions.

7.4 Ensemble Learning

Up to now, a number of learning algorithms was presented. In order to benefit from
diverse advantages of these, one can aim at a synergistic heterogeneous combina-
tion of these. Alternatively, or in addition, homogeneous combination of the same
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learning algorithms, but instantiated differently, can help overcome training instabil-
ity [40]. Examples of training unstable classifiers include ANNs, DTs or rule-based
approaches. Overall, such combinations are known as ‘ensembles’ or ‘committees’
of learning algorithms. Owing to the increased computation effort, often so-called
‘weak’ classifiers are preferred in the construction of ensembles.

The aim is to reach a minimum mean square error (MSE) E of the algorithm. If
the MSE is interpreted as expectation value E over all instances’ feature vectors x ,
one obtains:

E = E{(ŷ − y)2}
= Var{ŷ − y} + E{ŷ − y}2

= Var{ŷ} + E{ŷ − y}2, (7.73)

where ŷ is the output of the learning algorithm and y is the target output.
The term E{ŷ − y}2 is known as square bias. It resembles the systematic deviation

of the learning algorithm from the target. Var(ŷ) is the variance of the output of the
learning algorithm. For the minimisation of E one thus has to ideally reduce bias and
variance. However, in practice, mostly only one of these two is significantly reduced
in the majority of ensemble methods.

The task is thus now to construct ensembles and find a mechanism for the final
decision. A simple solution for this decision is majority voting—the example in
the ongoing for this type will be Bootstrap-Aggregating or Bagging for short that
mainly reduces the variance. In addition, one can introduce weights for individual
instances or results. This will be exemplified by Boosting, which in principle reduces
both—bias and variance—however, variance to a significantly lower extent [41].
More elaborately, but requiring additional training partitions and more computational
effort, one can also use a learning algorithm to train this weighting. To this end,
Stacking will be introduced and an efficient example of a Tandem architecture will
be shown.

7.4.1 Bootstrapping

Bagging [40] constructs ensembles of the same learning algorithm that is trained on
different sub-sets of the training set L. These sub-sets are sampled by sampling with
replacement. This is the actual bootstrapping process. The cardinality of the samples
is usually chosen as |L|. Following a sampling with replacement strategy, on average
63.2 % of the training instances are covered in each sub-set, whereas the remaining
percentage consists of duplicates. A variant that ensures that all samples are contained
in each sub-set is called Wagging. The final decision is made by unweighted majority
vote over the ‘class votes’ per classifier. As for regression, the mean over the results
of the re-instantiated instances of the regressor is computed as final decision.



126 7 Audio Recognition

Boosting or Arcing [42] introduces a weighting for the voting (or averaging)
process. Weights are chosen indirectly proportional to the error probability in order
to emphasise the ‘difficult cases’ [43]. An option of realising weighting is to sam-
ple these instances repeatedly according to the weight. By that, the construction of
ensembles follows an iterative procedure wherein the observed error probabilities
are chosen by individual learning algorithms. Usually, one obtains better results as
in Bagging, however, downgrades may also occur [5]. In any case, the computational
effort is higher owing to the iterative procedure. One of the most popular Boosting
algorithms is Adaptive Boosting, or AdaBoost for short. Adaptive refers to the itera-
tive focus on the cases producing errors. Let xl , l = 1, . . . , L be the feature vectors
in the training set L, L = |L|. As for SVMs or DTs, the original AdaBoost algorithm
is suited only for two classes. The variant AdaBoost.M1, however, is an extension
suited multiple classes M . By that, the class assignment for the instance xl is given
by yl ∈ {1, . . . , M}. To each instance xl ∈ L weights wl are assigned. These are all
initialised as wl = 1/L and are—as indicated—considered during computation of a
weighted error measure and the training of the classifier. The core of the algorithm
is now the determination of the weights βt for the classifier with index t , where βt

depends on the error probability εt of the classifier.
Given the training set L and a number T of time steps t = 1, . . . , T the following

steps are carried out:

1. A classifier with the decision ŷt : X → {1, . . . , M} is trained on L considering
the weights wl . As indicated, this can be realised by sampling a sub-set according
to the weights as probability distribution.

2. The weighted classification error εt is computed:

εt =
∑

l:ŷt,l �=yl

wl . (7.74)

3. If εt > 1/2, then repeat steps 1–3; terminate after N repetitions.
4. Else compute classifier βt as

βt =
{

10−10 if εt = 0
εt

1−εt
else , (7.75)

where the constant 10−10 is arbitrarily chosen to avoid division by zero in
Eq. (7.77) below.

5. If εt �= 0, then the new weights w
′
l as used in the following iterations result in:

w
′
l =

{
wlβt if ŷl = yl

wl else.
(7.76)

6. The weights w
′
l are normalised for their sum to be one.

The decision ŷAda of the ensemble classifier is then
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ŷAda(x) = arg maxy

∑

t :ŷt (x)=y

log
1

βt
. (7.77)

Looking at Eq. (7.77), the decisions of the classifiers considered as ‘strong’—i.e.,
those with a small βt —is weighted higher than those of the classifiers accordingly
considered as ‘weak’. In particular, classifiers with a recognition rate merely above
chance level will benefit most form boosting. If εt ≤ 1/2 for t = 1, . . . , T , one can
show that for the average error εAda of ŷAda holds [43]:

εAda ≤ exp

(

−2
T∑

t=1

γ 2
t

)

, γt = 1/2 − εt . (7.78)

The condition εt ≤ 1/2 can always be met for a two-class problem, however, for
multi-class problems this is a strong limitation for weak classifiers. This can be
overcome by reducing multi-class problems to multiple binary decisions such as
one-versus-all, one-versus-one, half-versus-half or other groupings. An alternative
is provided by the AdaBoost.M2 algorithm which integrates this formulation of
multi-class problems by binary decisions—for details refer to [43].

A downside of Boosting is its susceptibility to noisy data, as mis-classified
instances owing to noise may be classified correctly by chance, but are still assigned
a high weight. This is for example given for problems with uncertain ground truth.
Further, a high number of learning instances is usually required.

To benefit from the better minimisation of variance as in Bagging and the reduc-
tion of bias as in Boosting, these two can be combined sequentially: Usually, sub-
ensembles built by AdaBoost are extended by Bagging to turn sub-ensembles into
ensembles. This is often done with Wagging instead of Bagging and known as Multi-
Boosting [41]—often the most efficient approach. The parameters of choice are the
number and size of sub-ensembles. Usually K sub-ensembles of size K are built,
resulting in K 2 instantiations of the classifier. A parallel combination is, however,
not possible owing to the diverse weighting strategies of these two algorithms.

7.4.2 Meta-Learning

The principle of meta-learning is to unite strengths of several heterogeneous learn-
ing algorithms—now usually on the same training set. In Stacking [44], a higher
level learning algorithm—the meta learner—learns literally speaking ‘whom to trust
when’: After seeing the decisions of each lower level learning algorithm’s—the base
learner’s— result, it comes to the final decision [45]. The meta-level is also known
as level-1 and the base-level as level-0— this holds also for the type of data on these
levels. On level-1, only pre-decisions are seen as input data. On level-0, the original
data is seen. In order to train the level-1 learning algorithm, a J -fold cross-validation
is needed (cf. Sect. 7.5.1) to assure disjoint data from training of the level-0 learning
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algorithms. The choice of learning algorithms for these two levels is often based
on experience and exploration, as a full comprehension is still missing in the liter-
ature. However, statistical classifiers, DTs, and SVMs as introduced previously can
be reasonably combined on level-0 [46]. In contrast, these seem to be less suited on
level-1, where mostly Multiple Linear Regression (MLR) is chosen. MLR is different
from simple linear regression only by use of multiple input variables. In the case of
regression, confidences Pk,i (x) ∈ [0; 1] are assumed per base learner k = 1, . . . , K ,
and each class i = 1, . . . , M . If the level-0 classifier k only decides for exactly one
class i without provision of its confidence, i.e., ŷk = i , the level-1 decision by MLR
is as follows:

Pk,i (x) =
{

0 if ŷk(x) �= i
1 else.

(7.79)

Applying non-negative weighting coefficients αk,i per class and learner, the com-
putation of the MLR per class i is obtained by:

MLRi (x) =
K∑

k=1

αk,i Pk,i (x). (7.80)

During the recognition phase the class i with the highest MLRi (x) is chosen for
an observed unknown feature vector x , i.e., the decision ŷ is:

ŷ = arg maxi MLRi (x). (7.81)

A high value of αk,i thus shows a high confidence in the performance of learner
k for the determination of class i [40]. For the determination of the coefficients αk,i

the Lawson- and Hanson method of the least squares can be used, which will not
be described here. The optimisation problem to be solved results per each learner
k = 1, . . . , K in the minimisation of the following expression, in which j represents
the index of the training sub-set of the J -fold cross-validation:

J∑

j=1

L∑

l=1

(yl −
M∑

i=1

αk,i Pk,i, j (x))2. (7.82)

In [45] it is shown that the meta-classification on the basis of the actual confidences
of the level-0 learners results in an improvement in the majority of cases as opposed
to Eq. (7.79). This is known as StackingC—short for Stacking with Confidences [46].
In [45] a description on obtaining confidence values for diverse learners is given.

Simpler alternatives use either an unweighted majority vote or one based on the
mean confidences. This can also be applied in the case of regression.

Overall, ensemble learning linearly increases the computation effort. Whereas
Bagging and Stacking methods can be distributed on several CPUs for parallelisation,
this is not possible in the iterative Boosting process. The lowest error rate is usually
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obtained by StackingC, which, however, requires an extra training set for the meta-
learner. It is further also suited for ‘strong’ learners. Finally, one can integrate Bagging
and Boosting in Stacking.

7.4.3 Tandem Learning

The strengths of diverse learning algorithms can also be combined in sequential man-
ner. An example is Tandem learning, here exemplified by a static learner that incor-
porates LSTM and discriminative learning abilities—namely a BLSTM RNN—,
with a dynamic learner —a multi-stream HMM—that has warping abilities and
‘sees’ the BLSTM predictions and the original feature vectors. The structure of this
multi-stream decoder can be seen in Fig. 7.14: st and xt represent the HMM state
and the audio feature vector, respectively, while bt corresponds to the discrete frame-
level prediction of the BLSTM network (shaded nodes). Squares denote observed
nodes and white circles represent hidden nodes. In every time frame t the HMM
uses two (not statistically) ‘independent’ observations: The audio features xt and the
BLSTM prediction feature bt . The vector xt also serves as input for the BLSTM,
whereas the size of the BLSTM input layer it corresponds to the dimensionality of
the audio feature vector. The vector ot contains one probability score for each of the
P different audio target classes at each time step. bt is the index of the most likely
class:

Fig. 7.14 Architecture of the
multi-stream BLSTM-HMM
decoder: st : HMM state,
xt : acoustic feature vector,
bt : BLSTM class prediction
feature, it , ot , h f,t /hb,t : input,
output, and hidden nodes of
the BLSTM network; squares
correspond to observed nodes,
white circles correspond to
hidden nodes, shaded circles
represent the BLSTM network
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HMM stream 1
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bt = arg max j (ot,1, . . . , ot, j , . . . , ot,P ) (7.83)

In every time step the BLSTM generates a class prediction according to Eq. (7.83)
and the HMM models x1:T and b1:T as two independent data streams. With y

t
=

[xt ; bt ] being the joint feature vector consisting of continuous audio features and
discrete BLSTM observations and the variable a denoting the stream weight of
the first stream (i.e., the audio feature stream), the multi-stream HMM emission
probability while being in a certain state st can be written as

p(y
t
|st ) =

[ M∑

m=1

cst mN (xt ;μ
st m

, st m)

]a

× p(bt |st )
2−a . (7.84)

Thus, the continuous audio feature observations are modelled via a mixture of
M Gaussians per state while the BLSTM prediction is modelled using a discrete
probability distribution p(bt |st ). The index m denotes the mixture component, cst m

is the weight of the m’th Gaussian associated with state st , and N (·;μ,) represents
a multivariate Gaussian distribution with mean vector μ and covariance matrix .
The distribution p(bt |st ) is trained to model typical class confusions that occur in
the BLSTM network.

7.5 Evaluation

7.5.1 Partitioning and Balancing

We now deal with typical ways of evaluating audio recognition systems’ performance.
We thereby focus on measurements that judge the reliability of the recognition result
as these are of major interest in the extensive body of literature on intelligent speech,
music, and sound analysis. However, as shown in the requirements section, a number
of further aspects could be considered, such as real-time ability.

Evaluation should ideally be based on test partition(s) of suited audio databases
that have not been ‘seen’ during system optimisation. Such optimisation includes
data-based tuning of any steps in the chain of audio analysis including enhancement,
feature extraction and normalisation, feature selection, parameter selection for the
learning algorithm, etc. Thus, besides a training partition, a ‘development’ partition
is needed for the above named optimisation steps. During the final system training,
however, training and development partitions may be united in order to provide
more learning material to the system. In general, one wishes all partitions to be
somewhat large. For test, this is needed in order to provide significant results. Popular
‘percentage splits’ are thus 40 %:30 %:30 % for training, development, and test. In
case of very large databases, as often given in ASR, the test partition is often chosen
smaller, as around 10 %.
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A solution to use as much data as possible for all partitions is the cross-validation.
The overall corpus is thereby partitioned into J sets of equal size. These should be
stratified, i.e., each set should show the same distribution of instances among classes
or the continuum in case of numeric labels. If this is given, one speaks of J -fold
stratified cross-validation (SCV). The evaluation is repeated J times with changing
‘role’ of the partitions. In each cycle i = 1, . . . , J partition i can for example be
used as test set and the remaining ones are united for training. After J cycles, each
partition has then been used for testing once, and at the same time the maximum
amount of training data was provided in each cycle. The final result is then usually
provided as mean of the cycles. In addition, one can provide the standard deviation
or similar measures to provide an impression on the ‘stability’ of the alteration of the
learning material and the dependence on the test partition. If one needs an additional
development partition, this could, e.g., be partition (i + 1) mod J . Popular values
for J are three—this allows for transparent swapping of train, develop, and test sets
without too high computational effort—or ten, which is reasonable if the database
is very small, and too little training data would be provided by a third of the data. In
general, one usually obtains better results with increasing J , as increasingly more
training material is provided. This is, however, non-linear. In the extreme case, a
single instance is left out at each cycle. This is known as leave-one-out (LOO).

A number of further criteria need to be respected for partitioning of a database:
For example, independence of speakers, interprets, or sound sources, i.e., in the test
partition the audio should be as independent as possible depending on the task of
interest. In the case of cyclic iteration, this leads to a variant of LOO, where all
instances of one aspect are clustered and left out at a time. An example is Leave
One Speaker Out (LOSO) in intelligent speech analysis. Next, one wishes to keep
good balance of all factors throughout the partitions. In particular the development
partition should be similar in its characteristics to the test one in order to optimise
the system in the right way. Next, partitioning should ideally be transparent and easy
to reproduce. Thus, random partitioning can be a sub-optimal choice, as one has
to provide the instance list or random seed and random function in order to allow
for others to reproduce the partitions. As evaluation results depend on the (optimal)
partitioning, one should make the choice also straight forward, such as by partitioning
by sub-sequent speaker or song ID or similar.

In many cases, instances will be highly imbalanced across classes or the number
scale. This can lead to preference of the ‘majority class’ which is reasonable if one
wants to recognise as many instances correctly as possible. However, this comes
at the cost of the under-represented class, and in extreme cases, such classes are
completely ignored. If it is thus of higher importance to have a good balance in the
recognition, balancing of the training set instances is advisable. Note that this is not
required for all learning algorithms, as many can explicitly or implicitly model the
class priors in the decision process. An example is the maximum a-posteriori (MAP)
strategy for statistic learners such as HMMs, where the class priors are by intention
multiplied with the model’s generation probability to favour the majority class. As
opposed to this, the maximum likelihood estimation (MLE) principle does not use
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priors. For other learning algorithms shown so far, such as SVMs or DTs, this is not
directly possible and balancing of instances can be the preferred option.

Three different strategies are usually employed to balance the instances in the
training set [47–49]: The first is down-sampling, in which instances from the over-
represented classes are randomly removed until each class contains the same number
of instances. This procedure usually withdraws a lot of instances and with them
valuable information, especially in highly unbalanced situations: It always outputs
a training dataset size equal to the number of classes multiplied with number of
instances in the class with least instances. In highly unbalanced experiments this
procedure thus leads to a pathologically small training set. The second method used
is up-sampling, in which instances from the classes with proportionally low numbers
of instances are duplicated to reach a more balanced class distribution. This way no
instance is removed from the training set and all information can contribute to the
trained classifier. To not falsify the classification results, it is important that only the
training instances are upsampled. Naturally, one never balances test set instances.
Likewise, replacement of instances is allowed so that equal class distribution is also
achievable in highly unbalanced experiments. At the same time, it is ensured that
each original instance is preserved in the training material. A mixed up-, and down-
sampling strategy can be also be followed where instances from the majority class
are deleted and from the minority class(es) are multiplied. This compromise keeps
the overall number of instances at reasonable size, as with sheer up-sampling the
problem of learning may become computationally too expensive. A third variant is
assignment of different weighting of instances for the computation of the classifier
objective function. In practice, this is often actually often solved by classifier internal
up-sampling, and may lead to less stable results, while not providing any advantage
in our respect, as obtainable performances are not higher, which is why this variant is
not further pursued in this book. However, this may be well of interest in an on-line
system which needs to be adapted, e.g., when a user labels a new song to adapt his
audio-playing device. The latter are known as ‘cost-sensitive’ approaches where one
‘punishes’ confusions that should not occur in the case of discrete classes.

The question remains, how to pick the instances that are multiplied in the training
set or deleted from it. While one can inject random into the selection process, this
contradicts the above requested transparency and reproducibility of experiments by
others. An easy strategy that does, however, not provide perfect balance, is thus the
use of integer up-sampling factors for the minority classes. In addition, there are
specialised algorithms that attempt to balance instances in an intelligent way. The
idea is to up- or downsample those instances which are of particular relevance, as
they are the ‘hard’ and ‘interesting’ cases and should not be emphasised on or at least
not lost. An example of such an approach is the Synthetic Minority Over-sampling
Technique [50].
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7.5.2 Evaluation Measures

In the following, evaluation criteria for classifiers are considered at first. These will be
followed by such for regressors where a continuous relation between the output of the
learning algorithm and the target needs to be evaluated. In the case of classification,
however, we need to compare discrete predicted class labels and compare these with
the ground truth target. For simplification— without limitation of the general case—
let the rejection class be assumed to be inherently modelled, i.e., rejection is one
of the target classes. By that, we can consider the classification task as a mapping
X → {1, . . . , C}, x 
→ ŷ.

Evaluation criteria are defined as related to the test set’s T instances, and the
individual instances are each assigned to exactly one target class i ∈ {1, . . . , C}:

T =
C⋃

i=1

Ti =
C⋃

i=1

{xi,n | n = 1, . . . , Ti }, (7.85)

where Ti is the number of instances in the test set that belong to class i . By that, the test
set has the size |T | = ∑C

i=1 Ti . Note, however, that attempts exist to find evaluation
criteria where several classes may be assigned to one instance. This requirement is
for example given in the case of the classification of a speaker’s emotion, where one
is not only ‘surprised’, but e.g., ‘happily surprised’ or ‘angrily surprised’ which led
to the introduction of soft emotion profiles [51]. Similarly, music genre or ballroom
dance style are often ambiguous in music analysis, cf. musical pieces that allow for
either Rhumba or Foxtrott as choice of dance.

We will first consider evaluation measures for classification in the general case of
two or more classes (i.e., M ≥ 2) [1]. The most common measure is the probability
that an instance of the test set is classified correctly. This is usually referred to as
(weighted) accuracy WA, or weighted average recall or recognition rate.

WA = # correctly classified test instances

# test instances

=
∑M

i=1

∣
∣
{

x ∈ Ti | ŷ = i
}∣
∣

|T | . (7.86)

If this rate is given per class i , one speaks of the class-specific recall REi :

REi =
∣
∣
{

x ∈ Ti | ŷ = i
}∣
∣

Ti
. (7.87)

With pi = Ti/|T | as the prior probability of class i in the test set further holds:

WA =
M∑

i=1

pi REi . (7.88)
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The weighting by pi in Eq. (7.88) leads to the name weighted accuracy. A spe-
cial case of the calculation of accuracy is the word accuracy as encountered in the
recognition of continuous speech. This accuracy is calculated by consideration of
three types of errors: deletion, insertion, and substitution of words. With D, I , and
S being the numbers for each type of these errors and N being the number of words
in the test set, the word accuracy WAwords is obtained by:

WAwords = N − D − I − S

N
. (7.89)

Note that, N − (S + D) would be the number of correctly recognised words.
Further, dynamic alignment of the recogniser output string and the reference tran-
scription is needed to decide on the minimal number of errors, as a substitution could
be counted as a deletion plus an insertion. This is also known as shortest Levenshtein
distance. As word accuracy is also a type of WA—the accuracy depends on the fre-
quency of occurrence of a specific word in the test set—it is also referred to as WA
in the ongoing. However, from the context it will be clear that it is computed as word
accuracy.

If balance of instances among classes is (highly) unbalanced, one can prefer to
exchange the priors pi for all classes by the constant weight 1

M . This is known as
unweighted accuracy UA or unweighted average recall:

UA =
∑M

i=1 REi

M
. (7.90)

The numerator in Eq. (7.87) equals the number of instances in T , for which the
decision was correctly made for class i . This is the number of ‘true positives’ TPi as
opposed to the false positives FP for class i :

FPi = ∣
∣
{

x ∈ T − Ti | ŷ = i
}∣
∣ . (7.91)

With TP and FP we can define the precision PR:

PRi = TPi

TPi + FPi
. (7.92)

As increasing REi may come at the cost of decreasing PRi , as many instances are
assigned by mistake to class i , the wish for a measure that unites these two arises.
This is given by their harmonic mean, known as F1-measure (the subscript ‘1’ is used
for equal weighting of recall and precision—other common weights are doubling one
up, i.e., F2- or F1

2
-measure:

F1,i = 2
REi PRi

REi + PRi
. (7.93)
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Considering decisions against class i , one can further introduce ‘true negatives’
TNi and ‘false negatives’ FNi :

TNi = ∣
∣
{

x ∈ T − Ti | ŷ �= i
}∣
∣ , (7.94)

FNi = ∣
∣
{

x ∈ Ti | ŷ �= i
}∣
∣ . (7.95)

It is further of interest to investigate which classes are ‘confused’ with which. The
according ‘confusion matrix’ C = (ci, j ) thus has the entries:

ci, j = ∣
∣
{

x ∈ Ti | ŷ = j
}∣
∣ . (7.96)

This matrix C contains all named measures as follows:

WA = tr(C)

|T | , (7.97)

REi = ci,i

Ti
= ci,i

∑M
j=1 ci, j

, (7.98)

PRi = ci,i
∑M

j=1 c j,i
, (7.99)

TPi = ci,i , (7.100)

FPi =
∑

i �= j

c j,i . (7.101)

In the case of binary decisions, the term TP1/T1 corresponds to the detection
probability or ‘true positive rate’ (TPR), and FP1/T2 to false alarm probability or
‘false positive rate’ (FPR). Graphical evaluation often makes use of the Receiver
Operating Characteristic (ROC, TPR vs. FPR) or its alternative, the Detection Error
Trade-off (DET, false negative rate vs. FPR) curve. Such a plot demands for multi-
ple evaluations of the learning algorithm’s model or knowledge of confidences per
instance in order to adjust a threshold for curve plotting. Popular measures to repre-
sent the plots in a single number are the ‘area under the curve’ (AUC) or the ‘equal
error rate’ (EER). In case of more than two classes, i.e., M > 2, these measures are
usually given as per one-versus-all.

We now shift to evaluation criteria for continuous value estimation, i.e., regression.
Again, these are defined as related to the test set’s T instances, and the individual
instances are now each assigned to a continuous value ŷ ∈ R. The test set has the
size |T |. In the case of regression, the common evaluation measure is the Pearson’s
correlation coefficient CC :

CC =
∑|T |

n=1

(
ŷn − ŷ

)
(yn − y)

√
∑|T |

n=1

(
ŷn − ŷ

)2 · ∑|T |
n=1 (yn − y)2

, (7.102)
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with the averages

ŷ = 1

|T |
|T |∑

n=1

ŷn, (7.103)

and

y = 1

|T |
|T |∑

n=1

yn . (7.104)

In addition, the the Mean Linear Error (MLE)—often referred to as Mean Absolute
Error MAE—can be given:

MAE = 1

|T |
|T |∑

n=1

|ŷn − yn|, (7.105)

MAE can be very intuitive, such as in the case of age determination in years of a
speaker. Then, the MAE would be the absolute error in years, by which the regressor
is mistaken ‘on average’. However, in case of tasks where relative difference is more
important than absolute numbers and the gold standard is less certain, such as for
likability of a speaker or interest of a speaker on a continuous scale, CC is usually
more representative and has a minimum and maximum independent of the task. CC is
thus written without a leading zero in this book for better readability. This is different
for MLE and MAE, as the number range varies.

As a general remark, it is important to note that all these evaluation measures
naturally depend on the choice of the test instances. Apart from that, meaningful
significance analyses should be considered as the difference between two results
also depends on the quantity of test instances [52, 53]. Frequently employed tests
contain, e.g., the one-sided z-test [54], which is the preferred choice in this book, and
the common level of 0.05 is the minimum requirement for the claim of significance.
Note that usually significance tests base on the independence assumption of tests
[55]. As a consequence, this would require different data-sets for testing. However,
as the test set is typically kept fixed in this field of research, the premise to reject the
null hypothesis is comparably strict [55].
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Chapter 8
Audio Source Separation

I just wondered how things were put together.
—Claude Elwood Shannon

In order to enhance the (audio) signal of interest in the case of added audio sources,
one can aim at their separation. Albeit being very demanding, Audio Source Sep-
aration of audio signals has many interesting applications: In Music Information
Retrieval (MIR), it allows for polyphonic transcription or recognition of lyrics in
singing after decomposing the original recording into voices and/or instruments such
as drums or guitars, or vocals, e.g., for ‘query by humming’ [1]. In ASR, the sepa-
ration of the target speaker from others, background noises or music [2] may help to
improve the accuracy. Given multiple microphone tracks, ICA [3] is usually among
the first choices. Traditional ICA, however, limits the number of sources that can
be separated to the number of available input channels, which makes basic ICA
unsuitable for many audio recognition and retrieval applications where only mono-
or stereophonic audio is available. To improve performance of ICA in challenging
scenarios, source localisation information can be integrated as a constraint, which is
promising for ASR in hands-free human-machine interaction [4]. However, this also
requires knowledge about the localisation of the microphones used for recording,
which is again not given in typical audio mining and retrieval tasks.

On the other hand, fully blind separation of multiple sources from mono- or
stereophonic signals is considered infeasible as of today. To summarise, in most
Intelligent Audio Analysis applications, prior knowledge has to be exploited in audio
source separation, as will be detailed in the following section. A general framework
for such ‘informed’ source separation has recently been presented in [5]. In the
light of Intelligent Audio Analysis, such informed methods are particularly inter-
esting, as they leverage machine intelligence for the highly challenging problem of
underdetermined source separation. Among the most promising approaches towards
separation of monophonic sources are those centred around NMF [6–11], which will
be the focus of this chapter. NMF can also be applied in different places along the
Intelligent Audio Analysis processing chain, e.g., for audio feature extraction and
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classification such as in noisy conditions [13–15]. This will be introduced towards
the end of this section.

Let us now introduce the theoretical foundations of NMF. For clarity, the following
notation will be used: For a matrix A, the notation Ai,: denotes the i-th row of A
(as a row vector), and let us analogously define A:, j for the j-th column of A (as a
column vector). Further, let A ⊗ B denote the elementwise product of matrices A
and B. The division of matrices is always to be understood as elementwise.

8.1 Methodology

Let us now discuss in detail how NMF can be used for source separation and NMF-
based feature provision. The basic procedure is the extraction of an arbitrary number
of sources—the ‘components’— from audio by non-negative factorisation of a spec-
trogram in matrix representation V ∈ R

M×N+ into a spectral basis W ∈ R
M×R+ and

activation matrix H ∈ R
R×N+ :

V = W H . (8.1)

This yields R component spectrograms V ( j), j = 1, . . . , R either by multiplication
of each basis vector w( j) := W :, j with its activations h( j) := H j,:, as in [7], or by a
more advanced ‘Wiener filter’ approach, as described in [6, 10]:

V ( j) = V ⊗ w( j)h( j)

W H
. (8.2)

The spectrograms can be obtained from short-time Fourier transformation (STFT)
and subsequent transformation to magnitude, power or Mel-scale spectrograms. Each
V ( j) is then transformed back to the time domain by inverse STFT, using the original
phase.

Several NMF algorithms can be used for the factorisation according to (8.1). These
minimise a distance function d(V |W H) by multiplicative updates of the matrices.
The starting point can be a random initialisation. d(V |W H) can be chosen as the
β-divergence or one of its special instances, the Itakura-Saito (IS) [10] divergence,
Kullback-Leibler (KL) divergence, or squared Euclidean distance (ED) [16]. Further,
to support overcomplete decomposition, i.e., choosing R such that R(M + N ) >

MN , sparse NMF variants [7] exist for either of the named distance functions, as
well as the sparse Euclidean NMF variant used in [17]. In addition, non-negative
matrix deconvolution (NMD) [6, 8] has been proposed as a context-sensitive NMF
extension. In NMD, each component is characterised by a sequence of spectra, rather
than by an instantaneous observation. Alternatively, sequences of spectral feature
vectors can be modelled as ‘supervectors’ in a sliding window approach to use
standard NMF for context-sensitive factorisation [13]. More precisely, the original
spectrogram V is transformed to a matrix V ′ such that every column of V ′ is the
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row-wise concatenation of a sequence of short-time spectra (in the form of row
vectors):

V ′ :=
⎡

⎢
⎣

V :,1 V :,2 · · · V :,N−T +1
...

... · · · ...

V :,T V :,T +1 · · · V :,N

⎤

⎥
⎦ , (8.3)

where T is the desired context length. That is, the columns of V ′ correspond to
overlapping sequences of spectra in V . If signal reconstruction in the time domain is
desired, the above named spectrogram transformations, including Mel filtering and
transformation according to (8.3), can be reversed.

The basic NMF method as explained above is entirely unsupervised. In many
practical applications, such as speech or music separation, prior knowledge about
the problem structure can be exploited. A simple yet very effective method to integrate
a-priori knowledge into NMF-based source separation is to perform supervised or
semi-supervised NMF. This means that parts of the first NMF factor are predefined
as a set of spectra characteristic for the sources to be separated rather than choosing
random initialisations of both factors. This can be useful in audio enhancement, e.g.,
in a ‘cocktail party’ situation with several simultaneous speakers [6, 17], or noise
versus a speaker of interest [18]. The initialisation spectra may themselves stem
from NMF decomposition of training material or can be based on simpler methods
such as median filtering or simply random sampling of training spectrograms. This
procedure is outlined in Fig. 8.1 as a flowchart. An alternative supervised NMF
method, depicted in Fig. 8.2, is to assign components computed by unsupervised
NMF to classes such as ‘drums’ and ‘non-drums’ by means of a supervisedly trained
classifier as in [19]. This allows dealing with observations that cannot be described as
a linear combination of pre-defined spectra, but assumes that unsupervised NMF by
itself can extract meaningful units, such as notes of different instruments. Given an
assignment of NMF components to sources as described above, it is straightforward
to synthesise the audio signals of interest by overlaying component spectrograms.

Fig. 8.1 Supervised NMF: A set of spectral components (which can themselves be computed by
NMF from training audio) serve as constant basis for NMF; the activations can be exported as
features or be used to synthesise audio signals for the sources [12]
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Fig. 8.2 Unsupervised NMF followed by supervised component classification, as in musical instru-
ment separation: A classifier is built from labelled separated components. Steps required to train
the classifier are gray shaded [12]

Besides using source separation as pre-processing for Intelligent Audio Analysis, the
activations computed by NMF can be used directly for classification, as indicated by
the flowchart in Fig. 8.1. This approach will be presented in more detail in Sect. 8.3.

8.2 Performance

To get an idea of the separation performance by basic NMF in a challenging task, let
us consider the separation of two simultaneously speaking speakers from a monaural
signal in the ongoing. Fig. 8.3 visualises the separation quality in terms of source-
distortion ratio (SDR) depending on the targeted RTF. SDR, as introduced by [20], can
be considered as the most popular objective metric for the evaluation of audio source
separation as of today. In the considered scenario of speaker separation, it takes into
account the suppression of the interfering speaker but also penalizes the introduction
of artifacts due to signal separation, i.e., information loss in the target speech—note
that perfect interference reduction can be trivially achieved by outputting a zero
signal. These experiments are based on the procedure proposed in [6] and the results
correspond to those reported in [12]. NMF is used over NMD based on the finding
in [6] of no significant difference in separation quality by either of these two bases.
The effect of using different numbers of iterations, DFT window sizes and the NMF
cost function is assessed; the importance of these parameters on separation quality
and computational complexity has been pointed out in [6, 12]. 12 pairs of male
and female speakers—ensuring that the speech spectra do not fully overlap—were
selected randomly from the TIMIT database (cf. also Sect. 10.4.3). Per pair, two

http://dx.doi.org/10.1007/978-3-642-36806-6_10


8.2 Performance 143

(a) (b) (c)

Fig. 8.3 Benchmark results for monaural speaker separation by supervised NMF, in terms of RTF
and signal-to-distortion ratio (SDR) [20]. Mixed signals from pairs of male/female speakers (24
speakers total) from the TIMIT database. The open-source openBliSSART toolkit is used, and
computation is performed on a consumer grade GPU (NVIDIA GeForce GTX 560). The number
of NMF iterations (20–320), the DFT window size (16, 64, 256 ms) and the NMF cost function are
adjusted. a Euclidean distance. b KL divergence. c Itakura-saito divergence

randomly selected sentences of roughly equal length were mixed, and a NMF basis
W was computed from the other sentences spoken by each speaker. To this end,
unsupervised NMF (250 iterations) was applied to the concatenated spectrograms
of these sentences and only the first factor was kept. Separated signals for both
speakers were obtained by supervised NMF with W , by summing up component
spectra corresponding to either speaker, and applying inverse STFT as discussed
above. Computations base on a 2.4 GHz desktop PC with 4 GB of RAM, using a
consumer grade GPU (NVIDIA GeForce GTX 560) with 336 CUDA cores. The
NMF implementation from the open-source toolkit openBliSSART [12] is used.
RTFs are computed by the elapsed GPU time over the length of the mixed signals.
The number of separation iterations was chosen from {20, 40, 80, 160, 320} due to
the quick saturation of the convergence of multiplicative update NMF algorithms in
audio source separation [9]. The different DFT window sizes considered are powers
of two, ranging from 26 to 212, or 8–256 ms assuming 16 kHz sample rate. From
Fig. 8.3, it can be seen that the best average results are obtained by using the KL
divergence as cost function. The Euclidean distance allows faster separation at the
expense of quality, but here, reasonable results are only achieved for long window
sizes (256 ms), which limits the practical applicability in contexts where real-time
operation is required. Finally, the IS divergence enables robust separation, but is
inferior to KL divergence both in terms of separation quality and RTF. Generally,
it can be observed that in case of inadequate modeling of the sources (indicated by
overall low SDR), more iterations do not necessarily improve separation quality,
despite the fact that they linearly increase computational complexity; in fact, more
iterations sometimes degrade quality, e.g., for the Euclidean cost function and 16 or
64 ms window size.
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8.3 NMF Activation Features

Let us now move on to describe how NMF can be used directly for audio recognition,
instead of performing signal pre-processing by audio source separation. The core idea
is to use supervised or semi-supervised NMF (cf. above), and then directly exploit the
matrix H for classification. In this case, NMF seeks a minimal-error representation of
the signal (in terms of the cost-function) with only a set of given spectra. As outlined
in Sect. 8.1, the H matrix measures the contribution of spectra to the original signal.
Thus, by using a matrix W that contains spectra of different target classes, the rows
of H provide information whether the original signal consists of components of these
target classes. Furthermore, in this framework, additive noise can be modelled by
simply introducing additional NMF components corresponding to noise.

For discrimination of C different audio signal classes c ∈ {1, . . . , C}, the matrix
W is built by column-wise concatenation:

W := W 1|W 2| · · · |W C |W N .

where each W c contains ‘characteristic’ spectra of class c and the optional matrix
W N contains noise spectra. Similarly to the source separation application, there are
a variety of methods for computing W c and W N , such as base learning by NMF as in
the supervised speaker separation example above, or simply by randomly sampling
training spectrograms.

Based on this, NMF activation features can be derived from H . In the example
shown in Fig. 8.4, an exemplary scheme for static audio classification based on NMF
activations is shown that delivered remarkable performance in discrimination of
linguistic and non-linguistic vocalisations [15]. In this scheme, it is supposed that
base learning by NMF is used. An activation feature vector a ∈ R

R is calculated such
that ai is the Euclidean length of the i-th row of H . For independence of the length
and power of the signal, ai is normalised such that |a|1 = 1. The ‘NMF activation
features’ then are the components of the vector a. This vector can be passed on
to a suited classifier, or the activations per class can be summed up to derive class
posteriors. In dynamic classification, e.g., the index of the most likely class per frame
can be used as in [14, 21].

Let us now conclude the discussion of audio source separation and feature extrac-
tion by NMF by showing an exemplary application to keyword recognition in highly
non-stationary noise [21]. This example is based on the CHiME (Computational
Hearing in Multisource Environments) challenge task of recognising command
words in a reverberated indoor domestic environment with multiple noise sources
and interfering speakers [22].

NMD bases are learnt for each of the 51 words in the vocabulary, and an additional
NMD noise base is computed from a set of noise samples in the training data. Speech
separation is performed in a procedure similar to the speaker separation example
above. Additionally, NMF activation features are computed using a base matrix W
assembled from spectrogram ‘patches’ in the training data, in a ‘sliding window
NMF’ framework (cf. above) with T = 20. As each speech spectrogram patch is
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   1 1 1

Fig. 8.4 Exemplary block diagram for extraction of NMF activation features for discrimination of
C classes in N input signals [15]. Matrices denoted by V are spectrograms. The matrix W consists
of spectra computed from training data for supervised NMF. Activation features are the resulting
H (activation) matrices. || · ||2 indicates that the Euclidean norm of each matrix row is computed,
and

∑ = 1 is a normalisation for the components of each vector ai sum up to 1

associated with word likelihoods, the index of the most likely word per frame can be
computed from the frame-wise activations of each spectrogram patch and used as a
discrete feature. In this calculation of NMF activation features, W N is pre-defined by
training noise samples. Table 8.1 shows the WAs on the 35 keywords by SNR and on
average, obtained by a baseline HMM recogniser adapted to noisy speech features,
the results achieved by considering NMD speech separation as pre-processing, the
results by usage of NMF activation features in HMM decoding, and combination
of both. From the results, it is evident that both methods are complementary—the
interested reader is referred to [21] for a more in-depth discussion.

Table 8.1 Effect of NMD speech separation and NMF activation features on speech recognition
results (WA) reported in [21] on the Computational Hearing in Multisource Environments (CHiME)
task [22]

WA [%] SNR [dB] Average
−6 −3 0 3 6 9

Baseline 54.5 61.1 72.8 81.7 86.8 91.3 74.7
NMD speech separation 75.6 79.2 84.1 87.7 88.3 90.6 84.2
NMF activation features 67.2 75.1 85.0 89.8 92.0 93.4 83.7
Combination 79.1 82.8 88.7 91.2 92.7 93.5 88.0
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Chapter 9
Audio Enhancement and Robustness

Our view (. . . ) is that it is an essential characteristic of
experimentation that it is carried out with limited resources, and
an essential part of the subject of experimental design to
ascertain how these should be best applied; or, in particular, to
which causes of disturbance care should be given, and which
ought to be deliberately ignored.

—Sir Ronald A. Fisher

Once an audio recognition system that functions under idealistic conditions is
established, the primary concern shifts towards making it robust in a real-world.
The previous chapter touched this issue by illustrating how audio source separation
can be exploited to recover a clean speech signal from a mixture. Extraction of the
desired signal, however, is not a necessary pre-condition for robust audio recognition.
Rather, several options exist for system improvement along the chain of processing,
and have proved to be promising especially in the monaural case. Thus, we will next
have a look at this issue following the overview given in [1].

First, filtering or spectral subtraction of the signal before can be applied directly
after the audio capture. This is realised, for example, in the advanced front-end
feature extraction (AFE) or Unsupervised Spectral Subtraction (USS). Then, auditory
modelling can be introduced in the feature extraction process. The main influence
of noise on audio is irreversible loss of information caused by its random behaviour
and a distortion in the feature space that can be compensated by a suited audio
representation in the noise condition [2, 3]. Examples of features in this direction
include the MFCCs, PLP coefficients [4, 5] or RASTA-PLP features [6, 7] (cf.
Sect. 6.2.1). Next along the chain of processing is the option to enhance the extracted
features aiming at removal of effects as introduced by noise [8–10]. Exemplary
techniques are normalisation methods such as (Cepstral) Mean Subtraction (CMS)
[11], MVN [12], or HEQ [9]. Such feature enhancement can also be realised in
a model based way, such as by jointly using a Switching Linear Dynamic Model
(SLDM) for the dynamic behaviour of audio plus a Linear Dynamic Model (LDM)
for additive noise [13]. Later in the chain, one could tailor the learning algorithm to
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be able to cope with noisy signal input. Alternatives besides HMMs [14], such as
Hidden Conditional Random Fields (HCRF) [15], Switching Autoregressive Hidden
Markov Models (SAR-HMMs) [16], or other more general DBN structures provide
higher flexibility in modelling. For example, the extension of an SAR-HMM to an
Autoregressive Switching Linear Dynamical System (AR-SLDS) [17] allows for
an explicit noise model leading to higher noise robustness. Another solution is to
match the AM (or even LM) or feature space to noisy conditions. This requires a
recogniser trained on noisy audio [18]. However, the performance highly dependends
on how similar the noise conditions for training and testing are [19]. One can thus
distinguish between low to highly matched conditions training. Further, it can be
difficult to provide knowledge on the type of noisy condition. This can be eased
by so-called multi-condition training, where clean and noisy material with different
types of noise is mixed. This is usually not as good as perfectly matched condition
between the current test setting and the one learnt previously. However, it provides a
good compromise by improving on average over different noise conditions. Besides
using noisy material for training, model adaptation can be used to quickly adapt
the recogniser to a specific noise condition encountered in the test scenario. This
covers widely used techniques such as maximum a posteriori (MAP) estimation [20],
maximum likelihood linear regression (MLLR) [21], and minimum classification
error linear regression (MCELR) [22].

Given the multiplicity of developed techniques for noise robustness in Intelli-
gent Audio Analysis, a selection of relevant techniques and a good coverage of the
different stages along the chain of processing is aimed at in this section. As these
techniques are often also tailored to the specific type of noise at hand, relevant special
cases such as white noise or babble noise are covered, which are very challenging
for speech processing. In the ongoing, let us take a detailed look at the above men-
tioned options in particular for audio signal preprocessing, feature enhancement, and
audio modelling. For the sake of better readability, ‘audio of interest’ such as speech,
music, or specific sounds of interest as opposed to noise will partly simply be written
as ‘audio’ in this chapter.

9.1 Audio Signal Preprocessing

The preprocessing of the audio signal for its enhancement shall compensate noise
influence prior to the feature extraction [23–25]. Apart from explicit BASS as was
shown in the last chapter, one of the frequently used audio and particular speech signal
preprocessing [26] standards is the advanced front-end feature extraction introduced
in [27] based on two-step Wiener filtering in the time domain. Spectral subtraction
such as USS [10] can lead to similar effects at lower computational requirements
in comparison to Wiener filtering [28, 29]. These techniques can also be subsumed
under broader audio signal preprocessing despite being carried out in the (magnitude)
spectogram domain. These two techniques will now be introduced in more detail.
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9.1.1 Advanced Front-End Feature Extraction

The processing in the AFE [27] is shown in Fig. 9.1: Subsequent to noise reduction
the denoised waveforms are processed and cepstral features are computed and blindly
equalised.

Preprocessing in the AFE is based on two-stage Wiener filtering. After denoising
in the first stage, a second one carries out additional dynamic noise reduction. In this
second stage a gain factorisation unit controls the intensity of filtering dependent on
the SNR. Figure 9.2 depicts the components of the two noise reduction cycles: First, a
framing takes place. Then, the linear spectrum is estimated per frame, and the power
spectral density (PSD) is smoothed along the time axis in the PSD Mean block. An
audio activity detection (or VAD in the special case of speech) discriminates between
audio and noise, and thus the estimated spectrum of the audio frames and noise are
used in the computation of the frequency domain Wiener filter coefficients. To obtain
a Mel-warped frequency domain Wiener filter, the linear Wiener filter coefficients
are smoothed along the frequency axis using a Mel-filterbank [1]. The Mel-warped
Inverse DCT unit (Mel IDCT) determines the impulse response of the Wiener filter
prior to the input signal’s filtering. The signal then passes through a second noise
reduction cycle using this impulse response. Finally, the DC offset removal block
eliminates the constant component of the filtered signal.

The Wiener filter approach in the AFE algorithm has the advantage that noise
reduction is carried out on the frame-level. Further, the Wiener filter parameters are
adapted to the current SNR. This allows to handle non-stationary noise. Important
is, however, an exact audio activity detection (or VAD). This can be particularly
demanding in the case of negative SNR levels (cf. e.g., Sect. 10.1.2). Overall, the
AFE is a rather complex approach sensible to errors and inaccuracies within the
individual estimation and transformation steps [1].

9.1.2 Unsupervised Spectral Subtraction

USS’s [10] spectral subtraction scheme bases on a two-mixture model approach of
noisy audio. It aims to distinguish audio and background noise at the magnitude
spectogram level. A probability distribution is used to model audio and noise. For
the modelling of background noise on silent parts of the time-frequency plane, one
usually assumes white Gaussian behaviour for the real and imaginary parts [30, 31].
This corresponds to a Rayleigh probability density function fN (m) for noise in the
magnitude domain:

Noise Reduction Waveform Processing Cepstrum Calculation Blind Equalisation

s(k) s'(k) x' x

Fig. 9.1 Feature extraction in the AFE according to ETSI ES 202 050 V1.1.5
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Fig. 9.2 Two-stage Wiener filtering for noise reduction in the AFE according to ETSI ES 202 050
V1.1.5
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For the two-mixture model, only an audio ‘activity’ model modelling large mag-
nitudes is needed besides the Rayleigh silence model. For the audio PDF fS(m) a
threshold δS is defined with respect to the noise distribution fN (m) such that only
magnitudes m > δS are modelled. In [10], a threshold δS = σN is used where σN is
the mode of the Rayleigh PDF. Consequently, magnitudes below σN are assumed as
background noise. Two additional constraints are needed for fS(m):

• The derivative f ′
S(m) of the ‘activity’ PDF may not be zero if m is just above δS ;

otherwise the threshold δS is meaningless as it could be set to an arbitrarily low
value.

• With m towards infinity the decay of fS(m) should be lower than the decay of the
Rayleigh PDF to guarantee fS(m) modelling large amplitudes.

The ‘shifted Erlang’ PDF with h = 2 [32] fulfils these two criteria. It can thus be
used to model large amplitudes assumed to be audio of interest:

fS(m) = 1m>σN · λ2
S · (m − σN ) · e−λS(m−σN ) (9.2)

with 1m>σN = 1 if m > σN and 1m>σN = 0 otherwise.
The overall PDF for the spectral magnitudes of the noisy audio signal is

f (m) = PN · fN (m) + PS · fS(m), (9.3)

where PN is the prior for ‘silence’ and background noise, and PS is the prior for
‘activity’ and audio of interest. The parameters of the derived PDF f (m) summarised
in the set
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Λ = {PN , σN , PS, λS} (9.4)

are independent of time and frequency, and can be trained by the EM algorithm (cf.
Sect. 7.3.1) [33]. In the expectation step, posteriors are estimated as

p(sil|m f,t ,Λ) = PN · fN (m f,t )

PN · fN (m f,t ) + PS · fS(m f,t )
(9.5)

p(act|m f,t ,Λ) = 1 − p(sil|m f,t ,Λ). (9.6)

For the Maximisation step, the moment method is used: An update σN employing
all data takes place before all data with values above the new σN help to update λS .
Two update equations describe the method as follows:

σ̂N =
[ ∑

f,t m2
f,t · p(sil|m f,t ,Λ)

] 1
2

[
2

∑
f,t p(sil|m f,t ,Λ)

] 1
2

(9.7)

λ̂S =
∑

m f,t >σ̂N
(m f,t − σ̂N )−1 · p(act|m f,t ,Λ)

∑
m f,t >σ̂N

p(act|m f,t ,Λ)
. (9.8)

Subsequent to the training of all mixture parameters Λ = {PN , σN , PS, λS} USS
with the parameter σN as floor value is applied:

mUSS
f,t = max

(
1,

m f,t

σN

)
(9.9)

Flooring to a non-zero value is required for MFCC or similar features, as zero
magnitude values after spectral subtraction can result in unfavourable dynamics.
Overall, USS is a simple and efficient preprocessing method that allows for unsuper-
vised EM fitting on observed data. As a downside, it requires reliable estimation of
an audio magnitude PDF which is rather challenging. With the PDFs not depending
on frequency and time, USS only handles stationary noises. Further, it only mod-
els large magnitudes of the audio of interest. Low audio magnitudes thus cannot be
distinguished from background noise.

