
T. Washio and J. Luo (Eds.): PAKDD 2012 Workshops, LNAI 7769, pp. 100–111, 2013.
© Springer-Verlag Berlin Heidelberg 2013

An Improved Genetic Clustering Algorithm
for Categorical Data

Hongwu Qin, Xiuqin Ma, Tutut Herawan, and Jasni Mohamad Zain

Faculty of Computer Systems and Software Engineering
Universiti Malaysia Pahang

Lebuh Raya Tun Razak, Gambang 26300, Kuantan, Malaysia
{qhwump,xueener}@gmail.com, {tutut,jasni}@ump.edu.my

Abstract. Deng et al. [Deng, S., He, Z., Xu, X.: G-ANMI: A mutual informa-
tion based genetic clustering algorithm for categorical data, Knowledge-Based
Systems 23, 144--149(2010)] proposed a mutual information based genetic
clustering algorithm named G-ANMI for categorical data. While G-ANMI is
superior or comparable to existing algorithms for clustering categorical data in
terms of clustering accuracy, it is very time-consuming due to the low efficien-
cy of genetic algorithm (GA). In this paper, we propose a new initialization me-
thod for G-ANMI to improve its efficiency. Experimental results show that the
new method greatly improves the efficiency of G-ANMI as well as produces
higher clustering accuracy.

Keywords: Data mining, Clustering, Categorical data, Genetic algorithm.

1 Introduction

Clustering is an important data mining technique that groups together similar data
objects. Most previous clustering algorithms focus on numerical data whose inherent
geometric properties can be exploited naturally to define distance functions between
objects. However, many fields, from statistics to psychology deal with categorical
data. Unlike numerical data, categorical data cannot be naturally ordered. An example
of categorical attribute is color whose values include red, green, blue, etc. Therefore,
those clustering algorithms dealing with numerical data can not be used to cluster
categorical data. Recently, the problem of clustering categorical data has received
much attention [1-10].

Categorical data clustering has been defined as an optimization problem which
aims to find an optimal partition of the objects according to an objective function
[1-7]. Unfortunately, this optimization problem is NP-complete. Therefore most re-
searchers resort to heuristic methods to solve it, such as ROCK [1], k-modes [2],
COOLCAT [3], and k-ANMI [4]. However, these algorithms tend to find local optim-
al partition. Recently, some genetic clustering algorithms have been proposed to find
globally optimal or near-optimal partition, such as ALG-RAND [6] and G-ANMI [7]
algorithms. In the performance comparison conducted in [7], it has shown that

 An Improved Genetic Clustering Algorithm for Categorical Data 101

G-ANMI is superior or comparable to ALG-RAND as well as other existing
algorithms for clustering categorical data in terms of clustering accuracy. However,
G-ANMI is very time-consuming. For instance, it takes G-ANMI 20759 seconds to
mine 2 clusters from Mushroom dataset [11] with 8124 objects. Thus, it is necessary
to improve its efficiency before it can be widely used in practice.

The low efficiency of G-ANMI is mainly caused by GA [8] which needs a lot
of iterations to find the optimal solution. Given a population size, the efficiency of
G-ANMI is dominated by the number of iterations. Hence, we have to reduce the
number of iterations to improve the efficiency of G-ANMI. In a categorical data set,
each attribute defines a partition of the objects. The aim of G-ANMI is to find a k-
partition (k is the desired number of clusters) that shares the most information with
the partitions defined by attributes (attributes partitions for short). In other words, G-
ANMI tries to find a k-partition that is the closest to the attributes partitions. Howev-
er, G-ANMI algorithm starts with a population of randomly generated k-partitions of
objects. These randomly generated k-partitions are far from the attributes partitions
when we process a larger data set. The farther these partitions are from the attributes
partitions, the more iteration G-ANMI needs to reach the optimal k-partition. Hence,
it is possible to reduce the number of iterations of G-ANMI by giving some better
initial k-partitions which are closer to the attributes partitions in comparison with
those randomly generated k-partitions.

