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Abstract. Two block cyclic reduction linear system solvers are con-
sidered and implemented using the OpenCL framework. The topics of
interest include a simplified scalar cyclic reduction tridiagonal system
solver and the impact of increasing the radix-number of the algorithm.
Both implementations are tested for the Poisson problem in two and
three dimensions, using a Nvidia GTX 580 series GPU and double preci-
sion floating-point arithmetic. The numerical results indicate up to 6-fold
speed increase in the case of the two-dimensional problems and up to 3-
fold speed increase in the case of the three-dimensional problems when
compared to equivalent CPU implementations run on a Intel Core i7
quad-core CPU.

1 Introduction

The linear system solvers are a very popular research topic in the field of GPU
(Graphics Processing Unit, Video Card) computing. Many of these transform
the original problem into a set of sub-problems which can be solved more easily.
In some cases, these sub-problems are in the form of tridiagonal linear sys-
tems and the tridiagonal system solver often constitutes a significant portion
of the total execution time. Conventional linear system solvers such as the LU-
decomposition, also known as the Thomas method [1] when applied to a tridi-
agonal system, do not perform very well on a GPU because of their sequential
nature. For that reason, a different kind of method called cyclic reduction [2]
has become one of the most widely used methods for this purpose [3–8].

The basic idea of the cyclic reduction method can be extended to block tridi-
agonal systems which arise, for example, from many PDE (Partial Differential
Equation) discretisations. The idea of the block cyclic reduction (BCR) was first
introduced in [2]. While the formulation is numerically unstable, it can be sta-
bilized by combining it with the Fourier analysis method [2] as was shown in
[9, 10]. The first stable BCR formulation, so called Buneman’s variant [11], was
introduced in 1969 and generalized in [12]. Later, the idea of the partial fraction
expansions was applied to the matrix rational functions occurring in the formu-
las, thus leading to the discovery of a parallel variant [13]. The radix-q PSCR
(Partial Solution variant of the Cyclic Reduction) method [14–17] represents
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a different kind of approach based on the partial solution technique [18, 19].
Excellent surveys on these kind of methods can be found in [20] and [21].

The cyclic reduction is a two-stage algorithm. The reduction stage generates a
sequence of (block) tridiagonal systems by recursively eliminating (block) rows
from the system and the back substitution stage solves all previously formed
reduced systems in reverse order using the known rows of the solution from the
previous back substitution step. Usually, the reduction is performed in such a
way that all odd numbered (block) rows are eliminated, i.e., the radix-number
is two. The method presented in [22] is such a method and in this paper it is
called as the radix-2 BCR method. More generalized BCR methods, such as the
radix-q PSCR, allow the use of higher radix-numbers.

Each radix-2 BCR reduction and back substitution step can be computed
in parallel using the partial fraction expansions. However, the steps themselves
must be performed sequentially. A method with a higher radix-number requires
fewer steps to be taken and thus could be more suitable for parallel computation.
A method analogous to the radix-2 BCR method can be easily obtained as a
special case of the radix-4 PSCR method. This method reduces the systems size
by a factor of four at each reduction step. Each radix-4 BCR reduction and
back substitution step requires more computation than a radix-2 step, but the
amount of sequential computation is reduced by a factor of two.

In this paper, the radix-2 and radix-4 BCR methods are applied to the fol-
lowing problem: Solve u ∈ R

n1n2 from

⎡
⎢⎢⎢⎢⎣

D −I

−I D
. . .

. . .
. . . −I
−I D

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u1

u2

...
un1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

f1

f2
...

fn1

⎤
⎥⎥⎥⎥⎦
, (1)

where D = tridiag{−1, 4,−1} ∈ R
n2×n2 , when f ∈ R

n1n2 is given. It is assumed
that n1 = 2k1 − 1 and n2 = 2k2 − 1 for some positive integers k1 and k2. This
choice greatly simplifies the mathematical formulation and the implementation.
The system (1) corresponds to a two-dimensional Poisson problem with Dirichlet
boundary conditions posed on a rectangle. The implementations presented in
this paper can be extended to cases where the diagonal block D is symmetric,
tridiagonal and diagonally dominant.