9.2 Feature Enhancement

In feature enhancement, enhancement takes place after the extraction of features to
reduce a potential mismatch between test and training conditions. Popular methods
include CMS [11], MVN [12], HEQ [9], and the Taylor Series approach [34] able
to cope with the non-linear effects of noise. There are some further methods tai-
lored to specific types of features, such as in the cepstrum-domain, where a feature

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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compensation algorithm to decompose audio of interest and noise is introduced in
[35]. To enhance noisy MFCCs, a SLDM can also be used to model the dynamics of
audio of interest and those of additive noise by a LDM [13]. An observation model
then describes how audio and noise produce the noisy observations to reconstruct
the features of clean audio. An extension [36] includes time-dependencies among
the discrete state variables of the SLDM. Further, a state model for the dynamics
of noise can help to model non-stationary noise sources [37]. Finally, incremental
on-line adaptation of the feature space is possible as by feature space maximum
likelihood linear regression (FMLLR) [38]. Again, we will now take a detailed look
at selected popular approaches.

9.2.1 Feature Normalisation

9.2.1.1 Cepstral Mean Subtraction

To ease the influence of noise and transmission channel transfer functions in cepstral
features, CMS [11, 39] provides a simple approach. Its basic principle of mean
subtraction can also be applied to practically any other audio LLD. Often, the noise
can be considered as comparably stationary when opposed to the rapidly changing
characteristics of the audio signal of interest. Thus, a subtraction is carried out of the
long-term average cepstral or other feature vector

μ = 1

T

T∑

t=1

xt (9.10)

from the observed noise corrupted feature vector sequence of length T :

X = {x1, x2, . . . , xt , . . . , xT } (9.11)

By that, a new estimate x̃t of the signal in the feature domain results:

x̃ t = xt − μ, 1 ≤ t ≤ T (9.12)

The subtraction of the long-term average is particularly interesting in the cepstral
domain. Since the audio spectrum is multiplied by the channel transfer function (cf.
Sect. 6.2.1.4), by the logarithm application in the MFCC calculation, this multipli-
cation turns into an addition, and this part can be eliminated by subtraction of the
cepstral mean from all input vectors. A disadvantage of CMS, as opposed to HEQ,
is the disability to treat non-linear noise effects.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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9.2.1.2 Mean and Variance Normalisation

The subtraction of the mean per feature vector component corresponds to an equali-
sation of the first moment of the vector sequence probability distribution. If noise has
also an influence on the variance of the features, according variance normalisation
of the vector sequence can be applied and by that an equalisation of the first two
moments. This is known as MVN. The processed feature vector is obtained by

x̃ t = xt − μ

σ
. (9.13)

The division by the vector σ of the standard deviations per feature vector com-
ponents is computed out element-by-element. The new feature vector’s components
have zero mean and unity variance.

9.2.1.3 Histogram Equalisation

HEQ is a popular technique in digital image processing [40] where it helps raise
the contrast of images and alleviates the influence of the lighting conditions. In
audio processing, HEQ can improve the temporal dynamics of noise-affected feature
vector components. HEQ extends the principle of CMS and MVN to all moments
of the probability distribution of the feature vector components [9, 41], and by that
compensates non-linear distortions caused by noise.

In HEQ, the histogram of each feature vector component is mapped onto a refer-
ence histogram. The underlying assumption is that noise influence can be described
as a monotonic partly reversible feature transformation. With success depending
on meaningful histograms, HEQ requires several frames for their reliable estima-
tion. A key advantage lending to HEQ’s independence of the noise characteristics
is that no assumptions are made on the statistical properties (e.g., normality) of the
noise process.

For HEQ, a transformation
x̃ = F(x) (9.14)

needs to be found for the conversion of the PDF p(x) of an audio feature into a
reference PDF p̃(x̃) = pref (x̃). If x is a unidimensional variable with PDF p(x),
a transformation x̃ = F(x) modifies the probability distribution, such that the new
distribution of the obtained variable x̃ can be expressed as

p̃(x̃) = p(G(x̃))
∂G(x̃)

∂ x̃
(9.15)

with G(x̃) as the inverse transformation corresponding to F(x). For the cumulative
probabilities based on the PDFs, let us consider:
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C(x) =
∫ x

−∞
p(x ′)dx ′

=
∫ F(x)

−∞
p(G(x̃ ′))∂G(x̃)

∂ x̃ ′ dx̃ ′ (9.16)

=
∫ F(x)

−∞
p̃(x̃ ′)dx̃ ′

= C̃(F(x))

By that, the transformation converting the distribution p(x) into the ‘target’ dis-
tribution p̃(x̃) = pref (x̃) can be expressed as

x̃ = F(x) = C̃−1[C(x)] = C−1
ref [C(x)], (9.17)

where C−1
ref (. . . ) is the inverse cumulative probability function of the reference distri-

bution [1]. Further, C(. . . ) is the feature’s cumulative probability function. To obtain
the transformation per feature vector component, a ‘rule of thumb’ is to use 500 uni-
form intervals between μi − 4σi and μi + 4σi for the derivation of the histograms.
μi and σi are the mean and standard deviation of the i th feature vector element.
A Gaussian probability distribution with zero mean and unity variance can be used
per element as a reference probability distribution, then, however, ignoring higher
moments.

From the feature normalisation strategies discussed above, CMS is the simplest.
Together with MVN, it is used most frequently. MVN usually leads to better results at
slightly increased computational effort. However, these two techniques both provide
a linear transformation. This is different for HEQ, which is able to compensate non-
linear effects, but requires sufficient audio frames for good results. HEQ further
corrects only monotonic transformations. This can cause an information loss, given
that random noise behaviour renders the needed transformation non-monotonic.

9.2.2 Model Based Feature Enhancement

In model based audio enhancement one usually models audio and noise individually
plus how these two produce the observation. Then, the features are enhanced to
benefit the audio of interest by use of these models. An example is a SLDM to
model the dynamics of clean audio of interest [13] that will next be introduced by
the mentioned three models for noise, audio, and the combination.
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Fig. 9.3 LDM for the mod-
elling of noise

xt-3 xt-2 xt-1 xt

9.2.2.1 Modelling of Noise

Noise is modelled by a simple LDM with the system equation

xt = A xt−1 + b + g
t ′, (9.18)

where the matrix A and the vector b simulate the noise process’s evolution over
time. Further, g

t
is a Gaussian noise source that drives the system. A graphical

model representation of this LDM is given in Fig. 9.3. In this and the following
visualisations in this section, squares again indicate observations. With LDMs being
time-invariant, they can model signals such as coloured stationary Gaussian noises.
The LDM is expressed by

p( xt |xt−1) = N ( xt ; A xt−1 + b, C ) (9.19)

p( x1:T ) = p( x1)

T∏

t=2

p( xt |xt−1), (9.20)

where N ( xt ; Axt−1 + b, C) is a multivariate Gaussian with the mean vector
Axt−1 + b and the covariance matrix C , and T is the input sequence’s length.

9.2.2.2 Modelling of Audio of Interest

The SLDM models the audio signal of interest passing through states as in a HMM.
It further enforces a continuous state transition in the feature space conditioned on
the state sequence. This more complex dynamic model has a hidden state variable st

at each time t . Like this, A and b depend on the state variable st :

xt = A(st )xt−1 + b(st ) + g
t
. (9.21)

Likewise, the possible state sequences s1:T describe a non-stationary LDM, as A
and b change with time as do the audio features. In Fig. 9.4 the SLDM is shown as
graphical model. As one sees, time dependencies are assumed between the continuous

Fig. 9.4 SLDM for the mod-
elling of audio of interest

xt-2 xt-1 xtxt-3

st-2 st-1 stst-3
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Fig. 9.5 Observation model
for noisy audio

xt ntyt

variables xt , but not between the discrete state variables st [13]. An extension in
[36] includes time dependencies between the hidden state variables, similar as in
enhancing a GMM to a HMM. A SLDM as in Fig. 9.4 is described by

p( xt , st |xt−1) = N ( xt ; A(st )xt−1 + b(st ), C(st )) · p(st ) (9.22)

p( x1:T , s1:T ) = p( x1, s1)

T∏

t=2

p( xt , st |xt−1). (9.23)

The EM algorithm can be used for the learning of the parameters of the SLDM,
namely A(s), b(s), and C(s). If one sets the number of states to one the SLDM
turns into a LDM to compute the parameters A, b, and C required for the noise
modelling LDM.

9.2.2.3 Observation Model

The observation model describes the relationship of the noisy observation y
t

and the
hidden audio and noise features. In Fig. 9.5, the graphical model representation of
such a model is given by the zero variance observation model with SNR inference as
in [42]. It is assumed that audio of interest xt and noise nt mix linearly in the time
domain. In the cepstral domain, for example, this corresponds to a non-linear mixing.

9.2.2.4 Posterior Estimation and Enhancement

To reduce the computational complexity of the posterior estimation, an approxima-
tion is given by the restriction of the search space size by the generalised pseudo-
Bayesian (GPB) algorithm [43]. It neglects distinct state histories with differences
more than r frames in the past. Thus, with T as the sequence length, the infer-
ence complexity reduces from ST to Sr where r � T . In the GPB algorithm, one
‘collapses’, ‘predicts’, and ‘observes’ for each of the audio frames. Estimates of the
moments of xt representing the de-noised audio features are computed based on
the Gaussian posterior as calculated during the ‘observation’ in the GPB algorithm.
In this process, clean features are assumed to be the Minimum Mean Square Error
(MMSE) estimate E[xt |y1:t ]. SLDM feature enhancement can lead to outstanding
results including the case of coloured Gaussian noise and negative SNR. This comes
by the effort of modelling noise. The audio model’s linear dynamics model the the
smooth time evolution of typical audio of interest such as speech, music, or cer-
tain sound types. The switching states express the piecewise stationarity typical in
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such audio. However, noise frames are assumed to be independent over time. As
a consequence, non-stationary noises are not modelled adequately. Even with the
restrictions made in the GPB algorithm, feature enhancement by SLDM is compu-
tationally more demanding than the techniques discussed above. Further, as in the
AFE (cf. Sect. 9.1), accurate audio activity detection is required to provide correct
estimation of the noise LDM.

9.3 Model Architectures

The most frequently used data-driven model representation of audio are HMMs
[14]. Beyond the so far described optimisation options along the chain of Intelligent
Audio Analysis, extending HMM topologies to more general DBN layouts can also
help to increase noise robustness [15, 17, 44]. Generative models such as HMMs
assume conditional independence of the audio feature observations, thus ignoring
long-range dependencies as given in most audio of interest [45]. To overcome this,
Conditional Random Fields (CRF) [46–48] model a sequence by an exponential
distribution given the observation sequence. The HCRF [15, 49] further includes
hidden state sequences for the estimation of the conditional probability of a class
over an entire sequence. Another interesting option is to model the raw audio signal
in the time domain [16]. For example, SAR-HMM [16] provide good results in clean
audio conditions. To cope with noise, these can be extended to a Switching Linear
Dynamical System (SLDS) [17] to model the dynamics of the raw audio signal and
the noise. These alternatives will now be shortly presented.

9.3.1 Conditional Random Fields

As mentioned above, CRF [46] use an exponential distribution to model a sequence
given its observation and by that also non-local dependencies among states and
observations. Further, unnormalised transition probabilities are possible. Owing to
the ability to enforce a Markov assumption as in HMMs, dynamic programming is
applicable for inference. CRFs were also shown beneficial as LM [50].

9.3.2 Hidden Conditional Random Fields

An extension to HCRF is needed to make the CRF paradigm suited for general audio
recognition tasks. This comes, as CRF provide a class prediction per observation
and frame of a time sequence rather than for an entire sequence. HCRF overcome
this by adding hidden state sequences [49]. Reports of superiority over HMM in
the Intelligent Audio Analysis domain include the recognition of phones [15] and
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non-linguistic vocalisations [51] or the segmentation of meeting speech [52]. A par-
ticular strength is the possibility to use arbitrary functions for the observations without
complication of the parameter learning.

The HCRF models the conditional probability of a class c, given the sequence of
observations X = x1, x2, . . . , xT :

p(c|X , λ) = 1

z( X , λ)

∑

Seq∈c

eλ f (c,Seq,X), (9.24)

where λ is the parameter vector and f the ‘vector of sufficient statistics’, and Seq =
s1, s2, . . . , sT is the hidden state sequence run through during the computation of
this conditional probability. The probability is normalised by the ‘partition function’
z( X , λ) to ensure a properly normalised probability [15]:

z( X , λ) =
∑

c

∑

Seq∈c

eλ f (c,Seq,X). (9.25)

The vector f determines the probability to model. With a suited f a left-right
HMM can be imitated [15]. Let us now now restrict the HCRF to a Markov chain,
but without the requirements of the transition probabilities to sum to one and real
probability densities for the observations. In analogy to a HMM a parametrisation
by transition scores ai, j and observation scores b j ( xt ) can then be reached with the
parameters λ, where and i and j are states of the model (cf. Sect. 7.3.2). Forward
and backward recursions (cf. Sect. 7.3.1) as for a HMM can then further be used.

9.3.3 Audio Modelling in the Time Domain

Modelling of the raw signal in the time domain is a sparsely pursued option, but can
offer easy explicit noise modelling [16]. We will look at SAR-HMMs to this end
first, and then at the extension to SLDS.

9.3.3.1 Switching Autoregressive Hidden Markov Models

The SAR-HMM models the audio signal of interest as an autoregressive (AR)
process. The non-stationarity is realised by switching between different AR parame-
ter sets [17] by a discrete switch variable st similar to the HMM states. At a time
step t—referring to the sample-level in this case—, exactly one out of S states is
occupied. The state at time step t depends exclusively on its predecessor with the
transition probability p(st |st−1). The sample vt at this time step is assumed as a
linear combination of its R preceding samples superposed by a Gaussian distributed
‘innovation’ η(st ). η(st ) and the AR weights cr (st ) are the parameter set given by
the state st :

http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Fig. 9.6 SAR-HMM as DBN
structure st-2 st-1 stst-3

vt-3 vt-2 vt-1 vt

vt = −
R∑

r=1

cr (st )vt−r + η(st ) with η ∼ N (η; 0, σ 2(st )). (9.26)

There, η(st ) models variations from pure autoregression rather than an indepen-
dent additive noise process. The joint probability of a sequence of length T is

p(s1:T , v1:T ) = p(v1|s1)p(s1)

T∏

t=2

p(vt |vt−R:t−1, st )p(st |st−1). (9.27)

Figure 9.6 visualises the SAR-HMM as DBN structure. Switching of the different
AR models is forcedly ‘slowed down’ by introducing an constant K . The model then
needs to remain in a state for an integer multiple of time steps. This is needed, as
considerably more sample values usually exist than features on the frame level.

The EM algorithm can be used for learning of the AR parameters. Based on the
forward-backward algorithm (cf. Sect. 7.3.1) the distributions p(st |v1:T ) are learnt.
The fact that an observation vt depends on R predecessors makes the backward pass
more complicated than in the case of an HMM. A ‘correction smoother’ [53] can
thus be applied such that the backward pass calculates the posterior p(st |v1:T ) by
‘correcting’ the forward pass’s output.

9.3.3.2 Autoregressive Switching Linear Dynamical Systems

With the extension of the SAR-HMM to an AR-SLDS, a noise process can explicitly
be modelled [17]. The observed audio sample vt of interest is then modelled as a
noisy version of a hidden clean sample that is obtained from the projection of a
hidden vector ht with the dynamic properties of a LDS:

ht = A(st )ht−1 + ηH
t

, with ηH
t

∼ N (
ηH

t
; 0,ΣH(st )

)
. (9.28)

The transition matrix A(st ) describes the dynamics of the hidden variable that
depends on the state st at time step t . A Gaussian distributed hidden ‘innovation’ vari-
able ηH

t
models variations from ‘pure’ linear state dynamics. As for ηt in Eq. (9.26)

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Fig. 9.7 AR-SLDS as DBN
structure

ht-2 ht-1 htht-3

st-2 st-1 stst-3

vt-3 vt-2 vt-1 vt

in the case of the SAR-HMM, ηH
t

is not modelling an independent additive noise
source. For the determination of the observed sample at time step t , the vector ht is
projected onto a scalar vt :

vt = B ht + ηV
t , with ηV

t ∼ N (ηV
t ; 0, σ 2

V ), (9.29)

where ηV
t models independent additive white Gaussian noise (AWGN) assumed to

modify the hidden clean sample Bht . The DBN structure of the SLDS that models
the hidden clean signal and an independent additive noise is found in Fig. 9.7.

The parameters A(st ), B and ΣH(st ) of the SLDS can be chosen to mimic the
SAR-HMM (cf. Sect. 9.3.3.1) for the case σV = 0 [17]. Likewise, if σV �= 0 a noise
model is included but no training of a new model is needed. With determination of the
exact parameters of the AR-SLDS having a complexity of O(ST ), the Expectation
Correction (EC) approximation [54] provides an elegant reduction to O(T ).

In practice, the AR-SLDS is particularly suited to cope with white noise dis-
turbance, as the variable ηV

t incorporates an AWGN model. It is, however, usually
inferior to frame-level feature-based HMM approaches in clean conditions. This may
be explained by the difference of the approach to human perception which is not per-
formed in the time-domain. In coloured noise environment the AR-SLDS usually
also leads to lower performance than frame-level feature modelling as by SLDMs.
A limitation for practical use is the high computational requirement, even with the
EC algorithm: As an example, for audio at 16 kHz, T is 160 times higher than for a
feature vector sequence operated on 100 FPS.

Obviously, further model architectures exist that were not shown here, but are well
suited to cope with noises, in particular also for non-stationary noise. An example
are the LSTM networks as shown in Sect. 7.2.3.4 [55, 56].

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Part III
Intelligent Audio Analysis Applications

In this part applications of Intelligent Audio Analysis in the three domains speech,
music, and sound will be presented by selected examples.



Chapter 10
Applications in Intelligent Speech Analysis

Speech is an arrangement of notes that will never be played
again.

—Francis Scott Fitzgerald

Speech is broadly considered as being the most natural communication form for
humans [1]. Obviously, there are manifold applications opening up for general tech-
nical and computer systems, once they are able to recognise speech as well as humans
do—be it for interaction purposes with humans [2], mediation purposes between
humans [3], or speech retrieval [4]. In fact, spoken language may even become a
communication medium among technical systems in the future, e.g., if humans shall
be able to follow their conversation.

In this vein, the following sections present application examples selected from the
author’s recent research on intelligent speech analysis starting with the linguistic side
of spoken language. As outlined in the introduction of this book, work of many other
authors could have been chosen—the choice of examples from the author’s work was
simply made to foster consistent application of methods as described previously. We
will first have a look at robust recognition of isolated words in severe noise conditions,
and then move to the recognition of spontaneous conversational speech. This will be
followed by the assessment of ‘non-linguistic’ human vocalisation such as laughter.
Then, the ‘paralinguistic’ side is highlighted aiming at the automatic recognition of
diverse speaker states and traits such as emotion, sleepiness or height of a speaker.
This includes analysis of linguistic and acoustic parameters. Linguistic analysis is
exemplified in isolation first, then a series of acoustic analyses is presented for various
states and traits. For illustration of present-day performances, evaluation results are
given on standard data-sets.
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10.1 Linguistics: Digits and Spelling

The automatic recognition of speech, enabling a natural and easy to use method of
communication between human and machine, is an active area of research as it still
suffers from limitations such as the restricted applicability whenever human speech
is superposed with background noise [5–7]. Before turning to the recognition of
continuous spelling and spontaneous speech, we will first deal with highly noise
robust recognition of isolated words, as was presented in [8–11], and [12]. These
techniques and their consequent further development led later to the best result for
a monaural system in the CHiME Challenge 2011 [13] and later to the best result
to-date [14] on the CHiME Challenge 2011 task.

10.1.1 Automotive Digits and Spelling Database

In order to compare the different speech signal preprocessing, feature enhancement,
and speech modelling techniques which were presented in Chap. 9 with respect to
their recognition performance in various noise scenarios, all of the techniques are
tested in a noisy speech recognition experiment which will be outlined in the follow-
ing. Since the interior of a car is a popular field of application for speech recognisers,
allowing hands-free operation of the centre console or text messaging, car noises
produced during driving are of great interest when designing a noise robust speech
recognition system [15, 16] and have been decided for.

The digits “zero” to “nine” as well as the letters “A” to “Z” from the TI 46 Speaker
Dependent Isolated Word Corpus [17] are used as speech database to exemplify
noisy digit and spelling recognition similar to the Aurora tasks [18], but tailored for
the application in the automotive environment by using different noise for additive
overlay. The database contains utterances from 16 different speakers—8 of them are
female and 8 of them male. Following the results presentation in [19], only the words
which are spoken by male speakers are used. For every speaker 26 utterances were
recorded per word class. Of these, 10 are used for training and 16 for testing. By
that, the overall digit training corpus consists of 800 utterances and the digit test
set 1 280. For the spelling task, 2 080 utterances are used in a similar fashion for
training and 3 328 for testing. Babble and white noise scenarios have been chosen
as further examples adding to the main focus of the following analyses that lies on
designing a robust speech recogniser for an in-car environment. Thus, emphasis is
laid on simulating a wide spectrum of different noise conditions that can occur in the
interior of a car. In general, interior noise can be split up into four major groups: wind
noise which is generated by air turbulences at the corners and edges of the vehicle
and arises equivalently to the velocity, engine noise depending on load and number
of revolutions, wheels, driving, and suspension noise influenced by road surface and
wheel type, and buzz, squeak and rattle noises generated by pounding or relative
movement of interior components of a vehicle [20–22]. Usually, the microphone

http://dx.doi.org/10.1007/978-3-642-36806-6_9
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Table 10.1 Vehicles
considered for noise overlay

Vehicle Derivative Class

BMW 5 series Touring Executive car
BMW 6 series Convertible Executive car
BMW M5 Sedan Exec. sports car
MINI Cooper Convertible Super-mini

Table 10.2 Road surfaces
and velocities considered for
noise overlay

Surface Velocity (km/h) Abbreviation

Big cobbles 30 COB
Smooth city road 50 CTY
Highway 120 HWY

would be mounted in the middle of the instrument panel. Consequently, noises as
occurring in the interior of a car have been recorded exactly at the same point.
The mouth-to-microphone transfer function had been neglected, since the masking
effect of background noise was proven to dominate over convolutional noise. As
interior noise masking varies depending on vehicle class and vehicle class derivates
[21], speech was superposed by noise of four different vehicles as they are listed in
Table 10.1.

Besides the vehicle type, the road surface influences the characteristics of interior
noise. Hence, three different surfaces with typical velocities are further considered
as shown in Table 10.2. A smooth city road at 50 km/h driving velocity and medium
revolution (CTY) provides the lowest excitation. At this profile noise caused by
wind, engine, wheels, etc. has its minimum. Higher excitation is measured for a
highway drive at 120 km/h (HWY), where wind noise is a multiple higher. The worst
case noise scenario is given by a road with big cobbles (COB). At 30 km/h, wind
noise can be neglected, but the rough cobble surface results in dominant wheel and
suspension noise. Figure 10.1 shows the SNR histograms of the accordingly noisy
speech utterances.

In spite of SNR levels below 0 dB, speech in the noisy test sequences is still
well audible since the recorded noise samples have most of their spectral energy
contained in the frequency band from 0 to 500 Hz (cf. Fig. 10.2). As a result, there is

Fig. 10.1 SNR level his-
tograms for noisy speech
utterances [10]
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Fig. 10.2 Long-term spectrum of the car noises COB, HWY, CTY (Mini Cooper S) and the spectral
characteristics of the vowel [i:] as spoken by a male speaker [10]

little overlap of the spectrum of speech and noise. Extremely low SNR levels for the
car noises (see Fig. 10.1) are mainly caused by intense spectral components below
the spectrum of human speech (motor drone).

Apart from car noises (CAR), two further noise types are used for the following
experiments: First, a mixture of babble and street noise (BAB) at SNR levels 12,
6, and 0 dB recorded in downtown Munich as is present when driving within an
urban area with open windows. Furthermore, additive white Gaussian noise (WGN)
is considered (SNR levels 20, 10, and 0 dB).

10.1.2 Performance

One model was trained per digit to build an isolated word recogniser. The various
strategies for enhancement and robustness as were introduced in Chap. 9 are consid-
ered. For HMM and HCRF, each model consists of eight states with a mixture of
three Gaussians per state. Clean utterances are used for training to show performance
in a non-matched or non-multi-condition test case. As features serve 13 MFCCs or
PLPs with their first and second order derivatives. Attempting to remove the effects
of noise, the various speech enhancement strategies outlined in Sect. 9.2 are applied:
CMS, MVN, HEQ, USS, and AFE extraction. In most of the experiments, the recog-
nition rate for clean speech is observed close to perfection at around 99.9% WA.
Note that, as instances are balanced among classes, WA equals UA.

Table 10.3 shows that, for stationary low pass noise like the CAR and BAB noise
types, best WA can be reached when enhancing the speech features using a global

http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
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Table 10.3 Mean isolated digit recognition rates in [%] UA / WA for different noise types, noise
compensation strategies, and features, training on clean data

Strategy Features Clean UA / WA [%]
CAR BAB WGN

SLDM MFCC 99.92 99.52 99.29 87.79
HEQ MFCC 99.92 98.21 96.53 77.50
CMS PLP 99.84 97.70 97.92 72.67
MVN MFCC 99.84 94.86 93.32 79.06
CMS MFCC 99.84 96.96 97.18 72.22
HEQ PLP 99.92 97.20 95.27 66.51
HCRF/CMS MFCC 99.76 95.67 94.97 70.06
USS MFCC 99.05 93.52 92.27 53.19
AFE MFCC 100.0 87.85 92.84 64.14
None PLP 99.92 81.06 90.58 67.72
None MFCC 99.92 75.09 88.37 63.67
AR-SLDS None 97.37 47.24 78.51 93.32
SAR-HMM None 98.10 54.26 83.16 41.91

SLDM for speech and a LDM for noise (cf. Sect. 9.2.2). Thereby all clean training
sequences were used for global SLDM training. This captures the dynamics of clean
speech. The speech model consists of 32 hidden states, and the utterance-specific
noise model of a single Gaussian mixture component. It was trained on the first and
last 10 frames of the noisy test utterance. To speed up the calculation, the algorithm
for speech enhancement was run with history parameter r = 1 (cf. Sect. 9.2.2.4). For
more demanding recognition tasks like the INTERSPEECH Consonant Challenge
[23], SLDM feature enhancement was proven to increase recognition rates for noisy
speech: The technique cannot compete with strategies using perfect knowledge of
the local SNR of time-frequency components in the spectrogram like oracle masks
[24–26], however, compared to the Consonant Challenge HMM baseline recogniser
[23], the SLDM approach can improve noisy speech recognition rates by up to 174 %
relative [27]. HCRF for the classification of features enhanced by CMS did not result
in a better recognition rate as compared to using HMM. For WGN disturbance, the
best recognition rate (93.3 % WA, averaged over the different SNR conditions) is
reached by the AR-SLDS as was explained in Sect. 9.3.3.2. The noisy speech signal
is in this case modelled in the time domain as an AR process. As explained in
Sect. 9.3.3.2, the AR-SLDS constitutes the fusion of the SAR-HMM with the SLDS.
The AR-SLDS used in the experiment is based on a 10th order SAR-HMM with ten
states. This concept is, however, not suited for low pass noise at negative SNR levels
in these experiments: For the CAR noise type, only 47.2 % WA are reached, averaged
over all car types and driving conditions, for AR-SLDS modelling. A reason for this
is the assumption that was made in Eq. (9.29): additive noise is expected to have a flat
spectrum. In case of a HMM-based recogniser without feature enhancement, PLP
features perform slightly better than MFCC features.

http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://dx.doi.org/10.1007/978-3-642-36806-6_9
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Table 10.4 Mean isolated digit recognition rates (in [%] WA / UA) of a HMM recogniser without
feature enhancement for different noise types and training strategies: matched conditions training
(MC), mismatched conditions training (MMC), and training with clean data

Training Clean CAR BAB WGN

Clean data 99.92 75.09 88.37 63.67
MMC 79.42 96.86 98.74 68.51
MC 99.92 99.69 99.73 99.22

Table 10.4 summarises the WA for a HMM recogniser without feature
enhancement for three different training strategies: training on clean data, mis-
matched conditions training, and matched conditions training. In these experiments,
mismatched condition training denotes training and testing with the same noise type
but at unequal noise conditions (SNR levels and driving conditions, respectively).
Matched conditions training stands for exactly identical noise types and noise con-
ditions. If the test sequence is disturbed by noise, mismatched conditions training
outperforms a recogniser that had been trained on clean data. However, for clean test
sequences the mismatched conditions training significantly downgrades recognition
rates, as the noise pattern that had been learnt during the training is missing when
testing the recogniser. The results for matched conditions training serve as an upper
benchmark for noisy speech recognition performance, because by this strategy one
assumes perfect knowledge of the noise properties. Note that, since in the matched
conditions experiment one model was trained for every noise condition, this implies
knowledge of the noise characteristics and higher memory requirements, as more
than one model has to be stored.

The best MFCC feature enhancement methods were further applied in the spelling
recognition task as shown in Table 10.5. Again, for noisy test data, SLDM perform
better than more ‘conventional’ techniques such as HEQ.

10.1.3 Summary

In this section evaluation results for the different techniques to improve the perfor-
mance of ASR in noisy surroundings as were introduced in Chap. 9 were presented
for the noisy isolated digit and spelling recognition task. These techniques affect
feature extraction, feature enhancement, speech de-coding, and speech modelling.

Table 10.5 Mean spelling
recognition rates for different
noise types and noise
compensation strategies,
training on clean data

Strategy Features Clean WA [%]
CAR BAB WGN

SLDM MFCC 92.73 82.98 81.59 64.23
HEQ MFCC 91.85 70.19 69.40 48.20
CMS MFCC 93.09 73.79 69.78 47.06
none MFCC 91.04 58.82 66.92 44.30

http://dx.doi.org/10.1007/978-3-642-36806-6_9
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The use of PLP features as speech representation leads to a relative error reduction
of 18.6 % (averaged over all evaluated noise conditions) when compared to ‘conven-
tional’ MFCC. Furthermore, feature enhancement methods based on spectral sub-
traction and normalisation like CMS, MVN, USS or HEQ were able to partly remove
effects of stationary coloured noises.

As a further approach to enhance speech features, a global SLDM was used. This
aims to capture the dynamics of speech enabling a model based speech enhancement
through joint speech and noise modelling and prevailed for all car noise types. In fact,
the method reached the best WA for the noisy isolated digit recognition task. The
usage of HCRF as an alternative model architecture did not outperform HMM. How-
ever, embedding a SLDS into a SAR-HMM—modelling the raw signal in the time
domain—lead to the best WA in case of speech corrupted with additive WGN. Using
noisy training data to build AMs could also improve noise robustness. Mismatched
conditions training, which uses training sequences disturbed by a noise type different
from that in the test phase, outperformed training on clean data with a relative error
reduction of 54.5 %. This shows that multi-condition training is a promising direc-
tion. Further, computational complexity and possible fields of application have to be
considered when designing a robust speech recogniser. In this respect, AFE and USS
are more complex than feature normalisation techniques such as CMS or MVN. But,
they are still suited for real-time applications. HEQ and SLDM feature enhancement
achieved better recognition rates, however, at the cost of increased computational
complexity. Speech-modelling in the time domain as by AR-SLDS requires most
computational resources and is therefore at the time not suited for most real-life
applications. For stationary noises, the SLDM seems the most promising technique.
Yet, it relies on accurate voice activity detection.

Future research effort could be spent on increasing the suitability of promising
concepts like SLDM feature enhancement by including discrete state transition prob-
abilities. Another alternative would be finding the optimum compromise between an
increment of the history parameter and the computational complexity. Furthermore,
the AR-SLDS concept could be optimised for coloured noise when applying AR
speech modelling in this context. Further improvements might be achieved by com-
bining the different denoising concepts which were applied in this section.

In a continuous ASR task—as will be considered next—the parameters of a global
SLDM as well as the cumulative histogram for the HEQ method could be estimated
more precisely due to longer observation sequences than in the so far considered iso-
lated digit or spelling recognition experiments. ASR in noisy environments remains
challenging, however, as shown in this section, spending effort on finding accu-
rate techniques for auditory modelling, feature enhancement, speech modelling, and
model adaptation can remarkably reduce the performance gap between automatic
speech recognition and human perception.
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10.2 Linguistics: Spontaneous Speech

Let us now consider spontaneous speech recognition in a real-life setting, as in [28]
basing on the related studies published in [11, 28–42]. By that, we will move from
isolated to continuous speech recognition independent of the speaker. At the same
time, we will consider a setting with real-life noise conditions rather than additive
noises. The motivation for this shift is among other reasons given by the fact that
ASR is increasingly applied in highly naturalistic human-machine interaction such
as with conversational agents [36, 43] or robots. This requires robustly recognising
spontaneous, conversational, and by that also disfluent speech. Several strategies to
cope with these challenges have been proposed [10, 19]. Of these, most concentrate
on improving the signal-processing front-end or computational intelligence back-
end side of ASR systems based on HMM. There are, however, also strategies that
combine the HMM principle with MLP or RNN [33, 44, 45]. Roughly, one can
categorise these into hybrid approaches that apply neural networks to generate state
posteriors for HMMs, and Tandem approaches that use a neural network’s output as
features to be input into the HMM.

Given co-articulation effects in human speech, modelling of temporal context is
essential. For this reason the introduced LSTM networks seem a promising alterna-
tive to standard feed-forward networks or RNNs. While temporal context is usually
modelled on a higher level by context dependent acoustic models, such as triphone
models, and language models, on the feature level only a very limited and inflexible
amount of context is modelled. e.g., first and second order regression coefficients of
LLDs are added to the feature vector or a fixed number of successive feature frames
are ‘stacked’. Only few exceptions aimed at modelling of more context, e.g., [46].
Recently, BLSTM networks were shown to be superior to the triphone principle [47],
and application of BLSTM phoneme prediction has led to significant performance
gains for phoneme classification and keyword spotting [30, 36, 48]. Building on the
Tandem technique as was proposed in [35], which uses BLSTM phoneme predic-
tions as additional feature vector components, this section introduces a multi-stream
BLSTM-HMM architecture. This architecture models the BLSTM phoneme estimate
as a second independent HMM stream of observations to allow for more accurate
modelling of observed phoneme predictions. Experiments to show this effect are
based on the COSINE corpus [49] which contains noisy conversational speech. With
the open-source speech processing toolkit openSMILE [50] this multi-stream tech-
nique is implemented in an on-line version in the final SEMAINE1 system [43]—a
multimodal conversational agent.

10.2.1 The COSINE Corpus

All experiments presented in Sect. 10.2.2 are speaker-independent. They were car-
ried out using the ‘COnversational Speech In Noisy Environments’ (COSINE)

1 http://semaine-project.eu/

http://semaine-project.eu/
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corpus [49]. COSINE is a relatively new database. It contains multi-party conversa-
tions that were recorded in real world environments. Speech was captured by a spe-
cially crafted wearable recording system in a sort of backpack manner. This allowed
the speakers to walk around in the street during the recordings. Participants were
asked to speak about anything they liked and to walk to various noisy locations. The
corpus thus consists of natural, spontaneous, and highly disfluent speaking styles.
The signal is partly masked by indoor and outdoor noise sources including crowds,
vehicles, and wind noises. Seven microphones were used simultaneously per speaker.
To stick with the precondition of this book to rely on monophonic sources, exclu-
sively speech recorded by a close-talk microphone (Sennheiser ME-3) is exploited
in the ongoing.

All ten sessions transcribed at the moment of writing are used. These contain
11.40 h of pairwise conversations and group discussions. The 37 contained speakers
are fluent, but not necessarily native English speakers. Each speaker participated
in one session exclusively. Their ages range from 18 to 71 years with a median of
21 years. COSINE’s test set is used for evaluation (sessions three and ten). This
set comprises 1.81 h of speech. Sessions one and eight were chosen as validation
set (2.7 h of speech) and the remaining six sessions made up the training set. The
vocabulary size is 4.8 k, the out-of-vocabulary rate in the test set is 3.4 %.

10.2.2 Performance

The frame-wise phoneme recognition rate of different network architectures is now
presented on the COSINE task as described. It is further compared to a common
triphone HMM phoneme recogniser. Then, going from phonemes to words, the accu-
racy (WA) obtained by the multi-stream system introduced in Sect. 7.4.3 is compared
with the performance of a Tandem approach [35]. Again, a baseline is established
by a common HMM system that bases only on MFCC features. MFCCs 1–12 are
extracted as features for network input in addition to logarithmic energy together
with first and second order regression coefficients. To compensate for stationary
noise effects, CMS is applied to these features. A HMM system is used to obtain
phoneme borders via forced alignment. The following four different network archi-
tectures are considered: RNN, BRNN, LSTM networks, and BLSTM networks.

As network topology three hidden layers (per input direction) were chosen for any
of these four types. These layers have a size of 78, 128, and 80 hidden units, respec-
tively, and each memory block contains one memory cell. A learning rate of 10−5

and a momentum of 0.9 proved optimal for training. To improve the generalisation
ability of the networks, zero mean Gaussian noise with standard deviation 0.6 was
added to the inputs during training. Prior to the actual training process, weights were
uniformly random initialised in the range from −0.1 to 0.1. Input and output gates
used tanh activation functions. The forget gates had logistic activation functions.

The standard (CMU) set of 41 different English phonemes is applied. The 41
phonemes include silence and short pause labels. Once no improvement on the

http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Table 10.6 Frame-wise phoneme accuracy for BLSTM, LSTM, BRNN, and RNN predictors, and
triphone HMMs, and word accuracies obtained for a baseline single-stream HMM, a Tandem system
[35], and the proposed multi-stream recogniser (a = 1.1) using different network architectures

Accuracy Phoneme Word
[%] (framewise) Tandem Multi-stream

triphone HMMs 56.91 43.36
RNN 48.91 43.79 46.25
BRNN 50.51 42.59 46.27
LSTM 58.91 44.46 46.45
BLSTM 66.41 45.04 46.50

validation set could be observed for at least 50 epochs, training was stopped. Then,
the network was chosen that achieved the best frame-wise phoneme error rate on the
validation set.

The second column of Table 10.6 shows the frame-level phoneme accuracies for
COSINE’s test set obtained in this way. Generally, bidirectional context modelling
prevails over unidirectional context modelling and LSTM context modelling outper-
forms conventional RNNs. The best rate can be achieved with a BLSTM network
at 66.41 % WA. The use of bidirectional context in low-latency, responsive, on-line
applications is, however, limited or close to impossible. For off-line transcription
tasks, and on-line tasks which allow a higher latency, BLSTM networks are per-
fectly applicable.

When using a triphone HMM system as described below for frame-wise phoneme
transcription, the rate is significantly lower at 56.91 % WA—this is in line with [51].
However, triphone HMMs were able to outperform a conventional RNN phoneme
predictor (50.51 % and 48.91 % WA for bi- and unidirectional RNNs, respectively).

As explained, BLSTM phoneme estimates are now incorporated as an additional
feature stream into a multi-stream HMM framework for the recognition of con-
tinuous speech. To this end, each phoneme of the underlying left-to-right HMM
system is represented by three emitting states. The initial monophone models con-
sist of one Gaussian mixture for probability density function modelling per state.
They were trained using four iterations of embedded Baum-Welch re-estimation.
Then, the monophones were mapped to tied-state cross-word triphone models with
shared state transition probabilities. This sharing helps to reduce the number of
parameters that need to be estimated. Given COSINE’s comparably limited size,
this is a reasonable standard measure. Two Baum-Welch iterations were executed
for re-estimation of the triphone models. Finally, the number of Gaussian mixture
components of the triphone models was increased to 16 in four successive rounds
of mixture doubling and re-estimation—resembling four iterations in every round.
AMs and a back-off bi-gram language model were trained on COSINE’s training set.
The conditional probability table for the second feature stream was restricted to the
15 most likely phoneme confusions per state. Further, a floor value of 0.01 was used
for the remaining confusion likelihoods. As shown in Table 10.6, the word accuracy
of the single-stream HMM is 43.36 % WA.
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Fig. 10.3 Word accuracies on
the COSINE test set using the
multi-stream BLSTM-HMM
system with different MFCC
stream weight parameters a
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As was stated in Sect. 7.5.2, word accuracy according to (7.89) is used for mea-
surement of accuracy in the case of continuous speech recognition. In fact, word
accuracy is also weighted, as the recall per word—words are the classes in this
case—is weighted by the number of instances of this word in the test set. Thus,
weighted accuracy (WA) is used as unit.

Using the multi-stream BLSTM-HMM approach outlined in Sect. 7.4.3, the opti-
mal MFCC stream weight parameter a (cf. Eq. (7.84)) can be determined. The best
performance on the test set was obtained for a = 1.1 (cf. Fig. 10.3).

Table 10.6 depicts word accuracies on COSINE’s test set using a Tandem system
and the multi-stream approach under variation of the neural network architectures.
The multi-stream BLSTM-HMM prevails at overall highest WA of 46.50 %. The
usage of bidirectional context, however, implies a non-causal short look-ahead buffer,
i.e., recognition is performed with a slight delay. Further, modelling the phoneme con-
fusions of the neural networks as described in Sect. 7.4.3 seemingly results in lower
sensitivity to the frame-wise phoneme accuracy: Only little difference is observed
for the accuracy of a multi-stream recogniser using BLSTM predictions and a system
using RNN-based phoneme estimates.

10.2.3 Summary

In this section, spontaneous continuous speech was recognised in real-life noisy
conditions. To best cope with the task, a multi-stream ASR system was introduced.
It relies on context-sensitive phoneme estimates generated by a BLSTM network as
an additional feature stream to the conventional stream for LLD processing. Evalua-
tion based on the challenging COSINE database of human-to-human conversational
speech recorded in originally noisy environments rather than artificially superposing
noise afterwards. This implies that noise and speech underlie same reverberation and
speakers are directly affected by the noise such as by the Lombard effect of using
more vocal effort in louder environment. The shown multi-stream ASR architecture
led to higher word accuracies in comparison to a standard single-stream MFCC-
based recognition system. It further outperformed a Tandem approach that models
MFCC features and BLSTM predictions via Gaussian mixtures in a single obser-
vation stream. Explicitly modelling typical phoneme confusions occurring in the
BLSTM network helped to improve the results.

http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_7
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Future experiments should include the design of bottle-neck [40, 45] BLSTM
networks. Further, the principle of Connectionist Temporal Classification (CTC) [33]
could be exploited to let the networks do the phoneme alignments by themselves and
thus improve the accuracy of phoneme targets (which in the presented system were
obtained by an HMM-based recogniser).

10.3 Non-Linguistics: Vocalisations

Apart from speech—i.e., linguistic entities—, non-linguistic vocalisations are present
in spoken language—their computational assessment will now be shown.

Discrimination of speech and non-linguistic vocalisations such as laughter or
sighs plays an important role in speech recognition systems dealing with sponta-
neous speech, such as dialogue systems, call centre loops or automatic transcription
of meetings. In contrast to read speech, which conveys only the information con-
tained in the spoken words and sentences, spontaneous speech contains considerably
more of such extra-linguistic information—e.g., in the COSINE corpus which was
introduced in the previous section. To avoid confusion of non-linguistic information
with linguistic information and for higher level natural language understanding, it is
vital for an ASR engine to spot the non-linguistic vocalisations and determine their
type [52–59].

Several approaches have been proposed in particular for the detection of filled
pauses [60] and laughter [61–63]. In this section, we extend this to four different
types of non-linguistic vocalisations—laughter, breathing, hesitation (e.g., “uhm”)
or non-verbal consent (e.g., “aha”)—and discriminate them from speech.

Furthermore, it will be shown that features generated by NMF can increase
classification accuracy for this task when compared to traditional acoustic feature
information—for example MFCCs. To this end, a supervised NMF variant is sug-
gested with pre-computed component spectra from instances of speech and non-
linguistic vocalisations. This allows to measure which spectra contribute the most
to the signal based on the activations of these components. Previous work in NMF-
based ASR uses NMF for speech enhancement applied during pre-processing. In
contrast, it is now proposed to use the NMF as data-based feature extractor as was
introduced in Sect. 8.3. For sound classification such an approach has been described
in [64]. However, for non-linguistic vocalisation classification, this technique was
first proposed in [12]. Experimental results are based on the TUM AVIC database
[65] (cf. Sect. 5.3.1).

10.3.1 Methodology

The input signal is transformed to the frequency domain. A STFT is applied with
a Hamming window, 25 ms window size, and 10 ms frame rate. From the resulting

http://dx.doi.org/10.1007/978-3-642-36806-6_8
http://dx.doi.org/10.1007/978-3-642-36806-6_5
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spectrogram, MFCCs 0–12 and their first and second order delta regression coeffi-
cients are extracted with 26 Mel-band filter banks. The mean and standard deviation
are considered as functionals applied to the LLD. Functionals are applied over the
full length of each instance.

As additional functionals, a sub-sampling of the sequence by five equidistant
signal frames’ feature values from beginning to end of the sequence is carried out.
This yields a total of 273 MFCC-based acoustic features per instance. Further, NMF
activation features are considered, as were explained in Sect. 8.3.

Classification is carried out by a Support-Vector Machine (SVM) classifier with
RBF kernel. This kernel was found to be superior to a linear kernel for this particular
task.

10.3.2 Performance

A data set was prepared based on TUM AVIC (cf. Sect. 5.3.1). Data from each of
the 21 speakers was assigned to exactly one of the sets training, development, and
test in order to evaluate the recognition performance independent of the speaker. The
sets were chosen such that the total length of the utterances is evenly distributed
across the sets. Furthermore, each set is balanced wrt. the length of male and female
utterances, as also is the whole corpus [66].

Based on the manual transcription, the signal parts containing non-linguistic
vocalisations of the four classes ‘consent’, ‘laughter’, ‘hesitation’, and ‘breathing’
were extracted. This was added by the left-over ‘speech-only’ turns. In total, there
are 2 070 instances for training, 1 980 for development, and 2 184 for testing with the
following class distribution in the sets training / development / test: breathing (222,
154, 130), consent (83, 88, 177), hesitation (401, 422, 414), laughter (142, 75, 76),
and speech (1 222, 1 241, 1 387).

Up-sampling of minority classes was applied to the training set (when testing
with the development set) and to the union of training and development set (when
testing with the test set). This ensures balance of instances across all classes during
the model training.

The suitability of NMF activation features for recognition of non-linguistic vocal-
isations was evaluated by training with the training set and testing with the develop-
ment set at first. Component spectra for the extraction of NMF activation features
were computed from signals concatenated from all the training utterances separately
for the different classes. For the speech class, as in [67], only 10 % of the originally
recorded overall speech material was used given the stark contrast in frequency of
occurrence of linguistic and non-linguistic vocalisations. Different configurations
were tested varying the NMF cost-function and the number of components. Features
are linearly scaled to the range [−1, 1].

Next, training and development data was united for training, when testing on the
test section of the database. This means that in this step NMF activation features
were extracted using spectra that were computed from this larger amount of training

http://dx.doi.org/10.1007/978-3-642-36806-6_8
http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Table 10.7 Recall and UA for four different non-linguistic vocalisations and speech on the test set
of the TUM AVIC corpus. Results by SVMs with RBF kernel, trained with different sets of NMF
activation features: N70, N90, and N100, corresponding to 70, 90, and 100 NMF components,
respectively. NMF cost functions are either Euclidean distance or modified KL divergence

Recall [%] Euclidean KL divergence
N70 N90 N100 N70 N90 N100

UA 73.0 72.6 72.7 77.7 79.3 79.1
WA 69.5 69.4 70.7 72.5 74.2 74.4
Breathing 95.4 91.5 94.6 87.7 88.5 91.5
Consent 84.2 86.4 89.3 89.3 88.7 85.9
Hesitation 67.6 61.4 62.8 71.0 73.2 76.1
Laughter 51.3 55.3 47.4 71.1 75.0 71.1
Speech 66.7 68.4 69.7 69.5 71.2 71.0

data. 70, 90, and 100 components (N70, N90, N100) were considered and distributed
among the classes as follows: For the case of overall 70 components, 20 were assigned
each for the speech and laughter classes, and 10 for the remaining three classes
(consent, hesitation, breathing). This takes into account the higher spectral diversity
of speech and laughter. For 90 components, the number of speech components was
doubled (40). For 100 components, an equal distribution of 20 spectra for each of
the five classes was chosen. Euclidean distance and modified KL divergence were
evaluated as cost-functions. The results for UA are shown in Table 10.7. From these,
one can conclude that NMF feature extraction works best when minimising modified
KL divergence, outperforming Euclidean distance by up to 7 % absolute. For the
N100 feature set this difference is significant at p ≈ 1.1 · 10−5 in a one-tailed
McNemar test. Less influence is observed for the choice of the number of NMF
components. Overall, 90 components and minimising modified KL divergence can
be recommended as ideal from these experiments.

The effect of combining MFCCs with NMF activation features is elaborated upon
in Table 10.8. There, NMF activation features were computed by minimisation of
Euclidean distance, which yielded improved—yet not significant—results.

Looking at these results, one can state that NMF activation features alone do not
surpass MFCCs in terms of UA. Combining NMF activation features with MFCC-
based features, however, increases the recall rate for all classes but hesitation.In
particular the M+N100 set leads to the best UA and increases the recall rate for the
laughter class by 6.6 % and the consent class by 4.5 % absolute when compared to
MFCC-based features alone. The overall difference in UA is significant at p ≈ 10−3.

10.3.3 Summary

Recognition of non-linguistic vocalisations was shown based on a supervised NMF
procedure to compute ‘activation features’. In experiments, the method performed
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Table 10.8 Recall and UA recall for four different non-linguistic vocalisations and speech on the
test set of the TUM AVIC corpus. Results by SVMs with RBF kernel

Recall [%] MFCC +N70 +N90 +N100

UA 86.0 87.8 88.0 88.6
WA 82.5 83.4 83.6 83.9
Breathing 93.9 93.9 94.6 94.6
Consent 89.3 91.0 92.1 93.8
Hesitation 86.0 87.0 86.0 85.3
Laughter 81.6 86.8 86.8 88.2
Speech 79.5 80.3 80.6 81.0

Feature sets are varied: 273 MFCC-based features only, and 273 MFCC-based with NMF activa-
tion features (+N70,+N90,+N100), corresponding to 70, 90, and 100 NMF components (cf.
Table 10.7). NMF activation features base on minimisation of Euclidean distance

considerably well for the discrimination of speech and non-linguistic vocalisations.
NMF based on KL divergence gave better results than NMF based on Euclidean
distance, and it was demonstrated that NMF activation features can significantly
improve performance of MFCC-based recognition.

