
Reviewing Traffic Classification

Silvio Valenti1,4, Dario Rossi1, Alberto Dainotti2,5, Antonio Pescapè2,
Alessandro Finamore3, and Marco Mellia3

1 Telecom ParisTech, France
first.last@enst.fr

2 Università di Napoli Federico II, Italy
last@unina.it

3 Politecnico di Torino, Italy
first.last@polito.it

4 Google, Inc.
5 CAIDA, UC San Diego

Abstract. Traffic classification has received increasing attention in the last years.
It aims at offering the ability to automatically recognize the application that has
generated a given stream of packets from the direct and passive observation of
the individual packets, or stream of packets, flowing in the network. This ability
is instrumental to a number of activities that are of extreme interest to carriers,
Internet service providers and network administrators in general. Indeed, traffic
classification is the basic block that is required to enable any traffic management
operations, from differentiating traffic pricing and treatment (e.g., policing, shap-
ing, etc.), to security operations (e.g., firewalling, filtering, anomaly detection,
etc.).

Up to few years ago, almost any Internet application was using well-known
transport layer protocol ports that easily allowed its identification. More recently,
the number of applications using random or non-standard ports has dramatically
increased (e.g. Skype, BitTorrent, VPNs, etc.). Moreover, often network applica-
tions are configured to use well-known protocol ports assigned to other applica-
tions (e.g. TCP port 80 originally reserved for Web traffic) attempting to disguise
their presence.

For these reasons, and for the importance of correctly classifying traffic flows,
novel approaches based respectively on packet inspection, statistical and machine
learning techniques, and behavioral methods have been investigated and are be-
coming standard practice. In this chapter, we discuss the main trend in the field of
traffic classification and we describe some of the main proposals of the research
community.

We complete this chapter by developing two examples of behavioral classi-
fiers: both use supervised machine learning algorithms for classifications, but
each is based on different features to describe the traffic. After presenting them,
we compare their performance using a large dataset, showing the benefits and
drawback of each approach.

1 Introduction

Traffic classification is the task of associating network traffic with the generating ap-
plication. Notice that the TCP/IP protocol stack, thanks to a clear repartition between

E. Biersack et al. (Eds.): Data Traffic Monitoring and Analysis, LNCS 7754, pp. 123–147, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

124 S. Valenti et al.

Table 1. Taxonomy of traffic classification techniques

Approach Properties exploited Granularity Timeliness Comput. Cost

Port-based Transport-layer port
[49, 50, 53]

Fine grained First Packet Lightweight

Deep Packet
Inspection

Signatures in payload
[44, 50, 60]

Fine grained First payload Moderate, access
to packet payload

Stochastic
Packet
Inspection

Statistical properties of
payload [26, 30, 37]

Fine grained After a few packets
High, eventual
access to payload
of many packets

Statistical

Flow-level properties
[38, 45, 50, 58]

Coarse grained After flow termination Lightweight

Packet-level properties
[8, 15]

Fine grained After few packets Lightweight

Behavioral
Host-level properties
[35, 36, 67]

Coarse grained After flow termination Lightweight

Endpoint rate [7, 28] Fine grained After a few seconds Lightweight

layers, is completely agnostic with respect to the application protocol or to the data
carried inside packets. This layered structure has been one of the main reasons for the
success of the Internet; nevertheless, sometimes network operators, though logically at
layer-3, would be happy to know to which application packets belong, in order to better
manage their network and to provide additional services to their customers. Traffic clas-
sification is also instrumental for all security operations, like filtering unwanted traffic,
or triggering alarms in case of an anomaly has been detected.

The information provided by traffic classification is extremely valuable, sometimes
fundamental, for quite a few networking operations [38, 42, 46, 52]. For instance, a de-
tailed knowledge of the composition of traffic, as well as the identification of trends in
application usage, is required by operators for a better network design and provision-
ing. Quality of service (QoS) solutions [58], which prioritize and treat traffic differently
according to different criteria, need first to divide the traffic in different classes: identi-
fying the application to which packets belong is crucial when assigning them to a class.
In the same way, traffic classification enables differentiated class charging or Service
Level Agreements (SLA) verification. Finally, some national governments expect ISPs
to perform Lawful Interception [6] of illegal or critical traffic, thus requiring them to
know exactly the type of content transmitted over their networks. Traffic classification
represents in fact the first step for activities such as anomaly detection for the identifi-
cation of malicious use of network resources, and for security operation in general, like
firewalling and filtering of unwanted traffic [53, 56].

If, on the one hand, the applications of traffic classification are plentiful, on the other
hand, the challenges classifiers have to face are not to be outdone. First, they must deal
with an increasing amount of traffic as well as equally increasing transmission rates: to
cope with such speed and volume, researchers are looking for lightweight algorithms
with as little computational requirements as possible. The task is further exacerbated
by developers of network applications doing whatever in their power to hide traffic
and to elude control by operators: traffic encryption and encapsulation of data in other

Reviewing Traffic Classification 125

protocols are just the first two examples that come to mind. Therefore, researchers had
to come out with novel and unexpected ways for identifying traffic.

This Chapter is organized as follows. In Section 2, to provide the background of the
field, we define a taxonomy in which we highlight the most important contributions in
each category along with their most important characteristics. In Section 3 we discuss
the state of the art in the field of traffic classification. In Section 4 we describe the most
used machine-learning algorithms in the field of traffic classification. In Section 5 we
present two antipodean examples of traffic classification approaches, that we directly
compare in iSection 6. Section 7 ends the Chapter.

2 Traffic Classification: Basic Concepts and Definitions

The large body of literature about traffic classification [7, 8, 15, 20, 21, 26, 28, 30, 35,
36, 38, 44, 45, 49, 50, 50, 53, 58, 60, 67] is a further evidence of the great interest of the
research community towards this topic. In the following, we will present an overview
of the different approaches and methodologies that have been proposed by researchers
to solve this issue. It is important to underline that this is far from being an attempt to
provide a comprehensive list of all papers in this field (which, given their number, would
be particularly tedious). Such a detailed reference can be found in a few surveys [38,52]
or in related community websites (e.g., [1]). Our aim is rather to identify the most
important research directions so far, as well as the most representative milestone works
and findings, to better highlight our contribution to this already deeply investigated
subject. Still, despite this huge research effort, the community has not put the last word
on traffic classification yet, as a number of challenges and questions still remain open.

To better structure this overview, we divide the classifiers in a few categories ac-
cording to the information on which they base the classification. This widely accepted
categorization, which reflects also the chronological evolution followed by research, is
summarized in Tab. 1. The table lists the most important works in each category along
with their most relevant characteristics. The most important properties of a traffic clas-
sifier, which determine its applicability to different network tasks [19], are:

Granularity. We distinguish between coarse-grained algorithms, which recognize
only large family of protocols (e.g. P2P vs non P2P, HTTP vs Streaming) and
fine-grained classifiers, which, instead, try to identify the specific protocol (e.g.
BitTorrent vs eDonkey file-sharing), or even the specific application (e.g. PPlive vs
SopCast live streaming).

Timeliness. Early classification techniques are able to quickly identify the traffic, after
a few packets, thus being suited for tasks requiring a prompt reaction (e.g. security).
Late classification algorithms take longer to collect traffic properties, and in some
case they even have to wait for flow termination (i.e., post mortem classification):
such techniques are indicated for monitoring tasks, such as charging.

Computational cost. The processing power needed to inspect traffic and take the clas-
sification decision is an important factor when choosing a classification algorithm.
In the context of packet processing, the most expensive operation is usually packet
memory access, followed by regular expression matching.

126 S. Valenti et al.

3 State of the Art

In the first days of the Internet, identifying the application associated with some network
packets was not an issue whatsoever: protocols were assigned to well-known transport-
layer ports by IANA [2]. Therefore, Port-based classification [49, 50, 53] simply ex-
tracted such value from the packet header and then look it up in the table containing
the port-application associations. Unfortunately Port-based classification has become
largely unreliable [34, 50]. In fact, in order to circumvent control by ISPs, modern ap-
plications, especially P2P ones, either use non-standard ports, or pick a random port at
startup. Even worse, they hide themselves behind ports of other protocols – this might
enable bypassing firewalls as well. While port-based classification may still be reliable
for some portion of the traffic [38], nevertheless it will raise undetectable false-positive
(e.g., a non-legitimate application hiding beyond well-known port numbers) and false-
negative (e.g., a legitimate application running on non-standard ports) classifications.

To overcome this problem, Payload-based classifiers [26, 30, 44, 50, 60] were pro-
posed. They inspect the content of packets well beyond the transport layer headers,
looking for distinctive hints of an application protocol in packet payloads. We actually
split this family of classification algorithms in two subcategories, Deep packet inspec-
tion (DPI) techniques that try to match a deterministic set of signatures or regular ex-
pressions against packet payload, and Stochastic packet inspection (SPI), rather looking
at the statistical properties of packet content.