The diagonal block can also be of the form D = tridiag{−In3 , D̂,−In3} ∈
R

n2n3×n2n3 , where D̂ = tridiag{−1, 6,−1} ∈ R
n3×n3 and n3 = 2k3 − 1 for

some positive integer k3. In this case, the linear system (1) corresponds to a
three-dimensional Poisson problem with Dirichlet boundary conditions posed in
a rectangular cuboid.

The GPU implementations are compared with each other and to equivalent
CPU implementations. The first objective is to find out how suitable the BCR
methods are for GPU and how the radix-number effects the overall performance.
The second objective is to introduce new ideas related to the tridiagonal system
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solvers. In particular, it is considered how to deal with the GPU’s multilevel
memory architecture and its limitations.

The rest of this paper is organized as follows: The second section briefly
describes the two BCR methods considered in this paper and the third section
covers the key aspects of the implementation. The fourth section presents the
numerical results and discussion. Finally, the conclusions are given in the fifth
section.

2 Methods

2.1 Radix-2 Block Cyclic Reduction

The radix-2 BCR method can be described using the following cyclic reduction
formulation described in [23]. Let T (0) = I, D(0) = D and f (0) = f . Now the
reduced systems are defined, for each reduction step r = 1, 2, . . . , k1 − 1, as

⎡
⎢⎢⎢⎢⎣

D(r) −T (r)

−T (r) D(r) . . .

. . .
. . . −T (r)

−T (r) D(r)

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

u
(r)
1

u
(r)
2
...

u
(r)

2k1−r−1

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

f
(r)
1

f
(r)
2
...

f
(r)

2k1−r−1

⎤
⎥⎥⎥⎥⎦
, (2)

where

T (r) =
(
T (r−1)

)2 (
D(r−1)

)−1

,

D(r) = D(r−1) − 2
(
T (r−1)

)2 (
D(r−1)

)−1

,

f
(r)
i = f

(r−1)
2i + T (r−1)

(
D(r−1)

)−1 (
f
(r−1)
2i−1 + f

(r−1)
2i+1

)
.

(3)

These reduced systems, r = k1−1, k1−2, . . . , 0, can be solved recursively during
the back substitution stage of the algorithm by using the formula

u
(r)
i =

⎧⎨
⎩
(
D(r)

)−1
(
f
(r)
i + T (r)

(
u
(r+1)
(i−1)/2 + u

(r+1)
(i−1)/2+1

))
, when i /∈ 2N,

u
(r+1)
i/2 , when i ∈ 2N,

(4)

where i = 1, 2, . . . , 2k1−r − 1 and u
(r+1)
0 = u

(r+1)

2k1−r−1 = 0. Finally, u = u(0).

As shown in [22], if the matrices D(0) and T (0) commute, then the matri-

ces T (r)
(
D(r)

)−1
and

(
D(r)

)−1
can be presented using matrix polynomials and

rational functions. This observation greatly improves the computational com-
plexity of the algorithm as it preserved the sparsity properties of the coefficient
matrix. Otherwise the matrices D(r) and T (r) could fill up quickly. Assuming
T (0) = I allows the use of the partial fraction expansion technique [13] and leads
to

T (r)
(
D(r)

)−1

= 2−r
2r∑
j=1

(−1)j−1 sin

(
2j − 1

2r+1
π

)
(D − θ(j, r)In2 )

−1
, (5)
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and

(
D(r)

)−1

= 2−r
2r∑
j=1

(D − θ(j, r)In2 )
−1

, (6)

where

θ(j, r) = 2 cos

(
2j − 1

2r+1
π

)
. (7)

These sum-formulations imply that each reduction and back substitution step
can be carried out by first forming a large set of sub-problems, then solving these
sub-problems (in parallel) and finally constructing the final result by computing
collective sums over the solutions. This is the first point where some additional
parallelism can be achieved and this level of parallelism is usually sufficient for
contemporary multi-core CPUs.

