Graph Drawing in TikZ

Till Tantau

Institute for Theoretical Computer Science
Universitat zu Liibeck
D-23562 Liibeck, Germany
tantau@tcs.uni-luebeck.de

Abstract. At the heart of every good graph drawing algorithm lies an
efficient procedure for assigning canvas positions to a graph’s nodes and
the bend points of its edges. However, every real-world implementation
of such an algorithm must address numerous problems that have little
to do with the actual algorithm, like handling input and output for-
mats, formatting node texts, and styling nodes and edges. We present
a new framework, implemented in the Lua programming language and
integrated into the TikZ graphics description language, that aims at sim-
plifying the implementation of graph drawing algorithms. Implementers
using the framework can focus on the core algorithmic ideas and will au-
tomatically profit from the framework’s pre- and post-processing steps as
well as from the extensive capabilities of the TikZ graphics language and
the TEX typesetting engine. Algorithms already implemented using the
framework include the Reingold-Tilford tree drawing algorithm, a mod-
ular version of Sugiyama’s layered algorithm, and several force-based
multilevel algorithms.

1 Introduction

A graph drawing algorithm is, mathematically speaking, a way of mapping
graphs to drawings of graphs. The idea underlying an algorithm can be very
simple, but it is a long way from just an idea to a complete system for drawing
graphs that allows the configuration of node distances, preferred edge slopes, or
the font used for the text in nodes. This “long way” consists of three main steps:
First, the input graphs need to be specified in some way. Typically, a syntax is
defined that authors (we will refer to users of graph drawing systems as “au-
thors” in the following) must use to describe the graphs they wish to draw, and
the system must be able to parse the syntax to construct internal representa-
tions of input graphs. Second, the algorithm itself needs to be implemented in
some programming language. Third, the computed drawing of the graph must
be rendered in such a way that authors can further process the result. Typically,
the system outputs a vectorized or bitmap drawing in some standard format like
PDF or PNG that can then be used for printing or inclusion in a document.

A mayor obstacle to implementing new graph drawing algorithms is that re-
searchers are typically forced to address all three of the above problems, even

W. Didimo and M. Patrignani (Eds.): GD 2012, LNCS 7704, pp. 517-p28] 2013.
(© Springer-Verlag Berlin Heidelberg 2013

518 T. Tantau

though they would like to focus on the implementation part. This leads to in-
teresting graph drawing algorithms being available only as prototypes that lack
many features necessary to make them usable in practice (an example is the
force-based Lombardi graph drawer presented at this conference last year [3]).
Even when algorithms are part of powerful toolkits, these toolkits may be diffi-
cult to integrate into a typesetting work flow (as is the case for MATHEMATICA
or the Open Graph Drawing Framework [4]) or extending them by new algo-
rithms may be a nontrivial software engineering problem (as for the GRAPHVIZ
toolkit [7]). Keeping even simple styling parameters like font sizes or arrow tips
consistent across several drawings is a major problem when different systems are
used (and sometimes even when the same system is used).

The present paper introduces a new framework for implementing graph draw-
ing algorithms that aims at letting researchers focus on the implementation part
for new algorithmic ideas and that takes care of handling the other steps. In
particular, implemented algorithms can immediately be used by authors within
a widely used typesetting system, namely TEX. The framework augments an
existing graphics description language, called “TikZ” [13], by graph drawing
facilities. This language allows authors to specify graphics directly inside TEX
documents using special macros and the graphics are produced on-the-fly during
a run of the TEX program on the manuscript. The new graph drawing framework
is tightly integrated into TikZ: in order to draw a graph using, say, the Sugiyama
method [6/12], all an author has to do is to add the option “layered layout”
to the description of a graph. Here is a typical excerpt from a manuscript (the
output resulting from running TEX on it is shown on the right):

