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Abstract. The problem of computing the hull, that is the tightest in-
terval enclosure of the solution set for linear systems with parameters
being nonlinear functions of interval parameters, is an NP-hard problem.
However, since the problem of computing the hull can be considered as
a combinatorial or as a constrained optimisation problem, metaheuristic
techniques might be helpful. Alas, experiments performed so far show
that they are time consuming and their performance may depend on the
problem size and structure, therefore some acceleration and stabilisa-
tion techniques are required. In this paper, a new approach which rely
on a multi-agent system is proposed. The idea is to apply evolutionary
method and differential evolution for different agents working together
to solve constrained optimisation problems. The results obtained for sev-
eral examples from structural mechanics involving many parameters with
large uncertainty ranges show that some synergy effect of the metaheuris-
tics can be achieved, especially for problems of a larger size.

1 Introduction

The paper addresses the problem of solving large-scale linear algebraic systems
whose elements are nonlinear functions of parameters varying within prescribed
intervals. Such systems arise, e.g., in reliability and risk analysis of engineering
systems. The experiments done so far (see [14]) were designed to test the most
popular metaheuristics such as evolutionary algorithm (EA), tabu search (TS),
simulated annealing (SA) and differential evolution (DE) for their suitability to
solve such problems, especially in the case of many parameters and large un-
certainty. The experiments demonstrated that for relatively small problems the
considered methods give very accurate results. However, for larger problems the
computation time is significant, which limits their usage. To shorten the compu-
tation time, the algorithms were run in parallel. This allowed to reduce the total
computation time, but further improvements are still required. During the ex-
periments it was found that evolutionary method and differential evolution give
significantly better results than the remaining algorithms and depending on the
problem characteristic and size either EA or DE was the winning strategy. This
suggested to the authors to employ both methods working together as agents
and exchanging the best solutions between each other, instead of using paral-
lelised methods independently. The proposed approach is presented in Section 3.
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The rest of the paper is organised as follows. Parametric interval linear systems
are described in Section 2. In Section 4, computational experiments for illus-
trative problem instances from structural mechanics with different number of
intervals as well as different uncertainty ranges are presented in order to verify
the usefulness of the proposed approach. The results for homogenous agents,
using either evolutionary method or differential evolution and heterogeneous
agents, where half of agents use one method, whereas other half of agents use
the other one are provided and compared with the results obtained by single
algorithms. The paper ends with concluding remarks.

2 Parametric Interval Linear Systems

Systems of parametric linear equations arise directly in various problems (e.g.,
balance of forces, of electric current, etc.) Systems of linear equations arise also
indirectly in engineering problems through the use of numerical methods, e.g.,
by discrete solution of differential equations.

A parametric linear systems is a linear system of the form:

A(p)x(p) = b(p), (1)

where A(p) = [aij(p)] is an n× n matrix, b(p) = [bj(p)] is n-dimensional vector,

and aij(p), bi(p) are general nonlinear functions of p = (p1, . . . , pk)
T

which is
a k-dimensional vector of real parameters.

Often, the parameters pi are unknown which stems, mainly, from the scarcity
or lack of data. This kind of uncertainty is recognised as epistemic uncertainty
and can (or [5] should) be modelled using interval approach, that is using only
range information. In the interval approach ([1], [8], [9]), a true unknown value
of a parameter pi is enclosed by an interval pi = [p̌ − Δp, p̌ + Δp], where p̌
is an approximation of pi (e.g., resulting from an inexact measurement) and
Δp > 0 is an upper bound of an approximation (measurement) error. Obviously,
appropriate methods are required to propagate interval uncertainties through
a calculation (see, e.g., [1], [8], [9]).

Thus, if some of the parameters are assumed to be unknown, ranging within
prescribed intervals, pi ∈ pi (i = 1, . . . , k), the following family of parametric
linear system, usually called parametric interval linear system (PILS),

A(p)x(p) = b(p), p ∈ p (2)

is obtained, where p = (p1, . . . ,pk)
T
.

The set of all solutions to the point linear systems from the family (2) is called
a parametric solution set and is defined as

Sp = {x ∈ �n | ∃ p ∈ p A(p)x = b(p)} . (3)

This set is generally of a complicated non-convex structure [2]. In practise,
therefore, an interval vector x∗, called the outer solution, satisfying Sp ⊆ x∗ is
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computed. The tightest outer solution, with respect to the inclusion property, is
called a hull solution (or simply a hull) and is denoted by �Sp:

�Sp =
⋂

{Y | Sp ⊆ Y } .
Computing the hull solution is in general case NP-hard [12]. However, the prob-
lem of computing the hull can be considered as the family of the following 2n
constrained optimisation problems:

xi = min{x(p)i | A(p)x(p) = b(p), p ∈ p},
xi = max{x(p)i | A(p)x(p) = b(p), p ∈ p},

(4)

and, therefore, heuristic approach can be used to find very good approximations
of the required optima while minimising the computation overhead. Additionally,
in this paper it is claimed that the usage of metaheuristic agents strategy allows
additional reduction in the computational time.

