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Abstract. Deng et al. [Deng, S., He, Z., Xu, X.: G-ANMI: A mutual informa-
tion based genetic clustering algorithm for categorical data, Knowledge-Based 
Systems 23, 144--149(2010)] proposed a mutual information based genetic 
clustering algorithm named G-ANMI for categorical data. While G-ANMI is 
superior or comparable to existing algorithms for clustering categorical data in 
terms of clustering accuracy, it is very time-consuming due to the low efficien-
cy of genetic algorithm (GA). In this paper, we propose a new initialization me-
thod for G-ANMI to improve its efficiency. Experimental results show that the 
new method greatly improves the efficiency of G-ANMI as well as produces 
higher clustering accuracy. 
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1 Introduction 

Clustering is an important data mining technique that groups together similar data 
objects. Most previous clustering algorithms focus on numerical data whose inherent 
geometric properties can be exploited naturally to define distance functions between 
objects. However, many fields, from statistics to psychology deal with categorical 
data. Unlike numerical data, categorical data cannot be naturally ordered. An example 
of categorical attribute is color whose values include red, green, blue, etc. Therefore, 
those clustering algorithms dealing with numerical data can not be used to cluster 
categorical data. Recently, the problem of clustering categorical data has received 
much attention [1-10]. 

Categorical data clustering has been defined as an optimization problem which 
aims to find an optimal partition of the objects according to an objective function  
[1-7]. Unfortunately, this optimization problem is NP-complete. Therefore most re-
searchers resort to heuristic methods to solve it, such as ROCK [1], k-modes [2], 
COOLCAT [3], and k-ANMI [4]. However, these algorithms tend to find local optim-
al partition. Recently, some genetic clustering algorithms have been proposed to find 
globally optimal or near-optimal partition, such as ALG-RAND [6] and G-ANMI [7] 
algorithms. In the performance comparison conducted in [7], it has shown that  
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G-ANMI is superior or comparable to ALG-RAND as well as other existing  
algorithms for clustering categorical data in terms of clustering accuracy. However, 
G-ANMI is very time-consuming.  For instance, it takes G-ANMI 20759 seconds to 
mine 2 clusters from Mushroom dataset [11] with 8124 objects. Thus, it is necessary 
to improve its efficiency before it can be widely used in practice. 

The low efficiency of G-ANMI is mainly caused by GA [8] which needs a lot  
of iterations to find the optimal solution. Given a population size, the efficiency of  
G-ANMI is dominated by the number of iterations. Hence, we have to reduce the 
number of iterations to improve the efficiency of G-ANMI. In a categorical data set, 
each attribute defines a partition of the objects. The aim of G-ANMI is to find a k-
partition (k is the desired number of clusters) that shares the most information with 
the partitions defined by attributes (attributes partitions for short). In other words, G-
ANMI tries to find a k-partition that is the closest to the attributes partitions. Howev-
er, G-ANMI algorithm starts with a population of randomly generated k-partitions of 
objects. These randomly generated k-partitions are far from the attributes partitions 
when we process a larger data set. The farther these partitions are from the attributes 
partitions, the more iteration G-ANMI needs to reach the optimal k-partition. Hence, 
it is possible to reduce the number of iterations of G-ANMI by giving some better 
initial k-partitions which are closer to the attributes partitions in comparison with 
those randomly generated k-partitions. 

In this paper, we propose a new initialization method for G-ANMI, in which some 
equivalence classes (the set of objects which has the same value on an attribute) in 
attributes partitions are directly integrated into the initial k-partitions. The initial k-
partitions obtained by using the new method are closer to the attributes partitions in 
comparison with those randomly generated k-partitions, especially when we process a 
larger data set. As a result, less number of iterations is needed to reach the optimal k-
partition. Experimental results show that the new method greatly improves the effi-
ciency of G-ANMI, as well as produces higher clustering accuracy. The rest of the 
paper is organized as follows. Section 2 briefly introduces G-ANMI algorithm. Sec-
tion 3 presents the new initialization method. Section 4 presents experimental results 
on UCI benchmark data sets. Finally, Section 5 presents conclusions and future work. 