/4 TeX manuscript Consider the diagram

a
\tikz \graph [layered layout] { b Ac/d
a—>{b, c, d} --e<>a \
}; \(|3

While the framework makes it easy for authors to apply powerful graph drawing
algorithms to graphs specified inside a TEX document, its main purpose is to
allow the rapid implementation of new graph drawing algorithms by researchers
from the field. Such algorithms must be implemented in Lua [9], a light-weight,
well-designed scripting language in which the complete framework is written.
Lua was chosen, firstly, because it is part of modern versions of TEX and both
the framework and new algorithms work out-of-the-box on all systems running
modern versions of TEX. Secondly, libraries written in C can both be accessed
and loaded dynamically by Lua, making C code a viable, but less portable option
for time-critical parts of graph drawing algorithms and for integrating algorithms
already implemented in C or C++.

The framework treats graph drawing algorithms as transformations from one
class of graphs to another, a design principle advocated by Di Battista et al. [1].
Graph drawing algorithms declare which kinds of graphs they accept as input

Consider the diagram

Graph Drawing in TikZ 519

and which kind of graphs they produce as output and the framework will au-
tomatically apply appropriate pre- and post-transformations to ensure that any
input graph can be given as input and be used with any algorithm.

Organisation of this Paper. After a short review of the graphics description
language TikZ in Section 2] Section [3] discusses the syntax used in TikZ for the
description of graphs. As will be argued, choices in the syntax are not only a
matter of taste, but can influence the quality of graph drawings. In Section [l we
contrast the integration of a graph drawing framework into an existing graphics
description language to the approaches taken by other graph drawing systems.
Section [sketches the graph transformations performed by the framework and
presents a complete implementation of a simple graph drawing algorithm. In the
conclusion the future road map of graph drawing in TikZ is sketched.

Related Work. One of the earliest systems that integrates a graph drawing algo-
rithm into TEX dates back to 1989: the TreeTEX program of Briiggemann-Klein
and Wood [2] is an improved version of the Reingold—-Tilford algorithm imple-
mented directly in the TEX programming language. Since then, numerous inde-
pendent packages have been developed in the context of TEX that implement
a variety of specialized graph drawing algorithms covering different fields like
drawing trees in linguistics or message sequence charts in software engineering.

The system presented in the following seems to be the first serious attempt at
augmenting a general-purpose graphics description language like POSTSCRIPT,
PSTRICKS, METAFONT, or SVG by general graph drawing facilities.

Concerning the range of algorithms implemented, the framework is roughly
comparable to the GRAPHVIZ toolkit [7], except for the algorithms for radial
graph drawings, which are still missing. Compared to the Open Graph Drawing
Framework [4], a lot of the supporting libraries are not available and the imple-
mentation is much leaner. In both cases, the fact that the systems use compiled
code makes them much faster than our Lua implementation.

2 The Graphics Description Language TikZ

TikZ] is a vector graphics description language implemented as a TEX macro
package. It has been under continuous development for the last ten years and
comes with an extensive documentation. Being part of any standard TEX in-
stallation and being written entirely as a collection of macros, it can be used
without further installation on any system running the TEX program. Its syntax
borrows from METAFONT, a graphic description language designed by Donald
Knuth, and PSTRICKS, a macro package similar to TikZ but tailored specifically
to the POSTSCRIPT language that is understood by many printing devices. The
macros of TikZ convert the description of a graphic into a stream of low-level
primitives for the output format of the specific version of TEX used. In particular,
PDF, POSTSCRIPT, and even SVG output are directly supported.

! TikZ means “TikZ ist kein Zeichenprogramm,” a recursive German acronym in the
tradition of “GNU is Not Unix” cautioning that TikZ is not a graphical editor.

520 T. Tantau

The most important feature of TikZ for the purposes of the present paper
is its support for specifying nodes and edges between them. Nodes can have
one of many possible shapes (the libraries define dozens of possible shapes, and
arbitrarily complex new shapes can be defined) and edges can be routed in
different manners. Nodes have anchors, which are coordinates inside the node
that can be referenced later and which are similar to the ports of nodes common
in the context of graph drawing. The following shows a typical, but admittedly
artificial example of creating and connecting nodes using the TikZ syntax.