Theorem 1. Let xi and xi denote, respectively, the solution of the i-th minimi-
sation and maximisation problem (4). Then, the hull solution

�Sp = �{x(p) : A(p)x(p) = b(p), p ∈ p} = [x1, x1]× ...× [xn, xn]. (5)

3 Methodology

3.1 Evolutionary Multi-agent System

Different strategies can be used in order to compute population-based meta-
heuristics in parallel. In the so called global parallelisation model there is one
population, and computation of objective function are done in parallel on slave
units [15]. This approach is particularly useful for multicore or multiprocessor
architectures where communication cost is almost negligible. In the island model
the whole population is divided into subpopulations that can be run on different
heterogeneous machines. Since in this case communication time is significant,
thus the subpopulations are run independently and they occasionally exchange
solutions. Finally, in the master-slave model there is one central (master) pop-
ulation that communicates with other subpopulations to collect (and use) their
best solutions.

When solving parametric interval linear systems, the time spent for computing
the objective function significantly dominates the time spent for communication
between algorithms, so the island model approach seems to be the most suitable.
Agents are run independently and communicate with each other after a given
time has elapsed (1-3 seconds). In the preliminary experiments, agents commu-
nicate by exchanging their best so far solutions stored in auxiliary files, but in
the future more effective communication methods is planned. Three variants of
island model have been considered. Two of them were homogeneous multi-agent
systems based either on evolutionary method or differential evolution, while the
third one was a heterogeneous system with half agents based on one method and
the other half based on the other one. In the following sections metaheuristics
used by agents are briefly described.
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3.2 Evolutionary Optimisation

Population P consists of popsize individuals characterised by k-dimensional vec-
tors of parameters pi = (pi1, . . . , pik)

T
, where pij ∈ pj , i = 1, . . . , popsize,

j = 1, . . . , k. Elements of the initial population are generated at random based
on the uniform distribution. The 10% of the best individuals pass to the next
generation and the rest of the population is created by the non-uniform mutation

p′j =

{
pj + (pj − pj) r

(1−t/n)b , if q < 0.5

pj + (pj − p
j
) r(1−t/n)b , if q � 0.5

(6)

and arithmetic crossover

p1′ = rp1 + (1− r)p2, p2′ = rp2 + (1− r)p1 (7)

It turned out from numerical experiments [14] that mutation rate rmut should
be close to 1 (rmut=0.95), and the crossover rate rcrs should be less than 0.3
(rcrs=0.25). Population size and the number of generations n depend strongly
on the problem size (usually popsize should be set to at least 16 and n to 30).
General outline of the EO algorithm is shown in Fig. 1.

Initialise P of popsize at random
j = 0 /* number of generation */
while (j < n) do

Select P ′ from P ; Choose parents p1 and p2 from P ′

if (r[0,1] < rcrs) then Offspring o1 and o2 ←− Recombine p1 and p2
if (r[0,1] < rmut) then Mutate o1 and o2

end while

Fig. 1. Outline of an evolutionary algorithm

3.3 Differential Evolution

Differential evolution (DE) has been found to be a very effective optimisation
method for continuous problems [3]. DE itself can be treated as a variation of
evolutionary algorithm, as the method is founded on the same principles such
as selection, crossover, and mutation. However, in DE the main optimisation
process is focused on the way the new individuals are created. Several strategies
for constructing new individuals [11] have been defined. Basic strategy described
as /rand/1/bin (which means that vectors for a trial solution are selected in a
random way and binomial crossover is then used) creates a mutated individual
pm as follows

pm = p1 + s · (p2 − p3) , (8)

where s is a scale parameter called also an amplification factor. After a series of
experiments, the best strategy for the problem of solving large PILS appeared to
be the strategy described as /best/2/bin (compare [4]). In this strategy a mutated
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individual (trial vector) is created on the basis of the best solution pbest found
so far and four other randomly chosen individuals

pm = pbest − s · (p1 + p2 − p3 − p4) . (9)

The mutated individual pm is then mixed with the original individual p with
a probability CR using the following binomial crossover

p′j =
{
pmj, if r � CR or j = rn
pj , if r > CR and j �= rn

, (10)

where r ∈ [0, 1] is a random number and rn ∈ (0, 1, 2, ..., D) is a random
index ensuring that p′j is a at least an element obtained by pmj . The following
parameters values were taken s = 0.8 and CR = 0.9, as the most efficient.

Initialise P of popsize at random
while (i < n) do

Do
Choose at random 4 individuals p1, p2, p3, p4
Generate mutant pm from pbest and from p1, p2, p3, p4

While (pm is not valid)
p′ ←− Crossover(p, pm)
if (f(p′) > f(pi)) then pi+1 ←− p′ else pi+1 ←− pi

end while

Fig. 2. Outline of a differential evolution algorithm

4 Numerical Experiments

The multi-agent system proposed by the authors has been tested for the three
exemplary truss structures, each of different size: four bay two floor truss, five
bay six floor truss and ten bay eleven floor truss. Additionally, different levels of
uncertainty for the parameters and the load have been considered: 40% for the
first truss, 10% for the second, and 6% for the third truss.

