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Abstract. In this paper, we propose a novel visualization framework
called DAGView. The aim of DAGView is to produce clear visualizations
of directed acyclic graphs in which every edge and the potential existence
of a path can be immediately spotted by the user. Several criteria that
users identified as important in a layout are met, such as underlying grid,
crossings and bends that appear perpendicular. The main algorithm is
based on the layout of directed acyclic graphs but can be extended to
handle directed graphs with cycles and undirected graphs, taking into ac-
count user preferences and/or constraints. Important tasks that are used
in user studies are performed efficiently within the DAGView framework.

1 Introduction

Node link diagrams are a well studied representation of graphs. There are numer-
ous techniques proposed by the graph drawing community that study geometric
features, readability and aesthetic rules [4]. One standard technique for visual-
izing graphs is the orthogonal model, a model that has been widely studied and
advanced through the years [2,3,16,17]. In this model each edge is mapped into
a chain of horizontal and vertical line segments. The fact that bends are drawn
solely as right angles assists the readability of the diagram. Not only bends, but
also crossings appear perpendicular between the edges in orthogonal drawings.

Some interesting questions were posed in the work of Ghoniem et al. [8], where
the authors describe a user study comparing the matrix representation over the
node link representation of graphs. Matrix-based representation is a visualization
technique where a boolean-valued n-by-n connectivity matrix is used. Columns
denote the origin-node of the edge, while the rows denote the target-node of
the edge. If there is an edge (u, v) the cell at the intersection of column u and
row v, is colored black. In [8] users were asked to give fast and correct answers
on several tasks such as counting the number of nodes and edges, finding the
most connected node, finding if there was an edge between two specified nodes
as well as finding a path between nodes. The overlapping of links and the lack
of topology were addressed by the users as the two main factors that caused
difficulties in reading node-link representations.
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Several tools implement the matrix representation technique. MatrixExplorer
[10] is a network visualization system that uses both node-link diagrams and
matrices. The user can hop from one representation to the other as well as in-
teracting with the matrix representation. Zoomable Adjacency Matrix Explorer
(ZAME) [7] is a tool that takes advantage of the scalability of matrix repre-
sentation and enables exploration of graphs with millions of nodes and edges.
MatLink [9] is a tool implementing a composite representation, where links over-
lay on the border of the matrix visualization. Another recent paper [1] partially
uses the matrix-based representation to produce hybrid visualizations.

In recent years there is a trend to study graph representation from a cognitive
point of view. Experimental studies were deployed in order to evaluate the aes-
thetics and the readability of different graph layouts [21,22]. Examples of these
aesthetics include the minimization of edge crossings and the minimization of
bends. In [12] an eye tracking experiment was conducted in order to study the ef-
fects of crossing angles. Among the findings, authors concluded that when edges
cross at 90 degrees, eye movement may be slightly slowed down, but it remains
smooth. Grid drawing is an important goal for graph drawing techniques. Pur-
chase et al. note that besides the minimization of edge crossings, aligning nodes
and edges to an underlying grid is equally important [20]. In [6] the authors
conduct an experiment to compare user-generated and automatic graph layouts.
Users chose graphs based on general aesthetics, most commonly a symmetric,
ordered, or clean look. We use the knowledge compiled by several human factors
studies regarding the readability of layouts in order to design algorithms that
aim to optimize the most important criteria.

In this paper, we propose the DAGView visualization framework which con-
tains a family of algorithms based on the Overloaded Orthogonal technique [13].
The DAGView framework presents several characteristics that users identified
as important: underlying grid, crossings that appear perpendicular, easy check
for the existence of an edge and/or path. We extend the main algorithm which
is based on the layout of directed acyclic graphs, in order to visualize directed
graphs with cycles and undirected graphs, taking into account user preferences
and/or constraints. Finally, we discuss important features of our approach that
respect the user’s choices as described in [8,20,21].

2 The DAGView Model

The DAGView model contains a family of algorithms based on the Overloaded
Orthogonal technique [13]. Since dominance drawings cannot visualize every di-
rected acyclic graph [14,15], a relaxed condition, called weak dominance property,
was proposed [13]. The efficiency of this model comes from combining domi-
nance and row/column reuse. In general, we want to find a pair of topological
sortings that produce a visualization which is aesthetically pleasing and has a
desired property. A possible direction of study is to find such a pair of topolog-
ical sortings that place in different quadrants, clusters of nodes which are not
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connected with each other. So, different desired visualization properties will re-
quire a different pair of topological sortings.