DPI has long provided extremely accurate results [50] and has been implemented
in several commercial software products as well as in open source projects [4] and in
the Linux kernel firewall implementation [3]. The payload of packets is searched for
known patterns, keywords or regular expressions which are characteristic of a given
protocol: the website of [3] contains a comprehensive lists of well known patterns.
Additionally, DPI is often used in intrusion detection systems [53] as a preliminary step
to the identification of network anomalies. Besides being extremely accurate, DPI has
been proved to be effective from the very first payload packets of a session [5,54], thus
being particularly convenient for early classification.

Despite its numerous advantages, DPI has some significant drawbacks. First the com-
putational cost is generally high, as several accesses to packet memory are needed and
memory speed is long known to represent the bottleneck of modern architectures [66].
String and regular expression matching represent an additional cost as well: although
there exist several efficient algorithms and data structures for both string matching and
regular expression, hardware implementation (e.g. FPGA), ad hoc coprocessors (e.g.
DFA) possibly massively parallel (e.g., GPU) are often required to keep up with current
transmission speed [41]. These hardware-based approaches have been analyzed and
used to improve the performance of machine learning algorithms, traffic classification
approaches, and platforms for network security [11,32,43,62,64,68] Yet, it is worth not-
ing that while [64] estimate that the amount of GPUs power can process up to 40 Gbps
worth of traffic, bottlenecks in the communication subsystem between the main CPU
and the GPU crushes the actual performance down to a mere 5.2 Gbps [64]. Similarly,
Network Processors [43] and [62] achieve 3.5 Gbps and 6 Gbps of aggregated traffic
rate at most. As we will see, statistical classification outperforms these classification
rates without requiring special hardware. Another drawback of DPI is that keywords or

Reviewing Traffic Classification 127

patterns usually need to be derived manually by visual inspection of packets, implying
a very cumbersome and error prone trial and error process. Last but not least, DPI fails
by design in the case of encrypted or obfuscated traffic.

Stochastic packet inspection (SPI) tries to solve some of these issues, for instance by
providing methods to automatically compute distinctive patterns for a given protocol.
As an example, authors of [44] define Common Substring Graphs (CSG): an efficient
data structure to identify a common string pattern in packets. Other works instead di-
rectly apply statistical tools to packet payload: authors of [30] directly use the values
of the first payload bytes as features for machine learning algorithms; in [26], instead,
a Pearson Chi-square test is used to study the randomness of the first payload bytes, to
build a model of the syntax of the protocol spoken by the application. Additionally, this
last algorithm is able to deal with protocols with partially encrypted payload, such as
Skype or P2P-TV applications.

Authors of [37], instead, propose a fast algorithm to calculate the entropy of the first
payload bytes, by means of which they are able to identify the type of content: low,
medium and high values of the entropy respectively correspond to text, binary and en-
crypted content. Authors argue that, even if this is a very rough repartition of traffic and
moreover some applications are very likely to use all of these kinds of content, nonethe-
less such information might reveal useful to prioritize some content over the others (e.g.
in enterprise environments, binary transfers corresponding to application updates to fix
bugs deserve an high priority). Yet, SPI is still greedy in terms of computational re-
sources, requiring several accesses to packet payload, though with simpler operations
(i.e., no pattern matching).

While both [26, 37] use entropy-based classification, a notable difference is repre-
sented by the fact that in [26] entropy is computed for chunks of data across a stream
of packets, while [37] computes entropy over chunks whitin the same packet.

Statistical classification [8, 9, 15, 17, 18, 45, 48, 58, 65] is based on the rationale
that, being the nature of the services extremely diverse (e.g., Web vs VoIP), so will
be the corresponding traffic (e.g., short packets bursts of full-data packets vs long,
steady throughput flows composed of small-packets). Such classifiers exploit several
flow-level measurements, a.k.a. features, to characterize the traffic of the different ap-
plications [45,48,58]: a comprehensive list of a large number of possible traffic discrim-
inators can be found in the technical report [47]. Finally, to perform the actual classi-
fication, statistical classifiers apply data mining techniques to these measurements, in
particular machine learning algorithms.

Unlike payload-based techniques, these algorithms are usually very lightweight, as
they do not access packet payload and can also leverage information from flow-level
monitors such as [12]. Another important advantage is that they can be applied to en-
crypted traffic, as they simply do not care what the content of packets is. Nevertheless,
these benefits are counterbalanced by a decrease in accuracy with respect to DPI tech-
niques, which is why statistical-based algorithms have not evolved to commercial prod-
ucts yet. Still, researchers claim that in the near future operators will be willing to pay
the cost of a few errors for a much lighter classification process.

We can further divide this class of algorithms in a few subclasses according to
the data mining techniques employed and to the protocol layer of the features used.

128 S. Valenti et al.

Concerning the first criterion, on one hand, unsupervised clustering of traffic flows [45]
(e.g., by means of the K-means algorithm) does not require training and allows to group
flows with similar features together, possibly identifying novel unexpected behaviors;
on the other hand, supervised machine learning techniques [38,65] (e.g., based on Naive
Bayes, C4.5 or Support Vector Machines) need to be trained with already classified
flows, but are able to provide a precise labeling of traffic. Regarding the protocol layer,
we have classifiers employing only flow-level features [48] (e.g., duration, total number
of bytes transferred, average packet-size), as opposed to algorithms using packet-level
features [8, 15] (e.g., size and direction of the very first packets of a flow). The for-
mer ones are usually capable of late (in some cases only post-mortem), coarse-grained
classification, whereas the latter ones can achieve early, fine-grained classification.

Finally, Behavioral classification [35,36,67] moves the point of observation further
up in the network stack, and looks at the whole traffic received by a host, or an (IP:port)
endpoint, in the network. By the sole examination of the generated traffic patterns (e.g.,
how many hosts are contacted, with which transport layer protocol, on how many dif-
ferent ports) behavioral classifiers try to identify the application running on the target
host. The idea is that different applications generate different patterns: for instance, a
P2P host will contact many different peers typically using a single port for each host,
whereas a Web server will be contacted by different clients with multiple parallel con-
nections.

Some works [35, 67] characterize the pattern of traffic at different levels of detail
(e.g., social, functional and application) and employ heuristics (such as the number
of distinct ports contacted, or transport-layer protocols used) to recognize the class of
the application running on a host (e.g., P2P vs HTTP). Works taking the behavioral
approach to its extreme analyze the graph of connections between endpoints [31, 33],
showing that P2P and client-server application generate extremely different connection
patterns and graphs. They prove also that such information can be leveraged to clas-
sify the traffic of these classes of services even in the network core. A second group of
studies [7, 28], instead, propose some clever metrics tailored for a specific target traf-
fic, with the purpose of capturing the most relevant properties of network applications.
Combining these metrics with the discriminative power of machine learning algorithms
yields extremely promising results. The Abacus classifier [7] belongs to this last family
of algorithms, and it is the first algorithm able to provide a fine-grained classification of
P2P applications.

Behavioral classifiers have the same advantages of statistical-based classifiers, being
lightweight and avoiding access to packet payload, but are usually able to achieve the
same accuracy with even less information. Such properties make them the perfect can-
didate for the most constrained settings. Moreover given the current tendency toward
flow-level monitors such as NetFlow [12], the possibility to operate on the sole basis of
behavioral characteristics is a very desirable property for classifiers.

We wrap up this overview with an overall consideration on the applicability of
classifiers. With few exceptions such as [24], the wide majority of the classification
algorithms proposed in literature cannot be directly applied to the network core. Limita-
tions can be either intrinsic to the methodology (e.g., behavioral classification typically
focuses on endpoint [67] or end-hosts [36] activity), or be tied to the computational

Reviewing Traffic Classification 129

complexity (e.g., DPI [26, 44, 50, 60] cannot cope with the tremendous amount of traf-
fic in the network core), or to state scalability (e.g., flow-based classification [45, 48]
requires to keep a prohibitive amount of per-flow state in the core), or to path changes
(path instabilities or load balancing techniques can make early classifications tech-
niques such as [8, 15] fail in the core). At the same time, we point out that classifying
traffic at the network ingress point is a reasonable choice for ISPs: indeed, traffic can be
classified and tagged at the access (e.g., DiffServ IP TOS field, MPLS, etc.), on which
basis a differential treatment can then be applied by a simple, stateless and scalable
core (e.g., according to the class of application.). We investigate deeper this issue in the
second part of this dissertation.

