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Abstract. In this paper we consider two very different case studies ex-
plored using scalable analysis techniques and stochastic process algebra.
The first case study is a classical computer science problem: determining
the efficiency of two non-repudiation protocols. We use PEPA to spec-
ify the model derived from the protocol specification and mean value
analysis and fluid approximation to derive the desired metrics. In the
second case study we model a human-centric system, concerning patient
flow through a hospital clinic. The model is derived from the clinic prac-
tice and observed takt times are used to populate the model. We use
PEPA and fluid approximations to derive measures. The two case stud-
ies demonstrate the power and versatility of the modelling and analysis
approaches used.

1 Introduction

Stochastic process algebra, such as PEPA [1], have been used for around twenty
years to formally model and analyse a wide range of computer science appli-
cations. The compositional approach to modelling has been demonstrated as
being extremely efficient at specifying large models with interactions between
many concurrent components. However, with that efficiency in specification has
come the need for efficient and scalable analysis techniques.

Much initial work in this area was concerned with decomposing the model
for solution [2], for example to derive a product form solution [3, 4]. Work on
product form solutions in stochastic process algebra is still taking place, most
notably using reversed processes [5, 6], but the class of model amenable to such
techniques will always be limited. As a result other techniques were needed and
a significant breakthrough came with the application of fluid approximations
to biochemical models specified in PEPA [7]. This form of approximation uses
ordinary differential equations to solve the model deterministically. Subsequent
results have shown that the approximation tends to the exact solution in the
limit where the number of components of each type becomes infinite [8]. This
limit does not hold in the models in this paper since we have a fixed small
number of service centres, however the approximation has been shown to give
useful results in a number of previous studies [9–11].

In this paper we present two case studies to illustrate the applicability of the
fluid approximation with PEPA. The first case study is a traditional computer
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science problem in analysing the performance of two security protocols. This
main feature of this problem concerns the scalability of a server faced with
requests from a potentially large number of pairs of client processes. The second
case study is conceptually quite different, but is equally amenable to the same
analysis techniques. In this case we seek to find the throughput of patients
through a hospital clinic under various appointment regimes. The aim here is to
minimise waiting times for patients whilst maintaining efficient working practices
for consultants and other hospital staff.

The rest of the paper is organised as follows. In the next section we give a
brief overview of PEPA, followed by the two case studies. In the final section we
draw some conclusions and highlight some directions for future work.

2 PEPA

A formal presentation of PEPA is given in [1], in this section a brief informal
summary is presented. PEPA, being a Markovian Process Algebra, only sup-
ports actions that occur with rates that are negative exponentially distributed.
Specifications written in PEPA represent Markov processes and can be mapped
to a continuous time Markov chain (CTMC). Systems are specified in PEPA in
terms of activities and components. An activity (α, r) is described by the type of
the activity, α, and the rate of the associated negative exponential distribution,
r. This rate may be any positive real number, or given as unspecified using the
symbol �.

The syntax for describing components is given as:

P ::= (α, r).P |P +Q|P/L|P ��
L Q|A

The component (α, r).P performs the activity of type α at rate r and then
behaves like P . The component P + Q behaves either like P or like Q, the
resultant behaviour being given by the first activity to complete.

The component P/L behaves exactly like P except that the activities in the
set L are concealed, their type is not visible and instead appears as the unknown
type τ .

Concurrent components can be synchronised, P ��
L Q, such that activities in

the cooperation set L involve the participation of both components. In PEPA
the shared activity occurs at the slowest of the rates of the participants and if
a rate is unspecified in a component, the component is passive with respect to

the activities of that type. A
def
= P gives the constant A the behaviour of the

component P . The shorthand P ||Q is used to denote synchronisation over no
actions, i.e. P ��

∅ Q. We employ some further shorthand that has been commonly

used in the study of large parallel systems. We denote A[N ] to mean that there
are N instances of A in parallel, i.e. A|| . . . ||A.

In the first case study we only consider models which are cyclic, that is, every
derivative of components P andQ are reachable in the model description P ��

L Q.
Necessary conditions for a cyclic model may be defined on the component and
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model definitions without recourse to the entire state space of the model. In the
second case study we employ the notion of terminating components [12]. In this
case components enter a Stop behaviour

3 Case Study: Non-repudiation Protocols

A Key Distribution Centre (key exchange protocol) has been studied in our pre-
vious work, which shows the possibility of modelling by a stochastic process al-
gebra PEPA and analysis by several alternative techniques [9–11]. In this paper,
we focus on that how we can apply the modelling and analysis techniques which
we developed in the Key Distribution Centre study, to two non-repudiation pro-
tocols. Firstly, partial evaluation [13] has been adopted for model simplification,
then we use fluid flow approximations to solve models with large populations.

