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Abstract. Kernel methods play an important role in machine learning,
pattern recognition and data mining. Although the kernel functions are
the central part of the kernel methods, little is known about the structure
of its reproducing kernel Hilbert spaces (RKHS) and the eigenvalues of
the integral operator. In this paper, we first give the definition of the ex-
tended Gaussian kernel which includes the Gaussian kernel as its special
case. Then, through a generalization form of the Weyl inner product, we
present an explicit description of the RKHS of the extended Gaussian
kernel. Furthermore, using the Funk-Hecke formula, we get the eigenval-
ues and eigenfunctions of the integral operator on the unit sphere.
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1 Introduction

The reproducing kernel Hilbert space (RKHS) and the eigenvalues of the integral
operator recently have attracted more and more attentions in machine learning
and data mining (comprehensive treatments are found in [15,18,9,16,12]). It is
thus of crucial importance, for both practical and theoretical purposes, to have
a deep understanding of the RKHS and the eigenvalues of the integral operator.
Steinwart et al [13] first studied the structure of the RKHS induced by the pop-
ular Gaussian kernel, and they presented an orthonormal basis for this space.
Minh [6] also discussed the RKHS of the Gaussian kernel and its orthonormal ba-
sis. Scovel et al [11] developed a general theory regarding mixtures of kernels, and
analyzed the RKHS of the mixture in terms of the RKHSs of the mixture com-
ponents. Sun and Zhou [14] explored the RKHS associated with the translation-
invariant Mercer kernels, and derived some estimates for the covering numbers
which form an essential part for the analysis of some algorithms in the learning
theory. Kadri et al [5] explored the potential of adopting an operator-valued
kernel feature space perspective for the analysis of functional data. Ferreira and
Manegatto [3,4] analyzed the reproducing kernel Hilbert spaces of positive defi-
nite kernels on a topological space.
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In this paper, we generalize the results associated with the Gaussian kernel
[13,6] to general kernel, namely as the extended Gaussian kernel. Compared to
the Gaussian kernel, the extended Gaussian kernel can be used to solve the
problems where the input data need to be scaled. In addition, we also present
an explicit description for the eigenvalues and the eigenfunctions of the integral
operator on the unit sphere, which can be used in the theoretical analysis of
kernel principal component analysis [8] and other methods that need eigenvalue
and eigenfunction.

The contribution of our paper mainly consists of two aspects:

– An explicit description of the RKHS with its orthonormal basis induced by
the extended Gaussian kernel.

– An explicit description of the eigenvalues and the eigenfunctions of the in-
tegral operator associated with the extended Gaussian kernel on the unit
sphere.

The rest of the paper is organized as following. In Section 2, we introduce the
basic facts on an RKHS, In Section 3, we define the extended Gaussian kernel
and present our main results, i.e., the explicit description of the RKHS and
the eigenvalues of the extended Gaussian kernel. We conclude this paper in
Section 4.

2 Preliminaries

Let X be a nonempty set. A function K is called a kernel on X if there exists a
Hilbert space H and a map Φ : X → H such that for all x,x′ ∈ X we have

K(x,x′) = 〈Φ(x′), Φ(x)〉.

We call Φ a feature map and H a feature space of K. For any finite set of points
{xi}Ni=1 in X and {ai ∈ R}Ni=1, if

N∑

i,j=1

aiajK(xi,xj) ≥ 0,

then the function K is said to be positive definite kernel on X .
For a given kernel, neither the feature map nor the feature space is uniquely de-

termined. However, one can always construct a canonical feature space, namely,
the reproducing kernel Hilbert space (RKHS). Let us now recall the basic theory
of this space [1].

Definition 1. Let X be a nonempty set and H be a Hilbert function space over
X , i.e., a Hilbert space that consists of functions mapping from X into R.
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1. The space H is called a reproducing kernel Hilbert space (RKHS) if for all
x ∈ X the Dirac functional δx : H → R defined by δx(f) := f(x), f ∈ H, is
continuous.

2. A function K : X × X → R is called a reproducing kernel of H if we have
K(·,x) ∈ H for all x ∈ X and the reproducing property

f(x) = 〈f,K(·,x)〉

holds for all f ∈ H and all x ∈ X .

A Hilbert function space H that has a reproducing kernel K is always an RKHS.
Vice versa, i.e., every RKHS has a (unique) reproducing kernel (see [10]).