Finally we must deal with a transversal aspect of traffic classification. The hetero-
geneity of approaches, the lack of a common dataset and of a widely approved method-
ology, all contribute to make the comparison of classification algorithms a daunting
task [59]. In fact, to date, most of the comparison effort has addressed the investiga-
tion of different machine learning techniques [8, 23, 65], using the same set of features
and the same set of traces. Only recently, a few works have specifically taken into
account the comparison problem [10, 38, 42, 52]. The authors of [52] present a qualita-
tive overview of several machine learning based classification algorithms. On the other
hand, in [38] the authors compare three different approaches (i.e., based on signatures,
flow statistics and host behavior) on the same set of traces, highlighting both advantages
and limitations of the examined methods. A similar study is carried also in [42], where
authors evaluate spatial and temporal portability of a port-based, a DPI and a flow-based
classifier.

4 Machine-Learning Algorithms for Traffic Classification

In this section we will briefly introduce the problem of traffic classification in machine
learning theory (with a particular focus on the algorithms we actually employed to
exemplify the traffic classification performance in 6), all falling in the category of
supervised classification.

There is a whole field of research on machine learning theory which is dedicated to
supervised classification [40], hence it is not possible to include a complete reference in
this chapter. Moreover, instead of improving the classification algorithms themselves,
we rather aim at taking advantage of our knowledge of network applications to identify
good properties, or features, for their characterization. However, some basic concepts
are required to correctly understand how we applied machine learning to traffic classi-
fication.

A supervised classification algorithm produces a function f , the classifier, able to
associate some input data, usually a vector x of numerical attributes xi called features,
to an output value c, the class label, taken from a list C of possible ones. To build such
a mapping function, which can be arbitrary complex, the machine learning algorithm
needs some examples of already labeled data, the training set, i.e. a set of couples (x, c)
from which it learns how to classify new data. In our case the features xi are distinctive
properties of the traffic we want to classify, while the class label c is the application
associated with such traffic.

130 S. Valenti et al.

nB

Trained
model

Training
set

Training traffic
protocol A

...

Training traffic
protocol X

Sampler

n

nB
Sampler

n

...

A
Compute features Sampling Model building

Training traffic
protocol A

Training traffic
protocol X

Oracle

Ground truth

Oracle

Ground truth

Validation

Training

Learning

Analysis

Analysis

Apply trained
model

Classification

A
B
C
DA

Classification
results

Classification
Analysis

Analysis

Compute features

Proto
X

Proto
X

A B C

%

Evaluate accuracy

Fig. 1. Common workflow of supervised classification

From a high-level perspective, supervised classification consists of three consecutive
phases which are depicted in Fig. 1. During the training phase the algorithm is fed with
the training set which contains our reference data, the already classified training points.
The selection of the training points is a fundamental one, with an important impact
on the classifier performance. Extra care must be taken to select enough representative
points to allow the classifier to build a meaningful model; however, including too many
points is known to degenerate in overfitting, where a model is too finely tuned and
becomes “picky”, unable to recognize samples which are just slightly different from
the training ones.

Notice that, preliminary to the training phase, an oracle is used to associate the pro-
tocol label with the traffic signatures. Oracle labels are considered accurate, thus repre-
senting the ground truth of the classification. Finding a reliable ground truth for traffic
classification is a research topic on its own, with not trivial technical and privacy issues
and was investigated by a few works [16, 29].

The second step is the classification phase, where we apply the classifier to some
new samples, the test set, which must be disjoint from the training set. Finally a third
phase is needed to validate the results, comparing the classifiers outcome against the
reference ground truth. This last phase allows to assess the expected performance when
deploying the classifier in operational networks.

In this chapter we describe two of the supervised classification algorithms most used
in traffic classification literature, namely Support Vector Machines and Classification
trees. This choice is not only based on their large use in the literature of traffic clas-
sification, but as they are recognized as having the largest discriminative power in the
machine learning community. Specifically, classification accuracy of Support Vector
Machines and Classification trees has been compared in [38, 61]: Support Vector Ma-
chines exhibit the best classification performance in [38], while in [61] the authors

Reviewing Traffic Classification 131

show the superior performance of Classification trees. As for the complexity of these
approaches,

As for the complexity of these techniques, authors in [22] show how statistical clas-
sification based on Classification trees can sustain a throughput in excess of 10 Gbps on
off-the-shelf hardware, thus outperforming the current state of the art employing GPUs
for DPI classification [43, 62, 64]. The next subsections further elaborate the computa-
tional complexity of each technique.

4.1 Support Vector Machine

Support Vector Machine (SVM), first proposed by Vapnik [13], is a binary supervised
classification algorithm which transforms a non-linear classification problem in a linear
one, by means of what is called a “kernel trick”. In the following we intuitively ex-
plain how SVM works and refer the reader to [14, 65] for a more formal and complete
description of the algorithm.

SVM interprets the training samples as points in a multi-dimensional vector space,
whose coordinates are the components of the feature vector x. Ideally we would like
to find a set of surfaces, partitioning this space and perfectly separating points belong-
ing to different classes. However, especially if the problem is non-linear, points might
be spread out in the space thus describing extremely complex surface difficult, when
not impossible, to find in a reasonable time. The key idea of SVM is then to map, by
means of a kernel function, the training points in a newly transformed space, usually
with higher or even infinite dimensionality, where points can be separated by the easi-
est surface possible, an hyperplane. In the target space, SVM must basically solve the
optimization problem of finding the hyperplane which (i) separates points belonging
to different classes and (ii) has the maximum distance from points of either class. The
training samples that fall on the margin and identify the hyperplane are called Support
Vectors (SV).

At the end of the training phase SVM produces a model, which is made up of the pa-
rameters of the kernel function and of a collection of the support vectors describing the
partitioning of the target space. During the classification phase, SVM simply classifies
new points according to the portion of space they fall into, hence classification is much
less computationally expensive than training. Since natively SVM is a binary classifier,
some workaround is needed to cope with multi-class classification problems. The strat-
egy often adopted is the one-versus-one, where a model for each pair of classes is built
and the classification decision is based on a majority voting of all binary models.

Support Vector Machines have proved to be an effective algorithm yielding good per-
formance out-of-the-boxwithout much tuning, especially in complex feature spaces, and
has showed particularly good performance in the field of traffic classification [38, 65].
Several kernel functions are available in literature but usually Gaussian kernel exhibits
the best accuracy. One drawback of SVM is that models in the multidimensional space
cannot be interpreted by human beings and it is not possible to really understand the
reason why a model is good or bad. Another, more important, drawback is that the clas-
sification process may still require a fair amount of computation. Specifically, the num-
ber of operations to be performed is linear in the number of SVs (i.e., the representative

132 S. Valenti et al.

samples) per each class. When the number of classes is large (say, in the order of 100s
or 1000s applications), the computational cost can be prohibitive.

4.2 Decision Trees

Decision Trees [39] represent a completely orthogonal approach to the classification
problem, using a tree structure to map the observation input to a classification outcome.
Again, being this a supervised classification algorithms, we have the same three phases:
training, testing and validation.

During the training phase the algorithm builds the tree structure from the sample
points: each intermediate node (a.k.a. split node) represents a branch based on the value
of one feature, while each leaf represents a classification outcome. The classification
process, instead, consists basically in traversing the tree from the root to the leaves
with a new sample, choosing the path at each intermediate node according to the crite-
ria individuated by the training phase. Like in SVM, the classification process is way
more lightweight than the learning phase. One big advantage of this algorithm over
SVM is that the tree can be easily read and eventually interpreted to understand how
the algorithms leverages the features for the classification. Another advantage is that
classification is based on conditional tests and if-then-else branches, which make it
computationally very efficient with respect to SVM.

Literature on this subject contains quite a few decision tree building algorithms,
which differ in the way they identify the feature and threshold value for the intermediate
split nodes. The best known example of classification tree is the C4.5 algorithm [39],
which bases such selection on the notion of Information Gain. This is a metric from
information theory which measures how much information about the application label
is carried by each features, or, in other words, how much the knowledge of a feature
tells you about the value of the label. We delay a formal definition of the information
gain metric to the next chapter, where we take advantage of it for feature selection pur-
poses. After calculating the information gain of each feature for the training set points,
C4.5 picks as splitting feature for each node the one which maximizes such a score: this
strategy of using the most helpful attributes at each step is particular efficient, yielding
trees of very limited depth (since the most critical split nodes are located toward the top
of the tree), which further simplify the computational requirement.

5 Two Antipodean Examples

In this section, we overview a couple of techniques we propose for the online classifi-
cation of traffic generated by P2P applications (and, possibly, non-P2P application as
well).

We mainly consider two approaches with radically different designs. One approach,
named Kiss [25, 26], is payload based: it inspects the packet payload to automatically
gather a stochastic description of the content, thus inferring the syntax of the applica-
tion protocol rather than payload semantic. The other approach, named Abacus [7, 63],
is instead behavioral: it analyzes the transport level exchanges of P2P applications,
discriminating between different protocol dynamics.