In this paper, we propose a new initialization method for G-ANMI, in which some
equivalence classes (the set of objects which has the same value on an attribute) in
attributes partitions are directly integrated into the initial k-partitions. The initial k-
partitions obtained by using the new method are closer to the attributes partitions in
comparison with those randomly generated k-partitions, especially when we process a
larger data set. As a result, less number of iterations is needed to reach the optimal k-
partition. Experimental results show that the new method greatly improves the effi-
ciency of G-ANMI, as well as produces higher clustering accuracy. The rest of the
paper is organized as follows. Section 2 briefly introduces G-ANMI algorithm. Sec-
tion 3 presents the new initialization method. Section 4 presents experimental results
on UCI benchmark data sets. Finally, Section 5 presents conclusions and future work.

2 G-ANMI

G-ANMI employs basic GA to implement categorical data clustering, which works in
the same way as the one used in ALG-RAND [6].

G-ANMI starts with a population of randomly generated partitions of objects,
which are encoded as chromosomes. If the desired number of clusters is set to k, then
each chromosome is encoded as a k-partition of objects. Suppose the integers between
interval [0, k-1] are used as class identifier, a chromosome will be a string of integers
which are between interval [0, k-1]. For example, suppose the number of objects is
20, and k is 4, a randomly generated chromosome is as follows

1 0 2 0 1 0 3 2 3 1 0 1 2 0 3 2 0 1 1 2

Then, G-ANMI uses the average normalized mutual information (ANMI) to evaluate
the fitness of each chromosome in the current population. Given a set of r partitions

102 H. Qin et al.

defined by attributes: Λ = }},...,2,1{|{)(rqq ∈λ and a partition λ , the average nor-

malized mutual information (ANMI) between Λ and λ is defined as follows:

=

=Λ
r

q

qNMIANMI

r 1

)()()(),(
1

),(λλφλφ (1)

where),()()(qNMI λλφ denotes the normalize mutual information between)(qλ and

λ . Without loss of generality, normalized mutual information between two partitions
)(aλ and)(bλ is computed as follows:

= =

∗

=

)()(

)()(

1 1
)(

)(
)()()()(log

2
),(

a b

ba

k

h

k

g g
h

h
g

kk
h

g
baNMI

nn

nn
n

n
λλφ (2)

where k(a) and k(b) are the number of clusters in partition)(aλ and)(bλ , respectively.

n(h) denotes the size of cluster Ch in partition)(aλ , ng denotes the size of cluster Cg in

partition)(bλ ,)(h
gn denotes the number of shared objects between Ch and Cg.

According to the fitness value, genetic evolution repeatedly changes the chromo-
somes in the current population to generate a new population. It is expected that
chromosomes could be increasingly closer to the optimal partition with largest ANMI.
Genetic procedure will halt when the best fitness in the current population is greater
than the user-specified fitness threshold or there has been no relative improvement on
best fitness after some consecutive iterations.

3 New Initialization Method

The basic idea of the new initialization method is that integrating some equivalence
classes of the partitions defined by attributes into the generation of initial partitions.
Two cases are considered:

i. If the population size P is greater than or equal to the number of attributes M, then
the algorithm generates first M chromosomes from the M attributes partitions, and
generates other P-M chromosomes randomly.

ii. If the population size P is less than the number of attributes M, then the algorithm
generates P chromosomes from the first P attributes partitions.

Generating chromosomes from the attributes partitions is implemented by a one-one
way, namely one chromosome is generated by one partition. Generating a chromo-
some from a partition means taking some equivalence classes of the partition as the
part of the chromosome. How many equivalence classes should we take depends on
the number of equivalence classes (Nec) in the partition and the specified number of
clusters k. Different strategies are employed when the number of equivalence classes
in the partition is greater than, less than and equals to the specified number of clusters,
respectively. The details are described in Fig .1.

 An Improved Genetic Clustering Algorithm for Categorical Data 103

Begin

For each partition Par
 if Nec in Par equals k
 Copy Par to the corresponding chromosome Chrom
 else
 if Nec is greater than k

 Copy first k equivalence classes of Par to the same locations in
Chrom.

 Generate a random number between [0, k-1] for each of the remain-
ing locations in Chrom.

 else
 Find a highest H which satisfies the following inequation
 N - Sum >= k-H-1

 //where N is the length of a chromosome, Sum is the summation
 //of the size of first H+1 equivalence classes of Par.
 Copy first H+1 equivalence classes of Par to the same locations in

Chrom.
 Generate a random number between [H+1, k-1] for each of the

remaining locations in Chrom.
End.