3 Main Results

In this section, we will first give the definition of the extended Gaussian kernel,
and then we will present an explicit description of the RKHS and the eigenvalues
of the integral operator associated with the extended Gaussian kernel.

3.1 Extended Gaussian Kernel

For a multi-index x = (x1, . . . , xd)
T ∈ R

d, if b = {b1, . . . , bd}T ∈ R
d, we write

x(b) = (xb1
1 , . . . , xbd

d )T, if b ∈ R, we write x[b] = (xb
1, . . . , x

b
d)

T.

Definition 2 (Extended Gaussian Kernel). Let X ⊂ R
d be a nonempty set.

For b ∈ R
d, the extended Gaussian kernel Kb : X × X → R is written as

Kb(x, z) := exp

(
−‖x(b) − z(b)‖2

σ2

)
.

For b ∈ R, the extended Gaussian kernel Kb : X × X → R is written as

Kb(x, z) := exp

(
−‖x[b] − z[b]‖2

σ2

)
,

where σ > 0.

Remark 1. According to the definition of the extended Gaussian kernel, we know
that the popular Gaussian kernel is a special case of the extended Gaussian kernel
(when b = {1, . . . , 1}T for b ∈ R

d or b = 1 for b ∈ R), thus the results associated
with the extended Gaussian kernels can be easily applied to the Gaussian kernel.
Moreover, in practice, the input data need to be scaled, so the extended Gaus-
sian kernel with an advisable value of b may be more useful than the Gaussian
kernel.
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3.2 RKHS of Extended Gaussian Kernel

Let

b = (b1, . . . , bd)
T ∈ R

d, d ∈ N;

α = (α1, . . . , αd)
T ∈ (N ∪ {0})d;

|α| =
d∑

i=1

αi;

xα =
d∏

i=1

xαi

i ;

xb,α =
d∏

i=1

xαibi
i .

We show the RKHS Hb of the extended Gaussian kernel Kb in the following
theorem.

Theorem 1. Let X ⊂ R
d be a nonempty set, for every σ > 0, b ∈ R

d. Then

the extended Gaussian kernel Kb(x, z) = exp
(
− ‖x(b)−z(b)‖2

σ2

)
is the reproducing

kernel of the space

Hb =

⎧
⎨

⎩f = e−
‖x(b)‖2

σ2

∞∑

|α|=0

wαx
b,α : ‖f‖2K < ∞

⎫
⎬

⎭ , (1)

where the inner product 〈·, ·〉K on Hb is given by

〈f, g〉K =

∞∑

k=0

k!

(2/σ2)k

∑

|α|=k

wανα
Ck

α

for

f = e−
‖x(b)‖2

σ2

∞∑

|α|=0

wαx
b,α,

g = e−
‖x(b)‖2

σ2

∞∑

|α|=0

ναx
b,α,

f, g ∈ Hb ∧ f, g : Rd → R.

An orthonormal basis for Hb is
⎧
⎨

⎩ek(x) = e−
‖x(b)‖2

σ2

∑

|α|=k

√
(2/σ2)kCk

α

k!
xb,α

⎫
⎬

⎭

∞

k=0

. (2)
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Proof. See in Appendix.A.

Remark 2. Obviously, Hb is a function space with Hilbert norm ‖ · ‖K , and the
inner product 〈·, ·〉K in Hb is a simple generalization of the Weyl inner product
for the homogeneous polynomial space Hd(R

d).

Remark 3. An orthonormal basis for the RKHS induced by the Gaussian kernel

K(x, z) = exp
(
− ‖x−z‖2

σ2

)
has been known in the literature ([13] and references

therein). We generalize this result to the extended Gaussian kernels K(x, z) =

exp
(
− ‖x(b)−z(b)‖2

σ2

)
. In addition, our approach using the Weyl inner product

leads to a much shorter proof.

Remark 4. In [13], Steinwart et al discussed how to use the explicit description
of RKHS to analyze support vector machines. Thus, we can use the above results
to analyze support vector machines with the extended Gaussian kernels.

3.3 Eigenvalues and Eigenfunctions of Integral Operator

In the theoretical analysis of a broad variety of methods for machine learning and
data analysis, such as kernel principal component analysis [8] and spectral clus-
tering [17], the eigenvalues and the eigenfunctions of the integral operator play a
crucial role. For this reason, we will study the eigenvalues and the eigenfunctions
of LKb

associated with the extended Gaussian kernel.
To state our results, we need the following connection between the theory

of the reproducing kernels and the theory of the integral operators, which is
manifested via Mercer’s theorem. Let X be a complete, separable metric space,
equipped with a finite Borel measure μ, that is μ(X ) < ∞. Let K : X ×X → R

be a positive definite kernel on X satisfying

κ = sup
x∈X

√
K(x,x) < ∞.

