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Abstract. Ensemble methods are known to increase the performance of learning
algorithms, both on supervised and unsupervised learning. Boosting algorithms
are quite successful in supervised ensemble methods. These algorithms build in-
crementally an ensemble of classifiers by focusing on objects previously misclas-
sified while training the current classifier. In this paper we propose an extension
to the Evidence Accumulation Clustering method inspired by the Boosting algo-
rithms. While on supervised learning the identification of misclassified objects is
a trivial task because the labels for each object are known, on unsupervised learn-
ing these are unknown, making it difficult to identify the objects on which the
clustering algorithm should focus. The proposed approach uses the information
contained in the co-association matrix to identify degrees of confidence of the
assignments of each object to its cluster. The degree of confidence is then used
to select which objects should be emphasized in the learning process of the clus-
tering algorithm. New consensus partition validity measures, based on the notion
of degree of confidence, are also proposed. In order to evaluate the performance
of our approaches, experiments on several artificial and real data sets were per-
formed and shown the adaptive clustering ensemble method and the consensus
partition validity measure help to improve the quality of data clustering.

1 Introduction

The general goal of data clustering is to find structure in data. Specifically, clustering
consists of grouping a set of objects into clusters, such that similar objects are assigned
to the same cluster and distinct objects are assigned to different clusters, according to
some notion of similarity between data. A large number of clustering algorithms have
been proposed over time. However, none of the clustering algorithms can alone discover
all sorts of shapes and structures of clusters.

In the last decade, several clustering ensemble methods were proposed stimulated by
the effectiveness of classifier ensemble methods. These methods combine multiple data
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partitions to improve data clustering robustness and quality [9], reuse single-run clus-
tering algorithms solutions [18], cluster data distributively, speed-up clustering process
and cluster data with heterogeneous features.

Boosting algorithms have been very successful in supervised learning. These algo-
rithms combine weak classifiers iteratively, such that, objects misclassified in previous
iterations have greater importance in the current learning iteration [10]. By focusing on
regions containing objects more difficult to classify it is expected the combination of
these weak learners lead to a strong classifier. On unsupervised learning the class of
each training object is unknown making the identification of the misclassified objects
very difficult. Topchy et al. [20] proposed a clustering ensemble construction method
following the boosting principles by checking the consistency of the objects’ assign-
ments on the previous iterations. At each iteration a new data set is subsampled. An
object consistency index is computed as the fraction of the maximal number of times an
object was grouped is a certain cluster over the current number of data partitions. The
probability of an object being selected is the weighted sum of the object consistency in-
dex plus the probability of the object in the previous iteration. Zhai et al. [23] proposed
a fuzzy clustering ensemble method based on dual boosting. Fuzzy partitions produced
from subsamples of the original data are iteratively mapped into a co-association matrix
and the probability distribution of an object being selected is computed so that objects
easy and hard to cluster have great importance in the clustering process. Saffari and
Bischof [15] introduced an unified and generic boosting framework which builds the
clustering ensemble using any model-based clustering algorithm.

We propose an adaptive clustering ensemble construction method for Evidence Accu-
mulation Clustering [7]. The clustering ensemble is build iteratively using an
object weight clustering algorithm which focuses the learning process on the objects
with more weight. After building each partition the co-association matrix is updated
and the object weights are computed given the degrees of confidence of assigning each
object to its cluster. The degrees of confidence are estimated using the similarity space
induced from the co-association matrix and are viewed as indicators of how good/bad
the objects are clustered. Comparing with the boosting methods mentioned before, our
approach does not rely on subsampling techniques or a model-based clustering algo-
rithm, but rather on an object-weighted clustering algorithm. Also, in order to build the
clustering ensemble, the number of clusters for each data partition is not required to
be the natural number of clusters, which makes it possible to use the Evidence Accu-
mulation Clustering’s split-and-merge strategy [8]. In this paper, we study the effect of
focusing on the objects hard to cluster, on the objects easy to cluster, and on a mix of
the previous. We also use the notion of degree of confidence to assess the quality of the
produced consensus data partitions.