Reviewing Traffic Classification 133

Both Kiss and Abacus achieve very reliable classification but, in reason of their dif-
ferent design, have their pros and cons. For instance, payload-based classification fails
when data is fully encrypted (e.g., IPsec, or encrypted TCP exchanges), while the be-
havioral classifier is unable to classify a single flow (i.e., as protocol dynamics need the
observation of multiple flows). A detailed comparison of both techniques is reported in
Sec. 6

5.1 Kiss: Stochastic Payload-Based Classification

High-Level Idea. The first approach we consider is based on the analysis of packet
payload, trying to detect the syntax of the application protocol, rather that its semantic.
The process is better understood by contrasting it with DPI, which typically searches
keywords to identify a specific protocol. With a human analogy, this corresponds to
trying to recognize the foreign language of an overheard conversation by searching for
known words from a small dictionary (e.g., “Thanks” for English language, “Merci” for
French, “Grazie” for Italian and so on).

The intuition behind Kiss is that application-layer protocols can however be iden-
tified by statistically characterizing the stream of bytes observed in a flow of packets.
Kiss automatically builds protocol signatures by measuring entropy (or Chi-Square test)
of the packet payload. Considering the previous analogy, this process is like recogniz-
ing the foreign language by considering only the cacophony of the conversation, letting
the protocol syntax emerge, while discarding its actual semantic.

Fig. 2 reports examples of mean Kiss signatures for popular P2P-TV applications like
PPLive, SopCast, TVAnts and Joost that we will use often as examples in this Chapter
(and for the comparison in Sec. 6). The picture represents the application layer header,
where each group of 4 bits is individually considered: for each group, the amount of
entropy is quantified by means of a Chi-Square test χ2 with respect to the uniform
distribution. The syntax of the header is easy to interpret: low χ2 scores hint to high
randomness of the corresponding group of bit, due to obfuscation or encryption; highχ2

scores instead are characteristic of deterministic fields, such as addresses or identifiers;
intermediate values correspond to changing fields, such as counters and flags, or groups
of bits that are split across field boundaries. As protocol languages are different, Kiss
signatures allow to easily distinguish between applications as emerges from Fig. 2.

Formal Signature Definition. Syntax description is achieved by using a simple Chi-
Square like test. The test originally estimates the goodness-of-fit between observed sam-
ples of a random variable and a given theoretical distribution. Assume that the possible
outcomes of an experiment are K different values. Let Ok be the empirical frequencies
of the observed values, out of C total observations (

∑
k Ok = C). Let Ek be the num-

ber of expected observations of k for the theoretical distribution Ek = C · pk with pk
the probability of value k. Given that C is large, the distribution of the random variable:

X =

K∑

k=1

(Ok − Ek)
2

Ek
(1)

134 S. Valenti et al.

1.00 1.00 1.00 1.00

0.99 0.97 1.00 0.99

0.66 0.38 1.00 0.72

1.00 1.00 1.00 1.00

0.51 0.86 0.83

1.00 0.96 1.00 0.70

0 4 8 12

(a) Joost

1.09 1.09 1.76 1.30

6.11 1.08 1.21 1.21

1.55 1.26 1.21 1.32

1.21 1.37 1.36 1.33

1.03 1.77 1.07 1.07

6.11 1.75 1.77 1.28

1 4 9 63

(b) SopCast

1.09 1.76 1.16 1.13

1.86 1.82 1.13 1.13

1.95 1.16 1.13 1.13

1.13 1.10 1.19 1.17

1.98 1.99 1.98 1.98

1.98 1.99 1.91 1.14

1 3 4 97

(c) TVAnts

1.01 1.99 1.97 1.96

1.03 1.93 1.81 1.22

1.53 1.50 1.91 1.56

1.80 1.26 1.25 1.50

1.53 1.50 1.91 1.53

1.53 1.50 1.59 1.54

1 6 0 28

(d) PPLive

Fig. 2. Mean Kiss signatures, 24 chunks of 4 bits each (higher value and lighter color correspond
to higher determinism)

that represents the distance between the observed empirical and theoretical distribu-
tions, can be approximated by a Chi-Square, or χ2, distribution with K − 1 degrees
of freedom. In the classical goodness of fit test, the values of X are compared with
the typical values of a Chi-Square distributed random variable: the frequent occurrence
of low probability values is interpreted as an indication of a bad fitting. In Kiss, we
build a similar experiment analyzing the content of groups of bits taken from the packet
payload we want to classify.

Chi-Square signatures are built from streams of packets. The first N bytes of each
packet payload are divided into G groups of b consecutive bits each; a group g can take
integer values in [0, 2b−1]. From packets of the same stream, we collect, for each group

g, the number of observations of each value i ∈ [0, 2b − 1]; denote it by O
(g)
i . We then

define a window of C packets, in which we compute:

Xg =

2b−1∑

i=0

(
O

(g)
i − E

(g)
i

)2

E
(g)
i

(2)

and collect them in the Kiss signature vector (where, by default, N = 12, G = 24, b =
4, C = 80):

X = [X1, X2, · · · , XG] (3)

Once the signatures are computed, one possibility to characterize a given protocol is
to estimate the expected distribution {E(g)

i } for each group g, so that the set of signa-
tures are created by describing the expected distribution of the protocols of interest in
the database. During the classification process then, the observed group g distribution
{O(g)

i } must be compared to each of the {E(g)
i } in the database, for example using the

Chi-square test to select the most likely distribution. However, this process ends up in
being very complex, since (2) must be computed for each protocol of interest.

Reviewing Traffic Classification 135

 0
 0.2
 0.4
 0.6
 0.8

 1

Experiment Time [ΔT steps]

Joost
n6

SopCast

n4

TVants

n1

PPlive

n0

Fig. 3. Temporal evolution of Abacus signatures. Darker color correspond to low order bins,
carrying less traffic. Bins are exponential so that Xi ∝ 2i, and a mark denotes the most likely
bin.

In addition to the high complexity, the comparison with reference distributions fails
when the application protocol includes constant values which are randomly extracted
for each flow. For example, consider a randomly extracted “flow ID” in a group. Con-
sider two flows, one used for training and one for testing, generated by the same appli-
cation. Let the training flow packets take the value 12 in that group. Let the test flow
packets take instead the value 1 in the same group. Clearly, the comparison of the two
observed distributions does not pass the Chi-square test, and the test flow is not correctly
classified as using the same protocol as the training flow.

For the above reasons, we propose to simply compare the distance between the ob-
served values and a reference distribution, which we choose as the uniform distribution,
i.e., E(g)

i = E = C
2b

. In the previous example, the group randomness of the two flows
have the sameX value, that identify a “constant” field, independently of the actual value
of that group. In other terms, we use a Chi-Square like test to measure the randomness
of groups of bits, as an implicit estimate of the source entropy.

5.2 Abacus: Fine-Grained Behavioral Classification

High-Level Idea. The Abacus classifier leverages instead on the observation that ap-
plications perform different concurrent activities at the same time. Considering for the
sake of the example P2P applications, one activity, namely signaling, is needed for the
maintenance of the P2P infrastructure and is common to all applications. Still, P2P ap-
plications differ in the way they actually perform the signaling task, as this is affected
by the overlay topology and design (e.g., DHT lookup versus an unstructured flooding
search) and by implementation details (e.g., packet size, timers, number of concurrent
threads.)

The data-exchange activity in instead related to the type of offered service (e.g., file
sharing, content, VoIP, VoD, live streaming, etc.). Again, applications are remarkably
different, both considering implementation details (e.g., codec, transport layer, neigh-
borhood size, etc.) or the offered service (e.g., low and relatively stable throughput for
P2P-VoIP, higher but still relatively stable aggregated incoming throughput for P2P-
VoD and TV, largely variable throughput for file-sharing, etc).

Such difference are so striking, that it is actually possible to finely differentiate be-
tween different P2P applications offering the same service: in what follows, we make

136 S. Valenti et al.

an explanatory example on P2P-TV applications. We again consider P2P-TV appli-
cations and contrast the possible ways in which they implement the live TV service.
Concerning video transfers, for example, some application may prefer to download
most of the video content from a few peers, establishing long-lived flows with them,
whereas other applications may prefer to download short fixed-sized “chunks” of video
from many peers at the same time. Similarly, some application may implement a very
aggressive network probing and discovering policy, constantly sending small-size mes-
sages to many different peers, while others may simply contact a few super-peers from
which they receive information about the P2P overlay. Continuing our human analogy,
we may say that some peers will be “shy” and contact a few peers, possibly download-
ing most of the data from them, while others will be “easy-going” and contact many
peers, possibly downloading a few data from each.

These differences are shown in Fig. 3, which depicts the temporal evolution of (a
simplified version of) the signature used for traffic classification. To capture the above
differences, we asses the shyness of a peer P by gauging the proportion of peers that
send to P a given amount of traffic in the range Xi = [X−

i , X+
i]. We then evaluate

an empirical probability mass function pi (pmf) by normalizing the count ni of peers
sending x ∈ Xi traffic (e.g., packets or bytes), and by ordering the bins such that
X+

i−i ≤ X−
i , i.e. low order bins contain less traffic.