We consider the integral operator LK : L2
μ(X ) → L2

μ(X ),

(LKf)(x) =

∫

X
K(x, t)f(t)dμ(t).

This is a self-adjoint, compact operator that has eigenvalues

λ1 ≥ λ2 ≥ . . . , λi, . . . ≥ 0,

with the corresponding L2
μ-normalized eigenfunctions {φk}∞k=1 forming an or-

thonormal basis for L2
μ(X ). Mercer’s theorem (we refer to [2] for more detail)

states that

K(x, t) =
∞∑

k=1

λkφk(x)φk(t),
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where the series converges absolutely for each (x, t) ∈ X × X and uniformly on
compact subsets of X × X .

Let Sd−1 = {x ∈ R
d : ‖x‖ = 1} be the d-dimensional unit sphere, with

surface area |Sd−1| = 2π
d
2

Γ ( d
2 )
, where Γ is the gamma function defined by Γ (k) =

∫∞
0 e−uuk−1du. We review the concept of spherical harmonics which is defined
in [7].

Definition 3 (Spherical Harmonics). Let Δd = −
[

∂2

∂x2
1
+ · · ·+ ∂2

∂x2
d

]
denote

the Laplacian operator on R
d. A homogeneous polynomial of degree k in R

d

is called a homogeneous harmonic of order k when its Laplacian vanishes. Let
Yk(d) denote the subspace of all homogeneous harmonics of order k on the unit
sphere Sd−1 in R

d. The functions in Yk(d) are called spherical harmonics of

order k. We denote by {Yk,j(d;x)}N(d,k)
j=1 any fixed orthonormal basis for Yk(d)

where N(d, k) = dimYk(d) =
(2k+d−2)(k+d−3)!

k!(d−2)! , k ≥ 0.

Theorem 2. Let b ∈ R, d ∈ N, d ≥ 2, be fixed. Let X = Sd−1 and μ be the
uniform probability distribution on Sd−1. If 〈x[b], z[b]〉 = 〈x, z〉b for all x, z ∈ X ,
for the extended Gaussian kernel

Kb(x, z) = exp

(
−‖x[b] − z[b]‖2

σ2

)
, σ > 0,

the eigenvalues of LKb
: L2

μ(X ) → L2
μ(X ) are

λk = |Sd−2|
∫ 1

−1

exp

(
−2− 2tb

σ2

)
Pk(d; t)(1 − t2)

d−3
2 dt,

for all k ∈ N ∪ {0}. Each λk occurs with multiplicity N(d, k), and the corre-
sponding eigenfunctions are the spherical harmonics of order k on Sd−1.

Proof. See in Appendix.B.

Remark 5. Note that if b = 1 or d = 1, the assumption 〈x[b], z[b]〉 = 〈x, z〉b for
all x, z ∈ X in the above theorem is satisfied. Thus, when we let b = 1, we can
obtain the eigenvalues and the eigenfunctions of the integral operator induced
by the Gaussian kernel.

Corollary 1. Let d ∈ N, d ≥ 2, X = Sd−1, and μ be the uniform probability
distribution on Sd−1. For the Gaussian kernel

K(x, z) = exp

(
−‖x− z‖2

σ2

)
, σ > 0,

the eigenvalues of LK : L2
μ(X ) → L2

μ(X ) are

λk = |Sd−2|
∫ 1

−1

exp

(
−2− 2t

σ2

)
Pk(d; t)(1 − t2)

d−3
2 dt,

for all k ∈ N∪{0}. Each λk occurs with multiplicity N(d, k) with the correspond-
ing eigenfunctions being spherical harmonics of order k on Sd−1.



94 Y. Liu and S. Liao

Proof. Since the Gaussian kernel K(x, z) = exp
(
− ‖x−z‖2

σ2

)
is a special case of

extended Gaussian kernel when b = 1, we can prove the corollary by using the
result of Theorem 2.

The radial kernelK(x, z) = exp
(
− ‖x−z‖

σ2

)
, σ > 0 is another popular kernel in

machine learning and data mining. For both theoretical and practical purposes,
we need to study the eigenvalues and the eigenfunctions of the integral operator
associated with this radial kernel.