Upcoming research could elaborate on NMF variants and derivates such as as non-
negative matrix deconvolution [68], or various extensions of the cost-functions such
as sparseness constraints [67]. This can also be compared to a greater variety of audio
features such as the ones proposed in [54]. Features could then also be compared
on the LLD level. For the classification, de-correlation and feature selection can be
applied.

10.4 Paralinguistics: States and Traits

Once words and other non-linguistic events are recognised, one can aim at their
understanding. Here, we will not deal with general understanding of complex and
sometimes deeply hierarchically structured intentions such as when dictating math-
ematical equations [69], but look at the sentiment encoded in text. In Section 10.4.1
the example that was initially presented in [70] and later in more detail in [71] is
illustrated.

Beyond the linguistics and non-linguistic vocalisations, the paralinguistic aspects
‘how’ and by ‘whom’ things are said are also encoded in the acoustic speech signal.
In the sections following Sect. 10.4.1, an overview on benchmark performances for
acoustic analysis will be given. These benchmark performances are the results from
a series of international research challenges that were held annually at the INTER-
SPEECH conference since 2009.

We will look at paralinguistics, starting with the short-term affective states as
were featured in the INTERSPEECH 2009 Emotion Challenge [72–74] and INTER-
SPEECH 2010 Paralinguistic Challenge [75] by emotion and interest of a speaker.
Then, we will move from such short-term states to long-term traits, i.e., more per-
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manent speaker characteristics, as were also featured in the 2010 Paralinguistic
Challenge for age and gender determination. As further speaker trait task and an
example of interdependence of speaker traits, we further consider an application
where the height of a speaker is inferred from the voice [76] (not included in any of
the challenges). The final example of paralinguistics stems from the INTERSPEECH
2011 Speaker State Challenge [77]. The tasks at hand—speaker intoxication and
speaker sleepiness—are found somewhat in-between states and traits on a temporal
scale, as they are either ‘long-term states’ or ‘short-term traits’.

Looking at applications of such speaker state and trait information, the following
are found among the most promising:

First, it seems obvious that speech recognition and interpretation of speakers’
intention can benefit from paralinguistic information [78], e.g., when trying to recog-
nise equivocation [79]. The information can also be exploited in the acoustic layer
to improve recognition of ‘what’ has been said, e.g., by adaptation of the acoustic
model [39, 80–84].

Next, conversation analysis, mediation, and transmission can benefit from
paralinguistics, such as in computer-aided analysis of human-human conversations
including the investigation of synchrony in the prosody of married couples [3], spe-
cific types of discourse [85] in psychology, or the analysis and summarisation of
meetings [86, 87].

Many applications also exist in the public health sector. Hearing-impaired persons
can profit, as cochlear implant processors typically alter the spectral cues which are
crucial for the perception of paralinguistic information [88]. Children with autism
may profit from the analysis of emotional cues as they may have difficulties under-
standing or displaying them [89, 90].

Also, transmitting paralinguistic information along with other message elements
can be used to animate avatars [91], to enrich dictated text messages, or to label
calls in voice mailboxes by symbols such as emoticons [92]. Communicative virtual
agents and robots should be enriched by social competence [93–96] which requires
them to understand paralinguistic information from the voice, face, and gestures.

It is also believed that adapting to callers in a voice portal is of commercial interest
[97], including target-group specific advertising. In call centres, also quality man-
agement by monitoring agents is being researched [98]. Other applications include
serious gaming and fun applications, such as the love detector by Nemesysco Ltd.2 or
the game “Truth or Lies—Someone Will Get Caught” for video consoles that comes
with a microphone and claims to detect lies (THQ®Entertainment3), further health
related applications such as monitoring elderly people living on their own [99] or
diseases and speech disorders [100] such as Parkinson’s disease [101, 102], autism
[103], cancer, cleft lip and palate [104] or dysphonia [105], or further pathological
effects [106].

Tutoring systems are another typical field of application, where information on
user states such as uncertainty [107], interest, stress, cognitive load [108], or even

2 http://www.nemesysco.com/
3 http://www.thq.com/

http://www.nemesysco.com/
http://www.thq.com/
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deception can be employed to adapt the system and the teaching pace [109, 110];
generally, paralinguistic cues are essential for tutors and students to make learn-
ing successful [111]. In addition, automatic voice coaching, e.g.,to give better pub-
lic speeches or simply to intonate appropriately when learning foreign languages,
becomes possible [112].

Moreover, there are many security related situations (surgical operation [113],
crisis management, and all the tasks connected to aviation and air traffic control)
where monitoring of stress level, sleepiness, intoxication, and such, may play a vital
role [114]. In addition, counter terrorism or counter vandalism surveillance may be
aided by analysing paralinguistic cues such as aggressiveness of potential aggressors
[115, 116], or fear of potential victims [117].

Finally, in the field of multimedia retrieval, paralinguistic information is of interest
for manifold types of media searches [4, 118].

10.4.1 Sentiment and Opinion

Sentiment analysis and opinion mining have been studied for manifold application
scenarios such as product reviews [119–124], the stock market [125], or hotels and
travel destinations [119, 122], and film reviews [119, 126, 127]. A particularly
difficult task among these is sentiment analysis for film reviews: In [119], a 66 %
WA for valence polarity classification are named for film reviews, but 84 % WA for
car reviews by identical means of analysis. This may be owed to the discrepancy
between the semantic orientation of words describing the elements of a film (i.e., a
scene, the plot), and its style or art.

In this light this section introduces valence estimation from text by means of
on-line knowledge sources and machine learning. The experiments are reported on a
database of over 100 k film reviews collected from the review website Metacritic4—
the largest to-date. Metacritic’s fine-grained review scores as gold standard allow for
a regression approach besides binary or ternary valence prediction.

10.4.1.1 Metacritic Database

The database described in this section is likely the largest film review corpus to
date. Manifold other do, however, exist, ranging in size from 120 to 2 000 reviews.
In [119], 120 film reviews were collected from Epinions.5 In [127] 11 films were
selected from the top 250 list of IMDB.6 Then, the first 100 reviews were retrieved
for each one of them resulting in a total of 16 k sentences and 260 k words. Perhaps
the most frequently used film review database was introduced in [126]. In the begin-

4 http://www.metacritic.com
5 http://www.epinions.com
6 http://www.imdb.com

http://www.metacritic.com
http://www.epinions.com
http://www.imdb.com
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Table 10.9 Metacritic database statistics

[#] Minimum Maximum Average Standard deviation

Reviews per film 1 65 21.1 10.3
Words 1 104 24.2 12.4
Sentences 1 13 1.3 0.6

ning it contained 752 negative, and 1 301 positive reviews from the Usenet news-
group rec.arts.movies.reviews. Later, other versions were added.7 The Metacritic
film review corpus introduced in the following is larger by far: It comprises a total of
102 622 reviews for 4 901 films. Metacritic8 compiles reviews for films, video/DVDs,
books, music, television series, and computer games from various sources.

Reviews in Metacritic are contained as excerpts of the ‘key statement’ from the
original reviews. Overall, 133 394 sentences, and 2 482 605 words are contained in
the database that will simply be referred to as Metacritic database in the ongoing.
The average review has 1.3 sentences, with a standard deviation of 0.6. In contrast
to other film review database, the reviews thus are short at an average length of
24.2 words (cf. Table 10.9). Its vocabulary comprises 83 328 words. By POS classes,
nouns (683 259) come first, followed by verbs (382 822), adjectives (244 825), and
adverbs (174 152).

Besides its sheer size, the database features fine-grained score values from 0 to 100
(the higher, the more positive) per review as particular highlight, calculated from the
original numeric rating scheme used by each source. These can be assumed reliable
in the sense of a ground truth rather than mere gold standard, given that they were
assigned by the authors of the reviews. An exception are the cases where no numeric
rating by the authors is available—in this case a Metacritic staff member provided
these. Further, from the reader’s point of view, sentiment expressed can be perceived
differently [120, 126]. ConceptNet tries to overcome the problem by letting users
vote on the reliability of predicates, which could be used in future approaches.

Metacritic itself provides an additional ternary mapping as can be seen in
Table 10.10. There is no balance of instances per class (cf. Table 10.11): Roughly
three times as many positive than negative reviews are contained. A partitioning for
training and testing is realised by year leading to almost equal size: 49 698 instances
are contained in the ‘odd’ year set, and 52 924 in the ‘even’ year set.

Table 10.10 Metacritic’s
mapping of score to valence
classes

Score Valence class # Reviews

81–100 Positive 15 353
61–80 Positive 38 766
40–60 Mixed 32 586
20–39 Negative 13 194
0–19 Negative 2 723

7 http://www.cs.cornell.edu/people/pabo/movie-review-data/
8 http://www.metacritic.com, accessed January 2009.

http://www.cs.cornell.edu/people/pabo/movie-review-data/
http://www.metacritic.com
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Table 10.11 Metacritic’s statistics by odd and even years of release of reviews

# Reviews All years Odd years Even years

Mixed 32 586 (31.75 %) 15 756 (31.70 %) 16 830 (31.80 %)
Positive 54 119 (52.74 %) 26 410 (53.14 %) 27 709 (52.36 %)
Negative 15 917 (15.51 %) 7 532 (15.16 %) 8 385 (15.84 %)
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Fig. 10.4 Metacritic’s score distribution

Figure 10.4 additionally shows the histogram for the ‘continuous’ scores S.
Visibly, these are also not evenly distributed. Generally, and in particular for the
range 40 ≤ S ≤ 60 (mixed), one observes spikes for scores S which are integer
multiples of ten. With S > 60 (positive), the resolution appears more fine-grained.
An explanation for this behaviour is the fact that scores were converted from original
numerical rating schemes that usually are less fine-grained than Metacritic, such as
one to five stars, etc.

10.4.1.2 Performance

Let us now consider the evaluation of the methods introduced in Sect. 6.3 to exploit
on-line knowledge sources in comparison to data-based learning by Bag-of-Ngrams
(BoNG) features and SVMs or SVR modelling. The optimisation of the methods is
limited to sentiment polarity classification. Stemming is achieved by Porter’s Snow-
ball Stemmer [128], and OpenNLP9 is used for text pre-processing. Sentence detec-
tion is based on a maximum entropy model to identify end of sentence characters. The
stochastic part-of-speech tagger applied bases on maximum entropy, and supports the
48 word-level tags of the Penn Treebank project [129]. The English chunker applied
also bases on maximum entropy and a chunking model by CRFs (cf. Sect. 9.3) [130].

9 http://opennlp.sourceforge.net/

http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_9
http://opennlp.sourceforge.net/
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After parameter optimisation, classification results for the ternary problem and
by regression for the full 0–100 score range will be shown alongside the out-of
vocabulary resolution and attempts of synergistic fusion of knowledge and data.

However, let us begin with a binary classification by excluding the instances
of the mixed class. This leaves 33 942 instances for training, and 36 094 instances
for testing. A development partition is realised as subset of the training data by
choosing ‘every other odd year’, starting at 1, i.e., all years for which (year − 1)

mod 4 = 0. This gives 15 730 instances for evaluation, 18 212 instances for training
during development.

To cope with the bias towards positive reviews (cf. Sect. 10.4.1.1) down sampling
without replacement is used for the training material. This is the only example in
this book of down-sampling instead of up-sampling. The reason is the sheer size of
data to handle. After balancing, 15 063 training instances are obtained, from which
8 158 instances are used for training during development.

To start, the parameters c and e of the decay function (cf. Sect. 6.3) are optimised.
In direct comparison to the decay function in [124], which is reached by setting c = 1
and e = 1, WA gains 0.23 % for c = 1 and e = 0.1. In Fig. 10.5 the WA is visualised
depending on c and e. The maximum WA is reaches 70.29 %.

For classification of the BoW and BoNG features serve SMO-trained SVMs with
polynomial kernels [131]. After stemming, >62 k word stems are left over from the
83 k vocabulary entries of the Metacritic database. Thus, a minimum term frequency
fmin with a ‘gentle’ value of fmin = 2 is employed to remove infrequent words, tak-
ing into account that low-frequency words are likely to be meaningful features for
opinionated sentences [132]. Further, ‘periodic pruning’ is applied to ensure reduc-
tion without dropping potentially relevant features: The data set is partitioned with
configurable partition size. The pruning discards features that occurred only once
after processing of the partitions by the word or N-Gram tokeniser. With a higher par-
tition size—25 % of the data set was chosen as value in the experiments—, the proba-
bility to eliminate relevant features is lowered. Next, optimal feature transformation
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Fig. 10.5 WA throughout optimisation of the decay function parameters c and e [71]
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Table 10.12 WA for
different BoNG feature types

Feature type WA [%]

fi, j 75.03
Norm( fi, j ) 75.72
TF 75.44
Norm(TF) 75.66
IDF 75.05
Norm(IDF) 76.42
TFIDF 75.45
Norm(TFIDF) 77.14

Table 10.13 WA during
N-gram length optimisation
from gmin to gmax for BoNG
features

gmin gmax # Features WA [%]

1 1 18 316 74.58
1 2 96 152 75.95
1 3 151 083 77.14
1 4 171 438 76.41
1 5 177 733 76.92
2 2 77 840 66.72
2 3 132 780 66.54
2 4 153 146 69.62
2 5 159 465 71.66
3 3 54 968 71.59
3 4 75 418 72.33
3 5 81 911 72.61

and normalisation methods were evaluated. Table 10.12 summarises the obtianed
WAs for simple N-Gram frequency ( fi, j ), TF, IDF, and normalisation (norm) for
N-Grams from one to three terms (i.e., gmin = 1 and gmax = 3). It will be shown
that this is an optimal choice.

Little difference is observed for the different types of feature representation, of
which normalisation combined with TFIDF leads to the best result, and normalisation
improves results at any time and in particular in the case of IDF.

Let us now consider the optimal N-Gram length from gmin to gmax in Table 10.13.
As stated, the optimal choice is gmin = 1 and gmax = 3. This agrees with [120], where
optimal results for product reviews where reached by tri-grams. Yet, the authors of
this study found back-off N-Grams to downgrade the accuracies—this is different to
the case of Metacritic. In this optimal setting, 12 % of the features are single words,
52 % bi-grams, and 36 % tri-grams. The largest feature space in this evaluation has
177 733 features for gmin = 1 and gmax = 5, the smallest one only 18 316 features
for gmin = 1 and gmax = 1.

Looking next at out-of-vocabulary words (OOV), i.e., such occurring in the test,
but not in the training material, these make up 30.3 % of the total vocabulary. Out-
of-vocabulary events, i.e., the number of occurrences of OOV words in all reviews,
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Table 10.14 OOV statistics for Metacritic for no OOV resolution, stemming, and stemming with
on-line knowledge sources-based (OKS) resolution

# Words Vocabulary OOV words OOV events

Baseline 83 328 25 217 (30.3 %) 38 244 (3.0 %)
Stemming 62 212 19 228 (30.9 %) 29 482 (2.3 %)
Stemming and OKS 62 212 14 123 (22.7 %) 22 746 (1.8 %)

Table 10.15 UA and WA for
BoNG with SVM and on-line
knowledge sources (OKS) for
two review classes (positive
(+)/negative (−)) on
Metacritic

[%] BoNG OKS

UA 77.73 60.44
WA 77.37 69.42
Recall+ 77.07 77.21
Recall− 78.39 43.67
Precision+ 92.18 81.92
Precision− 50.84 36.70

amount to 3.0 % of the total 1 288 384 words in the database (cf. Table 10.14). The
delta between OOV words and OOV events is probably owing to proper nouns such
as in the title of a film, or the name of actors. OOV words—and by that OOV events—
are influenced during stemming: After this step, the OOV words are at a similar level
of 30.9 %. However, the OOV events decrease to 2.3 % of all words. As additional
solution, OOV words can be substituted by non-OOV ‘synonyms’ with the help of
the on-line knowledge sources ConceptNet and WordNet.

Next, let us compare the BoNG and SVM approach with the on-line knowledge
source domain-indpendent one (cf. Sect. 6.3.4.4) on the same test data. The optimal
configuration as determined so far is used. In the case of BoNG, gmin = 1 and
gmax = 3, features are normalised TFIDF, and OOV resolution is applied.

The results are found in Table 10.15, and show a clear advantage for BoNG with
SVM with a gap of 7.95 % WA owed to a 34.72 % absolute difference in the recall
of negative reviews. An explanation might be the inability of the proposed domain-
independent model to cope with negation, assuming negation to be more frequent
in negative reviews. In fact, this is a common non-trivial problem for syntax-driven
approaches [120, 133]. BoNG features on the other hand model negation, provided
that it occurs in proximity of the word to be negated.

We will now turn to three classes of sentiment, which is challenging also, as mixed
or neutral reviews are particularly challenging [134, 135]. For the syntax-driven
approach, the decision function needs to be extended to handle ternary recognition
tasks. This is achieved by a split into two binary tasks: negative plus mixed versus
positive and negative versus mixed plus positive. For optimal configuration, these
are ‘tuned’ in isolation, and two decision thresholds τ− and τ+ are observed. These
thresholds form the basis of an overall valence decision function, where y is the
output class label, and S is the score of the sequence of words (cf. Sect. 6.3.3.4):

http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 10.16 UA and WA for
BoNG with SVM and on-line
knowledge sources (OKS) for
three review classes (positive
(+)/mixed (0)/negative (−))
on Metacritic

[%] BoNG OKS

UA 53.99 38.80
WA 53.71 49.38
Recall+ 57.62 68.43
Recall0 43.91 37.32
Recall− 60.43 10.66
Precision+ 75.66 58.82
Precision0 42.92 35.74
Precision− 34.70 28.71

y =
⎧
⎨

⎩

+1 if S > τ+
0 if τ− ≤ S ≤ τ+
−1 if S < τ−

(10.1)

With τ− < τ+, a range around y = 0 can be chosen for the mixed class. The
best constellation observed was reached with τ− = −1.9, and τ+ = 0.6. Table 10.16
shows the results for this approach and for BoNG with SVM for the three-class task
on the test set.

Just as one might expect, accuracies drop in comparison to handling two classes.
BoNG with SVM overall lead to better results and provide more balanced values
across the classes from 43.91 % for mixed, up to 60.43 % for negative reviews.

One can now aim at synergistic fusion of the two methods. To this end, again
the optimal configuration as determined up to now is chosen for each approach.
An early integration on the feature level that preserves the knowledge up to the
final decision process is followed first. With the given correlation of the feature
streams, this is known to be beneficial [136, 137]. Thus, a super-vector is created by
including scores of the knowledge-based approach in the BoNG feature vector prior
to SVM classification on this new vector. Table 10.17 shows according results. The
WA increases over BoNG ‘stand-alone’ (cf. Table 10.16) only by 0.13–53.84 %.

The opposite approach of late semantic fusion is a decision based on the pre-
dictions per model [136, 137]. A tuning of ‘whom to trust when’ is thus possible,
i.e., it can be modelled which approach is most reliable for which class. The results
so far revealed a strength of the knowledge-based method for the recall of positive
reviews in the ternary task. This can be emphasised on by according weighting or
rules. SVMs are able to provide pseudo-probabilities P in the range of 0 ≤ P ≤ 1
per class based on the distance to the hyperplane and the chosen multi-class discrimi-
nation strategy. By class, let us denote these pseudo-probabilities in the given ternary
case as P− (negative), P0 (mixed), and P+ (positive). Now, with the score S of the
knowledge-based approach (cf. Sect. 6.3.4.4), we can influence when to decide for
the positive class by setting suited conditions. The SVM decision is decided for if
these conditions are not met. A number of such conditions were tested and are sum-
marised alongside the results in Table 10.17. For the knowledge-based score, S > 0,
and S > 0.6—the positive discrimination threshold τ+ decided for above—were
considered, and for the SVMs, P+ > 0, P− = 0, and ((P+ > 0) ∧ (P0 > 0)). As a

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 10.17 UA and WA plus recalls by early and late fusion for the three review classes (negative
(−) / mixed (0) / positive (+)) in Metacritic compared to the baseline (no fusion) with different
conditions for the knowledge-based score S, and the SVM class-wise pseudo-probabilities P−, P0,
P+ to decide for the positive class by the classifier

[%] UA WA Recall− Recall0 Recall+
Baseline 53.99 53.71 60.43 43.91 57.62
Early fusion 54.09 53.84 60.67 43.65 57.96
Late fusion
(S > 0) 45.50 55.93 32.65 16.83 86.72
(S > 0.6) 46.93 55.95 37.04 20.60 83.14
(S > 0) ∧ (P+ > 0) 52.67 57.77 51.64 29.74 76.64
(S > 0.6) ∧ (P+ > 0) 52.92 57.37 52.74 31.56 74.45
(S > 0) ∧ (P− = 0) 53.72 56.19 60.43 29.74 70.98
(S > 0.6) ∧ (P− = 0) 53.83 55.99 60.43 31.56 69.49
(S > 0) ∧ (P+ > 0) ∧ (P0 > 0) 53.82 56.83 59.14 29.74 72.58
(S > 0.6) ∧ (P+ > 0) ∧ (P0 > 0) 53.90 56.54 59.25 31.56 70.89

result, the late fusion significantly outperforms the individual approaches (one-tailed
z-test, 0.1 % level).

Finally, to model the ‘continuous’ values, SVR is chosen for the determination of
the Metacritic score value in the range of 0–100. As kernel, a radial basis function
with the variance parameter γ = 0.01 proved optimal on the development set. Given
the continuous approximation task, CC and MLE serve as evaluation measure (cf.
Sect. 7.5.2). On the test data of Metacritic, the result is a CC of 0.570 and MLE of
14.1, i.e., on average, the regressor is mistaken by 14.1 with respect to the score. An
obvious challenge for regression training is the non-even distribution of score values
within the Metacritic database (cf. Fig. 10.4).

10.4.1.3 Summary

Two main approaches towards automatic sentiment analysis and opinion mining
where discussed in this section—one open-domain approach based on on-line
knowledge sources reaching from annotated dictionaries (General Inquirer) to
comprehensive semantic networks (ConceptNet), and one based on data. Further,
benchmarks were presented for the particular task of film reviews, but the methods
can be applied to other sentiment tasks, as will be shown in Sect. 11.7, where song
lyrics are analysed in such a way.

The advantage of the on-line knowledge sources-based approach using linguistic
methods, dictionaries, and semantic networks, is that no learning material is required.
Overall, it led to usable results, but the in-domain data-driven approach based on
BoNG features and SVMs reached higher recognition rates. On-line knowledge could
thereby be integrated to resolve 40.5 % of the OOV events and slightly improve
performance. As another way of combination of the two techniques, a late fusion

http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_11
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led to significant gains. The results based on a three-class task, but alternatively
regression by SVR was evaluated.

In the future, more specific term categories could be used from General Inquirer.
Further, in [138] it was shown that ConceptNet can also be exploited directly for
sentiment information. Thus, it could complement General Inquirer in this respect.
Also, multi-word terms and complete phrases could be used directly in ConceptNet.
Of particular help could also be the addition of a named entity recognition in com-
bination with other types of common knowledge sources such as Wikipedia. Next,
out-of-vocabulary resolution could be improved by using more WordNet relations,
such as antonymy, i.e., opposite meaning, or hypernymy, i.e., more general mean-
ing. Finally, OOV N-Grams need to be resolved by a second substitution step after
N-Gram creation.

10.4.2 Short-term States: Emotion and Interest

The recognition of a number of short-term states from speech has been addressed so
far, of which the following non-exhaustive list names some examples:

• mode: speaking style [139] and voice quality [140];
• emotions (full-blown, prototypical): [141];
• emotion-related states or affects: for example, general [142–144], stress [145],

intimacy [146], interest [65, 75], confidence [147], uncertainty [107, 148], decep-
tion [149, 150], politeness [151–153], frustration [154–156], sarcasm [157, 158],
pain [99].

From these, two examples among most researched candidates have been cho-
sen for illustration of methodology and performances: emotion and interest, both
belonging to ‘affective’ speaker states.

The young field of affect recognition from voice has recently gained considerable
interest in the fields of Human-Machine Communication, Human-Robot Commu-
nication, and Multimedia Retrieval. Numerous studies have been seen in the last
decade trying to improve on features and classifiers [159]. One first cooperative
experiment is found in the CEICES initiative [160], where seven sites compared
their classification results under exactly the same conditions and pooled their fea-
tures together for one combined unified selection process. This comparison was not
fully open to the public, which was the motivation to create the INTERSPEECH 2009
Emotion Challenge—the first in an ongoing series of challenges on Computational
Paralinguistics—which are conducted for strict comparability: all participants use
the same database and the same evaluation measures in their experiments. As classes
are unbalanced, the primary measure to optimise is UA (unweighted average recall),
and secondly WA (weighted average recall by number of instances per class—this
is commonly known simply as “accuracy”).
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10.4.2.1 FAU Aibo Emotion Corpus

One of the major needs of the emotion recognition community ever since—perhaps
even more than in many related pattern recognition tasks—is the constant need for
data sets. In the early days of the late 1990s, these have not only been few, but also
small (∼500 turns) with few subjects (∼10), uni-modal, recorded under studio noise
conditions, and acted [161–163]. Further, the spoken content was mostly predefined
(e.g., Danish Emotional Speech (DES), EMO-DB, Speech Under Simulated and
Actual Stress (SUSAS) databases) [164]. These were seldom made public and few
annotators—if any at all—labelled usually exclusively the perceived emotion. Addi-
tionally, these were partly not intended for analysis, but for quality measurement of
synthesis (e.g., DES, EMO-DB).

Today, there are more diverse emotions covered, more elicited or even sponta-
neous sets of many speakers, and larger amounts of instances (up to 10 k and more)
of more subjects (up to 50), that are annotated by more labellers (4 (AVIC)—17
(VAM, [165])) and partly made publicly available. For acted data, equal distribution
among classes is of course easily obtainable. Also transcription is becoming more and
more rich: additional annotation of spoken content and non-linguistic interjections
(e.g., AVIC, Belfast Naturalistic, FAU AIBO, SmartKom databases [164]), multiple
annotator tracks (e.g., VAM), manually corrected pitch contours (FAU AIBO), addi-
tional audio tracks under different noise and reverberation conditions (FAU AIBO),
phoneme boundaries and manual phoneme labelling (e.g., EMO-DB), different units
of analysis, and different levels of prototypicality (e.g., FAU AIBO). At the same
time these are partly also recorded under more realistic conditions (or taken from the
media). Trying to meet the utmost of these requirements, the FAU AIBO database
[166] was chosen for the first Challenge: It is a corpus with recordings of children
interacting with Sony’s pet robot Aibo. The corpus consists of spontaneous, German
speech that is emotionally coloured. The speech is spontaneous, because the chil-
dren were not told to use specific instructions but to talk to the Aibo like they would
talk to a friend. The children were led to believe that the Aibo was responding to
their commands, whereas the robot was actually controlled by a human operator.
The wizard caused the Aibo to perform a fixed, predetermined sequence of actions;
sometimes the Aibo behaved disobediently, thereby provoking emotional reactions.
The data was collected at two different schools, Mont and Ohm, from 51 children
(age 10–13, 21 male, 30 female; about 9.2 h of speech without pauses). Speech was
transmitted with a high quality wireless head set (UT 14/20 TP SHURE UHF-series
with microphone WH20TQG) and recorded with a DAT-recorder (sampling rate
48 kHz, quantisation 16 bit, 48 kHz down-sampled to 16 kHz). The recordings were
segmented automatically into ‘turns’ using a pause threshold of 1 s. Five labellers
(advanced students of linguistics) listened to the turns in sequential order and anno-
tated each word independently from each other as neutral (default) or as belonging to
one of ten other classes of emotion. Since many utterances are only short commands
and rather long pauses can occur between words due to Aibo’s reaction time, the
emotional/emotion-related state of the child can change also within turns. Hence,
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Table 10.18 Number of
instances for the 2-class
emotion problem

# NEG IDL
∑

Train 3 358 6 601 9 959
Test 2 465 5 792 8 257
∑

5 823 12 393 18 216

the data is labelled on the word level. If three or more labellers agreed, the label was
attributed to the word. All in all, there are 48 401 words.

Classification experiments on a subset of the corpus [166] showed that the best unit
of analysis is neither the word nor the turn, but some intermediate chunk being the best
compromise between the length of the unit of analysis and the homogeneity of the
different emotional / emotion-related states within one unit. Hence, manually defined
chunks based on syntactic-prosodic criteria [166] are used here (cf. also [167]). The
whole corpus consisting of 18 216 chunks was used for the 2009 Emotion Challenge.

The two-class problem that was chosen as example for this book consists of the
cover classes NEGative (subsuming angry, touchy, reprimanding, and emphatic) and
IDLe (consisting of all non-negative states). A heuristic approach similar to the one
applied in [166] is used to map the labels of the five labellers on the word level onto
one label for the whole chunk. Since the whole corpus is used, the classes are highly
unbalanced. The frequencies for the two-class problem are given in Table 10.18.
Speaker independence is guaranteed by using the data of one school (Ohm, 13 male,
13 female) for training and the data of the other school (Mont, 8 male, 17 female)
for testing. In the training set, the chunks are given in sequential order and the chunk
id contains the information which child the chunk belongs to. In the test set, the
chunks are presented in random order without any information about the speaker.
Additionally, the transliteration of the spoken word chain of the training set and the
vocabulary of the whole corpus is provided allowing for ASR training and linguistic
feature computation.

For the the second task considered as for dealing with short-term user states,
namely determination of speaker interest, the TUM AVIC database (cf. Sect. 5.3.1)
was used in the follow-up challenge in 2010. It features 2 h of human conversational
speech recording (21 subjects), annotated in five different levels of interest. The
corpus further features a uniquely detailed transcription of spoken content with word
boundaries by forced alignment, non-linguistic vocalisations, single annotator tracks,
and the sequence of (sub-)speaker-turns.

10.4.2.2 Methodology

In the past, the main focus was on prosodic features, in particular pitch, durations
and intensity [168]. Comparably small feature sets (10–100) were first utilised. In
only a few studies, low level feature modelling on a frame level was pursued, usually
by HMM or GMM. The higher success of static feature vectors derived by projection
of the LLD such as pitch or energy by descriptive statistical functional application

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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such as lower order moments (mean, standard deviation) or extrema is probably
justified by the supra-segmental nature of the phenomena occurring with respect to
emotional content in speech. In more recent research, also voice quality features
such as HNR, jitter, or shimmer, and spectral and cepstral features such as formants
and MFCC have become more or less the ‘new standard’. At the same time, brute-
forcing of features (1 000 up to 50 000), e.g., by analytical feature generation, partly
also in combination with evolutionary generation, has become popular. It seems as
if this (slightly) outperforms hand-crafted features while the individual worth of
automatically generated features seems to be lower [74].

Within expert-based hand-crafted features, perceptually more adequate features
have been investigated, reaching from simple log-pitch to Teager energy or more
complex features such as articulatory features (e.g., (de-)centralisation of vowels).
Further, linguistic features are often added these days, and will certainly also be in
the future. However, these demand for robust recognition of speech in the first place.

For the Emotion Challenge, a feature set was provided that should best cover the
described gained knowledge. It sticks to the findings in [53] by choosing the most
common and at the same time promising feature types and functionals covering
prosodic, spectral, and voice quality features. Further, it is limited to a systematic
generation of features. For highest transparency, the openSMILE feature extraction
(cf. Sect. 6.5) was used. In detail, the 16 LLDs chosen are: ZCR from the time
signal, RMS frame energy, pitch frequency (normalised to 500 Hz), HNR by ACF,
and MFCC 1–12. For each of these, the delta coefficients are additionally computed.
Next, the 12 functionals mean, standard deviation, kurtosis, skewness, minimum
and maximum value, relative position, and range as well as two linear regression
coefficients with their MSE are applied on a chunk basis as depicted in full detail
in the Appendix in Table A.1. Thus, the total feature vector per chunk contains
16 · 2 · 12 = 384 features.

For the determination of interest, an extended set of features compared to the
INTERSPEECH 2009 Emotion Challenge [72] as was described above is used.
Speakers’ interest determination was featured as one Challenge task in the INTER-
SPEECH 2010 Paralinguistic Challenge.

The extraction was made by again choosing the open-source Emotion and Affect
Recognition toolkit’s feature extracting backend openSMILE [169] (cf. Sect. 6.5).
This extension intends to better reflect a broader coverage of paralinguistic infor-
mation assessment [170, 171]. 1 582 acoustic features are obtained in total in this
second set by systematic ‘brute-force’ feature generation in three steps: First, the 38
LLDs shown in the Appendix in Table A.1 are extracted at 100 frames per second
with varying window type and size (Hamming, 25 ms for all but pitch with Gaussian,
60 ms) and smoothed by simple moving average low-pass filtering with a window
length of three frames. Next, their first order regression coefficients are added. Then,
21 functionals are applied (cf. Table A.1) per instance in the databases. However, 16
zero-information features (e.g., minimum F0, which is always zero) are discarded.
Finally, the two single features F0 number of onsets and utterance duration are added.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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10.4.2.3 Performance

For provision of baseline results, the two pre-dominant architectures within the field
are considered: Firstly, dynamic modelling of LLD as pitch, energy, MFCC, etc.
by HMMs (only emotion). Secondly, static modelling using supra-segmental infor-
mation obtained by statistical functional application to the same LLD on the chunk
level. This is done either by classification for emotion or regression in the case of
interest.

It was decided to entirely rely on two standard publicly available tools widely
used in the community: the Hidden Markov Model Toolkit (HTK)10 [172] in the
case of dynamic modelling, and the WEKA 3 Data Mining Toolkit11 [131] in the
case of static modelling. This ensures easy reproducibility of the results and reduces
description of parameters to a minimum: Unless specified, defaults are used.

Constantly picking the majority class for the two-class emotion task of the 2009
Emotion Challenge would result in an accuracy (WA) of 70.1 %, which we consider
here, while the chance level for UA is simply 50 %, respectively. As instances are
unequally distributed among classes, balancing of the training material to avoid clas-
sifier over-fitting is considered. This can be eased by applying the Synthetic Minority
Oversampling TEchnique (SMOTE) [173] as data-driven up-sampling. Note that up-
sampling does not have any influence in the case of generative modelling: For each
class one HMM is trained individually and equal priors are assumed. Table 10.19
depicts these results for the two-class emotion task (classification by linear left-right
HMM, one model per emotion, diverse number of states, two Gaussian mixtures,
6 + 4 Baum-Welch re-estimation iterations, Viterbi) by UA and WA. With increased
temporal modelling, i.e., a higher state number, a gradual shift towards preference
of NEG is observed in the considered two-class problem case. In Table 10.20 results
for this 2-class emotion task are further shown employing the whole feature set and
using SVM (SMO learning, linear kernel, pairwise multi-class discrimination). For
SVM, an additional pre-processing step is performed: the features are standardised,
or z-normalised, i.e.,each feature is normalised to have zero mean and variance one.
Table 10.20 shows the influence of these two pre-processing steps and their impact
on the target evaluation measure UA. Note that the order of operations is crucial, as
the standardisation leads to different results if classes are balanced.

Table 10.21 then depicts the results for the interest baseline. The measures for
this task are the Pearson Correlation Coefficient (CC) and the mean linear error

Table 10.19 Baseline results
for 2-class emotion by
dynamic modelling with
HMM

#States UA [%] WA [%]

2-class 1 62.3 71.7
3 62.9 57.5
5 66.1 65.3

10 http://htk.eng.cam.ac.uk/docs/docs.shtml
11 http://www.cs.waikato.ac.nz/ml/weka/

http://htk.eng.cam.ac.uk/docs/docs.shtml
http://www.cs.waikato.ac.nz/ml/weka/
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Table 10.20 Baseline results
for 2-class emotion by static
modelling with SVM. Diverse
pre-processing strategies:
training balancing (B) by
SMOTE and standardisation
(S)

Process UA [%] WA [%]
1 2

– – 62.7 72.6
S – 64.9 72.3
B – 60.5 68.9
S B 67.6 68.3
B S 67.7 65.5

Table 10.21 Baseline results for continuous interest by static modelling with unpruned REP-trees
(25 cycles) in random-sub-space meta-learning (500 Iterations, sub-space size 5 %)

CC MLE

Train versus develop
Interest 0.604 0.118
Train + develop versus test
Interest 0.421 0.146

(MLE) as found in other studies (e.g., [65, 165]), where CC is the primary measure.
Note that the continuous modelling makes balancing more challenging—none was
used for this baseline. Here, a clear downgrade is observed for the apparently more
‘challenging’ test condition.

10.4.2.4 Summary

The baseline results clearly demonstrate the difficulty of handling not only pre-
selected prototypical cases, but all speech that was recorded—just as needed in a
working system. The baseline for the emotion task was outperformed by the winners
of the challenge and by follow-up work, e.g., in [174] and [175]—the latter is the
best result reported by individual groups to date at 70.5 % UA.

The overall best result to date was gained by fusion of the N best participants of the
challenge [74]: 71.2 % UA. These results demonstrate that fusion of several engines
can slightly improve the results, however, at a rather high overall computational
effort. For interest, the baseline was outperformed first in [176], and later in [177]
by the use of LSTM networks at 0.459 CC and by inclusion of linguistic cues CC
was 0.504 on the test set.

10.4.3 Long-term Traits: Age, Gender, Height

On the opposite end of the temporal scale, we find the long-term traits. As before,
let us start by naming most researched candidates in the following list:



10.4 Paralinguistics: States and Traits 199

• biological trait primitives such as height [76, 178], weight, age [75, 179], gender
[75, 179];

• group/ethnicity membership: race/culture/social class with a weak borderline
towards other linguistic concepts, i.e., speech registers such as dialect or nativeness
[180];

• personality traits: likability [181, 182];
• personality in general, ‘Big Five’ personality traits (openness, conscientiousness,

extroversion, agreeableness, and neuroticism) [183–185];
• speaker idiosyncrasies, i.e., speaker-ID [186].

As examples, the traits age and gender, as were featured in the INTERSPEECH
2010 Paralinguistic Challenge, and additionally speaker height are discussed in the
ongoing. As for age and gender, either mostly prosodic supra-segmental features
have been employed, or frame-level features based on MFCCs, and their optimal
fusion [187]. For speaker height, very sparse research was carried out so far [178,
188]. The authors in [188] examined the ability of listeners to determine the speaker’s
height and weight from speech samples and found that especially for male speakers,
listeners are able to estimate a speaker’s height and weight to a certain degree. A
similar study is documented in [189] and deals with the assignment of photographs
to voices as well as the estimation of a speaker’s age, height, and weight via speech
samples. The relationship between formant frequencies and body size was examined
in [190]. Especially for female participants, a significant correlation between formant
parameters and height could be found. Another study revealed significant negative
correlations between F0, formant dispersion and body shape and weight of male
speakers [191].

For the actual experiments, the aGender corpus was provided for age determi-
nation in four groups and gender determination in three groups (female, male, and
children). It consists of 46 h of telephone speech from 954 speakers. For height deter-
mination in centimetres the commonly known TIMIT corpus is picked—though orig-
inally intended for automatic speech recognition experimentation, it provides rich
speaker trait information and speakers in sufficient number. This meta information
includes the speaker trait target task height with the additional speaker information
of speaker age, gender, dialect region, education level, and race. Note that the term
‘race’ stems from the available TIMIT corpus meta-information (cf. also Sect. 11.8).

As feature information the set provided for the INTERSPEECH 2010 Paralin-
guistic Challenge baseline calculation is used for all three traits. Note, however, that
height assessment was not part of the 2010 challenge and is only featured here as
additional long-term trait example. Classification and regression of instances in this
systematically brute-forced feature space is done with SVM and SVR—a choice
motivated by the high popularity of these two variants in the broader field of speaker
state and trait assessment [83, 192, 193].

http://dx.doi.org/10.1007/978-3-642-36806-6_11
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10.4.3.1 aGender Corpus

For the recording of the aGender corpus, an external company was employed to
identify possible speakers of the targeted age and gender groups [75, 179]. The sub-
jects received written instructions on the procedure and a financial reward, the calls
were free of charge. They were asked to ring up the recording system six times with
a mobile phone alternating indoor and outdoor to obtain different recording envi-
ronments. They were prompted by an automated interactive voice response system
to repeat given utterances or produce free content. Between each session a break
of one day was scheduled to ensure more variations of the voices. The utterances
were stored on the application server as 8 bit, 8 kHz, A-law. To validate the data, the
associated age cluster was compared with a manual transcription of the self stated
date of birth.

Four age groups—Child (C), Youth (Y), Adult (A), and Senior (S)—were defined.
Since children are not subdivided into female and male, this results in seven classes
as shown in Table 10.22.

The content of the database was designed in the style of the Speech Dat corpora.
Each of the six recording sessions contains 18 utterances taken from a set of utter-
ances listed in detail in [194]. The topics of these were command words, embedded
commands, month, week day, relative time description, public holiday, birth date,
time, date, telephone number, postal code, first name, last name, yes/no with accord-
ing free or pre-set inventory and according ‘eliciting’ questions as “Please tell us
any date, for example the birthday of a family member”.

In total, 47 h of speech in 65 364 single utterances of 954 speakers were col-
lected. Note that, not all volunteers completed all six calls, and there were cases
where some called more often than six times, resulting in different numbers of
utterances per speaker. The mean utterance length was 2.58 s. 25 speakers were
selected randomly for each of the seven classes as a fixed Test partition (17 332
utterances, 12.45 h) and the other 770 speakers as a Training partition (53 076 utter-
ances, 38.16 h), which was further subdivided into Train (32 527 utterances in 23.43 h
of speech of 471 speakers) and Develop (20 549 utterances in 14.73 h of speech of

Table 10.22 Age and gender classes of the aGender corpus, where f and m abbreviate female and
male, and x represents children without gender discrimination. The last two columns represent the
number of speakers/instances per partition (Train and Develop)

Class Group Age Gender # Train # Develop

1 C hild 7–14 x 68 / 4 406 38 / 2 396
2 Y outh 15–24 f 63 / 4 638 36 / 2 722
3 Y outh 15–24 m 55 / 4 019 33 / 2 170
4 A dult 25–54 f 69 / 4 573 44 / 3 361
5 A dult 25–54 m 66 / 4 417 41 / 2 512
6 S enior 55–80 f 72 / 4 924 51 / 3 561
7 S enior 55–80 m 78 / 5 549 56 / 3 826
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Fig. 10.6 Age (in years)
histograms for the train and
develop partitions of aGender
[75]
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299 speakers) partitions. Overall, this random speaker-based partitioning results in
roughly 40/30/30 % Train/Develop/Test distribution. Table 10.22 lists the number of
speakers and the number of utterances per class in the Train and Develop partitions,
Fig. 10.6 depicts the number of speakers as a histogram over their age.

The age group can be handled either as combined age/gender task by classes
{1, . . . , 7} as indicated in Table 10.22 or as age group task independent of gender
by classes {C, Y, A, S}. For comparison of results though, only the age group infor-
mation is used by mapping {1, . . . , 7} → {C, Y, A, S} as denoted. For gender, the
classes { f, m, x} have to be classified, as gender discrimination of children is con-
siderably difficult, yet it was again decided to keep all instances (cf. Sect. 10.4.2 for
both tasks.

10.4.3.2 TIMIT Database

The TIMIT corpus [195] is well suited for height determination experiments in the
sense that it contains a sufficiently high number of speakers—630 in total. This is
needed when it comes to speaker trait assessment in order to obtain meaningful and
statistically significant results. Each of speaker spoke ten phonetically rich sentences.
The fact that these speakers pronounce the same sentences renders the paralinguistic
task somewhat text dependent, as for several other databases, e.g., partly the aGender
corpus above and in the field of emotion and affective speaker state recognition
where the Berlin, the Danish, and the eNTERFACE emotional speech databases or
the Speech Under Simulated and Actual Stress database show higher limitation in
phonetic content variation [161]. As stated, in addition to featuring sufficient different
speakers, TIMIT provides a rich amount of meta-information on its speakers’ traits:
their age, gender, height, dialect—one out of 8 major American English ones—, their
highest education degree, and race. All TIMIT recordings are in 16 bit, 16 kHz.

Figure 10.7 depicts the distribution of height for the speakers in TIMIT. The non-
continuous distribution of height in the histrogram is because of TIMIT originally
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Fig. 10.7 Speaker height
distribution in TIMIT’s train
and test partitions by number
of instances and speakers
(speaker number is shown by
the same bars, but the value
has to be divided by ten, as
each speaker spoke ten turns)
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providing speaker height in the units of feet and inches. For better comparability,
though, it was decided to follow the conversion to the SI unit of meters following
the result presentation as given in [178].

TIMIT also has a definition of train (462 speakers) and test (168 speakers) parti-
tions to which we stick in the oncoming experiments.

10.4.3.3 Methodology

Due to the size of the aGender corpus, a limited feature set was provided in the
Challenge consisting of 450 features This is reached by reducing the number of
descriptors from 38 to 29 and that of functionals from 21 to 8 [75, 179]. For height
determination, the full set is used.

The Weka toolkit is used [196] for classification and regression. SVM are preferred
for age and gender classification experiments; the general Support Vector paradigm
further offers SVR for the continuous ordinal task of height. For their training SMO
is employed. As kernel function a linear kernel was found optimal in experiments
on training exclusively over the different tasks. A kernel complexity of 1 and 0.05 is
chosen for classification and regression, respectively. In the case of speaker height
determination, additional cases are considered to demonstrate the mutual dependency
of speaker traits. To this end, ground truth information on other speaker traits is
added as feature information to the acoustic vector in different variations. The use of
ground truth information is intentional to show the upper benchmark effect of mutual
dependence.

10.4.3.4 Performance

Table 10.23 shows results for the age and gender baselines by UA and WA. Visibly,
the ‘blind’ Test partition shows better results, likely due to the now larger training
set. Interestingly, in several cases a 7-group sub-model, separating age groups for
gender recognition and vice versa, performs slightly better than direct modelling for
the UA. This can be seen as first indication of mutual task dependence.
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Table 10.23 Age and gender baseline results obtained by SMO learnt pairwise SVM with linear
Kernel

Sub-Ch. Task UA [%] WA [%]
Train versus develop
– {1, . . . , 7} 44.24 44.40
Age {1, . . . , 7} → {C, Y, A, S} 47.11 46.17

{C, Y, A, S} 46.22 45.85
Gender {1, . . . , 7} → {x, f, m} 77.28 84.60

{x, f, m} 76.99 86.76
Train + develop versus test
– {1, . . . , 7} 44.94 45.60
Age {1, . . . , 7} → {C, Y, A, S} 48.83 46.71

{C, Y, A, S} 48.91 46.24
Gender {1, . . . , 7} → {x, f, m} 81.21 84.81

{x, f, m} 80.42 86.26

Table 10.24 Selected speaker independent results for height (H) recognition on the TIMIT corpus
test partition; contextual information by feature inclusion of age (A), gender (G), American English
dialect (D), education level (E), race (R) or all of these (All)

Context CC MLE [cm]

– 0.296 7.05
R 0.286 7.09
G 0.299 7.01
A 0.314 6.94
A,G 0.317 6.91
A,R 0.302 7.00
G,R 0.290 7.05
A,G,R 0.304 6.98
All 0.306 7.07

CC, MLE for regression (speaker height in centimetres). 1 582 acoustic features, classification by
SVR with linear Kernel, SMO, complexity 0.05

Table 10.24 next depicts results of the speaker height assessment task in strict
speaker independence by employing TIMIT’s training and test partitions as stated
above and exclusively adding speaker contextual meta-information by selected (pairs
of) supplementary traits as additional feature(s) to the acoustic vector. Given the
case of regression and a continuous ordinal task formulation, CC and MLE are the
measures of performance. Gains can be observed by gradual addition of ground-truth
supplementary speaker trait information aside of the target task. Little improvement
is found for the height recognition task by gender inclusion (1.2 % relative correlation
improvement), age inclusion (6.2 %) and combined age and gender inclusion (7.3 %)
with the latter being the only significant one. Interestingly, age inclusion helps more
for the assessment of height than gender inclusion, even though all speakers can
be assumed to have reached their maximal height given their ages above maturity.
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At the same time, race meta-information constantly down-grades height assessment
in these experiments.

10.4.3.5 Summary

The automatic assessment of speaker’s age, gender, and height was shown. Assessing
age and gender in combination was observed to prevail over individual assessment.
As for the Emotion Challenge, the best participants’ results were fused by majority
vote. This led to the so far unrivalled upper benchmark of 53.6 % UA for the age
class, and 85.7 % UA for the gender classes—again proving the superiority of fusion
of multiple engines. When classifying height, information on other traits was added
as features. An improvement was observed here as well. There obviously are many
other approaches to exploit such knowledge, e.g., by building age, gender or height
dependent models for any of the other tasks. This will require further experience in
the case of age and height dependent models as to this end reasonable quantisation is
required. A further next step will be to find methods to automatically estimate any of
these at the same time by mutual exploitation of each other. This can be particularly
interesting given different forms of task representation (continuous ordinal or binary)
as was chosen here.

Provided that speech databases contain a transcription of the targeted speaker
information, the combination of different corpora might result in more accurate
results and a versatile applicability of paralinguistic information extraction systems.
Thus, cross-corpus evaluations as published for emotion recognition in [161] could
be part of future research on combined speaker traits analysis.

Finally, the automatic assessment of certain speaker characteristics such as age
potentially also profits from the inclusion of linguistic features in addition to acoustic
descriptors. This in turn would require an automatic speech recognition module
extracting linguistic information for combined acoustic-linguistic analysis. In the
field of emotion recognition [83], recent studies have shown that even though the
word accuracies of automatic speech recognisers processing spontaneous, emotional
speech are lower than the word accuracies of dictation systems recognising well-
articulated, read speech, the inclusion of speech recognisers for linguistic feature
generation reliably boosts emotion recognition accuracies. It is of interest whether a
similar behaviour can be observed in the case of traits.