In Fig. 3, darker colors correspond to lower bins, and bins are staggered so that they
extend to 1 (due to pmf): for the sake of readability, the most likely (i.e., argmaxini)
bin is indicated with a textbox. From Fig. 3, it can be seen that each application has a
behavior that, although not stationary over time, is however remarkably different from
all the others.

Formal Signature Definition. In the following, we restrict our attention to UDP traf-
fic, although endpoint identification can be extended to applications relying on TCP at
the transport layer as well1. Let us consider the traffic received by an arbitrary end-point
p = (IP, port) during an interval of duration ΔT . We evaluate the amount of informa-
tion received by p simply as the number of received packets (although the concept can
be extended to the amount of bytes, to build more precise signatures [57]).

We partition the space N of the number of packets sent to p by another peer into
Bn + 1 bins of exponential-size with base 2: I0 = (0, 1], Ii = (2i−1, 2i] for i =
1, . . . , Bn−1 and IBn = (2Bn−1,∞]. For each ΔT interval, we count the number
Ni of peers that sent to p a number of packets n ∈ Ii; i.e., N0 counts the num-
ber of peers that sent exactly 1 packet to p during ΔT ; N1 the number of peers that
sent 2 packets; N2 the number of peers that sent 3 or 4 packets and, finally, NBn the
number of peers that sent at least 2Bn−1 + 1 packets to p. Let K denote the total

1 In case TCP is used, the client TCP port is ephemeral, i.e., randomly selected by the Operating
System for each TCP connection. The TCP case would require more complex algorithms in
case of traffic generated from a specific peer, since ephemeral ports differ among flows gener-
ated by the same peer. However, the problem vanishes by focusing on the downlink direction:
in this case, we aggregate all traffic received by a TCP server port, that is the same for all flows
of any given peer.

Reviewing Traffic Classification 137

number of peers that contacted p in the interval. The behavioral signature is then defined
as n = (n0, . . . , nBn) ∈ R

Bn+1, where:

ni =
Ni

∑Bn

j=0 Nj

=
Ni

K
(4)

Since n has been derived from the pure count of exchanged packets, we name it “Aba-
cus”, which is also a shorthand for “Automated Behavioral Application Classification
Using Signatures”. Formally, the signature n is the observed probability mass function
(pmf) of the number of peers that sent a given number of packets to p in a time interval
of duration ΔT (where by default ΔT = 5, B = 8).

This function is discretized according to the exponential bins described above. The
choice of exponential width bins reduces the size of the signature, while keeping the
most significant information that can be provided by the pmf. In fact, as the binning
is much finer for short number of packets, short flows with even a small difference in
the number of packets are likely to end up (e.g. flows composed by a single packet, two
packets and three packets are counted respectively in the component n0, n1 and n2). On
the contrary, longer flows are coarsely grouped together in the higher bins. Intuitively it
is more valuable to distinguish between short flows (e.g., distinguishing between single-
packet probes versus short signaling exchanges spanning several packets), while there is
no gain in having an extreme accuracy when considering long flows (e.g., distinguishing
between 500 or 501 packet long flows). This intuition is discussed in [7], where we
examine the impact of different binning strategies.

6 Kiss vs. Abacus

At last, we perform a comparison of both approaches, at several levels. To dress a 2π ra-
dians view2, we consider not only the (i) classification results, but also (ii) functional as
well as (iii) complexity aspects. To perform the comparison of the classification results,
we consider a common subset of traffic, namely that usual set of P2P-TV applications.

In brief, the algorithms are comparable in terms of accuracy in classifying P2P-TV
applications, at least regarding the percentage of correctly classified bytes. Differences
instead emerged when we compared the computational cost of the classifiers: with this
respect, Abacus outperforms Kiss, because of the simplicity of the features employed to
characterize the traffic. Conversely, Kiss is much more general, as it can classify other
types of applications as well.

6.1 Methodology

We evaluate the two classifiers on the traffic generated by the common set of P2P-
TV applications, namely PPLive, TVAnts, SopCast and Joost. Furthermore we use two
distinct sets of traces to asses two different aspects of our classifiers.

2 Well, I assume that since “360◦ degree” is a common saying for everybody, “ 2π radians”
should not be an uncommon saying among scientists and engineers.

138 S. Valenti et al.

Table 2. Datasets used for the comparison

Dataset Duration Flows Bytes Endpoints
Napa-WUT 180 min 73k 7Gb 25k

Operator 2006 (op06) 45 min 785k 4Gb 135k
Operator 2007 (op07) 30 min 319k 2Gb 114k

The first set was gathered during a large-scale active experiment performed in the
context of the Napa-Wine European project [51]. For each application we conduct an
hour-long experiment where several machines provided by the project partners run the
software and captured the generated traffic. The machines involved were carefully con-
figured in such a way that no other interfering application was running on them, so that
the traces contain P2P-TV traffic only. This set, available to the research community
in [51] is used both to train the classifiers and to evaluate their performance in identify-
ing the different P2P-TV applications.

The second dataset consists of two real-traffic traces collected in 2006 and 2007
on the network of a large Italian ISP. This operator provides its customers with un-
controlled Internet access (i.e., it allows them to run any kind of application, from web
browsing to file-sharing), as well as telephony and streaming services over IP. Given the
extremely rich set of channels available through the ISP streaming services, customers
are not inclined to use P2P-TV applications and actually no such traffic is present in
the traces. We verified this by means of a classic DPI classifier as well as by manual
inspection of the traces. This set has the purpose of assessing the number of false alarms
raised by the classifiers when dealing with non P2P-TV traffic. We report in Tab. 2 the
main characteristics of the traces.

To compare the classification results, we employ the diffinder tool [55], as al-
ready done in [10]. This simple software takes as input the logs from different classifiers
with the list of flows and the associated classification outcome. Then, it calculates as
output several aggregate metrics, such as the percentage of agreement of the classifiers
in terms of both flows and bytes, as well as a detailed list of the differently classified
flows enabling further analysis.

6.2 Classification Results

Tab. 3 reports the accuracy achieved by the two classifiers on the test traces using Sup-
port Vector Machines (SVM) [14] as learning technique. Each table is organized in a
confusion-matrix fashion where rows correspond to real traffic i.e. the expected out-
come, while columns report the possible classification results. For each table, the upper
part is related to the Napa-Wine traces while the lower part is dedicated to the operator
traces. The values in bold on the main diagonal of the tables express the recall, a metric
commonly used to evaluate classification performance, defined as the ratio of true posi-
tives over the sum of true positives and false negatives. The “unknown” column counts
the percentage of traffic which was recognized as not being P2P-TV traffic, while the
column “not classified” accounts for the percentage of traffic that Kiss cannot classify
(as it needs at least C = 80 packets for any endpoint).

Reviewing Traffic Classification 139

Table 3. Classification results: Bytewise confusion matrix for Abacus (left) and Kiss (right)

Abacus Kiss

un un nc

99.33 - - 0.11 0.56 99.97 - - - 0.01 0.02

0.01 99.95 - - 0.04 - 99.96 - - 0.03 0.01

0.01 0.09 99.85 0.02 0.03 - - 99.98 - 0.01 0.01

- - 99.98 0.02 - - - 99.98 0.01 0.01
op06 1.02 - 0.58 0.55 97.85 - 0.07 - 0.08 98.45 1.4
op07 3.03 - 0.71 0.25 96.01 - 0.08 0.74 0.05 96.26 2.87

=PPLive, =Tvants, =Sopcast, =Joost, un=Unknown, nc=not-classified

Table 4. Functional comparison of Abacus and Kiss

Characteristic Abacus Kiss
Classification Branch Behavioral Stocastic Payload Inspection
Classification Entity Endpoint Endpoint/Flow
Input Format Netflow-like Packet trace
Target Grain Fine grained Fine grained
Protocol Family P2P-TV Any
Rejection Criterion Threshold/Train-based Train-based
Train-set Size Big (4000 smp.) Small (300 smp.)
Time Responsiveness Deterministic (5sec) Stochastic (early 80pkts)
Network Deploy Edge Edge/Backbone

Is easy to grasp that both the classifiers are extremely accurate, as most of the bytes
are correctly classified (flow accuracy is analyzed in [27]). For the Napa-Wine traces
the percentage of true positives exceeds 99% for all the considered applications. For the
operator traces, again the percentage of true negatives exceeds 96% for all traces, with
Kiss showing a overall slightly better performance. These results demonstrate that even
an extremely lightweight behavioral classification mechanism, such as the one adopted
in Abacus, can achieve the same precision of an accurate payload based classifier.