Theorem 3. Let d ∈ N, d ≥ 2, X = Sd−1, and μ be the uniform probability
distribution on Sd−1. For the radial kernel

K(x, z) = exp

(
−‖x− z‖

σ2

)
, σ > 0,

the eigenvalues of LK : L2
μ(X ) → L2

μ(X ) are

λk = |Sd−2|
∫ 1

−1

exp

(
−
√
2− 2t

σ2

)
Pk(d; t)(1 − t2)

n−3
2 dt,

for all k ∈ N∪{0}. Each λk occurs with multiplicity N(d, k) with the correspond-
ing eigenfunctions being spherical harmonics of order k on Sd−1.

Proof. See in Appendix.C.

4 Conclusion

In this paper, we have generalized the results of the explicit description of the
reproducing kernel Hilbert space (RKHS) associated with the Gaussian kernel
[13,6] to the extended Gaussian kernel. In addition, we have presented the ex-
plicit description for the eigenvalues and eigenfunctions of the integral operator.
These results can be used in the theoretical analysis of the kernel principal com-
ponent analysis and other methods which need analysis of the eigenvalues and
the eigenfunctions.

We will apply the results of this paper to analyze the learning performance of
SVM or other kernel-based methods, and to explore a new criterion for model
selection of kernel methods.

Acknowledgments. The work is supported in part by the Natural Science
Foundation of China under grant No. 61170019, and the Natural Science Foun-
dation of Tianjin under grant No. 11JCYBJC00700.

Appendix

This section gives the proofs for the theorems in the main text.
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Appendix A

In order to prove Theorem 1, we first introduce the following lemma.

Lemma 1 (Aronszajn [1]). Let H be a separable Hilbert space of functions
over X with orthonormal basis {ek}∞k=0. H is a reproducing kernel Hilbert space
iff

∞∑

k=0

|ek(x)|2 < ∞

for all x ∈ X . The unique kernel K is defined by

K(x, z) =

∞∑

k=0

ek(x)ek(z).

Proof (of Theorem 1). Note that for any vector x, z,

e〈x,z〉 =
∞∑

k=0

1

k!

∑

|α|=k

Ck
αx

αzα,

thus we can obtain that

Kb(x, z) = exp

(
−‖x(b) − z(b)‖2

σ2

)

= exp

(
−‖x(b)‖2

σ2

)
exp

(
−‖z(b)‖2

σ2

)
exp

(
2〈x(b), z(b)〉

σ2

)

= exp

(
−‖x(b)‖2

σ2

)
exp

(
−‖z(b)‖2

σ2

) ∞∑

k=0

(2/σ2)k

k!

∑

|α|=k

Ck
αx

b,αzb,α.

Let H0 =

⎧
⎨

⎩f = e−
‖x(b)‖2

σ2

∞∑

|α|=0

wαx
b,α :

∞∑

k=0

k!

(2/σ2)k

∑

|α|=k

w2
α

Ck
α

< ∞
⎫
⎬

⎭ . For

f = e−
‖x(b)‖

σ2

∞∑

|α|=0

wαx
b,α ∈ H0,

g = e−
‖x(b)‖

σ2

∞∑

|α|=0

ναx
b,α ∈ H0,

we define the inner product

〈f, g〉K,0 =

∞∑

k=0

k!

(2/σ2)k

∑

|α|=k

wανα
Ck

α

.
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We will show that H0 is itself a separable Hilbert space under 〈·, ·〉K,0. For
simplicity, let d = 1. Then

H0 =

{
f = e−

x2b

σ2

∞∑

k=0

wkx
bk :

∞∑

k=0

k!

(2/σ2)k
w2

k < ∞
}
.

It is clear thatH0 is an inner product space under 〈·, ·〉K,0. Its completeness under
the induced norm ‖ · ‖K,0 is equivalent to the completeness of the weighted �2

sequence space

�2σ =

⎧
⎨

⎩(wk)
∞
k=0 : ‖(wk)

∞
k=0‖�2σ =

( ∞∑

k=0

k!

(2/σ2)k
w2

k

)1/2
⎫
⎬

⎭ ,

which is itself a separable Hilbert space. Thus (H0, ‖ · ‖K,0) is a separable Hilbert
space.

If X ⊂ R
d has non-empty interior, then the mononomials xb,α are all distinct.