\tikz { @
\node (a) at(0,0) {$\alpha~2$}; €
\node (b) [dashed] at(0,1) {βl}; .- /
\node (c) [circle] at(1,2) {Γ}; B -

\node (d) [cloud] at(2,0) {d}; - -

\draw (a) edge (b) N
(b) edge [->, "ϵ"] (c)
(b) edge [<->, dotted] @; ¥

Above, coordinates for the nodes have been spec-

ified explicitly. The main purpose of the graph

drawing framework described in the following is ,@
to compute these positions algorithmically. Leaving :\eA
out the at-parts and saying \tikz[tree layout, - @
grow=right] at the beginning yields the result

shown right.

3 On a Syntax for Specifying Graphs and the
Quality of Graph Drawings

Graph drawing systems should make it easy for authors to specify the graphs
they wish to be drawn. Examples of graph description languages include GRAPH-
ML, an XML-based markup language; the DOT format, used by GRAPHVIZ; or the
GML format, used by the Open Graph Drawing Framework. Graphs can also
be specified indirectly as the results of computations, as in computer algebra
systems like MATHEMATICA, allowing succinct graph specifications.

Desirable Properties of Graph Description Languages for Graph Drawing. It may
seem to be largely a matter of taste which format is used for specifying graphs;
graph drawing algorithms, including those implemented using the framework
presented in this paper, internally work on an abstract representation of the
graph anyway, namely on a set of nodes and a set of edges. However, especially
for graphs specified by humans as part of a manuscript, there are several reasons
why a format needs to be chosen carefully.

Firstly, authors should be able to provide hints to graph drawing algorithms
through the means of the syntax. An important hint is actually the order in which
nodes and edges are specified by an author; it typically has semantic meaning.

Graph Drawing in TikZ 521

The importance of this information is well-recognized; for instance, experiments
by Gansner et al. [§] have shown that cycle removal, a first step in algorithms
for drawing layered graphs, should be based on a depth-first traversal of the
input graph as specified by the author rather than on using, say, randomized
methods (see for instance [I]) that do not take the graph description into account.
The quality of cycle removals can be further improved if authors can indicate
“backward edges” in a natural way. While the node ordering is implicit in almost
any format, specifying hierarchical dependencies or special edge kinds can be
cumbersome or even impossible. To illustrate the subtleties involved, consider
the problem of using a general-purpose graph description language to specify
ternary trees in which nodes may have “missing” children, like a missing left or
middle child, for which space needs to be reserved in the layout.

Secondly, while the above considerations aim at improving the quality of the
results produced by graph drawing algorithms, a good format will also make it
easy for authors to specify a graph succinctly and in a self-explaining manner.
Authors will prefer to write (and, later on, also to read) a => b -> ¢ -> a, as
in the DOT format, over having to first create three nodes (using \node thrice in
TikZ or the <node> tag in GRAPHML or node[...] in aML) followed by having
to specify three edges (using edge, <edge>, or edgel. ..]). Styling options, label
texts, and “hints” to graph drawing algorithms should also be easy to specify.

A Graph Description Language for Graph Drawing in TikZ. All of the existing
formats have drawbacks: The standard way of specifying nodes and edges in TikZ
using the \node command is too verbose and the same is true for GRAPHML and
all other XML-based formats. The DOT format used in the GRAPHVIZ toolkit is
more concise and defines a number of ways of styling nodes and edges, but this
set of options is small compared to what is possible in TikZ; moreover, the set
is not extensible. As a result, a new format was developed that is tailored to
the specific needs of graph drawing in TikZ (but the standard syntax and other
formats can also be used). The basic syntax of this new format leans on the
DOT format and graphs specified using only the basic features of DOT can be
processed directly. Nodes can be grouped and connected hierarchically as in the
following examples:

\tikz [spring layout, orient=d|b] _ d ~
\graph {a == b -- ¢ == d -- a; b -- d}; a\lL/C
\tikz [tree layout] a
\graph {a -> % a’s second child is "missing": / \\
{b, , c, d -> {"δ_1","δ_2"}}}; b c vd«
01 62

The first main difference to the DOT format is the place where options are spec-
ified: The \graph command, each node, and also each edge indicator (symbols
like =- or ->) can be followed by options written in square brackets. In partic-
ular, in a sequence of nodes connected by edges, each node and each edge can
have its own options without any need for repeating the node names:

522 T. Tantau

\tikz [nodes=draw, tree layout, grow=right] @___). .
\graph {alcloud] ->[dashed] b -- c[very thick]};

The second main difference concerns the semantics of edge indicators, of which
there are five (==, =>, <=, <=>, and the special -! - meaning “remove an edge spec-
ified earlier”). While graph descriptions in DOT format are sequences of edges
plus syntactic sugar (we can write a => b -> ¢ instead of a => b; b -> ¢
and a -> {b; c} instead of a -> b; a -> c¢), we now interpret graph de-
scriptions as graph expressions, that is, as terms whose atoms are single ver-
tices and whose function symbols combine subgraphs to larger graphs. The text
{a, b, ¢} -- {d, e, f} is interpreted as the term v(G1,G2) where G; and
G2 are two disjoint three-vertex graphs and v is a combining function that com-
bines two (possibly overlapping) graphs by taking their union and adding some
edges. The default combining function connects the nodes using a matching,
but it can be changed for each use of an edge indicator. The use of advanced
combining functions allows authors to describe graphs in a succinct and, ideally,
self-explaining manner as the following example of a butterfly network shows.

\tikz [nodes={draw, circle}, layered layout]
\graph [empty nodes] {
{a, b, ¢, d} --[butterfly={level=2}]
{e, £, g, h} —-[butterfly={level=1}]

{i, j, k, 1} -> {m, n, o, p} }; O O O O

Options attached to nodes or edges provide “local” information to graph draw-
ing algorithms. In order to communicate information about “global” structures
inside the input graph, authors can specify subgraphs of the input graph. For
instance, hyperedges can be modeled as discrete subgraphs, just as the “same
rank clusters” of the DOT format. “Clusters of edges” can also be regarded as
subgraphs whose edges should be routed similarly by an edge routing algorithm.
To handle all of these and future applications in a uniform manner, implementers
can declare subgraph kinds like “hyper” for hyperedges or “same rank” for same
rank clusters. Using an option key like same rank at the beginning of a group
indicates that everything inside the group is part of a subgraph.

\tikz \graph [layered layout] { a
a->{b, c}->4d->e; /\
{[same rank] b <-> c }; b <> ¢
{[same rank] d, e }; N Y

}; e «—

Special support is available (in the form of syntactic sugar) for specifying sub-
graphs on which a graph drawing algorithm should be used that differs from
the main algorithm. Running the different algorithms and resolving conflicts are
handled automatically by the framework.

Graph Drawing in TikZ 523

Making Syntactic Structure Visible to Graph Drawing Algorithms. Just like any
other general-purpose graph drawing framework, our framework internally works
on abstract representations of the input graphs that do, however, include all of
the syntactic “hints” given by the author in a format-independent way. For
instance, we store the options trailing a node or an edge as tables attached
to the node’s or edge’s representing object. We use arrays to store nodes and
edges in the order they appear. Information about nodes that are “not there” is
communicated by a string of events that are generated by the parser whenever
“something interesting happens” (such as “missing node encountered”). For each
subgraph kind, an array stores all subgraphs that have been specified.