The above described cyclic reduction formulas are well-defined (i.e.
(
D(r)

)−1

exists for each r = 1, 2, . . . , k1 − 1) if D−1 exists and the coefficient matrix is
strictly diagonally dominant by rows [23]. In addition, the method has been
shown to be numerically stable if the smallest eigenvalue of the matrix D is at
least 2 [22]. All of these conditions are fulfilled in the case of the problem (1).

The arithmetical complexity of this method is O(n1n2 log n1). If the diag-
onal block D is block tridiagonal as discussed in the introduction, then this
method can be applied recursively. In this case, the arithmetical complexity is
O(n1n2n3 log(n1) log(n2)).

Remark 1. The above formulated partial fraction method can be actually con-
sidered to be a special case of the radix-2 PSCR method in the sense that both
methods generate exactly the same sub-problems [22].

2.2 Radix-4 Block Cyclic Reduction

The formulation of the radix-4 BCR method is slightly more complicated. One
approach is to start from the radix-4 PSCR method and explicitly calculate all
eigenvalues and eigenvector components associated with the partial solutions.
The radix-4 PSCR method can be applied to a problem with a coefficient matrix
of the form

A1 ⊗M2 +M1 ⊗A2 + c(M1 ⊗M2), (8)

where A1,M1 ∈ R
n1×n1 are tridiagonal, A2,M2 ∈ R

n2×n2 , c ∈ R and ⊗ denotes
the matrix Kronecker (tensor) product. If A ∈ R

n×n and B ∈ R
m×m, then

A⊗ B = {Ai,jB}ni,j=1 ∈ R
nm×nm. The coefficient matrix in the system (1) can

be expressed as

A⊗ In2 + In1 ⊗ (D − 2In2), (9)

where A = tridiag{−1, 2,−1} ∈ R
n1×n1 .
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The radix-4 PSCR method includes an initialization stage comprising general-
ized eigenvalue problems. Let n1 = 4k − 1 for some positive integer k. When the
coefficient matrix is of the form (9), the generalized eigenvalue problems reduce
to

Ã(r)w
(r)
i = λ

(r)
i w

(r)
i , i = 1, 2, . . . ,mr, (10)

where r = 0, 1, . . . , k−1,mr = 4r+1−1 and Ã(r) = tridiag{−1, 2,−1} ∈ R
mr×mr .

With the assumptions mentioned above, the radix-4 PSCR solution process
goes as follows: Let f (0) = f . First, for r = 1, 2, . . . , k − 1, a sequence of vectors
is generated by using the formula

f
(r)
i = f

(r−1)
4i +

mr−1∑
j=1

(w
(r−1)
j )mr−1v

(r)
i,j +

mr−1∑
j=1

(w
(r−1)
j )1v

(r)
i+1,j , (11)

where i = 1, 2, . . . , 4k−r − 1 and the vector v
(r)
i,j can be solved from

(
D + (λ

(r−1)
j − 2)In2

)
v
(r)
i,j =

3∑
s=1

(w
(r−1)
j )s4r−1f

(r−1)
(i−1)4+s. (12)

Then, for r = k − 1, k − 2, . . . , 0, a second sequence of vectors is generated by
using the formula

u
(r)
4d+i =

mr∑
j=1

(w
(r)
j )i4ry

(r)
d,j , i = 1, 2, 3,

u
(r)
4d+4 = u

(r+1)
d+1 ,

(13)

where d = 0, 1, . . . , 4k−r − 1 and the vector y
(r)
d,j can be solved from

(
D + (λ

(r)
j − 2)In2

)
y
(r)
d,j =

3∑
s=1

(w
(r)
j )s4rf

(r)
4d+s+

(w
(r)
j )1u

(r+1)
d + (w

(r)
j )mru

(r+1)
d+1 .