The rest of this paper is organized as follows. In Section 2, the clustering combina-
tion problem is introduced. An adaptive clustering ensemble approach and an object-
weighted clustering algorithm are proposed in Section 3. The consensus clustering va-
lidity is addressed in Section 4. In Section 5, the experimental setup and results are
discussed. Section 6 concludes this paper.
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2 Clustering Combination

2.1 Problem Definition

Let X = {x1, · · · ,xn} be a data set with n objects and X =
[
xT
1 , · · · ,xT

n

] ∈ R
n×d

its matricial representation s.t. xi = [xi1, · · · , xid]
T ∈ R

d is a vector containing the
values for d attributes that describes xi. A clustering ensemble, P , is defined as a set of
N data partitions of X :

P = {P 1, · · · , PN}, P c = {Cc
1 , · · · , Cc

Kc}, (1)

where Cc
k is the kth cluster in data partition P c, which contains Kc clusters. Different

partitions capture different views of the structure of the data. Clustering ensemble meth-
ods use a consensus function f which maps a clustering ensemble P into a consensus
partition P ∗ = f(P).

2.2 Related Work

Clustering ensemble approaches may be categorized according to the way data parti-
tions belonging to clustering ensemble are produced – the clustering generation step
– and to the combination scheme of them – the consensus step. Figure 1 shows an
overview on multiple data clustering combination. The main approaches for the clus-
tering generation and consensus steps are presented next.

Clustering Generation Step - The process of building the clustering ensemble defines
how the data partitions which are going to be combined are generated. In this step, it
is important to create diversity among the clustering ensemble in order to produce con-
sensus partitions of superior quality [11]. In the clustering ensemble step the following
options may be used separately or in combination.

Fig. 1. Clustering ensemble steps
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– Clustering algorithms - The data partitions may be produced using only one clus-
tering algorithm or using several clustering algorithms [3]. In this case, diversity is
created by optimizing distinct objective functions.

– Parameters and initializations - Even if only one clustering algorithm is used, di-
versity may be obtained by using different parameters and/or initializations. For in-
stance, the k-means algorithm may be applied for each data partition using different
number of clusters and initializations of centroids [7].

– Subsets of data objects - Each data partition may be produced using different sets
of data objects. In real-life scenarios the data may be spread in different physical
locations. Instead of concentrate all the data in one location, one may produce data
clusterings at every locations, centralize only these clusterings, and then obtain the
consensus clustering. Even if all the data is centralized, it may be advantageous to
use different subsets of data. The use of resampling techniques may increase stabil-
ity, robustness and quality in consensus clustering [14,20], and the use of subsam-
pling techniques [3] can also speed-up the clustering generation step.

– Subsets of data features - The data partitions may be generated using all the features
of the data set or by selecting distinct subsets of data features for each data partition
[1]. Each subset of features can be considered as a partial view of the data, thereby,
the clustering combination may be thought as an aggregation of distinct views of
the data. Using subsets of data features also enables clustering data distributively,
reduces memory usage, and enables the clustering of heterogeneous data.

– Projecting to subspaces - To prevent the use of noisy or irrelevant features, and to
avoid the problem of the “curse of dimensionality” in high dimensional data, some
clustering ensemble construction methods project the original data space into a lower
dimensional data space before building the clustering ensemble. Fern and Brodley
proposed the use of the random projection technique to build the clustering ensemble
[5]. In this method, the original data features are linearly combined using random
weights. Topchy et al. proposed to build ensembles of weak clusterings by project-
ing the feature space into only one dimension or by splitting the data by random
hyperplanes [19].

Consensus Step - This step defines how the multiple data partitions are combined into
consensus partitions. The most popular approaches are presented below.

– Majority voting - The majority voting approaches are the most commonly used in
supervised classifier ensembles. Each classifier “votes” for the class of the object
xi, and then xi is given the class with more votes. The problem is more complex in
unsupervised learning because the labels of the objects do not represent the objects
classes, i.e., an object having the same label on different clusterings do not mean that
the object was assign to the same class twice. Therefore, the cluster correspondence
problem need to be solved to perform majority voting [22,4].

– Co-associations between pairs of objects - These methods store in a n × n matrix
the frequency in which each pair of objects was grouped in the same cluster in all
the partitions belonging to the cluster ensemble. This matrix may be viewed as a
similarity matrix between objects, so a clustering algorithm can be used to produce
the consensus partition [7].
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– Searching for the median partition - Some approaches define the consensus cluster-
ing as finding the partition P ∗ that maximizes the average similarity between P ∗

and all the partitions belonging to the cluster ensemble. Topchy et al. proposed to
maximize the Average Normalized Mutual Information by applying the k-means al-
gorithm to a particular representation of the clustering ensemble [19]. Jouve and Ni-
coloyannis [12] proposed to represent the clustering ensemble as a categorical data
set and search for the median partition using a categorical data clustering algorithm.

