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Abstract. A recent focus in itemset mining has been the discovery of frequent 
itemsets from high-dimensional datasets. With exponentially increasing running 
time as average row length increases, mining such datasets renders most con-
ventional algorithms impractical. Unfortunately, large cardinality itemsets are 
likely to be more informative than small cardinality itemsets in this type of da-
taset. This paper proposes an approach, termed DisClose, to extract large cardi-
nality (colossal) closed itemsets from high-dimensional datasets. The approach 
relies on a Compact Row-Tree data structure to represent itemsets during the 
search process. Large cardinality itemsets are enumerated first followed by 
smaller ones. In addition, we utilize a minimum cardinality threshold to further 
reduce the search space. Experimental results show that DisClose can achieve 
extraction of colossal closed itemsets in the discovered datasets, even for low 
support thresholds. The algorithm immediately discovers closed itemsets with-
out needing to check if each new closed itemset has previously been found. 

Keywords: Colossal closed itemset, high-dimensional dataset, minimum  
cardinality threshold. 

1 Introduction 

Rapid development in information technology has provided organizations with the 
ability to store, process and retrieve huge amounts of data. Nevertheless, there is a 
need to extract useful information and knowledge, efficiently and effectively, from 
these massive data stores. This serve to assist businesses, scientific and government 
related organizations to better plan, predict, and make decisions. This has led to the 
importance of data mining and the need to provide effective and efficient associated 
algorithm implementation. 

Itemset mining has recently focused on the discovery of frequent itemsets from 
high-dimensional datasets with relatively few rows and a larger number of items [1], 
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[2], [3], [8]. With exponentially increasing running time as average row length in-
creases, mining such datasets renders most conventional algorithms impractical. Sev-
eral papers have proposed the row-enumeration method to discover frequent itemsets 
based on the set of rows space instead of the itemset space [1], [2], [3], [8]. 

Nevertheless, due to the large number of frequent itemsets, discovering all frequent 
itemsets remains difficult. Strategies to provide more compact sets of frequent item-
sets have been proposed such as finding only maximal frequent itemsets [4] or only 
closed frequent itemsets [5]. Closed itemsets provide a smaller set of results without 
information loss. Nonetheless, due to the density of high-dimensional data, it is diffi-
cult to enumerate all closed itemsets especially at the lower of the support spectrum 
[1], [2], [3], [8]. 

The most frequent itemsets tend to be both relatively smaller in size and larger in 
number. This quickly leads to insufficient memory when attempting to reach less 
frequent itemsets. Also, the most frequent itemsets can easily be extracted. In addi-
tion, applying the support constraint results in the pruning of many large cardinality 
itemsets that exist at this lower end of the support spectrum. Hence, discovery that 
starts from the largest cardinality itemsets in high-dimensional datasets may provide 
interesting insight into how these itemsets correlate. 

Determining whether a mined pattern is closed is regarded as the main challenge in 
closed itemset mining [6]. Repeated checking to verify whether the itemsets are 
closed is costly in term of processing. Hence, discovering closed itemsets during the 
search process, and thus reducing the need for checking, should reduce computation. 

This paper proposes discovery of colossal closed itemsets using a compact row-
tree which reduces the memory required to store itemsets during the search process. 
The search for itemsets proceeds from the largest to the smallest by applying a search 
strategy that begins with the largest cardinality itemset and builds smaller itemsets. 
This strategy is combined with a bottom-up row enumeration search. We further util-
ize a minimum cardinality threshold to reduce the search space and focus on only 
colossal closed itemsets. We show that the algorithm immediately discovers colossal 
closed itemsets without the need to check each previously discovered closed itemsets. 

The paper is structured as follows: Section 2 formulates the problem; search strate-
gies are discussed in Section 3; in Section 4 the closedness-checking method is de-
scribed; Section 5 presents the Compact Row-Tree; the algorithm and supporting 
theory are given in Section 6; experimental result are presented in Section 7; and Sec-
tion 8 concludes. 

