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Abstract. This chapter investigates HTTP video streaming over the Internet for
the YouTube platform. YouTube is used as concrete example and case study for
video delivery over the Internet, since it is not only the most popular online video
platform, but also generates a large share of traffic on today’s Internet. We will
describe the YouTube infrastructure as well as the underlying mechanisms for
optimizing content delivery. Such mechanisms include server selection via DNS
as well as application-layer traffic management. Furthermore, the impact of de-
livery via the Internet on the user experienced quality (QoE) of YouTube video
streaming is quantified. In this context, different QoE monitoring approaches are
qualitatively compared and evaluated in terms of the accuracy of QoE estimation.

1 Introduction

Quality of Experience (QoE) describes the user perception and satisfaction with ap-
plication and service performance in communication networks, a topic that has gained
increasing attention during the last years. Part of this growth of interest in QoE can be
explained by increased competition amongst providers and operators, and by the risk
that users churn as they become dissatisfied. However, many users face volatile network
conditions, e.g. due to temporary over-utilization of shared network resources such as
peering links. Such conditions may result in bad QoE. The focus of this book chapter is
on Internet video delivery, since video streaming dominates global Internet traffic and
exceeded half of global consumer Internet traffic at the end of 2011 [1]. We differentiate
two different types of video content delivery over the Internet, (i) live video streaming
with on-the-fly encoding, like IPTV, and (ii) streaming of pre-encoded video, so called
Video-on-Demand (VoD). In this chapter, we focus on YouTube, the most popular VoD
service in the Internet with more than two billion video streams daily.

The recent surge in popularity of Internet video requires a considerable investment
by the operators of these services in order to be able to satisfy the demand. The delivery
infrastructure (Section 2) is generally distributed all over the world and comprises of
tens of different sites. A user must be automatically directed to a nearby site (which is
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the role of DNS) and must be redirected in case the video is not available on this partic-
ular site or if the servers of this site are overloaded. Thus, a cache selection mechanism
is implemented within the delivery infrastructure. Today, the delivery of the video data
is typically performed via TCP, which is a reliable transport protocol that performs er-
ror recovery and congestion control. When using TCP, the transmission can be subject
to considerable delay jitter and throughput variations and the client needs to preload a
play out buffer before starting the video playback. Various transmission strategies from
the server to the client are possible such as client pull or server push mode. Also the
size of the video blocks transmitted can vary from 64 Kbytes to a few Mbytes. This is
referred to as application-layer traffic management.

For an Internet Service Provider (ISP) providing connectivity to the end user, it is
thus important to understand the relationship between Quality of Experience (QoE) of
a service and the performance characteristics of the service provisioning through net-
works, resulting into a so-called QoE model (Section 3). In the context of network
provisioning, QoE also opens the possibility to save resources by proper QoE manage-
ment, as it is not economic to invest in better Quality of Service (QoS) for maintaining
the same level of QoE. For example, reserving a bandwidth of 16 Mbps for delivering
a video stream that has a video bit rate of only 300 Kbps unnecessarily consumes ISP’s
resources without improving QoE.

To implement a QoE management, the ISP must identify and monitor the traffic in its
network that results from that service. These measurement data is used for estimating
the QoE by means of an appropriate QoE model. Since YouTube video streams do not
change encoding parameters during playback and packet loss artifacts do not occur (due
to the use of TCP), the QoE of YouTube is primarily determined by stalling effects on
application layer as opposed to image degradation in UDP-based video streaming.

In this book chapter, we investigate QoE monitoring for YouTube video streaming.
To this end, Section 2 provides the necessary technical background and fundamentals
in terms of the delivery infrastructure, cache selection, and traffic management mech-
anisms that enable such a service. Section 3 then investigates the end-user perspective
by identifying the key influence factors for YouTube QoE and developing a model the
maps application-layer QoS to QoE. Finally, Section 4 brings these elements together
to present various YouTube QoE monitoring approaches both, at the application-layer
and the network-layer. The approaches at these two layers are fundamentally different:
Application-layer monitoring requires to change the end user application or to install
additional monitoring software, but will lead to exact results since performance is di-
rectly measured at the user terminal where QoE impairments become directly perceiv-
able. On the other hand, a highly scalable, valid, and robust QoE monitoring approach
(including a stalling detector as basic QoE indicator) from measurements within the net-
work is needed by ISPs to detect any problems in the network or to manage the traffic
accordingly to overcome networking problems. To this end, several network-layer mon-
itoring approaches of YouTube QoE, as well as an evaluation on its accuracy (compared
to application-level monitoring) and implementation prospects are highlighted.
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2 Delivery Infrastructure, Cache Selection and Application-Layer
Traffic Management

Recent studies show that videos streaming sites represent about half of the Internet data
volume, both for mobile access [2] and for fixed access [3]. Moreover, video streaming
today produces a traffic volume that is more than double the one due to peer-to-peer. In
the case of peer-to-peer the server resources to satisfy the demand come from the peer
themselves, while in the case of video streaming a content distribution network must
be built that consists of geo-distributed servers and caches. It is therefore instructive
to study in detail the organization of a video streaming service and its evolution over
time. In the following, we will present the design principles of the YouTube delivery
architecture and its performance.

2.1 Basic Facts about YouTube

YouTube, which was created in 2005, allows users to upload and share video content.
Its success was immediate, resulting in spectacular growth ever since. For instance,
the number of videos viewed per day has increased from around 200 Million in 2007 to
more than 4 Billion in 2012 [4]. Since YouTube was acquired in late 2007 by Google, its
infrastructure has been in constant evolution and the delivery architecture that initially
used third party content distribution network services is now fully operated and man-
aged by Google. Not much about YouTube has been disclosed by Google itself [4–6].
However, in the last couple of years YouTube has been extensively investigated [7–
12] by academia via active and/or passive measurements, which are often carried out
from multiple vantage points. While such measurements can reveal certain aspects of
YouTube, many details are still unknown. Our description of YouTube is based on the
results published in literature and on recent studies of YouTube carried out by ourselves.
Describing a system like YouTube that constantly evolves is challenging. However, we
believe that the underlying design principles will most likely stay the same for some
time. We sometimes give real figure to indicate the size of YouTube with the aim to
give an idea of the order of magnitude and to provide a reference point for future com-
parison.

The number of videos hosted by YouTube was estimated in mid-2011 [13] to be
about 500 million, which represents about 5 PetaBytes of data considering an average
size of 10 MBytes per video. Taking into account replication of videos and multiple
formats, this makes a total of about 50 PetaBytes of data. In 2012, an average of one
hour of video was uploaded every second0, which is a three-fold increase as compared
to 2009/ The number of videos downloaded per day has been evaluated in 2011 to be
between 1.7 and 4.6 Billion representing a 50% increase over the previous year, which
results in tens of PetaBytes of traffic per day. While YouTube originally started its ser-
vice in the USA, it has become truly international in the meantime with caches in many
countries. Today only 25% of the views are generated in the USA, followed by countries
such as UK, Japan, Germany or Brazil, which each generate between 3–7% of all the
views [5]. Geographic request locality is high, with around two thirds of the views per
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video coming from a single region, where a region represents a country or another polit-
ical, geographic or linguistic entity [5]. Request locality also varies between countries
and is highest in Japan and Brazil.

In the following, we focus on the process of downloading the videos. We are going
to review the major steps in accessing a YouTube video before we describe the server
infrastructure and explain cache selection and cache redirections, which are used to
balance the load among caches.

When a user uploads a video to YouTube, the video is stored on a server in one of
Google backend data centers. YouTube supports multiple video formats. Each video
may be transcoded in all the different formats, which can happen pro-actively or on the
fly. As we will see in the following, a user that requests a YouTube video will never
directly interact with the servers in backend data centers. Instead, the videos will be
delivered to the users from so called caches.

2.2 Steps in YouTube Video Download

Watching a video on YouTube involves a different set of servers. Initially, the embed-
ding Web page is delivered through front end YouTube web servers, whereas the video
content is itself delivered by YouTube video cache servers. YouTube currently supports
two containers for video streaming, Flash and HTML5 [14]. At the time of writing, the
adoption of HTML5 for YouTube playback on PCs is still in an early phase, and al-
most all browsers use Flash technology as the default to play the YouTube videos [10].
When the container is Flash, a dedicated Shockwave Flash player must be downloaded
to control the Flash plugin in the browser.

Simplified Steps in Accessing a YouTube Video. As shown in Figure 1, the process of
accessing a YouTube video can be summarized as (numbers correspond to the graph):

(1) The user requests a video on the YouTube webpage: http://www.youtube.com/
watch?v=videoID and gets to the Web server that delivers the YouTube HTML
page;

(2) After downloading the embedding HTML web page, the other contents are re-
quested in particular the Shockwave Flash Player (embedded in a HTML object
that contains the video parameters);

(3) The actual video content is requested from a cache server (lscache server); if this
cache is over-loaded, it sends a redirect (HTTP 302) message to the client indicating
another cache server;

(4) The client sends a request the other cache server (tccache server) for the video,
and the FLV file is delivered to the client while being played in the Flash player
(Progressive Download).