Fig. 1. The procedure of generating a chromosome from a partition

Note that the purpose of inequation N - Sum >= k-H-1 is to ensure each number be-
tween interval [H+1, k-1] appears at least once in Chrom when generating a random
number for each of the remaining locations in Chrom.

Next, we present an illustrative example of the new initialization method. For the
comparison purpose, the G-ANMI algorithm with new initialization method is named
improved G-ANMI (IG-ANMI).

Example 1. Suppose there is a data set with ten objects (O1, O2, …, O10) and four
attributes (A0, …, A3). Table 1 shows the partitions defined by the four attributes. The
numbers 0, 1, 2, and 3 denote different equivalence classes (categories) in the parti-
tions. We use the algorithms IG-ANMI and G-ANMI to cluster the objects, respec-
tively. The parameter setting includes: the number of clusters k=3, the population size
P=10, crossover rate=0.8, mutation rate=0.1, random seed=1, and the number of con-
secutive iterations without improvement=100.

Since the population size P is greater than the number of attributes, we generate
first four chromosomes by using attributes partitions and generate remaining six
chromosomes randomly. The attributes partitions are named Par[i], i=0, 1, 2, 3. The
chromosomes are named C[j], j=0, 1, …, 9. The numbers of equivalence classes in
Par[0] and Par[2] equal the specified number of clusters k, so we directly copy
Par[0] and Par[2] to C[0] and C[2], respectively. The number of equivalence classes
in Par[1] is less than k. According to the algorithm shown in Figure 1, we first seek
an appropriate number H. In this example, there is only possible value for H, namely
zero. Zero satisfies N - Sum >= k-H-1, thus H gets the value zero. Next, we copy the

104 H. Qin et al.

Table 1. The partitions defined by four attributes

U A0 A1 A2 A3
O1 0 0 0 0
O2 1 0 1 1
O3 0 1 0 0
O4 0 0 0 0
O5 1 1 2 2
O6 1 1 1 2
O7 2 0 2 3
O8 2 1 2 1
O9 1 1 1 2
O10 2 1 2 3

first equivalence class to the corresponding location in C[1]. Table 2 shows the status
of C[1] after copying the first equivalence class. There are still six locations need to
be filled in C[1]. We generate a random number between interval [1, 2] for each of
the six locations.

Table 2. The status of C[1] after copying the first equivalence class

Location 0 1 2 3 4 5 6 7 8 9
C[1] 0 0 0 0

The number of equivalence classes in Par[3] is greater than k. According to the al-

gorithm shown in Figure 1, we copy first three equivalence classes of Par[3] to the
corresponding location in C[3]. Table 3 shows the status of C[3] after copying first
three equivalence classes. There are still two locations need to be filled in C[3]. We
generate a random number between interval [0, 2] for each of the two locations.

Table 3. The status of C[3] after copying first three equivalence classes

Location 0 1 2 3 4 5 6 7 8 9
C[3] 0 1 0 0 2 2 1 2

Following the method, the remaining six chromosomes C[4], … C[9] are randomly

generated. At the end, ten chromosomes are obtained and summarized in Table 4. The
numbers in bold style are randomly generated.

Note that the equivalence classes in each of the first four chromosomes are labeled
by order 0, 1, 2. However, the equivalence classes in each of other six chromosomes
are labeled unorderly. Actually, the numbers 0, 1, 2 in the partitions or chromosomes
only denote different categories rather than order. That means the order of the labels
doesn’t affect the computation of fitness of a chromosome. Even if we change the
order of the labels in some chromosomes, their fitness values keep invariable. For
instance, we can change C[0] from {0, 1, 0, 0, 1, 1, 2, 2, 1, 2} to {1, 2, 1, 1, 2, 2, 0, 0,
2, 0}, change C[4] from {1, 1, 1, 2, 1, 1, 0, 1, 0, 0} to {0, 0, 0, 1, 0, 0, 2, 0, 2, 2}, and
so on.