As for the edges, a straight line approach will produce several crossings, a
situation that users indicated as the most confusing aspect of node-link repre-
sentations [12]. Therefore we prefer to use the underlying grid in order to route
the edges in a more clear manner. Each outgoing edge of a node uses the same
column in order to reach its corresponding destination node. Intuitively, edges
flow from bottom-to-top and from left-to-right. In order to resolve possible am-
biguities of the model, we use a special class of points called e-points. An e-point
is a small black point placed on the grid in order to indicate the connection from
e-point’s column to e-point’s row. An example is shown in Figure 4.

Algorithm. DAGView ( )
1. Compute a topological sorting T1 and a topological sorting T2

2. Use the rank of each node in T1 and T2, as the assignment
of X and Y coordinates, respectively.

3. For each edge (u, v):
Draw a vertical edge segment from (X(u), Y (u)) to (X(u), Y (v))
Draw a horizontal edge segment from (X(u), Y (v)) to (X(v), Y (v))
Draw an e-point at (X(u), Y (v))

(a) (b)

Fig. 1. Two visualizations of the same directed acyclic graph containing 28 nodes and
197 edges. (a) depicts a matrix representation where columns appear in decreasing
order of out-degree. (b) depicts a DAGView visualization.

Furthermore, the model can be easily extended in order to depict the transitive
closure of the graph without rearranging the already drawn DAGView. If there
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is an edge (u, v) and an edge (v, z), then node z is reachable from u. If node u
and z are not directly connected with an edge, then there would be no e-point
at (X(u), Y (z)). Thus, in the transitive extension of the DAGView model we
simply add edge (u, z) by placing the vertical and the horizontal segment as we
described before, but now the new e-point will be colored gray. These points
that represent a path, are called p-points (p for path). With this technique we
can have all the information about reachability in our directed acyclic graph
preserving the ’mental map’ created by the user from the original DAGView
drawing.

3 Directed Graphs: Handling Cycles

The DAGView visualization technique, as described so far can only visualize
directed graphs with no cycles. In this section we discuss techniques in order to
be able to visualize directed graphs with cycles.

3.1 Presenting Feedback Arcs

By following the weak dominance property, we cannot visualize all the directed
edges that are contained in a cycle. Besides, we cannot place the nodes in the
grid since the existence of a cycle does not allow the construction of a topological
sorting. Therefore, we will temporarily invert the direction of a set of edges such
that the graph will become a directed acyclic graph. This set of edges is also
known as feedback arc set. Computing the minimum feedback arc set is NP-
hard, thus we use heuristics that compute a minimal feedback arc set. One such
algorithm is the Greedy-Cycle-Removal algorithm [4].

Let G = (V,E) be a directed graph with cycles and Γ its visualization ac-
cording to the DAGView framework. First we compute the minimal feedback
arc set and denote it as E′. Next, we invert the direction of the edges in E′.
The DAGView model is used to visualize the new directed acyclic graph since it
contains no cycles. Then we visualize the edges of the graph G = (V,E−E′) ac-
cording to the DAGView model. We focus on how to visualize an edge (v, u) ∈ E′

that belongs to the minimal feedback arc set. Notice that even though u is reach-
able from v, node u is placed in the lower-left quadrant of v. Also note that all
the incoming edges of node u in Γ are assembled in the row Y (u) of the grid.
Thus, the Y (u) row has no edge segment to the right of point (X(u), Y (u)). Sim-
ilarly, all the outgoing edges of node v are assembled in the column X(v) of the
grid. Thus, the X(v) column has no edge segment below the point (X(v), Y (v)).
We use these empty segments a) to the right of u and b) below v, to draw the
feedback arc (v, u). But with this edge visualization of (v, u) we violate the weak
dominance property. In order to highlight this violation, the edges in E′ are col-
ored red and are oriented from top-to-bottom and from right-to-left. Formally,
each edge e′ = (v, u) ∈ E′ will have a vertical segment from point (X(v), Y (v)) to
point (X(v), Y (u)), and a horizontal segment from point (X(v), Y (u)) to point
(X(u), Y (u)). Given a feedback arc (v, u) the corresponding e-point is defined as
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Fig. 2. A directed graph with 55 nodes and 135 edges, out of which 31 are marked
as feedback arcs with red color. Nodes that are colored blue are strongly connected
components that have been contracted into a single node. Inside the blue frames are
depicted in detail two out of the six contracted strongly connected components.

an unlabeled red point that is placed on point (X(v), Y (u)) to indicate a direct
connection from v to u.