The details of the redirections depend on the load of the cache servers and are explained
in the following.

We now focus on the video content delivery, and more specifically on the architecture
and the interaction with the cache server infrastructure.

http://www.youtube.com/watch?v=videoID
http://www.youtube.com/watch?v=videoID
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(1) GET watch?v=videoID

HTML page

(2) GET embedded object
type="application/x-shockwave- ash"

User PC

SWF Player

(3) GET videoplayback?...

YouTube Front-end
Web Server:
www.youtube.com

YouTube
Cache Server:
...v3.lscache8.c.youtube.com

YouTube Front-end
Web Server

Redirect

(4) GET videoplayback?...

YouTube
Cache Server:
...tc.v1.cache5.c.youtube.com

FLV le

Content look-up

Content download
and playback

Fig. 1. Schema of YouTube page download

YouTube Cache Server Infrastructure. The users receive the video they request from
a cache node. Individual cache nodes are organized in cache clusters, with all the ma-
chines of a cache cluster being co-located. The number of machines per cache cluster
is highly variable and depends, among others, on the demand for service issued in the
region where the cluster is located and also on the available physical space to host the
cache nodes. Each cache node as of 2011 has a 10 Gb/sec network access and 78 TByte
of disk storage [4].

The various cache clusters are organized in a three tier hierarchy. The global infra-
structure of the YouTube caches has been revealed by Adhikari et al. [7] in 2011. They
used the distributed infrastructure of the PlanetLab network to request thousands of
videos from different vantage points in the world, which allowed to reverse engineer
the cache infrastructure and the cache selection policies. We complement their find-
ings with our own active measurements [15] undertaken in 2011 and 2012 from France.
Our analysis focuses on residential Internet access and reveals the techniques applied by
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Fig. 2. Organization of the YouTube Caches; dashed lines indicate possible redirections

Google to deliver the videos to residential customers. Since our machines where con-
nected to the Internet through different ISPs, we were able to observe differences in
treatment of customers coming from different ISPs.

YouTube has a three tier caching infrastructure that comprises of four different log-
ical namespaces as shown in Figure 2. The machines allocated to the different cache
clusters are identified via particular naming conventions. We recall here the main find-
ings of [7] on the YouTube cache clusters. As of 2011 there are:

– 38 primary cache clusters with about 5000 unique IP addresses corresponding to
the lscache namespace;

– 8 secondary cache clusters corresponding to the tccache namespaces with about
650 IP addresses;

– 5 tertiary caches clusters corresponding to the cache and altcache namespaces
with about 300 IP addresses.

All these cache clusters are located in a total of 47 different locations distributed over
four continents; there is no cache cluster in Africa. About ten primary cache clusters
are co-located inside ISPs and the IP addresses of these cache nodes in these clusters
are not part of the address space managed by Google but part of the ISPs address space.
Since we have 38 + 8 + 5 = 51 cache clusters but only 47 different locations, some
cache clusters belonging to different levels of the hierarchy must be at the same physical
location (i.e. some primary and secondary caches are co-located).

For the caches in each cache cluster, a particular logical naming structure is applied.

– Each primary cache cluster has a total of 192 logical caches cor-
responding to the lscache namespace, which looks as follows:
city_code.v[1-24].lscache[1-8].c.youtube.com. As city_code the
three letter code for the airport closest to that cache cluster is used.

– There are also 192 logical caches in each secondary cache cluster, cor-
responding to the tccache namespace, which are named as follows
tc.v[1-24].cache[1-8].c.youtube.com.

– Each tertiary cache cluster has 64 logical caches corresponding to cache and
altcache namespaces.

city_code.v[1-24].lscache[1-8].c.youtube.com
city_code
tc.v[1-24].cache[1-8].c.youtube.com
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Introducing these logical name spaces has the following advantages:

– Each video ID can be deterministically mapped via consistent hashing onto a unique
logical name in the lscache namespace, which makes it easy to decide for each
cache what portion of the videos it is responsible to serve.

– There is a one-to-one mapping between the lscache and tccache namespace.
– The logical naming is the same for each cache cluster and it is completely indepen-

dent of the number of real cache nodes in a particular cache cluster.
– It is the responsibility of DNS to map logical cache names onto the IP addresses of

real cache nodes. In [7], each of the logical names from the lscache namespace
is mapped to more than 75 different IP addresses distributed over the 38 primary
cache clusters.

YouTube Datacenter Sizes. We have carried out active measurements in France [15],
using simultaneously nine different Internet accesses (7 ADSL and 2 Fiber) to request
videos during sessions that lasted for 2 days each. All these accesses are in the same
physical location and the access rates for all the ADSL accesses are the same.

The YouTube videos crawled during these measurements were served by two dat-
acenters: one in Paris (par), the other in Amsterdam (ams). In Tab. 1 we show the
number of IP addresses seen for each datacenter and match each IP address with its
corresponding lscache namespace.

Tab. 1 gives an idea of the size of a cache cluster and also shows the evolution of
these cache clusters over time:

– The Amsterdam cache cluster increased its size by 50% within a few months; for
this cache cluster there are more IP addresses than distinct lscache names, which
means that a single lscache name will be mapped onto several IP address.

– The Paris cache cluster re-organized the distribution of its IP addresses into two
distinct logical lscache namespaces. For this cache cluster there are fewer IP ad-
dresses than distinct lscache names, which means that several lscache names
will be mapped on the same IP address.

In Figure 2, we also show the dynamics of redirections inside the YouTube cache layers.
Each cache layer can redirect to the next cache level and the tertiary cache layer can be
accessed through redirection out of any layer (including itself). We will explain this in
detail in the next section on cache selection.

2.3 YouTube Cache Selection

YouTube cache selection is quite sophisticated and tries to:

– Satisfy users by selecting a nearby cache cluster and
– Perform internal redirection to another cache cluster to perform load balancing

among cache clusters.

The choice of a close-by cache cluster (in terms of RTT) is typically done through DNS
resolution. DNS is used for coarse grained load balancing, with a TTL of five minutes.
Before getting into the process of cache server selection through redirections, we first
study the selection of first cache server.

par
ams
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Table 1. YouTube Datacenters sizes according to the Number of IP addresses seen for crawls of
all ISPs on each URL Regexp

(a) September 2011

URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 160†

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 160†

o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 328

o-o.preferred.ISP-par1.v[1-24].lscache[1-8].c.youtube.com 98

† these two sets of 160 IP addresses are identical

(b) December 2011

URL Regexp # IPs

o-o.preferred.par08s01.v[1-24].lscache[1-8].c.youtube.com 80‡

o-o.preferred.par08s05.v[1-24].lscache[1-8].c.youtube.com 80‡

o-o.preferred.ams03g05.v[1-24].lscache[1-8].c.youtube.com 494

o-o.preferred.ISP-par1.v[1-24].lscache[1-8].c.youtube.com 130

‡ these two sets of 80 IP addresses are distinct

Choice of First Cache Server. With our active measurement carried out across dif-
ferent ISPs in France [15] we also wanted to investigate if clients from different ISPs
get directed to the same cache cluster or not. We only focus on the first cache server
returned and do not take into account redirections. All the accesses are located in the
same place with the same access rate for ADSL. The city codes are par and ams for
Paris and Amsterdam respectively.

We see from Tab. 2, cache cluster used to serve clients clearly depends on the ISP.
Here are the main findings (cf. Tab. 2):

– ISP B has all its lscache names pointing to one cache site (par08s01) in Paris;
– ISP N has all its lscache names pointing to the Paris cache site, but with two

different logical name spaces (par08s01 and par08s05);
– ISP O has dedicated lscache names carrying the IPS name (ISP -par1). Also,

these names get resolved to IP addresses that belong to a specific AS (36040),
which is different from the Google or YouTube ASes.

– ISPs S and F are directed to both cache clusters in Paris or Amsterdam with differ-
ent proportions: about 2/3 to Amsterdam for ISP S and 10% for ISP F.

These results highlight that there is a customization done for each ISP for reasons only
known to Google.