 An Improved Genetic Clustering Algorithm for Categorical Data 105

Table 4. Ten chromosomes generated by the new initialization method

Location C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9]
0 0 0 0 0 1 2 1 2 1 1
1 1 0 1 1 1 0 1 1 1 2
2 0 1 0 0 1 2 0 0 0 0
3 0 0 0 0 2 1 1 1 1 0
4 1 1 2 2 1 2 1 1 0 2
5 1 1 1 2 1 2 1 1 0 0
6 2 0 2 0 0 2 2 0 1 0
7 2 1 2 1 1 2 2 0 0 1
8 1 1 1 2 0 0 1 2 2 2
9 2 2 2 1 0 0 2 1 0 0

After the initialization, the next step of IG-ANMI is to calculate the fitness of each

chromosome. According to the Eq. (1), we obtain the fitness of chromosomes as is
shown in Table 5.

Table 5. The fitness of initial chromosomes of IG-ANMI

Chromosomes fitness value average
C[0] 0.654067

0.53927
C[1] 0.361562
C[2] 0.615644
C[3] 0.525807
C[4] 0.252361

0.265807

C[5] 0.196573
C[6] 0.403407
C[7] 0.166014
C[8] 0.323139
C[9] 0.253349

average 0.375192

It can be seen from Table 5 that the average fitness value of first four chromo-

somes is higher than that of other six chromosomes, which indicates that the chromo-
somes generated from the attributes partitions are closer to the optimal partition than
that generated randomly. With these fitness values, the algorithm IG-ANMI generates
new population and goes into the next iteration. Since there has been no relative im-
provement on best fitness during 100 consecutive iterations, the algorithm IG-ANMI
ends after the 100th iteration. Finally, we get the optimal 3-partition {0, 1, 0, 0, 1, 1, 2,
2, 1, 2}.

We use G-ANMI algorithm to cluster the same data set below. Firstly, G-ANMI
randomly generates P chromosomes as is shown in Table 6.

Table 7 shows the fitness values of the chromosomes in the initial population. Ob-
viously, the average fitness as well as the best fitness of the chromosomes is less than
that in the initial population generated by algorithm IG-ANMI. After 27 iterations, the
best fitness reaches 0.654067, which equals to the best fitness of the initial population
generated by algorithm IG-ANMI. Since there has been no relative improvement on

106 H. Qin et al.

best fitness during the subsequent 99 consecutive iterations, the algorithm G-ANMI
ends after the 127th iterations. G-ANMI needs 27 more iterations than IG-ANMI due to
the randomly generated initial population.

Table 6. Ten chromosomes generated by the initialization method of G-ANMI

Location C[0] C[1] C[2] C[3] C[4] C[5] C[6] C[7] C[8] C[9]
0 1 1 2 0 0 0 0 0 2 2
1 1 2 1 1 2 1 1 0 1 1
2 2 1 2 1 2 1 0 2 1 0
3 1 1 2 1 0 1 0 0 2 1
4 1 0 2 2 0 0 1 0 2 2
5 1 1 2 2 0 0 0 1 1 1
6 0 0 0 1 2 2 2 2 2 2
7 1 0 0 2 0 1 0 0 0 1
8 1 2 1 0 2 1 2 1 1 2
9 1 0 1 0 1 1 1 1 0 0

Table 7. The fitness values of the chromosomes in the initial population of G-ANMI

Chromosomes fitness value
C[0] 0.211672
C[1] 0.469059
C[2] 0.338877

C[3] 0.227614
C[4] 0.139958
C[5] 0.181013
C[6] 0.216344
C[7] 0.263182
C[8] 0.377376

C[9] 0.166627
average 0.259172

4 Experimental Results

A series of experiments are conducted to evaluate the clustering efficiency and clus-
tering performance of IG-ANMI. They are described below.

4.1 Experiments Design

We aim to evaluate the influence of new initialization method on G-ANMI algorithm.
Therefore, the experimental studies are devoted to the comparison between G-ANMI
and IG-ANMI. Four real-life datasets obtained from the UCI Machine Learning Re-
pository [11] are used in the experiments, including Zoo, Congressional Votes (Votes
for short), Wisconsin Breast Cancer (Breast Cancer for short), and Mushroom. The
reason for choosing these four datasets is that they are also used in G-ANMI for eval-
uation. The information about the data sets is tabulated in Table 8.

 An Improved Genetic Clustering Algorithm for Categorical Data 107

Table 8. The information about the four data sets

Data set Number of objects Number of Attributes Number of classes

Zoo 101 16 7

Votes 435 16 2

Breast cancer 699 9 2

Mushroom 8124 22 2

The parameters required by G-ANMI and IG-ANMI are set to be the same as in

[7]. In addition, population size has a great effect on the quality of clustering in G-
ANMI and IG-ANMI. In our experiments we vary the population size to perform the
comparison between G-ANMI and IG-ANMI. For the Zoo, Votes, and Breast Cancer
data sets, the population size vary from 50 to 500, for the Mushroom data set, the
population size varies from 50 to 200.