From the definition of the inner product 〈·, ·〉K,0, it is easy to obtain that

〈ei, ej〉K =

{
0, if i 
= j;

1, otherwise;

where ek are given in (2). So {ek}∞k=0 are orthonormal under 〈·, ·〉K,0. More-
over, H0 = span{ek, k = 0, 1, . . .}, thus, {ek}∞k=0 forms an orthonormal basis for
(H0, ‖ · ‖K,0). By Lemma 1 and the following equation

∞∑

k=0

|ek(x)|2 = K(x,x) = 1 < ∞,

we can obtain that Hb is a reproducing kernel Hilbert space. Note that

∞∑

k=0

ek(x)ek(z) = Kb(x, z),

and since the RKHS induced by a kernel on a set X is unique, thus (H0, ‖ · ‖K,0)
is the reproducing kernel Hilbert space of functions on X with the extended
Guassian kernel Kb(x, z).

Appendix B

In order to obtain the eigenvalues and eigenfunctions of the integral operator
associated with the extended Gaussian kernel, we first give the following lemma.

Lemma 2. Let d ∈ N, d ≥ 2 be fixed. Let K : [−1, 1] → R be a continuous
function, giving rise to a continuous, positive definite kernel K(x, t) = K(〈x, t〉)
on Sd−1 × Sd−1. Let μ be the Lebesgue measure on Sd−1. The eigenvalues λk of

LK : L2
μ(S

d−1) → L2
μ(S

d−1)
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are given by

λk = |Sd−2|
∫ 1

−1

K(t)Pk(d; t)(1 − t2)
d−3
2 dt,

each with multiplicity N(d, k), for k ∈ Z, k ≥ 0, where Pk(d; t) is Legendre
polynomial of degree k in dimension d,

Pk(d; t) = k!Γ

(
d− 1

2

) 	 k
2 
∑

l=0

(−1

4

)l
(1− t2)ltk−2l

l!(k − 2l)!Γ (l+ d−1
2 )

.

The corresponding eigenfunctions for each λk are the spherical harmonics

{Yk,j(d;x)}N(d,k)
j=1 of the order k.

Proof. Let f : [−1, 1] → R be a continuous function. Let Yk ∈ Yk(d) for k ≥ 0.
Then Funk-Hecke formula ([7], p 30) states that for any x ∈ Sd−1:

∫

Sd−1

f(〈x, t〉)Yk(t)dS
d−1(t) = λkYk(x), (3)

where

λk = |Sd−2|
∫ 1

−1

f(t)Pk(d; t)(1 − t2)
d−3
2 dt (4)

and Pk(d; t) denotes the Legendre polynomial of degree k in dimension d. The

spherical harmonics
{{

Yk,j(d;x)
}N(d,k)

j=1

}∞

k=0
form an orthonormal basis for

L2(Sd−1). So if the kernel K on Sd−1 × Sd−1 is defined by K(x, t) = f(〈x, t〉),
via the Funk-Hecke formula, it is easy to verify that the eigenvalues of

LK : L2
μ(S

d−1) → L2
μ(S

d−1)

are given precisely by (4), with the corresponding orthonormal eigenfunctions of

{Yk,j(d;x)}N(d,k)
j=1 . The multiplicity of λk is therefore N(d, k) = dim(Yk(d)).

Proof (of Theorem 2). Note that

exp

(
−‖x[b] − z[b]‖2

σ2

)
= exp

(
−‖x[b]‖2 + ‖z[b]‖2 − 2〈x[b], z[b]〉

σ2

)
,

since x, z ∈ Sd−1 and 〈x[b], z[b]〉 = 〈x, z〉b, so it is easy to obtain that

exp

(
−‖x[b] − z[b]‖2

σ2

)
= exp

(
−2− 2〈x, z〉b

σ2

)
.

Thus, using the Lemma 2, we know that the eigenvalues of

LKb
: L2

μ(X ) → L2
μ(X )
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are

λk = |Sd−2|
∫ 1

−1

exp

(
−2− 2tb

σ2

)
Pk(d; t)(1 − t2)

d−3
2 dt,

and each λk occurs with multiplicity N(d, k) with the corresponding eigenfunc-
tions being spherical harmonics of order k on Sd−1.

Appendix C

Proof (of Theorem 3). On Sd−1, it is easy to verify that

exp

(
−‖x− z‖

σ2

)
= exp

(
−
√
(2− 2〈x, z〉)

σ2

)
.