10.4.4 Mid-term: Intoxication and Sleepiness

Apart from the short-term related speaker state emotion, mid-term states exist which
are not permanent, yet do not change instantly. These comprise, for example:

• (partly) self-induced: sleepiness [197], intoxication (e.g., alcoholisation [77, 198,
199]), health state [104], mood (e.g., depression [200]);
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• structural (behavioural, interactional, social) signals: role in dyads, groups, and
the like [201], friendship and identity [202], positive/negative attitude [203], (non-
verbal) social signals [204], entrainment [205].

Two such were picked out as a central theme in another follow-up challenge
which focused on the crucial application domain of security and safety: the com-
putational analysis of intoxication and sleepiness in speech. Apart from intelligent
and socially competent future agents and robots, main applications are found in the
medical domain and surveillance in high-risk environments such as driving, steering
or controlling [206].

In [207], several differences are shown in the quality of the vocal articulation after
a night of sleep deprivation (reduced intonation and a slowing down of the vocal flow);
in [208], a reduction of the spontaneous dialogues and performance degradation of
the subjects is observed under similar conditions. Generally speaking, these results
suggest effects of sleep deprivation on communication, especially with a reduction of
the spontaneous verbalisations, trouble finding words, and a degradation of the artic-
ulation. Subjects under sleep deprivation produce less details and show less empathy
toward a team-mate [209]. Some stressors such as alcohol are likely to influence
articulators, which helps to explain intra-speaker and inter-speaker variability [210].

For the experimental evaluation of these tasks, the Alcohol Language Corpus
(ALC) and the Sleepy Language Corpus (SLC) with genuine intoxicated and sleepy
speech were provided [77]. The first consists of 39 h of speech from 154 speakers
in gender balance. It serves to evaluate features and algorithms for the estimation
of speaker intoxication in gradual blood alcohol concentration (BAC). The second
features 21 h of speech recordings of 99 subjects, annotated in the 10 different levels
of sleepiness of the Karolinska Sleepiness Scale (KSS) [211].

The verbal material is of different complexity reaching from sustained vowel
phonation to natural communication. In part, the corpora feature detailed speaker
meta data, orthographic transcript, phonemic transcript, segmentation, and multiple
annotation tracks. Again, both were given with distinct definitions of test, develop-
ment, and training partitions, with a strict speaker independence as needed in many
real-life settings. Two tasks are addressed:

First, the alcoholisation of a speaker is determined as two-class classification task:
alcoholised for a BAC exceeding 0.5 per mill12 or non-alcoholised for a BAC equal
or below 0.5 per mill. The measure of interest is—as before—UA of these two classes
to better compensate for imbalance between classes.

Second, the sleepiness of a speaker is determined by a suited algorithm and
acoustic features. While the annotation provides sleepiness from 1–10 on the KSS,
only two classes are recognised: sleepiness for a level exceeding 7.5 on the KSS, and
non-sleepiness for a level equal or below 7.5. Again, the measure is UA of the two
classes and a further enlarged standard feature set is used [77].

12 Per mill BAC by volume (standard in most central and eastern European countries; further ways
exist, e.g., percent BAC by volume, i.e., the range resembles 0.028 to 0.175 per cent (Australia,
Canada, USA), points by volume (GB), per mill by BAC per mass (Scandinavia) or part per million.)
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Table 10.25 Partitions of ALC. ‘NAL’ denotes recordings of non-alcoholised, i.e., BAC per mill
in the interval [0; 0.5], and ‘AL’ recordings of alcolised speakers, i.e., BAC per mill in [0.5; 1.75]

# ALC NAL AL total

Train 3750 1 650 5 400
Develop 2790 1 170 3 960
Test 1620 1 380 3 000
Train + develop 6540 2 820 9 360
Train + develop + test 8160 4 200 12 360

10.4.4.1 ALC Database

A brief description of the ALC project is now given [77]. Details can be found in
[199, 210].

ALC comprises 162 speakers (84 male, 78 female) within the age range 21–75,
mean age 31.0 years and standard deviation 9.5 years, from five different locations
in Germany. Non-native speakers, speakers with a strong dialect as well as non-
cooperative speakers were excluded from participation. To obtain a gender balanced
set, 154 speakers (77 male, 77 female) are selected randomly; these are further ran-
domly partitioned into gender balanced training, development and test sets according
to Table 10.25. Speakers voluntarily underwent a systematic intoxication test super-
vised by the staff of the Institute of Legal Medicine, Munich. Before the test, each
speaker chose the BAC she/he wanted to reach during the intoxication test. Using both
Watson- and Widmark formula [210], the amount of required alcohol for each per-
son was estimated and handed to the subject. After consumption, the speaker waited
another 20 minutes before undergoing a breath alcohol concentration test (BRAC)
and a blood sample test (BAC). However, only the BAC value is considered. The
possible range is between 0.28 and 1.75 per mill. Immediately after the tests, the
speaker was asked to perform the ALC speech test which lasted no longer than 15
minutes, to avoid significant changes caused by fatigue or saturation/decomposition
of the measured blood alcohol level.

At least two weeks later the speaker was required to undergo a second recording
in sober condition, which took about 30 minutes. Both tests took place in the same
acoustic environment and were supervised by the same member of the staff, who
also acted as the conversational partner for dialogue recordings.

The speech signal was recorded with two different microphones of which the head-
set Beyerdynamic Opus 54.16/3 was used. It is connected to an MAUDIO MobilePre
USB audio interface were the analogue signal is converted to digital and transferred
to a laptop via USB. Signals are down-sampled to 16 kHz. All speakers are prompted
with the same material. Three different speech styles are part of each ALC recording:
read speech, spontaneous speech, and command & control.
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10.4.4.2 SLC Database

99 participants took part in six partial sleep deprivation studies for the recording of the
Sleepy Language Corpus (SLC) [75, 212]. The mean age of subjects was 24.9 years,
with a standard deviation of 4.2 years and a range of 20–52 years. The recordings took
place in a realistic car environment or in lecture-rooms. Audio was recorded with a
sampling rate of 44.1 kHz, then down-sampled to 16 kHz; quantisation is 16 bit, the
microphone-to-mouth distance was 0.3 m.

The speech data consists of different tasks as follows: isolated vowels (sustained
vowel phonation, sustained loud vowel phonation, and sustained smiling vowel
phonation), read speech from “Die Sonne und der Nordwind” (the story of ‘the
North Wind and the Sun’ in German, widely used within phonetics, speech pathol-
ogy, and alike), commands and requests (10 simulated driver assistance system com-
mands/requests in German, e.g.,“Ich suche die Friesenstrasse” (‘I am looking for
the Friesen street’), and four simulated pilot-air traffic controller communication
statements), and a description of a picture and a regular lecture.

A well established, standardised subjective sleepiness questionnaire measure, the
Karolinska Sleepiness Scale, was used by the subjects (self-assessment) and addi-
tionally by the two experimental assistants (observer assessment, given by assessors
who had been formally trained to apply a standardised set of judging criteria). In the
version used, scores range from 1–10: extremely alert (1), very alert (2), alert (3),
rather alert (4), neither alert nor sleepy (5), some signs of sleepiness (6), sleepy but
no effort to stay awake (7), sleepy and some effort to stay awake (8), very sleepy
with great effort to stay awake / struggling against sleep (9), extremely sleepy, cannot
stay awake (10). Given these verbal descriptions, scores greater than 7.5 appear to
be most relevant from a practical perspective as they describe a state in which the
subject feels unable to stay awake.

For training and classification purposes, the recordings (mean KSS=5.9, standard
deviation KSS=2.2) were divided into two classes: not sleepy (‘NSL’) and sleepy
(‘SL’) samples with a threshold of 7.5 (approx. 94 samples per subject; in total 9 277
samples). A more detailed description of the data can be found in [197, 212, 213].

The available turns were divided into males (m) and females (f) per study. Then, the
turns from male and from female subjects were split speaker-disjunctive, in ascending
order of subject ID, into training (roughly 40 %), development (30 %), and test (30 %)
instances. This subdivision not only ensures speaker-independent partitions, but also
provides for stratification by gender and study setup (environment and degree of sleep
deprivation). Out of the 99 subjects, 36 (20 f, 16 m) were assigned to the training, 30
(17 f, 13 m) to the development, and 33 (19 f, 14 m) to the test set. All turns which
include linguistic cues for the sleepiness level (e.g.,“Ich bin sehr müde”—“I’m very
tired”) were removed from the test set—188 in total. The distribution of instances is
given in Table 10.26.
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Table 10.26 Partitions of
SLC. ‘NSL’ denotes
recordings of non-sleepy, i.e.,
KSS in the interval [1;7.5],
and ‘SL’ recordings of sleepy
speakers, i.e., KSS ]7.5;10]

# SLC NSL SL Sum

Train 2 125 1 241 3 366
Develop 1 836 1 079 2 915
Test 1 957 851 2 808
Train + develop 3 961 2 320 6 281
Train + develop + test 5 918 3 171 9 089

10.4.4.3 Methodology

For detection of intoxication and sleepiness in the INTERSPEECH 2011 Speaker
State Challenge, an extended set of features with respect to the INTERSPEECH 2009
Emotion Challenge (384 features) (cf. Section 10.4.2) [72] and INTERSPEECH 2010
Paralinguistic Challenge (1 582 features) (cf. Section 10.4.3) [75] was given. Features
were again extracted with the openSMILE feature extractor [50] (see also Sect. 6.5).

The feature set consists of 4 368 features comprising features known as relevant
for these tasks [214, 215] built from three sets of LLDs and one corresponding set
of functionals applied on the recording level for each LLD set. The LLD sets are
given in Table A.1 in the Appendix. A major novelty concerning LLD compared to
the previous challenge set is the auditory spectrum derived loudness measure and
the use of RASTA-style filtered auditory spectra instead of Mel-spectra, as well as
a slightly extended set of statistical spectral descriptors (such as entropy, variance,
etc.).

Further, a base set of 33 functionals is introduced as shown in Table A.1 in the
Appendix. Additions include the use of linear predictive coding coefficients and
linear prediction gain as functionals, as well as the standard deviation of the intra-
peak distances. In the set of functionals applied to the spectral and energy related
LLD, the standard deviation of the segment lengths are further additions. Also, a new
algorithm for splitting the contour into segments was used. Previously this was based
on delta thresholding, where a new segment was started when the signal rose by a
pre-defined relative (to the signal’s range) amount in a short time frame. Here, a new
segment boundary is given each time the LLD’s value (after simple moving average
filtering with 3 frames width) crosses (min + 0.25 · range) and (min + 0.75 · range).

To the 54 energy and spectral LLD and their first order deltas, the base functional
set and the mean, max, min, and the standard deviation of the segment length are
applied, resulting in 3 996 features. To the 5 pitch and voice quality LLD and their
first order deltas, the base functional set as well as the quadratic mean and the rise
and fall durations of the signal are applied only to voiced regions (probability of
voicing greater 0.7). This adds another 360 features. Another 12 features are obtained
by applying a small set of six functionals to the F0 contour (including non-voiced
regions where F0 is set to 0) and its first order derivative as also shown in Table A.1
in the Appendix. Please note that, segments in this case correspond to continuous
voiced regions, i.e., where F0 is > 0.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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10.4.4.4 Performance

The WEKA data mining toolkit was again used for classification [196] with linear
kernel SVM trained with the SMO algorithm. For parameter adjustment, optimisation
of the complexity on the development partition per corpus is considered. Thereby, the
complexity influences the number of Support Vectors for the hyperplane construction.
Further, WEKA’s implementation of SMOTE [173] is applied again, as was done for
the INTERSPEECH 2009 Emotion Challenge baseline (cf. Sect. 10.4.2), to balance
instances in the respective learning partitions. If training and development partitions
are united, SMOTE is applied subsequently to the unification. The results of the SVM
complexity optimisation when training on the train partitions of ALC and SLC and
testing on the respective development partitions are shown in Fig. 10.8a for ALC,
and Fig. 10.8b for SLC in terms of UA. In these figures we further take a look at
evaluation of the former feature sets of the 2009 and 2010 challenges in comparison
to the one provided for this challenge.

As can be seen, the new feature set prevails throughout all conditions on these
tasks. Based on the optimal complexity as found on the development partitions,
Table 10.27 shows baseline results for intoxication (left) and sleepiness (right) by
UA and WA. As the distribution among classes is not balanced, the main measure
is again UA as earlier stated. Results are given for training on the train partition and
testing on the development partition, as well as for training on the unification of the
training and development partitions and testing on the test partition.

Fig. 10.8 Optimisation of
SVM complexity by UA on
the development partitions of
the ALC and SLC corpora
when training on the training
partitions after SMOTE. Three
different feature sets are
evaluated (cf. Table 10.27)
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Table 10.27 Intoxication and sleepiness baseline results by UA and WA. SMO learnt pairwise
SVM with linear Kernel, complexity optimised on development partition to 0.01 (intoxication) and
0.02 (sleepiness)

[%] Intoxication Sleepiness
Features UA WA UA WA

Train versus develop
IS 2009 EC 57.4 65.3 65.3 64.2
IS 2010 PC 61.6 66.1 65.1 66.4
IS 2011 SSC 65.3 69.2 67.3 69.1
Train + develop versus test
IS 2009 EC 60.3 60.2 68.0 72.4
IS 2010 PC 63.2 62.6 70.2 72.8
IS 2011 SSC 65.9 66.4 70.3 72.9

SMOTE on (united) learning instances. Feature sets IS 2009 EC, IS 2010 PC, and IS SSC 2011 cor-
respond to the official sets of the Challenges (Emotion [72], Paralinguistic [75, 179], and Speaker
State [77] held at INTERSPEECH in the respective years)

10.4.4.5 Summary

The automatic recognition of speakers’ intoxication and sleepiness was shown. As
for the previous challenges, majority voting of the best participants’ results lead to
the overall best results of UA 72.2 % (intoxication), and UA 72.5 % (sleepiness).

In [216], however, it was shown how intoxication recognition performance can be
further boosted by incorporating not a single speech-chunk, but a series of such. This
makes sense, as we are dealing with temporally ‘more permanent’ speaker states. In
addition, focus on specific linguistic entities such as tongue breakers was shown to
be beneficial. It seems promising to further elaborate on this findings for other more
permanent states and traits.

One of the other most promising future directions seems to be the coupling of
tasks—all these are somewhat influencing each other, and it seems intuitive to assess
for example age and sleepiness or emotion and gender together rather than in isola-
tion. Further ideas for future research and a summary of recent trends is also found
in [217].
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115. Schuller, B., Wimmer, M, Arsić, D., Moosmayr, T., Rigoll, G.: Detection of security related
affect and behaviour in passenger transport. In: Proceedings INTERSPEECH 2008, 9th
Annual Conference of the International Speech Communication Association, incorporating
12th Australasian International Conference on Speech Science and Technology, SST 2008,
pp. 265–268. Brisbane, Australia. ISCA/ASSTA, ISCA (2008)

116. Kwon, H., Berisha, V., Spanias, A.: Real-time sensing and acoustic scene characterization
for security applications. In: 3rd International Symposium on Wireless Pervasive Computing,
ISWPC 2008, Proceedings, pp. 755–758 (2008)

117. Clavel, C., Vasilescu, I., Devillers, L., Richard, G., Ehrette, T.: Fear-type emotion recognition
for future audio-based surveillance systems. Speech Commun. 50(6), 487–503 (2008)

118. Boril, H., Sangwan, A., Hasan, T., Hansen, J.: Automatic excitement-level detection for sports
highlights generation. In: Proceedings of the Interspeech 2010, pp. 2202–2205. Makuhari,
Japan (2011)

119. Turney, P.D.: Thumbs up or thumbs down? Semantic orientation applied to unsupervised
classification of reviews. In: Proceedings of the 40th Annual Meeting of the Association for
Computational Linguistics (ACL), pp. 417–424. Philadelphia (2002)

120. Dave, K., Lawrence, S., Pennock, D.M.: Mining the peanut gallery: opinion extraction and
semantic classification of product reviews. In: Proceedings of the 12th international conference
on World Wide Web, pp. 519–528. Budapest, Hungary, ACM (2003).



218 10 Applications in Intelligent Speech Analysis

121. Yi, J., Nasukawa, T., Bunescu, R., Niblack, W.: Sentiment analyzer: extracting sentiments
about a given topic using natural language processing techniques. In: Proceedings of the
Third IEEE International Conference on Data Mining, pp. 427–434 (2003)

122. Popescu, A., Etzioni, O.: Extracting product features and opinions from reviews. In: Proceed-
ings of the Conference on Human Language Technology and Empirical Methods in Natural
Language Processing, pp. 339–346. Association for Computational Linguistics Morristown,
NJ, USA (2005)

123. B. Liu, M. Hu, and J. Cheng. Opinion observer: analyzing and comparing opinions on the
web. In: WWW ’05: Proceedings of the 14th international conference on World Wide Web,
pp. 342–351. New York, NY, ACM (2005)

124. Ding, X., Liu, B., Yu, P.S.: A holistic lexicon-based approach to opinion mining. In: WSDM
’08: Proceedings of the International Conference on Web Search and Web Data Mining, pp.
231–240, New York, NY, USA, ACM (2008)

125. Das, S.R., Chen, M.Y.: Yahoo! for amazon: sentiment parsing from small talk on the web. In:
Proceedings of the 8th Asia Pacific Finance Association Annual Conference (2001)

126. Pang., B., Lee, L., Vaithyanathan, S.: Thumbs up? Sentiment classification using machine
learning techniques. In: Proceedings Conference on Empirical Methods in Natural Language
Processing (EMNLP), pp. 79–86. Philadelphia, PA (2002)

127. Zhuang, L., Jing, F., Zhu, X.-Y.: Movie review mining and summarization. In: Proceedings of
the 15th ACM International Conference on Information and Knowledge Management (CIKM
’06), pp. 43–50, New York, NY, USA, ACM (2006)

128. Porter, M.F.: An algorithm for suffix stripping. Program 3(14), 130–137 (October 1980)
129. Marcus, M., Marcinkiewicz, M., Santorini, B.: Building a large annotated corpus of english:

the Penn Treebank. Comput. Linguist. 19(2), 313–330 (1993)
130. Sha, F., Pereira, F.: Shallow parsing with conditional random fields. In: NAACL ’03: Pro-

ceedings of the 2003 Conference of the North American Chapter of the Association for
Computational Linguistics on Human Language Technology, pp. 134–141. Morristown, NJ,
USA. Association for Computational Linguistics (2003)

131. Witten, I.H., Frank, E.: Data Mining: Practical Machine Learning Tools and Techniques, 2nd
edn. Morgan Kaufmann, San Francisco (2005)

132. Wiebe, J., Wilson, T., Bell, M.: Identifying collocations for recognizing opinions. In: Pro-
ceedings of the ACL-01 Workshop on Collocation: Computational Extraction, Analysis, and
Exploitation, pp. 24–31 (2001)

133. Wilson, T., Wiebe, J., Hoffmann, P.: Recognizing contextual polarity in phrase-level sentiment
analysis. In: HLT ’05: Proceedings of the conference on Human Language Technology and
Empirical Methods in Natural Language Processing, pp. 347–354. Morristown, NJ, USA,
Association for Computational Linguistics (2005)

134. Turney, P.D., Littman, M.L.: Measuring praise and criticism: Inference of semantic orientation
from association. ACM Trans. Inf. Syst. 21(4), 315–346 (October 2003)

135. Esuli, A., Sebastiani, F.: Determining term subjectivity and term orientation for opinion min-
ing. In: Proceedings of the 11th Conference of the European Chapter of the Association for
Computational Linguistics (EACL ’06), Trento, Italy (2006)

136. Lizhong, W., Oviatt, S., Cohen, P.R.: Multimodal integration—a statistical view. IEEE Trans.
Multimed. 1, 334–341 (1999)

137. Wöllmer, M., Al-Hames, M., Eyben, F., Schuller, B., Rigoll, G.: A multidimensional dynamic
time warping algorithm for efficient multimodal fusion of asynchronous data streams. Neu-
rocomputing 73(1–3), 366–380 (2009)

138. Liu, D.: Automatic mood detection from acoustic music data, pp. 13–17. In: Proceedings
International Conference on Music, Information Retrieval (2003)

139. Nose, T., Kato, Y., Kobayashi, T.: Style estimation of speech based on multiple regression
hidden semi-markov model. In: Proceedings INTERSPEECH 2007, 8th Annual Conference
of the International Speech Communication Association, pp. 2285–2288. Antwerp, Belgium,
ISCA, ISCA (2007)



References 219

140. Zhang, C., Hansen, J.H.L.: Analysis and classification of speech mode: whispered through
shouted. In: International Speech Communication Association—8th Annual Conference of
the International Speech Communication Association, Interspeech 2007, vol. 4, pp. 2396–
2399 (2007)

141. Scherer, K.R.: Vocal communication of emotion: a review of research paradigms. Speech
Commun. 40, 227–256 (2003)

142. Batliner, A., Schuller, B., Seppi, D., Steidl, S., Devillers, L., Vidrascu, L., Vogt, T., Aharon-
son, V., Amir, N.: The automatic recognition of emotions in speech. In: Cowie, R., Petta,
P., Pelachaud, C. (eds.) Emotion-Oriented Systems: The HUMAINE Handbook, Cognitive
Technologies, 1st edn, pp. 71–99. Springer, New York (2010)

143. Batliner, A., Steidl, S., Schuller, B., Seppi, D., Vogt, T., Wagner, J., Devillers, L., Vidrascu, L.,
Aharonson, V., Kessous, L., Amir, N.: Whodunnit—searching for the most important feature
types signalling emotion-related user states in speech. Comput. Speech Lang. Special Issue
on Affective Speech in real-life interactions 25(1), 4–28 (2011)

144. Batliner, A., Steidl, S., Hacker, C., Nöth, E.: Private emotions vs. social interaction—a data-
driven approach towards analysing emotions in speech. User Modeling and User-Adapted
Interaction. J. Personal. Res. 18(1–2), 175–206 (2008)

145. Hansen, J., Bou-Ghazale, S.: Getting started with susas: a speech under simulated and actual
stress database. In: Proceedings of the EUROSPEECH-97, vol. 4, pp. 1743–1746. Rhodes,
Greece (1997)

146. Batliner, A., Schuller, B., Schaeffler, S., Steidl, S.: Mothers, adults, children, pets—towards
the acoustics of intimacy. In: Proceedings 33rd IEEE International Conference on Acoustics,
Speech, and Signal Processing, ICASSP 2008, pp. 4497–4500. Las Vegas, NV, IEEE, IEEE
(2008)

147. Pon-Barry, H.: Prosodic manifestations of confidence and uncertainty in spoken language. In:
INTERSPEECH 2008—9th Annual Conference of the International Speech Communication
Association, pp. 74–77. Brisbane, Australia (2008)

148. Black, M., Chang, J., Narayanan, S.: An empirical analysis of user uncertainty in problem-
solving child-machine interactions. In: Proceedings of the 1st Workshop on Child, Computer
and Interaction, Chania, Greece (2008)

149. Enos, F., Shriberg, E., Graciarena, M., Hirschberg, J., Stolcke, A.: Detecting deception using
critical segments. In: Proceedings INTERSPEECH 2007, 8th Annual Conference of the Inter-
national Speech Communication Association, pp. 2281–2284. Antwerp, Belgium, ISCA,
ISCA (2007)

150. Bénézech, M.: Vérité et mensonge : l’évaluation de la crédibilité en psychiatrie lgale et en
pratique judiciaire. Annales Medico-Psychologiques 165(5), 351–364 (2007)

151. Nadeu, M., Prieto, P.: Pitch range, gestural information, and perceived politeness in catalan.
J. Pragmat. 43(3), 841–854 (2011)

152. Yildirim, S., Lee, C., Lee, S., Potamianos, A., Narayanan, S.: Detecting politeness and frus-
tration state of a child in a Conversational Computer Game. In: Proceedings of the Interspeech
2005, pp. 2209–2212. Lisbon, Portugal, ISCA (2005)

153. Yildirim, S., Narayanan, S., Potamianos, A.: Detecting emotional state of a child in a conver-
sational computer game. Comput. Speech Lang. 25, 29–44 (2011)

154. Ang, J., Dhillon, R., Shriberg, E., Stolcke, A.: Prosody-based automatic detection of annoy-
ance and frustration in human-computer dialog. In: Proceedings International Conference on
Spoken Language Processing (ICSLP), pp. 2037–2040. Denver, CO, (2002)

155. Arunachalam, S., Gould, D., Anderson, E., Byrd, D., Narayanan, S.S.: Politeness and frustra-
tion language in child-machine interactions. In: Proceedings EUROSPEECH, pp. 2675–2678,
Aalborg, Denmark, (2001)

156. Lee, C., Narayanan, S., Pieraccini, R.: Recognition of negative emotions from the speech
signal. In: Proceedings of the Automatic Speech Recognition and Understanding Workshop
(ASRU’01) (2001)

157. Rankin, K.P., Salazar, A., Gorno-Tempini, M.L., Sollberger, M., Wilson, S.M., Pavlic, D.,
Stanley, C.M., Glenn, S., Weiner, M.W., Miller, B.L.: Detecting sarcasm from paralinguistic



220 10 Applications in Intelligent Speech Analysis

cues: anatomic and cognitive correlates in neurodegenerative disease. NeuroImage 47(4),
2005–2015 (2009)

158. Tepperman, J., Traum, D., Narayanan, S.: “Yeah Right”: sarcasm recognition for spoken
dialogue systems. In: Proceedings of the Interspeech, pp. 1838–1841. Pittsburgh, Pennsylvania
(2006)

159. Zeng, Z., Pantic, M., Roisman, G.I., Huang, T.S.: A survey of affect recognition methods:
audio, visual, and spontaneous expressions. IEEE Trans. Pattern Anal Mach. Intell. 31(1),
39–58 (2009)

160. Batliner, A., Steidl, S., Schuller, B., Seppi, D., Laskowski, K., Vogt, T., Devillers, L., Vidrascu,
L., Amir, N., Kessous, L., Aharonson, V.: Combining efforts for improving automatic classifi-
cation of emotional user states. In: Proceedings 5th Slovenian and 1st International Language
Technologies Conference, ISLTC 2006, pp. 240–245. Ljubljana, Slovenia, October 2006.
Slovenian Language Technologies Society (2006)

161. Schuller, B., Vlasenko, B., Eyben, F., Wöllmer, M., Stuhlsatz, A., Wendemuth, A., Rigoll,
G.: Cross-corpus acoustic emotion recognition: Variances and strategies. IEEE Trans. Affect.
Comput. 1(2), 119–131 (2010)

162. Schuller, B., Vlasenko, B., Eyben, F., Rigoll, G., Wendemuth, A.: Acoustic emotion recogni-
tion: a benchmark comparison of performances. In: Proceedings 11th Biannual IEEE Auto-
matic Speech Recognition and Understanding Workshop, ASRU 2009, pp. 552–557. Merano,
Italy, IEEE, IEEE (2009)

163. Stuhlsatz, A., Meyer, C., Eyben, F., Zielke, T., Meier, G., Schuller, B.: Deep neural net-
works for acoustic emotion recognition: raising the benchmarks. In: Proceedings 36th IEEE
International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, pp.
5688–5691, Prague, Czech Republic, IEEE, IEEE (2011)

164. Ververidis, D., Kotropoulos, C.: A state of the art review on emotional speech databases. In:
1st Richmedia Conference, pp. 109–119. Lausanne, Switzerland (2003)

165. Grimm, M., Kroschel, K., Narayanan, S.: The Vera am Mittag German audio-visual emotional
speech database. In: Proceedings of the IEEE International Conference on Multimedia and
Expo (ICME), pp. 865–868. Hannover, Germany (2008)

166. Steidl, S.: Automatic Classification of Emotion-Related User States in Spontaneous Speech.
Logos, Berlin (2009)

167. Batliner, A., Seppi, D., Steidl, S., Schuller, B.: Segmenting into adequate units for automatic
recognition of emotion-related episodes: a speech-based approach. Adv. Human Comput.
Interact. Special Issue on Emotion-Aware Natural Interaction 2010(Article ID 782802), 15
(2010)

168. Cowie, R., Douglas-Cowie, E., Tsapatsoulis, N., Votsis, G., Kollias, S., Fellenz, W., Taylor,
J.: Emotion recognition in human-computer interaction. IEEE Signal Process. Mag. 18(1),
32–80 (2001)

169. Eyben, F., Wöllmer, M., Schuller, B.: Openear—introducing the munich open-source emo-
tion and affect recognition toolkit. In: Proceedings 3rd International Conference on Affective
Computing and Intelligent Interaction and Workshops, ACII 2009, vol. I, pp. 576–581, Ams-
terdam, The Netherlands, HUMAINE Association, IEEE (2009)

170. Ishi, C., Ishiguro. H., Hagita, N.. Using prosodic and voice quality features for paralinguistic
information extraction. In: Proceedings of Speech Prosody 2006, pp. 883–886, Dresden (2006)

171. Müller, C.: Classifying speakers according to age and gender. In: Müller, C. (ed.) Speaker Clas-
sification II, vol. 4343. Lecture Notes in Computer Science/Artificial Intelligence. Springer,
Heidelberg (2007)

172. Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G., Odell, J., Olla-
son, D., Povey, D., Valtchev, V., Woodland, P.: The HTK Book (v3.4). Cambridge University
Press, Cambridge (2006)

173. Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: Synthetic minority over-sampling
technique. J. Artif. Intell. Res. 16, 321–357 (2002)



References 221

174. Steidl, S., Schuller, B., Seppi, D., Batliner, A.: The hinterland of emotions: facing the open-
microphone challenge. In: Proceedings of the 3rd International Conference on Affective Com-
puting and Intelligent Interaction and Workshops, ACII 2009, vol. I, pp. 690–697, Amsterdam,
The Netherlands, HUMAINE Association, IEEE (2009)

175. Schuller, B., Metze, F., Steidl, S., Batliner, A., Eyben, F., Polzehl, T.: Late fusion of individual
engines for improved recognition of negative emotions in speech—learning vs. democratic
vote. In: Proceedings of the 35th IEEE International Conference on Acoustics, Speech, and
Signal Processing, ICASSP 2010, pp. 5230–5233, Dallas, TX, IEEE, IEEE (2010)

176. Wöllmer, M., Weninger, F., Eyben, F., Schuller, B.: Computational assessment of interest
in speech - facing the real-life challenge. Künstliche Intelligenz (German J. Artif. Intell.),
Special Issue on Emotion and Computing 25(3), 227–236 (2011)

177. Wöllmer, M., Weninger, F., Eyben, F., Schuller, B.: Acoustic-linguistic recognition of interest
in speech with bottleneck-blstm nets. In: Proceedings of INTERSPEECH 2011, 12th Annual
Conference of the International Speech Communication Association, pp. 3201–3204. Flo-
rence, Italy, ISCA, ISCA (2011)

178. Mporas, I., Ganchev, T.: Estimation of unknown speaker’s height from speech. Int. J. Speech
Tech. 12(4), 149–160 (2009)

179. Schuller, B., Steidl, S., Batliner, A., Burkhardt, F., Devillers, L., Müller, C., Narayanan, S.:
Paralinguistics in speech and language—state-of-the-art and the challenge. Comput. Speech
Lang. Special Issue on Paralinguistics in Naturalistic Speech and Language 27(1), 4–39 (2013)

180. Omar, M.K., Pelecanos, J.: A novel approach to detecting non-native speakers and their
native language. In: ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing—Proceedings, pp. 4398–4401. Dallas, Texas (2010)

181. Weiss, B., Burkhardt, F.: Voice attributes affecting likability perception. In: Proceedings of
the INTERSPEECH, pp. 2014–2017. Makuhari, Japan (2010)

182. Bruckert, L., Lienard, J., Lacroix, A., Kreutzer, M., Leboucher, G.: Women use voice para-
meter to assess men’s characteristics. Proc. R. Soc. B. 237(1582), 83–89 (2006)

183. Gocsál, A.: Female listeners’ personality attributions to male speakers: the role of acoustic
parameters of speech. Pollack Period. 4(3), 155–165 (2009)

184. Mohammadi, G., Vinciarelli, A., Mortillaro, M.: The voice of personality: mapping nonverbal
vocal behavior into trait attributions. In: Proceedings of the SSPW 2010, pp. 17–20, Firenze,
Italy (2010)

185. Polzehl, T., Möller, S., Metze, F.: Automatically assessing personality from speech. In:
Proceedings—2010 IEEE 4th International Conference on Semantic Computing, ICSC 2010,
pp. 134–140. Pittsburgh, PA (2010)

186. Wallhoff, F., Schuller, B., Rigoll, G.: Speaker identification—comparing linear regression
based adaptation and acoustic high-level features. In: Proceedings 31. Jahrestagung für
Akustik, DAGA 2005, pp. 221–222. Munich, Germany, DEGA, DEGA (2005)

187. Müller, C., Burkhardt, F.: Combining short-term cepstral and long-term prosodic features for
automatic recognition of speaker age. In: Interspeech, pp. 1–4,.Antwerp, Belgium (2007)

188. van Dommelen, W., Moxness, B.: Acoustic parameters in speaker height and weight identi-
fication: sex-specific behaviour. Lang. Speech 38(3), 267–287 (1995)

189. Krauss, R.M., Freyberg, R., Morsella, E.: Inferring speakers physical attributes from their
voices. J. Exp. Soc. Psychol. 38(6), 618–625 (2002)

190. Gonzalez, J.: Formant frequencies and body size of speaker: a weak relationship in adult
humans. J. Phonetics 32(2), 277–287 (2004)

191. Evans, S., Neave, N., Wakelin, D.: Relationships between vocal characteristics and body size
and shape in human males: an evolutionary explanation for a deep male voice. Biol. Psychol.
72(2), 160–163 (2006)

192. Grimm, M., Kroschel, K., Narayanan, S.: Support vector regression for automatic recognition
of spontaneous emotions in speech. In: International Conference on Acoustics, Speech and
Signal Processing, vol. IV, pp. 1085–1088. IEEE (2007)

193. Hassan, A., Damper, R.I.: Multi-class and hierarchical SVMs for emotion recognition. In:
Proceedings of the Interspeech, pp. 2354–2357, Makuhari, Japan (2010)



222 10 Applications in Intelligent Speech Analysis

194. Burkhardt, F., Eckert, M., Johannsen, W., Stegmann, J.: A database of age and gender anno-
tated telephone speech. In: Proceedings of the 7th International Conference on Language
Resources and Evaluation (LREC 2010), pp. 1562–1565, Valletta, Malta (2010)

195. Fisher, M., Doddington, G., Goudie-Marshall, K.: The DARPA speech recognition research
database: specifications and status. In: Proceedings of the DARPA Workshop on Speech
Recognition, pp. 93–99 (1986)

196. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The WEKA data
mining software: an update. SIGKDD Explor. 11(1) (2009)

197. Krajewski, J., Batliner, A., Golz, M.: Acoustic sleepiness detection—framework and vali-
dation of a speech adapted pattern recognition approach. Behav. Res. Meth. 41, 795–804
(2009)

198. Levit, M., Huber, R., Batliner, A., Nöth, E.: Use of prosodic speech characteristics for auto-
mated detection of alcohol intoxination. In: Bacchiani, M., Hirschberg, J., Litman, D., Osten-
dorf, M. (eds.) Proceedings of the Workshop on Prosody and Speech Recognition 2001Red
Bank, NJ, pp. 103–106 (2001)

199. Schiel, F., Heinrich, C.: Laying the foundation for in-car alcohol detection by speech. In:
Proceedings of INTERSPEECH 2009, pp. 983–986, Brighton, UK (2009)

200. Ellgring, H., Scherer, K.R.: Vocal indicators of mood change in depression. J. Nonverbal
Behav. 20, 83–110 (1996)

201. Laskowski, K., Ostendorf, M., Schultz, T.: Modeling vocal interaction for text-independent
participant characterization in multi-party conversation. In: Proceedings of the 9th SIGdial
Workshop on Discourse and Dialogue, pp. 148–155, Columbus (2008)

202. Ipgrave, J.: The language of friendship and identity: children’s communication choices in an
interfaith exchange. Br. J. Relig. Edu. 31(3), 213–225 (2009)

203. Fujie, S., Ejiri, Y., Kikuchi, H., Kobayashi, T.: Recognition of positive/negative attitude and
its application to a spoken dialogue system. Syst. Comput. Jpn. 37(12), 45–55 (2006)

204. Vinciarelli, A., Pantic, M., Bourlard, H.: Social signal processing: survey of an emerging
domain. Image Vis. Comput. 27, 1743-1759 (2009)

205. Lee, C.-C., Katsamanis, A., Black, M., Baucom, B., Georgiou, P., Narayanan, S.: An analysis
of pca-based vocal entrainment measures in married couples’ affective spoken interactions.
In: Proceedings of Interspeech, pp. 3101–3104, Florence, Italy (2011)

206. Brenner, M., Cash, J.: Speech analysis as an index of alcohol intoxication—the Exxon Valdez
accident. Aviat. Space Environ. Med. 62, 893–898 (1991)

207. Harrison, Y., Horne, J.: The impact of sleep deprivation on decision making: a review. J. Exp.
Psychol. Appl. 6, 236–249 (2000)

208. Bard, E.G., Sotillo, C., Anderson, A.H., Thompson, H.S., Taylor, M.M.: The DCIEM map
task corpus: spontaneous dialogue under SD and drug treatment. Speech Commun. 20, 71–84
(1996)

209. Caraty, M., Montacie, C.: Multivariate analysis of vocal fatigue in continuous reading. In:
Proceedings of Interspeech 2010, pp. 470–473, Makuhari, Japan (2010)

210. Schiel, F., Heinrich, C., Barfüßer, S.: Alcohol language corpus—the first public corpus of
alcoholized German speech. Lang. Res. Eval. 46(3), 503–521 (2012)

211. Akerstedt, T., Gillberg, M.: Subjective and objective sleepiness in the active individual. Int.
J. Neurosci. 52(1–2), 29–37 (May 1990)

212. Krajewski, J., Schnieder, S., Sommer, D., Batliner, A., Schuller, B.: Applying multiple classi-
fiers and non-linear dynamics features for detecting sleepiness from speech. Neurocomputing.
Special Issue From neuron to behavior: evidence from behavioral measurements 84, 65–75
(2012)

213. Krajewski, J., Kröger, B.: Using prosodic and spectral characteristics for sleepiness detection.
In: Proceedings of INTERSPEECH 2007, 8th Annual Conference of the International Speech
Communication Association, pp. 1841–1844, Antwerp, Belgium, ISCA, ISCA (2007)

214. Chin, S.B., Pisoni, D.B.: Alcohol and Speech. Academic Press Inc, New York (1997)
215. Dhupati, L., Kar, S., Rajaguru, A., Routray, A.: A novel drowsiness detection scheme based

on speech analysis with validation using simultaneous EEG recordings. In: Proceedings of



References 223

IEEE Conference on Automation Science and Engineering (CASE), pp. 917–921, Toronto,
ON (2010)

216. Weninger, F., Schuller, B., Fusing utterance-level classifiers for robust intoxication recognition
from speech. In: Proceedings MMCogEmS, : Workshop (Inferring Cognitive and Emotional
States from Multimodal Measures), held in conjunction with the 13th International Conference
on Multimodal Interaction, ICMI 2011, Alicante, Spain, ACM, ACM (2011)

217. Schuller, B., Weninger, F.: Ten recent trends in computational paralinguistics. In: Esposito,
A., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) 4th COST 2102 International Training
School on Cognitive Behavioural Systems. Lecture Notes on Computer Science (LNCS),
p. 15. Springer, New York (2012)



Chapter 11
Applications in Intelligent Music Analysis

Of all noises, I think music is the least disagreeable.
—Samuel Johnson

As digitised music has conquered the market for more than ten years, advanced
techniques of MIR are gaining interest and importance. Caused by the progress in
lossy perceptual audio coding (MP3 and similar), broadband internet connections and
high volume storage capacities, large music databases have emerged which demand
novel handling strategies [1–3].

The increasing popularity of portable music players and music distribution over
the internet has made worldwide, instantaneous access to rapidly growing music
archives possible. Such archives must be well structured and sorted in order to be user
friendly. For example, many users face the problem of having heard a song they would
like to buy but not knowing its bibliographic data, i.e., title and artist, which is nec-
essary to find the song in conventional (on-line) music stores. According to Downie
in [4], almost three fourths of all MIR queries are of bibliographic nature. The query-
ing person gives information he or she knows about the song, most likely genre, metre,
tempo, lyrics or acoustic properties, e.g., tonality, and requires information about title
and/or artist. In order to have machines assist in building a song database queryable
by attributes such as tempo, metre or genre, intelligent Information Retrieval algo-
rithms are necessary to automatically extract such high level features from raw music
data. Hence, many new tasks in private as well as in professional environments have
occurred, as for example rhythm recognition [5, 6], genre [7] and mood classifi-
cation [8], melody extraction [9], chord detection [10] or key determination [11].
Many works exist that describe or give overviews over basic MIR methods, e.g.,
[5, 12–20].

In this chapter, an overview shall be given on intelligent music analysis. The
selected application scenarios cover methods on rhythmic aspects first: The sep-
aration of drum-beats [21] is followed by the determination of onsets in music
[22, 23], and tempo, metre and ballroom dance style determination [6, 24–27]. Sub-
sequently, analysis of the tonal aspects, reaching from musical key [28] to chords
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[10, 29] are presented. Then, the structure of music is analysed targeting chorus
sections [30, 31]. Such extracted information is then used in the assessment of mood
in music [8, 32, 33]. Finally, in analogy to speech analysis, it is attempted to assess
traits of singers [34–36].

Other examples could have been chosen, such as the full transcription of music on
the note event level [37], the recognition of genre [38, 39], music spotting in audio
streams [40], query by humming [41, 42], or the recognition of vibrato singing [43],
and of course the querying per se [2, 3], to name a few. However, the chosen examples
provide a good overview on core topics and allow for a general understanding of the
principles and methods involved. Each topic is addressed by selected exemplary data
with according test results to provide the reader with a feeling for obtainable state-
of-the-art performances under realistic conditions as were outlined in Sect. 11.1.

11.1 Drum-Beat Separation

For the analysis of music, we will first see how the harmonic section and the drum
beat in Rock, Pop, or similar music can be separated. This was first shown in [21].

Non-negative Matrix Factorisation (NMF) is known for its suitability in BASS of
drums and melodic parts of music recordings [44–46]. An isolation of these parts can
serve as enhancement in manifold MIR tasks such as the ones to follow including
automatic onset, metre, tempo detection or key and chord labelling and even the
recognition of singer traits. Let us thus consider in this section the combination of an
NMF based blind music separation into several isolated audio tracks with subsequent
classification of obtained isolated NMF components to label them as either rhythmic
or melodic.

In [47] drum beat separation based on ICA was introduced. Opposed to this, in
[48] it is relied on NMF for separation of sources within transcription of polyphonic
music. Remarkable results were reported on piano music. Also, the work in [44] is
based on NMF. There, a feature extraction and subsequent classification is already
used. The authors report promising results for the separation of drum beats in popular
music. Such an approach was later proven beneficial for drum transcription [45, 46]
and vocal separation [49].

11.1.1 Methodology

Let us first take a look at different cost functions and parameters. As we remember
from Sect. 11.8, given a matrix V ∈ R

n×m
≥0 and a constant r ∈ N, NMF computes two

matrices W ∈ R
n×r
≥0 and H ∈ R

r×m
≥0 , such that

V ≈ W H. (11.1)
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Table 11.1 Considered cost
functions for NMF-based
drum-beat separation

Cost-function Denomination

|| (V − W H) ||F Frobenius norm
∑

i,j

(
Vi,j log

Vi,j
(W H)i,j

− Vi,j + (W H)i,j

)
Modified KL

divergence

Only an approximate solution exists for r � n, m. Factorisation is usually realised
by iterative algorithms. These aim at minimisation of suited cost-functions as those
two shown in Table 11.1.

The Frobenius norm cost-function minimises some form of quadratic error, the
‘modified KL divergence’ interprets the matrices V and (WH) as probability dis-
tributions and minimises their divergence. It is a modification due to the additional
term (W H)i,j − Vi,j. Besides a measurement of the absolute error, this term ensures
non-negativity. Several further cost-functions exist and the available algorithms in
principle only differ by their particular cost-function.

In NMF-based instrument separation the monophonic signal’s short-time
magnitude spectra are considered as linear combinations of several distinct compo-
nents’ spectra. The assumption of non-negativity of each component suffices for this
approach. Applying NMF on a signal’s magnitude spectrum the resulting columns
of W and the rows of H in Eq. (11.1) can be understood as spectral components
and their gains over time, respectively (cf. Sect. 11.8). By that, the overall contribu-
tion of the ith component to the magnitude spectrum of the original signal can be
determined as the dyadic product of the ith column of W and the ith row of H. As
the magnitude spectrum is factorised, one can transform the separated components
back into the time domain based on their magnitude spectra. In addition, the original
phase spectrum is needed. Typically, the spectrum of an instrument is modelled by
several components. Hence, one can distinguish between instrument separation and
component separation.

The decisive factor in instrument separation now is finding the optimal parameters
of the combined STFT and NMF approach. In the case of the STFT these parameters
include the window function, size, and overlap. Window functions used in this context
are the previously introduced rectangular and Hanning window (cf. Sect. 6.1.2), and
the square root of the Hanning window, as used in [44]. The most influential parameter
in the choice and design of the window function as for perceptual quality of the
resulting factorisation seems to be the window size. In drum-beat separation, typical
window sizes are between 40 and 60 ms—a window size of 62.5 ms is, e.g., the
equivalent of an eighth note at 120 BPM. Depending on these parameter choices, the
STFT may produce larger amounts of data: With a sample rate of 44.1 kHz, a window
size of 60 ms, and 50 % overlap, the magnitude- and phase-spectrum matrices for 30 s
of music result in a dimension of 1322 × 1000.

If we imagine a sequence of single different notes, it seems intuitive that each of
these notes can be represented by its own spectrum and likewise by a single corre-
sponding component, taking the non-negativity constraint as introduced into account.
In [48] the authors thus speak of events rather than components to emphasise on the

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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singularity. A priori, however, one will rarely know how many components to select,
except for a certain subset of music or by preliminary ‘manual’ analysis of the music
to be separated. Should this number of components be chosen larger than ‘needed’,
the contributions of superfluous components’ to the whole magnitude spectrum will
be nearly zero. However, usage of more components leads to smaller absolute values
and likewise to less maximum amplitudes of the separated components. As a rule
of thumb, 20 to 30 components for unsupervised instrument separation of popular
music are recommended [21].

There are a few peculiarities one should bear on mind when using NMF for
instrument separation as follow:

Usage of a-priori information is advisable given the model parameters’ signifi-
cant influence on the (perceptual) quality of the factorisation.

Careful initialisation is mandatory, in particular using NMF as a preprocessing
step for feature extraction. This comes as, e.g., random initialisation with small
values within [0.01, 0.02], in comparison to values within [0.1, 0.2], often yields
results with totally different scale [21]. This difference may significantly influence
the extracted features’ values. Randomised initialisation of W and H further leads
to slightly different results on each application of NMF. An alternative is targeted
initialisation by application-dependent training sets [45] which comes at the need of
more a-priori knowledge.

Separation limitations arise in particular when components or events at no time
in the signal occur in isolation and the matrices W and H were initialised randomly.
This means that the algorithm cannot separate events occurring exclusively simul-
taneously. The reason is that the algorithm achieves as good a solution in terms of
the cost-function when uniting these events in a single component, unless sparsity
constraints are added.

Sub-optimality characterises NMF as there is not guarantee to find a global
minimum of the respective cost-function.

Factorisation ambiguity can be shown by looking at the product W ·H compared
to W · A−1 · A · H, where A is some arbitrary permutation or affine transformation.
As a result, the order of the separated components is non-deterministic. For drum-
beat separation as shown in the ongoing, however, this has no effect, as the resulting
components are classified automatically without assumptions about their order.

11.1.1.1 Component Classification

With the number of components typically being higher than the number of classes to
separate (here: drums and harmonics), a classification is needed to put the components
into the ‘right bag’. In the aimed at drum beat separation, the classes are drum-beat and
non-drum-beat or ‘harmonic’. However, as stated, 20–30 components are advisable
for separation of pop music. Once the components are classified, all components in
one ‘bag’ are superposed to generate the signals corresponding to each class.

The first step for such a classification is thus the extraction of suitable features to
characterise ‘drums versus rest’ as the ones suggested in [44, 47]. Each component
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is described by a column of the spectral matrix W—the spectral vector in the
following—and a row of the gains matrix H—the gains vector in the following—as
obtained by NMF. One could transform the components back into the time domain
for feature extraction. However, the features then would be extracted from redundant
representations of the components. Rather than that, features can be based on the
spectral and gains vectors as all relevant information apart from phase information
is contained in these.

In detail, per spectral vector x = (x1, . . . , xN )T , corresponding to frequencies
f1, . . . , fN , these features are extracted: sample standard deviation (by the common
unbiased estimator), and 10 MFCCs (with a Mel filter bank that ranges from 20 to
8000 Hz). Further, a number of spectral features are computed: The spectral centroid
is the weighted mean of frequencies fi:

∑N
i=1 fixi

∑N
i=1 xi

(11.2)

The roll-off point is the frequency fr with

r = min

{

k :
k∑

i=1

x2
i ≥ 0.95

N∑

i=1

x2
i

}

. (11.3)

It is the ‘point’ at which 95 % of the energy of the spectrum are contained at frequen-
cies below this point.

In the data set considered in the evaluation (cf. Sect. 11.1.2), harmonic patterns
are characterised by spectral centroids and roll-off points at middle frequencies. For
drum patterns, however, these features are less specific.