A non-repudiation service will prevent either of the principals involved from
denying the contract after the agreement. The two protocols depicted here were
first proposed by Zhou and Gollmann [14, 15] and use a non-repudiation server,
known as a Trusted Third Party (TTP). We denote these two protocols by ZG1
and ZG3, respectively.

3.1 ZG1 Specification

– A: originator of the non-repudiation exchange
– B: recipient of the non-repudiation exchange
– TTP : on-line trusted third party provide network services accessible to the

public
– M : message sent from A to B
– C: ciphertext for message M
– K: message key defined by A
– NRO = sSA(fNRO, B, L, C) : Non-repudiation of origin for M
– NRR = sSB(fNRR, A, L, C) : Non-repudiation of receipt of M
– sub K = sSA(fSUB, B, L,K) : proof of submission of K
– con K = sST (fCON , A,B, L,K) : confirmation of K issued by TTP

First, A sends the ciphertext (C) and a non-repudiation origin (NRO) for mes-
sage M to B, and then B replies back with a non-repudiation receipt (NRR)
to A. Now B possesses the ciphertext, but cannot read it as he still hasn’t got
the key to decrypt M . According to the non-repudiation requirement, B is not
a trusted agency to A for sending the key directly to B, they only can resort to
a trusted third party (TTP ). After receiving the key and proof of submission
(sub K), the TTP will generate a confirmation of K (con K) and publish in a
read only public area. Finally, B can get the key from this public area to decrypt
ciphertext (C) and A fetches the confirmation of submission as non-repudiation
evidence.
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3.2 ZG3 Specification

– L: a unique label chosen by TTP to identify the message M
– Ts : the time that TTP received A’s submission
– Td : the time that TTP delivered and available to B
– NRO = sSA(fNRO, TTP,B,M) : non-repudiation of origin for M
– NRS = sSD(fNRS , A,B, Ts, L,NRO) : non-repudiation of submission of M
– NRR = sSB(fNRR, TTP,A, L,NRO) : non-repudiation of receiving a mes-

sage labelled L
– NRD = sSD(fNRD, A,B, Td, L,NRR) : non-repudiation of delivery of M

ZG1 describes a non-repudiation protocol with minimized involvement of a
trusted third party, acting as a “low weight notary”. However, timing evidence of
sending and receiving is required in some applications; hence ZG3 can be adopted
in this situation. A sends the plaintext (M) and a non-repudiation origin (NRO)
to the trusted third part (TTP ), and then fetches the time of receiving (Ts) and
non-repudiation of submission (NRS) from a public area, after TTP has pub-
lished this information. The TTP tells B it received M from A by sending the
NRO. B generates a non-repudiation of receiving for TTP following. Finally, B
and A can fetch M and the time of delivery (Td), with other non-repudiation
evidence, from the public area, after the TTP has published.

(request) 1.A → TTP : fNRO, TTP,B,M,NRO
(response&
getByA1) 2.A ↔ TTP : fNRS , A,B, Ts, L,NRS
(response) 3.TTP → B : A,L,NRO
(sendTTP ) 4.B → TTP : fNRR, L,NRR
(response&

getByB) 5.B ↔ TTP : L,M
(response&
getByA2) 6.A ↔ TTP : fNRD, Td, L,NRR,NRD

3.3 ZG1 PEPA Model

We begin by forming components of a pair of principals A and B.

TTP
def
= (publish, rp).TTP

A0
def
= (sendB, rb).A1

A1
def
= (sendA, ra).A2

A2
def
= (sendTTP, rt).A3

A3
def
= (publish, rp).A4

A4
def
= (geyByA, rga).A5

A5
def
= (work, rw).A0
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B0
def
= (sendB, rb).B1

B1
def
= (sendA, ra).B2

B2
def
= (publish, rp).B3

B3
def
= (getByB, rgb).B4

B4
def
= (work, rw).B0

SystemZG1
def
= TTP [K] ��

publish
(A0 ��L B0)[N ]

Where, L = {sendB, sendA,work}.
In order to simplify the model specification and analysis, we combine A and B

into a new component called AB, using a process referred to as partial evaluation
[13]. This gives rise to the following description for the complete system when
there are N pairs of principals.