6.3 Functional Comparison

In the previous section we have shown that the classifiers actually have similar perfor-
mance for the identification of the target applications as well as the “unknown” traffic.
Nevertheless, they are based on very different approaches, both presenting pros and
cons, which need to be all carefully taken into account and that are summarized in
Tab. 4.

The most important difference is the classification technique used. Even if both clas-
sifiers are statistical, they work at different levels and clearly belong to different families
of classification algorithms. Abacus is a behavioral classifier since it builds a statistical

140 S. Valenti et al.

representation of the pattern of traffic generated by an endpoint, starting from transport-
level data. Conversely, Kiss derives a statistical description of the application protocol
by inspecting packet-level data, so it is a payload-based classifier.

The first consequence of this different approach lies in type and volume of informa-
tion needed for the classification. In particular, Abacus takes as input just a measure-
ment of the traffic rate of the flows directed to an endpoint, in terms of both bytes and
packets. Not only this represents an extremely small amount of information, but it could
also be gathered by a Netflow monitor, so that no packet trace has to be inspected by
the classification engine itself. On the other hand, Kiss must necessarily access packet
payload for feature computation: this constitutes a more expensive operation, even if
only the first 12 bytes are sufficient to achieve a high classification accuracy.

Despite the different input data, both classifiers work at a fine-grained level, i.e.,
they can identify the specific application related to each flow and not just the class of
applications. This consideration may appear obvious for a payload-based classifier such
as Kiss, but it is one of the strength of Abacus over other behavioral classifiers which
are usually capable only of a coarse grained classification. Clearly, Abacus pays the
simplicity of its approach in terms of possible target traffic, as its classification process
relies on some specific properties of P2P traffic. On the contrary, Kiss is more general, it
makes no particular assumptions on its target traffic and can be applied to any protocol.
Indeed, it successfully classifies not only other P2P applications (e.g., eDonkey Skype,
etc.), but traditional client-server applications (e.g., DNS, RTP, etc.) as well.

Another important distinguishing element is the rejection criterion. Abacus defines
an hypersphere for each target class and measures the distance of each classified point
from the center of the associated hypersphere by means of the Bhattacharyya distance.
Then, by employing a threshold-based rejection criterion, a point is label as “unknown”
when its distance from the center exceeds a given value. Instead Kiss exploits a multi-
class SVM model where all the classes, included the unknown, are represented in the
training set. If this approach makes Kiss very flexible, the characterization of the classes
can be critical especially for the unknown since it is important that the training set
contains samples from all possible protocols other than the target ones.

We also notice that there is an order of magnitude of difference in the size of the
training set used by the classifiers. In fact, we trained Abacus with 4000 samples per
class (although in some tests we experimented the same classification performance even
with smaller training sets) while Kiss needs only about 300 samples per class. On the
other hand, Kiss needs at least 80 packets generated from (or directed to) an endpoint
in order to classify it. This may seem a strong constraint but [26] actually shows that
the percentage of not supported traffic is negligible, at least in terms of bytes.

Finally, for what concerns the network deployment, Abacus needs all the traffic re-
ceived by the endpoint to characterize its behavior. Therefore, it is only effective when
placed at the edge of the network, where all traffic directed to an host transits. Con-
versely, in the network core Abacus would likely see only a portion of this traffic, so
gathering an incomplete representation of an endpoint behavior, which in turn could
result in an inaccurate classification. Kiss, instead, is more robust with respect to the
deployment position. In fact, by inspecting packet payload, it can operate even on a

Reviewing Traffic Classification 141

Table 5. Computational complexity and resource requirements comparison

Abacus Kiss
Memory
allocation

2F counters 2bG counters

Packet
processing

EP state = hash(IPd, portd)
FL state = EP state.hash(IPs, ports)

FL state.pkts ++
FL state.bytes += pkt size

EP state = hash(IPd, portd)

for g = 1 to G do
Pg = payload[g]
EP state.O[g][Pg]++

end for

Tot. op. 2 lup + 2 sim (2G+1) lup + G sim

Feature
extraction

EP state = hash(IPd, portd)
for all FL state in EP state.hash do

p[log2(FL state.pkts)] += 1
b[log2(FL state.bytes)] += 1

end for
N = count(keys(EP state.hash))
for all i = 0 to B do

p[i] /= N
b[i] /= N

end for

E = C/2b (precomputed)
for g = 1 to G do

Chi[g] = 0
for i = 0 to 2b do

Chi[g] +=
(EP state.O[g][i]-E)2

end for
Chi[g] /= E

end for

Tot. op. (4F+2B+1) lup + 2(F+B) com + 3F sim 2b+1G lup + G com + (3·2b+1)G sim

Memory
allocation

320 bytes 384 bytes

Packet
processing

2 lup + 2 sim 49 lup + 24 sim

Feature
extraction

177 lup + 96 com + 120 sim 768 lup + 24 com + 1176 sim

Default params: B=8, F=40 Default params: G=24, b=4

lup=lookup, com=complex operation, sim=simple operation

limited portion of the traffic generated by an endpoint, provided that the requirement on
the minimum number of packets is satisfied.

6.4 Computational Cost

To complete the classifiers comparison, we provide an analysis of the requirements in
terms of both memory occupation and computational cost. We calculate these metrics
from the formal algorithm specification, so that our evaluation is independent from spe-
cific hardware platforms or code optimizations. Tab. 5 compares the costs in a general
case, reporting in the bottom portion specific figures for the default parameters.

Memory footprint is mainly related to the data structures used to compute the statis-
tics. Kiss requires a table of G · 2b counters for each endpoint to collect the observed
frequencies employed in the chi-square computation. For the default parameters, i.e.

142 S. Valenti et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100
Flows @ 5sec

C
D

F
C

D
F

op06
op07
joost

pplive
sopcast

tvants

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10
time @ 80pkt

C
D

F

op06
op07
joost

pplive
sopcast

tvants

(b)

Fig. 4. Cumulative distribution function of (a) number of flows per endpoint and (b) duration of
a 80 packet snapshot for the operator traces

G = 24 chunks of b = 4 bits, each endpoint requires 384 counters. Abacus, instead,
requires two counters for each flow related to an endpoint, so the total amount of mem-
ory is not fixed but it depends on the number of flows per endpoint. As an example,
Fig. 4-(a) reports, for the two operator traces, the CDF of the number of flows seen by
each endpoint in consecutive windows of 5 seconds, the default duration of the Abacus
time-window. It can be observed that the 90th percentile in the worst case is nearly 40
flows. By using this value as a worst case estimate of the number of flows for a generic
endpoint, we can say that 2 · #Flows = 80 counters are required for each endpoint.
This value is very small compared to Kiss requirements but for a complete comparison
we also need to consider the counters dimension. As Kiss uses windows of 80 packets,
its counters assume values in the interval [0, 80] so single byte counters are sufficient.
Using the default parameters, this means 384 bytes for each endpoint. Instead, the coun-
ters of Abacus do not have a specific interval so, using a worst case scenario of 4 bytes
for each counter, we can say that 320 bytes are associated to each endpoint. In con-
clusion, in the worst case, the two classifiers require a comparable amount of memory
though on average Abacus requires less memory than Kiss.

Computational cost can be evaluated comparing three tasks: the operations per-
formed on each packet, the operations needed to compute the signatures and the op-
erations needed to classify them. Tab. 5 reports the pseudo code of the first two tasks
for both classifiers, specifying also the total amount of operations needed for each task.
The operations are divided in three categories and considered separately as they have
different costs: lup for memory lookup operations, com for complex operations (i.e.,
floating point operations), sim for simple operations (i.e., integer operations).

Let us first focus on the packet processing phase, which presents many constraints
from a practical point of view, as it should operate at line speed. In this phase, Abacus
needs 2 memory lookup operations, to access its internal structures, and 2 integer incre-
ments per packet. Kiss, instead, needs 2G + 1 = 49 lookup operations, half of which
are accesses to packet payload. Then, Kiss must compute G integer increments. Since
memory read operations are the most time consuming, we can conclude that Abacus
should be approximately 20 times faster than Kiss in this phase.

Reviewing Traffic Classification 143

The evaluation of the signature extraction process instead is more complex. First of
all, since the number of flows associated to an endpoint is not fixed, the Abacus cost is
not deterministic but, like in the memory occupation case, we can consider 40 flows as
a worst case scenario. For the lookup operations, Considering B = 8, Abacus requires
a total of 177 operations, while Kiss needs 768 operations, i.e., nearly four times as
many. For the arithmetic operations, Abacus needs 96 floating point and 120 integer
operations, while Kiss needs 24 floating point and 1176 integer operations.

Abacus produces signatures every ΔT = 5 seconds, while Kiss signatures are pro-
cessed every C = 80 packets. To estimate the frequency of the Kiss calculation, in
Fig. 4(b) we show the CDF of the amount of time needed to collect 80 packets for an
endpoint: on average, a new signature is computed every 2 seconds. This means that
Kiss calculate feature more frequently than Abacus: i.e., it is more reactive but obvi-
ously also more resource consuming.