4 Integrating a Graph Drawing Framework into a
Graphics Description Language

Typesetting a document and drawing a graph are generally treated as two unre-
lated problems. On the one hand, we have specialized software and formats
for typesetting documents, like Donald Knuth’s TEX, Adobe’s INDESIGN, or
Apache’s OPENOFFICE; on the other hand, we have specialized software and
formats for drawing graphs, like GRAPHVIZ, the graph drawing packages inside
MATHEMATICA, or the Open Graph Drawing Framework. This separation into
two distinct spheres of development allows for very efficient and specialized im-
plementations. However, it also makes it necessary to establish an interface be-
tween the program employed for the typesetting and the program employed for
the graph drawing, whenever documents should contain drawings of graphs.

Interfacing Between a Graph Drawer and a Typesetter. The typical interface
between a graph drawer and a typesetter is simple and one-way: At some point,
a document author will run the graph drawing program (manually or triggered
by a makefile), resulting in drawings in a vectorized format like PDF or SVG or
in a bitmap format like PNG. These drawings must then somehow be embed-
ded into the document. Unfortunately, it is hard for authors to ensure that the
drawings produced by the graph drawing system match the style sheet used for
the main document. Basic requirements like matching colors can often be met,
but already font sizes are harder to get right. Meeting advanced requirements
such as including mathematical text in node labels is typically impossible even
when powerful graph drawing systems are used; let alone when special-purpose,
standalone graph drawing systems are employed.

Many of these problems can be avoided by using the graph drawing system
only for computing positions for the nodes of a graph and leaving the rendering of
the graph to the typesetting system; for instance using METAFONT or PSTRICKS
(or TikZ for that matter) with TEX. Unfortunately, this approach entails a new
problem: The graph drawing system now misses information concerning the sizes
of text labels, which is vital for many graph drawing algorithms.

Integrating a Graph Drawer into a Typesetter. The graph drawing framework
for TikZ sidesteps the indicated problems by integrating the typesetter with the
graph drawer. No separate program is used for the graph drawing; rather, it is

524 T. Tantau

implemented as a subsystem of the typesetting program TEX, but using the Lua
programming language. This language has been integrated into recent versions of
TEX, making the implementation of advanced graph drawing algorithms feasible:
Although TEX is Turing-complete, programming directly in TEX is an arcane art
practised by only a few devout disciples. In contrast, Lua is a small, elegant, and
fast scripting language that is easy to use both for beginners and experts.

The overall structure of the framework consists of three layers:

1. Document authors see the TikZ layer. Its job is to provide a powerful and
easy-to-use syntax, such as the graph description syntax from the previous
section. This layer is written in the TEX programming language.

2. Implementers of graph drawing algorithms see the Lua layer of the graph
drawing framework. It consists of Lua classes for graphs, nodes, edges, as
well as libraries for common tasks like algorithms for graph traversal, graph
decomposition, and so on. This part of the framework can be used inde-
pendently of TEX, making it possible to use the implemented algorithms in
another program such as an interactive graph editor.

3. Between these two layers, there is a binding layer that passes the results of
the parsing process from the TikZ layer down to the graph drawing algo-
rithms and passes back the results (namely the computed coordinates of the
nodes) to TEX. This layer is written in a mixture of TgX and Lua.

Let us consider \tikz \graph [tree layout] {a -> b -> {c,d}}; as an ex-
ample. Upon encountering the special option tree layout, TikZ starts a “graph
drawing scope” inside which it will identify four nodes and three edges. Each of
the four nodes is rendered normally, resulting in TEX boxes that contain all of
the low-level primitives needed to render the nodes, including label texts, bor-
ders, shadows, and whatever else might have been specified. Normally, such a
box would now be added to the page, but the binding layer intercepts the box
at this point and passes it down to the Lua layer, where the contents of the box
are stored in an internal table, together with detailed size information. From
TEX’s point of view, the box disappears at this point. In contrast, edges are not
rendered when they are encountered. Instead, only the information where the
edge starts, where it ends, and the edge’s local options are passed down.