Next is noise-likeness [47] that is based on the assumption that spectra of harmonic
components have a limited number of sharp peaks, whereas spectra of percussive
components are smoother. It is computed as:

1. Find the local maxima of x, i.e., leave all components xi with xi−1 < xi > xi+1
and set all other components to zero.

2. Convolve the resulting vector with a Gaussian function (μ = 0, σ = 83.3 Hz).
For a feasible calculation, we assume that the function is zero outside the interval
[−3σ, 3σ ].

3. Noise-likeness is then the (Pearson product-moment) correlation coefficient of
the result and the original vector x.

Figure 11.1 illustrates this procedure.
Then, the spectral flatness [47] is the ratio of the geometrical to the arithmetical

mean of the vector x, squared element by element.
For the computation of spectral dissonance [47], the dissonance measure for

two sinusoids with frequencies f1 and f2, f1 ≤ f2, and amplitudes a1 and a2, are
employed [50]:
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Fig. 11.1 Spectra of a drum
(top) and harmonic component
(bottom) from David Bowie
and Mick Jagger’s “Dancing
In The Street”, and their
convolution with a Gaussian
function

Spectrum
Convolution

Spectrum
Convolution

d(f1, f2, a1, a2) = a1a2

(
e−as(f2−f1) − e−bs(f2−f1)

)
(11.4)

with a = 3.5, b = 5.75 and s = 0.24
0.021f1 + 19 .

Then, spectral dissonance of x is defined as the sum of pairwise dissonances of
all its components:

N∑

i=1

i−1∑

j=1

d(fj, fi, xj, xi), (11.5)

where fi is the frequency corresponding to index i in the spectral vector.
Further, temporal features are calculated from the gains vectors. Per gains vector

g = (g1, . . . , gM) sample standard deviation is extracted.
Further, Percussiveness [47] measures how accurately g can be modelled using

instantaneous attacks and linear decays resembling the structure of typical drum
patterns. Its computation is similar to the one applied to spectral vectors for the
calculation of noise-likeness. The local maxima of g are determined and convolved
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Fig. 11.2 Gains of a drum
(top) and harmonic component
(bottom) from David Bowie
and Mick Jagger’s “Dancing
In The Street”, and their
convolution with a linear
decay function

Gains
Convolution

Gains
Convolution

with a linear decay function of height 1 and length 200 ms. Percussiveness is then the
(Pearson product-moment) correlation coefficient of the convolution and the original
vector g. This is illustrated in Fig. 11.2.

Next, Periodicity [44] models drum patterns often being periodic in intervals
corresponding to a musical piece’s tempo. Autocorrelation values normalised by
mean and variance of g are computed for delays corresponding to tempi of 30–
240 BPM, at intervals of 5 BPM. The maximum of these coefficients is defined as
the periodicity.

Finally, average peak length and peak fluctuation are added, where a peak is ‘any
area’ of g that is above a threshold of 20 % of the maximum of g. Formally, a peak
of length l is a set of consecutive indices {i, i + 1, . . . , i + l − 1} ⊆ {1, . . . , M} such
that [21]:

gi, gi+1, . . . , gi+l−1 ≥ 0.2 · max{gi}. (11.6)

Once the peaks in g are located, the average peak length is given by the sample
mean of the peak lengths, and the peak fluctuation by their sample standard deviation
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[44]. The music data considered provide evidence that drum components generally
have short peaks of similar length. As opposed to this, harmonic components tend
to have longer peaks varying more in length.

11.1.1.2 Synthesis

Subsequent to the assignment of components to their ‘bags’ by automatic classifi-
cation, time signals for each class can be computed as follows [44]:Per class, the
magnitude spectrograms of the components belonging to that class are added, where
the magnitude spectrogram of a component is the dyadic product of its spectral and
gains vectors.the class spectrograms.Then, a column-wise IDFT is performed on As
alluded above,the phase values from the corresponding columns of the phase matrix
of the original signal are used in this step. Time signals are finally computed by win-
dowing the columns with the square root of the Hanning function using overlap-add.

11.1.2 Performance

For evaluation the set “20 Years on MTV” (1981–2000, Sony/BMG) was used. It
consists of 200 songs, from each of which one data instance of 15–30 s duration is
extracted. With the framework as described in Sect. 11.8, spectrograms were com-
puted using the square root of the Hanning function with a window size of 60 ms and
50 % window overlap. For subsequent NMF application, 30 components were used.
Out of the 6000 resulting components 344 were manually selected by perceptual
quality. Music experts carried out the labelling attaching either the label “Drum”
(95 components) or “Harmonic” (249 components) to these. Evaluation with linear
kernel SVM of this data is carried out in ten-fold SCV after scaling features in the
range [−1, 1]. Different feature subsets are considered:

• The “complete” feature set contains all features described above and led to a WA
of 95.9 %.

• The “reduced” feature set as proposed in [44] includes standard deviation,10
MFCCs, noise-likeness, spectral centroid and roll-off for spectral vectors, and
average peak length, percussiveness, peak fluctuation and periodicity for gains
vectors. It led to a slightly improved WA of 96.2 %.

11.1.3 Summary

In this section a separation of music into drum-beat and the harmonic parts was shown.
Generally judging, the audible results are well usable in, e.g., DJ applications or music
remixing. There are, however, some cases which seem to pose difficulties to the

http://dx.doi.org/10.1007/978-3-642-36806-6_8
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separation and/or the classification procedure. These are ‘limit cases’ between noisy
and harmonic components, such as distorted guitars or cowbells. Further, ‘noisy’
phonemes in the vocal parts, such as “s”, were often assigned to the drum part. Unless
Wiener filtering is used in synthesis, harmonic parts may partly appear distorted in the
result, which is especially true for vocal parts. Future efforts could combine a targeted
initialisation and exploit semi-supervised learning strategies on large music archives
to reduce the number of erroneous component classifications: In the presented results
roughly every twenty-fifth component was misclassified, and 30 were chosen for
decomposition—this means that roughly one component is in the wrong ‘bag’ on
average.

11.2 Onsets

An essential task in intelligent music analysis is the determination of onsets in music.
This is another good example of the application of LSTM networks: The MIREX
(Music Information Retrieval Evaluation eXchange) 2010 contributions [22, 23],
which are based on LSTM-RNN, were able to reach the best result for the audio
onset detection task.

Onsets mark the beginning of acoustic events. Locating these onsets is a major part
of segmenting music. It therefore serves as basis for many high level MIR tasks such
as music transcription. As opposed to studies focusing on beat and tempo detection
via the analysis of periodicities (e.g., [25, 51]) exploiting larger chunks of audio, an
audio onset detector aims at the detection of single events. These need not follow a
periodic pattern. Automatic onset detection (e.g., [52–54]) has reached reasonable
robustness for polyphonic music by now. Approaches towards onset detection are,
however, often rather specialised or optimised for specific types of onsets such as
pitched or percussive onsets. Thus, they may show low generalisation ability for
music with mixed types of onsets. To overcome this, either diverse methods are
required in synergistic combination or a selector has to be implemented to chose the
appropriate onset detector fitting the music.

Most onset detectors are based on a three step model: First, some methods include
a preprocessing step to emphasise relevant parts of the audio signal. Then, a reduction
is carried out by means of a suited function, to obtain the ‘detection function’. This can
be considered as the core component. Common reduction functions are summarised
later in this section. Finally, the last stage serves to extract the onsets from this
detection function. The final step can further be subdivided into post processing
such as smoothing and normalising of the detection function, thresholding, and peak
picking. Given a fixed number of thresholds, the methods tend to ‘insert’ onsets in
louder parts, or ‘delete’ onsets in quieter parts. Adaptive thresholds are thus often
employed to ease this behaviour. As a last of these sub-steps, the peak picking
algorithm identifies the local maxima above the threshold. These correspond to the
detected onsets together with their according position in time.
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Methods operating in the time domain were frequently seen in early reduction
functions. An example is the one in [55] that normalises the loudness of the signal
before splitting it into multiple bands via bandpass filters. Onsets are then detected
per band as peaks in the first order difference of the logarithm of the amplitude
envelope. The band-wise onsets are then combined to determine the final set of
detected onsets. Onset detection in the time domain has, however, its short-comings
as onsets are often masked in this domain by higher energy signals. Today, many
reduction functions thus operate on a spectral audio signal representation. Typical
solutions—all based on the STFT of the signal—are:

Spectral difference: The spectral difference (SD) function is the bin-wise differ-
ence of two consecutive short-time spectra. Positive differences are then summed up
across bins. The L1-norm [52] or L2-norm [56] can be used to assess the function. In
case of the L1-norm, the function is referred to as spectral flux (SF). These methods
are among the best so far.

High frequency content: Percussive sounds tend to have a high amount of energy
in upper frequency bands. This fact can be used by weighting each STFT bin pro-
portionally to its frequency. The sum of the weighted bins is the high frequency
content (HFC), and can be used as a detection function. The HFC method is suited
for percussive onsets, but less for other types of onsets [56].

Phase deviation: So far, functions were based on the spectral magnitudes. The
phase change in a STFT frequency bin can serve as rough estimate of its instantaneous
frequency. Should this frequency change, it is likely because of an onset [56]. The
mean phase change over all frequency bins helps to reduce ‘deletions’ of onsets
because of phase wrap around. This method is known as the phase deviation (PD)
detection function. An extension is the normalised weighted phase deviation (NWPD)
[52], that first weights each frequency bin’s contribution to the phase deviation by
its magnitude and then normalises the result by the sum of the magnitudes.

Complex domain: In this method, also magnitude and phase information are used.
It is calculated for the current frame based on the last two predecessors under the
assumption of constant amplitude and phase change rate. The sum of the magnitude
of the complex differences between the actual values for each frequency bin and
the estimated values is then computed as a detection function [57]. The rectified
complex domain (RCD) [52] modifies this algorithm by only summing over positive
amplitude changes. This is based on the observation that for onset detection increases
of the signal amplitude are generally more relevant than decreases.

Pitch detection: Discontinuities and perturbations in the pitch contour can be
assumed as indication for onsets [58]. The information on the location of these
phenomena can also be used in combination with energy analysis [53].

Probabilistic models: The negative log-likelihood (NLL) method [59] defines
two different statistical models for the signal. A sudden change in these models
indicates a potential onset. This is known to work well for soft onsets [56].

Automatic classification: Employing a trained machine learning algorithm allows
for the design of more general detection functions, such as the one in [60] basing on a
convolutional neural network—the winner of the MIREX 2005 audio onset detection
evaluation.
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Table 11.2 Number of files,
onsets, and length
distributions for the onset
detection data sets

Set # files # onsets min/max/mean length [s]

BRDo 87 5474 10.0 / 10.0 / 10.0
PNP 1 93 13.1 / 13.1 / 13.1
PP 9 489 2.5 / 60.0 / 10.5
NPP 6 212 1.4 / 8.3 / 4.3
MIX 7 271 2.8 / 15.1 / 8.0

11.2.1 The Bello Database

The onset detector described here is evaluated using the data set introduced by Bello in
[56], which consists of 23 sound excerpts with lengths ranging from a few seconds to
one minute (cf. Table 11.2) and is divided into pitched percussive (PP), pitched non-
percussive (PNP), non-pitched percussive (NPP), and complex music mixes (MIX),
and includes audio synthesised from MIDI files as well as original recordings.

For effective RNN training, the onset annotations needed to be partly corrected
by addition of missing onsets. Further, the temporal annotation precision of onsets
in polyphonic pieces was manually improved by an expert musician. Temporal inac-
curacies in onset annotations can be assumed to be less severe for rule-based onset
detection, as inaccuracies of a couple of frames are levelled out by the detection
window during evaluation. Yet, these inaccuracies have a large impact when training
neural networks with them. Still, for the sake of fair and comparable evaluation, the
original transcriptions are used for scoring.

Additional 87 10 s excerpts of ballroom dance style music (BRDo in the ongoing)
from the ISMIR 2004 tempo induction contest1 [51] were taken for training (cf.
Table 11.2). This data was partly already annotated for ANN training [60].2 The
remaining parts were labelled by an expert musician. Table 11.2 shows the number
of files and onsets for the data sets.

11.2.2 Methodology

Using bidirectional LSTM networks, the approach is able to learn the properties of
an onset and the relevant context it occurs in. As audio features two STFT magnitude
spectra computed from differently sized windows of the audio signal together with
their first order differences are extracted. From these features as input, the BLSTM
RNN produces an onset activation function as output. This principle is shown in
Fig. 11.3, and individual blocks are described now in more detail.

1 http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
2 http://w3.ift.ulaval.ca/~allac88/dataset.tar.gz

http://mtg.upf.edu/ismir2004/contest/tempoContest/node5.html
http://w3.ift.ulaval.ca/~{}allac88/dataset.tar.gz
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Fig. 11.3 Basic signal flow of the BLSTM RNN based onset detector

11.2.2.1 Feature Extraction

The raw PCM audio signal with a sampling rate of fs = 44.1 kHz is used, and stereo
signals are converted to a monaural signal by averaging of the stereo channels.
Hamming windowing uses overlapping frames of W samples length with W =
1024 or W = 2048, and a frame rate of 100 Hz. Note that by this principle, onset
annotations are available on a frame level. Then, applying the STFT to the signal
values s(k) leads to the complex spectrogram S(n, m), with n being the frame index,
and m the frequency bin index. This complex spectrogram is then converted to the
power spectrogram:

Spower(n, m) = |S(n, m)|2 (11.7)

To reduce the dimensionality of the spectra and exploit psychoacoustic knowledge, a
filterbank with 40 triangular filters equidistant on the Mel scale, is used to transform
the spectrogram S(n, m) to the Mel spectrogram M(n, m′). A logarithmic represen-
tation helps match human perception of loudness:

Mlog(n, m′) = log
(
M(n, m′) + 1.0

)
(11.8)

Motivated by spectral difference approaches, the positive first order difference
D+(n, m) is calculated by applying a half-wave rectifier function H(x) = x+|x|

2
to the difference of two consecutive Mel spectra:

D+(n, m′) = H
(
Mlog(n, m′) − Mlog(n − 1, m′)

)
(11.9)

Overall, the 160 resulting features thus are two log Mel-spectrograms M23
log(n, m′)

and M46
log(n, m′) computed with window sizes of 23.2 ms and 46.4 ms for W = 1024

and W = 2048 samples, respectively, and their corresponding positive first order
differences D+

23s(n, m′) and D+
46s(n, m).

11.2.2.2 BLSTM Network Stage

As classifier serves a BLSTM RNN with three hidden layers per forward and back-
ward processing—thus six layers in total—, with 20 LSTM units, each. The output
layer has two units using the softmax function. The normalised outputs represent
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the probabilities for the classes ‘onset’ as used during evaluation and ‘no onset’
(ignored). This allows for usage of the cross entropy error criterion during network
training [61]. Alternative networks were evaluated with a single output and trained
using the mean squared output error as criterion, but led to inferior results.

The network was trained with frame-by-frame presentation of the audio sequence.
Iterative weight updates were done by standard gradient descent with BPTT. After
each training iteration (epoch), the performance was measured on a separate val-
idation set to prevent over-fitting. Once no improvement over 20 epochs had been
observed, the training was stopped. Network weights were initialised randomly from
a Gaussian distribution with mean 0 and standard deviation 0.1, ensuring non-zero
values given by the requirement of the used gradient descent algorithm.

11.2.2.3 Peak Detection Stage

Thresholding and peak detection is now applied to the output activation of the ‘onset’
class, as follows: For high dynamic ranges, in existing magnitude based reduction
functions, adaptive thresholding of the detection function prior to peak picking is
mandatory. This comes, as the detection functions amplitude either depends on the
one of the signal or on the magnitude of its short time spectrum.

The output activation function of the BLSTM network is not affected by input
amplitude variations, similar to phase based reduction functions. The reason is that by
the way the networks have been trained its value represents a probability of observ-
ing an onset rather than onset strength. This renders intra song adaptive thresholds
obsolete. Yet, with varying confidence of the network from song to song the margin
between high amplitude peaks (ideally ≈1) corresponding to onsets and low ampli-
tude random peaks (ideally ≈0) varies. From observation (cf. Fig. 11.4), it seems that
especially the random peaks lead to higher activations in the case of low confidence.
Thus, a fixed threshold θ is computed per song. This threshold is chosen proportional
to the median of the activation function (frames n = 1 . . . N), and constrained to the
range from θmin = 0.1 to θmax = 0.3:

θ∗ = λ · median{ao(1), . . . , ao(N)} (11.10)

θ = min
(
max

(
0.1, θ∗) , 0.3

)
(11.11)

with ao(n) as the output activation function of the BLSTM RNN for the onset class,
and the scaling factor λ chosen to maximise the F1-measure on the validation set.
The final onset detection function oo(n) exclusively contains activation values above
this threshold:

oo(n) =
{

ao(n) for ao(n) > θ

0 otherwise
(11.12)
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The onsets are likewise represented by the local maxima of oo(n). With a standard
peak search, the final onset function o(n) is:

o(n) =
{

1 for oo(n − 1) ≤ oo(n) ≥ oo(n + 1)

0 otherwise
(11.13)

11.2.3 Performance

In the literature, an onset is correctly located when detected ±50 ms [52, 56] or
±25 ms [62] around the annotated gold standard onset position. Results with a fixed
threshold scaling factor of λ = 50 are given per set for both of these two tolerance
criteria. Note that humans are believed to perceive two onsets as one if they are no
more than 30 ms apart [63]. On the Bello set, this would in theory leave 4294 from
the 5474 onsets that can be distinguished by humans.

Evaluation on BRDo and the Bello set bases on eight-fold SCV where six folds
are used for training, one for development, and one for testing. Owing to the random
initialisation of BLSTM RNN, the eight-fold cross validation is repeated ten times

Fig. 11.4 Top log Mel-spectrogram with ground truth onsets (vertical dashed lines). Bottom net-
work output with detected onsets (marked by dots), ground truth onsets (dotted vertical lines), and
threshold θ (horizontal dashed line). Shown is a 4 s excerpt from ‘Basement Jaxx—Rendez-Vu’ [23]
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Table 11.3 Results for the Bello data sets PNP, PP, NPP, and MIX and the complete set ALL by
precision (PR), recall (RE), and F1-measure (F1)

Tolerance PNP PP NPP MIX ALL
[%] PR RE F1 PR RE F1 PR RE F1 PR RE F1 PR RE F1

±50 ms 96.8 96.8 96.8 98.7 98.7 98.7 99.1 99.5 99.3 94.1 89.7 91.8 94.5 92.5 93.5
±25 ms 91.8 95.7 93.7 95.5 98.1 96.8 98.2 99.5 98.9 84.4 86.5 85.5 92.0 90.1 91.1

BLSTM with ±50 ms and ±25 ms detection tolerance

with the same folds, and the means of the output activation functions are used for the
final evaluation. Table 11.3 shows the results for each set of onsets and the overall
database. Following [52], recall, precision, and F1-measure are shown for this task.
Note that, as the PNP data set consists of 93 onsets from a single audio file of string
sounds, it should be considered as less representative.

11.2.4 Summary

The principle of onset detection in audio was discussed including a BLSTM RNN
onset detector. This detector had achieved results on par with or better than existing
results on the same data (wrt. F1-measure), regardless of the onset type. The aver-
age improvement on the whole Bello data set over previous variants introduced in
[52, 56] is 1.7 % F1-measure absolute. Highest gain (3.6 % F1-measure, absolute) is
measured for complex music mixes. This reflects the data driven approach’s adaptiv-
ity to different musical genres. Good results are obtained even if the onset location
tolerance is reduced to ±25 ms instead of ±50 ms.

Follow-up work in [64] and [65] again base on LSTM and standard recurrent
neural networks, and further show their high potential. Overall, and given its domi-
nance at MIREX 2010 and MIREC 2011, the BLSTM leads to excellent results for
all types of onsets. As particular advantage when compared to ‘conventional’ onset
detection approaches, it can detect multiple types of onsets equally well— given
representative and sufficient training data—, which is an important step towards a
universal onset detector.

Since the types of onsets the BLSTM method can detect depend on the onsets
contained in the training set, future work should investigate whether the approach is
suitable for identifying the onset type such as type of instrument or vocal.

11.3 Tempo, Metre, Ballroom Dance Style

Related to the onsets in music are the tempo, and more distantly also metre and
ballroom dance styles. All these can be assessed comparably well in fully automatic
processing, as was shown in [24, 25] following the later extension presented in [6].
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Generally speaking, ‘rhythm’ describes patterns of changes. In music, a ‘beat’
corresponds to the perceived pulses which mark off equal durational units and is our
basis of comparison for measurements of rhythmic durations. The ‘tempo’ refers to
the beats’ ‘striking rate’, whereas ‘metre’ represents accent structure of the beats.
Considering ‘metre’, the metrical structure of a musical piece is composed of multiple
hierarchical levels [66]. There, the tempo on higher levels is an integer multiple of
the one on the lowest level, which is also referred to as ‘tatum’ level. When we tap
along with a song, we do this on the ‘pulse’ or ‘beat’ level, which can be referred to
as the quarter-note tempo. The ‘bar’ or ‘measure’ level corresponds to the unit of a
bar in notated music. The relation between measure and beat level then is the metre
or ‘time signature’ of a musical piece.

Current tempo detection algorithms mostly base on periodicity detection:
Autocorrelation, resonant filter banks or onset time statistics (cf. Sect. 11.2) are some
examples as summarised in [51]. Very few approaches, however, aim at synergis-
tic common or combined assessment of tempo together with related information
such as metre or beat-tracking to provide a robust basis for higher level tasks, such
as ballroom dance style or genre recognition. Further, few studies introduce data-
driven genre and metre recognition [67, 68]. Others [69–71] use rhythmic feature
information for specialised tasks such as audio identification.

In this section, an approach for robust data-driven rhythm analysis is discussed.
To this end, LLDs modelling rhythmic information are presented that are tailored to
classify duple and triple metre and ballroom dance styles. Once these are determined,
the information is used to reliably assess the quarter-note tempo and avoid ‘octave’
errors, i.e., doubling, tripling, halving, etc., of the tempo by mistake.

The determination of tempo, metre, and (on-)beat positions [25] can be roughly
divided into two major principles:

The first strategy starts with the location of onsets in the audio (or sym-
bolic notation such as MIDI) as was shown in the last section. Then, the desired
determination tasks are based on the analysis of the inter-onset intervals (IOIs)
[72–78]. To this end, histogram approaches are found most frequently [13, 75].
There, duration and weight of all possible IOIs are calculated. IOIs are binned by
similarity clustering and the clusters are arranged in a histogram. From the weights
and the centres of the clusters the tempo of several metrical levels can be estimated.
Alternatively, rule-based approaches are employed [13]. Or, exclusively the Tatum
pulse, i.e., the fastest tempo present in a piece is computed by choosing the clus-
ter with the centre of the smallest IOI [75]. Then, within a window around each
Tatum pulse features are extracted and the Tatum pulses are classified, e.g., by
Bayesian methods, with respect to their perceived accentuation. By that, the beat
level is detected based on the assumption that beats are more accented than off-beat
pulses.

In the second strategy to determine tempo, metre, and (on-)beat positions the
order is inverted, i.e., after analysis of tempo and metrical structure onset positions
are retrieved. In this case, resonator methods or the related correlation approaches
are commonly used. Onset localisation then benefits from the knowledge gained
throughout tempo detection [5, 13, 14, 16, 19, 79]. This second strategy tends to lead
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to more reliable results if the tempo is sufficiently constant over longer segments. It
will thus be followed in the ongoing. As in the case of onset detection (cf. Sect. 11.2),
the assumption is made that beats, percussion or note onsets, and other rhythmic
events are marked by a change in signal amplitude in a few non-linear frequency
bands. The starting point thus is the envelopes or the differentials of the envelopes
of six frequency bands, however, without peak picking. The ‘detection function’ (cf.
Sect. 11.2) [57] will be the envelope, its differential, or any other function related to
perceivable change in the signal s(k).

The beat level tempo we aim at now, can be seen as periodicity in the envelope
function. Just as for the detection of pitch periodicity in Sect. 6.2.1.9, auto-correlation
can be used here to find the periodicity [19, 80]. The periodic auto-correlation is cal-
culated over a window of 10 s of the envelope function. As in the case of pitch
detection, the index of the ACF’s highest peak indicates the strongest periodicity.
However, this strongest periodicity does not necessarily correspond to the periodic-
ity perceived as dominant [81], which may be influenced by an interval of preferred
tapping linked to a supposed resonance between the human perceptual and motor
system. Ignoring this fact, however, and using this highest peak as indication of the
beat level tempo can give reasonable results if the music of consideration has strong
beats in the preferred tapping range. Given, however, that multiple frequency bands
were used, their results need to be combined in a meaningful way. A straightforward
approach is the addition of the bands’ individual ACFs (cf., e.g., Fig. 11.5) leading to
the summary ACF (SACF). In the SACF, one then picks the highest peak. Alterna-
tively, one can determine the tempo per band and carry out a majority vote over these
decisions—potentially even weighted according to the type of music. An example
of ACF application is given in [13] for tempo and in [19] for metre detection.

A related method is the use of a resonant filter bank [5]. Such a bank is made up by
resonators tuned to different frequencies or periodicities, respectively. The detection
function is input to all resonators. Then, the total output energy is measured per
resonator. Similar to the ACF approach, the resonator with the highest output energy
best matches the piece’s periodicity. Thus, one assumes the beat level tempo to be
its resonance frequency. As stated, this is an incomplete, yet ‘working’ model of the
considerably more complex human rhythm perception. In fact, most state-of-the-art
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Fig. 11.5 Periodic ACF of band envelope differentials from 10 s of OMD—“Maid of Orleans” [6]

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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systems do not assess beat level tempo fully reliably, and octave errors are a major
issue [51], even among several human listeners that tap at different levels.

A detection function is needed by the approaches up to now. Alternatively, a dif-
ferent periodicity detection approach can be followed based on retrieving self-
similarities among audio features [14]. To this end, FFT coefficients or MFCCs
[82] are computed from short overlapping windows (20–40 ms). Based on these,
a vector-by-vector self-similarity matrix S is calculated by distance measurement
or cross-correlation between vectors at different positions in time. Then, the ‘beat-
spectrum’ [14] B is derived from S. It is comparable to the ACF or the output of the
resonant filter bank discussed before:

B(IOI) =
K∑

k=1

Sk,k+IOI (11.14)

The acoustic features S is based upon still influence the performance, but relations
between all feature vectors are modelled in this way. However, given the time needed
for computation of a self-similarity matrix and the fact that for most music the
sensation of the tempo corresponds to a loudness periodicity, a set of sub-band
detection functions is considered as sufficient in the ongoing.

Let us now switch to a brief overview on selected metre detection and ballroom
dance style recognition methods. Tempo information from various metrical levels is
ideally used for metre classification, as in [16], where music is processed on the tatum,
pulse, and measure level by comb-filter bank periodicity analysis and probabilistic
modelling of dependencies across the metrical levels. Further, the approach can
model change of metrical structure within a song for a broad variety of genres,
and obtains phase and tempo robustness on the beat level, but not on the measure
level. Limiting the kinds of metres helps to reduce the complexity of the task. For
ballroom dance music, considering only duple or triple periods on the measure level
can be a reasonable [67]. There, a segmentation of the song on the beat level is
assumed to be given for subsequent determination of duple or triple metre on the
measure level. Per beat-segment, LLDs are extracted and periodic similarities across
beats and LLDs are analysed by ACF leading to decision criterion features for metre
classification.

Ballroom dance style recognition is a comparably novel task, but experience
exists to some degree from the related classification of musical genre as in [83]. In
[7] timbral texture, rhythmic and pitch content is modelled in the acoustic features.
Rhythmic feature information bases on the ACF of sub-band envelopes. GMMs and
k-Nearest-Neighbour (kNN) are compared. In [39] a brute-forced large feature space
is the basis for SVM classification. Ballroom dance style recognition based on a data-
learnt model is presented in [68]. Different features based on IOI histograms are input
to a kNN classifier, and 15 MFCC-like descriptors derived from the IOI histogram
lead to the best result.
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Table 11.4 Tempo distribution in the BRD set by mean, standard deviation σ , minimum and
maximum tempo in BPM by dance style

Tempo [BPM] Mean σ Min Max

All 128.5 38.7 68 208
Cha-Cha-Cha 122.0 6.5 92 136
Foxtrot 114.8 2.1 104 116
Jive 165.9 11.5 124 176
Quickstep 200.7 6.7 153 208
Rumba 97.7 8.3 76 141
Samba 100.7 8.8 68 202
Tango 127.4 3.2 112 136
Viennese Waltz 177.1 2.3 168 186
Waltz 86.2 1.7 72 94

11.3.1 BRD Database

To provide an impression of obtainable results, a set of 1855 pieces of typical Ball-
room and Latin dance music sampled from [84] serve as database—the BRD database
for short. The detailed list of these is available for reproduction of results.3 Accord-
ing to the World Dance Council’s (WDC) regulation, the five International Standard
dances Foxtrot, Quick Step, Tango, Viennese Waltz, and Waltz are covered next to
the four most typical International Latin dances Cha-Cha-Cha, Jive, Rumba, and
Samba—Paso Doble is left out, as it is hardly taught and seldom danced in most
dance schools. Their tempi range from 68 to 208 BPM. 30 s are available per song.
The audio was converted from a Real Audio like format to 44.1 kHz PCM. The over-
all duration of the audio is thus 15.5 h. The distribution of the tempi and the instances
across dance styles can be seen in Table 11.4 and respectively later in Table 11.6.

The tempo and dance style labels are taken over from [84]. The ground truth with
respect to duple or triple metre is known from the dance style: Waltzes have triple
metre as opposed to the rest with duple metre.

11.3.2 Methodology

Let us now take a look at the algorithm used for provision of benchmark results. The
approach is (partly) data-driven and performs rhythm analysis based on 82 rhythmic
features. Its output is duple or triple metre, quarter-note tempo, and one of nine
ballroom dance styles. In order to best cope with the above described octave errors
which are challenging even for human listeners, ballroom dance style recognition
is integrated into the tempo analysis. Once the ballroom dance style is known, a

3 http://www.mmk.ei.tum.de/~~sch/brd.txt

http://www.mmk.ei.tum.de/~~sch/brd.txt
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tempo range deduced from the dance style can be enforced on the quarter-note tempo
detection. This method is very effective in eliminating octave errors.

The envelopes or detection functions of six non-linear frequency bands are fed into
comb filters as first introduced in [5] to detect the fastest, i.e., Tatum tempo [19, 75]
by highest output energy. The comb-filter bank used in the ongoing is a specialised
version. From this information features are derived that describe the distribution of
resonances throughout the musical piece of analysis. These allow for the automatic
decision upon duple or triple metre, and ballroom dance style classes, which assist the
tempo detection algorithm. The tempo is from now on denoted by θ and is specified
by a frequency with the unit BPM. The subscript IOI indicates that it is given as IOI
period in frames.

Let us next look at the comb filters in detail. It basically adds the signal itself to a
delayed version of the signal and is characterised by two parameters: the ‘delay’ d or
period, being the reciprocal value of the filter’s resonance frequency, and the gain α.
For tempo detection IIR comb filters are used with the output y(k) in the discrete
time domain:

y(k) = (1 − α) · s(k) + α · y(k − d) (11.15)

The according transfer function H(z) in the z-domain is:

H(z) = 1 − α

1 − α · z−d
(11.16)

H(z) is depicted in Fig. 11.6 for two exemplary gains α. Optimising α is a crucial
factor to achieve best tempo detection. In [5] it is suggested to use a constant half-
energy time by using variable gain α depending on d. This was, however, not observed
ideal in the oncoming experiments, and a fixed value for α is thus preferred. As small
temporary tempo drifts within a musical piece have to be assumed, the gain α → 1

Fig. 11.6 Frequency
responses of IIR comb fil-
ters for the gains α = 0.8 and
α = 0.4 set for 100 BPM
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being optimal in theory cannot be used. Evaluating α in [0.20, 0.99] revealed α = 0.7
as best solution.

Comb filter banks are instantiated for a broad ranger to also cover higher metrical
layers. Features as obtained by the outputs of the filters describe the distribution of
resonances of several metrical layers, and by that the metrical structure. To keep the
number of comb filters in reasonable limits, one can exploit the multiple metrical
layers present in a musical piece: At first, the Tatum tempo is estimated. Then, poten-
tially present higher metrical levels are assumed to have tempi at integer multiples
of this tempo. This is true for a broad range of genres.

For the processing, the audio signal is down sampled to fs =11.025 kHz and
converted into a monophonic signal by stereo-channel addition. The input of length
Li seconds is chunked by Hamming windowing into Nframes = 100 · Li frames
of Ns,block = 256 samples with a frame overlap of 0.57. This resembles a frame
rate of 100 FPS. 128 DFT coefficients are then computed per frame. Mmel overlap-
ping triangular filters which are equidistant on the Mel-frequency scale as used in
speech recognition for the computation of MFCC [82] (cf. Sect. 6.2.1.4) reduce these
coefficients to envelope samples of Mmel non-linear bands. The reduced number of
frequency bands covers the human auditory frequency range. According to [5], the
rhythmic structure is entirely preserved in this compact form of representation. The
envelope samples xm,k per Mel-frequency band m are logarithmised by:

xm,k,log = 10 · log
(
xm,k + 1

)
(11.17)

The envelopes xm of the Mel-frequency bands are then low-pass filtered for smooth-
ing. This is realised by convolution with a half-wave raised cosine filter hcos. The
length of 15 envelope samples, or 150 ms, respectively has proven a good value—
overall, it preserves fast attacks, but filters noise and rapid modulation, similar to
human sound sensation:

hcos(k) = cos

(
πk

15

)

+ 1 , k ∈ [1, 15] (11.18)

Per low-pass filtered Mel-frequency band envelope m a weighted differential dm is
applied:

dm(k) = (
xm,k − xm,k,l

) · xm,k,r (11.19)

For a sample xm,k at position k a moving average is calculated over one window of
10 samples to the left of sample xm,k (left mean xm,k,l) as well as a second window of
20 samples to the right of sample xm,k (right mean xm,k,r) [6]. The motivation is that
human’s perceive note onsets as more intense after a longer phase of lower sound
level [85]. Further, note duration and energy are crucial factors in the perceived note
accentuation [75].

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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11.3.2.1 Tatum Features

The Tatum grid is the lowest metrical level, i.e., all onsets are contained in it [75, 86].
By that, it represents the highest tempo and lowest inter-onset-interval in a piece. The
Tatum tempo θT is assessed by an IIR comb filterbank with 57 filters of gain α = 0.7
and delays from dmin = 18 to dmax = 74 envelope samples. Tempi from 81 to 333
pulses-per-minute can likewise be captured which is sufficient except for very slow
music, where a different range can be chosen, accordingly. The weighted differential
dm of each Mel-frequency band envelope m is input um to the filters hm,d with delays
d, whose output is referred to as yn,d,m. The total energy output T ′(d − dmin + 1)

over all bands is calculated per filter hm,d by:

T ′(d − dmin + 1) =
Mmel∑

m=0

Nframes∑

n=0

yn,d,m (11.20)

This leads to the ‘unflattened’ Tatum vector T ′ of 57 elements T ′(d − dmin + 1).
Figures 11.7 and 11.8 show T ′ for exemplary songs.

From T ′ three peak statistics are derived as follows: Tratio—the ratio of the highest
and lowest value, Tslope—the fraction of the first over the last value, and Tpeakdist—the
mean of the maximum and minimum value normalised by the global mean. These
describe the vector’s peaks’ ‘visibility’ and flatness as can be seen in Figs. 11.7 and
11.8. Despite their constantly periodic spectral response, the comb filters inherently
have higher resonances at higher tempi for less rhythmic content (due to the way the
data is distributed and the comb filter outputs are normalised). Thus, a flattening of

Fig. 11.7 Plots of Tatum
vector T ′ (top) and flattened
Tatum vector T (bottom) for
Celine Dion—“My Heart Will
Go On”
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Fig. 11.8 Plots of Tatum
vector T ′ for “Moon River”
(Waltz, triple metre) (top) and
“Hit the Road Jack” (Jive,
duple metre) (bottom)
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the vector by the difference between the means of the first and last six values leads
to the flattened Tatum vector T . From this vector, the two most dominant peaks are
located by determining all local minima and maxima at first. Next the height D is
calculated per maximum based on its mean minus the adjacent left and right minima.
The indices of these two maxima are the Tatum candidates (θT1,IOI and θT2,IOI ), and
confidences CTi,IOI are calculated for these:

CTi = DTi + T(θTi,IOI ), i ∈ {1, 2}. (11.21)

The candidate with higher confidence is chosen as final Tatum tempo θT . The IOI
period θT ,IOI of the final Tatum tempo is converted into the final tatum tempo (θT )
in BPM by:

θT = 6000

θT ,IOI
(11.22)

11.3.2.2 Metre Features

The 63 Tatum features made up by θT , θT1, θT2, Tratio, Tslope, Tpeakdist and the Tatum
vector T with 57 elements only model a very small tempo range. To extend to
tempo distributions over a broader range within the estimation of the main or beat-
level tempo θB, and the metrical grouping M, a ‘metre vector’ m is next described.
Note, however, that explicit metre information is not contained—the feature vector is
rather needed to assess this information. This metre vector captures the distribution
of resonances among 19 metrical levels, starting at the Tatum level.
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The 19 elements mi of m are normalised score values of the tempo θT · i. By that,
they provide information on the degree to which the tempo θT · i resonates with the
musical piece. For their calculation, an un-normalised score value m′

i is computed,
first, by setting up a comb filter bank for each value of i ∈ [1, 19]. Each filter bank
consists of 2i + 1 filters with delays from (θT ,IOI · i − i) to (θT ,IOI · i + i) [6]. As in
Sect. 11.3.2.1, the total energy output per filter in the bank is calculated. Then, the
maximum value is assigned to m′

i. The delay d of the filter with the highest total
energy output is stored as adjusted tempo θi,IOI belonging to m′

i. The 19 elements
m′

i make up the unflattened metre vector m′, with

m′
i = max

j∈[−i,+i]

⎛

⎝
Mmel∑

m=0

Nframes∑

n=0

yn,θT ·i+j,m

⎞

⎠ (11.23)

Figures 11.9 and 11.10 provide according examples. Given same behaviour for higher
resonances of higher tempi as was described for the Tatum vector above also for m′ (cf.
Fig. 11.9), this vector is flattened, accordingly, considering the difference m′

19 −m′
1.

This leads to the flattened metre vector m, simply called metre vector. The require-
ment of a minimal input length Li = dmax · 19≈14 s is needed, as the higher metrical
levels correspond to very slow tempi and by that to large comb filter delays.

11.3.2.3 Feature Selection

82 features, including all the 19 metre vector elements mi and the 63 Tatum features,
namely θT , θT1, θT2, Tratio, Tslope, Tpeakdist plus all 57 elements of the Tatum vector

Fig. 11.9 Plots of metre
vector m′ (top) for “Moon
River” (Waltz) and flattened
metre vector m (bottom)
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Fig. 11.10 Plots of flattened
metre vector m for “Maid
Of Orleans” (3/4 metre, top)
and “Hit the Road Jack” (4/4
metre, bottom)
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T were introduced so far—they form the feature set Fall. Given the suitability of
linear SVMs with SMO learning in [24, 39], these have been used for classification
in the work described here. To determine the most relevant features for metre and
ballroom dance style classification from the set Fall, a Sequential Floating Forward
Search (SFFS) [39] with the target classifier—the SVMs—was carried out once per
task. This led to the feature sub-set Fmetre for metre classification: Tratio, metre vector
m elements 4, 6, 8, 16, and the Tatum vector T . Further, the ballroom dance style
classification feature sub-set Fdance found resembles: metre M, Tratio, Tslope, Tpeakdist ,
metre vector m elements 4–6, 8, 11, 12, 14, 15, 19, and the Tatum vector T without
elements 21 and 29.

11.3.2.4 Recognition

Metre and ballroom dance style are classified by a data-learnt approach, namely
SVM. Given the continuous value nature of tempo, one may think of using SVR
for tempo assessment. This was tested on the BRD set, but observed as not able
to identify a few percent relative BPM deviation. Thus, a hybrid classification and
regression approach is considered: The tempo range is divided into few overlapping
tempo ranges. A natural choice in the context of ballroom dance style is to use these
styles as tempo classes as these are usually limited to a specific tempo range. Such a
regulation is officially provided by the International DanceSport Federation’s tempo
regulation for competitions. In [13, 87], this fact is used the other way around: Tempo
ranges are used there to assess the ballroom dance style.
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s(k)

Preprocessing
Mel-bands, envelopes, down-sampling

Feature Extraction
comb-filter bank

s'(k)

x

Metre Classification
SVM

Metre (duple/ triple)

Ballroom Dancestyle Classification
SVM

Tempo Detection

Dancestyle (9 classes)

Tempo Detection
exploitation of tempo / tatumstatistics

Beat leveltempo (BPM)

Fig. 11.11 Flow in the described data-driven tempo detection basing on metre and ballroom dance
style recognition [6]

Figure 11.11 shows the overall processing flow for metre, ballroom dance style,
and quarter-note tempo determination: First, a SVM-model for metre classification
is built using the feature sub-set Fmetre to assign a metre M (duple or triple). Then,
the metre M is used as a feature in the set Fdance (cf. Sect. 11.3.2.3) for ballroom
dance style classification. Finally, determined metre and ballroom dance style are
used to assess quarter-note tempo robustly.

From the training data the means μq/T and variances σ 2
q/T of the annotated

quarter-note tempi and tatum tempi θT are calculated per ballroom dance styles. As
no annotation for tatum tempo is usually available, the tempo estimated automatically
as in the first step (cf. Sect. 11.3.2.1) serves as substitute. Higher WA could be reached
given manual annotation also for this tempo.

Then, the tempo of unknown test instances is determined: With the two tatum
candidates θT1 and θT2 as extracted in the first step in Sect. 11.3.2.4, the final tatum
is decided upon based on the statistics from the training data. The confidence CT1/2
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(cf. Sect. 11.3.2.1) is replaced by a Gaussian function G(θT1/2):

G(θ) = exp

(

− (θ − μ)2

2σ 2

)

, (11.24)

and the parameters μ and σ 2 are set to the values of μT and σ 2
T of the ballroom

dance style.
Next, the candidate θT1/2 that maximises the function G(θT1/2) is selected as

the final tatum tempo θT∗ . With this new tatum, a new flattened metre vector m∗ is
calculated, and used for determination of the quarter-note tempo. The elements m∗

i
are multiplied by a Gaussian weighting factor G(θi), and the parameters μ and σ 2 in
Equation (11.24) are chosen as μq and σ 2

q according to the ballroom dance style.
θi indicates the tempo the metre vector element m∗

i belongs to (cf. Sect. 11.3.2.2)
[6]. Then, the index imax that maximises m∗

i · G(θi) is determined, and the tempo
θimax according to this index imax is chosen as the detected quarter-note (beat level)
tempo θq.

11.3.3 Performance

Table 11.5 depicts benchmark WA for the detection with and without prior ballroom
dance style recognition. These were computed in a ten-fold SCV as were further
results in this section based on data. Thereby, at no time throughout processing test
instances’ labels are used except for the final comparison if the decision was correct.
Tempo tolerance in the evaluation is 3.5 % relative BPM deviation as in [24]. For the
case without ballroom dance style recognition a single predefined Gaussian is used
for the overall tempo distribution instead of the nine dance style specific Gaussians.

As can be seen in the table, WA is increased by almost 20 % absolute with the
prior recognition of the ballroom dance style. With the ‘perfect’ ballroom dance style
as given by the manual annotation, the tempo octave is near always correct. Overall,
88 % of all instances were assigned the correct tempo octave.

With all steps as described in Sect. 11.3.2.4, the performances in Table 11.6 are
obtained, which are the best on this data set to-date [67, 68]. There, ballroom dance
style recognition is obtained without the quarter-note tempo as feature information.

Table 11.5 WA for tempo detection on the BRD set without (w/o BDS), with prior ballroom dance
style recognition (w/ BDS), and using manually annotated ‘ground truth’ ballroom classes as upper
idealistic benchmark (gt BDS)

WA [ %] w/o BDS w/ BDS gt BDS

Tempo 88.8 92.4 93.1
Octave 70.0 88.5 93.0
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Table 11.6 UA / WA on the BRD set for metre M, quarter-note tempo θq, and ballroom dance style
(BDS) by genre

[ %] UA WA Cha-Cha Foxtrot Jive Quickstep Rumba Samba Tango Vien. Waltz
-Cha Waltz

#Instances 211 245 138 242 217 188 185 136 293
Metre 97.1 96.9 99.1 97.6 97.8 99.6 90.8 98.9 98.4 97.8 94.2
BDS 88.9 89.1 87.7 95.5 88.4 90.1 77.9 84.0 91.4 91.9 93.2
Tempo 93.0 92.4 97.2 93.9 97.1 96.3 90.3 93.6 94.1 92.6 81.8
Tempo 89.0 88.5 94.8 93.5 90.6 87.6 81.6 86.2 93.5 91.2 81.8

octave

Further, only 30 s were available per song. Given longer segments, one can expect
results to improve [24].

11.3.4 Summary

In this section we discussed automatic rhythm analysis on real-world music. In par-
ticular, a data-learnt approach of sequential combination of ballroom dance style,
metre, and tempo recognition was introduced. It could be observed that the infor-
mation on ballroom dance style highly increased the tempo estimation accuracy.
Further, 82 rhythmic features were discussed that will be re-used later in Sect. 11.7
for music mood analysis.

Further efforts could consider complementary features, such as the ones in
[19, 68, 71] to augment the rhythm analysis.

11.4 Key

Apart from the rhythm-focused application presented so far, the tonal analysis is of
course of interest. Starting from a shallow analysis, let us first consider musical key
in music as in [28].

The musical key is decisive for the notes—mostly seven—that ‘belong’ to the
according scale. The key itself usually refers to the ‘tonic’ chord. The tonic chord
is normally perceived as arrival or ‘resolution’. Other chords in a musical piece of
a certain key create different types and degrees of tension. Keys can be divided into
major and minor. However, one major and one according minor key share the same
notes that belong to the scale. Pieces or songs in pop and classical music are mostly
in one key. However, longer pieces can have several, partly contrasting keys. The
underlying rules that manifest the key of a musical piece are non-trivial and varied
over the history of western music. Most decisive are the chords appearing in a piece
that are usually constructed by the notes of the corresponding scale.
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Knowledge of this key is an essential information as a high level-feature in MIR
[88]: It indicates more probable semitones in melody extraction or chord detection. Of
course there may be occurrences of out-of-key notes, but in-key notes will usually
appear considerably more frequently. Other applications include automatic ‘sub-
bass’ addition. These are audible sounds typically in the range of 20–90 Hz popular
in clubs or discotheques to increase the use of sub-woofer loudspeakers. Finally,
key-matching by transposition can be realised in automatic mixing of music for DJ
tools, in radio broadcast or for automatic play-list creation.

Given this relevance, substantial research efforts were made in this direction. Most
earlier publications base on synthesised music from MIDI (cf., e.g., [89–91]) or other
symbolic representations [92]. Further, often single genres are dealt with (cf., e.g.,
[93–96]). It has to be stated, though, that even key detection from symbolic music
representation is not solved to-date given the complexity of the topic [92]. Most
systems base on a chain of frequency analysis including pitch class mapping, feature
extraction, and a key detection algorithm. The last stage marks the major difference
in approach: It may be based on knowledge such as correlation with templates or
more recently increasingly on data [97–99]. As features, PCP variations dominate
[100] together with diverse variations such as CHROMA (cf. Sect. 6.2.2.2) based
harmonic PCP [89, 90, 101], PCP modulations [102], data-learnt PCPs including
scale transitions [103], ‘tonal centroid’ features [104, 105], constant-quotient profiles
[106, 107], overtone removal [108], ANNs for human perception modelling [109],
and weighting the contribution of FFT bins by their distance to the closest note [110].

Correlation with templates includes such constructed from monophonic instru-
ment clips, weighted by a combination of the Krumhansl-Schmuckler and Temper-
ley’s modified PCPs using a multidimensional tonal representation [91, 111, 112].
Other variants include a decaying spectral impulse train for chromagram mod-
elling with subsequent template based correlation [93], rules learnt from MIDI data
[113, 114], and a geometric topology of tonality with an inter-key distance—the Spi-
ral Algorithm and Centre of Effect Generator, also known as FACEG [94, 96, 115].
In this process knowledge on rhythm structure and chord change progressions can
be integrated [116].

More recently, HMMs emerge for this task [97, 104, 105, 117] given their ability
to incorporate temporal dependencies and key changes [118]. The HMM approaches
partly include transient and noise reduction or tuning estimation [95]. As static clas-
sifiers, distance-based approaches such as KL divergence or Mahalanobis distance
[101] and SVMs [98] are applied. A further overview on methods is given in [119].

From the described methods, none has emerged as single best alternative. Further,
different datasets reaching from synthesised to real audio and varying in size, as well
as differing evaluation criteria such as accuracy or point systems as in the MIREX
challenge, make it difficult to compare the diverse approaches. None the less, some
advantages are inherent in the methods, such as HMMs or more general DBNs being
able to segment or allowing for inclusion of an LM [10]. SVMs or ANNs provide
discriminative learning, generalise well, and can handle larger feature spaces. The
charm of using templates without training is obvious: Besides fast classification,

http://dx.doi.org/10.1007/978-3-642-36806-6_6


254 11 Applications in Intelligent Music Analysis

almost no storage space is needed. This comes, however, at the price that adaptation
to genres or instrumentation is almost impossible.

In the ongoing, we will oppose the two main approaches of a template based
correlation model and a data-driven approach and compare features based on music
theory and human perception studies (cf. Sect. 6.2.2)

11.4.1 Key Databases

Four datasets will be used to cover the prevailing music genres typically aired
reaching from Rock and Pop, to Jazz, and Classical music. Overall, 520 pieces—
respectively 35 h and 25 min of playtime, are contained in the ‘KEY-ALL’ database.
The subsets were selected from commercial CDs to ensure availability for reproduc-
tion of results. Pieces are limited to constant key. This is, however, no real constraint,
as the time window of the methods presented can be shortened, or overlapping analy-
sis can be carried out. In addition, structure analysis such as introduced in Sect. 11.6
can be applied first to subsequently assign the key per found segment such as chorus
or verse. The annotation of the key was carried out in 24 keys (12 major and 12
minor) by three professional musicians. No disagreement was found for the pieces
in the database.