2 G-ANMI 

G-ANMI employs basic GA to implement categorical data clustering, which works in 
the same way as the one used in ALG-RAND [6]. 

G-ANMI starts with a population of randomly generated partitions of objects, 
which are encoded as chromosomes. If the desired number of clusters is set to k, then 
each chromosome is encoded as a k-partition of objects. Suppose the integers between 
interval [0, k-1] are used as class identifier, a chromosome will be a string of integers 
which are between interval [0, k-1]. For example, suppose the number of objects is 
20, and k is 4, a randomly generated chromosome is as follows 

1 0 2 0 1 0 3 2 3 1 0 1 2 0 3 2 0 1 1 2 

Then, G-ANMI uses the average normalized mutual information (ANMI) to evaluate 
the fitness of each chromosome in the current population. Given a set of r partitions 
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defined by attributes: Λ = }},...,2,1{|{ )( rqq ∈λ  and a partition λ , the average nor-

malized mutual information (ANMI) between Λ and λ  is defined as follows: 


=

=Λ
r

q

qNMIANMI

r 1

)()()( ),(
1

),( λλφλφ  (1)

where ),( )()( qNMI λλφ denotes the normalize mutual information between )(qλ and  

λ . Without loss of generality, normalized mutual information between two partitions 
)(aλ  and )(bλ is computed as follows: 


= =

∗ 












=

)( )(

)()(

1 1
)(

)(
)()()()( log

2
),(

a b

ba

k

h

k

g g
h

h
g

kk
h

g
baNMI

nn

nn
n

n
λλφ  (2)

where k(a) and k(b) are the number of clusters in partition )(aλ  and )(bλ , respectively. 

n(h) denotes the size of cluster Ch in partition )(aλ , ng denotes the size of cluster Cg in 

partition )(bλ , )(h
gn  denotes the number of shared objects between Ch and Cg. 

According to the fitness value, genetic evolution repeatedly changes the chromo-
somes in the current population to generate a new population. It is expected that 
chromosomes could be increasingly closer to the optimal partition with largest ANMI. 
Genetic procedure will halt when the best fitness in the current population is greater 
than the user-specified fitness threshold or there has been no relative improvement on 
best fitness after some consecutive iterations. 

3 New Initialization Method 

The basic idea of the new initialization method is that integrating some equivalence 
classes of the partitions defined by attributes into the generation of initial partitions. 
Two cases are considered:  

i. If the population size P is greater than or equal to the number of attributes M, then 
the algorithm generates first M chromosomes from the M attributes partitions, and 
generates other P-M chromosomes randomly. 

ii. If the population size P is less than the number of attributes M, then the algorithm 
generates P chromosomes from the first P attributes partitions. 

Generating chromosomes from the attributes partitions is implemented by a one-one 
way, namely one chromosome is generated by one partition. Generating a chromo-
some from a partition means taking some equivalence classes of the partition as the 
part of the chromosome. How many equivalence classes should we take depends on 
the number of equivalence classes (Nec) in the partition and the specified number of 
clusters k. Different strategies are employed when the number of equivalence classes 
in the partition is greater than, less than and equals to the specified number of clusters, 
respectively. The details are described in Fig .1. 
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Begin 
 
For each partition Par    
   if Nec in Par equals k 
      Copy Par to the corresponding chromosome Chrom   
   else 
      if Nec is greater than k 

           Copy first k equivalence classes of Par to the same locations in 
Chrom. 

           Generate a random number between [0, k-1] for each of the remain-
ing locations in Chrom. 

      else 
         Find a highest H which satisfies the following inequation 
                        N - Sum >= k-H-1    

           //where N is the length of a chromosome, Sum is the summation  
          //of the size of first H+1 equivalence classes of Par. 
          Copy first H+1 equivalence classes of Par to the same locations in 

Chrom. 
          Generate a random number between [H+1, k-1] for each of the  

remaining locations in Chrom. 
End. 