2 Problem Formulation 

Let T be a dataset table that consists of a collection of rows (transactions), 

},...,,{ 21 mrrrR = and a list of discrete items, I = {oi, o2, …, on}. This set of transac-

tions represents the number of rows (m) and the set of items signifies the number of 
columns (n) in T. 
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Table 1. Example of a discretized high-dimensional dataset 

tid Item 
a b c d e f g h i j k l m n 

1 1 1 1 2 2 1 2 1 2 2 2 2 2 1 
2 2 1 2 2 2 2 2 2 1 2 2 2 1 2 
3 1 1 2 1 2 2 2 2 2 1 2 2 2 2 
4 2 1 2 1 2 2 1 2 2 2 2 2 2 2 
5 1 1 2 1 1 2 2 2 2 1 2 2 2 2 

 
A nonempty subset I⊆α is called an itemset. An itemset, αk, which consists of k 

items, is described as k-itemset. Each row ri is represented by a unique row identifier. 
Let t (ri) denote the itemset at row i of the table. Within a dataset, all of the row iden-
tifiers must be unique, but there may be duplicate row itemsets. That is, for r1 ≠ r2, it 
may be that t (r1) = t (r2). A set of rows is termed a rowset. 
 
Example 1. (Table T) Table 1 illustrate as example of a discretized high-dimnesional 
dataset, T, that contains five rows and 14 items, so R = {1, 2, 3, 4, 5} and 

},,,,,,,,,,,,,{ nmlkjihgfedcbaI = . 

 
Definition 1. (Support Set) Given an itemset α, the support set is represented as the 
set of rows in the dataset, T, that contain α.  This is represented as: 

 )}(|{)( ii rtrr ⊆= αα  (1) 

Example 2. (Support Set) In Table 1, for an itemset α = {a1, b1, d1, e2}, the support set 
rα = {3, 4}. 
 
Definition 2. (Support) The support of an itemset α is the number of rows in which α 
occurs in T – denoted as | rα |. 
 
Example 3. (Support) From Example 2, the support for itemset α = {a1, b1, d1, e2}, 

2|}4,3{||| ==αr . 

 
The relative support of α is |r (α)|/|r|. It is well known that the support measure has 

an anti-monotonic property where |r (α1)|≥|r (α2)| for 21 αα ⊂ . 

 
Definition 3. (Frequent Itemset) Given a dataset T and a minimum support threshold 
minsup, an itemset α is frequent if |r (α)| ≥ minsup. 
 
Definition 4. (Closed Itemset) An itemset α is a closed itemset in dataset T if there is 
no proper superset α’ exists )'( αα ⊂ such that the support of α is the same as the 

support of α’. 
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Definition 5. (Closed Rowset) A rowset β is a closed rowset in table T if not a proper 
superset β’ exists )'( ββ ⊂ such that the support of β is the same as the support of β’.  

 
Definition 6. (Closure) Given a rowset β, we define

)}(:|{)( kjrj rtoIoI
k

∈∈∀∈= ββ . Following this, we can define C (α) as 

the closure of itemset α and C (β) as the closure of rowset β as follows: 

 C (α) = I (r (α)) (2) 

 C (β) = I (r (β)) (3) 

3 Search Strategies 

3.1 Existing Itemset Search Strategies 

The traditional search strategy explores the itemset space bottom-up: beginning from 
the smallest itemset that appears frequently and uses intermediate results to progres-
sively build larger and larger itemsets. Conventional algorithms that use this strategy, 
such as FP-Close [5], are efficient for datasets containing relatively many rows and 
fewer columns (items) e.g. transactional data. 

In contrast, high-dimensional datasets have a relatively large number of columns 
(items) and relatively few rows. If k is the maximum itemset size, there could be 2k 
potential frequent itemsets. Exploring the dataset based on the number of items makes 
searching for closed frequent itemsets over the itemset space impractical.  

CARPENTER [1] is an example of algorithms that search for closed frequent item-
sets based on the rowset space. The algorithm conducts a bottom-up traversal of the 
row enumeration tree. Each node is checked to see if it is frequent and closed. As this 
criterion is based on the minimum support threshold, the nodes that do not satisfy the 
support constraint still need to be checked. As a result, the algorithm consumes both 
more memory and time in order to obtain the desired threshold. 

By using the pruning power of the support threshold to reduce the search space, a 
top-down approach using a row enumeration tree has been proposed to discover 
closed frequent itemsets [2]. The search begins from the largest rowset and succes-
sively builds smaller and smaller rowsets. However, difficulties are still encountered 
in reaching the lower end of the support spectrum as much memory is consumed by 
the large numbers of closed frequent itemsets at the higher end. 