Three variants of the island model have been tested for each of the test prob-
lems. Each system consisted of 8 independent agents. Number of generations n
and population size popsize for both evolutionary computation and differential
evolution were set to the same values. For the first problem n = 300, popsize = 30,
for the second problem n = 100, popsize = 20, and for the third problem n=10,
popsize = 10.

In order to compare the proposed variants, a measure similar to the overesti-
mation measure described by Popova [10] was used. This time, however, as the
algorithms computed the inner interval of the hull solution, the overestimation
measure was calculated in the relation to the tightest inner solution, i.e. the
worst estimation of the hull solution. The measure can be treated as a relative
increase over the tightest inner solution and will be marked as RITIS. For each
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variant of the multi-agent system the result of the best agent, average result
of all agents and the worst result obtained by a given system or algorithm are
provided. The same data are listed for the evolutionary optimisation and dif-
ferential evolution ran as a single algorithm. The overestimation is computed
over the worst solution coming from all experiments for a given problem size.
Comparison of the results for the first test problem consisting of 15 nodes and
38 elements is presented in Table 1.

Table 1. RITIS measure for four bay two floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [sec.]

HomEO 1.9% 1.8% 1.7% 274
HomDE 1.5% 1.4% 1.4% 289
Heter 2.0% 1.8% 1.6% 298
SingleEO 0.1% 0.0% 0.0% 318
SingleDE 1.4% 1.3% 1.3% 232

Hull approximations obtained by the homogenous agent system based only
on the evolutionary optimisation method (HomEO) and the heterogeneous sys-
tem (Heter) with both EO and DE agents were on average better than the
approximations obtained by the other systems and algorithms. The system with
heterogeneous agents achieved the best approximation of the hull solution, but
on average those two systems performed the same. Algorithms running alone
with the same parameters as for the multi-agent systems obtained the worst re-
sults, however, the approximations generated by differential evolution were only
slightly worse than the results obtained by DE agents working together. Con-
trary to the agents based on the evolutionary method, the solutions provided by
the agents based on DE do not sum up in a simple way.

The results for the second test problem that consisted of 36 nodes and 110
elements are collected in Table 2.

Table 2. RITIS measure for five bay six floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [min.]

HomEO 18.3% 17.0% 14.9% 31.7
HomDE 20.7% 20.1% 19.5% 31.5
Heter 22.9% 19.6% 16.9% 34.0
SingleEO 0.1% 0.0% 0.0% 43.1
SingleDE 19.4% 19.2% 19.0% 21.8
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This time the results obtained by the agents in the heterogeneous mutli-agent
system (Heter) were similar to the results obtained by the homogenous system
with the agents using differential evolution (HomDE). The synergy effect of EO
and DE allowed to achieve the best hull approximation, however, on average the
heterogeneous system performed a little worse than HomDE.

Finally, Table 3 gathers the results for the largest of all test problems consist-
ing of 120 nodes and 420 elements.

Table 3. RITIS measure for ten bay eleven floor truss (higher is better)

Multi-agent Largest Average Smallest Computation
system RITIS RITIS RITIS time [min.]

HomEO 10.4% 5.7% 1.4% 288
HomDE 31.7% 30.7% 29.8% 291
Heter 33.1% 25.3% 5.1% 289
SingleEO 0.1% 0.1% 0.0% 356
SingleDE 18.7% 18.5% 18.2% 267

For the largest problem considered the homogenous multi-agent system based
on differential evolution (HomDE) and the single DE algorithm performed on av-
erage better than others systems. Evolutionary optimisation method gave much
worse results than differential evolution, thus the agents based on EO could not
go hand in hand with the agents using DE method and it caused that heteroge-
neous agents were on average worse than homogenous DE agents. It is also wort
to notice that, unlike previous experiments, approximations obtained by the DE
mutli-agent system were significantly better (by 66%) that those generated by
the single DE algorithm.

5 Conclusions

Heterogeneous multi-agent evolutionary system for solving parametric interval
linear systems has been proposed in the paper. Although some examples of
evolutionary multi-agent systems can be found in literature ([7],[6]), the system
proposed by the authors can use two different methods that are based on the
idea of evolution: evolutionary algorithm and differential evolution. Numerical
experiments performed by the authors have shown that the proposed approach
can bring a synergy effect of those two metaheuristics. Despite the experiments
were computed on a single multiprocessor machine the proposed muti-agent
system can be easily applied in distributed computing. This would allow to use
more than 8 agents and the differences in the hull approximation between multi-
agent systems and single algorithms would be more significant.

Future studies should focus on finding more efficient metaheuristic algorithms
for heterogeneous agents, capable to provide good results for the problems of
large size, like the third test problem presented in the paper. The authors also
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plan to test such metaheuristics like ant colony optimisation (ACO) and artificial
bee colony (ABC). Also evolutionary method might be improved by introducing
some local search algorithms based e.g. on iterated local search (ILS) or variable
neighbourhood search (VNS).
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