Fig. 1. The procedure of generating a chromosome from a partition 

Note that the purpose of inequation N - Sum >= k-H-1 is to ensure each number be-
tween interval [H+1, k-1] appears at least once in Chrom when generating a random 
number for each of the remaining locations in Chrom. 

Next, we present an illustrative example of the new initialization method. For the 
comparison purpose, the G-ANMI algorithm with new initialization method is named 
improved G-ANMI (IG-ANMI). 

 

Example 1. Suppose there is a data set with ten objects (O1, O2, …, O10) and four 
attributes (A0, …, A3). Table 1 shows the partitions defined by the four attributes. The 
numbers 0, 1, 2, and 3 denote different equivalence classes (categories) in the parti-
tions. We use the algorithms IG-ANMI and G-ANMI to cluster the objects, respec-
tively. The parameter setting includes: the number of clusters k=3, the population size 
P=10, crossover rate=0.8, mutation rate=0.1, random seed=1, and the number of con-
secutive iterations without improvement=100.  

Since the population size P is greater than the number of attributes, we generate 
first four chromosomes by using attributes partitions and generate remaining six 
chromosomes randomly. The attributes partitions are named Par[i], i=0, 1, 2, 3. The 
chromosomes are named C[j], j=0, 1, …, 9. The numbers of equivalence classes in 
Par[0] and Par[2] equal the specified number of clusters k, so we directly copy 
Par[0] and Par[2] to C[0] and C[2], respectively. The number of equivalence classes 
in Par[1] is less than k. According to the algorithm shown in Figure 1, we first seek 
an appropriate number H. In this example, there is only possible value for H, namely 
zero. Zero satisfies N - Sum >= k-H-1, thus H gets the value zero. Next, we copy the 
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Table 1. The partitions defined by four attributes 

U A0 A1 A2 A3 
O1 0 0 0 0 
O2 1 0 1 1 
O3 0 1 0 0 
O4 0 0 0 0 
O5 1 1 2 2 
O6 1 1 1 2 
O7 2 0 2 3 
O8 2 1 2 1 
O9 1 1 1 2 
O10 2 1 2 3 

 
first equivalence class to the corresponding location in C[1]. Table 2 shows the status 
of C[1] after copying the first equivalence class. There are still six locations need to 
be filled in C[1]. We generate a random number between interval [1, 2] for each of 
the six locations. 

Table 2. The status of C[1] after copying the first equivalence class 

Location 0 1 2 3 4 5 6 7 8 9 
C[1] 0 0  0   0    

 
The number of equivalence classes in Par[3] is greater than k. According to the al-

gorithm shown in Figure 1, we copy first three equivalence classes of Par[3] to the 
corresponding location in C[3]. Table 3 shows the status of C[3] after copying first 
three equivalence classes. There are still two locations need to be filled in C[3]. We 
generate a random number between interval [0, 2] for each of the two locations. 

Table 3. The status of C[3] after copying first three equivalence classes 

Location 0 1 2 3 4 5 6 7 8 9 
C[3] 0 1 0 0 2 2  1 2  

 
Following the method, the remaining six chromosomes C[4], … C[9] are randomly 

generated. At the end, ten chromosomes are obtained and summarized in Table 4. The 
numbers in bold style are randomly generated.         

Note that the equivalence classes in each of the first four chromosomes are labeled 
by order 0, 1, 2.  However, the equivalence classes in each of other six chromosomes 
are labeled unorderly. Actually, the numbers 0, 1, 2 in the partitions or chromosomes 
only denote different categories rather than order. That means the order of the labels 
doesn’t affect the computation of fitness of a chromosome. Even if we change the 
order of the labels in some chromosomes, their fitness values keep invariable. For 
instance, we can change C[0] from {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} to {1, 2, 1, 1, 2, 2, 0, 0, 
2, 0}, change C[4] from {1, 1, 1, 2, 1, 1, 0, 1, 0, 0} to {0, 0, 0, 1, 0, 0, 2, 0, 2, 2}, and 
so on. 
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Table 4. Ten chromosomes generated by the new initialization method 