(14)

In addition, u
(r+1)
0 = u

(r+1)
k−r−1 = 0. Finally, u = u(0).

It is well-known that the matrix Ã(r) has the following eigenvalues and eigen-
vectors

λ
(r)
i = 2− 2 cos

(
iπ

4r+1

)
and (w

(r)
i )j =

√
2

4r+1
sin

(
ijπ

4r+1

)
, (15)

where i, j = 1, 2, . . . ,mr. Now,

(w
(r)
i )1 =

√
2−2r−1 sin

(
iπ/4r+1

)
= (−1)i−1(w

(r)
i )mr ,

(w
(r)
i )1·4r =

√
2−2r−1 sin (iπ/4) = (−1)i−1(w

(r)
i )3·4r ,

(w
(r)
i )2·4r =

√
2−2r−1 sin (iπ/2) .

(16)
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It is easy to see that (w
(r)
j )2·4r = 0 when j ∈ 2N and (w

(r)
j )1·4r = (w

(r)
j )3·4r = 0

when j ∈ 4N. For this reason, about one-quarter of the sub-problems required
to compute the partial solutions are non-contributing and can be ignored.

Clearly each radix-4 BCR reduction and back substitution step is more com-
putationally demanding than the corresponding radix-2 BCR step. However, the
radix-2 BCR method generates a total of

N2
count(n) = (n+ 1)(log2(n+ 1)− 1) + 1 (17)

sub-problems and the radix-4 BCR method generates a total of

N4
count(n) = (n+ 1)

(
3

4
log2(n+ 1)− 1

)
+ 1 (18)

sub-problems. Thus the total number of sub-problems is reduced asymptotically
by the factor

lim
n→∞

N2
count(n)

N4
count(n)

=
4

3
. (19)

In the case of three-dimensional problems, the ratio is even better

lim
n→∞

(
N2

count(n)

N4
count(n)

)2

=
16

9
. (20)

Remark 2. The above described method can be also derived by combining two
radix-2 BCR reduction steps (3) into a single radix-4 BCR reduction step (11).
Applying the partial fraction technique yields exactly the same sub-problems.
The same procedure can be applied to the back substitution stage.

This simplified formulation can be only applied to problems with n1 = 4k − 1.
However, this limitation can be easily relaxed in the following manner: Let n1 =

2k̂ − 1 for some integer k̂ ≥ 2. The indexes in the reduction formula (11) are

modified in such a way that r = 1, 2, . . . , �k̂/2� − 1 and i = 1, 2, . . . , 2k−2r.
Similarly, the indexes in the back substitution formula (13) are modified in such

a way that r = �k̂/2	 − 1, �k̂/2	 − 2, . . . , 0 and d = 0, 1, . . . , 2k−2r−2. If k̂ /∈ 2N,
then it is necessary to perform one radix-2 BCR back substitution step at the
radix-2 level r = k̂ − 1 in order to solve the block row u2k̂−1 .

The numerical experiments indicate that this method is numerically stable in
the case of the Poisson problem (1). The arithmetical complexity of this method
is O(n1n2 logn1). If the diagonal block D is block tridiagonal as discussed in
the introduction, then this method can be applied recursively. In this case, the
arithmetical complexity is O(n1n2n3 log(n1) log(n2)).
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2.3 Simplified Scalar Cyclic Reduction

In the case of the problem (1), all tridiagonal sub-problems generated by the
methods described above are of the form

⎡
⎢⎢⎢⎢⎣

d −1

−1 d
. . .