– Mapping the clustering ensemble into graph or hypergraph problems - Some ap-
proaches capture the relations between objects and transform them into graph prob-
lems. The CSPA [18] and IBGF [6] methods are some examples. Other approaches
map the relations between the clusters in the clustering ensemble into graph prob-
lems (e.g. the CBGF [6] and WSPA [2] methods), or hypergraph problems (e.g.
the HGPA and MCLA methods [18]). Another approaches, such as HBGF [6] and
WBPA [2], represent both objects and clusters as vertices of a graph and map the
object-to-cluster relations as edges.

For more informations on this topic, the interested reader may check the survey by
Vega-Pons and Ruiz-Shulcloper [21].

2.3 Evidence Accumulation Clustering

The Evidence Accumulation Clustering method (EAC) [7] considers each data partition
P c ∈ P as an independent evidence of data organization. The underlying assumption
of EAC is that two objects belonging to the same “natural” cluster will be frequently
grouped together. A vote is given to a pair of objects every time they co-occur in the
same cluster. Pairwise votes are stored in a n× n co-association matrix, C, normalized
by the total number of combined data partitions:

Cij =

∑N
l=1 vote

c
ij

N
, (2)

where votecij = 1 if xi and xj co-occur in a cluster of data partition P c; otherwise
votecij = 0. The consensus partition is obtained by applying some clustering algorithm
over the co-association matrix, C.

3 Proposed Combination Method

3.1 Adaptive Clustering Ensembles

In this section, an extension to the Evidence Accumulation Clustering method is pro-
posed. It is inspired by the supervised learning Boosting algorithms, where a different
weight is assigned to each object depending on its hardness to be well classified. We
will refer to the proposed algorithm as Adaptive Evidence Accumulation Clustering
(AdaEAC).
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Our method relies on estimating the degree of confidence of assigning an object xi
to its cluster Ck, using the information contained in the co-association matrix C. The
idea is simple: if the average similarity of xi with respect to the other objects belonging
to the same cluster ({xj : xj ∈ Ck}) is higher than the average similarity to the objects
belonging to the closest cluster (excluding Ck), then xi probably was well assigned.
Otherwise, the confidence of the assignment is low and xi probably should have been
assigned to the other cluster. The degree of confidence of assigning an object xi to its
cluster CPi is computed as

conf(xi) =

⎛

⎝ 1

|CPi | − 1

∑

j:xj∈{CPi
}\xi

Cij

⎞

⎠−
⎛

⎝ max
1≤k≤K,k �=Pi

1

|Ck|
∑

j:xj∈Ck

Cij

⎞

⎠ (3)

where | · | is the cardinality of a set.
While in the EAC approach all N data partitions belonging to the clustering ensem-

ble are assumed to already exist, in AdaEAC the clusterings are produced in F folds.
In each fold, an object-weighted clustering algorithm uses as input the object weights
obtained in the previous fold to bias the production of L data partitions which are used
to update the co-association matrix C. After the co-association matrix C is updated,
a consensus clustering algorithm is applied to C to obtain the current consensus parti-
tion P ∗ and the degree of confidence for each object is computed as described in Eq.
3. Finally, the weights of the objects for the next iteration can be update considering
the degrees of confidence for the assignments of all objects. The proposed approach is
summarized in Algorithm 1. In this paper, we assume the clustering ensemble P is built
using the split-and-merge strategy. In this setting, the data partitions belonging to the
clustering ensemble have an higher number of clusters than the real number of clusters,
so, the clusters are smaller but more dense. The clustering ensemble is constructed by
generating each data partition P c with Kc clusters, where Kc is a random integer (dif-
ferent for each P c) belonging to the set {Kmin,Kmin + 1, · · · ,Kmax − 1,Kmax}. Kmin

and Kmax are parameters defined by the user.
We studied three distinct ways to compute the weights of the objects:

1. Emphasizing objects with low degree of confidence: The idea is to focus on the
objects which have weak similarities with remaining objects of their group, accord-
ing to the co-association matrix. As an example, if there are two touching clusters,
the weak objects should be the ones that are positioned near the region the clusters
touch. Concentrating the object-weighted clustering algorithm on this region should
help the definition of the clusters borders. Equation 4 expresses this idea and this
version of AdaEAC will be referred as AdaEAC L

wi =

[
max

m=1,··· ,n
conf(xm)

]
− conf(xi)

n∑

j=1

[
max

m=1,··· ,n
conf(xm)

]
− conf(xj)

. (4)
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Fig. 2. Object weights wi against degree of confidence conf(xi)

2. Emphasizing objects with high degree of confidence: Focusing the objects with
high degree of confidence, the ones more similar to the other objects of the same
cluster, should reduce the problem of noisy points. This is expected because these
noisy points will have low impact on the decisions taken by the object-weighted
clustering algorithm. This idea if reflected in equation 5 and originates the version
AdaEAC H

wi =
conf(xi)

n∑

j=1

conf(xj)

. (5)

3. Emphasizing objects with low and high degree of confidence: With the combina-
tion of both previous ideas we expect the object-weighted clustering algorithm to
focus both the clustering borders and well defined regions of the clusters. In order
to compute the objects weights, the degree of confidences are first stretched to the
[0; 1] interval (Eq. 6) and then the AdaEAC U is derived from equation 7:

qi =
conf(xi)− min

m=1,··· ,n
conf(xm)

max
m=1,··· ,n

conf(xm)− min
m=1,··· ,n

conf(xm)
, (6)

wi =
[1− qi(1− qi)]

2

n∑

j=1

[1− qj(1− qj)]
2

. (7)

Figure 1 presents the behavior of object weights wi against the confidence of the as-
signments conf(xi) and Figure 3 illustrates the corresponding weights in an artificial
data set. Big (and red) points correspond to objects with high weights and small (and
blue) points to objects with low weights.
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(a) AdaEAC L

(b) AdaEAC H

(c) AdaEAC U

Fig. 3. Example: weights on each object for an artificial data set, according to Equations 4 to 7
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Algorithm 1. Adaptive cluster ensembles using an object-weighted clustering
algorithm
Input: Data set matrix X; Number of folds F ; Number of clusterings for each fold L; Minimum

and maximum number of clusters Kmin, Kmax; and the natural number of clusters K∗.
1. C← 0n,n // Initialize co-association matrix
2. W1 ← [

w1
1 , · · · , w1

n

]T
,[2] w1

i = 1
n

// Initialize object selection probabilities
3. c← 0
4. for f ← 1 to F do
5. for l← 1 to L do
6. c← c+ 1

//Produce data partition using the distribution Wc

7. K ← RandomInteger(Kmin,Kmax);
8. P c ← ObjectWeightedClusterer(X,Wc,K)

//Update co-association matrix
9. for all Cc

k ∈ P c do
10. for all (xi, xj) ∈ Cc

k do
11. Cij ← Cij + 1
12. end for
13. end for

//Produce consensus partition
14. P ∗ ← ConsensusClusterer(C,K∗)

//Update object confidence
15. for all (xi) ∈ X do
16. Compute conf(xi) as in equation 3.
17. end for

//Update object weights
18. for all (xi) ∈ X do
19. Update wc+1

i using equations 4-7.
20. end for
21. Wc+1 ← [

wc+1
1 , · · · , wc+1

n

]T

22. end for
23. end for
24. return P ∗

3.2 Object-Weighted k-Means

In this subsection, an object-weighted clustering algorithm is proposed. To incorporate
distinct weights for different objects, a modification to the well-know k-means clus-
tering algorithm [13] is presented. Given the desired number of clusters K , k-means
algorithm proceeds by alternating between the assignment and update steps. During the
assignment step, each object xi is grouped in the cluster Ck with the closest center xk.
In the update step, the center of each cluster xl.∀l ∈ {1, · · · ,K} is computed as the
mean of the objects belonging Cl.

The proposed modification consists on modifying the update set in order to shift
the center of the groups towards the objects with more weight. Thus, the centers of
the clusters will be moved to more important regions, according to the object weights
W = [w1, · · · , wn]

T . Algorithm 2 describes the proposed object-weighted clustering
algorithm.
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Algorithm 2. Object-weighted k-means

Input: Data set matrix X; Object weights W = [w1, · · · , wn]
T ; and the number of clusters K.