The network impact of the cache cluster location on the ping time is found to be very
low. For example, the minimum ping time from our lab in France to the Paris cache
nodes is of 23.8 ms and of 28 ms to Amsterdam (because of relatively small distance
between the two cities). However, the main point is that the cache cluster selected in
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Table 2. Number of Videos for each ISP according to Regexp on lscache names for a controlled
crawl in December 2011

ISP
URL Regexp A¶ B¶ B§ F-1¶ F-2¶ N§ O¶ S-1¶ S-2¶

par08s01.v[1-24].lscache[1-8] 0 2676 2677 0 0 1890 0 1967 1528
par08s05.v[1-24].lscache[1-8] 1636 0 0 952 2425 799 0 0 0
ams03g05.v[1-24].lscache[1-8] 150 0 0 0 206 0 0 3033 2488

ISP-par1.v[1-24].lscache[1-8] 0 0 0 0 0 0 2591 0 0

¶ ADSL access
§ Fiber access

not necessarily the geographically closest one and that the choice of the preferred cache
cluster depends on the time of day as shown in Figure 3 and on the ISP the client
is connected. Moreover, even if the minimum ping values for both cache clusters are
about the same, the cross traffic on the path from France to Amsterdam can increase the
ping value to values as high as 200 ms. Indeed, Figure 3 shows a large variance in ping
times towards Amsterdam cache nodes. The most striking point is that the switch from
one datacenter to another is done at a specific time every day, and this time is specific
to each ISP.

We have made the same observation in [15] for a different experiment with clients
located in Kansas, USA, who were served from a variety of different cache clusters
located anywhere in the US. In Figure 4, we present a partial map of USA with the
location of the most prevalent cache clusters seen in this crawl. The symbols have the
following meaning:

– The pin mark is the place from where the crawls are performed: Kansas City;
– Each circle corresponds to a YouTube cache site;
– The diameter of each circle represents the number of videos served by this cache

site;
– The color of each circle represents the distance (ping time) towards the cache site:

green for ping time lower than 60 ms, blue for ping time between 60 and 200 ms,
and red for ping time larger than 200 ms.

Note that we do not show the San Jose and Los Angeles cache sites in the figure, which
receive 11% and 3% respectively of the video requests. There are four more cache
sites, which are located in Kansas-City, Lawrence, Chicago and New-York that receive
a small fraction of all requests. The details can be found in [15]. We clearly see that the
distance is not the primary criterion for the choice of the cache site: the most frequently
used cache site is in Washington DC, even though it is much further away than the
Dallas cache site.
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Fig. 3. Ping time in milliseconds from our controlled lab towards two cache sites observed in a
controlled crawl in December 2011
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Fig. 4. Map indicates the cache site locations, number of requests served by each cache site (di-
ameter of the circle), and distance (circle color: green for ping ≤ 60ms, blue for ping ≥ 60ms
and ≤ 200ms, and red for ping ≥ 200ms) of the YouTube cache sites in the crawls that originate
from Kansas City (pin mark).

Cache Selection through Redirections. We have already seen that load balancing on
YouTube cache servers can be done through DNS resolution: this process is centralized
at the YouTube authoritative DNS servers. Load-balancing can also be done directly at
cache server level. In this case, the cache server receiving the request can relay the
request to another cache server via HTTP redirect message at application level. So
YouTube can use both centralized and decentralized processes to balance the requests
on its cache servers.

Cache hit. If the video is hot and there are copies at the primary caches, then a logical
cache node (lscache namespace) in the primary cache is chosen. If there is no redi-
rection, a machine from a cache cluster serves the video.
If the primary cache cluster selected is overloaded, a redirection to a secondary cache
cluster (tccache namespace) occurs. The secondary cache can serve the video or redi-
rect it to a tertiary cache site (cache namespace) for load-balancing purposes.

Again, in the tertiary cache cluster, the cache server can deliver the video, or per-
form another redirection. A redirection from a tertiary cache site will remain inside
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the tertiary cache level and ocur towards a cluster from the altcache namespace. A
machine in this namespace now serves the video or redirects it inside the same names-
pace in case of overload. Very rarely, several redirections occur inside the altcache
namespace, with the total number of redirections being limited to 9. For further details
see [7].

Cache Miss. If the video is cold and there are no copies at the primary caches, then the
request will be most likely redirected from the first level cache to a third level cache.
The third level cache will fetch the video from the backend data server, cache it, and
deliver the video to the client. It is quite common, as we will see in the next section,
that users do not watch the entire video. Therefore, all videos are broken into chunks
(of 2 MBytes) and the cache will continue to retrieve from the backend servers new
chunks of a video as long as the user keeps viewing that video. Note that despite all the
efforts of the engineering team of Google, the cache miss rate remains steadily at about
10% [4].

YouTube Redirection Process

DNS Level Redirections. YouTube uses HTTP redirections to balance the load among
its caches. As shown in Figure 2, the redirections usually direct the video request from
a cache layer to the next one. Using traces from a European ISP, Torres et al. [12]
observed that as the total number of requests kept increasing, the percentage of requests
handled by the closest cache cluster located inside that ISP decreased from 80% to
about 30%. In this case, DNS request resolution will direct clients to more distant but
less loaded cache clusters.

Impact of Redirections on Performance. Each redirection involves:

1. DNS query to resolve the hostname of the next cache node,
2. Opening of a new TCP connection,
3. Issuing a new video query.

In case of redirections, the final cache node serving the video will most likely not be
the closest one in terms of RTT, which has been observed in [12] for the most popular
videos of the day.

The impact of redirection on the time until the first MByte is downloaded (referred to
as video initialization time) has also been studied in [7]. The video initialization time is
on average 33% higher if the video has been fetched through redirections. The fraction
of sessions that have been redirected is evaluated in [10]: between 10% and 30% of all
sessions are redirected at least once. The impact of redirections on the startup delay can
also be important [10]:

– Without redirections, delays are in the order of milliseconds;
– With redirections, delay can increase by orders of magnitude, up to 10 seconds.
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2.4 Application-Layer Traffic Management

YouTube videos are requested using HTTP over TCP. TCP is a transport protocol that
assures reliable transfer by retransmitting lost data packets and performs congestion
control to avoid overloading the network. Both error control and congestion control of
TCP may result in high delay jitter.

The delivery strategy of YouTube videos has been studied in great detail by Rao et
al. [14]. The authors show that the delivery strategy depends on the video container
(Flash, Flash High Definition, or HTLM5), the type of client device (PC or mobile de-
vices such as smart phones or IPad), and the type of browser (Internet Explorer, Chrome,
or Firefox). The delivery strategy needs to reconcile a number of potentially conflicting
goals such as:

– Smooth playout during the entire duration of a viewing session;
– Efficient use of the server resources such as disk I/O and timer management;
– Avoid to transmit too much data in advance of consumption in order to (i) reduce

the amount of buffering at the client, which is particularly relevant in the case of
mobile devices and to (ii) reduce the waste of network and server resources by
sending data that are never used.

Finamore et al. [10] observed that 60% of the videos requested were watched for less
than 20% of their total duration, resulting in an un-necessary transfer of 25–39% of the
data. As we shall see in the following section, the impact of playback degradation is a
primary factor in the video transfer interruption.

As the video transfer is done via HTTP over TCP, there is not guarantee that the
data can be delivered to the client at the rate at least as high as the one at which they
are consumed. The details of the transfer have been studied in [14], whose findings we
summarize in the following: To increase the likelihood of a smooth playback, YouTube
performs aggressive buffering when a video is requested. Initially, during a startup
phase, the server sends as fast as possible to fill up the initial client playout buffer. This
playout buffer contains about 40 seconds with Flash, and 10–15 MBytes with HTML5
with Internet Explorer as a browser, which is typically much more than 40 seconds
worth of video. Once the initial buffer has been filled, two other strategies are used by
the cache server:

– keeps sending as fast as possible, until entire video is transmitted;
– limits the rate of the transfer alternating between on-off cycles with a fixed period.

During an on cycle, a fixed size block of video data is transmitted.

We limit our description to the case of streaming a video to a PC with Flash as container,
and refer to the original paper [14] for more details.

Streaming the video to a PC has been the most extensively studied [6, 16]. In this
case, the server streaming strategy is independent of the browser: When the startup
phase is terminated, the cache server sends blocks of 64 KBytes at a frequency that
allows to achieve an average transmission rate of 1.25 times the video encoding rate.
As has been first observed by Alock and Nelson [16], injecting bursts of 64 KBytes
means sending 45 maximum size TCP segments back-to-back into the network. Such
large packet bursts will accumulate in the buffer of the bottleneck link and (i) cause
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delay spikes that may disrupt other latency sensitive application and (ii) inflict loss on
the bursty YouTube flow itself. In response to these problems, Google engineers have
recently proposed a modification to the server side sending policy that controls the
amount of packets that can be injected back-to-back in order to limit the size of the
packet bursts. For details of the new sender algorithm and its impact on packet loss and
burst size see [6].

In this section we have provided the technical basis to understand YouTube content
delivery over the Internet. Next, we investigate what influences the QoE experienced
by the user. In particular, problems in the network may lead to stalling and QoE degra-
dations. Therefore, we have to identify the key factors that influence YouTube QoE by
means of subjective measurements and build an appropriate model, which can be used
for QoE monitoring later on.