. . .
. . . −1
−1 d

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

v1

v2
...
vn

⎤
⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

g1

g2
...
gn

⎤
⎥⎥⎥⎥⎦
, (21)

where d ∈ ]2, 10[, v1, . . . , vn, g1, . . . , gn ∈ R and n = 2k − 1 for some positive
integer k. This system can be solved with the following cyclic reduction formulas
analogous to (3) and (4): Let t(0) = 1, d(0) = d and g(0) = g. Now the reduced
systems are defined, for each reduction step r = 1, 2, . . . , k − 1, as

t(r) =
(
t(r−1)

)2

/ d(r−1),

d(r) = d(r−1) − 2
(
t(r−1)

)2

/ d(r−1),

g
(r)
i = g

(r−1)
2i +

(
t(r−1)/ d(r−1)

)(
g
(r−1)
2i−1 + g

(r−1)
2i+1

)
.

(22)

The solution of each reduced system, r = k − 1, k − 2, . . . , 0, is produced recur-
sively during the back substitution stage of the algorithm by using the formula

v
(r)
i =

⎧⎨
⎩

(
g
(r)
i + t(r)

(
v
(r+1)
(i−1)/2 + v

(r+1)
(i−1)/2+1

))
/ d(r), when i /∈ 2N,

v
(r+1)
i/2 , when i ∈ 2N,

(23)

where i = 1, 2, . . . , 2k−r − 1 and v
(r+1)
0 = v

(r+1)

2k−r−1 = 0. Finally, v = v(0). The
arithmetical complexity of this method is O(n).

3 Implementation

3.1 GPU Hardware

The GPU implementations are written using the OpenCL [24] framework and
the OpenCL terminology is used throughout the paper. The architecture of a
GPU is very different compared to a CPU. The main difference is that while a
contemporary high-end consumer-level CPUmay contain up to 8 cores, a modern
high-end GPU contains thousands of processing elements. This means that the
GPU requires a very fine-grained parallelism.

Another important difference is the memory architecture. A computing ori-
ented GPU may include a few gigabytes of global memory (Video RAM, VRAM)
which can be used to store the bulk of data. In addition, the processing elements
are divided into groups called the compute units and the processing elements
belonging to the same compute unit share a fast memory area called the local



272 M. Myllykoski, T. Rossi, and J. Toivanen

memory. The effective use of this small memory area, together with a good un-
derstanding of the other underlying hardware limitations, is often the key to
achieving good performance.

The GPU-side code execution begins when a special kind of subroutine called
the kernel is launched. Every work-item (thread) starts from the same location
in the code but each work-item is given a unique index number which makes
branching possible. The work-items are divided into work groups which are then
assigned to the compute units. The work-items which belong to the same work
group can share a portion of the local memory.

3.2 Overall Implementation

The BCR implementations consist mostly of scalar-vector multiplications and
vector-vector additions which can be implemented trivially, for example, by map-
ping each row-wise operation to one work-item. The large vector summations,
especially during the last few reduction steps and first back substitution steps,
require some additional attention. The kernels performing these summations
divide the large summations into several sub-sums in order to better distribute
the workload among the processing elements. The implementation employs three
kernels per step approach: the first kernel generates the right-hand side vectors
for the sub-problems, the second kernel solves the sub-problems and the third
kernel computes the collective sums.

The implementation incorporates a simple parameter optimizer. The main
application for this parametrization is to choose the optimal work group size
for each kernel. Also, the kernels responsible for computing the vector sums are
parametrized. The parametrization is used to choose the optimal size for each
sub-sum. In addition, the parametrization is used to specify how much local
memory can be used to solve a single tridiagonal sub-problem and how double
precision numbers are stored into the local memory.

3.3 Previous Work on Tridiagonal System Solvers on a GPU

The GPU hardware presents many challenges to the tridiagonal system solver
implementation. First, a work group can only contain a limited number work-
items and the work groups cannot communicate with each other. These two
limitations complicate the tasks of solving large systems. Secondly, the global
memory is quite slow for scattered memory access and therefore work-items with
successive index numbers should only access memory locations which are close
to each other. In addition, the local memory is often divided into banks which
may be subject to only one memory request at a time.