1. Randomly initialize clusters centroids xk, ∀k ∈ {1, · · · , K}.
2. repeat
3. //Assign each object to the cluster of the closest centroid
4. for i← 1 to n do
5. Ck∗ = Ck∗

⋃{xi}, s.t., k∗ = argmink||xi − xk||2
6. end for

//Compute new cluster centroids
7. for k← 1 to K do
8. xk ← 1∑

j:xj∈Ck
wj

∑
xi∈Ck

wixi

9. end for
10. until Objects do not change cluster assignments
11. return P = {C1, · · · , CK}

4 Consensus Partition Validation

After the consensus partition is generated, it may be useful to assess its quality, es-
pecially if one wants to choose the best partition among several consensus partitions.
Given the definition of the degree of confidence of assigning an object to a cluster
(subsection 3.1), a straightforward way to validate a consensus partition is the Average
Confidence of assignment of the objects to its clusters:

AC(P ∗) =
1

n

n∑

i=1

conf(xi) (8)

=
1

n

n∑

i=1

⎛

⎜
⎜
⎜
⎝

∑

j:xj∈{CPi
}\xi

Cij

|CPi | − 1
− max

1≤k≤K,k �=Pi

∑

j:xj∈Ck

Cij

|Ck|

⎞

⎟
⎟
⎟
⎠
. (9)

The value of AC(P ∗) is defined in the interval [−1, 1]. In the best-case scenario, where
the co-associations of all objects with the objects belonging to the same cluster is 1
and the co-associations with objects belonging to the other clusters is 0, AC(P ∗) takes
value 1. In the worst case scenario, where the co-associations between objects on the
same cluster are 0 and belonging to different clusters are 1, AC(P ∗) takes value -1.

Figure 4 shows an example of a co-association matrix obtained using the split-and-
merge strategy for the Iris data set. The objects are sorted by cluster: objects 1 to 50 be-
long to the first cluster, objects 51 to 100 to the second cluster, and the remaining objects
to the third cluster. The similarities between objects (frequencies of co-associations)
are represented in a gray scale. The co-association entries of highly similar objects
(Cij = 1) are shown in black, while the entries of very dissimilar objects (Cij = 0) are
shown in white. In a perfect-case scenario, the co-associations between objects in the
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Fig. 4. Example of a co-association matrix for the Iris data set

same cluster should be 1 and the co-associations between objects belonging to different
clusters should be 0, resulting in a figure with three 50 × 50 black squares. It can be
seen that it did not occur for the given example (figure 4). One reason is due to some
objects belonging to the second and third natural clusters being erroneously clustered
together. Another reason is related to the use of the split-and-merge strategy: the num-
ber of clusters for each partition in the clustering ensemble is higher than the natural
number of clusters, therefore some objects belonging to the same natural cluster have
never been placed in the same cluster while building clustering ensemble. In these situ-
ations, where the intra-cluster co-associations are sparse, it may be helpful to assess the
confidence of the assignments only on the neighborhood of each object. To do so, only
the mth nearest neighbors of each cluster should be considered while computing the
average confidence. Let V (xi, Ck,m) be the set of the mth most similar objects of the
cluster Ck to xi, according to the co-association matrix C. The Average Neighborhood
Confidence (ANC) of assigning the objects to its clusters is computed as

ANC(P ∗,m) =
1

n

n∑

i=1

⎛

⎜⎜
⎜
⎝

∑

j:xj∈V (xi,CPi
,m)

Cij

|V (xi, CPi ,m)| − max
1≤k≤K,k �=Pi

∑

j:xj∈V (xi,Ck,m)

Cij

|V (xi, CPk ,m)|

⎞

⎟⎟
⎟
⎠

. (10)

Figure 5 shows the sum of the co-associations related to each individual object xi for
the matrix shown in figure 4, i.e.