At the end of the graph drawing scope, a complete description of the graph,
consisting of all nodes, including their exact convex hulls, all edges, including
their labels and options, will have accumulated on the Lua layer. At this point,
the framework switches over completely to Lua and runs the graph drawing
algorithm corresponding to the option tree layout (this happens to be the
Reingold—Tilford algorithm). When the algorithm has finished, the node and
edge objects will store the computed canvas coordinates. Since, from the type-
setter’s perspective, the nodes and edges “disappeared” during the parsing of
the graph drawing scope, they must now be reinserted into the page. The bind-
ing layer inserts the stored nodes at the computed positions and, only now, also
renders the edges.

Although the binding layer makes nodes disappear and reappear from the
typesetter’s memory, this is done in such a way that from TEX’s perspective

Graph Drawing in TikZ 525

there is no difference between nodes inside graph drawing scopes and nodes
positioned without the use of the graph drawer. In particular, the nodes inside a
graph drawing scope can be referenced from outside this scope just like any other
node, allowing the seamless integration of drawn graphs into larger graphics:

\tikz {
\graph [spring layout, nodes=coordinate] 7
{fa -b--c--d--e - a}; start
\fill [black!25] (a)--(c)--(e)--(b)--(d);
\node at(-1,-.5) {start} edgel->] (a); }

5 Implementing Graph Drawing Algorithms:
Graph Drawing as a Sequence of Transformations

Graph drawing algorithms for TikZ are implemented on the Lua layer of the
framework, using the Lua programming language. In the following, we first dis-
cuss the basic design principles of the Lua layer and then present a simple, but
complete implementation of a tree drawing algorithm.

Graph Drawing as a Sequence of Transformations. The design of the graph draw-
ing framework adheres to the philosophy advocated by Di Battista et al. [I] to
see graph drawing as a series of graph transformations. We start with an “arbi-
trary” input graph and end with a graph whose nodes and edges are embedded
in the plane. For instance, the popular Sugiyama method for drawing layered
graphs consists of first decomposing the input graph into connected components,
then transforming each component into a directed acyclic graph, followed by a
whole series of further transformations. In contrast, most force-based algorithms
will also decompose the input graph but will then turn each component into
a simple, undirected graph. Other typical transformations include the decom-
position of the graph into connected components, or into bi- or tri-connected
components, or planarization.

The principle of treating graph drawing as graph transformations is reflected
by the way graph drawing algorithms must be implemented. Each new algorithm
is actually just a transformation and it must declare which kinds of graphs the
algorithm expects and what kind of graphs it will output, using a Lua table
advertising the algorithm properties. For instance, a property “works only on
connected graphs” tells the framework that it must first decompose the input
graph into connected components and that these components must be passed to
the algorithm individually. Similarly, the property “needs a spanning tree” tells
us that the algorithm will work on trees (or at least will need a spanning tree
in addition to the original graph). Other properties concern the output graphs
rather than the input: The property “growth direction” tells the framework that
the result of the transformation is embedded in the plane in such a way that
certain further rotational transformations still need to be performed.

526 T. Tantau

Properties give algorithm designers fine control over which transformations
are applied to a graph before and after the actual algorithm runs. Standard
transformations include decomposition into connected components, shifting and
rotating to meet author-specified anchoring and orientation requirements, as well
as rotating tree-like graphs so that they “grow” at an author-specified angle. The
last transformation is especially useful since graph drawing algorithms for trees
and layered graphs only need to handle the case that a tree grows, say, upwards.
The framework will automatically rotate the graph when a user requests that
the tree should grow in another direction and, having access to the convex hulls
of the nodes, the framework can also correctly compensate for the effects of
rotating a drawing of a graph, but not rotating the individual nodes.