3 QoE of YouTube Video Streaming

User perceived quality of video streaming applications in the Internet is influenced by
a variety of factors. As a common denominator, four different categories of influence
factors [17, 18] are distinguished, which are influence factors on context, user, system,
and content level.

– The context level considers aspects like the environment where the user is con-
suming the service, the social and cultural background, or the purpose of using the
service like time killing or information retrieval.

– The user level includes psychological factors like expectations of the user, memory
and recency effects, or the usage history of the application.

– The technical influence factors are abstracted on the system level. They cover in-
fluences of the transmission network, the devices and screens, but also of the im-
plementation of the application itself like video buffering strategies.

– For video delivery, the content level addresses the video codec, format, resolution,
but also duration, contents of the video, type of video and its motion patterns.

In this section, a simple QoE model for YouTube is presented whose primary focus is
its application for QoE monitoring (within the network or at the edge of the network).
Therefore, we take a closer look at objectively measurable influence factors, especially
on the system and content level. For this purpose, subjective user studies are designed
that take into account these influence factors; in particular, we utilize crowdsourcing to
have a large pool of human subjects to conduct the tests (Section 3.1). The crowdsourc-
ing environment also allows analyzing influence factors on user level and context level.
After analyzing the user ratings that are the key influence factors on YouTube QoE (Sec-
tion 3.2), simple QoE models and its corresponding mapping functions between those
influence factors and the YouTube QoE can be derived (Section 3.3). For illustration,
Figure 5 sketches the methodology from subjective user studies to QoE models for QoE
monitoring.

3.1 Subjective User Studies for Quantifying YouTube QoE

Subjective user studies are the basis to quantify the YouTube QoE and to model the im-
pact of influence factors on context, user, system, and content level. Therefore, realistic
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Fig. 5. Methodology applied from subjective user studies towards QoE models for QoE monitor-
ing [19, 20]

test scenarios will be defined that consider typical video clips and stalling patterns. The
general test methodology developed in [21] allows researchers to conduct subjective
user tests about YouTube QoE by means of crowdsourcing. Further experiments were
conducted in a laboratory environment to double-check the test results and to exclude
the influence of the actual test setting and implementation.

Realistic Test Scenarios: Typical Stalling Patterns and Video Clips. The main goal
of the experiments is to quantify the impact of system level influence factors, in particu-
lar network impairments on QoE. For YouTube video streaming, network impairments
result into related stalling patterns. Stalling events during the video playout are caused
by rebuffering of the video due to an insufficient content delivery rate. For example, if
the video bit rate is larger than the available network or server data rate, the video buffer
will emptied at some point in time and then the video freezes until the video buffer is
filled again. As a consequence, the YouTube user has to wait until the video restarts
playing. Furthermore, the user perceived quality suffers from initial delays before the
YouTube video playout starts, since the player fills up the video buffer before the video
playout. In general, the shift from unreliable media streaming to reliable HTTP over
TCP streaming makes waiting times one of the key QoE influence factors in the domain
of web-based video streaming. In the subjective user studies, these stalling patterns and
also initial delays are simulated and then the user is asked about her user perceived
quality – in presence of these waiting times.

To obtain realistic stalling patterns, the relationship between network QoS and stalling
events must be derived, which is not trivial due to the application-layer traffic manage-
ment by YouTube (see Section 2.4). In case of a bottleneck with a fixed network data
rate, periodic stalling patterns occur [19], i.e., every Δt seconds a stalling event of al-
most fixed length L takes place. An illustration of the YouTube video buffer evolution
in case of a bottleneck is depicted in Figure 6. As soon as the first threshold is exceeded,
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the video playout starts. However, if the video bit rate is larger than the network data rate
(which is here the case due to the bottleneck), the video buffer is emptied faster than
the network can deliver video data. As soon as the video buffer falls below a certain
threshold [19], the video stalls.

Fig. 6. Implementation of the YouTube video player [19]

On a content level, typical YouTube videos of various content classes like news,
sports, music clips, cartoons, etc. were used in the tests. Thereby, the video clips had
different resolutions, motion patterns and video codec settings. To reduce the state space
of parameters to be tested, only 30 s and 60 s long videos are considered in the test re-
sults. On context level, realistic desktop settings are considered. Thus, the video expe-
rience in the test should be as similar as possible to a visit of the real YouTube website
and the application should run on the users’ default web browser.

Crowdsourcing QoE Tests. To conduct subjective user studies for YouTube QoE,
crowdsourcing seems to be an appropriate approach. Crowdsourcing means to out-
source a task (like video quality testing) to a large, anonymous crowd of users in the
form of an open call. Crowdsourcing platforms in the Internet, like Amazon Mechani-
cal Turk or Microworkers, offer access to a large number of geographically widespread
users in the Internet and distribute the work submitted by an employer among the users.
With crowdsourcing, subjective user studies can be efficiently conducted at low cost
with an adequate number of users in order to obtain statistically significant QoE scores.
In addition, the desktop-PC based setting of crowdsourcing provides a highly realistic
context for usage scenarios like online video consumption.
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However, the reliability of results cannot be taken for granted due to the anonymity
and remoteness of participants: some subjects may submit incorrect results in order to
maximize their income by completing as many tasks as possible; others just may not
work correctly due to lack of supervision. To assure the quality of these QoE tests and
identify unreliable user ratings, different task design methods are proposed in [21] like
including content questions about the videos evaluated or consistency questions. For
example, the user is asked about his origin country in the beginning and about his origin
continent at the end of the test. The ratings of the participant are disregarded, if not all
answers of the test questions are consistent. Furthermore, application-layer monitoring
helps to identify reliably conducted tests. E.g. we monitored browser events in order to
measure the focus time, which is the time interval during which the browser focus is
on the website belonging to the user test. In addition to the crowdsourcing user studies,
time-consuming laboratory studies were conducted to double-check the test results. The
laboratory studies are described later in this section.

To have a realistic test scenario, the video experience in the test should mimic a visit
of the real YouTube website. To this end, an instance of the YouTube Chromeless Player
was embedded into dynamically generated web pages. With JavaScript commands the
video stream can be paused, a feature we used to simulate stalling and initial delays.
In addition, the JavaScript API allows monitoring the player and the buffer status, i.e.
to monitor stalling on application layer. In order to avoid additional stalling caused by
the test users’ Internet connection, the videos had to be downloaded completely to the
browser cache before playing. This enables us to specify fixed unique stalling patterns
and initial delays which are evaluated by several users. In particular, we varied the
number of stalling events as well as the length of a single stalling event, the length of
initial delays, but also the video characteristics in the tests.

During the initial download of the videos, a personal data questionnaire was com-
pleted by the participant which also includes consistency questions from above. This
personal data allows analyzing the impact on user level. Data was collected concerning
the background of the user by integrating demographic questions, e.g. about age or pro-
fession. Further, the users were asked to additionally rate whether they liked the content.
To get insights into the user’s expectations and habits in the context of YouTube, we ad-
ditionally estimated the user’s access speed by measuring the time for downloading the
video contents and the users were asked about the frequency of Internet and YouTube
usage.

The user then sequentially viewed three different YouTube video clips with a prede-
fined stalling pattern. After the streaming of the video, the user was asked to give his
current personal satisfaction rating during the video streaming. In addition, we included
gold standard, consistency, content and mixed questions to identify reliable subjective
ratings. The workers were not aware of these checks and were not informed about the
results of their reliability evaluation. Users had to rate the impact of stalling during
video playback on a 5-point absolute category rating (ACR) scale with the following
values: (1) bad; (2) poor; (3) fair; (4) good; (5) excellent. To be more precise, we asked
the users the following question “Did you experience these stops as annoying?” with
following answer choices: (5) “imperceptible”, (4) “perceptible”, (3) “slightly annoy-
ing”, (2) “annoying”, (1) “very annoying”.
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The Microworkers.com platform was used for the crowdsourcing-based QoE tests at
the University of Würzburg, since Microworkers allows conducting online user surveys
like our YouTube QoE tests. Microworkers supports workers internationally in a con-
trolled fashion, resulting in realistic user diversity well-suited for QoE assessment. The
Microworkers platform had about 350 thousand registered users world-wide in the mid
of 2012 (see [22] for a detailed analysis of the platform and its users). In total, we con-
ducted seven crowdsourcing campaigns focusing on stalling only and three campaigns
focusing on initial delays, respectively. The payment for the crowdsourcing test users
was less than 200 C. As described in detail in [21], unreliable test user ratings were
identified and the users were filtered out. Throughout the stalling campaigns, 1,349
users from 61 countries participated in the YouTube stalling test and rated the quality of
4,047 video transmissions suffering from stalling. For the initial delay tests, 686 users
rated 4,116 videos.