∑
j Cij . Each of these values is related to the average

number of objects that were placed in the same cluster of each object. We observed
the values are not constant for all the objects. In our example, the values vary from
6 to 17. This may be easily explained: the central objects of each cluster should be
co-clustered with more objects than the peripheral objects. Another factor that may
contribute for such variations are data sets with unbalanced size of clusters. Consid-
ering this fact, we propose an alternative version of ANC, where the neighborhood of
each object Vi(xi, CPi ,mi) has a dynamic size mi. This alternative will be referred as
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Fig. 5. Sum of the co-associations for each object of the Iris data set

Average Dynamic Neighborhood Confidence (ADNC). The size of the neighborhood
for each object mi should be proportional to the sum of its co-associations. In this
paper, we compute mi as:

mi =

⎡

⎢
⎢⎢
α

∑

j∈{1,··· ,n}\i
Cij

⎤

⎥
⎥⎥
, (11)

where α > 0 is a parameter specified by the user.

5 Experimental Setup and Results

7 synthetic and 7 real data sets were used to assess the performance of the proposed
approach on a wide variety of situations, such as data sets with different cardinality
and dimensionality, arbitrary shaped clusters, well separated and touching clusters and
distinct cluster densities. Table 1 presents the summary (number of objects n, number
of dimensions d and the number of objects for each cluster) of all data sets used in our
experiments and Figure 6 illustrates the 2-dimensional synthetic data sets used in our
experiments. A brief description for each real data set is given next. The Iris data set
consists of 50 objects from each of three species of Iris flowers (setosa, virginica and
versicolor) characterized by four features. One of the clusters is well separated from the
other two overlapping clusters. The Breast Cancer data set is composed of 683 objects
characterized by nine features and divided into two clusters: benign and malignant. The
Yeast Cell data set consists of 384 objects described by 17 attributes, split into five
clusters concerning five phases of the cell cycle. There are two versions of this dataset,
the first one is called Log Yeast and uses the logarithm of the expression level and the
other is called Std Yeast and is a “standardized” version of the same data set, with mean
0 and variance 1. The Optdigits is a subset of Handwritten Digits data set containing
only the first 100 objects of each digit, from a total of 3823 objects characterized by 64
attributes. The House Votes data set is composed of two clusters of votes for each of
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(a) Rings (b) D2 (c) D3 (d) Stars

(e) Bars (f) Image2 (g) Spiral

Fig. 6. Synthetic data sets

the U.S. House of Representatives Congressmen on the 16 key votes identified by the
The Wine data set consists of the results of a chemical analysis of wines grown in the
same region in Italy divided into three clusters with 59, 71 and 48 objects described by
13 features.

To build the clustering ensembles we used the object-weighted k-means, proposed in
Section 2, for both EAC and AdaEAC approaches. For EAC the object weights were set
to 1

n , making it equivalent to the standard k-means and the number of data partitions of
the clustering ensemble was defined as N = 200. For AdaEAC, the number of folds was
defined as F = 10 and the number of clusterings for each fold as L = 20 such that the
number of partitions in both approaches were the same. The minimum and maximum
number of clusters were defined as Kmin =

⌊
min

[
2n
20 ,max

(
2n
50 ,

√
n
)]⌋

and Kmax =⌈
min

[
Kmin +max

(
2n
50 , 2

√
n
)
, n
5

]⌉
, respectively. Figure 7 shows the minimum and

maximum number of clusters for n = 1 to 1000.
To extract the consensus partition from the co-association matrix the Average-link

[17] and the Single-link [16] algorithms were applied and the number of clusters K∗

was defined as the real number of clusters K0 for each data set. Each clustering com-
bination method was applied 30 times for each data set.

The Consistency index (Ci) [9] was used to assess the quality of the consensus par-
titions P ∗. Ci measures the fraction of shared objects in matching clusters of the con-
sensus partition (P ∗) and the natural data partition (P 0) obtained from known labeling

of data. The Consistency index is defined as Ci(P ∗, P 0) = 1
n

∑min(K∗,K0)
k=1 |C∗

k ∩C0
k |,

where it is assumed that consensus cluster C∗
k matches with the real cluster C0

k .
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Table 1. Data sets overview

Data sets n d K Cluster Distribution
Bars 400 2 2 200 + 200
D2 200 2 4 116 + 39 + 21 + 24
D3 200 2 5 98 + 23 + 23 + 35 + 21