Location C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] 
0 0 0 0 0 1 2 1 2 1 1 
1 1 0 1 1 1 0 1 1 1 2 
2 0 1 0 0 1 2 0 0 0 0 
3 0 0 0 0 2 1 1 1 1 0 
4 1 1 2 2 1 2 1 1 0 2 
5 1 1 1 2 1 2 1 1 0 0 
6 2 0 2 0 0 2 2 0 1 0 
7 2 1 2 1 1 2 2 0 0 1 
8 1 1 1 2 0 0 1 2 2 2 
9 2 2 2 1 0 0 2 1 0 0 

 
After the initialization, the next step of IG-ANMI is to calculate the fitness of each 

chromosome. According to the Eq. (1), we obtain the fitness of chromosomes as is 
shown in Table 5.  

Table 5. The fitness of initial chromosomes of IG-ANMI 

Chromosomes fitness value average 
C[0] 0.654067 

0.53927 
C[1] 0.361562 
C[2] 0.615644 
C[3] 0.525807 
C[4] 0.252361 

0.265807 

C[5] 0.196573 
C[6] 0.403407 
C[7] 0.166014 
C[8] 0.323139 
C[9] 0.253349 

average 0.375192  

 
It can be seen from Table 5 that the average fitness value of first four chromo-

somes is higher than that of other six chromosomes, which indicates that the chromo-
somes generated from the attributes partitions are closer to the optimal partition than 
that generated randomly. With these fitness values, the algorithm IG-ANMI generates 
new population and goes into the next iteration. Since there has been no relative im-
provement on best fitness during 100 consecutive iterations, the algorithm IG-ANMI 
ends after the 100th iteration. Finally, we get the optimal 3-partition {0, 1, 0, 0, 1, 1, 2, 
2, 1, 2}. 

We use G-ANMI algorithm to cluster the same data set below. Firstly, G-ANMI 
randomly generates P chromosomes as is shown in Table 6.  

Table 7 shows the fitness values of the chromosomes in the initial population. Ob-
viously, the average fitness as well as the best fitness of the chromosomes is less than 
that in the initial population generated by algorithm IG-ANMI. After 27 iterations, the 
best fitness reaches 0.654067, which equals to the best fitness of the initial population 
generated by algorithm IG-ANMI. Since there has been no relative improvement on 
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best fitness during the subsequent 99 consecutive iterations, the algorithm G-ANMI 
ends after the 127th iterations. G-ANMI needs 27 more iterations than IG-ANMI due to 
the randomly generated initial population. 

Table 6. Ten chromosomes generated by the initialization method of G-ANMI 

Location C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9] 
0 1 1 2 0 0 0 0 0 2 2 
1 1 2 1 1 2 1 1 0 1 1 
2 2 1 2 1 2 1 0 2 1 0 
3 1 1 2 1 0 1 0 0 2 1 
4 1 0 2 2 0 0 1 0 2 2 
5 1 1 2 2 0 0 0 1 1 1 
6 0 0 0 1 2 2 2 2 2 2 
7 1 0 0 2 0 1 0 0 0 1 
8 1 2 1 0 2 1 2 1 1 2 
9 1 0 1 0 1 1 1 1 0 0 

Table 7. The fitness values of the chromosomes in the initial population of G-ANMI 

Chromosomes fitness value 
C[0] 0.211672 
C[1] 0.469059 
C[2] 0.338877 

C[3] 0.227614 
C[4] 0.139958 
C[5] 0.181013 
C[6] 0.216344 
C[7] 0.263182 
C[8] 0.377376 

C[9] 0.166627 
average 0.259172 

4 Experimental Results 

A series of experiments are conducted to evaluate the clustering efficiency and clus-
tering performance of IG-ANMI. They are described below. 