Finally, the complexity of the classification task depends on the number of features
per signature, since both classifiers are based on a SVM decision process. The Kiss
signature is composed, by default, of G = 24 features, while the Abacus signature
contains 16 features: also from this point of view Abacus appears lighter than Kiss.

6.5 Summary of Comparison

We have described, analyzed and compared Kiss and Abacus, two different approaches
for the classification of P2P-TV traffic. We provided not only a quantitative evaluation
of the algorithm performance by testing them on a common set of traces, but also a more
insightful discussion of the differences deriving from the two followed paradigms.

The algorithms prove to be comparable in terms of accuracy in classifying P2P-TV
applications, at least regarding the percentage of correctly classified bytes. Differences
emerge also when we compared the computational cost of the classifiers. With this
respect, Abacus outperforms Kiss, because of the simplicity of the features employed
to characterize the traffic. Conversely, Kiss is much more general, as it can classify
other types of applications as well.

7 Conclusion

In this Chapter we have reviewed literature in the field of traffic classification, a topic
which has increased a lot in relevance during last years. Traffic classification is the
building block to enable visibility into the traffic carried by the network, and this it
is the key element to empower and implement any traffic management mechanisms:
service differentiation, network design and engineering, security, accounting, etc., are
all based on the assumption to be able to classify traffic.

Research on Internet traffic classification has produced creative and novel approaches.
Yet, as described in this Chapter, there is still room for improvements and contribu-
tions in the light of classification techniques and platforms, ground truth, comparison
approaches, etc. In particular, the natural evolution of the Internet in which novel appli-
cations, protocols and habits are born, proliferate and die, calls for a continuous need to
update traffic classification methodologies. This is particular critical considering secu-
rity aspects in which every bit, byte and packet must be checked.

144 S. Valenti et al.

References

1. CAIDA, The Cooperative Association for Internet Data Analysis,
http://www.caida.org/research/
traffic-analysis/classification-overview/

2. IANA, List of assigned port numbers,
http://www.iana.org/assignments/port-numbers

3. l7filter, Application layer packet classifier for Linux,
http://l7-filter.clearfoundation.com/

4. Tstat, http://tstat.tlc.polito.it
5. Aceto, G., Dainotti, A., de Donato, W., Pescapè, A.: Portload: Taking the best of two worlds

in traffic classification. In: INFOCOM IEEE Conference on Computer Communications
Workshops, 15, pp. 1–5 (2010)

6. Bakerand, F., Fosterand, B., Sharp, C.: Cisco Architecture for Lawful Intercept in IP Net-
works. IETF RFC 3924 (Informational) (October 2004)

7. Bermolen, P., Mellia, M., Meo, M., Rossi, D., Valenti, S.: Abacus: Accurate behavioral clas-
sification of P2P-TV traffic. Elsevier Computer Networks 55(6), 1394–1411 (2011)

8. Bernaille, L., Teixeira, R., Salamatian, K.: Early application identification. In: Proc. of ACM
CoNEXT 2006, Lisboa, PT (December 2006)

9. Carela-Espaoll, V., Barlet-Ros, P., Sole-Simo, M., Dainotti, A., de Donato, W., Pescapè, A.:
K-dimensional trees for continuous traffic classification, pp. 141–154 (2010)

10. Cascarano, N., Risso, F., Este, A., Gringoli, F., Salgarelli, L., Finamore, A., Mellia, M.:
Comparing P2PTV Traffic Classifiers. In: 2010 IEEE International Conference on Commu-
nications (ICC), pp. 1–6 (May 2010)

11. Cascarano, N., Rolando, P., Risso, F., Sisto, R.: Infant: Nfa pattern matching on gpgpu de-
vices. Computer Communication Review 40(5), 20–26 (2010)

12. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954 (Informational)
(October 2004)

13. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297 (1995)
14. Cristianini, N., Shawe-Taylor, J.: An introduction to Support Vector Machines and Other

Kernel-based Learning Methods. Cambridge University Press, New York (1999)
15. Crotti, M., Dusi, M., Gringoli, F., Salgarelli, L.: Traffic classification through simple statisti-

cal fingerprinting. ACM SIGCOMM Computer Communication Review 37(1), 5–16 (2007)
16. Dainotti, A., de Donato, W., Pescapé, A.: TIE: A Community-Oriented Traffic Classification

Platform. In: Papadopouli, M., Owezarski, P., Pras, A. (eds.) TMA 2009. LNCS, vol. 5537,
pp. 64–74. Springer, Heidelberg (2009)

17. Dainotti, A., de Donato, W., Pescapè, A., Salvo Rossi, P.: Classification of network traffic
via packet-level hidden markov models 30, 1–5 (2008)

18. Dainotti, A., Pescapè, A., Kim, H.C.: Traffic classification through joint distributions of
packet-level statistics. In: GLOBECOM, pp. 1–6 (2011)

19. Dainotti, A., Pescapé, A., Claffy, K.C.: Issues and future directions in traffic classification.
IEEE Network 26(1), 35–40 (2012)

20. Dainotti, A., Pescapé, A., Sansone, C.: Early Classification of Network Traffic through
Multi-classification. In: Domingo-Pascual, J., Shavitt, Y., Uhlig, S. (eds.) TMA 2011. LNCS,
vol. 6613, pp. 122–135. Springer, Heidelberg (2011)

21. Dainotti, A., Pescapé, A., Sansone, C., Quintavalle, A.: Using a Behaviour Knowledge Space
Approach for Detecting Unknown IP Traffic Flows. In: Sansone, C., Kittler, J., Roli, F. (eds.)
MCS 2011. LNCS, vol. 6713, pp. 360–369. Springer, Heidelberg (2011)

22. Santiago del Rı́o, P.M., Rossi, D., Gringoli, F., Nava, L., Salgarelli, L., Aracil, J.: Wire-
speed statistical classification of network traffic on commodity hardware. In: ACM IMC
2012 (2012)

http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.caida.org/research/traffic-analysis/classification-overview/
http://www.iana.org/assignments/port-numbers
http://l7-filter.clearfoundation.com/
http://tstat.tlc.polito.it

Reviewing Traffic Classification 145

23. Erman, J., Arlitt, M., Mahanti, A.: Traffic classification using clustering algorithms. In:
MineNet 2006: Mining Network Data (MineNet) Workshop at ACM SIGCOMM 2006, Pisa,
Italy (2006)

24. Erman, J., Mahanti, A., Arlitt, M., Williamson, C.: Identifying and discriminating between
web and peer-to-peer traffic in the network core. In: Proceedings of the 16th International
Conference on World Wide Web, WWW 2007, Banff, Alberta, Canada, pp. 883–892 (2007)

25. Finamore, A., Mellia, M., Meo, M., Rossi, D.: KISS: Stochastic Packet Inspection. In: Pa-
padopouli, M., Owezarski, P., Pras, A. (eds.) TMA 2009. LNCS, vol. 5537, pp. 117–125.
Springer, Heidelberg (2009)

26. Finamore, A., Mellia, M., Meo, M., Rossi, D.: Kiss: Stochastic packet inspection classifier
for udp traffic. IEEE/ACM Transaction on Networking 18(5), 1505–1515 (2010)

27. Finamore, A., Meo, M., Rossi, D., Valenti, S.: Kiss to Abacus: A Comparison of P2P-
TV Traffic Classifiers. In: Ricciato, F., Mellia, M., Biersack, E. (eds.) TMA 2010. LNCS,
vol. 6003, pp. 115–126. Springer, Heidelberg (2010)

28. Fu, T.Z.J., Hu, Y., Shi, X., Chiu, D.M., Lui, J.C.S.: PBS: Periodic Behavioral Spectrum of
P2P Applications. In: Moon, S.B., Teixeira, R., Uhlig, S. (eds.) PAM 2009. LNCS, vol. 5448,
pp. 155–164. Springer, Heidelberg (2009)

29. Gringoli, F., Salgarelli, L., Dusi, M., Cascarano, N., Risso, F., Claffy, K.C.: GT: picking
up the truth from the ground for internet traffic. ACM SIGCOMM Comput. Commun.
Rev. 39(5), 12–18 (2009)

30. Haffner, P., Sen, S., Spatscheck, O., Wang, D.: ACAS: automated construction of applica-
tion signatures. In: ACM SIGCOMM Workshop on Mining Network Data (Minenet 2005),
Philadelphia, PA (August 2005)

31. Iliofotou, M., Pappu, P., Faloutsos, M., Mitzenmacher, M., Singh, S., Varghese, G.: Network
monitoring using traffic dispersion graphs (tdgs). In: Proc. of IMC 2007, San Diego, Califor-
nia, USA (2007)