Stars 114 2 2 33 + 81
Rings 300 3 2 2× 150

Image2 1000 2 2 2× 500
Spiral 300 2 2 2× 150

Wine 178 13 3 59 + 71 + 48
Yeast 384 17 5 67 + 135 + 75 + 52 + 55

Optdigits 1000 64 10 10× 100
Iris 150 4 3 3× 50

House Votes 232 16 2 124 + 108
Breast Cancer 683 9 2 444 + 239

Fig. 7. Minimum and maximum number of clusters

Table 2 presents the average Ci(P ∗, P 0) × 100 values for the clustering ensemble
methods using both Average-link (AL) and Single-link (SL) algorithms for extracting
the consensus data partition (columns 2-9). Lines 3 to 9 show the results for the artifi-
cial data sets while lines 10 to 16 show the results for the real data sets. The clustering
combination methods that achieved the best results in each data set are highlighted in
bold. For the Bars data set, the best result was produced by AdaEAC L using both the
average-link and single-link algorithms with 99.5%. For the D2 data set, the AdaEAC
L and U using the single-link algorithm achieved the best results with 100%. The EAC
outperform the adaptive approaches only in D3 data set using the single-link algorithm
and in Std Yeast and Log Yeast data sets using the average-link algorithm. The best re-
sults for Stars and Wine data sets were obtained by AdaEAC U in combination with the
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Table 2. Average Ci(P ∗, P 0)× 100 values for the clustering combination methods

Comb. Method EAC AdaEAC L AdaEAC H AdaEAC U
Extraction Alg. AL SL AL SL AL SL AL SL

Bars 99.43 92.04 99.5 99.5 99.08 82.58 99.19 88.73
D2 73.55 98.3 57.28 100 73.28 99.15 74.03 100
D3 71.62 90.55 64.72 77.43 73.67 80.92 72.85 77.67

Stars 92.75 67.6 93.13 68.19 92.51 67.54 93.57 67.54
Rings 99.67 91.89 99.8 79.6 99.67 97.12 99.67 95.02

Image2 91.06 52.17 91.4 50.13 90.15 51.06 89.44 50.84
Spiral 80.2 85 77.26 83.82 80.79 85 81.7 85

Wine 72.21 72.19 72.23 71.05 72.17 62.4 72.36 64.72
Std Yeast 68.35 47.46 67.14 36.55 68.3 36.54 68.04 36.1
Optdigits 85.27 61.13 88.03 30.76 83.74 35.24 83.81 32.61
Log Yeast 42.01 36.52 38.99 36.4 41.23 36.73 41.4 36.76

Iris 89.93 74.67 95.33 85.07 90.16 74.76 90.18 75.73
House Votes 89.25 69.08 88.32 53.05 89.71 53.05 89.25 53.02

Breast Cancer 96.97 63.01 97.06 62.82 96.96 64.52 97.05 63.84

average-link algorithm with 93.57% and 72.36%, respectively. The AdaEAC L using
the average-link algorithm, remarkably, achieved the best results for Rings, Image2,
Optdigits, Iris, Breast Cancer and Bars data sets. We highlight the 95.33% result ob-
tained in the Iris data set, which was superior to all the other methods by a margin
higher than 5%. For the Spiral data sets the best result was 85% and was obtained by
EAC, AdaEAC H and U using single-link algorithm. In summary, the AdaEAC L ap-
proach achieved the best result in 4 out of 7 synthetic data sets while the AdaEAC U
approach obtained the best result in 3 out of 7 synthetic data sets, the EAC method in 2
out of 7, and the AdaEAC H in 1 out of 7 data sets. For the real data sets, the AdaEAC
L approach obtained again the best result in 4 out of 7 data sets, the EAC in 2 and both
AdaEAC H and U only in 1 data set. These results suggest that the AdaEAC L approach
is a good option for combining multiple data partitions.

Table 3 shows the average Ci(P ∗, P 0) × 100 values of all the consensus partitions
produced for a given data set (column 2) and the average Ci(P ∗, P 0)× 100 of the par-
titions resulting of picking the best partition among the EAC and AdaEAC approaches
(for a single run) according to the consensus clustering validity measures AC(P ∗) (col-
umn 3), ANC(P ∗,m) (columns 4 to 7), and ADNC(P ∗,mi) (columns 8 to 10). Line
2 indicates the parameters used by the consensus measures. Four different values for
the number of neighbors, m = {5, 10, 20, 40}, for the ANC measure were tested. For
the ADNC consensus validity measure, we defined the value α as 0.5, 1 and 2. When
the average quality of the partitions selected by the consensus validity measures outper-
form the average consensus results, the corresponding results are highlighted in bold.
The highest average result for each data set is also underlined.
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Table 3. Average Ci(P ∗, P 0)×100 values of all consensus partitions and average Ci(P ∗, P 0)×
100 values for the consensus partitions selected by the consensus validity measures