TTP
def
= (publish, rp).TTP

AB0
def
= (sendB, rb).AB1

AB1
def
= (sendA, ra).AB2

AB2
def
= (sendTTP, rt).AB3

AB3
def
= (publish, rp).AB4

AB4
def
= (getByA, rga).AB5

+(getByB, rgb).AB6

AB5
def
= (getByB, rgb).AB7

AB6
def
= (getByA, rga).AB7

AB7
def
= (work, rw).AB0

SystemZG1
def
= TTP [K] ��

publish
AB0[N ]

AB0 to AB7 in the above ZG1 PEPA model denote the different behaviours of
the AB component, and its evolution along the sequence of prescribed actions
in the protocol. The choice from AB4 to AB5 and AB6 means step 4 and step 5
in ZG1 can happen in any order. The work action is used to define that B can
do something with the key and ciphertext after he has obtained these, before
returning to the state AB0 to make a new request again, which forms a working
cycle to investigate the steady state.

3.4 ZG3 PEPA Model

Once again we begin by defining the behaviour of a pair of principals.

TTP
def
= (response, rp).TTP



132 N. Thomas et al.

A0
def
= (request, rt1).A1

A1
def
= (response, rp).A2

A2
def
= (getByA1, rga1).A3

A3
def
= (response, rp).A4

A4
def
= (sendTTP, rt2).A5

A5
def
= (response, rp).A6

A6
def
= (getByA2, rga2).A7

A7
def
= (work, rw).A0

B0
def
= (response, rp).B1

B1
def
= (getByA1, rga1).B2

B2
def
= (response, rp).B3

B3
def
= (sendTTP, rt2).B4

B4
def
= (response, rp).B5

B5
def
= (getByB, rgb).B6

B6
def
= (work, rw).B0

SystemZG3
def
= TTP [K] ��

response
(A0 ��L B0)[N ]

Where, L = {getByA1, sendTTP,work}.
As before these are combined to form the merged component AB in the de-

scription of the complete system.

TTP
def
= (response, rp).TTP

AB0
def
= (request, rt1).AB1

AB1
def
= (response, rp).AB2

AB2
def
= (getByA1, rga1).AB3

AB3
def
= (response, rp).AB4

AB4
def
= (sendTTP, rt2).AB5

AB5
def
= (response, rp).AB6

AB6
def
= (getByB, rgb).AB7

+(getByA2, rga2).AB8

AB7
def
= (getByA2, rga2).AB9

AB8
def
= (getByB, rgb).AB9

AB9
def
= (work, rw).AB0
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SystemZG3
def
= TTP [K] ��

response
AB0[N ]

The PEPA model of ZG3 has a similar structure to that for ZG1. The main
difference is the TTP component in ZG3 should respond three times for different
requests in one cycle, which increases the difficulty of modelling and analysis.

3.5 ODE Analysis

ODE analysis is an approximate analysis technique based on the solution of cou-
pled ordinary differential equations (ODEs), first applied to stochastic process
algebra by Hillston [7]. In this style of model analysis, the model is expressed
as a finite number of replicated components and ODEs which represent the flow
between behaviours of the components. Thus, by solving the ODEs, it is possible
to count the number of components behaving as a given derivative at any given
time, t. In the absence of oscillations, the limit, t −→ ∞, then tends to a steady
state value.

It is important to note that the ODE approach transforms the original stochas-
tic discrete event system to a deterministic continuous system. In doing so, we
consider fractions of any component behaving in some way at any given time,
which may be difficult to interpret in a physical system. Furthermore, ODE anal-
ysis is only applicable to certain classes of model. Despite these restrictions, the
technique is extremely useful when considering very large numbers of compo-
nents.

In experiments we have performed with different models, we have observed
that the ODEs give good predictions of the steady state behaviour only when
there is at most one active minimum function [16]. This condition holds for the
models considered here as there is only one type of Trusted Third Party.

The results we obtain are not exact, but converge on the true value as the
number of customers increases. There is a point of maximum error, the location
of which we can predict by deriving the point at which the two sides of the
minimum function coincide.

The ODEs for ZG1 and ZG3 can be derived following the approach of Hillston
[7].