User Studies in Laboratory Environment. In order to validate the crowdsourcing test
results and the filtering of unreliable user ratings, similar experiments were carried out
in the ’i:lab’ laboratory at FTW in Vienna. The user ratings from the crowdsourcing and
the lab experiments lead to similar quantitative results and conclusions, see [23, 24]. For
the sake of completeness, we shortly describe the lab experiments focusing on initial
delays which results are depicted in Figure 8. All other numerical results concerning
user ratings stem from crowdsourcing tests as described above.

The lab experiment on initial delays contains 41 conditions. The experiment had a
total duration of 1.5 h, with an active QoE testing part of about 1 h. The test duration
also included a 5 min break in-between the tests and a comprehensive briefing phase at
the beginning of the test. Additionally, subjects had to fill out questionnaires about their
background, technical experience as well as the current condition, fatigue and cognitive
load. After the active testing part, each test was finalized with a debriefing interview
and a demographic questionnaire. The QoE testing part consisted of short video clips
with a duration of 30 s and 60 s. We used clips out of five different content classes:
action trailer, music, animation, documentation and news. After each clip participants
were asked to rate the perceived overall quality, including video quality and loading
performance, using a 5-point ACR scale on an electronic questionnaire. In total, we
collected data from 36 Austrian adults (19 male, 17 female) aged between 20 and 72
years (mean 39.16, median 36.5), recruited by public announcements.

3.2 Key Influence Factors

When it comes to predicting QoE of YouTube, an essential step is determining those
key factors that have the strongest influence on the actual experience. Therefore, we
analyze correlation coefficients as well as support vector machine (SVM) weights [21].
The Spearman rank-order correlation coefficient between the subjective user rating and
the above mentioned variables is computed. In addition, SVMs are utilized to obtain
a model for classification: Every variable gets a weight from the model indicating the
importance of the variable. However, SVMs are acting on two-class problems only.
Therefore, the categories 1 to 3 of the ACR scale to the “bad quality” class and the
categories 4 to 5 to the “good quality” class.
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Fig. 7. Identification of key influence factors on YouTube QoE

Figure 7a shows the results from the key influence analysis. On the x-axis, the differ-
ent influence factors are considered, while the y-axis depicts the correlation coefficient
as well as the SVM weights which are normalized to the largest correlation coefficient
for the sake of readability. We can clearly observe from both measures that the stalling
parameters dominate and are the key influence factors. It is interesting to note that the
user ratings are statistically independent from the video parameters (such as resolution,
video motion, type of content, etc.), the usage pattern of the user, as well as its access
speed. In particular, we used different video contents, but got no differences on the user
ratings. A possible explanation may be that a video user does not care about the video
quality (i.e. which encoding scheme is used, what is the video bit rate, etc.). If the video
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stalls, the video experience of the user is disturbed – independent of the actual video
characteristics. Thus, for a YouTube QoE model, those video characteristics can be
neglected – in contrast to the actual stalling pattern. However from a networking point
of view, higher video bitrates lead to more stalling events if there is a bottleneck in
the network. Hence, the video bit rate may be considered for QoE monitoring (see
Section 4.2) to estimate the number of stalling events (which is the relevant for the QoE
model).

However, the videos considered in the experiments [21] had a fixed length of 30 s and
no initial delays for buffering the video contents were considered. Therefore, a second
row of experiments was conducted [24] in which the following parameters were varied:
number of stalling events, duration of a single stalling event, video duration, initial
delay. Hence in addition to the first row of subjective studies, the video duration and
initial delays were considered as influence factors. To check again the influence of user
demographics on QoE, the age, sex, and user id were also considered in the analysis.

The results in Figure 7b reveal again that the number of stalling events together with
the stalling length are clearly dominating the user perceived quality, while the user
demographics have no influence. Furthermore, the impact of initial delays is statistically
not significant. We take a closer look at initial delays that may be accepted by the user
for filling up the video buffers to avoid stalling. In case of bad network conditions,
providers need to select a trade-off between these two impairment types, i.e. stalling
or initial delays, which allows QoE management for YouTube video streaming clouds
[25]. Therefore, we ask the question whether initial delays are less harmful to QoE than
stalling events for YouTube. However, the results in Figure 8 show that no statistical
differences are observed for video clips of 30 s and 60 s regarding the impact of initial
delays on the QoE. QoE is thereby quantified in terms of Mean Opinion Scores (MOS)
which is the average value of user ratings on the ACR scale for a given test condition,
i.e. a certain initial delay in that case.

3.3 A Model for QoE Monitoring

The identification of key influence factors has shown that YouTube QoE is mainly deter-
mined by stalling frequency and stalling length. To quantify YouTube QoE and derive an
appropriate model for QoE monitoring, we first provide mapping functions from stalling
parameters to MOS values. Then, we provide a simple model for YouTube QoE moni-
toring under certain assumptions. Finally, we highlight the limitations of the model.

QoE Mapping Functions. As fundamental relationship between the stalling parame-
ters and QoE, we utilize the IQX hypothesis [26] which relates QoE and QoS impair-
ments x with an exponential function f(x) = αe−βx + γ. In [21], concrete mapping
functions for the MOS values depending on these two stalling parameters, i.e. num-
ber N of stalling events and length L of a single stalling event, were derived. To be
more precise, YouTube videos of 30 s length were considered in the bottleneck scenario
leading to period stalling events. In order to determine the parameters α, β, γ of the
exponential function, nonlinear regression was applied by minimizing the least-squared
errors between the exponential function and the MOS of the user ratings. This way we
obtain the best parameters for the mapping functions with respect to goodness-of-fit.
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Fig. 8. Initial delays have almost no influence on MOS for videos of duration 60 s and 30 s –
compared to influence of stalling length [24]

In this work, however, the aim is to derive a model for monitoring YouTube QoE.
Therefore, we reduce the degree of freedom of the mapping function and fix the pa-
rameters α and γ. If we consider as QoS impairment x either the number of stalling
events or the stalling duration, we observe the following upper and lower limits for the
QoE f(x), i.e. limx→0 f(x) = α + γ and limx→∞ f(x) = γ, respectively. In case of
no stalling, i.e. x = 0, the video perception is not disturbed and the user perceives no
stalling. As we asked the user “Did you experience these stops as annoying?”, the max-
imum MOS value is obtained, i.e. α + γ = 5. In case of strong impairments, however,
i.e. x → ∞, a well-known rating scale effect in subjective studies occurs. Some users
tend to not completely utilize the entire scale, i.e. avoiding ratings at the edges leading
to minimum MOS values around 1.5 [27]. Hence, we assume α = 3.5, γ = 1.5 and
derive the unknown parameter β from the subjective user tests. The obtained mapping
functions as well as the coefficient of determination R2 as goodness-of-fit measure are
given in Table 3. In particular, the mapping function fL(N) returns the MOS value for
a number N of stalling events which have a fixed length L. It can be seen that R2 is
close to one which means a very good match between the mapping function and the
MOS values from the subjective studies.

Figure 9 depicts the MOS values for one, two, three and four seconds stalling length
for varying number of stalling events together with exponential fitting curves (as dis-
cussed in [26]). The x-axis denotes the number of stalling events, whereas the y-axis
denotes the MOS rating. The results show that users tend to be highly dissatisfied with
two or more stalling events per clip. However, for the case of a stalling length of one
second, the user ratings are substantially better for same number of stalling events.
Nonetheless, users are likely to be dissatisfied in case of four or more stalling events,
independent of stalling duration. As outlined in the previous chapter of this book “From
Packets to People: Quality of Experience as a New Measurement Challenge”, most of
the users accept a quality above 3 on the ACR scale, i.e. a fair quality.
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Table 3. Parameters of mapping functions (see Figure 9) of stalling parameters to MOS together
with coefficient of determination R2 as goodness-of-fit measure

event length L mapping function depending on number N of stalling events R2

1 s f1(N) = 1.50 · e−0.35·N + 3.50 0.941
2 s f2(N) = 1.50 · e−0.49·N + 3.50 0.931
3 s f3(N) = 1.50 · e−0.58·N + 3.50 0.965
4 s f4(N) = 1.50 · e−0.81·N + 3.50 0.979
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Fig. 9. Mapping functions of stalling parameters to MOS [21]. Video duration is fixed at 30 s. No
initial delay is introduced. Parameters are given in Table 3.

It has to be noted that it is not possible to characterize the stalling pattern by a simple
total stalling duration T = L ·N only, as the curves for fL(N) depending on the total
stalling duration T = L ·N differ significantly [20]. Therefore, stalling frequency and
stalling length have to be considered individually in the QoE model.