All the programs are written in C language and compiled on the Borland C++ ver-
sion 5.02. All experiments are conducted on a machine with Intel Core2 Duo CPU
T7250 @ 2.00GHz, 1.99 GB of RAM, running Microsoft Windows Vista.

4.2 Efficiency Analysis

In our experiments, the running time of algorithms is used as the criteria for efficiency
evaluation. Figs. 2-5 plot the running time of G-ANMI and IG-ANMI in seconds on
four data sets when population size is increased. It can be seen that IG-ANMI takes
less running time than G-ANMI except for on the Zoo data set when population size
is 500. It is worth noting that there is a very large difference between G-ANMI and
IG-ANMI on the Mushroom data set, which indicates IG-ANMI can save much time
when larger data sets are processed. Table 9 shows the concrete values of numbers of
iterations and running time of G-ANMI and IG-ANMI on the Mushroom data set.
When the population size is set to 200, G-ANMI takes 190998.485 seconds (53 hours)
while IG-ANMI only take 1351.594 seconds.

Fig. 2. Running 1time vs. population size on the Zoo data set

0
20
40
60
80

100
120
140
160
180

50 100 150 200 250 300 350 400 450 500

R
un

ni
ng

 T
im

e(
s)

Population Size

G-ANMI

IG-ANMI

108 H. Qin et al.

Fig. 3. Running time vs. population size on the Votes data set

Fig. 4. Running time vs. population size on the Breast Cancer data set

Fig. 5. Running time vs. population size on the Mushroom data set

Table 9. The numbers of iterations and running time of G-ANMI and IG-ANMI on the
Mushroom data set

Population Size
Number of iterations Running time (s)

G-ANMI IG-ANMI G-ANMI IG-ANMI

50 10845 100 20759.969 201.25

100 14453 145 63574.047 606.312

150 13944 144 94324.032 880.875

200 17916 158 190998.485 1351.594

0
100
200
300
400
500
600
700
800

50 100 150 200 250 300 350 400 450 500

R
un

ni
ng

 T
im

e(
s)

Population Size

G-ANMI

IG-ANMI

0
100
200
300
400
500
600
700
800
900

50 100 150 200 250 300 350 400 450 500

R
un

ni
ng

 T
im

e(
s)

Population Size

G-ANMI

IG-ANMI

0

50000

100000

150000

200000

250000

50 100 150 200

R
un

ni
ng

 T
im

e(
s)

Population Size

G-ANMI

IG-ANMI

 An Improved Genetic Clustering Algorithm for Categorical Data 109

D
at

a
se

t
A

lg
or

ith
m

s
50

10

0
15

0
20

0
25

0
30

0
35

0
40

0
45

0
50

0
A

ve
ra

ge

Zo
o

G
-A

N
M

I
0.

83
2

0.
85

1
0.

91
1

0.
88

1
0.

86
1

0.
89

1
0.

93
1

0.
81

2
0.

85
1

0.
92

1
0.

87
4

IG
-A

N
M

I
0.

88
1

0.
91

1
0.

90
1

0.
91

1
0.

92
1

0.
92

1
0.

92
1

0.
93

1
0.

93
1

0.
93

1
0.

91
6

V
ot

es

G
-A

N
M

I
0.

87
4

0.
86

2
0.

87
6

0.
86

4
0.

88
0

0.
87

4
0.

86
9

0.
86

4
0.

87
6

0.
87

4
0.

87
1

IG
-A

N
M

I
0.

83
9

0.
86

0
0.

88
0

0.
86

2
0.

86
7

0.
86

9
0.

87
6

0.
87

6
0.

87
1

0.
87

8
0.

86
8

B
re

as
t C

an
ce

r
G

-A
N

M
I

0.
92

4
0.

96
2

0.
96

0
0.

96
3

0.
97

2
0.

97
5

0.
97

5
0.

97
5

0.
97

7
0.

97
8

0.
96

6

IG
-A

N
M

I
0.

93
6

0.
96

6
0.

96
5

0.
96

9
0.