A related problem is that of finding a formal concept (FC) [3]. Given a 0/1 matrix, 
a formal concept is a subset of k rows and l columns such that all of the matrix entries 
in one of the k rows and l columns contain a 1. Such a row and column subset is 
called a 1-rectangle. If the rows were rearranged so that all of the k subset rows ap-
peared first (i.e. in rows 1 through k) and all columns were rearranged so that the l 
columns of the subset appeared in columns 1 through l, the upper-left k by l rectangle 
of the matrix would contain all 1 entries. 
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3.2 Proposed Search Strategy 

A strategy for high-dimensional datasets is to search for closed itemsets based on the 
row number. Previous algorithms that use row-enumeration strategies to discover 
closed itemsets rely on the support constraint to reduce search space [1], [2], [3], [8]. 
As the frequency threshold reduces, the time and memory required for these algo-
rithms to find closed itemsets dramatically increases. Yet the most valuable closed 
itemsets in high-dimensional data may have relative support values much closed to 1 
than 100. 

Therefore, we propose that rather than generating closed itemsets from the smallest 
set of items with higher supports, we search from the largest set of items that exists in 
a row possibly with very small support threshold. From this collection of closed item-
sets, we can build increasingly smaller itemsets with increasingly higher support. 

Bottom-Up Row-Enumeration Search 
To extract the largest itemset from a dataset involves extracting the largest column 
that exists in the dataset. This implies that the search strategy can be based on a top-
down column enumeration. 

However, it can be observed that for a dataset with m number of columns (items), 
there will also be m number of levels for a top-down column enumeration tree. In 
addition, the maximum number of nodes (itemsets) that will exist in the top-down 
column enumeration will equal 2m-1. For a high-dimensional dataset, the value of m is 
very large (i.e. hundreds of thousands); hence, enumerating the itemsets based on the 
number of columns is infeasible. 

It makes sense to search for closed itemsets based on the number of rows because 
it is relatively smaller than compared to the number of columns in high-dimensional 
datasets [1], [2], [8]. The largest cardinality itemset initially exists in every single row 
of the high-dimensional dataset (unless duplicate rows occur). Therefore, most large 
closed itemsets begin from the infrequent end of the support spectrum. As a result, 
using the bottom-up row enumeration tree as the basis of the search strategy would 
appear to be more appropriate. 

Transposed Table 
Since its proposal, the transposition method [7] has been widely used by algorithms 
that discover closed itemsets from high-dimensional datasets [1], [2], [8]. Mining the 
closed itemsets directly from the original dataset can be complicated. Therefore, ap-
plying the method of transposition to the original dataset helps to simplify the extrac-
tion of closed itemsets in high-dimensional data. This is because when the original 
dataset is transposed, each column (item) value of the original dataset will become a 
row value in the transposed table, and will be represented by a set of rows (rowset) 
where that particular item occurs. 

Transposed dataset provides a sparser representation of the original input dataset. 
As a result of this simplification, the method of transposition is utilized in the algo-
rithm proposed here. 
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Minimum Cardinality Threshold, mincard 
 
Definition 7. (Cardinality) The cardinality of an itemset α refers to the number of 
items in α. This is denoted as |α|. 
 
In contrast to the support threshold that helps to reduce the search space based on 
occurrence frequency, we stop the mining process for closed itemsets upon reaching 
the threshold parameter value for the minimum itemset cardinality, mincard. 

Let TTCI ∈= αα |{)( is a closed itemset} . Large cardinality closed itemset 

mining involves enumerating all )(TCI∈α with |α| ≥ mincard. We refer to these 

large cardinality closed itemsets as colossal closed itemsets (CCI). 
Using the bottom-up row enumeration tree [1], branch exploration stops once the 

cardinality of the associated itemset falls below mincard. We can safely prune the 
search because of the anti-monotone property. 
 
Property 1. (anti-monotone) If a rowset β has its associated α = I (β) such that |α| < 
mincard, then for any ββ ⊇' it must be that |I (β’)| < mincard. 

 
Combining both the anti-monotone property and the definition of closure gives the 
following property. 

 
Property 2. (at-threshold) If a rowset β has its associated α = I (β) such that |α| == 
mincard, then for any ββ ⊇' it must be that |I (β’)| < mincard. 

 
Note: Using a depth-first order in a serial implementation would result both in the 
most aggressive pruning of the search space and require the least memory. 