3.2 Handling Strongly Connected Components

Under certain circumstances users might want to inspect a more high-level pic-
ture of a directed graph with cycles. A clustering scheme for strongly connected
components with the DAGView model is discussed. An example is depicted in
Figure 2.

Strongly connected components can be computed in linear time by using stan-
dard algorithms. Next, components are contracted resulting in a new directed
acyclic graph G′ that has a super-node for each strongly connected component.
Algorithm DAGView is applied in order to visualize G′. The visualization of
each strongly connected component can be computed separately following the
technique described in the previous subsection.
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A strong advantage of our framework is that the detailed visualization of a
strongly connected component can be easily added within the already drawn vi-
sualization of G′. An interactive feature of the DAGView model is the following:
by clicking on the contracted strongly connected component Gi = (Vi, Ei) of G

′,
a square |Vi|-by-|Vi| will be extended where the detailed visualization of Gi will
appear. All the nodes that reach Gi have been placed in the lower-left quadrant
of Gi, whereas the nodes that can be reached from the nodes of Gi appear in the
upper-right quadrant of Gi. Thus, the rest of the visualization does not change
and we preserve the user’s mental map of G′ [19].

Algorithm. Strongly Connected Clustering ( )
1. Compute strongly connected components S = {S1, ..., Sk} of G
2. Contract each component Si into a super-node si, obtaining G′

3. Compute X,Y coordinates of G′ and construct the visualization
according to the DAGView model

4. For each strongly connected component Si compute a
minimal feedback arc set, construct and
save separately the DAGView of Si.

5. Replace the node si of the DAGView with its detailed
visualization whenever the user clicks on si

3.3 User-Chosen Feedback Arcs

In the previous subsection we chose the feedback arc set according to the output
of an algorithm. Here we discuss the scenario where the user chooses a number
of edges that (s)he wants to be a part of the feedback arc set. An example may
come from the model of Resource Description Framework (or RDF). Several
techniques visualize RDF graph ontologies from top-to-bottom. But there are
classes of edges that represent a different relation between the nodes and are
directed from bottom-to-top. The visualization of such graph ontologies has been
extensively studied [23].

In this approach the user chooses an edge set Eu that will be a subset of
the feedback arc set. If the set Eu is not a feedback arc set, the Greedy-Cycle-
Removal algorithm is applied on the directed graph with edge set E − Eu. At
the output of Greedy-Cycle-Removal, edges of Eu are added resulting in an aug-
mented feedback arc set. Then we temporary inverse the direction of the edges of
the augmented feedback arc set. A DAGView visualization is produced according
to the new directed acyclic graph. Finally the edges of the augmented feedback
arc set are visualized in red following the orientation from top-to-bottom and
from right-to-left, according to the technique described before.

4 Undirected Graphs

In this section we propose methods to visualize undirected graphs within the
DAGView model. One mainstream technique that has been widely used, is to
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orient the undirected edges in order to obtain a directed graph. The first ap-
proach in this framework is to orient edges in order to avoid cycles. The com-
putation of an st-orientation is in this direction. Specifically, one can use a
parametrized technique in order to control the length of the longest path in the
resulting st-oriented directed graph [18]. The second approach is to construct a
directed graph with cycles.

In this scenario the user gives as an input a set of node-disjoint cycles C =
{C1, ..., Ck} of an undirected graph G = (V,E). The goal is to orient the edges
of each cycle Ci in order to form a strongly connected component ci which can
be easily contracted into a super-node as described in the previous section.

We will discuss how to handle cycle Ci ∈ C. Let (w, z) be an undirected
edge of Ci. Let us also assume that the user chose a direction for the edges of
the cycle, in which the undirected edge (w, z) is oriented from w to z. Each
undirected chordal edge of Ci is oriented so as to conform with the direction
from z to w. After we have oriented all the edges of cycle Ci and its chordal
edges, we temporarily invert the direction of (w, z) and put it in the edge set
E′. The set E′ is formed in order to visualize the feedback arc set. We repeat
the above process for every cycle in C.