Implementing a Graph Drawing Algorithm. We now present a simple, but com-
plete example implementation of a tree drawing algorithm. It starts with a dec-
laration of which kind of graphs it expects as input and what it will output:

local TreeExample = pgf.gd.new_algorithm_class {
works_only_on_connected_graphs = true,
needs_a_spanning_tree = true,
growth_direction = 90 } -- The algorithm "grows" the tree "upwards”

The declaration ensures that when the framework calls the run method (at the
very end of the below code), the algorithm only gets a tree as input, even if the
original input graph is not acyclic. (Like all other transformations, the to-be-
used algorithm for computing spanning trees can be selected by authors through
options.) The actual algorithm recursively positions subtrees next to each other,
going right, and centers each node above its subtrees. (This placement strategy
is not particularly clever and only used for demonstration purposes.)

local Coordinate = require "pgf.gd.model.Coordinate" -- An import
local function recursion(tree, vertex, left_end, y)
-— The "options" table contains all options attached to the graph
-- as a whole on the TeX level. Nodes and edges also have such tables.

local level_dist = tree.options[’/graph drawing/level distance’]
local sibling_dist = tree.options[’/graph drawing/sibling distance’]
-- The array of edges starting at "vertex" in the graph "tree':

local outgoing_edges = tree:outgoing(vertex)

local right_end = left_end

for i,edge in ipairs(outgoing_edges) do -- Position the children

right_end = recursion(tree, edge.head, right_end, y + level_dist)
if i1 < #outgoing_edges then right_end = right_end + sibling_dist end
end
-— Now position the vertex, centered below its child trees
vertex.pos = Coordinate.new ((left_end + right_end) / 2, y)
return right_end
end
function TreeExample:run()
recursion(self.spanning_tree, self.spanning_tree.storage.root, 0, 0)
end
return TreeExample -- The need for this return %s a quirk of Lua

Graph Drawing in TikZ 527

Putting the code in a file named TreeExample.lua, we can immediately use it as
follows (note how the framework takes care of correctly handling options like the
diagonal growth direction and does not pass the b--d edge to the algorithm):

% In the TeX manuscript: _d

\tikz [layout=TreeExample, grow’=45, b Ay e
sibling distance=1.25em, level distance=3em] 7 ¢ P &
\graph {a -> {b, ¢ -> {d, e}, £ -> g}, b -- d}; a"/,f

Naturally, the implementations of the “real” graph drawing algorithms that are
already part of the framework are more complex than the above example: A
not-quite-optimal implementation of the Reingold—Tilford [II] tree drawing al-
gorithm has 130 lines of code; the modular implementation of the Sugiyama
method [6JT2] needs a bit over 2000 lines of code, nearly half of which imple-
ments the network simplex algorithm [5]; implementations of different force-
based algorithms need between 350 and 500 lines of code and another 500 lines
for supporting multilevel approaches.

6 Conclusion

Graph drawing in TikZ allows researchers to rapidly implement and test new
graph drawing algorithms, which authors can immediately use to produce high
quality drawings of graphs that are part of a larger text. Since the graph drawing
framework is implemented as a subsystem of a graphics description language, the
full power of the language can be used to modify and augment graph drawings.
Being part of the main TikZ code trunk, the current development version of
the framework is available through sourceforge.net/projects/pgf and it will
automatically be part of future standard TEX distributions.

Since the core of the graph drawing framework is implemented in Lua, it is
much faster than equivalent code written in TEX, but much slower than code
written in languages like C. None of the graphs in the present paper take any
noticeable amount of time to process, but for instance a 47-node graph from
the Graphviz example suite, depicting the Unix history, needs about four sec-
onds. Most time is actually needed by the TikZ parser, the Lua part needs 1.2
seconds on a 2.8GHz cpu; but larger graphs may need minutes or hours to pro-
cess. This problem can partly be sidestepped by using TikZ’s built-in facilities
for only (re)processing pictures whose syntactic description has changed in the
manuscript. Alternatively, time-critical parts of algorithms can be implemented
in C libraries that get loaded dynamically by Lua; but this entails the portability
and deployment problems that come along with compiled C code.