4 Closedness-Checking Method  

Mining for colossal closed itemsets has two restrictions: firstly, the need to check if 
an itemset is a colossal itemset and secondly, the need to check if it is closed. Using 
the minimum cardinality threshold in a bottom-up row enumeration search takes ad-
vantage of the first constraint. However, discovering only the colossal itemsets may 
lead to the production of several identical colossal itemsets, 

Therefore, when a colossal itemset is found, the next step is to develop a method to 
efficiently identify whether it is a closed itemset. The method of identifying whether 
the itemsets discovered are closed is related closely to the search strategy proposed.  

To take advantage of the second restriction in making the mining of colossal item-
sets more efficient, a method which is based on a unique generator is developed. To 
define the unique generator, we begin by providing the definition for itemset genera-
tor and tidset generator. 
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Definition 8. (Itemset Generator) Given a dataset T, an itemset α is an itemset genera-

tor if no proper subset αα ⊂' exists such that the support of α is the same as the 
support of α’. 
 
The equivalence class of itemsets with the same support set consists of exactly one 
closed itemset, potentially many itemset generators and potentially many itemsets that 
are neither closed nor generators. 
 
Definition 9. (Rowset Generator) Given a dataset T, a rowset β is a rowset generator 
if no proper subset ββ ⊂' exists such that the itemset of β is the same as the itemset 

of β’. 
 

Similarly, the equivalence class of rowsets βi with same itemset α such that 

αβ =)( iI  consists of exactly one closed rowset, there are potentially many rowset 

generators and potentially many rowsets that are neither closed nor generators. 
It can be observed that unlike the definition of frequent itemsets, the definitions of 

generators and closed sets do not depend upon any threshold parameter. 
To construct smaller closed itemsets from larger ones, we use the following prop-

erty: 
 

Theorem 1. Suppose α1 and α2 are closed itemsets, with α1 ≠ α2. Let 21 ααα ∩= . 

If α ≠ Ø then α is a closed itemset. 
 
Proof: We have three cases to consider: 

1. Case 1: ][ 21 αα ⊂ . Observe that in this case α = α1, so α is a closed itemset. 

2. Case 2: ][ 12 αα ⊂ . Observe that in this case α = α2, so α is a closed itemset. 

 
For Case 1 and Case 2, in order for α1 and α2 to be closed itemsets with one a prop-
er subset of the other, it must be the case (by definition of closed itemset) that they 
have different support. But we do know that such a situation exists. 
 
Consider any closed itemset α1 with support larger than one, and pick any row ri 

containing α1 (i.e. )(1 irt⊂α ). Now consider α2 = t (ri). Note that by definition 

all full-rowsets are closed. Clearly, this satisfies the conditions of Case 1. The rest 
of the case is just fundamental set theory, so the result holds. 
 

3. Case 3: [α1 and α2 are incomparable]. Observe that 1αα ⊂ and 2αα ⊂ .  

In this particular case, it is demonstrated that α is a closed itemset by contradiction. 
Assume that α is not a closed itemset, then there exists some item i such that 

}{ii ∪= αα has the same support as α. If 1α∉i , then all rows in αα TT −
1

are 
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not in 
1αT , but they are in Tα. Thus i must be in α1. However, if 1α∈i (and not 

in α) then 2α∉i and the same contradiction argument applies. Thus the assump-

tion that α is not a closed itemset must be invalid. 

Lemma 1. Every closed itemset that is not one of the entire transactions can be pro-
duced by intersecting some collection of closed itemsets. 

Proof. Consider a closed itemset α and its corresponding rowset β = Tα, as α is a 

closed itemset, iri
αα β∈=  , where Tr ii ∈),( α . However, there may be many 

subsets of β for which I (β) = α. 

Using rowset enumeration as the control strategy for the search process, the same 
closed itemset would probably be found many times. The following observation al-
lows a closed itemset to be found using only one of the rowsets. As stated above, for 
every closed itemset α, there is a unique rowset β that is a closed rowset. 
 
Definition 10. (Unique Generator) Given the closed rowset β = {r1, r2, …, rk}, ri < rj 
for all i < j, the smallest index for which βj = {r1, r2, …, rj} is a generator of β is a 
unique rowset generator for our itemset α. 
 
It is simple to determine if a rowset β’ is the unique generator. Let β = T (I (β’)). If β’ 
= β, then the answer is that β’ is the unique generator. If ββ ⊂' , β’ is determined 

whether it is a prefix of β when the rowsets are written as lists in ascending order. If 
β’ is not a prefix of β, then β’ can be ignored and this branch of the search space is 
pruned. 