The CLASSIC dataset contains 89 classical pieces (5 h 38 min) from “100 Meister-
werke der Klassischen Musik”, a six CD collection of ‘100 masterpieces of classical
music’ [28]. 11 pieces were excluded because they contained key changes.

The JAZZ dataset contains the 82 constant key pieces (7 h 52 min) throughout all
stages of development in Jazz music from the 106 in the “Blue Note Jazz History
Collection Vol. 1–Vol. 5”. Special challenges of this set include live-recordings and
the fact that western music theory is not always applicable in Jazz—for example blue
notes and special scales and modes may leave the semitones of a key.

The CHANSON dataset contains the 150 constant key pieces (7 h 35 min) of
the 162 French Chansons in the 10 CD collection “Chansons de France Vol. 2”
or ‘Chansons of France volume two’. Particular challenges of this set include low
recording quality in the sense of noisiness and tape speed variation similar to ‘older’
vinyl recordings—studio time was often too pricy and low-budget live recordings
were common habit, just as for Jazz music.

Finally, the MTV dataset contains all 200 contemporary popular pieces (14 h
24 min) of the annual top ten songs of the “MTV-Europe Most Wanted” from the years
1981–2000. One piece needed to be excluded because of key changes. A challenge
in this set is its genre variety including Electronic Dance, Hip Hop, Pop, and Rock.
Further, drums and percussion are comparably dominant, traditional instruments
partly absent, and intentional detuning or addition of samples present.

Table 11.7 shows the distribution of playtime for 24 keys (twelve major and twelve
minor). For 12 and 24 keys this is additionally visualised in Fig. 11.12.

In the experiments described here 12 and 24 keys are considered, whereby always
the same instances are handled. In the case of 12 keys, the minor keys are re-labelled

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 11.7 Distribution of 24 major and minor keys in the united KEY-ALL database by total
time (TT)

Key A A# B C C# D

TT 1 h 59 min 1 h 10 min 1 h 12 min 3 h 8 min 1 h 53 min 2 h 50 min
Key F#m Gm G#m Am A#m Bm
TT 24 min 1 h 18 min 15 min 1 h 47 min 24 min 46 min
Key D# E F F# G G#
TT 2 h 43 min 1 h 44 min 2 h 40 min 1 h 6 min 2 h 13 min 1 h 31 min
Key Cm C#m Dm D#m Em Fm
TT 1 h 45 min 43 min 1 h 3 min 17 min 1 h 13 min 1 h 26 min

00:00

01:15

02:30

03:45

05:00

A A# B C C# D D# E F F# G G#

major keys relative minor keys

Fig. 11.12 Distribution of keys in the united KEY-ALL database in hours and minutes. Shown are
the major keys and on top of these their according relative minor keys such as A minor in the case
of C major for the 24 keys task. If one looks at the overall bar independent of the shading, one thus
sees the distribution of the instances for the 12-key task [28]

by their relative major key, i.e., an A minor label, for example, turns into a C major
label. Tests for parameter optimisation are based only on this more robust 12-key-
task. In fact, knowledge of the used semitones suffices in the majority of applications.
For increased realism, music is MP3 encoded after reading it from the CDs with con-
stant parametrisation at 44.1 kHz, 16 bit, and 128 kbit/s fixed bit rate. These settings
resemble typical minimum quality conditions. Then, the music is decoded back to
waveform and down-mixed to monophonic by stereo channel addition. During this
addition, it is ensured that the no distortion arises by first dampening the two chan-
nels evenly. In this way, the data can be processed easily, but the encoding / decoding
ensures that the results are representative even in the case of lossy encoding.

11.4.2 Parameter Tuning

Figure 11.13 shows the chain of audio processing for key determination includ-
ing preprocessing and extraction of the CHROMA features as is considered in the
ongoing. A 12 dimensional CHROMA vector is obtained by spectral transformation
(35 ms Hanning window and 50 % overlap) of the music, dB(A)-weighting, compen-
sation of detuning, and mapping to pitch classes by semitone-interval based spectral
band-pass filters [120, 121] and summation of the different octaves per note. Then
follows the creation of derived music theoretic and perception-based features.



256 11 Applications in Intelligent Music Analysis

Fig. 11.13 Key detection chain of processing [28]

Two steps along this chain are non-standard: First, dB(A)-weighting according to
the norm IEC/DIN 651 adapts to human perception and compensates low and very
high frequencies amplification typically applied during mastering of CDs.

In order to compensate potential ‘tape speed’ variations, a method as follows was
proposed.

First, the amount of ‘detuning’ (i.e., deviation) between the musical piece and
the reference pitch classes is estimated. To this end, the ‘prominent’ frequency is
determined as the one with the highest long-term energy. These typically range
between 2 kHz to 3 kHz. In this range, one runs the risk to capture higher harmonics
rather than fundamental frequencies. As these tend to show inaccuracies, the range
was limited to 130 Hz to 1 kHz. The lower range end resembles C3, and is later shown
to be well suited for musical key determination (cf. Table 11.11 in Sect. 11.4.5). The
prominent frequency could be the root of the piece, but is not at all necessarily so.
Next, the ‘reference’ frequency nearest to the measured prominent one is found, and
a divergence factor D to the nearest properly tuned reference frequency is calculated:

D = nearest reference frequency

measured prominent frequency
. (11.25)

Prominent frequencies in the given range are usually found between 250 and 350 Hz.
The value of the divergence thus maximally varies by ±1.5 % and on average
by ±0.4 %. The semi-tone-band filters for frequency-to-pitch class mapping (cf.
Sect. 6.2.2.2) are then scaled by D as follows, where fi represents the mid-frequency
of each filter band:

fi = D · f0 · 2
i

12 , i = 0, 1, 2, . . . , 88; f0 = 27.5 Hz (11.26)

Table 11.8 in Sect. 11.4.5 shows the effect of this adjustment.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 11.8 WA for tape speed variation compensation (w/) or its omission (w/o)

WA [%] w/o w/

MTV 70.5 70.5
CHANSON 69.8 72.5
CLASSIC 82.0 82.0
JAZZ 58.5 59.8

KEY-ALL 75.2 76.2

SVM, ten-fold SCV, Gaussian filter, whole piece, range C3–C8, 12 keys

Table 11.9 WA for different semitone filter functions

WA [%] Rectangle Triangle Triangle2 Gaussian

MTV 71.5 71.5 72.0 70.5
CHANSON 71.1 67.8 69.1 72.5
CLASSIC 84.3 79.8 77.5 82.0
JAZZ 58.5 57.3 59.8 59.8

KEY-ALL 76.2 73.7 75.4 76.2

SVM, ten-fold SCV, whole piece, range C3–C8, 12 keys. Triangle2 indicates the squared triangle
function

For the band-pass filters, a rectangular, a triangular, a squared triangular, and a
Gaussian filter are considered. From these, the Gaussian filter is preferred, based
on the results that will be shown in Sect. 11.4.5, Table 11.9. However, it seems also
intuitive that it leads to good results, as it prefers contributions of frequencies closer to
the mid-frequencies as compared to, e.g., a rectangular filter. The standard deviation
is selected as σ = 0.125, and the Gaussian filter gi(f ) with the mean frequency fi
thus resembles:

gi(f ) = 1

0.125 · √
2π

· exp

⎛

⎝−
(

f −fi
fi−fi−1

)2

2 · 0.1252

⎞

⎠ (11.27)

Another aspect is the optimal length of the (macro) window of analysis [101]. As
different alternatives, the first 30 s, 60 s, 90 s, 120 s, and complete length of a piece are
considered with respect to the accuracy. This is depicted in Table 11.10 in Sect. 11.4.5.

Finally, the optimal frequency range for key extraction is analysed with differ-
ent ranges covering four to seven octaves. The result is shown in Table 11.11 in
Sect. 11.4.5.

11.4.3 Correlation-Based Analysis

Given the acoustic features, the key K that maximises the correlation with key tem-
plates is identified, where κ represents the input feature vector (11.29), and tcor(C)
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Table 11.10 WA for different ‘gating’ lengths from the beginning of a musical piece

WA [%] First 30 s First 60 s First 90 s First 120 s Whole piece

MTV 59.5 70.0 71.5 69.0 70.5
CHANSON 72.5 75.8 75.2 71.1 72.5
CLASSIC 62.9 76.4 75.3 74.4 82.0
JAZZ 37.8 50.0 51.2 48.8 59.8

KEY-ALL 66.2 74.2 75.8 75.2 75.6

SVM, ten-fold SCV, range C3–C8, 12 keys

Table 11.11 WA of different frequency ranges. SVM, ten-fold SCV, 12 keys

WA [%] C2–C6 C2–C7 C2–C8 C2–C9 C3–C7 C3–C8 C3–C9

MTV 58.0 63.5 67.5 67.0 64.0 70.5 69.5
CHANSON 57.0 61.7 71.8 71.8 59.7 72.5 71.1
CLASSIC 70.8 79.8 80.9 82.0 73.0 82.0 80.9
JAZZ 45.1 48.8 61.0 57.3 51.2 59.8 56.1

KEY-ALL 66.0 69.4 75.6 75.0 70.7 76.2 75.0

the corresponding correlation template vector (11.30). An example in the key of C
major (as before) is shown—symbols are explained in Eq.11.32) where maj / min /
cad / dom abbreviate major / minor / dominant / cadence as before. For the key K
holds:

K = arg max
k

κT · tcor(k) (11.28)

κ ∈
{

x, s, sdom, scad, c, cdom, ccad, p
maj

, p
maj,dom

, p
maj,cad

, p
min

, p
min,dom

, p
min,cad

}

(11.29)

tcor(C) = [
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0

]T (11.30)

The elements of tcor(k) weight the semitones of the feature vector, and the indices i
correspond to the scale with (i = 1 =̂ A, i = 2 =̂ A#,..., i = 12 =̂ G#), and k corresponds
to the root for which the correlation result is calculated. The root element’s value
is set to 1, and all remaining ones to zero as seen in Eq. (11.30). The key with the
highest correlation value is then decided for. Thus, the maximum component of the
input feature vector is searched for. Results per proposed feature type are given in
Sect. 11.4.5.

A visualisation of the principle of the derived dominant and cadence features as
were introduced in Sect. 6.2.2 is found in Fig. 11.14 exemplified by Charles Trénet—
“La mer” in the key of C major of the CHANSON dataset: Shown is the distribution of
correlation results for the basic feature ‘scale’, the derived features ‘scale dominant’,
and ‘scale cadence’ in the circle of fifths. As can be seen, with increasing relation
to the original key, the correlation results monotonously increase. Figure 11.14a

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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(a) (b) (c)

Fig. 11.14 Exemplary results for correlation, basic, and derived features in the circle of fifths [28].
a Correlation results for scale attribute, b Correlation results for scale dom attribute, c Correlation
results for scale and attribute

shows the correlation results for scale features with a minimum for F# major and
a maximum for G major. Thus, the key a fifth above the correct key C would be
assumed. This can be avoided by addition of the dominant to enlarge the search
mask to the two highest neighbouring values. In Fig. 11.14b the maximum value for
the feature ‘scale dominant’ is likewise shifted from G major to C major leading
to the correct key assumption. Finally, in Fig. 11.14c the feature ‘scale cadence’ is
visualised: In the example the addition of the fifth above and below help to cope with
the light variations of notes interfering in the feature ‘scale’.

In the case of distinction between 24 keys those feature types able to distinguish
musical modes are concatenated to a 24-dimensional vector κ for correlation. These
are PTR major and minor features and dominant and cadence features. The key is
determined accordingly by retrieving the semitone k that maximises correlation in
analogy to Eq. (11.29), yet. However, the 24-dimensional feature vector κ with

κ ∈
{[

pT
maj

, pT
min

]T
,
[
pT

maj,dom
, pT

min,dom

]T
,
[
pT

maj,cad
, pT

min,cad

]T
}

(11.31)

is used with an according 24-dimensional correlation template vector tcor(k) created
using the previous tcor(k) by appending 12 zero-entries at the end or beginning for
major or minor keys, respectively. Thus, in the example in Eq. (11.30), 12 zero-entries
would be appended at the end.

11.4.4 Data-Driven Analysis

Besides the knowledge-based method, a data-driven one based on SVMs with poly-
nomial Kernel, SMO, and a one-versus-one multi-class discrimination strategy [122]
is now described. This approach allows to combine all feature types in a super-vector
v. Given the 13 feature types with 12 features, each, its dimension resembles 156.
The vector is shown in Eq. (11.32):
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(11.32)

In a data-driven approach, a higher number of non-correlated, yet information
carrying features can lead to better results. However, focussing on the more infor-
mative ones seems reasonable. To this end, feature space optimisation by exhaustive
group-wise elimination by WA is considered. As opposed to knowledge-based evalu-
ation, data-driven evaluation requires a partitioning into training and test instances—
ten-fold SCV is chosen to this end in the ongoing. This leads to mean values over all
data instances. A comparison with correlation analysis results is therefore possible.

11.4.5 Performance

In the optimisation of parameters and methods, let us follow the chain of processing.
As a first result, Table 11.8 shows key determination with and without tape speed
variation compensation. The CLASSIC and MTV sets seem unaffected. However,
the CHANSON and JAZZ ones containing several recordings first stored on analogue
media show good improvement in WA.

Next is the influence of different filter functions for band-pass filtering of semi-
tones. This is seen in Table 11.9, where the WA differs most for the CLASSIC set by
a maximum difference of 6.8 % WA. For the other genres, the variation reaches 2.5 %
at maximum. Least effective is the triangle filter. Between the remaining candidates,
the Gaussian filter is preferred in the further results. The reason is its best results on
the KEY-ALL set and the highest number of best WA across the other sets.

We will now take a look at the optimal time window from the beginning of a
piece in Table 11.10. Lowest WA is observed for the first 30 s over all genres. This
contradicts studies which recommend to focus on the beginning of a piece [91, 95]
under the assumption that the ‘home key’ is present at the beginning and the key
is easily determined thanks to a gradual addition of more and more instruments
in typical introductions of a piece. Good choices are the longer alternatives of the
first 90 s or the whole piece. Interestingly, the first 90 s lead to higher WA for the
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CHANSON and MTV sets. This may be owed to transpositions of the chorus towards
the end of a piece typical in these genres. In Classical and Jazz music, repeated
changes to other keys such as the relative major/minor counter key are apparently
better evened out looking at the overall piece. Given that on average over all genres
the whole piece is the best choice, this variant is used here.

As a final parameter let us have a look at the effect of different frequency ranges
for feature calculation in Table 11.11. In three of four genres, the range from C3–C8
is the best choice and thus used for the evaluations. At the higher end of the scale, the
note C8 is two octaves above a human soprano singer’s highest pitched note. Thus
it appears that respecting higher harmonics seems reasonable in key determination.
However, inclusion of the next octave up to C9 apparently degrades the results. An
explanation for this behaviour can be seen in the weakness of higher harmonics in
comparison to relatively stronger noise components from percussive sounds. At the
other end of the scale, the optimum found coincides with a human tenor singer’s
range. It thus ignores lower bass components. This is different in the results for
JAZZ where a benefit arises from an extension to C2. In fact, virtuoso bass solos are
popular in this genre.

11.4.5.1 Evaluation of Feature Types and Performance

In addition to the WA of correctly classified keys, sub-dominant and dominant con-
fusions for 12 keys are given and further the relative minor and relative major key
confusions for 24 keys are added to the ‘correctly’ classified keys in the following.
This adheres to the validation protocol introduced by the MIREX challenge in 2005.

We first look at 12 keys: Data-driven results (cf. Table 11.12) base on SVM in
ten-fold SCV. This includes results per feature group and such for an ‘optimised
space’ by supervised feature selection (cf. Sect. 11.4.4).

As single feature group, CHROMA features lead to the best result. There, single
feature values ‘clearly’ represent the frequency characteristics of a musical piece.
Within the derived feature types, these are partly ‘blurred’. Further, WAs of derived
features are generally lower. However, the additional features lead to better results
when uniting all features—2.5 % WA absolute more than CHROMA—and also when
selecting the best from the union of features—a further plus of 0.8 % WA and by that
the overall maximum of 77.3 % WA. This difference is significant at the common
level of 0.05 in a one-sided z-test.

Table 11.13 compares knowledge-based and data-driven key determination genre
by genre. The optimal setting is chosen, each, for the two approaches, namely the
‘scale cadence’ features for correlation and the ‘optimised space’ for SVMs.

The correlation approach is superior in three out of four cases for the correct key.
This changes, however, as more data for model-learning is available in the KEY-ALL
case.

Switching to 24 keys, Table 11.14 first shows results for the data-driven approach
with SVM in optimal parametrisation. Interestingly, no improvement is reached by
space optimisation in this case. Given the double amount of classes available, the
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Table 11.12 WA per feature type for data-driven SVMs: correct key (Key) and percentage of
confusion with (sub-)dominant (Sub/Dom)

WA [%] Key Sub Dom Sum

All groups 76.2 7.3 9.8 93.3
Optimised space 77.3 7.1 9.8 94.2
CHROMA 73.7 7.5 11.2 92.4
Scale 59.6 13.3 18.1 91.0
Scale dom 55.2 15.0 19.6 89.8
Scale + cad 51.5 17.1 20.8 89.4
Chords 68.8 9.6 12.9 91.3
Chords dom 65.0 10.2 15.6 90.8
Chords + cad 54.4 15.6 20.4 90.4
PTR maj 68.5 8.8 13.8 91.0
PTR maj dom 63.7 9.0 16.5 89.2
PTR maj cad 56.7 14.4 19.0 90.1
PTR min 73.5 7.7 11.3 92.5
PTR min dom 72.5 8.5 11.5 92.5
PTR min cad 62.5 11.3 17.1 90.9

Database KEY-ALL, ten-fold SCV, 12 keys

Table 11.13 WA for correlation (‘scale cadence’ features) versus data-driven SVMs (‘optimised
space’, ten-fold SCV) per genre

WA [%] Key Sub Dom Sum

Correlation
MTV 74.5 9.0 8.5 92.0
CHANSON 70.5 12.8 9.5 92.8
CLASSIC 86.5 6.7 3.4 96.6
JAZZ 68.3 1.2 18.3 78.8
KEY-ALL 72.3 7.5 12.7 92.5

Data-driven SVMs
MTV 73.0 8.0 10.0 91.0
CHANSON 72.5 8.1 10.1 90.7
CLASSIC 82.0 6.7 5.6 94.3
JAZZ 59.8 14.6 17.1 91.5
KEY-ALL 77.3 7.1 9.8 94.5

Correct key (Key) and percentage of confusion with (sub-)dominant (Sub/Dom), 12 keys

WA drops by roughly 15 % absolute to 62.1 % at maximum.Considering that pieces
in major keys make up 71.5 % of the data, leaving only 28.5 % for minor keys, may
explain the majority of confusions being in favour of relative major keys and almost
none the other way round. This could be overcome by balancing. In this respect,
interestingly, balancing by cyclic key-shift did not improve results [28].

In Table 11.15 a comparison is made for 24 keys as previously between the two
assignment approaches in optimal configuration, each: ‘PTR maj/min dominant’
features for correlation and ‘all’ features for SVMs. SVMs prevail over correlation for
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Table 11.14 WA per feature type for data-driven SVMs (no gain was reached by optimisation of
the feature space)

WA [%] Key Sub Dom Sum Min Maj Sum

All 62.1 4.0 6.7 72.8 2.9 9.2 84.9
CHROMA 59.6 4.6 7.9 72.1 1.2 11.0 84.3
Scale 43.3 10.4 13.1 66.8 0.0 10.0 76.8
Scale dom 42.1 11.3 12.7 66.1 0.0 9.6 75.7
Scale cad 40.0 11.9 14.0 65.9 0.0 8.8 74.7

Chords 49.4 6.5 11.2 67.1 0.0 13.3 80.4
Chords dom 46.2 8.7 12.1 67.0 0.0 11.0 78.0
Chords cad 41.9 11.2 13.5 66.6 0.0 9.6 76.2

PTR maj 48.8 6.3 11.9 67.0 0.0 13.5 80.5
PTR maj dom 46.3 8.3 11.9 66.5 0.0 10.8 77.3
PTR maj cad 42.5 9.2 12.5 64.2 0.0 9.4 73.6
PTR min 54.8 4.4 8.5 67.7 0.0 14.6 82.3
PTR min dom 53.3 4.4 10.0 67.7 0.0 14.2 81.9
PTR min cad 45.4 8.7 12.7 66.8 0.0 10.2 77.0

correct key (Key) and percentage of confusion with (sub-)dominant (Sub/Dom), and relative minor
and major (Min/Maj). Database KEY-ALL, ten-fold SCV, 24 keys

Table 11.15 WA for correlation (‘PTR maj/min dom’ features) versus data-driven SVMs (‘all’
features, ten-fold SCV), subdivided per genre

WA [%] Key Sub Dom Sum Min Maj Sum

Correlation
MTV 46.5 5.0 11.5 64.0 14.0 0.5 77.5
CHANSON 66.4 8.0 10.8 85.2 0.0 2.0 87.2
CLASSIC 76.4 0.0 4.5 80.9 5.6 1.1 87.6
JAZZ 34.1 6.1 13.4 53.7 17.1 2.4 73.2
KEY-ALL 55.4 5.2 10.4 71.0 9.0 1.3 81.3
Data-driven SVMs
MTV 52.0 3.0 9.5 64.5 7.0 9.0 80.5
CHANSON 67.8 8.7 12.8 89.3 0.0 0.0 89.3
CLASSIC 68.5 10.1 4.5 83.1 3.4 6.7 93.2
JAZZ 46.3 8.5 7.3 62.1 9.8 6.1 78.0
KEY-ALL 62.1 4.0 6.7 72.8 2.9 9.2 84.9

WA for the correct key (Key) and percentage of confusion with (sub-)dominant (Sub/Dom), and
relative minor and major (Min/Maj), 24 keys

the correct key in all cases but the CLASSIC set. The JAZZ set benefits most from this
trend. Interestingly, WA is more balanced across genres for the data-learnt method.

11.4.6 Summary

Within this section performance of musical key determination on originally recorded
and MP3 encoded popular, Chanson, Classical, and Jazz music was demonstrated.



264 11 Applications in Intelligent Music Analysis

The main approaches by template correlation-based and data-driven modelling were
opposed and evaluated on novel feature types. The data-driven model prevailed at a
maximum of 77.3 % WA for 12 keys for the whole dataset. For correct recognition of
six out of seven scale semitones, 94.2 % WA were reached. For individual datasets,
the correlation approach partly showed better results, but SVMs were superior given
sufficient data due to the ability to better cope with diversity: Perceptual studies of
tonal hierarchies show genre and task dependency according to [123]. In the case
of 24 keys the difference between these two approaches was amplified from 5.0 and
6.7 % absolute difference in WA. 62.1 % was the maximum WA for the correct key
and 84.9 % WA for six out of seven notes.

As for parametrisation, an optimum has been found for adapting reference pitch
classes to compensate for tape speed variation, using Gaussian filters for semitone
filtering, analysing the whole piece, and using the frequency band from C3 to C8 or
130.8 to 4 186 Hz, respectively, for feature computation. The proposed feature types
based on music theory and human perception were able to improve both approaches
for key assignment.

Future design of features for key determination could consider non-CHROMA
types such as bags of chords. In addition, further music theoretic or cognition inspired
approaches, e.g., inspired by [124] could be targeted. For the acoustic features, the
time-frequency representation could be improved, e.g., by wavelets [71, 125] or
multi-resolution FFT. If one targets the mode instead of the ‘absolute’ key [126],
hierarchical schemes could be established. Non-tonal music audio could be modelled
as an additional class to cope with arbitrary music input [127]. Also, alternative minor
scales apart from the considered natural relative minor scale can be added. In [128],
PTR is given for harmonic and melodic minor scales which could be implemented
directly in the presented approach.

Extending to pieces with changing key can be achieved based on local analysis
[129]. Chunking for such local analysis could be based on beat and on-beat detection
[6, 23] as presented in the previous two sections. Further, temporal context can then
be integrated by the use of LSTM networks [23]. Further, the novel features could be
used in related tonal analysis tasks [10], use key analysis to improve music structure
analysis [30, 130], or exploit synergies by parallel key and progression analysis [131]
or similar mutually dependent information [99]. Finally, the results demonstrate the
complexity of key determination, and confidence measures and key hierarchies can
be useful considerations for application in real-life systems.

11.5 Chords

A more fine-granular description beyond the musical key is provided by the chord
progression in music. In the following, the method as presented in [10] and [29] is
explained and benchmark results are presented.
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To classify a chord, only the pitch classes, i.e., the note names without octave
number, of the notes involved are relevant. A variety of different chord types exists
and is characterised by the size of intervals between notes of the chords.

The automatic recognition and transcription of musical chords and their progres-
sion has manifold application potential:

In spontaneous improvisation sessions of musicians such as ‘jams’, the progres-
sion can be analysed and stored as a lead sheet, or media players can automatically
identify and show the current chord in a musical piece for play-along—by humans
or even the computer. Knowledge of the chord structure can also be used as meta-
information in MIR tasks. A good example is genre recognition, as certain genres
prefer typical progression patterns (e.g., Jazz: second, fifth, tonic successions or
Blues: tonic, fourth, fifth as dominant sept chord successions).

Another example is musical mood recognition (e.g., ratio of major and minor
chords—this will be shown in Sect. 11.7). Obviously, also key recognition can ben-
efit from this information—and vice versa, which is why a simultaneous key and
chord analysis seems promising. Structure analysis, e.g., for chorus retrieval [30]
(cf. Sect. 11.6) can also be based on the chord progression, as it often differs between
different parts of a musical piece such as verse, bridge, and chorus. Moreover, DJs
can be provided with automatic on-line synthesis of chord matching notes as very
low sub-basses or arpeggios, and with tools that allow to blend music with matched
chord structure.

Finally, music similarity analysis, e.g., for plagiarism retrieval can be based on
chord information. As an example, the chord progression of Johann Pachelbel’s
“Canon in D” (“Canon per 3 Violini e Basso”), is found in multiple contemporary
popular songs, such as “Go West” first by the Village People, later covered by the
Petshop Boys, or Ralph McTell’s “Streets of London”, The Farm’s “All Together
Now”, Green Day’s “Basket Case”, Mattafix’s “Big City Life” or Juanes’s “Volverte
a Ver”.

To save labour-some manual labelling, an automatic beat-synchronous and data-
driven approach is introduced here. The approach bases on the findings for tempo
determination and key determination described in the previous sections. Early auto-
matic chord recognition was based on pitch class profiles [100] (cf. Sect. 6.2.21).
Later, HMMs were proven highly suited, e.g., in [104, 117]. Obviously, context
modelling can improve the recognition rate [132], as chords tend to follow chords
with certain properties such as neighbourhood in the circle of fifths (cf. Sect. 11.4).
Exploiting these bases, results on realistic data are shown including a progression
LM trained on a large corpus of 16 k songs to show reachable results on a database
of mixed original recordings.

11.5.1 ChoRD Database

The Chord Recognition Database, respectively ChoRD database was introduced
in [29].

http://dx.doi.org/10.1007/978-3-642-36806-6_6


266 11 Applications in Intelligent Music Analysis

Table 11.16 Distribution of
the keys and chords in the
ChoRD database

Root # Key # Major # Minor # Other

A 7 511 459 57
A# 8 567 171 86
B 7 480 213 61
C 16 854 278 105
C# 5 312 315 61
D 3 557 349 94
D# 8 533 141 61
E 12 643 362 21
F 13 728 272 52
F# 4 407 209 44
G 12 719 287 103
G# 5 353 196 41

Sum 100 6 664 3 252 786

To provide sufficient data for machine learning and testing, a total of 100 musi-
cal pieces—a representative variation of typically aired pop and rock music—was
annotated with the tempo in BPM, the key, and each chord based on original scores
as ground truth reference by three experienced musicians. The set contains 64 dif-
ferent artists, and on average, 1.6 pieces per artist. 18 artists are found more than
once in the set: five songs are contained of each of Delta Goodrem, James Blunt, and
Robbie Williams, followed by four songs, each, of Celine Dion, Coldplay, and Enya,
three songs, each, of Bon Jovi, Bryan Adams, Cher, and finally two songs, each, of
All Saints, Backstreet Boys, Britney Spears, Keane, Phil Collins, Roxette, and The
Corrs.

All pieces have constant tempo. The complete list of songs is available for down-
load.4 The original recordings were compressed to 128 kbit/s MP3, and the total
playtime is 6 h 58 min 12 s. 10702 bars are contained overall. The seven chord types
annotated are major, minor, suspended second or fourth, augmented, diminished,
and ‘power chords’—i.e., the typical combinations of root and fifth with second,
third, fourth or no further interval. Rather than seven chord types times 12 notes only
6 · 12 + 4 = 76 final chord classes were obtained, as only four different augmented
chords exist. Due to sparseness of certain types, cover classes were used as follows: 36
major / minor / other chords (where other chords are augmented, diminished, power,
and suspended), and 24 major / minor chords. The total of chord instances was kept
constant throughout mapping by mapping according to the root and musical function
in the context such as “Cno3” (“C” as power chord, i.e., without a third) onto “C” if
the piece is in the key of C major or onto “Cm” if the piece is in the key of A major.
Table 11.16 shows the frequencies of keys and chords within the ChoRD database
by root note for the classes major, minor, and others.

4 http://www.openaudio.eu/chord.txt

http://www.openaudio.eu/chord.txt
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11.5.2 Methodology

Processing of the audio starts with conversion from MP3 to a monophonic, 44.1 kHz,
16 bit wave. MP3 compression was at first carried out to ensure a typical use-case sce-
nario with higher realism in the sense that the algorithm can work on music delivered
in a lossy compressed format. Then, the tempo, metre, and downbeat position, i.e.,
the position of the first beat of a measure5 are determined by the comb-filter based
approach described in Sect. 11.3. A musical piece is then partitioned into consecutive
bars according to its tempo.

As features serve 12-dimensional CENS vectors per bar (cf. Sect. 6.2.2.3). The
extraction chain of processing includes spectral transformation, dB(A) weighting
for modelling of human frequency-dependent loudness perception according to norm
IEC/DIN 651, compensation of tape speed variation and the mapping to pitch classes.
The dB(A) weighting and pitch tuning are non-standard but reasonable steps and
executed as described in Sect. 11.4.2. During tape speed variation compensation, the
prominent frequency of a long-term analysis in the range 130 Hz–1 kHz is computed
as was exemplified for key determination in Sect. 6.2.2.3. Then, the semi-tone filter-
bank is shifted to the nearest reference frequency of the prominent one.

To model the neighbouring context of a chord instead of recognition of single
chords on their own, a chord language model can be used in addition. In order to
train the LM in the exemplary system, all chord lead sheets retrieved automatically
from the On-Line Guitar Archive6 were used after removal of doubles. Such sheets
are usually made by users. Owing to this fact, they may be erroneous, simplified, e.g.,
by intention for easier playability, or transposed into easily playable keys on guitar
such as G major which usually does not demand for the more complicated “barré”
fingering patterns of chords. For the statistical chord language model, however, one
is primarily interested in typical chord successions. The lead sheets often contain the
chord succession only once. Thus, up-sampling by the following rule was used: Based
on the mean of 60–100 bars for a typical rock or pop piece, the chord succession was
repeated for pieces with less than 30 bars until 60–100 bars were reached.

Further, rule-based parsing such as clustering of different spelling variants of the
same chords, elimination of bass-notes or of such being neither tonic, second, third,
fourth, or fifth as well as the mapping rules for ‘other’ chords as explained above
was used on the language model level as well. 19025 songs, and a total of 1573803
chords were used for the final model. In Table 11.17 the top-ranked uni- and bi-grams
are shown by frequency of occurrence in the chord language model.

On the acoustic layer, a cross-correlation with a hard template serves as reference
for an approach that is not based on data-learnt models. This happens in full analogy
to the method of key determination described in Sect. 11.4.3. In the template, a “1”
is used per note contained in the target chord, and a “0” marks out-of-chord notes.

5 The term downbeat stems from orchestral conducting: The lowest point on the baton signals the
downbeat.
6 http://www.olga.net

http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://www.olga.net
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Table 11.17 Top-ranked chord uni- and bigrams in the LM by frequency of occurrence

Rank 1-gram # 2-gram #

1 G 244 820 D-G 57 500
2 D 227 549 G-G 55 106
3 A 198 958 C-G 54 702
4 C 188 194 G-C 54 040
5 E 130 896 A-D 46 162
6 F 87 741 D-A 43 534
7 B 72 360 G-G 41 090
8 Am 58 929 A-A 40 161
9 Em 57 537 D-D 39 710
10 A# 32 583 E-A 36 659

Table 11.18 WA for the ChoRD corpus, LOSO evaluation

WA[%] Correlation SVM HMM HMM+LM

24 major / minor 39.41 40.24 58.57 60.13
36 major / minor / other 28.37 36.71 45.39 48.84

‘Other’ chords cover augmented, diminished, power, and sustained chords

As alternative data-driven processing methods, we compare SVMs to HMMs with
and without the language model. A linear kernel, pairwise multi-class discrimination,
and SMO learning proved as best choice for SVMs. For HMMs, one continuous
model with one emitting state per beat was used. The models were trained with 20
Baum-Welch iterations [133]. A single Gaussian mixture component was the best
choice. To enable Viterbi search for decoding, a ‘word-loop’ context free grammar
modelled the chord sequence in the case where no data-driven language model was
used. On the other hand, when the language model is enabled (HMM + LM), Laplace
smoothed class-based Katz back-off-bigrams with a cutoff of one were found as best
configuration.

11.5.3 Performance

A song-independent cyclic ‘leave-one-song-out’ (LOSO) training and testing was
chosen as evaluation strategy under realistic conditions. Table 11.18 depicts observed
WA for the different data-free and data-learnt chord determination strategies.

One notes that with increasing data inclusion on the AM and LM level and context
modelling, the WA is increased. By that, HMM exceed SVM as they allow for
contextual modelling. The mapping to and by that reduction to major and minor
chords leads to higher WA despite still handling ‘any input’, if this appropriate in
the context of the application.
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11.5.4 Discussion

A method for fully automatic labelling of music chords was shown in this section.
The feature extraction stage processes the audio beat-synchronous, and compensates
for tape/playback speed variations. A chord progression modelling by a statistical
chord language model is performed. The method was shown to be superior to ‘open-
domain’ knowledge-driven cross-correlation and analysis of isolated bars. 60 % WA
were reached on a mix of original MP3 compressed songs from diverse artists and
genres. The difficulty of the task varied across genres: Songs, such as Enya—“Silver
Inches” were recognised without mistake, while Prince—“Purple Rain” had the
highest error rate with only every fourth chord determined correctly.

As additional advantage of the beat-synchrony the output can directly be turned
into a lead-sheet. Future efforts should aim at the investigation of benefits arising from
the use of source separation and stereophonic beam forming for the enhancement of
the accompanying instruments over the noise and drum parts.

From an architectural point, BLSTM networks that allow for the modelling of
knowledge of the whole song for every chord decision could be employed. To improve
the reference by correlation, one could also consider perception-based and music
theoretic variations of the templates, as were shown in Sect. 6.2.2.

On an even more fine-granular resolution, single note events can be targeted—
the automatic transcription of music. Results and new approaches to this end were
presented recently in [37], for example.

11.6 Structure

Apart from rhythm, metre, note events or chord changes, the structure of a musical
piece can be of interest, such as the positions in time of the chorus section. In this
section, we will highlight the findings presented in [30] and [31].

‘Music thumbnails’, i.e., the most mnemonic part of a musical piece, are precious
in many applications such as ‘teaser’ creation in (on-line) music stores and radio
stations. Teasers are a short part of the song that is very characteristic of it. More
applications are the provision of samples to DJs or provision of samples for efficient
browsing and arranging of large music archives [134] or on mobile devices with
limited display space. Further, query by example systems (e.g., [41]) can exploit
pre-extracted thumbnails for similarity matching. Today, such thumbnails are usually
generated manually as sufficiently robust methods are still lacking.

Generally, highly repeated—preferably vocal—parts such as the chorus sections
tend to be the most mnemonic part of musical pieces [135]. Thus, the following
approach aims at localising the chorus by combining methods and approaches pre-
sented so far in the literature. The approaches towards localisation of the audio
‘thumbnail’ or general structure analysis in music can roughly be divided by the
feature nature they are based upon and by the kind of further approach, such as

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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calculation and analysis of self-similarity matrices (cf. Sect. 11.3) or segmentation
with a subsequent clustering or classification.

The authors in [135] propose a modulated complex transformation logarithmised
and reduced by oriented PCA for clustering of similar sequences. The clusters are
then classified into different parts of a piece by scaled Renyi entropy and spectral
flatness. In [136] MFCCs are used for clustering by modified KL distance. Another
approach in the same article [136] uses ergodic HMMs for structure analysis. Ergodic
HMMs are also used in [137]. These have three states. As features serve the spectral
envelope with MFCCs, LPCCs and discrete cepstrum coefficients. A chunking can
take place by a clustering algorithm to initialise the ergodic HMMs. GMMs initialised
by a clustering step are applied in [138]. In [139], the music signal is chunked by an
event detection function prior to dynamic time warping (DTW). Music visualisation
by a self-similarity matrix for structure analysis was first based on MFCCs using the
scalar product [140], and later using a normalised scalar product [141]. The authors
in [142] use dynamic features which maximise the trans-information for computation
of such a self-similarity matrix.

In [143] an unsupervised Bayesian clustering model is used. Its parameters are
estimated by a modified EM algorithm. The authors in [120] perform a beat synchro-
nous segmentation using a beat-tracker. Then, a self-similarity matrix is established
based on CHROMA features. By uniform moving average filtering, a time-lag matrix
is computed. Its maximum element is determined within limitations of the minimum
lag and the maximum occurrence of a section. An extension is presented in [144].
It permits modulated repetitions and an adapted measure to determine the chorus
sections. The authors of [145] suggest features based on harmonic information for
the creation of self-similarity matrices.

From the above a number of findings can be distilled: In pre-processing, beat-
synchrony seems advisable given robust beat detection. As for features, one should
model the musical properties of the signal such as by PCPs or more specifically
CHROMA, as these tend to be better suited than MFCCs or similar types. Further,
temporal information should be modelled as by CENS features or similar [145].
As for the model, self-similarity matrices seem best suited. Given reliable beat-
synchrony, dynamic modelling is not needed or might even downgrade results. In
the remainder of this section, we consider a solution following these guide-lines and
incorporating simple image processing methods for the processing of a self-similarity
matrix. We will also need to define evaluation measures which are not settled for
this task. Exemplary results will be given on a full day of MP3 compressed recorded
music from multiple styles.

11.6.1 Methodology

As in the last section on chord progression analysis, CENS features (cf. Sect. 6.2.2.3)
are used for the acoustic representation. These will be denoted from now on as

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Fig. 11.15 Self-similarity
matrix for Adriano
Celentano—“Azzurro”. Bright
45◦ diagonals indicate a high
self-similarity [31]
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x = (x1, . . . , x12). Further, beat-tracking as was described in Sect. 11.3 is used for
beat-grid alignment.

An N ×N self-similarity matrix S is calculated (cf. Sect. 11.3) based on the cosine
distance [141] as follows:

S(i, j) = 〈x(i), x(j)〉
‖x(i)‖ · ‖x(j)‖ . (11.33)

If this matrix is visualised as heat-map, one now searches ‘bright’ diagonal segments
parallel to the main diagonal at a 45 degree angle (cf. Fig. 11.15) in matrix S which
indicate highly self-similar segments in a musical piece. To locate these, an edge
filter can be used as given by

FDiag(i, j) =

⎧
⎪⎨

⎪⎩

1 for i = j

c for 0 < |i − j| ≤ b

0 for |i − j| > b

(11.34)

with 1 ≤ i, j ≤ 20, b = 5 and c = − 2
17 . Then, a normalisation follows and a

threshold δ is subtracted from the filtered ‘image’. This results in the matrix Ŝ and
is carried out for reduction of noise introduced by the edge filter. The threshold δ

can be chosen as the highest value exceeded by at least 10 · N values in the filtered
‘image’. Next, a binary matrix Sb is computed by

Sb(i, j) =
{

1 for Ŝ(i, j) > 0

0 for Ŝ(i, j) ≤ 0
. (11.35)



272 11 Applications in Intelligent Music Analysis

Now, regions of interest (ROIs) are found. Start and end of potential chorus sec-
tions are determined as follows: Let d(i, j) be the temporal derivative along a diagonal
segment Sb(i + 1, j + 1) − Sb(i, j). Then, segment bounds are estimated by setting
start points at i and at j if d(i, j) > 0 and corresponding end points at i and j if
d(i, j) < 0.

To improve these initial values, let us define a counter ck per segment k and
a threshold δsim corresponding to the highest value exceeded by at least 0.1 · N2

entries of the matrix S. Starting from the middle (mx, my) of each segment, ck is
incremented if S(mx, my) falls below δsim, and decremented if it exceeds δsim up
to a minimal counter value of ck = 0 [30]. In the case that ck is smaller than a
threshold C, the next value (mx, my) := (mx − 1, my − 1) is processed. Otherwise,
one aborts and the current start (mx + C, my + C) is stored. This is repeated for
the other direction with (mx, my) := (mx + 1, my + 1), again proceeding from the
middle of each segment k, but aiming at the corrected end (mx − C, my − C). C = 4
has proven to be the optimal choice in the experiments described here. Figure 11.16
exemplifies this approach.
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Fig. 11.16 Self-similarity matrix after the different steps of processing: First, edge filtering (top
left), then, dynamic thresholding (top right). From the resulting matrix Ŝ, respectively its binary
representation Sb, ROIs are determined by length and characteristics of each segment (bottom left).
Last is the combination of adjacent segment (bottom right) [31]
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Imposing lower and upper limits for the segment length l helps to reduce the
number of ROIs. A ‘good’ dynamic lower bound was observed to be

l · msim > 8.7 s, (11.36)

where msim denotes the mean similarity of the segment in the self-similarity matrix
S. The value is a good trade-off to avoid detection of short re-occurring sections that
are not relevant in the search of the chorus, such as (drum) fills, etc. Further, a static
upper bound of 29.1 s helped to avoid the choice of longer non-chorus sections—
usually the verse or verse plus chorus. Finally, adjacent segments are combined given
that they do not provide further information.

The music ‘thumbnail’ is then the remaining segment with highest mean similarity
msim. The rationale behind is the assumption that the chorus sections are the most
similar sequences within the ROIs. Three best such segments are kept in the ongoing
as a musical piece might be better characterised by more than one and the chorus
might not be the first best hit. Optionally, these can be aligned to the automatically
located beats—ideally to the on-beat, unless it is ‘too far’ from the assumed start of
the thumbnail.

11.6.2 Performance

A set of 360 pieces of different genres with a total playtime of 23 h 47 min was used
for computation of benchmark results. 250 pieces are divided in five genres with
50 songs, each, within Electronic Dance, Pop, Rock, German Folk, and Oldies. 110
pieces add to the Rock music and ‘Oldies’.

For performance assessment, the start points of automatically found chorus thumb-
nails are compared with the gold standard of manual annotation. A tolerance of devia-
tions with the time Tmax is introduced when comparing these two. Another relaxation
is the allowance of the correct position to be within the ‘Top N’, i.e., within the N
best assumed positions. Table 11.19 contains the results for Tmax = 1, 2, 3 s. The
majority of ‘wrong’ thumbnails in the sense of the manual annotation resemble other
characteristic parts of a piece—in particular the chorus section with higher tempo-
ral deviation than Tmax , a chorus variant which is not the typical chorus repetition,
the verse, or the bridge. In the literature, quantitative benchmarks by deviation of

Table 11.19 Correctly determined chorus thumbnails within the top one, two or three best candi-
dates, and different tolerance of time deviation

Tmax[s] Top 1 [%] Top 2 [%] Top 3 [%]
1 22.6 37.8 45.8
2 48.6 67.2 73.3
3 60.6 76.1 81.4
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Fig. 11.17 Correctly located chorus thumbnails by genre for the maximum deviation Tmax = 2 s
[31]

automatically generated thumbnails from the actual chorus sections are lacking—
evaluations are mostly of perceptive nature with individual listener ratings.

Figure 11.17 shows results by genre. Visibly, the task is best solved for electronic
dance music. This can be explained by the high similarity present in this genre
given the ‘perfect’ electronic tones and computer aided sequencing. We could further
speculate that the structure is less complex and less variations exist.

11.6.3 Summary

Within this section automatic generation of music thumbnails was shown. The
approach mainly based on a self-similarity matrix established on chromagram-type
features in combination with basic methods of image processing to locate diagonals.
In addition, beat positions were used as information. Best results were observed
for electronic dance music: There, the chorus location was determined correctly in
70 % of the pieces when allowing for a maximum deviation of 2 s. Averaged over all
considered genres, this value dropped to 48.6 %.

Future efforts could incorporate analysis of key changes [115] (cf. Sect. 11.4),
chord patterns [29, 105] (cf. Sect. 11.5), or by classifying vocal and non-vocal sequ-
ences [9] (cf. Sect. 11.8). Obviously, machine learning could also be introduced as
well as alternative matching techniques such as in [146].

11.7 Mood

So far, we dealt with measurable characteristics of music. In the following section,
we take a look at music mood classification (cf. [32])—similar to the analysis of
emotion in speech (cf. Sect. 10.4.2). While we will be looking at mood classes in
a discrete way, a natural extension is to model continuous dimensions, as was later
shown in [33].

http://dx.doi.org/10.1007/978-3-642-36806-6_10
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Rather than choosing music by artist or album one sometimes wishes for music
that ‘fits the occasion’ or one’s mood, such as when jogging, relaxing, or perhaps
having dinner for two. Thus, tags such as ‘activating’, ‘calming’ or ‘romantic’ would
be of help in music retrieval [147, 148]. Manual annotation by individual users
seems rather labour intensive, but some services exist that provide such tags such
as Allmusic,7 often based on several users’ ratings. Regrettably, this information is
not always reliable, as the tags are often only attached to artists rather than to single
tracks. This leads to the desire of automated mood classification of music. In this
section, we will thus have a look at audio features suited for this particular task,
and benchmark results reachable with state-of-the-art approaches under real-world
conditions—without pre-selection of instances, e.g., by limiting analysis to those
with majority agreement of annotators.

Features for mood recognition can be extracted from the raw audio stream, but
also from metadata. Those derived from the audio can be added by mid-level ones
basing on pre-classification. This means that, apart from the LLDs and functionals
as introduced in Sect. 11.6, knowledge from other classification tasks such as the
ones introduced for music processing in this chapter can be used as mid-level feature
information describing concepts such as rhythm or tonal structure. Metadata on the
other hand includes all types of textual information available on a music track such
as title, artist, genre, year of release or lyrics.

In the literature so far some commonalities are visible: In [149] a 30 element
feature vector containing timbre, pitch, and rhythm information is used. The work
in [150] employs timbre features by spectrum centroid, bandwidth, roll off, and
spectral flux, and seven octave-interval sub-bands’ minimum, maximum, and average
amplitude plus RMS energy. For rhythm information the lowest sub-band was used.
Edge detection with a Canny estimator led to a rhythm curve. In this curve peaks
are assumed to indicate bass instruments’ onsets, and their strength as indication
for the degree of rhythm presence. Further, analysis by ACF serves as measure for
rhythm steadiness, and the common divisor of the correlation peaks for the tempo.
In [151] an extension is presented for rhythm analysis by addition of all sub-band
onset curves. The authors of [152] also use rhythm and timbre features: Two tempo
candidates in BPM are based on peaks in a beat histogram ACF. From this histogram
amplitude ratios and sum of its ranges are added. Timbre is based on 13 MFCCs
[153] and spectral centroid, flux, and roll off. Mean and standard deviation of the
features over all frames were also included. In [154]—a MIREX 20088 audio mood
classification task contribution—MFCC, CHROMA, and spectral crest and flatness
describe whether the signal spectrum contains peaks, e.g., in case of sinusoidal signals
or it is flat indicating noise.

The learning algorithms vary strongly for this task, just as the mood taxonomies
do (cf. Sect. 5.3.2). In fact, the diverse mood models certainly influence the selection
of the learning algorithm. As an example, in [150, 151] a four-class dimensional
model is handled by GMMs as basis for a hierarchical classification system (HCS):

7 Allmusic (http://www.allmusic.com)
8 MIREX 2008 (http://www.music-ir.org/mirex/2008)

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://www.allmusic.com
http://www.music-ir.org/mirex/2008
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A binary arousal classification by rhythm and timbre features is first. Then, valence
is classified by different features.

In the following results, popular music of the NTWICM database is analysed.
Thereby feature extraction is based on the entire duration of musical pieces. Real-
world conditions will be emphasised by using only meta information as available
on-line, and processing music that has been coded by lossy MP3 compression.

11.7.1 Methodology

Let us first detail out features by type. These comprise spectral, rhythmic, and tonal
audio low level descriptors and mid-level features such as pre-classified chords, and
features based on information retrieved from public databases.

11.7.1.1 Audio Features

The music is decoded and converted to mono. Then, a FFT is computed [155], and
a number of selected functionals is applied: centre of gravity, standard deviation,
skewness, kurtosis, and band energies and energy densities for seven octave based
frequency intervals (0–400 Hz, . . . , and 6.4–12.8 kHz).

The rhythm features used in this section base on those presented in Sect. 11.3.
Tempo estimation is performed in two steps: First, the Tatum tempo is estimated. To
this end, the pre-processed music is fed into 57 comb filters, and the filter outputs
form the unnormalised Tatum vector T ′. Then, the 82 features as in Sect. 11.3 are
computed. They are augmented by the following five derived features:

• The main tempo θB is computed based on the metre vector M. In principle, the
tempo resonating best with the musical piece is decided for.