Simple Model for QoE Monitoring. Going beyond the pure mapping functions, we
develop next an appropriate QoE model for monitoring. The intention of the monitoring
is to provide means for QoE management [20] for ISPs or the video streaming service
provider. Hence, the model has to consider an arbitrary number N of stalling events
and stalling event length L, while the subjective user studies and the provided mapping
functions fL(N) in the previous section only consider a finite number of settings, i.e.
L ∈ {1, 2, 3, 4} s. As a result of the regression analysis in the previous section, the
parameter βL of the exponential mapping function fL(N) = 3.5βLN + 1.5 is obtained
as given in Table 3.
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Figure 10 shows the obtained parameter βL depending on the length L of a single
stalling event. As four settings for L were tested in the subjective user studies, the
figure contains four different dots (L, βL) together with the actual 95 % confidence
interval for the nonlinear least squares parameter estimates βL. Except for the obtained
parameter value β3 for L = 3 s, all other values βL lie on a straight line. Furthermore,
the confidence interval of the parameter β3 overlaps the line. Therefore, we assume in
the following a linear relationship between βL and the event length L which can be
easily found as β(L) = 0.15L+ 0.19.

As simple QoE model f(L,N), we therefore combine our findings, i.e. fL(N) and
β(L), into a single equation taking the number of stalling events N and the stalling
length L as input

f(L,N) = 3.50e−(0.15L+0.19)·N + 1.50 for L ∈ R
+, N ∈ N . (QoE)

Figure 11 illustrates the obtained model for YouTube QoE monitoring as surface plot.
On the x-axis the number N of stalling events is depicted, on the y-axis the stalling
event length L, while the actual MOS value f(L,N) according to Eq.(QoE) is plotted
on the z-axis. The figure clearly reveals that the number of stalling events determines
mainly the QoE. Only for very short stalling events in the order of 1 s, two stalling
events are still accepted by the user with a MOS value around 3. For longer stalling
durations, only single stalling events are accepted.

Other Influence Factors and Limitations of the Model. The scope of this section
is to clearly summarize the assumptions and limitations of the provided QoE model as
long as the implications for YouTube QoE monitoring. First, we analyze the impact of
stalling on YouTube videos of two different durations of V = 30 s and V = 60 s,
respectively. We consider now a single stalling event only (N = 1) and vary the
stalling duration L from 0 s to 8 s. Figure 12 shows the exponential fitting functions
gV (L) = 3.5βL·L+1.5 of the user ratings in the subjective tests. We see that the curves
g30 and g60 are deviating significantly from each other. Thus, the MOS for the same
stalling duration shows significant differences for different video durations: a video
with a stalling event of length 8 s is rated 3.30 and 2.51 for a video duration of 60 s
and 30 s respectively. Therefore, the video duration must also be taken into account in a
proper QoE model. However, it has to be noted that the video duration only plays a role
if there are only a very few stalling events (compared to the video duration). Otherwise,
the actual number of stalling events dominates the user perceived quality. Nevertheless,
Figure 12 depicts the curve for the QoE model in Eq.(QoE) and reveals some limita-
tions of the provided QoE model for monitoring. For longer video durations, the MOS is
higher compared to shorter clips with same stalling patterns. Hence, the provided QoE
model (obtained for short video clips of 30 s) underestimates the actual QoE. Therefore,
QoE monitoring based on this model will give some lower bounds which is desired for
QoE management and the avoidance of any QoE degradation of the video streaming
service.

Additional assumptions and limitations of the provided QoE model are as follows. In
the subjective tests only typical YouTube video formats were considered, however, more
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“extreme” scenarios e.g. very small resolution vs. HD resolution are a subject of future
work. Furthermore, the applied stalling pattern considers a bottleneck in the network or at
the server side with a constant data rate. This leads to a periodic stalling pattern in which
the duration of a single stall event has a fixed duration [21]. Arbitrary stalling patterns due
to networks with varying bottleneck capacities are not investigated so far due to the lack
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of related arbitrary stalling models and corresponding subjective user studies. Hence, the
impact of different traffic patterns on YouTube QoE is also a matter of future research.
As mentioned above, a general relationship between the ratio of the stalling duration and
the video duration onto YouTube QoE still is also of interest. Further assumptions of
the model are the exponential relationship according to the IQX hypothesis with fixed
parameters α and γ due to limits of the MOS values. In addition, we assume a linear
relationship between the parameter β(L) and the length of a stalling event L.

In summary, the concrete MOS values depend on the video duration and the actual
stalling pattern. From a QoE management perspective, stalling must be avoided to keep
YouTube users satisfied. Even very short stalling events of a few seconds already de-
crease user perceived quality significantly. However, initial delays are tolerated up to
a reasonable level. Hence, YouTube QoE monitoring should pro-actively detect immi-
nent stalling, so that QoE control mechanisms are triggered timely in advance – which
is possible with the provided QoE model in the previous section.

4 Monitoring YouTube QoS and QoE

This section provides an overview of different QoE monitoring approaches that have
been investigated for YouTube video streaming. As already discussed in the previous
section, YouTube QoE is primarily determined by stalling effects on the application
layer, as opposed to UDP-based video streaming common for traditional IPTV ser-
vices. Consequently, the central challenge for QoE monitoring is the robust detection
of stalling events as they occur during playback. With the number of stalling events
and the average length of a single stalling event as input parameters, the QoE model in
Eq.(QoE) can be applied to quantify the user perceived quality.

In this context, we distinguish between two categories of monitoring approaches,
which differ in terms of measurement point and layer at which the information is cap-
tured. Client-level monitoring approaches require modifications of the player application
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or the installation of additional monitoring clients, but can provide exact results since
performance (i.e. stalling patterns) is directly measured at the end user’s terminal at
the application layer. Network-level approaches aim to detect impairments solely from
measurements within the network, typically performed at ISP level. We discuss several
network-layer monitoring approaches suitable for estimating YouTube QoE, as well as
their accuracy (compared to application-level monitoring) and implementation aspects.

4.1 Client-Level Monitoring

As far as client-level monitoring is concerned, most of the related work has been con-
ducted in the context of QoE optimization and traffic management. Staehle et al. [28]
present a client-side software tool to monitor YouTube traffic at the application level,
by estimating buffer levels to predict stalling events. This approach has been success-
fully applied to the application-aware self-optimization of wireless mesh networks in
[29] in such a way that in case of likely stalling additional resources are provided by the
network. In a similar way, the "Forwarding on Gates" (FoG) approach has been used in
[30] to develop a novel dynamic network stack based on functional blocks for optimiz-
ing the QoE of YouTube playback. The underlying monitoring approach termed YoMo
is discussed in the following.

C1. YoMo– An Application-level Comfort Monitoring Tool. The YouTube monitor-
ing tool YoMo [28] measures the video player buffer status directly at the end user site
on application layer. This allows predicting an imminent stalling taking into account
user interactions as pausing the video or jumping within the video, but requires an in-
stance of YoMo running at the user device. Additional challenges for monitoring at the
end user level address privacy concerns of users as well as trust and integrity issues
due to cheating users to obtain better performance by fraud. However, monitoring at the
end-user gives the best view on user perceived quality and YoMo itself is a lightweight
Java tool cooperating with a Firefox plugin. The YoMo tool performs several tasks [28]:

– Detect a YouTube flow and forward this information to the mesh advisor which
is able to trigger adequate resource management tools in order to avoid a QoE
degradation.

– Analyze the packets of the YouTube flow to calculate the video buffer status β.
– Constantly monitor β and raise an alarm if this falls below a critical threshold.

YoMo monitors the client’s incoming traffic and identifies a YouTube video flow by
detecting the FLV signature. The data of each YouTube video flow is continuously
parsed in order to retrieve the information embedded in the FLV tags. In particular,
each FLV tag includes the time when the frame is to be played out, allowing to derive
the currently available playtime T preloaded in the video buffer.

YoMo estimates the buffer level β by computing the difference between playtime
T and current video position t. However, while the playtime T can be derived as the
time stamp of the last completely downloaded FLV tag, the current video position t
cannot be obtained from the FLV tags, but from the YouTube player only which can be
accessed by the YouTube API with scripting languages. Therefore, YoMo uses a simple



290 T. Hoßfeld et al.

Firefox extension which retrieves t from the YouTube player and sends it to the YoMo
software. In [28] further technical details are described extensively. Moreover, the paper
shows that in the case of a sudden connection interruption, YoMo is able to predict the
time of the video stalling event with an accuracy of about 0.1 s. YoMo and the Firefox
plugin may be downloaded from the G-Lab website1.

C2. Pytomo – Analyzing Playback Quality of YouTube Videos. In the context of
traffic characterization and measurement of playback performance, another client-level
monitoring has been developed by Juluri et al. [31]: Pytomo.

The purpose of this Python-based tool is to measure the download and analyze the
playback performance of YouTube videos. To this end, it emulates user by downloading
a given YouTube video and then selects a number of random related links for further
downloads. In this respect Pytomo is not a monitoring tool running in the background
like YoMo but rather a crawler that actively downloads content in order to perform its
measurements. Pytomo’s crawling process can be summarized as follows:

– an initial set of YouTube videos is chosen (by default the most popular videos of
the week);

– for each selected video, the cache-URL of the video server hosting the clip file is
obtained;

– the (possibly different) IP addresses of the video server are obtained by querying
three different DNS servers;

– the ping statistics are collected for each resolved IP address of the video servers;
– from each resolved IP address the first 30 seconds of the video is downloaded at

the default video format (640x390)2;
– the crawl continues with the next video.