The search for the unique generator will require relatively little computation when 
the number of rows is small; and this is the typical situation for high-dimensional 
datasets. 

5 Compact Row-Tree 

To assists the efficiency of the search, a compact tree data structure is built to store 
the itemsets from the transposed table, Tt. The CR-Tree is initially generated by build-
ing a set of nodes at the first level (l = 0) of the tree which represents each column 
value of the transposed table. These set of nodes are connected to each column of the 
transposed table through a set of pointers that link the node to the transposed table. 
The construction of the CR-Tree continues by adding the child nodes at each level of 
the tree. As the level of the tree increases, the number of child nodes decreases as the 
lowest node value from the previous level of the tree is discarded. A child pointer is 
then built to link between the nodes. In addition to the child pointer, an additional 
node link is made from the parent node to the child node that contains the same node 
value. The purpose of this node link is to assist in checking effectively for closed 
itemsets.  
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The structure of the CR-Tree is similar to the FR-Tree [2]. The CR-Tree is different 
in that instead of representing each branch of the tree to a rowset value, each node of 
the CR-Tree represents a group of rowset values. In this way, the CR-Tree becomes 
more compact as one node is shared by many rowset values. Each rowset value 
represents an itemset.  

However, only one rowset value will be stored in each node of the CR-Tree during 
the search process. This is to ensure that a relatively small amount of memory is uti-
lized during the process of mining the colossal closed itemset.  

The characteristics of the CR-Tree are as follows: 

1. The CR-Tree represents all values of the complete rowset. 
 
Let N = {ni, ni+1, …, nk} be the set of nodes where i = 1 and k is the largest row 
value from the dataset. Let M = {mj, mj+1, …, mk} be the set of child nodes where 

1+= ij and k is the largest row value of the dataset. Each liij nnm +∪=
where l = {1, 2, …, k-1}. Therefore all β values are traversed until i = k. 

Subsequent itemsets of the child nodes are obtained by intersecting the itemsets of 
the parent nodes. To reduce memory during the search for colossal closed itemsets, 
each node in the CR-Tree only stores one itemset value from the intersection of its 
parent nodes. Each rowset of the parent nodes is a subset of a rowset value of the 
child node. 

2. Each node of the CR-Tree only stores one β value at a time for rowset β, with | β | = 
node level. 

 

 

Fig. 1. Example of the second characteristics of the CR-Tree 

Suppose at l = 3, n4 = {1, 2, 4} and n5 = {1, 3, 5}. To obtain β for child node m5, 

the union of the parent β values will produce, }5,3,1{}4,2,1{54 ∪=∪ nn = {1, 

2, 3, 4, 5}. However, {1, 2, 3, 4, 5} is not stored in m5. This is because, based on 

4 5

4 5 

5 

3 

{1, 2, 3} {1, 2, 4} {1, 3, 5}

{1, 2, 3, 4} 

{1, 2, 3, 4, 5} 

l = 3 

l = 4 

l = 5 
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the depth-first strategy, the itemset for β = {1, 2, 3, 4, 5} will already have been 
discovered at l = 5.    

The structure of the CR-Tree also assists in optimizing identification of the closed 
itemsets. For example, consider node 3 at the second level of the tree. Assume that 
the node contains an itemset with row values {1, 3}. Using the proposed closed-
ness-checking method, the node will intersect with the nodes at the third level 
(Nodes 3, 4, 5) and then check with row values – {1, 2, 3}, {1, 3, 4} and {1, 3, 5} 
whether the itemset of {1, 3} exists in row 2, 4, or 5. 

3. If discovered itemset, 12 αα ⊆ where α1 is the existing itemset in the node, the 

itemset α2 will not replace α1 although β1 ≠ β2. 
 

 

Fig. 2. Example of the third characteristics of the CR-Tree 

In Fig. 2, suppose α1 = {β1} = {1, 2, 4} and α2 = {β2} = {1, 3, 4} at level l = 3, 

where |β1| = |β2|. If 12 αα ⊆ , this means that α2 also exists in {β1}. Therefore,

βββ =∪ 21 , where |β| > |β1|, |β2|. Thus α2 will exists in β = {1, 2, 3, 4} where β 

already exists at level, l = 3 of the CR-Tree. 