Thus, using the Lemma 2, we know that the eigenvalues of

LK : L2
μ(X ) → L2

μ(X )

are

λk = |Sd−2|
∫ 1

−1

exp

(
−
√
2− 2t

σ2

)
Pk(d; t)(1 − t2)

d−3
2 dt,

and each λk occurs with multiplicity N(d, k) with the corresponding eigenfunc-
tions being spherical harmonics of order k on Sd−1.

References

1. Aronszajn, N.: Theory of reproducing kernels. Transactions of the American Math-
ematical Society 68, 337–404 (1950)

2. Cucker, F., Smale, S.: On the mathematical foundations of learning. Bulletin of
the American Mathematical Society 39(1), 1–49 (2001)

3. Ferreira, J.C., Manegatto, V.A.: Reproducing kernel hilbert spaces associated with
kernels on topological spaces. Functional Analysis and Its Applications 46(2),
152–154 (2012)

4. Ferreira, J.C., Manegatto, V.A.: Reproducing properties of differentiable mercer-
like kernels. Mathematische Nachrichten 285(8-9), 959–973 (2012)

5. Kadri, H., Rabaoui, A., Preux, P., Duflos, E., Rakotomamonjy, A.: Functional reg-
ularized least squares classification with operator-valued kernels. In: Proceeding of
the 28th International Conference on Machine Learning (ICML 2011), pp. 993–1000
(2011)

6. Minh, H.Q., Niyogi, P., Yao, Y.: Mercer’s Theorem, Feature Maps, and Smoothing.
In: Lugosi, G., Simon, H.U. (eds.) COLT2006. LNCS (LNAI), vol. 4005, pp. 154–168.
Springer, Heidelberg (2006)

7. Müller, C.: Analysis of spherical symmetries in Euclidean spaces. Applied Mathe-
matical Sciences, vol. 129. Springer, New York (1998)

8. Schölkopf, B., Smola, A.J., Müller, K.R.: Nonlinear component analysis as a kernel
eigenvalue problem. Neural Computation 10(5), 1299–1319 (1998)



An Explicit Description of the Extended Gaussian Kernel 99

9. Schölkopf, B., Smola, A.J.: Learning with kernels: Support vector machines, regu-
larization, optimization, and beyond. The MIT Press (2002)

10. Schölkopf, B., Smola, A.J., Müller, K.-R.: Kernel Principal Component Analysis.
In: Gerstner, W., Hasler, M., Germond, A., Nicoud, J.-D. (eds.) ICANN 1997.
LNCS, vol. 1327, pp. 583–588. Springer, Heidelberg (1997)

11. Scovel, C., Hush, D., Steinwart, I., Theiler, J.: Radial kernels and their reproducing
kernel Hilbert spaces. Journal of Complexity 26(6), 641–660 (2010)

12. Smale, S., Zhou, D.X.: Learning theory estimates via integral operators and their
approximations. Constructive Approximation 26(2), 153–172 (2007)

13. Steinwart, I., Hush, D., Scovel, C.: An explicit description of the reproducing ker-
nel Hilbert spaces of Gaussian RBF kernels. IEEE Transactions on Information
Theory 52(10), 4635–4643 (2006)

14. Sun, H.W., Zhou, D.X.: Reproducing kernel Hilbert spaces associated with ana-
lytic translation-invariant Mercer kernels. Journal of Fourier Analysis and Appli-
cations 14(1), 89–101 (2008)

15. Vapnik, V.: The nature of statistical learning theory. Springer (2000)
16. Vito, E.D., Caponnetto, A., Rosasco, L.: Model selection for regularized least-

squares algorithm in learning theory. Foundations of Computational Mathemat-
ics 5(1), 59–85 (2005)

17. Von Luxburg, U., Bousquet, O., Belkin, M.: On the Convergence of Spectral Cluster-
ing onRandomSamples:TheNormalizedCase. In: Shawe-Taylor, J., Singer,Y. (eds.)
COLT 2004. LNCS (LNAI), vol. 3120, pp. 457–471. Springer, Heidelberg (2004)

18. Wahba, G.: Spline models for observational data. SIAM (1990)


	An Explicit Description of the Extended Gaussian Kernel
	Introduction
	Preliminaries
	Main Results
	Extended Gaussian Kernel
	RKHS of Extended Gaussian Kernel
	Eigenvalues and Eigenfunctions of Integral Operator

	Conclusion
	References