The idea of using the cyclic reduction for solving tridiagonal systems on a
GPU first appeared in [3]. The cyclic reduction, the parallel cyclic reduction
[25], the recursive doubling [26], and hybrid algorithms were compared with
each other in [5]. All considered implementations utilize the local memory and
hold the data in-place. The paper also suggested the possibility of reducing the
system size by using the cyclic reduction and the global memory in order to fit
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the reduced system into the local memory. The cyclic reduction and the local
memory were also used in [6]. The paper introduced a clever permutation pattern
which reduces the number of bank conflicts.

The idea of hybrid algorithms was taken a step further in [27]. The implemen-
tation considered consist several phases. The system is first split into multiple
sub-systems using the parallel cyclic reduction and the global memory. Then, the
sub-systems are solved in the local memory using the parallel cyclic reduction
and the Thomas method. The optimal switching points between different stages
are chosen automatically with the help of auto-tuning algorithm.

The idea of using both the global and local memory in the context of the cyclic
reduction and the recursive doubling was also studied in [8]. The cyclic reduction
implementation stores the right-hand side vector into the global memory and
divides the system into sections. Each section is then processed separately in the
local memory and then the intermediate result are merged back into the global
memory. Additional work was also done in [4, 7, 28, 29].

3.4 Tridiagonal System Solver Implementation

When the coefficient matrix is a symmetric Toeplitz matrix like in (21), using
the simplified cyclic reduction method is probably the most suitable algorithm
for solving the tridiagonal sub-problems. The tridiagonal system solver consists
of three stages and the right-hand side vector is replaced by the solution vector.
One tridiagonal system is mapped to one work group and the whole solution
process is performed as a single kernel launch. The implementation can be eas-
ily extended to more generalized tridiagonal systems and to cases where one
tridiagonal systems is mapped to multiple work groups.

First Stage. The first stage is performed only when when the system is too
large to fit into the allocated local memory. It uses the global memory to store
the right-hand side vector and the local memory to share odd numbered rows
between work-items. The right-hand side vector is divided into sections which
are the same size as the used work group. Then all sections are processed in pairs
as follows: first every work-item computes one row, and then all odd numbered
rows are stored into the first section, and computed rows are stored into the
second section. At the next reduction step, the same procedure is repeated using
the second section from each pair. This permutation pattern is reversed during
the back substitution stage. Fig. 1 illustrates this process. This implementation
differs from the one presented in [8].

The idea behind this segmentation and permutation pattern is to divide the
right-hand side vector into independent parts which can be processed separately.
In this case, these sections are processed sequentially and therefore the imple-
mentation is capable of solving systems that are too large to fit into the allocated
local memory. In a more general implementation, these section can be processed
in parallel using multiple work groups. The second benefit is that the rows which
belong to the same reduced system are stored close to each other in the global
memory, thus allowing a more coherent global memory access pattern.
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Fig. 1. The permutation pattern during the first stage of the tridiagonal system solver.
The work group size is four. The numbers correspond to the row indexes. The row
indexes highlighted with dotted rectangles are shared between the work-items using
the local memory.

Second Stage. The second stage is only performed when the number of re-
maining even numbered rows is greater than the used work group size. It uses a
similar segmentation and permutation approach as the first stage, but the rows
are processed by four sections at a time and every work-item is responsible for
computing two rows. The idea is that the rows belonging to these four parts
are permuted before the beginning of the reduction process in such a way that
all odd numbered rows are stored into the first and third section, and all even
numbered rows are stored into the second and fourth section. This permutation
pattern resembles the one presented in [6]. After the reduction step is performed,
the rows are permuted in such a way that all rows, which are going to be odd
numbered during the next reduction step, are stored into the second section and
all rows, which are going to be even numbered during the next reduction step,
are stored into the fourth section. This permutation pattern is reversed during
the back substitution stage. Fig. 2 illustrates this process.