ODEs of ZG1:

d

dt
AB0 = rwAB7(t)− rbAB0(t)

d

dt
AB1 = rbAB0(t)− raAB1(t)

d

dt
AB2 = raAB1(t)− rtAB2(t)

d

dt
AB3 = rtAB2(t)− rpmin(AB3(t), TTP (t))

d

dt
AB4 = rpmin(AB3(t), TTP (t))
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−rgaAB4(t)− rgbAB4(t)

d

dt
AB5 = rgaAB4(t)− rgbAB5(t)

d

dt
AB6 = rgbAB4(t)− rgaAB6(t)

d

dt
AB7 = rgbAB5(t) + rgaAB6(t)− rwAB7(t)

d

dt
TTP = 0

ODEs of ZG3:

d

dt
AB0 = rwAB9(t)− rt1AB0(t)

d

dt
AB1 = rt1AB0(t)− [rp

AB1(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB2 = −rga1AB2(t) + [rp

AB1(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB3 = rga1AB2(t)− [rp

AB3(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB4 = −rt2AB4(t) + [rp

AB3(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB5 = rt2AB4(t)− [rp

AB5(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB6 = −rgbAB6(t)

−rga2AB6(t) + [rp
AB5(t)

AB1(t) +AB3t+AB5(t)

×min(AB1(t) +AB3(t) +AB5(t), TTP (t))]

d

dt
AB7 = rgbAB6(t)− rga2AB7(t)

d

dt
AB8 = rga2AB6(t)− rgbAB8(t)

d

dt
AB9 = rga2AB7(t) + rgbAB8(t)− rwAB9(t)

d

dt
TTP = 0
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These ODEs can be solved in a number of ways. Most commonly they are simu-
lated with a suitably small time step over a long period. This gives rise to a trace
of component numbers over time. Alternatively, if we assume that a steady state
exists, the ODEs can be solved analytically at the limit by taking d

dtABi = 0, ∀i,
and solving the resultant set of simple simultaneous equations. Either approach
gives an efficient numerical computation, even when N is extremely large.

Our analysis is interested primarily in the number of clients waiting for a
publish (or response in ZG3) action from the TTP , as the clients can then
fetch what they need from the public area or obtain a service results. This is
represented in the model by the number of AB3 in ZG1, AB1, AB3 and AB5

in ZG3. The average queuing length L(N) is the number of requests awaiting a
response from the TTP . It is the number of the AB3 (in ZG1), or AB1, AB3

and AB5 (in ZG3), derivatives when t −→ ∞ when there are N customers in
the population.

The average response time is another interesting metric for us. To obtain this
we apply the arrival theorem. If an arriving request sees a free server, then the
average response time will be the average service time. However, if the random
observer sees all the servers busy, then the average response time will be the
average service time plus the time it takes for one server to become available
(including scheduling the other jobs waiting ahead of the random observer). This
gives rise to the following equations.

W (N) =
1

rp
, L(N − 1) + 1 ≤ K

W (N) =
1

rp
+

L(N − 1) + 1−K

Krp

=
L(N − 1) + 1

Krp
, L(N − 1) + 1 > K

Obviously, as the TTP in ZG1 is designed as a “low weight notary”, the number
of waiting requests at TTP of ZG1 should always be smaller than that in ZG3
with the same parameters. However, a system engineer should clearly be very
careful to choose either of these two protocols based on the trade off between
performance and the need for added security functionality.

4 Case Study 2: A Rheumatology Clinic

Healthcare is subject to many performance targets and metrics used to assess the
success of all clinical environments. In addition the notion of patient experience
remains at the centre of all clinical operation. As such the provisioning of health-
care resources is constrained not only in providing an efficient service, but also
one which meets the needs of the patients, not just clinically but also personally
and socially. Important aspects in patient experience include the minimisation
of waiting time and the availability of appropriate information concerning future
interactions.
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In this study we look at one aspect of clinical performance, namely the
throughput of patients and their associate waiting times. We model a rheuma-
tology clinic in a major NHS hospital in the UK using data captured from ob-
servations. The clinic is relatively small, consisting of a central waiting area with
registration, a number of consulting rooms and treatment rooms where nurses
my take blood samples or administer injections. In addition patients may be
sent to a separate x-ray service outside the clinic (but still within the hospital).
Patients are classified as either new, meaning that they have just been referred
to the clinic and this is their first appointments, or follow-up, which denotes that
the patients is attending a repeat appointment having previously attended the
clinic in the past. For brevity in this presentation we will not distinguish these
two classes, although in practice it adds only a little additional complexity to
the specification and analysis.