4.1 Experiments Design 

We aim to evaluate the influence of new initialization method on G-ANMI algorithm. 
Therefore, the experimental studies are devoted to the comparison between G-ANMI 
and IG-ANMI. Four real-life datasets obtained from the UCI Machine Learning Re-
pository [11] are used in the experiments, including Zoo, Congressional Votes (Votes 
for short), Wisconsin Breast Cancer (Breast Cancer for short), and Mushroom. The 
reason for choosing these four datasets is that they are also used in G-ANMI for eval-
uation. The information about the data sets is tabulated in Table 8. 
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Table 8. The information about the four data sets 

Data set  Number of objects Number of Attributes Number of classes 

Zoo  101 16 7 

Votes 435 16 2 

Breast cancer 699 9 2 

Mushroom 8124 22 2 

 
The parameters required by G-ANMI and IG-ANMI are set to be the same as in 

[7]. In addition, population size has a great effect on the quality of clustering in G-
ANMI and IG-ANMI. In our experiments we vary the population size to perform the 
comparison between G-ANMI and IG-ANMI. For the Zoo, Votes, and Breast Cancer 
data sets, the population size vary from 50 to 500, for the Mushroom data set, the 
population size varies from 50 to 200.  

All the programs are written in C language and compiled on the Borland C++ ver-
sion 5.02. All experiments are conducted on a machine with Intel Core2 Duo CPU 
T7250 @ 2.00GHz, 1.99 GB of RAM, running Microsoft Windows Vista. 

4.2 Efficiency Analysis 

In our experiments, the running time of algorithms is used as the criteria for efficiency 
evaluation. Figs. 2-5 plot the running time of G-ANMI and IG-ANMI in seconds on 
four data sets when population size is increased. It can be seen that IG-ANMI takes 
less running time than G-ANMI except for on the Zoo data set when population size 
is 500. It is worth noting that there is a very large difference between G-ANMI and 
IG-ANMI on the Mushroom data set, which indicates IG-ANMI can save much time 
when larger data sets are processed. Table 9 shows the concrete values of numbers of 
iterations and running time of G-ANMI and IG-ANMI on the Mushroom data set. 
When the population size is set to 200, G-ANMI takes 190998.485 seconds (53 hours) 
while IG-ANMI only take 1351.594 seconds. 
 

 
Fig. 2. Running 1time vs. population size on the Zoo data set 
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Fig. 3. Running time vs. population size on the Votes data set 

 

Fig. 4. Running time vs. population size on the Breast Cancer data set 

 

Fig. 5. Running time vs. population size on the Mushroom data set 
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Number of iterations Running time (s) 

G-ANMI IG-ANMI G-ANMI IG-ANMI 

50 10845 100 20759.969 201.25 

100 14453 145 63574.047 606.312 

150 13944 144 94324.032 880.875 

200 17916 158 190998.485 1351.594 
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4.3 Performance Analysis 

We use clustering accuracy to evaluate the performance of the IG-ANMI, which is 
one of the most widely used methods to evaluate the results of clustering algorithms. 
Given the true class labels and the required number of clusters, k, clustering accuracy 

is defined as 
n

a
k

i i =1 , where n is number of objects in the dataset and ai is the num-

ber of objects with the class label that dominates cluster i. A higher value of cluster-
ing accuracy indicates a better clustering result. The clustering accuracies of two algo-
rithms on four data sets are summarized in Table 10. From the average accuracies, we 
can see that IG-ANMI has higher clustering accuracy on the Zoo, Breast Cancer, and 
Mushroom data sets. One exception is on the Votes data set, the clustering accuracy 
of G-ANMI is slightly higher than that of IG-ANMI. It is worth noting that IG-ANMI 
improves clustering accuracy greatly on the Mushroom data set.  

5 Conclusions 

In this paper, we propose a new initialization method for G-ANMI, namely integrat-
ing some equivalence classes of the attributes partitions into the generation of initial 
partitions. Experimental results on four real-life data sets show that the new method 
greatly improves the efficiency of G-ANMI, as well as produces higher clustering 
accuracy, especially on the larger data sets. The new initialization method could be 
more complicated so that producing better initial chromosomes. In the future work, 
we will develop other initialization methods to further improve the efficiency of G-
ANMI. 
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