Next, we compute an st-orientation of the remaining undirected edges of G,
considering each cycle Ci as a contracted super-node ci. The reason we handle
cycles as super-nodes is because we want to have consecutive X and Y coordi-
nates for the nodes of each cycle. The directed acyclic graph G = (V,E − E′)
is visualized according to the DAGView model. The direction of edges of E′ is
inverted back to the original direction and are drawn in red as feedback arcs.
In the final visualization the strongly connected components can be visualized
either in their original form or as super-nodes.

5 Visualizing Large and Disconnected Graphs

In this section we will address some issues on the topic of visualizing graphs with
many nodes. Specifically, we discuss techniques to handle different connected
components of the same graph as well as a feature to assist the readability of
the drawing.

5.1 Connected Components and Tiles

We show how to visualize graphs that have a number of different connected
components. We will handle each connected component as a separate graph and
consider its visualization as a tile (or rectangle). With the assumption that each
connected component is treated independently, we reduce the total area of the
visualization. For instance one can visualize components separately and then
place them horizontally in decreasing size order. In this case exactly one node
from each of the k components, will have Y coordinate equal to 1.

Thus, the visualization of the graph is performed in two steps, in the first
we visualize the connected component and in the second we place the k tiles
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Fig. 3. A graph with six connected components D = {D1, ..., D6}. The connected
components(rectangles) are placed so as to reduce the overall area of the visualization.

according to an algorithm. The placement of the tiles can be described as a
rectangle packing problem [11]. It is known that this optimization problem is
NP-hard. Therefore, heuristics and approximation algorithms must be used in
order to visualize the graph in a compact manner.

5.2 Edge Highlight

Highlighting an edge is a common feature in graph drawing tools, especially
when dealing with large graphs. This feature is implemented in the DAGView
model as follows: when the user places the mouse over an e-point, the edge is
highlighted. This approach assists the user in locating nodes that are placed in
a great distance by inspecting the e-point that connects them. This simple but
effective interactive enhancement helps users focus on graph elements. In most
graph drawings the user has to visually follow a highlighted edge which changes
orthogonal orientation at every bend. In our case the user anticipates a certain
geometry in the edge that will be highlighted, a vertical segment followed by a
horizontal. The feature that we propose will be of great help in experimental
studies where users are answering an extensive series of questions and they may
need assistance in performing more complicated tasks. An illustrative example
is depicted in Figure 4.

6 Comparing with User Studies

According to user studies performed in [8], for small graphs node link diagrams
are always more readable and more familiar than matrices. On the contrary,
for larger graphs the performance of users on node link diagrams deteriorates
quickly while matrices remain readable with comparable answer time.

Here we discuss the features of the DAGView model in terms of the purely
relational method which is extensively used in the experimental user studies. In
the relational method, the primary concern is the accuracy and efficiency with
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Fig. 4. A DAGView visualization of a directed graph with cycles with 79 nodes and 335
edges. In order to check if there is an edge from node u to node v in a DAGView visual-
ization, we have to inspect only one point of the grid (X(u), Y (v)). If there is an e-point,
then there is an edge. In this visualization the edge is highlighted with a green color.

which people can read the graph structure and answer questions about it. The
tasks that we discuss are posed to users at several experimental studies [8,12,22].
Just the vertex placement alone contains the matrix representation for any di-
rected acyclic graph. Notice that the placement also implies the weak dominance
property [14,15].

Find an Edge. In a DAGView visualization in order to confirm the existence
of an edge (u, v) the user has to focus on only three points of the visualization.
The node u which is located in (X(u), Y (u)), the node v which is located in
(X(v), Y (v)) and the point (X(u), Y (v)) of the underlying grid. If there is an
e-point at (X(u), Y (v)), then edge (u, v) is part of the graph. Note that if node
v is in the lower-left quadrant of node u then the edge is a backedge and it is
depicted in red. Whereas, in the matrix representation the user has to locate the
column that corresponds to node u, and the row that corresponds to node v.
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Then if the point in the intersection of the column of u and the row of v is black,
the edge (u, v) belongs to the edge set of G. So, the task of finding an edge in a
DAGView visualization is as effective as in a matrix-based representation.