6 Algorithm DisClose 

To show the effectiveness of the search strategy, the closedness-checking method and 
the data structure proposed, a colossal closed itemset mining algorithm called Dis-
Close has been designed to mine all colossal closed itemsets from the transposed table 
Tt of table T. DisClose, shown in Algorithm 1, will search the row enumeration space 
and, for each rowset, β, check whether it is the unique generator in the equivalence 
class of rowsets for I (β). It is noted that using a depth-first order in a serial imple-
mentation would result in the most aggressive pruning of the search space and re-
quires the least the amount of memory [1], [10]. For this reason, the general 
processing order for the rowsets is equivalent to the depth-first search of the row 
enumeration tree. 

6.1 Major Steps of DisClose 

Algorithm 1 shows the main steps of the algorithm DisClose. Assuming the mincard 
threshold value has been assigned, the algorithm begins by transforming table T into  

4

4 

3 

α1 = {1, 2, 4}

α2 = {1, 3, 4} 

{1, 2, 3, 4} 

l = 3 

l = 4 
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transposed table Tt using the transposition operation. After the transposed table Tt is 
generated, the CR-Tree is built in Step 2 in order to access the colossal itemsets from 
Tt. The CR-Tree connects nodes at the first level to Tt through side-links. The side-
link pointers enable direct access to the colossal itemsets from Tt. These pointers con-
nect the node with the column Tt of equivalent value. 

DisClose is compoased of two main subroutines: Colossal and Closed. After initia-
lization of the set of colossal closed itemsets CCI to be empty at Step 4, the subrou-
tine Colossal is called to deal with the transposed table Tt using the CR-Tree and find 
all colossal itemsets. Following the bottom-up row enumeration as the search order in 

Algorithm 1. DisClose algorithm 

 
Input: Table T, and minimum cardinality threshold, mincard 
Output: A complete set of colossal closed itemsets, CCI 
Method: 

1. Transform T into transposed table Tt 
2. Build CR-Tree 
3. Initialize CCI = Ø 
4. Call Subroutine Colossal (Tt, mincard) 

 
Subroutine Colossal (Tt, mincard) 
Method: 

5. for each node in the row enumeration space do 
6. If | node [1][j] |.Tt | ≥ mincard 
7.     Store itemset at node [1][j] 
8.  Let β be the set of rows under consideration 
9.      node [l][j] → node [l+1][p]            // pointing to child node 

10. 
        )(21 βααα I=∩= , 21 βββ ∪=  

11.    Optimization S1: If | α | < mincard, discard α 
12.    Optimization S2: If | β | > current node level, discard β 
13.    Optimization S3: If 'αα ⊆ , discard α 

14.    Store α in node [l+1][p] 
15.    Call Subroutine Closed (mincard) 

 
Subroutine Closed (mincard) 
Method: 

16. If node [l][j] == node [l+1][p]            // checking for unique generator 
17.    Call Subroutine Colossal (mincard) 
18. Store itemset in CCI 
19.    Call Subroutine Colossal (mincard) 
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step 5, the subroutine Colossal takes the transposed table, Tt and the mincard thre-
shold as the parameter to ensure that itemsets with cardinality less than the specified 
is not stored as it is impossible for subsequent child nodes of the CR-Tree to contain 
itemsets of larger size.  

There are seven sections in the subroutine Colossal, which will be explained one 
by one. 

The first section is step 6 – step 7. The subroutine begins by accessing Tt through a 
side-link from the CR-Tree. The size of the itemset is checked for each column at Step 
6. Only the itemsets that satisfy mincard are stored at the first level node of the CR-
Tree; otherwise, it is not stored in the node as it will not contribute to obtaining larger 
itemsets. The advantage of this is that the algorithm does not require further access to 
the dataset, and hence, reduces the time required for repeated checking of the dataset. 
Note that this is the only role the transposed table Tt plays in the search process. 

The second section is steps 8 – step 10. For each node in the CR-Tree, the intersec-
tion of the itemsets between the parent nodes continues using the depth-first search of 
the bottom-up row-enumeration tree in Step 10 is performed. By using depth-first 
search, DisClose produces the sequence )(ββ I . However, three optimization 

strategies are applied before the result of the intersection is stored in each child nodes. 
At step 11, an optimization strategy S1 is applied to stop further processing of the 

itemset if the size of the itemset does not satisfy the mincard constraint defined. 
Step 12 performs the optimization strategy S2 to prevent storage of itemsets with 

rowset values larger than the node level of the CR-Tree.   
At step 13, optimization strategy S3 is applied in order to ensure that the itemset 

obtained is not a subset of an already existing itemset in the child node.  
Step 14 then stores the itemset that does not satisfy any of the three optimization 

strategies at the particular child node. The new itemset will replace the itemset that 
already exists in the node. 