• The tracker tempo θBT is the main tempo refined by beat-tracking. Ideally, θB and
θBT should vary not at all or only slightly owing to rhythm inaccuracies.

• The base metre Mb and the final metre Mf are the estimates on duple or triple
metre of the musical piece.

• The tatum maximum Tmax equals the maximal entry of T ′.
• The tatum mean Tmean equals the mean value of T ′.

Overall, this leads to 87 additional features based on Tatum and metre vector ele-
ments.

11.7.1.2 Chords

Each musical chord (cf. Sect. 11.5) type can be associated with moods induced in or
perceived by human listeners owing to its characteristic sound. Examples for frequent
chord types are shown in Table 11.20 following [156].
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Table 11.20 Chord types and emotions associated with these [156]

Chord type Example Associated emotions

Major B Happiness, cheerfulness, confidence, satisfaction, brightness
Minor Bm Sadness, darkness, sullenness, apprehension,

melancholy, depression, mystery
Suspended fourth Bsus4 Delightful tension
Major seventh B7 Funkiness, moderate edginess, soulfulness
Minor seventh Bm7 Mellowness, moodiness, jazziness
Major Major seventh Bmaj7 Romance, softness, jazziness, serenity, exhilaration, tranquillity
Ninth B9 Openness, optimism
Diminished Bdim Fear, shock, spookiness, suspense
Seventh, Minor ninth B7/9	 Creepiness, ominousness, fear, darkness
Added ninth Badd9 Steeliness, austerity

Table 11.21 Recognised
chord types

Chord type Example

Major D


Minor Em
Major seventh C7

Minor seventh Am7

Major Major seventh F
maj7

Minor Major seventh C
mmaj7

Augmented A+
Diminished Fdim
Diminished seventh Edim7

For chord determination in the original music file, a fully automatic algorithm
[157] is used as was explained in Sect. 11.5. It basically compares the chromagram
with predefined chord templates (cf. Sect. 11.4), and outputs the chord type (e.g.,
major, minor, diminished) and the chord base tone (e.g., C, F, G
).

As chord features, ‘bag-of-chords’ is used with the frequency of occurrence of
a chord normalised to the total number of chords in a musical piece. Overall, 22
numeric features are obtained, of which the last simply is the number of recognised
chords (cf. Table 11.21 for those recognised).

11.7.1.3 Metadata

Rich meta-information for all music in the NTWICM database is hard to obtain given
its large size (cf. Sect. 5.3.2). Thus, it is limited to the artist, title, and year of release
which is available for each song. The year of release is used ‘as is’ as a numeric
feature. As for artist and title, by standard word delimiters text strings are chunked to
words. Then, the Porter stemming algorithm [158] is used and binary BoW features
are generated (cf. Sect. 6.3). A minimum term frequency helps to keep the number

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_6
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of generated features in reasonable limits. As for the NTWICM database, generated
artist features appear database-specific—just as one might expect. In addition, they
are not too helpful in an artist independent evaluation. As opposed to this, title-based
features tend to—intuitively—partly contain more direct relation to mood including
words such as “feel”, “love”, or “sweet”. Overall, the meta-data features comprise one
numeric year feature, and 152 binary numeric word occurrence BoW-type features.

11.7.1.4 Lyrics

From the recognition of emotion in spoken language, it is known that the spoken
content also bears information on the affect besides the acoustics of the speaker
[159, 160]. Thus, the ‘sung language’ is considered as feature source, yet, based
on lyrics as retrieved from the Internet. Two different strategies of lyrics-to-feature
conversion are followed as were introduced in Sect. 6.3.

First, a knowledge-based method is based on the use of ConceptNet [161, 162],
as was detailed in Sect. 6.3, and as was shown comparably effective for valence
prediction in film reviews in Sect. 10.4.1 [162]. The subset of concepts is classified
into one of the ‘big six’ emotional categories [163] (anger, disgust, happiness, fear,
sadness, and surprise). Now the emotional affect of unclassified concepts that are
extracted from the song’s lyrics can be calculated by finding and weighting paths
which lead to those classified concepts. To give an illustrative example, the output
for Cutting Crew—“(I Just) Died In Your Arms” is: (‘sad’, 0.579), (‘happy’, 0.246),
(‘fearful’, 0.134), (‘angry’, 0.000), (‘disgusted’, 0.000), and (‘surprised’, 0.000).

This probability information is used as features—one per one of the six emo-
tions. In addition, six features contain the first, second, etc., ranked emotion. Further
variants would exist: In [164], arousal and valence probabilities are used directly,
but the vocabulary was more limited than here. Also, the other alternatives which
exploit further on-line knowledge sources – as were described in Sect. 10.4.1—could
be used.

In addition, a data-learnt method as for the meta-information is considered, as was
also observed well suited for sentiment detection in Sect. 10.4.1. Again, the raw text
is chunked into words and punctuation is deleted. Then, Porter stemming follows
(cf. Sect. 6.3.1), and one BoW feature is generated per word stem outside the stop-
word list with a minimum term-frequency of ten per class in the database. A binary
representation for the BoW features is chosen, but normalised to the number of terms
in the current piece’s lyrics to model the prevalence of the current term in relation to
the text length. It lies in the nature of BoW that the word order is ignored. However,
BoNG or BoCNG (cf. Sect. 6.3.2) would require considerably more learning material
than the roughly 3 k instances which NTWICM offers, in relation to the ‘explosion’
of the feature space dimensionality. In the case of the 100 k instance Metacritic
database, however, this was possible (cf. Sect. 10.4.1). Despite the typically higher
number of terms in a song’s lyrics in comparison to the key-statement of a film critic
no improvement was thus observed when opting for BoNG or BoCNG.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_6
http://dx.doi.org/10.1007/978-3-642-36806-6_10
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Table 11.22 summarises all feature subsets as were presented above. A subset
‘No-Lyrics’ will be used in the ongoing as well, to compare the influence of lyrics
processing in comparison to the information that comes directly from the audio and
artist, title, and year information of a song. It has to be noted at this point that 25 %
(675) of the pieces in the NTWICM database have no lyrics included as these were
not contained in the two used on-line lyric databases—they were left as they are
(empty BoW vector), owing to the philosophy to stick with realism as given for a
working system in a typical use-case.

11.7.2 Performance

Given the imbalance of instances across classes in the NTWICM database (cf.
Sect. 5.3.2 balancing is reasonable to avoid a bias towards class throughout clas-
sifier learning. This was realised by random up-sampling up to perfect balance with
the default random seed in Weka [122] (cf. Sect. 7.5.1). This required a target size of
200 %.

As classifier serve SMO-trained SVMs with pairwise multi-class discrimination,
linear kernel, and a complexity c of 1.0 at first. The complexity was optimised
on the development set of NTWICM on the A3 and V3 tasks (cf. Sect. 5.3.2) and
c ∈ {0.5, 1.0, 1.5, 2.0, 2.5}. Higher order polynomial kernels did not lead to an
improvement in terms of UA and WA. For reference, performance by RFs will also
be shown.

All results are provided by UA and WA.
First, a feature selection from the 691 overall features was carried out to reveal

promising features and reduce the complexity for the classifier. For easily inter-
pretable feature analysis results, the groups as shown in Table 11.22 are evaluated
individually by classification with the target classifier. An even more compact, but
less interpretable representation in the feature space is then additionally reached by
SFFS—also with the target classifier ‘in the loop’. The gold standard throughout fea-
ture selection was given by the rounded median. Table 11.23 summarises the results
of these computations, and Figs. 11.18 and 11.19 visualise the confusions made by
the classifier per feature type.

Table 11.22 Feature subsets
used

Name Description #

Spectral For spectral features 24
Rhythmic For rhythmic features 87
Chords Recognised chord features 22
Meta-Info Date, artist, and title related 153
Lyrics-CN ConceptNet’s mood on lyrics 12
Lyrics-BoW Word occurrences in the lyrics 393

All Unision of the above 691
No-Lyrics All without Lyrics-BoW and Lyrics-CN 286

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_7
http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Table 11.23 UA and WA for classification on AllInst test data against different attribute subsets
for the A3 and V3 tasks, SVM

Type Arousal Valence
[%] UA WA UA WA

Spectral 49.0 47.6 48.8 47.5
Rhythmic 54.0 52.4 57.7 56.4
Chords 50.0 47.0 49.2 47.6
Meta-Info 37.4 36.1 39.3 35.5
Lyrics-CN 33.5 28.9 35.9 38.4
Lyrics-BoW 39.4 36.8 37.8 40.5

All 50.5 50.0 50.9 51.3
No-Lyrics 54.1 53.3 58.8 58.5

(a) (b) (c) (d)

(e) (f)

Fig. 11.18 Arousal confusions in the A3 classification task for selected feature subsets. Classifier
SVM, dataset AllInst of NTWICM [28]. a Spectral, b Rhythmic, c Chords, d Lyrics-BoW, e All, f
No-Lyrics

As can be seen, the task is demanding, and there are pronounced differences across
individual feature groups: The lyrics features hardly surpass chance level, but the
rhythm features, almost reach the best performance of all features except for lyrics
features. Given this best result for the No-Lyrics set, it will be used in the ongoing.
All features combined being inferior to this reduced set can be seen as indication of a
too high dimensionality of the feature space. Further, the good results for the chord-
based features show the suitability of the ‘mid-level’ features that base on decisions.
The differences between arousal and valence are less pronounced within a type.
In the confusion matrices for the No-Lyrics and Rhythmic feature sets confusions
luckily occur mostly between neighbouring classes, i.e., negative or positive is mostly
confused with neutral.
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(a) (b) (c) (d)

(e) (f)

Fig. 11.19 Valence confusions in the V3 classification task for selected feature subsets. Classifier
SVM, dataset AllInst of NTWICM [32]. a Spectral, b Rhythmic, c Chords, d Lyrics-BoW, e All, f
No-Lyrics

Table 11.24 UA and WA for the different raters (A–D) by on the A3 and V3 tasks

Rater Arousal Valence
[%] UA WA UA WA

A 43.4 43.6 58.5 57.6
B 63.8 60.0 48.5 48.1
C 53.0 52.0 55.3 53.5
D 47.8 46.9 54.2 56.3

Feature set No-Lyrics, set AllInst of NTWICM, SVM

Let us next consider the differences across raters with respect to the UA and WA
in Table 11.24 on the A3 and V3 task and set AllInst. There, the training and testing
was carried out exclusively on the ratings of one rater, each. As can be seen, either
the learnt classifier has varying difficulties to model raters, or raters’ mood models
are more or less consistent. Interestingly, ratings of the professional DJ (rater A, cf.
Sect. 5.3.2) lead to the best result for valence. In the case of arousal, the deltas in UA
and WA are even more pronounced.

For an impression on the effect of exclusion of instances with lower agreement—
as is common practice in most other work—Table 11.25 shows the effect of limiting
test instances to the ones with a minimum agreement of two or three out of the four
raters. For training, however, all instances are used. According to one’s intuition,
the UA and WA increases up to 8 % with increasing limitation to such prototypical
cases, in particular in the case of arousal. The table further shows the effect of the
SFFS feature selection to increase performance. In fact, results are improved by this
step except for prototypical arousal.

Table 11.26 contains additional results for the Random Forests (RFs) classifier
(based on decision trees) as an example of sub-sampling the feature space and boot-

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Table 11.25 UA / WA for training with the training and development instances of AllInst, but
testing on instances in different degrees of prototypicality

Type Arousal Valence
[%] UA WA UA WA

w/o feature selection
AllInst 54.1 53.3 58.8 58.5
Min2/4 56.7 54.8 61.1 60.1
Min3/4 64.9 60.9 65.5 61.4
with feature selection
AllInst 56.2 55.2 61.2 61.0
Min2/4 59.6 57.2 64.1 63.0
Min3/4 64.8 60.9 68.6 64.1

AllInst of NTWICM, Min2/4, and Min3/4. No-Lyrics feature set, A3 and V3 tasks, selection by
SFFS (out of the 286 features 131 as optimum for the A3 task, and 132 for the V3 task)

Table 11.26 UA / WA for SVM versus RF classification on AllInst of NTWICM with the No-Lyrics
feature set for the A3 and V3 tasks

Type Arousal Valence
[%] UA WA UA WA

SVM 54.1 53.3 58.8 58.5
RF 56.2 58.7 58.3 61.0

Feature set No-Lyrics

strapping of the data. 250 trees were found as optimum within the search range of
100 to 250 on the development set.

One observes RFs to outperform SVMs without feature selection on the task.
Given RFs’ minor transparency owing to the random injection in the feature and data
selection process, SVMs had been preferred in the previous experiments.

11.7.3 Summary

In this section, automatic music mood classification was discussed. Features were
based on musical features, meta-information, and lyrics. The mood model had three
degrees of arousal and valence.

As mood was annotated per song, ambiguous cases that contain different polarities
of arousal or valence might have been handled as neutral—in the future an extra class
may help change this behaviour. Alternatively, shorter segments of music could be
analysed to allow for a change of mood within a musical piece as in [151] for classical
music. This can be combined with automatic music structure analysis [41, 120] as
was presented in the last section.

As for features, rhythmic, chord-based, and spectral ones were found best-suited.
Lyrics information, however, could not lead to further improvements, which may be
partly owing to the database—in [8] a different trend was found on another database.
A gain was also not achieved by meta-information such as artist and title. More
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information could, however, be added such as usage statistics [165]. Also, other
forms of representation of the lyrics can be considered, potentially integrating other
variants of on-line knowledge source integration.

The requirement to process all music was handled by establishing a gold standard
based on the (rounded) median to deal with cases of complete rater disagreement.

In addition, the effect of prototypicality was investigated by limitation to the test-
cases with clear rater agreement in different levels. UA and WA were raised from
roughly 60 % to around 70 % with this limitation in the three-class tasks of arousal and
valence classification. Confusions were mostly made between neighbouring classes,
thus increasing applicability. However, further improvements are needed for real-life
usage. In this respect the high differences between performance depending on the
individual raters have to be named indicating the subjective character of music mood.
Future efforts could consider other feature combination methods, such as individual
feature streams. Further, other dimensions could be added, such as ‘dominance’,
which is often used in speech emotion analysis [166]. These dimensions can also
be handled by regression approaches (cf. [162, 167]). To that end, more labeller
tracks should ideally be added to approach genuine numeric continuity across the
dimensions. First results for a regression approach with the four raters on NTWICM
are reported in [33].

11.8 Singer Traits: Age, Gender, Height, Race

Extending the assessment of speaker traits to sung speech, and bridging from
assessing mood in music, one can also aim at the assessment of singers’ traits.
This was first shown in [34], then refined in [35], and later extended for more traits
in [36].

Such singer trait classification, that is, automatically recognising meta data such
as age and gender of the performing vocalist(s) in recorded music, is currently still
an under-researched topic in MIR in contrast to the increasing efforts devoted to
that area in paralinguistic speech processing. Applications in music processing can
be found in categorisation and query of large databases with potentially unknown
artists—that is, artists for whom not enough reliable training data is available for
building singer identification models as, e.g., in [168]. Robustly extracting a variety
of meta information can then allow the artist to be identified in a large collection of
artist meta data. In addition, exploiting gender information can be useful for building
and adapting models for other MIR tasks such as automatic lyrics transcription
[169]. In comparison to speaker trait determination as was shown in Sect. 10.4.3,
recognition of singer traits can be expected to be an even more challenging task due to
high variability of the singer’s pitch, instrumental accompaniment, and simultaneous
presence of multiple vocalists.

Little, if any, research dealt with the recognition of singer traits other than gender
in music. Apart from gender, three further tasks are thus investigated in the following:

http://dx.doi.org/10.1007/978-3-642-36806-6_10
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age, height, and race.9 To this end, we will also show how to improve the extraction
of the leading voice beyond the harmonic enhancement, i.e., filtering of the drum
accompaniment, as was shown in Sect. 11.1.

11.8.1 UltraStar Singer Traits Database

To test such automatic singer-independent classification, the UltraStar database, as
was first introduced in [34], was enriched with according detailed annotation of
singer traits, particularly continuous age and gender. The database contains 581
songs corresponding to over 37 h total play time commonly used for the ‘UltraStar’
karaoke game. The focus on highly popular artists was needed for the establishment of
solid ground truth as information on these can be retrieved with sufficient certainty.
To ensure transparent partitioning and singer independence, the first letter of the
name of the performer is used for assignment to training, development, and test sets.
The UltraStar meta-data provides ground truth tempo and lyrics aligned to beats.
The singer(s) identity was annotated at beat level wherever possible. In the case of
more than one singer per song the ‘singer diarisation’—i.e., the alignment of singer
identity to the music—was manually determined with the help of the corresponding
official music video for precise results. Subsequent to this step, gender, height, birth
year, and race of the 516 distinct singers was collected and repeatedly verified from
on-line textual (IMDB,10 and Wikipedia11) and audiovisual (YouTube12) knowledge
sources. The two male raters (24 and 28 years old) were experts for popular music.

In fact, a considerable amount of the contained songs has two or more singers
present simultaneously. To ensure realistic ‘non-preselected’ analysis, the following
scheme was derived in such a case: In case of the nominal traits gender and race,
beats were marked as ‘unknown’ except if all simultaneously present singers share the
same attribute value. In case of the continuous-valued traits age and height, the mean
over present singers was used. In the same way, musical pieces were treated where
an exact singer diarisation could not be reached. Finally, beats were also marked as
‘unknown’ if an attribute was missing for at least one of the present singers.

Figure 11.20a,b visualise the obtained distribution of gender and race among the
516 singers. In Fig. 11.20c,d the continuous-valued age and height are shown with

9 The annotation scheme is inspired by the TIMIT corpus as was used in Sect. 10.4.3. As such,
the term ‘race’ is adopted from the corpus’ meta-information—though modern biology often nei-
ther classifies the homo sapiens sapiens by race nor sub-categories for collective differentiation in
both physical and behavioural traits. Opposing current molecular biologic and population genetic
research’s view that a systematic categorisation may be insufficient to describe the enormous diver-
sity and fluent differences between geographic population, it can be argued that, when aiming at an
end-user information retrieval system, a categorisation into illustrative, archetypal categories can
be useful.
10 http://www.imdb.com
11 http://www.wikipedia.org
12 http://www.youtube.com

http://dx.doi.org/10.1007/978-3-642-36806-6_10
http://www.imdb.com
http://www.wikipedia.org
http://www.youtube.com


11.8 Singer Traits: Age, Gender, Height, Race 285

10 20 30 40 50 60 150 160 170 180 190

(a) (b)

(d)(c)

Fig. 11.20 UltraStar Singer Trait Database’s distribution of traits among its 516 contained singers
[36]. a Gender, b Race, c Age [years], d Height [cm]

boxes ranging from the first to the third quartile and values exceeding this range by
more than a factor of 1.5 shown as outliers by circles. The fact that singer age is a
function of a musical piece’s recording date was taken into account.

For automatic assessment, the tasks were constrained to binary and ternary clas-
sification tasks on frame (beat) level as well as on song level. This decision needed to
be made owing to the challenging real-world conditions given when assessing singer
traits in polyphonic music. Such binary classification provides a simple categorisa-
tion per singer trait, and ternary classification is carried out to perform simultaneous
singing activity detection on frame level in order to provide full realism. Height and
age were discretised to ‘small’ (s, <175 cm) and ‘tall’ (t, ≥175 cm), respectively
‘young’ (y, <30 years) and ‘old’ (o, ≥ 30 years). From the annotated race classes the
sparse classes ‘Asian’, ‘Black’, and ‘Hispanic’ were clustered as opposed to ‘White’
singers.

The number of beats for task evaluation are shown in Table 11.27. The annotation
is available for reproduction of results.13

11.8.2 Methodology

Given the challenging condition of person trait recognition under singing in poly-
phonic music, finding the optimal preprocessing by suited singer separation becomes
a focus issue. To this end, harmonic enhancement as was shown in Sect. 11.1 basing
on openBliSSART (cf. Sect. 11.8 is used as a first means. This will now be followed
by targeted extraction of the leading voice as in [170]. Different sets of NMF compo-
nents shall be used in different parts of a song for higher flexibility of the algorithm.
A song is therefore chunked into frame-synchronous non-overlapping chunks of
881 664 samples (≈ 20 s at 44.1 kHz sample rate) as in [35]. Then, the leading voice

13 http://www.openaudio.eu/UltraStar_Singers.arff

http://dx.doi.org/10.1007/978-3-642-36806-6_8
http://www.openaudio.eu/UltraStar_Singers.arff
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Table 11.27 Number of beats per trait, class and partition in the UltraStar singer trait database

# Beats Train Devel Test Sum

No voice (0) 90 076 75 741 48 948 214 765
Gender
Female (f) 32 308 23 071 9 739 65 118
Male (m) 55 505 49 497 37 686 142 688
? 86 253 771 1 110
Race
White (w) 67 525 62 003 40 479 170 007
b/h/a 16 378 9 465 7 136 32 979
? 3 996 1 353 581 5 930
Age
Young (y) 48 510 42 056 25 682 116 248
Old (o) 34 074 24 596 18 712 77 382
? 5 315 6 169 3 802 15 286
Height
Small (s) 29 638 24 946 8 562 63 146
Tall (t) 30 177 30 146 23 452 83 775
? 28 084 17 729 16 182 61 995
Sum 177 975 148 562 97 144 423 681

‘b/h/a’: black / hispanic / asian. ‘Unknown’ (?) includes simultaneous performance of artists of
different gender/race, and those with unknown ground truth

separation approach as described in [170, 171] is additionally applied: Starting from
the STFT of the audio signal at frame n, denoted [S]:,n, the spectrum is expressed
as the sum of two independent components as [S]:,n = [V ]:,n + [M]:,n, where [V ]:,n
is the STFT of the leading voice, and [M]:,n is the one of the background musical
signal parts. [V ]:,n and [M]:,n are assumed to be centre proper complex Gaussian
variables14:

[V ]:,n ∼ Nc(0, diag(σ 2[V ]:,n)), (11.37)

[M]:,n ∼ Nc(0, diag(σ 2[M]:,n)), (11.38)

where σ 2[V ]:,n or respectively σ 2[M]:,n is the power spectral density (PSD) of the leading
voice or respectively of the background music at frame n. Assuming independence
between the two components, the STFT of the observed signal then is also a proper
Gaussian vector:

[S]:,n ∼ Nc(0, diag(σ 2[V ]:,n + σ 2[M]:,n)). (11.39)

Then, σ 2[V ]:,n and σ 2[M]:,n are estimated per signal frame n. In the present use-case, the
approach is completely unsupervised, i.e., no learning takes place. Rather, it relies on

14 A complex random variable whose real and imaginary parts are independent and follow a real
Gaussian distribution, with mean equal to 0 and identical variance or co-variance matrix in case of
a multi-variate distribution.
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the typical constraints of the voice’s signal share assuming it follows a source filter
production model as was introduced in Sect. 6.2.1.4 where the source is a periodic
signal as given by periodic glottal pulses. For the background music no constraints or
assumptions are made owing to the high potential variability. Model parameters are
estimated iteratively based on NMF techniques in two steps: First, an initial estimate
is made of the parameters, each. Then, a constrained re-estimation stage refines the
leading melody estimation. In this step also sudden ‘octave jumps’, i.e., doubling of
the frequency, are avoided. After determination of the final PSDs σ 2[V ]:,n and σ 2[M]:,n ,

the separated singing voice signal is obtained by frame-wise Wiener filtering:

[̂V ]:,n =
σ 2[V ]:,n

σ 2[V ]:,n + σ 2[M]:,n
[S]:,n. (11.40)

To foster reproducibility of results also in this stage, it was decided for an open-source
implementation15 of the algorithm. Default parameters were chosen. Chunking is
identical as in [35].

After applying the leading voice extraction algorithm to popular music, parts of
the drum track may remain in the voice part. Thus, ‘harmonic enhancement’ by
drum-beat separation (cf. Sect. 11.1) can be sequentially added either after leading
voice separation (LV-HE), or the other way round (HE-LV). To use different NMF
parametrisations for the two algorithms, time domain signals are re-synthesised in
between the separate separation stages.

Features for singer trait classification were extracted per beat [34] again using
openSMILE [172] as was shown in Sect. 6.5. The LLD set first consists of the short-
time energy, mean-crossing rate, ZCR, voicing probability, and HNR—all known to
be well suited to indicate vocal presence. Additional LLDs focus on speaker trait
[168]: F0, and MFCCs 0–12; respective first-order delta regression coefficients of
these. Overall, this results in a set of 46 LLDs.

Sequence classification is considered using BLSTM RNNs which have been
observed superior to individual beat-wise static classification by SVM or Hidden
Naive Bayes for vocalist gender recognition [35]. As in this study, the BLSTM net-
works for the results described here use one hidden layer with 80 LSTM memory
cells, each, for forward and backward processing. The size of the input layer equals
the 46 LLDs, and the number of outputs equals the (varying) number of classes—two
or three. The softmax function is used for the output activations, ensuring a restriction
to the interval [0; 1] and unity sum to represent the posterior class probabilities. Songs
were presented frame-wise in correct temporal order to the input layer. For a final
decision, each frame was assigned to the class with the highest output probability.

15 http://www.durrieu.ch/phd/software.html
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Table 11.28 Beat-wise BLSTM-RNN classification on the UltraStar test set on 2- and 3-class tasks

[%] – HE LV LV-HE HE-LV
Task Classes UA WA UA WA UA WA UA WA UA WA

Voice 0/1 74.55 74.50 73.82 73.84 75.77 75.81 75.40 75.41 75.09 75.11
Gender 0/m/f 63.75 68.54 65.65 68.91 69.29 71.31 67.90 70.41 68.52 70.44

m/f 86.67 91.09 88.45 91.91 86.93 91.12 89.61 93.60 87.76 92.50
Race 0/w/b+h+a 48.17 63.84 47.46 63.02 49.37 65.46 49.23 63.63 48.40 63.77

w/b+h+a 60.44 65.82 63.30 76.98 55.05 76.18 62.57 78.67 62.78 75.16
Age 0/y/o 51.02 57.61 50.00 57.14 53.50 59.85 51.26 58.86 50.01 57.72

y/o 55.30 55.60 57.55 56.56 53.93 53.63 55.97 54.89 54.69 54.17
Height 0/s/t 53.94 66.79 52.35 66.57 58.15 69.30 57.67 68.41 58.91 69.53

s/t 64.70 72.73 62.31 70.67 66.54 73.00 69.65 77.49 72.07 78.26

Preprocessing: harmonic enhancement by drum-beat separation (HE), leading voice extraction (LV),
and sequential combination of these two

11.8.3 Performance

Supervised training of the networks followed a random initialisation of the network
weights with a Gaussian distribution with zero mean and 0.1 as standard deviation.
For improved generalisation, the order of the input sequences was randomised, and
Gaussian noise with zero mean and 0.3 as standard deviation was added to the input
activations. Resilient propagation was used for iterative update of the network’s
weights during training. Once no improvement over 20 epochs had been observed
on the validation set, the training was stopped. To cope with the race task’s high
imbalance, a fixed number of 20 epochs was run to avoid overfitting to the validation
set, and the standard deviation of the Gaussian noise added to the input activations
was increased to σ = 0.9.

The general imbalance of instances across classes and tasks on the beat level
(cf. Table 11.27) renders UA the major performance measure of interest. Singer
presence detection reaches over 75 % UA with the use of leading voice extraction.
On the 2-class gender recognition task, the combination of source separation algo-
rithms leads to the best result with drum-beat separation as last step at 89.61 %
UA. For height recognition, the combination of the pre-processing steps—albeit in
inverse order—also leads to optimal results and 72.07 % UA are reached, increas-
ing UA by more than 7 % absolute compared to no preprocessing. On the 3-class
task, the best UA is 69.29 % UA when using exclusively the isolation of the singing
voice.With the same pre-processing, 2-class recognition of race and age is solved
best at 63.30 % and 57.55 % UA. Age recognition falls behind results on spoken
language (cf. Sect. 10.4.3), but the result is significantly above the chance level of
50 % UA according to a z-test (p < 0.001).

To evaluate semantic singer trait tagging of entire songs, accuracies of a majority
vote on the beat level compared to the most frequent ground truth class on the beat
level are shown in Table 11.29. Obviously, such a gold standard is ‘more of heuristic
nature’ given phenomena such as mixed gender duets. On the song level, gender

http://dx.doi.org/10.1007/978-3-642-36806-6_10
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Table 11.29 Song-wise BLSTM-RNN predictions on the UltraStar test set by beat-wise majority
vote among 3-class tasks (ignoring beats classified as 0) or 2-class tasks

[%] Vote on – HE LV LV-HE HE-LV
Task UA WA UA WA UA WA UA WA UA WA

Gender 0/m/f 80.9 87.0 81.7 85.6 87.7 90.9 91.3 92.4 87.7 90.9
m/f 86.9 90.1 89.0 90.9 87.7 90.9 89.6 93.9 89.6 93.9

Race 0/w/b+h+a 49.8 78.8 53.5 79.7 51.0 78.2 54.0 75.2 48.9 72.2
w/b+h+a 52.8 59.8 62.6 75.9 54.7 73.7 64.4 78.9 61.7 74.4

Age 0/y/o 55.2 54.5 54.6 54.1 56.0 54.1 56.9 57.4 50.9 51.6
y/o 54.5 54.5 57.0 55.7 52.2 51.6 53.4 52.5 58.9 58.2

Singer height is not included on this level due to sparseness: only 88 songs have a known ground
truth. Preprocessing steps are equivalent to the results shown in Table 11.28

recognition reaches 91.3 % UA, race recognition 64.4 % UA and age recognition
58.9 % UA. Interestingly, for gender, voting on all beats is more robust than voting
exclusively over beats with voice presence. This might be explained by the fact that
BLSTM RNNs model bi-directional context and thus consider neighbouring frames
in their decisions, ie the predictions for parts without vocals are influenced by the
features of the vocal parts. Across the tasks and settings, the combination of the two
pre-processing steps, first leading voice extraction, then drum-beat separation, gives
best results.

11.8.4 Summary

Fully automatic assessment of paralinguistic traits (age, height and race) was demon-
strated in this section based on vocals in original pop-music rather than on more or
less clean speech as was shown in Sect. 10.4.3. Gender recognition was observed to
give ‘application-ready’ results even on the beat level for unseen test data. Race and
height classification show general feasibility, even in a such highly realistic setting.
An interdependency of race and musical genre might be given—yet, taking the fact
into account that source separation generally improved performance can be seen as
indication that the networks at least partly are capable of race recognition.

The quite good results for height classification certainly stem from the correlation
with gender. Age recognition results were lower than those reported on speech in
Sect. 10.4.3, where four classes of age were discriminated rather than two here—at
around similar performance. The challenge besides music ‘disturbance’ and singing
voice may be owing to the considered type of ‘chart’ music, where many singers are
at a similar age. Using only males for training and testing of age classification in an
additional test-run, however, led to 61.63 % UA—female singers were too sparse in
the set.

Next efforts could analyse the influence of longer units of analysis than the beat
level, such as the supra-segmental functionals as were used for paralinguistic analy-
sis in speech (cf. Sect. 10.4.3). In that case, however, feature variation owing to the

http://dx.doi.org/10.1007/978-3-642-36806-6_10
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singing—especially for pitch—will require suited methods of adaptation or trans-
formation. Further, extending the database to reach higher musical variation, e.g., by
Jazz or non-Western music would be of interest. Finally, multi-task learning could
help to exploit singer trait interdependencies in learning, given the observations for
height assessment in speech as was described in Sect. 10.4.3.
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Chapter 12
Applications in Intelligent Sound Analysis

If you develop an ear for sounds that are musical it is like
developing an ego. You begin to refuse sounds that are not
musical and that way cut yourself off from a good deal of
experience.

—John Cage

Apart from the more specific types of sound considered so far—speech and music—
general sound can also carry relevant information. This is, however, a considerably
less researched field up to-date. Most prominent in this area are the tasks of acoustic
event detection (AED) and classification (AEC) [1] that can be subsumed under the
area of computational auditory scene analysis (CASA) [2]. For these tasks interna-
tional evaluation campaigns exist that have mostly seen HMM and SVM approaches
with various acoustic features [1]. Fields of application include media retrieval [3]
including affective content analysis [4] or human-machine and human-robot interac-
tion [5], animal vocalisation recognition [6], and monitoring of industrial processes
[7]. Mostly, closed-set recognition is addressed, i.e., training and testing classes are
the same. Recently, however, also open-set recognition is faced, the so-called novelty
detection [8, 9].

As before, examples of application have been chosen for illustration of obtainable
performances and methods employed. Three applications have been chosen to cover a
good variety of the above named use cases: Firstly, recognition of animal vocalisation
[10], then, acoustic event classification including unsupervised learning to exploit
the availability of sheer infinite amounts of sound on the Internet [11], and finally
prediction of the emotion evoked in human listeners of sound [12] in analogy to the
sections on speech and music.
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12.1 Animal Vocalisations

As a first example of application in more general sound analysis, we will consider
animal voices instead of human voices. The following application investigates the
recognition of animal vocalisations ‘in the wild’ [10].

In the field of bioacoustics, a multiplicity of approaches exists for classifying ani-
mal sounds, for example to monitor populations of certain species, such as whales
[13] or birds [14]. More recently, increasing efforts are invested in digitisation of
sound archives. Similarly as in the case of MIR, this demands for efficient index-
ing and retrieval methods. For example, in [15], an effective indexing algorithm for
animals with curve-like harmonic vocalisations, such as various species of birds,
was presented and evaluated on bird songs contained in the Animal Sound Archive
(“Tierstimmenarchiv”) of the Humboldt-University of Berlin [16]. This data set will
be referred to as ‘HU-ASA database’ in the ongoing. In the past, SVM-based static
classification using segment-wise functionals [17] (e.g., mean and standard devia-
tion) was proposed for animal sounds classification [18]. Alternatively, dynamic clas-
sification, e.g., by HMMs [19] or by suited neural networks [6] is reported successful
in the literature. Hence, we will consider SVMs, HMMs with different topologies,
and LSTM recurrent neural networks on the HU-ASA database in the ongoing.

12.1.1 HU-ASA Database

The evaluation database builds on the large HU-ASA database of animal vocali-
sations. It is annotated with the species and additional meta-data such as record-
ing conditions and the type of vocalisation for each audio file. 1 418 audio files
are available in MP3 encoding. These were obtained from the on-line archive.1

Per species, the audio files with (biological) class were automatically annotated
(e.g., Aves, Mammalia), order (e.g., Passeriformes, Primates), and family (e.g., Fel-
idae, Canidae) according to the Linnaean rank-based biological classification as
retrieved from Wikipedia.2 The majority of the HU-ASA’s instances consist of bird
(Aves) and mammal (Mammalia) sounds, as shown in Table 12.1. The class ‘Others’
include Sauropsida, Hexapoda, and recordings without automatic annotation, where
according information was missing in Wikipedia. The total audio duration is 20 423 s
(5 h 40 min 23 s). Amphibia, Insecta, and Reptilia were not included in the described
experiments given their sparseness (cf. Table 12.1).

Two tasks of practical interest were derived from the biological classification,
as shown in Table 12.2. The first (2-class) task aims at classification of songbirds
(Passeriformes) versus non-songbirds (Non-Passeriformes). Non-songbirds include
by number of instances the orders Anseriformes, Charadriiformes, Galliformes,
Psitacciformes, Gruiformes, and 24 other orders—often with sparse instances.

1 http://www.tierstimmenarchiv.de, accessed mid 2010.
2 http://www.wikipedia.org

http://www.tierstimmenarchiv.de
http://www.wikipedia.org
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Table 12.1 Number of instances, as well as min(imum), mean, max(imum), and total recording
length (�) of the audio files by the biological class of the species in the HU-ASA database

(Biological) Class # Instances Duration [s]
Min Mean Max Sum

Aves 868 2.4 14.8 64.7 12 210
Mammalia 487 1.0 14.7 37.7 6 954
Amphibia 27 1.8 19.6 65.9 529
Reptilia 7 11.2 22.5 39.6 157
Insecta 19 2.3 16.0 30.1 287
Other 10 133
Sum 1 418 20 423

Table 12.2 Distribution of
instances in the 2-class
(Passeriformes / Non-
Passeriformes) and 5-class
tasks as defined on the
HU-ASA database

Class # Instances

Passeriformes 282
Non-Passeriformes 586
Sum 868

Primates 90
Canidae 43
Felidae 62
Sum 1 063

The more complex 5-class task adds mammals (Mammalia) of the families Felidae
and Canidae, as well as the instances of the biological order Primates (cf. Table 12.2).
A particular challenge arises from the real-world nature of the database: vocalisations
of the same species often vary considerably, depending on the situation and stance
(i.e., aggression or warning calls), and age of the animals, from young to full-grown.
The recordings are further corrupted by background noises—even of other animal
species.

12.1.2 Methodology

Static classification by SVMs bases on linear kernel SVM. For dynamic classification,
two topologies of HMMs and LSTM RNNs are compared. A typical HMM topology
in audio (and general sequence) classification is a linear (left-right) layout: With N as
the number of states in total, state transitions are allowed from state i = 1, . . . , N −1
to states i and i + 1. However, animal vocalisations are often highly repetitive,
motivating the usage of a cyclic topology. In such a layout a transition from state N
to the first state is added. In the following experiments the number of states is fixed
to N = 8 basing on a series of evaluations.
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As for neural networks, e.g., a feedforward MLP was used for classifying animal
vocalisations in [6]. To enhance the neural network paradigm by extended memory
capabilities, LSTM networks are considered here with one hidden layer of 100 LSTM
memory cells. The size of the input and output layers was equal to the number of
features and classes to discriminate. Softmax functions were applied to the output
activations, and the resulting values were normalised to the sum one to provide
posterior class probabilities.

MFCCs 1–12 along with energy and their first (δ) and second order (δδ) regres-
sion coefficients were chosen as features for frame-level classification due to their
suitability across a multiplicity of Intelligent Audio Analysis tasks [17–19]. In [19],
these features were found superior to the MPEG-7 spectral projection features as used
in [15] for sound classification with HMMs. The overall 39-dimensional feature set
will be denoted by ‘MFCC’.

For static classification of larger audio chunks, functionals are applied. In [17],
mean and standard deviation were proposed. The functionals considered in the ongo-
ing also include extremes and higher-order moments [20]. Additional LLDs for
include HNR, pitch and ZCR by using openSMILE’s (cf. Sect. 6.5, [21]) INTER-
SPEECH 2009 Emotion Challenge set [20], as described in Table A.1. This choice
could allow to discriminate between animals with voiced and unvoiced sounds. The
functionals of the 32 LLD will be denoted by ‘IS09-func’. For better comparability
of classifier paradigms less dependent of the acoustic features used, the function-
als listed in Table A.1 were also computed only from the MFCCs 1–12 along with
energy; this feature set will be called ‘MFCC-func’. The IS09-func and MFCC-func
feature sets consist of 384 and 312 features, respectively.

12.1.3 Performance

Ten-fold SCV is used for evaluation with partitioning by the Weka toolkit [22] with
the default random seed of 0 for easy reproducibility. 10 % of the data were used
for evaluation, and 10 % for validation whenever needed, e.g., for neural network
training. HMMs were trained by the EM algorithm: Gaussian mixtures were consec-
utively added and re-estimated after six initial iterations until 16 Gaussian mixtures
were reached for each state. For network training, supervised learning with early
stopping and MVN was used. The network weights were initialised randomly from a
Gaussian distribution (μ = 0, σ = 0.1). Then, each training sequence was presented
frame by frame. For improved generalisation ability, the order of the input sequences
was determined randomly, and Gaussian noise (μ = 0, σ = 0.3) was added to the
input activations. The network weights were iteratively updated by resilient propaga-
tion. Further, the performance (in terms of WA) on the validation set was evaluated
after each training epoch. Training was stopped in case of no improvement over
20 epochs or after a total of 100 training epochs. Then, the network with the best
performance on the validation set was selected as the final network. SVMs were
trained using SMO and a complexity constant of 0.1 on MVN processed features.

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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Table 12.3 Results of the 2-class and 5-class tasks of the HU-ASA database with various classifiers
and feature sets

Classifier [%] 2-class 5-class
Features UA WA UA WA

SVM IS09-func 69.0 72.0 46.4 57.2
SVM MFCC-func 73.9 75.6 42.2 56.0
Left-right HMM MFCC 79.0 79.8 47.3 63.4
cyclic HMM MFCC 79.0 79.6 49.5 64.0
LSTM MFCC 80.0 81.3 41.1 62.3

The training set was up-sampled for each fold for the LSTM-RNN and SVM classi-
fiers. This was done by copying training instances of minority classes until a near-
uniform class distribution is achieved. This step was not necessary in the case of
HMMs, as each class is learnt by an individual model, and classification is per-
formed with HMMs and the maximum likelihood criterion, i.e., class priors, were
not used in the decision rule. For classification with the LSTM RNN each sequence
in the test set was presented frame by frame to the input layer, and each frame was
assigned to the class with the highest probability as indicated by the output layer.
Then, a majority vote over the frame-level decisions was made to label the sequence.

Table 12.3 depicts results by UA and WA for the 2-class and 5-class tasks of the
HU-ASA database, as defined in Table 12.2. Always deciding for the majority class
leads to WA and UA of 55.1 % and 20.0 % (5-class task), and 67.5 % and 50.0 %
(2-class task).

In SVM classification on the 2-class task, the MFCC-func feature set outperforms
the IS09-func set in terms of WA by 3.6 % absolute, being significant at the 5 % level
(one-tailed z-test). However, the IS09-func feature leads to a significantly higher UA
(4.4 % absolute improvement) for the 5-class task. Both types of HMMs outperform
static classification by SVM. Further, the cyclic HMM is superior to the left-right
HMM justifying the made assumption of partly quasi-periodic vocalisations. Yet,
this observation is not significant on the 5 % level. To explain this, the estimated
‘cycle probability’ aN ,1 of the HMMs is shown for each class, on average across the
ten folds, in Table 12.4. There, the cycle probabilities are around 28 % in the models
for songbirds (Passeriformes) and primates, but below 10 % for Felidae.

The additional LLDs from Table A.1 as input features for the HMMs could not
improve the above results. The impact of a varying number of Gaussian mixtures

Table 12.4 Cycle
probabilities aN ,1 after
training of the cyclic HMMs
for comparison among each
other given for each class in
the 5-class task, averaged
over ten folds

Class aN ,1 [%]

Passeriformes 28.1
Non-Passeriformes 17.2
Canidae 14.2
Felidae 9.9
Primates 28.0
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(a) (b)

Fig. 12.1 UA and WA on the HU-ASA database by 8-state HMMs with left-right and cyclic
topologies, depending on the number of mixtures per state. Solid line: WA, dashed line: UA [10]
a left-right HMM, 2-class task, b cyclic HMM, 2-class task

for the HMMs is selectively shown in Fig. 12.1 for the 2-class task. Interestingly,
the cyclic HMM performs better than the left-right HMM for a small numbers of
mixtures. Further, the UA on the 5-class task seems to be largely unaffected by the
number of mixtures. This is surprising given that, ML classification partially compen-
sates for the unequal class distribution. LSTM RNNs outperform—not significantly
(p > 5 %)—the HMMs on the 2-class task. Yet, they have the lowest UA for the
5-class task. Additional variation of the network layout may change this behaviour.
However, the lower performance for the 5-class is likely partly owing to the sparse-
ness of the non-bird classes as LSTM RNN have a comparably high demand of
training data.

12.1.4 Summary

In this section, an evaluation framework was shown for a challenging real-world
database of animal vocalisations. The performances of static and dynamic classifiers,
including LSTM networks, were compared. Dynamic classification provided higher
accuracy. In the comparison of ‘standard’ MFCC features with an enhanced feature
set containing pitch and voicing information no clear preference could be determined.
Further evaluations in this direction are needed to reveal the relevance of different
LLD and functional types for the classification of animal vocalisations.

From a classifier point of view, a hierarchical classification framework, e.g., by
combining the songbird / non-songbird classifier with a bird song recogniser could
be attempted.
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12.2 Acoustic Events

In the next application of sound analysis, baseline results for the recognition of sound
events are given. At the same time, this shall serve as an example of the usage of
unlabelled data—sound event archives exist in masses on the Internet and can be
exploited in semi-supervised learning even if no labels are given [11].

Recently, there is increasing interest in sound event classification in the field of
acoustic signal analysis. This comes, apart from interest for application in multimedia
search based on sound, as it is one of the key components to acoustically analyse
environments, e.g., in surveillance [23, 24], monitoring of people in need of care,
or detecting, and classifying sources of interest in real time [25]. There is also a
benefit for humanoid and general robots [26] if they are able to better understand
their acoustic environment. Finally, speech and music enhancement may be improved
given a reliable identification of disturbing sound events. So far, most of research
efforts in this direction base on rather prototypical and small databases with less than
or around 1 000 instances (e.g., as in [24, 27–32]), or a few thousands of instances
[26, 32, 33].

In this section, we will focus on sound events classification in a large scale
database, covering sound classes that reach from nature (such as animals) over
human beings (i.e., people) to artificial sounds (i.e., office, musical instruments,
noise makers, and vehicles) as was introduced in Sect. 5.3.3.

Semi-supervised learning will be used to have the machine by itself label addi-
tional data instances as “there is no data like more data” and human labelling can
easily become tedious and is expensive. Given a sufficiently robust automatic sound
event classification system, unlabelled data can be classified and used in an itera-
tive re-training process. Unlabelled sound data is practicably available in ‘infinite’
amounts: Recordings of real-life audio can be easily collected and typically con-
tain various kinds and huge numbers of sound events [34]. Further, audio data can
be added from the Internet. The semi-supervised adaptation of AMs and LMs in
ASR [35, 36] and affective speech analysis [37] demonstrates that addition of unla-
belled training data can lead to improvements in accuracy of classification systems.
However, typically at least twice or sometimes up to around ten times as much unla-
belled data is needed as compared to labelled data. Thus, AEC is shown in this book
as an example for semi-supervised learning to improve a sound event classifier.

12.2.1 Methodology

openSMILE’s (cf. Sect. 6.5, [21]) ‘AVEC 2011’ set as shown in Table A.1 in the
Annex is used for AEC. It consists of 1 941 features, composed of 25 energy and
spectral related LLD x 42 functionals, 6 voicing related LLD x 32 functionals, 25
delta coefficients of the energy/spectral LLD x 23 functionals, 6 delta coefficients of
the voicing related LLD x 19 functionals, and 10 voiced/unvoiced durational features.

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://dx.doi.org/10.1007/978-3-642-36806-6_6
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As classifier, Random Forests as ensemble of decision trees are used. This choice is
motivated by their good ability to cope with large feature spaces, as feature sub-spaces
are randomly assigned to the trees in the forest. A good configuration proved to be 30
trees, and 150 randomly assigned features for each tree. For further reproducibility
besides using an open-source feature extractor and the FindSounds database (cf.
Sect. 5.3.3) that can be retrieved from the Internet, the classifier implementation
provided by the Weka toolkit [22] is chosen again.

12.2.2 Performance

Considering the imbalance of instances among the classes, UA will be the mea-
sure of primary interest. Further, WA is partly provided in addition, as well as recall,
precision, and F1-measure. The experiments base on random partitioning of the Find-
Sounds database into three stratified folds to provide two training and one completely
disjoint testing set. The first fold (F1, 5 646 instances) is always used with its original
manually assigned labels for training. The second fold (F2, 5 646 instances) is used
either without its original labels (F2U ) or with these labels (F2) to be able to compare
to using this fold in a semi-supervised or supervised manner for training. The third
and last fold (5 645 instances) is always used for testing. Random partitioning is
carried out with Weka’s default random seed.

Table 12.5 shows the occurred confusions for seven categories of sound event
classification using the original labels training on fold one and two and testing on
the third fold. This is the ‘best case’ given the entirely supervised learning with
utmost data and serves as upper benchmark. Most confusions can be explained well
by common sense, such as those of sounds from people with sounds of animals or
sounds from vehicles with sounds of noise makers.

Table 12.5 ‘Best case’ confusions when automatically classifying seven sound categories on the
FindSounds database with original labels for both training folds F1 and F2 (cf. line ‘supervised
F1+F2’ in Table 12.6)

Truth [#] Classified as
People Animals Nature Vehicles Noisemakers Office Instruments

People 564 153 11 26 17 25 50
Animals 126 717 7 35 23 20 18
Nature 18 35 157 42 44 10 6
Vehicles 37 37 26 476 86 15 45
Noisemakers 22 43 36 77 372 72 48
Office 29 37 1 16 111 364 31
Instruments 32 33 6 31 47 16 1 395
Confusions 264 338 87 227 328 158 198

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Table 12.6 Recall for seven sound categories and UA / WA with un-/supervised learning on the
FindSounds database

[%] UA WA People Animals Nature Vehicles Noisemakers Office Instruments

supervised F1 61.1 67.0 61.7 68.2 39.7 60.2 52.7 57.9 87.2
semi- 2·F1 + F21

U 63.1 68.5 61.7 72.5 47.4 61.8 51.9 58.4 87.9
supervised
supervised F1 + F2 66.5 71.7 66.7 75.8 50.3 65.9 55.5 61.8 89.4

To establish a reference if the fold two data is not used at all, let us now consider
exclusively fold one with its original labels for training (line “supervised F1” shown
in Table 12.6) and fold three for testing. Then, for semi-supervised learning, fold
one with the original manually assigned labels and fold two without the original
labels, but labelled automatically by a system which was trained on fold one with
application of diverse strategies (line “semi-supervised” in the same table). Testing
is again carried out on fold three. Finally, the upper benchmark of using both folds
with the original labels is shown in the table (line “supervised F1+F2”)—again with
fold three for testing.