Locate Nodes. The DAGView model is a node-link representation. Therefore
the task of locating a node is very intuitive. The user has to inspect the plane
in order to locate the node, a common procedure to users that are familiar
with graphs. However in a matrix-based representation, nodes are depicted as
linearly ordered labels at the column/row. In this case users might have difficulty
recalling the exact position of the column that they spotted in a previous task,
since there isn’t any distinctive feature (such as location on the grid or topology)
to assist their memory.

Count Nodes. Since each node has a distinct coordinate, columns and rows of a
DAGView visualization represent nodes of the graph. This fact reduces the task
of counting nodes into the task of counting the number of rows in the underlying
grid of the DAGView visualization. In a node-link representation, as studies have
pointed out [8], users have difficulty when confronting this task in large graphs. A
possible reason for this behavior is that the user has to scan the two-dimensional
plane of the visualization while counting nodes. On the other hand in the matrix
representation model (as in the DAGView model), the problem is reduced to
counting in one dimension instead of two.

Find a Path. Paths can be easily visualized in the DAGView model for directed
acyclic graphs. Let Γ be a DAGView visualization of a directed acyclic graph
G. If the user is aware of the existence of a path from u to v and has located
node u, then due to the weak dominance placement (s)he has to inspect only the
upper-right quadrant of u in order to locate v. This property reduces the area
of the two dimensional plane that the user has to check for node v. Moreover,
the feature of the transitive closure extension offers all the reachability informa-
tion of a directed acyclic graph with the touch of a button. In a matrix-based
representations this task is complex since nodes are represented twice (once on
both axes of the matrix), which forces the user’s eye to move from the row repre-
senting a node to its associated column back and forth. Whereas in a DAGView
visualization, the user has both the row and the associated column once (s)he
locates the node in the plane.

Find the Most Connected Node. In a DAGView visualization the outgoing
edges of a node u are located in the column X(u), and the incoming edges in
the row Y (u). To locate the most connected node, the user has to glance at
a row/column that is proportional to the degree of the node. Even though in
this task we are interested only in the number of neighbors, when processing
e-points of a column the name of the neighbors comes in at no cost since there
can be only one node in each row. Users might have better performance on
this task in a node-link representation since they are inspecting locally a node
in order to count the edges that have u as an origin/destination. By following
mainstream graph drawing techniques for visualizing dense graphs, the user will
have difficulties counting the edges that are associated with a node.
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Besides these typical tasks, there are generic characteristics of a DAGView
visualization that are helpful to users. Several of the following characteristics
were addressed in experimental studies by the users themselves as ’important
features’ [12]. Also some of the addressed features were observed in studies [20]
where the user was free to ideally visualize the graph from scratch.

Perpendicular Crossings. As indicated in [12] crossings that appear perpen-
dicular have the minimum effect on the readability of the visualization. The
DAGView model not only constructs perpendicular crossings, but also ’hides’ a
great number of them due to the column/row reuse. This general characteristic
of this model enables us to study the problem of minimizing edge crossings from
a completely different perspective.

Visualize on an Underlying Grid. According to experimental studies [20],
when users are asked to draw a graph from scratch, they tend to use a unit
grid formation to place the nodes. Moreover they draw edges vertically and
horizontally, this indicates that the structure used by the DAGView follows the
tendencies of the users.

Scalable Model. The DAGView model aims at providing a scalable visualiza-
tion technique for navigation and easy exploration through large scale graphs. As
in a matrix-based representation [8], the readability of a DAGView visualization
does not deteriorate when the size of the graph and the link density increases.
Large graphs are modularly displayed in order to obtain clear and readable visu-
alization. On the other hand straight-line graph drawing techniques are sensitive
to density and size variation [8].

Preserving the Mental Map. User’s mental map of the DAGView mental
map [19] is preserved by the following important features: the clustering of
strongly connected components, the user-chosen cycles and the transitive clo-
sure extension. This is especially important when the user has to perform sev-
eral tasks sequentially on the same graph. In that case the user might need to
recall the topology of the layout. In the clustering scheme the algorithms mod-
ify the visualization locally while preserving the relative position of the nodes.
Whereas the transitive closure feature extends the visualization of the directed
acyclic graph without changing the position of the already drawn features of the
DAGView visualization.

In conclusion the DAGView model has several of the advantages of matrix-
based and node-link representations, while avoiding several of the disadvantages
of each one.
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