For each video download, Pytomo collects the following statistics: ping statistics, video
information, download statistics, playback statistics such as initial buffer, number of
stalling events, total buffering duration, buffer duration at the end of the download (see
[31] for a detailed description). Similar to the findings of section Section 3, the authors
recommend the number of stalling events and total buffering duration as main indicators
for playback QoE.

Like YoMo, Pytomo estimates the playout buffer level by comparing video
playtime with the video position. To derive the stalling patterns, this information feed
into a model of the YouTube player. While Pytomo relies on the same application-
level quality predication approach, it can be considered complementary to YoMo: as a
crawler, it actively measures YouTube QoE with high repeatability, albeit at its current
state does not predict end user QoE. Furthermore, Pytomo allows to study the impact
of the DNS resolver used on playback quality, which as shown in [31], can have a
considerable impact. Pytomo is a GPL software and can be freely downloaded from
http://code.google.com/p/pytomo.

1 http://www.german-lab.de/go/yomo
2 In order to perform a video download, Pytomo first resolves the IP address of the content server

and then uses this IP address to perform the analysis. This ensures that the analysis and video
download are being performed on the same server.

http://code.google.com/p/pytomo
http://www.german-lab.de/go/yomo
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4.2 Network-Level Monitoring

While being highly accurate, client-level approaches are not applicable in the case of
an ISP interested in monitoring YouTube QoE inside its network. The main reason is
that the installation of additional software on the client side as well as the migration to
a non-standard network stack or topology are not practical options.

In the case of YouTube, the main challenge is the accurate approximation of the
stalling events that take place at the application layer using network packet traces
only, which is non-trivial. One example of work in this field is [32], where the au-
thors present an approach for measuring YouTube stalling events from packet traces.
The paper presents some first interesting results, but is too limited in terms of number
of analyzed videos to draw conclusions on the accuracy of the approach. Moreover,
no QoE models or estimations are derived from this analysis. In contrast, other works
focus on monitoring YouTube stalling events and estimating the corresponding QoE
levels, relying exclusively on passive monitoring of TCP flows. Previously in [33], we
have presented and compared three different passive monitoring approaches, referred
to as ’M1’, ’M2’, and ’M3’. The first approach M1 is based on the download time of
the whole video; M2 relies on measuring the end-to-end throughput of the connection;
finally, M3 approximates the actual video buffer status. All three approaches allow to
estimate the stalling pattern without relying on application-level or client side measure-
ments, however with different levels of accuracy and complexity. In general, the stalling
pattern can be described by the total stalling time T , the number of stalling eventsN ,
and the duration or length of a stalling event L. In case of a bottleneck with constant
capacityB, regular stalling events are observed as measured in [19]. Assuming a known
distribution for L, we can formulate the first and most simple monitoring approach:

M1. Download Time vs. Video Duration. In this approach, the monitoring system
measures the total stalling time T as the difference between the total video download
time Y and the video durationD, i.e. T = max(Y −D, 0). With a given average stalling
length L, the number N of stalling events can be roughly approximated as N = T/L
(cf. [33]). Note that the download time of the video contents can be easily extracted
from packet-level traces.

A first problem with M1 arises, when trying to obtain the overall duration of the video
D. There are several possibilities in practice. First, this information is available from
the YouTube website and can be requested directly via the YouTube API. Therefore, the
monitoring system has to extract the YouTube video identifier from the HTTP request
containing the url and the video id. An alternative option is to extract the information
from the video header. YouTube uses for example the FLV container file format, from
which meta data like video duration, frame rate and key frames are specified. In that
case, the monitoring system has to parse the network packets and needs to understand
the container format. Hence, both options require some extra effort for the system to
get the video duration. However, the major drawback of M1 is that it uses the total du-
ration of the video as input. Indeed, if the user does not watch the entire video and thus
aborts downloading before the end, which is very frequent in practice, this monitoring
approach cannot be applied. For this reason, a more complex approach is required for
passive probing scenarios.



292 T. Hoßfeld et al.

M2. Network Throughput vs. Video Encoding Rate. The second approach is based
on the stalling frequency approximation in [21]. Based on a considerable body of mea-
surement data, the authors show that the frequency F of stalling events can be well
approximated with an exponential function

F (x) = −1.09e−1.18x + 0.36 (1)

with x being the normalized video demand x = V/B defined as ratio of video encoding
rate V and download throughputB. In that case, the bottleneck capacityB has to be es-
timated, which can be easily done from passive monitoring packet traces and throughput
measurements [34]. Furthermore, the video bitrateV has to be extracted from the packets
by parsing the meta data available at the container file format. From these two values, the
normalized video demand x = V/B is computed. Finally, the number of stalling events
can be approximated byN = min(D,Y )F (x), where Y represents in this case the cur-
rent download time of the video, and not the total video download time as in M1. Similar
to M1, the video durationD has to be extracted from the packet traces.

The computational effort for M1 and M2 is comparable, but M2 can also be applied
to cases where the user does not download and watch the whole video content. How-
ever, the major problem with M1 and M2 is accuracy. Both approaches estimate either
the total stalling time T and/or the number of stalling events N , assuming that the dis-
tribution of the stalling length L is known. For example, L can be approximated by
a t location-scale distribution [19]. Although the length of a single stalling event lies
between 2 s and 5 s with high probability, this approach leads to inaccurate results and
thus QoE estimations with considerable errors.
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Fig. 13. Monitoring approaches M1 and M2 can only estimate the number of stalling events with
a certain probability [33]

Figure 13 shows the complementary cumulative distribution function of the number
of stalling eventsN = F−1 estimated for given total stalling times T , which are varied
from 2 s to 16 s. The estimation is obtained by using the t-location-scale approximation,
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and the approximation applied in M1, i.e., N = T/L. This estimation of N clearly
exhibits a large variance, particularly for longer total stalling time values. For example,
for a total stalling time of 8 s, the number of stalling events lies between 2 and 4 with
high probability. However, this range already has a strong impact on the actual QoE,
ultimately deciding between good and bad quality: as shown in [21], the number of
stalling events is crucial for the end-user experience. Thus, the QoE differences for N
and N + 1 stalling events may be dramatic. For example, for N = 1 the difference is
about 0.7 – 0.8 MOS in a 5-point MOS-scale. Consequently, in practice an ISP can use
both approaches only for upper or lower bound estimations of QoE.

For some ISP, it may be sufficient to determine whether stalling occurs or not and
how the user reacts in response. Therefore, we define the QoS metric reception ratio ρ
as ratio between download throughputB and video encoding rate V , i.e.

reception ratio ρ =
B

V
.

Although the reception ratio cannot be directly related to QoE, it is a good indicator if
there are problems in the network. We demonstrate this by relating the reception ratio
to the user behavior based on our work in [11], which is one of the first attempts to
quantify the impact of playback quality on the viewing behavior.

A download throughput lower than encoding rate should result in interrupted play-
back: thus we define the reception quality as QoE indicator in the following way,

– if reception ratio > 1, we consider the video has good reception quality;
– otherwise we consider the video has poor reception quality.

This metric may first seem quite crude, so we have used active measurements from [15]
to evaluate its accuracy. The dataset used consists of eight packet traces of one hour
collected between 2008 and 2011 (see [11] for details). We use two standard metrics
usually used in pattern recognition and information retrieval, namely precision and
recall. They are based on the concepts of

– True Positive TP: reception ratio > 1 and the video had no stall;
– False Positive FP: reception ratio > 1 but the video had at least one stall;
– True Negative TN: reception ratio < 1 and the video had at least one stall;
– False Negative FN: reception ratio < 1 but the video had no stall.

Out of these notions, we build these evaluation metrics:

– recall = TP / (TP + FN): this corresponds to the fraction of uninterrupted videos
correctly evaluated;

– precision = TP / (TP + FP): this corresponds to the ratio of uninterrupted videos in
the videos with reception ratio > 1.

For the data set of December 2011 we obtain 91.8% of recall and 88.5% of precision.
While the overall performance of this indicator is surprisingly good, it suffers from the
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Fig. 14. Fraction of video downloaded as function of video reception quality for YouTube (YT)
and Dailymotion (DM) (from [11])

following two limitations [19]. First, if the video duration is very short, sufficient data
is downloaded before the video playout starts and no stalling occurs. Second, stalling is
caused by the variability of the video bit rate, which may happen even when the network
capacity is larger than the video bit rate.