A typical PEPA model of this system can be specified as follows:

Patient
def
= (arrive, rA).Register

Register
def
= (register, rR).T est

T est
def
= (test, rT ).Consultation

Consultation
def
= (consult, rC).BloodT est

BloodTest
def
= (blood, rB).Xray

XRay
def
= (xray, rX).Depart

Depart
def
= (depart, rD).Stop

Registration
def
= (register, rR).Registration

Nurse1
def
= (test, rT ).Nurse1

Consultant
def
= (consult, rC).Consultant

Nurse2
def
= (blood, rB).Nurse2

XRay
def
= (xray, rX).XRay

The complete system can be described as

Patient[Np] ��L (Registration||Nurse1[N1]||Consultant[Nc]||
Nurse2[N2]||XRay)

where L = {register, test, consult, blood, xray}.
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The components Registration, Nurse1, Consultant, Nurse2 and XRay rep-
resent the various resources in the system. Patients can only use those resources
if they are available, i.e. not already in use by another patient. A key considera-
tion therefore is in provisioning sufficient resource (denoted by N1, Nc and N2)
such that patients do not experience excessive waiting given a particular volume,
Np. Since the Patient component is terminating (indicating that the patient has
left the clinic), it makes no sense to derive steady state metrics. We could, if it
was desired, alter the behaviour so that patients return to the Patient behaviour
after a suitable delay following the depart action (as in the previous case study).

Using this model we can investigate a number of scenarios of resource avail-
ability and appointment scheduling. To do this we derive the ODEs (as in the
previous case) and simulate them to derive transient metrics of interest. The
particular metrics we are interested in are typically the number of patients com-
pleting their appointment within a given time, the time taken for all patients to
complete, the maximum number of waiting patients at any given point and the
maximum end to end response time for any patient.

As the model is specified here all the patients will begin to arrive at the
same time. It turns out that this is the optimal solution for minimising the time
taken for all patients to complete, hence form a process-centric view this might
be thought of as a good solution. However, in this configuration some patients
would be present in the clinic for the entire time, experiencing long waiting times
at each stage. Other patients (those at the front of the arrival queue as dictated
by the race condition on the concurrent arrive actions) would find each resource
relatively unused as they come to it and so would experience a very fast response
time.

This disparity in patient experience would clearly lead to dissatisfaction
amongst those patients with very long waits. To counter this problem we have
experimented with various functional rates to stagger the arrival of patients and
simulate an appointment schedule. The simplest such function is to spread the
arrivals over a longer period, allowing the first patients to progress through the
system before other patients arrive. This has the desired effect of reducing max-
imum wait times, but increases the overall time to completion and reduces the
average utilisation of the resources. In practice this is particularly problematic
for consultants, who may then experience wait times between patients leading to
an inefficient (and more costly) provision. The optimal function to reduce wait
times and maintain a high utilisation of key resources is to employ a non-linear
function which creates an initial load (high burst of arrivals), and then a spread of
patients arriving throughout the remaining period. When the resource provision
and rates in the arrival function are optimised this results in small average waits
for patients at the Consultation phase, but otherwise a fast response through
the system. The small numbers of waiting patients at the Consultation phase
ensures that there is nearly always a patient to be seen by the consultant when
they are available, so utilisation of consultants is maintained until all patients
have been seen.
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Using the fluid approximation we are able to introduce further functions to
fluctuate the available resource (for example, to introduce scheduled breaks or
unforeseen complications) or to reallocate resource between different areas. For
example, with a functional rate approach to arrivals it is advantageous to process
the initial burst of patients through the test action as quickly as possible so
that the system reaches a sustainable state. This means provisioning a higher
number of Nurse1 components (N1) in the initial phase, but this number can
be reduced after the initial burst has gone through. At the same time during
the initial phase there is less demand for later actions in the sequence, hence
the number of Nurse2 components can be reduced initially, but increased once
patients start to complete the consult action. This means we can maintain a
steady total of nurses (N1 +N2) but reallocate staff between these two roles.

5 Conclusions and Future Work

The examples here show the use of PEPA and its fluid approximation in two very
different scenarios. As stated in the introduction, this form of analysis was orig-
inally applied to PEPA for biochemical models, we have demonstrated here that
the approach can also be applied to traditional computer science problems and
to problems of a more techno-social nature involving the movement of people.
The fact that the analysis can be used to derive some very useful information in
both scenarios illustrates the power and flexibility of the approach.

The work described in this paper is ongoing. In the first example we aim
to validate the models against real implementations of these protocols. There
are clearly many more protocols of a similar nature that can also be studied
using these techniques. In the case of the second example we aim to extend
our work to consider other more complicated treatment pathways in different
areas of healthcare. In addition we intend to develop some interface tools to
enable healthcare practitioners and managers to access the analysis tools without
needing to understand PEPA.

The models presented in this paper have also been solved using mean value
analysis [17] which has validated the fluid approximation results. There is still
some work to be done to better understand the accuracy of the fluid approx-
imation in different scenarios. Some empirical study in this regard has been
undertaken [16], but additional results on sensitivity to different distributions
and functional rates (as used in the second example) remains to be undertaken.
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