32. Jamshed, M., Lee, J., Moon, S., Yun, I., Kim, D., Lee, S., Yi, Y., Park, K.S.: Kargus: a
highly-scalable software-based intrusion detection system (2012)

33. Jin, Y., Duffield, N., Haffner, P., Sen, S., Zhang, Z.-L.: Inferring applications at the network
layer using collective traffic statistics. SIGMETRICS Perform. Eval. Rev. 38 (June 2010)

34. Karagiannis, T., Broido, A., Brownlee, N., Klaffy, K.C., Faloutsos, M.: Is P2P dying or just
hiding? In: IEEE GLOBECOM 2004, Dallas, Texas, US (2004)

35. Karagiannis, T., Broido, A., Faloutsos, M., Claffy, K.C.: Transport layer identification of P2P
traffic. In: 4th ACM SIGCOMM Internet Measurement Conference (IMC 2004), Taormina,
IT (October 2004)

36. Karagiannis, T., Papagiannaki, K., Taft, N., Faloutsos, M.: Profiling the End Host. In: Uhlig,
S., Papagiannaki, K., Bonaventure, O. (eds.) PAM 2007. LNCS, vol. 4427, pp. 186–196.
Springer, Heidelberg (2007)

37. Khakpour, A.R., Liu, A.X.: High-speed flow nature identification. In: Proceedings of the
2009 29th IEEE International Conference on Distributed Computing Systems, ICDCS (2009)

38. Kim, H., Claffy, K., Fomenkov, M., Barman, D., Faloutsos, M., Lee, K.: Internet traffic clas-
sification demystified: myths, caveats, and the best practices. In: Proc. of ACM CoNEXT
2008, Madrid, Spain (2008)

39. Kohavi, R., Quinlan, R.: Decision tree discovery. In: Handbook of Data Mining and Knowl-
edge Discovery, pp. 267–276. University Press (1999)

40. Kotsiantis, S.B.: Supervised machine learning: A review of classification techniques. In: Pro-
ceeding of the 2007 conference on Emerging Artificial Intelligence Applications in Com-
puter Engineering: Real Word AI Systems with Applications in eHealth, HCI, Information
Retrieval and Pervasive Technologies, pp. 3–24. IOS Press, Amsterdam (2007)

146 S. Valenti et al.

41. Kumar, S., Crowley, P.: Algorithms to accelerate multiple regular expressions matching for
deep packet inspection. In: Proceedings of the Annual Conference of the ACM Special In-
terest Group on Data Communication (SIGCOMM 2006), pp. 339–350 (2006)

42. Li, W., Canini, M., Moore, A.W., Bolla, R.: Efficient application identification and the tempo-
ral and spatial stability of classification schema. Computer Networks 53(6), 790–809 (2009)

43. Liu, Y., Xu, D., Sun, L., Liu, D.: Accurate traffic classification with multi-threaded proces-
sors. In: IEEE International Symposium on Knowledge Acquisition and Modeling Work-
shop, KAM (2008)

44. Ma, J., Levchenko, K., Kreibich, C., Savage, S., Voelker, G.M.: Unexpected means of proto-
col inference. In: 6th ACM SIGCOMM Internet Measurement Conference (IMC 2006), Rio
de Janeiro, BR (October 2006)

45. McGregor, A., Hall, M., Lorier, P., Brunskill, J.: Flow Clustering Using Machine Learn-
ing Techniques. In: Barakat, C., Pratt, I. (eds.) PAM 2004. LNCS, vol. 3015, pp. 205–214.
Springer, Heidelberg (2004)

46. Mellia, M., Pescapè, A., Salgarelli, L.: Traffic classification and its applications to modern
networks. Computer Networks 53(6), 759–760 (2009)

47. Moore, A., Zuev, D., Crogan, M.: Discriminators for use in flow-based classification. Tech-
nical report, University of Cambridge (2005)

48. Moore, A.W., Zuev, D.: Internet traffic classification using bayesian analysis techniques. In:
ACM SIGMETRICS 2005, Banff, Alberta, Canada (2005)

49. Moore, D., Keys, K., Koga, R., Lagache, E., Claffy, K.C.: The coralreef software suite as a
tool for system and network administrators. In: Proceedings of the 15th USENIX Conference
on System Administration, San Diego, California (2001)

50. Moore, A.W., Papagiannaki, K.: Toward the Accurate Identification of Network Applica-
tions. In: Dovrolis, C. (ed.) PAM 2005. LNCS, vol. 3431, pp. 41–54. Springer, Heidelberg
(2005)

51. Napa-Wine, http://www.napa-wine.eu/
52. Nguyen, T.T.T., Armitage, G.: A survey of techniques for internet traffic classification using

machine learning. IEEE Communications Surveys & Tutorials 10(4), 56–76 (2008)
53. Paxson, V.: Bro: a system for detecting network intruders in real-time. Elsevier Comput.

Netw. 31, 2435–2463 (1999)
54. Risso, F., Baldi, M., Morandi, O., Baldini, A., Monclus, P.: Lightweight, payload-based traf-

fic classification: An experimental evaluation. In: Proc. of IEEE ICC 2008 (May 2008)
55. Risso, F., Cascarano, N.: Diffinder, http://netgroup.polito.it/

research-projects/l7-traffic-classification
56. Roesch, M.: Snort - lightweight intrusion detection for networks. In: Proceedings of the

13th USENIX Conference on System Administration, LISA 1999, pp. 229–238. USENIX
Association (1999)

57. Rossi, D., Valenti, S.: Fine-grained traffic classification with Netflow data. In: TRaffic Anal-
ysis and Classification (TRAC) Workshop at IWCMC 2010, Caen, France (June 2010)

58. Roughan, M., Sen, S., Spatscheck, O., Duffield, N.: Class-of-service mapping for QoS: a
statistical signature-based approach to IP traffic classification. In: ACM SIGCOMM Internet
Measurement Conference (IMC 2004), Taormina, IT (October 2004)

59. Salgarelli, L., Gringoli, F., Karagiannis, T.: Comparing traffic classifiers. ACM SIGCOMM
Comp. Comm. Rev. 37(3), 65–68 (2007)

60. Sen, S., Spatscheck, O., Wang, D.: Accurate, scalable in-network identification of p2p traffic
using application signatures. In: 13th International Conference on World Wide Web (WWW
2004), New York, NY, US (May 2004)

61. Lim, Y.S., Kim, H., Jeong, J., Kim, C.K., Kwon, T.T., Choi, Y.: Internet traffic classification
demystified: on the sources of the discriminative power. In: CoNEXT, p. 9 (2010)

http://www.napa-wine.eu/
http://netgroup.polito.it/research-projects/l7-traffic-classification
http://netgroup.polito.it/research-projects/l7-traffic-classification

Reviewing Traffic Classification 147

62. Szabó, G., Gódor, I., Veres, A., Malomsoky, S., Molnár, S.: Traffic classification over Gbit
speed with commodity hardware. IEEE J. Communications Software and Systems 5 (2010)

63. Valenti, S., Rossi, D., Meo, M., Mellia, M., Bermolen, P.: Accurate, Fine-Grained Classifica-
tion of P2P-TV Applications by Simply Counting Packets. In: Papadopouli, M., Owezarski,
P., Pras, A. (eds.) TMA 2009. LNCS, vol. 5537, pp. 84–92. Springer, Heidelberg (2009)

64. Vasiliadis, G., Polychronakis, M., Ioannidis, S.: Midea: a multi-parallel intrusion detection
architecture. In: ACM Conference on Computer and Communications Security, pp. 297–308
(2011)

65. Williams, N., Zander, S., Armitage, G.: A preliminary performance comparison of five
machine learning algorithms for practical IP traffic flow classification. ACM SIGCOMM
CCR 36(5), 5–16 (2006)

66. Wulf, W.A., Mckee, S.A.: Hitting the memory wall: Implications of the obvious. Computer
Architecture News 23, 20–24 (1995)

67. Xu, K., Zhang, Z.-L., Bhattacharyya, S.: Profiling internet backbone traffic: behavior models
and applications. ACM SIGCOMM Comput. Commun. Rev. 35(4), 169–180 (2005)

68. Zu, Y., Yang, M., Xu, Z., Wang, L., Tian, X., Peng, K., Dong, Q.: Gpu-based nfa implemen-
tation for memory efficient high speed regular expression matching. In: PPOPP, pp. 129–140
(2012)

	Reviewing Traffic Classification
	Introduction
	Traffic Classification: Basic Concepts and Definitions
	State of the Art
	Machine-Learning Algorithms for Traffic Classification
	Support Vector Machine
	Decision Trees

	Two Antipodean Examples
	Kiss: Stochastic Payload-Based Classification
	Abacus: Fine-Grained Behavioral Classification

	Kiss vs. Abacus
	Methodology
	Classification Results
	Functional Comparison
	Computational Cost
	Summary of Comparison

	Conclusion
	References