Furthermore, an ISP is interested in the relation between the user perception and
the user behavior. Therefore, we analyze in the following the fraction of the video
downloaded (as user behavior indicator) depending on the reception quality (as QoE
indicator).

In Figure 14, we plot the CDF of the fraction of the video downloaded. We distin-
guish between videos with good reception quality and those with poor reception quality.
We see that under good playback quality, less than 50% YouTube transfers are aborted
before the end, whereas with poor playback quality, as much as 80% of the transfers
are aborted before the end. We have also included another popular video streaming site,
namely DailyMotion. The results are quite similar for both video streaming sites, which
justify the claim that reception quality influences the viewing behavior.

In Figure 15, we distinguish each video according to its duration and the fact that it
has been completely downloaded (at least 90% of video downloaded):

– short videos (≤ 3 minutes);
– long videos (≥ 3 minutes) and completely downloaded;
– long videos (≥ 3 minutes) and not completely downloaded;

We plot the downloaded duration vs. the content duration for YouTube videos: in Fig-
ure 15a for videos with good reception quality, and in Figure 15b for videos with poor
reception quality. We observe that in case of good reception quality, 34% of the videos
have a downloaded duration of 3 minutes or more, while in case of poor reception qual-
ity their share drops to only 15%. This confirms that the reception quality influences the
behavior of the user, and this influence is more pronounced for long videos.
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M3. YiN- YouTube in Networks Based on Playout Buffer Approximation. The third
passive monitoring approach M3, also called “YiN” in [33], detects YouTube video flows
like for client-level monitoring (see Section 4.1). It extracts video information from net-
work packet data. In particular, the size and time stamps of (audio and video) frames are
retrieved by means of deep packet inspection. Together with the YouTube video player
parameters in particular the playing thresholdΘ1 and the stalling thresholdΘ0 (see Fig-
ure 6), the playout video buffer status is reconstructed on behalf of network data only
at high accuracy. As soon as the YouTube video buffer exceedsΘ1, the player starts the
video playback. If the buffer underrunsΘ0, the video stalls. The player parameters are
determined in [33] based on the application-layer measurements in [19]. However, it has
to be noted that there may small deviations of these values from video to video in practice,
since the player takes into account the actual structure of the video codec for optimized
video playout. Consequently, such small errors may propagate and lead to inaccuracies
in practice.

The basic idea of YiN is to compare the playback times of video frames and the time
stamps of received packets. We define the frame time τi as follows. After receiving the
i-th acknowledgment on TCP layer at time ti, a total amount of ν =

∑i
j=1 νi bytes has

been downloaded. Together with the size of each video frame and the video frame rate
– typically around 25 frames/s –, the frame time τi corresponds to the downloaded video
’duration’ so far. Then, we define the play time ρi and the stalling time σi to be the user
experienced video play time and stalling time after the i-th TCP acknowledgment. The
actual amount of buffered video time is indicated by βi. The boolean stalling variable
ψi indicates whether the video is currently playing (ψi = 0) or stalling (ψi = 1).

On behalf of these measures the stalling pattern over time, i.e. over the TCP acknowl-
edgments, can be computed as follows [33].

ψi = ψi−1 ∧ βi−1 < Θ0 ∨ ¬ψi−1 ∧ βi−1 < Θ1 (2)

σi = σi−1 +

{
ti − ti−1, if ψi

0, if ¬ψi

(3)

ρi = ρi−1 +

{
0, if ψi

ti − ti−1, if ¬ψi

(4)

βi = τi − ρi (5)

The actual video buffer can then be approximated by the difference between the frame
time τi and the actual play time ρi. The iterative computation of the different variables
is initialized in the following way, since YouTube first starts playing until the threshold
Θ1 is exceeded to fill the video buffer.

σ0 = 0, ρ0 = 0, ψ0 = 1 . (6)

QoS and QoE-Level Evaluation of Network Monitoring Approaches. As already
outlined above (cf. Figure 13), the monitoring approaches M1 and M2 can only estimate
the number of stalling events with a certain probability. Hence, their accuracy is not
sufficient for proper QoE monitoring. In this context, the concept of reception ratio as
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Fig. 15. Fraction of video downloaded as function of video length (from [11])

ratio between download throughput and video encoding rate was introduced to indicate
whether stalling occurs or not.

To evaluate the accuracy of the YiN monitoring approach, which aims to retrieve the
stalling pattern, the estimated video buffer was compared with the actual video buffer
measured at application layer, which serves as ground truth. The measurements took
place from June 2011 to August 2011 in a laboratory at FTW in Vienna (see [33] for
further details). Furthermore, in a second step the stalling patterns were mapped to QoE
according to the YouTube QoE model (Section 3.3) and the difference between ’mea-
sured’ and ’estimated’ QoE based on the reconstructed stalling patterns were compared.

In this respect, the results in [33] show that YiN is the most accurate approach that
predicts that stalling pattern almost exactly with a coefficient of correlation between
measured and estimated values of about 0.9998. Figure 16a illustrates this very strong
correlation between the total stalling time estimated from packet traces and the total
stalling time as measured on the application-layer.
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Nevertheless, the remaining measurement error can lead to strong QoE differences
due to the end user’s non-linear perception of stalling that is also reflected in the QoE
model discussed in Section 3.3. We compare our results considering two different eval-
uation scenarios: (i) the QoE model evaluation using the real stalling patterns, and (ii) a
worst case evaluation, which provides an upper bound to the QoE estimation difference.
For the worst case evaluation, short stalling events of 1 s length are considered, which
sum up to the total stalling time. This is a worst case scenario because it leads to a
higher number of stalling events than actually observed. Again, the difference ΔQoE
between ’measured’ and ’estimated’ QoE based on the reconstructed stalling patterns
are compared.
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The cumulative distribution functions of the ΔQoE values obtained in both sce-
narios are depicted in Figure 16b. The QoE difference w.r.t. the QoE model is almost
zero for about 60 % of the analyzed videos. As worst case upper bound, two thirds of
the analyzed videos show a QoE difference below 0.5. However, differences can be as
large as one step on the MOS scale, as observed for 10 % of the videos. Thus, the YiN
monitoring approach may estimate good quality (MOS 4), while the users actually only
experience a fair quality (MOS 3). The main reason for these inaccuracies is – as de-
scribed above – error propagation; since according to end-user quality perception and
the underlying mapping from stalling QoS to YouTube QoE are highly non-linear, a
relatively small measurement error can result in aforementioned MOS differences. For
example, when the number of stalling events is very low, one stalling more or less al-
ready makes a huge difference in QoE. As a consequence, one has to take these error
margins into account and set alarm thresholds accordingly [20].

Nonetheless, the above results demonstrate that an accurate reconstruction of stalling
events from network-level measurement data is possible, and that YouTube QoE mon-
itoring at ISP-level is feasible. However, only the most accurate and unfortunately the
most complex YiN approach can be actually used for QoE monitoring purposes, since
(i) stalling frequency and stalling duration both need to be measured, and (i) the non-
linearity of human perception demands for high QoS measurement accuracy, particu-
larly in those cases where stalling frequency is low.

5 Conclusion

In this chapter, we have presented the YouTube delivery infrastructure and we have
investigated YouTube video streaming in terms of QoE impact of Internet delivery as
well as resulting QoE monitoring aspects. To this end, we discussed the key mechanisms
used by YouTube: Cache selection plays an important role in YouTube and we showed
that surprisingly, cache server selection is highly ISP-specific and that geographical
proximity is not the primary criterion, for reasons that need further investigation. In
addition, DNS level redirections for load-balancing purposes occur quite frequently
and can considerably increase the initial startup delay of the playback (in the order of
seconds). However, the results from subjective user studies showed that initial delays
up to about ten seconds have no severe impact on QoE. Hence, QoE models and QoE
monitoring approaches may neglect those initial delays.

From a QoE management perspective, the smooth playback of the video rather than
visual image quality is the key challenge, since YouTube uses HTTP via TCP to deliver
the video. We saw that, more than any other impairment, stalling events (i.e. playback
interruptions) have a dramatic impact on the QoE and should be avoided at any price.
The monitoring of the stalling frequency and duration is the prerequisite for proper
QoE monitoring. In this context, the throughput-based reception ratio plays a key role
as QoE-relevant metric for predicting buffer under-runs. Concerning QoE monitoring,
we compared several network-level and client-level approaches with regard to their ac-
curacy to detect stalling pattern. As expected, this is more difficult for network-level
approaches, which have to reconstruct client-level stalling patterns from network traf-
fic information only. However, our evaluation of the YiN algorithm shows that this is
feasible, albeit at the cost of increased demand for computational performance.



Internet Video Delivery and QoE 299

As far as future work is concerned, the QoE management for video streaming to
smartphones remains an open issue. The mobile environment will lead to different traf-
fic and stalling patterns that need to be evaluated from a QoS and QoE monitoring
perspective accordingly.
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