97
1

0.
97

7
0.

97
5

0.
97

7
0.

97
2

0.
97

8
0.

96
9

M
us

hr
oo

m

G
-A

N
M

I
0.

54
7

0.
56

8
0.

54
6

0.
53

8

0.

55

IG
-A

N
M

I
0.

74
4

0.
90

2
0.

84
7

0.
90

1

0.

84
9

T
ab

le
 1

0.
 T

he
 c

lu
st

er
in

g
ac

cu
ra

ci
es

 o
f

G
-A

N
M

I
an

d
IG

-A
N

M
I

on
 f

ou
r

da
ta

 s
et

s

110 H. Qin et al.

4.3 Performance Analysis

We use clustering accuracy to evaluate the performance of the IG-ANMI, which is
one of the most widely used methods to evaluate the results of clustering algorithms.
Given the true class labels and the required number of clusters, k, clustering accuracy

is defined as
n

a
k

i i =1 , where n is number of objects in the dataset and ai is the num-

ber of objects with the class label that dominates cluster i. A higher value of cluster-
ing accuracy indicates a better clustering result. The clustering accuracies of two algo-
rithms on four data sets are summarized in Table 10. From the average accuracies, we
can see that IG-ANMI has higher clustering accuracy on the Zoo, Breast Cancer, and
Mushroom data sets. One exception is on the Votes data set, the clustering accuracy
of G-ANMI is slightly higher than that of IG-ANMI. It is worth noting that IG-ANMI
improves clustering accuracy greatly on the Mushroom data set.

5 Conclusions

In this paper, we propose a new initialization method for G-ANMI, namely integrat-
ing some equivalence classes of the attributes partitions into the generation of initial
partitions. Experimental results on four real-life data sets show that the new method
greatly improves the efficiency of G-ANMI, as well as produces higher clustering
accuracy, especially on the larger data sets. The new initialization method could be
more complicated so that producing better initial chromosomes. In the future work,
we will develop other initialization methods to further improve the efficiency of G-
ANMI.

Acknowledgments. This work was supported by PRGS under the Grant No.
GRS100323, Universiti Malaysia Pahang, Malaysia.

References

1. Guha, S., Rastogi, R., Shim, K.: ROCK: a robust clustering algorithm for categorical
attributes. Information Systems 25(5), 345–366 (2000)

2. Huang, Z.: Extensions to the k-means algorithm for clustering large data sets with categor-
ical values. Data Mining and Knowledge Discovery 2(3), 283–304 (1998)

3. Barbara, D., Li, Y., Couto, J.: COOLCAT: an entropy-based algorithm for categorical
clustering. In: Proc. of CIKM 2002, pp. 582–589 (2002)

4. He, Z., Xu, X., Deng, S.: k-ANMI: a mutual information based clustering algorithm for ca-
tegorical data. Information Fusion 9(2), 223–233 (2008)

5. He, Z., Xu, X., Deng, S.: A cluster ensemble method for clustering categorical data. In-
formation Fusion 6(2), 143–151 (2005)

6. Cristofor, D., Simovici, D.: Finding median partitions using information-theoretical-based
genetic algorithms. Journal of Universal Computer Science 8(2), 153–172 (2002)

 An Improved Genetic Clustering Algorithm for Categorical Data 111

7. Deng, S., He, Z., Xu, X.: G-ANMI: A mutual information based genetic clustering algo-
rithm for categorical data. Knowledge-Based Systems 23, 144–149 (2010)

8. Holland, J.H.: Adaptation in Natural and Artificial Systems. MIT Press (1992)
9. Bai, L., Liang, J.Y., Dang, C.Y.: An initialization method to simultaneously find initial

cluster and the number of clusters for clustering categorical data. Knowledge-Based Sys-
tems 24, 785–795 (2011)

10. Herawan, T., Deris, M.M., Abawajy, J.H.: A rough set approach for selecting clustering
attribute. Knowledge-Based Systems 23, 220–231 (2010)

11. UCI Machine Learning Repository (2011),
http://www.ics.uci.edu_/mlearn/MLRepository.html

	An Improved Genetic Clustering Algorithm for Categorical Data
	Introduction
	G-ANMI
	New Initialization Method
	Experimental Results
	Experiments Design
	Efficiency Analysis
	Performance Analysis

	Conclusions
	References