Val. Measure Consensus AC ANC ADNC
Parameters Average m = 5 m = 10 m = 20 m = 40 α = 0.5 α = 1 α = 2

Bars 95.01 99.5 99.20 99.10 99.15 98.1 99.38 99.18 82.88
D2 84.45 73.78 73.90 73.82 73.07 72.53 74.18 74.92 74.12
D3 76.18 67.32 90.13 87.47 74.02 77.98 89.78 85.52 80.98

Stars 80.35 93.42 67.54 67.54 67.54 67.54 67.54 77.89 71.93
Rings 95.31 98.24 99.67 99.67 99.67 99.8 99.67 99.67 99.66

Image2 70.78 91.4 51.48 54.03 64.71 64.16 58.17 65.32 64.78
Spiral 82.35 82.56 77.88 77.62 79.78 82.07 78.48 78.44 79.69

Wine 69.92 72.3 72.19 63.58 61.27 61.31 72.19 67.04 62.45
Std Yeast 53.56 67.9 66.97 68.47 68.49 68.19 68.2 68.25 68.22
Optdigits 62.57 87.57 83.24 83.49 83.36 83.64 83.35 83.54 83.12
Log Yeast 38.76 42.55 40.10 41.55 41.55 41.9 41.55 41.55 42.11

Iris 84.48 93.82 76.36 77.38 74.49 74.67 78.07 80.11 74.67
House Votes 73.09 88.32 74.02 87.47 88.32 88.32 86.08 88.41 88.51

Breast Cancer 80.28 95.89 77.60 78.64 78.47 97.06 87.35 90.48 91.53

By picking the best consensus partition using the Average Confidence measure we
obtained better results than the consensus average in 5 of the 7 artificial data sets and in
all of the real data sets. We also notice that the average quality of the partitions selected
by this index is close to the quality of the best clustering combination scheme in each
data set. Overall, the AC measure selected better partitions that the other measures in 8
out of the 14 data sets. With respect to the Average Neighborhood Confidence measure,
we verify that the measure is sensible to the neighborhood size m. It is not clear which
value for m should be used for each data set. The ANC measure performed better using
m = 5 neighbors in Bars, D2, D3, Wine and Iris data sets, while in the Rings, Spiral,
Optdigits and Breast Cancer data sets ANC obtained better results using m = 40. In
both cases, ANC achieved better results than the consensus average in 8 out of the 14
data sets. Regarding the Average Dynamic Neighborhood Confidence, it achieved better
results than the consensus average in 9 out of the 14 data sets using α = 0.5 and in 8
data sets using α = 1. By comparing ADNC using α = 0.5 and α = 1 with the ANC
results, we observe that the Ci(P ∗, P 0) × 100 values are usually similar to the best
results achieved by ANC. These results point out that the Average Confidence index is
a very good choice for performing consensus clustering selection. Although, in same
situations, computing the confidence of the assignments in the neighborhood of each
object is better. In this case, the dynamic definition of the neighborhood’s size should
be preferred over the static one.

6 Conclusions and Future Work

A clustering combination method, based in the Evidence Accumulation Clustering and
the supervised learning boosting methods was proposed. Our approach is based on es-
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timating the degree of confidence of the assignment of objects to clusters and then
influence the process of constructing the clustering ensemble using an object-weighted
clustering algorithm. We tested three distinct ways of computing the object weights:
focusing on the objects hard to cluster, on the objects easy to cluster, and on a mix of
the previous. Three consensus clustering validity measures based on the confidence of
the objects’ assignments were also proposed to selected the best consensus partition.
Experimental results suggest that using the Adaptive Evidence Accumulation Cluster-
ing method, focusing the construction of the clustering ensemble on the objects that are
harder to cluster, is a good choice to perform data clustering. It was also shown that the
proposed consensus clustering measures can successfully be used to perform consensus
clustering selection, in particular the Average Consistency index.

In the future, we pretend to study the influence of the size of the neighborhood for
computing the Average Neighborhood Consistency and Average Dynamic Neighbor-
hood Consistency measures.
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