The development road map for graph drawing in TikZ is, firstly, to implement
a larger range of standard graph drawing algorithms as well as further pre- and
post-transformations such as computing SPQR tree decompositions. Second, I
intend to refactor the binding layer’s code to make bindings easy between the Lua
part (which includes the implemented graph drawing algorithms) and systems
other than TEX, such as interactive graph editors.

528 T. Tantau

Acknowledgements. The first prototype of the framework was implemented
as a graduate project by Ahrens, Frahm, Kluttig, Schulz, and Schuster [I3]
Chapter 31]. The prototype was greatly extended by Jannis Pohlmann while
working on his Diploma thesis [10], where he details his implementations of the
modular Sugiyama algorithm and of the multilevel force-based methods. I would
also like to thank the anonymous reviewers for their valuable feedback.

References

1. Battista, G.D., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing, Algorithms
for the Visualization of Graphs. Prentice Hall (1999)

2. Briiggemann-Klein, A., Wood, D.: Drawing trees nicely with TEX. Electronic Pub-
lishing 2(2), 101-115 (1989)

3. Chernobelskiy, R., Cunningham, K.I., Goodrich, M.T., Kobourov, S.G., Trott, L.:
Force-Directed Lombardi-Style Graph Drawing. In: van Kreveld, M., Speckmann,
B. (eds.) GD 2011. LNCS, vol. 7034, pp. 320-331. Springer, Heidelberg (2012)

4. Chimani, M., Gutwenger, C., Jinger, M., Klein, K., Mutzel, P., Schulz, M.: The
open graph drawing framework. Poster at the 15th International Symposium on
Graph Drawing 2007 (GD 2007) (2007)

5. Cunningham, W.H.: A network simplex method. Mathematical Program-
ming 11(1), 105-116 (1976)

6. Eades, P., Sugiyama, K.: How to draw a directed graph. Journal of Information
Processing 13(4), 424-436 (1990)

7. Ellson, J., Gansner, E., Koutsofios, E., North, S., Woodhull, G.: Graphviz and
dynagraph — static and dynamic graph drawing tools. In: Junger, M., Mutzel,
P. (eds.) Graph Drawing Software. Mathematics and Visualization, pp. 127-148.
Springer (2004)

8. Gansner, E., Koutsofios, E., North, S., Vo, K.P.: A technique for drawing directed
graphs. IEEE Transactions on Software Engineering 19(3), 214-230 (1993)

9. Ierusalimschy, R.: Programming in Lua. Lua.org, 2nd edn. (2006)

10. Pohlmann, J.: Configurable Graph Drawing Algorithms for the TikZ Graphics
Description Language. Diploma thesis, Institute of Theoretical Computer Science,
Universitét zu Liibeck (October 2011)

11. Reingold, E.M., Tilford, J.S.: Tidier drawings of trees. IEEE Transactions on Soft-
ware Engineering 7(2), 223-228 (1981)

12. Sugiyama, K., Tagawa, S., Toda, M.: Effective representations of hierarchical struc-
tures. Tech. Rep. 8, International Institute for Advanced Study of Social Informa-
tion Science, Fujitsu (1979)

13. Tantau, T.: The TikZ and PGF Packages, Manual for version 2.10-cvs (2012),
http://sourceforge.net/projects/pgt/

http://sourceforge.net/projects/pgf/

	Graph Drawing in TikZ

	Introduction
	The Graphics Description Language TikZ
	On a Syntax for Specifying Graphs and the Quality of Graph Drawings
	Integrating a Graph Drawing Framework into a Graphics Description Language
	Implementing Graph Drawing Algorithms: Graph Drawing as a Sequence of Transformations
	Conclusion
	References