The biggest advantage of this approach is that the odd and even numbered
rows are located in separate sections and stored in a condensed form, thus allow-
ing a more effective local memory access pattern when the next reduction step
begins. Of course, this access pattern can still lead to bank conflicts especially
when double precision arithmetic is used, as was also noted in [6]. The most
straightforward solution would be to split the words and store upper and lower
bits separately but this approach was actually found to be slower. The second
advantage is that the remaining right-hand side vector rows are once again di-
vided into independent parts which can be processed separately and therefore the
implementation is capable of solving systems with the number of even numbered
rows higher than the used work group size.
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Fig. 2. The permutation pattern during the second stage of the tridiagonal system
solver. The work group size is four. The numbers correspond to the row indexes.

Third Stage. The last stage uses a similar row permutations as the second
stage. The system is preprocessed in such a way that all even numbered rows
are stored to the beginning of the memory buffer, followed by all odd numbered
rows. Every work item computes at most one row. After the reduction step is
performed, the rows are permuted in such a way that all rows, which are going to
be even numbered during the next reduction step, are stored into the beginning
of the memory buffer, followed by all rows, which are going to be odd numbered
during the next reduction step. This final stage seems to be identical with the
algorithm used in [6].

4 Numerical Results

The GPU tests are carried out using Nvidia GeForce GTX580 GPU with 512
processing elements (cuda cores). The CPU tests are carried out using Intel Core
i7-870 2.93 GHz processor with 4 cores (8 threads). The CPU implementations
are written using standard C and OpenMP framework. The CPU implementa-
tions utilize the simplified cyclic reduction, which is in this case faster than the
Thomas method. All test are performed using double precision floating point
arithmetic.

Fig. 3 shows results for the two-dimensional Poisson problem. Expected-line
shows the expected run time difference based on (17) and (18). However, it does
not take into account the memory usage and other differences. The CPU results
seem to show quite constant relative run time difference between the methods.
The GPU results show a much more complicated pattern. The higher than ex-
pected run time difference in the case of the small problems can be explained by
the fact that the radix-4 BCR method has more parallel and less serial compu-
tation. Thus the radix-4 BCR method is better capable of taking advantage of
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GPU’s parallel computing resources while the radix-2 BCR methods leave some
of the processing elements partially unutilized.

While the radix-4 BCR method increased the amount of parallel computation,
it also made it more difficult to achieve high memory throughput because the
process of forming the right-hand side vectors for the sub-problems became more
complicated. This is the most probable reason for the sudden drop in the per-
formance when the problem size exceeds 10232. Fig. 4 shows the results for the
three-dimensional Poisson problem. CPU and GPU results seem to correspond

Fig. 3. Run time comparison between the radix-2 and radix-4 BCR methods, two-
dimensional case, n1 = n2 = n

Fig. 4. Run time comparison between the radix-2 BCR and radix-4 BCR methods,
three-dimensional case, n1 = n2 = n3 = n
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to the expectations. The sawtooth pattern is due to the modifications discussed
in section 2.2.

Fig. 5 shows the relative run time differences between the radix-4 BCR CPU
implementation and the radix-4 BCR GPU implementation. The GPU imple-
mentation is up to 6-fold faster when the transfer time between RAM and VRAM
is ignored. The results for the three-dimensional GPU implementation are more
modest but the GPU implementation is still up to 3-fold faster for the biggest
problem.

Fig. 5. Radix-4 BCR run time comparison between Intel Core i7 quad-core CPU and
Nvidia GeForce GTX580 GPU, with and without initial RAM to VRAM transfer (I/O),
n1 = n2 = n3 = n

5 Conclusions

This paper covered the implementation of two block cyclic reduction methods
for a GPU. Special attention was given to the tridiagonal system solver. A few
new ideas were introduced to improve the efficiency of the tridiagonal solver on
GPUs. According to the numerical results, the block cyclic reduction algorithm
seems to offer a sufficient amount of fine-grained parallelism when combined
with the cyclic reduction method. The observed speed differences between the
radix-2 and radix-4 methods suggests that the radix-4 version is indeed better
able to take advantage of GPU’s parallel computing resources.
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