For semi-supervised learning, the confidence of the Random Forests—the per-
centage of trees agreeing on the class—is taken into account. Evaluated confidence
levels are > 0.7 and > 0.8. This is needed to suppress data likely labelled wrong by
the machine. Two additional strategies are investigated: up-sampling of the originally
labelled data to emphasise more on definitely correctly labelled data and repeated
iteration of the semi-supervised learning process. Table 12.7 shows the UA of up to
three iterations of semi-supervised learning, i.e., repeated re-labelling of the unla-
belled data in fold two using all fold one data and selected fold two data in training
with labels from the last iteration, and only using instances with sufficient confidence
level. Without up-sampling (1·F1), a gain is also obtained (62.0 % vs. 61.6 % UA
for confidence level > 0.7, and 63.0 % vs. 62.1 % UA for confidence level > 0.8).
However, one notices that the benefit of iteration is limited, as UA partly begins to
decrease after the third iteration. A larger number of iterations did not lead to improve-
ments (not shown in numbers). Finally, the up-sampling and iterating strategies are

Table 12.7 UA of iterative semi-supervised learning on the FindSounds database with minimum
confidence values 0.7 and 0.8 combined with up-sampling or not up-sampling of originally labelled
data

UA [%] Confidence level
>0.7 >0.8
F1 2·F1 F1 2·F1

F21
U 61.6 63.1 62.1 62.5

F22
U 62.0 62.2 63.0 62.6

F23
U 62.0 61.7 62.6 63.2

2·F1: up-sampling (doubling up) fold 1 instances; F21
U , F22

U , F23
U : first, second, and third iteration

of semi-supervised learning
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combined expecting synergies. Looking at line “2·F1” in Table 12.6, up-sampling
improves over the baseline setting in four out of six cases. Table 12.6 also shows
detailed results for the case up-sampling by copying (2·F1) and confidences higher
than 0.7.

Looking again at UA values in Table 12.7, as one would expect, the best average
result is obtained using the original labels and data of fold one and fold two for
training (66.5 % UA). Then, semi-supervised learning significantly (one-sided z-test,
p < 0.05) boosts the performance of sound event classification by an increase in UA
of 2 % absolute over not using fold two data at all. This boost is almost half the
one achieved by supervised training (5.4 %) with all data over only using fold one.
The nature class being the most sparse one, benefited most from semi-supervised
learning. This effectively demonstrates the potential gain of semi-supervised learning
for exploitation of unlabelled audio data.

12.2.3 Summary

The potential of semi-supervised learning on a large scale AEC task was investigated.
In the result, adding unlabelled data with high classifier confidence level to the
human-labelled training data can enhance recognition performance. Up-sampling
of originally labelled data and iterating the semi-supervised learning process both
boosted classification accuracy in the experiments by emphasising on originally
labelled data. Combining both strategies gradually increases the advantage of semi-
supervised learning. As one would expect, accuracy of semi-supervised learning is
below the gain that can be expected when adding labelled data of the same amount.
Yet, given the considerable efforts and costs involved in human labelling of thousands
of instances and the large amounts of sound event data publicly available makes
consideration of semi-supervised learning a promising approach in future machine-
based sound analysis.

Future efforts could continue to focus on agglomeration of huge amounts of unla-
belled sound event data and its application in analysis of real-life sound streams—
ideally in combination with blind audio source separation.

12.3 Emotion

Similarly to the analysis of speech and music, where we first looked at ‘what’ was
being said or played before looking at the affective side of speech and music, one
can also attempt to automatically predict the emotion a sound event is likely to evoke
in a listener. This will be the last application example presented in this book. It was
first introduced in [12].

In fact, literature on emotion recognition from the acoustic channel—be it the
emotion a listener thinks is contained or that she or he feels when listening—, is
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dominated by studies dealing with speech [20, 38], and next follows music [39].
However, as shown in the last two sections, there is a rich variety of sounds besides
speech and music in a real acoustic environment. These sounds certainly are also
loaded with emotional connotation for a human listener. As an example, the shrill
sound of a fire alarm would be less pleasant than the gentle sound of waves drilling
the sand beach to the majority of listeners. In fact, listeners feed back emotion to
any sound they are listening to in their daily life. This is independent of the kind of
sound and its subjective or objective nature. Sound perception is thus linked with
emotional response: New-borns’ first attempts to overcome anxiety are centred on
sound making [40]. Thus, for future intelligent systems it may be useful or relevant to
understand emotion connotated with general sound. In ‘sound information retrieval’
emotional content may help in the design and dubbing of audio plays and films. For
example, one might look for a furious door slam or a spooky door creek, etc. Research
in this direction is utmost limited up to the present day: The only work besides the
work by Schuller et al. is the very recent one presented in [41] basing on 120 clips of
the BBC Sound Effects Library labelled in three affective dimensions. The approach
uses mean and standard deviation per one second of 12 MFCC features as acoustic
feature information. In this section, the focus is set on sound emotion recognition in
realistic conditions.

A crucial problem is the lack of specialised sound databases for emotion research.
There some freely accessible sound databases [42], but usually without emotional
labelling. The Emotional FindSounds database, which was described in Sect. 5.3.3
solves these issues. In emotion recognition from speech, emphasis is usually put on
the subject’s expressed emotion rather than listeners’ emotions evoked by sound.
This is more mixed for music emotion recognition. In fact, knowledge upon the
emotion elicited on the listener side may help identify human reaction ahead. In this
section, ‘sound emotions’ refer to the listeners’ induced emotions.

12.3.1 Methodology

The audio feature set used is the openSMILE toolkit’s ‘AVEC 2011’ set with 1 941
features as shown in Table A.1 in the Annex and as was used in the last section
for AEC. For recognition, random subspace meta-learning is used again owing to
its good generalisation properties—the sounds are highly varied and require this
feature. The base classifier is a decision tree. Based on experience, trees are not
pruned. A subspace size of 0.05 is chosen, which means that 97 features out of the
1 941 are assigned by random to each tree in the forest. The forest is grown from
500 trees [12]. The labelling and the feature extractor including the configuration are
available for reproduction.3 This principle was kept by again deciding for Weka for
the implementation of the trees.

3 Available at http://www.openaudio.eu

http://dx.doi.org/10.1007/978-3-642-36806-6_5
http://www.openaudio.eu
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Table 12.8 Automatic regression results by CC with different types of gold standard

CC # trees
100 200 500

Arousal EWE 0.611 0.608 0.606
median 0.553 0.555 0.548
mean 0.558 0.563 0.559

Valence EWE 0.458 0.469 0.473
median 0.446 0.449 0.454
mean 0.467 0.484 0.485

EWE, median, and mean in ten-fold SCV. The number of trees is varied

12.3.2 Performance

A ten-fold SCV—again with reproducible partitioning by Weka’s default random
seed—is carried out on the emotionally tagged partition of the FindSounds data-
base as introduced in Sect. 5.3.3. Table 12.8 shows the CCs for arousal and valence
employing the Evaluator Weighted Estimator (EWE), median, and mean to establish
a gold standard by merging the evaluation results of the four evaluators. In this table,
numbers of trees in the forest are additionally varied. Visibly, the regression of sound
emotion performs well with CCs of around 0.61 (arousal) and up to 0.49 (valence)
when evaluating on the EWE. The tendency that arousal is the ‘easier’ task is well
in line with experience from speech and music emotion analysis based on acoustics
[20, 43]. CC as evaluated on EWE usually exceeds the other two methods of gold
standard establishment—mean and median. Median is found on the other end of the
scale probably due to its instability when evaluators show huge disagreement. In
Table 12.9 the CC and its relation to sound category is highlighted for one exemplary
configuration. There, arousal prediction is roughly stable across sound categories. As
for valence, especially Noisemakers and Nature can be identified well above others in

Table 12.9 Automatic regression results by CC per sound category for EWE and 500 trees in
ten-fold SCV

Class CC
Arousal Valence

0.601 0.474
Animals 0.643 0.448
Musical instruments 0.516 0.217
Nature 0.688 0.589
Noisemaker 0.579 0.778
People 0.604 0.048
Sports 0.682 0.198
Tools 0.590 −0.057
Vehicles 0.579 0.279

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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Fig. 12.2 Boxplots of the
30 highest absolute CCs
of features with the EWE.
Features are grouped in four
cover classes for arousal
(top) and valence (bottom).
The ‘Quality’ group contains
voicing probability, log HNR,
jitter, and shimmer based
features. ‘Prosody’ groups
loudness, F0, and ZCR [12]

Prosody

 Quality

Spectral

Cepstral

Prosody

 Quality

Spectral

Cepstral

0.1 0.2 0.3 0.4 0.5 0.6

Absolute CC with EWE

terms of CC. In comparison with the gold standard as was shown in Fig. 5.8, one may
argue that the regressor is not only implicitly recognising the sound category. In fact,
the values of valence for Noisemakers are rather widespread despite considerable
differences in the mean valence.

As there exists practically no experience on feature relevance for this particular
task, it seems worth to have a look at this issue. The 30 best features were ranked by
their CC with the EWE as gold standard. The result is shown as boxplots per dimen-
sion for the groups cepstral, spectral, ‘sound quality’ in analogy to voice quality,
and prosody in Fig. 12.2. Independent of arousal or valence, spectral features are the
most relevant group. Interestingly, the best single feature is prosody-related for these
two dimensions. From the full list of the 30 best features (not shown) the following
is found: Arousal is highly correlated with loudness, and loudness features almost
reach the CC with the EWE of the learnt regressor. The highest CC is observed for
the root quadratic mean of loudness (0.587).

Next, valence is correlated with loudness as well, but not as strongly and neg-
atively, which seems intuitive, as loud sounds are likely unpleasant. The highest
absolute CC with the EWE can be reported for the third quartile of loudness (−0.316).
Spectral flux also shows good (negative) CC, i.e., large spectral variations seem to
be perceived as unpleasant: The CC of the inter quartile range 1–2 of spectral flux
is −0.292. Finally, spectral harmonicity is negatively correlated: Apparently quasi-
sinusoidal sounds are unpleasant. The CC of 50 % up-level time of harmonicity is
−0.241.

http://dx.doi.org/10.1007/978-3-642-36806-6_5
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12.3.3 Summary

Automatic recognition of emotion evoked by general sound events was shown and
found in the rough range of typical dimensional speech and music emotion recog-
nition when operating in high realism comparable to the results in Sect. 10.4.2 and
Sect. 11.7. The sound events considered here were completely independent of each
other and often of lower acoustic quality. Spectral features were shown to be most
important as a group after individual prosodic features for this task.

Future efforts may aim at creation of larger sound emotion resources, e.g., by
crowd sourcing or similar. Deeper analysis of feature relevance per sound category
will also shed more light on optimal acoustic feature spaces. Finally, multi-task
learning of the sound category and the evoked emotion seems a promising approach
to improve both tasks as was suggested in speech and music processing before.
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Part IV
Conclusion

This last part will first provide a discussion on Intelligent Audio Analysis in the
light of the content of the book up to this point followed by best practice
recommendations and remaining challenges. In a second chapter, a more general
summary will be given. Future directions of research will conclude this book.



Chapter 13
Discussion

A scientist’s aim in a discussion with his colleagues is not to
persuade, but to clarify.

—Leo Szilard

Picking up on the aims of this book as were outlined in Sect. 2.2, these are discussed
one by one as follows. This includes a statement on how the state-of-the-art in
the field was advanced more recently. Basing on these, a distilled ‘best practice’
recommendation is given to the reader, before a critical discussion of missing aspects
and remaining research steps.

13.1 Picking Up on the Goals

(I) A unified perspective on audio analysis tasks was provided in this book in the
hope to bridge between the disciplines of speech and language processing—including
sub-disciplines such as ASR, computational paralinguistics or opinion mining and
sentiment analysis—music analysis, i.e., MIR, and general sound analysis. Even
though these often co-exist side-by-side and transfer is often limited, the current
book by intention provided a unified perspective to reach first and foster future
synergies. Further, a broad overview was given on recent advancements in these fields
by presentation of manifold exemplary applications and performances in realistic
conditions. In particular, realistic conditions were mostly ignored in the field so far
by a number of simplifications.

(II) Recent methods were presented and shown in application. These aim to
improve robustness and reliability of today’s Intelligent Audio Analysis systems. In
particular, the enhancement and isolation of the signal of interest by suited methods
of blind separation of sources was emphasised on [1–9]. This is sparsely found in the
field at this time coupled with subsequent ‘intelligent’ processing. Instead, research
usually focuses either on the separation or on intelligent processing of ‘clean’ and
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idealised audio material. After this step, systematic feature brute-forcing of up to
thousands of audio features was shown as highly efficient means in particular also in
the case of handling of novel Intelligent Audio Analysis tasks. This was seen in many
of the presented tasks [10–12]. At the same time, individually tailored feature types
were shown, in particular such basing on NMF activations [4–6, 13–16] or music
theory and human perception [17]. The idea is to demonstrate limitations of unifi-
cation. Further, memory-enhanced learning algorithms such as by (B) LSTM RNNs
[3, 16, 18–30] and their synergistic combination with DBNs [5, 31–42] were shown
to prevail in many tasks. For example, two MIREX 2010 Challenges for music onset
detection [22] and tempo determination [21] were won by this method. Then, suited
GM topologies such as SLDM and SLDS were presented in their successful appli-
cation for highly noise robust ASR [43]. In their combination, the overall efforts led
to the best result in the CHiME 2011 Challenge for highly robust keyword spotting
when using only a single microphone source [5]. Subsequent to the Challenge, the
overall best result—beating also those approaches that exploit multiple microphone
sources—could be reached based on combining the presented approaches towards
source separation with NMF activation features, and a triple-stream topology of a
DBN with BLSTM RNN feed [6]. To ease the ever-present bottleneck of data sparse-
ness, a series of methods was further suggested and shown to be beneficial. These
can be added by synthesis of training material [44], and the collaboration of machine
and human for the labelling of data guided by the machine: The machine first by
itself labels the data it is sufficiently confident it can assign the correct label itself in
a semi-supervised learning step [45, 46]. Then, it asks for human’s help if it cannot
assign a label with sufficient confidence, but thinks the data may be interesting, for
example because it covers a sparse class. This is the ‘active learning’ step. Finally, it
decides that some instances might not be of interest as they are too similar to already
seen data in an active learning step. Further, transfer learning methods can help to
use data with ‘similar’ conditions.

(III) The very broad range of Intelligent Audio Analysis application was shown.
These include the recognition of speaker states and traits such as age [47], height
[48], interest [27, 49–54], intoxication [55, 56], and sleepinesss [12, 57], singer traits
in polyphonic music [2, 3, 58] such as age, gender, height, and race, the recognition
of ballroom dance style [59–61] in music, or the recognition of emotion evoked in
the listener of sounds [62]—to name the most recent ones of the examples.

(IV) Benchmark results and standardised test-beds were shown for a broader range
of audio analysis tasks. Especially in the field of paralinguistic speech analysis these
were entirely lacking until very recently. Instead, comparability between research
results in the field was considerably low. Apart from different evaluation strategies,
the diversity of corpora is high, as many early studies report results on their individual
and proprietary corpora. Additionally, there was practically no same feature set found
twice: High diversity is not only found in the selection of LLD, but also in the per-
ceptual adaptation, speaker adaptation, and—most of all—selection and implemen-
tation of functionals. This opposes the more or less settled and clearly defined feature
types MFCC, RASTA or PLP that allow for higher comparability in speech recog-
nition. A series of consecutive annual research challenges held at INTERSPEECH
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2009–2012 changed this recently: the INTERSPEECH 2009 Emotion Challenge
[63–65], the INTERSPEECH 2010 Paralinguistic Challenge [47, 66], the INTER-
SPEECH 2011 Speaker State Challenge [55], and the INTERSPEECH 2012 Speaker
Trait Challenge [67]. Further, the first and second International Audio/Visual Emo-
tion Challenge and Workshop (AVEC) in 2011 [68, 69] and 2012 [70] as satellites
of the HUMAINE International Conference on Affective Computing and Intelligent
Interaction (ACII) and ACM International Conference on Multimodal Interaction
contained speech analysis tasks. The aim of this succession of challenges has been
two-fold: First, the concept of a strict partitioning of data into train, development, and
test sets, together with well-defined measures of performance was accomplished—
this is known from established fields such as ASR—in the broad and divergent field
of paralinguistics. Second, the research in these fields mostly lacks in two respects:
small, preselected, prototypical, and often non-natural data sets and the named low
comparability of results. All of these events featured very high participation of the
research community—in the latest of these events 52 research teams participated. By
using methods as presented in this book, best results on these challenge tasks could
be obtained [30, 54, 56, 67, 71]. These and several further benchmark results were
presented in this book constantly emphasising on reproducibility and accessibility
of data and algorithms by the research community.

Standards were further provided by the openSMILE [72] and openEAR [73]
toolkits as presented in this book (cf. Sect. 6.5). As open-source software, they are
entirely transparent, and the standardised feature sets (cf. Annex for four of these) can
provide a good starting point for many audio analysis tasks. For source separation,
the openBliSSART toolkit [4, 74] as was shown in Chap. 8.

Another part of standardisation is found in the datasets introduced, which are
mostly freely accessible to interested readers and by now found manifold usage,1

including the following nine that cover a broad range of Intelligent Audio Analysis
tasks: HU-ASA [75], TUM AVIC [53], Metacritic [76], BRD [61], NTWICM [77],
Audio Key [17], FindSounds [45], Emotional FindSounds [62], UltraStar [2].

(V) Deficiencies in current approaches and future perspective in and for the field
were shown in detail for all presented exemplary tasks in the respective sections and
chapters. However, this book shall be concluded by a more general perspective on
Intelligent Audio Analysis best practice, remaining challenges and a vision on the
future of this field.

Finally, it should be noted that fusion with other modalities—in particular image
and video processing—can lead to improvements for many of the tasks discussed such
as non-linguistic vocalisation recognition [26, 78] or emotion recognition [79–83].
Further, successful transfer of the introduced methods such as feature brute-forcing
and LSTM-modelling can be of interest, as was shown for 3D gesture recognition in
[23] or for CAN-bus data analysis in the car in [28].

1 http://www.openaudio.eu

http://dx.doi.org/10.1007/978-3-642-36806-6_6
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13.2 Best Practice Recommendations

In the following, best practice recommendations as based on the presented content of
the book are given. These again follow the chain of processing from data provision to
its enhancement, feature extraction, classification or regression, and output encoding
for optimal system embedding.

High realism: [84] In order to evaluate systems for Intelligent Audio Analysis
in conditions close to real-life application, realistic data are needed [66]. However,
progress in this direction is often slow in the field. This is likely owing to the high
effort of collecting and annotating such data. Realism concerns in particular the
choice of testing instances. To assess an Intelligent Audio Analysis’s system perfor-
mance in a realistic way, these may not be restricted to prototypical, straightforward
cases. If a pre-selection is applied at all, e.g., to gain performance bounds, it needs
to be based on objective and transparent criteria rather than on ‘intuitive’ expert-
selection. While methods such as semi-supervised or synthesis of training material
have been named in this book, they are less suited for the collection of test-instances.
Even crowd-sourcing may—depending on the task—be more appropriate for the col-
lection of training data if laymen are involved. Realism further touches pre-processing
such as chunking according to acoustic or symbolic, e.g., linguistic criteria. In most
real-life applications, chunking will be expected to work automatically and should
be oriented on acoustic LLDs. An example is a audio activity based chunking, which
easily becomes challenging in reverberant or noisy acoustic conditions. If additional
meta-information or common knowledge is exploited in the analysis process, the
information should be automatically retrieved from publicly available knowledge-
sources, e.g., by web-based queries as was shown in this book, e.g., for chord lead
sheets, lyrics and word information. If such information includes individual experts’
knowledge on the test cases this may result in a considerable bias of accuracies to be
expected for unseen material. Finally, real-life applications imply highest possible
independence of training and test conditions in most cases. This can be established by
partitioning into train, development and test sets [63]. Today, however, often random
cross-validation without known random seed for partitioning is employed especially
in case of small data sets, to ensure significance of results. Using an independent
and stratified subdivision according to simple criteria (e.g., splitting according to
instance IDs, by speaker or composer, etc.) is a transparent alternative to keep the
statistical significance. Otherwise, the random seed should be provided together with
the toolkit for reproduction of the partitions or a download for an archive containing
the instance or file list may be provided.

Standardised, multi-faceted and machine-aided data collection: Publicly
available audio data with rich annotation are still sparse [84]. Even with a recently
increasing number of available databases ready for experimentation, these often come
with different labelling schemes such as discrete versus continuous task represen-
tation. This can make cross-corpus evaluation and data agglomeration [85] partly
difficult. ‘Translation’ schemes and standards are therefore needed to map from one
task representation to another or for the task representation itself and should be
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followed if existent—at least in addition to individual solutions. Multi-corpus and
cross-corpus evaluation, such as for age and gender and for emotion [86, 87], is crucial
to assess generalisation of AMs and LMs. In fact, experiments in cross-corpus man-
ner indicate overfitting to single corpora [87]. This trend can only partly be eased by
corpus adaptation and normalisation. In addition, optimisation such as feature selec-
tion or parameter optimisation for the learning algorithm may exhibit low cross-data
generalisation [88]. Still, unification of the labelling schemes as mentioned above
introduces ‘information loss’. A late fusion of multiple classifiers trained on sin-
gle corpora with different labelling schemes may help overcome this in the future.
In addition, the efficacy of semi-supervised learning to leverage unlabelled audio
data for its computationally intelligent analysis has been repeatedly demonstrated
[46, 89–91]. This may be turned into large-scale studies across multiple tasks using
large amounts of data acquired from the web. Finally, a promising technique is syn-
thesis of training data: In fact, it has been shown that generalisation properties of
models in a cross-corpus setting can be improved through joint training with both
human and synthetic speech [44] or human-played and MIDI-synthesised music
[92]. These results are very promising since synthetic audio can be easily produced
in large quantities, and a variety of combinations can be simulated. It is hoped that
this will yield good generalisation of models and facilitate learning of multiple tasks
and their interdependencies. In any case, acquisition of more and well-defined data
for building robust and generalising models can thus be seen as major challenges for
the future.

Source separation: The results cited in this book clearly demonstrated the gain
obtained by source separation for the enhancement of the signal of interest in real-
life audio streams. As particularly suited algorithm NMF and its derivatives was
shown—e.g., in the openBliSSART implementation. This may be added by methods
exploiting multiple sources such as ICA for stereophonic information or microphone
array feed exploitation.

Feature brute-forcing: The features used in early Intelligent Audio Analysis
research were often motivated by the fields of ASR and speaker recognition as these
were among the earliest and the driving forces. As a consequence, usage of spectral
or cepstral features such as MFCCs prevails to the present day [84]. In the meantime,
manifold expert-crafted acoustic features, including perceptually motivated ones
[55, 93, 94] or such basing on pre-classification [95] were introduced. These have
often been successfully evaluated for diverse audio analysis tasks as was also shown in
this book, along with the addition of more or less brute forced features. Furthermore,
it has repeatedly been shown that enlarging the feature space can help boost accuracy
[11, 55]. Such large spaces can be brute-forced by toolkits as openSMILE and serve
as broad basis for subsequent space optimisation—in particular when approaching
novel audio analysis tasks. A promising additional direction is the semi-supervised
learning of features, e.g., through deep belief networks [86] or bottleneck topologies
[27, 40].

Temporal evolution modelling: It has been shown in several chapters of this
book touching all three fields speech, music, and sound that explicit storage of tem-
poral context—in particular with learning the optimal amount of such context—
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outperforms common approaches in the field that do not provide this option.
The LSTM architectures shown are clearly suited in this respect, and whenever the
application allows for modelling of temporal context dependencies, these or future
alternatives should be considered—be it on their own or in combination with other
machine learning algorithms to provide them with dynamic warping abilities such
as the shown tandem DBN-BLSTM architectures.

Coupling of tasks: [84] A number of interdependencies is already visible in the
tasks that were considered in this book. By addition of further or novel tasks, this
dependency is likely to be amplified. For example, in speaker analysis, long term
traits are coupled to some degree, e.g., height with age, gender, and race as were
shown interdependent in the determination of age, gender, and height in this book.
Other examples include emotional manifestation being dependent on personality
[96], and gender-dependencies of non-linguistic vocalisations such as laughter [97].
In this book an example was also shown in the music domain for the interdepen-
dence of ballroom dance style, metre, and tempo. It seems obvious that the further
introduced sound analysis tasks of event and evoked emotion are also interdependent.

Such knowledge can be integrated by keeping separate models depending on the
other tasks, adaptation or normalisation, or considering additional information on
related ‘side tasks’ [98, 99] as in the above named examples shown in this book. An
alternative to such explicit modelling of dependencies is to automatically learn them
from training data. For example, the rather simple strategy of using pairs of age and
gender classes as learning target instead of each attribute individually was shown to
be beneficial in this book and [47]. In the future, enhanced modelling of multiple
correlated target variables should be commonly targeted in multi-task learning. The
input features are then shared among tasks, such as the internal activations in the
hidden layer of a neural network [100]. A challenge may then arise from the different
representation of task variables by various data types (continuous, ordinal, nominal),
which may additionally use different time scales (e.g., dance style is mostly constant
in a musical piece, but tempo may vary). Considering such suited methods for multi-
scale fusion and multi-task learning [101], future Intelligent Audio Analysis should
not focus on tasks in isolation, but aim at a ‘more holistic’ analysis of tasks.

Standardisation: Arguably, the more mature and closer to real-life application
the field of Intelligent Audio Analysis gets, the greater is the need for standardisation
[84]. Similarly as before, standardisation efforts can be categorised along the signal
processing chain. They include definition of the task modelling such as given in the
MPEG-4 standard for emotion in audio or the MIREX tasks and ID3 tag categories
for music, documentation and well-motivated grouping of audio features such as
the CEICES Feature Coding Scheme [102], standardised feature sets as provided
by the openSMILE [72] and openEAR [73] toolkits or MPEG7-LLD standard, and
machine learning frameworks [103]. Such standardised feature extraction and clas-
sification allows to evaluate the feature extraction and classification components of
a recognition system separately. To further increase the reproducibility and compa-
rability of results, well-defined evaluation settings should be employed, such as the
ones provided by the named challenge events [12]. Finally, communication between
system components in real-life applications requires standardisation of recognition
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results for application embedding. This can be achieved by mark-up languages such
as EMMA [104], EmotionML [105], MIML [106] or VoiceXML, or the MIDI stan-
dard in music. Many further ones are, however, still needed. This holds in particular
for general audio analysis.

13.3 Remaining Challenges

A number of challenges remain in order to reach full applicability of systems for all
tasks such as those that were presented.

More robustness: Robustness issues in Intelligent Audio Analysis can be cate-
gorised into technical robustness on the one hand and security on the other hand [66].
Technical robustness refers to robustness against signal distortions including additive
noise, e.g., environmental noise or interfering signals of similar type (e.g., ‘cocktail
party problem’ in speech analysis) and reverberation, but also change of transmission
medium, e.g., from air to liquid or oxygen to helium, and artefacts of transmission
due to package loss and coding. Many of these issues have been extensively studied
in the context of ASR leading to a multiplicity of solutions ready for application
and transfer, as has been shown in this book. These include audio enhancement,
robust feature extraction, model-based techniques (i.e., learning the distortions), and
recognition architectures such as the BLSTM RNN. However, they have so far only
been investigated in few of the application scenarios: Apart from ASR in speech
analysis, there do exist a few studies on technical robustness of affect analysis, e.g.,
[15, 107, 108]—other speaker classification and paralinguistic analysis tasks are yet
to follow. In particular for the processing of music or sound, however, experience
is missing if the signal is captured via a (distant) microphone rather than accessed
in ideal condition, e.g., from a storage device. On another level, Intelligent Audio
Analysis systems are hardly ready to recognising malicious mis-use in the sense of
attempted fraud. Examples for such fraud include feigning of a speaker’s age (e.g.,
in an audio-based system for parental control), degree of intoxication (e.g., to ensure
clearance for high risk operations despite alcoholisation), or emotion (e.g., by faking
anger in an automated voice portal system in order to be redirected to a human oper-
ator). Studies in this direction are sparse including detection of feigned depression
and sleepiness [109, 110]. This is in massive contrast to the research devoted to
speaker verification, i.e., robustness of speaker recognition systems against feigning
of another speaker’s identity. Similar scenarios can be thought of in the process-
ing of sound such as feigning an explosion sound to alert security for distraction
with criminal intentions. Still, the majority of research in Intelligent Audio Analysis
assumes laboratory conditions including the fact that data is mostly recorded without
consideration of real users with potentially black-hearted intentions.

Blind separation and multi-task processing of real-life streams: Once going for
broader analysis of audio, highly complex blends of speech, music, and sound need to
be considered rather than more or less isolated and slightly corrupted signals. In fact,
experience is almost entirely lacking on performance once several non-correlated



324 13 Discussion

audio sources shall be identified and characterised at a time. In an unknown real-life
audio-stream all types of speech, music, and sound can, and in fact very likely will
often be present simultaneously. If the sources or the recording device is moving, the
task to analyse such a stream may become even more challenging.

Massive weakly supervised learning: For a start, semi-supervised learning of
sound events has been shown to be beneficial in this book [45] and other Intelligent
Audio Analysis [46]. However, the Internet and radio and television broadcast media
streams provide the potential of almost infinite audio provision to systems that can
learn partly or non-supervised by themselves. Once the previously mentioned step
is mastered, i.e., once systems are capable to blindly separate and handle complex
blends of audio as they occur in most real-life settings, such systems can start to
improve by ‘teaching themselves’. In combination with active learning, they can
occasionally ask for human help once not sufficiently confident on decisions to be
made. In the shown example on semi-supervised AEC (cf. Sect. 12.2), only the AM
was learnt semi-supervisedly by the system. Yet, the parametrisation of the signal
enhancement, the feature space, configuration of the classifier and other steps along
the signal processing chain be auto-adapted in a similar fashion.

Evolutionary learning: Besides such adaptation of parametrisation, the overall
learning algorithm’s layout and architecture could be learnt by future Intelligent
Audio Analysis systems. As an example, LSTM RNN could decide in which layers
to provide memory and how many cells should ideally be coupled, where to provide
bottle-necks, e.g., for feature de-correlation [40], etc.

Closing the gap between analysis and synthesis: This book focused entirely
on the analysis side of Intelligent Audio Processing. In fact, the synthesis is mostly
handled in according isolation. This is to regret, as closing this gap holds many
promises as in the named example of synthesising training material for analysis [44].

Cross-cultural and cross-lingual widening: One of the barriers to overcome if
audio information retrieval systems are to be widely employed is to enable their use
across cultural and lingual borders [84]. Yet, cross-cultural effects usually make tasks
even more challenging—examples include speaker states and trait analysis [111],
music mood, metre or dance style determination or emotion evoked in listeners by
sounds. Concerning speech, it is still an open question which speaker states and traits
manifest consistently across cultures and languages. For example, emotion recogni-
tion, has been shown to depend strongly on the language being spoken [112–114],
while non-linguistic vocalisation such as laughter and speaker identification
[115, 116], seem comparably culture and language independent. However, gener-
ally little attention is paid to the more subtle effects of the cultural background and
language variation. It might turn out, though, that cross-cultural Intelligent Audio
Analysis is just another instance of learning correlated tasks.

Novel tasks: Many tasks have been shown in this book, and many more are
covered in the literature. Yet, approaching human audio analysis abilities, several
remain that may have been of lower interest so far from an application point of
view. Examples could be the recognition of a speaking condition during eating,
playing effects of under-researched instruments in music such as bending or over-
blow on a blues harp, or the recognition of specific sound source traits. Further,

http://dx.doi.org/10.1007/978-3-642-36806-6_12
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supra-human capabilities could be targeted such as by determining the heart rate or
skin conductivity from the speech signal or assessing meta-information concerning
the audio encoding, recording equipment or transmission. Several novel tasks can
also be derived by transfer from one domain to the other [117], such as musical
instrument trait assessment, e.g., neck length of a guitar, etc.

Further unification and transfer of methods: Substantial unification efforts
were made by this book. However, in order to show further transfer potential of the
research efforts often co-existing with limited exchange for the diverse tasks, further
unification will be needed. This is in particular reasonable to reach the ability of
genuine multi-task analysis as described.

Confidence measures: The performances chosen as illustrative examples in this
book, and as will be summarised in Sect. 14.1 clearly show the need for additional
information of a machine learner’s confidence in its result for most real-life appli-
cation. A number of approaches for the topic of confidence measures have been
proposed in the domain of ASR. These can be roughly grouped into three categories
[118]: In the first, a binary true or false classifier is built based on a combination of
so-called predictor features (e.g., acoustic stability and LM scores) that are collected
during the decoding procedure. Various classification models have been used in this
respect such as a linear discriminant function [119], or a maximum entropy model
[120]. In the second category, an approximation of the posterior probability in the
standard MAP criterion approach is taken as the confidence measure. The posterior
probability is typically estimated from the speech system lattices or ‘N-best’ lists
[121]. Methods in the third category treat the confidence estimation problem as an
utterance verification problem. They make use of the likelihood ratio between the null
hypothesis (e.g., the word is correct) and the alternative hypothesis (e.g., the word
is incorrect) as a confidence measure [122]. Unfortunately, the use of confidence
measures for practically any other Intelligent Audio Analysis task seems to have
never drawn comparable attention so far. Thus, the existing approaches are primarily
designed for ASR systems, as most of them rely almost entirely on properties of
HMMs, such as acoustic scores or the word graph, which are not typical components
of all the Intelligent Audio Analysis systems as were introduced.

Distributed processing: Effort have constantly been made to integrate audio
processing technology into Internet technology to facilitate the interface for human
users, as well as to decrease computing resources on the client side [123] allow-
ing, e.g., for access on mobile devices. A further advantage of distribution is that
models stored on the server can be updated periodically on this side rather than by
the end-user. This can be done, for example, by semi-supervised learning. Compar-
ing to stand-alone analysis, distribution involves diverse technologies including data
compression, network data transmission protocols, and distributed computing [123].
Furthermore, for economic reasons and efficiency the solution for distribution should
be inexpensive to implement on the client side, the required data transmission band-
width should remain at a low level, and the recognition accuracy should ideally be
(at least) approximately equal to the state-of-the-art. To implement an accordingly
distributed system, the first problem arising is how to distribute the components
of the recogniser over the Internet. An obvious choice is the ‘classic’ client-server

http://dx.doi.org/10.1007/978-3-642-36806-6_14
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architecture, as adopted in the widely used ETSI standard for Distributed Speech
Recognition (DSR) [124]. The recognition processing is then usually separated into
two parts—the feature extraction and compression front-end is being executed on the
client side and the recognition is processed on the remote back-end. By this, there is
only the need to send the reduced parameterised representation of audio, which also
provides a favourable data reduction in the light of access security. In fact, vector
quantisation of the audio features and related techniques allow for further reduction
of required network traffic. From a method point of view, this may lead to semi-
supervised learning with compressed features on the server side if models shall be
updated. So far, several speech-based Internet applications have been well explored
and even applied in practice, such as DSR [125, 126], distributed speaker verification
[127], and first research on distributed speech emotion recognition [123]. Yet, in con-
trast to the attention paid to these speech-based applications and some on-line music
recognition services, there are few such efforts that deal with the manifold further
Intelligent Audio Analysis tasks shown and discussed in this book in a distributed
manner. This requires according research efforts to make all these analyses available
on-line.

New research challenges: Despite the series of competitive evaluation campaigns
in the fields of speaker state and trait analysis [12] and further existing ones such
as by NIST, MediaEval2 or MIREX, many white spots remain in the map of audio
analysis tasks—in particular for the sound analysis domain. These will help to fur-
ther consolidate the field and provide benchmarks and common findings for further
improvement.
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Chapter 14
Vision

We can only see a short distance ahead, but we can see plenty
there that needs to be done.

—Alan Turing

In this last chapter, a short summary of the exemplary results that were selected for
application illustration is given that motivates the vision given in the concluding
section of this book.

14.1 Summary of Results

Rather than repeating details from the individual sections and formerly derived best
practice recommendations, this summary aims to provide an estimation of applicabil-
ity of systems as they were shown in this book. By that, let us have a general overview
on the results as were presented in Part III of this book in a ‘less formal’ way. In
Table 14.1 results of regression are summarised and in Table 14.2 according results
are presented for classification—the tasks drum-beat separation, onset detection, and
structure analysis were left out due to their more specific testing conditions.

Looking at the results in Table 14.1, it becomes evident that improvement is needed
in practically any of these, and that human performance level is only reached in some
rare exceptions such as speaker intoxication classification [1]. On the other hand side,
any of these tasks are highly significantly above chance level, and many are ready
for first real-life application—given sufficient failure tolerance.
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Table 14.1 Overview on presented regression results by CC and MLE for diverse intelligent speech,
music, and sound analysis tasks

Task Range Database # Train # Test Test method CC [%] MLE [– / cm]

Sentiment [0, 100] METACRITIC 49 698 52 924 T/T 0.570 14.1
Interest [-1, +1] TUM AVIC 2 673 1 207 T/D/T 0.421 0.146
Height [144, 204] TIMIT 4 620 1 680 T/T 0.296 7.05
Sound arousal [-1, +1] Emo findsounds 390 390 SCV 0.606 –
Sound valence [-1, +1] Emo findsounds 390 390 SCV 0.473 –

Given are the numeric range, the database with training (uniting training and development instances)
and test instances and the test method, where T/(D/)T are train, (develop), and test and SCV is always
ten-fold. The level of precision of the presented results depends on the number of test instances

14.2 Future Perspective

As an overall future vision, the field of Intelligent Audio Analysis can be expected
to lead to genuine ‘computer audition’ or ‘machine listening’ capability in the sense
of Holistic Evolutionary Audio Analysis. Once the different tasks described in this
book are not handled in isolation, an exemplary future system output after analysis
of a real-life audio-stream could thus be:

At high confidence, the auditory scene overall seems very relaxing: There is a lowly arousing
and pleasant sound of waves, two to three singing birds together with tranquil flute and
strings music in duple metre and a likable calm voice of an aged mid-sized very open and
conscientious male person of Asian origin talking to a younger female in English saying it
was a lovely day. She—rather tall at about 175 cm yet light-weight and likely of European
origin—seems interested in what he says and in a joyful, yet slightly tired state with low
heart rate. This is also manifested by her mild speech-laughter replying that he was right,
indeed.

Table 14.2 Overview on presented classification results by UA and WA for diverse intelligent
speech, music, and sound analysis tasks

Task # Classes Database # Train # Test Test method UA [%] WA [%]

Speech classes
Digits 10 TI46 800 1 280 T/T 99.92 99.92
Spelling 26 TI46 2 080 3 328 T/T 93.09 93.09
Phonemes 41 COSINE 9.59 h 1.81 h T/D/T – 66.41
Words 4.8 k COSINE 9.59 h 1.81 h T/D/T – 46.50
Non-linguistics 5 TUM AVIC 4 050 2 184 T/D/T 88.6 83.9
Sentiment 3 METACRITIC 49 698 52 924 T/T 53.99 53.71
Emotion 2 FAU AIBO EC 9 959 8 257 T/T 67.7 65.5
Age 4 aGender 53 076 17 332 T/D/T 48.91 46.24
Gender 3 aGender 53 076 17 332 T/D/T 81.21 84.81
Intoxication 2 ALC 9 360 3 ,000 T/D/T 65.9 66.4
Sleepiness 2 SLC 6 281 2 808 T/D/T 70.3 72.9

(continued)
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Table 14.2 continued

Task # Classes Database # Train # Test Test method UA [%] WA [%]

Music classes
Metre 2 BRD 1 855 1 855 SCV 97.1 96.6
Dance style 9 BRD 1 855 1 855 SCV 88.9 89.1
Tempo 141 BRD 1 855 1 855 SCV 89.0 88.5
Key 12 KEY-ALL 521 521 SCV – 77.3
Key 24 KEY-ALL 521 521 SCV – 62.1
Chords 24 ChoRD 10 702 10 702 LOSO – 60.13
Chords 36 ChoRD 10 702 10 702 LOSO – 48.84
Mood–arousal 3 NTWICM 1 376 1 272 T/D/T 56.2 58.7
Mood–valence 3 NTWICM 1 376 1 272 T/D/T 61.2 61.0
Voice presence 2 UltarStar 326 527 97 144 T/D/T 75.77 75.81
Singer age 2 UltraStar 315 043 93 342 T/D/T 57.55 56.56
Singer gender 2 UltraStar 326 198 96 373 T/D/T 89.61 93.60
Singer height 2 UltraStar 280 714 80 962 T/D/T 72.07 78.26
Singer race 2 UltraStar 321 178 96 563 T/D/T 63.30 76.98
Sound classes
Birds 2 HU-ASA 868 868 SCV 80.0 81.3
Animals 5 HU-ASA 1 063 1 063 SCV 49.5 64.0
Acoustic events 7 FindSounds 11 292 5 645 T/D/T 66.5 71.7

Given are the number of classes, the database with training (uniting training and development
instances) and test instances and the test method, where T/(D/)T are train, (develop), and test and
SCV is always ten-fold. The level of precision of the presented results depends on the number of
test instances

A challenge remaining at that point will be the careful evaluation of ethical issues if
machines can listen to and understand arbitrary audio including personal information
and details.

Finally, given such holistic analysis capability basing on very efficient source sep-
aration and synergistic coupling of tasks, future audio analysis systems can start to
train themselves in a massive way such as by crawling the Internet for audio, or lis-
tening to very general media broadcast potentially reaching supra-human capabilities
in some of the alluded tasks.

Reference
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Appendix
openSMILE Standardised Feature Sets

All’s well that ends well.
—William Shakespeare.

In Table A.1 the LLDs and functionals and their frequency across the four
openSMILE standard feature sets as were mentioned in this book are given.

LLDs are processed by simple moving average (SMA) low-pass filtering.
Delta regression coefficients are added per LLD. The total number of features

is—in principle—obtained by multiplying the number of LLD times two times the
number of functionals. However, for the two larger feature sets exceptions hold
from this strict brute-forcing rule as are indicated. This prevents creation of non-
sense features.
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Table A.1 openSMILE standard features sets by LLDs and functionals

Feature EC PC SSC AVEC

Frequencies

# LLDs 16 38 59 31
# Functionals 12 22 41 42

# Features 384 1 582 4 368 1 941

LLDs

RMS energy U U

Sum of auditory spectrum (loudness) U
a

U U

Sum of RASTA-sytle filtered auditory spectrum U

ZCR U U U

Energy in bands from 250–650 Hz, 1–4 kHz U U

Spectral roll-off points 25 %, 50 %, 75 %, 90 % U U

Spectral flux U U

Spectral entropy U U

Spectral variance U U

Spectral skewness U U

Spectral kurtosis U U

Spectral slope U

Psychoacousitc sharpness U

Harmonicity U

MFCC 0 U

MFCC 1–10 U U U U

MFCC 11–12 U U U

MFCC 13–14 U

Log Mel frequency band 0–7 U
a

LSP frequency 0–7 U

RASTA-style auditory spectrum bands 1–26 (0 – 8 kHz) U

F0 (ACF based) U

F0 (SHS based) U

F0 (SHS based followed by Viterbi smoothing) U U

F0 envelope U

Probability of voicing U U U U

Jitter U U U

Jitter (delta: ‘jitter of jitter’) U U U

Shimmer U U U

Logarithmic HNR U

Functionals

Positive arithmetic mean U
d

Arithmetic mean U U U U
d

Root quadratic mean U

Contour centroid U

Standard deviation U U U U

Flatness U

(continued)
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Table A.1 (continued)

Feature EC PC SSC AVEC

Skewness U U U U

Kurtosis U U U U

Quartiles 1, 2, 3 U
a

U U

Inter-quartile ranges 2-1, 3-2, 3-1 U
a

U U

Percentile 1 %, 99 % U
a

U U

Percentile range 1–99 % U U U

% frames above minimum ? 25%, 50% of range U

% frames above minimum ? 75 % of range U
a

% frames above minimum ? 90 % of range U
a

U U

% frames below minimum ? 25 % of range U

% frames rising U U

% frames falling U

% frames left, right curvature U
f

% frames that are non-zero U
b

Linear regression offset U U
a

Linear regression slope U U
a

U U
c

Linear regression approximation error (MAE) U
a

U
c

Linear regression approximation error (MSE) U U
a

U

Quadratic regression coefficient a U U
c

Quadratic regression coefficient b U

Quadratic regression approximation error (MAE) U
c

Quadratic regression approximation error (MSE) U

Maximum, minimum U

Maximum–minimum (range) U

Rising, falling slopes (min to max) mean, standard deviation U
c

Inter maxima distances mean, standard deviation U U
c

Amplitude mean of maxima relative to mean U
c

Amplitude range of minima relative to mean U
c

Amplitude range of maxima relative to mean U
c

Relative position of maximum, minimum U U
a

LP gain U U
c;e

LP coefficients 1–5 U U
c;e

Peak value arithmetic mean U

Peak value arithmetic mean–arithmetic mean U

Segment length mean, max, min, standard deviation U
b U

e

Input duration in seconds U
b

U
b

EC:INTERSPEECH 2009 Emotion Challenge, PC:INTERSPEECH 2010 Paralinguistic Chal-
lenge, SSC:INTERSPEECH 2011 Speaker Trait Challenge, AVEC:Audio/Visual Emotion
Challenge 2011
aOnly used for the TUM AVIC baseline (PC)
bOnly applied to F0
cNot applied to delta coefficient contours
dFor delta coefficients the mean of only positive values is applied, otherwise the arithmetic mean

is applied
eNot applied to voicing related LLDs
f Only applied to voicing related LLDs. For the PC feature set, the two additional features turn

duration and number of voiced segments (F0 onsets) were added
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Index

A
Accuracy, 133
Acoustic event classification, 305
Acoustic model, 122
AdaBoost, 126
Advanced front-end, 151
aGender corpus, 200
ALC database, 206
Anti-formants, 59
Audio activity detection, 45
Audio chord estimation, 264
Audio data, 23
Audio drum detection, 226
Audio key detection, 252
Audio mood classification, 274
Audio onset detection, 233
Audio tempo extraction, 239
Auto correlation, 49
Automatic speech recognition, 170, 176
Autoregressive model, 160

B
Backpropagation, 112
Backtracking, 124
Bag of words, 75
Bagging, 125
Balancing, 131
Ballroom dance style

classification, 239
Baum–Welch estimation, 120
Beam search, 123
Bello database, 235
Blind source separation, 226
Boosting, 126
BRD database, 243

C
CENS features, 67
Cepstral mean subtraction, 154
Cepstrum, 50
ChoRD database, 265
Chord-based features, 70
Chords, 276
CHROMA features, 67
Chunking, 41
Circle of fifths, 258
Comb filter, 244
ConceptNet, 78
Conditional random field, 159
Confusion matrix, 135
Continuous speech recognition, 176
Correlation coefficient, 135
COSINE corpus, 176
Cross-validation, 131

D
Decision trees, 99
Digitalisation, 41
Dynamic bayesian network, 118

E
Emotional find sounds database, 35
Ensemble learning, 124
Evaluation measures, 133
Expectation maximisation, 120

F
F-Measure, 134
False negatives, 135
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False positives, 134
FAU aibo emotion corpus, 194
Feature brute-forcing, 83
Feature enhancement, 153
Feature reduction, 90
Feature selection, 90
Feed forward neural network, 112
FindSounds database, 34
Formants, 58
Functional, 91

G
General inquirer, 79
Gold standard, 24
Ground truth, 24

H
Harmonics-to-noise ratio, 60
Hidden Markov model, 118
Histogram equalisation, 155
HU-ASA database, 300

I
Information gain, 102
Intensity, 47

J
Jitter, 63

K
Kernel function, 107
Key databases, 254

L
Language model, 122
Leave one out, 131
Line spectral pairs, 56
Linear prediction, 52
Long short-term memory, 115
Low-level descriptor, 47
Lyrics, 278

M
Mean absolute error, 136
Mean and variance normalisation, 155
Mean linear error, 136
Metacritic database, 185

Metadata, 277
Metre features, 247
Metre recognition, 249
MFCC features, 51
MPEG-7 low level descriptors, 73
Multilayer perceptron, 112
Multistream models, 129
Music information retrieval, 225

N
N-gram, 77
Neural network, 110
Non-linguistic vocalisation, 180
Non-negative matrix deconvolution, 140
Non-negative matrix factorisation, 140
NTWICM corpus, 28

O
On-line knowledge sources, 77
Onset, 233
OpenBliSSART, 143
OpenSMILE, 83
Opinion mining, 185
Out of vocabulary, 74

P
Paralinguistics, 183
Partitioning, 130
Peak detection, 237
Perceptual linear prediction, 56
Pitch, 60
Pitch class profiles, 64
Posterior estimation, 158
Precision, 134
Probe tone ratings, 70
Pruning, 123

R
Random forests, 103
Recall, 133
Recurrent neural network, 113

S
Scale-based features, 68
Self-similarity matrix, 242
Semi-supervised learning, 305
Sentiment analysis, 185
Shimmer, 63
Singer trait recognition, 283
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SLC database, 207
Softmax function, 112
Sound emotion recognition, 308
Source filter model, 50
Source-filter production model, 50
Speaker age recognition, 198
Speaker gender recognition, 198
Speaker height recognition, 198
Speaker interest recognition, 193
Speaker intoxication recognition, 204
Speaker sleepiness recognition, 204
Spectral features, 276
Speech activity detection, 46
Speech emotion recognition, 193
Speech production, 50
Stacking, 127
Stemming, 73
Stopping, 73
Structural segmentation, 269
Support vector machines, 103
Support vector regression, 109
Switching models, 156

T
Tandem learning, 129
Tatum features, 246
TI 46 isolated word corpus, 170
TIMIT database, 201

True negatives, 135
True positives, 134
TUM AVIC corpus, 26

U
UltraStar database, 284
Unsupervised spectral subtraction, 151
Unweighted accuracy, 134

V
Vanishing gradient problem, 115
Viterbi algorithm, 119
Vocabulary, 75
Voice activity detection, 46

W
Weighted accuracy, 133
Windowing, 43
Word accuracy, 134
WordNet, 79

Z
Zero crossing rate, 48
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