At step 15, the subroutine Closed is called when all the colossal itemsets of the 
child nodes have been discovered, in order to check whether the parent node is a 
closed itemset. 

The subroutine Closed performs the closedness-checking method on the itemset. 
There are four main steps to this subroutine. 

Step 16 sequentially compares the itemset α that exists in the parent node with the 
itemsets of its child nodes in order to identify the unique generator, based on a depth-
first search of the rowset value in the row enumeration tree. Here, the node-link, 
which connects the parent and child node that contain the same node value, is used to 
perform the closedness-checking method. This is to ensure that it does not overlook 
existing child nodes with rowset β that contains a rid value that does not exist in row-
set β’ of the parent node. 

7 Experimental Evaluation 

Due to the space limitation, the experimental evaluation shows the comparison of 
DisClose with selected algorithms on one synthetic dataset.  



 DisClose: Discovering Colossal Closed Itemsets 153 

 

The experiments were performed on a PC with a 2.66 GHz Intel Core2 Quad CPU 
Q9400 with 4.00 GB RAM and 150 GB hard disk. DisClose is implemented in C++.  

The performance of DisClose was studied by comparing it with other state-of-the 
art algorithms. Each algorithm was selected to represent the different search strate-
gies. These algorithms are: (i) FP-Close [5] - a representative of the column enumera-
tion-based algorithms, (ii) CARPENTER [1] – a representative of bottom-up row 
enumeration-based algorithms, (iii) D-Miner [9] – a representative of constraint-based 
mining algorithms, and (iv) TTD-Close [2] – a representative of the top-down row 
enumeration search based set of algorithms.  

All of the selected algorithms have been implemented in C++. Note: all of runtimes 
plotted in the figures include both computation time and I/O time. 

Existing itemset mining algorithms – particularly those that find closed itemsets, - 
routinely present run-times for varying support thresholds. As DisClose uses a thresh 
old for cardinality, direct comparison is difficult. Given a support threahols greater 
than 1, existing algorithms would not find many large-cardinality closed itemsets; 
given a cardinality threshold greater than 1, DisClose would not find many frequent 
closed itemsets. The only fair way to compare the algorithms is to give both a thre-
shold of 1, asking each to find all closed itemsets. The strength of DisClose is that it 
bypasses the huge number of small cardinality, high-frequency closed itemsets and 
focuses almost immediately on potentially valuable closed itemsets. However, this 
type of complete closed itemsets search does not really address the true purpose of 
either DisClose or the closed itemset mining algorithms. 

Amongst the selected algorithms listed above, only D-Miner has been found to ap-
ply the minimum cardinality threshold, mincard. D-Miner is a constraint-based  
algorithm which uses the cardinality threshold in addition to the support constraint to 
discover concepts (closed itemsets). Hence, D-Miner is the closest comparison to 
DisClose with the exception that the support threshold in D-Miner is set to 1.  

For other algorithms, an approach was to present the experimental results of Dis-
Close with a secondary x-axis which represents the maximum support of the colossal 
closed itemsets discovered. Likewise, a secondary x-axis is also added to the results of 
FP-Close, CARPENTER, and TTD-Close which represents the maximum cardinality 
of the closed frequent itemsets discovered. Thus, by using this approach, it provides 
an observation on the ability and limitation of closed itemset mining algorithms that 
uses a support threshold in relation to DisClose, and vice-versa. 

Another challenge in comparing performance of the algorithms is based on their 
implementation in identifying items in the datasets. For FP-Close, CARPENTER, and 
D-Miner, the algorithms were designed to identify each item based on the value 
present for each attribute of the dataset. However, for TTD-Close, each item in the 
dataset is read as a value that corresponds to the attribute of the data.  

7.1 Synthetic Dataset 

The synthetic dataset, generated using the IBM Quest Data Generator, consists of 100 
rows, 4000 columns and an average itemset size of 2000. This dataset is represented 
as T100L2000N4000. 
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